
The Joy of Clojure
MICHAEL FOGUS

CHRIS HOUSER

M A N N I N G
Greenwich

(74° w. long.)

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad St.
Suite 1323
Stamford, CT 06901
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Susan Harkins
180 Broad St. Copyeditor: Benjamin Berg
Suite 1323 Typesetter: Dottie Marsico
Stamford, CT 06901 Cover designer: Marija Tudor

ISBN 978-1-935182-64-1
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

www.allitebooks.com

http://www.allitebooks.org

brief contents
PART 1 FOUNDATIONS ..1

1 ■ Clojure philosophy 3
2 ■ Drinking from the Clojure firehose 20
3 ■ Dipping our toes in the pool 43

PART 2 DATA TYPES59
4 ■ On scalars 61
5 ■ Composite data types 76

PART 3 FUNCTIONAL PROGRAMMING... 105
6 ■ Being lazy and set in your ways 107
7 ■ Functional programming 125

PART 4 LARGE-SCALE DESIGN .. 155
8 ■ Macros 157
9 ■ Combining data and code 177

10 ■ Java.next 207
11 ■ Mutation 234

PART 5 TANGENTIAL CONSIDERATIONS.. 275
12 ■ Performance 277
13 ■ Clojure changes the way you think 292
vii

www.allitebooks.com

http://www.allitebooks.org

contents
foreword xvii
preface xix
acknowledgments xxi
about this book xxiii

PART 1 FOUNDATIONS ...1

1 Clojure philosophy 3
1.1 The Clojure way 4

Simplicity 4 ■ Freedom to focus 5 ■ Empowerment 5
Clarity 6 ■ Consistency 7

1.2 Why a(nother) Lisp? 8
Beauty 9 ■ Extreme flexibility 9 ■ Code is data 11

1.3 Functional programming 12
A workable definition of functional programming 12
The implications of functional programming 12

1.4 Why Clojure isn’t especially object-oriented 13
Defining terms 13 ■ Imperative “baked in” 14 ■ Most of what
OOP gives you, Clojure provides 15

1.5 Summary 19
ix

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
2 Drinking from the Clojure firehose 20
2.1 Scalars 21

Numbers 21 ■ Integers 22 ■ Floating-point numbers 22
Rationals 22 ■ Symbols 23 ■ Keywords 23 ■ Strings 23
Characters 23

2.2 Putting things together: collections 24
Lists 24 ■ Vectors 24 ■ Maps 25 ■ Sets 25

2.3 Making things happen: functions 25
Calling functions 25 ■ Defining functions 26 ■ Simplifying
function definitions with def and defn 27 ■ In-place functions
with #() 28

2.4 Vars 28
Declaring bindings using def 28

2.5 Locals, loops, and blocks 29
Blocks 29 ■ Locals 29 ■ Loops 30

2.6 Preventing things from happening: quoting 32
Evaluation 32 ■ Quoting 33 ■ Unquote 34
Unquote-splicing 35 ■ Auto-gensym 36

2.7 Leveraging Java via interop 36
Accessing static class members 36 ■ Creating Java class
instances 36 ■ Accessing Java instance members with the .
operator 37 ■ Setting Java instance properties 37
The .. macro 37 ■ The doto macro 38 ■ Defining classes 38

2.8 Exceptional circumstances 38
A little pitch and catch 38

2.9 Namespaces 39
Creating namespaces using ns 39 ■ Loading other namespaces
with :require 40 ■ Loading and creating mappings with :use 40
Creating mappings with :refer 41 ■ Loading Java classes with
:import 42

2.10 Summary 42

3 Dipping our toes in the pool 43
3.1 Truthiness 44

What’s truth? 44 ■ Don’t create Boolean objects 44
nil versus false 45

3.2 Nil pun with care 45

www.allitebooks.com

http://www.allitebooks.org

CONTENTS xi
3.3 Destructuring 47
Your assignment, should you choose to accept it 47
Destructuring with a vector 47 ■ Destructuring with a map 49
Destructuring in function parameters 50 ■ Destructuring versus
accessor methods 50

3.4 Using the REPL to experiment 51
Experimenting with seqs 51 ■ Experimenting with graphics 52
Putting it all together 54 ■ When things go wrong 54
Just for fun 56

3.5 Summary 56

PART 2 DATA TYPES ...59

4 On scalars 61
4.1 Understanding precision 62

Truncation 62 ■ Promotion 63 ■ Overflow 64
Underflow 64 ■ Rounding errors 64

4.2 Trying to be rational 65
Why be rational? 66 ■ How to be rational 66 ■ Caveats of
rationality 67

4.3 When to use keywords 68
How are keywords different from symbols? 68 ■ Qualifying your
keywords 69

4.4 Symbolic resolution 70
Metadata 71 ■ Symbols and namespaces 71 ■ Lisp-1 72

4.5 Regular expressions—the second problem 73
Syntax 73 ■ Functions 74 ■ Beware of mutable matchers 75

4.6 Summary 75

5 Composite data types 76
5.1 Persistence, sequences, and complexity 77

“You keep using that word. I do not think it means what you think it
means.” 77 ■ Sequence terms and what they mean 78
Big-O 81

5.2 Vectors: creating and using them in all their varieties 82
Building vectors 82 ■ Large vectors 83 ■ Vectors as stacks 86
Using vectors instead of reverse 87 ■ Subvectors 88 ■ Vectors as
MapEntries 88 ■ What vectors aren’t 89

www.allitebooks.com

http://www.allitebooks.org

CONTENTSxii
5.3 Lists: Clojure’s code form data structure 90
Lists like Lisps like 90 ■ Lists as stacks 91 ■ What lists
aren’t 91

5.4 How to use persistent queues 91
A queue about nothing 92 ■ Putting things on 92 ■ Getting
things 93 ■ Taking things off 93

5.5 Persistent sets 94
Basic properties of Clojure sets 94 ■ Keeping your sets in order with
sorted-set 94 ■ contains? 95 ■ clojure.set 96

5.6 Thinking in maps 97
Hash maps 97 ■ Keeping your keys in order with sorted maps 99
Keeping your insertions in order with array maps 100

5.7 Putting it all together: finding the position of items
in a sequence 101
Implementation 101

5.8 Summary 103

PART 3 FUNCTIONAL PROGRAMMING105

6 Being lazy and set in your ways 107
6.1 On immutability 107

Defining immutability 108 ■ Being set in your ways—
immutability 109

6.2 Designing a persistent toy 110
6.3 Laziness 113

Familiar laziness with logical-and 113 ■ Understanding the lazy-
seq recipe 115 ■ Losing your head 117 ■ Employing infinite
sequences 118 ■ The delay and force macros 119

6.4 Putting it all together: a lazy quicksort 121
6.5 Summary 124

7 Functional programming 125
7.1 Functions in all their forms 126

First-class functions 126 ■ Higher-order functions 129
Pure functions 131 ■ Named arguments 132 ■ Constraining
functions with pre- and postconditions 133

www.allitebooks.com

http://www.allitebooks.org

CONTENTS xiii
7.2 Closures 135
7.3 Thinking recursively 141

Mundane recursion 142 ■ Tail calls and recur 143 ■ Don’t
forget your trampoline 146 ■ Continuation-passing style 148

7.4 Putting it all together: A* pathfinding 149
The A* implementation 151 ■ Notes about the A*
implementation 154

7.5 Summary 154

PART 4 LARGE-SCALE DESIGN.155

8 Macros 157
8.1 Data is code is data 158

Syntax-quote, unquote, and splicing 160 ■ Macro rules of
thumb 161

8.2 Defining control structures 161
Defining control structures without syntax-quote 162
Defining control structures using syntax-quote and unquoting 163

8.3 Macros combining forms 164
8.4 Using macros to change forms 165
8.5 Using macros to control symbolic resolution time 169

Anaphora 170 ■ (Arguably) useful selective name
capturing 171

8.6 Using macros to manage resources 171
8.7 Putting it all together: macros returning functions 173
8.8 Summary 176

9 Combining data and code 177
9.1 Namespaces 178

Creating namespaces 179 ■ Expose only what’s needed 180
Declarative inclusions and exclusions 182

9.2 Exploring Clojure multimethods with the Universal
Design Pattern 183
The parts 184 ■ Usage 185 ■ Multimethods to the rescue 185
Ad hoc hierarchies for inherited behaviors 186 ■ Resolving conflict
in hierarchies 187 ■ Arbitrary dispatch for true maximum
power 188

www.allitebooks.com

http://www.allitebooks.org

CONTENTSxiv
9.3 Types, protocols, and records 189
Records 189 ■ Protocols 192 ■ Building from a more primitive
base with deftype 200

9.4 Putting it all together: a fluent builder for chess moves 202
Java implementation 202 ■ Clojure implementation 204

9.5 Summary 206

10 Java.next 207
10.1 Generating objects on the fly with proxy 208

A simple dynamic web service 209

10.2 Clojure gen-class and GUI programming 212
Namespaces as class specifications 212 ■ Exploring user interface
design and development with Clojure 215

10.3 Clojure’s relationship to Java arrays 218
Types of arrays: primitive and reference 218 ■ Array mutability 220
That unfortunate naming convention 221 ■ Multidimensional
arrays 222 ■ Variadic method/constructor calls 222

10.4 All Clojure functions implement... 222
java.util.Comparator 223 ■ java.lang.Runnable 223
java.util.concurrent.Callable 224

10.5 Using Clojure data structures in Java APIs 224
java.util.List 225 ■ java.lang.Comparable 225
java.util.RandomAccess 226 ■ java.util.Collection 226
java.util.Set 227

10.6 definterface 227
Generating interfaces on the fly 227

10.7 Be wary of exceptions 229
A bit of background regarding exceptions 230 ■ Runtime versus
compile-time exceptions 230 ■ Handling exceptions 232
Custom exceptions 233

10.8 Summary 233

11 Mutation 234
11.1 Software transactional memory with multiversion

concurrency control and snapshot isolation 235
Transactions 236 ■ Embedded transactions 236 ■ The things
that STM makes easy 237 ■ Potential downsides 238
The things that make STM unhappy 239

www.allitebooks.com

http://www.allitebooks.org

CONTENTS xv
11.2 When to use Refs 240
Coordinated, synchronous change using alter 241 ■ Commutative
change with commute 244 ■ Vulgar change with ref-set 245
Fixing write-skew with ensure 245 ■ Refs under stress 246

11.3 When to use Agents 247
In-process versus distributed concurrency models 248
Controlling I/O with an Agent 249 ■ The difference between send
and send-off 251 ■ Error handling 252 ■ When not to use
Agents 254

11.4 When to use Atoms 255
Sharing across threads 255 ■ Using Atoms in transactions 256

11.5 When to use locks 258
Safe mutation through locking 259 ■ Using Java’s explicit
locks 260

11.6 When to use futures 261
Futures as callbacks 262

11.7 When to use promises 265
Parallel tasks with promises 265 ■ Callback API to blocking
API 266 ■ Deterministic deadlocks 267

11.8 Parallelism 268
pvalues 268 ■ pmap 269 ■ pcalls 269

11.9 Vars and dynamic binding 270
The binding macro 271 ■ Creating a named Var 271
Creating anonymous Vars 272 ■ Dynamic scope 273

11.10 Summary 274

PART 5 TANGENTIAL CONSIDERATIONS 275

12 Performance 277
12.1 Type hints 278

Advantages of type adornment 278 ■ Type-hinting arguments
and returns 278 ■ Type-hinting objects 280

12.2 Transients 280
Ephemeral garbage 280 ■ Transients compare in efficiency to
mutable collections 281

12.3 Chunked sequences 282
Regaining one-at-a-time laziness 283

www.allitebooks.com

http://www.allitebooks.org

CONTENTSxvi
12.4 Memoization 284
Re-examining memoization 285 ■ A memoization protocol 285

12.5 Understanding coercion 287
First rule of coercion: don’t 288 ■ Corollary: you’re probably not
doing it right 288 ■ Second rule of coercion: don’t 290
Third rule of coercion: coerce a stable local 290 ■ Fourth rule of
coercion: watch your sizes 290 ■ Fifth rule of coercion: truncate
only as a goal 290

12.6 Summary 291

13 Clojure changes the way you think 292
13.1 DSLs 293

A ubiquitous DSL 293 ■ Putting parentheses around the
specification 294 ■ A note about Clojure’s approach to
DSLs 298

13.2 Testing 298
Some useful techniques 299 ■ Contracts programming 301

13.3 A lack of design patterns 303
Clojure’s first-class design patterns 303

13.4 Error handling and debugging 306
Error handling 306 ■ Debugging 308

13.5 Fare thee well 312

resources 313
index 319

foreword
The authors of this book have taken an ambitious and aggressive approach to teach-
ing Clojure. You know how everyone loves to say they teach using the “drinking from a
fire hydrant” method? Well, at times it feels like these guys are trying to shove that fire
hydrant right up... let’s just say it’s a place where you don’t normally put a fire
hydrant. This isn’t intended as a first book on programming, and it may not be an
ideal first book on Clojure either. The authors assume you’re fearless and, impor-
tantly, equipped with a search engine. You’ll want to have Google handy as you go
through the examples. The authors blaze through many of the classics of both func-
tional programming and industry programming in a whirlwind tour of Clojure that
feels at times more like a class-five tropical storm. You’ll learn fast!

 Our industry, the global programming community, is fashion-driven to a degree
that would embarrass haute couture designers from New York to Paris. We’re slaves to
fashion. Fashion dictates the programming languages people study in school, the lan-
guages employers hire for, the languages that get to be in books on shelves. A naive
outsider might wonder if the quality of a language matters a little, just a teeny bit at
least, but in the real world fashion trumps all.

 So nobody could be more surprised than I that a Lisp dialect has suddenly become
fashionable again. Clojure has only been out for three years, but it’s gaining momen-
tum at a rate that we haven’t seen in a new language in decades. And it doesn’t even
have a “killer app” yet, in the way that browsers pushed JavaScript into the spotlight,
or Rails propelled Ruby. Or maybe the killer app for Clojure is the JVM itself. Every-
one’s fed up with the Java language, but understandably we don’t want to abandon
our investment in the Java Virtual Machine and its capabilities: the libraries, the con-
figuration, the monitoring, and all the other entirely valid reasons we still use it.
xvii

FOREWORDxviii
 For those of us using the JVM or .NET, Clojure feels like a minor miracle. It’s an
astoundingly high-quality language, sure—in fact, I’m beginning to think it’s the best
I’ve ever seen—yet somehow it has still managed to be fashionable. That’s quite a
trick. It gives me renewed hope for the overall future of productivity in our industry.
We might just dig ourselves out of this hole we’re in and get back to where every proj-
ect feels like a legacy-free startup, just like it was in the early days of Java.

 There are still open questions about Clojure’s suitability for production shops,
especially around the toolchain. That’s normal and expected for a new language. But
Clojure shows so much promise, such beautiful and practical design principles, that
everyone seems to be jumping in with both feet anyway. I certainly am. I haven’t had
this much fun with a new language since Java arrived on the scene 15 years ago. There
have been plenty of pretenders to the JVM throne, languages that promised to take
the Java platform to unprecedented new levels. But until now, none of them had the
right mix of expressiveness, industrial strength, performance, and just plain fun.

 I think maybe it’s the “fun” part that’s helped make Clojure fashionable.
 In some sense, all this was inevitable, I think. Lisp—the notion of writing your code

directly in tree form—is an idea that’s discovered time and again. People have tried all
sorts of crazy alternatives, writing code in XML or in opaque binary formats or using
cumbersome code generators. But their artificial Byzantine empires always fall into
disrepair or crush themselves into collapse while Lisp, the road that wanders through
time, remains simple, elegant, and pure. All we needed to get back on that road was a
modern approach, and Rich Hickey has given it to us in Clojure.

The Joy of Clojure just might help make Clojure as fun for you as it is for us.

STEVE YEGGE

GOOGLE
 steve-yegge.blogspot.com

preface
To fully appreciate Clojure, we hearken back to Paul Graham’s essay “Beating the
Averages,” an interesting look at the inner workings of his company Viaweb during
the years prior to being bought by Yahoo! Inc. in 1998. Though interesting as survey
of startup culture, the truly memorable part of the essay was the description of how
Viaweb used the programming language Lisp as an advantage over its competition.
How could a programming language more than 50 years old provide any market
advantage over Viaweb’s competitors, who were surely using modern enterprise tech-
nologies? Without repeating the exact terms of the essay, Graham makes a compelling
case for the capability of Lisp to facilitate a more agile programming environment.

 Clojure is a dialect of Lisp directly supporting concurrent software development
using functional programming techniques, and like the Lisp described in “Beating
the Averages,” provides an environment conducive to agility. Clojure fosters agility in
ways that many popular programming languages can’t. Many programming languages
are bewitched with most or all of the following:

■ Verbosity
■ Unavoidable boilerplate
■ A long thought-code-feedback loop
■ Incidental complexity
■ Difficulties in extension
■ Deficiencies in supporting crucial programming paradigms

In contrast, Clojure provides a mixture of power and practicality fostering rapid devel-
opment cycles. But the benefits of Clojure don’t stop with its agile nature—as the
xix

PREFACExx
clarion call declares, “Multicore is the new hot topic” (Mache Creeger in ACM Queue,
vol. 3, no. 7).

 Though the idea of multicore processors isn’t in itself new, its importance is
becoming increasingly focused. Until recently, you could avoid concurrent and paral-
lel programming techniques and instead ride the ever-quickening processor wave to
better performance. Well, that ride is slowing to a stop, and Clojure is here to help.

 Clojure provides a unique mix of functional programming and host symbiosis —an
embrace of and direct support for its host platform, in this case the Java Virtual
Machine. Additionally, the simplification and often elimination of the complexities
involved in coordinated state change have positioned Clojure as an important lan-
guage moving forward. All software developers must eventually address these prob-
lems as a matter of course, and the study, understanding, and eventual utilization of
Clojure is an essential path toward conquering them. From topics such as software
transactional memory to laziness to immutability, this book will guide you on your way
to understanding the “why” of Clojure, in addition to the “how.”

 We’ll be your guides into a thoughtful understanding of the joyfulness in Clojure,
for we believe its art is prelude to a new age of software development.

acknowledgments
The authors would like to jointly thank Rich Hickey, the creator of Clojure, for his
thoughtful creation, furthering the state of the art in language design. Without his
hard work, devotion, and vision, this book would never have been.

 We’d also like to thank the brilliant members of the young Clojure community,
including but not limited to: Stuart Halloway, David Edgar Liebke, Christophe Grand,
Chas Emerick, Meikel Brandmeyer, Brian Carper, Bradford Cross, Sean Devlin, Tom
Faulhaber, Stephen Gilardi, Phil Hagelberg, Konrad Hinsen, George Jahad, David
Miller, David Nolen, Laurent Petit, and Stuart Sierra. Finally, we’d like to thank a few
early adopters who took the time to provide thoughtful feedback, including Jürgen
Hötzel, Robert “Uncle Bob” Martin, Grant Michaels, Mangala Sadhu Sangeet Singh
Khalsa, and Sam Aaron. And finally, we would like to thank Steve Yegge for agreeing
to write the foreword and for inspiring us over the years.

 Manning sent out the manuscript for peer review at different stages of its develop-
ment and we would like to thank the following reviewers for their invaluable feed-
back: Art Gittleman, Stuart Caborn, Jeff Sapp, Josh Heyer, Dave Pawson, Andrew
Oswald, Federico Tomassetti, Matt Revelle, Rob Friesel, David Liebke, Pratik Patel,
Phil Hagelberg, Rich Hickey, Andy Dingley, Baishampayan Ghose, Chas Emerick,
John D’Emic, and Philipp K. Janert.

 Thanks also to the team at Manning for their guidance and support, starting with
publisher Marjan Bace, associate publisher Michael Stephens, our development edi-
tor Susan Harkins, and the production team of Nicholas Chase, Benjamin Berg, Katie
Tennant, Dottie Marsico, and Mary Piergies. And again to Christophe Grand for a
final technical review of the mansucript during production.
xxi

ACKNOWLEDGMENTSxxii
FOGUS

I’d like to thank my beautiful wife Yuki for her unwavering patience during the writing
of this book. Without her I would’ve never made it through. I also owe a great debt to
Chris Houser, my coauthor and friend, for teaching me more about Clojure than I
ever would’ve thought possible. I’d also like to thank Dr. Larry Albright for introduc-
ing me to Lisp and the late Dr. Russel E. Kacher for inspiring in me a passion for
learning, curiosity, and reflection. Additionally, I’d like to thank the organizers of the
National Capital Area Clojure Users Group—Matthew Courtney, Russ Olsen, and
Gray Herter—for providing a place for others in the DC area to discover Clojure.
Finally, I’d like to thank my boys Keita and Shota for teaching me the true meaning of
love and that it’s not always about me.

CHOUSER

My most grateful thanks go to God, the source of all good things. To my parents,
thanks for your love and support—your spirit of exploration launched me on a life of
wonderful adventure. To my brother Bill, thanks for my earliest introduction to com-
puters and the joys and challenges of programming. To my wife Heather, thanks for
your constant encouragement from the very first moments of this book project to the
last. To my friend and coauthor Michael Fogus, thanks for the brilliant inspiration and
stunning breadth of knowledge you’ve brought to these pages.

about this book
Why learn Clojure?

The only difference between Shakespeare and you was the size of his idiom list—not
the size of his vocabulary.

—Alan Perlis

When this book was conceived, our first instinct was to create a comprehensive com-
parison between Clojure and its host language, Java. After further reflection, we
reached the conclusion that such an approach would be disingenuous at best, and
disastrous at worst. Granted, some points of comparison can’t be avoided, but Java is
very different from Clojure and to try and distort one to explain the other would
respect neither. Therefore, we decided that a better approach would be to focus on
“The Clojure Way” of writing code.

 When we become familiar with a programming language, the idioms and con-
structs of that language serve to define the way we think about and solve program-
ming tasks. It’s therefore natural that when faced with an entirely new language, we
find comfort in mentally mapping the new language onto the familiar old. But we
plead with you to leave all of your baggage behind; be you from Java, Lisp, Scheme,
C#, or Befunge, we ask you to bear in mind that Clojure is its own language and begs
an adherence to its own set of idioms. You’ll discover concepts that you can connect
between Clojure and languages you already know, but don’t assume that similar things
are entirely the same.

 We’ll work hard to guide you through the features and semantics of Clojure to
help you build the mental model needed to use the language effectively. Most of the
samples in this book are designed to be run in Clojure’s interactive programming
xxiii

ABOUT THIS BOOKxxiv
environment, commonly known as the Read-Eval-Print Loop, or REPL, an extremely
powerful environment for experimentation and rapid prototyping.

 By the time you’re done with this book, the Clojure way of thinking about and solv-
ing problems will be another comfortable tool in your toolbox. If we succeed, then
not only will you be a better Clojure programmer, but you’ll also start seeing your pro-
gramming language of choice—be it Java, C#, Python, Ruby, J, or Haskell—in an
entirely different light. This reassessment of topics that we often take for granted is
essential for personal growth.

Who should read this book?

Paths are made by walking.
 —Franz Kafka

This book isn’t a beginner’s guide to Clojure. We start fast and don’t devote much
space to establishing a running Clojure environment, although we do provide some
guidance on page xxix. Additionally, this isn’t a book about Clojure’s implementation
details, but instead one about its semantical details. This is also not a “cookbook” for
Clojure, but instead a thorough investigation into the ingredients that Clojure pro-
vides for creating beautiful software. Often we’ll explain how these ingredients mix
and why they make a great match, but you won’t find complete recipes for systems.
Our examples directly address the discussion at hand and at times leave exposed wir-
ing for you to extend and thus further your own knowledge. It wouldn’t serve us, you,
or Clojure to try to awkwardly mold a comprehensive lesson into the guise of a book-
length project. Often, language books spend valuable time halfheartedly explaining
“real-world” matters totally unrelated to the language itself, and we wish to avoid this
trap. We strongly feel that if we show you the “why” of the language, then you’ll be bet-
ter prepared to take that knowledge and apply it to your real-world problems. In
short, if you’re looking for a book amenable to neophytes that will also show you how
to migrate Clojure into existing codebases, connect to NoSQL databases, and explore
other “real-world” topics, then we recommend the book Clojure in Action by Amit
Rathore (Manning, 2011).

 Having said all of that, we do provide a short introduction to the language and feel
that for those of you willing to work hard to understand Clojure, this is indeed the
book for you. Additionally, if you already have a background in Lisp programming,
then much of the introductory material will be familiar, thus making this book ideal
for you. Though by no means perfect, Clojure has a nice combination of features that
fit together into a coherent system for solving programming problems. The way Clo-
jure encourages you to think about problems may be different than you’re used to,
requiring a bit of work to “get.” But once you cross that threshold, you too may experi-
ence a kind of euphoria, and in this book we’ll help you get there. These are exciting
times, and Clojure is the language we hope you’ll agree is an essential tool for navigat-
ing into the future.

ABOUT THIS BOOK xxv
Roadmap
We’re going to take you on a journey. Perhaps you’ve started on this journey yourself
by exploring Clojure beforehand. Perhaps you’re a seasoned Java or Lisp veteran and
are coming to Clojure for the first time. Perhaps you’re coming into this book from an
entirely different background. In any case, we’re talking to you. This is a self-styled
book for the adventurous and will require that you leave your baggage behind and
approach the enclosed topics with an open mind. In many ways, Clojure will change
the way you view programming, and in other ways it’ll obliterate your preconceived
notions. The language has a lot to say about how software should be designed and
implemented, and we’ll touch on these topics one by one throughout this book.

FOUNDATIONS

Every so often, a programming language comes along that can be considered founda-
tional. Occasionally a language is invented that shakes the foundations of the software
industry and dispels the collective preconceived notions of “good software practices.”
These foundational programming languages always introduce a novel approach to
software development, alleviating if not eliminating the difficult problems of their
time. Any list of foundational languages inevitably raises the ire of language propo-
nents who feel their preferences shouldn’t be ignored. But we’re willing to take this
risk and therefore list the following programming languages in this category.

Foundational programming languages

Year Language Inventor(s) Interesting reading

1957 Fortran John Backus John Backus, “The History of Fortran I, II, and III,”
IEEE Annals of the History of Computing 20, no. 4
(1998).

1958 Lisp John McCarthy Richard P. Gabriel and Guy L. Steele Jr., “The Evolution
of Lisp” (1992), www.dreamsongs.com/Files/
HOPL2-Uncut.pdf.

1959 COBOL Design by committee Edsger Dijkstra, “EWD 498: How Do We Tell Truths
That Might Hurt?” in Selected Writings on Computing:
A Personal Perspective (New York: Springer-Verlag,
1982).

1968 Smalltalk Alan Kay Adele Goldberg, Smalltalk-80: The Language and Its
Implementation (Reading, MA: Addison-Wesley,
1983).

1972 C Dennis Ritchie Brian W. Kernighan and Dennis M. Ritchie, The C Pro-
gramming Language (Englewood Cliffs, NJ: Prentice
Hall, 1988).

1972 Prolog Alain Colmerauer Ivan Bratko, PROLOG: Programming for Artificial Intelli-
gence (New York: Addison-Wesley, 2000).

1975 Scheme Guy Steele and
Gerald Sussman

Guy Steele and Gerald Sussman, the “Lambda
Papers,” mng.bz/sU33.

www.allitebooks.com

http://www.allitebooks.org

ABOUT THIS BOOKxxvi
Like them or not, there’s little dispute that the listed programming languages have
greatly influenced the way that software is constructed. Whether Clojure should be
included in this category remains to be seen, but Clojure does borrow heavily from
many of the foundational languages and also from other influential programming
languages to boot.

 Chapter 1 starts our journey and provides some of the core concepts embraced by
Clojure. These concepts should be well understood by the time you’ve finished the
chapter. Along the way, we’ll show illustrative code samples highlighting the concepts
at hand (and sometimes even pretty pictures). Much of what’s contained in chapter 1
can be deemed “The Clojure Philosophy,” so if you’ve ever wondered what inspired
and constitutes Clojure, we’ll provide that for you.

 Chapter 2 provides a fast introduction to specific features and syntax of Clojure.
 Chapter 3 will address general Clojure programming idioms that aren’t easily cate-

gorized. From matters of truthiness and style to considerations of packaging and nil,
chapter 3 is a mixed bag. All of the topics are important in their own right, and to
understand them is in many ways a start to understanding a large portion of idiomatic
Clojure source code.

DATA TYPES

The discussion on scalar data types in chapter 4 will be relatively familiar to most pro-
grammers, but some important points beg our attention, arising from Clojure’s inter-
esting nature as a functional programming language hosted on the Java Virtual
Machine. Java programmers reading this book will recognize the points made concern-
ing numerical precision (section 4.1), and Lisp programmers will recognize the discus-
sion on Lisp-1 versus Lisp-2 (section 4.4). Programmers will appreciate the practical
inclusion of regular expressions as first-class syntactical elements (section 4.5). Finally,
long-time Clojure programmers may find that the discussion of rationals and keywords
(sections 4.2 and 4.3, respectively) sheds new light on these seemingly innocent types.

1983 C++ Bjarne Stroustrup Bjarne Stroustrup, The Design and Evolution of C++
(Reading, MA: Addison-Wesley, 1994).

1986 Erlang Telefonaktiebolaget
L. M. Ericsson

Joe Armstrong, “A History of Erlang,” Proceedings of
the Third ACM SIGPLAN Conference on History of Pro-
gramming Languages (2007).

1987 Perl Larry Wall Larry Wall, Tom Christiansen, and Jon Orwant, Pro-
gramming Perl (Cambridge, MA: O’Reilly, 2000).

1990 Haskell Simon Peyton Jones Miran Lipovača, “Learn You a Haskell for Great
Good!” http://learnyouahaskell.com/.

1995 Java Sun Microsystems David Bank, “The Java Saga,” Wired 3.12 (1995).

2007 Clojure? Rich Hickey You’re reading it.

Foundational programming languages (continued)

Year Language Inventor(s) Interesting reading

ABOUT THIS BOOK xxvii
Regardless of your background, chapter 4 will provide crucial information in under-
standing the nature of Clojure’s underappreciated scalar types.

 Clojure’s novel persistent data structures will be covered in chapter 5; this should
be enlightening to anyone wishing to look more deeply into them. Persistent data
structures lie at the heart of Clojure’s programming philosophy and must be under-
stood to fully grasp the implications of Clojure’s design decisions. We’ll only touch
briefly on the implementation details of these persistent structures, because they’re
less important than understanding why and how to use them.

FUNCTIONAL PROGRAMMING

Chapter 6 will deal with the nebulous notions of immutability, persistence, and lazi-
ness. We’ll explore Clojure’s use of immutability as the key element in supporting con-
current programming. We’ll likewise show how, in the presence of immutability, many
of the problems associated with coordinated state change disappear. Regarding lazi-
ness, we’ll explore the ways that Clojure leverages it to reduce the memory footprint
and speed execution times. Finally, we’ll cover the interplay between immutability and
laziness. For programmers coming from languages that allow unconstrained mutation
and strict evaluation of expressions, chapter 6 may prove to be an initially mind-
bending experience. But with this mind-bending comes enlightenment, and you’ll
likely never view your preferred programming languages in the same light.

 Chapter 7 will tackle Clojure’s approach to functional programming full-on. For
those of you coming from a functional programming background, much of the chap-
ter will be familiar, although Clojure will present its own unique blend. But like every
programming language dubbed “functional,” Clojure’s implementation will provide a
different lens by which to view your previous experience. For those of you wholly
unfamiliar with functional programming techniques, chapter 7 will likely be mind-
bending. In coming from a language that centers on object hierarchies and impera-
tive programming techniques, the notion of functional programming seems alien. But
we believe Clojure’s decision to base its programming model in the functional para-
digm to be the correct one, and we hope that you’ll agree.

LARGE-SCALE DESIGN

Clojure can be used as the primary language for any application scale, and the discus-
sion of macros in chapter 8 might change your ideas regarding how to develop soft-
ware. Clojure as a Lisp embraces macros, and we’ll lead you through the process of
understanding them and realizing that with great power comes great responsibility.

 In chapter 9, we’ll guide you through the use of Clojure’s built-in mechanisms for
combining and relating code and data. From namespaces to multimethods to types
and protocols, we’ll explain how Clojure fosters the design and implementation of
large-scale applications.

 Clojure is a symbiotic programming language, meaning that it’s intended to run
atop a host environment. For now, the host of choice is the Java Virtual Machine, but
the future bodes well for Clojure becoming host-agnostic. In any case, Clojure pro-
vides top-notch functions and macros for interacting directly with the host platform.

ABOUT THIS BOOKxxviii
In chapter 10, we’ll discuss the ways that Clojure interoperates with its host, focusing
on the JVM throughout.

 Clojure is built to foster the sane management of program state, which in turn
facilitates concurrent programming, as you’ll see in chapter 11. Clojure’s simple yet
powerful state model alleviates most of the headaches involved in such complicated
tasks, and we’ll show you how and why to use each. Additionally, we’ll address the mat-
ters not directly solved by Clojure, such as how to identify and reduce those elements
that should be protected using Clojure’s reference types.

TANGENTIAL CONSIDERATIONS

The final part of this book will discuss topics that are equally important: the design
and development of your application viewed through the lens of the Clojure Philoso-
phy. In chapter 12, we’ll discuss ways to improve your application’s performance in
single-threaded applications. Clojure provides many mechanisms for improving per-
formance, and we’ll delve into each, including their usage and caveats where applica-
ble. And to wrap up our book, in chapter 13, we’ll address the ways that Clojure
changes the ways that you look at tangential development activities, such as the defini-
tion of your application domain language, testing, error-handling, and debugging.

Code conventions
The source code used throughout this book is formatted in a straightforward and
pragmatic fashion. Any source code listings inlined within the text, for example
(:lemonade :fugu), will be formatted using a fixed-width font and highlighted.
Source code snippets outlined as blocks of code will be offset from the left margin,
formatted in a fixed-width font, and highlighted to stand out:

 (def population {::zombies 2700 ::humans 9})
 (def per-capita (/ (population ::zombies) (population ::humans)))
 (println per-capita "zombies for every human!")

Whenever a source code snippet indicates the result of an expression, the result will be
prefixed by the characters ;=>. This particular sequence serves a threefold purpose:

■ It helps the result stand out from the code expressions.
■ It indicates a Clojure comment.
■ Because of this, whole code blocks can be easily copied from an EBook or PDF

version of this book and pasted into a running Clojure REPL:

 (def population {::zombies 2700 ::humans 9})
 (/ (population ::zombies) (population ::humans))
 ;=> 300

Additionally, any expected display in the REPL that’s not a returned value (such as
exceptions or printouts) will be denoted with a leading ; prior to the actual return
value:

 (println population)
 ; {:user/zombies 2700, :user/humans 9}
 ;=> nil

ABOUT THIS BOOK xxix
In the previous example, the map displayed as {:user/zombies 2700, :user/humans
9} is the printed value, whereas nil denotes the returned value from the println
function. If no return value is shown after an expression, then you can assume that it’s
either nil or negligible to the example at hand.

READING CLOJURE CODE When reading Clojure code, skim it when read-
ing left-to-right, paying just enough attention to note important bits of
context (defn, binding, let, and so on). When reading from the inside
out, pay careful attention to what each expression returns to be passed to
the next outer function. This is much easier than trying to remember the
whole outer context when reading the innermost expressions.

All code formatted as either inline or block-level is intended to be typed or pasted
exactly as written into Clojure source files or a REPL. We generally won’t show the Clo-
jure prompt user> because it’ll cause copy/paste to fail. Finally, we’ll at times use the
ellipsis ... to indicate an elided result or printout.

 Code annotations accompany many of the listings, highlighting important con-
cepts. In some cases, numbered bullets link to explanations that follow the listing.

Getting Clojure
If you don’t currently have Clojure, then we recommend you retrieve the Clojure
REPL package (Cljr) created by David Edgar Liebke, located at http://joyofclo-
jure.com/cljr and installing it via the following instructions.

PREREQUISITES

■ Java version 1.6 and later
■ An Internet connection

INSTRUCTIONS

Run the following from your operating system’s console:

 java -jar cljr-installer.jar

If your chosen download method appended a .zip file extension to the Cljr package,
then the following is fine:

 java -jar cljr-installer.jar.zip

You’ll see output from Cljr indicating its installation and package download progress.
Once it has completed, you’ll see instructions for running Clj similar to the following:

 Cljr has been successfully installed. Add $HOME/.cljr/bin to your PATH:

 $ export PATH=$HOME/.cljr/bin:$PATH

 Run 'cljr help' for a list of available commands.

Following the steps displayed, run Cljr.

ABOUT THIS BOOKxxx
REPL

The Cljr package runs a Clojure REPL (Read/Eval/Print Loop) for version 1.2.0—the
same version corresponding to this book. When you launch the Cljr program, you’ll
see the window shown in the figure below.

The book won’t proceed under the assumption that you’re using Cljr but will work
regardless of your own personal REPL setup—as long as you’re running Clojure ver-
sion 1.2.

DOWNLOADING CODE EXAMPLES

Source code for all working examples in this book is available for download from the
publisher’s website at www.manning.com/TheJoyofClojure.

Author Online
Purchase of The Joy of Clojure includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/TheJoyofClojure.
This page provides information on how to get on the forum once you are registered,
what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the AO remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

The Cljr REPL is similar to the stock Clojure REPL, but with additional convenient
features as explained at http://github.com/fogus/cljr.

ABOUT THIS BOOK xxxi
About the cover illustration
The figure on the cover of The Joy of Clojure is captioned “The Confidence Man,” which,
in 19th century France, could mean anything from a healer or medicine man to a card
shark or money lender or traveling salesman. The illustration is taken from a 19th-
century edition of Sylvain Maréchal’s four-volume compendium of regional dress cus-
toms published in France. Each illustration is finely drawn and colored by hand. The
rich variety of Maréchal’s collection reminds us vividly of how culturally apart the
world’s towns and regions were just 200 years ago. Isolated from each other, people
spoke different dialects and languages. In the streets or in the countryside, it was easy
to identify where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

Part 1

Foundations

Even the most elaborate mansion must begin with a firm if humble founda-
tion. We begin here by pouring a foundation of knowledge on which you’ll be
able to build a solid understanding about Clojure’s less familiar ways. This foun-
dation includes, among other things, the philosophy of programming underly-
ing Clojure, sturdy walls of data and functions, and REPLs and nil puns.

Clojure philosophy
Learning a new language generally requires significant investment of thought and
effort, and it is only fair that programmers expect each language they consider
learning to justify that investment. Clojure was born out of creator Rich Hickey’s
desire to avoid many of the complications, both inherent and incidental, of manag-
ing state using traditional object-oriented techniques. Thanks to a thoughtful
design based in rigorous programming language research, coupled with a fervent
look toward practicality, Clojure has blossomed into an important programming
language playing an undeniably important role in the current state of the art in lan-
guage design. On one side of the equation, Clojure utilizes Software Transactional
Memory (STM), agents, a clear distinction between identity and value types, arbi-
trary polymorphism, and functional programming to provide an environment con-
ducive to making sense of state in general, and especially in the face of
concurrency. On the other side, Clojure shares a symbiotic relationship with the

This chapter covers
 The Clojure way

 Why a(nother) Lisp?

 Functional programming

 Why Clojure isn’t especially object-oriented
3

www.allitebooks.com

http://www.allitebooks.org

5The Clojure way
incidental complexity as opposed to complexity that’s essential to the task at hand (Mose-
ley 2006). Clojure strives to let you tackle complex problems involving a wide variety
of data requirements, multiple concurrent threads, independently developed librar-
ies, and so on without adding incidental complexity. It also provides tools reducing
what at first glance may seem like essential complexity. The resulting set of features
may not always seem simple, especially when they’re still unfamiliar, but as you read
through this book we think you’ll come to see how much complexity Clojure helps
strip away.

 One example of incidental complexity is the tendency of modern object-oriented
languages to require that every piece of runnable code be packaged in layers of class
definitions, inheritance, and type declarations. Clojure cuts through all this by cham-
pioning the pure function, which takes a few arguments and produces a return value
based solely on those arguments. An enormous amount of Clojure is built from such
functions, and most applications can be too, which means that there’s less to think
about when trying to solve the problem at hand.

1.1.2 Freedom to focus

Writing code is often a constant struggle against distraction, and every time a language
requires you to think about syntax, operator precedence, or inheritance hierarchies, it
exacerbates the problem. Clojure tries to stay out of your way by keeping things as sim-
ple as possible, not requiring you to go through a compile-and-run cycle to explore an
idea, not requiring type declarations, and so on. It also gives you tools to mold the lan-
guage itself so that the vocabulary and grammar available to you fit as well as possible
to your problem domain—Clojure is expressive. It packs a punch, allowing you to per-
form highly complicated tasks succinctly without sacrificing comprehensibility.

 One key to delivering this freedom is a commitment to dynamic systems. Almost
everything defined in a Clojure program can be redefined, even while the program is
running: functions, multimethods, types, type hierarchies, and even Java method
implementations. Though redefining things on the fly might be scary on a production
system, it opens a world of amazing possibilities in how you think about writing pro-
grams. It allows for more experimentation and exploration of unfamiliar APIs, and it
adds an element of fun that can sometimes be impeded by more static languages and
long compilation cycles.

 But Clojure’s not just about having fun. The fun is a by-product of giving program-
mers the power to be more productive than they ever thought imaginable.

1.1.3 Empowerment

Some programming languages have been created primarily to demonstrate some nug-
get of academia or to explore certain theories of computation. Clojure is not one of
these. Rich Hickey has said on numerous occasions that Clojure has value to the
degree that it lets you build interesting and useful applications.

6 CHAPTER 1 Clojure philosophy
 To serve this goal, Clojure strives to be practical—a tool for getting the job done. If
a decision about some design point in Clojure had to weigh the trade-offs between the
practical solution and a clever, fancy, or theoretically pure solution, usually the practi-
cal solution won out. Clojure could try to shield you from Java by inserting a compre-
hensive API between the programmer and the libraries, but this could make the use of
third-party Java libraries more clumsy. So Clojure went the other way: direct, wrapper-
free, compiles-to-the-same-bytecode access to Java classes and methods. Clojure strings
are Java strings; Clojure function calls are Java method calls—it’s simple, direct, and
practical.

 The decision to use the Java Virtual Machine (JVM) itself is a clear example of this
practicality. The JVM has some technical weaknesses such as startup time, memory
usage, and lack of tail-call optimization2 (TCO). But it’s also an amazingly practical plat-
form—it’s mature, fast, and widely deployed. It supports a variety of hardware and
operating systems and has a staggering number of libraries and support tools avail-
able, all of which Clojure can take advantage of because of this supremely practical
decision.

 With direct method calls, proxy, gen-class, gen-interface (see chapter 10),
reify, definterface, deftype, and defrecord (see section 9.3), Clojure works hard
to provide a bevy of interoperability options, all in the name of helping you get your
job done. Practicality is important to Clojure, but many other languages are practical
as well. You’ll start to see some ways that Clojure really sets itself apart by looking at
how it avoids muddles.

1.1.4 Clarity

When beetles battle beetles in a puddle paddle battle and the beetle battle puddle is a
puddle in a bottle they call this a tweetle beetle bottle puddle paddle battle muddle.

—Dr. Seuss

Consider what might be described as a simple snippet of code in a language like
Python:

x = [5]
process(x)
x[0] = x[0] + 1

After executing this code, what’s the value of x? If you assume process doesn’t change
the contents of x at all, it should be [6], right? But how can you make that assump-
tion? Without knowing exactly what process does, and whatever function it calls does,
and so on, you can’t be sure at all.

 Even if you’re sure process doesn’t change the contents of x, add multithreading
and now you have another whole set of concerns. What if some other thread changes

2 Don’t worry if you don't know what tail-call optimization is. Also don’t worry if you do know what TCO is and
think the JVM’s lack of it is a critical flaw for a Lisp or functional language such as Clojure. All your concerns
will be addressed in section 7.3. Until then, just relax.

7The Clojure way
x between the first and third lines? Worse yet, what if something is setting x at the
moment the third line is doing its assignment—are you sure your platform guarantees
an atomic write to that variable, or is it possible that the value will be a corrupted mix
of multiple writes? We could continue this thought exercise in hopes of gaining some
clarity, but the end result would be the same—what you have ends up not being clear
at all, but the opposite: a muddle.

 Clojure strives for code clarity by providing tools to ward off several different kinds
of muddles. For the one just described, it provides immutable locals and persistent
collections, which together eliminate most of the single- and multithreaded issues all
at once.

 You can find yourself in several other kinds of muddles when the language you’re
using merges unrelated behavior into a single construct. Clojure fights this by being
vigilant about separation of concerns. When things start off separated, it clarifies your
thinking and allows you to recombine them only when and to the extent that doing so
is useful for a particular problem. Table 1.1 contrasts common approaches that merge
concepts together in some other languages with separations of similar concepts in
Clojure that will be explained in greater detail throughout this book.

It can be hard at times to tease apart these concepts in our own minds, but accom-
plishing it can bring remarkable clarity and a sense of power and flexibility that’s
worth the effort. With all these different concepts at your disposal, it’s important that
the code and data you work with express this variety in a consistent way.

1.1.5 Consistency

Clojure works to provide consistency in two specific ways: consistency of syntax and of
data structures.

 Consistency of syntax is about the similarity in form between related concepts. One
simple but powerful example of this is the shared syntax of the for and doseq macros.

Table 1.1 Separation of concerns in Clojure

Conflated Separated Where

Object with mutable fields Values from identities Chapter 4 and section 5.1

Class acts as namespace for
methods

Function namespaces from type
namespaces

Sections 8.2 and 8.3

Inheritance hierarchy made of
classes

Hierarchy of names from data and
functions

Chapter 8

Data and methods bound
together lexically

Data objects from functions Sections 6.1 and 6.2 and
chapter 8

Method implementations embed-
ded throughout class inheritance
chain

Interface declarations from func-
tion implementations

Sections 8.2 and 8.3

8 CHAPTER 1 Clojure philosophy
They don’t do the same thing—for returns a lazy seq whereas doseq is for generating
side effects—but both support the same mini-language of nested iteration, destructur-
ing, and :when and :while guards. The similarities stand out when comparing the fol-
lowing examples:

(for [x [:a :b], y (range 5) :when (odd? y)] [x y])
;=> ([:a 1] [:a 3] [:b 1] [:b 3])

(doseq [x [:a :b], y (range 5) :when (odd? y)] (prn x y))
; :a 1
; :a 3
; :b 1
; :b 3
;=> nil

The value of this similarity is having to learn only one basic syntax for both situations,
as well as the ease with which you can convert any particular usage of one form to the
other if that becomes necessary.

 Likewise, the consistency of data structures is the deliberate design of all of Clo-
jure’s persistent collection types to provide interfaces as similar to each other as possi-
ble, as well as to make them as broadly useful as possible. This is actually an extension
of the classic Lisp “code is data” philosophy. Clojure data structures aren’t used just
for holding large amounts of application data, but also to hold the expression ele-
ments of the application itself. They’re used to describe destructuring forms and to
provide named options to various built-in functions. Where other object-oriented lan-
guages might encourage applications to define multiple incompatible classes to hold
different kinds of application data, Clojure encourages the use of compatible map-like
objects.

 The benefit of this is that the same set of functions designed to work with Clojure
data structures can be applied to all these contexts: large data stores, application
code, and application data objects. You can use into to build any of these types, seq to
get a lazy seq to walk through them, filter to select elements of any of them that sat-
isfy a particular predicate, and so on. Once you’ve grown accustomed to having the
richness of all these functions available everywhere, dealing with a Java or C++ applica-
tion’s Person or Address class will feel constraining.

 Simplicity, freedom to focus, empowerment, consistency, and clarity.
 Nearly every element of the Clojure programming language is designed to pro-

mote these goals. When writing Clojure code, if you keep in mind the desire to maxi-
mize simplicity, empowerment, and the freedom to focus on the real problem at
hand, we think you’ll find Clojure provides you the tools you need to succeed.

1.2 Why a(nother) Lisp?
By relieving the brain of all unnecessary work, a good notation sets it free to concen-
trate on more advanced problems.

—Alfred North Whitehead

9Why a(nother) Lisp?
Go to any open source project hosting site and perform a search for the term “Lisp
interpreter.” You’ll likely get a cyclopean mountain3 of results from this seemingly
innocuous term. The fact of the matter is that the history of computer science is lit-
tered (Fogus 2009) with the abandoned husks of Lisp implementations. Well-inten-
tioned Lisps have come and gone and been ridiculed along the way, and still
tomorrow the search results will have grown almost without bounds. Bearing in mind
this legacy of brutality, why would anyone want to base their brand-new programming
language on the Lisp model?

1.2.1 Beauty

Lisp has attracted some of the brightest minds in the history of computer science. But
an argument from authority is insufficient, so you shouldn’t judge Lisp on this alone.
The real value in the Lisp family of languages can be directly observed through the
activity of using it to write applications. The Lisp style is one of expressivity and
empowerment, and in many cases outright beauty. Joy awaits the Lisp neophyte. The
original Lisp language as defined by John McCarthy in his earth-shattering essay
“Recursive Functions of Symbolic Expressions and Their Computation by Machine,
Part I” (McCarthy 1960) defined the whole language in terms of only seven functions
and two special forms: atom, car, cdr, cond, cons, eq, quote, lambda, and label.

 Through the composition of those nine forms, McCarthy was able to describe the
whole of computation in a way that takes your breath away. Computer programmers
are perpetually in search of beauty, and more often than not, this beauty presents
itself in the form of simplicity. Seven functions and two special forms. It doesn’t get
more beautiful than that.

1.2.2 Extreme flexibility

Why has Lisp persevered for more than 50 years while countless other languages have
come and gone? There are probably complex reasons, but chief among them is likely
the fact that Lisp as a language genotype (Tarver 2008) fosters language flexibility in
the extreme. Newcomers to Lisp are sometimes unnerved by its pervasive use of
parentheses and prefix notation, which is different than non-Lisp programming lan-
guages. The regularity of this behavior not only reduces the number of syntax rules
you have to remember, but also makes the writing of macros trivial. We’ll look at mac-
ros in more detail in chapter 8, but to whet your appetite we’ll take a brief look at one
now. It’s an example that we’ll get working on in a moment:

(defn query [max]
(SELECT [a b c]

(FROM X
(LEFT-JOIN Y :ON (= X.a Y.b)))

(WHERE (AND (< a 5) (< b ~max)))))

3 ...of madness.

10 CHAPTER 1 Clojure philosophy
We hope some of those words look familiar to you, because this isn’t a book on SQL.
Regardless, our point here is that Clojure doesn’t have SQL support built in. The
words SELECT, FROM, and so forth aren’t built-in forms. They’re also not regular func-
tions, because if SELECT were, then the use of a, b, and c would be an error, because
they haven’t been defined yet.

 So what does it take to define a domain-specific language (DSL) like this in Clo-
jure? Well, it’s not production-ready code and doesn’t tie into any real database serv-
ers; but with just one macro and the three functions shown in listing 1.1, the
preceding query returns these handy values:

(query 5)
;=> ["SELECT a, b, c FROM X LEFT JOIN Y ON (X.a = Y.b)

WHERE ((a < 5) AND (b < ?))"
[5]]

Note that some words such as FROM and ON are taken directly from the input expres-
sion, whereas others such as ~max and AND are treated specially. The max that was given
the value 5 when the query was called is extracted from the literal SQL string and pro-
vided in a separate vector, perfect for using in a prepared query in a way that will
guard against SQL-injection attacks. The AND form was converted from the prefix nota-
tion of Clojure to the infix notation required by SQL.

(ns joy.sql
(:use [clojure.string :as str :only []])

(defn expand-expr [expr]
(if (coll? expr)

(if (= (first expr) `unquote)
"?"
(let [[op & args] expr]

(str "(" (str/join (str " " op " ")
(map expand-expr args)) ")")))

expr))

(declare expand-clause)

(def clause-map
{'SELECT (fn [fields & clauses]

(apply str "SELECT " (str/join ", " fields)
(map expand-clause clauses)))

'FROM (fn [table & joins]
(apply str " FROM " table

(map expand-clause joins)))
'LEFT-JOIN (fn [table on expr]

(str " LEFT JOIN " table
" ON " (expand-expr expr)))

'WHERE (fn [expr]
(str " WHERE " (expand-expr expr)))})

(defn expand-clause [[op & args]]
(apply (clause-map op) args))

Listing 1.1 A domain-specific language for embedding SQL queries in Clojure

Handle unsafe literals

Convert prefix
to infix

Support each
kind of clause

Call
appropriate
converter

11Why a(nother) Lisp?
(defmacro SELECT [& args]
[(expand-clause (cons 'SELECT args))
(vec (for [n (tree-seq coll? seq args)

:when (and (coll? n) (= (first n) `unquote))]
(second n)))])

But the point here isn’t that this is a particularly good SQL DSL—more complete ones
are available.4 Our point is that once you have the skill to easily create a DSL like this,
you’ll recognize opportunities to define your own that solve much narrower,
application-specific problems than SQL does. Whether it’s a query language for an
unusual non-SQL datastore, a way to express functions in some obscure math disci-
pline, or some other application we as authors can’t imagine, having the flexibility to
extend the base language like this, without losing access to any of the language’s own
features, is a game-changer.

 Although we shouldn’t get into too much detail about the implementation, take
a brief look at listing 1.1 and follow along as we discuss important aspects of its
implementation.

 Reading from the bottom up, you’ll notice the main entry point, the SELECT
macro. This returns a vector of two items—the first is generated by calling expand-
clause, which returns the converted query string, whereas the second is another vec-
tor of expressions marked by ~ in the input. The ~ is known as unquote and we discuss
its more common uses in chapter 8. Also note the use of tree-seq here to succinctly
extract items of interest from a tree of values, namely the input expression.

 The expand-clause function takes the first word of a clause, looks it up in the
clause-map, and calls the appropriate function to do the actual conversion from Clo-
jure s-expression to SQL string. The clause-map provides the specific functionality
needed for each part of the SQL expression: inserting commas or other SQL syntax,
and sometimes recursively calling expand-clause when subclauses need to be con-
verted. One of these is the WHERE clause, which handles the general conversion of pre-
fix expressions to the infix form required by SQL by delegating to the expand-expr
function.

 Overall, the flexibility of Clojure demonstrated in this example comes largely from
the fact that macros accept code forms, such as the SQL DSL example we showed, and
can treat them as data—walking trees, converting values, and more. This works not
only because code can be treated as data, but because in a Clojure program, code is
data.

1.2.3 Code is data

The notion of “code is data” is difficult to grasp at first. Implementing a programming
language where code shares the same footing as its comprising data structures presup-
poses a fundamental malleability of the language itself. When your language is repre-
sented as the inherent data structures, the language itself can manipulate its own

4 One of note is ClojureQL at http://gitorious.org/clojureql.

Provide main
entrypoint macro

12 CHAPTER 1 Clojure philosophy
structure and behavior (Graham 1995). You may have visions of Ouroboros after read-
ing the previous sentence, and that wouldn’t be inappropriate, because Lisp can be
likened to a self-licking lollypop—more formally defined as homoiconicity. Lisp’s
homoiconicity takes a great conceptual leap in order to fully grasp, but we’ll lead you
toward that understanding throughout this book in hopes that you too will come to
realize the inherent power.

 There’s a joy in learning Lisp for the first time, and if that’s your experience com-
ing into this book then we welcome you—and envy you.

1.3 Functional programming
Quick, what does functional programming mean? Wrong answer.

 Don’t be too discouraged, however—we don’t really know the answer either. Func-
tional programming is one of those computing terms5 that has a nebulous definition.
If you ask 100 programmers for their definition, you’ll likely receive 100 different
answers. Sure, some definitions will be similar, but like snowflakes, no two will be
exactly the same. To further muddy the waters, the cognoscenti of computer science
will often contradict one another in their own independent definitions. Likewise, the
basic structure of any definition of functional programming will be different depend-
ing on whether your answer comes from someone who favors writing their programs
in Haskell, ML, Factor, Unlambda, Ruby, or Qi. How can any person, book, or lan-
guage claim authority for functional programming? As it turns out, just as the multi-
tudes of unique snowflakes are all made mostly of water, the core of functional
programming across all meanings has its core tenets.

1.3.1 A workable definition of functional programming

Whether your own definition of functional programming hinges on the lambda calcu-
lus, monadic I/O, delegates, or java.lang.Runnable, your basic unit of currency is
likely to be some form of procedure, function, or method—herein lies the root. Func-
tional programming concerns and facilitates the application and composition of func-
tions. Further, for a language to be considered functional, its notion of function must
be first-class. The functions of a language must be able to be stored, passed, and
returned just like any other piece of data within that language. It’s beyond this core
concept that the definitions branch toward infinity, but thankfully, it’s enough to start.
Of course, we’ll also present a further definition of Clojure’s style of functional pro-
gramming that includes such topics as purity, immutability, recursion, laziness, and
referential transparency, but those will come later in chapter 7.

1.3.2 The implications of functional programming

Object-oriented programmers and functional programmers will often see and solve a
problem in different ways. Whereas an object-oriented mindset will foster the

5 Quick, what’s the definition of combinator? How about cloud computing? Enterprise? SOA? Web 2.0? Real-
world? Hacker? Often it seems that the only term with a definitive meaning is “yak shaving.”

www.allitebooks.com

http://www.allitebooks.org

15Why Clojure isn’t especially object-oriented
object state across multiple method calls without expanding the scope of potentially
complex locking scheme(s). Clojure instead focuses on functional programming,
immutability, and the distinction between state, time, and identity. But object-oriented
programming isn’t a lost cause. In fact, there are many aspects that are conducive to
powerful programming practice.

1.4.3 Most of what OOP gives you, Clojure provides

It should be made clear that we’re not attempting to mark object-oriented program-
mers as pariahs. Instead, it’s important that we identify the shortcomings of object-
oriented programming (OOP) if we’re ever to improve our craft. In the next few sub-
sections we’ll also touch on the powerful aspects of OOP and how they’re adopted,
and in some cases improved, by Clojure.

POLYMORPHISM AND THE EXPRESSION PROBLEM

Polymorphism is the ability of a function or method to have different definitions
depending on the type of the target object. Clojure provides polymorphism via both
multimethods and protocols, and both mechanisms are more open and extensible
than polymorphism in many languages.

(defprotocol Concatenatable
(cat [this other]))

(extend-type String
Concatenatable
(cat [this other]

(.concat this other)))

(cat "House" " of Leaves")
;=> "House of Leaves"

What we’ve done in listing 1.2 is to define a protocol named Concatenatable that
groups one or more functions (in this case only one, cat) that define the set of func-
tions provided. That means the function cat will work for any object that fully satisfies
the protocol Concatenatable. We then extend this protocol to the String class and
define the specific implementation—a function body that concatenates the argument
other onto the string this. We can also extend this protocol to another type:

(extend-type java.util.List
Concatenatable
(cat [this other]

(concat this other)))

(cat [1 2 3] [4 5 6])
;=> (1 2 3 4 5 6)

So now the protocol has been extended to two different types, String and
java.util.List, and thus the cat function can be called with either type as its first
argument —the appropriate implementation will be invoked.

Listing 1.2 Clojure’s polymorphic protocols

16 CHAPTER 1 Clojure philosophy
 Note that String was already defined (in this case by Java itself) before we defined
the protocol, and yet we were still able to successfully extend the new protocol to it.
This isn’t possible in many languages. For example, Java requires that you define all
the method names and their groupings (known as interfaces) before you can define a
class that implements them, a restriction that’s known as the expression problem.

THE EXPRESSION PROBLEM The expression problem refers to the desire to
implement an existing set of abstract methods for an existing concrete class
without having to change the code that defines either. Object-oriented lan-
guages allow you to implement an existing abstract method in a concrete class
you control (interface inheritance), but if the concrete class is outside your
control, the options for making it implement new or existing abstract meth-
ods tend to be sparse. Some dynamic languages such as Ruby and JavaScript
provide partial solutions to this problem by allowing you to add methods to
an existing concrete object, a feature sometimes known as monkey-patching.

A Clojure protocol can be extended to any type where it makes sense, even those that
were never anticipated by the original implementor of the type or the original
designer of the protocol. We’ll dive deeper into Clojure’s flavor of polymorphism in
chapter 9, but we hope now you have a basic idea of how it works.

SUBTYPING AND INTERFACE-ORIENTED PROGRAMMING

Clojure provides a form of subtyping by allowing the creation of ad-hoc hierarchies.
We’ll delve into leveraging the ad-hoc hierarchy facility later, in section 9.2. Likewise,
Clojure provides a capability similar to Java’s interfaces via its protocol mechanism. By
defining a logically grouped set of functions, you can begin to define protocols to which
data-type abstractions must adhere. This abstraction-oriented programming model is key
in building large-scale applications, as you’ll discover in section 9.3 and beyond.

ENCAPSULATION

If Clojure isn’t oriented around classes, then how does it provide encapsulation?
Imagine that you need a simple function that, given a representation of a chessboard
and a coordinate, returns a simple representation of the piece at the given square. To
keep the implementation as simple as possible, we’ll use a vector containing a set of
characters corresponding to the colored chess pieces, as shown next.

(ns joy.chess)

(defn initial-board []
[\r \n \b \q \k \b \n \r
\p \p \p \p \p \p \p \p
\- \- \- \- \- \- \- \-
\- \- \- \- \- \- \- \-
\- \- \- \- \- \- \- \-
\- \- \- \- \- \- \- \-
\P \P \P \P \P \P \P \P
\R \N \B \Q \K \B \N \R])

Listing 1.3 A simple chessboard representation in Clojure

Uppercase light

17Why Clojure isn’t especially object-oriented
There’s no need to complicate matters with the
chessboard representation; chess is hard
enough. This data structure in the code corre-
sponds directly to an actual chessboard in the
starting position, as shown in figure 1.4.

 From the figure, you can gather that the
black pieces are lowercase characters and white
pieces are uppercase. This kind of structure is
likely not optimal, but it’s a good start. You can
ignore the actual implementation details for
now and focus on the client interface to query
the board for square occupations. This is a per-
fect opportunity to enforce encapsulation to
avoid drowning the client in board implementa-
tion details. Fortunately, programming lan-
guages with closures automatically support a form of encapsulation (Crockford 2008)
to group functions with their supporting data.8

 The functions in listing 1.4 are self-evident in their intent9 and are encapsulated at
the level of the namespace joy.chess through the use of the defn- macro that creates
namespace private functions. The command for using the lookup function in this case
would be (joy.chess/lookup (initial-board) "a1").

(def *file-key* \a)
(def *rank-key* \0)

(defn- file-component [file]
(- (int file) (int *file-key*)))

(defn- rank-component [rank]
(* 8 (- 8 (- (int rank) (int *rank-key*)))))

(defn- index [file rank]
(+ (file-component file) (rank-component rank)))

(defn lookup [board pos]
(let [[file rank] pos]

(board (index file rank))))

Clojure’s namespace encapsulation is the most prevalent form of encapsulation that
you’ll encounter when exploring idiomatic source code. But the use of lexical clo-
sures provides more options for encapsulation: block-level encapsulation, as shown in
listing 1.5, and local encapsulation, both of which effectively aggregate unimportant
details within a smaller scope.

8 This form of encapsulation is described as the module pattern. But the module pattern as implemented with
JavaScript provides some level of data hiding also, whereas in Clojure—not so much.

9 And as a nice bonus, these functions can be generalized to project a 2D structure of any size to a 1D represen-
tation—which we leave to you as an exercise.

Listing 1.4 Querying the squares of a chessboard

Project 1D layout onto
logical 2D chessboard

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

\r \n \b \q \k \b \n \r

\p \p \p \p \p \p \p \p

\P

\R

\P \P \P \P \P \P \P

\N \B \Q \K \B \N \R

8

7

6

5

4

3

2

1

a b c d e f g h

Figure 1.4
The corresponding chessboard layout

18 CHAPTER 1 Clojure philosophy
(letfn [(index [file rank]
(let [f (- (int file) (int \a))

r (* 8 (- 8 (- (int rank) (int \0))))]
(+ f r)))]

(defn lookup [board pos]
(let [[file rank] pos]

(board (index file rank)))))

It's often a good idea to aggregate relevant data, functions, and macros at their most
specific scope. You’d still call lookup as before, but now the ancillary functions aren’t
readily visible to the larger enclosing scope—in this case, the namespace joy.chess.
In the preceding code, we’ve taken the file-component and rank-component func-
tions and the *file-key* and *rank-key* values out of the namespace proper and
rolled them into a block-level index function defined with the body of the letfn
macro. Within this body, we then define the lookup function, thus limiting the client
exposure to the chessboard API and hiding the implementation specific functions and
forms. But we can further limit the scope of the encapsulation, as shown in the next
listing, by shrinking the scope even more to a truly function-local context.

(defn lookup2 [board pos]
(let [[file rank] (map int pos)

[fc rc] (map int [\a \0])
f (- file fc)
r (* 8 (- 8 (- rank rc)))
index (+ f r)]

(board index)))

Finally, we’ve now pulled all of the implementation-specific details into the body of
the lookup2 function itself. This localizes the scope of the index function and all aux-
iliary values to only the relevant party—lookup2. As a nice bonus, lookup2 is simple
and compact without sacrificing readability. But Clojure eschews the notion of data-
hiding encapsulation featured prominently in most object-oriented languages.

NOT EVERYTHING IS AN OBJECT

Finally, another downside to object-oriented programming is the tight coupling
between function and data. In fact, the Java programming language forces you to
build programs entirely from class hierarchies, restricting all functionality to contain-
ing methods in a highly restrictive “Kingdom of Nouns” (Yegge 2006). This environ-
ment is so restrictive that programmers are often forced to turn a blind eye to
awkward attachments of inappropriately grouped methods and classes. It’s because of
the proliferation of this stringent object-centric viewpoint that Java code tends toward
being verbose and complex (Budd 1995). Clojure functions are data, yet this in no
way restricts the decoupling of data and the functions that work upon them. Many of
what programmers perceive to be classes are data tables that Clojure provides via

Listing 1.5 Using block-level encapsulation

Listing 1.6 Local encapsulation

19Summary
maps10 and records. The final strike against viewing everything as an object is that
mathematicians view little (if anything) as objects (Abadi 1996). Instead, mathematics
is built on the relationships between one set of elements and another through the
application of functions.

1.5 Summary
We’ve covered a lot of conceptual ground in this chapter, but it was necessary in order
to define the terms used throughout the remainder of the book. Likewise, it’s impor-
tant to understand Clojure’s underpinnings in order to frame the discussion for the
rest of the book. If you’ve taken in the previous sections and internalized them, then
congratulations: you have a solid basis for proceeding to the rest of the book. But if
you’re still not sure what to make of Clojure, it’s okay—we understand that it may be a
lot to take in all at once. Understanding will come gradually as we piece together Clo-
jure’s story. For those of you coming from a functional programming background,
you’ll likely have recognized much of the discussion in the previous sections, but per-
haps with some surprising twists. Conversely, if your background is more rooted in
object-oriented programming, then you may get the feeling that Clojure is very differ-
ent than you’re accustomed to. Though in many ways this is true, in the coming chap-
ters you’ll see how Clojure elegantly solves many of the problems that you deal with on
a daily basis. Clojure approaches solving software problems from a different angle
than classical object-oriented techniques, but it does so having been motivated by
their fundamental strengths and shortcomings.

 With this conceptual underpinning in place, it’s time to make a quick run through
Clojure’s technical basics and syntax. We’ll be moving fairly quickly, but no faster than
necessary to get to the deeper topics in following chapters. So hang on to your REPL,
here we go...

10 See section 5.6 for more discussion on this idea.

Drinking from
the Clojure firehose
This chapter provides a quick tour of the bare necessities—the things you’ll need
to know to understand the rest of this book. If you’ve been programming with Clo-
jure for a while, this may be a review, but otherwise it should give you everything
you need to start writing Clojure code. In most cases throughout this chapter, the
examples provided will be perfunctory in order to highlight the immediate point.

This chapter covers
 Scalars

 Putting things together: collections

 Making things happen: functions

 Vars

 Locals, loops, and blocks

 Preventing things from happening: quoting

 Leveraging Java via interop

 Exceptional circumstances

 Namespaces
20

21Scalars
Later in the book we’ll build on these topics and many more, so don’t worry if you
don’t quite grasp every feature now—you’ll get there.

 Interaction with Clojure is often performed at the Read-Eval-Print Loop (REPL).
When starting a new REPL session, you’re presented with a simple prompt:

user>

The user prompt refers to the top-level namespace of the default REPL. It’s at this
point that Clojure waits for input expressions. Valid Clojure expressions consist of
numbers, symbols, keywords, booleans, characters, functions, function calls, macros,
strings, literal maps, vectors, and sets. Some expressions, such as numbers, strings, and
keywords, are self-evaluating—when entered, they evaluate to themselves. The Clojure
REPL also accepts source comments, which are marked by the semicolon ; and con-
tinue to a newline:

user> 42 ; numbers evaluate to themselves
;=> 42

user> "The Misfits" ; strings do too
;=> "The Misfits"

user> :pyotr ; as do keywords
;=> :pyotr

Now that we’ve seen several scalar data types, we’ll take a closer look at each of them.

2.1 Scalars
The Clojure language has a rich set of data types. Like most programming languages,
it provides scalar types such as integers, strings, and floating-point numbers, each rep-
resenting a single unit of data. Clojure provides several different categories of scalar
data types: integers, floats, rationals, symbols, keywords, strings, characters, booleans,
and regex patterns. In this section, we’ll address most of these1 categories in turn, pro-
viding examples of each.

2.1.1 Numbers

A number can consist of only the digits 0-9, a decimal point (.), a sign (+ or -), and an
optional e for numbers written in exponential notation. In addition to these elements,
numbers in Clojure can take either octal or hexadecimal form and also include an
optional M, that flags a number as a decimal requiring arbitrary precision: an impor-
tant aspect of numbers in Clojure. In many programming languages, the precision2 of
numbers is restricted by the host platform, or in the case of Java and C#, defined by
the language specification. Clojure on the other hand uses the host language’s primi-
tive numbers when appropriate, but rolls over to the arbitrarily precise versions when
needed, or when explicitly specified.

1 We won’t look at regular expression patterns here, but for details on everything regex-related you can flip for-
ward to section 4.6.

2 With caveats, as we’ll describe in chapter 4.

22 CHAPTER 2 Drinking from the Clojure firehose
2.1.2 Integers

Integers comprise the whole number set, both positive and negative. Any number
starting with an optional sign or digit followed exclusively by digits is considered and
stored as an integer. Integers in Clojure can theoretically take an infinitely large value,
although in practice the size is limited by the memory available. The following num-
bers are recognized by Clojure as integers:

42
+9
-107
991778647261948849222819828311491035886734385827028118707676848307166514

The following illustrates the use of decimal, hexadecimal, octal, radix-32, and binary
literals, respectively, all representing the same number:

[127 0x7F 0177 32r3V 2r01111111]
;=> [127 127 127 127 127]

The radix notation supports up to base 36. Adding signs to the front of each of the
integer literals is also legal.

2.1.3 Floating-point numbers

Floating-point numbers are the decimal expansion of rational numbers. Like Clo-
jure’s implementation of integers, the floating-point values are arbitrarily precise.3

Floating-point numbers can take the traditional form of some number of digits and
then a decimal point, followed by some number of digits. But floating-point numbers
can also take an exponential form (scientific notation) where a significant part is fol-
lowed by an exponent part separated by a lower or uppercase E. The following num-
bers are examples of valid floating-point numbers:

1.17
+1.22
-2.
366e7
32e-14
10.7e-3

Numbers are largely the same across most programming languages, so we’ll move on
to some scalar types that are more unique to Lisp and Lisp-inspired languages.

2.1.4 Rationals

Clojure provides a rational type in addition to integer and floating-point numbers.
Rational numbers offer a more compact and precise representation of a given value
over floating-point. Rationals are represented classically by an integer numerator and
denominator, and that’s exactly how they’re represented in Clojure. The following
numbers are examples of valid rational numbers:

3 With some caveats, as we’ll discuss in section 4.1.

23Scalars
22/7
7/22
1028798300297636767687409028872/88829897008789478784
-103/4

Something to note about rational numbers in Clojure is that they’ll be simplified if
they can—the rational 100/4 will resolve to the integer 25.

2.1.5 Symbols

Symbols in Clojure are objects in their own right, but are often used to represent
another value. When a number or a string is evaluated, you get back exactly the same
object, but when a symbol is evaluated, you’ll get back whatever value that symbol is
referring to in the current context. In other words, symbols are typically used to refer
to function parameters, local variables, globals, and Java classes.

2.1.6 Keywords

Keywords are similar to symbols, except that they always evaluate to themselves. You’re
likely to see the use of keywords far more in Clojure than symbols. The form of a key-
word’s literal syntax is as follows:

:chumby
:2
:?
:ThisIsTheNameOfaKeyword

Although keywords are prefixed by a colon :, it’s only part of the literal syntax and not
part of the name itself. We go into further detail about keywords in section 4.3.

2.1.7 Strings

Strings in Clojure are represented similarly to the way they’re used in many program-
ming languages: a string is any sequence of characters enclosed within a set of double
quotes, including newlines, as shown:

"This is a string"
"This is also a

String"

Both will be stored as written, but when printed at the REPL, multiline strings will
include escapes for the literal newline characters like "This is also a\n String".

2.1.8 Characters

Clojure characters are written with a literal syntax prefixed with a backslash and are
stored as Java Character objects, as shown:

\a ; The character lowercase a
\A ; The character uppercase A
\u0042 ; The unicode character uppercase B
\\ ; The back-slash character \
\u30DE ; The unicode katakana character ?

www.allitebooks.com

http://www.allitebooks.org

24 CHAPTER 2 Drinking from the Clojure firehose
And that’s it for Clojure’s scalar data types. In the next section, we’ll discuss Clojure’s
collection data types, which is where the real fun begins.

2.2 Putting things together: collections
We’ll cover the collection types in greater detail in chapter 5, but because Clojure pro-
grams are made up of various kinds of literal collections, it’s helpful to at least glance
at the basics of lists, vectors, maps, and sets.

2.2.1 Lists

Lists are the classic collection type in List Processing languages, and Clojure is no
exception. Literal lists are written with parentheses:

(yankee hotel foxtrot)

When a list is evaluated, the first item of the list —yankee in this case—will be resolved
to a function, macro, or special form. If yankee is a function, the remaining items in the
list will be evaluated in order, and the results will be passed to yankee as its parameters.

FORMS A form is any Clojure object meant to be evaluated, including but not
limited to lists, vectors, maps, numbers, keywords, and symbols. A special form
is a form with special syntax or special evaluation rules that are typically not
implemented using the base Clojure forms. An example of a special form is
the . (dot) operator used for Java interoperability purposes.

If on the other hand yankee is a macro or special form, the remaining items in the list
aren’t necessarily evaluated, but are processed as defined by the macro or operator.

 Lists can contain items of any type, including other collections. Here are some
more examples:

(1 2 3 4)
()
(:fred ethel)
(1 2 (a b c) 4 5)

Note that unlike some Lisps, the empty list in Clojure, written as (), isn’t the same as
nil.

2.2.2 Vectors

Like lists, vectors store a series of values. There are several differences described in
section 5.4, but for now only two are important. First, vectors have a literal syntax
using square brackets:

[1 2 :a :b :c]

The other important difference is that when evaluated, vectors simply evaluate each
item in order. No function or macro call is performed on the vector itself, though if a
list appears within the vector, that list is evaluated following the normal rules for a list.
Like lists, vectors are type heterogeneous, and as you might guess, the empty vector []
isn’t the same as nil.

25Making things happen: functions
2.2.3 Maps

Maps store unique keys and one value per key—similar to what some languages and
libraries call dictionaries or hashes. Clojure actually has several types of maps with differ-
ent properties, but don’t worry about that for now. Maps can be written using a literal
syntax with alternating keys and values inside curly braces. Commas are frequently
used between pairs, but are just whitespace like they are everywhere else in Clojure:

{1 "one", 2 "two", 3 "three"}

Like vectors, every item in a map literal (each key and each value) is evaluated before
the result is stored in the map. Unlike vectors, the order in which they’re evaluated
isn’t guaranteed. Maps can have items of any type for both keys and values, and the
empty map {} isn’t the same as nil.

2.2.4 Sets

Sets are probably the least common collection type that has a literal syntax. Sets store
zero or more unique items. They’re written using curly braces with a leading hash:

#{1 2 "three" :four 0x5}

Again, the empty set #{} isn’t the same as nil.
 That’s all for now regarding the basic collection types, but chapter 4 will cover in-

depth the idiomatic uses of each, including their relative strengths and weaknesses.

2.3 Making things happen: functions
Functions in Clojure are a first-class type, meaning that they can be used the same as
any value. Functions can be stored in Vars, held in lists and other collection types, and
passed as arguments to and even returned as the result of other functions.

2.3.1 Calling functions

Clojure borrows its function calling conventions from Lisp, also known as prefix notation:

(+ 1 2 3)
;=> 6

The immediately obvious advantage of prefix over infix notation used by C-style lan-
guages4 is that the former allows any number of operands per operator, whereas infix
allows only two. Another, less obvious advantage to structuring code as prefix notation
is that it completely eliminates the problem of operator precedence. Clojure makes
no distinction between operator notation and regular function calls—all Clojure con-
structs, functions, macros, and operators are formed using prefix, or fully parenthe-
sized, notation. This uniform structure forms the basis for the incredible flexibility
that Lisp-like languages provide.

4 Of course, Java uses infix notation in only a few instances. The remainder of the language forms tend toward
C-style ad hoc debauchery.

26 CHAPTER 2 Drinking from the Clojure firehose
2.3.2 Defining functions

An anonymous (unnamed) Clojure function can be defined as a special form. A spe-
cial form is a Clojure expression that’s part of the core language, but not created in
terms of functions, types, or macros.

 An example of a function taking two elements that returns a set of those elements
would be defined as

(fn mk-set [x y] #{x y})
;=> #<user$eval__1$mk_set__2 user$eval__1$mk_set__2@d3576a2>

Entering this function definition in a Clojure REPL gives us a seemingly strange result.
This is because the REPL is showing its internal name for the function object returned
by the fn special form. This is far from satisfying, given that now that the function has
been defined, there’s no apparent way to execute it. It should be noted that the mk-set
symbol is optional and doesn’t correspond to a globally accessible name for the func-
tion, but instead to a name internal to the function itself used for self-calls. Recall from
the previous section that the function call form is always (some-function arguments):

((fn [x y] #{x y}) 1 2)
;=> #{1 2}

The second form to define functions allows for arity overloading of the invocations of
a function. Arity refers to the differences in the argument count that a function will
accept. Changing our previous simple set-creating function to accept either one or
two arguments would be represented as

(fn
([x] #{x})
([x y] #{x y}))

The difference from the previous form is that we can now have any number of argu-
ment/body pairs as long as the arity of the arguments differ. Naturally, the execution
of such a function for one argument would be

((fn
([x] #{x})
([x y] #{x y})) 42)

;=> #{42}

As you saw, arguments to functions are bound one-for-one to symbols during the func-
tion call, but there is a way for functions to accept a variable5 number of arguments:

((fn arity2 [x y] [x y]) 1 2 3)
;=> java.lang.IllegalArgumentException: Wrong number of args passed

Clearly, calling the arity2 function with three arguments won’t work. But what if we
wanted it to take any number of arguments? The way to denote variable arguments is
to use the & symbol followed by a symbol. Every symbol in the arguments list before

5 The implementation details of Clojure prevent the creation of functions with an arity larger than 20, but in
practice this should rarely, if ever, be an issue.

27Making things happen: functions
the & will still be bound one-for-one to the same number of arguments passed during
the function call. But any additional arguments will be aggregated in a sequence
bound to the symbol following the & symbol:

((fn arity2+ [x y & z] [x y z]) 1 2)
;=> [1 2 nil]

((fn arity2+ [x y & z] [x y z]) 1 2 3 4)
;=> [1 2 (3 4)]

((fn arity2+ [x y & z] [x y z]) 1)
;=> java.lang.IllegalArgumentException: Wrong number of args passed

Of course, arity2+ still requires at least two arguments. But this isn’t satisfactory, as it
quickly becomes clear that to write programs using only this form would be cumber-
some, repetitive, and overly verbose. Thankfully, Clojure provides another, more con-
venient form to create named functions.

2.3.3 Simplifying function definitions with def and defn

The def special form is a way to assign a symbolic name to a piece of Clojure data. Clo-
jure functions are first-class; they’re equal citizens with data, allowing assignment to
Vars, storage in collections, and as arguments to (or returned from) other functions.
This is different from programming languages where functions are functions and data
are data, and there’s a world of capability available to the latter that’s incongruous to
the former.

 Therefore, in order to associate a name with our previous function using def,
we’d use

(def make-a-set
(fn

([x] #{x})
([x y] #{x y})))

And we could now call it in a more intuitive way:

(make-a-set 1)
;=> #{1}

(make-a-set 1 2)
;=> #{1 2}

There’s another way to define functions in Clojure using the defn macro. While cer-
tainly a much nicer way to define and consequently refer to functions by name, using
def as shown is still cumbersome to use. Instead, the simplest defn syntax is a conve-
nient and concise way to create named functions that looks similar to the original fn
form, and allow an additional documentation string:

(defn make-a-set
"Takes either one or two values and makes a set from them"
([x] #{x})
([x y] #{x y}))

The function can again be called the same as we saw before.

28 CHAPTER 2 Drinking from the Clojure firehose
2.3.4 In-place functions with #()

Clojure provides a shorthand notation for creating an anonymous function using the
#() reader feature. In a nutshell, reader features are analogous to preprocessor direc-
tives in that they signify that some given form should be replaced with another at read
time. In the case of the #() form, it’s effectively replaced with the special form fn. In
fact, anywhere that it’s appropriate to use #(), it’s likewise appropriate for the fn spe-
cial form.

 The #() form can also accept arguments that are implicitly declared through the
use of special symbols prefixed with %:

(def make-a-list_ #(list %))
(def make-a-list1 #(list %1))
(def make-a-list2 #(list %1 %2))
(def make-a-list3 #(list %1 %2 %3))
(def make-a-list3+ #(list %1 %2 %3 %&))

(make-a-list_ 1)
;=> (1)

(make-a-list3+ 1 2 3 4 5)
;=> (1 2 3 (4 5))

The %& argument in make-a-list3+ is used to specify the variable arguments as dis-
cussed previously.

2.4 Vars
Programmers are typically accustomed to dealing with variables and mutation. Clo-
jure’s closest analogy to the variable is the Var. A Var is named by a symbol and holds
a single value. Its value can be changed while the program is running, but this is best
reserved for the programmer making manual changes. A Var’s value can also be
shadowed by a thread local value, though this doesn’t change its original value or
root binding.

2.4.1 Declaring bindings using def

Using def is the most common way to create Vars in Clojure:

(def x 42)

Using def to associate the value 42 to the symbol x creates what’s known as a root
binding —a binding that’s the same across all threads, unless otherwise rebound rela-
tive to specific threads. By default, all threads start with the root binding, which is
their associated value in the absence of a thread-bound value.

 The trivial case is that the symbol x is bound to the value 42. Because we used def
to create the Var’s root binding, we should observe that even other threads will view
the same root binding by default:

(.start (Thread. #(println "Answer: " x)))
; Answer: 42

29Locals, loops, and blocks
Vars don’t require a value; instead we can simply declare them and defer the responsi-
bility of binding their values to individual threads:6

(def y)
y
;=> java.lang.IllegalStateException: Var user/y is unbound.

Functions and vars theoretically provide all you need to implement any algorithm,
and some languages leave you with exactly these “atomic” constructs.

2.5 Locals, loops, and blocks
Clojure’s function and value binding capabilities provide a basis for much of what a
developer needs to start getting operational code, but a large part of the story is miss-
ing. Clojure also provides capabilities for creating local value bindings, looping con-
structs, and aggregating blocks of functionality.

2.5.1 Blocks

Use the do form when you have a series or block of expressions that need to be treated
as one. All the expressions will be evaluated, but only the last one will be returned:

(do
6
(+ 5 4)
3)

;=> 3

The expressions 6 and (+ 5 4) are perfectly valid and legal. The addition in (+ 5 4)
is even done, but the value is thrown away—only the final expression 3 is returned.
The middle bits of the do form are typically where the side-effects occur.

2.5.2 Locals

Clojure doesn’t have local variables, but it does have locals; they just can’t vary. Locals
are created and their scope defined using a let form, which starts with a vector that
defines the bindings, followed by any number of expressions that make up the body.
The vector starts with a binding form (usually just a symbol), which is the name of a
new local. This is followed by an expression whose value will be bound to this new
local for the remainder of the let form. You can continue pairing binding names and
expressions to create as many locals as you need. All of them will be available in the
body of the let:

(let [r 5
pi 3.1415
r-squared (* r r)]

(println "radius is" r)
(* pi r-squared))

6 We’ll talk more about per-thread bindings in chapter 11.

30 CHAPTER 2 Drinking from the Clojure firehose
The body is sometimes described as an “implicit do” because it follows the same rules:
you may include any number of expressions and all will be evaluated, but only the
value of the last one is returned.

 All of the binding forms in the previous example are simple symbols: r, pi, and r-
squared. More complex binding expressions can be used to pull apart expressions
that return collections. This feature is called destructuring: see section 2.9 for details.

 Because they’re immutable, locals can’t be used to accumulate results; instead,
you’d use a high level function or loop/recur form.

2.5.3 Loops

The classic way to build a loop in a Lisp is a recursive call, and it’s in Clojure as well.
Using recursion sometimes requires thinking about your problem in a different way
than imperative languages encourage; but recursion from a tail position is in many
ways like a structured goto, and has more in common with an imperative loop than it
does with other kinds of recursion.

RECUR

Clojure has a special form called recur that’s specifically for tail recursion:

(defn print-down-from [x]
(when (pos? x)

(println x)
(recur (dec x))))

This is nearly identical to how you’d structure a while loop in an imperative language.
One significant difference is that the value of x isn’t decremented somewhere in the
body of the loop. Instead, a new value is calculated as a parameter to recur, which
immediately does two things: rebinds x to the new value and returns control to the top
of print-down-from.

 If the function has multiple arguments, the recur call must as well, just as if you
were calling the function by name instead of using the recur special form. And just as
with a function call, the expressions in the recur are evaluated in order first and only
then bound to the function arguments simultaneously.

 The previous example doesn’t concern itself with return values; it’s just about the
println side effects. Here’s a similar loop that builds up an accumulator and returns
the final result:

(defn sum-down-from [sum x]
(if (pos? x)

(recur (+ sum x) (dec x))
sum))

The only ways out of the function are recur, which isn’t really a way out, and sum. So
when x is no longer positive, the function will return the value of sum:

(sum-down-from 0 10)
;=> 55

31Locals, loops, and blocks
You may have noticed that the two preceding functions used different blocks: the first
when and the second if. You’ll often see one or the other used as a conditional, but
it’s not always immediately apparent why. In general, the reasons to use when are

 No else-part is associated with the result of a conditional.
 You require an implicit do in order to perform side-effects.

The reasons for the use of if would therefore be the inverse of those listed.

LOOP

Sometimes you want to loop back not to the top of the function, but to somewhere
inside. For example, in sum-down-from you might prefer that callers not have to pro-
vide an initial value for sum. To help, there’s a loop form that acts exactly like let but
provides a target for recur to jump to. It’s used like this:

(defn sum-down-from [initial-x]
(loop [sum 0, x initial-x]

(if (pos? x)
(recur (+ sum x) (dec x))
sum)))

Upon entering the loop form, the locals sum and x are initialized, just as they would
be for a let.

 A recur always loops back to the closest enclosing loop or fn, so in this case it’ll go
to the loop. The loop locals are rebound to the values given in recur. The looping
and rebinding will continue until finally x is no longer positive. The return value of
the whole loop expression is sum, just as it was for the earlier function.

TAIL POSITION

Now that we’ve looked at a couple examples of how to use recur, we must discuss an
important restriction. The recur form can only appear in the tail position of a func-
tion or loop. So what’s a tail position? Succinctly, a form is in the tail position of an
expression when its value may be the return value of the whole expression. Consider
this function:

(defn absolute-value [x]
(if (pos? x)

x ; "then" clause
(- x))) ; "else" clause

It takes a single parameter and names it x. If x is already a positive number, then x is
returned; otherwise the opposite of x is returned.

 The if form is in the function’s tail position because whatever it returns, the whole
function will return. The x in the “then” clause is also in a tail position of the function.
But the x in the “else” clause is not in the function’s tail position because the value of x
is passed to the - function, not returned directly. The else clause as a whole (- x) is in
a tail position.

 If you try to use the recur form somewhere other than a tail position, Clojure will
remind you at compile time:

32 CHAPTER 2 Drinking from the Clojure firehose
(fn [x] (recur x) (println x))
; java.lang.UnsupportedOperationException:
; Can only recur from tail position

You’ve seen how Clojure provides core functionality available to most popular pro-
gramming languages, albeit from a different bent. But in the next section, we’ll cover
the notion of quoting forms, which are in many ways unique to the Lisp family of lan-
guages and may seem alien to programmers coming from classically imperative and/
or object-oriented languages.

2.6 Preventing things from happening: quoting
Clojure has two quoting forms: quote and syntax-quote. Both are simple bits of syntax
you can put in front of a form in your program. They’re the primary ways for includ-
ing literal scalars and composites in your Clojure program without evaluating them as
code. But before quoting forms can make sense, you need a solid understanding of
how expressions are evaluated.

2.6.1 Evaluation

When a collection is evaluated, each of its contained items is evaluated first:7

(cons 1 [2 3])

If you enter this at the REPL, the form as a whole will be evaluated. In this specific
example, the function cons “constructs” a new sequence with its first argument in the
front of the sequence provided as its second. Because the form is a list, each of the
items will be evaluated first. A symbol, when evaluated, is resolved to a local, a Var, or a
Java class name. If a local or a Var, its value will be returned:

cons
;=> #<core$cons__3806 clojure.core$cons__3806@24442c76>

Literal scalar values evaluate to themselves—evaluating one just returns the same
thing:

1
;=> 1

The evaluation of another kind of collection, a vector, starts again by evaluating the
items it contains. Because they’re literal scalars, nothing much happens. Once that’s
done, evaluation of the vector can proceed. Vectors, like scalars and maps, evaluate to
themselves:

[2 3]
;=> [2 3]

Now that all the items of the original list have been evaluated (to a function, the
number 1, and the vector [2 3]), evaluation of the whole list can proceed. Lists are

7 ...unless it’s a list that starts with the name of a macro or special form. We’ll get to that later.

33Preventing things from happening: quoting
evaluated differently from vectors and maps: they call functions, or trigger special
forms, as shown:

(cons 1 [2 3])
;=> (1 2 3)

Whatever function was at the head of the list, cons in this case, is called with the
remaining items of the list as arguments.

2.6.2 Quoting

Using a special form looks like calling a function—a symbol as the first item of a list:

(quote tena)

Each special form has its own evaluation rules. The quote special form simply pre-
vents its argument from being evaluated at all. Though the symbol tena by itself might
evaluate to the value of a Var with the value 9, when it’s inside a quote form, it won’t:

(def tena 9)
(quote tena)
;=> tena

Instead, the whole form evaluates to just the symbol itself. This works for arbitrarily
complex arguments to quote: nested vectors, maps, even lists that would otherwise be
function calls, macro calls, or even more special forms. The whole thing is returned:

(quote (cons 1 [2 3]))
;=> (cons 1 [2 3])

There are a few reasons you might use the quote form, but by far the most common is
so that you can use a literal list as a data collection without having Clojure try to call a
function. We’ve been careful to use vectors in the examples so far in this section
because vectors are never themselves function calls. But if we wanted to use a list
instead, a naive attempt would fail:

(cons 1 (2 3))
; java.lang.ClassCastException:
; java.lang.Integer cannot be cast to clojure.lang.IFn

That’s Clojure telling us that an integer (the number 2 here) can’t be used as a func-
tion. So we have to prevent the form (2 3) from being treated like a function call—
exactly what quote is for:

(cons 1 (quote (2 3)))
;=> (1 2 3)

In other Lisps, this need is so common that they provide a shortcut: a single quote.
Although it’s used less in Clojure, it’s still provided. The previous example can also be
written as

(cons 1 '(2 3))
;=> (1 2 3)

www.allitebooks.com

http://www.allitebooks.org

34 CHAPTER 2 Drinking from the Clojure firehose
And look at that: one less pair of parens—always welcome in a Lisp. Remember
though that quote affects all of its argument, not just the top level. So even though it
worked in the preceding examples to replace [] with '(), this may not always give you
the results you want:

[1 (+ 2 3)] ;=> [1 5]
'(1 (+ 2 3)) ;=> (1 (+ 2 3))

Finally, note that the empty list () already evaluates to itself; it doesn’t need to be
quoted. Quoting the empty list isn’t idiomatic Clojure.

SYNTAX-QUOTE

Like the quote, syntax-quote prevents its argument and subforms from being evalu-
ated. Unlike quote, it has a few extra features that make it ideal for constructing col-
lections to be used as code.

 Syntax-quote is written as a single back-quote:

`(1 2 3)
;=> (1 2 3)

It doesn’t expand to a simple form like quote, but to whatever set of expressions is
required to support the following features.8

SYMBOL AUTO-QUALIFICATION

A symbol can begin with a namespace and a slash. These can be called qualified symbols:

clojure.core/map
clojure.set/union
i.just.made.this.up/quux

Syntax-quote will automatically qualify all unqualified symbols in its argument:

`map
;=> clojure.core/map
`Integer
;=> java.lang.Integer
`(map even? [1 2 3])
;=> (clojure.core/map clojure.core/even? [1 2 3])

If the symbol doesn’t name a Var or class that exists yet, syntax-quote will use the cur-
rent namespace:

`is-always-right
;=> user/is-always-right

This behavior will come in handy in chapter 8, when we discuss macros.

2.6.3 Unquote

As you discovered, the quote special form prevents its argument, and all of its sub-
forms, from being evaluated. But there will come a time when you’ll want some of its

8 A future version of Clojure is likely to expand the back-quote to syntax-quote at read time and implement the
rest of syntax-quote’s features as a macro or special form.

35Preventing things from happening: quoting
constituent forms to be evaluated. The way to accomplish this feat is to use what’s
known as an unquote. An unquote is used to demarcate specific forms as requiring
evaluation by prefixing them with the symbol ~ within the body of a syntax-quote:

`(+ 10 (* 3 2))
;=> (clojure.core/+ 10 (clojure.core/* 3 2))

`(+ 10 ~(* 3 2))
;=> (clojure.core/+ 10 6)

What just happened? The final form uses an unquote to evaluate the subform (* 3
2), which of course performs a multiplication of 3 and 2, thus inserting the result into
the outermost syntax-quoted form. The unquote can be used to denote any Clojure
expression as requiring evaluation:

`(1 2 ~3)
;=> (1 2 3)

(let [x 2]
`(1 ~x 3))

;=> (1 2 3)

`(1 ~(2 3))
;=> java.lang.ClassCastException: java.lang.Integer

Whoops! By using the unquote, we’ve told Clojure that the marked form should be
evaluated. But the marked form here is (2 3), and what happens when Clojure
encounters an expression like this? It attempts to evaluate it as a function! Therefore,
care needs to be taken with unquote to ensure that the form requiring evaluation is of
the form that you expect. The more appropriate way to perform the previous task
would thus be

(let [x '(2 3)] `(1 ~x))
;=> (1 (2 3))

This provides a level of indirection such that the expression being evaluated is no lon-
ger (2 3) but x. But this new way breaks the pattern of the previous examples that
returned a list of (1 2 3).

2.6.4 Unquote-splicing

Clojure provides a handy feature to solve exactly the problem posed earlier. A variant
of unquote called unquote-splicing works similarly to unquote, but a little differently:

(let [x '(2 3)] `(1 ~@x))
;=> (1 2 3)

Note the @ in ~@, which tells Clojure to unpack the sequence x, splicing it into the
resulting list rather than inserting it as a nested list.

36 CHAPTER 2 Drinking from the Clojure firehose
2.6.5 Auto-gensym

Sometimes you need an unqualified symbol, such as for a parameter or let local
name. The easiest way to do this inside a syntax-quote is to append a # to the symbol
name. This will cause Clojure to generate a new unqualified symbol:

`potion#
;=> potion__211__auto__

Sometimes even this isn’t enough, either because you need to refer to the same sym-
bol in multiple syntax-quotes or because you want to capture a particular unqualified
symbol.

 Until this point, we’ve covered many of the basic features making Clojure a unique
flavor of Lisp. But one of the main goals that Clojure excels at meeting is that of
interoperability with a host language and runtime, namely Java and the Java Virtual
Machine.

2.7 Leveraging Java via interop
Clojure is symbiotic with its host,9 providing its rich and powerful features, while Java
provides an object model, libraries, and runtime support. In this section, we’ll take a
brief look at how Clojure allows you to access Java classes and class members, and how
you can create instances and access their members.

2.7.1 Accessing static class members

Clojure provides powerful mechanisms for accessing, creating, and mutating Java
classes and instances. The trivial case is accessing static class properties:

java.util.Locale/JAPAN
;=> #<Locale ja_JP>

Idiomatic Clojure prefers that you access static class members using a syntax like
accessing a namespace-qualified Var:

(Math/sqrt 9)
;=> 3.0

The preceding call is to the java.lang.Math#sqrt static method.

2.7.2 Creating Java class instances

Creating Java class instances is likewise a trivial matter with Clojure. The new special
form closely mirrors the Java model:

(new java.util.HashMap {"foo" 42 "bar" 9 "baz" "quux"})
;=> #<HashMap {baz=quux, foo=42, bar=9}>

The second, more succinct, Clojure form to create instances is actually the idiomatic
form:

9 We’ll focus on the Java Virtual Machine throughout this book, but Clojure has also been hosted on the .NET
Common Language Runtime (CLR) and JavaScript (http://clojurescript.n01se.net/repl/).

37Leveraging Java via interop
(java.util.HashMap. {"foo" 42 "bar" 9 "baz" "quux"})
;=> #<HashMap {baz=quux, foo=42, bar=9}>

As you can see, the class name was followed by a dot in order to signify a constructor
call.

2.7.3 Accessing Java instance members with the . operator

To access instance properties, precede the property or method name with a dot:

(.x (java.awt.Point. 10 20))
;=> 10

This returns the value of the field x from the Point instance given.
 To access instance methods, the dot form allows an additional argument to be

passed to the method:

(.divide (java.math.BigDecimal. "42") 2M)
;=> 21M

The preceding example calls the #divide method on the class BigDecimal.

2.7.4 Setting Java instance properties

In the absence of mutators in the form setXXX, Java instance properties can be set via
the set! function:

(let [origin (java.awt.Point. 0 0)]
(set! (.x origin) 15)
(str origin))

;=> "java.awt.Point[x=15,y=0]"

The first argument to set! is the instance member access form.

2.7.5 The .. macro

When working with Java, it’s common practice to chain together a sequence of
method calls on the return type of the previous method call:

new java.util.Date().toString().endsWith("2010") /* Java code */

Using Clojure’s dot special form, the following code is equivalent:

(.endsWith (.toString (java.util.Date.)) "2010") ; Clojure code
;=> true

Though correct, the preceding code is difficult to read and will only become more so
when we lengthen the chain of method calls. To combat this, Clojure provides the ..
macro, which can simplify the call chain as follows:

(.. (java.util.Date.) toString (endsWith "2010"))

The preceding .. call closely follows the equivalent Java code and is much easier to
read. Bear in mind, you might not see .. used often in Clojure code found in the wild
outside of the context of macro definitions. Instead, Clojure provides the -> and ->>
macros, which can be used similarly to the .. macro but are also useful in non-interop

38 CHAPTER 2 Drinking from the Clojure firehose
situations, thus making them the preferred method call facilities in most cases. The ->
and ->> macros are covered in more depth in the introduction to chapter 8.

2.7.6 The doto macro

When working with Java, it’s also common to initialize a fresh instance by calling a set
of mutators:

java.util.HashMap props = new java.util.HashMap(); /* More java code. */
props.put("HOME", "/home/me"); /* Sorry. */
props.put("SRC", "src");
props.put("BIN", "classes");

But using this method is overly verbose and can be streamlined using the doto macro,
which takes the form

(doto (java.util.HashMap.)
(.put "HOME" "/home/me")
(.put "SRC" "src")
(.put "BIN" "classes"))

;=> #<HashMap {HOME=/home/me, BIN=classes, SRC=src}>

Though these Java and Clojure comparisons are useful, it shouldn’t be assumed that
their compiled structures are the same.

2.7.7 Defining classes

Clojure provides the reify and deftype macros as possible ways to create realizations
of Java interfaces, but we’ll defer covering them until chapter 9. Additionally, Clojure
provides a macro named proxy that can be used to implement interfaces and extend
base classes on the fly. Similarly, using the gen-class macro, you can generate statically
named classes. More details about proxy and gen-class are available in chapter 10.

2.8 Exceptional circumstances
We’ll now talk briefly about Clojure’s facilities for handling exceptions. Like Java, Clo-
jure provides a couple of forms for throwing and catching runtime exceptions:
namely throw and catch, respectively.

2.8.1 A little pitch and catch

The mechanism to throw an exception is fairly straightforward:

(throw (Exception. "I done throwed"))
;=> java.lang.Exception: I done throwed

The syntax for catching exceptions in Clojure is similar to that of Java:

(defn throw-catch [f]
[(try

(f)
(catch ArithmeticException e "No dividing by zero!")
(catch Exception e (str "You are so bad " (.getMessage e)))

39Namespaces
(finally (println "returning... ")))])

(throw-catch #(/ 10 5))
; returning...
;=> [2]

(throw-catch #(/ 10 0))
; returning...
;=> ["No dividing by zero!"]

(throw-catch #(throw (Exception. "foo")))
; returning...
;=> ["You are so bad foo"]

The major difference between the way that Java handles exceptions compared to Clo-
jure is that Clojure doesn’t adhere to checked exception requirements. In the next,
final section of our introduction to Clojure, we present namespaces, which might look
vaguely familiar if you’re familiar with Java or Common Lisp.

2.9 Namespaces
Clojure’s namespaces provide a way to bundle related functions, macros, and values.
In this section, we’ll briefly talk about how to create namespaces and how to reference
and use things from other namespaces.

2.9.1 Creating namespaces using ns

To create a new namespace, you can use the ns macro:

(ns joy.ch2)

Whereupon your REPL prompt will now display as:

joy.ch2=>

This prompt shows that you’re working within the context of the joy.ch2 namespace.
Clojure also provides a Var *ns* that holds the value of the current namespace. Any
Var created will be a member of the current namespace:

(defn hello [] (println "Hello Cleveland!"))
(defn report-ns [] (str "The current namespace is " *ns*))

(report-ns)
;=> "The current namespace is joy.ch2"

Entering a symbol within a namespace will cause Clojure to attempt to look up its
value within the current namespace:

hello
;=> #<ch2$hello joy.ch2$hello@2af8f5>

You can create new namespaces at any time:

(ns joy.another)

Again, you’ll notice that your prompt has changed, indicating that the new context is
joy.another. Attempting to run report-ns will no longer work:

40 CHAPTER 2 Drinking from the Clojure firehose
(report-ns)
; java.lang.Exception:
; Unable to resolve symbol: report-ns in this context

This is because report-ns exists in the joy.ch1 namespace and is only accessible via
its fully qualified name joy.ch2/report-ns. But this will only work for namespaces
created locally or those previously loaded, which we’ll discuss next.

2.9.2 Loading other namespaces with :require

Creating a namespace is straightforward, but how do you load namespaces? Clojure
provides a convenience directive :require to take care of this task. Observe the
following:

(ns joy.req
(:require clojure.set))

(clojure.set/intersection #{1 2 3} #{3 4 5})
;=> #{3}

Using :require indicates that you want the clojure.set namespace loaded, but you
don’t want the mappings of symbols to functions in the joy.req namespace. You can
also use the :as directive to create an additional alias to clojure.set:

(ns joy.req-alias
(:require [clojure.set :as s]))

(s/intersection #{1 2 3} #{3 4 5})
;=> #{3}

The qualified namespace form looks the same as a call to a static class method. The
difference is that a namespace symbol can only be used as a qualifier, whereas a class
symbol can also be referenced independently:

clojure.set
; java.lang.ClassNotFoundException: clojure.set

java.lang.Object
;=> java.lang.Object

The vagaries of namespace mappings from symbols to Vars both qualified and unqual-
ified have the potential for confusion between class names and static methods in the
beginning, but the differences will begin to feel natural as you progress. In addition,
idiomatic Clojure code will tend to use my.Class and my.ns for naming classes and
namespaces respectively, to help eliminate potential confusion.

2.9.3 Loading and creating mappings with :use

Sometimes you’ll want to create mappings from Vars in another namespace to names
in your own, in order to avoid calling each function or macro with the qualifying
namespace symbol. To create these unqualified mappings, Clojure provides the :use
directive:

(ns joy.use-ex
(:use [clojure.string :only [capitalize]]))

41Namespaces
(map capitalize ["kilgore" "trout"])
;=> ("Kilgore" "Trout")

The :use directive indicates that only the function capitalize should be mapped in
the namespace joy.use-ex. Specifying the Vars that you’d like explicit mappings for
is good practice in Clojure, as it avoids creating many unnecessary names within a
namespace. Unnecessary names increase the odds of names clashes, which you’ll see
next. A similar directive to :use for managing precise mappings is :exclude

(ns joy.exclusion
(:use [clojure.string :exclude [capitalize]]))

; WARNING: replace already refers to: #'clojure.core/replace in namespace:
; joy.exclusion, being replaced by: #'clojure.string/replace
; WARNING: reverse already refers to: #'clojure.core/reverse in namespace:
; joy.exclusion, being replaced by: #'clojure.string/reverse

(map capitalize ["kilgore" "trout"])
; java.lang.Exception: Unable to resolve symbol: capitalize in this context

The :exclude directive indicates that we wanted to map names for all of clojure.
string’s Vars except for capitalize. Indeed, any attempt to use capitalize directly
throws an exception. But it’s still accessible via clojure.string/capitalize. The rea-
son for this accessibility is because :use implicitly performs a :require directive in
addition to creating mappings. As you might’ve noticed, the creation of the joy.
exclusion namespace signaled two warnings. The reason was that the clojure.
string namespace defines two functions reverse and replace that are already
defined in the clojure.core namespace—which was already loaded by using ns.
Therefore, when either of those functions are used, the last Var definition wins:

(reverse "abc")
;=> "cba"

(clojure.core/reverse "abc")
(\c \b \a)

The clojure.string version of reverse takes precedence over the clojure.core ver-
sion, which may or may not be what we wanted. You should always strive to eliminate
the warnings that Clojure presents in these cases. The most obvious strategy for resolv-
ing these particular warnings would be to use the :require directive to create a
namespace alias with :as as we showed in the previous section.

2.9.4 Creating mappings with :refer

Clojure also provides a :refer directive that works almost exactly like :use except
that it only creates mappings for libraries that have already been loaded:

(ns joy.yet-another
(:refer joy.ch1))

(report-ns)
;=> "The current namespace is #<Namespace joy.yet-another>"

42 CHAPTER 2 Drinking from the Clojure firehose
The use of :refer in this way creates a mapping from the name report-ns to the
actual function located in the namespace joy.ch2 so that the function can be called
normally. You could also set an alias for the same function using the :rename keyword
taking a map, as shown:

(ns joy.yet-another
(:refer joy.ch1 :rename {hello hi}))

(hi)
; Hello Cleveland!

Any namespaces referenced must already be loaded implicitly by being previously
defined or by being one of Clojure’s core namespaces, or explicitly loaded through the
use of :require. It should be noted that :rename also works with the :use directive.

2.9.5 Loading Java classes with :import

To use unqualified Java classes within any given namespace, they should be imported
via the :import directive, as shown:

(ns joy.java
(:import [java.util HashMap]

[java.util.concurrent.atomic AtomicLong]))

(HashMap. {"happy?" true})
;=> #<HashMap {happy?=true}>

(AtomicLong. 42)
;=> 42

As a reminder, any classes in the Java java.lang package are automatically imported
when namespaces are created. We’ll discuss namespaces in more detail in sections 9.1
and 10.2.

2.10 Summary
We named this chapter “Drinking from the Clojure firehose”—and you’ve made it
through! How does it feel? We’ve only provided an overview of the topics needed to
move on to the following chapters instead of a full-featured language tutorial. Don’t
worry if you don’t fully grasp the entirety of Clojure the programming language;
understanding will come as you work your way through the book.

 In the next chapter, we’ll take a step back and delve into some topics that can’t be
easily categorized, but that deserve attention because of their ubiquity. It’ll be short
and sweet and give you a chance to take a breath before moving into the deeper dis-
cussions on Clojure later in the book.

Dipping our toes
in the pool
Deeper and broader topics will be covered in later chapters, but now’s a good time
to pick through an eclectic selection of smaller topics. The topics covered in this
chapter stand alone but are important. Covering them now will be a fun way to start
digging into practical matters of how to use Clojure.

 We’ve covered a lot of conceptual ground in the previous chapter and built our
Clojure lexicon. In this chapter, we’ll take a bit of a detour into some fundamental
underpinnings driving idiomatic Clojure source code. First we’ll explore Clojure’s
straightforward notions of Truthiness,1 or the distinctions between values

This chapter covers
 Truthiness

 Nil punning

 Destructuring

 Use the REPL to experiment

1 As a deviation from the definition coined by Stephen Colbert in his television show The Colbert Report. Ours
isn’t about matters of gut feeling but rather about matters of Clojure’s logical truth ideal.
43

www.allitebooks.com

http://www.allitebooks.org

44 CHAPTER 3 Dipping our toes in the pool
considered logical true and those considered logical false. Much of idiomatic Clojure
code is built with matters of Truthiness in mind, and we’ll discuss Clojure’s extremely
simple rules. After this we’ll then move on to the notion of nil punning, or treating an
empty sequence as nil. Those of you coming from a background in Lisp may recog-
nize the term, but Clojure handles nil punning differently. We’ll discuss the idioms
related to nil punning in Clojure and their rationale. We’ll then cover destructuring—
a powerful mechanism for pulling apart collection types and binding their constituent
parts as individual values. Using destructuring within your own code can often lead to
extremely concise and elegant solutions, and we’ll provide some examples to illustrate
this. Finally, we’ll sit down and pair-program together to gain an appreciation for the
power of Clojure’s Read-Eval-Print Loop (REPL).

3.1 Truthiness
Truthfulness may be an important virtue, but it doesn’t come up much in program-
ming. On the other hand, Truthiness, or the matter of logical truth values in Clojure, is
critical.

 Clojure has one Boolean context: the test expression of the if form. Other forms
that expect Booleans—and, or, when, and so forth—are macros built on top of if. It’s
here that Truthiness matters.

3.1.1 What’s truth?

Every value looks like true to if, except for false and nil. That means that values
which some languages treat as false—zero-length strings, empty lists, the number zero,
and so on—are all treated as true in Clojure:

(if true :truthy :falsey) ;=> :truthy
(if [] :truthy :falsey) ;=> :truthy
(if nil :truthy :falsey) ;=> :falsey
(if false :truthy :falsey) ;=> :falsey

This may feel uncomfortable to you, depending on your background. But because
branches in a program’s logic are already one of the most likely places for complexity
and bugs, Clojure has opted for a simple rule. There’s no need to check a class’s defi-
nition to see if it acts like “false” when you think it should (as is sometimes required in
Python, for example). Every object is “true” all the time, unless it’s nil or false.

3.1.2 Don’t create Boolean objects

It’s possible to create an object that looks a lot like, but isn’t actually, false.
 Java has left a landmine for you here, so take a moment to look at it so that you can

step past it gingerly and get on with your life:

(def evil-false (Boolean. "false")) ; NEVER do this

This creates a new instance of Boolean—and that’s already wrong! Because there are
only two possible values of Boolean, an instance of each has already been made for

45Nil pun with care
you—they’re named true and false.2 But here you’ve gone and done it anyway,
created a new instance of Boolean and stored it in a Var named evil-false. It looks
like false:

evil-false
;=> false

Sometimes it even acts like false:

(= false evil-false)
;=> true

But once it gains your trust, it’ll show you just how wicked it is by acting like true:

(if evil-false :truthy :falsey)
;=> :truthy

Java’s own documentation warns against the creation of this evil thing, and now you’ve
been warned again. If you just want to parse a string, use the Boolean class’s static
valueOf method instead of its constructor. This is the right way:

(if (Boolean/valueOf "false") :truthy :falsey)
;=> :falsey

3.1.3 nil versus false

Rarely do you need to differentiate between the two false values, but if you do, you can
use nil? and false?:

(when (nil? nil) "Actually nil, not false")
;=> "Actually nil, not false"

Keeping in mind the basic rule that everything in Clojure is truthy unless it’s false or
nil is an astonishingly powerful concept, allowing for elegant solutions. Often pro-
gramming languages have complicated semantics for Truthiness, but Clojure manages
to avoid those matters nicely. You’ll see this simplicity leveraged throughout this book
and in all examples of idiomatic Clojure source code.

 Building on that theme, we’ll now discuss the matter of nil punning, which may or
may not surprise you given your background.

3.2 Nil pun with care
Because empty collections act like true in Boolean contexts, we need an idiom for
testing whether there’s anything in a collection to process. Thankfully, Clojure pro-
vides just such a technique:

(seq [1 2 3])
;=> (1 2 3)

(seq [])
;=> nil

2 Clojure’s true and false instances are the same as Java’s Boolean/TRUE and Boolean/FALSE, respectively.

46 CHAPTER 3 Dipping our toes in the pool
The seq function returns a sequence view of a collection, or nil if the collection is
empty. In a language like Common Lisp, an empty list acts as a false value and can be
used as a pun (a term with the same behavior) for such in determining a looping ter-
mination. As you saw in section 2.3, Clojure’s empty sequences are instead truthy, and
therefore to use one as a pun for falsity will lead to heartache and despair. One solu-
tion that might come to mind is to use empty? in the test, leading to the awkward
phrase (when-not (empty? s) ...). Though it would work, this isn’t idiomatic. A
better solution would be to use seq as a termination condition, as in the following
function print-seq:

(defn print-seq [s]
(when (seq s)

(prn (first s))
(recur (rest s))))

(print-seq [1 2])
; 1
; 2
;=> nil

(print-seq [])
;=> nil

There are a number of points to take away from this example. First, the use of seq as a
terminating condition is the idiomatic way to test whether a sequence is empty. If we
tested just s instead of (seq s), then the terminating condition wouldn’t occur even
for empty collections, leading to an infinite loop.

PREFER DOSEQ An important point not mentioned is that it would be best to
use doseq in this case, but that wouldn’t allow us to illustrate our overarching
points: the Clojure forms named with do at the start (doseq, dotimes, do, and
so on) are intended for side-effects in their bodies and generally return nil as
their results.

Second, rest is used to consume the sequence on the recursive call, which can return
a sequence that’s either empty or not empty (has elements). Clojure also provides a
next function that returns a seq of the rest, or (seq (rest s)), and thus never returns
an empty sequence, but nil instead. But rest is appropriate here because we’re using
seq explicitly in each subsequent iteration. Finally, print-seq is a template for most
functions in Clojure, in that it shows that we should generally not assume seq has been
called on our collection arguments, but instead call seq within the function itself and
process based on its result. Using this approach fosters a more generic handling of col-
lections, a topic that we explore in great detail in chapter 5. In the meantime, it’s
important to keep in mind the difference between empty collections and false values;
otherwise your attempts at nil punning may cause groans all around.

 To top off our trifecta of core Clojure concepts, we next explore the most powerful
of the three—destructuring. You’ll see just how powerful this mini-language within
Clojure can be toward developing elegant and often beautiful solutions.

47Destructuring
3.3 Destructuring
In the previous section, we briefly described Clojure’s destructuring facility as a mini-
language embedded within Clojure. Destructuring allows us to positionally bind locals
based on an expected form for a composite data structure. In this section, we’ll
explore how destructuring can be used to pull apart composite structures into bind-
ings through the lens of a simple rolodex example project.

PATTERN MATCHING Destructuring is loosely related to pattern matching
found in Haskell, KRC, or Scala, but much more limited in scope. For more
full-featured pattern matching in Clojure, consider using http://
github.com/dcolthorp/matchure, which may in the future be included in
contrib as clojure.core.match.

3.3.1 Your assignment, should you choose to accept it

You’ve heard that the rolodex project has been overdue, but now every developer
assigned to it is out sick. The QA team is ready to go, but one function is still missing
and it’s a show-stopper. You’re told to drop everything and write the function ASAP.

 The design? Take a vector of length 3 that represents a person’s first, middle, and
last names and return a string that will sort in the normal way, like “Steele, Guy Lewis”.
What are you waiting for? Why aren’t you done yet?!?!

(def guys-whole-name ["Guy" "Lewis" "Steele"])

(str (nth guys-whole-name 2) ", "
(nth guys-whole-name 0) " "
(nth guys-whole-name 1)))

;=> "Steele, Guy Lewis"

Alas, by the time you’ve finished typing guys-whole-name for the fourth time, it’s too
late. The customers have cancelled their orders, and the whole department is bound
to be downsized.

 If only you’d known about destructuring.
 Okay, so you’re not likely to lose your job because your function is twice as many

lines as it needs to be, but still that’s a lot of code repeated in a pretty small function.
And using index numbers instead of named locals makes the purpose of the function
more obscure than necessary.

 Destructuring solves both these problems by allowing you to place a collection of
names in a binding form where normally you’d put just a single name. One kind of
binding form is the list of parameters given in a function definition.

3.3.2 Destructuring with a vector

So let’s try that again, but use destructuring with let to create more convenient locals
for the parts of Guy’s name:

(let [[f-name m-name l-name] guys-whole-name]
(str l-name ", " f-name " " m-name))

48 CHAPTER 3 Dipping our toes in the pool
This is the simplest form of destructuring, where you want to pick apart a sequential
thing (a vector of strings in this case, though a list or other sequential collection
would work as well), giving each item a name.

 We don’t need it here, but we can also use an ampersand in a destructuring vector
to indicate that any remaining values of the input should be collected into a (possibly
lazy) seq:

(let [[a b c & more] (range 10)]
(println "a b c are:" a b c)
(println "more is:" more))

; a b c are: 0 1 2
; more is: (3 4 5 6 7 8 9)
;=> nil

Here the locals a, b, and c are created and bound to the first three values of the range.
Because the next symbol is an ampersand, the remaining values are made available as
a seq bound to more. The name more is pretty common for this purpose, but isn’t spe-
cial—you’ll often see etc or xs instead, or some other name that makes sense in a par-
ticular context.

 The final feature of vector destructuring is :as, which can be used to bind a local
to the entire collection. It must be placed after the & local, if there is one, at the end of
the destructuring vector:

(let [range-vec (vec (range 10))
[a b c & more :as all] range-vec]

(println "a b c are:" a b c)
(println "more is:" more)
(println "all is:" all))

; a b c are: 0 1 2
; more is: (3 4 5 6 7 8 9)
; all is: [0 1 2 3 4 5 6 7 8 9]
;=> nil

We made range-vec a vector in this example, and the directive :as binds the input
collection as-is, entirely unmolested, so that the vector stays a vector. This is in contrast
to &, which bound more to a seq, not a vector.

3 Technically, positional destructuring might make sense with sorted sets and maps, but alas it doesn’t operate
as such.

Positional destructuring
This positional destructuring doesn’t work on maps and sets because they’re not
logically3 aligned sequentially. Thankfully, positional destructuring will work with
Java’s java.util.regex.Matcher and anything implementing the CharSequence
and java.util.RandomAccess interfaces.

49Destructuring
3.3.3 Destructuring with a map

Perhaps passing a name as a three-part vector wasn’t a good idea in the first place. It
might be better stored in a map:

(def guys-name-map
{:f-name "Guy" :m-name "Lewis" :l-name "Steele"})

But now we can’t use a vector to pick it apart effectively. Instead, we use a map:

(let [{f-name :f-name, m-name :m-name, l-name :l-name} guys-name-map]
(str l-name ", " f-name " " m-name))

A couple things about this example may jump out at you. One might be that it still
seems repetitive—we’ll get to that in a moment.

 Another might be that it looks a bit unexpected to have the keywords like :f-name
on the right-hand side of each pair even though the input map had keywords on the
left. There are a couple reasons for that. The first is to help keep the pattern of the
name on the left getting the value specified by the thing on the right. That is, the new
local f-name gets the value looked up in the map by the key :f-name, just as the whole
map gets its value from guys-name-map in the earlier def form.

 The second reason is because it allows us to conjure up other destructuring fea-
tures by using forms that would otherwise make no sense. Because the item on the left
of each pair will be a new local name, it must be a symbol or possibly a nested destruc-
turing form. But one thing it can’t be is a keyword, unless the keyword is a specially
supported feature such as :keys, :strs, :syms, :as, and :or.

 We’ll discuss the :keys feature first because it nicely handles the repetitiveness we
mentioned earlier. It allows us to rewrite our solution like this:

(let [{:keys [f-name m-name l-name]} guys-name-map]
(str l-name ", " f-name " " m-name))

So by using :keys instead of a binding form, we’re telling Clojure that the next form
will be a vector of names that it should convert to keywords such as :f-name in order
to look up their values in the input map. Similarly, if we had used :strs, Clojure
would be looking for items in the map with string keys such as "f-name", and :syms
would indicate symbol keys.

 The directives :keys, :strs, :syms, and regular named bindings can appear in
any combination and in any order. But sometimes you’ll want to get at the original
map—in other words, the keys that you didn’t name individually by any of the meth-
ods just described. For that, you want :as, which works just like it does with vector
destructuring:

(let [{f-name :f-name, :as whole-name} guys-name-map]
whole-name)

;=> {:f-name "Guy", :m-name "Lewis", :l-name "Steele"}

If the destructuring map looks up a key that’s not in the source map, it’s normally
bound to nil, but you can provide different defaults with :or:

50 CHAPTER 3 Dipping our toes in the pool
(let [{:keys [title f-name m-name l-name], :or {title "Mr."}} guys-name-map]
(println title f-name m-name l-name))

; Mr. Guy Lewis Steele
;=> nil

ASSOCIATIVE DESTRUCTURING

One final technique worth mentioning is associative destructuring. Using a map to
define a number of destructure bindings isn’t limited to maps. We can also destruc-
ture a vector by providing a map declaring the local name as indices into them, as
shown:

(let [{first-thing 0, last-thing 3} [1 2 3 4]]
[first-thing last-thing])

;=> [1 4]

We’ll explore associative destructuring later in section 6.1 when we discuss Clojure’s
support for named structures. You’ve seen the shapes that destructuring takes within
the let form, but you’re not limited to that exclusively, as we’ll explore next.

3.3.4 Destructuring in function parameters

All the preceding examples use let to do their destructuring, but exactly the same
features are available in function parameters. Each function parameter can destruc-
ture a map or sequence:

(defn print-last-name [{:keys [l-name]}]
(println l-name))

(print-last-name guys-name-map)
; Steele
;=> nil

Note that function arguments can include an ampersand as well, but this isn’t the
same as destructuring. Instead, that’s part of their general support for multiple func-
tion bodies, each with its own number of parameters.

3.3.5 Destructuring versus accessor methods

In many object-oriented languages, you might create new classes to manage your
application data objects, each with its own set of getter and setter methods. It’s idiom-
atic in Clojure to instead build your application objects by composing maps and vec-
tors as necessary. This makes destructuring natural and straightforward. So anytime
you find that you’re calling nth on the same collection a few times, or looking up con-
stants in a map, or using first or next, consider using destructuring instead.

 Now that we’ve made it through the cursory introduction to Clojure, let’s take
some time to pair-program (Williams 2002). In the next section, we’ll take many of
the bare necessities that you’ve just learned and walk through the creation of a couple
interesting functions for drawing pretty pictures within Clojure’s REPL.

51Using the REPL to experiment
3.4 Using the REPL to experiment
Most software development projects include a stage where you’re not sure what needs
to happen next. Perhaps you need to use a library or part of a library you’ve never
touched before. Or perhaps you know what your input to a particular function will be,
and what the output should be, but you aren’t sure how to get from one to other. In
more static languages, this can be time-consuming and frustrating; but by leveraging
the power of the Clojure REPL, the interactive command prompt, it can actually be fun.

3.4.1 Experimenting with seqs

Say someone suggests to you that coloring every pixel of a canvas with the xor of its x
and y coordinates might produce an interesting image. It shouldn’t be too hard, so
you can jump right in. You’ll need to perform an operation on every x and y in a pair
of ranges. Do you know how range works?

(range 5)
;=> (0 1 2 3 4)

That should do nicely for one coordinate. To nest seqs, for often does the trick. But
again, rather than writing code and waiting until you have enough to warrant compil-
ing and testing, you can just try it:

(for [x (range 2) y (range 2)] [x y])
;=> ([0 0] [0 1] [1 0] [1 1])

There are the coordinates that will form your input. Now you need to xor them:

(xor 1 2)
;=> java.lang.Exception: Unable to resolve symbol: xor in this context

Bother—no function named xor. Fortunately, Clojure provides find-doc, which
searches not just function names but also their doc strings for the given term:

(find-doc "xor")
; -------------------------
; clojure.core/bit-xor
; ([x y])
; Bitwise exclusive or
;=> nil

So the function you need is called bit-xor:

(bit-xor 1 2)
;=> 3

Perfect! Now you want to adjust your earlier for form to return the bit-xor along
with the x and y. The easiest way to do this will depend on what tool is hosting your
REPL. In many, you can just press the up-arrow key on your keyboard a couple of times
to bring back the earlier for form. You’re not going to want to retype things to make
minor adjustments, so take a moment right now to figure out a method you like that
will allow you to make a tweak like this by inserting the bit-xor call:

52 CHAPTER 3 Dipping our toes in the pool
(for [x (range 2) y (range 2)] [x y (bit-xor x y)])
;=> ([0 0 0] [0 1 1] [1 0 1] [1 1 0])

That looks about right. Now you’re about to shift gears to pursue the graphics side of
this problem, so tuck that bit of code away in a function so it’ll be easy to use later:

(defn xors [max-x max-y] (for [x (range max-x) y (range max-y)] [x y (bit-
xor x y)]))

(xors 2 2)
;=> ([0 0 0] [0 1 1] [1 0 1] [1 1 0])

You might even save that into a .clj file somewhere, if you haven’t already.

3.4.2 Experimenting with graphics

Clojure’s REPL isn’t just for playing around; it’s also great for experimenting with Java
libraries. We believe that there’s no better environment for exploring a Java API than
Clojure’s REPL. To illustrate, poke around with java.awt, starting with a Frame:

(def frame (java.awt.Frame.))
;=> #'user/frame

That should’ve created a Frame, but no window appeared. Did it work at all?

frame
;=> #<Frame java.awt.Frame[frame0,0,22,0x0,invalid,hidden,...]>

Well, you have a Frame object, but perhaps the reason you can’t see it is hinted at by
the word hidden in the #<Frame...> printout. Perhaps the Frame has a method you
need to call to make it visible. One way to find out would be to check the Javadoc of
the object, but because you’re at the REPL already, let’s try something else. You’ve
already seen how the for macro works, so maybe you can check a class for which
methods it has to see whether one that you can use is available:

(for [method (seq (.getMethods java.awt.Frame))
:let [method-name (.getName method)]
:when (re-find #"Vis" method-name)]

method-name)
;=> ("setVisible" "isVisible")

The for macro takes a :let flag and bindings vector that works similarly to the let
special form that you use to bind the local method-name to the result of calling the
method .getName on each method in turn. The :when is used to limit the elements
used in its body to only those that return a truthy value in the expression after the
directive. Using these directives allows you to iterate through the methods and build a
seq of those whose names match a regular expression #"Vis". We’ll cover Clojure’s
regular expression syntax in section 3.5.

THE CONTRIB FUNCTION SHOW The clojure-contrib library also has a function
show in the clojure.contrib.repl-utils namespace that allows for more
useful printouts of class members than we show using for.

Your query returned two potential methods, so try out each of them:

53Using the REPL to experiment
(.isVisible frame)
;=> false

That’s false, as you might’ve suspected. Will setting it to true make any difference?

(.setVisible frame true)
;=> nil

It did, but it’s so tiny! Not to worry, as a Frame class also has a .setSize method that
you can use:

(.setSize frame (java.awt.Dimension. 200 200))
;=> nil

And up pops a blank window for you to draw on. At this point, we’ll guide you
through the rest of this section, but keep in mind that Java’s official API might be of
interest should you choose to extend the example program.

THE JAVADOC FUNCTION As of Clojure 1.2, a javadoc function is automati-
cally available at the REPL to query and view official API documentation:
(javadoc frame)

This should return a string corresponding to a URL and open a browser win-
dow for just the right page of documentation. Prior to Clojure 1.2, this func-
tion was in clojure.contrib.repl-utils.

What you need to draw into your Frame is its graphics context, which can be fetched
as shown:

(def gfx (.getGraphics frame))
;=> #'user/gfx

Then, to actually draw, you can try out the fillRect method of that graphics context.
If you’re trying this yourself, make sure the blank window is positioned so that it’s
unobscured while you’re typing into your REPL:

(.fillRect gfx 100 100 50 75)

And just like that, you’re drawing on the screen interactively. You should see a single
black rectangle in the formerly empty window. Exciting, isn’t it? You could be a kid
playing with turtle graphics for the first time, it’s so much fun. But what it needs now is
a dash of color:

(.setColor gfx (java.awt.Color. 255 128 0))
(.fillRect gfx 100 150 75 50)

Now there should be an orange rectangle as well. Perhaps the coloring would make
Martha Stewart cry, but you now have tried out all the basic building blocks you’ll
need to complete the original task: you have a function that returns a seq of coordi-
nates and their xor values, you have a window you can draw into, and you know how to
draw rectangles of different colors. Bear in mind that if you move the actual frame
with the mouse, your beautiful graphics will disappear. This is just an artifact of this
limited experiment and can be avoided using the full Java Swing capabilities.

54 CHAPTER 3 Dipping our toes in the pool
3.4.3 Putting it all together

What’s left to do? Use the graphics functions you just saw to draw the xor values you
created earlier:

(doseq [[x y xor] (xors 200 200)]
(.setColor gfx (java.awt.Color. xor xor xor))
(.fillRect gfx x y 1 1))

The xors function you created earlier generates a seq of
vectors, if you remember, where each vector has three
elements: the x and y for your coordinates and the xor
value that goes with them. The first line here uses
destructuring to assign each of those three values to new
locals x, y, and xor, respectively.

 The second line sets the “pen” color to a gray level
based on the xor value, and the final line draws a single-
pixel rectangle at the current coordinates. The resulting
graphic is shown in figure 3.1.

 But just because you’ve succeeded doesn’t mean you
have to quit. You’ve built up some knowledge and a bit of
a toolbox, so why not play with it a little?

3.4.4 When things go wrong

For example, the pattern appears to cut off in the middle—perhaps you’d like to see a
bit more. Re-enter that last expression, but this time try larger limits:

(doseq [[x y xor] (xors 500 500)]
(.setColor gfx (java.awt.Color. xor xor xor))
(.fillRect gfx x y 1 1))

; java.lang.IllegalArgumentException:
; Color parameter outside of expected range: Red Green Blue

Whoops. Something went wrong, but what exactly? This gives you a perfect opportu-
nity to try out one final REPL tool. When an exception is thrown from something you
try at the REPL, the result is stored in a Var named *e. This allows you to get more
detail about the expression, such as the stack trace:

(.printStackTrace *e)
; java.lang.IllegalArgumentException: Color parameter outside of
; expected range: Red Green Blue
; at clojure.lang.Compiler.eval(Compiler.java:4639)
; at clojure.core$eval__5182.invoke(core.clj:1966)
; at clojure.main$repl__7283$read_eval_print__7295.invoke(main.clj:180)
; ...skipping a bit here...
; Caused by: java.lang.IllegalArgumentException: Color parameter
; outside of expected range: Red Green Blue
; at java.awt.Color.testColorValueRange(Color.java:298)
; at java.awt.Color.<init>(Color.java:382)
; ...skipping a bit more...
; ... 11 more
;=> nil

Figure 3.1 Visualization of
xor. This is the graphic drawn
by the six or so lines of code
we’ve looked at so far—a
visual representation of
Clojure’s bit-xor function.

55Using the REPL to experiment
That’s a lot of text, but don’t panic. Learning to read Java stack traces will be useful, so
let’s pick it apart.

 The first thing to understand is the overall structure of the trace—there are two
“causes.” The original or root cause of the exception is listed last—this is the best
place to look first.4 The name and text of the exception there are the same as the
REPL printed for us in the first place, though they won’t always be. So let’s look at that
next line:

at java.awt.Color.testColorValueRange(Color.java:298)

Like most lines in the stack trace, this has four parts: the name of the class, the name
of the method, the filename, and finally the line number:

at <class>.<method or constructor>(<filename>:<line>)

In this case, the function name is testColorValueRange, which is defined in Java’s
own Color.java file. Unless this means more to you than it does to us, let’s move on to
the next line:

at java.awt.Color.<init>(Color.java:382)

It appears that it was the Color’s constructor (called <init> in stack traces) that called
that test function you saw earlier. So now the picture is pretty clear—when you con-
structed a Color instance, it checked the values you passed in, decided they were
invalid, and threw an appropriate exception.

 If this weren’t enough, you could continue walking down the stack trace until the
line

... 11 more

This is your cue to jump up to the cause listed before this one to find out what the
next 11 stack frames were.

 To fix your invalid Color argument, you can just adjust the xors function to return
only legal values using the rem function, which returns the remainder so you can keep
the results under 256:

(defn xors [xs ys]
 (for [x (range xs) y (range ys)]
 [x y (rem (bit-xor x y) 256)]))

Note that you’re redefining an existing function here. This is perfectly acceptable and
well-supported behavior. Before moving on, create a function that takes a graphics
object and clears it:

(defn clear [g] (.clearRect g 0 0 200 200))

Calling (clear gfx) will clear the frame, allowing the doseq form you tried before to
work perfectly.

4 This is a runtime exception, the most common kind. If you misuse a macro or find a bug in one, you may see
compile-time exceptions. The trace will look similar but will have many more references to Compiler.java. For
these traces, the most recent exception (listed first) may be the only one that identifies the filename and line
number in your code that’s at fault.

56 CHAPTER 3 Dipping our toes in the pool
3.4.5 Just for fun

The bit-xor function does produce an interesting image, but perhaps you wonder
what other functions might look like. Try adding another parameter to xors so that
you can pass in whatever function you’d like to look at. Because it’s not just bit-xor
anymore, change the name while you’re at it:

(defn f-values [f xs ys]
(for [x (range xs) y (range ys)]

[x y (rem (f x y) 256)]))

You might as well wrap your call to setSize, clear, and the doseq form in a function
as well:

(defn draw-values [f xs ys]
(clear gfx)
(.setSize frame (java.awt.Dimension. xs ys))
(doseq [[x y v] (f-values f xs ys)]

(.setColor gfx (java.awt.Color. v v v))
(.fillRect gfx x y 1 1)))

This allows you to try out different functions and ranges quite easily. More nice exam-
ples are shown in figure 3.2, resulting from the following:

(draw-values bit-and 256 256)
(draw-values + 256 256)
(draw-values * 256 256)

If this were the beginning or some awkward middle stage of a large project, you’d
have succeeded in pushing past this troubling point and could now take the functions
you’ve built and drop them into the larger project.

 By trying everything out at the REPL, you’re encouraged to try smaller pieces
rather than larger ones. The smaller the piece, the shorter the distance down an
incorrect path you’re likely to go. Not only does this reduce the overall development
time, but it provides developers more frequent successes that can help keep morale
and motivation high through even
tough stages of a project. But trial-and-
error exploration isn’t enough. An
intuitive basis in Clojure is also
needed to become highly effective.
Throughout this book, we’ll help you
to build your intuition in Clojure
through discussions of its idioms and
its motivating factors and rationale.

3.5 Summary
We started slowly in this chapter in order to take a breather from the sprint that was
chapter 2. Truthiness in Clojure observes a simple rule: every object is true all the
time, unless it’s nil or false. Second, in many Lisp-like languages, the empty list ()

Figure 3.2 Three possible results from draw-
values. The draw-values function you’ve written
can be used to create a variety of graphics. Here are
examples, from left to right, of bit-and, +, and *.

57Summary
and the truth value nil are analogous—this is known as nil-punning—but in Clojure
this isn’t the case. Instead, idiomatic Clojure employs the (seq (rest _)) idiom in
the form of the next function to provide a mechanism fostering “form follows func-
tion” and also to eliminate errors associated with falsety/empty-seq disparity. Finally,
destructuring provides a powerful mechanism, a mini-language for binding if you will,
for partially or entirely pulling apart the constituent components of composite types.
Our trek through the REPL illustrated the power in having the whole language
(Graham 2001) at your disposal. As a Clojure programmer, you’ll spend a lot of time
in the REPL, and pretty soon you won’t know how you lived without it.

 In the next chapter, we’ll touch on matters concerning Clojure’s seemingly inno-
cent scalar data types. Although in most cases these scalars will expose powerful pro-
gramming techniques, be forewarned: as you’ll see, the picture isn’t always rosy.

Part 2

Data types

Clojure has squirreled away interesting tidbits even among its data types.
The scalar types include some less common items such as keywords and rational
numbers, and the composite types are all immutable. In this part, we’ll explore
all of them in detail.

On scalars
It requires a very unusual mind to
undertake the analysis of the obvious.

—Alfred North Whitehead

So far, we’ve covered a somewhat eclectic mix of theoretical and practical concerns.
This brings us now to a point where we can dive deeper into a fundamental topic:
how Clojure deals with scalar values, including numeric, symbolic, and regular
expression values, and how they behave as data and sometimes as code.

 A scalar data type is one that can only hold one value at a time of a number, sym-
bol, keyword, string, or character. Most of the use cases for Clojure’s scalar data
types will be familiar to you. But there are some nuances that should be observed.
Clojure’s scalar data types exist in an interesting conceptual space. Because of its
symbiotic nature, some of the scalar type behaviors walk a conceptual line between

This chapter covers
 Understanding precision

 Trying to be rational

 When to use keywords

 Symbolic resolution

 Regular expressions—the second problem
61

62 CHAPTER 4 On scalars
pure Clojure semantics and host semantics. This chapter provides a rundown of some
of the idiomatic uses of Clojure’s scalar data types as well as some pitfalls that you
might encounter. In most cases, Clojure will shield you from the quirks of its host, but
there are times when they’ll demand attention. Clojure’s scalar types have the poten-
tial to act like Sybil—sweet and kind one moment, vicious and vile the next—requir-
ing some thought to handle properly. We’ll also talk about this duality and address its
limitations and possible mitigation techniques. Additionally, we’ll address the age-old
topic of Lisp-1 versus Lisp-2 implementations and how Clojure approaches the matter.
Finally, we’ll talk briefly about Clojure’s regular expression literals and how they’re
typically used.

 We’ll first cover matters of numerical precision and how the Java Virtual Machine
works to thwart your attempts at mathematical nirvana.

4.1 Understanding precision
Numbers in Clojure are by default as precise1 as they need to be. Given enough mem-
ory, you could store the value of Pi accurately up to a billion places and beyond; in
practice, values that large are rarely needed. But it’s sometimes important to provide
perfect accuracy at less-precise values. When dealing with raw Clojure functions and
forms, it’s a trivial matter to ensure such accuracy; it’s handled automatically. Because
Clojure encourages interoperability with its host platform, the matter of accuracy
becomes less than certain. This section will talk about real matters of precision related
to Clojure’s support for the Java Virtual Machine. As it pertains to programming lan-
guages,2 numerical precision is proportional to the mechanisms used for storing
numerical representations. The Java language specification describes the internal rep-
resentation of its primitive types thus limiting their precision. Depending on the class
of application specialization, a programmer could go an entire career and never be
affected by Java’s precision limitations. But many industries require perfect accuracy
of arbitrarily precise computations, and it’s here that Clojure can provide a great
boon; but with this power come some pointy edges, as we’ll discuss shortly.

4.1.1 Truncation

Truncation refers to the limiting of accuracy for a floating-point number based on a
deficiency in the corresponding representation. When a number is truncated, its pre-
cision is limited such that the maximum number of digits of accuracy is bound by the
number of bits that can “fit” into the storage space allowed by its representation. For
floating-point values, Clojure truncates by default. Therefore, if high precision is
required for your floating-point operations, then explicit typing is required, as seen
with the use of the M literal in the following:

1 In a future version of Clojure, this arbitrary precision won’t be the default, but will require explicit flagging
(with the aforementioned M for decimal numbers and N for longs). Additionally, overflow of primitive num-
bers will always signal an exception.

2 As opposed to arithmetic precision.

63Understanding precision
(let [imadeuapi 3.14159265358979323846264338327950288419716939937M]
(println (class imadeuapi))
imadeuapi)

; java.math.BigDecimal
;=> 3.14159265358979323846264338327950288419716939937M

(let [butieatedit 3.14159265358979323846264338327950288419716939937]
(println (class butieatedit))
butieatedit)

; java.lang.Double
;=> 3.141592653589793

As we show, the local butieatedit is truncated because the default Java double type is
insufficient. On the other hand, imadeuapi uses Clojure’s literal notation, a suffix
character M, to declare a value as requiring arbitrary decimal representation. This is
one possible way to mitigate truncation for a immensely large range of values, but as
we’ll explore in section 4.2, it’s not a guarantee of perfect precision.

4.1.2 Promotion

Clojure is able to detect when overflow occurs, and will promote the value to a numer-
ical representation that can accommodate larger values. In many cases, promotion
results in the usage of a pair of classes used to hold exceptionally large values. This pro-
motion within Clojure is automatic, as the primary focus is first correctness of numeri-
cal values, then raw speed. It’s important to remember that this promotion will occur,
as shown in the following listing, and your code should accommodate3 this certainty.

(def clueless 9)
(class clueless)
;=> java.lang.Integer

(class (+ clueless 9000000000000000))
;=> java.lang.Long

(class (+ clueless 90000000000000000000))
;=> java.math.BigInteger

(class (+ clueless 9.0))
;=> java.lang.Double

Java itself has a bevy of contexts under which automatic type conversion will occur, so
we advise you to familiarize yourself with those (Lindholm 1999) when dealing with
Java native libraries.

Listing 4.1 Automatic promotion in Clojure

3 In the example, it’s important to realize that the actual class of the value is changing, so any functions or meth-
ods reliant on specific types might not work as expected.

64 CHAPTER 4 On scalars
4.1.3 Overflow

Integer and long values in Java are subject to overflow errors. When an integer calcu-
lation results in a value that’s larger than 32 bits of representation will allow, the bits of
storage will “wrap” around. When you’re operating in Clojure, overflow won’t be an
issue for most cases, thanks to promotion. But when dealing with numeric operations
on primitive types, overflow can occur. Fortunately in these instances an exception
will occur rather than propagating inaccuracies:

(+ Integer/MAX_VALUE Integer/MAX_VALUE)
;=> java.lang.ArithmeticException: integer overflow

Clojure provides a class of unchecked integer and long mathematical operations that
assume that their arguments are primitive types. These unchecked operations will
overflow if given excessively large values:

(unchecked-add (Integer/MAX_VALUE) (Integer/MAX_VALUE))
;=> -2

You should take care with unchecked operations, because there’s no way to detect
overflowing values and no reliable way to return from them. Use the unchecked func-
tions only when overflow is desired.

4.1.4 Underflow

Underflow is the inverse of overflow, where a number is so small that its value collapses
into zero. Simple examples of underflow for float and doubles can be demonstrated:

(float 0.0001)
;=> 0.0

1.0E-430
;=> 0.0

Underflow presents a danger similar to overflow, except that it occurs only with
floating-point numbers.

4.1.5 Rounding errors

When the representation of a floating-point value isn’t sufficient for storing its actual
value, then rounding errors will occur (Goldberg 1994). Rounding errors are an espe-
cially insidious numerical inaccuracy, as they have a habit of propagating throughout a
computation and/or build over time, leading to difficulties in debugging. There’s a
famous case involving the failure of a Patriot missile caused by a rounding error, result-
ing in the death of 28 U.S. soldiers in the first Gulf War (Skeel 1992). This occurred
due to a rounding error in the representation of a count register’s update interval. The
timer register was meant to update once every 0.1 seconds, but because the hardware
couldn’t represent 0.1 directly, an approximation was used instead. Tragically, the
approximation used was subject to rounding error. Therefore, over the course of 100
hours, the rounding accumulated into a timing error of approximately 0.34 seconds.

65Trying to be rational
(let [aprox-interval (/ 209715 2097152)
actual-interval (/ 1 10)
hours (* 3600 100 10)
actual-total (double (* hours actual-interval))
aprox-total (double (* hours aprox-interval))]

(- actual-total aprox-total))

;=> 0.34332275390625

In the case of the Patriot missile, the deviation of 0.34 seconds was enough to cause a
catastrophic software error, resulting in its ineffectiveness. When human lives are at
stake, the inaccuracies wrought from rounding errors are unacceptable. For the most
part, Clojure will be able to maintain arithmetic accuracies within a certain range, but
you shouldn’t take for granted that such will be the case when interacting with Java
libraries.

 One way to contribute to rounding errors is to introduce doubles and floats into
an operation. In Clojure, any computation involving even a single double will result in
a value that’s a double:

(+ 0.1M 0.1M 0.1M 0.1 0.1M 0.1M 0.1M 0.1M 0.1M 0.1M)
;=> 0.9999999999999999

Can you spot the double?
 This discussion was Java-centric, but Clojure’s ultimate goal is to be platform-

agnostic, and the problem of numerical consistency across platforms is a nontrivial
matter. It’s still unknown whether the preceding points will be universal across host
platforms, so please bear in mind that they should be reexamined when using Clojure
outside the context of the JVM. Now that we’ve identified the root issues when dealing
with numbers in Clojure, we’ll dive into a successful mitigation technique for dealing
with them—rationals.

4.2 Trying to be rational
Clojure provides a data type representing a rational number, and all of its core mathe-
matical functions operate with rational numbers. Clojure’s rationals allow for arbi-
trarily large numerators and denominators. We won’t go into depth about the
limitations of floating-point operations, but the problem can be summarized simply.
Given a finite representation of an infinitely large set, a determination must be made
which finite subset is represented. In the case of standard floating-point numbers as
representations of real numbers, the distribution of represented numbers is logarith-
mic (Kuki 1973) and not one-for-one. What does this mean in practice? It means that
requiring more accuracy in your floating-point operations increases the probability
that the corresponding representation won’t be available. In these circumstances,
you’ll have to settle for approximations. But Clojure’s rational number type provides a
way to retain perfect accuracy when needed.

Listing 4.2 Illustrating the Patriot missile tragedy

Clojure’s accurate 0.1

66 CHAPTER 4 On scalars
4.2.1 Why be rational?

Of course, Clojure provides a decimal type that’s boundless relative to your computer
memory, so why wouldn’t you just use those? In short, you can, but decimal operations
can be easily corrupted, especially when working with existing Java libraries (Kahan
1998) taking and returning primitive types. Additionally, in the case of Java, its under-
lying BigDecimal class is finite in that it uses a 32-bit integer to represent the number
of digits to the right of the decimal place. This can represent an extremely large range
of values perfectly, but it’s still subject to error:

1.0E-430000000M
;=> 1.0E-430000000M

1.0E-4300000000M
;=> java.lang.RuntimeException: java.lang.NumberFormatException

Even if you manage to ensure that your BigDecimal values are free from floating-point
corruption, you can never protect them from themselves. At some point or another, a
floating-point calculation will encounter a number such as 2/3 that will always require
rounding, leading to subtle, yet propagating errors. Finally, floating-point arithmetic
is neither associative nor distributive, which may lead to the shocking results shown in
this listing.

(def a 1.0e50)
(def b -1.0e50)
(def c 17.0e00)

(+ (+ a b) c)
;=> 17.0

(+ a (+ b c))
;=> 0.0

(let [a (float 0.1)
b (float 0.2)
c (float 0.3)]

(=
(* a (+ b c))
(+ (* a b) (* a c))))

;=> false

Therefore, for absolutely precise calculations, rationals are the best choice.4

4.2.2 How to be rational

Aside from the rational data type, Clojure provides functions that can help to main-
tain your sanity: ratio?, rational?, and rationalize. Additionally, taking apart ratio-
nals is also a trivial matter.

Listing 4.3 Floating-point arithmetic isn’t associative or distributive.

4 In the case of irrational numbers like Pi, all bets are off.

Associativity should
guarantee 17.0 also

Distributive should
guarantee equality

67Trying to be rational
 The best way to ensure that your calculations remain as accurate as possible is to
ensure that they’re all done using rational numbers. As shown in the following listing,
the shocking results from using floating-point numbers have been eliminated.

(def a (rationalize 1.0e50))
(def b (rationalize -1.0e50))
(def c (rationalize 17.0e00))

(+ (+ a b) c)
;=> 17

(+ a (+ b c))
;=> 17

(let [a (rationalize 0.1)
b (rationalize 0.2)
c (rationalize 0.3)]

(=
(* a (+ b c))
(+ (* a b) (* a c))))

;=> true

To ensure that your numbers remain rational, you can use rational? to check
whether a given number is one and then use rationalize to convert it to one. There
are a few rules of thumb to remember if you want to maintain perfect accuracy in your
computations:

1 Never use Java math libraries unless they return results of BigDecimal, and even
then be suspicious.

2 Don’t rationalize values that are Java float or double primitives.
3 If you must write your own high-precision calculations, do so with rationals.
4 Only convert to a floating-point representation as a last resort.

Finally, you can extract the constituent parts of a rational using the numerator and
denominator functions:

(numerator (/ 123 10))
;=> 123
(denominator (/ 123 10))
;=> 10

You might never need perfect accuracy in your calculations. When you do, Clojure pro-
vides tools for maintaining sanity, but the responsibility to maintain rigor lies with you.

4.2.3 Caveats of rationality

Like any tool, Clojure’s rational type is a double-edged sword. The calculation of ratio-
nal math, though accurate, isn’t nearly as fast as with floats or doubles. Each operation
in rational math has an overhead cost (such as finding the least common denomina-
tor) that should be accounted for. It does you no good to use rational operations if
speed is a primary concern above accuracy.

Listing 4.4 Being rational preserves associativity and distributive natures.

Associativity
preserved

Distributive
nature preserved

68 CHAPTER 4 On scalars
 That covers the numerical scalars, so we’ll move on to two data types that you may
not be familiar with unless you happen to come from a background in the Lisp family
of languages: keywords and symbols.

4.3 When to use keywords
The purpose of Clojure keywords, or symbolic identifiers, can sometimes lead to confu-
sion for first-time Clojure programmers, because their analogue isn’t often found5 in
other languages. This section will attempt to alleviate the confusion and provide some
tips for how keywords are typically used.

4.3.1 How are keywords different from symbols?

Keywords always refer to themselves. What this means is that the keyword :magma
always has the value :magma, whereas the symbol ruins may refer to any legal Clojure
value or reference.

AS KEYS

Because keywords are self-evaluating and provide fast equality checks, they’re almost
always used in the context of map keys. An equally important reason to use keywords
as map keys is that they can be used as functions, taking a map as an argument, to per-
form value lookups:

(def population {:zombies 2700, :humans 9})

(:zombies population)
;=> 2700

(println (/ (:zombies population)
(:humans population))

"zombies per capita")
; 300 zombies per capita

This leads to much more concise code.

AS ENUMERATIONS

Often, Clojure code will use keywords as enumeration values, such as :small,
:medium, and :large. This provides a nice visual delineation within the source code.

AS MULTIMETHOD DISPATCH VALUES

Because keywords are used often as enumerations, they’re ideal candidates for dis-
patch values for multimethods, which we’ll explore in more detail in section 9.1.

AS DIRECTIVES

Another common use for keywords is to provide a directive to a function, multi-
method, or macro. A simple way to illustrate this is to imagine a simple function pour,
shown in listing 4.5, that takes two numbers and returns a lazy sequence of the range
of those numbers. But there’s also a mode for this function that takes a keyword :tou-
jours, which will instead return an infinite lazy range starting with the first number
and continuing “forever.”

5 Ruby has a symbol type that acts, looks, and is used similarly to Clojure keywords.

69When to use keywords
(defn pour [lb ub]
(cond

(= ub :toujours) (iterate inc lb)
:else (range lb ub)))

(pour 1 10)
;=> (1 2 3 4 5 6 7 8 9)

(pour 1 :toujours)
; ... runs forever

An illustrative bonus with pour is that the macro cond itself uses a directive :else to
mark the default conditional case. In this case, cond uses the fact that the keyword
:else is truthy; any keyword (or truthy value) would’ve worked just as well.

4.3.2 Qualifying your keywords

Keywords don’t belong to any specific namespace, although they may appear to if
namespace qualification is used:

::not-in-ns
;=> :user/not-in-ns

The prefix portion of the keyword marked as :user/ only looks like it’s denoting an
owning namespace; in fact, it’s a prefix gathered from the current namespace by the
Clojure reader. Observe the use of arbitrary prefixing:

(ns another)
:user/in-another
;=> :user/in-another

:haunted/name
;=> :haunted/name

In the first case, we created a namespace another and created a keyword :user/in-
another that appears to belong to the user namespace, but in fact is prefixed. In the
second example, we created a keyword :haunted/name showing that the prefix doesn’t
have to belong to a namespace at all, given that one named haunted certainly doesn’t
exist. But the fact that keywords aren’t members of any given namespace doesn’t mean
that namespace-qualifying them is pointless. Instead, it’s often more clear to do so,
especially when a namespace aggregates a specific functionality and its keywords are
meaningful in that context.

Listing 4.5 Using a keyword as a function directive

Separating the plumbing from the domain
Within a namespace named crypto, the keywords ::rsa and ::blowfish make
sense as being namespace-qualified. Likewise, should we create a namespace
aquarium, then using ::blowfish within is contextually meaningful. Likewise, when
adding metadata to structures, you should consider using qualified keywords as keys
and directives if their intention is domain-oriented. Observe the following code:

70 CHAPTER 4 On scalars
Namespace qualification is especially important when you’re creating ad-hoc hierar-
chies and defining multimethods, both discussed in section 9.2.

4.4 Symbolic resolution
In the previous section, we covered the differences between symbols and keywords.
Whereas keywords were fairly straightforward, symbols abide by a slightly more com-
plicated system for lookup resolution.

 Symbols in Clojure are roughly analogous to identifiers in many other languages—
words that refer to other things. In a nutshell, symbols are primarily used to provide a
name for a given value. But in Clojure, symbols can also be referred to directly, by
using the symbol or quote function or the ' special operator. Symbols tend to be dis-
crete entities from one lexical contour to another, and often even within a single con-
tour. Unlike keywords, symbols aren’t unique based solely on name alone, as you can
see in the following:

(identical? 'goat 'goat)
;=> false

The reason identical? returns false in this example is because each goat symbol is a
discrete object that only happens to share a name and therefore a symbolic represen-
tation. But that name is the basis for symbol equality:

(= 'goat 'goat)
;=> true

(name 'goat)
"goat"

(continued)
(defn do-blowfish [directive]

(case directive
:aquarium/blowfish (println "feed the fish")
:crypto/blowfish (println "encode the message")
:blowfish (println "not sure what to do")))

(ns crypto)
(user/do-blowfish :blowfish)
; not sure what to do

(user/do-blowfish ::blowfish)
; encode the message

(ns aquarium)
(user/do-blowfish :blowfish)
; not sure what to do

(user/do-blowfish ::blowfish)
; feed the fish

When switching to different namespaces using ns, you can use the namespace-qual-
ified keyword syntax to ensure that the correct domain-specific code path is executed.

71Symbolic resolution
The identical? function in Clojure only ever returns true when the symbols are in
fact the same object:

(let [x 'goat y x] (identical? x y))
;=> true

In the preceding example, x is also a symbol, but when evaluated in the (identical?
x x) form it returns the symbol goat, which is actually being stored on the runtime
call stack. The question arises: why not make two identically named symbols the same
object? The answer lies in metadata, which we discuss next.

4.4.1 Metadata

Clojure allows the attachment of metadata to various objects, but for now we’ll focus
on attaching metadata to symbols. The with-meta function takes an object and a map
and returns another object of the same type with the metadata attached. The reason
why equally named symbols are often not the same instance is because each can have
its own unique metadata:

(let [x (with-meta 'goat {:ornery true})
y (with-meta 'goat {:ornery false})]

[(= x y)
(identical? x y)
(meta x)
(meta y)])

;=> [true false {:ornery true} {:ornery false}]

The two locals x and y both hold an equal symbol 'goat, but they’re different
instances, each containing separate metadata maps obtained with the meta function.
The implications of this are that symbol equality isn’t dependent on metadata or iden-
tity. This equality semantic isn’t limited to symbols, but is pervasive in Clojure, as we’ll
demonstrate throughout this book. You’ll find that keywords can’t hold metadata6

because any equally named keyword is the same object.

4.4.2 Symbols and namespaces

Like keywords, symbols don’t belong to any specific namespace. Take, for example,
the following code:

(ns where-is)
(def a-symbol 'where-am-i)

a-symbol
;=> where-am-i

(resolve 'a-symbol)
;=> #'where-is/a-symbol

`a-symbol
;=> where-is/a-symbol

6 Java class instances, including strings, can’t hold metadata either.

72 CHAPTER 4 On scalars
The initial evaluation of a-symbol shows the expected value where-am-i. But attempt-
ing to resolve the symbol using resolve and using syntax-quote returns what looks
like (as printed at the REPL) a namespace-qualified symbol. This is because a symbol’s
qualification is a characteristic of evaluation and not inherent in the symbol at all.
This also applies to symbols qualified with class names. This evaluation behavior will
prove beneficial when we discuss macros in chapter 8, but for now we can summarize
the overarching idea known as Lisp-1 (Gabriel 2001).

4.4.3 Lisp-1

Clojure is what’s known as a Lisp-1, which in simple terms means it uses the same
name resolution for function and value bindings. In a Lisp-2 programming language
like Common Lisp, these name resolutions are performed differently depending on
the context of the symbol, be it in a function call position or a function argument
position. There are many arguments for and against both Lisp-1 and Lisp-2, but
against Lisp-1 one downside bears consideration. Because the same name-resolution
scheme is used for functions and their arguments, there’s a real possibility of
shadowing existing functions with other locals or Vars. Name shadowing isn’t neces-
sarily non-idiomatic if done thoughtfully, but if done accidentally it can lead to some
unexpected and obscure errors. You should take care when naming locals and defin-
ing new functions so that name-shadowing complications can be avoided.

 Though name-shadowing errors tend to be rare, the benefit in a simplified mecha-
nism for calling and passing first-class functions far outweighs the negative. Clojure’s
adoption of a Lisp-1 resolution scheme makes for cleaner implementations and there-
fore highlights the solution rather than muddying the waters with the nuances of sym-
bolic lookup. For example, the best function highlights this perfectly in the way that
it takes the greater-than function > and calls it within its body as f:

(defn best [f xs]
(reduce #(if (f % %2) % %2) xs))

(best > [1 3 4 2 7 5 3])
;=> 7

A similar function body using a Lisp-2 language would require the intervention of
another function (in this case funcall) responsible for invoking the function explic-
itly. Likewise, passing any function would require the use of a qualifying tag marking it
as a function object, as seen here:

(defun best (f xs)
(reduce #'(lambda (l r)

(if (funcall f l r) l r))
xs))

(best #'> '(1 3 4 2 7 5 3))
;=> 7

This section isn’t intended to champion the cause of Lisp-1 over Lisp-2, only to high-
light the differences between the two. Many of the design decisions in Clojure provide
succinctness in implementation, and Lisp-1 is no exception. The preference for Lisp-1

73Regular expressions—the second problem
versus Lisp-2 typically boils down to matters of style and taste; by all practical mea-
sures, they’re equivalent.

 Having covered the two symbolic scalar types, we now move into a type that you’re
(for better or worse) likely familiar with: the regular expression.

4.5 Regular expressions—the second problem
Some people, when confronted with a problem, think “I know, I’ll use regular expres-
sions.” Now they have two problems.

—Jamie Zawinski

Regular expressions are a powerful and compact way to find specific patterns in text
strings. Though we sympathize with Zawinski’s attitude and appreciate his wit, some-
times regular expressions are a useful tool to have on hand. Although the full capabil-
ities of regular expressions (or regexes) are well beyond the scope of this section
(Friedl 1997), we’ll look at some of the ways Clojure leverages Java’s regex capabilities.

 Java’s regular expression engine is reasonably powerful, supporting Unicode and
features such as reluctant quantifiers and “look-around” clauses. Clojure doesn’t try to
reinvent the wheel and instead provides special syntax for literal Java regex patterns
plus a few functions to help Java’s regex capabilities fit better with the rest of Clojure.

4.5.1 Syntax

A literal regular expression in Clojure looks like this:

#"an example pattern"

This produces7 a compiled regex object that can be used either directly with Java
interop method calls or with any of the Clojure regex functions described later:

(class #"example")
;=> java.util.regex.Pattern

Though the pattern is surrounded with double quotes like string literals, the way
things are escaped within the quotes isn’t the same. This difference is easiest to see in
patterns that use backslash-delimited character classes. When compiled as a regex, a
string "\\d" will match a single digit and is identical to a literal regex without the dou-
ble backslash. Note that Clojure will even print the pattern back out using the literal
syntax:

(java.util.regex.Pattern/compile "\\d")
;=> #"\d"

In short, the only rules you need to know for embedding unusual literal characters or
predefined character classes are listed in the javadoc for Pattern.8

7 Literal regex patterns are compiled to java.util.regex.Pattern instances at read-time. This means, for example,
if you use a literal regex in a loop, it’s not recompiled each time through the loop, but just once when the
surrounding code is compiled.

8 See the online reference at http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html.

74 CHAPTER 4 On scalars
 Regular expressions accept option flags, shown in table 4.1, that can make a pat-
tern case-insensitive or enable multiline mode, and Clojure’s regex literals starting
with (?<flag>) set the mode for the rest of the pattern.

For example, the pattern #"(?i)yo" would match the strings “yo”, “yO”, “Yo”, and “YO”.

4.5.2 Functions

Java’s regex Pattern object has several methods that can be used directly, but only
split is used regularly to split a string into an array9 of Strings, breaking the original
where the pattern matches:

(seq (.split #"," "one,two,three"))
;=> ("one" "two" "three")

The re-seq function is Clojure’s regex workhorse. It returns a lazy seq of all matches
in a string, which means it can be used to efficiently test whether a string matches at
all or to find all matches in a string or a mapped file:

(re-seq #"\w+" "one-two/three")
;=> ("one" "two" "three")

The preceding regular expression has no capturing groups, so each match in the
returned seq is simply a string. A capturing group in the regex causes each returned
item to be a vector:

(re-seq #"\w*(\w)" "one-two/three")
;=> (["one" "e"] ["two" "o"] ["three" "e"])

Table 4.1 Regex flags: these are the flags that can be used within Clojure regular expression patterns,
their long name, and a description of what they do. See Java's documentation for the java.util.
regex.Pattern class for more details.

Flag Flag name Description

d UNIX_LINES ., ^, and $ match only the Unix line terminator '\n'.

i CASE_INSENSITIVE ASCII characters are matched without regard to upper or lower case.

x COMMENTS Whitespace and comments in the pattern are ignored.

m MULTILINE ^ and $ match near line terminators instead of only at the beginning or
end of the entire input string.

s DOTALL . matches any character including the line terminator.

u UNICODE_CASE Causes the i flag to use Unicode case insensitivity instead of ASCII.

9 Java arrays don’t print very pleasantly at the Clojure REPL, so we used seq in this example so you can see the
Strings inside.

75Summary
So where .split returns the text between regex matches, re-seq returns the matches
themselves.10 Now that we’ve looked at some nice functions you can use, we’ll talk
about one object you shouldn’t.

4.5.3 Beware of mutable matchers

Java’s regular expression engine includes a Matcher object that mutates in a non-
thread-safe way as it walks through a string finding matches. This object is exposed by
Clojure via the re-matcher function and can be used as an argument to re-groups
and the single-parameter form of re-find. We highly recommend avoiding all of
these unless you’re certain you know what you’re doing. These dangerous functions
are used internally by the implementations of some of the recommended functions
described earlier, but in each case they’re careful to disallow access to the Matcher
object they use. Use Matchers at your own risk, or better yet don’t use them directly11

at all.

4.6 Summary
Clojure’s scalar types generally work as expected, but its numerical types have a poten-
tial for frustration in certain situations. Though you may rarely encounter issues with
numerical precision, keeping in mind the circumstances under which they occur
might prove useful in the future. Given its inherent arbitrary-precision big decimal
and rational numerics, Clojure provides the tools for perfectly accurate calculations.
Keywords in Clojure serve many purposes and are ubiquitous in idiomatic code. When
dealing directly with symbols, Clojure’s nature as a Lisp-1 defines the nature of how
symbolic resolution occurs. Finally, Clojure provides regular expressions as first-class
data types, and their usage is encouraged where appropriate.

 As you might’ve speculated, this chapter was nice and short due to the relative sim-
plicity of scalar types. In the following chapter, we’ll step it up a notch or 10 when cov-
ering Clojure’s composite data types. Though scalars are interesting and deeper than
expected, the next chapter will start you on your way to understanding Clojure’s true
goal: providing a sane approach to application state.

10 If you want both at the same time, you may want to look at the partition function in the clojure-contrib
library, found in the clojure.contrib.string namespace.

11 The clojure.contrib.string namespace has a bevy of functions useful for leveraging regular expres-
sions.

Composite data types
It is better to have 100 functions
operate on one data structure than 10

functions on 10 data structures.
—Alan Perlis

Clojure provides a rich set of composite data types and we’ll cover them all: vectors,
lists, queues, sets, and maps. In this chapter, we’ll dig into the strengths and weak-
nesses of each. We’ll spend more time on vectors and maps than on the other types,
because those two are used in a wider variety of circumstances and warrant the
extra discussion. Finally, we’ll discuss the design of a simple function to leverage

This chapter covers
 Persistence, sequences, and complexity

 Vectors: creating and using them in all their varieties

 Lists: Clojure’s code form data structure

 How to use persistent queues

 Persistent sets

 Thinking in maps

 Putting it all together: finding the position of items in a
sequence
76

77Persistence, sequences, and complexity
many of the lessons learned in this chapter, and you’ll gain specific insight into the
preceding quote. By the way, we use the terms composite types and collections inter-
changeably, so please bear that in mind as we proceed.

 Before we look at the primary collection types individually, we’ll discuss the things
they have in common. For example, you may have heard of Clojure’s sequence
abstraction —all the persistent collections use it, so we’ll examine that as well as some
algorithmic complexity concepts we’ll be referring to throughout the chapter.

5.1 Persistence, sequences, and complexity
Clojure’s composite data types have some unique properties compared to composites
in many mainstream languages. Terms such as persistent and sequence come up, and not
always in a way that makes their meaning clear. In this section we’ll define their mean-
ings carefully. We’ll also briefly examine the topic of algorithmic complexity and Big-O
notation as they apply to Clojure collections.

 The term persistent is particularly problematic because it means something differ-
ent in other contexts. In the case of Clojure, we believe that a phrase immortalized by
Inigo Montoya from the novel and subsequent film The Princess Bride summarizes your
likely initial reaction...

5.1.1 “You keep using that word. I do not think
it means what you think it means.”

Although storage to disk may be the more common meaning of persistent today, Clo-
jure uses an older meaning of the word having to do with immutable in-memory col-
lections with specific properties. In particular, a persistent collection in Clojure allows
you to preserve historical versions (Okasaki 1999) of its state, and promises that all
versions will have the same update and lookup complexity guarantees. The specific
guarantees depend on the collection type, and we’ll cover those details along with
each kind of collection.

 Here you can see the difference between a persistent data structure and one that’s
not by using a Java array:

(def ds (into-array [:willie :barnabas :adam]))
(seq ds)
;=> (:willie :barnabas :adam)

What we’ve done is create a three-element array of keywords and used seq to produce
an object that displays nicely in the REPL. Any change to the array ds happens in-
place, thus obliterating any historical version:

(aset ds 1 :quentin)
;=> :quentin

(seq ds)
;=> (:willie :quentin :adam)

But using one of Clojure’s persistent data structures paints a different picture:

78 CHAPTER 5 Composite data types
(def ds [:willie :barnabas :adam])
ds
;=> [:willie :barnabas :adam]

(def ds1 (replace {:barnabas :quentin} ds))
ds
;=> [:willie :barnabas :adam]

ds1
;=> [:willie :quentin :adam]

The original vector ds did not change on the replacement of the keyword :barnabas
but instead created another vector with the changed value. A natural concern when
confronted with this picture of persistence is that a naive implementation would copy
the whole collection on each change, leading to slow operations and poor use of
memory. Clojure’s implementations (Bagwell 2001) are instead efficient by sharing
structural elements from one version of a persistent structure to another. This may
seem magical, but we’ll demystify it in the next chapter. For now it’s sufficient to
understand that each instance of a collection is immutable and efficient. This fact
opens numerous possibilities that wouldn’t work for standard mutable collections.
One of these is the sequence abstraction.

5.1.2 Sequence terms and what they mean

It is better to have 100 functions operate on one data abstraction than 10
functions on 10 data structures.

—Rich Hickey

The words sequential, sequence, and seq don’t sound very different from each other, but
they mean specific things in Clojure. We’ll start with specific definitions of each term
to help you tell them apart, and then go into a bit of detail about how they relate to
equality partitions and the sequence abstraction.

TERMS

A sequential collection is one that holds a series of values without reordering them. As
such it’s one of three broad categories of collection types, which we discuss in the next
subsection.

 A sequence is a sequential collection that represents a series of values that may or
may not exist yet. They may be values from a concrete collection or values that are
computed as necessary. A sequence may also be empty.

 Clojure has a simple API called seq for navigating collections. It consist of two func-
tions: first and rest. If the collection has anything in it, (first coll) returns the
first element; otherwise it returns nil. (rest coll) returns a sequence of the items
other than the first. If there are no other items, rest returns an empty sequence and
never nil. Functions that promise to return sequences, such as map and filter, work
the same way as rest. A seq is any object that implements the seq API, thereby support-
ing the functions first and rest. You might consider it an immutable variant of an
enumerator or iterator.

79Persistence, sequences, and complexity
 There’s also a function called seq that accepts a wide variety of collection-like
objects. Some collections, such as lists, implement the seq API directly, so calling seq
on them returns the collection itself. More often, calling seq on a collection returns a
new seq object for navigating that collection. In either case, if the collection is empty,
seq returns nil and never an empty sequence. Functions that promise to return seqs
(not sequences), such as next, work the same way.

 Clojure’s sequence library manipulates collections, strings, arrays, and so on as if
they were sequences, using the seq function and seq API.

BEWARE TYPE-BASED PREDICATES Clojure includes a few predicates with
names like the words just defined. Though they’re not frequently used, it
seems worth mentioning that they may not mean exactly what the definitions
here might suggest. For example, every object for which sequential? returns
true is a sequential collection, but it returns false for some that are also
sequential. This is because of implementation details that may be improved
sometime after Clojure 1.2.

EQUALITY PARTITIONS

Clojure classifies each composite data type into one of three logical categories or par-
titions: sequentials, maps, and sets. These divisions draw clear distinctions between
the types and help define equality semantics. Specifically, two objects will never be
equal if they belong to different partitions. Few composite types are actually sequences,
though several such as vectors are sequential.

 If two sequentials have the same values in the same order, = will return true for
them, even if their concrete types are different, as shown:

(= [1 2 3] '(1 2 3))
;=> true

Conversely, even if two collections have the same values in the same order, if one is a
sequential collection and the other isn’t, = will return false, as shown here:

(= [1 2 3] #{1 2 3})
;=> false

Examples of things that are sequential include Clojure lists and vectors, and Java lists
such as java.util.ArrayList. In fact everything that implements java.util.List is
included in the sequential partition.

 Generally things that fall into the other partitions include set or map in their name
and so are easy to identify.

THE SEQUENCE ABSTRACTION

Many Lisps build their data types (McCarthy 1962) on the cons-cell abstraction, an
elegant two-element structure illustrated in figure 5.1.

 Clojure also has a couple of cons-cell-like structures that are covered in section 5.4,
but they’re not central to Clojure’s design. Instead, the conceptual interface fulfilled
by the cons-cell has been lifted off the concrete structure illustrated previously and

80 CHAPTER 5 Composite data types
been named sequence. All an object needs to do to be a sequence is to support the two
core functions: first and rest. This isn’t much, but it’s all that's required for the
bulk of Clojure’s powerful library of sequence functions and macros to be able to
operate on the collection: filter, map, for, doseq, take, partition, the list goes on.

 At the same time, a wide variety of objects satisfy this interface. Every Clojure col-
lection provides at least one kind of seq object for walking through its contents,
exposed via the seq function. Some collections provide more than one; for example
vectors support rseq and maps support the functions keys and vals. All of these func-
tions return a seq, or if the collection is empty, nil.

 You can see examples of this by looking at the types of objects returned by various
expressions. Here’s the map class:

(class (hash-map :a 1))
;=> clojure.lang.PersistentHashMap

Unsurprisingly, the hash-map function returns an object of type PersistentHashMap.
Passing that map object to seq returns an entirely new kind of object:

(seq (hash-map :a 1))
;=> ([:a 1])

(class (seq (hash-map :a 1)))
;=> clojure.lang.PersistentHashMap$NodeSeq

This class name suggests it’s a seq of nodes on a hash map. Similarly we can get a seq
of keys on the same map:

(seq (keys (hash-map :a 1)))
;=> (:a)

(class (keys (hash-map :a 1)))
;=> clojure.lang.APersistentMap$KeySeq

Note that these specific class names are an implementation detail that may change in
the future, but the concepts they embody are central to Clojure and unlikely to
change.

 Having laid the foundation for a deeper dive into the sequence abstraction, we
now must quickly diverge into a simplified discussion of asymptotic complexity and
Big-O notation. If you’re already comfortable with these topics then by all means skip
forward to section 5.2. If you need a refresher or an overview, then the next section is
a minimalist introduction (Cormen 2009) to the topic.

Figure 5.1 Each cons-cell is a simple pair, a car and a cdr. A. A list with two cells,
each of which has a value X and Y as the head (the car in Lisp terminology) and a list
as the tail (the cdr). This is very similar to first and rest in Clojure sequences.
B. A cons-cell with a simple value for both the head and tail. This is called a dotted
pair but is not supported by any of Clojure's built in types.

81Persistence, sequences, and complexity
5.1.3 Big-O

This book isn’t heavily focused on asymptotic complexity but we do mention it a hand-
ful of times throughout, so here we’ll cover the minimum required for understanding
these few mentions. You may have gone your entire career without having to under-
stand Big-O notation, and you may likely go the remainder similarly. But that’s no rea-
son not to learn more, and a bit of understanding about Big-O and its implications
will go a long way toward helping you in choosing between Clojure collections, as well
as to design and analyze algorithms in general.

 Algorithmic complexity is a system for describing the relative space and time costs
for algorithms. Typically the complexity of an algorithm is described using what’s
known as Big-O notation. For example, you may have heard that finding an element
in a linked list is O(n), which is read as “order n.” What this means is that if you have a
list (:a :b :c) of length 3, then to verify that the keyword :c is in that list requires
three comparisons. This highlights the worst case of list access because :c is at the end
of the list, but we don’t worry too much about the worst-case scenario unless that’s the
only difference between two algorithms. On the other hand, to verify that :a is in the
same list is O(1), which is read as constant time. Finding :a represents the best case for
list access because it’s at the front of the list. Rarely do your lists always look exactly
like our example, and therefore you shouldn’t build your hopes that elements will
always be at the front. Therefore, in analyzing algorithms you rarely care about the
best-case scenario because it’s too rare to matter much. What you really care about
when analyzing algorithms is the expected case, or what you’d likely see in practice.
When looking at a few million runs of verifying that some value is contained in a mil-
lion different lists, you’d inevitably see that the average number of comparisons
required approaches whatever the length of a list was, divided by two. But because
doubling the length of the list would also double the number of comparisons done in
both the expected and worst case, they’re all grouped into the same Big-O category:
O(n) also known as linear time.

 Thus two algorithms that are in the same Big-O category may perform very differ-
ently, especially on small work loads. This makes the most difference when there’s a
large constant factor, work that the algorithm has to do up front regardless of the size of
the work load.

 When the work load is small, an O(1) algorithm with a large constant factor may
be more costly than an O(n) algorithm that’s without extra costs. But as the work load
increases, an O(1) algorithm will always overtake the O(n) algorithm as shown in fig-
ure 5.2. Big-O doesn’t concern itself with these constant factors or small work loads.

 When learning about Clojure’s persistent data structures, you’re likely to hear the
term O(log32 n) for those based on the persistent hash trie and O(log2 n) for the
sorted structures. Accessing an element in a Clojure persistent structure by index is
O(log n), or logarithmic. Logarithmic complexity describes a class of algorithms that
are effectively immune from large changes in the size of their data. In the case of Clo-
jure’s persistent structures, what this means is that there’s little difference in “hops”
(such as comparisons) between locating an element in a structure containing 100

83Vectors: creating and using them in all their varieties
 The most common way to create a vector is with the literal syntax described earlier.
But in many cases you’ll want to create a vector out of the contents of some other kind
of collection. For this there’s the function vec:

(vec (range 10))
;=> [0 1 2 3 4 5 6 7 8 9]

If you already have a vector but want to “pour” several values into it, then into is your
friend:

(let [my-vector [:a :b :c]]
 (into my-vector (range 10)))
;=> [:a :b :c 0 1 2 3 4 5 6 7 8 9]

If you want it to return a vector, the first argument to into must be a vector. The sec-
ond arg can be any sequence, such as what range returns, or anything else that works
with seq function. You can view the operation of into as similar to a O(n) concatena-
tion based on the size of the second argument.1 Clojure also provides a vector func-
tion to build a vector from its arguments, which is handy for constructs like (map
vector a b).

PRIMITIVE VECTORS

Clojure can store primitive types inside of vectors using the vector-of function,
which takes any of :int, :long, :float, :double, :byte, :short, :boolean, or :char
as its argument and returns an empty vector. This returned vector will act just like any
other vector, except that it’ll store its contents as primitives internally. All of the nor-
mal vector operations still apply, and the new vector will attempt to coerce any addi-
tions into its internal type when being added:

(into (vector-of :int) [Math/PI 2 1.3])
;=> [3 2 1]
(into (vector-of :char) [100 101 102])
;=> [\d \e \f]
(into (vector-of :int) [1 2 623876371267813267326786327863])
; java.lang.IllegalArgumentException: Value out of range for int:
 -8359803716404783817

In addition, all caveats mentioned in section 4.1 regarding overflow, underflow, and
so forth also apply to vectors of primitives.

 Using vec and into, it’s easy to build vectors much larger than are conveniently
built using vector literals. But once you have a large vector like that, what are you
going to do with it?

5.2.2 Large vectors

When collections are small, the performance differences between vectors and lists
hardly matters at all. But as both get larger, each becomes dramatically slower at oper-
ations the other can still perform efficiently. Vectors are particularly efficient at three
things relative to lists: adding or removing things from the right end of the collection,

1 Vectors can’t be concatenated any more efficiently than O(n).

84 CHAPTER 5 Composite data types
accessing or changing items in the interior of the collection by numeric index, and
walking in reverse order. Adding and removing from the end is done by treating the
vector as a stack—we’ll cover that later.

 Any item in a vector can be accessed by its index number from 0 up to but not
including (count my-vector) in essentially constant time.2 You can do this using the
function nth; the function get, essentially treating the vector like a map; or by invoking
the vector itself as a function. Look at each of these as applied to this example vector:

(def a-to-j (vec (map char (range 65 75))))
a-to-j
;=> [\A \B \C \D \E \F \G \H \I \J]

All three of these do the same work and each returns \E:

(nth a-to-j 4)
(get a-to-j 4)
(a-to-j 4)

Which to use is a judgment call, but table 5.1 highlights some points you might con-
sider when choosing.

Because vectors are indexed, they can be efficiently walked in either direction, left-to-
right or right-to-left. The seq and rseq functions return sequences that do exactly that:

(seq a-to-j)
;=> (\A \B \C \D \E \F \G \H \I \J)

(rseq a-to-j)
;=> (\J \I \H \G \F \E \D \C \B \A)

Any item in a vector can be “changed” using the assoc function. Clojure does this in
essentially constant time using structural sharing between the old and new vectors as
described at the beginning of this chapter:

(assoc a-to-j 4 "no longer E")
;=> [\A \B \C \D "no longer E" \F \G \H \I \J]

The assoc function for vectors only works on indices that already exist in the vector,
or as a special case, exactly one step past the end. In this case, the returned vector will

2 Several operations on Clojure’s persistent data structures are described in this book as “essentially constant
time.” In all cases these are O(log32 n).

Table 5.1 Vector lookup options: the three ways to look up an item in a vector and how each responds
to different exceptional circumstances

nth get Vector as a function

If the vector is nil Returns nil Returns nil Throws an exception

If the index is out
of range

Returns “not found” or
throws exception

Returns nil Throws an exception

Supports a
“not found” arg

Yes
 (nth [] 9 :whoops)

Yes
 (get [] 9 :whoops)

No

85Vectors: creating and using them in all their varieties
be one item larger than the input vector. More frequently vectors are “grown” using
the conj function as you’ll see in the next section.

 There are a few higher-powered functions provided that use assoc internally. For
example, the replace function works on both seqs and vectors, but when given a vec-
tor, it uses assoc to fix up and return a new vector:

(replace {2 :a, 4 :b} [1 2 3 2 3 4])
;=> [1 :a 3 :a 3 :b]

The functions assoc-in and update-in are for working with nested structures of vec-
tors and/or maps, like this one:3

(def matrix
 [[1 2 3]
 [4 5 6]
 [7 8 9]])

All of assoc-in, get-in, and update-in take a series of indices to pick items from
each more deeply nested level. For a vector arranged like the earlier matrix example,
this amounts to row and column coordinates:

(get-in matrix [1 2])
;=> 6

(assoc-in matrix [1 2] 'x)
;=> [[1 2 3] [4 5 x] [7 8 9]]

The update-in function works the same way, but instead of taking a value to overwrite
an existing value, it takes a function to apply to an existing value. It’ll replace the value
at the given coordinates with the return value of the function given:

(update-in matrix [1 2] * 100)
;=> [[1 2 3] [4 5 600] [7 8 9]]

The coordinates refer to the value 6, and the function given here is * taking an argu-
ment 100, so the slot becomes the return value of (* 6 100). There’s also a function
get-in for retrieving a value in a nested vector. Before exploring its operation, we’ll
create a function neighbors in listing 5.1 that given a y-x location in an equilateral 2D
matrix, returns a sequence of the locations surrounding it.

(defn neighbors
 ([size yx] (neighbors [[-1 0] [1 0] [0 -1] [0 1]] size yx))
 ([deltas size yx]
 (filter (fn [new-yx]
 (every? #(< -1 % size) new-yx))
 (map #(map + yx %) deltas))))

3 Nested vectors are far from the most efficient way to store or process matrices, but they’re convenient to
manipulate in Clojure and so make a good example here. More efficient options include a single vector,
arrays, or a library for matrix processing such as Colt or Incanter at http://incanter.org.

Listing 5.1 A function for finding the neighbors of a spot on a 2D matrix

86 CHAPTER 5 Composite data types
The operation of neighbors is fairly straightforward. The deltas local describes that a
neighbor can be one spot away, but only along the x or y axis (not diagonal). The
function first walks through deltas and builds a vector of each added to the yx point
provided. This operation will of course generate illegal point coordinates, so those are
then removed using filter, which checks to ensure that the indices lie between -1
and the provided size. You can test this function using get-in as follows:

(map #(get-in matrix %) (neighbors 3 [0 0]))
;=> (4 2)

For each neighbor coordinate returned from neighbors, we use get-in to retrieve
the value at that point. Indeed the position [0 0] corresponding to the value 1 has
the neighboring values 4 and 2. We’ll use neighbors again before this book comes to
an end, but next we’ll look at growing and shrinking vectors—treating them like
stacks.

5.2.3 Vectors as stacks

Classic stacks have at least two operations, push and pop, and with respect to Clojure
vectors these operations are called conj and pop respectively. The conj function adds
elements to and pop removes elements from the right side of the stack. Because vec-
tors are immutable, pop returns a new vector with the rightmost item dropped—this is
different from many mutable stack APIs, which generally return the dropped item.
Consequently, peek becomes more important as the primary way to get an item from
the top of the stack:

(def my-stack [1 2 3])

(peek my-stack)
;=> 3

(pop my-stack)
;=> [1 2]

(conj my-stack 4)
;=> [1 2 3 4]

(+ (peek my-stack) (peek (pop my-stack)))
;=> 5

Each of these operations completes in essentially constant time. Most of the time, a
vector that’s used as a stack is used that way throughout its life. It’s helpful to future
readers of your code to keep this is mind and use the stack operations consistently,
even when other functions might work. For example, last on a vector returns the
same thing as peek, but besides being slower, it leads to unnecessary confusion about
how the collection is being used. If the algorithm involved calls for a stack, use conj
not assoc for growing the vector, peek not last, and pop not dissoc for shrinking it.

 The functions conj, pop, and peek work on any object that implements clojure.
lang.IPersistentStack.4 Besides vectors, Clojure lists also implement this interface,

4 The conj function also works with all of Clojure’s other persistent collection types, even if they don’t imple-
ment clojure.lang.IPersistentStack.

87Vectors: creating and using them in all their varieties
but the functions operate on the left side of lists instead of the right side as with vec-
tors. When operating on either via the stack discipline, it’s best to ignore the ordering,
because it tends to just add confusion.

5.2.4 Using vectors instead of reverse

The ability of vectors to grow efficiently on the right side and then be walked left-to-
right produces a noteworthy emergent behavior: idiomatic Clojure code rarely uses
the reverse function. This is different from most Lisps and schemes. When process-
ing a list, it’s pretty common to want to produce a new list in the same order. But if all
you have are classic Lisp lists, often the most natural algorithm5 leaves you with a back-
ward list that needs to be reversed. Here’s an example of a function similar to Clo-
jure’s map

(defn strict-map1 [f coll]
 (loop [coll coll, acc nil]
 (if (empty? coll)
 (reverse acc)
 (recur (next coll) (cons (f (first coll)) acc)))))

(strict-map1 - (range 5))
;=> (0 -1 -2 -3 -4)

This is perfectly good, idiomatic Clojure code, except for that glaring reverse of the
final return value. After the entire list has been walked once to produce the desired
values, reverse walks it again to get them in the right order. This is both inefficient
and nonidiomatic. One way to get rid of the reverse is to use a vector instead of a list
as the accumulator:

(defn strict-map2 [f coll]
 (loop [coll coll, acc []]
 (if (empty? coll)
 acc
 (recur (next coll) (conj acc (f (first coll)))))))

(strict-map2 - (range 5))
;=> [0 -1 -2 -3 -4]

A small change, but the code is now a touch cleaner and a bit faster. It does return a
vector instead of a list, but this is rarely a problem, because any client code that wants
to treat this as a seq can usually do so automatically.6

 The examples we’ve shown so far have all been plain vectors, but we’ll turn now to
the special features of some other vector types, starting with subvectors.

5 ...the most natural tail-recursive algorithm anyway.
6 Another way to get rid of a reverse is to build a lazy sequence instead of a strict collection; this is how Clo-

jure’s own map function is implemented.

88 CHAPTER 5 Composite data types
5.2.5 Subvectors

Although items can’t be removed efficiently from a vector (except the rightmost
item), subvectors provide a fast way to take a slice of an existing vector based on start
and end indices created using the subvec function:

(subvec a-to-j 3 6)
;=> [\D \E \F]

The first index given to subvec is inclusive (starts at index 3) but the second is exclu-
sive (ends before index 6). The new subvector internally hangs onto the entire original
a-to-j vector, making each lookup performed on the new vector cause the subvector
to do a little offset math and then look it up in the original. This makes creating a sub-
vector fast. You can use subvec on any kind of vector and it’ll work fine. But there’s
special logic for taking a subvec of a subvec, in which case the newest subvector keeps
a reference to the original vector, not the intermediate subvector. This prevents
subvectors-of-subvectors from stacking up needlessly, and keeps both the creation and
use of the sub-subvecs fast and efficient.

5.2.6 Vectors as MapEntries

Clojure’s hash map, just like hash tables or dictionaries in many other languages, has a
mechanism to iterate through the entire collection. Clojure’s solution for this iterator
is, unsurprisingly, a seq. Each item of this seq needs to include both the key and the
value, so they’re wrapped in a MapEntry. When printed, each entry looks like a vector:

(first {:width 10, :height 20, :depth 15})
;=> [:width 10]

But not only does a MapEntry look like a vector, it really is one:

(vector? (first {:width 10, :height 20, :depth 15}))
;=> true

This means you can use all the regular vector functions on it: conj, get, and so on. It
even supports destructuring, which can be handy. For example, the following locals
dimension and amount will take on the value of each key/value pair in turn:

(doseq [[dimension amount] {:width 10, :height 20, :depth 15}]
 (println (str (name dimension) ":") amount "inches"))
; width: 10 inches
; height: 20 inches
; depth: 15 inches
;=> nil

A MapEntry is its own type and has two functions for retrieving its contents: key and
val, which do exactly the same thing as (nth my-map 0) and (nth my-map 1), respec-
tively. These are sometimes useful for the clarity they can bring to your code, but fre-
quently destructuring is used instead, because it’s so darned handy.

89Vectors: creating and using them in all their varieties
 So now you know what vectors are, what specific kinds of vectors are included in Clo-
jure, and some of the things that they’re good at doing. To round out your understand-
ing of vectors, we’ll conclude with a brief look at things that vectors are bad at doing.

5.2.7 What vectors aren’t

Vectors are versatile, but there are some commonly desired patterns where they might
seem like a good solution but in fact aren’t. Though we prefer to focus on the positive,
we hope a few negative examples will help you escape from using the wrong tool for
the job.

VECTORS AREN’T SPARSE

If you have a vector of length n, the only position where you can insert a value is at
index n —appending to the far right end. You can’t skip some indices and insert at a
higher index number. If you want a collection indexed by nonsequential numbers,
consider a hash map or sorted map. Although you can replace values within a vector,
you can’t insert or delete items such that indices for the subsequent items would have
to be adjusted. Clojure doesn’t currently have a native persistent collection that sup-
ports this kind of operation, but a possible future addition, finger trees, may help for
these use cases.

VECTORS AREN’T QUEUES

Some people have tried to use vectors as queues. One approach would be to push
onto the right end of the vector using conj and then to pop items off the left using
rest or next. The problem with this is that rest and next return seqs, not vectors, so
subsequent conj operations wouldn’t behave as desired. Using into to convert the seq
back into a vector is O(n), which is less than ideal for every pop.

 Another approach is to use subvec as a “pop,” leaving off the leftmost item.
Because subvec does return a vector, subsequent conj operations will push onto the
right end as desired. But as described earlier, subvec maintains a reference to the
entire underlying vector, so none of the items being popped this way will ever be gar-
bage collected. Also less than ideal.

 So what would be the ideal way to do queue operations on a persistent collection?
Why, use a PersistentQueue, of course. See section 5.5 for details.

VECTORS AREN’T SETS

If you want to find out whether a vector contains a particular value, you might be
tempted to use the contains? function, but you’d be disappointed by the results. Clo-
jure’s contains? is for asking whether a particular key, not value, is in a collection,
which is rarely useful for a vector.

 In this section we showed how to create vectors using literal syntax or by building
them up programmatically. We looked at how to push them, pop them, and slice
them. We also looked at some of the things vectors can’t do well. One of these was
adding and removing items from the left side; though vectors can’t do this, lists can,
which we’ll discuss next.

90 CHAPTER 5 Composite data types
5.3 Lists: Clojure’s code form data structure
Clojure’s PersistentLists are by far the simplest of Clojure’s persistent collection types.
A PersistentList is a singly linked list where each node knows its distance from the end.
List elements can only be found by starting with the first element and walking each
prior node in order, and can only be added or removed from the left end.

 In idiomatic Clojure code, lists are used almost exclusively to represent code
forms. They’re used literally in code to call functions, macros, and so forth as we’ll dis-
cuss shortly. Code forms are also built programmatically to then be evaled or used as
the return value for a macro. If the final usage of a collection isn’t as Clojure code,
lists rarely offer any value over vectors and are thus rarely used. But lists have rich her-
itage in Lisps so we’ll discuss when they should be used in Clojure, and also when they
shouldn’t—situations in which there are now better options.

5.3.1 Lists like Lisps like

All flavors of Lisp have lists that they like to use, and Clojure lists, already introduced
in chapter 2, are similar enough to be familiar. The functions have different names,
but what other Lisps call car is the same as first on a Clojure list. Similarly cdr is the
same as next. But there are substantial differences as well. Perhaps the most surpris-
ing is the behavior of cons. Both cons and conj add something to the front of a list,
but their arguments in a different order from each other:

(cons 1 '(2 3))
;=> (1 2 3)

(conj '(2 3) 1)
;=> (1 2 3)

In a departure from classic Lisps, the “right” way to add to the front of a list is with
conj. For each concrete type, conj will add elements in the most efficient way, and for
lists this means at the left side. Additionally, a list built using conj is homogeneous—
all the objects on its next chain are guaranteed to be lists, whereas sequences built
with cons only promise that the result will be some kind of seq. So you can use cons to
add to the front of a lazy seq, a range, or any other type of seq, but the only way to get
a bigger list is to use conj.7 Either way, the next part has to be some kind of sequence,
which points out another difference from other Lisps: Clojure has no “dotted pair.” If
you don’t know what that is, don’t worry about it. All you need to know is that if you
want a simple pair in a Clojure program, use a vector of two items.

 All seqs print with rounded parentheses, but this does not mean they’re the same
type or will behave the same way. For example many of these seq types don’t know their
own size the way lists do, so calling count on them may be O(n) instead of O(1).8 An

7 Or to conj or cons onto nil. This is a special case, because nil isn’t the same as an empty collection of any
specific type. Clojure could have just left this unsupported, perhaps throwing an exception if you did (cons 1
nil), but instead it provides a reasonable default behavior: building a list one item long.

8 You can test for this property of being countable in constant time using the counted? function. For example
(counted? (range 10)) returns true in Clojure 1.0, but false in 1.1 because the implementation of
range changed between those versions and no longer provided O(1) counting.

91How to use persistent queues
unsurprising difference between lists in Clojure versus other Lisps is that they’re
immutable. At least that had better not be surprising anymore. Changing values within
a list is generally discouraged in other Lisps anyway, but in Clojure it’s impossible.

5.3.2 Lists as stacks

Lists in all Lisps can be used as stacks, but Clojure goes further by supporting the
IPersistentStack interface. This means you can use the functions peek and pop to do
roughly the same thing as first and next. Two details are worth noting. One is that
next and rest are legal on an empty list, but pop throws an exception. The other is that
next on a one-item list returns nil, whereas rest and pop both return an empty list.

 When you want a stack, the choice between using a list versus a vector is a some-
what subtle decision. Their memory organization is quite different, so it may be worth
testing your usage to see which performs better. Also, the order of values returned by
seq on a list is backward compared to seq on a vector, and in rare cases this can point
to one or the other as the best solution. In the end, it may come down primarily to
personal taste.

5.3.3 What lists aren’t

Probably the most common misuse of lists is to hold items that will be looked up by
index. Though you can use nth to get the 42nd (or any other) item from a list, Clo-
jure will have to walk the list from the beginning to find it. Don’t do that. In fact, this
is a practical reason why lists can’t be used as functions, as in ((list :a) 0). Vectors
are good at looking things up by index, so use one of those instead.

 Lists are also not sets. All the reasons we gave in the previous section for why it’s a
bad idea to frequently search a vector looking for a particular value apply to lists as
well. Even moreso since contains? will always return false for a list. See the section on
sets later in this chapter instead.

 Finally, lists aren’t queues. You can add items to one end of a list, but you can’t
remove things from the other end. So what should you use when you need a queue?
Funny you should ask...

5.4 How to use persistent queues
We mentioned in section 5.2 that new Clojure developers often attempt to implement
simple queues using vectors. Though this is possible, such an implementation leaves
much to be desired. Instead, Clojure provides a persistent immutable queue that will
serve all your queueing needs. In this section we’ll touch on the usage of the
PersistentQueue class, where its first-in-first-out (FIFO) queueing discipline (Knuth
1997) is described by conj adding to the rear, pop removing from the front, and peek
returning the front element without removal.

 Before going further, it’s important to point out that Clojure’s PersistentQueue is
a collection, not a workflow mechanism. Java has classes deriving from the
java.util.concurrent.BlockingQueue interface for workflow, which often are use-
ful in Clojure programs, and those aren’t these. If you find yourself wanting to

92 CHAPTER 5 Composite data types
repeatedly check a work queue to see if there’s an item of work to be popped off, or if
you want to use a queue to send a task to another thread, you do not want the
PersistentQueue discussed in this section.

5.4.1 A queue about nothing

Search all you like, but the current implementation of Clojure doesn’t provide9 a core
construction function for creating persistent queues. That being the case, how would
you go about creating a queue? The answer is that there’s a readily available empty
queue instance to use, clojure.lang.PersistentQueue/EMPTY. The printed represen-
tation for Clojure’s queues isn’t incredibly informative, but you can change that by
providing a method for them on the print-method multimethod, as shown:

(defmethod print-method clojure.lang.PersistentQueue
 [q, w]
 (print-method '<- w) (print-method (seq q) w) (print-method '-< w))

clojure.lang.PersistentQueue/EMPTY
;=> <-nil-<

Using print-method in this way is a convenient mechanism for printing types in logi-
cal ways, as we did earlier with the queue-fish that’s not only fun, but indicates an
direction of flow for conj and pop.

 You might think that popping an empty queue would raise an exception, but the
fact is that this action results in just another empty queue. Likewise, peeking an empty
queue will return nil. Not breathtaking for sure, but this behavior helps to ensure
that queues work in place of other sequences. In fact, the functions first, rest, and
next also work on queues and give the results that you might expect, though rest and
next return seqs not queues. Therefore, if you’re using a queue as a queue, it’s best to
use the functions designed for this purpose: peek, pop, and conj.

5.4.2 Putting things on

The mechanism for adding elements to a queue is conj:

(def schedule
 (conj clojure.lang.PersistentQueue/EMPTY
 :wake-up :shower :brush-teeth))
;=> <-(:wake-up :shower :brush-teeth)-<

Clojure’s persistent queue is implemented internally using two separate collections,
the front being a seq and the rear being a vector, as shown in figure 5.3.

 All insertions occur in the rear vector and all removals occur in the front seq, tak-
ing advantage of each collection’s strength. When all the items from the front list have

9 The Clojure core language grows carefully, tending to incorporate only features that have proven useful.
Queues currently stand at the edge of this growth, meaning that there might be more support for them in the
future. Unlike the other collections in this chapter, the code you write with queues might be rendered non-
idiomatic by future improvements.

94 CHAPTER 5 Composite data types
5.5 Persistent sets
Clojure sets work the same as mathematical sets, in that they’re collections of
unsorted unique elements. In this section we’ll cover sets by explaining their strong
points, weaknesses, and idioms. We’ll also cover some of the functions from the
clojure.set namespace.

5.5.1 Basic properties of Clojure sets

Sets are functions of their elements that
return the matched element or nil:

(#{:a :b :c :d} :c)
;=> :c

(#{:a :b :c :d} :e)
;=> nil

Set elements can be accessed via the get func-
tion, which will return the queried value if it
exists in the given set:

(get #{:a 1 :b 2} :b)
;=> :b

(get #{:a 1 :b 2} :nothing-doing)
;=> nil

As a final point, sets, like all of Clojure’s col-
lections, support heterogeneous values.

HOW CLOJURE POPULATES SETS

The key to understanding how Clojure sets
determine which elements are discrete lies in
one simple statement. Given two elements
evaluating as equal, a set will contain only
one, independent of concrete types:

#{[] ()}
;=> #{[]}

#{[1 2] (1 2)}
;=> #{[1 2]}

#{[] () #{} {}}
;=> #{#{} {} []}

From the first two examples, even though [] and () are of differing types, they’re con-
sidered equal because their elements are equal or in this case empty. But the last
example illustrates nicely that collections within an equality partition will always be
equal if their elements are equal, but never across partitions.

5.5.2 Keeping your sets in order with sorted-set

There’s not much to say about creating sorted sets with the sorted-set function. But
there’s a simple rule that you should bear in mind:

Finding items in a sequence
using a set and some
This property of sets combines
with the some function to provide
an extremely useful idiom for
searching a seq for any of multiple
items. The some function takes a
predicate and a sequence. It
applies said predicate to each ele-
ment in turn, returning the first
truthy value returned by the predi-
cate or else nil:

(some #{:b} [:a 1 :b 2])
;=> :b

(some #{1 :b} [:a 1 :b 2])
;=> 1

Using a set as the predicate sup-
plied to some allows you to check
whether any of the truthy values in
the set are contained within the
given sequence. This is a fre-
quently used Clojure idiom for
searching for containment within a
sequence.

95Persistent sets
(sorted-set :b :c :a)
;=> #{:a :b :c}

(sorted-set [3 4] [1 2])
;=> #{[1 2] [3 4]}

(sorted-set :b 2 :c :a 3 1)
; java.lang.ClassCastException: clojure.lang.Keyword cannot be cast to

java.lang.Number

As long as the arguments to the sorted-set function are mutually comparable, you’ll
receive a sorted set; otherwise an exception is thrown. This can manifest itself when
dealing with sorted sets down stream from their point of creation, leading to potential
confusion:

(def my-set (sorted-set :a :b))

;; ... some time later
(conj my-set "a")
;=> java.lang.ClassCastException: clojure.lang.Keyword cannot be cast to

java.lang.String

The difficulty in finding the reason for this exception will increase as the distance
between the creation of my-set and the call to conj increases. You can adjust this rule
a bit by using sorted-set-by instead, and providing your own comparator. This works
exactly like the comparator for sorted-map-by, which we’ll cover in section 6.6.2.
Sorted maps and sorted sets are also similar in their support of subseq to allow effi-
ciently jumping to a particular key in the collection, and walking through it from
there. This is covered in section 5.6.

5.5.3 contains?

As we touched on in section 5.2, there’s sometimes confusion regarding the usage of
Clojure’s contains? function. Many newcomers to Clojure expect this function to
work the same as Java’s java.util.Collection#contains method; this assumption is
false, as shown:

(contains? #{1 2 4 3} 4)
;=> true

(contains? [1 2 4 3] 4)
;=> false

If you were to draw a false analogy between Java’s .contains methods and contains?,
then both of the function calls noted here should’ve returned true. The official
documentation for contains? describes it as a function that returns true if a given key
exists within a collection. When reading the word key, the notion of a map springs to
mind, but the fact that this function also works on sets hints at their implementation
details. Sets are implemented as maps with the same element as the key and value,10

but there’s an additional check for containment before insertion.

10 All implementation caveats apply.

97Thinking in maps
Given two sets, the resulting set will contain all of the distinct elements from both. In
the first example this means :zombies and :humans only show up once each in the
return value. Note in the second example that more than two sets may be given to
union, but as expected each value given in any of the input sets is included exactly
once in the output set.

DIFFERENCE

The only set function that could potentially cause confusion on first glance is
clojure.set/difference, which by name implies some sort of opposition to a union
operation. Working under this false assumption you might assume that difference
would operate thusly:

(clojure.set/difference #{1 2 3 4} #{3 4 5 6})
;=> #{1 2 5 6}

But if you were to evaluate this expression in your REPL, you’d receive a very different
result:

(clojure.set/difference #{1 2 3 4} #{3 4 5 6})
;=> #{1 2}

The reason for this result is that Clojure’s difference function calculates what’s
known as a relative complement (Stewart 1995) between two sets. In other words,
difference can be viewed as a set subtraction function “removing” all elements in a
set A that are also in another set B.

5.6 Thinking in maps
It’s difficult to write a program of any significant size without the need for a map of
some sort. The use of maps is ubiquitous in writing software because frankly it’s diffi-
cult to imagine a more robust data structure. But we as programmers tend to view
maps as a special case structure outside of the normal realm of data objects and
classes. The object-oriented school of thought has relegated the map as a supporting
player in favor of the class. We’re not going to talk about the merits, or lack thereof,
for this relegation here, but in upcoming sections we’ll discuss moving away from
thinking in classes and instead thinking in the sequence abstraction, maps, protocols,
and types. Having said all of that, it need hardly be mentioned that maps should be
used to store named values. In this section we talk about the different types of maps
and the tradeoffs surrounding each.

5.6.1 Hash maps

Arguably, the most ubiquitous11 form of map found in Clojure programs is the hash
map, which provides an unsorted key/value associative structure. In addition to the
literal syntax touched on in chapter 2, hash maps can be created using the hash-map
function, which likewise takes alternating key/value pairs, with or without commas:

11 Although with the pervasiveness of the map literal, the ubiquity may instead fall to the array map.

98 CHAPTER 5 Composite data types
(hash-map :a 1, :b 2, :c 3, :d 4, :e 5)
;=> {:a 1, :c 3, :b 2, :d 4, :e 5}

Clojure hash maps support heterogeneous keys, meaning that they can be of any type
and each key can be of a differing type, as this code shows:

(let [m {:a 1, 1 :b, [1 2 3] "4 5 6"}]
 [(get m :a) (get m [1 2 3])])
;=> [1 "4 5 6"]

As we previously mentioned at the beginning of this chapter, many of Clojure’s com-
posite types can be used as functions, and in the case of maps they’re functions of
their keys. Using maps in this way will act the same as the use of the get function in
the previous code sample, as shown when building a vector of two elements:

(let [m {:a 1, 1 :b, [1 2 3] "4 5 6"}]
 [(m :a) (m [1 2 3])])
;=> [1 "4 5 6"]

Providing a map to the seq function will return a sequence of map entries:

(seq {:a 1, :b 2})
;=> ([:a 1] [:b 2])

Of course, this sequence appears to be composed of the sets of key/value pairs con-
tained in vectors, and for all practical purposes should be treated as such. In fact, a
new hash map can be created idiomatically using this precise structure:

(into {} [[:a 1] [:b 2]])
;=> {:a 1, :b 2}

Even if your embedded pairs aren’t vectors, they can be made to be for building a new
map:

(into {} (map vec '[(:a 1) (:b 2)]))
;=> {:a 1, :b 2}

In fact, your pairs don’t have to be explicitly grouped, because you can use apply to cre-
ate a hash map given that the key/value pairs are laid out in a sequence consecutively:

(apply hash-map [:a 1 :b 2])
;=> {:a 1, :b 2}

You can also use apply in this way with sorted-map and array-map. Another idiomatic
way to build a map is to use zipmap to “zip” together two sequences, the first of which
contains the desired keys and the second their corresponding values:

(zipmap [:a :b] [1 2])
;=> {:b 2, :a 1}

The use of zipmap illustrates nicely the final property of map collections. Hash maps
in Clojure have no order guarantees. If you do require ordering, then you should use
sorted maps, discussed next.

99Thinking in maps
5.6.2 Keeping your keys in order with sorted maps

It’s impossible to rely on a specific ordering of the key/value pairs for a standard Clo-
jure map, because there are no order guarantees at all. Using the sorted-map and
sorted-map-by functions, you can construct maps with order assurances. By default,
the function sorted-map will build a map sorted by the comparison of its keys:

(sorted-map :thx 1138 :r2d 2)
;=> {:r2d 2, :thx 1138}

You may require an alternative key ordering, or perhaps an ordering for keys that isn’t
easily comparable. In these cases you must use sorted-map-by, which takes an addi-
tional comparison function:12

(sorted-map "bac" 2 "abc" 9)
;=> {"abc" 9, "bac" 2}

(sorted-map-by #(compare (subs %1 1) (subs %2 1)) "bac" 2 "abc" 9)
;=> {"bac" 2, "abc" 9}

This means that sorted maps don’t generally support heterogeneous keys the same as
hash maps, although it depends on the comparison function provided. For example,
the preceding one assumes all keys are strings. The default sorted-map comparison
function compare supports maps whose keys are all mutually comparable with each
other. Attempts to use keys that aren’t supported by whichever comparison function
you’re using will generally result in a cast exception:

(sorted-map :a 1, "b" 2)
;=> java.lang.ClassCastException: clojure.lang.Keyword cannot be cast to

java.lang.String

One remarkable feature supported by sorted maps (and also sorted sets) is the ability
to jump efficiently to a particular key and walk forward or backward from there
through the collection. This is done with the subseq and rsubseq functions for for-
ward and backward respectively. Even if you don’t know the exact key you want, these
functions can be used to “round up” the next closest key that exists.

 Another way that sorted maps and hash maps differ is in their handling of numeric
keys. A number of a given magnitude can be represented by many different types; for
example 42 can be a long, int, float, and so on. Hash maps would treat each of these
different objects as different, whereas a sorted map would treat them as the same. You
can see the contrast in this example, where the hash map keeps both keys while the
sorted map keeps just one:

(assoc {1 :int} 1.0 :float)
;=> {1.0 :float, 1 :int}

(assoc (sorted-map 1 :int) 1.0 :float)
;=> {1 :float}

12 Note that simple boolean functions like > can be used as comparison functions.

100 CHAPTER 5 Composite data types
This is because the comparison function used by the sorted map not only determines
order by equality, and if two keys compare as equal, only one will be kept. This applies
to comparison functions provided to sorted-map-by as well as the default comparator
shown previously.

 Sorted maps will otherwise work just like hash maps and can be used interchange-
ably. You should use sorted maps if you need to specify or guarantee a specific key
ordering. On the other hand, if you need to maintain insertion ordering, then the use
of array maps is required as you’ll see.

5.6.3 Keeping your insertions in order with array maps

If you hope to perform an action under the assumption that a given map is insertion-
ordered, then you’re setting yourself up for disappointment. But you might already
know that Clojure provides a special map that ensures insertion ordering called an
array map:

(seq (hash-map :a 1, :b 2, :c 3))
;=> ([:a 1] [:c 3] [:b 2])

(seq (array-map :a 1, :b 2, :c 3))
;=> ([:a 1] [:b 2] [:c 3])

So when insertion order is important, you should explicitly use an array map. Array
maps can be populated quickly by ignoring the form of the key/value pairs and blindly
copying them into place. For structures sized below a certain count, the cost associated
with map lookup bridges the gap between a linear search through an equally sized
array or list. That’s not to say that the map will be slower; instead, it allows the map and
linear implementations to be comparable. Sometimes your best choice for a map is not
a map at all, and like most things in life there are tradeoffs. Thankfully, Clojure takes
care of these considerations for you by adjusting the concrete implementations behind
the scenes as the size of the map increases. The precise types in play aren’t important,
because Clojure is careful to document its promises and to leave undefined aspects
subject to change and/or improvement. It’s usually a bad idea to build your programs
around concrete types, and always bad to build around undocumented behaviors. Clo-
jure handles the underlying efficiency considerations so you don’t have to. But be aware that if
ordering is important, you should avoid operations that inadvertently change the
underlying map implementation from an array map.

 We’ve covered the basics of Clojure maps in this section, including common usage
and construction techniques. Clojure maps, minus some implementation details,
shouldn’t be surprising to anyone. It’ll take a while to grow accustomed to dealing
with immutable maps, but in time even this nuance will become second nature.

 Now that we’ve looked at Clojure’s primary collection types and their differences
in detail, we’ll take some time to work through a simple case study. This case study,
creating a function named pos, will illustrate the thought processes you might con-
sider on your way toward designing an API built on the principles of the sequence
abstraction.

101Putting it all together: finding the position of items in a sequence
5.7 Putting it all together: finding the position of items
in a sequence

We sometimes underestimate the influence of little things.
—Charles W. Chesnutt

The case study for this chapter will be to design and implement a simple function to
locate the positional index13 of an element within a sequence. We’re going to pool
together much of the knowledge that you’ve gained in this chapter in order to illus-
trate the steps you might take in designing, writing, and ultimately optimizing a Clo-
jure collection function. Of course, we’re going to work against the sequence
abstraction and will therefore design the solution accordingly.

 The function, named pos, must

 Work on any composite type returning indices corresponding to some value
 Return a numerical index for sequential collections or associated key for maps

and sets
 Otherwise return nil

5.7.1 Implementation

If we were to address each of the requirements for pos literally and directly, we might
come up with a function that looks like the following listing.

(defn pos [e coll]
 (let [cmp (if (map? coll)
 #(= (second %1) %2)
 #(= %1 %2))]
 (loop [s coll idx 0]
 (when (seq s)
 (if (cmp (first s) e)
 (if (map? coll)
 (first (first s))
 idx)
 (recur (next s) (inc idx)))))))

(pos 3 [:a 1 :b 2 :c 3 :d 4])
;=> 5
(pos :foo [:a 1 :b 2 :c 3 :d 4])
;=> nil
(pos 3 {:a 1 :b 2 :c 3 :d 4})
;=> :c
(pos 3 '(:a 1 :b 2 :c 3 :d 4))
;=> 5
(pos \3 ":a 1 :b 2 :c 3 :d 4")
;=> 13

13 Stuart Halloway describes a similar function index-of-any in his book Programming Clojure that views the
problem largely through the lens of reduced complexity. We like his example and this one because it’s simple
yet powerful and nicely illustrative of the way that Clojure functions should be written.

Listing 5.2 First cut at our position function

Map returns key
...Else index

102 CHAPTER 5 Composite data types
Pretty hideous right? We think so too. Apart from being overly complicated, it’d likely
be more useful if we instead returned a sequence of all the indices matching the item,
so we’ll add that to the requirements. But we’ve built a heavy load with the first cut at
pos and should probably step back a moment to reflect. First of all, it’s probably the
wrong approach to handle map types and other sequence types differently. The use of
the predicate map? to detect the type of the passed collection is incredibly constrain-
ing, in that it forces different collections to be processed differently. That’s not to say
that the use of type-based predicates is strictly prohibited, only that you should try to
favor more generic algorithms or at least to minimize their usage.

 As chance has it, the exact nature of the problem demands that we view collections
as a set of values paired with a given index, be it explicit in the case of maps or implicit
in the case of other sequences’ positional information. Therefore, imagine how easy
this problem would be if all collections were laid out as a sequence of pairs ([index1
value1] [index2 value2] ... [indexn valuen]). Well, there’s no reason why they
couldn’t, as shown next.

(defn index [coll]
 (cond
 (map? coll) (seq coll)
 (set? coll) (map vector coll coll)
 :else (map vector (iterate inc 0) coll)))

This simple function14 can generate a uniform representation for indexed collections:

(index [:a 1 :b 2 :c 3 :d 4])
;=> ([0 :a] [1 1] [2 :b] [3 2] [4 :c] [5 3] [6 :d] [7 4])

(index {:a 1 :b 2 :c 3 :d 4})
;=> ([:a 1] [:b 2] [:c 3] [:d 4])

(index #{:a 1 :b 2 :c 3 :d 4})
;=> ([1 1] [2 2] [3 3] [4 4] [:a :a] [:c :c] [:b :b] [:d :d])

As shown, we’re still using type-based predicates, but we’ve raised the level of abstrac-
tion to the equality partitions in order to build contextually relevant indices. Now, the
function for finding the positional indices for the desired value is trivial:

(defn pos [e coll]
 (for [[i v] (index coll) :when (= e v)] i))

(pos 3 [:a 1 :b 2 :c 3 :d 4])
;=> (5)
(pos 3 {:a 1, :b 2, :c 3, :d 4})
;=> (:c)
(pos 3 [:a 3 :b 3 :c 3 :d 4])
;=> (1 3 5)
(pos 3 {:a 3, :b 3, :c 3, :d 4})
;=> (:a :c :b)

Listing 5.3 An index function

14 Clojure has a core function keep-indexed that works similarly but doesn’t implicitly build indices along
equality partitions. For a vector, you could build the index as (keep-indexed #(-> [% %2]) [:a :b :c :d]).

103Summary
Much better! But there’s one more deficiency with the pos function from a Clojure
perspective. Typically in Clojure it’s more useful to pass a predicate function in cases
such as these, so that instead of pos determining raw equality, it can build its result
along any dimension, as shown:

(pos #{3 4} {:a 1 :b 2 :c 3 :d 4})
;=> (:c :d)

(pos even? [2 3 6 7])
;=> (0 2)

We can modify pos only slightly to achieve the ideal level of flexibility, as shown next.

(defn pos [pred coll]
 (for [[i v] (index coll) :when (pred v)] i))

We’ve vastly simplified the original solution and generated two potentially useful func-
tions (Martin 2002) in the process. By following some simple Clojure principles, we
were able to solve the original problem statement in a concise and elegant manner.

5.8 Summary
Clojure favors simplicity in the face of growing software complexity. If problems are
easily solved by collection abstractions then those abstractions should be used. Most
problems can be modeled on such simple types, yet we continue to build monolithic
class hierarchies in a fruitless race toward mirroring the “real world”—whatever that
means. Perhaps it’s time to realize that we no longer need to layer self-imposed com-
plexities on top of software solutions that are already inherently complex. Not only
does Clojure provide the sequential, set, and map types useful for pulling ourselves
from the doldrums of software complexity, but it’s also optimized for dealing with
them.

 Now that we’ve discussed each of these types in detail, we’re going to take a step
back and talk about three important properties of Clojure’s collection types that until
now we’ve only touch upon lightly: immutability, persistence, and laziness.

Listing 5.4 Our final version of pos

Part 3

Functional
programming

In this part of the book, we’ll expose some of the underpinnings of Clojure’s
approach to functional programming, as well as some practical uses of it. Clo-
jure provides mechanisms for immutability, deferred execution, closures, and
recursion. We’ll show examples of how these can work together to let you create
data structures of your own, and find routes through a weighted graph.

Being lazy and
set in your ways
We’ve now reached the apex of imperative knowledge and stand at the precipice
leading toward functional programming. We mentioned in section 2.3 that the def-
initions of functional programming are widely disparate, and unfortunately this
book won’t work to unify them. Instead, we’ll start in this chapter to build a basis
for Clojure’s style of functional programming by digging into its core supporting
maxims. In addition, this chapter covers in greater depth the parts of Clojure’s
composite types that we only touched on.

6.1 On immutability
We’ve touched on immutability throughout this book, but we’ve avoided discussing
why Clojure has chosen it as a cornerstone principle. Though no panacea, fostering

This chapter covers
 Immutability

 Designing a persistent toy

 Laziness

 Putting it all together: a lazy quicksort
107

108 CHAPTER 6 Being lazy and set in your ways
immutability at the language level solves many difficult problems right out of the box,
while simplifying many others. Coming from a language background where mutability
interwoven with imperative programming methods reign, it often requires a signifi-
cant conceptual leap to twist your mind to accept and utilize immutability and func-
tional programming. In this section, we’ll build a conceptual basis for immutability as
it relates to Clojure’s underlying philosophy as well as why you should work to foster
immutability even when outside the warming confines of Clojure proper.

6.1.1 Defining immutability

In many cases, when talking specifically about Clojure’s immutable data structures, we
could be talking about the broader category of immutable objects without loss of
meaning. But we should probably set down some conditions defining just what’s
meant by immutability.

EVERY DAY IS LIKE SUNDAY

An entire branch of philosophy named predestination is devoted to exploring the
notion that there’s no such thing as free will, but instead, everything that we are or
ever will be is determined beforehand. Though this possibility for our own lives may
seem bleak, the notion does nicely encapsulate the first principle of immutability: all
of the possible properties of immutable objects are defined at the time of their con-
struction and can’t be changed thereafter.

IMMUTABILITY THROUGH CONVENTION

Computer systems are in many ways open systems, providing the keys to the vault if
you’re so inclined to grab them. But in order to foster an air of immutability in your
own systems, it’s important to create a facade of immutability. Creating immutable
classes in Java requires a few steps (Goetz 2006). First, a class itself and all of its fields
should be labeled as final. Next, in no way should an object’s this reference escape
during construction. And finally, any internal mutable objects should originate, either
whole-cloth or through a copy, within the class itself and thus never escape. Obviously
we’re simplifying, because there are finer details to this recipe for Java immutability,
but for now these simplified highlights serve to show that by observing convention,
even an inherently mutable language such as Java can be made to be immutable. Clo-
jure directly supports immutability as a language feature1 with its core data structures.
By providing immutable data structures as a primary language feature, Clojure sepa-
rates (Braithwaite 2007) the complexity of working with immutable structures from
the complexities of their implementation. By providing immutability either as a core
language feature or through convention, you can reap enormous benefit.

1 We’re intentionally glossing over Clojure’s features that support mutability such as reference types and tran-
sients in order to keep this section focused.

109On immutability
6.1.2 Being set in your ways—immutability

Clojure’s immutable data structures aren’t bolted onto the language as an after-
thought or as a choice in an a-la-carte menu. Instead, their inclusion in the language
runs deep to its philosophical core.

INVARIANTS

Invariant-based programming involves the definition of constraints on classes and
functions in order to provide assurances that if instances enter into certain states,
assertion errors will arise. Providing invariants within a mutable system requires a fair
amount of assertion weaving within the methods of any given class. But by observing a
practice of immutability, invariants are defined solely within the construction mecha-
nism and can never be violated thereafter.

REASONING

Because the life of an immutable object is one of predestiny, the matter of reasoning
about its possible states is simplified. It follows that the act of testing such a system is
simplified, in that the set of possible states and transitions is constrained.

EQUALITY HAS MEANING

Equality in the presence of mutability has no meaning. Equality in the face of mutabil-
ity and concurrency is utter lunacy. If any two objects resolve as being equal now, then
there’s no guarantee that they will a moment from now. And if two objects aren’t
equal forever, then they’re technically never equal (Baker 1993). Providing immuta-
ble objects once again assigns meaning to equality, in that if two objects are equal now,
then they’ll always be so.

SHARING IS CHEAP

If you’re certain that an object will never change, then sharing said object becomes a
simple matter of providing a reference to it. In Java, to do so often requires a lot of
defensive copying. Along this vein, because we can freely share references for immuta-
ble objects, we can likewise intern them for free.

FLATTENING THE LEVELS OF INDIRECTION

There’s a marked difference between a mutable object and a mutable reference. The
default in Java is that there are references that might point to mutable data. But in
Clojure, there are only mutable references. This may seem like a minor detail, but it
certainly works to reduce unnecessary complexities.

IMMUTABILITY FOSTERS CONCURRENT PROGRAMMING

Immutable objects are always thread safe.
—Brian Goetz,

Java Concurrency in Practice

If an object can’t change, it can be shared freely between different threads of execu-
tion without fear of concurrent modification errors. There can be little debate about
this particular point, but that fact doesn’t answer the question of how mutation
occurs. Without delving into the specifics, you likely already know that Clojure

110 CHAPTER 6 Being lazy and set in your ways
isolates mutation to its reference types while the data wrapped with them is left
unchanged. We’ll leave this alone for now, becuase we’ll devote chapter 11 to this
and related topics.

6.2 Designing a persistent toy
We won’t go into terrible detail about the internals of Clojure’s persistent data struc-
tures—we’ll leave that to others (Krukow 2009). But we do want to explore the notion
of structural sharing. Our example will be highly simplified compared to Clojure’s
implementations, but it should help clarify some of the techniques used.

 The simplest shared-structure type is the list. Two different items can be added to
the front of the same list, producing two new lists that share their next parts. We’ll try
this out by creating a base list and then two new lists from that same base:

(def baselist (list :barnabas :adam))
(def lst1 (cons :willie baselist))
(def lst2 (cons :phoenix baselist))

lst1
;=> (:willie :barnabas :adam)

lst2
;=> (:phoenix :barnabas :adam)

You can think of baselist as a historical version of both lst1 and lst2. But it’s also
the shared part of both lists. More than being equal, the next parts of both lists are
identical —the same instance:

(= (next lst1) (next lst2))
;=> true

(identical? (next lst1) (next lst2))
;=> true

So that’s not too complicated, right? But the features supported by lists are also lim-
ited. Clojure’s vectors and maps also provide structural sharing, while allowing you to
change values anywhere in the collection, not just on one end. The key is the struc-
ture each of these datatypes uses internally. We’ll now build a simple tree to help dem-
onstrate how a tree can allow interior changes and maintain shared structure at the
same time.

 Each node of our tree will have three fields: a value, a left branch, and a right
branch. We’ll put them in a map, like this:

{:val 5, :L nil, :R nil}

That’s the simplest possible tree—a single node holding the value 5, with empty left
and right branches. This is exactly the kind of tree we want to return when a single
item is added to an empty tree. To represent an empty tree, we’ll use nil. With the
structure decision made, we can write our own conj function xconj to build up our
tree, starting with just the code for this initial case:

111Designing a persistent toy
(defn xconj [t v]
(cond

(nil? t) {:val v, :L nil, :R nil}))

(xconj nil 5)
;=> {:val 5, :L nil, :R nil}

Hey, it works! Not too impressive yet though, so we need to handle the case where an
item is being added to a nonempty tree. We keep our tree in order by putting values
less than a node’s :val in the left branch, and other values in the right branch. That
means we need a test like this:

(< v (:val t))

When that’s true, we need the new value v to go into the left branch, (:L t). If this
were a mutable tree, we’d change the value of :L to be the new node. Instead, we
should build a new node, copying in the parts of the old node that don’t need to
change. Something like this:

{:val (:val t),
:L (insert-new-val-here),
:R (:R t)}

This will be the new root node. Now we just need to figure out what to put for insert-
new-val-here. If the old value of :L is nil, we simply need a new single-node tree—
we even have code for that already, so we could use (xconj nil v). But what if :L isn’t
nil? In that case, we want to insert v in its proper place within whatever tree :L is
pointing to—so (:L t) instead of nil:

(defn xconj [t v]
(cond

(nil? t) {:val v, :L nil, :R nil}
(< v (:val t)) {:val (:val t),

:L (xconj (:L t) v),
:R (:R t)}))

(def tree1 (xconj nil 5))
tree1
;=> {:val 5, :L nil, :R nil}

(def tree1 (xconj tree1 3))
tree1
;=> {:val 5, :L {:val 3, :L nil, :R nil}, :R nil}

(def tree1 (xconj tree1 2))
tree1
;=> {:val 5, :L {:val 3, :L {:val 2, :L nil, :R nil}, :R nil}, :R nil}

There, it’s working. At least it seems to be—there’s a lot of noise in that output, mak-
ing it difficult to read. Here’s a function to traverse the tree in sorted order, convert-
ing it to a seq that will print more succinctly:

(defn xseq [t]
(when t

(concat (xseq (:L t)) [(:val t)] (xseq (:R t)))))

113Laziness
Our example fails, though, when compared to Clojure’s production-quality code:

 It’s just a binary tree.2

 It can only store numbers.
 It’ll overflow the stack if the tree gets too deep.
 It produces (via xseq) a non-lazy seq that will contain a whole copy of the tree.
 It can create unbalanced trees that’ll have bad “worst case” algorithmic

complexity.3

Though structural sharing as described using xconj as a basis example can reduce the
memory footprint of persistent data structures, it alone is insufficient. Instead, Clojure
leans heavily on the notion of lazy sequences to further reduce its memory footprint,
as we’ll explore further in the next section.

6.3 Laziness
Through all the windows I only see infinity.

—House of Leaves
by Mark Z. Danielewski

Clojure is partially a lazy language. This isn’t to say that Clojure vectors lie around the
house every day after school playing video games and refusing to get a job. Instead,
Clojure is lazy in the way it handles its sequence types—but what does that mean?
First, we’ll start by defining what it means for a language to be eager, or in other words,
not lazy. Many programming languages are eager in that arguments to functions are
immediately evaluated when passed, and Clojure in most cases follows this pattern as
well. Observe the following:

(- 13 (+ 2 2))
;=> 9

The expression (+ 2 2) is eagerly evaluated, in that its result 4 is passed on to the sub-
traction function during the actual call, and not at the point of need. But a lazy pro-
gramming language such as Haskell (Hudak 2000) will evaluate a function argument
only if that argument is needed in an overarching computation.

 In this section we’ll discuss how laziness can be used to avoid nontermination,
unnecessary calculations, and even combinatorially exploding computations. We’ll
also discuss the matter of utilizing infinite sequences, a surprisingly powerful tech-
nique. Finally, we’ll use Clojure’s delay and force to build a simple lazy structure. First,
we’ll start with a simple example of laziness that you may be familiar with from Java.

6.3.1 Familiar laziness with logical-and

Laziness isn’t limited to the case of the evaluation of function arguments; a common
example can be found even in eager programming languages. Take the case of Java’s

2 Clojure’s sorted collections are binary trees, but its hash maps, hash sets, and vectors all have up to 32
branches per node. This results in dramatically shallower trees, and therefore faster lookups and updates.

3 Clojure’s sorted map and sorted set do use a binary tree internally, but they implement red-black trees to keep
the left and right sides nicely balanced.

114 CHAPTER 6 Being lazy and set in your ways
logical-and operator &&. Java implementations optimize this particular operator to
avoid performing unnecessary operations should an early subexpression evaluate to
false. This lazy evaluation in Java allows the following idiom:

if (obj != null && obj.isWhatiz()) {
...

}

For those of you unfamiliar with Java, the preceding code says: “if the object obj isn’t
null, then call the method isWhatiz.” Without a short-circuiting (or lazy, if you will)
&& operator, the preceding operation would always throw a java.lang.NullPointer-
Exception whenever obj was set to null. Though this simple example doesn’t qualify
Java as a lazy language, it does illustrate the first advantage of lazy evaluation—laziness
allows the avoidance of errors in the evaluation of compound structures.

 Clojure’s and operator also works this way, as do a number of other operators, but
we won’t discuss this type of short-circuiting laziness too deeply. Listing 6.1 illustrates
what we mean using the case of a series of nested if expressions.

(defn if-chain [x y z]
(if x

(if y
(if z

(do
(println "Made it!")
:all-truthy)))))

(if-chain () 42 true)
; Made it!
;=> :all-truthy

(if-chain true true false)
;=> nil

The call to println is evaluated only in the case of three truthy arguments. But we can
perform the equivalent action given only the and macro:

(defn and-chain [x y z]
(and x y z (do (println "Made it!") :all-truthy)))

(and-chain () 42 true)
; Made it!
;=> :all-truthy

(and-chain true false true)
;=> false

You may see tricks like this from time to time, but they’re not widespread in idiomatic
Clojure code. Regardless, we’ve presented them as a launching point for the rest of
the discussion in the section. We’ll now proceed to discussing how your own Clojure
programs can be made more generally lazy by following an important recipe.

Listing 6.1 Short-circuiting if expression

115Laziness
6.3.2 Understanding the lazy-seq recipe

Here’s a seemingly simple function steps that takes a sequence and makes a deeply
nested structure from it:

(steps [1 2 3 4])
;=> [1 [2 [3 [4 []]]]]

Seems simple enough, no? Your first instinct might be to tackle this problem recur-
sively, as suggested by the form of the desired result:

(defn rec-step [[x & xs]]
(if x

[x (rec-step xs)]
[]))

(rec-step [1 2 3 4])
;=> [1 [2 [3 [4 []]]]]

Things look beautiful at this point; we’ve created a simple solution to a simple prob-
lem. But therein bugbears lurk. What would happen if we ran this same function on a
large set?

(rec-step (range 200000))
;=> java.lang.StackOverflowError

Observing the example, running the same function over a sequence of 200,000 ele-
ments4 causes a stack overflow. How can we fix this problem? Perhaps it’s fine to say
that you’ll never encounter such a large input set in your own programs; such
tradeoffs are made all of the time. But Clojure provides lazy sequences to help tackle
such problems without significantly complicating your source code. Additionally, idi-
omatic Clojure code will always strive to deal with, and produce, lazy sequences.

 Stepping back a bit, we should examine the lazy-seq recipe for applying laziness to
your own functions:

1 Use the lazy-seq macro at the outermost level of your lazy sequence producing
expression(s).

2 If you happen to be consuming another sequence during your operations, then
use rest instead of next.

3 Prefer higher-order functions when processing sequences.
4 Don’t hold onto your head.

These rules of thumb are simple, but they take some practice to utilize to their fullest.
For example, #4 is especially subtle in that the trivial case is easy to conceptualize, but
it’s more complex to implement in large cases. For now we’ll gloss over #3, because
we’ll talk about that approach separately in section 7.1.

 So how can you leverage these rules of thumb to ensure laziness?

4 On our machines, 200,000 elements is enough to cause a stack overflow, but your machine may require more
or fewer depending on your JVM configuration.

116 CHAPTER 6 Being lazy and set in your ways
UTILIZING LAZY-SEQ AND REST

In order to be a proper lazy citizen, you should produce lazy sequences using the
lazy-seq macro:

(defn lz-rec-step [s]
(lazy-seq

(if (seq s)
[(first s) (lz-rec-step (rest s))]
[])))

(lz-rec-step [1 2 3 4])
;=> (1 (2 (3 (4 ()))))

(class (lz-rec-step [1 2 3 4]))
;=> clojure.lang.LazySeq

(dorun (lz-rec-step (range 200000)))
;=> nil

There are a few points of note for our new implementation. First, we’ve eliminated
destructuring on the function arguments because the & arguments within are implic-
itly destructured via the nthnext function. As we mentioned in our rules of thumb,
when consuming a sequence within the body of a lazy-seq you’ll want to use rest,
which we did in lz-rec-step. Second, we’re no longer producing nested vectors as the
output of the function, but instead a lazy sequence LazySeq, which is the by-product of
the lazy-seq macro.

rest versus next
The difference between rest and next can be seen in the following example:

(def very-lazy (-> (iterate #(do (print \.) (inc %)) 1)
 rest rest rest))
;=> ..#'user/very-lazy

(def less-lazy (-> (iterate #(do (print \.) (inc %)) 1)
 next next next))
;=> ...#'user/less-lazy

When building a lazy seq from another, rest doesn’t realize any more elements than
it needs to; next does. In order to determine whether a seq is empty, next needs to
check whether there’s at least one thing in it, thus potentially causing one extra real-
ization. Here’s an example:

(println (first very-lazy)) ; .4

(println (first less-lazy)) ; 4

Grabbing the first element in a lazy seq built with rest causes a realization as
expected. But the same doesn’t happen for a seq built with next because it’s already
been previously realized. Using next causes a lazy seq to be one element less lazy,
which might not be desired if the cost of realization is expensive. In general, we rec-
ommend that you use next unless you’re specifically trying to write code to be as lazy
as possible.

117Laziness
 With only minor adjustments, we’ve created a lazy version of the step function
while also maintaining simplicity. The first two rules of the lazy sequence recipe can
be used in all cases when producing lazy sequences. You’ll see this pattern over and
over in idiomatic Clojure code.

 If what’s going on here still doesn’t quite make sense to you, consider this even
simpler example:

(defn simple-range [i limit]
(lazy-seq

(when (< i limit)
(cons i (simple-range (inc i) limit)))))

This behaves similarly to Clojure’s built-in function range, but it’s simpler in that it
doesn’t accept a step argument and has no
support for producing chunked seqs:5

(simple-range 0 9)
;=> (0 1 2 3 4 5 6 7 8)

Note that it follows all the lazy-seq recipe
rules you’ve seen so far. Figure 6.2 is a repre-
sentation of what’s in memory when the
REPL has printed the first two items in a
simple-range seq but hasn’t yet printed any
more than that.

 One way in which complications may
arise is by accidentally holding onto the head
of a lazy sequence. This is addressed by the
third rule of lazy sequences.

6.3.3 Losing your head

The primary advantage of laziness in Clojure is that it prevents the full realization of
interim results during a calculation. If you manage to hold onto the head of a
sequence somewhere within a function, then that sequence will be prevented from
being garbage collected. The simplest way to retain the head of a sequence is to bind
it to a local. This condition can occur with any type of value bind, be it to a reference
type or through the usage of let or binding:

(let [r (range 1e9)] [(first r) (last r)])
;=> [0 999999999]

(let [r (range 1e9)] [(last r) (first r)])
; java.lang.OutOfMemoryError: GC overhead limit exceeded

Clojure’s compiler can deduce that in the first example, the retention of r is no longer
needed when the computation of (last r) occurs, and therefore aggressively clears it.

5 Chunked seqs are a technique for improving performance that we cover in chapter 12.

0 1 (simple-range 2 9)

lazy-seq lazy-seq lazy-seq

thunkconscons

Figure 6.2 Each step of a lazy seq may be in
one of two states. If the step is unrealized, it’ll
contain a function or closure of no arguments
(a thunk) that can be called later to realize
the step. When this happens, the thunk’s
return value is cached instead, and the thunk
itself is released as pictured in the first two
lazy seq boxes, transitioning the step to the
realized state. Note that although not shown
here, a realized lazy seq may simply contain
nothing at all, called nil, indicating the end
of the seq.

118 CHAPTER 6 Being lazy and set in your ways
But in the second example, the head is needed later in the overall computation and
can no longer be safely cleared. Of course, the compiler could perform some rearrang-
ing with the order of operations for this case, but it doesn’t because in order to do so
safely it would have to guarantee that all of the composite functions were pure. It’s
okay if you’re not clear on what a pure function is right now—we’ll cover it in section
7.1. In a nutshell, take to heart that Clojure can’t rearrange operations, because there’s
no way to guarantee that order is unimportant. This is one area where a purely func-
tional lazy language such as Haskell (Thompson 1999) really shines by comparison.

6.3.4 Employing infinite sequences

Because Clojure’s sequences are lazy, they have the potential to be infinitely long. Clo-
jure provides a number of functions for generating and working with infinite
sequences:

; Run at your own risk
(iterate (fn [n] (/ n 2)) 1)
;=> (1 1/2 1/4 1/8 ...)

It sure is a nice trick (although you might not think so had you chosen to ignore our
warning), but what could you possibly use infinite sequences for? Working with infi-
nite sequences often fosters more declarative solutions. Take a simple example as a
start. Imagine that we have a function that calculates a triangle number for a given
integer:

(defn triangle [n]
(/ (* n (+ n 1)) 2))

(triangle 10)
;=> 55

The function triangle can then be used to build a sequence of the first 10 triangle
numbers:

(map triangle (range 1 11))
;=> (1 3 6 10 15 21 28 36 45 55)

There’s nothing wrong with the preceding solution, but it suffers from a lack of flexi-
bility in that it does what it does and that’s all. By defining a sequence of all of the tri-
angle numbers as in the following listing, you can perform more interesting “queries”
in order to retrieve the desired elements.

(def tri-nums (map triangle (iterate inc 1)))

(take 10 tri-nums)
;=> (1 3 6 10 15 21 28 36 45 55)

(take 10 (filter even? tri-nums))
;=> (6 10 28 36 66 78 120 136 190 210)

(nth tri-nums 99)

Listing 6.2 Infinite sequences foster declarative solutions.

Get first 10

Get first 10 even

What Gauss found

119Laziness
;=> 5050

(double (reduce + (take 1000 (map / tri-nums))))
;=> 1.998001998001998

(take 2 (drop-while #(< % 10000) tri-nums))
;=> (10011 10153)
;; ...

The queries used three ubiquitous Clojure functions: map, reduce, and filter. The
map function applies a function to each element in a sequence and returns the result-
ing sequence. The reduce function applies a function to each value in the sequence
and the running result to accumulate a final value. Finally, the filter function applies
a function to each element in a sequence and returns a new sequence of those ele-
ments where said function returned a truthy value. All three of these functions retain
the laziness of a given sequence.

 Defining the infinite sequence of triangle numbers allows you to take elements
from it as needed, only calculating those particular items.

6.3.5 The delay and force macros

Although Clojure sequences are largely lazy, Clojure itself isn’t. In most cases, expres-
sions in Clojure are evaluated once prior to their being passed into a function rather
than at the time of need. But Clojure does provide mechanisms for implementing
what are known as call-by-need semantics. The most obvious of these mechanisms is its
macro facilities, but we’ll defer that discussion until chapter 8. The other mechanism
for providing what we’ll call explicit laziness are Clojure’s delay and force. In short,
the delay macro is used to defer the evaluation of an expression until explicitly forced
using the force function. Using these laziness primitives, we can wrap an expression
in a call to delay and use it only if necessary on the callee’s side:

(defn defer-expensive [cheap expensive]
(if-let [good-enough (force cheap)]

good-enough
(force expensive)))

(defer-expensive (delay :cheap)
(delay (do (Thread/sleep 5000) :expensive)))

;=> :cheap

(defer-expensive (delay false)
(delay (do (Thread/sleep 5000) :expensive)))

;=> :expensive

You can simulate this behavior with the use of anonymous functions, where delay is
replaced by (fn [] expr) and force by (delayed-fn), but using delay/force allows
you to explicitly check for delayed computations using delay?. Additionally, delay
caches its calculation, therefore allowing its wrapped expression to be calculated only
once. Of course, you could simulate the same behavior using memoization,6 but why
would you in this case when delay and force solve the problem more succinctly?

6 We’ll cover memoization in section 12.4.

First 2 greater than 10,000

120 CHAPTER 6 Being lazy and set in your ways
There are more complicated usage patterns for delay and force besides the simple
scheme outlined previously. For example, we can implement a version of the lazy
sequence of triangular numbers from a few sections prior using delay and force:

(defn inf-triangles [n]
{:head (triangle n)
:tail (delay (inf-triangles (inc n)))})

(defn head [l] (:head l))
(defn tail [l] (force (:tail l)))

The function inf-triangles creates a lazy linked-list of nodes. Each node is a map
containing a value mapped to :head and a link to the remainder of the list keyed as
:tail. The head of the list is the result of applying the function triangle to the incre-
menting counter passed recursively within the body of delay. As you can imagine, the
head of a node is always calculated as we walk down the linked-list, even if it’s never
accessed. This type of lazy structure is known as head strict but differs from Clojure's
lazy-seq, which delays both the head and tail and then realizes them at the same time.

 We can now create a structure similar to the original tri-nums and start getting at
its contained elements:

(def tri-nums (inf-triangles 1))

(head tri-nums)
;=> 1
(head (tail tri-nums))
;=> 3
(head (tail (tail tri-nums)))
;=> 6

One thing to note about the preceding code is that accessing the values 3 and 6 were
deferred calculations only occurring on demand. The structure of the example is
shown in figure 6.3.

if-let and when-let
The if-let and when-let macros are useful when you’d like to bind the results of
an expression based on if it returns a truthy value. This helps to avoid the need to
nest if/when and let as shown:

(if :truthy-thing
 (let [res :truthy-thing] (println res)))
; :truthy-thing

(if-let [res :truthy-thing] (println res))
; :truthy-thing

The latter is much more succinct.

121Putting it all together: a lazy quicksort
Though we can navigate the entire chain of triangular numbers using only head and
tail, it’s probably a better idea7 to use them as primitives for more complicated
functions:

(defn taker [n l]
(loop [t n, src l, ret []]

(if (zero? t)
ret
(recur (dec t) (tail src) (conj ret (head src))))))

(defn nthr [l n]
(if (zero? n)

(head l)
(recur (tail l) (dec n))))

(taker 10 tri-nums)
;=> [1 3 6 10 15 21 28 36 45 55]

(nthr tri-nums 99)
;=> 5050

Of course, writing programs using delay and force is an onerous way to go about the
problem of laziness, and you’d be better served by using Clojure’s lazy sequences to
full effect rather than building your own from these basic blocks. But the preceding
code, in addition to being simple to understand, harkens back to chapter 5 and the
entire sequence “protocol” being built entirely on the functions first and rest.
Pretty cool, right?

6.4 Putting it all together: a lazy quicksort
In a time when the landscape of programming languages is rife with new program-
ming languages and pregnant with more, it seems inconceivable that the world would
need another quicksort implementation. Inconceivable or not, we won’t be deterred
from adding yet another to the rich ecosystem of pet problems. Our implementation

7 And as we’ll cover in section 9.3, participating in the ISeq protocol is even better.

(inf-triangles 1)

:head 3
:tail

(inf-triangles 2)

delay

:head 6
:tail

(inf-triangles 3)

delay...

tri-nums

:head 1
:tail delay

Figure 6.3 Lazy linked-list example. Each node of
this linked list contains a value (the head) and a delay
(the tail). The creation of the next part is forced by a
call to tail—it doesn't exist until then.

122 CHAPTER 6 Being lazy and set in your ways
of quicksort differs from many in a few key ways. First, we’ll implement a lazy, tail-
recursive version. Second, we’ll split the problem such that it can be executed incre-
mentally. Only the calculations required to obtain the part of a sequence desired will
be calculated. This will illustrate the fundamental reason for laziness in Clojure: the
avoidance of full realization of interim results.

THE IMPLEMENTATION

Without further ado, we present our quicksort implementation.8

(ns joy.q)

(defn nom [n] (take n (repeatedly #(rand-int n))))

(defn sort-parts
"Lazy, tail-recursive, incremental quicksort. Works against
and creates partitions based on the pivot, defined as 'work'."

[work]
(lazy-seq

(loop [[part & parts] work]
(if-let [[pivot & xs] (seq part)]

(let [smaller? #(< % pivot)]
(recur (list*

(filter smaller? xs)
pivot
(remove smaller? xs)
parts)))

(when-let [[x & parts] parts]
(cons x (sort-parts parts)))))))

(defn qsort [xs]
(sort-parts (list xs)))

The key detail in the code above is that sort-parts works not on a plain sequence of
elements but on a carefully constructed list that alternates between lazy seqs and piv-
ots. Every element before each pivot is guaranteed to be less than the pivot and every-
thing after will be greater, but the sequences between the pivots are as yet unsorted.
When qsort is given an input sequence of numbers to sort, it creates a new work list
consisting of just that input sequence and passes this work to sort-parts. The loop
inside sort-parts pulls apart the work, always assuming that the first item, which it
binds to part, is an unsorted sequence. It also assumes that if there is a second item,
which will be at the head of parts, it is a pivot. It recurs on the sequence at the head
of work, splitting out pivots and lazy seqs until the sequence of items less than the
most recent pivot is empty, in which case the if-let test is false, and that most recent
pivot is returned as the first item in the sorted seq. The rest of the built up list of work

Listing 6.3 A lazy, tail-recursive quicksort implementation

8 This listing uses the list* function, which for some reason is somewhat rarely seen. In cases like this, how-
ever, it is exactly what is needed. list* is like list except it expects its last argument to be a list on which to
prepend its other arguments. We’ll use it again in chapter 8.

Pull
apart work

Sort rest
if more parts

124 CHAPTER 6 Being lazy and set in your ways
larger partitions and sort those smaller pieces only. The characteristic of the quicksort
algorithm is especially conducive to laziness, because it’s fairly cheap to make and
shuffle partitions where those with a smaller magnitude can be shuffled first. What
then are the benefits of a lazy, tail-recursive, incremental quicksort? The answer is that
you can take sorted portions of a large sequence without having to pay the cost of sort-
ing its entirety, as the following command hints:

(take 10 (qsort (nom 10000)))
;=> (0 0 0 4 4 7 7 8 9 9)

On our machines, this command required roughly 11,000 comparisons, which for all
intents and purposes is an O(n) operation—an order of magnitude less than quick-
sorts’s best case. Bear in mind that as the take value gets closer to the number of
actual elements, this difference in asymptotic complexity will shrink. But it’s an
extremely efficient way to determine the smallest n values in a large unsorted (Knuth
1998) sequence.

6.5 Summary
We’ve covered the topics of immutability, persistence, and laziness in this chapter. Clo-
jure’s core composite data types are all immutable and persistent by default, and
though this fact might presuppose fundamental inefficiencies, we’ve shown how Clo-
jure addresses them. The implementation of a persistent sorted binary tree demon-
strated how structural sharing eliminated the need for full copy-on-write. But
structural sharing isn’t enough to guarantee memory efficiency, and that’s where the
benefits of laziness come into the fold. The implementation of a lazy, tail-recursive
quicksort demonstrated that laziness guarantees that sequences won’t be fully realized
in memory at any given step.

 In the next chapter, we’ll dive into Clojure’s notion of functional programming.
Along the way, you’ll notice that much of the shape of functional implementations in
Clojure will be influenced by the topics discussed in this chapter.

Functional
programming
At the core of functional programming is a formal system of computation known as
the lambda calculus (Pierce 2002). Clojure functions, in adherence with the lambda
calculus, are first-class—they can be both passed as arguments and returned as
results from other functions. This book isn’t about the lambda calculus. Instead
we’ll explore Clojure’s particular flavor of functional programming. We’ll cover a
vast array of useful topics, including function composition, partial evaluation,
recursion, lexical closures, pure functions, function constraints, higher-order func-
tions, and first-class functions. We’ll use that last item as our starting point.

This chapter covers
 Functions in all their forms

 Closures

 Thinking recursively

 Putting it all together: A* pathfinding
125

126 CHAPTER 7 Functional programming
7.1 Functions in all their forms
In chapter 5, we mentioned that most of Clojure’s composite types can be used as
functions of their elements. As a refresher, recall that vectors are functions of their
indices, so executing ([:a :b] 0) will return :a. But this can be used to greater effect
by passing the vector as a function argument:

(map [:chthon :phthor :beowulf :grendel] #{0 3})
;=> (:chthon :grendel)

In the example, we’ve used the vector as the function to map over a set of indices,
indicating its first and fourth elements by index. Clojure collections offer an interest-
ing juxtaposition, in that not only can Clojure collections act as functions, but Clojure
functions can also act as data—an idea known as first-class functions.

7.1.1 First-class functions

In a programming language such as Java, there’s no notion of a standalone function.1

Instead, every problem solvable by Java must be performed with the fundamental phi-
losophy that everything is an object. This view on writing programs is therefore rooted
in the idea that behaviors within a program must be either modeled as class instances
or attached to them—wise or not. Clojure, on the other hand, is a functional pro-
gramming language and views the problem of software development as the applica-
tion of functions to data. Likewise, functions in Clojure enjoy equal standing with
data—functions are first-class citizens. Before we start, we should define what makes
something first-class:

 It can be created on demand.
 It can be stored in a data structure.
 It can be passed as an argument to a function.
 It can be returned as the value of a function.

Those of you coming from a background in Java might find the idea of creating func-
tions on demand analogous to the practice of creating anonymous inner classes to
handle Swing events (to name only one use case). Though similar enough to start on
the way toward understanding functional programming, it’s not a concept likely to
bear fruit, so don’t draw conclusions from this analogy.

CREATING FUNCTIONS ON DEMAND USING COMPOSITION

Even a cursory glance at Clojure is enough to confirm that its primary unit of compu-
tation is the function, be it created or composed of other functions:

(def fifth (comp first rest rest rest rest))
(fifth [1 2 3 4 5])
;=> 5

1 Although the likely inclusion of closures in some future version of Java should go a long way toward invalidat-
ing this. Additionally, for those of you coming from a language such as Python, Scala, or another Lisp, the
notion of a first-class function is likely not as foreign as we make it out to be.

127Functions in all their forms
The function fifth wasn’t defined with fn or defn forms shown before, but instead
built from existing parts using the comp (compose) function. But it may be more inter-
esting to take the idea one step further by instead proving a way to build arbitrary nth
functions2 as shown here:

(defn fnth [n]
(apply comp

(cons first
(take (dec n) (repeat rest)))))

((fnth 5) '[a b c d e])
;=> e

The function fnth builds a list of the function rest of the appropriate length with a
final first consed onto the front. This list is then fed into the comp function via
apply, which takes a function and a sequence of things and effectively calls said func-
tion with the list elements as its arguments. At this point, there’s no longer any doubt
that the function fnth builds new functions on the fly based on its arguments. Creat-
ing new functions in this way is a powerful technique, but it takes some practice to
think in a compositional way. It’s relatively rare to see more than one open-parenthe-
sis in a row like this in Clojure, but when you see it, it’s almost always because a func-
tion (such as fnth) is creating and returning a function that’s called immediately. A
general rule of thumb is that if you need a function that applies a number of functions
serially to the return of the former, then composition is a good fit:

(map (comp keyword #(.toLowerCase %) name) '(a B C))
;=> (:a :b :c)

Splitting functions into smaller, well-defined pieces fosters composability and, as a
result, reuse.

CREATING FUNCTIONS ON DEMAND USING PARTIAL FUNCTIONS

There may be times when instead of building a new function from chains of other
functions as comp allows, you need to build a function from the partial application of
another:

((partial + 5) 100 200)
;=> 305

The function partial builds (Tarver 2008) a new function that consists of the partial
application of the single argument 5 to the addition function. When the returned par-
tial function is passed the arguments 100 and 200, the result is their summation plus
that of the value 5 captured by partial.

PARTIAL APPLICATION ISN’T CURRYING The use of partial differs from the
notion of currying in a fundamental way. A function built with partial will
attempt to evaluate whenever it’s given another argument. A curried function

2 We know that Clojure provides an nth function that works slightly differently, but in this case please indulge
our obtuseness.

128 CHAPTER 7 Functional programming
on the other hand will return another curried function until it receives a pre-
determined number of arguments—only then will it evaluate. Because Clojure
allows functions of variable number of arguments, currying makes little sense.

We’ll discuss more about utilizing partial later in this section, but as a final point
observe that ((partial + 5) 100 200) is equivalent to (#(apply + 5 %&) 100 200).

REVERSING TRUTH WITH COMPLEMENT

One final function builder discussed here is the complement function. Simply put, this
function takes a function that returns a truthy value and returns the opposite truthy
value:

(let [truthiness (fn [v] v)]
[((complement truthiness) true)
((complement truthiness) 42)
((complement truthiness) false)
((complement truthiness) nil)])

;=> [false false true true]

((complement even?) 2)
;=> false

Note that (complement even?) is equivalent to (comp not even?).

USING FUNCTIONS AS DATA

First-class functions can not only be treated as data; they are data. Because a function is
first-class, it can be stored in a container expecting a piece of data, be it a local, a refer-
ence, collections, or anything able to store a java.lang.Object. This is a significant
departure from Java, where methods are part of a class but don’t stand alone at run-
time (Forman 2004). One particularly useful method for treating functions as data is
the way that Clojure’s testing framework clojure.test stores and validates unit tests
in the metadata of a Var holding a function. These unit tests are keyed with the :test
keyword, laid out as

(defn join
{:test (fn []

(assert
(= (join "," [1 2 3]) "1,3,3")))}

[sep s]
(apply str (interpose sep s)))

We’ve modified our old friend join by attaching some metadata containing a faulty
unit test. Of course, by that we mean that the attached unit test is meant to fail in this
case. The clojure.test/run-tests function is useful for running attached unit tests
in the current namespace:

(use '[clojure.test :as t])
(t/run-tests)
; Testing user
;
; ERROR in (join) (test.clj:646)
; ...

129Functions in all their forms
; actual: java.lang.AssertionError:
; Assert failed: (= (join "," [1 2 3]) "1,3,3")
; ...

As expected, the faulty unit test for join failed. Unit tests in Clojure only scratch the
surface of the boundless spectrum of examples using functions as data, but for now
they’ll do, as we move into the notion of higher-order functions.

7.1.2 Higher-order functions

A higher-order function is a function that does at least one of the following:

 Takes one or more functions as arguments
 Returns a function as a result

A Java programmer might be familiar with the practices of subscriber patterns or
schemes using more general-purpose callback objects. There are scenarios such as
these where Java treats objects like functions, but as with anything in Java, you’re really
dealing with objects containing privileged methods.

FUNCTIONS AS ARGUMENTS

In this book, we’ve used and advocated the use of the sequence functions map, reduce,
and filter—all of which expect a function argument that’s applied to the elements
of the sequence arguments. The use of functions in this way is ubiquitous in Clojure
and can make for truly elegant solutions. Let’s look at a simple example of a function
that takes a sequence of maps and a function working on each, and returns a
sequence sorted by the results of the function. The implementation in Clojure is
straightforward and clean:

(def plays [{:band "Burial", :plays 979, :loved 9}
{:band "Eno", :plays 2333, :loved 15}
{:band "Bill Evans", :plays 979, :loved 9}
{:band "Magma", :plays 2665, :loved 31}])

(def sort-by-loved-ratio (partial sort-by #(/ (:plays %) (:loved %))))

The function with the overly descriptive name sort-by-loved-ratio is built from the
partial application of the function sort-by and an anonymous function dividing the
:plays field by the :loved field. This is a simple solution to the problem presented,
and its usage is equally so:

(sort-by-loved-ratio plays)
;=> ({:band "Magma", :plays 2665, :loved 31}

{:band "Burial", :plays 979, :loved 9}
{:band "Bill Evans", :plays 979, :loved 9}
{:band "Eno", :plays 2333, :loved 15})

We intentionally used the additional higher-order function sort-by to avoid reimple-
menting core functions and instead build our program from existing parts. You should
strive for the same whenever possible.

130 CHAPTER 7 Functional programming
FUNCTIONS AS RETURN VALUES

We’ve already used functions returning functions in this chapter with comp, partial,
and complement, but you could build functions that do the same. We’ll extend the ear-
lier example to provide a function that sorts rows based on some number of column
values. This is similar to the way that spreadsheets operate, in that you can sort on a
primary column while falling back on a secondary column to provide the sort order
on matching results in the primary. This behavior is typically performed along any
number of columns, cascading down from the primary column to the last; each sub-
group is sorted appropriately, as the expected result illustrates:

(sort-by (columns [:plays :loved :band]) plays)
;=> ({:band "Bill Evans", :plays 979, :loved 9}

{:band "Burial", :plays 979, :loved 9}
{:band "Eno", :plays 2333, :loved 15}
{:band "Magma", :plays 2665, :loved 31})

This kind of behavior sounds complex on the surface but is shockingly simple3 in its
Clojure implementation:

(defn columns [column-names]
(fn [row]

(vec (map row column-names))))

Running the preceding expression shows that the rows for Burial and Bill Evans
have a tertiary column sorting. The function columns returns another function
expecting a map. This return function is then supplied to sort-by to provide the
value on which the plays vector would be sorted. Perhaps you see a familiar pattern:
we apply the column-names vector as a function across a set of indices, building a
sequence of its elements at those indices. This action will return a sequence of the val-
ues of that row for the supplied column names, which is then turned into a vector so
that it can then be used as the sorting function,4 as structured here:

(vec (map (plays 0) [:plays :loved :band]))
;=> [979 9 "Burial"]

This resulting vector is then used by sort-by to provide the final ordering.
 Building your programs using first-class functions in concert with higher-order

functions will reduce complexities and make your codebase more robust and exten-
sible. In the next subsection, we’ll explore pure functions, which all prior functions
in this section have been, and explain why your own applications should strive
toward purity.

3 Strictly speaking, the implementation of columns should use #(% row) instead of just row, because we can’t
always assume that the row is implemented as a map (a record might be used instead) and therefore directly
usable as a function. Records will be discussed further in chapter 8.

4 Because sort-by is higher-order, it naturally expects a function argument. As mentioned, vectors can also
be used as functions. However, as we will discuss in detail in section 10.4, all closure functions implement the
java.util.Comparator interface, which in this case is the driving force behind the sorting logic behind
sort-by!

131Functions in all their forms
7.1.3 Pure functions

Simply put, pure functions are regular functions that, through convention, conform to
the following simple guidelines:

 The function always returns the same result, given some expected arguments.
 The function doesn’t cause any observable side-effects.

Though Clojure is designed to minimize and isolate side-effects, it’s by no means a
purely functional language. But there are a number of reasons why you’d want to
build as much of your system as possible from pure functions, and we’ll enumerate a
few presently.

REFERENTIAL TRANSPARENCY

If a function of some arguments always results in the same value and changes no other
values within the greater system, then it’s essentially a constant, or referentially trans-
parent (the reference to the function is transparent to time). Take a look at pure func-
tion keys-apply:

(defn keys-apply [f ks m]
"Takes a function, a set of keys, and a map and applies the function
to the map on the given keys. A new map of the results of the function
applied to the keyed entries is returned."

(let [only (select-keys m ks)]
(zipmap (keys only) (map f (vals only)))))

(keys-apply #(.toUpperCase %) #{:band} (plays 0))
;=> {:band "BURIAL"}

Using another pure function manip-map, we can then manipulate a set of keys based
on a given function:

(defn manip-map [f ks m]
"Takes a function, a set of keys, and a map and applies
the function to the map on the given keys. A modified
version of the original map is returned with the results
of the function applied to each keyed entry."

(conj m (keys-apply f ks m)))

Prefer higher-order functions when processing sequences
We mentioned in section 6.3 that one way to ensure that lazy sequences are never
fully realized in memory is to prefer (Hutton 1999) higher-order functions for process-
ing. Most collection processing can be performed with some combination of the fol-
lowing functions:

map, reduce, filter, for, some, repeatedly, sort-by, keep
take-while, and drop-while

But higher-order functions aren’t a panacea for every solution. Therefore, we’ll cover
the topic of recursive solutions deeper in section 7.3 for those cases when higher-
order functions fail or are less than clear.

132 CHAPTER 7 Functional programming
(manip-map #(int (/ % 2)) #{:plays :loved} (plays 0))
;=> {:band "Burial", :plays 489, :loved 4}

The functions keys-apply and manip-map are both5 pure functions, illustrated by the
fact that you can replace them in the context of a larger program with their expected
return values and not change the outcome. Pure functions exist outside the bounds of
time. But if you make either keys-apply or manip-map reliant on anything but its
arguments or generate a side-effect within, then referential transparency dissolves.
We’ll add one more function to illustrate this:

(defn halve! [ks]
(map (partial manip-map #(int (/ % 2)) ks) plays))

(halve! [:plays])
;=> ({:band "Burial", :plays 489, :loved 9}

{:band "Eno", :plays 1166, :loved 15}
{:band "Bill Evans", :plays 489, :loved 9}
{:band "Magma", :plays 1332, :loved 31})

The function halve! works against the global plays and is no longer limited to gener-
ating results solely from its arguments. Because plays could change at any moment,
there’s no guarantee that halve! would return the same value given any particular
argument.

OPTIMIZATION

If a function is referentially transparent, then it can more easily be optimized using
techniques such as memoization (discussed in chapter 12) and algebraic manipula-
tions (Wadler 1989).

TESTABILITY

If a function is referentially transparent, then it’s easier to reason about and therefore
more straightforward to test. Building halve! as an impure function forces the need
to test against the possibility that plays could change at any time, complicating mat-
ters substantially. Imagine the confusion should you add further impure functions
based on further external transient values.

7.1.4 Named arguments

Some programming languages allow functions to take named arguments; Python is
one such language, as seen here:

def slope(p1=(0,0), p2=(1,1)):
return (float(p2[1] - p1[1])) / (p2[0] - p1[0])

slope((4,15), (3,21))
#=> -6.0

slope(p2=(2,1))
#=> 0.5

slope()
#=> 1.0

5 These functions are based on a similar implementation created by Steven Gilardi.

133Functions in all their forms
The Python function slope calculates the slope of a line given two tuples defining
points on a line. The tuples p1 and p2 are defined as named parameters, allowing
either or both to be omitted in favor of default values, or passed in any order as a
named parameter. Clojure provides a similar feature using its destructuring mecha-
nism coupled with the optional arguments flag &. The same function would be written
using Clojure’s named arguments as in the following listing.

(defn slope
[& {:keys [p1 p2] :or {p1 [0 0] p2 [1 1]}}]
(float (/ (- (p2 1) (p1 1))

(- (p2 0) (p1 0)))))

(slope :p1 [4 15] :p2 [3 21])
;=> -6.0

(slope :p2 [2 1])
;=> 0.5

(slope)
;=> 1.0

Clojure’s named arguments are built on the destructuring mechanism outlined in sec-
tion 3.3, allowing much richer ways to declare them.

7.1.5 Constraining functions with pre- and postconditions

Every function in Clojure can potentially be constrained on its inputs, its output, and
some arbitrary relationship between them. These constraints take the form of pre-
and postcondition vectors contained in a map defined in the function body. We can
simplify the slope function to the base case to more clearly illustrate the matter of
constraints:

(defn slope [p1 p2]
{:pre [(not= p1 p2) (vector? p1) (vector? p2)]
:post [(float? %)]}

(/ (- (p2 1) (p1 1))
(- (p2 0) (p1 0))))

The constraint map defines two entries: :pre constraining the input parameters and
:post the return value. The function calls in the constraint vectors are all expected to
return true for the constraints to pass (via logical and). In the case of the revised
slope function, the input constraints are that the points must not be equal, and they
must both be vectors. In the postcondition, the constraint is that the return result
must be a floating-point value. We run through a few scenarios in the following listing
to see how the new implementation works.

Listing 7.1 Named arguments in Clojure functions

134 CHAPTER 7 Functional programming
(slope [10 10] [10 10])
; java.lang.AssertionError: Assert failed: (not= p1 p2)

(slope [10 1] '(1 20))
; java.lang.AssertionError: Assert failed: (vector? p2)

(slope [10 1] [1 20])
; java.lang.AssertionError: Assert failed: (float? %)

(slope [10.0 1] [1 20])
;=> -2.111111111111111

Clojure also provides a simple assertion macro that can be used to emulate some pre-
and postconditions. Using assert instead of :pre is typically fairly straightforward.
But using assert instead of :post is cumbersome and awkward. On the contrary,
restricting yourself to constraint maps will cover most of the expected cases covered by
assert, which can be used to fill in the remaining holes (such as loop invariants). In
any case, constraint maps provide standard hooks into the assertion machinery of Clo-
jure, while using assert is by its nature ad hoc. Yet another advantage for :pre and
:post is that they allow the assertions to come from a different source than the body
of the function, which we’ll address next.

DECOUPLING ASSERTIONS FROM FUNCTIONS

The implementation of slope corresponds to a well-established mathematic property.
As a result, it makes perfect sense to tightly couple the constraints and the work to be
done to perform the calculation. But not all functions are as well-defined as slope,
and therefore could benefit from some flexibility in their constraints. Imagine a func-
tion that takes a map, puts some keys into it, and returns the new map, defined as

(defn put-things [m]
(into m {:meat "beef" :veggie "broccoli"}))

(put-things {})
;=> {:meat "beef", :veggie "broccoli"}

How would you add constraints to put-things? You could add them directly to the
function definition, but the consumers of the map might have differing requirements
for the entries added. Instead, observe how we can abstract the constraints into
another function:

(defn vegan-constraints [f m]
{:pre [(:veggie m)]
:post [(:veggie %) (nil? (:meat %))]}

(f m))

(vegan-constraints put-things {:veggie "carrot"})
; java.lang.AssertionError: Assert failed: (nil? (:meat %))

The vegan-constraints function applies specific constraints to an incoming function,
stating that the map coming in and going out should have some kind of veggie and

Listing 7.2 Testing the slope function constraints

Any/all as floating point

135Closures
should never have meat in the result. The beauty of this scheme is that you can create
contextual constraints based on the appropriate expected results, as shown next.

(defn balanced-diet [f m]
{:post [(:meat %) (:veggie %)]}
(f m))

(balanced-diet put-things {})
;=> {:veggie "broccoli", :meat "beef"}

(defn finicky [f m]
{:post [(= (:meat %) (:meat m))]}
(f m))

(finicky put-things {:meat "chicken"})
; java.lang.AssertionError: Assert failed: (= (:meat %) (:meat m))

By pulling out the assertions into a wrapper function, we’ve detached some domain-
specific requirements from a potentially globally useful function and isolated them in
aspects (Laddad 2003). By detaching pre- and postconditions from the functions them-
selves, you can mix in any implementation that you please, knowing that as long as it
fulfills the contract (Meyer 1991), its interposition is transparent. This is only the
beginning of the power of Clojure’s pre- and postconditions, and we’ll come back to it
a few times more to see how it can be extended and utilized.

 Now that we’ve covered some of the powerful features available via Clojure’s func-
tions, we’ll take a step further by exploring lexical closures.

7.2 Closures
On his next walk with Qc Na, Anton attempted to impress his master by saying
“Master, I have diligently studied the matter, and now understand that objects are
truly a poor man’s closures.” Qc Na responded by hitting Anton with his stick,
saying “When will you learn? Closures are a poor man’s object.” At that moment,
Anton became enlightened.

—Part of a parable by Anton van Straaten

It took only 30 years, but closures (Sussman 1975) are now a key feature of main-
stream programming languages—Perl and Ruby support them, and JavaScript derives
much of what power it has from closures. So what’s a closure? In a sentence, a closure is
a function that has access to locals from a larger scope, namely the context in which it
was defined:

(def times-two
(let [x 2]

(fn [y] (* y x))))

The fn form defines a function and uses def to store it in a Var named times-two.
The let forms a lexical scope in which the function was defined, so the function gains
access to all the locals in that lexical context. That’s what makes this function a clo-
sure: it uses the local x that was defined outside the body of the function, and so the

Listing 7.3 Menu constraints

Never change
the meat

136 CHAPTER 7 Functional programming
local and its value become a property of the function itself. The function is said to close
over the local6 x, as in the following example:

(times-two 5)
;=> 10

This isn’t terribly interesting, but one way to make a more exciting closure is to have it
close over something mutable:

(def add-and-get
(let [ai (java.util.concurrent.atomic.AtomicInteger.)]

(fn [y] (.addAndGet ai y))))

(add-and-get 2)
;=> 2
(add-and-get 2)
;=> 4
(add-and-get 7)
;=> 11

The java.util.concurrent.atomic.AtomicInteger class simply holds an integer
value, and its .addAndGet method adds to its value, stores the result, and also returns
the result. The function add-and-get is holding onto the same instance of Atomic-
Integer, and each time it’s called, the value of that instance is modified. Unlike the
earlier times-two function, this one can’t be rewritten with the local ai defined inside
the function. If you tried, each time the function was called, it would create a new
instance with a default value of 0 to be created and stored in ai—clearly not what
should happen. A point of note about this technique is that when closing over some-
thing mutable, you run the risk of making your functions impure and thus more diffi-
cult to test and reason about, especially if the mutable local is shared.

FUNCTIONS RETURNING CLOSURES

Each of the previous examples created a single closure, but by wrapping similar code
in another function definition, you can create more closures on demand. For exam-
ple, we could take the earlier times-two example and generalize it to take an argu-
ment instead of using 2 directly:

(defn times-n [n]
(let [x n]

(fn [y] (* y x))))

We’ve covered functions returning functions before, but if you’re not already familiar
with closures, this may be a stretch. We now have an outer function stored in a Var
named times-n—note we’ve used defn instead of def. When times-n is called with an
argument, it’ll return a new closure created by the fn form and closing over the local
x. The value of x for this closure will be whatever was passed in to times-n. Thus when
we call this returned closure with an argument of its own, it’ll return the value of y
times x, as shown:

6 Locals like x in this example are sometimes called free variables. We don’t use the term because Clojure locals
are immutable.

137Closures
(times-n 4)
;=> #<user$times_n$fn__39 user$times_n$fn__39@427be8c2>

Viewing the function form for this closure isn’t too useful, so instead we can store it in
a Var, allowing us to call it by a friendlier name such as times-four:

(def times-four (times-n 4))

Here we’re using def again simply to store what times-n returns—a closure over the
number 4:

(times-four 10)
;=> 40

Note that when calling the closure stored in times-four, it used the local it had closed
over as well as the argument in the call.

CLOSING OVER PARAMETERS

In our definition of times-n, we created a local x using let and closed over that
instead of closing over the argument n directly. But this was only to help focus the dis-
cussion on other parts of the function. In fact, closures close over parameters of outer
functions in exactly the same way as they do over let locals. Thus times-n could be
defined without any let at all:

(defn times-n [n]
(fn [y] (* y n)))

All of the preceding examples would work exactly the same. Here’s another function
that creates and returns a closure in a similar way. Note again that the inner function
maintains access to the outer parameter even after the outer function has returned:

(defn divisible [denom]
(fn [num]

(zero? (rem num denom))))

We don’t have to store a closure in a Var, but can instead create one and call it
immediately:

((divisible 3) 6)
;=> true

((divisible 3) 7)
;=> false

Instead of storing or calling a closure, a particular need is best served by passing a clo-
sure along to another function that will use it.

PASSING CLOSURES AS FUNCTIONS

We’ve shown many examples in previous chapters of higher-order functions built in to
Clojure’s core libraries. What we’ve glossed over so far is that anywhere a function is
expected, a closure can be used instead. This has dramatic consequences for how
powerful these functions can be.

138 CHAPTER 7 Functional programming
 For example, filter takes a function (called a predicate in this case) and a sequence,
applies the predicate to each value of the sequence,7 and returns a sequence of the just
the values for which the predicate returned something truthy. A simple example of its
use would be to return only the even numbers from a sequence of numbers:

(filter even? (range 10))
;=> (0 2 4 6 8)

Note that filter only ever passes a single argument to the predicate given it. Without
closures, this might be restrictive, but with them we can simply close over the values
needed:

(filter (divisible 4) (range 10))
;=> (0 4 8)

It’s common to define a closure right on the spot where it’s used, closing over what-
ever local-context is needed, as shown:

(defn filter-divisible [denom s]
(filter (fn [num] (zero? (rem num denom))) s))

(filter-divisible 4 (range 10))
;=> (0 4 8)

This kind of on-the-spot anonymous function definition is desired frequently enough
that Clojure spends a little of its small syntax budget on the reader feature to make
such cases more succinct. This #() form was first introduced in chapter 2, and in this
case could be used to write the definition of filter-divisible as

(defn filter-divisible [denom s]
(filter #(zero? (rem % denom)) s))

(filter-divisible 5 (range 20))
;=> (0 5 10 15)

Though certainly more succinct than the extended anonymous function form and the
earlier example using a separate divisible function with filter, there’s a fine line to
balance between reuse8 and clarity. Thankfully, in any case the performance differ-
ences among the three choices are nominal.

SHARING CLOSURE CONTEXT

So far, the closures we’ve shown have stood alone, but it’s sometimes useful to have
multiple closures closing over the same values. This may take the form of an ad hoc
set of closures in a complex lexical environment, such as event callbacks or timer han-
dlers in a nested GUI builder. Or it may be a tidy, specifically designed bundle of val-
ues and related functions—something that can be thought of as an object.

7 Please don’t construe from this wording that filter always iterates through the whole input sequence. Like
most of the seq library, it’s lazy and only consumes as much of the input sequence as needed to produce the
values demanded of it.

8 By hiding divisible as an anonymous function inside filter-divisible, we reduce the reusability of this
code with no real benefit. Anonymous functions are best reserved for when the lexical context being closed
over is more complex or the body of the function too narrow in use to warrant being its own named function.

139Closures
 To demonstrate this, we’ll build a robot object that has functions for moving it
around a grid based on its current position and bearing. For this we need a list of
coordinate deltas for compass bearings, starting with north and going clockwise:

(def bearings [{:x 0, :y 1} ; north
{:x 1, :y 0} ; east
{:x 0, :y -1} ; south
{:x -1, :y 0}]) ; west

Note that this is on a grid where y increases as you go north and x increases as you go
east—mathematical coordinate style rather than spreadsheet cells.

 With this in place, it’s easy to write a function forward that takes a coordinate and
a bearing, and returns a new coordinate having moved forward one step in the direc-
tion of the bearing:

(defn forward [x y bearing-num]
[(+ x (:x (bearings bearing-num)))
(+ y (:y (bearings bearing-num)))])

Starting with a bearing of 0 (north) at 5,5 and going one step brings the bot to 5,6:

(forward 5 5 0)
;=> [5 6]

We can also try starting at 5,5 and with bearing 1 (east) or bearing 2 (south) and see
the desired results:

(forward 5 5 1)
;=> [6 5]

(forward 5 5 2)
;=> [5 4]

But we have no closures yet, so we’ll build a bot object that keeps not just its coordi-
nates, but also its bearing. In the process, we’ll move this standalone forward function
into the bot object itself. By making this a closure, we’ll also open up possibilities for
polymorphism later. So here’s a bot that knows how to move itself forward:

(defn bot [x y bearing-num]
{:coords [x y]
:bearing ([:north :east :south :west] bearing-num)
:forward (fn [] (bot (+ x (:x (bearings bearing-num)))

(+ y (:y (bearings bearing-num)))
bearing-num))})

We can create an instance of this bot and query it for its coordinates or its bearing:

(:coords (bot 5 5 0))
;=> [5 5]

(:bearing (bot 5 5 0))
;=> :north

But now that we’ve moved the forward function inside, we no longer pass in parame-
ters, because it gets everything it needs to know from the state of the bot that it closes

140 CHAPTER 7 Functional programming
over. Instead, we use :forward to fetch the closure from inside the bot object and
then use an extra set of parentheses to invoke it with no arguments:

(:coords ((:forward (bot 5 5 0))))
;=> [5 6]

So now we have a somewhat complicated beastie but still only a single closure in the
mix. To make things more interesting, we’ll add turn-left and turn-right9 func-
tions, and store them right there in the object with :forward:

(defn bot [x y bearing-num]
{:coords [x y]
:bearing ([:north :east :south :west] bearing-num)
:forward (fn [] (bot (+ x (:x (bearings bearing-num)))

(+ y (:y (bearings bearing-num)))
bearing-num))

:turn-right (fn [] (bot x y (mod (+ 1 bearing-num) 4)))
:turn-left (fn [] (bot x y (mod (- 1 bearing-num) 4)))})

(:bearing ((:forward ((:forward ((:turn-right (bot 5 5 0))))))))
;=> :east

(:coords ((:forward ((:forward ((:turn-right (bot 5 5 0))))))))
;=> [7 5]

We won’t talk about the verbosity of using the bot object yet, and instead focus on
the features leveraged in the definition of bot itself. We’re freely mixing values com-
puted when a bot is created (such as the :bearing) and functions that create values
when called later. The functions are in fact closures, and each has full access to the
lexical environment. The fact that there are multiple closures sharing the same envi-
ronment isn’t awkward or unnatural and flows easily from the properties of closures
already shown.

 We’d like to demonstrate one final feature of this pattern for building objects:
polymorphism. For example, here’s the definition of a bot that supports all of the
same usage as earlier, but this one has its wires crossed or perhaps is designed to work
sensibly in Alice’s Wonderland. When told to go forward it instead reverses, and it
turns left instead of right and vice versa:

(defn mirror-bot [x y bearing-num]
{:coords [x y]
:bearing ([:north :east :south :west] bearing-num)
:forward (fn [] (mirror-bot (- x (:x (bearings bearing-num)))

(- y (:y (bearings bearing-num)))
bearing-num))

:turn-right (fn [] (mirror-bot x y (mod (- 1 bearing-num) 4)))
:turn-left (fn [] (mirror-bot x y (mod (+ 1 bearing-num) 4)))})

9 The :turn-right function uses (+ 1 foo), even though in general (inc foo) would be more idiomatic.
Here it helps highlight to anyone reading the symmetry between turn-right and turn-left. In this case,
using + is more readable than using inc and so is preferred.

141Thinking recursively
By bundling the functions that operate on data inside the same structure as the data
itself, simple polymorphism is possible. Because each function is a closure, no object
state needs to be explicitly passed; instead, each function uses any locals required to
do its job.

 It’s likely you cringed at the number of parentheses required to call these particu-
lar object closures, and rightfully so. We encourage you to extrapolate from the clo-
sure examples when dealing with your own applications, and see how they can solve a
variety of tricky and unusual problems. Although this kind of structure is simple and
powerful10 and may be warranted in some situations, Clojure provides other ways of
associating functions with data objects that are more flexible. In fact, the desire to
avoid a widespread need for this type of ad hoc implementation has motivated Clo-
jure’s reify macro, which we’ll cover in section 9.3.

COMPILE-TIME VERSUS RUN-TIME

When looking at code that includes a closure, it’s not immediately obvious how the
work is distributed between compile-time and run-time. In particular, when you see a
lot of code or processor-intensive work being done in a closure, you might wonder
about the cost of calling the function that creates the closure:

(defn do-thing-builder [x y z]
(fn do-thing [a b]

...
(massive-calculation x y z)
...))

But you don’t need to worry. When this whole expression is compiled, bytecode for
the bodies of do-thing and do-thing-builder are generated and stored in memory.11

In current versions of Clojure, each function definition gets its own class. But when
do-thing-builder is called, it doesn’t matter how large or slow the body of do-thing
is—all that’s done at run-time is the creation of an instance of do-thing’s class. This is
lightweight and fast. Not until the closure returned by do-thing-builder is called does
the complexity or speed of the body of that inner function matter at all.

 In this section, you learned that closures are functions that close over lexical locals,
how to create them from inside other functions, how to pass them around and call
them, and even how to build lightweight objects using them. Next, we’ll take a look at
how functions and closures behave when they call themselves, a pattern lovingly
known as recursion.

7.3 Thinking recursively
You’re likely already familiar with the basics of recursion, and as a result can take heart
that we won’t force you to read a beginner’s tutorial again. But because recursive

10 ...a fact any sufficiently experienced JavaScript programmer would be able to confirm.
11 If the code is being compiled ahead of time by the compile function, the generated bytecode is also written

to disk in .class files.

142 CHAPTER 7 Functional programming
solutions are prevalent in Clojure code, it’s important that we cover it well enough that
you can fully understand Clojure’s recursive offerings.

 Recursion is often viewed as a low-level operation reserved for times when solu-
tions involving higher-order functions either fail or lead to obfuscation. Granted, it’s
fun to solve problems recursively because even for those of us who’ve attained some
level of acumen with functional programming, finding a recursive solution still injects
a bit of magic into our day. Recursion is a perfect building block for creating higher-
level looping constructs and functions, which we’ll show in this section.

7.3.1 Mundane recursion

A classically recursive algorithm is that of calculating some base number raised to an
exponent, or the pow function. A straightforward12 way to solve this problem recur-
sively is to multiply the base by each successively smaller value of the exponent, as
implemented in the following listing.

(defn pow [base exp]
(if (zero? exp)

1
(* base (pow base (dec exp)))))

(pow 2 10)
;=> 1024
(pow 1.01 925)
;=> 9937.353723241924

We say that the recursive call is mundane13 because it’s named explicitly rather than
through mutual recursion or implicitly with the recur special form. Why is this a prob-
lem? The answer lies in what happens when we try to call pow with a large value:

(pow 2 10000)
; java.lang.StackOverflowError

The implementation of pow is doomed to throw java.lang.StackOverflowError
because the recursive call is trapped by the multiplication operation. The ideal solu-
tion would be a tail-recursive version that uses the explicit recur form, thus avoiding
stack consumption and the resulting exception. One way to remove the mundane
recursive call is to perform the multiplication at a different point, thus freeing the
recursive call to occur in the tail position, as shown in the next listing.

(defn pow [base exp]
(letfn [(kapow [base exp acc]

12 Yes, we’re aware of Math/pow.

Listing 7.4 A version of pow using mundane recursion

13 Typically mundane recursion is referred to as linear, or the case where the space requirements needed to per-
form the recursion is proportional to the magnitude of the input.

Listing 7.5 A version of pow using tail recursion, accumulator, and helper function

143Thinking recursively
(if (zero? exp)
acc
(recur base (dec exp) (* base acc))))]

(kapow base exp 1)))

(pow 2 10000)
;=> ... A very big number

This new version of pow uses two common techniques for converting mundane recur-
sion to tail recursion. First, it uses a helper function kapow that does the majority of
the work. Second, kapow itself uses an accumulator acc that holds the result of the
multiplication. The exponent exp is no longer used as a multiplicative value but
instead functions as a decrementing counter, eliminating a stack explosion.

REGULAR RECURSION IS FUN AGAIN WITH LAZY-SEQ

As mentioned in section 6.3, the lazy-seq recipe rule of thumb #1 states that you
should wrap your outer layer function bodies with the lazy-seq macro when generat-
ing lazy seqs. The implementation of lz-rec-step used mundane recursion but man-
aged to avoid stack overflow exceptions thanks to the use of lazy-seq. For functions
generating sequences, the use of lazy-seq might be a better choice than tail recur-
sion, because often the regular (mundane) recursive definition is the most natural
and understandable.

7.3.2 Tail calls and recur

In a language such as Clojure, where function locals are immutable, the benefit of tail
recursion is especially important for implementing algorithms that require the con-
sumption of a value or the accumulation of a result. Before we get deeper into imple-
menting tail recursion, we’ll take a moment to appreciate the historical
underpinnings of tail-call recursion and expound on its further role within Clojure.

GENERALIZED TAIL-CALL OPTIMIZATION

In the Lambda Papers, Guy L. Steele and Gerald Sussman describe their experiences
with the research and implementation of the early versions of the Scheme program-
ming language. The first versions of the interpreter served as a model for Carl
Hewitt’s Actor model (Hewitt 1973) of concurrent computation, implementing both
actors and functions. One day, while eating Ho-Hos,14 Steele and Sussman noticed
that the implementation of control flow within Scheme, implemented using actors,
always ended with one actor calling another in its tail position with the return to the
callee being deferred. Armed with their intimate knowledge of the Scheme compiler,
Steele and Sussman were able to infer that because the underlying architecture deal-
ing with actors and functions was the same, retaining both was redundant. Therefore,
actors were removed from the language and functions remained as the more general
construct. Thus, generalized tail-call optimization was thrust (Steele 1977) into the
world of computer science.

14 This isn’t true, but wouldn’t it be great if it were?

145Thinking recursively
The implementation of gcd is straightforward, but you’ll notice that we used mun-
dane recursion instead of tail recursion via recur. In a language such as Scheme con-
taining generalized tail-call optimization, the recursive calls will be optimized
automatically. On the other hand, because of the JVM’s lack of tail-call optimization,
the recur would be needed in order to avoid stack overflow errors.

 Using the information in table 7.1, you can replace the mundane recursive calls
with the recur form, causing gcd to be optimized by Clojure’s compiler.

WHY RECUR?

If you think that you understand why Clojure provides an explicit tail-call optimization
form rather than an implicit one, then go ahead and skip to the next section.

 There’s no technical reason why Clojure couldn’t automatically detect and opti-
mize recursive tail calls—Scala does this—but there are valid reasons why Clojure
doesn’t.

 First, because there’s no generalized TCO in the JVM, Clojure can only provide a
subset of tail-call optimizations: the recursive case and the mutually recursive case (see
the next section). By making recur an explicit optimization, Clojure doesn’t give the
pretense of providing full TCO.

 Second, having recur as an explicit form allows the Clojure compiler to detect
errors caused by an expected tail call being pushed out of the tail position. If we
change gcd to always return an integer, then an exception is thrown because the
recur call is pushed out of the tail position:

(defn gcd [x y]
(int

(cond
(> x y) (recur (- x y) y)
(< x y) (recur x (- y x))
:else x)))

; java.lang.UnsupportedOperationException: Can only recur from tail position

Table 7.1 Tail positions and recur targets

Form(s) Tail position recur target?

fn, defn (fn [args] expressions tail) Yes

loop (loop [bindings] expressions tail) Yes

let, letfn, binding (let [bindings] expressions tail) No

do (do expressions tail) No

if, if-not (if test then tailelse tail) No

when, when-not (when test expressions tail) No

cond (cond test test tail ... :else else tail) No

or, and (or test test ... tail) No

case (case const const tail ... default tail) No

146 CHAPTER 7 Functional programming
With automatic recursive tail-call optimization, the addition of an outer int call
wouldn’t necessarily trigger (Wampler 2009)16 an error condition. But Clojure
enforces that a call to recur be in the tail position. This benefit will likely cause recur
to live on, even should the JVM acquire TCO.

 The final benefit of recur is that it allows the forms fn and loop to act as anony-
mous recursion points.

 Why recur indeed.

7.3.3 Don’t forget your trampoline

We touched briefly on the fact that Clojure can also optimize a mutually recursive
function relationship, but like the tail-recursive case, it’s done explicitly. Mutually
recursive functions are nice for implementing finite state machines (FSA), and in this
section we’ll show an example of a simple state machine modeling the operation of an
elevator (Mozgovoy 2009) for a two-story building. There are only four states that the
elevator FSA allows: on the first floor with the doors open or closed and on the second
floor with the door open or closed. The elevator can also take four distinct com-
mands: open doors, close doors, go up, and go down. Each command is only valid in a
certain context; for example, the close command is only valid when the elevator door
is open. Likewise, the elevator can only go up when on the first floor and only down
when on the second floor, and the door must be shut in both instances.

 We can directly translate these states and transitions into a set of mutually recursive
functions by associating the states as a set of functions ff-open, ff-closed, sf-
closed, and sf-open, and the transitions :open, :close, :up, and :down, as conditions
for calling the next function. We’d like to create a function elevator that starts in the
ff-open state, takes a sequence of commands, and returns true or false if they corre-
spond to a legal schedule according to the FSA. For example, the sequence [:close
:open :done] would be legal, if not pointless, whereas [:open :open :done] wouldn’t
be legal, because an open door can’t be reopened. The function elevator could be
implemented as shown next.

(defn elevator [commands]
(letfn

[(ff-open [[cmd & r]]
"When the elevator is open on the 1st floor
it can either close or be done."

#(case cmd
:close (ff-closed r)
:done true
false))

(ff-closed [[cmd & r]]
"When the elevator is closed on the 1st floor
it can either open or go up."

16 The Scala 2.8 compiler recognizes a @tailrec annotation and triggers an error whenever a marked function
or method can’t be optimized.

Listing 7.6 Using mutually recursive functions to implement a finite state machine

Local functions
1st floor open

1st floor closed

147Thinking recursively
#(case cmd
:open (ff-open r)
:up (sf-closed r)
false))

(sf-closed [[cmd & r]]
"When the elevator is closed on the 2nd floor
it can either go down or open."

#(case cmd
:down (ff-closed r)
:open (sf-open r)
false))

(sf-open [[cmd & r]]
"When the elevator is open on the 2nd floor
it can either close or be done"

#(case cmd
:close (sf-closed r)
:done true
false))]

(trampoline ff-open commands)))

Using letfn in this way allows you to create local functions that reference each other,
whereas (let [ff-open #(...)] ...) wouldn’t, because it executes its bindings seri-
ally. Each state function contains a case macro that dispatches to the next state based
on a contextually valid command. For example, the sf-open state will transition to the
sf-closed state given a :close command, will return true on a :done command (cor-
responding to a legal schedule), or will otherwise return false. Each state is similar in
that the default case command is to return false indicating an illegal schedule. One
other point of note is that each state function returns a function returning a value
rather than directly returning the value. This is done so that the trampoline function
can manage the stack on the mutually recursive calls, thus avoiding cases where a long
schedule would blow the stack. Here’s the operation of elevator given a few example
schedules:

(elevator [:close :open :close :up :open :open :done])
;=> false

(elevator [:close :up :open :close :down :open :done])
;=> true

;; run at your own risk!
(elevator (cycle [:close :open]))
; ... runs forever

Like the recur special form, the trampoline for mutual recursion has a definitive syntactic
and semantic cost on the structure of your code. But whereas the call to recur could be
replaced by mundane recursion without too much effect, save for at the edges, the rules
for mutual recursion aren’t general. Having said that, the actual rules are simple:

1 Make all of the functions participating in the mutual recursion return a func-
tion instead of their normal result. Normally this is as simple as tacking a # onto
the front of the outer level of the function body.

2 Invoke the first function in the mutual chain via the trampoline function.

2nd floor closed

2nd floor open

Trampoline call

149Putting it all together: A* pathfinding
can be used to make a range of functions that happen to fall into the same mold of a
mathematical folding function.

(defn mk-cps [accept? end-value kend kont]
(fn [n]

((fn [n k]
(let [cont (fn [v] (k (kont v n)))]

(if (accept? n)
(k end-value)
(recur (dec n) cont))))

n kend)))

(def fac (mk-cps zero? 1 identity #(* %1 %2)))
(fac 10)
;=> 3628800

(def tri (mk-cps zero? 1 dec #(+ %1 %2)))
(tri 10)
;=> 55

Though this is potentially a powerful technique, there are a number of reasons pre-
venting its widespread adoption in Clojure:

 Without generalized tail-call optimization, the number of continuation calls is
bounded by the size of the stack. If your own applications can guarantee a
bounded execution path for the CPS calls, then this may not be a problem in
practice.

 In the case of exception handling, CPS can cause the point of failure to bubble
out, especially on deferred computations such as in using delay, future, or
promise.17 In the abstract this may not seem to be a problem, but if your contin-
uation function is supposed to throw the error but an outer layer function is
doing so instead, then bugs might be difficult to track down.

 In a language such as Haskell that has ubiquitous lazy evaluation and pure func-
tions, it’s often not necessary to impose a strict order of execution. One way to
impose a strict order of execution is to design your programs along the
continuation-passing style. Though Clojure isn’t entirely lazy, the matter of out-
of-order execution isn’t a factor against CPS. But CPS isn’t conducive to paral-
lelization, which is antithetical to Clojure’s very nature.

7.4 Putting it all together: A* pathfinding
A* is a best-first pathfinding algorithm that maintains a set of candidate paths through
a “world” with the purpose of finding the least difficult (Bratko 2000) path to some
goal. The difficulty (or cost) of a path is garnered by the A* algorithm through the
use of a function, typically named f, that builds an estimate of the total cost from a

Listing 7.8 Continuation-passing style function generator

17 Clojure’s future and promise will be discussed in detail in chapter 11.

Triangular fn

150 CHAPTER 7 Functional programming
start point to the goal. The application of this cost-estimate function f is used to sort
the candidate paths (Hart 1968) in the order most likely to prove least costly.

THE WORLD

To represent the world, we’ll again use a simple 2D matrix representation:

(def world [[1 1 1 1 1]
[999 999 999 999 1]
[1 1 1 1 1]
[1 999 999 999 999]
[1 1 1 1 1]])

The world structure is made from the values 1 and 999 respectively, corresponding to
flat ground and cyclopean mountains. What would you assume is the optimal path
from the upper-left corner [0 0] to the lower-right [4 4]? Clearly the optimal (and
only) option is the Z-shaped path around the walls. Implementing an A* algorithm
should fit the bill, but first, we’ll talk a little bit about how to do so.

NEIGHBORS

For any given spot in the world, we need a way to calculate possible next steps. We can
do this brute force for small worlds, but we’d like a more general function. It turns out
if we restrict the possible moves to north, south, east, and west, then any given move is
+/-1 along the x or y axis. Taking advantage of this fact, we can use the neighbors
function from listing 5.1 as shown here:

(neighbors 5 [0 0])
;=> ([1 0] [0 1])

From the upper-left point, the only next steps are y=0, x=1 or y=1, x=0. So now that we
have that, think about how we might estimate the path cost from any given point. A
simple cost estimate turns out to be described as, “from the current point, calculate
the expected cost by assuming we can travel to the right edge, then down to the lower-
right.” An implementation of the h function estimate-cost that estimates the
remaining path cost is shown next.

(defn estimate-cost [step-cost-est size y x]
(* step-cost-est

(- (+ size size) y x 2)))

(estimate-cost 900 5 0 0)
;=> 7200
(estimate-cost 900 5 4 4)
;=> 0

From the y-x point [0 0] the cost of travelling 5 right and 5 down given an estimated
single-step cost step-cost-est is 9000. This is a pretty straightforward estimate based
on a straight-line path. Likewise, starting at the goal state [4 4] would cost nothing.
Still needed is the g function used to calculate the cost of the path so far, named
path-cost, which is provided in the following listing.

Listing 7.9 A straight-line h function to estimate remaining path cost

151Putting it all together: A* pathfinding
(defn path-cost [node-cost cheapest-nbr]
(+ node-cost

(:cost cheapest-nbr 0)))

(path-cost 900 {:cost 1})
;=> 901

Now that we’ve created an estimated cost function and a current cost function, we can
implement a simple total-cost function for f.

(defn total-cost [newcost step-cost-est size y x]
(+ newcost

(estimate-cost step-cost-est size y x)))

(total-cost 0 900 5 0 0)
;=> 7200
(total-cost 1000 900 5 3 4)
;=> 1900

The second example shows that if we’re one step away with a current cost of 1000,
then the total estimated cost will be 1900, which is expected. So now we have all of the
heuristic pieces in place. You may think that we’ve simplified the heuristic needs of
A*, but in fact this is all that there is to it. The actual implementation is complex,
which we’ll tackle next.

7.4.1 The A* implementation

Before we show the implementation of A*, we need one more auxiliary function min-
by, used to retrieve from a collection the minimum value dictated by some function.
The implementation of min-by would naturally be a straightforward higher-order
function, as shown:

(defn min-by [f coll]
(when (seq coll)

(reduce (fn [min this]
(if (> (f min) (f this)) this min))

coll)))

(min-by :cost [{:cost 100} {:cost 36} {:cost 9}])
;=> {:cost 9}

This function will come in handy when we want to grab the cheapest path deter-
mined by the cost heuristic. We’ve delayed enough! We’ll finally implement the A*
algorithm so that we navigate around the world. The following listing shows a tail-
recursive solution.

Listing 7.10 A g function used to calculate the cost of the path traversed so far

Listing 7.11 f function to calculate the estimated cost of the path (+ (g ...) (h ...))

Add cheapest
neighbor cost,
else 0

152 CHAPTER 7 Functional programming
(defn astar [start-yx step-est cell-costs]
(let [size (count cell-costs)]

(loop [steps 0
routes (vec (replicate size (vec (replicate size nil))))
work-todo (sorted-set [0 start-yx])]

(if (empty? work-todo)
[(peek (peek routes)) :steps steps]
(let [[_ yx :as work-item] (first work-todo)

rest-work-todo (disj work-todo work-item)
nbr-yxs (neighbors size yx)
cheapest-nbr (min-by :cost

(keep #(get-in routes %)
nbr-yxs))

newcost (path-cost (get-in cell-costs yx)
cheapest-nbr)

oldcost (:cost (get-in routes yx))]
(if (and oldcost (>= newcost oldcost))

(recur (inc steps) routes rest-work-todo)
(recur (inc steps)

(assoc-in routes yx
{:cost newcost
:yxs (conj (:yxs cheapest-nbr [])

yx)})
(into rest-work-todo

(map
(fn [w]

(let [[y x] w]
[(total-cost newcost step-est size y x) w]))

nbr-yxs)))))))))

The main thrust of the astar function occurs at the check that (>= newcost oldcost).
Once we’ve calculated the newcost (the cost so far for the cheapest neighbor) and a
cost-so-far oldcost, we perform one of two actions. The first action occurs when the
newcost is greater than or equal to the oldcost and is to throw away this new path,
because it’s clearly a worse alternative. The other action is the core functionality corre-
sponding to the constant sorting of the work-todo, based on the cost of the path as
determined by the heuristic function total-cost. The soul of A* is based on the fact
that the potential paths stored in work-todo are always sorted and distinct (through
the use of a sorted set), based on the estimated path cost function. Each recursive
loop through the astar function maintains the sorted routes based on the current
cost knowledge of the path, added to the estimated total cost.

 The results given by the astar function for the Z-shaped world are shown in the
next listing.

Listing 7.12 The main A* algorithm

Check done
Grab
first
route

Calc least-cost

Add estimated path
to todo and recur

153Putting it all together: A* pathfinding
(astar [0 0]
900
world)

;=> [{:cost 17,
:yxs [[0 0] [0 1] [0 2] [0 3] [0 4] [1 4] [2 4]

[2 3] [2 2] [2 1] [2 0] [3 0] [4 0] [4 1]
[4 2] [4 3] [4 4]]}

:steps 94]

By following the y-x indices, you’ll notice that the
astar function traverses the Z World along the path
where cost is 1, as seen in figure 7.3.

 We can also build another world, as shown next,
called Shrubbery World that contains a single weakling
shrubbery at position [0 3], represented by the num-
ber 2, and see how astar navigates it.

(astar [0 0]
900
[[1 1 1 2 1]
[1 1 1 999 1]
[1 1 1 999 1]
[1 1 1 999 1]
[1 1 1 1 1]])

;=> [{:cost 9,
:yxs [[0 0] [0 1] [0 2] [1 2] [2 2] [3 2]

[4 2] [4 3] [4 4]]}
:steps 134]

When tracing the best path, you will see that the astar function prefers the nonshrub-
bery path. But what would happen if we placed a man-eating bunny along the previ-
ously safe path, represented by an ominously large number, as shown next?

(astar [0 0]
900
[[1 1 1 2 1]
[1 1 1 999 1]
[1 1 1 999 1]
[1 1 1 999 1]
[1 1 1 666 1]])

;=> [{:cost 10,
:yxs [[0 0] [0 1] [0 2] [0 3] [0 4] [1 4]

[2 4] [3 4] [4 4]]}
:steps 132]

Listing 7.13 Running the A* algorithm on the Z World

Listing 7.14 The Shrubbery World

Listing 7.15 The bunny world

The clear path

The bunny
lies in wait

Figure 7.3 A graphical
representation of Z World clearly
shows the optimal/only path.

154 CHAPTER 7 Functional programming
As expected, the astar function picks the shrubbery path (2) path instead of the evil
bunny path to reach the final destination.

7.4.2 Notes about the A* implementation

The A* algorithm was implemented as idiomatic Clojure source code. Each of the
data structures, from the sorted set to the tail-recursive astar function, to the higher-
order function min-by, was functional in nature and therefore extensible as a result.
We encourage you to explore the vast array of possible worlds traversable by our A*
implementation and see what happens should you change the heuristic (Dijkstra
1959) functions along the way. Clojure encourages experimentation, and by partition-
ing the solution this way, we’ve enabled you to explore different heuristics.

7.5 Summary
We’ve covered a lot about Clojure’s flavor of functional programming in this chapter,
and you may have noticed that it looks like many others. Clojure favors an approach
where immutable data is transformed through the application of functions. Addition-
ally, Clojure prefers that functions be free of side-effects and referentially transparent
(pure) in order to reduce the complexities inherent in widespread data mutation.
Lexical closures provide a simple yet powerful mechanism for defining functions that
carry around with them the value context in which they were created. This allows cer-
tain information to exist beyond their lexical context, much like a poor-man’s object.
Finally, Clojure is built with this in mind, in that its primary form of iteration is
through tail recursion as a natural result of its focus on immutability.

 In the next chapter, we’ll explore the feature most identified with Lisp: macros.

Part 4

Large-scale design

Clojure is a practical language, not an academic one; and in the real
world, programs grow large, change over time, and are confronted with shifting
requirements. In this part, we’ll show how Clojure’s Lisp heritage of “code is
data” can help address these problems. We’ll demonstrate the use of macros,
how to create a fluent builder, the benefits of a language that embraces the Java
platform, and how Clojure addresses the mutability of the real world.

Macros
If you give someone Fortran, he has
Fortran. If you give someone Lisp, he

has any language he pleases.
—Guy Steele

Macros are where the rubber of “code is data” meets the road of making programs
simpler and cleaner. To fully understand macros, you need to understand the dif-
ferent times of Clojure, of which macros perform the bulk of their work at compile
time. We’ll start by looking at what it means for code to be data and data to be used
as code. This is the background you’ll need to understand that control structures in
Clojure are built out of macros, and how you can build your own. The mechanics of
macros are relatively simple, and before you’re halfway through this chapter you’ll

This chapter covers
 Data is code is data

 Defining control structures

 Macros combining forms

 Using macros to control symbolic resolution time

 Using macros to manage resources

 Putting it all together: macros returning functions
157

159Data is code is data
structures mentioned in the previous chapters. Likewise, the expressions representing
the execution of functions and the use of control structures are also data structures!
These data representations of functions and their executions represent a concept dif-
ferent from the way other programming languages operate. Typically, there’s a sharp
distinction between data structures and functions of the language. In fact, most pro-
gramming languages don’t even remotely describe the form of functions in their tex-
tual representations. With Clojure, there’s no distinction between the textual form
and the actual form of a program. When a program is the data that composes the pro-
gram, then you can write programs to write programs. This may seem like nonsense
now, but as you’ll see throughout this chapter, it’s powerful.

 To start with, look at the built-in Clojure function eval, whose purpose is to take a
data structure representing a Clojure expression, evaluate it, and return the result.
This behavior can be seen in the following examples:

(eval 42)
;=> 42

(eval '(list 1 2))
;=> (1 2)

(eval (list 1 2))
; java.lang.ClassCastException: java.lang.Integer cannot be cast to clojure.

lang.IFn

Why did we get an exception for the last example? The answer to that lies in the previ-
ous example. The quote in '(list 1 2) causes eval to view it as (list 1 2), which is
the function call to create the resulting list. Likewise, for the final example eval
received a list of (1 2) and attempted to use 1 as a function, thus failing. Not very
exciting, is it? The excitement inherent in eval stems from something that we men-
tioned2 earlier—if you provide eval a list in the form expected of a function call, then
something else should happen. This something else would be the evaluation of a function
call and not of the data structure itself. Look at what happens when we try evaluating
something more complicated:

(eval (list (symbol "+") 1 2))
;=> 3

In words, the steps involved were as follows:

1 The function symbol received a string + and returned a symbol data type of +.
2 The function list received three arguments: a symbol +, the integer 1, and the

integer 2, and returned a list of these elements.
3 The eval function received a list data type of (+ 1 2), recognized it as the func-

tion call form, and executed the + function with the arguments 1 and 2, return-
ing the integer 3.

2 All the way back in section 2.5.

160 CHAPTER 8 Macros
8.1.1 Syntax-quote, unquote, and splicing

In section 1.5.6, we mentioned quoting and its effects on evaluation, and in this chapter
we’ll expand on that theme fully as it relates to Clojure’s macro facility. But the func-
tionality of the quoting forms is orthogonal to macros, and they can be used indepen-
dently. As we show3 in listing 8.1, using quoting and unquoting in a function allows us
to create an evaluation function, contextual-eval, that takes an explicit context map.

(defn contextual-eval [ctx expr]
(eval
`(let [~@(mapcat (fn [[k v]] [k `'~v]) ctx)]

~expr)))

(contextual-eval {'a 1, 'b 2} '(+ a b))
;=> 3

(contextual-eval {'a 1, 'b 2} '(let [b 1000] (+ a b)))
;=> 1001

3 Thanks to George Jahad for the implementation on which contextual-eval is based.

Listing 8.1 An implementation of eval taking a local context

Build let bindings
at compile-time

Handling nested syntax-quotes
Dealing with nested syntax-quotes can at times be complicated. But you can visualize
the way in which unquoting affects the nested structures as result of repeated eval-
uations (Steele 1990) relative to its nesting level:

(let [x 9, y '(- x)]
 (println `y)
 (println ``y)
 (println ``~y)
 (println ``~~y)
 (contextual-eval {'x 36} ``~~y))
; user/y
; (quote user/y)
; user/y
; (- x)
;=> -36

The nesting of the syntax-quotes in the first two println calls takes the value of y
further up the abstraction ladder. But by including a single unquote in the third
println, we again bring it back down. Finally, by unquoting a second time, we’ve cre-
ated a structure that can then be evaluated—and doing so yields the result -36. We
had to use contextual-eval in the tail because core eval doesn’t have access to
local bindings—only Var bindings. One final note is that had we attempted to unquote
one extra time, we’d have seen the exception java.lang.IllegalStateExcep-
tion: Var clojure.core/unquote is unbound. The reason for this error is that
unquote is the way to “jump” out of a syntax-quote, and to do so more than nesting
allows will cause an error. We won’t use this technique in this chapter, and in most
cases you won’t need to utilize it unless you’re planning to create macro-defining
macros—something we won’t do until section 13.1.

161Defining control structures
Rarely will you see the use of syntax-quote outside the body of a macro, but there’s
nothing preventing it from being used this way—and doing so is powerful. But the
maximum power of quoting forms is fully realized when used with macros.

Working from a model where code is data, Clojure is able to manipulate structures
into different executable forms at both runtime and compile time. We’ve already
shown how this can be done at runtime using eval and contextual-eval, but this
doesn’t serve the purpose of compile-time manipulation. It probably doesn’t need say-
ing, but because this is a book about Clojure, we will: macros are the way to achieve
this effect.

8.1.2 Macro rules of thumb

Before we begin, we should list a few rules of thumb to observe when writing macros:

 Don’t write a macro if a function will do. Reserve macros to provide syntactic
abstractions or create binding forms.

 Write an example usage.
 Expand your example usage by hand.
 Use macroexpand, macroexpand-1, and clojure.walk/macroexpand-all4 liber-

ally to understand how your implementation works.
 Experiment at the REPL.
 Break complicated macros into smaller functions whenever possible.

Throughout this chapter, you’ll see all of these rules to varying degrees. Obviously,
we’re trying to balance best practices, teaching, and page counts, so we may not always
adhere entirely. Even so, we’ll try to highlight those times when we do break from the
recommended heuristics. Having said that, we’ll talk first about the most ubiquitous
use of macros: creating custom control structures.

8.2 Defining control structures
Most control structures in Clojure are implemented via macros, so they provide a nice
starting point for learning how macros can be useful. Macros can be built with or with-
out using syntax-quote, so we’ll show examples of each.

 In languages lacking macros, such as Haskell5 for example, the definition of control
structures relies on the use of higher-order functions such as we showed in section
7.1.2. Though this fact in no way limits the ability to create control structures in
Haskell, the approach that Lisps take to the problem is different. The most obvious
advantage of macros over higher-order functions is that the former manipulate
compile-time forms, transforming them into runtime forms. This allows your programs

4 The macroexpand-all function is a useful debugging aid, as we’ll demonstrate in this chapter. But it’s worth
knowing that unlike the other macroexpand functions, it doesn’t use exactly the same logic as the Clojure
compiler itself, and thus may in some unusual circumstances produced misleading results.

5 Although there’s a GHC extension named Template Haskell that provides a macro-like capability, this isn’t
the norm.

162 CHAPTER 8 Macros
to be written in ways natural to your problem domain, while still maintaining runtime
efficiency. Clojure already provides a rich set of control structures, including but not
limited to doseq, while, if, if-let, and do, but in this section we’ll write a few others.

8.2.1 Defining control structures without syntax-quote

Because the arguments to defmacro aren’t evaluated before being passed to the
macro, they can be viewed as pure data structures, and manipulated and analyzed as
such. Because of this, amazing things can be done on the raw forms supplied to mac-
ros even in the absence of unquoting.

 Imagine a macro named do-until that will execute all of its clauses evaluating as
true until it gets one that is falsey:

(do-until
(even? 2) (println "Even")
(odd? 3) (println "Odd")
(zero? 1) (println "You never see me")
:lollipop (println "Truthy thing"))

; Even
; Odd
;=> nil

A good example of this type of macro is Clojure’s core macro cond, which with some
minor modifications can be made to behave differently:

(defmacro do-until [& clauses]
(when clauses

(list `when (first clauses)
(if (next clauses)

(second clauses)
(throw (IllegalArgumentException.

"do-until requires an even number of forms")))
(cons 'do-until (nnext clauses)))))

The first expansion of do-until illustrates how this macro operates:

(macroexpand-1 '(do-until true (prn 1) false (prn 2)))
;=> (when true (prn 1) (do-until false (prn 2)))

do-until recursively expands into a series of when calls, which themselves expand into
a series of if expressions:

(require '[clojure.walk :as walk])
(walk/macroexpand-all '(do-until true (prn 1) false (prn 2)))
;=> (if true (do (prn 1) (if false (do (prn 2) nil))))

(do-until true (prn 1) false (prn 2))
; 1
;=> nil

Now you could write out the nested if structure manually and achieve the same
result, but the beauty of macros lies in the fact that they can do so on your behalf
while presenting a lightweight and intuitive form. In cases where do-until can be
used, it removes the need to write and maintain superfluous boilerplate code. This

163Defining control structures
idea can be extended to macros in general and their propensity to reduce unneeded
boilerplate for a large category of circumstances, as the programmer desires. One
thing to note about do-until is that it’s meant to be used only for side effects, because
it’s designed to always return nil. Macros starting with do tend to act the same.

8.2.2 Defining control structures using syntax-quote and unquoting

Not all control structures will be as simple as do-until. Instead, there will be times
when you’ll want to selectively evaluate macro arguments, structures, or substructures.
In this section, we’ll explore one such macro named unless, implemented using
unquote and unquote-splice.

 Ruby provides a control structure named unless that reverses the sense (Olsen
2007) of a when statement, executing the body of a block when a given condition eval-
uates to false:

(unless (even? 3) "Now we see it...")
;=> "Now we see it..."

(unless (even? 2) "Now we don't.")
;=> nil

The maverick implementation6 of unless as demonstrated previously and as shown in
the following listing is straightforward.

(defmacro unless [condition & body]
`(if (not ~condition)

(do ~@body)))

(defn from-end [s n]
(let [delta (dec (- (count s) n))]

(unless (neg? delta)
(nth s delta))))

(from-end (range 1 101) 10)
;=> 90

The body of the unless implementation uses three features first shown in section
1.5.6: syntax-quote (written as a single back-quote), unquote (written as ~), and
unquote-splice (written as ~@). Syntax-quote allows the if form to act as a template for
the expression that any use of the macro becomes when expanded. The unquote and
splicing-unquote provide the “blanks” where the values for the parameters condition
and body will be inserted.

 Because unless relies on the result of a condition for its operation, it’s imperative
that it evaluate the condition part using unquote. If we didn’t use unquote in this
instance, then instead of evaluating a function (even? 3), it would instead attempt to
resolve a namespace Var named condition that may not exist —and if it does exist, it

6 The proper way to define unless is either (defmacro unless [& args] `(when-not ~@args)) or even
(clojure.contrib.def/defalias unless when-not)—or just use when-not from the start.

Listing 8.2 A Clojure Implementation of unless

Unquote condition
Splice body

Return nil
if negative

164 CHAPTER 8 Macros
might be arbitrarily truthy at the time of the macro call. Some of the unintended con-
sequences of this mistake are shown in the next listing.

(macroexpand `(if (not condition) "got it"))
;=> (if (clojure.core/not user/condition) "got it")

(eval `(if (not condition) "got it"))
; java.lang.Exception: No such var: user/condition

(def condition false)
(eval `(if (not condition) "got it"))
;=> "got it"

Clearly this isn’t the desired behavior. Instead, by unquoting the condition local, we
ensure that the function call is used instead. It’s easy to forget to add an unquote to
the body of a macro, and depending on the condition of your runtime environment,
the problem may not be immediately obvious.

8.3 Macros combining forms
Macros are often used for combining a number of forms and actions into one consis-
tent view. This behavior could be seen in the previous section with the do-until
macro, but it’s more general. In this section, we’ll show how macros can be used to
combine a number of tasks in order to simplify an API. Clojure’s defn macro is an
instance of this type of macro because it aggregates the processes of creating a func-
tion, including

 Creating the corresponding function object using fn
 Checking for and attaching a documentation string
 Building the :arglists metadata
 Binding the function name to a Var
 Attaching the collected metadata

You could perform all of these steps over and over again every time you wanted to cre-
ate a new function, but thanks to macros you can instead use the more convenient
defn form. Regardless of your application domain and its implementation, program-
ming language boilerplate code inevitably occurs. But identifying these repetitive tasks
and writing macros to simplify and reduce or eliminate the tedious copy-paste-tweak
cycle can work to reduce the incidental complexities inherent in a project. Where mac-
ros differ from techniques familiar to proponents of Java’s object-oriented style—
including hierarchies, frameworks, inversion of control, and the like—is that they’re
treated no differently by the language itself. Clojure macros work to mold the language
into the problem space rather than forcing you to mold the problem space into the
constructs of the language. There’s a specific term for this, domain-specific language, but
in Lisp the distinction between DSL and API is thin to the point of transparency.

 Envision a scenario where you want to be able to define Vars that call a function
whenever their root bindings change. You could do this using the add-watch function

Listing 8.3 Name capture in unless

Undesired result
when bound

165Using macros to change forms
that allows for the attachment of a watcher to a reference type that’s called whenever a
change occurs within. The add-watch function itself takes three arguments: a refer-
ence, a watch function key, and a watch function called whenever a change occurs.
You could enforce that every time someone wants to define a new Var, they must fol-
low these steps:

1 Define the Var.
2 Define a function (maybe inline to save a step) that will be the watcher.
3 Call add-watch with the proper values.

A meager three steps isn’t too cumbersome a task to remember in a handful of uses,
but over the course of a large project it’s easy to forget and/or morph one of these
steps when the need to perform them many times occurs. Therefore, perhaps a better
approach is to define a macro to perform all of these steps for you, as the following
definition does:

(defmacro def-watched [name & value]
`(do

(def ~name ~@value)
(add-watch (var ~name)

:re-bind
(fn [~'key ~'r old# new#]

(println old# " -> " new#)))))

Ignoring symbol resolution and auto-gensym, which we’ll cover in upcoming sections,
the macro called as (def-watched x 2) expands into roughly the following:

(do (def x 2)
(add-watch (var x)

:re-bind
(fn [key r old new]

(println old " -> " new))))

The results of def-watched are thus

(def-watched x (* 12 12))
x
;=> 144

(def x 0)
; 144 -> 0

Lisp programs in general (and Clojure programs specifically) use macros of this sort
to vastly reduce the boilerplate needed to perform common tasks. Throughout this
chapter, you’ll see macros that combine forms, so there’s no need to dwell on the mat-
ter here. Instead, we’ll move on to a macro domain that does just that, with the added
bonus of performing some interesting transformations in the process.

8.4 Using macros to change forms
One way to design macros is to start by writing out example code that you wish
worked—code that has the minimal distance between what you must specify and the

166 CHAPTER 8 Macros
specific application domain in which you’re working. Then, with the goal of making
this code work, you begin writing macros and functions to fill in the missing pieces.

 For example, when designing software systems, it’s often useful to identify the
“things” comprising your given application domain, including their logical groupings.
The level of abstraction at this point in the design is best kept high (Rosenberg 2005)
and shouldn’t include details about implementation. Imagine that you want to
describe a simple domain of the ongoing struggle between humans and monsters:

 Man versus monster
 People

 Men (humans)
 Name
 Have beards?

 Monsters
 Chupacabra

 Eats goats?

Though this is a simple format, it needs work to be programmatically useful. There-
fore, the goal of this section is to write macros performing the steps to get from this
simple representation to the one more conducive to processing. One such structure is
a tree composed of individual generic nodes, each taking a form similar to that shown
in the next listing.

{:tag <node form>,
:attrs {},
:content [<nodes>]}

You’d never say this is a beautiful format, but it does present practical advantages over
the original format—it’s a tree, it’s composed of simple types, it’s regular, and it’s rec-
ognizable to some existing libraries.

CLOJURE APHORISM Clojure is a design language where the conceptual
model is also Clojure.

We’ll start with the outer-level element, domain:

(defmacro domain [name & body]
`{:tag :domain,

:attrs {:name (str '~name)},
:content [~@body]})

The body of domain is fairly straightforward in that it sets the domain-level tree node
and splices the body of the macro into the :content slot. After domain expands, you’d
expect its body to be composed of a number of grouping forms, which are then han-
dled by the aptly named macro:

Listing 8.4 Domain DSL’s underlying form

Domain, grouping
Name people

Properties

167Using macros to change forms
(declare handle-things)

(defmacro grouping [name & body]
`{:tag :grouping,

:attrs {:name (str '~name)},
:content [~@(handle-things body)]})

Similarly to domain, grouping expands into a node with its body spliced into the :con-
tent slot. But grouping differs from domain in that it splices in the result of the call to
a function handle-things:

(declare grok-attrs grok-props)

(defn handle-things [things]
(for [t things]

{:tag :thing,
:attrs (grok-attrs (take-while (comp not vector?) t))
:content (if-let [c (grok-props (drop-while (comp not vector?) t))]

[c]
[])})))

Because the body of a thing is fairly simple and regular, we can simplify the implemen-
tation of handle-things by again splitting it into two functions. The first function
grok-attrs handles everything within the body of a thing that’s not a vector, and the
other grok-props handles properties that are. In both cases, these leaf-level functions
return specifically formed maps:

(defn grok-attrs [attrs]
(into {:name (str (first attrs))}

(for [a (rest attrs)]
(cond

(list? a) [:isa (str (second a))]
(string? a) [:comment a]))))

The implementation of grok-attrs may seem overly complex, especially given that
the example domain model DSL only allows for a comment attribute and an optional
isa specification. But by laying out this way, we can easily expand the function to han-
dle a richer set of attributes later. Likewise with grok-props, we provide a more com-
plicated function to pull apart the vector representing a property so that it’s more
conducive to expansion:

(defn grok-props [props]
(when props

{:tag :properties, :attrs nil,
:content (apply vector (for [p props]

{:tag :property,
:attrs {:name (str (first p))},
:content nil}))}))

Now that we’ve created the pieces, take a look at the new DSL in action in the follow-
ing listing.

168 CHAPTER 8 Macros
(def d
(domain man-vs-monster

(grouping people
(Human "A stock human")

(Man (isa Human)
"A man, baby"
[name]
[has-beard?]))

(grouping monsters
(Chupacabra

"A fierce, yet elusive creature"
[eats-goats?]))))

(:tag d)
;=> :domain

(:tag (first (:content d)))
;=> :grouping

Maybe that’s enough to prove to you that we’ve constructed the promised tree, but
probably not. Therefore, we can pass a tree into a function that expects one of that
form7 and see what comes out on the other end:

(use '[clojure.xml :as xml])
(xml/emit d)

Performing this function call will print out the corresponding XML representation,
minus the pretty printing, shown here.

<?xml version='1.0' encoding='UTF-8'?>
<domain name='man-vs-monster'>

<grouping name='people'>
<thing name='Human' comment='A stock human'>

<properties></properties>
</thing>
<thing name='Man' isa='Human' comment='A man, baby'>

<properties>
<property name='name'/>
<property name='has-beard?'/>

</properties>
</thing>

</grouping>
<grouping name='monsters'>

<thing name='Chupacabra' comment='A fierce, yet elusive creature'>
<properties>

<property name='eats-goats?'/>
</properties>

Listing 8.5 Exploring the domain DSL results

7 The namespace clojure.contrib.json in the Clojure contrib library also contains some functions that
would be able to handle the domain DSL structure seamlessly. Additionally, Enlive (http://mng.bz/8Hh6)
should also recognize the resultant structure.

Listing 8.6 An XML transformation of the domain DSL structure

Group of people

Group of monsters
One kind of monster

(Grouping ...)

(Human ...)

(Man ...)

(Grouping ...)

169Using macros to control symbolic resolution time
</thing>
</grouping>

</domain>

Our approach was to define a single macro entry point domain, intended to build the
top-level layers of the output data structure and instead pass the remainder on to aux-
iliary functions for further processing. In this way, the body of the macro expands into
a series of function calls, each taking some subset of the remaining structure and
returning some result that’s spliced into the final result. This functional composition
approach is fairly common when defining macros. The entirety of the domain descrip-
tion could’ve been written within one monolithic macro, but by splitting the responsi-
bilities, you can more easily extend the representations for the constituent parts.

 Macros take data and return data, always. It so happens that in Clojure, code is
data and data is code.

8.5 Using macros to control symbolic resolution time
Whereas functions accept and return values that are meaningful to your application
at runtime, macros accept and return code forms that are meaningful at compile
time. Any symbol has some subtleties depending on whether it’s fully qualified or not,
its resolution time, and its lexical context. These factors can be controlled in any par-
ticular case by the appropriate use of quoting and unquoting, which we explore in
this section.

 Clojure macros are mostly safe from name capture, in that the use of syntax-quote
in macros is encouraged and idiomatic, and it’ll resolve symbols at macro-expansion
time. This strategy reduces complexity by ensuring that symbols refer to those avail-
able at a known instance rather than to those unknown in the execution context.

 For example, consider one of the simplest possible macros:

(defmacro resolution [] `x)

Viewing the expansion of this macro is illuminating in understanding how Clojure
macros resolve symbols:

(macroexpand '(resolution))
;=> user/x

The expansion of the macro resolves the namespace of the syntax-quoted symbol x.
This behavior is useful in Clojure by helping to avoid free name capturing problems
that are possible in a macro system such as that found in Common Lisp.8 Here’s an
example that would trip up a lesser implementation of syntax-quote, but which does
just what we want in Clojure:

(def x 9)
(let [x 109] (resolution))
;=> 9

8 Among one of the ways that Common Lisp works to alleviate this kind of problem is the use of gensym. The
key difference is that in Common Lisp, you have to be careful to avoid name capturing, whereas Clojure avoids
it by default.

170 CHAPTER 8 Macros
The x defined in the let isn’t the same as the namespace-qualified user/x referred to
by the macro resolution. As you might expect, the macro would’ve thrown an
unbound Var exception had we not first executed the call to def.

 Clojure does provide a way to defer symbolic resolution for those instances where
it may be useful to resolve it within the execution context, which we’ll show now.

8.5.1 Anaphora

Anaphora9 in spoken language is a term used in a sentence referring back to a previ-
ously identified subject or object. It helps to reduce repetition in a phrase by replac-
ing “Jim bought 6,000 Christmas lights and hung all of the Christmas lights,” with “Jim
bought 6,000 Christmas lights and hung them all.” In this case, the word them is the
anaphora. Some programming languages use anaphora, or allow for their simple defi-
nition. Scala has a rich set of anaphoric (Odersky 2008) patterns primarily focused
around its _ operator:

Array(1, 2, 3, 4, 5).map(2 * _)
//=> res0: Array[Int] = Array(2, 4, 6, 8, 10)

In this Scala example, the underscore serves to refer back to an implicitly passed
argument to the map function, which in this case would be each element of the array
in succession. The same expression could be written with (x) => 2 * x—the syntax for
an anonymous function—in the body of the map call, but that would be unnecessarily
verbose.

 Anaphora don’t nest, and as a result are generally not employed in Clojure. Within
a nested structure of anaphoric macros, you can only refer to the most immediate ana-
phoric binding, and never those from outer lexical contours, as demonstrated in list-
ing 8.7. For example, the Arc programming language (Graham Arc) contains a macro
named awhen similar to Clojure’s when, save that it implicitly defines a local named it
used within its body to refer to the value of the checked expression.

(defmacro awhen [expr & body]
`(let [~'it ~expr]

(when ~'it
(do ~@body))))

(awhen [:a :b :c] (second it)
;=> :b

(awhen nil (println "Will never get here"))
;=> nil

(awhen :outer (awhen :inner [it]))
;=> [:inner]

9 Anaphora is pronounced un-NAF-er-uh.

Listing 8.7 An example of anaphora and its weakness

Use it in body

Fail to nest

171Using macros to manage resources
Clojure provides similar macros that do nest and replace the need for anaphora: if-
let and when-let. When designing your own macros, it’s preferred that you build
them along these lines so that the macro itself takes the name to be bound. But just
because typical anaphorics are limited, that’s not to say that they’re entirely useless.
Instead, for your own libraries you may find that their usage is intuitive. You’ll see the
pattern ~'symbol at times in Clojure macros, because this is the idiomatic way to selec-
tively capture a symbolic name within the body of a macro. The reason for this bit of
awkwardness10 is because Clojure’s syntax-quote attempts to resolve symbols in the
current context, resulting in fully qualified symbols. Therefore, ~' avoids that resolu-
tion by unquoting a quote.

8.5.2 (Arguably) useful selective name capturing

We contend that there’s only one case to be made for selective name capturing in Clo-
jure macros—the case when you’re forced to embed third-party macros and functions
in your macros that rely on the existence of anaphora. One such macro is the proxy
macro in Clojure’s core libraries, which provides an anaphoric symbol named this
within its body for use therein. We’ll cover the proxy macro in depth in section 9.1, so
there’s no need to discuss it here. But bear in mind that should this macro ever be
embedded within your own macros, you may be forced to use the ~'this pattern.

HYGIENE A hygienic macro is one that doesn’t cause name capturing at macro
expansion time. Clojure macros help to ensure hygiene by namespace-
resolving symbols within the body of syntax-quote at macro-definition time.
As you saw, symbols are expanded into the form user/a-symbol within the
body of syntax-quote. To close this hygienic loop, Clojure also disallows the
definition of qualified locals within the body of a macro. In order to selec-
tively capture names within Clojure macros, you must explicitly do so via the
~'a-symbol pattern.

Clojure prefers that symbols be either declared or bound at macro-definition time.
But using the resolution deferment strategy outlined earlier, you can relax this
requirement for those instances where doing so would be useful.

8.6 Using macros to manage resources
Managing scarce resources or those with a finite lifetime is often viewed as a sweet
spot for macro usage. In Java, such activities are almost always performed using the
try/catch/finally idiom (Bloch 2008), as shown:

try {
// open the resource

}
catch (Exception e) {

// handle any errors

10 Awkwardness is good since it’s a strong signal to make the user aware he is drifting away from the true path to clojure enlight-
enment. —Christophe Grand

172 CHAPTER 8 Macros
}
finally {

// in any case, release the resource
}

We showed in section 1.5.8 that Clojure also has a try/catch/finally form that can
be used in the same way, but like the Java idiom, you must remember to explicitly
close the resource within the finally block. Clojure provides a generic with-open
macro, demonstrated in listing 8.8, that when given a “closeable” object bound to a
name, will automatically call its .close method (assuming that one exists) within a
finally block.

(import [java.io BufferedReader InputStreamReader]
[java.net URL])

(defn joc-www []
(-> "http://joyofclojure.com/hello" URL.

.openStream InputStreamReader. BufferedReader.))

(let [stream (joc-www)]
(with-open [page stream]

(println (.readLine page))
(print "The stream will now close... "))

(println "but let's read from it anyway.")
(.readLine stream))

; Hello Cleveland
; The stream will now close... but let's read from it anyway.
; java.io.IOException: Stream closed

Not all instances of resources in your own programs will be closeable. In these
instances, we present a generic template for resource allocating macros that can be
used for many cases, shown in the following listing.

(defmacro with-resource [binding close-fn & body]
`(let ~binding

(try
(do ~@body)
(finally
(~close-fn ~(binding 0))))))

(let [stream (joc-www)]
(with-resource [page stream]

#(.close %)
(.readLine page)))

The macro with-resource is generic enough and so generally ubiquitous across dif-
fering flavors (Symbolics Inc.11) to almost be considered a Lisp design pattern. The

Listing 8.8 An example of with-open

Listing 8.9 A more general template for with-open-like macros

11 The spirit of this section was inspired by a similar discussion of “Writing Macros to Surround Code.” If you
can get your hands on the original Symbolics manuals, do so—they contain a wealth of information.

Begin IO block

Use illegally after close

173Putting it all together: macros returning functions
macro with-resource differs from with-open in that it does not assume that its
resource is closeable but instead delegates the task of closing the resource to a close-
fn function taken as an argument. One final point is that with-resource avoids the
nesting problem of anaphoric macros because it requires that the resource be named
explicitly a la [stream (joc-www)]. This approach allows for the proper nesting of
with-resource macros; and in fact, the use of named bindings marked by vectors is
ubiquitous and idiomatic in Clojure.

8.7 Putting it all together: macros returning functions
In section 7.1, we introduced Clojure’s constraint facility that uses pre- and post-
condition checks on function arguments and return values respectively to ensure
some assertions about said function. In that section, we talked briefly about how sepa-
rating the constraints from the functions they’re constraining allows you to more flex-
ibly apply different assertion templates based on need and context.

CLOJURE APHORISM Clojure programmers don’t write their apps in Clojure.
They write the language that they use to write their apps in Clojure.

In this section, we’re going to take this idea one step further by introducing a macro
named contract that implements a simple DSL to describe function constraints. For
example, a proposed DSL should be nameable and describe its pre- and post-
conditions in an intuitive way, building a higher-order function that will be used to
apply its constraints later. The following sketches a contract specifying that a function
should take only a positive number and return its value multiplied by 2:

(contract doubler
[x]
(:require

(pos? x))
(:ensure

(= (* 2 x) %)))

The contract’s :require list (Meyer 2000) refers to preconditions, and the :ensure
list the postconditions. Given this description, how would you start to implement a
macro to realize this sketch? If you haven’t already gathered from the section title and
the initial problem statement, the macro must return a function, so we’ll start there
with the following listing.

(declare collect-bodies)

(defmacro contract [name & forms]
(list* `fn name (collect-bodies forms)))

The contract macro calls a function collect-bodies that hasn’t been written yet, so
we had to use declare to avoid a compilation error. Hold fast, because we’re going to
implement that necessary function soon. But first, imagine what the form of the
returned function will be when it finally comes out of contract:

Listing 8.10 The contract top-level macro

174 CHAPTER 8 Macros
(fn doubler
([f x]

{:post [(= (* 2 x) %)],
:pre [(pos? x)]}

(f x)))

We also want to allow for the multi-arity function definition form so that the con-
tract can take more than one specification per arity function, each separated by a
vector of symbols. The first step down that path starts with an implementation of
collect-bodies:

(declare build-contract)

(defn collect-bodies [forms]
(for [form (partition 3 forms)]

(build-contract form)))

The primary task of collect-bodies is to build a list of the body portion of the
contract, each partitioned into three segments. These partitions represent the arg-
list, requires, and ensures of the contract, which we’ll then pass along to another
function named build-contract, that will build the arity bodies and corresponding
constraint maps. This is shown next.

(defn build-contract [c]
(let [args (first c)]

(list
(into '[f] args)
(apply merge

(for [con (rest c)]
(cond (= (first con) :require)

(assoc {} :pre (vec (rest con)))
(= (first con) :ensure)

(assoc {} :post (vec (rest con)))
:else (throw (Exception. (str "Unknown tag " (first con)))))))

(list* 'f args))))

The function build-contract is where the heart of contract construction lies, build-
ing the arity bodies that contain constraint maps. The difference is that each body is a
higher-order function that takes an additional function as an argument, which the
arguments are then delegated to. This allows us to compose the contract function
with a constrained function, as shown in the next listing.

(def doubler-contract
(contract doubler

[x]
(:require

(pos? x))
(:ensure

(= (* 2 x) %))))

Listing 8.11 The contract auxiliary function build-contract

Listing 8.12 Composition of contract function and constrained function

Build call to f

Define contract

175Putting it all together: macros returning functions
(def times2 (partial doubler-contract #(* 2 %)))
(times2 9)
;=> 18

(def times3 (partial doubler-contract #(* 3 %)))
(times3 9)
; java.lang.AssertionError: Assert failed: (= (* 2 x) %)

As you might expect, times2 fulfills the contract, whereas times3 doesn’t. We could
extend doubler-contract to handle extended arities, as shown here.

(def doubler-contract
(contract doubler

[x]
(:require

(pos? x))
(:ensure

(= (* 2 x) %))
[x y]

(:require
(pos? x)
(pos? y))

(:ensure
(= (* 2 (+ x y)) %))))

((partial doubler-
contract #(* 2 (+ %1 %2))) 2 3)

;=> 10

((partial doubler-
contract #(+ %1 %1 %2 %2)) 2 3)

;=> 10

((partial doubler-contract #(* 3 (+ %1 %2))) 2 3)
; java.lang.AssertionError:
; Assert failed: (= (* 2 (+ x y)) %)

We could extend the contract to cover any number of expected function arities using
contract, independent of the functions themselves. This provides a nice separation
of the work to be done from the expected work to be done. By using the contract
macro, we’ve provided a way to describe the expectations of a function, including but
not limited to

 The possible types of its inputs and output
 The relationship of the function output to its inputs
 The expected function arities
 The “shape” of the inputs and output

The contract macro could be extended in many complementary ways. For example,
Clojure’s function constraints are verified using logical and—the implications being
that any additional pre- or postcondition works to tighten the requirements. But there
may be times when loosening the constraints on the inputs and tightening them on the

Listing 8.13 Contract for multiple-arity functions

Test incorrect fn

Define 2-arg contract

Test an incorrect fn

176 CHAPTER 8 Macros
output makes more sense. In any case, this section isn’t about the nuances of contracts
programming, and to dig deeper would elude the point that using macros to return
functions is an extremely powerful way to extend the capabilities of Clojure itself.

8.8 Summary
We’ve explored various use cases for macros and given examples of each. Though
instructive to the point under discussion, we also tried to show how macros can be
used to mold Clojure into the language that shortens the gap between your problem
space and solution space. In your own unique programs, you should try to do the
same. But the most important skill that you can learn on your path toward macro mas-
tery is the ability to recognize when to avoid using them. The general answer of course
is whenever, and as often as you can.

 In the next chapter, we’ll cover various powerful way to organize and categorize
data types and functions using Clojure’s namespaces, multimethods, types, and
protocols.

Combining
data and code
Clojure provides powerful features for grouping and partitioning logical units of
code and data. Most logical groupings occur within namespaces, Clojure’s ana-
logue to Java packages. We explore how to build, manipulate, and reason about
them. Also, in this chapter we’ll play with Clojure’s powerful multimethods that
provide polymorphism based on arbitrary dispatch functions. We then uncover
recent additions to Clojure supporting abstraction-oriented programming —types, pro-
tocols, and records. Finally, the chapter concludes with the creation of a fluent
chess-move facility, comparing a Java approach to solving the problem with a Clo-
jure approach.

This chapter covers
 Namespaces

 Exploring Clojure multimethods with the Universal
Design Pattern

 Types, protocols, and records

 Putting it all together: a fluent builder for chess moves
177

179Namespaces
9.1.1 Creating namespaces

There are a number of ways to create a new namespace; each has its advantages and
use cases. The choice of one namespace-creation mechanism over another amounts
to choosing the level of control over the default symbolic mappings.

NS

In idiomatic Clojure source code, you’ll see the ns macro used almost exclusively. By
using the ns macro, you automatically get two sets of symbolic mappings—all classes
in the java.lang package and all of the functions, macros, and special forms in the
clojure.core namespace:

(ns chimp)
(reduce + [1 2 (Integer. 3)])
;=> 6

Using the ns macro creates a namespace if it doesn’t already exist, and switches to that
namespace. The ns macro is intended for use in source code files and not in the REPL,
although there’s nothing preventing it.

IN-NS

Using the in-ns function also imports the java.lang package like ns; but it doesn’t
create any mappings for functions or macros in clojure.core. The in-ns function
also takes an explicit symbol used as the namespace qualifier, as in

(in-ns 'gibbon)

(reduce + [1 2 (Integer. 3)])
; java.lang.Exception: Unable to resolve symbol: reduce in this context

(clojure.core/refer 'clojure.core)
(reduce + [1 2 (Integer. 3)])
;=> 6

The in-ns function is more amenable to REPL experimentation when dealing with
namespaces than ns.

CREATE-NS

The finest level of control for creating namespaces is provided through the create-ns
function, which when called takes a symbol and returns a namespace object:

(def b (create-ns 'bonobo))
b
;=> #<Namespace bonobo>

((ns-map b) 'String)
;=> java.lang.String

The call to create-ns doesn’t switch to the named namespace, but it does create Java
class mappings automatically. When given a namespace object (retrieved using the
find-ns function also), you can manipulate its bindings programmatically using the
functions intern and ns-unmap:

180 CHAPTER 9 Combining data and code
(intern b 'x 9)
;=> #'bonobo/x
bonobo/x
;=> 9

In the preceding code, we bound the symbol x to the value 9 in the namespace
bonobo, and then referenced it directly using its qualified name bonobo/x. We can do
the same thing for any type of Var binding:

(intern b 'reduce clojure.core/reduce)
;=> #'bonobo/reduce

(intern b '+ clojure.core/+)
;=> #'bonobo/+

(in-ns 'bonobo)
(reduce + [1 2 3 4 5])
;=> 15

Because only Java class mappings are created by create-ns, you’ll have to intern any
Clojure core functions, as we did with + and reduce. You can even inspect the map-
pings within a namespace programmatically, and likewise remove specific mappings:

(in-ns 'user)
(get (ns-map 'bonobo) 'reduce)
;=> #'bonobo/reduce

(ns-unmap 'bonobo 'reduce) ;=> nil

(get (ns-map 'bonobo) 'reduce)
;=> nil

Finally, you can wipe a namespace using remove-ns:

(remove-ns 'bonobo)
;=> #<Namespace bonobo>

(all-ns)
;=> (#<Namespace clojure.set> #<Namespace clojure.main>

#<Namespace clojure.core> #<Namespace clojure.zip>
#<Namespace chimp> #<Namespace gibbon>
#<Namespace clojure.xml>)

You should be careful when populating namespaces
using create-ns and intern, because they cause
potentially confusing side-effects to occur. Their use is
intended only for advanced techniques, and even then
they should be used cautiously.

9.1.2 Expose only what’s needed

Knowing that namespaces operate as a two-level map-
ping will only get you so far in creating and using them
effectively. You must understand other practical matters
to use namespaces to their fullest. For example, for a
given namespace joy.contracts, your directory struc-
ture could look like that in figure 9.2.

Figure 9.2 Namespace private
directories: the directories layout
for an illustrative joy.contracts
namespace

181Namespaces
 This directory structure is fairly
straightforward, but there are a couple
items to note. First, though the
namespace is named joy.contracts,
the corresponding Clojure source file is
located in the contracts-lib/src/joy
directory. This is a common technique
in organizing Java and Clojure projects,
where the actual source directories and
files are located in a common src subdi-
rectory in the main project directory.
The additional files build.xml, pom.xml,
and project.clj correspond to the build scripts for Apache Ant, Maven, and Leiningen,
respectively. These build scripts will know, through either configuration or conven-
tion, that the src directory contains the directories and source files for Clojure
namespaces and not part of the namespace logical layout. If you were to open the con-
tracts.clj file located in contracts-lib/src/joy in your favorite editor, then you might
see something like that shown in figure 9.3.

 The file contracts.clj defines the namespace joy.contracts and defines the func-
tion build-contract using the defn- macro. The use of defn- in this way indicates to
Clojure that the build-contract function is private to the joy.contracts

namespace. The defn- macro is provided for convenience and simply attaches privi-
leged metadata to the Var containing the function. You could attach the same
namespace privacy metadata yourself, as shown:

(ns hider.ns)

(defn ^{:private true} answer [] 42)

(ns seeker.ns
(:refer hider.ns))

(answer)
; java.lang.Exception: Unable to resolve symbol: answer in this context

The use of ^{:private true} in this way will also work within a def and a defmacro,
and for these cases it’s required, because there’s no corresponding def- and def-
macro- in Clojure’s core.

HYPHENS/UNDERSCORES If you decide to name your namespaces with
hyphens, à la my-cool-lib, then the corresponding source file must be
named with underscores in place of the hyphens (my_cool_lib.clj).

Because Clojure namespace names are tied to the directory in which they reside, you
can also create a certain directory structure conducive to hiding implementation
details, as seen in figure 9.4.

 By creating another subdirectory to contracts-lib/src/joy named impl, you can
effectively hide implementation details for your code. The public-facing API would be

Figure 9.3 Namespace private source: the top of
the source file for the joy.contracts namespace

182 CHAPTER 9 Combining data and code
located in contracts.clj and the “hidden” implemen-
tation details in impl.clj. Your clients would be
expected to refer only to the elements in con-
tracts.clj, whereas your library could refer to ele-
ments in impl.clj, as shown in figure 9.5.

 Of course, nothing’s stopping you from also ref-
erencing the joy.contracts.impl namespace, but
you do so at their own peril. There are never any
guarantees that implementation details will remain
the same shape from one release to the next.

9.1.3 Declarative inclusions and exclusions

When defining namespaces, it’s important to include only the references that are
likely to be used. Clojure prefers a fine-grained Var mapping via a set of directives on
the ns macro: :exclude, :only, :as, :refer-clojure, :import, :use, :load, and
:require.

 We’ll describe a namespace named joy.ns-ex first in prose and then using ns and
its directives. In this namespace, we want to exclude the defstruct macro from

Figure 9.5 Private API source: the client-facing API is located in
contracts.clj and the private API in impl.clj.

Figure 9.4 Private API directories:
using the folder layout to hide
namespace implementation details

183Exploring Clojure multimethods with the Universal Design Pattern
clojure.core. Next, we want to use everything in clojure.set and clojure.xml
without namespace qualification. Likewise, we wish to use only the functions are and
is from the clojure.test namespace without qualification. We then want to load the
clojure.zip namespace and alias it as z. Finally, we want to import the Java classes
java.util.Date and java.io.File. By providing directives, the problem of
namespace inclusions and exclusions become a declarative matter, as shown:

(ns joy.ns-ex
(:refer-clojure :exclude [defstruct])
(:use (clojure set xml))
(:use [clojure.test :only (are is)])
(:require (clojure [zip :as z]))
(:import (java.util Date)

(java.io File)))

We’ll touch on further uses of namespaces throughout the rest of the book, with an
extensive example explaining their use as JVM class specifications in section 10.3.

AVOID NAKED :USE One point of note that we should mention is that the
(:use (clojure set xml)) statement is considered a promiscuous operation
and therefore discouraged. The :use directive without the :only option pulls
in all of the public Vars in clojure.set and clojure.xml indiscriminately.
Though this practice is useful when incrementally building your code, it
shouldn’t endure into the production environment. When organizing your
code along namespaces, it’s good practice to export and import only those
elements needed.

We now turn our focus to Clojure’s multimethods, a way of defining polymorphic
functions based on the results of arbitrary functions, which will get you halfway toward
a system of polymorphic types.

9.2 Exploring Clojure multimethods
with the Universal Design Pattern

The most specific event can serve as a general example of a class of events.
—Douglas R. Hofstadter

In Douglas Hofstadter’s Pulitzer prize winning work Gödel, Escher, Bach: An Eternal
Golden Braid, he describes a notion of the Prototype Principle —the tendency of the
human mind to use specific events as models for similar but different events or things.
He presents the idea “that there is generality in the specific” (Hofstadter 1979). Build-
ing on this idea, programmer Steve Yegge coined the term The Universal Design Pattern
(UDP), extrapolating on Hofstadter’s idea (Yegge 2008) and presenting it in terms of
prototypal inheritance (Ungar 1987).

 The UDP is built on the notion of a map or map-like object. Though not ground-
breaking, the flexibility in the UDP derives from the fact that each map contains a
reference to a prototype map used as a parent link to inherited fields. You might won-
der how anyone could model a software problem in this way, but we assure you that

184 CHAPTER 9 Combining data and code
countless programmers do so every day when they choose JavaScript (Flanagan 2006).
In this section, we’ll implement a subset of Yegge’s UDP and discuss how it might be
used as the basis for abstraction-oriented programming and polymorphism using Clo-
jure’s multimethods and ad hoc hierarchies.

9.2.1 The parts

In addition to the aforementioned prototype reference, the UDP requires a set of sup-
porting functions to operate: beget, get, put, has?, and forget. The entire UDP is
built on these five functions, but we’ll need the first three for this section.

BEGET

The beget function performs a simple task. It takes a map and associates its prototype
reference to another map, returning a new map:

(ns joy.udp
(:refer-clojure :exclude [get]))

(defn beget [o p] (assoc o ::prototype p))

(beget {:sub 0} {:super 1})
;=> {:joy.udp/prototype {:super 1}, :sub 0}

To participate in the UDP, maps must have a :joy.udp/prototype entry.

PUT

The function put takes a key and an associated value and puts them into the supplied
map, overwriting any existing key of the same name:

(def put assoc)

The put function is asymmetric to the functionality of get. The get method retrieves
values anywhere along the prototype chain, whereas put only ever inserts at the level
of the supplied map.

GET

Because of the presence of the prototype link, get requires more than a simple one-
level lookup. Instead, whenever a value isn’t found in a given map, the prototype
chain is followed until the end:

(defn get [m k]
(when m

(if-let [[_ v] (find m k)]
v
(recur (::prototype m) k))))

(get (beget {:sub 0} {:super 1})
:super)

;=> 1

We don’t explicitly handle the case of “removed ”properties, but instead treat them
like any other associated value. This is fine because the “not found” value of nil is
falsey. Most of the time, it’s sufficient to rely on the fact that looking up a nonexistent

185Exploring Clojure multimethods with the Universal Design Pattern
key will return nil. But in cases where you want to allow users of your functions to
store any value at all, including nil, you’ll have to be careful to distinguish nil from
“not found,” and the find function is the best way to do this.

9.2.2 Usage

Using only beget, put, and get, you can leverage the UDP in some simple, yet power-
ful ways. Assume that at birth cats like dogs and only learn to despise them when
goaded. Morris the cat has spent most of his life liking 9-Lives cat food and dogs, until
the day comes when a surly Shih Tzu leaves him battered and bruised. We can model
this unfortunate story as shown:

(def cat {:likes-dogs true, :ocd-bathing true})
(def morris (beget {:likes-9lives true} cat))
(def post-traumatic-morris (beget {:likes-dogs nil} morris))

(get cat :likes-dogs)
;=> true

(get morris :likes-dogs)
;=> true

(get post-traumatic-morris :likes-dogs)
;=> nil

The map post-traumatic-morris is like the old morris in every way except for the
fact that he has learned to hate dogs. Modeling cat and dog societal woes is interesting
but far from the only use case for the UDP, as you’ll see next.

NO NOTION OF SELF

Our implementation of the UDP contains no notion of self-awareness via an implicit
this or self reference. Though adding such a feature would probably be possible,
we’ve intentionally excluded it in order to draw a clear separation between the proto-
types and the functions that work on them (Keene 1989). A better solution, and one
that follows in line with a deeper Clojure philosophy, would be to access, use, and
manipulate these prototypes using Clojure’s multimethods.

9.2.3 Multimethods to the rescue

Adding behaviors to the UDP can be accomplished easily using Clojure’s multimethod
facilities. Multimethods provide a way to perform function polymorphism based on the
result of an arbitrary dispatch function. Coupled with our earlier UDP implementa-
tion, we can implement a prototypal object system with differential inheritance similar
to (although not as elegant as) that in the Io language (Dekorte Io). First, we’ll need
to define a multimethod compiler that dispatches on a key :os:

(defmulti compiler :os)
(defmethod compiler ::unix [m] (get m :c-compiler))
(defmethod compiler ::osx [m] (get m :c-compiler))

186 CHAPTER 9 Combining data and code
The multimethod compiler describes a simple scenario: if the function compiler is
called with a prototype map, then the map is queried for an element :os, which has
methods defined on the results for either ::unix or ::osx. We’ll create some proto-
type maps to exercise compiler:

(def clone (partial beget {}))
(def unix {:os ::unix, :c-compiler "cc", :home "/home", :dev "/dev"})
(def osx (-> (clone unix)

(put :os ::osx)
(put :c-compiler "gcc")
(put :home "/Users")))

(compiler unix)
;=> "cc"

(compiler osx)
;=> "gcc"

That’s all there is (Foote 2003) to creating behaviors that work against the specific
“type” of a prototype map. But a problem of inherited behaviors still persists. Because
our implementation of the UDP separates state from behavior, there’s seemingly no
way to associate inherited behaviors. But as we’ll now show, Clojure does provide a way
to define ad hoc hierarchies that we can use to simulate inheritance within our model.

9.2.4 Ad hoc hierarchies for inherited behaviors

Based on the layout of the unix and osx prototype maps, the property :home is over-
ridden in osx. We could again duplicate the use of get within each method defined
(as in compiler), but instead we prefer to say that the lookup of :home should be a
derived function:

(defmulti home :os)
(defmethod home ::unix [m] (get m :home))

(home unix)
;=> "/home"

(home osx)
; java.lang.IllegalArgumentException:
; No method in multimethod 'home' for dispatch value: :user/osx

Clojure allows you to define a relationship stating “::osx is a ::unix” and have the
derived function take over the lookup behavior using Clojure’s derive function:

(derive ::osx ::unix)

Now the home function works:

(home osx)
;=> "/Users"

You can query the derivation hierarchy using the functions parents, ancestors,
descendants, and isa? as shown:

(parents ::osx)
;=> #{:user/unix}

188 CHAPTER 9 Combining data and code
(derive (make-hierarchy) ::osx ::unix)
;=> {:parents {:user/osx #{:user/unix}},

:ancestors {:user/osx #{:user/unix}},
:descendants {:user/unix #{:user/osx}}}

Once you have a separate hierarchy in hand, you can provide it to defmulti to specify
the derivation context, thus preserving the global hierarchy map.

9.2.6 Arbitrary dispatch for true maximum power

Until now, we’ve only exercised multimethods using a single privileged :os property,
but this doesn’t accentuate their true power. Instead, multimethods are fully open and
can dispatch on the result of an arbitrary function, even one that can pull apart and/
or combine its inputs into any form:

(defmulti compile-cmd (juxt :os compiler))

(defmethod compile-cmd [::osx "gcc"] [m]
(str "/usr/bin/" (get m :c-compiler)))

(defmethod compile-cmd :default [m]
(str "Unsure where to locate " (get m :c-compiler)))

The dispatch values for the new compile-cmd methods are vectors composed of the
results of looking up the :os key and calling the compiler function defined earlier.
You can now observe what happens when compile-cmd is called:

(compile-cmd osx)
;=> "/usr/bin/gcc"

(compile-cmd unix)
;=> "Unsure where to locate cc"

Using multimethods and the UDP is an interesting way to build abstractions. Multi-
methods and ad hoc hierarchies are open systems, allowing for polymorphic dispatch
based on arbitrary functions. Clojure also provides a simpler model for creating
abstractions and gaining the benefits of polymorphism—types, protocols, and
records—which we’ll cover next.

The handy-dandy juxt function
The juxt function is highly useful in defining multimethod dispatch functions. In a
nutshell, juxt takes a bunch of functions and composes them into a function return-
ing a vector of its argument(s) applied to each given function, as shown:

(def each-math (juxt + * - /))
(each-math 2 3)
;=> [5 6 -1 2/3]

((juxt take drop) 3 (range 9))
[(0 1 2) (3 4 5 6 7 8)]

Having a convenient and succinct way to build vectors of applied functions is powerful
for defining understandable multimethods—although that’s not the limit of juxt’s
usefulness.

189Types, protocols, and records
9.3 Types, protocols, and records
We showed in the previous section that Clojure multimethods provide a way to
achieve runtime polymorphism based on arbitrary dispatch functions. Though
extremely powerful, multimethods are sometimes less than ideal. Interposing a dis-
patch function into the polymorphism machinery isn’t always conducive to raw speed.
Likewise, dispatching on an arbitrary function is often overkill. Therefore, Clojure
provides facilities for creating logically grouped polymorphic functions that are both
simple and performant—types, records, and protocols. We’ll delve into these topics in
this section and introduce the concept of abstraction-oriented programming, predi-
cated on the creation of logical groupings. But first, we’ll discuss the simplest of the
three topics, records, which you might recognize.

9.3.1 Records

Using maps as data objects is perfectly acceptable and has several lovely features.
Chief among these is that maps require no declaration of any sort: you just use literal
syntax to build them right on the spot. We showed this in section 7.2 when we built an
object like this:

{:val 5, :l nil, :r nil}

This is handy but is missing things that are often desirable, the most significant of
which is a type of its own. The object constructed here is some kind of map, but it
isn’t, as far as Clojure is concerned, a TreeNode. That means that when used in its sim-
ple form as we did here, there’s no clean way2 to determine whether any particular
map is a TreeNode or not.

 In such circumstances, records become a compelling3 solution. You define a
record type with a defrecord form. For example, a defrecord for TreeNode looks like
this:

(defrecord TreeNode [val l r])

This creates a new Java class with a constructor that takes a value for each of the fields
listed. It also imports that class into your current namespace so you can easily use it to
create new instances.

 Here’s how to create an instance of the TreeNode record:

(TreeNode. 5 nil nil)
;=> #:user.TreeNode{:val 5, :l nil, :r nil}

2 You could test a map for the existence of the keys :val, :l, and :r, a sort of duck-typing but on fields instead
of methods. But because there exists a real possibility than some other kind of object may happen to have
these keys but use them in a different way, undesirable complexity and/or unexpected behavior is likely. For-
tunately, you can mitigate this risk by using namespace-qualified keywords. Despite the general agreement of
experts that ducks are Kosher, we’d definitely classify this particular duck as unclean.

3 There was a pre-Clojure 1.2 convention of attaching :type metadata to an object, which can be looked up
with the type function, but this approach is rarely if ever needed moving forward.

190 CHAPTER 9 Combining data and code
The use of defrecord buys you several important benefits. First of all, it provides a
simple and specific idiom for documenting the expected fields of the object. But it
also delivers several important performance improvements. A record will be created
more quickly, consume less memory, and look up keys in itself more quickly than the
equivalent array map or hash map. Data types can also store primitive values (byte, int,
long, and so on), which take up considerably less memory than the equivalent boxed
objects (Byte, Integer, Long, and so on) supported by other collection types.

 That’s a lot of benefit, so what does it cost you? The first cost we already men-
tioned—you must define the record type before using it. Another is that currently,
records aren’t printed in a way that the Clojure reader can read, unlike hash maps.
This can be a problem if you’re using Clojure’s print functions to save off or transmit
data. Here’s what it looks like if we try, successfully, with a literal map and then again,
unsuccessfully, with a record:

Explicit importing of defrecord and deftype classes
It’s important to note that when you define a defrecord and deftype, corresponding
classes are generated. These classes are automatically imported into the same
namespace where the defrecord and deftype declarations occur, but not in any
other namespace. Instead, you must explicitly import defrecord and deftype
classes using the import function or :import namespace declaration:

(ns my-cool-ns
 (:import joy.udp.TreeNode))

Loading a namespace via :require or :use won’t be enough to import defrecord
and deftype classes.

The downfall of defstructs
Clojure provides a defstruct mechanism, which can be viewed as a way to define a
map that acts as an ad hoc class mechanism. These structs defined a set of keys
that were required to exist in the map and could therefore not be removed via dissoc.
With the advent of defrecord, the need for structs has been nearly eliminated, and
therefore structs aren’t covered in this book. But if you have a code base reliant on
structs, then a record can replace them with minimal code changes, as highlighted
here:

(defn change-age [p] (assoc p :age 286))

(defstruct person :fname :lname)
(change-age (struct person "Immanuel" "Kant"))
;=> {:fname "Immanuel", :lname "Kant", :age 286}

(defrecord Person [fname lname])
(change-age (Person. "Immanuel" "Kant"))
;=> #:user.Person{:fname "Immanuel", :lname "Kant", :age 286}

Note that the change-age function works with either structs or records—no change
is required. Only the definition and the mechanism of instantiation need to be
updated.

191Types, protocols, and records
(read-string (pr-str {:val 5, :l nil, :r nil}))
;=> {:val 5, :l nil, :r nil}

(read-string (pr-str (TreeNode. 5 nil nil)))
; java.lang.RuntimeException: java.lang.Exception: No dispatch macro for:

This may change eventually, but there are some tricky problems yet to be worked out
before records can be printed and read back in.

 Other noteworthy differences between maps and records include

 Records, unlike maps, can’t serve as functions.
 Records are never equal to maps with the same key/value mappings.

You still look up values in records by doing (:keyword obj); it’s just that if obj is a
record, this code will run dramatically faster. By the way, that means destructuring will
still work as well. Records support metadata using with-meta and meta just like other
Clojure collections, and you can even redefine a record if desired to have different
fields giving you the compiled performance of Java dynamically. All of these together
mean you can build a lot of code on top of simple hash-map objects and then make
minimal changes to switch to using records instead, gaining all the performance ben-
efits we already covered.

 You should understand records well enough to be able to reimplement the persis-
tent binary tree from chapter 5 using defrecord instead of maps. This is shown in the
following listing. Note that we had to add the defrecord and change the expressions
in xconj where objects are created, but the xseq function is defined identically to how
it was before.

(defrecord TreeNode [val l r])

(defn xconj [t v]
(cond

(nil? t) (TreeNode. v nil nil)
(< v (:val t)) (TreeNode. (:val t) (xconj (:l t) v) (:r t))
:else (TreeNode. (:val t) (:l t) (xconj (:r t) v))))

(defn xseq [t]
(when t

(concat (xseq (:l t)) [(:val t)] (xseq (:r t)))))

(def sample-tree (reduce xconj nil [3 5 2 4 6]))
(xseq sample-tree)
;=> (2 3 4 5 6)

You can assoc and dissoc any key you want—adding keys that weren’t defined in the
defrecord works, though they have the performance of a regular map. Perhaps more
surprisingly, dissocing a key given in the record works but returns a regular map
rather than a record. In this example, note that the return value is printed as a plain
map, not with the #:user.TreeNode prefix of a record:

Listing 9.2 Persistent binary tree built of records

Define record type

Add to tree

Try it all out

192 CHAPTER 9 Combining data and code
(dissoc (TreeNodePlus 5 nil nil) :l)
;=> {:val 5, :r nil}

A final benefit of records is how well they integrate with Clojure protocols. But to fully
understand how they relate, we must first explore what protocols are.

9.3.2 Protocols

The establishment of protocols ... creates an obvious way for two people who are
not directly communicating to structure independently developed code so that it
works in a manner that remains coherent when such code is later combined.

—Kent M. Pitman (Pitman 2001)

A protocol in Clojure is simply a set of function signatures, each with at least one param-
eter, that are given a collective name. They fulfill a role somewhat like Java interfaces
or C++ pure virtual classes—a class that claims to implement a particular protocol
should provide specialized implementations of each of the functions in that protocol.
Then, when any of those functions is called, the appropriate implementation is poly-
morphic on the type of the first parameter, just like Java. In fact, the first parameter to
a protocol function corresponds to the target object (the thing to the left of the dot
for a method call used in Java source) of a method in object-oriented parlance.

 For example, consider what collections such as stacks (First In, Last Out: FILO)
and queues (First In, First Out: FIFO) have in common. Each has a simple function for
inserting a thing (call it push), a simple function for removing a thing (pop), and usu-
ally a function to see what would be removed if you removed a thing (peek). What we
just gave you was an informal description of a protocol; all that’s missing is the name.
We can replace the changing third item of the acronym with an X and call objects that
provide these functions FIXO. Note that besides stacks and queues, FIXO could
include priority queues, pipes, and other critters.

 So now let’s look at that informal description rewritten as a formal Clojure
definition:

(defprotocol FIXO
(fixo-push [fixo value])
(fixo-pop [fixo])
(fixo-peek [fixo]))

...and that’s it. The only reason we prefixed the function names with fixo- is so that
they don’t conflict with Clojure’s built-in functions.4 Besides that, it’s hard to imagine
how there could be much less ceremony, isn’t it?

 But in order for a protocol to do any good, something must implement it. Proto-
cols are implemented using one of the extend forms: extend, extend-type,5 or
extend-protocol. Each of these does essentially the same thing, but extend-type and

4 It would be better to fix this problem by defining FIXO in a new namespace and excluding from it the simi-
larly named clojure.core functions, except this would be a distraction from the point of this section. We’ll dis-
cuss interesting interactions between namespaces and protocols later in this chapter.

5 Records are a specialized kind of data type, so extend-type is used for both. We’ll look at data types later
in this section.

193Types, protocols, and records
extend-protocol are convenience macros for when you want to provide multiple
functions for a given type. For example, the binary TreeNode from listing 9.2 is a
record, so if we want to extend it, extend-type would be most convenient. Because
TreeNode already has a function xconj that works just like push should, we’ll start by
implementing that:

(extend-type TreeNode
FIXO
(fixo-push [node value]

(xconj node value)))

(xseq (fixo-push sample-tree 5/2))
;=> (2 5/2 3 4 5 6)

The first argument to extend-type is the class or interface that the entire rest of the
form will be extending. Following the type name are one or more blocks, each starting
with the name of the protocol to be extended and followed by one or more functions
from that protocol to implement. So in the preceding example, we’re implementing a
single function fixo-push for TreeNode objects, and we call the existing xconj func-
tion. Got it? The reason this is better than simply defining a regular function named
fixo-push is that protocols allow for polymorphism. That same function can have a
different implementation for a different kind of object. Clojure vectors can act like
stacks by extending FIXO to vectors:

(extend-type clojure.lang.IPersistentVector
FIXO
(fixo-push [vector value]

(conj vector value)))

(fixo-push [2 3 4 5 6] 5/2)
;=> [2 3 4 5 6 5/2]

Here we’re extending FIXO to an interface instead of a concrete class. This means that
fixo-push is now defined for all classes that inherit from IPersistentVector. Note
that we can now call fixo-push with either a vector or a TreeNode, and the appropri-
ate function implementation is invoked.

Clojure-style mixins
As you proceed through this section, you’ll notice that we extend the FIXO protocol’s
fixo-push function in isolation. This works fine for our purposes, but you might want
to take note of the implications of this approach. Consider the following:

(use 'clojure.string)

(defprotocol StringOps (rev [s]) (upp [s]))

(extend-type String
 StringOps
 (rev [s] (clojure.string/reverse s)))

(rev "Works")
;=> "skroW"

194 CHAPTER 9 Combining data and code
What we’ve just done is impossible with Java interfaces or C++ classes, at least in the
order we did it. With either of those languages, the concrete type (such as TreeNode
or vector) must name at the time it’s defined all the interfaces or classes it’s going to
implement. Here we went the other way around—both TreeNode and vectors were
defined before the FIXO protocol even existed, and we easily extended FIXO to each of
them. This matters in the real world because the concrete types and even the protocol
could be provided by third-party libraries—possibly even different third-party librar-
ies—and we could still match them up, provide implementations for the appropriate
functions, and get back to work. All this without any adapters, wrappers, monkey-
patching, or other incidental complexity getting in the way. In fact, Clojure polymor-
phism lives in the protocol functions, not in the classes, as shown in figure 9.7.

(continued)
Defining the StringOps protocol and extending its rev function to String seems to
work fine. But observe what happens when the protocol is again extended to cover
the remaining upp function:

(extend-type String
 StringOps
 (upp [s] (clojure.string/upper-case s)))

(upp "Works")
;=> "WORKS"

(rev "Works?")
; IllegalArgumentException No implementation of method: :rev
; of protocol: #'user/StringOps found for
; class: java.lang.String

The reason for this exception is that for a protocol to be fully populated (all of its func-
tions callable), it must be extended fully, per individual type. Protocol extension is at
the granularity of the entire protocol and not at a per-function basis. This behavior
seems antithetical to the common notion of a mixin—granules of discrete functional-
ity that can be “mixed into” existing classes, modules, and so on. Clojure too has
mixins, but it takes a slightly different approach:

(def rev-mixin {:rev clojure.string/reverse})

(def upp-mixin {:upp (fn [this] (.toUpperCase this))})

(def fully-mixed (merge upp-mixin rev-mixin))

(extend String StringOps fully-mixed)

(-> "Works" upp rev)
;=> SKROW

Mixins in Clojure refer to the creation of discrete maps containing protocol function
implementations that are combined in such a way as to create a complete implemen-
tation of a protocol. Once mixed together (as in the Var fully-mixed), only then are
types extended to protocols. As with many of Clojure’s features, mixins and protocol
extension are fully open.

196 CHAPTER 9 Combining data and code
(extend-type TreeNode
FIXO
(fixo-push [node value]

(xconj node value))
(fixo-peek [node]

(if (:l node)
(recur (:l node))
(:val node)))

(fixo-pop [node]
(if (:l node)

(TreeNode. (:val node) (fixo-pop (:l node)) (:r node))
(:r node))))

(extend-type clojure.lang.IPersistentVector
FIXO
(fixo-push [vector value]

(conj vector value))
(fixo-peek [vector]

(peek vector))
(fixo-pop [vector]

(pop vector)))

If you’ve done six impossible things this morning, why not round it off with breakfast
at Milliways, the Restaurant at the End of the Universe?

—Douglas Adams

Each of the function bodies in the previous example have either had no code in com-
mon with each other, or called out to another function such as xconj for implementa-
tion details that they have in common. These techniques work well when there’s a low
level of commonality between the methods being implemented, but sometimes you
have many methods of a protocol or even whole protocol implementations that you
want to extend to multiple classes. In these cases, some languages would encourage
you to create a base class that implements some or all of the methods and then inherit
from that. Clojure has a different approach.

SHARING METHOD IMPLEMENTATIONS

Clojure doesn’t encourage implementation inheritance, so although it’s possible to
inherit from concrete classes as needed for Java interoperability,6 there’s no way to use
extend to provide a concrete implementation and then build another class on top of
that. There are important reasons why Clojure intentionally avoids this, but regardless
of the reasons, we’re left with the question of how best to avoid repeating code when
similar objects implement the same protocol method.

 The simplest solution is to write a regular function that builds on the protocol’s
methods. For example, Clojure’s own into takes a collection and uses the conj imple-
mentation provided by the collection. We can write a similar function for FIXO objects
like this:

Listing 9.3 Complete implementations of FIXO for TreeNode and vector

6 Mechanisms that support something like Java-style implementation inheritance include gen-class, proxy,
and extending protocol methods to Java abstract classes and interfaces.

Delegate
to xconj

Walk down left nodes
to find smallest

Build new path down
left to removed item

pop is pop

197Types, protocols, and records
(defn fixo-into [c1 c2]
(reduce fixo-push c1 c2))

(xseq (fixo-into (TreeNode. 5 nil nil) [2 4 6 7]))
;=> (2 4 5 6 7)

(seq (fixo-into [5] [2 4 6 7]))
;=> (5 2 4 6 7)

But this is only an option when your function can be defined entirely in terms of the
protocol’s methods. If this isn’t the case, you may need the more nuanced solution
provided by the extend function. We mentioned it earlier but so far have only given
examples of a macro built on top of it, extend-type. Though this and extend-
protocol are frequently the most convenient way to implement protocol methods,
they don’t provide a natural way to mix in method implementations. The extend func-
tion takes a map for each protocol you want to implement, and you can build that
map however you’d like, including by merging in implementations that are already
defined. In the following listing, you should note how a FIXO implementation could
be defined early using a map and extended to a protocol/record type later (while still
maintaining every benefit of using the original map).

(def tree-node-fixo
{:fixo-push (fn [node value]

(xconj node value))
:fixo-peek (fn [node]

(if (:l node)
(recur (:l node))
(:val node)))

:fixo-pop (fn [node]
(if (:l node)

(TreeNode. (:val node) (fixo-pop (:l node)) (:r node))
(:r node)))})

(extend TreeNode FIXO tree-node-fixo)

(xseq (fixo-into (TreeNode. 5 nil nil) [2 4 6 7]))
;=> (2 4 5 6 7)

These record objects and the way protocols can be extended to them result in rather
differently shaped code than the objects built out of closures that we showed in sec-
tion 7.2. Often this ability to define the data and implementation separately is desir-
able, but you’re likely to find yourself occasionally in a circumstance where closures
may feel like a better fit than records, and yet you want to extend a protocol or inter-
face, not just provide ad hoc method names as in section 7.2.

REIFY

The reify macro brings together all the power of function closures and all the perfor-
mance and protocol participation of extend into a single form. For example, say you
want a stack-like FIXO that’s constrained to a certain fixed size. Any attempt to push
items onto one of these fixed-fixos when it’s already full will fail, and an unchanged

Listing 9.4 Using a map to extend FIXO to TreeNode

Define map of names
to functions

Extend protocol
using map

198 CHAPTER 9 Combining data and code
object will be returned. The wrinkle in the requirements that makes reify a reason-
able option is that you’ll want this size limit to be configurable. Thus you’ll need a
constructor or factory function, shown next, that takes the size limit and returns an
object that will obey that limit.

(defn fixed-fixo
([limit] (fixed-fixo limit []))
([limit vector]

(reify FIXO
(fixo-push [this value]

(if (< (count vector) limit)
(fixed-fixo limit (conj vector value))
this))

(fixo-peek [_]
(peek vector))

(fixo-pop [_]
(pop vector)))))

Just like the extend forms, reify has method arglists that include the object itself. It’s
idiomatic to use name the argument this in methods where you need to use it and _
in methods where you ignore its value. But both these conventions should only be fol-
lowed where natural.

NAMESPACED METHODS

A rough analogy can be drawn between protocols and Java interfaces.7 We’ve noted
some of the differences already, but it can be a useful analogy nonetheless. In such a
comparison, where record types are concrete classes, you might see that Java packages
and C++ namespaces are each like Clojure namespaces. It’s normal in all three of
these environments for the interface and the class to each be in a namespace, and not
necessarily the same one. For example, probably few readers were surprised to see
that when we made the class IPersistentVector extend the protocol user/FIXO, they
were each from a different namespace or package.

 One way this analogy breaks down is that methods of the protocol itself are
namespaced in a way that Java and C++ interfaces aren’t. In those languages, all meth-
ods of a class share the same effective namespace, regardless of interfaces they’re
implementing. In Clojure, the methods always use the same namespace as the proto-
col itself, which means a record or type can extend (via extend, extend-type, and so
on) identically named methods of two different protocols without any ambiguity. This
is a subtle feature, but it allows you to avoid a whole category of issues that can come
up when trying to combine third-party libraries into a single codebase.

 Note that because the methods share the namespace of their protocol, you can’t
have identically named methods in two different protocols if those protocols are in
the same namespace. Because both are under the control of the same person, it’s easy

Listing 9.5 Size-limited stack FIXO using reify

7 Those of you familiar with Haskell might recognize analogies to its typeclasses in our discussion.

199Types, protocols, and records
to resolve this by moving one of the protocols to a different namespace or using more
specific method names.

METHOD IMPLEMENTATIONS IN DEFRECORD

We’ve already shown how both protocols and interfaces can be extended to record
types using the various extend forms, but there’s another way to achieve similar
results. Protocol and interface method implementations can be written directly inside
a defrecord form, which ends up looking like the following.

(defrecord TreeNode [val l r]
FIXO
(fixo-push [t v]

(if (< v val)
(TreeNode. val (fixo-push l v) r)
(TreeNode. val l (fixo-push r v))))

(fixo-peek [t]
(if l

(fixo-peek l)
val))

(fixo-pop [t]
(if l

(TreeNode. val (fixo-pop l) r)
r)))

(def sample-tree2 (reduce fixo-push (TreeNode. 3 nil nil) [5 2 4 6]))
(xseq sample-tree2)
;=> (2 3 4 5 6)

This isn’t only more convenient in many cases, but it can also produce dramatically
faster code. Calling a protocol method like fixo-peek on a record type that imple-
ments it inline can be several times faster than calling the same method on an object
that implements it via an extend form. Also note that the fields of the object are now
available as locals—we use val instead of (:val t).

Listing 9.6 Method implementations in defrecord

Implement FIXO
methods inline

Call method instead
of using recur

Polymorphism and recur
Throughout this section, we’ve implemented the fixo-peek function using different
methodologies, but a more subtle difference is worth noting. The first implementation
uses recur for its recursive call as shown:

(fixo-peek [node]
 (if (:l node)
 (recur (:l node))
 (:val node)))

Because of the nature of recur, the first implementation of fixo-peek isn’t polymor-
phic on the recursive call. But the second version of fixo-peek uses a different
approach:

200 CHAPTER 9 Combining data and code
Putting method definitions inside the defrecord form also allows you to implement
Java interfaces and extend java.lang.Object, which isn’t possible using any extend
form. Because interface methods can accept and return primitive values as well as
boxed objects, implementations of these in defrecord can also support primitives.
This is important for interoperability and can provide ultimate performance parity
with Java code.

 We do need to note one detail of these inline method definitions in relation to
recur. Specifically, uses of recur in these definitions can’t provide a new target object:
the initial argument will get the same value as the initial (non-recur) call to the
method. For example, fixo-push takes args t and v, so if it used recur, only a single
parameter would be given: the new value for the v arg.

9.3.3 Building from a more primitive base with deftype

You may have noticed we’ve been using our own function xseq throughout the exam-
ples in this section, instead of Clojure’s seq. This shouldn’t be necessary, as Clojure
provides an ISeqable interface that its seq function can use—all we need to do is to
have our own type implement ISeqable. But an attempt to do this with defrecord is
doomed:

(defrecord InfiniteConstant [i]
clojure.lang.ISeq
(seq [this]

(lazy-seq (cons i (seq this)))))
; java.lang.ClassFormatError: Duplicate method
; name&signature in class file user/InfiniteConstant

This is because record types are maps and implement everything maps should—seq

along with assoc, dissoc, get, and so forth. Because these are provided for us, we
can’t implement them again ourselves, and thus the preceding exception. For the rare
case where you’re building your own data structure instead of just creating applica-
tion-level record types, Clojure provides a lower-level deftype construct that’s similar
to defrecord but doesn’t implement anything at all, so implementing seq won’t con-
flict with anything:

(deftype InfiniteConstant [i]
clojure.lang.ISeq
(seq [this]

(continued)

(fixo-peek [t]
 (if l
 (fixo-peek l)
 val))

You’ll notice that the recursive call in the second implementation is direct (mundane)
and as a result is polymorphic. In the course of writing your own programs, this dif-
ference will probably not cause issues, but it’s worth storing in the back of your mind.

201Types, protocols, and records
(lazy-seq (cons i (seq this)))))

(take 3 (InfiniteConstant. 5))
;=> (5 5 5)

But that also means that keyword lookups, assoc, dissoc, and so on will remain unim-
plemented unless we implement them ourselves:

(:i (InfiniteConstant. 5))
;=> nil

The fields we declared are still public and accessible (although you should try to avoid
naming them the same at the methods in java.lang.Object); they just require nor-
mal Java interop forms to get at them:

(.i (InfiniteConstant. 5))
;=> 5

With all that in mind, the following listing is a final implementation of TreeNode using
deftype, which lets us implement not only ISeq so that we can use seq instead of
xseq, but also IPersistentStack so we can use peek, pop, and conj as well as the
fixo- versions.

(deftype TreeNode [val l r]
FIXO
(fixo-push [_ v]

(if (< v val)
(TreeNode. val (fixo-push l v) r)
(TreeNode. val l (fixo-push r v))))

(fixo-peek [_]
(if l

(fixo-peek l)
val))

(fixo-pop [_]
(if l

(TreeNode. val (fixo-pop l) r)
r))

clojure.lang.IPersistentStack
(cons [this v] (fixo-push this v))
(peek [this] (fixo-peek this))
(pop [this] (fixo-pop this))

clojure.lang.Seqable
(seq [t]

(concat (seq l) [val] (seq r))))

(extend-type nil
FIXO
(fixo-push [t v]

(TreeNode. v nil nil)))

(def sample-tree2 (into (TreeNode. 3 nil nil) [5 2 4 6]))
(seq sample-tree2)
;=> (2 3 4 5 6)

Listing 9.7 Implementing map interfaces with deftype

Implement FIXO
methods inline

Call method instead
of using recur

Implement interfaces

Redefine to use
new TreeNode

202 CHAPTER 9 Combining data and code
One final note about deftype—it’s the one mechanism by which Clojure lets you cre-
ate classes with volatile and mutable fields. We won’t go into it here because using
such classes is almost never the right solution. Only when you’ve learned how Clojure
approaches identity and state, how to use reference types, what it means for a field to
be volatile, and all the pitfalls related to that, should you even consider creating
classes with mutable fields. By then, you’ll have no problem understanding the official
docs for deftype, and you won’t need any help from us.

 None of the examples we’ve shown in this section come close to the flexibility of
multimethods. All protocol methods dispatch on just the type of the first argument.
This is because that’s what Java is good at doing quickly, and in many cases it’s all the
polymorphism that’s needed. Clojure once again takes the practical route and makes
the highest-performance mechanisms available via protocols, while providing more
dynamic behavior than Java does and leaving multimethods on the table for when ulti-
mate flexibility is required.

9.4 Putting it all together: a fluent builder for chess moves
People have been known to say that Java is a verbose programming language. This
may be true when compared to the Lisp family of languages, but considerable mind-
share has been devoted to devising ways to mitigate its verbosity. One popular tech-
nique is known as the fluent builder (Fowler 2005) and can be summed up as the
chaining of Java methods to form a more readable and agile instance construction
technique. In this section, we’ll show a simple example of a fluent builder supporting
the construction of chess move descriptions. We’ll then explain how such a technique
is unnecessary within Clojure and instead present an alternative approach that’s sim-
pler, concise, and more extensible. We’ll leverage Clojure’s records in the final solu-
tion, illustrating that Java’s class-based paradigm is counter to Clojure’s basic
principles and often overkill for Java programs.

9.4.1 Java implementation

We’ll start by identifying all of the component parts of a Move class including from and
to squares, a flag indicating whether the move is a castling move, and also the desired
promotion piece if applicable. In order to constrain the discussion, we’ll limit our
idea of a Move to those elements listed. The next step would be to create a simple class
with its properties and a set of constructors, each taking some combination of the
expected properties. We’d then generate a set of accessors for the properties, but not
their corresponding mutators, because it’s probably best for the move instances to be
immutable.

 Having created this simple class and rolled it out to the customers of the chess
move API, we begin to notice that our users are sending into the constructor the to
string before the from string, which is sometimes placed after the promotion, and so
on. After some months of intense design and weeks of development and testing, we
release the following elided chess move class:

203Putting it all together: a fluent builder for chess moves
public class FluentMove {
String from, to, promotion = "";
boolean castlep;

public static MoveBuilder desc() { return new MoveBuilder(); }

public String toString() {
return "Move " + from +

" to " + to +
(castlep ? " castle" : "") +
(promotion.length() != 0 ? " promote to " + promotion : "");

}

public static final class MoveBuilder {
FluentMove move = new FluentMove();

public MoveBuilder from(String from) {
move.from = from; return this;

}

public MoveBuilder to(String to) {
move.to = to; return this;

}

public MoveBuilder castle() {
move.castlep = true; return this;

}

public MoveBuilder promoteTo(String promotion) {
move.promotion = promotion; return this;

}

public FluentMove build() { return move; }
}

}

For brevity’s sake, our code has a lot of holes, such as missing checks for fence post
errors, null, empty strings, assertions, and invariants; it does allow us to illustrate that
the code provides a fluent builder given the following main method:

public static void main(String[] args) {
FluentMove move = FluentMove.desc()

.from("e2")

.to("e4").build();

System.out.println(move);

move = FluentMove.desc()
.from("a1")
.to("c1")
.castle().build();

System.out.println(move);

move = FluentMove.desc()
.from("a7")
.to("a8")
.promoteTo("Q").build();

System.out.println(move);
}

204 CHAPTER 9 Combining data and code
// Move e2 to e4
// Move a1 to c1 castle
// Move a7 to a8 promote to Q

The original constructor ambiguities have disappeared, with the only trade-off being a
slight increase in complexity of the implementation and the breaking of the common
Java getter/setter idioms—both of which we’re willing to live with. But if we’d started
the chess move API as a Clojure project, the code would likely be a very different expe-
rience for the end user.

9.4.2 Clojure implementation

In lieu of Java’s class-based approach, Clojure provides a core set of collection types,
and as you might guess, its map type is a nice candidate for move representation:

{:from "e7", :to "e8", :castle? false, :promotion \Q}

Simple, no?
 In a language like Java, it’s common to represent everything as a class—to do oth-

erwise is either inefficient, non-idiomatic, or outright taboo. Clojure prefers simplifi-
cation, providing a set of composite types perfect for representing most categories of
problems typically handled by class hierarchies. Using Clojure’s composite types
makes sense for one simple reason: existing functions, built on a sequence abstrac-
tion, just work:

(defn build-move [& pieces]
(apply hash-map pieces))

(build-move :from "e7" :to "e8" :promotion \Q)

;=> {:from "e7", :to "e8", :promotion \Q}

In two lines, we’ve effectively replaced the Java implementation with an analogous, yet
more flexible representation. The term domain-specific language (DSL) is often thrown
around to describe code such as build-move, but to Clojure (and Lisps in general) the
line between DSL and API is blurred. In the original FluentMove class, we required a
cornucopia of code in order to ensure the API was agnostic of the ordering of move ele-
ments; using a map, we get that for free. Additionally, FluentMove, though relatively
concise, was still bound by fundamental Java syntactical and semantic constraints.

 There’s one major problem with our implementation—it doesn’t totally replace
the Java solution. If you recall, the Java solution utilized the toString method to print
its representative form. The existence of a polymorphic print facility in Java is nice,
and it allows a class creator to define a default print representation for an object when
sent to any Java print stream. This means that the same representation is used on the
console, in log files, and so on. Using raw maps can’t give us this same behavior, so
how can we solve this problem?

205Putting it all together: a fluent builder for chess moves
USING RECORDS

If we instead use a record, then the solution is as simple as that shown next.

(defrecord Move [from to castle? promotion]
Object
(toString [this]

(str "Move " (:from this)
" to " (:to this)
(if (:castle? this) " castle"

(if-let [p (:promotion this)]
(str " promote to " p)
"")))))

As we mentioned in the previous section, within the body of a record we can take up
to two actions: participate in a protocol, or override any of the methods in the
java.lang.Object class. For the Move record, we override toString in order to allow
it to participate in Java’s overarching polymorphic print facility, as shown:

(str (Move. "e2" "e4" nil nil))
;=> "Move e2 to e4"

(.println System/out (Move. "e7" "e8" nil \Q))
; Move e7 to e8 promote to Q

We’ve once again gone back to positional construction using records, but as we’ll
show, Clojure even has an answer for this.

SEPARATION OF CONCERNS

Both FluentMove and build-move make enormous assumptions about the form of the
data supplied to them and do no validation of the input. For FluentMove, object-
oriented principles dictate that the validation of a well-formed move (not a legal
move, mind you) should be determined by the class itself. There are a number of
problems with this approach, the most obvious being that to determine whether a
move is well-formed, the class needs information about the rules of chess. We can
rewrite FluentMove to throw an exception to prevent illegal moves from being con-
structed, but the root problem still remains—FluentMove instances are too smart. Per-
haps you don’t see this as a problem, but if we were to extend our API to include other
aspects of the game of chess, then we’ll find that bits of overlapping chess knowledge
would be scattered throughout the class hierarchy. By viewing the move structure as a
value, Clojure code provides some freedom in the implementation of a total solution,
as shown:

(defn build-move [& {:keys [from to castle? promotion]}]
{:pre [from to]}
(Move. from to castle? promotion))

(str (build-move :from "e2" :to "e4"))
;=> "Move e2 to e4"

Listing 9.8 A chess move record

206 CHAPTER 9 Combining data and code
By wrapping the Move constructor in a build-move function, we put the smarts of con-
structing moves there instead of in the type itself. In addition, using a precondition,
we specified the required fields, and by using Clojure’s named parameters and argu-
ment destructuring we’ve again ensured argument order independence. As a final
added advantage, Clojure’s records are maps and as a result can operate in almost
every circumstance where a map would. As author Rich Hickey proclaimed, any new
class in general is itself an island, unusable by any existing code written by anyone,
anywhere. So our point is this: consider throwing the baby out with the bath water.

9.5 Summary
Clojure disavows the typical object-oriented model of development. But that’s not to
say that it completely dismisses all that OOP stands for. Instead, Clojure wholeheartedly
touts the virtues of interface-oriented programming (or abstraction-oriented program-
ming, as we’ve called it), in addition to runtime polymorphism. But in both cases, the
way that Clojure presents these familiar topics is quite different from what you might
be accustomed to. In almost every circumstance, Clojure’s abstraction-oriented facili-
ties will sufficiently represent your problem domain, but there may be times when they
simply can’t. We’ll preach the virtues of abstractions more throughout the rest of the
book, but for now we’re compelled to take a side path into an explorations of Java
interoperability.

Java.next
Regardless of your views on the Java language itself, it’s difficult to deny that the JVM
is a stellar piece of software. The confluence of the just-in-time (JIT) compiler, gar-
bage collection, HotSpot, and the flexible bytecode have created an environment
that many programmers have chosen to grow their alternative programming lan-
guages. Additionally, the deluge of library options hosted on the JVM further make
the JVM the language target of choice. From Clojure to Groovy to Scala to Fantom to
Frink to Ioke to Jess to JRuby to Jython, there seems to be no lack of options for the
enthusiastic polyglot programmer. We may soon see job listings for “JVM program-
mers.” But where does that leave Java the programming language?

 Java the language isn’t dead.

This chapter covers
 Generating objects on the fly with proxy

 Clojure gen-class and GUI programming

 Clojure’s relationship to Java arrays

 All Clojure functions implement...

 Using Clojure data structures in Java APIs
 definterface

 Be wary of exceptions
207

208 CHAPTER 10 Java.next
 The JVM is optimized for running Java bytecode, and only recently1 have Java.next
languages been a consideration. You may ask yourself whether JVM bytecode is equiva-
lent to Java source code, and the answer is no. Instead, languages such as Clojure and
Scala compile directly to bytecode and can access Java compiled libraries as needed.
Because of their reliance on the JVM as the runtime environment, Clojure and the
other Java.next languages will be fundamentally constrained by the limitations of the
JVM itself. The limitations of the JVM as defined by the limitations of the Java language
specification set the beat by which the Java.next languages dance. Java isn’t dead; it’s
alive and well, and it runs the show.

THE JAVA.NEXT MANTRA The apprentice avoids all use of Java classes. The jour-
neyman embraces Java classes. The master knows which classes to embrace
and which to avoid.

An expert understanding of the Java Virtual Machine isn’t required for writing power-
ful applications in Clojure, but it’ll help when issues stemming from host limitations
arise. Thankfully, Clojure does a good job of mitigating many of the limitations inher-
ent in its host, but some are too deeply embedded in the fibers of the JVM to avoid. Clo-
jure provides a specific set of interoperability tools: gen-class, proxy, definterface,
its exceptions facility, and a host of array functions. We’ll touch on each of these in
turn, but we’ll begin with the creation of anonymous objects using proxy.

10.1 Generating objects on the fly with proxy
There’s a saying within the Clojure community stating (Halloway 2009) that Clojure
does Java better than Java. This is a bold statement, but not one without merit, as we’ll
show throughout this chapter. Java programmers are accustomed to drawing a severe
distinction between development time and runtime. Using Clojure’s proxy feature
allows you to blur this distinction.

CLOJURE APHORISM Many software projects require a lot of planning because
their implementation languages don’t foster change. Clojure makes it a lot
easier to plan for change.

Clojure’s proxy mechanism is meant strictly for interoperability purposes. In section
9.3, we discussed how reify was intended to realize a single instance of a type, proto-
col, or interface—in other words, abstractions. But when dealing with Java libraries,
you’re at times required to extend concrete classes, and it’s in this circumstance where
proxy shines. Be aware that by using proxy, you bring a lot of Java’s semantics into
your Clojure programs. Though extending concrete classes is seen often in Java,
doing so in Clojure is considered poor design, leading to fragility, and should there-
fore be restricted to those instances where interoperability demands it.

1 More details can be found in JSR-000292, “Supporting Dynamically Typed Languages on the Java Platform.”

209Generating objects on the fly with proxy
10.1.1 A simple dynamic web service

Using Clojure breaks the ponderous code/compile/run development cycle by adding
an element of dynamism into the fold. Take for example a scenario where we want to
develop a web service using an existing Java 1.5 API.

(ns joy.web
(:import (com.sun.net.httpserver HttpHandler HttpExchange HttpServer)

(java.net InetSocketAddress HttpURLConnection)
(java.io IOException FilterOutputStream)
(java.util Arrays)))

(defn new-server [port path handler]
(doto (HttpServer/create (InetSocketAddress. port) 0)

(.createContext path handler)
(.setExecutor nil)
(.start)))

(defn default-handler [txt]
(proxy [HttpHandler] []

(handle [exchange]
(.sendResponseHeaders exchange HttpURLConnection/HTTP_OK 0)
(doto (.getResponseBody exchange)

(.write (.getBytes txt))
(.close)))))

(def server (new-server 8123
"/joy/hello"
(default-handler "Hello Cleveland")))

After entering the code in listing 10.1, you should see the message “Hello Cleveland”
in your web browser at address http://localhost:8123/joy/hello. This is only margin-
ally interesting, especially because the source is organized in a way that doesn’t take
advantage of Clojure’s flexibility.

 If we instead organize the code to bind the return of default-handler, we can
manipulate the handler independently and update its behavior at runtime, as shown:

(.stop server 0)

(def p (default-handler
"There's no problem that can't be solved
with another level of indirection"))

(def server (new-server 8123 "/joy/hello" p))

At this point, visiting the aforementioned URL will show the new message, making this
simple server more compelling. But we can take it one step further by making changes
without taking the server instance down in such a clumsy fashion. Ideally, we’d like to
be able to call a function to change the message at any time:

(change-message p "Our new message")

The implementation of change-message is given in the following listing.

Listing 10.1 A simple dynamic web service

Create service

Close over txt

210 CHAPTER 10 Java.next
(defn make-handler-fn [fltr txt]
(fn [this exchange]

(let [b (.getBytes txt)]
(-> exchange

.getResponseHeaders
(.set "Content-Type" "text/html"))

(.sendResponseHeaders exchange
HttpURLConnection/HTTP_OK
0)

(doto (fltr (.getResponseBody exchange))
(.write b)
(.close)))))

(defn change-message
"Convenience method to change a proxy's output message"
([p txt] (change-message p identity txt))
([p fltr txt]

(update-proxy p
{"handle" (make-handler-fn fltr txt)})))

We’ve added a few extras to the implementation that will be useful later, but for now
concentrate on the fact that change-message calls the function update-proxy with
the proxy object p and a map containing an anonymous function keyed on a string
referencing a method name to override. The anonymous function looks similar to the
handle method defined in the returned proxy from the original default-handler
function, with some extras added for flexibility’s sake. You can test this by entering the
following function call:

(change-message p "Hello Dynamic!")

Refreshing your browser will reflect the change made by displaying the string "Hello
Dynamic!". If so inclined, you can also inspect the current proxy mappings using the
function proxy-mappings. The question remains—how does update-proxy change
the behavior of a previously generated proxy class?

IT’S CALLED PROXY FOR A REASON

As we mentioned, the proxy function generates the bytecode for an actual class on
demand, but it does so in such a way to provide a more dynamic implementation.
Instead of inserting the bytecode for the given function bodies directly into the proxy
class, Clojure instead generates a proper proxy in which each method looks up the
function implementing a method in a map. This trades highly useful dynamic behav-
ior for some runtime cost, but in many cases this is a fair trade.

 Based on the method name, the corresponding function is retrieved from a map
and invoked with the this reference and the argument(s).

PROXIES FOR TRUE POWER DYNAMISM

Working from the abstract model in figure 10.1, observe how Clojure updates the
mapped functions within a proxy at runtime. This web service is a humble example,
but there’s a point to take away from this exercise: to perform this same task in Java

Listing 10.2 Convenience functions for changing the web service message

Name explicit this

Pass through filter

Use identity filter

212 CHAPTER 10 Java.next
incorrectly skipping the proxy implementation. So be careful using proxy-super and
multiple threads in close proximity to each other.

FINAL POINTS ABOUT PROXY

Clojure’s proxy capabilities are truly dynamic, allowing you to create fully stubbed
proxies using either construct-proxy, get-proxy-class, or init-proxy. In both
cases, a partially to fully realized proxy will be constructed, allowing programmatic
customization using update-proxy and arbitrary mixin maps.

 There’s a universe of difference between the code outlined in this subsection and
systems employing true code hot-loading, but it’s a reasonable facsimile. Using proxy
is powerful, but doing so creates unnamed instances unavailable for later extension. If
you instead wish to create named classes then you’ll need to use Clojure’s gen-class
mechanism, which we’ll discuss next.

10.2 Clojure gen-class and GUI programming
In section 9.1, we mentioned that Clojure namespaces can be used as the basis for
generating a named class. In this section, we’ll address this topic and others related to
Clojure’s gen-class function and :gen-class namespace directive in the context of
writing a simple graphical user interface (GUI) library.

10.2.1 Namespaces as class specifications

Similarly to the ns example in section 9.1, the explanation of gen-class begs a declar-
ative approach for a namespace defining a class named joy.gui.DynaFrame. We’d like
this class to extend javax.swing.JFrame and declare the Vars providing its overriding
method implementations to be prefixed2 by the symbol df-. In addition, we’d like the
class to implement the clojure.lang.IMeta interface. We’d also like a place to store
information about instances of this class in state and would like the initialization func-
tion called on construction to be named df-init. We’d like to define a single construc-
tor, taking a string and passing it onto the superclass constructor also taking a string.
We then want to declare two public methods: the first named display taking a
java.awt.Container and returning void, and the second static method version tak-
ing no arguments and returning a string. Finally, we’ll declare the required imports
needed.

 The worded DynaFrame class declaration is complex but has the advantage of hav-
ing a direct code translation, as shown next.

(ns joy.gui.DynaFrame
(:gen-class

:name joy.gui.DynaFrame
:extends javax.swing.JFrame
:implements [clojure.lang.IMeta]
:prefix df-

2 If you don’t specify a :prefix, then the default - will be used.

Listing 10.3 The DynaFrame class namespace declaration

Superclass
Interface

213Clojure gen-class and GUI programming
:state state
:init init
:constructors {[String] [String]}
:methods [[display [java.awt.Container] void]

^{:static true} [version [] String]])
(:import (javax.swing JFrame JPanel)

(java.awt BorderLayout Container)))

You can compile this namespace by saving it in a directory joy/gui, located on the
classpath, in a file named DynaFrame.clj and executing the function (compile
'joy.gui.DynaFrame) in a fresh REPL. This allows a compiled class to be immediately
available. But trying to create an instance in the same REPL will prove fruitless:

(joy.gui.DynaFrame. "1st")

; java.lang.UnsupportedOperationException:
; joy.gui.DynaFrame/df-init not defined

Clearly we haven’t defined the df-init function, so we’ll do that now by switching to
the joy.gui.DynaFrame namespace, defining it outright:

(in-ns 'joy.gui.DynaFrame)

(defn df-init [title]
[[title] (atom {::title title})])

Now run the following in your REPL:

(joy.gui.DynaFrame. "2nd")

; java.lang.UnsupportedOperationException:
; meta (joy.gui.DynaFrame/df-meta not defined?)

Because we told the Clojure compiler that the class should implement the IMeta inter-
face, we should’ve provided a concrete implementation, which you can do at the REPL:

(defn df-meta [this] @(.state this))
(defn version [] "1.0")

As an added bonus, we implemented the static method version. To see the effects of
these functions, execute the following:

(meta (joy.gui.DynaFrame. "3rd"))
;=> {:joy.gui.DynaFrame/title "3rd"}

(joy.gui.DynaFrame/version)
;=> "1.0"

We’ve filled in most of the implementation of the DynaFrame class except for the
display function, which you can implement as follows:

(defn df-display [this pane]
(doto this

(-> .getContentPane .removeAll)
(.setContentPane (doto (JPanel.)

(.add pane BorderLayout/CENTER)))
(.pack)
(.setVisible true)))

Instance state
Init function Constructor

mapping

Public
method

Static method

214 CHAPTER 10 Java.next
You can see df-display in action within the REPL by running the following:

(def gui (joy.gui.DynaFrame. "4th"))

(.display gui (doto (javax.swing.JPanel.)
(.add (javax.swing.JLabel. "Charlemagne and Pippin"))))

This will now display the GUI frame seen in figure 10.2.
 And because it’s a DynaFrame we should be able to change it on the fly, right? Right:

(.display gui (doto (javax.swing.JPanel.)
(.add (javax.swing.JLabel. "Mater semper certa est."))))

This will change the view to that in figure 10.3.
 But now that you have this interesting little frame, what can you do with it? Next,

we’ll experiment with DynaFrame as the foundation for agile GUI prototyping.

THE GUTS OF NAMESPACE COMPILATION

So what exactly does the :gen-class directive provide in terms of generated class
files? With or without :gen-class, Clojure will generate a set of classes correspond-
ing to each function in a namespace. For the function joy.gui.DynaFrame/df-dis-
play, a class file will be generated on the classpath of joy.gui.DynaFrame

$df_display containing (at least) a method invoke, at the location CLASSPATH/
joy/gui/DynaFrame$df_display.class, as shown:

package joy.gui;
public class DynaFrame$df_display extends AFunction {

. . .
public Object invoke(Object that, Object container) {

. . . display actions . . .
}

}

Of course, this describes implementation details and shouldn’t be considered fact in
future version of Clojure. In fact, as shown before, you were able to add implementa-
tions for the parts of the DynaFrame class at the REPL because Clojure generates a stub
that looks up concrete implementations through Vars. But these details are useful for
describing the logical product of :gen-class and compile. The :gen-class directive
with the argument :name joy.gui.DynaFrame creates a class vaguely resembling the
following Java source:

package joy.gui;

public class DynaFrame extends javax.swing.JFrame {
public final Object state;

Figure 10.2 A simple use of DynaFrame: now
that you’ve compiled the DynaFrame class,
you can start using it to display simple GUIs.

Figure 10.3 A simple dynamic update of
DynaFrame: we can update the
DynaFrame on the fly without restarting.

216 CHAPTER 10 Java.next
(ns joy.gui.socks
(:import
(joy.gui DynaFrame)
(javax.swing Box BoxLayout JTextField JPanel

JSplitPane JLabel JButton
JOptionPane)

(java.awt BorderLayout Component GridLayout FlowLayout)
(java.awt.event ActionListener)))

(defn shelf [& components]
(let [shelf (JPanel.)]

(.setLayout shelf (FlowLayout.))
(doseq [c components] (.add shelf c))
shelf))

(defn stack [& components]
(let [stack (Box. BoxLayout/PAGE_AXIS)]

(doseq [c components]
(.setAlignmentX c Component/CENTER_ALIGNMENT)
(.add stack c))

stack))

(defn splitter [top bottom]
(doto (JSplitPane.)

(.setOrientation JSplitPane/VERTICAL_SPLIT)
(.setLeftComponent top)
(.setRightComponent bottom)))

These simple GUI elements are built on top of the Java Swing library, where each sub-
widget in the components argument is added to the properly configured Container-
derived parent. These are good as a starting point, but still there’s nothing to display
unless we dive into the Swing API directly. We can do one better than that by providing
a simple base set of widgets: buttons, labels, and text boxes.

(defn button [text f]
(doto (JButton. text)

(.addActionListener
(proxy [ActionListener] []

(actionPerformed [_] (f))))))

(defn txt [cols t]
(doto (JTextField.)

(.setColumns cols)
(.setText t)))

(defn label [txt] (JLabel. txt))

The button element takes a function executed on a mouse-click, so we’ll now provide
a JavaScript-like alert function as a simple action:

(defn alert
([msg] (alert nil msg))
([frame msg]

(javax.swing.JOptionPane/showMessageDialog frame msg)))

Listing 10.4 Simple GUI containers

Listing 10.5 A set of simple widgets

217Clojure gen-class and GUI programming
Having built all of these GUI elements, we’ll describe the first simple GUI as shown in
figure 10.5.

 It seems simple, if not pointless. But you might be pleasantly surprised with the con-
cise code used to describe it:

(.display gui
(splitter

(button "Procrastinate" #(alert "Eat Cheetos"))genclass
(button "Move It" #(alert "Couch to 5k"))))

These widgets are adequate enough to create richer user interfaces, and to illustrate
we’ll add one more widget builder for grid-like elements:

(defn grid [x y f]
(let [g (doto (JPanel.)

(.setLayout (GridLayout. x y)))]
(dotimes [i x]

(dotimes [j y]
(.add g (f))))

g))

With a small amount of code, we can build the richer user interface in figure 10.6.

(.display gui
(let [g1 (txt 10 "Charlemagne")

g2 (txt 10 "Pippin")
r (txt 3 "10")
d (txt 3 "5")]

(splitter
(stack

(shelf (label "Player 1") g1)
(shelf (label "Player 2") g2)
(shelf (label "Rounds ") r

(label "Delay ") d))

Listing 10.6 A more complex GUI example

Figure 10.6 A much more elaborate DynaFrame GUI:
there’s no limit to the complexity of this simple GUI
model. Go ahead and experiment to your heart’s content.

Figure 10.5 DynaFrame alerts: we
can create slightly more complex
GUIs and attach actions on the fly.

218 CHAPTER 10 Java.next
(stack
(grid 21 11 #(label "-"))
(button "Go!" #(alert (str (.getText g1) " vs. "

(.getText g2) " for "
(.getText r) " rounds, every "
(.getText d) " seconds.")))))))

Though not perfect, it gives you a good idea how to extend these functions to provide
a finer level of control over layout and positioning, as well as ways to provide more
functionality to create richer interfaces. How would you go about creating an agile
environment for incremental GUI development using plain Java? Clojure allows you to
start with a powerful set of primitives and incrementally refine them until they suit
your exact needs.

 Though this section started as a description of creating a simple dynamic frame
using the gen-class facility, we felt it was worthwhile to expand into the realm of
dynamic, incremental development. There are times when AOT compilation is abso-
lutely necessary (such as client requirements), but our advice is to avoid it if at all pos-
sible. Instead, leverage the dynamic nature of Clojure to its fullest, designing your
system to fit into that model.

10.3 Clojure’s relationship to Java arrays
In general, the need to delve into arrays should be limited, but such casual dismissal
isn’t always apropos. In this section, we’ll cover some of the uses for Java arrays in Clo-
jure, including but not limited to arrays as multimethod dispatch, primitive versus ref-
erence arrays, calling variadic functions and constructors, and multi-dimensional
arrays.

10.3.1 Types of arrays: primitive and reference

As mentioned in section 4.1, Clojure numbers are of the boxed variety, but in many
cases the Clojure compiler can resolve the correct call for primitive interoperability
calls. But it can never resolve the need to pass a primitive array when a reference array
is provided instead.

CREATING PRIMITIVE ARRAYS

The Java class java.lang.StringBuilder provides4 a method .append(char[]) that
appends the primitive chars in the passed array to its end. But our first instinct for
making this happen in Clojure won’t bear fruit:

(doto (StringBuilder. "abc")
(.append (into-array [\x \y \z])))

;=> #<StringBuilder abc[Ljava.lang.Character;@65efb4be>

The problem lies in that Clojure’s into-array function doesn’t return a primitive
array of char[], but instead a reference array of Character[], forcing the Clojure

4 When dealing with and manipulating strings, your best options can almost always be found in the core
clojure.string namespace or the clojure.contrib.string namespace in the Clojure contrib library.

219Clojure’s relationship to Java arrays
compiler to resolve the call as to the StringBuilder.append(Object) method
instead. That the Array class is a subclass of Object is a constant cause for headache in
Java and clearly can be a problem5 for Clojure as well. What we really want to do is
ensure that a primitive array is used as the argument to .append, which we do here:

(doto (StringBuilder. "abc")
(.append (char-array [\x \y \z])))

;=> #<StringBuilder abcxyz>

Clojure provides a number of primitive array-building functions that work similarly to
char-array, as summarized in the following list.

 boolean-array double-array long-array

 byte-array float-array object-array

 char-array int-array short-array

You could also use the make-array and into-array functions to create primitive
arrays:

(let [ary (make-array Integer/TYPE 3 3)]
(dotimes [i 3]

(dotimes [j 3]
(aset ary i j (+ i j))))

(map seq ary))

;=> ((0 1 2) (1 2 3) (2 3 4))

(into-array Integer/TYPE [1 2 3])
;=> #<int[] [I@391be9d4>

Populating arrays can often be an iterative affair, as seen in the previous snippet, but
there are often more concise ways to do so when creating reference arrays.

CREATING REFERENCE ARRAYS

To intentionally create an array of a particular reference type, or of compatible types,
use the into-array function, passing in a sequence of objects:

(into-array ["a" "b" "c"])
;=> #<String[] [Ljava.lang.String;@3c3ac93e>

(into-array [(java.util.Date.) (java.sql.Time. 0)])
;=> #<Date[] [Ljava.util.Date;@178aab40>

(into-array ["a" "b" 1M])
; java.lang.IllegalArgumentException: array element type mismatch

(into-array Number [1 2.0 3M 4/5])
;=> #<Number[] [Ljava.lang.Number;@140b6e46>

The function into-array determines the type of the resulting array based on the first
element of the sequence, and each subsequent element type must be compatible (a

5 In this example, it’s preferred that a “java.lang.IllegalArgumentException: No matching method found”
exception be thrown, because StringBuilder doesn’t have a method matching .append(Character[]) or
even .append(Object[]).

220 CHAPTER 10 Java.next
subclass). To create a heterogeneous array of java.lang.Object, use the to-array or
to-array-2d function:

(to-array-2d [[1 2 3]
[4 5 6]])

;=> #<Object[][] [[Ljava.lang.Object;@bdccedd>

(to-array ["a" 1M #(%) (proxy [Object] [])])
;=> #<Object[] [Ljava.lang.Object;@18987a33>

(to-array [1 (int 2)])
;=> #<Object[] [Ljava.lang.Object;@6ad3c65d>

Be wary: primitives will be autoboxed when using either to-array or to-array-2d.

10.3.2 Array mutability

Because JVM arrays are mutable, you need to be aware that their contents can change
at any point. For example:

(def ary (into-array [1 2 3]))
(def sary (seq ary))
sary
;=> (1 2 3)

What happens to sary if we change the contents of ary?

(aset ary 0 42)
sary
;=> (42 2 3)

The seq view of an array is that of the live array and therefore subject to concurrent
modification. Be cautious when sharing arrays from one function to the next, and
especially across threads. Note that this can be especially disastrous should an array
change in the middle of a sequential operation, such as the use of the higher-order
array functions amap and areduce, as might be used to define a sum-of-squares func-
tion6 for arrays:

(defn asum-sq [xs]
(let [dbl (amap xs i ret

(* (aget xs i)
(aget xs i)))]

(areduce dbl i ret 0
(+ ret (aget dbl i)))))

(asum-sq (float-array [1 2 3 4 5]))
;=> 55.0

At any point during the processing of asum-sq, the underlying array could change,
causing inaccurate results or worse. You should take great care when using Java’s
mutable arrays, though sharing only the seq of an array is perfectly safe because
there’s no way to get at the array when you only have a reference to the seq.

6 This function is fairly clear but slower than it should be. We’ll make it faster in sections 12.1 and 12.5.

221Clojure’s relationship to Java arrays
10.3.3 That unfortunate naming convention

You might’ve noticed (how could you miss?) the ugly names printed by the Clojure
REPL whenever an array is evaluated. There’s logic to this madness, as part of the jum-
ble is the legal name of the class corresponding to the array—the part formed as
[Ljava.lang.String;. For example, the previous name corresponded to a 1D array
of strings. The representation for a 2D array of strings is then [[Ljava.lang.String;,
and it therefore follows that [[[Ljava.lang.String; is a 3D array of strings. Are you
sensing a pattern here? Table 10.1 lays it out.

 Using what you know about arrays, the class representation names can be used to
do things such as multimethod dispatch:

(what-is (into-array ["a" "b"]))
;=> "1d String"

(what-is (to-array-2d [[1 2][3 4]]))
;=> "2d Object"

(what-is (make-array Integer/TYPE 2 2 2 2))
;=> "Primitive 4d int"

You can create methods for identifying arrays and returning a descriptive string using
the <indexterm><primary>java.lang.Class/forName</primary></indexterm>Class/

forName method as shown:

(defmulti what-is class)
(defmethod what-is (Class/forName "[Ljava.lang.String;") [a] "1d String")
(defmethod what-is (Class/forName "[[Ljava.lang.Object;") [a] "2d Object")
(defmethod what-is (Class/forName "[[[[I") [a] "Primitive 4d int")

Though not the most beautiful task to perform in Clojure, it’s easy to understand
once you’ve grasped how the array class names are constructed.

Representation Array type

[Ljava.lang.Object; Reference array

[B Primitive byte array

[I Primitive int array

[C Primitive char array

[S Primitive short array

[F Primitive float array

[D Primitive double array

[J Primitive long array

[Z Primitive boolean array

Representation Dimension

[1D

[[2D

... and so on... Table 10.1 Array type class
names and dimensions

222 CHAPTER 10 Java.next
10.3.4 Multidimensional arrays

Observe what happens when the following call is tried:

(what-is (into-array [[1.0] [2.0]]))
; java.lang.IllegalArgumentException: No method in multimethod
; 'what-is' for dispatch value: class [Lclojure.lang.PersistentVector;

The problem is that the into-array function builds a 1D array of persistent vectors,
but we wanted a 2D array of doubles. In order to do this, the array would have to be
built differently:

(defmethod what-is (Class/forName "[[D") [a] "Primitive 2d double")
(defmethod what-is (Class/forName "[Lclojure.lang.PersistentVector;") [a]

"1d Persistent Vector")

(what-is (into-array (map double-array [[1.0] [2.0]])))
;=> "Primitive 2d double"

(what-is (into-array [[1.0] [2.0]]))
;=> "1d Persistent Vector"

We had to use the map function with double-array on the inner arrays in order to
build the properly typed outer array. When working with multidimensional arrays, be
sure that you know what your inner elements should be on creation and create them
accordingly.

10.3.5 Variadic method/constructor calls

There’s no such thing as a variadic constructor or method at the bytecode level,
although Java provides syntactic sugar at the language level. Instead, variadic methods
expect an array as their final argument, and this is how they should be accessed in Clo-
jure interop scenarios. Take, for example, the call to the String/format function:

(String/format "An int %d and a String %s" (to-array [99, "luftballons"]))
;=> "An int 99 and a String luftballons"

That covers most of the high points regarding arrays in Clojure interoperability. We’ll
touch on them briefly when we talk about performance considerations in chapter 12,
but for now we’ll move on to a more interesting topic: the interoperability underpin-
nings relating to Clojure’s implementation.

10.4 All Clojure functions implement...
Clojure functions are highly amenable to interoperability. Their underlying classes
implement a number of useful interfaces that you can investigate by running
(ancestors (class #())). Most of the resulting classes are only applicable to the
internals of Clojure itself, but a few interfaces are useful in interop scenarios:
java.util.concurrent.Callable, java.util.Comparator, and java.lang.Runnable.
In this section, we’ll talk briefly about each and also provide simple examples.

223All Clojure functions implement...
10.4.1 java.util.Comparator

Simply put, the java.util.Comparator interface defines the signature for a single
method .compare that takes two objects l and r and returns -1 if l < r, 0 if l == r, and
> 0 if l > r. The static Java method Collections/sort provides an implementation
that takes a derivative of java.util.List and a Comparator and destructively sorts the
list provided. Using this knowledge, we can provide some basic infrastructure for the
remainder of this subsection:

(import '[java.util Comparator Collections ArrayList])

(defn gimme [] (ArrayList. [1 3 4 8 2]))

(doto (gimme)
(Collections/sort (Collections/reverseOrder)))

;=> #<ArrayList [8, 4, 3, 2, 1]>

In order to write a simple comparator that provides a reverse-sort Comparator, we
might naively do so:

(doto (gimme)
(Collections/sort

(reify Comparator
(compare [this l r]

(cond
(> l r) -1
(= l r) 0
:else 1)))))

;=> #<ArrayList [8, 4, 3, 2, 1]>

Though this works, Clojure provides a better way by allowing the use of a function as
the Comparator directly. You can couple this knowledge with the fact that Clojure
already provides numerous functions useful for comparison, as shown next.

(doto (gimme) (Collections/sort #(compare %2 %1)))
;=> #<ArrayList [8, 4, 3, 2, 1]>

(doto (gimme) (Collections/sort >))
;=> #<ArrayList [8, 4, 3, 2, 1]>

(doto (gimme) (Collections/sort <))
;=> #<ArrayList [1, 2, 3, 4, 8]>

(doto (gimme) (Collections/sort (complement <)))
;=> #<ArrayList [8, 4, 3, 2, 1]>

When presented with numerous possible implementation strategies, often the best
one in Clojure is the simplest.

10.4.2 java.lang.Runnable

Java threads expect an object implementing the java.lang.Runnable interface meant
for computations returning no value. We won’t get into the specifics of threaded

Listing 10.7 Useful comparison functions

complement function

224 CHAPTER 10 Java.next
computation until the next chapter, but the next two examples are simple enough to
require little a priori knowledge on the matter. If you wish to pass a function to
another Java thread, it’s as simple as providing it as an argument to the Thread
constructor:

(doto (Thread. #(do (Thread/sleep 5000)
(println "haikeeba!")))

.start)
; => #<Thread Thread[Thread-3,5,main]>
; ... 5 seconds later
; haikeeba!

This scenario is unlikely to occur often, because Clojure’s core concurrency features
are often sufficient for most needs. But that’s not always the case, and therefore it’s nice
to know that raw Clojure functions can be used seamlessly in the JVM’s concurrency API.

10.4.3 java.util.concurrent.Callable

The Java interface java.util.concurrent.Callable is specifically meant to be used
in a threaded context for computations returning a value. You can use a Clojure func-
tion using Java’s java.util.concurrentFutureTask class representing a “computa-
tion to occur later”:

(import '[java.util.concurrent FutureTask])

(let [f (FutureTask. #(do (Thread/sleep 5000) 42))]
(.start (Thread. #(.run f)))
(.get f))

; ... 5 seconds later
;=> 42

The call to FutureTask.get as the last expression will stop execution (a behavior
known as blocking) until the function passed to the constructor completes. Because the
function in question sleeps for 5 seconds, the call to .get must wait.

 Clojure’s interoperability mechanisms are a two-way street. Not only do they allow
Java APIs to work seamlessly within Clojure, but they also provide ways for Clojure
functions to work in Java APIs. In the next section, we’ll continue on this theme of
bidirectional interop with a discussion on the ways that Clojure’s collection types can
also be used in traditional Java APIs.

10.5 Using Clojure data structures in Java APIs
Clojure functions are ready to use in many Java APIs, and as it turns out, so are its col-
lection types. Just as the Clojure collections are separated along three distinct equality
partitions7 (maps, sequences, and sets), so too are its levels of Java collection interop-
erability support. The Java Collections Framework has a nice high-level design philos-
ophy centered around working against interfaces. These interfaces are additionally
cognizant of immutability, in that the mutable parts are optional and the immutable

7 A refresher on equality partitions can be found in section 5.1.2 and throughout the remainder of chapter 5.

225Using Clojure data structures in Java APIs
parts are clearly demarcated. In this section, we’ll give a brief rundown of possible
ways that Clojure collections can be used within traditional Java APIs adhering to the
immutable collection protocols.

10.5.1 java.util.List

Clojure sequential collections conform to the immutable parts of the java.util.List
interface, which in turn extends the java.util.Collection and java.lang.Iterable
interfaces. You can see this conformance in action in the following listing.

(.get '[a b c] 1)
;=> b

(.get (repeat :a) 138)
;=> :a

(.containsAll '[a b c] '[b c])
;=> true

(.add '[a b c] 'd)
; java.lang.UnsupportedOperationException

That Clojure sequences and seqs don’t provide the mutable API of typical Java collec-
tions is obvious. But the implications are that you can’t use them in all Java APIs, such
as you might attempt when requiring that a vector be sorted destructively with a Java
API call:

(java.util.Collections/sort [3 4 2 1])
; java.lang.UnsupportedOperationException

A better approach is to either use the method used in the previous section using a Clo-
jure function, or even better to use the Clojure’s sort function instead.

10.5.2 java.lang.Comparable

The interface java.lang.Comparable is the cousin of the Comparator interface.
Comparator refers to objects that can compare two other objects, whereas Comparable
refers to an object that can compare itself to another object:

(.compareTo [:a] [:a])
;=> 0

(.compareTo [:a :b] [:a])
;=> 1

(.compareTo [:a :b] [:a :b :c])
;=> -1

(sort [[:a :b :c] [:a] [:a :b]])
;=> ([:a] [:a :b] [:a :b :c])

One thing to note is that Clojure’s vector implementation is currently the only collec-
tion type that implements the java.lang.Comparable interface providing the

Listing 10.8 java.util.List conformance for sequences and seqs

Vectors

Lazy seqs

Sequences not mutable

226 CHAPTER 10 Java.next
.compareTo method. As a result, attempting to compare a different collection type to
a vector leads to a confusing error message:

(.compareTo [1 2 3] '(1 2 3))

; java.lang.ClassCastException: clojure.lang.PersistentList
; cannot be cast to clojure.lang.IPersistentVector

Pay no attention to that class-cast exception behind the curtain.

10.5.3 java.util.RandomAccess

In general, the java.util.RandomAccess interface is used to indicate that the data
type provides constant time indexed access to its elements. This allows for algorithms
to follow optimized paths accordingly. This optimization is generally performed by
using the .get method for access rather than an iterator:

(.get '[a b c] 2)
;=> c

Vectors are currently the only Clojure collection type that can make such guarantees.

10.5.4 java.util.Collection

The java.util.Collection interface lies at the heart of the Java Collections Frame-
work, and classes implementing it can play in many of Java’s core collections APIs. A
useful idiom taking advantage of this fact is the use of a Clojure sequence as a model
to build a mutable sequence for use in the Java Collections API, as shown:

(defn shuffle [coll]
(seq (doto (java.util.ArrayList. coll)

java.util.Collections/shuffle)))

(shuffle (range 10))
;=> (3 9 2 5 4 7 8 6 1 0)

It’s difficult to write a proper sequence-shuffling function, so the shuffle function
takes full advantage of an existing Java API that has been tested and used extensively
for years. As an added bonus, shuffle is mostly8 functional, idiomatic, and fast. Clo-
jure favors immutability but doesn’t trap you into it when there are practical solutions
to be leveraged.

JAVA.UTIL.MAP

Like most of the Clojure collections, its maps are analogous to Java maps in that they
can be used in nonmutating contexts. But immutable maps have the added advantage
of never requiring defensive copies and will act exactly the same as unmodifiable Java
maps:

(java.util.Collections/unmodifiableMap
(doto (java.util.HashMap.) (.put :a 1)))

;=> #<UnmodifiableMap {:a=1}>

8 shuffle isn’t referentially transparent. Can you see why?

227definterface
(into {} (doto (java.util.HashMap.) (.put :a 1)))
;=> {:a 1}

In both cases, any attempt to modify the map entry classes of the maps will throw an
exception.

10.5.5 java.util.Set

In the case of Java and Clojure sets, the use of mutable objects9 as elements is highly
frowned upon:

(def x (java.awt.Point. 0 0))
(def y (java.awt.Point. 0 42))
(def points #{x y})
points
;=> #{#<Point java.awt.Point[x=0,y=0]> #<Point java.awt.Point[x=0,y=42]>}

Everything looks peachy at this point, but introducing mutability into the equation
has devastating costs:

(.setLocation y 0 0)
points
;=> #{#<Point java.awt.Point[x=0,y=0]> #<Point java.awt.Point[x=0,y=0]>}

Oh boy. Not only have we confused the set points by modifying its entries out from
underneath it, but we’ve also circumvented Clojure’s value-based semantics and the
nature of set-ness. Dealing with mutable objects is extremely difficult to reason about,
especially when dealing with collections of them. The gates of a mutable class are wide
open, and at any point during the execution of your programs this fact can be
exploited, willingly or not. But you can’t always avoid dealing with mutable nasties in
Clojure code because of a strict adherence to fostering interoperability.

 We’ve covered the two-way interop for functions and now collection types, but we
have one final path to traverse: the use and benefits of Clojure’s definterface macro.

10.6 definterface
As we mentioned in section 9.3, Clojure was built on abstractions in the host platform
Java. Types and protocols help to provide a foundation for defining your own abstrac-
tions in Clojure itself, for use within a Clojure context. But when interoperating with
Java code, protocols and types won’t always suffice. Therefore, you need to be able to
generate interfaces in some interop scenarios, and also for performance in cases
involving primitive argument and return types. In this section, we’ll talk briefly about
generating Java interfaces as the syntax, use cases, and purposes are likely familiar.

10.6.1 Generating interfaces on the fly

When you AOT-compile a protocol, you generate a public interface by the same name,
with the methods defined. The code in listing 10.9 uses definterface to define an

9 Clojure’s mutable reference types used to represent a logical identity are perfectly safe to use in sets. We’ll
explore the reference types in exquisite detail in the next chapter.

228 CHAPTER 10 Java.next
interface ISliceable. This interface is used to define an abstract thing that has the
ability to be sliced using a method slice, which takes start and end indices of type int.
Likewise, the interface defines a method sliceCount that returns an int representing
the number of possible slices.

(definterface ISliceable
(slice [^int s ^int e])
(^int sliceCount []))

;=> user.ISliceable

You’ll notice the inclusion of the type decoration ^int on the arguments to slice and
the return type of sliceCount. For now you can assume that they operate the same as
a type declaration in most languages providing them. They look similar to type hints
discussed in section 12.1, except that only in definterface are primitive hints sup-
ported. Now we can create an instance implementing the user.ISliceable interface,
as shown next.

(def dumb
(reify user.ISliceable

(slice [_ s e] [:empty])
(sliceCount [_] 42)))

(.slice dumb 1 2)
;=> [:empty]

(.sliceCount dumb)
;=> 42

There’s nothing terribly surprising about dumb, but you can instead implement it via
deftype, proxy, gen-class, or even a Java class. Note that definterface works even
without AOT compilation.

 We can now take definterface to the next logical step and extend the ISliceable
interface to other types using a well-placed protocol.

(defprotocol Sliceable
(slice [this s e])
(sliceCount [this]))

(extend user.ISliceable
Sliceable
{:slice (fn [this s e] (.slice this s e))
:sliceCount (fn [this] (.sliceCount this))})

(sliceCount dumb)
;=> 42

(slice dumb 0 0)
;=> [:empty]

Listing 10.9 An interface defining a sliceable object

Listing 10.10 A dummy reified ISliceable

Listing 10.11 Using a protocol to extend ISliceable

229Be wary of exceptions
By extending the ISliceable interface along Sliceable, ISliceable is able to partic-
ipate in the protocol, meaning that you have the possibility for extending other types,
even final types such as String, as shown next.

(defn calc-slice-count [thing]
"Calculates the number of possible slices using the formula:

(n + r - 1)!

r!(n - 1)!

where n is (count thing) and r is 2"
(let [! #(reduce * (take % (iterate inc 1)))

n (count thing)]
(/ (! (- (+ n 2) 1))

(* (! 2) (! (- n 1))))))

(extend-type String
Sliceable
(slice [this s e] (.substring this s (inc e)))
(sliceCount [this] (calc-slice-count this)))

(slice "abc" 0 1)
;=> "ab"
(sliceCount "abc")
;=> 6

The advantages of using definterface over defprotocol are restricted entirely to the
fact that the former allows primitive types for arguments and returns. At some point in
the future, the same advantages will likely be extended to the interfaces generated, so
use definterface sparingly and prefer protocols unless absolutely necessary.

10.7 Be wary of exceptions
There’s been much debate on the virtues of checked exceptions in Java, so we won’t
cover that here. Instead, we’ll stick to the facts regarding the nuances the JVM imposes
on Clojure’s error-handling facilities. Before we begin, consider the following view on
the use of exceptions in Clojure source:

When writing Clojure code, use errors to mean can’t continue and exceptions to mean
can or might continue.

We’ll attempt to constrain ourselves to the generalities of exception handling in this
section. If you desire information on deciphering exception messages, we talked about
that in section 3.4. If you’re curious about the effects of exceptions on continuation-
passing style, then refer back to section 7.3.4. We discussed the behavior of Clojure to
attempt to supplant numerical inaccuracies by throwing exceptions in section 4.1.3. If
you instead want to learn about the interplay between exceptions and Clojure’s refer-
ence types, then such matters can be found throughout chapter 11. Finally, if you have
no idea what an exception is, then we discuss the basics in section 1.5.8.

Listing 10.12 Extending strings along the Sliceable protocol

230 CHAPTER 10 Java.next
10.7.1 A bit of background regarding exceptions

The behavior of Clojure’s exception features directly spawns from the JVM enforcing
the promulgation of checked exceptions. Virtuous or not in the context of Java devel-
opment, checked exceptions are antithetical to closures and higher-order functions.
Checked exceptions require that not only should the thrower and the party responsi-
ble for handling them declare interest, but every intermediary is also forced to partic-
ipate. These intermediaries don’t have to actively throw or handle exceptions
occurring within, but they must declare that they’ll be “passing through.” Therefore,
by including the call to a Java method throwing a checked exception within a closure,
Clojure has two possible alternatives:

 Provide a cumbersome exception declaration mechanism on every single func-
tion, including closures.

 By default, declare that all functions throw the root Exception or Runtime-
Exception.

And as you can probably guess, Clojure takes the second approach, which leads to a
condition of multilevel wrapping of exceptions as they pass back up the call stack. This
is why you see, in almost any (.printStackTrace *e) invocation, the point of origin of
an error offset by some number of layers of java.lang.RuntimeException. Because
Java interfaces and classes get to decide what types of problems potential derivative
classes and even callers can have, Clojure needs to handle the base
java.lang.Exception at every level, because it has to preserve dynamism in the face
of a closed system. Unless you’re directly calling something that throws typed excep-
tions, your best bet is to catch Exception and then see what you have in context.

10.7.2 Runtime versus compile-time exceptions

There are two contexts in Clojure where exceptions can be thrown: runtime and com-
pile time. In this section we’ll touch on both, explaining how and when to use them.

RUNTIME EXCEPTIONS

The case of runtime exceptions might be the most familiar, because it’s likely to have
been encountered and utilized in your own code. There are two types of runtime
exceptions: errors and exceptions. We can illustrate the difference between the two by
showing you the following:

(defn explode [] (explode))
(try (explode) (catch Exception e "Stack is blown"))
; java.lang.StackOverflowError

So why were we unable to catch the java.lang.StackOverflowError? The reason lies
in Java’s exception class hierarchy and the fact that StackOverflowError isn’t a deriv-
ative of the Exception class, but instead of the Error class:

(try (explode) (catch StackOverflowError e "Stack is blown"))
;=> "Stack is blown"

231Be wary of exceptions
(try (explode) (catch Error e "Stack is blown"))
;=> "Stack is blown"

(try (explode) (catch Throwable e "Stack is blown"))
;=> "Stack is blown"

(try (throw (RuntimeException.))
(catch Throwable e "Catching Throwable is Bad"))

;=> "Catching Throwable is Bad"

We started with a catch of the most specific exception type StackOverflowError and
gradually decreased specificity until catching Throwable, which as you’ll notice also
catches a RuntimeException. In Java, catching exceptions at the level of Throwable is
considered bad form, and it should generally be viewed the same in Clojure. There-
fore, we suggest that you follow the advice stated in the opening to this section and
reserve those deriving from Errors for conditions that can’t be continued from and
those from Exception indicating possible continuation.

COMPILE-TIME EXCEPTIONS

There are a few ways that you might come across compile-time exceptions, the most
obvious occurring within the body of a macro:

(defmacro do-something [x] `(~x))
(do-something 1)
; java.lang.ClassCastException:
; java.lang.Integer cannot be cast to clojure.lang.IFn

Though the type of the exception is a java.lang.ClassCastException, it was indeed
thrown by the compiler, which you’d see if you were to trace the stack using some-
thing like (for [e (.getStackTrace *e)] (.getClassName e)).10 It’s perfectly accept-
able (and even encouraged) to throw exceptions within your own macros, but it’s
important to make a distinction between a compile-time and runtime exception.

COMPILE-TIME EXCEPTIONS Why delay until runtime the reporting of an error
that at compile time you know exists?

The way to throw a compile-time exception is to make sure your throw doesn’t occur
within a syntax-quoted form, as we show in the following listing.

(defmacro pairs [& args]
(if (even? (count args))
`(partition 2 '~args)
(throw (Exception. (str "pairs requires an even number of args")))))

(pairs 1 2 3)
; java.lang.Exception: pairs requires an even number of args

(pairs 1 2 3 4)
;=> ((1 2) (3 4))

10 This is a limited analogy to Groovy’s .? operator. Clojure also provides convenience functions for displaying
and handling stack traces in the clojure.stacktrace namespace.

Listing 10.13 Throwing a compile-time exception

232 CHAPTER 10 Java.next
Nothing is preventing the exception from being thrown at runtime, but because we
know that pairs requires an even number of arguments, we instead prefer to fail as
early as possible—at compilation time. This difference is clearly demonstrated by
repeating the preceding test in a function definition:

(fn [] (pairs 1 2 3))
; java.lang.Exception: pairs requires an even number of args

A runtime exception wouldn’t have been thrown until this function was called, but
because the pairs macro threw an exception at compile time, users are notified of
their error immediately. Though powerful, you should always try to balance the bene-
fits of compile-time error checking with macros and the advantages that implement-
ing as a function provides (the use in higher-order functions, apply, and so on).

10.7.3 Handling exceptions

There are two ways to handle exceptions and errors, each defined by the way in which
the error-handling mechanisms “flow” through the source. Imagine that you want a
macro that provides a limited11 null-safe (Koenig 2007) arrow that catches any occur-
rence of a NullPointerException in a pipeline:

(defmacro -?> [& forms]
`(try (-> ~@forms)

(catch NullPointerException _# nil)))

(-?> 25 Math/sqrt (+ 100))
;=> 105.0

(-?> 25 Math/sqrt (and nil) (+ 100))
;=> nil

The flow of any occurrence of NullPointer-

Exception happens from the inner functions of the
stitched forms. Conceptually, this flow can be viewed
as in figure 10.7, which describes the way that errors
can be caught depending on the direction in which
data is moving along the stack.

 The typical (try ... (catch ...)) form would
therefore be used for the case where the handler
catches errors bubbling outward from inner func-
tions and forms, as seen in the -?> macro. But if you
want to catch errors at their point of origin, you’ll
need a way to pass handlers up the stack. Fortunately,
Clojure provides a way to do this via its dynamic Var
feature, which will be discussed in section 13.5.

11 There are much more comprehensive -?> and .?. macros found in the clojure.contrib.core
namespace, and those are recommended above the one in this section.

exceptions

binding

(try
 (+
 (Math/sqrt 25)
 100)
 (catch NPE e nil))

(binding [handle prn]
 (try
 (+
 (Math/sqrt 25)
 100)
 (catch NPE e
 (handle e))))

Figure 10.7 Outside-in and inside-
out error handling. There are two
ways to handle errors in Clojure. The
typical way is to let exceptions flow
from the inner forms to the outer.
The other way, discussed in section
13.4, uses dynamic bindings to
“reach into” the inner forms to
handle them immediately.

233Summary
10.7.4 Custom exceptions

If you’re inclined to write your own exception and error types, then you’ll need to do
so using the gen-class feature described in section 10.2. JVM exceptions again are a
closed system, and it might be better to explore other possibilities (Houser EK) for
reporting and handling errors in your Clojure code. But, should you wish to ignore
this advice, then bear in mind that it’s rare for Clojure core functions to throw excep-
tions, and even more rarely are they checked exceptions. The idiom is for Clojure to
throw derivatives of RuntimeException or Error, and thus your code should also strive
for this when appropriate.

10.8 Summary
Clojure provides an extensive set of data abstractions via its types and protocols. It
also provides an extensive interoperability facility through proxy, gen-class,
definterface, exception handling, and the implementation of core Java collection
interfaces. Though we stress that types and protocols will give you the performant
abstractions needed for solving most problems, we realize that not all interop scenar-
ios are solved this way. In these circumstances, you should use the features listed in
this chapter to push you the remainder of the way toward your solution. Clojure
embraces Java interoperability, but it does so in specific ways, and with a specific set
of tools.

 In the next chapter, we move on to a rather complex topic, and one that Clojure
helps to simplify—shared state concurrency and mutation.

Mutation
Clojure’s main tenet isn’t the facilitation of concurrency. Instead, Clojure at its core
is concerned with the sane management of state, and facilitating concurrent pro-
gramming naturally falls out of that. The JVM operates on a shared-state concur-
rency model built around juggling fine-grained locks that protect access to shared
data. Even if you can keep all of your locks in order, rarely does such a strategy scale
well, and even less frequently does it foster reusability. But Clojure’s state manage-
ment is simpler to reason about and promotes reusability.

This chapter covers
 Software transactional memory with multiversion

concurrency control and snapshot isolation

 When to use Refs

 When to use Agents

 When to use Atoms

 When to use locks

 When to use futures

 When to use promises

 Parallelism

 Vars and dynamic binding
234

235Software transactional memory
CLOJURE APHORISM A tangled web of mutation means that any change to
your code potentially occurs in the large.

In this chapter, we’ll take the grand tour of
the mutation primitives and see how Clojure
makes concurrent programming not only
possible, but fun. Our journey will take us
through Clojure’s four major mutable refer-
ences: Refs, Agents, Atoms, and Vars. When
possible and appropriate, we’ll also point out
the Java facilities for concurrent program-
ming (including locking) and provide infor-
mation on the trade-offs involved in
choosing them. We’ll also explore parallel-
ism support in Clojure using futures, prom-
ises, and a trio of functions pmap, pvalues,
and pcalls.

 Before we dive into the details of Clo-
jure’s reference types, let’s start with a high-
level overview of Clojure’s software transac-
tional memory (STM).

11.1 Software transactional memory with multiversion
concurrency control and snapshot isolation

A faster program that doesn’t work right is useless.
—Simon Peyton-Jones

in “Beautiful Concurrency”

In chapter 1, we defined three important terms:

 Time —The relative moments when events occur
 State —A snapshot of an entity’s properties at a moment in time
 Identity —The logical entity identified by a common stream of states occurring

over time

These terms form the foundation for Clojure’s model of state management and muta-
tion. In Clojure’s model, a program must accommodate the fact that when dealing
with identities, it’s receiving a snapshot of its properties at a moment in time, not nec-
essarily the most recent. Therefore, all decisions must be made in a continuum. This
model is a natural one, as humans and animals alike make all decisions based on their
current knowledge of an ever-shifting world. Clojure provides the tools for dealing
with identity semantics via its Ref reference type, the change semantics of which are
governed by Clojure’s software transactional memory; this ensures state consistency
throughout the application timeline, delineated by a transaction.

Concurrency
vs. parallelism
Concurrency refers to the execu-
tion of disparate tasks at roughly
the same time, each sharing a
common resource. The results of
concurrent tasks often affect the
behavior of other concurrent
tasks, and therefore contain an
element of nondeterminism. Paral-
lelism refers to partitioning a task
into multiple parts, each run at the
same time. Typically, parallel
tasks work toward an aggregate
goal and the result of one doesn’t
affect the behavior of any other
parallel task, thus maintaining
determinacy.

236 CHAPTER 11 Mutation
11.1.1 Transactions

Within the first few moments of using Clojure’s STM, you’ll notice something different
than you may be accustomed to: no locks. Consequently, because there’s no need for
ad-hoc locking schemes when using STM, there’s no chance of deadlock. Likewise, Clo-
jure’s STM doesn’t require the use of monitors and as a result is free from lost wakeup
conditions. Behind the scenes, Clojure’s STM uses multiversion concurrency control
(MVCC) to ensure snapshot isolation. In simpler terms, snapshot isolation means that
each transaction gets its own view of the data that it’s interested in. This snapshot is
made up of in-transaction reference values, forming the foundation of MVCC (Ullman
1988). As illustrated in figure 11.1, each transaction merrily chugs along making
changes to in-transaction values only, oblivious to and ambivalent about other transac-
tions. At the conclusion of the transaction, the local values are examined against the
modification target for conflicts. An example of a simple possible conflict is if another
transaction B committed a change to a target reference during the time that transac-
tion A was working, thus causing A to retry. If no conflicts are found, then the in-trans-
action values are committed and the target references are modified with their updated
values. Another advantage that STM provides is that in the case of an exception during
a transaction, its in-transaction values are thrown away and the exception propagated
outward. In the case of lock-based schemes, exceptions can complicate matters ever
more, because in most cases locks need to be released (and in some cases, in the cor-
rect order) before an exception can be safely propagated up the call stack.

 Because each transaction has its own isolated snapshot, there’s no danger in retry-
ing—the data is never modified until a successful commit occurs. STM transactions
can easily nest without taking additional measures to facilitate composition. In lan-
guages providing explicit locking for concurrency, matters of composability are often
difficult, if not impossible. The reasons for this are far-reaching and the mitigating
forces (Goetz 2006) complex, but the primary reasons tend to be that lock-based
concurrency schemes often hinge on a secret incantation not explicitly understand-
able through the source itself: for example, the order in which to take and release a
set of locks.

11.1.2 Embedded transactions

In systems providing embedded transactions, it’s often common for transactions to be
nested, thus limiting the scope of restarts (Gray 1992). Embedding transactions within
Clojure operates differently, as summarized in figure 11.2.

 In some database systems, transactions can be used to limit the scope of a restart as
shown when transaction embedded.b restarts only as far back as its own scope. Clojure
has but one transaction per thread, thus causing all subtransactions to be subsumed
into the larger transaction. Therefore, when a restart occurs in the (conceptual) sub-
transaction clojure.b, it causes a restart of the larger transaction. Though not shown,
some transaction systems provide committal in each subtransaction; in Clojure, com-
mit only occurs at the outermost larger transaction.

238 CHAPTER 11 Mutation
As you proceed through this chapter, we urge you to keep this in the back of your
mind, because it’s important to realize that though Clojure facilitates concurrent pro-
gramming, it doesn’t solve it for you. But there are a few things that Clojure’s STM
implementation simplifies in solving difficult concurrent problems.

CONSISTENT INFORMATION

The STM allows you to perform arbitrary sets of read/write operations on arbitrary
sets of data in a consistent (Papadimitriou 1986) way. By providing these assurances,
the STM allows your programs to make decisions given overlapping subsets of informa-
tion. Likewise, Clojure’s STM helps to solve the reporting problem—the problem of
getting a consistent view of the world in the face of massive concurrent modification
and reading, without stopping (locking).

NO NEED FOR LOCKS

In any sized application, the inclusion of locks for managing concurrent access to
shared data adds complexity. There are many factors adding to this complexity, but
chief among them are the following:

 You can’t use locks without supplying extensive error handling. This is critical
in avoiding orphaned locks (locks held by a thread that has died).

 Every application requires that you reinvent a whole new locking scheme.
 Locking schemes often require that you impose a total ordering that’s difficult

to enforce in client code, frequently leading to a priority inversion scenario.

Locking schemes are difficult to design correctly and become increasingly so as the
number of locks grows. Clojure’s STM eliminates the need for locking and as a result
eliminates dreaded deadlock scenarios. Clojure’s STM provides a story for managing
state consistently. Adhering to this story will go a long way toward helping you solve
software problems effectively. This is true even when concurrent programming isn’t a
factor in your design.

ACI

In the verbiage of database transactions is a well-known acronym ACID, which refers to
the properties ensuring transactional reliability. Clojure’s STM provides the first three
properties: atomicity, consistency, and isolation. The other, durability, is missing due to the
fact that Clojure’s STM resides in-memory and is therefore subject to data loss in the
face of catastrophic system failure. Clojure relegates the problem of maintaining dura-
bility to the application developer instead of supplying common strategies by default:
database persistence, external application logs, serialization, and so on.

11.1.4 Potential downsides

There are two potential problems inherent in STMs in general, which we’ll only touch
on briefly here.

WRITE SKEW

For the most part, you can write correct programs simply by putting all access and
changes to references in appropriately scoped transactions. The one exception to this

239Software transactional memory
is write skew, which occurs in MVCC systems such as Clojure’s. Write skew can occur
when one transaction uses the value of a reference to regulate its behavior but doesn’t
write to that reference. At the same time, another transaction updates the value for
that same reference. One way to avoid this would be to do a “dummy write” in the first
transaction, but Clojure provides a less costly solution: the ensure function. This sce-
nario is rare in Clojure applications, but possible.

LIVE-LOCK

Live-lock refers to a set of transaction(s) that repeatedly restart one another. Clojure
combats live-lock in a couple of ways. First, there are transaction restart limits that will
raise an error when breached. Generally this occurs when the units of work within
some number of transactions is too large. The second way that Clojure combats live-
lock is called barging. Barging refers to some careful logic in the STM implementation
allowing an older transaction to continue running while younger transactions retry.

11.1.5 The things that make STM unhappy

Certain things can rarely (if ever) be safely performed within a transaction, and in this
section we’ll talk briefly about each.

I/O

Any I/O operation in the body of a transaction is highly discouraged. Due to restarts,
the embedded I/O could at best be rendered useless, and cause great harm at worst.
It’s advised that you employ the io! macro whenever performing I/O operations:

(io! (.println System/out "Haikeeba!"))
; Haikeeba!

When this same statement is used in a transaction, an exception is thrown:

(dosync (io! (.println System/out "Haikeeba!")))
; java.lang.IllegalStateException: I/O in transaction

Though it may not be feasible to use io! in every circumstance, it’s a good idea to do
so whenever possible.

CLASS INSTANCE MUTATION

Unrestrained instance mutation is often not idempotent, meaning that running a set of
mutating operations multiple times often displays different results.

LARGE TRANSACTIONS

Though the size of transactions is highly subjective, the general rule of thumb when
partitioning units of work should always be get in and get out as quickly as possible.

 Though it’s important to understand that transactions will help to simplify the
management of state, you should strive to minimize their footprint in your code. The
use of I/O and instance mutation is often an essential part of many applications; it’s
important to work to separate your programs into logical partitions, keeping I/O and
its ilk on one side, and transaction processing and mutation on the other. Fortunately
for us, Clojure provides a powerful toolset for making the management of mutability

240 CHAPTER 11 Mutation
sane, but none of the tools provide a shortcut to thinking. Multithreaded program-
ming is a difficult problem, independent of specifics, and Clojure’s state-management
tools won’t solve this problem magically. We’ll help to guide you through the proper
use of these tools starting with Clojure’s Ref type.

11.2 When to use Refs
Clojure currently provides four different reference types to aide in concurrent pro-
gramming: Refs, Agents, Atoms, and Vars. All but Vars are considered shared refer-
ences and allow for changes to be seen across threads of execution. The most
important point to remember about choosing between reference types is that
although their features sometimes overlap, each has an ideal use. All the reference
types and their primary characteristics are shown in figure 11.3.

The unique feature of Refs is that they’re coordinated. This means that reads and writes
to multiple refs can be made in a way that guarantees no race conditions. Asynchronous
means that the request to update is queued to happen in another thread some time
later, while the thread that made the request continues immediately. Retriable indicates
that the work done to update a reference’s value is speculative and may have to be
repeated. Finally, thread-local means that thread safety is achieved by isolating changes
to state to a single thread.

 Value access via the @ reader feature or the deref function provide a uniform client
interface, regardless of the reference type used. On the other hand, the write mecha-
nism associated with each reference type is unique by name and specific behavior, but

Atom Var

Asynchronous

Agent

Thread-local

Ref
Coordinated

Retriable

Figure 11.3 Clojure’s four reference types are listed across the
top, with their features listed down the left. Atoms are for lone
synchronous objects. Agents are for asynchronous actions. Vars
are for thread-local storage. Refs are for synchronously
coordinating multiple objects.

dothreads
To illustrate some major points, we’ll use a function dothreads! that launches a
given number of threads each running a function a number of times:

(import '(java.util.concurrent Executors))
(def *pool* (Executors/newFixedThreadPool
 (+ 2 (.availableProcessors (Runtime/getRuntime)))))

(defn dothreads! [f & {thread-count :threads
 exec-count :times
 :or {thread-count 1 exec-count 1}}]
 (dotimes [t thread-count]
 (.submit *pool* #(dotimes [_ exec-count] (f)))))

The dothreads! function is of limited utility—throwing a bunch of threads at a func-
tion to see if it breaks.

241When to use Refs
similar in structure. Each referenced value is changed through the application1 of a
pure function. The result of this function will become the new referenced value.
Finally, all reference types allow the association of a validator function via set-
validator that will be used as the final gatekeeper on any value change.

11.2.1 Coordinated, synchronous change using alter

A Ref is a reference type allowing synchronous, coordinated change to its contained
value. What does this mean? By enforcing that any change to a Ref’s value occurs in a
transaction, Clojure can guarantee that change happens in a way that maintains a con-
sistent view of the referenced value in all threads. But there’s a question as to what
constitutes coordination. We’ll construct a simple vector of Refs to represent a 3 x 3
chess board:

(def initial-board
[[:- :k :-]
[:- :- :-]
[:- :K :-]])

(defn board-map [f bd]
(vec (map #(vec (for [s %] (f s))) bd)))

Just as in section 2.4, the lowercase keyword represents a dark king piece and the
uppercase a light king piece. We’ve chosen to represent the board as a 2D vector of
Refs (which are created by the board-map function). There are other ways to repre-
sent our board, but we’ve chosen this because it’s nicely illustrative—the act of moving
a piece would require a coordinated change in two reference squares, or else a change
to one square in one thread could lead to another thread observing that square as
occupied. Likewise, this problem requires synchronous change, because it would be
no good for pieces of the same color to move consecutively. Refs are the only game in
town to ensure that the necessary coordinated change occurs synchronously. Before
you see Refs in action, we need to define auxiliary functions:

(defn reset!
"Resets the board state. Generally these types of functions are a
bad idea, but matters of page count force our hand."

[]
(def board (board-map ref initial-board))
(def to-move (ref [[:K [2 1]] [:k [0 1]]]))
(def num-moves (ref 0)))

(def king-moves (partial neighbors
[[-1 -1] [-1 0] [-1 1] [0 -1] [0 1] [1 -1] [1 0] [1 1]] 3))

(defn good-move? [to enemy-sq]
(when (not= to enemy-sq) to))

(defn choose-move [[[mover mpos][_ enemy-pos]]]
[mover (some #(good-move? % enemy-pos)

(shuffle (king-moves mpos)))])

1 Except for ref-set on Refs, reset! on Atoms, and set! on Vars.

242 CHAPTER 11 Mutation
The to-move structure describes the order of moves, so in the base case, it states that
the light king :K at y=2,x=1 moves before the dark king :k at y=0,x=1. We reuse the
neighbors function from section 7.4 to build a legal-move generator for chess king
pieces. We do this by using partial supplied with the kingly position deltas and the
board size. The good-move? function states that a move to a square is legal only if the
enemy isn’t already located there. The function choose-move destructures the to-
move vector and chooses a good move from a shuffled sequence of legal moves. The
choose-move function can be tested in isolation:

(reset!)
(take 5 (repeatedly #(choose-move @to-move)))
;=> ([:K [1 0]] [:K [1 1]] [:K [1 1]] [:K [1 0]] [:K [2 0]])

And now we’ll create a function to make a random move for the piece at the front of
to-move, shown next.

(defn place [from to] to)

(defn move-piece [[piece dest] [[_ src] _]]
(alter (get-in board dest) place piece)
(alter (get-in board src) place :-)
(alter num-moves inc))

(defn update-to-move [move]
(alter to-move #(vector (second %) move)))

(defn make-move []
(dosync

(let [move (choose-move @to-move)]
(move-piece move @to-move)
(update-to-move move))))

The alter function appears four times within the dosync, so that the from and to posi-
tions, as well as the to-move Refs, are updated in a coordinated fashion. We’re using
the place function as the alter function, which states “given a to piece and a from
piece, always return the to piece.” Observe what occurs when make-move is run once:

(make-move)
;=> [[:k [0 1]] [:K [2 0]]]
(board-map deref board)
;=> [[:- :k :-] [:- :- :-] [:K :- :-]]
@num-moves
;=> 1

We’ve successfully made a change to two board squares, the to-move structure, and
num-moves using the uniform state change model. By itself, this model of state change
is compelling. The semantics are simple to understand: give a reference a function
that determines how the value changes. This is the model of sane state change that
Clojure preaches. But we can now throw a bunch of threads at this solution and still
maintain consistency:

Listing 11.1 Using alter to update a Ref

Swap

246 CHAPTER 11 Mutation
(unless your change function is commutative, as mentioned previously). If those val-
ues have changed, then the transaction retries, and you try again. Earlier, we talked
about write skew, a condition occurring when you make decisions based on the in-
transaction value of a Ref that’s never written to, which is also changed at the same
time. Avoiding write skew is accomplished using Clojure’s ensure function, which
guarantees a read-only Ref isn’t modified by another thread. The make-move function
isn’t subject to write skew because it has no invariants on read data and in fact never
reads a Ref that it doesn’t eventually write. This design is ideal because it allows other
threads to calculate moves without having to stop them, while any given transaction
does the same. But in your own applications, you may be confronted with a true read
invariant scenario, and it’s in such a scenario that ensure will help.

11.2.5 Refs under stress

After you’ve created your Refs and written your transactions, and simple isolated tests
are passing, you may yet run into difficulties in larger integration tests because of how
Refs behave under stress from multiple transactions. As a rule of thumb, it’s best to
avoid having both short- and long-running transactions interacting with the same Ref.
Clojure’s STM implementation will usually compensate eventually regardless, but
you’ll soon see some less-than-ideal consequences of ignoring this rule.

 To demonstrate this problem, listing 11.2 shows a function designed specifically to
over-stress a Ref. It does this by starting a long-running or slow transaction in another
thread, where work is simulated by a 200ms sleep, but all it’s really doing is reading
the Ref in a transaction. This requires the STM to know of a stable value for the Ref for
the full 200ms. Meanwhile, the main thread runs quick transactions 500 times in a
row, each one incrementing the value in the Ref and thereby frustrating the slow
transaction’s attempts to see a stable value. The STM works to overcome this frustra-
tion by growing the history of values kept for the Ref. But by default this history is lim-
ited to 10 entries, and our perverse function can easily saturate that:

(stress-ref (ref 0))
;=> :done
; r is: 500, history: 10, after: 26 tries

You may see a slightly different number of tries, but the important detail is that the
slow transaction is unable to successfully commit and print the value of r until the
main thread has finished its frantic looping and returned :done. The Ref’s history
started at a default of 0 and grew to 10, but this was still insufficient.

(defn stress-ref [r]
(let [slow-tries (atom 0)]

(future
(dosync

(swap! slow-tries inc)
(Thread/sleep 200)
@r)

Listing 11.2 How to make a Ref squirm

Long-running
transaction

247When to use Agents
(println (format "r is: %s, history: %d, after: %d tries"
@r (ref-history-count r) @slow-tries)))

(dotimes [i 500]
(Thread/sleep 10)
(dosync (alter r inc)))

:done))

Remember that our real problem here is mixing short- and long-running transactions
on the same Ref. But if this is truly unavoidable, Clojure allows us to create a Ref with
a more generous cap on the history size:

(stress-ref (ref 0 :max-history 30))
; r is: 410, history: 20, after: 21 tries
;=> :done

Again, your numbers may be different, but this time the Ref’s history grew sufficiently
(reaching 20 in this run) to allow the slow transaction to finish first and report about
r before all 500 quick transactions completed. In this run, only 410 had finished when
the slow transaction committed.

 But the slow transaction still had to be retried 20 times, with the history growing
one step large each time, before it was able to complete. If our slow transaction were
doing real work instead of just sleeping, this could represent a lot of wasted comput-
ing effort. If your tests or production environment reveal this type of situation and the
underlying transaction size difference can’t be resolved, one final Ref option can
help. Because you can see that the history will likely need to be 20 anyway, you may as
well start it off closer to its goal:

(stress-ref (ref 0 :min-history 15 :max-history 30))
; r is: 97, history: 19, after: 5 tries
;=> :done

This time the slow transaction finished before even 100 of the quick transactions had
finished; and even though the history grew to roughly the same size, starting it off at
15 meant the slow transaction only retried 4 times before succeeding.

 The use of Refs to guarantee coordinated change is generally simple for managing
state in a synchronous fashion, and tuning with :min-history and :max-history is
rarely required. But not all changes in your applications will require coordination,
nor will they need to be synchronous. For these circumstances, Clojure also provides
another reference type, the Agent, that provides independent asynchronous changes,
which we’ll discuss next.

11.3 When to use Agents
Like all Clojure reference types, an Agent represents an identity, a specific thing whose
value can change over time. Each Agent has a queue to hold actions that need to be
performed on its value, and each action will produce a new value for the Agent to
hold and pass to the subsequent action. Thus the state of the Agent advances through
time, action after action, and by their nature only one action at a time can be operat-
ing on a given Agent. Of course, other actions can be operating on other Agents at
the same time, each in its own thread.

500 very quick
transactions

249When to use Agents
Clojure does have an await function that can be used to block a thread until a partic-
ular Agent has processed a message, but this function is specifically disallowed in
Agent threads (and also STM transactions) in order to prevent accidentally creating
this sort of deadlock.

 The final difference lies in the fact that Agents allow for arbitrary update func-
tions whereas Erlang processes are bound to static pattern-matched message han-
dling routines. In other words, pattern matching couples the data and update logic,
whereas the former decouples them. Erlang is an excellent language for solving the
extremely difficult problem of distributed computation, but Clojure’s concurrency
mechanisms service the in-process programming model more flexibly than Erlang
allows (Clementson 2008).

11.3.2 Controlling I/O with an Agent

One handy use for Agents is to serialize access to a resource, such as an file or other
I/O stream. For example, imagine we want to provide a way for multiple threads to report
their progress on various tasks, giving each report a unique incrementing number.

 Because the state we want to hold is known, we can go ahead and create the Agent:

(def log-agent (agent 0))

Now we’ll supply an action function to send to log-agent. All action functions take as
their first argument the current state of the Agent and can take any number of other
arguments that are sent:

(defn do-log [msg-id message]
(println msg-id ":" message)
(inc msg-id))

Here msg-id is the state—the first time do-log is sent to the Agent, msg-id will be 0.
The return value of the action function will be the new Agent state, incrementing it to
1 after that first action.

 Now we need to do some work worth logging about, but for this example we’ll just
pretend:

(defn do-step [channel message]
(Thread/sleep 1)
(send-off log-agent do-log (str channel message)))

(defn three-step [channel]
(do-step channel " ready to begin (step 0)")
(do-step channel " warming up (step 1)")
(do-step channel " really getting going now (step 2)")
(do-step channel " done! (step 3)"))

To see how log-agent will correctly queue and serialize the messages, we need to start
a few threads, each yammering away at the Agent, shown next:

(defn all-together-now []
(dothreads! #(three-step "alpha"))
(dothreads! #(three-step "beta"))
(dothreads! #(three-step "omega")))

250 CHAPTER 11 Mutation
(all-together-now)
; 0 : alpha ready to being (step 0)
; 1 : omega ready to being (step 0)
; 2 : beta ready to being (step 0)
; 3 : alpha warming up (step 1)
; 4 : alpha really getting going now (step 2)
; 5 : omega warming up (step 1)
; 6 : alpha done! (step 3)
; 7 : omega really getting going now (step 2)
; 8 : omega done! (step 3)
; 9 : beta warming up (step 1)
; 10 : beta really getting going now (step 2)
; 11 : beta done! (step 3)

Your output is likely to look different, but one thing that should be exactly the same is
the stable, incrementing IDs assigned by the Agent, even while the alpha, beta, and
omega threads fight for control.

 There are several other possible approaches to solving this problem, and it can be
constructive to contrast them. The simplest alternative would be to hold a lock while
printing and incrementing. Besides the general risk of deadlocks when a complex
program has multiple locks, there are some specific drawbacks even if this would be
the only lock in play. For one, each client thread would block anytime there was con-
tention for the lock, and unless some fairness mechanism were used, there’d be at
least a slight possibility of one or more threads being “starved” and never having an
opportunity to print or proceed with their work. Because Agent actions are queued
and don’t block waiting for their action to be processed, neither of these is a concern.

 Another option would be to use a blocking queue to hold pending log messages.
Client threads would be able to add messages to the queue without blocking and with
adequate fairness. But you’d generally need to dedicate a thread to popping messages
from the queue and printing them, or write code to handle starting and stopping the
printing thread as needed. Why write such code when Agents do this for you already?
When no actions are queued, the Agent in our example has no thread assigned to it.3

 Agents have other features that may or may not be useful in any given situation.
One is that the current state of an Agent can be observed cheaply. In the previous
example, this would allow us to discover the ID of the next message to be written out,
as follows:

@log-agent
;=> 11

Here the Agent is idle—no actions are queued or running, but the same expression
would work equally well if the Agent were running.

 Other features include the await and await-for functions, which allow a sending
thread to block until all the actions it’s sent to a given set of Agents have completed.

3 Using Agents for logging might not be appropriate in all cases. For example, in probing scenarios, the num-
ber of log events could be extremely high. Coupling this volume with serialization could make the Agent
unable to catch its ever-growing queue.

252 CHAPTER 11 Mutation
 We can make this scenario play out if we make a gaggle of Agents and send them
actions that sleep for a moment. Here’s a little function that does this, using which-
ever send function we specify, and then waits for all the actions to complete:

(defn exercise-agents [send-fn]
(let [agents (map #(agent %) (range 10))]

(doseq [a agents]
(send-fn a (fn [_] (Thread/sleep 1000))))

(doseq [a agents]
(await a))))

If we use send-off, all the agents will begin their one-second wait more or less simul-
taneously, each in its own thread. So the entire sequence of them will complete in
slightly over one second:

(time (exercise-agents send-off))
; "Elapsed time: 1008.771296 msecs"

Now we can demonstrate why it’s a bad idea to mix send with actions that block:

(time (exercise-agents send))
; "Elapsed time: 3001.555086 msecs"

The exact elapsed time you’ll see will depend on the number of processors you have,
but if you have fewer than eight you’ll see this example takes at least two seconds to
complete. The threads in the fixed-size pool are all clogged up waiting for sleep to
finish, so the other Agents queue up waiting for a free thread. Because clearly the
computer could complete all 10 actions in about one second using send-off, using
send is a bad idea.

 So that’s it: send is for actions that stay busy using the processor and not blocking
on I/O or other threads, whereas send-off is for actions that might block, sleep, or
otherwise tie up the thread. This is why we used send-off for the threads that printed
log lines and send for the one that did no I/O at all.

11.3.4 Error handling

We’ve been fortunate so far—none of these Agent actions have thrown an exception.
But real life is rarely so kind. Most of the other reference types are synchronous and
so exceptions thrown while updating their state bubble up the call stack in a normal
way, to be caught with a regular try/catch in your application (or not). Because
Agent actions run in other threads after the sending thread has moved on, we need a
different mechanism for handling exceptions that are thrown by Agent actions. As of
Clojure 1.2, you can choose between two different error-handling modes for each
Agent: :continue and :fail.

:FAIL

By default, new Agents start out using the :fail mode, where an exception thrown by
an Agent’s action will be captured by the Agent and held so that you can see it later.
Meanwhile, the Agent will be considered failed or stopped and will stop processing its

253When to use Agents
action queue—all the queued actions will have to wait patiently until someone clears
up the Agent’s error.

 One common mistake when dealing with Agents is to forget that your action func-
tion must take at least one argument for the Agent’s current state. For example, we
might try to reset the log-agent’s current message ID like this:

(send log-agent (fn [] 2000)) ; incorrect

@log-agent
;=> 1001

At first glance it looks like the action we sent had no effect, or perhaps hasn’t been
applied yet. But we’d wait in vain for that Agent to do anything ever again without
intervention, because it’s stopped. One way to determine this is with the agent-error
function:

(agent-error log-agent)
;=> #<IllegalArgumentException java.lang.IllegalArgumentException:
; Wrong number of args passed to: user$eval--509$fn>

This returns the error of a stopped Agent, or nil if it’s still running fine. Another way
to see whether an Agent is stopped is to try to send another action to it:

(send log-agent (fn [_] 3000))
; java.lang.RuntimeException: Agent is failed, needs restart

Even though this action would’ve worked fine, the Agent has failed and so no further
sends are allowed. The state of log-agent remains unchanged:

@log-agent
;=> 1001

In order to get the Agent back into working order, we need to restart it:

(restart-agent log-agent 2500 :clear-actions true)
;=> 2500

This resets the value of log-agent to 2500 and deletes all those actions patiently wait-
ing in their queue. If we hadn’t included the :clear-actionstrue option, those
actions would’ve survived and the Agent would continue processing them. Either way,
the Agent is now in good working order again, and so we can again send and send-
off to it:

(send-off log-agent do-log "The agent, it lives!")
; 2500 : The agent, it lives!
;=> #<Agent@72898540: 2500>

Note that restart-agent only makes sense and thus is only allowed when the Agent
has failed. If it hasn’t failed, any attempt to restart it throws an exception in the thread
making the attempt, and the Agent is left undisturbed:

(restart-agent log-agent 2500 :clear-actions true)
;=> java.lang.RuntimeException: Agent does not need a restart

254 CHAPTER 11 Mutation
This mode is perhaps most appropriate for manual intervention. Agents that normally
don’t have errors but in a running system end up failing can use the :fail mode to
keep from doing anything too bad until a human can take things in hand, check to
see what happened, choose an appropriate new state for the Agent, and restart it just
as we did here.

:CONTINUE

The other error mode that Agents currently support is :continue, where any action
that throws an exception is skipped and the Agent proceeds to the next queued action
if any. This is most useful when combined with an error handler—if you specify an
:error-handler when you create an Agent, that Agent’s error mode defaults to
:continue. The Agent calls the error handler when an action throws an exception
and doesn’t proceed to the next action until the handler returns. This gives the han-
dler a chance to report the error in some appropriate way. For example, we could
have log-agent handle faulty actions by logging the attempt:

(defn handle-log-error [the-agent the-err]
(println "An action sent to the log-agent threw " the-err))

(set-error-handler! log-agent handle-log-error)

(set-error-mode! log-agent :continue)

With the error mode and handler set up, sending faulty actions does cause reports to
be printed as we wanted:

(send log-agent (fn [x] (/ x 0))) ; incorrect
; An action sent to the log-

agent threw java.lang.ArithmeticException: Divide by zero
;=> #<Agent@66200db9: 2501>

(send log-agent (fn [] 0)) ; also incorrect
; An action sent to the log-agent threw java.lang.IllegalArgumentException:
; Wrong number of args passed to: user$eval--820$fn
;=> #<Agent@66200db9: 2501>

And the Agent stays in good shape, always ready for new actions to be sent:

(send-off log-agent do-log "Stayin' alive, stayin' alive...")
; 2501 : Stayin' alive, stayin' alive...

Note that error handlers can’t change the state of the Agent (ours keeps its current
message id of 2501 throughout the preceding tests). Error handlers are also sup-
ported in the :fail error mode, but handlers can’t call restart-agent so they’re less
often useful for :fail than they are for the :continue error mode.

11.3.5 When not to use Agents

It can be tempting to repurpose Agents for any situation requiring the spawning of
new threads. Their succinct syntax and “Clojurey” feel often make this temptation
strong. But though Agents perform beautifully when each one is representing a real
identity in your application, they start to show weaknesses when used a sort of “green
thread” abstraction. In cases where you just need a bunch of worker threads banging

255When to use Atoms
away on some work, or you have a specific long-running thread polling or blocking on
events, or any other kind of situation where it doesn’t seem useful that the Agent
maintain a value, you’ll usually be able to find a better mechanism than Agents. In
these cases, there’s every reason to consider using a Java Thread directly, or a Java
executor (as we did with dothreads!) to manage a pool of threads, or in some cases
perhaps a Clojure future.

 Another common temptation is to use Agents when you need state held but you
don’t actually want the sending thread to proceed until the Agent action you sent is
complete. This can be done by using await, but it’s another form of abuse that should
be avoided. For one, because you’re not allowed to use await in an Agent’s action, as
you try to use this technique in more and more contexts you’re likely to run into a sit-
uation where it won’t work. But in general, there’s probably a reference type that will
do a better job of behaving the way you want. Because this is essentially an attempt to
use Agents as if they were synchronous, you may have more success with one of the
other shared synchronous types. In particular, Atoms are shared and uncoordinated
just like Agents, but they’re synchronous and so may fit better.

11.4 When to use Atoms
Atoms are like Refs in that they’re synchronous but are like Agents in that they’re inde-
pendent (uncoordinated). An Atom may seem at first glance similar to a variable, but
as we proceed you’ll see that any similarities are at best superficial. The use cases for
Atoms are similar to those of compare-and-swap (CAS) spinning operations. Anywhere
you might want to atomically compute a value given an existing value and swap in the
new value, an Atom will suffice. Atom updates occur locally to the calling thread, and
execution continues after the Atom value has been changed. If another thread B
changes the value in an Atom before thread A is successful, then A retries. But these
retries are spin-loop and don’t occur within the STM, and thus Atom changes can’t be
coordinated with changes to other reference types. You should take care when embed-
ding changes to Atoms within Clojure’s transactions because as you know, transactions
can potentially be retried numerous times. Once an Atom’s value is set, it’s set, and it
doesn’t roll back when a transaction is retried, so in effect this should be viewed as a
side effect. Therefore, use Atoms in transactions only when you’re certain that an
attempt to update its value, performed numerous times, is idempotent.

 Aside from the normal use of @ and deref to query an Atom’s value, you can also
use the mutating functions swap!, compare-and-set!, and reset!.

11.4.1 Sharing across threads

As we mentioned, Atoms are thread safe and can be used when you require a light-
weight mutable reference to be shared across threads. A simple case is one of a glob-
ally accessible incrementing timer created using the atom function:

(def *time* (atom 0))
(defn tick [] (swap! *time* inc))
(dothreads! tick :threads 1000 :times 100)

256 CHAPTER 11 Mutation
@*time*
;=> 100000

Though this will work, Java already provides a concurrent class for just such a purpose,
java.util.concurrent.atomic.AtomicInteger, which can be used similarly:

(def *time* (java.util.concurrent.atomic.AtomicInteger. 0))
(defn tick [] (.getAndIncrement *time*))
(dothreads! tick :threads 1000 :times 100)
time
;=> 100000

Though the use of AtomicInteger is more appropriate in this case, the use of an
Atom works to show that it’s safe to use across threads.

11.4.2 Using Atoms in transactions

Just because we said that Atoms should be used carefully within transactions, that’s not
to say that they can never be used in that way. In fact, the use of an Atom as the refer-
ence holding a function’s memoization cache is idempotent on update.

MEMOIZATION Memoization is a way for a function to store calculated values in
a cache so that multiple calls to the function can retrieve previously calcu-
lated results from the cache, instead of performing potentially expensive cal-
culations every time. Clojure provides a core function memoize that can be
used on any referentially transparent function.

Individual requirements from memoization are highly personal, and a generic
approach isn’t always the appropriate solution for every problem. We’ll discuss per-
sonalized memoization strategies in section 12.4, but for now we’ll use an illustrative
example appropriate for Atom usage.

ATOMIC MEMOIZATION

The core memoize function is great for creating simple function caches, but it has
some limitations. First, it doesn’t allow for custom caching and expiration strategies.
Additionally, memoize doesn’t allow you to manipulate the cache for the purposes of
clearing it in part or wholesale. Therefore, we’ll create a function manipulable-
memoize that allows us to get at the cache and perform operations on it directly.
Throughout the book, we’ve mentioned Clojure’s metadata facility, and for this exam-
ple it will come in handy. We can take in the function to be memoized and attach
some metadata4 with an Atom containing the cache itself for later manipulation.

(defn manipulable-memoize [function]
(let [cache (atom {})]

(with-meta
(fn [& args]

Listing 11.3 A resettable memoize function

4 The ability to attach metadata to functions is a recent addition to Clojure version 1.2.

Store cache
in Atom

257When to use Atoms
(or (second (find @cache args))
(let [ret (apply function args)]

(swap! cache assoc args ret)
ret)))

{:cache cache})))

As shown in listing 11.3, we’ve slightly modified the core memoize function to attach
the Atom to the function being memoized. You can now observe manipulable-
memoize in action:

(def slowly (fn [x] (Thread/sleep 3000) x))
(time [(slowly 9) (slowly 9)])
; "Elapsed time: 6000.63 msecs"
;=> [9 9]

(def sometimes-slowly (manipulable-memoize slowly))
(time [(sometimes-slowly 108) (sometimes-slowly 108)])
; "Elapsed time: 3000.409 msecs"
;=> [108 108]

The call to slowly is always... well... slow, as you’d expect. But the call to sometimes-
slowly is only slow on the first call given a certain argument. This too is just as you’d
expect. Now we can inspect sometimes-slowly’s cache and perform some operations
on it:

(meta sometimes-slowly)
;=> {:cache #<Atom@e4245: {(108) 108}>}

(let [cache (:cache (meta sometimes-slowly))]
(swap! cache dissoc '(108)))

;=> {}

You may wonder why we used swap! to dissoc the cached argument 108 instead of
using (reset! cache {}). There are certainly valid use cases for the wholesale reset
of an Atom’s value, and this case is arguably one. But it’s good practice to set your ref-
erence values via the application of a function rather than the in-place value setting.
In this way, you can be more selective about the value manipulations being per-
formed. Having said that, here are the consequences our actions had:

(meta sometimes-slowly)
;=> {:cache #<Atom@e4245: {}>}

(time (sometimes-slowly 108))
; "Elapsed time: 3000.3 msecs"
;=> 108

And yes, you can see that we were able to remove the cached argument value 108
using the metadata map attached to the function sometimes-slowly. There are better
ways to allow for pointed cache removal than this, but for now you can take heart in
that using an Atom, we’ve allowed for the local mutation of a reference in a thread-
safe way. Additionally, because of the nature of memoization, you can use these
memoized functions in a transaction without ill effect. Bear in mind that if you do use
this in a transaction, then any attempt to remove values from the cache may not be

Check cache first

Else calculate,
store, and return

Attach metadata

258 CHAPTER 11 Mutation
met with the results expected. Depending on the interleaving of your removal and any
restarts, the value(s) you remove might be reinserted on the next time through the
restart. But even this condition is agreeable if your only concern is reducing total
cache size.

11.5 When to use locks
Clojure’s reference types and parallel primitives cover a vast array of use cases. Addi-
tionally, Java’s rich set of concurrency classes found in the java.util.concurrent
package are readily available. But even with this arsenal of tools at your disposal, there
still may be circumstances where explicit locking is the only option available, the com-
mon case being the modification of arrays concurrently. We’ll start with a simple pro-
tocol to describe a concurrent, mutable, safe array that holds an internal array
instance, allowing you to access it or mutate it safely. A naive implementation can be
seen in the following listing.

(ns joy.locks
(:refer-clojure :exclude [aget aset count seq])
(:require [clojure.core :as clj]))

(defprotocol SafeArray
(aset [this i f])
(aget [this i])
(count [this])
(seq [this]))

(defn make-dumb-array [t sz]
(let [a (make-array t sz)]

(reify
SafeArray
(count [_] (clj/count a))
(seq [_] (clj/seq a))
(aget [_ i] (clj/aget a i))
(aset [this i f]

(clj/aset a i (f (aget this i)))))))

If you’ll notice, we used the :refer-clojure namespace directive to :exclude the
array and sequence functions that the SafeArray protocol overrides. We did this not
only because it’s important to know how to use :refer-clojure, but also because
we’re changing the semantics of aset to take a mutating function as its last argument
instead of a raw value. We then used the :require directive to alias the Clojure
namespace as clj, thus avoiding the need to use the fully qualified function names a
la clojure.core/aget.

 The dumb array created by make-dumb-array is stored in a closure created by
reify, and unguarded access is provided without concern for concurrent matters.
Using this implementation across threads is disastrous, as shown:

(defn pummel [a]
(dothreads! #(dotimes [i (count a)] (aset a i inc)) :threads 100))

Listing 11.4 A simple SafeArray protocol

Small set
of functions

aget and aset
are unguarded

259When to use locks
(def D (make-dumb-array Integer/TYPE 8))
(pummel D)

;; wait for pummel to terminate

(seq D)
;=> (82 84 65 63 83 65 83 87)

This is very wrong—100 threads incrementing concurrently should result in 100 for
each array slot. To add insult to injury, Clojure didn’t throw a Concurrent-
ModificationException as you might’ve expected, but instead just silently went
along doing very bad things. Next, we’ll talk a little about locking and provide an
alternate implementation for SafeArray using locking primitives.

11.5.1 Safe mutation through locking

Currently, the only5 way to safely modify and see consistent values for a mutable object
across threads in Clojure is through locking.

REFERENCES AROUND EVIL MUTABLE THINGS

Wrapping a mutable object in a Clojure reference type provides absolutely no guarantees
for safe concurrent modification. Doing this will at best explode immediately or, worse,
provide inaccurate results.

 If at all possible, locking should be avoided; but for those times when it’s unavoid-
able, the locking macro will help. The locking macro takes a single parameter acting
as the locking monitor and a body that executes in the monitor context. Any writes
and reads to the monitor object are thread safe, and as a bonus the monitor is always
released at the end of the block. One of the major complexities in concurrent pro-
gramming using locks is that all errors must be handled fully and appropriately; other-
wise you risk orphaned locks, and they spell deadlock. But the locking macro will
always release the lock, even in the face of exceptions.

(defn make-safe-array [t sz]
(let [a (make-array t sz)]

(reify
SafeArray
(count [_] (clj/count a))
(seq [_] (clj/seq a))
(aget [_ i]

(locking a
(clj/aget a i)))

(aset [this i f]
(locking a

(clj/aset a i (f (aget this i))))))))

(def A (make-safe-array Integer/TYPE 8))
(pummel A)

5 Although a potential future addition to Clojure named pods may provide another.

Listing 11.5 An implementation of the SafeArray protocol using the locking macro

aget is locked

aset is locked

aset uses aget

260 CHAPTER 11 Mutation
;; wait for pummel to terminate

(seq A)
;=> (100 100 100 100 100 100 100 100)

We used the locking macro on both the aget and aset functions so that they can
both maintain consistency concurrently. Because aset calls aget, the locking macro
is called twice. This isn’t a problem because locking is reentrant, or able to be called
multiple times in the same thread. Typically, you’d have to manage the releasing of
reentrant locking mechanism to match the number of times called, but fortunately
locking manages that for us.

 The locking macro is the simplest way to perform primitive locking in Clojure.
But the implementation of make-safe-array is coarse in that the locks used are
guarding the entire array. Any readers or writers wishing to access or update any slot
in the array must wait their turn, a bottleneck known as contention. If you need finer-
grained locking, the locking facilities provided by Java will help to gain more control,
a topic we cover next.

11.5.2 Using Java’s explicit locks

Java provides a set of explicit locks in the java.util.concurrent.locks package that
can also be used as shown in the following listing. One such lock is provided by the
java.util.concurrent.locks.ReentrantLock class.

(defn lock-i [target-index num-locks]
(mod target-index num-locks))

(import 'java.util.concurrent.locks.ReentrantLock)

(defn make-smart-array [t sz]
(let [a (make-array t sz)

Lsz (quot sz 2)
L (into-array (take Lsz

(repeatedly #(ReentrantLock.))))]
(reify

SafeArray
(count [_] (clojure.core/count a))
(seq [_] (clojure.core/seq a))
(aget [_ i]

(let [lk (clojure.core/aget L (lock-i (inc i) Lsz))]
(.lock lk)
(try

(clojure.core/aget a i)
(finally (.unlock lk)))))

(aset [this i f]
(let [lk (clojure.core/aget L (lock-i (inc i) Lsz))]

(.lock lk)
(try

(clojure.core/aset a i (f (aget this i)))
(finally (.unlock lk))))))))

Listing 11.6 An implementation of the SafeArray protocol using ReentrantLock

Array

Locks

Explicit
locking Explicit

unlocking

Reentrant
locking

261When to use futures
(def S (make-smart-array Integer/TYPE 8))
(pummel S)

;; wait for pummel to terminate

(seq S)
;=> (100 100 100 100 100 100 100 100)

The first point of note is that we use a technique (simplified for clarity) called lock
striping (Herlihy 2008) to reduce the contention of guarding the array as a whole
using locking. The target array a’s slots are guarded by half the number of locks, each
chosen using the simple formula (mod target-index num-locks). This scheme
allows readers and writers to (potentially) act independently when accessing different
array slots. It’s crucial that we closed over the lock instance array L because for explicit
locks to work, each access must lock and unlock the same instance. Additionally, we’re
calling the .unlock method in the body of a finally expression, because failing to do
so is a recipe for disaster. Unlike the locking macro, the ReentrantLock class doesn’t
manage lock release automatically. Finally, you can also use the ReentrantLock in a
way equivalent to using the locking macro, but using ReentrantLock gives you the
choice of using proxy to provide more complex semantics than locking can provide.

 One flaw of the make-smart-array function is that it uses the same locks for read-
ers and writers. But you can allow for more concurrency if you enable some number
of readers to access array slots without blocking at all by using the java.util.
concurrent.locks.ReentrantReadWriteLock class. The ReentrantReadWriteLock
class holds two lock instances, one for reads and one for writes, and by adding another
lock array you can take advantage of this fact. We won’t get into that exercise here, but
if you choose to do so then you can use the implementation of make-smart-array as a
guide.

 Using the various locking mechanisms, you can guarantee consistency across
threads for mutable objects. But as we showed with explicit locks, there’s an expected
incantation to unlocking that must be strictly observed. Though not necessarily com-
plex in the SafeArray implementations, the conceptual baggage incurred in the
semantics of explicit locking scheme doesn’t scale well. The java.util.concurrent
package contains a cacophony of concurrency primitives above and beyond simple
locks, but it’s not our goal to provide a comprehensive survey herein.

 Now that we’ve covered the matter of guaranteeing coordinated state across dispa-
rate threads, we turn our attention to a different topic: parallelization.

11.6 When to use futures
Clojure includes two reference types supporting parallelism: futures and promises.
Futures, the subject of this section, are simple yet elegant constructs useful for parti-
tioning a typically sequential operation into discrete parts. These parts can then be
asynchronously processed across numerous threads that will block if the enclosed
expression hasn’t finished. All subsequent dereferencing will return the calculated
value. The simplest example of the use of a future is as shown:

262 CHAPTER 11 Mutation
(time (let [x (future (do (Thread/sleep 5000) (+ 41 1)))]
[@x @x]))

; "Elapsed time: 5001.682 msecs"
;=> [42 42]

The processing time of the do block is only paid for on the first dereference of the
future x. Futures represent expressions that have yet to be computed.

11.6.1 Futures as callbacks

One nice use case for futures is in the context of a callback mechanism. Normally you
might call out to a remote-procedure call (RPC), wait for it to complete, and then pro-
ceed with some task depending on the return value. But what happens if you need to
make multiple RPC calls? Should you be forced to wait for them all serially? Thanks to
futures, the answer is no. In this section, we’ll use futures to create an aggregate task
that finds the total number of occurrences of a string within a given set of Twitter6

feeds. This aggregate task will be split into numerous parallel subtasks via futures.

COUNTING WORD OCCURRENCES IN A SET OF TWITTER FEEDS

Upon going to a personal Twitter page such as http://twitter.com/fogus, you can find
a link to the RSS 2.0 feed for that user. We’ll use this feed as the input to our functions.
An RSS 2.0 feed is an XML document used to represent a piece of data that’s con-
stantly changing. The layout of a Twitter RSS entry is straightforward:

<rss version="2.0">
<channel>

<title>Twitter / fogus</title>
<link>http://twitter.com/fogus</link>
<item>

<title>fogus: Thinking about #Clojure futures.</title>
<link>http://twitter.com/fogus/statuses/12180102647/</link>

</item>
</channel>

</rss>

There’s more to the content of a typical RSS feed, but for our purposes we wish to only
retrieve the title element of the item elements (there can be more than one). To do
this, we need to first parse the XML and put it into a convenient format. If you recall
from section 8.4, we created a domain DSL to create a tree built on a simple node
structure of tables with the keys :tag, :attrs, and :content. As mentioned, that struc-
ture is leveraged in many Clojure libraries, and we’ll take advantage of this fact. Clo-
jure provides some core functions in the clojure.xml and clojure.zip namespaces
to help make sense of the feed:

(require '(clojure [xml :as xml]))
(require '(clojure [zip :as zip]))

(defmulti rss-children class)
(defmethod rss-children String [uri-str]

6 Twitter is online at http://twitter.com.

263When to use futures
(-> (xml/parse uri-str)
zip/xml-zip
zip/down
zip/children))

Using the function clojure.xml/parse, we can retrieve the XML for a Twitter RSS
feed and convert it into the familiar tree format. That tree is then passed into a func-
tion clojure.zip/xml-zip that converts that structure into another data structure
called a zipper. The form and semantics of the zipper are beyond the scope of this book
(Huet 1997), but using it in this case allows us to easily navigate down from the root
rss XML node to the channel node, where we then retrieve its children. The child
nodes returned from rss-children contain other items besides item nodes (title,
link, and so forth) that need to be filtered out. Once we have those item nodes, we
then want to retrieve the title text and count the number of occurrences of the tar-
get text (case-insensitive). We perform all of these tasks using the function count-
tweet-text-task, defined in the following listing.

(import '(java.util.regex Pattern))

(defn count-tweet-text-task [txt feed]
(let [items (rss-children feed)

re (Pattern/compile (Pattern/quote txt))]
(count

(mapcat #(re-seq re (first %))
(for [item (filter (comp #{:item} :tag) items)]

(-> item :content first :content))))))

We’ll now try to count some text in a Twitter feed to see what happens:

(count-tweet-text-task
"#clojure"
"http://twitter.com/statuses/user_timeline/46130870.rss")

;=> 7

The result you see is highly dependent on when you run this function, because the
RSS feeds are ever-changing. But using the count-tweet-text-task function, we can
build a sequence of tasks to be performed over some number of Twitter feeds. Before
we do that, we’ll create a convenience macro as-futures to take said sequence and
dispatch the enclosed actions across some futures.

(defmacro as-futures [[a args] & body]
(let [parts (partition-by #{'=>} body)

[acts _ [res]] (partition-by #{:as} (first parts))
[_ _ task] parts]

`(let [~res (for [~a ~args] (future ~@acts))]
~@task)))

Listing 11.7 Creating a future task to count word occurrences in a tweet

Listing 11.8 A macro to dispatch a sequence of futures

Get title

264 CHAPTER 11 Mutation
The as-futures macro implemented in listing 11.8 names a binding corresponding
to the arguments for a given action, which is then dispatched across a number of
futures, after which a task is run against the futures sequence. The body of as-
futures is segmented so that we can clearly specify the needed parts—the action
arguments, the action to be performed for each argument, and the tasks to be run
against the resulting sequence of futures:

(as-futures [<arg-name> <all-args>]
<actions-using-args>
:as <results-name>

=>
<actions-using-results>)

To simplify the macro implementation, we use the :as keyword and => symbol to
clearly delineate its segments. The as-futures body only exits after the task body fin-
ishes—as determined by the execution of the futures. We can use as-futures to per-
form the original task with a new function tweet-occurrences, implemented in the
following listing.

(defn tweet-occurrences [tag & feeds]
(as-futures [feed feeds]

(count-tweet-text-task tag feed)
:as results

=>
(reduce (fn [total res] (+ total @res))

0
results)))

The as-futures macro builds a sequence of futures named results, enclosing the
call to count-tweet-text-task across the unique set of Twitter feeds provided. We
then sum the counts returned from the dereferencing of the individual futures, as
shown:

(tweet-occurrences "#Clojure"
"http://twitter.com/statuses/user_timeline/46130870.rss"
"http://twitter.com/statuses/user_timeline/14375110.rss"
"http://twitter.com/statuses/user_timeline/5156041.rss"
"http://twitter.com/statuses/user_timeline/21439272.rss")

;=> 22

And that’s that. Using only a handful of functions and macros, plus using the built-in
core facilities for XML parsing and navigation, we’ve created a simple Twitter occur-
rences counter. Our implementation has some trade-offs made in the name of page
count. First, we blindly dereference the future in tweet-occurrences when calculat-
ing the sum. If the future’s computation freezes, then the dereference would likewise
freeze. Using some combination of future-done?, future-cancel, and future-can-
celled? in your own programs, you can skip, retry, or eliminate ornery feeds from the
calculation. Futures are only one way to perform parallel computation in Clojure, and
in the next section we’ll talk about another—promises.

Listing 11.9 Counting string occurrences in Twitter feeds fetched in parallel

265When to use promises
11.7 When to use promises
Another tool that Clojure provides for parallel computation is the promise and
deliver mechanisms. Promises are similar to futures, in that they represent a unit of
computation to be performed on a separate thread. Likewise, the blocking semantics
when dereferencing an unfinished promise are also the same. Whereas futures encap-
sulate an arbitrary expression that caches its value in the future upon completion,
promises are placeholders for values whose construction is fulfilled by another thread
via the deliver function. A simple example is as follows:

(def x (promise))
(def y (promise))
(def z (promise))

(dothreads! #(deliver z (+ @x @y)))

(dothreads!
#(do (Thread/sleep 2000) (deliver x 52)))

(dothreads!
#(do (Thread/sleep 4000) (deliver y 86)))

(time @z)
; "Elapsed time: 3995.414 msecs"
;=> 138

Promises are write-once; any further attempt to deliver will throw an exception.

11.7.1 Parallel tasks with promises

We can create a macro similar to as-futures for handling promises, but because of
the more advanced value semantics, the implementation is thus more complicated.
We again wish to provide a named set of tasks, but we’d additionally like to name the
corresponding promises so that we can then execute over the eventual results, which
we do next.

(defmacro with-promises [[n tasks _ as] & body]
(when as

`(let [tasks# ~tasks
n# (count tasks#)
promises# (take n# (repeatedly promise))]

(dotimes [i# n#]
(dothreads!

(fn []
(deliver (nth promises# i#)

((nth tasks# i#))))))
(let [~n tasks#

~as promises#]
~@body))))

We could then build a rudimentary parallel testing facility, dispatching tests across dis-
parate threads and summing the results when all of the tests are done:

Listing 11.10 A macro to dispatch a sequence of promises across a number of threads

266 CHAPTER 11 Mutation
(defrecord TestRun [run passed failed])

(defn pass [] true)
(defn fail [] false)

(defn run-tests [& all-tests]
(with-promises

[tests all-tests :as results]
(into (TestRun. 0 0 0)

(reduce #(merge-with + %1 %2) {}
(for [r results]

(if @r
{:run 1 :passed 1}
{:run 1 :failed 1}))))))

(run-tests pass fail fail fail pass)
;=> #:user.TestRun{:run 5, :passed 2, :failed 3}

This unit-testing model is simplistic by design in order to illustrate parallelization
using promises and not to provide a comprehensive testing framework.

11.7.2 Callback API to blocking API

Promises, much like futures, are useful for executing RPC on separate threads. This
can be useful if you need to parallelize a group of calls to an RPC service, but there’s a
converse use case also. Often, RPC APIs take arguments to the service calls and also a
callback function to be executed when the call completes. Using the rss-children
function from the previous section, we can construct an archetypal RPC function:

(defn tweet-items [k feed]
(k

(for [item (filter (comp #{:item} :tag) (rss-children feed))]
(-> item :content first :content))))

The tweet-items function is a distillation of the count-tweet-text-task function
from the previous chapter, as shown:

(tweet-items
count
"http://twitter.com/statuses/user_timeline/46130870.rss")

;=> 16

The argument k to tweet-items is the callback, or continuation, that’s called with the
filtered RPC results. This API is fine, but there are times when a blocking call is more
appropriate than callback based call. We can use a promise to achieve this blocking
behavior with the following:

(let [p (promise)]
(tweet-items #(deliver p (count %))

"http://twitter.com/statuses/user_timeline/46130870.rss")
@p)

;=> 16

And as you see, the call blocks until the deliver occurs. This is a fine way to transform
the callback into a blocking call, but we’d like a way to do this generically. Fortunately,

267When to use promises
most well-written RPC APIs follow the same form for their callback functions/methods,
so we can create a macro to wrap this up nicely in the following listing.

(defmacro cps->fn [f k]
`(fn [& args#]

(let [p# (promise)]
(apply ~f (fn [x#] (deliver p# (~k x#))) args#)
@p#)))

(def count-items (cps->fn tweet-items count))

(count-items "http://twitter.com/statuses/user_timeline/46130870.rss")
;=> 16

This is a simple solution to a common problem that you may have already encoun-
tered in your own applications.

11.7.3 Deterministic deadlocks

You can cause a deadlock in your applications by never delivering to a promise. One
possibly surprising advantage of using promises is that if a promise can deadlock, it’ll
deadlock deterministically. Because only a single thread can ever deliver on a promise,
only that thread will ever cause a deadlock. We can create a cycle in the dependencies
between two promises to observe a deadlock using the following code:

(def kant (promise))
(def hume (promise))

(dothreads!
#(do (println "Kant has" @kant) (deliver hume :thinking)))

(dothreads!
#(do (println "Hume is" @hume) (deliver kant :fork)))

The Kant thread is waiting for the delivery of the value for kant from the Hume
thread, which in turn is waiting for the value for hume from the Kant thread. Attempt-
ing either @kant or @hume in the REPL will cause an immediate deadlock. Further-
more, this deadlock will happen every time; it’s deterministic rather than dependent
on odd thread timings or the like. Deadlocks are never nice, but deterministic dead-
locks are better than nondeterministic.7

 We’ve only touched the surface for the potential that promises represent. In fact,
the pieces that we’ve assembled in this section represent some of the basic building
blocks of dataflow (Van Roy 2004) concurrency. But any attempt to serve justice to
dataflow concurrency in a single section would be a futile effort. At its essence,

Listing 11.11 A macro for transforming a callback-based function to a blocking call

7 There are experts in concurrent programming who will say that naïve locking schemes are also deterministic.
Our simple example is illustrative, but alas it isn’t representative of a scheme that you may devise for your own
code. In complex designs where promises are created in one place and delivered in a remote locale, deter-
mining deadlock will naturally be more complex. Therefore, we’d like to use this space to coin a new phrase:
“determinism is relative.”

268 CHAPTER 11 Mutation
dataflow deals with the process of dynamic changes in values causing dynamic changes
in dependent “formulas.” This type of processing finds a nice analogy in the way that
spreadsheet cells operate, some representing values and others dependent formulas
that change as the former also change.

 Continuing our survey of Clojure’s parallelization primitives, we’ll next discuss
some of the functions provided in the core library.

11.8 Parallelism
In the previous two sections we built two useful macros as-futures and with-
promises, allowing you to parallelize a set of operations across numerous threads. But
Clojure has functions in its core library providing similar functionality named pmap,
pvalues, and pcalls, which we’ll cover briefly in this section.

11.8.1 pvalues

The pvalues macro is analogous to the as-futures macro, in that it executes an arbi-
trary number of expressions in parallel. Where it differs is that it returns a lazy
sequence of the results of all the enclosed expressions, as shown:

(pvalues 1 2 (+ 1 2))
;=> (1 2 3)

The important point to remember when using pvalues is that the return type is a lazy
sequence, meaning that your access costs might not always present themselves as
expected:

(defn sleeper [s thing] (Thread/sleep (* 1000 s)) thing)
(defn pvs [] (pvalues

(sleeper 2 :1st)
(sleeper 3 :2nd)
(keyword "3rd")))

(-> (pvs) first time)
; "Elapsed time: 2000.309 msecs"
;=> :1st

The total time cost of accessing the first value in the result of pvs is only the cost of its
own calculation. But accessing any subsequent element costs as much as the most
expensive element before it, which you can verify by accessing the last element:

(-> (pvs) last time)
; "Elapsed time: 4001.435 msecs"
;=> :3rd

This may prove a disadvantage if you want to access the result of a relatively cheap
expression that happens to be placed after a more costly expression. More accurately,
all seq values within a sliding window 8 are forced, so processing time is limited by the
most costly element therein.

8 Currently, the window size is N+2, where N is the number of CPU cores. But this is an implementation detail,
so it’s enough to know only that the sliding window exists.

269Parallelism
11.8.2 pmap

The pmap function is the parallel version of the core map function. Given a function
and a set of sequences, the application of the function to each matching element hap-
pens in parallel:

(->> [1 2 3]
(pmap (comp inc (partial sleeper 2)))
doall
time)

; "Elapsed time: 2000.811 msecs"
;=> (2 3 4)

The total cost of realizing the result of mapping a costly increment function is again
limited by the most costly execution time within the aforementioned sliding window.
Clearly, in this contrived case, using pmap provides a benefit, so why not just replace
every call to map in your programs with a call to pmap? Surely this would lead to faster
execution times if the map functions were all applied in parallel, no? The answer is a
resounding: it depends. A definite cost is associated with keeping the resulting
sequence result coordinated, and to indiscriminately use pmap might actually incur
that cost unnecessarily, leading to a performance penalty. But if you’re certain that the
cost of the function application outweighs the cost of the coordination, then pmap
might help to realize performance gains. Only through experimentation will you be
able to determine whether pmap is the right choice.

11.8.3 pcalls

Finally, Clojure provides a pcalls function that takes an arbitrary number of func-
tions taking no arguments and calls them in parallel, returning a lazy sequence of the
results. The use shouldn’t be a surprise by now:

(-> (pcalls
#(sleeper 2 :1st)
#(sleeper 3 :2nd)
#(keyword "3rd"))

doall
time)

; "Elapsed time: 3001.039 msecs"
;=> (:1st :2nd :3rd)

The same benefits and trade-offs associated with pvalues and pmap also apply to
pcalls and should be considered before use.

 Executing costly operations in parallel can be a great boon when used properly,
but should by no means be considered a magic potion guaranteeing speed gains.
There’s currently no magical formula for determining which parts of an application
can be parallelized—the onus is on you to determine your application’s parallel
potential. What Clojure provides is a set of primitives, including futures, promises,
pmap, pvalues, and pcalls as the building blocks for your own personalized paral-
lelization needs.

270 CHAPTER 11 Mutation
 In the next section, we’ll cover the ubiquitous Var, but from a different perspective
than we have thus far.

11.9 Vars and dynamic binding
The last reference type we’ll explore is perhaps the most commonly used—the Var.
Vars are most often used because of two main features:

 Vars can be named and interned in a namespace.
 Vars can provide thread-local state.

It’s through the second feature that Vars contribute most usefully to the reference
type landscape. The thread-local value of a Var by definition can only be read from or
written to a single thread, and thus provides the thread-safe semantics you’ve come to
expect from a Clojure reference type.

 But before you can start experimenting with Vars at the REPL, we to need address
some consequences of the first feature. The other reference objects you’ve looked at
aren’t themselves named and so are generally stored in something with a name. This
means that when the name is evaluated, you get the reference object, not the value.
To get the object’s value, you have to use deref. Named Vars flip this around—evaluat-
ing their name gives the value, so if you want the Var object, you need to pass the
name to the special operator var.

 With this knowledge in hand, you can experiment with an existing Var. Clojure
provides a Var named *read-eval*,9 so you can get its current value by evaluating its
name:

read-eval
;=> true

No deref needed, because *read-eval* is a named Var. Now for the Var object itself:

(var *read-eval*)
;=> #'clojure.core/*read-eval*

That’s interesting—when a named Var object is printed, it starts with #' and is then
followed by the fully qualified name of the Var. The #' reader feature expands to the
Var operator—it means the same thing:

#'*read-eval*
;=> #'clojure.core/*read-eval*

Now that you’ve seen how to refer to Var objects, you can look at how they behave.
The Var *read-eval* is one of those provided by Clojure that’s specifically meant to
be given thread-local bindings but by default has only a root binding. You should’ve
seen its root binding when you evaluated it earlier—by default, *read-eval* is bound
to true.

9 *read-eval* happens to be a Var that has a default configuration useful for this discussion about Vars —its
actual purpose is unimportant here.

272 CHAPTER 11 Mutation
each of these will intern a Var in the current namespace. Clojure will search for the
named Var in the current namespace. If one is found, it’s used; otherwise, a new Var is
created and added to the namespace, and that one is used.11 The Var (specifically the
root binding of the Var) is bound to whatever value, function, or macro (and so on)
was given. The Var itself is returned:

(def favorite-color :green)
#'user/favorite-color

When a Var is printed, its fully qualified name is given, along with the namespace where
the Var is interned (user) and the Var’s name itself (favorite-color). These are pre-
ceded by #' because unlike the other reference types, a named Var is automatically
dereferenced when its name is evaluated—no explicit @ or call to deref is required:

favorite-color
;=> :green

So in order to refer to a Var instead of the value it’s bound to, you need to use #' or
the special form var, which are equivalent:

(var favorite-color)
;=> #'user/favorite-color

A Var can exist (or not exist) in any of four states. The precise state a Var is in can be
determined using the functions resolve, bound?, and thread-bound? as shown in
Table 11.1.

The first row of the table shows the results of resolve, bound?, and thread-bound?
when a var x is unbound. The remaining rows show how to change x to cause those
functions to return the values shown.

11.9.3 Creating anonymous Vars

Vars don’t always have names, nor do they need to be interned in a namespace. The
with-local-vars macro creates Vars and gives them thread-local bindings all at once,
but it won’t intern them. Instead, they’re bound to locals, which means that the
associated Var isn’t implicitly looked up by symbolic name. You need to use deref or
var-get to get the current value of the Var. Here’s an example of a Var x created and

11 Not all macros starting with def necessarily create or intern Vars. Some that don’t: defmethod, defrecord,
and deftype.

Table 11.1 Var states

Initialization mechanism (resolve 'x) (bound? #'x) (thread-bound? #'x)

(def x) #'user/x false false

(def x 5) #'user/x true false

(binding [x 7] ...) #'user/x true true

(with-local-vars [x 9] ...) nil true (bound? x) true (thread-bound? x)

273Vars and dynamic binding
interned with def, and then a local x that shadows it and is bound to a new var via
with-local-vars:

(def x 42)
{:outer-var-value x
:with-locals (with-local-vars [x 9]

{:local-var x
:local-var-value (var-get x)})}

;=> {:outer-var-value 42,
:with-locals {:local-var #<Var: --unnamed-->,

:local-var-value 9}}

Within the body of the with-local-vars macro, the bound value can bet set using
(var-set <var> <value>), which will of course only affect the thread-local value. It’s
almost stunning how rarely with-local-vars is useful.

11.9.4 Dynamic scope

Vars have dynamic scope, which contrasts with the lexical scope of let locals. The most
obvious difference is that with a lexical local, you can easily see where it was initialized
by looking at the nested structure of the code. A Var, on the other hand, may have been
initialized by a binding anywhere earlier in the call stack, not necessarily nearby in the
code at all. This difference can create unexpectedly complex interactions and is one of
the few areas where Clojure does little to help you address such complexity.

 An example of this complexity is shown by using the binding macro or any macro
built on top of it, such as with-precision and with-out-str. For example, we can
use the with-precision macro to conveniently set up the *math-context* Var:

(with-precision 4
(/ 1M 3))

;=> 0.3333M

We need to use with-precision here because if we don’t tell BigDecimal we’re okay
with it rounding off the result, it’ll refuse to return anything in this case:

(/ 1M 3)
; java.lang.ArithmeticException: Non-terminating decimal expansion;
; no exact representable decimal result.

With that in mind, can you see why with-precision isn’t doing its job in the next
snippet? The only thing that makes it different from the example that worked earlier
is we’re using map to produce a sequence of three numbers instead of just one:

(with-precision 4
(map (fn [x] (/ x 3)) (range 1M 4M)))

; java.lang.ArithmeticException: Non-terminating decimal expansion;
; no exact representable decimal result.

The problem is that map is lazy and therefore doesn’t call the function given to it
immediately. Instead, it waits until the REPL tries to print it, and then does the divi-
sion. Although the map and the function it calls are within the lexical scope of with-
binding, and with-binding itself uses a thread-local binding internally, it doesn’t care

274 CHAPTER 11 Mutation
about lexical scope. When the division operation is performed, we’ve already left the
dynamic scope of the with-precision, and it no longer has any effect. The BigDecimal
behavior drops back to its default, and it throws an exception.

 One way to solve this is to make sure that all the division is done before leaving the
dynamic scope. Clojure’s doall function is perfect for this:

(with-precision 4
(doall (map (fn [x] (/ x 3)) (range 1M 4M))))

;=> (0.3333M 0.6667M 1M)

One drawback is that it completely defeats map’s laziness. An alternate solution is to
have the function provided to map re-create, when it’s run, the dynamic scope in which
the function was created. Clojure provides a handy macro bound-fn to do exactly that:

(with-precision 4
(map (bound-fn [x] (/ x 3)) (range 1M 4M)))

;=> (0.3333M 0.6667M 1M)

Now the sequence being returned is still lazy, but before each item is computed, the
dynamic scope of *math-context* is re-created and the exception is avoided.

 This kind of mismatch between a function definition that appears lexically inside a
form like with-precision or binding and yet has a different dynamic scope when
called doesn’t cause problems with lazy sequences alone. You may also see problems
with functions sent to Agents as actions or with the body of a future, because these are
executed in other threads outside the dynamic scope where they’re set up.

 Problems related to dynamic scope aren’t even exclusive to Vars. The scope of a
try/catch is also dynamic and can have similarly unexpected behavior. For example,
with-open uses try/finally to close a file automatically when execution leaves its
dynamic scope. Failing to account for this can lead to an error when trying to write to
a closed file, because the dynamic scope of with-open has been left. Though bound-
fn can help make the dynamic scope of a Var borrow from its lexical scope, the only
way to deal with try/catch is to make sure everything is executed before leaving its
dynamic scope.

11.10 Summary
This has been the most complex chapter of the book. State management is a compli-
cated process that can quickly lose all semblance of sanity in the face of concurrent
modifications. Clojure’s main tenet is not to foster concurrency, but instead to pro-
vide the tools for the sane management of state. As a result of this focus, sane concur-
rency follows. Clojure also provides the building blocks for you to parallelize
computations across disparate threads of execution. From the expression-centric
future, to the function-centric set-once “variable” promise, to the core functions
pcalls, pvalues, and pmap, Clojure gives you the raw materials for your specialized
needs. Finally, we talked in depth about Clojure’s Var, dynamic binding, and the
mechanics of thread-locals.

 The next chapter deals with performance considerations and how to make your
Clojure programs much faster.

Part 5

Tangential
considerations

Some topics are so interesting and important that we must include them,
even if they don’t fit well in another chapter or warrant a chapter to themselves.
In this part, we’ll cover several such topics, including transient collections,
domain-specific languages, and testing.

Performance
Now that we’ve spent a book’s worth of material learning the why and how of Clo-
jure, it’s high time we turned our attention to the subject of performance. There’s
a meme in programming that can be summarized as follows: make it work first,
then make it fast. Throughout this book, we’ve taught you the ways that Clojure
allows you to “make it work,” and now we’re going to tell how to make it fast.

 In many cases, Clojure’s compiler will be able to highly optimize idiomatic Clo-
jure source code. But there are times when the form of your functions, especially in
interoperability scenarios, will prove to be ambiguous or even outright counter to
compiler optimizations. Therefore, we’ll lead you through optimization techniques
such as type hints, transients, chunked sequences, memoization, and coercion.
Using some combination of these techniques will help you approach, and some-
times exceed, the performance of Java itself.

 The most obvious place to start, and the one you’re most likely encounter, is
type hinting—so this is where we’ll begin.

This chapter covers
 Type hints

 Transients

 Chunked sequences

 Memoization

 Understanding coercion
277

278 CHAPTER 12 Performance
12.1 Type hints
The path of least resistance in Clojure often produces the fastest and most efficient
compiled code, but not always. The beauty of Clojure is that this path of least resis-
tance allows simple techniques for gaining speed via type hints. The first thing to
know about type hints is that they’re used to indicate that an object is an instance of
some class—never a primitive.

THE RULE OF TYPE HINTING Write your code so that it’s first and foremost cor-
rect; then add type-hint adornment to gain speed. Don’t trade the efficiency
of the program for the efficiency of the programmer.

12.1.1 Advantages of type adornment

There are epic debates about the virtues of static versus dynamic type systems; we
won’t engage in those arguments here. But there are a few advantages to a dynamic
type system like Clojure’s that also allows type hinting to occur after the bulk of devel-
opment. One such advantage is that in a static type system, the cost of changing argu-
ment lists is extended to all of the callers, whereas in Clojure the cost is deferred until
adornment time or even outright avoided.1 This scenario isn’t limited to the case of
function arguments in Clojure nor to statically typed languages, but instead to any
typed element. This dynamic type system provides an agile experience in general to
Clojure, which can later be optimized when there’s a need.

12.1.2 Type-hinting arguments and returns

If you recall from section 10.3, we created a function asum-sq that took an array of
floats and performed a sum of squares on its contents. Unfortunately, asum-sq wasn’t
as fast as it could’ve been. We can illuminate the cause of its inefficiency using a REPL
flag named *warn-on-reflection*, which by default is set to false:

(set! *warn-on-reflection* true)
;=> true

What this seemingly innocuous statement does is to signal to the REPL to report when
the compiler encounters a condition where it can’t infer the type of an object and
must use reflection to garner it at runtime. You’ll see a reflection warning by entering
asum-sq into the REPL:

(defn asum-sq [xs]
(let [dbl (amap xs i ret

(* (aget xs i)
(aget xs i)))]

(areduce dbl i ret 0
(+ ret (aget dbl i)))))

; Reflection warning - call to aclone can't be resolved.
; ...

1 Aside from the case where type hints don’t require client changes, the use of keyword arguments as seen in
section 7.1 can help to localize additional function requirements to only the callers needing them.

279Type hints
Though not terribly informative in and of itself, the fact that a reflection warning
occurs is portentous. Running the call to asum-sq in a tight loop verifies that some-
thing is amiss:

(time (dotimes [_ 10000] (asum-sq (float-array [1 2 3 4 5]))))
; "Elapsed time: 410.539 msecs"
;=> nil

Though the reflection warning didn’t point to the precise inefficiency, you can infer
where it could be given that Clojure deals with the java.lang.Object class across
function boundaries. Therefore, you can assume that the problem lies in the argu-
ment xs coming into the function as something unexpected. Adding two type hints to
xs and dbl (because it’s built from xs) might do the trick:

(defn asum-sq [^floats xs]
(let [^floats dbl (amap xs i ret
...

Rerunning the tight loop verifies that the assumption was correct:

(time (dotimes [_ 10000] (asum-sq (float-array [1 2 3 4 5]))))
; "Elapsed time: 17.087 msecs"
;=> nil

This is a dramatic increase in speed using a simple type hint that casts the incoming
array xs to one containing primitive floats. The whole range of array type hints is
shown next:

 objects floats shorts

 ints doubles bytes

 longs chars booleans

The problems might still not be solved, especially if you want to do something with the
return value of asum-sq, as shown:

(.intValue (asum-sq (float-array [1 2 3 4 5])))
; Reflection warning, reference to field intValue can't be resolved.
;=> 55

This is because the compiler can’t garner the type of the return value and must there-
fore use reflection to do so. By hinting the return type of asum-sq, the problem goes
away:

(defn ^Float asum-sq [^floats xs]
...

(.intValue (asum-sq (float-array [1 2 3 4 5])))
;=> 55

With minor decoration on the asum-sq function, we’ve managed to increase its speed
as well as potentially increasing the speed of expressions downstream.

280 CHAPTER 12 Performance
12.1.3 Type-hinting objects

In addition to allowing for the hinting of function arguments and return values, you
can also hint arbitrary objects. If you didn’t have control over the source to asum-sq,
then these reflection problem would be insurmountable when executing (.intValue
(asum-sq (float-array [1 2 3 4 5]))). But you can instead hint at the point of usage
and gain the same advantage as if asum-sq had been hinted all along:

(.intValue ^Float (asum-sq (float-array [1 2 3 4 5])))
;=> 55

All isn’t lost when you don’t own a piece of code causing performance problems,
because Clojure is flexible in the placement of type hints.

12.2 Transients
We’ve harped on you for this entire book about the virtues of persistent data struc-
tures and how wonderful they are. In this section, we’ll present an optimization tech-
nique provided by Clojure called transients, which offer a mutable view of a collection.
It seems like blasphemy, but we assure you there’s a good reason for their existence,
which we’ll discuss currently.

12.2.1 Ephemeral garbage

The design of Clojure is such that it presumes that the JVM is extremely efficient at
garbage collection of ephemeral (or short-lived) objects, and in fact it is. But as you
can imagine based on what you’ve learned so far, Clojure does create a lot of young
objects that are never again accessed, shown (in spirit) here:

(reduce merge [{1 3} {1 2} {3 4} {3 5}])
;=> {1 2, 3 5}

A naive implementation2 of reduce would build intermediate maps corresponding to
the different phases of accumulation. The accumulation of these short-lived instances
can in some circumstances cause inefficiencies, which transients are meant to address.

THE RULE OF TRANSIENTS Write your code so that it’s first and foremost cor-
rect using the immutable collections and operations; then, make changes to
use transients for gaining speed. But you might be better served by writing idi-
omatic and correct code and letting the natural progression of speed
enhancements introduced in new versions of Clojure take over. Spot optimi-
zations often quickly become counter-optimizations by preventing the lan-
guage/libraries from doing something better.

We’ll explore how you can use transients in the next section.

2 The actual implementation of reduce follows a reduce protocol that delegates to a smart “internal reduce”
mechanism that’s meant for data structures that know the most efficient way to reduce themselves.

281Transients
12.2.2 Transients compare in efficiency to mutable collections

Mutable objects generally don’t make new allocations during intermediate phases of
an operation on a single collection type, and comparing persistent data structures
against that measure assumes a lesser memory efficiency. But you can use transients to
provide not only efficiency of allocation, but often of execution as well. Take a function
zencat, intended to work similarly to Clojure’s concat, but with vectors exclusively:

(defn zencat1 [x y]
(loop [src y, ret x]

(if (seq src)
(recur (next src) (conj ret (first src)))
ret)))

(zencat1 [1 2 3] [4 5 6])
;=> [1 2 3 4 5 6]

(time (dotimes [_ 1000000] (zencat1 [1 2 3] [4 5 6])))
; "Elapsed time: 486.408 msecs"
;=> nil

The implementation is simple enough, but it’s not all that it could be. The effects of
using transients is shown next.

(defn zencat2 [x y]
(loop [src y, ret (transient x)]

(if (seq src)
(recur (next src) (conj! ret (first src)))
(persistent! ret))))

(zencat2 [1 2 3] [4 5 6])
;=> [1 2 3 4 5 6]

(time (dotimes [_ 1000000] (zencat2 [1 2 3] [4 5 6])))
; "Elapsed time: 846.258 msecs"
;=> nil

Wait, what? It seems that by using transients, we’ve actually made things worse—but
have we? The answer lies in the question, “what am I actually measuring?” The timing
code is executing zencat2 in a tight loop. This type of timing isn’t likely representa-
tive of actual use, and instead highlights an important consideration: the use of
persistent! and transient, though constant time, aren’t free. By measuring the use
of transients in a tight loop, we’ve introduced a confounding measure, with the dispa-
rate cost of using transients compared to the cost of concatenating two small vectors.
A better benchmark would instead be to measure the concatenation of larger vectors,
therefore minimizing the size-relative cost of transients:

(def bv (vec (range 1e6)))

(first (time (zencat1 bv bv)))
; "Elapsed time: 181.988 msecs"

Listing 12.1 A concatenation function using transients

Use
Return persistent

282 CHAPTER 12 Performance
;=> 0

(first (time (zencat2 bv bv)))
; "Elapsed time: 39.353 msecs"
;=> 0

In the case of concatenating large vectors, the use of transients is ~4.5 times faster
than the purely functional approach. Be careful how you use transients in your own
applications, because as you saw, they’re an incredible boon in some cases, and quite
the opposite in others. Likewise, be careful designing performance measurements,
because they might not always measure what you think.

 Because transients are a mutable view of a collection, you should take care when
exposing outside of localized contexts. Fortunately, Clojure doesn’t allow a transient
to be modified across threads and will throw an exception if attempted. But it’s easy
enough to forget that you’re dealing with a transient and return it from a function.
That’s not to say that you couldn’t return a transient from a function—it can be use-
ful to build a pipeline of functions that work in concert against a transient structure.
Instead, we ask that you remain mindful when doing so.

 The use of transients can help to gain speed in many circumstances. But be
mindful of the trade-offs when using them, because they’re not cost-free operations.

12.3 Chunked sequences
With the release of Clojure 1.1, the granularity of Clojure’s laziness was changed from
a one-at-a-time model to a chunk-at-a-time model. Instead of walking through a
sequence one node at a time, chunked sequences provide a windowed view (Boncz
2005) on sequences some number of elements wide, as illustrated here:

(def gimme #(do (print \.) %))

(take 1 (map gimme (range 32)))

You might expect that this snippet would print (.0) because we’re only grabbing the
first element, and if you’re running Clojure 1.0, that’s exactly what you’d see. But in
later versions, the picture is different:

;=> (................................0)

If you count the dots, you’ll see exactly 32, which is what you’d expect given the state-
ment from the first paragraph. Expanding a bit further, if you increase the argument
to range to be 33 instead, you’ll see the following:

(take 1 (map gimme (range 33)))
;=> (................................0)

Again you can count 32 dots. Moving the chunky window to the right is as simple as
obtaining the 33rd element:

(take 1 (drop 32 (map gimme (range 64))))
;=> (..32)

285Memoization
 Similar to Haskell’s typeclasses, Clojure’s protocols define a set of signatures pro-
viding a framework of adherence to a given set of features. This section serves a three-
fold goal:

 Discussion of memoization
 Discussion of protocol design
 Discussion of abstraction-oriented programming

12.4.1 Re-examining memoization

As mentioned in section 11.4, memoization is a personal affair, requiring a certain
domain knowledge to perform efficiently and correctly. That’s not to say that the core
memoize function is useless, only that the base case doesn’t cover all cases. In this sec-
tion, we’ll define a memoization protocol in terms of the primitive operations:
lookup, has?, hit, and miss. Instead of providing a memoization facility that allows
the removal of individual cache items, it’s a better idea to provide one that allows for
dynamic cache-handling strategies.5

12.4.2 A memoization protocol

The protocol for a general-purpose cache feature is provided in the following listing.

(defprotocol CacheProtocol
(lookup [cache e])
(has? [cache e])
(hit [cache e])
(miss [cache e ret]))

The function lookup retrieves the item in the cache if it exists. The function has? will
check for a cached value. The function hit is called when an item is found in the
cache, and miss is called when it’s not. If you’re familiar with creating Java interfaces,
the process of creating a protocol should be familiar. Moving on, we next implement
the core memoize functionality.

(deftype BasicCache [cache]
CacheProtocol
(lookup [_ item]

(get cache item))
(has? [_ item]

(contains? cache item))
(hit [this item] this)
(miss [_ item result]

(BasicCache. (assoc cache item result))))

5 This section is motivated by the fantastic work of the brilliant Clojurians Meikel Brandmeyer, Christophe
Grand, and Eugen Dück summarized at http://kotka.de/blog/2010/03/memoize_done_right.html.

Listing 12.3 A protocol for caching

Listing 12.4 A basic cache type

286 CHAPTER 12 Performance
The BasicCache takes a cache on construction used for its internal operations. Test-
ing the basic caching protocol in isolation shows:

(def cache (BasicCache. {}))

(lookup (miss cache '(servo) :robot) '(servo))
;=> :robot

In the case of a miss, the item to be cached is added and a new instance of BasicCache
(with the cached entry added) is returned for retrieval using lookup. This is a simple
model for a basic caching protocol, but not terribly useful in isolation. We can go fur-
ther by creating an auxiliary function through, meaning in effect, “pass an element
through the cache and return its value”:

(defn through [cache f item]
(if (has? cache item)

(hit cache item)
(miss cache item (delay (apply f item)))))

With through, the value corresponding to a cache item (function arguments in this
case) would either be retrieved from the cache via the hit function, or calculated and
stored via miss. You’ll notice that the calculation (apply f item) is wrapped in a
delay call instead of performed outright or lazily through an ad hoc initialization
mechanism. The use of an explicit delay in this way helps to ensure that the value is
calculated only on first retrieval. With these pieces in place, we can then create a
PluggableMemoization type, as shown next.

(deftype PluggableMemoization [f cache]
CacheProtocol
(has? [_ item] (has? cache item))
(hit [this item] this)
(miss [_ item result]

(PluggableMemoization. f (miss cache item result)))
(lookup [_ item]

(lookup cache item)))

The purpose of the PluggableMemoization type is to act as a delegate to an underlying
implementation of a CacheProtocol occurring in the implementations for hit, miss,
and lookup. Likewise, the PluggableMemoization delegation is interposed at the
protocol points to ensure that when utilizing the CacheProtocol, the Pluggable-
Memoization type is used and not the BasicCache. We’ve made a clear distinction
between a caching protocol fulfilled by BasicCache and a concretized memoization
fulfilled by PluggableMemoization and through. With the creation of separate abstrac-
tions, you can use the appropriate concrete realization in its proper context. Clojure
programs will be composed of various abstractions. In fact, the term abstraction-oriented
programming is used to describe Clojure’s specific philosophy of design.

 The original manipulable-memoize function from section 11.4 is modified in the
following listing to conform to our memoization cache realization.

Listing 12.5 A type implementing pluggable memoization

287Understanding coercion
(defn memoization-impl [cache-impl]
(let [cache (atom cache-impl)]

(with-meta
(fn [& args]

(let [cs (swap! cache through (.f cache-impl) args)]
@(lookup cs args)))

{:cache cache})))

If you’ll recall from the implementation of the through function, we stored delay
objects in the cache requiring they be deferenced when looked up. Returning to our
old friend the slowly function, we can exercise the new memoization technique as
shown:

(def slowly (fn [x] (Thread/sleep 3000) x))
(def sometimes-slowly (memoization-impl

(PluggableMemoization.
slowly
(BasicCache. {}))))

(time [(sometimes-slowly 108) (sometimes-slowly 108)])
; "Elapsed time: 3001.611 msecs"
;=> [108 108]

(time [(sometimes-slowly 108) (sometimes-slowly 108)])
; "Elapsed time: 0.049 msecs"
;=> [108 108]

You can now fulfill your personalized memoization needs by implementing pointed real-
izations of CacheProtocol, plugging them into instances of PluggableMemoization,
and applying them as needed via function redefinition, higher-order functions, or
dynamic binding. Countless caching strategies can be used to better support your needs,
each displaying different characteristics, or if needed your problem may call for some-
thing wholly new.

 We’ve only scratched the surface of memoization in this section in favor of provid-
ing a more generic substrate on which to build your own memoization strategies.
Using Clojure’s abstraction-oriented programming techniques, your own programs
will likewise be more generic and be built largely from reusable parts.

12.5 Understanding coercion
Although Clojure is a dynamically typed language, it does provide mechanisms for
specifying value types. The first of these mechanisms, type hints, was covered in sec-
tion 12.1. The second, coercion, is the subject of this section. Although the nature of
type hints and coercion are similar, their intended purposes are quite different. In the
case of coercion, its purpose is to get at the primitive data type for a value, which we’ll
show next.

Listing 12.6 A function for applying pluggable memoization to a function

288 CHAPTER 12 Performance
12.5.1 First rule of coercion: don’t

Clojure’s compiler is sophisticated enough that in many ways it’ll be unnecessary to
coerce values into primitives. It’s often better to start with a function or code block
devoid of coercions. Unless your specific application requires the utmost speed in exe-
cution, it’s better to stick with the version that favors simplicity over the alternative.
But should you decide that coercion might be the choice for you, then this section will
provide guidance.

12.5.2 Corollary: you’re probably not doing it right

If you’ve determined that coercion can help, then it’s worth stressing that you have to
be careful when going down that road. In many cases with coercion, the act of adding
it can actually slow your functions. The reason lies in the nature of Clojure. Functional
composition leads to passing arguments back and forth between pieces, and in the cir-
cumstance of coercion you’re just boxing and unboxing6 from one call to the next.
This particular circumstance is especially devious within the body of a loop, and fol-
lows the same performance degradations observed with Java. Clojure’s unboxing is an
explicit7 operation performed using the coercion functions, so there’s a speck of light
there. Unfortunately, autoboxing is still a danger and should be avoided if speed is a
concern, as we’ll explore now:

(defn occur-count [words]
(let [res (atom {})]

(doseq [w words] (swap! res assoc w (+ 1 (@res w 0))))
@res))

(defn roll [n d]
(reduce + (take n (repeatedly #(inc (rand-int d))))))

(time (dorun (occur-count (take 1000000 (repeatedly #(roll 3 6))))))
; "Elapsed time: 4055.505 msecs"

The function occur-count will return a map of the occurrence counts8 found in a
given sequence. This fairly straightforward implementation uses the function roll to
populate a sequence with a million simulated rolls of three six-sided dice. But four sec-
onds seems like a long time to wait, so perhaps we can speed things up by using coer-
cions. An initial attempt to gain speed may be to pull out the stored count from the
table and coerce it into an int:

(defn occur-count [words]
(let [res (atom {})]

(doseq [w words]
(let [v (int (@res w 0))]

(swap! res assoc w (+ 1 v))))
@res))

6 Autoboxing is the automatic conversion the Java compiler makes between the primitive types and their cor-
responding object wrapper classes.

7 Except when directly or indirectly (via inlining or a macro body) calling a method.
8 Clojure has a function frequencies that does this, so we provide occur-count for illustrative purposes only.

289Understanding coercion
(time (dorun (occur-count (take 1000000 (repeatedly #(roll 3 6))))))
; "Elapsed time: 4385.8 msecs"

Well, that didn’t work. The reason for a decrease in speed is that although we’re spec-
ifying the type at the outer loop, we haven’t reduced the need to box and unbox that
value further downstream in the roll function. We might then be led to try and opti-
mize the roll function too:

(defn roll [n d]
(let [p (int d)]

(reduce + (take n (repeatedly #(inc (rand-int p)))))))

(time (dorun (occur-count (take 1000000 (repeatedly #(roll 3 6))))))
; "Elapsed time: 4456.393 msecs"
;=> nil

Again we’ve made matters worse and have spread the problems over the surface of the
entire code. Being adventurous, we grasp for straws and attempt to force integer arith-
metic with roll by using the unchecked-inc function:

(defn roll [n d]
(let [p (int d)]

(reduce + (take n (repeatedly #(unchecked-inc (rand-int p)))))))

(time (dorun (occur-count (take 1000000 (repeatedly #(roll 3 6))))))

Go ahead and run that in the REPL, then go get some coffee and a bagel. Toast the
bagel. Eat the bagel. Drink the coffee. By that time, you might’ve received a result.

 So what happened? In an attempt to be clever, we’ve confused the Clojure com-
piler into near unconsciousness. Instead of making direct calls to Clojure’s math func-
tions, we’re now making calls indirectly via Java reflection! You can observe this by
setting *warn-on-reflection* to true and reentering roll.

 How can we speed things up? The problem isn’t with coercion itself, but instead
with the implementations of roll and occur-count. You can observe significant
speed-ups by rethinking your original implementations first and then resorting to
coercion second. The use of coercion should always be preceded by a reevaluation of
your implementation, because often by doing so you can eliminate the need for coer-
cion altogether, as shown next.

(defn roll [n d]
(loop [n (int n), sum 0]

(if (zero? n)
sum
(recur (dec n) (+ sum (inc (rand-int d)))))))

(defn occur-count [words]
(reduce #(assoc %1 %2 (inc (%1 %2 0))) {} words))

(time (dorun (occur-count (take 1000000 (repeatedly #(roll 3 6))))))
; "Elapsed time: 937.346 msecs"
;=> nil

Listing 12.7 Using coercion to gain speed

Coerce n to int

290 CHAPTER 12 Performance
By refactoring the original functions, we’ve gained a five-fold increase in speed and
yet used only a single coercion. Additionally, we’ve managed to make the new imple-
mentation faster while also maintaining clarity. This should be a general goal when
writing your Clojure code, and when forced to make a trade between the two, it might
be a good idea to favor clarity.

12.5.3 Second rule of coercion: don’t

In the previous example, there’s too much noise in collection and sequence operations
for primitive coercion to help much. This goes to show that it’s important to remember
that the Clojure compiler will often do a better job at optimization than you.

12.5.4 Third rule of coercion: coerce a stable local

When coercing a local to a primitive type, it’s tempting to do so at the point of use,
but this practice should be avoided. A good rule of thumb for coercion is to coerce
only within a local context via let, binding, or loop. This provides a stable value point
for the primitive, allowing you to reuse that same local elsewhere in the same function
without having to again coerce at different points of use. This can be illustrated by the
following:

(defn mean
"Takes a sequence of integers and returns their mean value"
[sq]
(let [length (int (count sq))]

(if (zero? length)
0
(/ (int (reduce + sq)) length))))

The length value has been bound in the let, allowing it to be reused twice within the
body of the function. This allows for a cleaner implementation than the alternative,
which coerces the results of (count sq) in multiple places. Using this advice and the
fact that Clojure provides lexical scope by default, you can also avoid the need to
define a name-mangled local by instead using let to rebind original argument names
to coerced values (defn [x] (let [x (int x)] ...)).

12.5.5 Fourth rule of coercion: watch your sizes

Primitive type coercions in Clojure act the same as type truncation in Java. If a given
value is coerced into a type that can’t hold a value of its magnitude, then data loss will
occur, and in the case of integer overflow, exceptions will be thrown.

12.5.6 Fifth rule of coercion: truncate only as a goal

By default, Clojure doesn’t limit the accuracy of mathematical operations, but this can
occur when using coercion. There will be many instances in your own projects when
speed is more important than accuracy in mathematical operations. Likewise, there
will also be times when truncation is necessary, especially when dealing with Java
library methods that take primitive types:

291Summary
(Math/round 1.23897398798929929872987890030893796768727987138M)
; java.lang.IllegalArgumentException:
; No matching method found: round

When a method or function isn’t overloaded, the Clojure compiler can determine
whether an argument can be coerced to a primitive type and will do so if able. The
preceding issue exception arises from the fact that Math/round is overloaded, taking
either a float or double typed argument. Therefore, you have to explicitly use coer-
cion to truncate the argument:

(Math/round (float 1.23897398798929929872987890030893796768727987138M))
;=> 1

Our goal in using the truncating operation float was to get a result that we knew
wouldn’t be affected by truncation. But many instances will arise when truncation will
affect your results and will often do so to your detriment. Therefore, it’s best to be
wary when using coercion, because it propagates inaccuracies. It’s best to limit its
usage when truncation is desired and document vigorously when it’s absolutely
needed for speed.

 Coercion can be an effective tool in your Clojure applications, but take care to be
sure you understand the caveats. If you take away one lesson from this section, let it be
this: do not rush to coercion.

12.6 Summary
Clojure provides numerous ways to gain speed in your applications. Using some com-
bination of type hints, transients, chunked sequences, memoization, and coercion,
you should be able to achieve noticeable performance gains. Like any powerful tool,
these performance techniques should be used cautiously and thoughtfully. But once
you’ve determined that performance can be gained, their use is minimally intrusive
and often natural to the unadorned implementation.

 In the final chapter, we’ll cover a number of ways that the Clojure way of thinking
might be different from what you’re accustomed to. The discussion therein, when
explored with an open mind, will change the way that you write software.

Clojure changes
the way you think
In this final chapter, we cover some tangential topics that you might already be
familiar with, but perhaps not from a Clojure perspective. Our discussion will start
with domain-specific languages (DSLs) and the unique way that Clojure applica-
tions are built from a layering of unique application-specific DSLs. Next, you’re
unlikely to be ignorant of the general push toward a test-driven development
(TDD) philosophy, with a special focus on unit testing. We’ll explore why Clojure is
especially conducive to unit testing and why it’s often unnecessary. Next, whether
you agree with the cult of design patterns or not, it’s inarguable that patterns have
changed the way that object-oriented software is designed and developed. The clas-
sical design patterns are often invisible, or at times outright nonexistent in Clojure

This chapter covers
 DSLs

 Testing

 A lack of design patterns

 Error handling and debugging

 Fare thee well
292

293DSLs
code, which we’ll discuss in this chapter. As we’ll then show, error handling in Clojure
flows in two directions: from inner functions to outer via exceptions, and from outer
functions in via dynamic bindings. Finally, we’ll explore how having the entire lan-
guage at your disposal can help to change the way that your debugging occurs. We
hope that by the time you’ve finished this chapter, you’ll agree—Clojure changes the
way you think about programming.

13.1 DSLs
Lisp is not the right language for any particular problem. Rather, Lisp encourages
one to attack a new problem by implementing new languages tailored to that
problem.

—“Lisp: A Language for Stratified Design” (Abelson 1988)

In chapter 8, we explored the notion of a domain-specific language for describing
domains. This meta-circularity, while playful, was meant to make a subtle point: Clo-
jure blurs, and often obliterates, the line between DSL and API. When a language is
built from the same data structures that the language itself manipulates, it’s known as
homoiconic (Mooers 1965). When a programming language is homoiconic, it’s simple
to mold the language into a form that bridges the gap between the problem and solu-
tion domains. When designing DSLs in Clojure, it’s important to determine when the
existing language facilities will suffice (Raymond 2003) and when it’s appropriate to
create one from whole cloth (Ghosh 2010). In this section we’ll do both and provide a
little discussion about each.

13.1.1 A ubiquitous DSL

The declarative language SQL is among the most widespread DSLs in use today. In sec-
tion 1.2 we showed a simple Clojure DSL, which provided a simple subset of the SELECT
statement that created a representational SQL string. Though that particular example
was meant to be instructive, Clojure provides a comprehensive library for relational
algebra, on which SQL is based (Date 2009). Imagine a dataset of the following:

(def artists
#{{:artist "Burial" :genre-id 1}

{:artist "Magma" :genre-id 2}
{:artist "Can" :genre-id 3}
{:artist "Faust" :genre-id 3}
{:artist "Ikonika" :genre-id 1}
{:artist "Grouper"}})

(def genres
#{{:genre-id 1 :genre-name "Dubstep"}

{:genre-id 2 :genre-name "Zeuhl"}
{:genre-id 3 :genre-name "Prog"}
{:genre-id 4 :genre-name "Drone"}})

You can try Clojure’s relational functions by entering the examples shown in the fol-
lowing listing.

294 CHAPTER 13 Clojure changes the way you think
(require '[clojure.set :as ra])
(def ALL identity)

(ra/select ALL genres)
;=> #{{:genre-id 4, :genre-name "Drone"}

{:genre-id 3, :genre-name "Prog"}
{:genre-id 2, :genre-name "Zeuhl"}
{:genre-id 1, :genre-name "Dubstep"}}

(ra/select #(#{1 3} (:genre-id %)) genres)
;=> #{{:genre-id 3, :genre-name "Prog"}

{:genre-id 1, :genre-name "Dubstep"}}

(take 2 (ra/select ALL (ra/join artists genres)))
;=> #{{:artist "Burial", :genre-id 1, :genre-name "Dubstep"}

{:artist "Magma", :genre-id 2, :genre-name "Zeuhl"}}

The relational functions in clojure.set are a perfect example of the way that Clojure
blurs the line between API and DSL. No macro tricks are involved, but through the
process of functional composition, the library provides a highly expressive syntax
matching closely (Abiteboul 1995) that of SQL itself. Though you might be tempted to
create a custom query language for your own application(s), there are times when the
relational functions are exactly what you need. Your time might be better spent solv-
ing actual problems, one of which we’ll cover in the following section.

13.1.2 Putting parentheses around the specification

Many applications deal in measurements of differing units. For example, it’s widely
known that the U.S. works almost exclusively in English units of measure, whereas
most of the rest of the planet works in SI, or metric units. To convert1 from one to the
other isn’t an arduous task and can be handled easily with a set of functions of this
general form:

(defn meters->feet [m] (* m 3.28083989501312))
(defn meters->miles [m] (* m 0.000621))

(meters->feet 1609.344)
;=> 5279.9999999999945

(meters->miles 1609.344)
;=> 0.999402624

This approach will certainly work if only a few functions define the extent of your
conversion needs. But if your applications are like ours, then you probably need to
convert to and from differing units of measure of many different magnitudes. You
may also need to convert back and forth between units of time, dimension, orienta-
tion, and a host of others. Therefore it’d be nice to be able to write a specification of
unit conversions (Hoyte 2008) as a Clojure DSL and use its results as a low-level layer

Listing 13.1 Examples of Clojure’s relational algebra functions

1 A spectacular general-purpose JVM language named Frink excels at conversions of many different units. We
highly advocate exploring Frink at your next available opportunity: http://futureboy.us/frinkdocs/.

295DSLs
for high-layer application specifics. This is precisely the nature of Lisp development in
general—each level in an application provides the primitive abstractions for the levels
above it.

 In this section, we’re going to create a small specification and then convert it into a
Clojure DSL using a technique coined by Rainer Joswig as “putting parentheses
around the specification.”

DEFUNITS

An ideal representation for a unit-conversion specification language would be simple:

Our base unit of distance is the meter. There are 1,000 meters in a kilometer. There
are 100 centimeters in a meter. There are 10 millimeters in a centimeter. There are
3.28083 feet in a meter. And finally, there are 5,280 feet in a mile.

Of course, to make sense of free text is a huge task in any language, so it behooves us
to change it so that it’s easier to reason about programmatically, but not so much that
it’s cumbersome for someone attempting to describe unit conversions. As a first pass,
we’ll try to group the most obvious parts using some Clojure syntactical elements:

(Our base unit of distance is the :meter
[There are 1000 :meters in a :kilometer]
[There are 100 :centimeters in a :meter]
[There are 10 :millimeters in a :centimeter]
[There are 3.28083 :feet in a :meter]
[There are 5280 :feet in a :mile])

This specification is starting to look a little like Clojure code, but it would still be diffi-
cult to parse this into a usable form. Likewise, it’ll be difficult for the person writing
the specification to use the correct terms, avoid spelling mistakes, properly punctuate,
and so forth. In a word, this form is still not useful. It’d be ideal if we could make this
into a form that’s still recognizable to both Clojure and a conversion expert. We’ll try
one more time:

(define unit of distance
{:m 1,
:km 1000,
:cm 1/100,
:mm [1/10 of a :cm],
:ft 0.3048,
:mile [is 5280 :ft]})

This almost looks like Clojure source code, except for a few minor details. We’ve
changed the measure of feet from an “in a” relationship to a relative one with regard
to the meter base unit. Also, a vector indicates the use of a different relative unit,
keeping the DSL regular in its meaning between one conversion and the next and
providing a way to describe intermediate relative units of measure. Those definitions
look like a map, so we should write a utility function that takes a unit and a map like
the preceding one and returns the number of units it takes to compose the base unit.

296 CHAPTER 13 Clojure changes the way you think
(defn relative-units [u units]
(let [spec (u units)]

(if (nil? spec)
(throw (Exception. (str "Undefined unit " u)))
(if (vector? spec)

(let [[conv to] spec]
(* conv

(relative-units to units)))
spec))))

The function relative-units goes through the map units looking up units and mul-
tiplying their compositional values. When it finds an indirect specification (such as
millimeters defined in terms of centimeters), it traverse the chain of indirect refer-
ences multiplying the factors along the way, as shown:

(relative-units :m {:m 1 :cm 100 :mm [10 :cm]})
;=> 1

(relative-units :cm {:m 1 :cm 100 :mm [10 :cm]})
;=> 100

(relative-units :mm {:m 1 :cm 100 :mm [10 :cm]})
;=> 1000

We changed the unit conversions map to remove the natural language phrase “in a,”
because English isn’t good for a DSL. Natural language often lacks the precision that a
simple yet regular form has. Now that we have the auxiliary function created, we’d like
to create a macro to interpret the unit specification as shown:

(defunits-of distance :m
:km 1000
:cm 1/100
:mm [1/10 :cm]
:ft 0.3048
:mile [5280 :ft])

This is a simplification versus the original verbal form of the conversion specification.
This final form is indubitably more conducive to parsing, yet doesn’t appreciably sacri-
fice readability. The implementation of the defunits-of macro is presented in the
following listing.

(defmacro defunits-of [name base-unit & conversions]
(let [magnitude (gensym)

unit (gensym)
units-map (into `{~base-unit 1}

(map vec (partition 2 conversions)))]
`(defmacro ~(symbol (str "unit-of-" name))

[~magnitude ~unit]
`(* ~~magnitude

~(case ~unit

Listing 13.2 A function for calculating compositional units of a base unit

Listing 13.3 A defunits-of macro

Multiply relative units

Create
units map

Multiply magnitude
by target unit

297DSLs
~@(mapcat
(fn [[u# & r#]
`[~u# ~(relative-units u# units-map)])

units-map))))))

The macro defunits-of is different than any macro that you’ve seen thus far, but it’s
typical for macros that expand into another macro definition. In this book you’ve yet
to see a macro that builds another macro and uses multiple levels of nested2 syntax-
quotes. You won’t likely see macros of this complexity often, but in this case we use
nested syntax-quotes so that we can feed structures from the inner layers of the nested
macros to the outer layers, processing each fully before proceeding. At this point, we
can now run a call to the defunits-of macro with the simplified metric to English
units conversion specification to define a new macro named unit-of-distance:

(unit-of-distance 1 :m)
;=> 1

(unit-of-distance 1 :mm)
;=> 1/1000

(unit-of-distance 1 :ft)
;=> 0.3048

(unit-of-distance 1 :mile)
;=> 1609.344

Perfect! Everything is relative to the base unit :m, just as we’d like (read as “how many
meters are in a _”). The generated macro unit-of-distance allows you to work in
your given system of measures relative to a standard system without loss of precision or
the need for a bevy of awkward conversion functions. To calculate the distance a home
run hit by the Orioles’ Matt Wieters travels in Canada is a simple call to (unit-of-
distance 441 :ft) away. The expansion of the distance specification given as
(defunits-of distance :m ...) looks approximately like the following:

(defmacro unit-of-distance [G__43 G__44]
`(* ~G__43

(case ~G__44
:mile 1609.344
:km 1000
:cm 1/100
:m 1
:mm 1/1000
:ft 0.3048)))

The defunits-of macro is an interpreter of the unit-conversion DSL, which generates
another macro unit-of-distance that performs a straightforward lookup of relative
unit values. Amazingly, the expansion given by (macroexpand '(unit-of-distance 1
:cm)) is that of a simple multiplication (* 1 1/100). This is an awe-inspiring revela-
tion. What we’ve managed to achieve is to fuse the notion of compilation and evalua-

2 We talked briefly about making sense out of nested syntax-quotes in section 8.1. However, you’re not likely to
need them very often.

Unroll unit conversions
into case lookup

298 CHAPTER 13 Clojure changes the way you think
tion by writing a relative units of measure “mini-language” that’s interpreted into a
simple multiplication at compile time!

 This is nothing new; Lisp programmers have known about this technique for
decades, but it never ceases to amaze. There’s one downside to our implementation—
it allows for circular conversion specifications (seconds defined in terms of minutes,
which are then defined in terms of seconds), but this can be identified and handled in
relative-units if you’re so inclined.

13.1.3 A note about Clojure’s approach to DSLs

DSLs and control structures implemented as macros in Common Lisp tend to be writ-
ten in a style more conducive to macro writers. But Clojure macros such as defunit-
of, cond, and case are idiomatic in their minimalism; their component parts are
paired and meant to be grouped through proper spacing. Clojure macro writers
should understand that the proliferation and placement of parentheses are legitimate
concerns for some, and as a result you should strive to reduce the number whenever
possible. Why would you explicitly group your expressions when their groupings are
only a call to partition away?

CLOJURE APHORISM If a project elicits a sense of being lost, then start from
the bottom up.

DSLs are an important part of a Clojure programmer’s toolset and stem from a long
Lisp tradition. When Paul Graham talks about “bottom-up programming” in his
perennial work On Lisp, this is what he’s referring to. In Clojure, it’s common practice
to start by defining and implementing a low-level language specifically for the levels
above. Creating complex software systems is hard, but using this approach, you can
build the complicated parts out of smaller, simpler pieces.

 Clojure changes the way that you think.

13.2 Testing
Object-oriented programs can be highly complicated beasts to test properly, thanks to
mutating state coupled with the need to test across class hierarchies. Programs are a
vast tapestry of interweaving execution paths, and to test each path comprehensively is
difficult, if not impossible. In the face of unrestrained mutation, the execution paths
are overlaid with mutation paths, further adding to the chaos. Conversely, Clojure
programs tend to be compositions of pure functions with isolated pools of mutation.
The result of this approach helps to foster an environment conducive to unit testing.
But though the layers of an application are composed of numerous functions, each
individually and compositionally tested, the layers themselves and the wiring between
them must also be tested.

 Test-driven development (Beck 2002) has conquered the software world, and at its
core it preaches that test development should drive the architecture of the overall
application. Unfortunately, this approach isn’t likely to bear fruit in your Clojure

299Testing
programs. Instead, Clojure provides the foundation for a contracts-based program
specification that’s more amenable for writing correct programs. But before we dis-
cuss contracts, we’ll touch on the ways Clojure facilitates one part of TDD, unit testing.

13.2.1 Some useful techniques

We don’t want to disparage test-driven development, because its goals are virtuous and
testing in general is essential. Because Clojure programs are organized using
namespaces, and they are themselves aggregations of functions, often pure, the act of
devising a unit-test suite at the namespace boundary is often mechanical in its direct-
ness. From a larger perspective, devising comprehensive test strategies is the subject of
numerous volumes and therefore outside of the scope of this book; but there are a few
Clojure-specific techniques that we wish to discuss.

USING WITH-VAR-ROOT TO STUB

Stubbing (Fowler 2007) is the act of supplying an imitation implementation of a func-
tion for testing purposes. One mechanism that can perform this stubbing is the
with-redefs macro implemented in the following listing. Though this exact macro
will likely be included in future versions of Clojure, it’s not in Clojure 1.2, so a defini-
tion is provided.

(defn with-redefs-fn [binding-map func & args]
(let [root-bind (fn [m]

(doseq [[a-var a-val] m] (.bindRoot a-var a-val)))
old-vals (zipmap (keys binding-map)

(map deref (keys binding-map)))]
(try

(root-bind binding-map)
(apply func args)
(finally

(root-bind old-vals)))))

(defmacro with-redefs [bindings & body]
`(with-redefs-fn ~(zipmap (map #(list `var %) (take-nth 2 bindings))

(take-nth 2 (next bindings)))
(fn [] ~@body)))

The function rss-children from section 11.6 parses a Twitter RSS2 feed, returning a
sequence of the top-level feed elements. Testing functions that rely on rss-children
is futile against live Twitter feeds, so a stubbed implementation returning a known
sequence would be more prudent, as shown next.

(defn tweetless-rss-children [s]
'({:tag :title, :attrs nil, :content ["Stub"]}))

(defn count-rss2-children [s]
(count (rss-children s)))

Listing 13.4 Macro to aid in mocking

Listing 13.5 Using with-redefs to create stubs

Create stub

300 CHAPTER 13 Clojure changes the way you think
(with-redefs [rss-children tweetless-rss-children]
(count-rss2-children "dummy"))

;=> 1

The tweetless-rss-children function returns a sequence of some canned data.
Therefore, when testing the count-rss2-children function we temporarily change
the value of rss-children so that it resolves to tweetless-rss-children instead. This
change is made at the root of the rss-children Var and so is visible to all threads. As
long as all the test calls to it are made before control leaves the with-redefs form, the
stub will be invoked every time. Because tweet-occurrences doesn’t return until it col-
lects results from all the futures it creates, it will use the redef given by with-redefs:

(with-redefs [rss-children tweetless-rss-children]
(tweet-occurrences "dummy" "test-url"))

;=> 0

Another option that is sometimes suggested is to use binding in place of with-redefs.
This would push a thread-local binding for rss-children, which might seem attrac-
tive in that it could allow other threads to bind the same Var to a different stub func-
tion, potentially for simultaneously running different tests. But because tweet-
occurrences uses futures, the other threads will be calling rss-children and will see
the root binding rather than the stub,3 causing an error:

(binding [rss-children tweetless-rss-children]
(tweet-occurrences "dummy" "test-url"))

; java.util.concurrent.ExecutionException:
; java.io.FileNotFoundException: test-url

When the root binding of rss-children runs, it tries to actually load “test-url” and
fails, instead of calling our stub and succeeding. The with-redefs macro is a better
solution for mocking.

CLOJURE.TEST AS SPECIFICATION

Clojure ships with a testing library in the clojure.test namespace used to create test
suites that can further serve as partial system specifications. We won’t provide a com-
prehensive survey of the clojure.test functionality, but you should get a feel for how
it works. Unit-test specifications in Clojure are declarative in nature, as shown next.

(require '[clojure.test :as test])

(test/deftest feed-tests
(with-redefs [rss-children tweetless-rss-children]

(test/testing "RSS2 Child Counting"
(test/is (= 1000 (count-rss2-children "dummy"))))

3 Alpha versions for Clojure 1.3 handle binding’s interaction with future and Agent send differently, passing
dynamic bindings through to code executed in these other thread contexts. But because these are not the
only kinds of threads that can be spawned, with-redefs (which may be included in Clojure 1.3) is still rec-
ommended for mocking out functions during tests.

Listing 13.6 clojure.test as a partial specification

Dynamically
bind with stub

301Testing
(test/testing "Twitter Occurrence Counting"
(test/is (= 0 (count-tweet-text-task "#clojure" ""))))))

(defn test-ns-hook []
(feed-tests))

Clojure’s test library provides a DSL for describing unit test cases. If you’ll notice, we
added a failing test to the RSS2 Child Counting test so that when run, the test will fail
as expected:

(test/run-tests 'user)
; Testing user
;
; FAIL in (feed-tests) (NO_SOURCE_FILE:101)
; RSS2 Child Counting
; expected: (= 1000 (count-rss2-children "dummy"))
; actual: (not (= 1000 1))
;
; Ran 1 tests containing 2 assertions.
; 1 failures, 0 errors.
;=> {:type :summary, :test 1, :pass 1, :fail 1, :error 0}

Though tests are a good way to find some errors, they make few guarantees that the sys-
tem works properly. The ideal approach is the design and implementation of a frame-
work corresponding closely with the domain of the application itself. This framework
would ideally take the literal form of a domain DSL built incrementally through an
interaction with domain experts and must come before testing begins. No amount of
testing can substitute for thoroughly thinking through the fundamental design
details. That’s not to say that the domain DSLs should be fully realized from the start;
instead, the form of the DSL and its constituent parts should be reflective of the actual
domain. In our experience, there are no languages comparable to Clojure for this
kind of domain modeling, save for perhaps Haskell, Factor, and Scala. Having said
that, the domain isn’t simply defined by the shape of its language; it also includes its
expectations, which we’ll discuss presently.

13.2.2 Contracts programming

Test-driven development is in many ways a heuristic affair. People tend to only test the
error conditions and expectations that they can conceptualize. Surely there’s no such
thing as an exhaustive test suite, but in many cases test suites tend toward a local max-
ima. There’s a better way to define semantic expectations within your application:
using Clojure pre- and postconditions.

REVISITING PRE- AND POSTCONDITIONS

In section 7.1, we explored Clojure’s pre- and postcondition facility. Function con-
straint specification is a conceptually simple model for declaring the expectations for
any given function. Function constraints can cover the full range of expected condi-
tions imposed on the function’s inputs, its outputs, and their relative natures. The
beauty of specifying constraints is that they can augment a testing regimen with the
application of random values. The reason this works is that you can effectively throw out

302 CHAPTER 13 Clojure changes the way you think
the values that fail the preconditions and instead focus on the values that cause error
in the postconditions. We’ll try this approach for a simple function to square a number:

(def sqr (partial
(contract sqr-contract

[n]
(require (number? n))
(ensure (pos? %)))

#(* % %)))

[(sqr 10) (sqr -9)]
;=> [100 81]

The contract for sqr states simply: require a number and ensure that its return is pos-
itive. Now we can create a simple test driver4 that throws many random values at it to
see if it breaks:

(doseq [n (range Short/MIN_VALUE Short/MAX_VALUE)]
(try

(sqr n)
(catch AssertionError e

(println "Error on input" n)
(throw e))))

; Error on input 0
;=> java.lang.AssertionError: Assert failed: (pos? %)

Even when adhering to the tenets of the preconditions, we’ve uncovered an error in
the sqr function at the postcondition end. Postconditions should be viewed as the
guarantee of the return value given that the preconditions are met. The reason for
the postcondition error is that the function’s contract doesn’t specify that the number
n should be nonzero. By adding a check for zero (not= 0 n) in the preconditions, we
can guarantee that the sqr function acts as expected. To perform this same verifica-
tion using unit testing is trivial in this case, but what if the edge condition wasn’t as
obvious? In such a case, it’s probable that the error might not be caught until it’s too
late. Of course, there’s no guarantee that your contracts are comprehensive, but that’s
why domain expertise is often critical when defining them.

ADVANTAGES OF PRE- AND POSTCONDITIONS

Function constraints aren’t code. They take the form of code, but that fact is only a mat-
ter of representation. Instead, constraints should be viewed as a specification language
describing expectations and result assurances. On the other hand, unit tests are code,
and code has bugs. Contracts, on the other hand, are essential semantic coupling.

 Another potential advantage of contracts over tests is that in some cases, tests can
be generated from the contracts themselves. Also, pre- and postconditions are amena-
ble to being expressed as an overall description of the system itself, which can thus be

4 For the sake of highlighting this technique, we’ve simplified our test driver. Testing a limited range of input
values might not be an appropriate approach in all circumstances.

303A lack of design patterns
fed into a rule base for query and verification. Both of these cases are outside of the
scope of this book, but you shouldn’t be surprised if they make their way into future
versions of Clojure. There’s tremendous potential in Clojure’s pre- and postcondi-
tions. Though they’re currently low-level constructs, they can be used to express full-
blown design by contract facilities for your own applications.

 Clojure changes the way that you think.

13.3 A lack of design patterns
Any sufficiently complicated C or Fortran program contains an ad hoc, informally-
specified, bug-ridden, slow implementation of half of Common Lisp.

—Greenspun’s Tenth Rule

The book Design Patterns: Elements of Reusable Object-Oriented Software (Gamma et al
1995) was a seminal work of software design and development. You’d be hard pressed
to find a software programmer in this day and age who’s not familiar with this work.
The book describes 24 software best practices encountered throughout the course of
experience in developing software projects of varying sizes.

 Design patterns have obtained a bad reputation in some circles, whereas in others
they’re considered indispensable. From our perspective, design patterns are a way to
express software best practices in a language-neutral way. But where patterns fall short
is that they don’t represent pure abstraction. Instead, design patterns have come to be
viewed as goals in and of themselves, which is likely the source of the antagonism
aimed at them. The ability to think in abstractions is an invaluable skill for a software
programmer to strengthen. In this section, we’ll attempt to dissuade you from viewing
Clojure features as design patterns (Norvig 1998) and instead as an inherent nameless
quality.

13.3.1 Clojure’s first-class design patterns

Most if not all of the patterns listed in the book are applicable to functional program-
ming languages in general, and to Clojure in particular. But at its most pragmatic, the
patterns described are aimed at patching deficiencies in popular object-oriented pro-
gramming languages. This practical view of design patterns isn’t directly relevant to
Clojure, because in many ways the patterns are ever-present and are first-class citizens
of the language itself. We won’t provide a comprehensive survey of the ways that Clo-
jure implements or eliminates popular design patterns but will provide enough to
make our point.

OBSERVER

Clojure’s add-watch and remove-watch functions provide the underpinnings of an
observer (publisher/subscriber) capability based on reference types. We can illustrate
this through the implementation of the simple defformula macro shown in listing 13.7.

304 CHAPTER 13 Clojure changes the way you think
(defmacro defformula [nm bindings & formula]
`(let ~bindings

(let [formula# (agent ~@formula)
update-fn# (fn [key# ref# o# n#]

(send formula# (fn [_#] ~@formula)))]
(doseq [r# ~(vec (take-nth 2 bindings))]
(add-watch r# :update-formula update-fn#))

(def ~nm formula#))))

(def h (ref 25))
(def ab (ref 100))

(defformula avg [at-bats ab hits h]
(float (/ @hits @at-bats)))

@avg
;=> 0.25

(dosync (ref-set h 33))
;=> 33

@avg
;=> 0.33

By using watchers on references, you can use defformula to provide an abstract value
that changes when any of its parts change. A more traditional Lisp approach is to pro-
vide predefined hooks (Glickstein 1997) that are called at certain times within the
execution cycle. In addition, using proxy or gen-class to extend java.util.
Observable is the most straightforward way to wire into existing source code using the
Observer pattern.

STRATEGY

Algorithm strategies selected at runtime are common practice in Clojure, and there
are a number of ways to implement them. One such way is via continuation-passing
style, as we explored in section 7.3. A more general solution is to pass the desired
function as an argument to a higher-order function, such as you’d see in the ubiqui-
tous map, reduce, and filter functions. Further, we’ll provide a case of dynamic error
functions in the next section illustrating how Clojure’s multimethods are a more pow-
erful substitute for the classic strategy pattern.

VISITOR

The Visitor pattern is designed to describe a way to decouple operations on a struc-
ture from the structure itself. Even casual observers will see the parallel to Clojure’s
multimethods, protocols, types, proxies, and reify features.

ABSTRACT FACTORY

The Abstract Factory pattern is used to describe a way to create related objects without
having to name explicit types at the point of creation. Clojure’s types avoid the cre-
ation of explicit hierarchies (although ad hoc hierarchies can be created, as seen in
section 9.2). Therefore, in Clojure this particular usage scenario is relegated to use
within Java interoperability contexts. But the use of factory functions to abstract the

Listing 13.7 A macro to create spreadsheet-cell-like formulas

Observe
formula change

305A lack of design patterns
call to the constructors of types and records is idiomatic and in fact actively promoted.
The reasons for a Clojure-style factory are to simplify the importing requirements of a
type or record, and also to add additional project-specific functionality to the con-
structor (keyword arguments, default values, and so on).

INTERPRETER

The Interpreter pattern is in every way Greenspun’s Tenth Rule formalized. Many
projects of sufficient size can be well served by the inclusion of a specialized grammar
describing parts of the system itself. Clojure macros make the matter of creating spe-
cialized grammars a first-class member of the language.

BUILDER

The creation of complex structures from representation is central to Clojure pro-
gramming, although it’s viewed differently from a similar object-oriented approach—
the Builder pattern. In section 8.4, we used a simple data representation as the input
to Clojure’s clojure.xml/emit function to produce an analogous XML representa-
tion. If you preferred a different output representation, then you could write another
conversion function. If you preferred finer control over the constituent parts, then
you could write functions or multimethods for each and specialize at runtime.

FAÇADE

The use of Clojure namespaces, as seen in section 9.1, is the most obvious way to pro-
vide a simplified façade for a more complex API. You can also use the varying levels of
encapsulation (as outlined in section 2.4) for more localized façades.

ITERATOR

Iteration in Clojure is defined through an adherence to the seq protocol, as outlined
in section 5.1 and later elaborated on in sections 9.3 about types and protocols.

DEPENDENCY INJECTION

Though not a classical pattern in the Design Patterns sense, dependency injection has
become a de facto pattern for object-oriented languages that don’t allow overridable
class constructors. This condition requires that separate factory methods and/or
classes create concrete instances conforming to a given interface. In forsaking the
ability to define classes, Clojure completely avoids the problem that DI solves. Instead,
Clojure’s closest analogue to this “pattern” is the use of functions returning closures
that are specialized based on the original arguments. Likewise, you could use partial
application and composition similarly.

 We could go further with this survey, but to do so would belabor the point: most of
what are known as design patterns are either invisible or trivial to implement in Clo-
jure. But what about the Prototype pattern, you ask? We implemented the UDP in sec-
tion 9.2. Decorators or chain of responsibility? Why not use a macro that returns a
function built from a list of forms spliced into the -> or ->> macro? Proxies would
likely be implemented as closures and so would commands. The list goes on and on,
and in the end you must face the inevitable—Clojure changes the way that you think.

306 CHAPTER 13 Clojure changes the way you think
13.4 Error handling and debugging
Our goal throughout this book was to show the proper way to write Clojure code, with
mostly deferral and hand-waving regarding error handling and debugging. In this sec-
tion, we’ll cover these topics with what you might view as a unique twist, depending on
your programming background.

13.4.1 Error handling

As we showed in figure 10.7, there are two directions for handling errors. The first,
and likely most familiar, refers to the passive handling of exceptions bubbling outward
from inner functions. But built on Clojure’s dynamic Var binding is a more active
mode of error handling, where handlers are pushed into inner functions. In section
11.10, we mentioned that the binding form is used to create thread-local bindings,
but its utility isn’t limited to this use case. In its purest form, dynamic scope is a struc-
tured form of a side effect (Steele 1978). You can use it to push Vars down a call stack
from the outer layers of a function nesting into the inner layers, a technique that we’ll
demonstrate next.

DYNAMIC TREE TRAVERSAL

In section 8.4, we built a simple tree structure for a domain model where each node
was of this form:

{:tag <node form>, :attrs {}, :content [<nodes>]}

As it turns out, the traversal of a tree built from such nodes is straightforward using
mundane recursion, as shown:

(defn traverse [node f]
(when node

(f node)
(doseq [child (:content node)]

(traverse child f))))

For each node in the tree, the function f is called with the node itself, and then each
of the node’s children is traversed in turn. Observe how traverse works for a single
root node:

(traverse {:tag :flower :attrs {:name "Tanpopo"} :content []}
println)

; {:tag :flower, :attrs {:name Tanpopo}, :content []}

But it’s much more interesting if we traverse trees larger than a single node. There-
fore, we can build a quick tree from an XML representation using Clojure’s clojure.
xml/parse function:

(use '[clojure.xml :as xml])

(def DB
(-> "<zoo>

<pongo>
<animal>orangutan</animal>

307Error handling and debugging
</pongo>
<panthera>

<animal>Spot</animal>
<animal>lion</animal>
<animal>Lopshire</animal>

</panthera>
</zoo>"

.getBytes
(java.io.ByteArrayInputStream.)
xml/parse))

The DB Var contains an animal listing for a small zoo. Note that two of the animals
listed have the elements Spot and Lopshire; both are seemingly out of order for a
zoo. Therefore, we can write a function to handle these nefarious intruders.

(defn ^{:dynamic true} handle-weird-animal
[{[name] :content}]
(throw (Exception. (str name " must be 'dealt with'"))))

(defmulti visit :tag)

(defmethod visit :animal [{[name] :content :as animal}]
(case name

"Spot" (handle-weird-animal animal)
"Lopshire" (handle-weird-animal animal)
(println name)))

(defmethod visit :default [node] nil)

The multimethod visit can be used as the input function to the traverse function
and will only trigger when a node with the :tag attribute of :animal is encountered.
When the method triggered on :animal is executed, the node :content is destruc-
tured and checked against the offending Spot and Lopshire values. When found, the
devious node is then passed along to an error handler handle-weird-animal for
reporting.5 By default, the error handler throws an exception. This model of error
handling is the inside-out model of exceptions. But handling errors in this way stops
the processing:

(traverse DB visit)
; orangutan
; java.lang.Exception: Spot must be 'dealt with'

We’ve managed to identify Spot, but the equally repugnant Lopshire escapes our
grasp. It’d be nice to instead use a different version of handle-weird-animal that
allows us to both identify and deal with every such weird creature. We could pass
handle-weird-animal along as an argument to be used as an error continuation,6 but

Listing 13.8 Handling nefarious tree nodes with exceptions

5 The metadata {:dynamic true} attached to handle-weird-animal isn’t really used in Clojure 1.2, but it
may be required in future versions of Clojure starting with 1.3 to allow the dynamic binding we’re about to
demonstrate.

6 See section 7.3 for more information on continuation-passing style.

Define error handler

308 CHAPTER 13 Clojure changes the way you think
that pollutes the argument list of every function along the way. Likewise, we could
inject catch blocks at a point further down the call chain, say within visit, but we
might not be able to change the source, and if we could it makes for a more insidious
pollution. Instead, using a dynamic binding is a perfect solution, because it allows us
to attach specific error handlers at any depth in the stack according to their appropri-
ate context:

(defmulti handle-weird (fn [{[name] :content}] name))

(defmethod handle-weird "Spot" [_]
(println "Transporting Spot to the circus."))

(defmethod handle-weird "Lopshire" [_]
(println "Signing Lopshire to a book deal."))

(binding [handle-weird-animal handle-weird]
(traverse DB visit))

; orangutan
; Transporting Spot to the circus.
; lion
; Signing Lopshire to a book deal.

As you might expect, this approach works across threads to allow for thread-specific
handlers:

(def _ (future
(binding [handle-weird-animal #(println (:content %))]

(traverse DB visit))))
; orangutan
; [Spot]
; lion
; [Lopshire]

What we’ve outlined here is a simplistic model for a grander error-handling scheme.
Using dynamic scope via binding is the preferred way to handle recoverable errors in
a context-sensitive manner.

13.4.2 Debugging

The natural progression of debugging techniques as discovered by a newcomer to
Clojure follows a fairly standard progression:

1 (println)

2 A macro to make (println) inclusion simpler
3 Some variation on debugging as discussed in this section
4 IDEs, monitoring, and profiling tools

Many Clojure programmers stay at step 1, because it’s simple to understand and also
highly useful, but there are better ways. After all, you’re dealing with Clojure—a
highly dynamic programming environment. Observe the following function:

(defn div [n d] (int (/ n d)))

309Error handling and debugging
The function div simply divides two numbers and returns an integer value. You can
break div in a number of ways, but the most obvious is to call it with zero as the
denominator: (div 10 0). Such an example would likely not give you cause for con-
cern should it fail, because the conditions under which it fails are fairly limited, well
known, and easily identified. But not all errors are this simple, and the use of println
is fairly limited. Instead, a better tool would likely be a generic breakpoint7 that could
be inserted at will and used to provide a debug console for the current valid execution
context. Imagine it would work as follows:

(defn div [n d] (break) (int (/ n d)))
(div 10 0)
debug=>

At this prompt, you can query the current lexical environment, experiment with dif-
ferent code, and then resume the previous execution as before. As it turns out, such a
tool is within your grasp.

A BREAKPOINT MACRO

We hope that by the end of this section, you’ll understand that Lisps in general, and
Clojure in particular, provide an environment where the whole of the language truly is
“always available” (Graham 1993). First of all, an interesting fact to note is that the
Clojure REPL is available and extensible via the Clojure REPL itself, via the clojure.
main/repl function. By accessing the REPL implementation directly, you can custom-
ize it as you see fit for application-specific tasks.

 Typing (clojure.main/repl) at the REPL seemingly does nothing, but rest
assured you’ve started a sub-REPL. What use is this? To start, the repl function takes a
number of named parameters, each used to customize the launched REPL in different
ways. We’ll utilize three such hooks—:prompt, :eval, and :read—to fulfill a break-
point functionality.

OVERRIDING THE REPL’S READER

The repl function’s :read hook takes a function of two arguments: the first corre-
sponding to a desired display prompt, and the second to a desired exit form. We want
the debug console to provide convenience functions—we’d like it to show all of the
available lexical bindings and also to resume execution. It also needs to be able to
read valid Clojure forms, but because that’s too complex a task, we’ll instead farm that
functionality out to Clojure’s default REPL reader.

(defn readr [prompt exit-code]
(let [input (clojure.main/repl-read prompt exit-code)]

(if (= input ::tl)
exit-code
input)))

7 The code in this section is based on debug-repl created by the amazing George Jahad, extended by Alex
Osborne, and integrated into Swank-Clojure by Hugo Duncan.

Listing 13.9 A modest debug console reader

310 CHAPTER 13 Clojure changes the way you think
We can start testing the reader immediately:

(readr #(print "invisible=> ") ::exit)
[1 2 3]
;=> [1 2 3]

(readr #(print "invisible=> ") ::exit)
::tl
;=> :user/exit

The prompt that we specified was of course not printed, and typing ::tl at the
prompt did nothing because the readr function isn’t yet provided to the repl as its
:read hook. But before we do that, we need to provide a function for the :eval hook.
Needless to say, this is a more complex task.

OVERRIDING THE REPL’S EVALUATOR

In order to evaluate things in context, we first need a function cab to garner the bind-
ings in the current context. Fortunately for us, Clojure macros provide an implicit
argument &env that’s a map of the local bindings available at macro-expansion time.
We can then extract from &env the values associated with the bindings and zip them
up with their names into a map for the local context, as shown next.

(defmacro local-context []
(let [symbols (keys &env)]

(zipmap (map (fn [sym] `(quote ~sym)) symbols) symbols)))

(local-context)
;=> {}

(let [a 1, b 2, c 3]
(let [b 200]

(local-context)))
;=> {a 1, b 200, c 3}

The local-context macro provides a map to the most immediate lexical bindings,
which is what we want. But what we really want to do is to provide a way to evaluate
expressions with this contextual bindings map. Wouldn’t you know it, the contextual-
eval function from section 8.1 fits the bill. So now that we have the bulk of the imple-
mentation complete, we’ll now hook into the repl function to provide a breakpoint
facility.

PUTTING IT ALL TOGETHER

The hard parts are done, so to wire them into a usable debugging console is relatively
easy, as shown next.

(defmacro break []
`(clojure.main/repl

:prompt #(print "debug=> ")
:read readr
:eval (partial contextual-eval (local-context))))

Listing 13.10 Creating a map of the local context using &env

Listing 13.11 The implementation of a breakpoint macro

311Error handling and debugging
Using this macro, we can now debug the original div function:

(defn div [n d] (break) (int (/ n d)))
(div 10 0)
debug=>

Querying locals to find the “problem” is simple:

debug=> n
;=> 10
debug=> d
;=> 0
debug=> (local-context)
;=> {div #<user$div__155 user$div__155@51e67ac>, n 10, d 0}
debug=> ::tl
; java.lang.ArithmeticException: Divide by zero

So there’s the problem! We passed in a zero as the denominator. We should fix that.

MULTIPLE BREAKPOINTS AND BREAKPOINTS IN MACROS

What would be the point if you couldn’t set multiple breakpoints? Fortunately, you
can, as we show in the following listing.

(defn keys-apply [f ks m]
(break)
(let [only (select-keys m ks)]

(break)
(zipmap (keys only) (map f (vals only)))))

(keys-apply inc [:a :b] {:a 1, :b 2, :c 3})

debug=> only
; java.lang.Exception: Unable to resolve symbol: only in this context
debug=> ks
;=> [:a :b]
debug=> m
;=> {:a 1, :b 2, :c 3}
debug=> ::tl
debug=> only
;=> {:b 2, :a 1}
debug=> ::tl
;=> {:a 2, :b 3}

And finally, you can use breakpoints within the body of a macro (in its expansion, not
its logic), as shown next.

(defmacro awhen [expr & body]
(break)
`(let [~'it ~expr]

(if ~'it
(do (break) ~@body))))

(awhen [1 2 3] (it 2))

Listing 13.12 Using multiple breakpoints in function keys-apply

Listing 13.13 Using a breakpoint in a macro awhen

312 CHAPTER 13 Clojure changes the way you think
debug=> it
; java.lang.Exception: Unable to resolve symbol: it in this context
debug=> expr
;=> [1 2 3]
debug=> body
;=> ((it 2))
debug=> ::tl
debug=> it
;=> [1 2 3]
debug=> (it 1)
;=> 2
debug=> ::tl
;=> 3

There’s much room for improvement, but we believe that the point has been made.
Having access to the underpinnings of the language allows you to create a powerful
debugging environment with little code. We’ve run out of ideas by now, so we’ll say
our credo only once more, and we hope by now you believe us.

 Clojure changes the way that you think.

13.5 Fare thee well
This book possess many lacunae, but it’s this way by design. In many cases, we’ve
skipped approaches to solving problems via a certain route to avoid presenting non-
idiomatic code. In many examples, we’ve left exposed wiring. For example, the
defcontract macro requires that you partially apply the contract to the function
under constraint instead of providing a comprehensive contract overlay façade. It was
our goal to leave wiring exposed because exposed wiring can be explored, tampered
with, and ultimately enhanced—which we hope you’ll find the motivation to do.
We’ve worked hard to provide a vast array of relevant references should you choose
to further enhance your understanding of the workings and motivations for Clojure.
But it’s likely that we’ve missed some excellent resources, and we hope that you
instead are able to uncover them in time. Finally, this wasn’t a survey of Clojure, and
many of the functions available to you weren’t used in this book. We provide some
pointers in the resource list, but there’s no way that we could do justice to the librar-
ies and applications mentioned and those unmentioned. We implore you to look
deeper into the functionality of not only Clojure, but the rich ecology of libraries and
applications that have sprung up in its relatively short life span.

 Thank you for taking the time to read this book; we hope it was as much a pleasure
to read as it was for us to write. Likewise, we hope that you’ll continue your journey
with Clojure. Should you choose to diverge from this path, then we hope that some of
what you’ve learned has helped you to view the art of programming in a new light.
Clojure is an opinionated language, but it and most of its community believe that
these opinions can work to enhance the overall state of affairs in our software indus-
try. The onus is on us to make our software robust, performant, and extensible. We
believe that the path toward these goals lies with Clojure.

 Do you?
 —FOGUS AND HOUSER 2010

resources
Miscellaneous resources

 Abadi, Martin, and Luca Cardelli. 1996. A Theory of Objects. New York: Springer. Although not a math-
ematical concept, object-oriented programming has obtained rigor with this gem.

 Abelson, Harold, and Gerald Jay Sussman. 1988. “Lisp: A Language for Stratified Design.” AI Memo
(MIT) 986.

 ———. 1996. Structure and Interpretation of Computer Programs. Cambridge, MA: MIT Press. There is no
better book for learning Scheme and the fine art of programming.

 Abiteboul, Serge, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Boston: Addison-
Wesley. Clojure’s clojure.set namespace is actually modeled more on the named conjunctive
algebra, for which this book provides a great reference.

 Armstrong, Joe. 2007. Programming Erlang. Raleigh, NC: Pragmatic Bookshelf.

 ———. 2007. “A History of Erlang.” Proceedings of the Third ACM SIGPLAN Conference on History of Pro-
gramming Languages.

 Bagwell, Phil. 2001. Ideal Hash Trees. Technical report. Clojure’s persistent data structures owe a lot to
Phil Bagwell’s paper.

 Baker, Henry. 1993. “Equal Rights for Functional Objects or, The More Things Change, The More
They Are the Same.” ACM SIGPLAN OOPS Messenger 4, no. 4.

 Beck, Kent. 2002. Test Driven Development: By Example. Boston: Addison-Wesley.

 Bloch, Joshua. 2008. Effective Java. Upper Saddle River, NJ: Addison-Wesley.

 Boncz, Peter, Zukowski Marcin, and Niels Nes. 2005. “MonetDB/X100: Hyper-Pipelining Query
Execution.” Proceedings of the CIDR Conference. This paper motivated the implementation of
chunked sequences.

 Bratko, Ivan. 2000. PROLOG: Programming for Artificial Intelligence. New York: Addison Wesley.

 Budd, Timothy. 1995. Multiparadigm Programming in Leda. Reading, MA: Addison-Wesley. This is an
expanded discussion of the complexities wrought from a mono-paradigm approach to software
development.

 Clinger, William. 1998. “Proper Tail Recursion and Space Efficiency.” Proceedings of the ACM SIGPLAN
1998 Conference on Programming Language Design and Implementation.

 Cormen, Thomas, Charles Leiserson, Ronald Rivest, and Clifford Stein. 2009. Introduction to Algo-
rithms. Cambridge, MA: MIT Press. This is a great reference on algorithmic complexity and Big-
O, and as an added bonus, you could use it to stop a charging rhinoceros.
313

RESOURCES314
 Crockford, Douglas. 2008. JavaScript: The Good Parts. Yahoo Press.

 Date, C.J. 2009. SQL and Relational Theory: How to Write Accurate SQL Code. Sebastopol, CA: O’Reilly.

 Dijkstra, Edsger Wijbe. 1959. “A Note on Two Problems in Connexion with Graphs.” Numerische Mathema-
tik 1, no. 1. You could change the h function in listing 7.9 to (defn dijkstra-estimate-cost
[step-cost-est sz y x] 0) to conform to the ideal presented in this paper.

 Flanagan, David. 2006. JavaScript: The Definitive Guide. Sebastopol, CA: O’Reilly.

 Forman, Ira, and Nate Forman. 2004. Java Reflection in Action. Greenwich, CT: Manning. Although reflec-
tion provides some meta-level manipulation, it’s quite apart from the notion of functions as data.

 Friedl, Jeffrey. 1997. Mastering Regular Expressions. Sebastopol, CA: O’Reilly.

 Friedman, Daniel, Mitchell Wand, and Christopher T. Haynes. 2001. Essentials of Programming Languages.
Cambridge, MA: MIT Press.

 Gabriel, Richard, and Kent Pitman. 2001. “Technical Issues of Separation in Function Cells and Value
Cells.” This is a more thorough examination of the differences between Lisp-1 and Lisp-2.

 Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, MA: Addison-Wesley.

 Ghosh, Debasish. 2010. DSLs in Action. Greenwich, CT: Manning. There is a much finer level of distinc-
tion determining what constitutes whole cloth, including that between internal and external DSLs.
In this book, we focus on the classical Lisp model of internal DSLs, but DSLs in Action provides a sur-
vey of many DSL-creation techniques.

 Glickstein, Bob. 1997. Writing GNU Emacs Extensions. Sebastopol, CA: O’Reilly.

 Goetz, Brian. 2006. Java Concurrency in Practice. Upper Saddle River, NJ: Addison-Wesley. Why haven’t you
read this yet?

 Goldberg, David. 1991. “What Every Computer Scientist Should Know About Floating-Point Arithmetic.”
Computing Surveys (March).

 Graham, Paul. 1993. On Lisp. Englewood Cliffs, NJ: Prentice Hall. Is there any book or any author more
influential to the current generation of dynamic programmers than Graham and On Lisp?

 ———. 1995. ANSI Common Lisp. Englewood Cliffs, NJ: Prentice Hall.

 Gray, Jim, and Andreas Reuter. 1992. Transaction Processing: Concepts and Techniques. San Mateo, CA: Mor-
gan Kaufmann Publishers.

 Halloway, Stuart. 2009. “Clojure is a better Java than Java.” Presented at the Greater Atlanta Software
Symposium, Atlanta. The origin of the phrase “Java.next” most likely stems from this talk by
Halloway.

 Hart, Peter, Nils Nilsson, and Bertram Raphael. 1968. “A Formal Basis for the Heuristic Determination
of Minimum Cost Paths.” IEEE Transactions on Systems Science and Cybernetics In Systems Science and
Cybernetics 4, no. 2.

 Hewitt, Carl, Peter Bishop, and Richard Steiger. 1973. “A Universal Modular ACTOR Formalism for Arti-
ficial Intelligence.” Proceedings of the Third International Joint Conference on Artificial Intelligence.

 Heinlein, Robert. 1966. The Moon Is a Harsh Mistress. New York: Putnam. We had considered offering an
implementation of Mike as an appendix, but we ran over our page count.

 Herlihy, Maurice, and Nir Shavit. 2008. The Art of Multiprocessor Programming. Amsterdam; Boston:
Elsevier/Morgan Kaufmann.

 Hickey, Rich. 2009. “Are We There Yet?” Presented at JVM Languages Summit. This wonderful presenta-
tion made firm the popular view of Rich as Philosopher Programmer.

 Hofstadter, Douglas. 1979. Gödel, Escher, Bach: An Eternal Golden Braid. New York: Basic Books. See the sec-
tions “Classes and Instances,” “The Prototype Principle,” and “The Splitting-off of Instances from
Classes” for more detail of the topics in section 9.2.

RESOURCES 315
 Hoyte, Doug. 2008. Let Over Lambda. Lulu.com. This is an amazing look into the mind-bending power of
Common Lisp macros that provided the motivation for the DSLs section of this book. It will blow
your mind—in a good way.

 Hudak, Paul. 2000. The Haskell School of Expression: Learning Functional Programming Through Multimedia.
New York: Cambridge University Press.

 Huet, Gerard. 1997. “Functional Pearl: The Zipper.” Journal of Functional Programming.

 Hutton, Graham. 1999. “A Tutorial on the Universality and Expressiveness of fold.” Journal of Functional
Programming 9, no. 4.

 Kahan, William, and Joseph Darcy. 1998. “How Java’s Floating-Point Hurts Everyone Everywhere.” Pre-
sented at the ACM Workshop on Java for High-Performance Network Computing. This paper pro-
vides more information on the cyclopian nightmares awaiting you in Java floating point.

 Keene, Sonya. 1989. Object-Oriented Programming in Common Lisp: A Programmer’s Guide to CLOS. Boston:
Addison-Wesley. The best book on CLOS ever written.

 Knuth, Donald. 1997. The Art of Computer Programming: Volume 1 - Fundamental Algorithms. Reading, MA:
Addison-Wesley. This book goes into exquisite detail about the primary characteristics of FIFO
queues and is highly recommended reading.

 ———. 1998. The Art of Computer Programming, Vol. 3: Sorting and Searching. Reading, MA: Addison-Wesley.
Running quick-sort on a sorted sequence is an O(n2) operation, which for our implementation in
chapter 6 completely defeats its laziness.

 Koenig, Dierk, Andrew Glover, Paul King, Guilaume LaForge, and Jon Skeet. 2007. Groovy in Action.
Greenwich, CT: Manning.

 Kuki, Hirondo, and William James Cody. 1973. “A Statistical Study of the Accuracy of Floating Point
Number Systems.” Communications of the ACM 1973 16, no. 4.

 Laddad, Ramnivas. 2003. AspectJ in Action: Practical Aspect-Oriented Programming. Greenwich, CT:
Manning. We do not do justice to the notion of aspects—so read this instead.

 Martin, Robert. 2002. Agile Software Development: Principles, Patterns, and Practices. Upper Saddle River, NJ:
Prentice Hall.

 McCarthy, John. 1960. “Recursive Functions of Symbolic Expressions and Their Computation by
Machine, Part I.” Communications of the ACM. This is the essay that started it all.

 ———. 1962. LISP 1.5 Programmer’s Manual. Cambridge, MA: MIT Press. Lisp had an array type at least as
early as 1962. Sadly, this fact is little known.

 McConnell, Steve. 2004. Code Complete: A Practical Handbook of Software Construction. Redmond, WA:
Microsoft Press.

 Meyer, Bertrand. 1991. Eiffel: The Language. New York: Prentice Hall. The programming language Eiffel
relies heavily on contract-based programming methodologies, a cornerstone element of Fogus’s
philosophy of Apperception-Driven Development.

 ———. 2000. Object-Oriented Software Construction. Upper Saddle River, NJ: Prentice Hall.

 Michie, Donald. 1968. “Memo Functions and Machine Learning.” Nature 218.

 Mooers, Calvin, and Peter Deutsch. 1965. “TRAC, A Text-Handling Language.”

 Moseley, Ben, and Peter Marks. 2006. “Out of the Tar Pit.” Presented at SPA2006.

 Mozgovoy, Maxim. 2009. Algorithms, Languages, Automata, and Compilers: A Practical Approach. Sudbury,
MA: Jones and Bartlett Publishers.

 Noble, James, and Brian Foote. 2003. “Attack of the Clones.” Proceedings of the 2002 Conference on Pattern
Languages of Programs 13. The clone function is inspired by this paper.

 Norvig, Peter. 1991. Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp. San Fran-
cisco: Morgan Kaufman Publishers.

RESOURCES316
 Odersky, Martin, Lex Spoon, and Bill Venners. 2008. Programming in Scala: A Comprehensive Step-by-step
Guide. Mountain View, CA: Artima.

 Okasaki, Chris. 1996. “The Role of Lazy Evaluation in Amortized Data Structures.” Presented at the
International Conference on Functional Programming. This is a much more thorough discussion
of incremental vs. monolithic computation.

 ———. 1999. Purely Functional Datastructures. Cambridge University Press. Chris Okasaki to the rescue
again! Clojure’s persistent queue implementation is based on Okasaki’s batched queue from this
seminal work.

 Olsen, Russ. 2007. Design Patterns in Ruby . Upper Saddle River, NJ: Addison-Wesley

 Papadimitriou, Christos. 1986. Theory of Database Concurrency Control. New York: Computer Science
Press, Inc.

 Pierce, Benjamin. 2002. Types and Programming Languages. Cambridge, MA: MIT Press. Fun fact: Repre-
senting numbers using lambda calculus is known as church encoding. The church-encoded number
9 would be represented as (fn [f] (fn [x] (f (f (f (f (f (f (f (f (f x))))))))))) in
Clojure.

 Raymond, Eric. 2003. The Art of Unix Programming. Reading, MA: Addison-Wesley Professional.

 Rosenberg, Doug, Mark Collins-Cope, and Matt Stephens. 2005. Agile Development with ICONIX Process:
People, Process, and Pragmatism. Berkeley, CA: Apress.

 Skeel, Robert. 1992. “Roundoff Error and the Patriot Missile.” SIAM News 25, no. 4: 11.

 Steele, Guy L. 1977. “Lambda: the Ultimate GOTO.” ACM Conference Proceedings.

 ———. 1990. Common LISP: The Language. Bedford, MA: Digital Press. This is a very witty book in addition
to being packed with information.

 Steele, Guy L., and Gerald Sussman. 1978. “The Art of the Interpreter.” AI Memo (MIT) 453.

 Stewart, Ian. 1995. Concepts of Modern Mathematics. New York: Dover. These Dover math books are often
true gems. It would be great to see an adventurous publisher print a similar series revolving around
C.S.-relevant topics—monads, category theory, lambda calculus, and so on.

 Sussman, Gerald, and Guy L. Steele. 1975. “Scheme: An Interpreter for the Extended Lambda Calculus.”
Higher-Order and Symbolic Computation 11, no. 4. This is a discussion of Scheme’s early implementa-
tion of lexical closures.

 Symbolics Inc. 1986. Reference Guide to Symbolics Common Lisp: Language Concepts. Symbolics Release 7 Doc-
ument Set.

 Thompson, Simon. 1999. Haskell: The Craft of Functional Programming. Reading, MA: Addison-Wesley.

 Ullman, Jeffrey. 1988. Principles of Database & Knowledge-Base Systems Vol. 1: Classical Database Systems.
Rockville, MD: Computer Science Press.

 Ungar, David, and Randal Smith. 1987. “SELF: The power of simplicity.” Presented at the Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), Orlando. The
Self programming language is likely the greatest influence on prototypal inheritance.

 Van Roy, Peter, and Seif Haridi. 2004. Concepts, Techniques, and Models of Computer Programming.
Cambridge, MA: MIT Press.

 Wadler, Philip. 1989. “Theorems for Free!” Presented at the fourth International Conference on Func-
tional Programming and Computer Architecture.

 Wampler, Dean, and Alex Payne. 2009. Programming Scala. Sebastopol, CA: O’Reilly.

RESOURCES 317
 Whitehead, Alfred North. 1929. Process and Reality: An Essay in Cosmology. Cambridge University Press. For
a general overview of Whitehead, see The Wit And Wisdom of Alfred North Whitehead by A.H. Johnson
(Boston, Beacon Press, 1947).

 Williams, Laurie. 2002. Pair Programming Illuminated. Boston: Addison-Wesley Professional. The limita-
tions of the book format only shadow the idealistic model of pair programming.

Online resources

 Braithwaite, Reginald. 2007. “Why Why Functional Programming Matters Matters.” http://mng.bz/
2pZP. This column discusses a language-level separation of concerns.

 Clementson, Bill. 2008. “Clojure could be to Concurrency-Oriented Programming what Java was to
OOP.” http://bc.tech.coop/blog/081201.html. A much deeper discussion concerning Erlang
actors and Clojure agents.

 Dekorte, Steve. Io. http://iolanguage.com.

 Fogus, Michael. Lithp. http://github.com/fogus/lithp.

Fowler, Martin. 2005. “Fluent Interface.” http://mng.bz/e2r5.

 ———. 2007. “Mocks Aren’t Stubs.” http://mng.bz/mq95.

 Graham, Paul. Arc. www.paulgraham.com/arc.html.

———. 2001. “What Made Lisp Different.” www.paulgraham.com/diff.html. As Paul Graham states,
“The whole language always available” appears as a theme throughout this book and as a finale in
section 13.5.

 Houser, Chris. error-kit API. http://mng.bz/07FF. The clojure.contrib.error-kit namespace contains
an open error system similar to CL conditions that don’t require recompilation when defining new
error types.

 Krukow, Karl. 2009. “Understanding Clojure’s PersistentVector Implementation.” http://mng.bz/tmjv.

 Lindholm, Tim, and Frank Yellin. 1999. Java Virtual Machine Specification. http://java.sun.com/docs/
books/jvms/.

Peter. 1998. “Design Patterns in Dynamic Programming.” http://norvig.com/design-patterns/.
The section on design patterns was inspired by this presentation.

 Tarver Mark. 2008. Functional Programming in Qi. www.lambdassociates.org/Book/page000.htm. Some
programming languages perform partial application automatically when a function is
supplied with fewer than the expected number of arguments. One such language is Qi.

 ———. 2009. “The Next Lisp: Back to the Future.” http://mng.bz/8wA9. The notion of Lisp as a pro-
gramming language genotype is explored.

 _why. Shoes. http://github.com/shoes/shoes.

 Yegge, Steve. 2006. “Execution in the Kingdom of Nouns.” http://mng.bz/9ApS.

———. 2008. “The Universal Design Pattern.” http://mng.bz/6531. Like many programmers of our
generation, we were in many ways inspired and influenced by Steve Yegge’s work—which is why we
asked him to write this book’s foreword.

index
Keywords and symbols

, 25, 158
; 21
:as 40–41, 48–49, 182, 264
:exclude 41, 182, 258
:import 42, 182
:load 182
:only 182–183
:post 133–134
:pre 133–134
:private 181
:refer 41–42
:refer-clojure 182, 258
:require 41, 182
:strs 49
:test 128
:use 41, 182–183

naked :use 183
.. 37
read-eval 270
warn-on-reflection 278, 289
& 48, 50

A

A* pathfinding 149
astar 149–154
candidate paths 150
cost-estimate function 150
path-finding 149

abstraction-oriented
programming 16, 177,
184, 189, 206, 285–287

abstractions 166, 188, 208, 227,
284, 286

accessors 202

ACID 238
ad-hoc hierarchies 16, 70, 184,

186, 188, 304
derivation hierarchy 186–187
make-hierarchy 187

adornment 278
Agents 235, 240, 247, 249–255,

274
agent-error 253
await 249–250, 255
await-for 250–251
queue 247, 251
restart-agent 253–254
send 248, 251–253
send-off 248, 251–253
serialize access 249

agile 202, 278
Ahead of Time Compilation

(AOT) 218, 227–228
alert 216
algorithm 81
alias 183
anaphora 170–171, 211

anaphoric 173
anaphoric macros 170, 211

ancestors 186
and (logical) 114, 175
anonymous inner classes 126
Apache Ant 181
Application Programming

Interface (API) 204, 293
public-facing API 181

apply 98, 127
aquarium 69
Arc (programming

language) 170
awhen 170

arglists 164
argument 68
arrays 74, 77, 79, 218–220

amap 220
areduce 220
multidimensional arrays 222
primitive arrays 218–219
reference arrays 218
seq of an array 220

as-futures 263–265, 268
as-is 48
aspects 135
assertions 173, 203

assert 134
assoc 84–86, 191
associative 66
assoc-in 85
asum-sq 220, 278–280
asynchronous 240, 247
atomicity 238, 255
Atoms 235, 240, 255–257

compare-and-set! 255
autoboxing 288
auto-gensym 36, 165

B

backslash 73
bad-make-move 243
beget 184
benchmark 281
best 72
best practices 303
best-case 81
best-first 149
BigDecimal 273–274
319

320 INDEX
Big-O 77, 80–82
algorithmic complexity 77
asymptotic complexity 80–81,

124
linear time 81
logarithmic complexity 81

bind 47
binding 47, 300
bit-xor 51
blocks 29, 31
boilerplate 162, 164–165
Booleans 279

Boolean (Java class) 44, 83
Boolean context 45

bot object 139–140
bottom-up programming 298
bound 272
boxing 288

autoboxing 288
unboxing 288

breakpoint 309–310
build-contract 174, 181
build-move 205–206
byte 83
bytecode 141, 208, 210, 222
bytes 279

C

C (programming language) 8,
21, 194, 198

calculations, precise 66
call stack 71
callbacks 138, 266
call-by-need 119
canvas 51
capitalize 41
capturing group 74
car 80, 90
case 147, 298
chaining 202
change-message 209, 211
char 83
character classes 73
characters, in a string 23
chars 279
chess 16, 202, 204–205, 241–242
choose-move 242
chunked sequences 283
clarity 7, 290
clear 55
clear-actions 253
Clojure

as opinionated language 312
Clojure 1.3 271, 307

expressiveness of 5
succinctness 72

clojure.contrib.json 168
clojure.contrib.repl-utils 52–53
clojure.core 41, 179, 183, 271
clojure.lang.IMeta 212
clojure.lang.IPersistentStack 86
clojure.lang.PersistentQueue/

EMPTY 92
clojure.main/repl 309
clojure.set 40, 94, 96, 183, 294
clojure.string 41
clojure.test 128, 183, 300
clojure.test/run-tests 128
clojure.xml 183, 262
clojure.xml/emit 305
clojure.xml/parse 263, 306
clojure.zip 183, 262
clojure.zip/xml-zip 263
closures 17, 135–141, 197, 230,

258, 305
closing over parameters 137
functions returning

closures 136
lexical closures 17
passing closures as

functions 137
sharing closure context 138

code
avoid repeating 196
is data 8, 11, 157–158, 161,

169
repetitive 47, 49

coercion 277, 287–291
fifth rule of coercion 291
first rule of coercion 288
fourth rule of coercion 290
second rule of coercion 290
third rule of coercion 290

collect-bodies 173–174
collection 46, 280
colon 23
columns 130
commenting 21, 74
commits 248
Common Lisp (programming

language) 46, 72, 169, 298
cdr 80, 90
Common Lisp Object System

(CLOS) 187
funcall 72
Lisp-2 72

comp 127, 130
comparator 95
compare-and-swap 255

compile 141, 213–214
compiler 117, 213, 218, 277,

288–291
Compiler.java 55
compile-time 141, 231
complement 128, 130
complexity 103, 238, 273

essential complexity 5
incidental complexities 164

composition 305
concat 281
concrescence 13
concrete classes 16, 193, 195,

208
concrete realization 286
concurrency 3, 14, 109, 234–

237, 245, 249, 258, 261
concurrent modification

220, 259
concurrent modification

errors 109
concurrent

programming 234–235,
248, 259

lost wakeup 236
model, distributed 248–249
priority inversion 238
vs. parallelism 235

cond 69, 162, 298
confounding 281
conj 86, 88, 90–92, 110, 196
cons 32–33, 90
consistency 7–8, 238, 242, 261

reporting problem 238
constant factor 81
constant time 281
constructors 37, 55, 198, 204,

212, 305
contains? 89, 91, 95
continuation-passing style

(CPS) 148–149, 229, 304
accept function 148
return continuation 148

continuations 266, 307
continuation function 148

continue 252, 254
contracts programming 173,

175–176, 299, 302–303, 312
constraints 133, 173, 175,

301–302
defcontract 312

contrib 168, 271
control structures 157, 159,

161, 163
conversion specification 296

321INDEX
coordination 241, 269
copies, defensive 226
counted 90
counter-optimizations 280
count-tweet-text-task 263–264,

266
create-ns 179–180
crypto 69

D

data structures, immutable
108–109

database 236
deadlock 236, 238, 248–250,

259, 267
deterministic 267

debug 309
debug console 309
debugging 293, 310, 312
debug-repl 309
decimal 22
declarative 118, 293
declare 173
def 27–28, 135, 137, 181, 271,

273
default-handler 209–210
defformula 303–304
definterface 227–229
defmacro 162, 181, 271
defmulti 188, 271
defn 17, 27, 136, 164, 181, 271
defonce 271
defprotocol 229
defrecord 189–191, 199–200
defstruct 182, 190

downfall of defstructs 190
defunits-of 296–297
def-watched 165
delay 113, 119, 121, 149, 287
delegate 215, 286
dependency injection (DI) 305
deref 240, 255, 270, 272
derive 186–187
descendants 186
design patterns 292, 303

Abstract Factory pattern 304
Builder pattern 305
chain of responsibility 305
Façade pattern 305
Interpreter pattern 305
Observer pattern 303–304
Prototype pattern 305
Strategy pattern 304

subscriber patterns 129
Visitor pattern 304

Design Patterns: Elements of
Reusable Object-Oriented
Software 303

destructuring 8, 47–48, 54, 57,
133, 242

associative destructuring 50
in function parameters 50
nested 49
versus accessor methods 50
with a map 49
with a vector 48

determinacy 235
directive 48–49, 52
directory structure 180–181
disappear 53
dispatch 187
display 212–213
dissoc 86, 190–191, 257
distributive 66
do 29, 163, 262
doall 274
documentation, viewing 53
domain 166
domain-specific language

(DSL) 10–11, 70, 164, 167,
173, 204, 292–295, 298,
301

domain expertise 302
putting parentheses around

the specification 295
unit conversion DSL 297

don’t panic 55
doseq 7, 46, 55
dosync 242, 248
dothreads! 240, 255
doto 38
double 63, 83
double-array 222
double-backslash 73
double-quotes 73
doubles 65, 279
do-until 162
drawing 53
duck typing 189
dummy write 239
durability 238
DynaFrame.clj 213
dynamic binding 287, 293, 306,

308
binding 117, 271, 273, 290,

306, 308
bound-fn 274

dynamic scope 273–274, 306,
308

dynamic type systems 278, 287

E

elegance 13, 45
embedding 73
empowerment 6
empty sequence 78–79
empty? 46
encapsulation 16–17, 305

block-level encapsulation 17
local encapsulation 17
namespace encapsulation 17

Enlive 168
enumeration values 68
enumerator 78
env 310
ephemeral 280
equality 68, 70–71, 109, 187

equality partitions 79, 102,
224

equality semantics 79
Erlang (programming

language) 248–249
actor 248
Actor model 143
in-process versus distributed

concurrency models 248
share-nothing 248

error handling 229, 254,
306–308

escaped 73
evaluation 32–33

contextual-eval 160–161, 310
eval 159–161, 309–310
meta-circular 293

exceptions 38, 55, 205, 229,
236, 252–254, 282, 293,
306–307

catch 38, 308
checked 229–230
compile-time 55, 231
ConcurrentModification-

Exception 259
finally 172, 261
handling 229
java.lang.ClassCastException

231
java.lang.Exception 230
java.lang.NullPointer-

Exception 114
java.lang.RuntimeException

230

322 INDEX
exceptions (continued)
runtime 230
runtime vs. compile-time 230
throw 38, 54–55, 231

expand-clause 11
expansion 297
expected case 81
experimentation 179
expression problem 16
extend 15, 192, 195–197, 199
extend-protocol 192, 197
extend-type 192–193, 197
Extensible Markup Language

(XML) 168, 262–264,
305–306

F

Factor (programming
language) 12, 301

factory methods 305
fail 252, 254
false 44–45, 56

evil-false 44
Fantom (programming

language) 207
fence post errors 203
filter 78, 119, 129, 138, 304
find-doc 51
find-ns 179
finite state machines 146
first 78, 80, 90, 121, 127
First In, First Out (FIFO) 91,

192
First In, Last Out (FILO) 192
first-class 12, 27, 128
fixed-size pool 252
FIXO 192–193, 195, 197

fixo-peek 199
fixo-push 193, 195, 200

flexibility 9
float 83, 291
floating point 22, 62, 65–67

overflow 83
rounding error 64
underflow 64, 83

floats 279
fluent builder 202–203

FluentMove 204–205
fn 26, 28, 82, 135–136, 146, 164
for 7, 51
force 113, 119, 121
forever 68
form 24

free variables 136
freedom to focus 5
frequencies 288
Frink (programming

language) 207, 294
frustrating 246
fully qualified 258, 270, 272
fun 51
functional programming 12,

19, 108, 303
currying 127
first-class functions 72, 126,

130
functional composition 169,

288, 294
higher-order functions 115,

129–131, 137, 142, 151,
154, 161, 173–174, 230,
287, 304

partial application 127, 305
pure functions 5, 118,

131–132, 149, 241, 298
referentially

transparent 131–132, 256,
284

functions 25, 68
anonymous 28, 129, 138, 210
arity 26
Calling Functions 25
dangerous 75
function signatures 192
local 147
multiple function bodies 50
named arguments 132

futures 235, 261–263, 265, 269
as callbacks 262
future 149, 255, 274
future-cancel 264
future-cancelled? 264
future-done? 264

G

Gang of Four 303
garbage collection 207, 280,

283
gcd 145
gen-class 38, 212, 214–215,

218, 233, 304
generalized tail-call

optimization 143–144, 149
generic 46
genotype 9
gensym 169
get 84, 88, 94, 98

get-in 85–86
getter 204
global hierarchy map 188
goal 247
Gödel, Escher, Bach: An Eternal

Golden Braid 183
good-move 242
Graham, Paul 298, 309
graphic 54
graphical user interface (GUI)

138, 212, 214–216, 218
graphics context 53
greatest common

denominator 144, 284
green thread 254
Greenspun’s Tenth Rule 303,

305
Groovy (programming

language) 207

H

Halloway, Stuart 101, 208
has 285
hash maps 99
hash-map 80, 88, 97, 190
Haskell (programming

language) 12, 47, 113,
118, 149, 161, 198, 285, 301

out of order execution 149
Template Haskell 161
typeclasses 198, 285

heuristic 151
Hickey, Rich 4–5, 206
hidden 52
hierarchy 205
history 246
homoiconicity 12, 293
hooks 304, 309
hops 81
host semantics 62
Hoyte, Doug 294
hyphens 181

I

I/O 239, 249, 252
idempotent 239, 255–256
identical? 70–71
identifiers 70
identity 3, 13–14, 71, 202, 211,

227, 235, 247, 254
IDEs 308
idiom 190

323INDEX
idiomatic 34, 36, 46, 62, 82, 87,
98, 114, 154, 158, 169, 179,
198, 277, 280, 298

if 31, 114, 162
if-let 120, 171
image 51, 56
immutability 7, 14, 30, 77–78,

86, 91, 93, 100, 107–109,
136, 143, 202, 224, 248, 280

imperative programming 14,
30, 108

implementation details 182
implicit do 30
inc 243
inconsistency 245
index numbers 47
infinite lazy range 68
infinite loop 46
infinite sequence 113, 118, 283
infix notation 25
inheritance 5, 183, 185–186

differential 185
implementation

inheritance 196
interface inheritance 16
prototype chain 184, 187
prototype maps 183, 186

inherited behaviors 186
init 55
init-proxy 212
in-process programming

model 249
instance 55, 71
int 83, 146
integers 22

overflow 64
interactive command

prompt 51
interfaces 8, 16, 192–193, 195,

200, 224, 285
intern 179–180, 270, 272
internal reduce 280
interop 73
interoperability 24, 62, 196,

200, 208, 218, 222, 224,
227, 277, 304

accessing Java instance
members 37

accessing static class
members 36

creating Java class
instances 36

setting Java instance
properties 37

interpreted 298
into 83, 89, 196

into-array 218–219, 222
ints 279
invariants 203, 246
inversion of control 164
invoke 214
Io (programming

language) 185
Ioke (programming

language) 207
isa? 186–187
ISeq 121
ISeqable 200
ISliceable 228–229
isolation 238
iteration 46, 305
iterator 78, 88

J

Jahad, George 160
Java 37, 208, 290
Java (programming

language) 4, 6, 8, 16, 18,
21, 32, 36, 38, 67, 91, 108–
109, 129, 179, 192, 194,
198, 207, 209, 211, 215,
224, 235, 255, 260, 290

Java 7 126
Java Collections

Framework 224, 226
Java libraries 52
polymorphic print

facility 204–205
variadic constructor 222

Java Virtual Machine (JVM) 4,
6, 36, 62, 65, 144, 146,
207–208, 220, 229, 234,
251, 280

HotSpot 207
java.awt 52
java.awt.Container 212, 215
java.awt.Frame 52
java.io.FilterOutputStream 211
java.io.OutputStream 211
java.lang 42, 179
java.lang.Iterable 225
java.lang.Math/round 291
java.lang.Object 128, 205, 220,

279
java.lang.Runnable 222
java.lang.StackOverflowError

142, 230
java.lang.String 15
java.lang.String/format 222
java.lang.StringBuilder 218

java.lang.Thread 255
Java.next 208

Java.next Mantra 208
java.util.ArrayList 79
java.util.Collection 225
java.util.Collections/sort 223
java.util.Comparator 222–223
java.util.concurrent 258, 261
java.util.concurrent

FutureTask 224
java.util.concurrent.atomic.

AtomicInteger 136, 256
java.util.concurrent.Blocking-

Queue 91
java.util.concurrent.Callable

222
java.util.concurrent.locks 260
java.util.concurrent.locks.

ReentrantLock 260
java.util.concurrent.locks.

ReentrantReadWriteLock
261

java.util.List 15, 79, 223, 225
java.util.Observable 304
java.util.RandomAccess 48
java.util.regex.Matcher 48, 75
java.util.regex.Pattern 73
javadoc 53, 73
JavaScript (programming

language) 16, 135, 141, 184
javax.swing.JFrame 212
Jess (programming

language) 207
Joswig, Ranier 295
joy.gui.DynaFrame 212
JRuby (programming

language) 207
just-in-time (JIT) 207
juxt 188
Jython (programming

language) 207

K

kapow 143
keep-indexed 102
key 49, 80, 88
keys-apply 131–132
keyword arguments 278
keywords 23, 68–70, 241

plumbing, separating from
domain 69

qualified 69
ubiquity of 75

Kingdom of Nouns 18

324 INDEX
L

lambda calculus 12
Lambda Papers 143
language, eager 113
last 86
laziness 113, 117, 119, 122,

124, 274, 282
combinatorially exploding

computations 113
full realization 283
full realization of interim

results 117, 122
lazy evaluation 149
lazy sequences 68, 87, 131,

268–269, 274, 283–284
lazy-seq 115–116, 143
lazy-seq recipe 115, 117,

143
short-circuiting laziness 114

Leiningen 181
let 29, 36, 52, 82, 117, 135, 137,

170, 273, 290
letfn 18, 147
lexical scope 135, 273–274,

290
lexical bindings 309–310
lexical context 138, 169
lexical contour 170
lexical environment 138,

140, 309
line number 55
line terminators 74
linear search 100
Lisp (programming language

family) 4, 8–9, 22, 25, 30,
36, 68, 79–80, 87, 90, 126,
172, 202, 295, 298, 304

beauty of 9
cons-cell 79

Lisp-1 62, 72
lists 24–25, 33, 79, 90–91, 122,

159
as stacks 91
empty 44
PersistentList 90
singly linked 90

literal 73
literal syntax 23–25, 83, 89, 97,

189
live-lock 239
local-context 138, 310
locals 29–30, 72, 117, 136, 143,

272–273, 290
local bindings 310

locking 14, 234, 236, 238, 250,
259–261

blocking 224, 248, 250–251,
261, 265–266

contention 260–261
explicit locks 261
fairness 250
orphaning 238, 259
reentrant 260
striping 261
total ordering 238

log-agent 249
logarithmic 81
logging 249, 251
long 83, 279
look-around clauses 73
lookup 17–18, 68, 285–286
loops 30–31, 146, 290

loop invariants 134
loop locals 31
loop termination 46

lowercase 74

M

M literal 21, 62–63
macroexpand 161
macroexpand-1 161
macros 9, 24, 34, 55, 72,

119, 160–161, 164, 166,
169–170, 173, 231, 263,
296–298, 303, 305, 308,
310–311

combining forms 164
compile-time 31, 157, 161,

169, 230
hygienic 171
macro that builds another

macro 297
macro-definition time 171
macro-expansion time 169,

310
returning functions 173
rules of thumb 161
selective Name

Capturings 171
using to change forms 165
using to control symbolic

resolution time 169
using to manage

resources 171
magical formula 269
main 203
make-array 219
make-dumb-array 258

make-move 246
make-safe-array 260
make-smart-array 261
manip-map 131–132
map 25, 68, 71, 78–79, 87,

97–98, 100, 102, 119,
129, 189, 204, 222, 269,
273–274, 295, 304

array map 98, 100, 190
PersistentHashMap 80
thinking in maps 97

mapped file 74
math-context 273–274
Maven 181
max-history 247
McCarthy, John 9
memoization 132, 256–257,

277, 284–287, 291
BasicCache 286
cache 284–285
caching protocol 286
hit 285–286
manipulable-memoize

256–257, 286
memoization protocol

285–286
memoize 256–257, 284–285
miss 285–286
PluggableMemoization

286–287
through 286–287

Mersenne primes 283–284
metadata 69, 71, 128, 164, 181,

191, 256
attaching 71
meta 71, 191
with-meta 71, 191

methods 52, 55
metric units 294
min-by 151, 154
min-history 247
mini-language 8, 47, 298
mixins 193
ML (programming

language) 12
monitors 236, 259

monitor context 259
monkey-patching 16, 195
Montoya, Inigo 77
more 48
Move 202, 205
multi-line mode 74
multimethods 15, 68, 70, 185,

187–188, 202, 304–305, 307
multimethod dispatch 221

325INDEX
multimethods (continued)
prefer-method 187
remove-method 187

multiple transactions 246
multiversion concurrency

control (MVCC) 236, 239
snapshot isolation 245
write skew 239, 246

mutability 78, 108–109, 136,
220, 224, 235, 239, 255,
259, 261, 280–282

isolated pools of mutation
points 298

mutable fields 202
mutable state 14
mutation 109, 235, 239, 257,

298
mutators 202

N

name resolution 72
name shadowing 72, 169
named arguments 133
named structures 50
namespaces 17, 21, 36, 39,

42, 69, 71, 94, 163, 169,
178, 180–182, 189, 198,
212–213, 215, 262, 270,
272, 305

as class specifications 212
compilation 214
in-ns 179
name-mangled local 290
namespace compilation 214
namespace qualification 69
ns 39, 70, 179, 182, 212
privacy 181
qualification 40, 69, 170,

179, 183
remove-ns 180
two-level mapping 178, 180
user 21

natural language 296
neighbors 85–86, 150, 242
nest 236
nested syntax-quotes 297
new 36
next 46, 57, 79, 89–91, 110,

115–116
nil 24–25, 44–45, 49, 56, 78,

80, 94, 101, 110, 117,
163, 195, 253

nil pun 57
nondeterminism 235

non-termination 113
non-thread-safe 75
nouns 13
ns-unmap 179
nth 84, 91
nthnext 116
null 203
numbers 21–22

binary 22
distribution of represented

numbers 65
hexadecimal 21–22
octal 22
promotion 63–64
radix notation 22
radix-32 22
scientific notation 22

numerical precision 75

O

object-oriented
programming 3, 5, 8,
13, 15, 18–19, 32, 97, 164,
205–206, 292, 303, 305

conflict resolution
strategy 187

hierarchies 5, 18, 103, 164,
204, 298, 304

objects 279
obscure 47
occur-count 288–289
On Lisp 298
one-at-a-time realization

282–284
operator precedence 5, 25
optimizations 277, 280, 289
option flags 74
or (logical) 49, 305
original map 49

P

pair 49
parallelism 149, 235, 261,

264–266, 269
dataflow 267

parentheses 9
parents 186
partial 127–128, 130, 242
partition 298
Patriot missile 64–65
pattern matching 47, 249
patterns 54, 73

pcalls 235, 268–269
peek 86, 91, 93, 192
performance 190, 202, 277,

291
measurements 282

Perl (programming
language) 135

persistent data structures 7, 77,
81, 90, 110, 113, 280–281

persistent hash trie 81
pixel 51
pmap 235, 268–269
polling 255
polymorphism 3, 16, 139–141,

184–185, 188–189, 192–
194, 202, 206

pool 251
pop 86, 91–93, 192
pos 101–103
positionally 47
postconditions 133, 173, 175,

302
pow 142–143
precision 62–63

arbitrary precision 21
preconditions 173, 206, 302
predicates 103, 138

type-based 79, 102
prefix notation 9, 25
primitives 21, 64, 83, 200, 229,

279, 287, 290–291
println 30, 114, 160, 308–309
print-method 92
programmer efficiency 278
Programming Clojure 101
promises 235, 261, 266–267,

269
callback API to blocking

API 266
deliver 265
promise 149, 265–266
with-promises 268

protocols 15–16, 121, 189, 192,
195, 197, 227, 258, 285,
305

design of 285
Prototype Principle 183
prototyping 214
proxies 305

construct-proxy 212
proxy 38, 171, 208, 210–212,

261, 304
proxy-mappings 210
proxy-super 211
update-proxy 210, 212

326 INDEX
pure virtual classes 192
purely functional 131, 282
push 192–193
pvalues 235, 268–269
Python (programming

language) 6, 44, 126, 132

Q

Qi (programming language) 12
queues 91, 93, 252–253

PersistentQueue 91–92
priority queues 192
queue-fish 92

quicksort 121–123
qsort 122–123

quote 32–34, 70, 159, 171
quoting forms 161

nested syntax-quotes 160
syntax-quote 34, 163

R

range 51, 68, 83, 90, 117, 282
rationals 22, 66

denominator 22, 67
numerator 22, 67
ratio 66
rational? 65–67
rationalize 66–67

read 309–310
reader feature 28
Read-Eval-Print Loop

(REPL) 21, 26, 32, 39,
54–55, 57, 97, 117, 123,
179, 213–214, 221, 267,
270, 273, 278, 289, 309

read-time 73
recompiled 73
records 189, 191, 195, 197–198,

205–206
recur 30–31, 142, 144–147, 200
recursion 30, 141–142

accumulator 143
explicit tail-call

optimization 145
freeing the recursive call 142
generalized tail-call

optimization 145
mundane 142–143, 145, 306
mutual 142, 145–147
recursive call trapped 142
stack consumption 142
tail 30, 145
tail position 30–31, 143, 146

tail-call optimization
(TCO) 6, 145–146

tail-recursive 124, 142, 154
tail-recursive self-call 144

reduce 119, 129, 180, 280, 304
refactoring 290
reference types 14, 108, 110,

165, 202, 235–236, 240,
242, 245, 247, 252, 255,
257–259, 261, 270, 272,
303–304

add-watch 164, 303
coordinated 240–244, 247
remove-watch 303
set-validator 241
synchronous 241, 247, 252,

255
uncoordinated 255
uniform state change

model 242
watchers 304

referential transparency 12, 132
reflection 279–280, 289
Refs 235, 240–241, 243–246,

255
alter 242, 244–245
commutative 245
commute 244–245
ensure 239, 246
ref-set 245

regular expressions 52, 61, 75
case insensitivity 74
re-find 75
regex 73–74
re-groups 75
reluctant quantifiers 73
re-matcher 75
re-seq 74–75

reify 38, 141, 198, 208, 211, 304
factory function 198

relational functions 293–294
SELECT 10, 293

relative-units 296, 298
rem 55
remainder 55
remote-procedure call

(RPC) 262, 266–267
rename 42
reordering 245
replace 85
reset 255
resolve 72, 272
rest 46, 78, 80, 89, 91, 115–116,

121, 127
reusability 234

reuse 127
reverse 41, 87
roll 288–289
root binding 28, 270–271
root cause 55
rounding error 64
rseq 80, 84
RSS2 262, 299
rss-children 266, 299
rsubseq 99
Ruby (programming

language) 16, 135, 163
unless 163

runtime 141

S

SafeArray protocol 258–259
Scala (programming

language) 47, 126, 145,
170, 207, 301

scalar 61
scalar types 75

duality of 48, 62
Scheme (programming

language) 87, 143–145
actors 143

screaming-filter 211
self 185
semantic coupling 302
separation of concerns 7
seq 46, 74, 77–80, 83–84, 98,

200
seq protocol 305
seq1 283–284
sequence abstraction 77–78,

80, 82, 97, 100–101, 204
rest vs. next 116

sequences 78–80, 290
chunked 277, 282–283, 291

chunk-at-a-time model 282
sequentials 48, 78–79
server 209
set 37
sets 25, 79, 94

difference 97
intersection 96
relative complement 97
union 97

setter 204
shared structure 112
shared-state concurrency 234
short 83
shorts 279
shuffle 226

327INDEX
side effects 29, 131–132, 154,
163, 180, 248, 255, 306

simplicity 4, 103, 288
simplification 204
single quote 33
sleep 246, 252
slice 228
Sliceable 229
sliceCount 228
slope 133–134
slowly 257, 287
snapshot 235–236

isolation 236
software transactional memory

(STM) 3, 235–238, 243,
245–246, 248, 255

barging 239
commit 236, 243, 245–246
commit-time 245
in-transaction 243, 245–246
retry 236

some 94
sometimes-slowly 257
sort 47, 225
sort-by 129–130
sorted-map 98–99, 113
sorted-map-by 95, 99
sorted-set 94–95, 113
sorted-set-by 95
sort-parts 123
special form 24, 26, 33
split 74–75
spot optimizations 280
spreadsheets 130, 139, 268
SQL 10–11, 293–294
sqr 302
stack overflow 115

errors 145
stack trace 55
stacks 86, 91

IPersistentStack 201
state 3, 13–14, 186, 202,

234–235, 239, 242,
245, 247, 249, 255

managing 238
static type system 278
static versus dynamic 278
Steele, Guy Lewis 47, 143
straight-line path 150
stress 246
strings 23, 71, 73, 79

zero-length strings 44
structural sharing 110
stubbing 299

subseq 95, 99
subvec 88–89
superclass constructor 212
Sussman, Gerald 143
Swank-Clojure 309
swap 255, 257
Swing 126, 216
Sybil 62
symbols 23, 26, 28, 70–71, 159,

171, 178, 264
auto-qualification 34
symbolic mappings 179

syntax 5, 7, 9
syntactic sugar 222

syntax-quote 32, 34–35, 72,
160–161, 169, 171

nested 160

T

tail position 142
and recur targets 145

tail recursion 143
tail recursive 151
tail-call 144
take 124
terminating condition 46
test-driven development (TDD)

109, 292, 298–301
specification language 302
unit tests 128

there ain’t no such thing as a
free lunch 237

third-party libraries 171, 194,
198

this 108, 171, 185, 198, 210–211
thread-bound 272
thread-local 28, 240, 270, 273
thread-local bindings 271–273,

306
threads 5, 28, 220, 224, 236,

240–241, 247, 249–252,
254–255, 258, 260–261,
265, 267–268, 274, 282,
308

starved 250
thread-safe 211, 240
time 13, 235, 247
timelines 235, 243
to-array 220
to-array-2d 220
toString 204–205
trampoline 147

trampoline for mutual
recursion 147

transactions 235–236, 239, 241,
243–248, 255–257

embedded transactions 236
retry 236, 243, 247–248, 255,

258
size of 247

transients 108, 277, 280–282,
291

Rule of Transients 280
TreeNode 189, 193, 195, 201
trees 110–111, 166, 168, 195,

262, 283, 306
binary 113
persistent binary 191
red-black 113
traversing 111, 306–307
unbalanced 113

triangle 118
truncation 62, 290–291
truthiness 43–44, 56

truthy 52, 69, 94, 119
tuning 247
tweet-items 266
tweetless-rss-children 300
tweet-occurrences 264
Twitter 262–264, 299
type conversion, automatic 63
type hints 228, 277–280,

287, 291
types 189, 227, 304–305

deftype 38, 200–202

U

unbox 289
unchecked 64
unchecked-inc 289
underscores 181
Unicode 73

case insensitivity 74
unit conversions 294–295
unit testing 128, 292, 298, 302
unit-of-distance 297
Universal Design Pattern

(UDP) 183–186, 188
Unix line terminator 74
unmodifiable 226
unquote 35, 160, 163–164
unquote-splice 35, 163
up-arrow key 51
update-in 85
uppercase 74

328 INDEX
V

validation 205
validator 241
variable arguments 26
variables 14, 29, 255
Vars 25, 27, 32–34, 40, 72, 128,

137, 163–164, 178, 181,
235, 240, 270, 307

anonymous 272
root binding 164
var 270, 272
var-get 272
with-local-vars 272–273

vectors 24, 33, 80, 82, 98, 193
as stacks 86
IPersistentVector 193, 198
of names 49
of primitives 83
subvectors 88
vec 83
vector 29, 32, 83–84, 126,

245, 295
vector-of 83
walking in reverse order 84

verbosity 140, 202

verbs 13
very bad things 259
visible 52
void 212
volatile 202

W

when 8, 31, 52, 162–163, 170
when-let 120, 171
when-not 163
where-am-i 72
while 8
Whitehead, Alfred North 61
whitespace, ignoring 74
wit 73
with-binding 273
with-open 82, 172, 274
with-out-str 273
with-precision 273
with-redefs 300
with-resource 172
workflow 91
world 150–152
worst-case 81

wrapping 195
write-once 265

X

xconj 110, 112, 191, 193,
195–196

xor 51
xs 48
xseq 191, 200

Y

Yegge, Steve 183

Z

Zawinski, Jamie (JWZ) 73
zencat 281
zencat2 281
zero 44
zipmap 98
zipper 263

