
•DiscoverhowtheWebischangingandtheroletheGroovylanguageanditsGrails

•GettoknowtheGrailsprojectanditsdomains,services,filters,controllers,views,

•Experiencewhattheavailabilityofplug-insforrichclientandAjax,webservices,

•SeehowGrailscooperateswithotherframeworks:Spring,jQuery,Hibernate,andmore

extensionsviaplug-ins.Bestofall,you’lllearnhowthiscoding-by-conventionparadigm

THE EXPERT’S VOICE® IN WEB DEVELOPMENT

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iv

Contents at a Glance

n About the Author ..xiii

n About the Technical Reviewer ...xiv

n Acknowledgments ...xv

n Chapter 1: The Essence of Grails ..1

n Chapter 2: Getting Started with Grails ..15

n Chapter 3: Understanding Domain Classes ..41

n Chapter 4: Understanding Controllers ..63

n Chapter 5: Understanding Views ..105

n Chapter 6: Mapping URLs ..139

n Chapter 7: Internationalization ...155

n Chapter 8: Ajax ..169

n Chapter 9: GORM ...191

n Chapter 10: Services ...233

n Chapter 11: Integration and Dependency Management ..249

n Chapter 12: Plug-ins ..293

n Index ..335

www.allitebooks.com

http://www.allitebooks.org

xv

Acknowledgments

First of all, I am grateful to my lovely wife, Betsy, and our boys, Jake and Zack, for all of their support.
Without them, none of what I get to do would be possible. Thank you!

To Graeme I have to say a giant thank-you as well. He and I have worked together on the Grails
technology for quite a few years, and that experience has been invaluable. I hope we continue enjoying
accomplishments together for a very long time.

Thanks, too, to the whole Groovy and Grails team at SpringSource. I have never worked with a
smarter group of people or a group that made work seem so much like pleasure.

Thanks as well to the whole Apress team for their support in completing this project. I appreciate
their patience and their willingness to help me get this thing done. In particular, thanks to Katie Sullivan,
Douglas Pundick, and Steve Anglin for seeing this project through to the end.

Last but not least, I have to extend a big thank-you to Damien Vitrac for contributing some fantastic
CSS work to the sample application for this book. The thing looks so much nicer because of his
contributions. Well done!
 —Jeff Scott Brown

Writing a book is no small task. It requires hours of dedication every day—valuable time stripped away
from loved ones. For this alone I thank my wife, Birjinia, whose patience and support drive me to achieve
more. Also, thanks to my kids, Alex and Lexeia, who showed remarkable restraint when tempted to wrestle
me away from the computer. You guys rock.

To the Grails team at SpringSource, you are a really special group. It continues to be a privilege to
work with you all. I count myself extremely lucky to work in the Open Source sector, where cutting-edge
innovation and technology leadership are daily occurrences. There is a very special kind of enjoyment that
comes from working with such a talented team of innovators.

Thanks to the team at Apress for getting the book done. It is not easy managing all the moving
pieces that go into the making of a great technical book. Kudos.
 —Graeme Rocher

www.allitebooks.com

http://www.allitebooks.org

1

n n n

CHAPTER 1

The Essence of Grails

Simplicity is the ultimate sophistication.

—Leonardo da Vinci

To understand Grails, you first need to understand its goal: to dramatically simplify enterprise Java web
development. To take web development to the next level of abstraction. To tap into what has been
accessible to developers on other platforms for years. To have all this while still retaining the flexibility to
drop down into the underlying technologies and utilize their richness and maturity. Simply put, we Java
developers want to “have our cake and eat it, too.”

Have you faced the pain of dealing with multiple crippling XML configuration files and an agonizing
build system where testing a single change takes minutes instead of seconds? Grails brings back the fun of
development on the Java platform, removing barriers and exposing users to APIs that enable them to focus
purely on the business problem at hand. No configuration, zero overhead, immediate turnaround.

You might be wondering how you can achieve this remarkable feat. Grails embraces concepts such as
Convention over Configuration (CoC), Don’t Repeat Yourself (DRY), and sensible defaults that are enabled
through the terse Groovy language and an array of domain-specific languages (DSLs) that make your life
easier.

As a budding Grails developer, you might think you’re cheating somehow, that you should be
experiencing more pain. After all, you can’t squash a two-hour gym workout into twenty minutes, can you?
There must be payback somewhere, maybe in extra pounds?

As a developer you have the assurance that you are standing on the shoulders of giants with the
technologies that underpin Grails: Spring, Hibernate, and of course, the Java platform. Grails takes the best
of such dynamic language frameworks as Ruby on Rails, Django, and TurboGears and brings them to a Java
Virtual Machine (JVM) near you.

This chapter is going to introduce the framework at the highest level and provide some essentials for
getting started. All of the concepts introduced here will be explained in detail later in the book.

Simplicity and Power
A factor that clearly sets Grails apart from its competitors is evident in the design choices made during its
development. By not reinventing the wheel, and by leveraging tried and trusted frameworks such as Spring
and Hibernate, Grails can deliver features that make your life easier without sacrificing robustness.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 n THE ESSENCE OF GRAILS

2

Grails is powered by some of the most popular open source technologies in their respective categories:

•	 Hibernate: The de facto standard for object-relational mapping (ORM) in the Java
world.

•	 Spring: The hugely popular open source Inversion of Control (IoC) container and
wrapper framework for Java.

•	 SiteMesh: A robust and stable layout-rendering framework.

•	 Tomcat: A proven, embeddable servlet container.

•	 H2: A pure Java Relational Database Management System (RDBMS) implementation.

The concepts of ORM and IoC might seem a little alien to some readers. ORM simply serves as a way
to map objects from the object-oriented world onto tables in a relational database. ORM provides an
additional abstraction above SQL, allowing developers to think about their domain model instead of
getting wrapped up in reams of SQL.

IoC provides a way of “wiring” together objects so that their dependencies are available at runtime. As
an example, an object that performs persistence might require access to a data source. IoC relieves the
developer of the responsibility of obtaining a reference to the data source. But don’t get too wrapped up in
these concepts for the moment, as their usage will become clear later in the book.

You benefit from Grails because it wraps these frameworks by introducing another layer of abstraction
via the Groovy language. You, as a developer, will not know that you are building a Spring and Hibernate
application. Certainly, you won’t need to touch a single line of Hibernate or Spring XML, but it is there at
your fingertips if you need it. Figure 1-1 illustrates how Grails relates to these frameworks and the enterprise
Java stack.

Grails

Spring Hibernate Site Mesh

G
ro

o
vy

The Java Development Kit

(JDK)

Java EE

The Java Language

Figure 1-1. The Grails stack

Grails, the Platform
When approaching Grails, you might suddenly experience a deep inhalation of breath followed by an
outcry of “not another web framework!?” That’s understandable, given the dozens of web frameworks that
exist for Java. But Grails is different and in a good way. Grails is a full-stack environment, not just a web
framework. It is a platform with ambitious aims to handle everything from the view layer down to your
persistence concerns.

www.allitebooks.com

http://www.allitebooks.org

3

CHAPTER 1 n THE ESSENCE OF GRAILS

In addition, through its plug-ins system (covered in Chapter 12), Grails aims to provide solutions to an
extended set of problems that might not be covered out of the box. With Grails you can accomplish
searching, job scheduling, enterprise messaging and remoting, and more.

The sheer breadth of Grails’s coverage might conjure up unknown horrors and nightmarish thoughts of
configuration, configuration, configuration. However, even in its plug-ins, Grails embraces Convention
over Configuration and sensible defaults to minimize the work required to get up and running.

We encourage you to think of Grails as not just another web framework but as the platform upon
which to build your next web 2.0 phenomenon.

Living in the Java Ecosystem
As well as leveraging Java frameworks that you know and love, Grails gives you a platform that allows you
to take full advantage of Java and the JVM—thanks to Groovy. No other dynamic language on the JVM
integrates with Java like Groovy. Groovy is designed to work seamlessly with Java at every level. Starting
with syntax, the similarities continue as follows:

•	 The Groovy grammar is derived from the Java 5 grammar, making most valid Java
code also valid Groovy code.

•	 Groovy shares the same underlying APIs as Java, so your trusty javadocs are still valid!

•	 Groovy objects are Java objects. This has powerful implications that might not be
immediately apparent. For example, a Groovy object can implement Java.io.
Serializable and be sent over Remote Method Invocation (RMI) or clustered using
session-replication tools.

•	 Through Groovy’s joint compiler you can have circular references between Groovy
and Java without running into compilation issues.

•	 With Groovy you can easily use the same profiling tools, the same monitoring tools,
and all existing and future Java technologies.

Groovy’s ability to integrate seamlessly with Java, along with its Java-like syntax, is the number-one
reason why its conception generated so much hype. Here was a language with capabilities similar to those
of languages such as Ruby and Smalltalk running directly in the JVM. The potential is obvious, and the
ability to intermingle Java code with dynamic Groovy code is huge. In addition, Groovy allows mixing of
static types and dynamic types, combining the safety of static typing with the power and flexibility to use
dynamic typing where necessary.

This level of Java integration is what drives Groovy’s continued popularity, particularly in the world of
web applications. Across different programming platforms, varying idioms essentially express the same
concept. In the Java world there are servlets, filters, tag libraries, and JavaServer Pages (JSP). Moving to a
new platform requires relearning all of these concepts and their equivalent APIs or idioms—easy for some,
a challenge for others. Not that learning new things is bad, but a cost is attached to knowledge gain in the
real world, a cost that can present a major stumbling block in the adoption of any new technology that
deviates from the standards or conventions defined within the Java platform and the enterprise.

In addition, Java has standards for deployment, management, security, naming, and more. The goal of
Grails is to create a platform with the essence of frameworks like Rails or Django or CakePHP, but one that
embraces the mature environment of Java Enterprise Edition (Java EE) and its associated APIs.

Grails is, however, a technology that speaks for itself: the moment you experience using it, a little light
bulb will go on inside your head. So without delay, let’s get moving with the example application that will
flow throughout the course of this book.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 n THE ESSENCE OF GRAILS

4

The gTunes example will guide you through the development of a music store similar to those
provided by Apple, Amazon, and Napster. An application of this nature opens up a wide variety of
interesting possibilities, from e-commerce to RESTful APIs and RSS or Atom feeds. We hope it will provide
a broad understanding of Grails and its feature set.

Installing and Configuring Grails
Installing Grails is almost as simple as using it, but there is at least one prerequisite to take into account.
Grails requires a valid installation of the Java SDK 1.6 or above, which, of course, can be obtained from
Oracle: http://www.oracle.com/technetwork/java/javase/.

After installing the Java SDK, set the JAVA_HOME environment variable to the location where it is
installed and add the JAVA_HOME/bin directory to the PATH variables.

n Note If you are working on Mac OS X, you already have Java installed! However, you still need to set JAVA_

HOME in your ~/.profile file.

To test your installation, open up a command prompt and type java –version:

$java -version

You should see output similar to Listing 1-1.

Listing 1-1. Running the Java Executable

java version "1.6.0_29"
Java(TM) SE Runtime Environment (build 1.6.0_29-b11-402-11D50b)
Java HotSpot(TM) 64-Bit Server VM (build 20.4-b02-402, mixed mode)

As is typical with many other Java frameworks, including Apache Tomcat and Apache Ant, the
installation process involves following a few simple steps. Download and unzip Grails from http://
grails.org, create a GRAILS_HOME variable that points to the location where you installed Grails, and add
the GRAILS_HOME/bin directory to your PATH variable.

To validate your installation, open a command window and type the command grails -version:

$ grails -version

If you have successfully installed Grails, the command will output the usage help shown in Listing 1-2.

Listing 1-2. Running the Grails Executable

Grails version: 2.1.0

Typing grails help will display more usage information, including a list of available commands. If
more information about a particular command is needed, you can append the command name to the help
command. For example, if you want to know more about the create-app command, simply type grails
help create-app:

$ grails help create-app

Listing 1-3 provides an example of the typical output.

www.allitebooks.com

http://www.oracle.com/technetwork/java/javase/
http://grails.org
http://grails.org
http://www.allitebooks.org

5

CHAPTER 1 n THE ESSENCE OF GRAILS

Listing 1-3. Getting Help on a Command

 grails create-app -- Creates a Grails application for the given name

Usage (optionals in square brackets):

 create-app [--inplace] [NAME]

where
 --inplace = Creates the project in the current directory rather than
 creating a new directory.
 NAME = The name of the project. If not provided, this command will
 ask you for the name.

The Grails command-line interface is built on another Groovy-based project called Gant (http://
gant.codehaus.org/), which wraps the ever-popular Apache Ant (http://ant.apache.org/) build system.
Gant allows seamless mixing of Ant targets and Groovy code.

We’ll discuss the Grails command line further in Chapter 12.

Creating Your First Application
In this section you’re going to create your first Grails application, which will include a simple controller.
Here are the steps you’ll take to achieve this:

1. Run the command grails create-app gTunes to create the application (with
“gTunes” being the application’s name).

2. Navigate into the gTunes directory by issuing the command cd gtunes.

3. Create a storefront controller with the command grails create-controller
store.

4. Write some code to display a welcome message to the user.

5. Test your code and run the tests with grails test-app.

6. Run the application with grails run-app.

Step 1: Creating the Application
Sound easy? It is, and your first port of call is the create-app command; you managed to extract some help
with it in the previous section. To run the command, simply type grails create-app and hit Enter in the
command window:

$ grails create-app

Grails will automatically prompt you for a project name, as presented in Listing 1-4. When this
happens, type gTunes and hit Enter. As an alternative, use the command grails create-app gTunes, in
which case Grails takes the appropriate action automatically.

www.allitebooks.com

http://gant.codehaus.org/
http://gant.codehaus.org/
http://ant.apache.org/
http://www.allitebooks.org

CHAPTER 1 n THE ESSENCE OF GRAILS

6

Listing 1-4. Creating an Application with the create-app Command

Environment set to development . . .
Application name not speciied. Please enter: gTunes

Upon completion, the command will have created the gTunes Grails application and the necessary
directory structure. The next step is to navigate to the newly created application in the command window
using the shell command:

cd gTunes

At this point you have a clean slate—a newly created Grails application—with the default settings in
place. A screenshot of the structure of a Grails application appears in Figure 1-2.

We will delve deeper into the structure of a Grails application and the roles of the various files and
directories as we progress through the book. Notice, however, how Grails contains directories for
controllers, domain objects (models), and views.

Figure 1-2. The gTunes application structure

Step 2: Creating a Controller
Grails is an MVC1 framework, which means it has models, views, and controllers to separate concerns
cleanly. Controllers, which are central to a Grails application, can easily marshal requests, deliver
responses, and delegate to views. Because the gTunes application centers on the concept of a music store,
we’ll show how to create a “store” controller.

To help along the way, Grails features an array of helper commands for creating classes that “fit” into
the various slots in a Grails application. For example, for controllers there is the create-controller
command, which will do nicely. But using these commands is not mandatory. As you grow more familiar
with the different concepts in Grails, you can just as easily create a controller class using your favorite text
editor or integrated development environment (IDE).

1 The Model-View-Controller (MVC) pattern is a common pattern found in many web frameworks designed to

separate user interface and business logic. See Wikipedia, “Model-view-controller,” http://en.wikipedia.org/wiki/

Model-view-controller, 2003.

www.allitebooks.com

http://en.wikipedia.org/wiki/
http://www.allitebooks.org

7

CHAPTER 1 n THE ESSENCE OF GRAILS

Nevertheless, let’s get going with the create-controller command, which, as with create-app, takes
an argument where you can specify the name of the controller you wish to create. Simply type grails
create-controller store:

$ grails create-controller store

Now sit back while Grails does the rest (see Listing 1-5).

Listing 1-5. Creating a Controller with the create-controller Command

| Created ile grails-app/controllers/gtunes/StoreController.groovy
| Created ile grails-app/views/store
| Created ile test/unit/gtunes/StoreControllerTests.groovy

Once the create-controller command has finished running, Grails will have created, not one, but
two classes for you: a new controller called StoreController within the grails-app/ controllers directory
and an associated test case in the test/unit directory. Since a package name was not specified on the
command line, Grails defaults to creating artifacts in a package name that matches the application name.
Figure 1-3 shows the newly created controller nesting nicely in the appropriate directory.

Figure 1-3. The newly created StoreController

Due to Groovy’s dynamic nature, you should aim for a high level of test coverage2 in any Grails project
(Grails assumes you’ll need a test if you’re writing a controller). Dynamic languages such as Groovy, Ruby,
and Python do not give nearly as much compile-time assistance as a statically typed language such as Java.
Some errors that you might expect to be caught at compile time are actually left to runtime, including
method resolution. Sadly, the comfort of the compiler often encourages Java developers to forget about
testing altogether. Needless to say, the compiler is not a substitute for a good suite of unit tests, and what
you lose in compile-time assistance you gain in expressivity.

2 Code coverage is a measure used in software testing. It describes the degree to which the source code of a program

has been tested.

CHAPTER 1 n THE ESSENCE OF GRAILS

8

Throughout this book we will demonstrate automated-testing techniques that make the most of
Grails’s testing support.

Step 3: Printing a Message
Let’s return to the StoreController. By default, Grails will create the controller and give it a single action
called index. The index action is, by convention, the default action in the controller. Listing 1-6 shows the
StoreController containing the default index action.

Listing 1-6. The Default index Action

package gtunes
class StoreController {
 def index() {}
}

The index action doesn’t seem to be doing much, but by convention its declaration instructs Grails to
try to render a view called grails-app/views/store/index.gsp automatically. Views are the subject of
Chapter 5, so for the sake of simplicity we’re going to try something less ambitious instead.

Grails controllers come with a number of implicit methods, which we’ll cover in Chapter 4. One of
these is render, a multipurpose method that, among other things, can render a simple textual response.
Listing 1-7 shows how to print a simple response: “Welcome to the gTunes store!”

Listing 1-7. Printing a Message Using the render Method

package gtunes
class StoreController {
 def index() {
 render 'Welcome to the gTunes store!'
 }
}

Step 4: Testing the Code
The preceding code is simple enough, but even the simplest code shouldn’t go untested. Open the
StoreControllerTests test suite that was generated earlier inside the test/unit directory. Listing 1-8 shows
the contents of the StoreControllerTests suite.

Listing 1-8. The Generated StoreControllerTests Test Suite

package gtunes

import grails.test.mixin.*
import org.junit.*

/**
 * See the API for {@link grails.test.mixin.web.ControllerUnitTestMixin} for usage instructions
 */
@TestFor(StoreController)
class StoreControllerTests {

9

CHAPTER 1 n THE ESSENCE OF GRAILS

 void testSomething() {
 fail "Implement me"
 }
}

Grails separates tests into “unit” and “integration” tests. Integration tests bootstrap the whole
environment, including the database; hence, they tend to run more slowly. In addition, integration tests
are typically designed to test the interaction of a number of classes and therefore require a more complete
application before you can run them.

Unit tests, on the other hand, are fast-running tests, but they require extensive use of mocks and
stubs. Stubs are classes used in testing that mimic the real behavior of methods by returning arbitrary
hard-coded values. Mocks essentially do the same thing but exhibit a bit more intelligence by having
“expectations.” For example, a mock can specify that it “expects” a given method to be invoked at least
once—even ten times if required. As we progress through the book, the difference between unit tests and
integration tests will become clearer.

To test the StoreController in its current state, assert the value of the response that was sent to the
user. A simple way of doing this appears in Listing 1-9.

Listing 1-9. Testing the StoreController’s Index Action

package gtunes

import grails.test.mixin.*
import org.junit.*

/**
 * See the API for {@link grails.test.mixin.web.ControllerUnitTestMixin} for usage instructions
 */
@TestFor(StoreController)
class StoreControllerTests {

 void testSomething() {
 controller.index()
 assert 'Welcome to the gTunes store!' == response.text
 }
}

What we’re doing here is using the built-in testing capabilities of Grails to evaluate the content of the
response object. During a test run, Grails magically transforms the regular servlet HttpServletResponse
object into a Grails MockHttpServletResponse, which has helper properties, such as text, that enable you
to evaluate what happened as the result of a call to the render method.

Nevertheless, don’t get too hung up about the ins and outs of using this code just yet. The whole book
will be littered with examples; they will gradually ease you into becoming proficient at testing with Grails.

Step 5: Running the Tests
To run the tests and verify that everything works as expected, you can use the grails test-app command.
The test-app command will execute all the tests in the application and output the results to the test/
reports directory. In addition, you can run only StoreControllerTests by issuing the command grails
test-app StoreController. Listing 1-10 shows some typical output that results when the grails test-app
command is run.

CHAPTER 1 n THE ESSENCE OF GRAILS

10

Listing 1-10. Running Tests with grails test-app

| Completed 1 unit test, 0 failed in 1107ms
| Tests PASSED - view reports in target/test-reports

If you want to review the reports, you’ll find XML, HTML, and plain-text reports in the test/reports
directory. Figure 1-4 shows what the generated HTML reports look like in a browser—they’re definitely
easier on the eye than the XML equivalent!

Figure 1-4. Generated HTML test reports

Step 6: Running the Application
Now that you’ve tested your code, the final step is to see it in action. Do this using the grails run-app
command, which will start up a locally running Grails server on port 8080 by default.

Get Grails going by typing grails run-app into the command prompt:

$ grails run-app

You’ll notice that Grails will start up and inform you of a URL you can use to access the Grails instance
(see Listing 1-11).

Listing 1-11. Running an Application with run-app

...
| Server running. Browse to http://localhost:8080/gTunes

If you get a bind error, such as the following one, it probably resulted from a port conflict: “Server
failed to start: java.net.BindException: Address already in use”.

This error typically occurs if you already have another container, such as Apache Tomcat (http://
tomcat.apache.org), running on port 8080. You can work around this issue by running Grails on a different
port by passing the server.port argument and specifying an alternative value:

http://tomcat.apache.org
http://tomcat.apache.org

11

CHAPTER 1 n THE ESSENCE OF GRAILS

grails -Dserver.port=8087 run-app

In the preceding case, Grails will start up on port 8087 as expected. Barring any port conflicts, you
should have Grails up and running and ready to serve requests at this point. Open your favorite browser
and navigate to the URL prompted by the Grails run-app command shown in Listing 1-11. You’ll be
presented with the Grails welcome page that looks something like Figure 1-5.

The welcome screen is (by default) rendered by a Groovy Server Pages (GSP) file located at web-app/
index.gsp, but you can fully customize the location of this file through URL mappings (discussed in
Chapter 6).

As Figure 1-5 shows, the StoreController you created earlier is one of those listed as available.
Clicking the StoreController link results in printing the “Welcome to the gTunes store!” message you
implemented earlier (see Figure 1-6).

Figure 1-5. The standard Grails welcome page

Figure 1-6. StoreController prints a message.

CHAPTER 1 n THE ESSENCE OF GRAILS

12

Grails Interactive Mode
So far all of the Grails commands that we have seen have been executed by running grails and passing a
command name as an argument, for example, grails create-domain-class. When a command is executed
like this, several things have to happen. The grails command first starts up the JVM, the Groovy runtime
environment has to be initialized, and a certain amount of the Grails runtime environment has to be
initialized. All of that has to happen before the command can actually be executed and all of that
“warming up” takes time. The amount of time will, of course, vary depending on your hardware. Grails
“interactive mode” can be a big help here. To start interactive mode, enter the grails command with no
arguments. See Listing 1-12.

Listing 1-12. Starting Interactive Mode

$ grails
grails>

As long as you are in the interactive mode, any grails command that could have been executed on the
command line may be executed. The syntax is exactly the same as it would be on the command line,
except that there is no need to prefix every command with “grails”. For example, on the command line you
might type something like “grails create-domain-class com.gtunes.Store” but in interactive mode you
would type the shorter “create-domain-class com.gtunes.Store” as shown in Listing 1-13.

Listing 1-13. Creating a Domain Class in Interactive Mode

$ grails
grails> create-domain-class com.gtunes.Store
| Created ile grails-app/domain/com/gtunes/Store.groovy
| Created ile test/unit/com/gtunes/StoreTests.groovy
grails>

Notice that running this command in interactive mode is considerably quicker than running the same
command from the command line.

Since pressing the up arrow will cycle through recently executed commands, it’s really quick and easy
to execute similar commands one after the other. As an example, after executing “create-domain-class
com.gtunes.Store”, press the up arrow to recall that command and then backspace over “Store” to replace it
with “Song” in order to quickly execute “create-domain-class com.gtunes.Song”.

Another great productivity boost provided by interactive mode is intuitive tab completion. While in
interactive mode, type “cre” followed by pressing Tab, and interactive mode will show all the available
commands that start with “cre”, as shown in Listing 1-14.

Listing 1-14. Tab Completion in Interactive Mode

grails> create-

create-controller create-domain-class create-ilters create-
hibernate-cfg-xml create-integration-test create-plugin create-
scaffold-controller create-script create-service
create-tag-lib create-unit-test create-web-xml-conig
grails> create-

Now that the interactive mode has completed the “cre” command as far as it can—that is, to
“create-”—you can type “d” and press Tab again, at which point the interactive mode will complete the
command to “create-domain-class”, since that is the only available command starting with “create-d”. This

13

CHAPTER 1 n THE ESSENCE OF GRAILS

same style of autocompletion works for all available commands. Further, some commands that accept
arguments also support autocompletion. For example, if you press Tab after “generate-all”, since the
generate-all command accepts a domain-class name as an argument, the console will show all of the
domain classes that are available in the application. This makes it very easy to fill the argument in without
typing the full class name. You need to type only enough of the domain-class name to make it unique; the
interactive mode can complete the rest.

Interactive mode can help quickly open certain kinds of reports. After generating a domain class or
any other artifact, run “test-app unit:” from within interactive mode to run all of the unit tests. The test
results will be generated below the project root at target/test-reports/html/index.html. In order to open
that report in your default web browser from within interactive mode, use the open command, as shown
in Listing 1-15:

Listing 1-15. Opening Unit Test Report in Interactive Mode

grails> open target/test-reports/html/index.html
grails>

Note that tab completion may be used to help complete the path to the HTML file.
It turns out that the open command knows where to find the test report; so a simpler way to open the

report is shown in Listing 1-16.

Listing 1-16. Opening Unit Test Report by Name in Interactive Mode

grails> open test-report
grails>

The way to exit the interactive mode is to enter “exit” at the interactive mode prompt. An exception to
this occurs if the application is currently running, as it would be after executing “run-app” from the
console. In such a case the exit command will exit the application but leave you in interactive mode. At
that point you could execute “exit” again to leave interactive mode altogether.

If you are only going to execute a single command, then interactive mode isn’t going to be of much
use. Interactive mode really benefits the more typical workflow situation where numerous Grails
commands are executed over a period of time. You may want to run the tests, view the reports, make some
code changes and continue iterating through that loop. You may want to generate several domain classes
at once, fill in some of their details, and then generate corresponding controllers and views. Anytime you
are going to be executing more than one or two Grails commands during a work session, interactive mode
is probably going to be a big help. While doing real development, executing those commands from
interactive mode will save you a lot of time.

Interactive mode provides a lot of developer productivity. Getting used to using it will make many
development tasks much easier to manage and quicker to execute.

Summary
Success! You have your first Grails application up and running. In this chapter you’ve taken the first steps
toward learning Grails by setting up and configuring your Grails installation. In addition, you’ve created
your first Grails application, along with a basic controller.

Now it is time to see what else Grails does to kick-start your project development. In the chapters that
follow, we’ll look at some Create, Read, Update, Delete (CRUD) generation facilities, by means of which
Grails allows you to flesh out prototype applications in no time.

15

n n n

CHAPTER 2

Getting Started with Grails

In Chapter 1, you got your first introduction to the Grails framework and a feel for the basic command-line
interface while creating the basis for the gTunes application. This chapter is going to build on that
foundation by showing how you can use the Grails scaffolding feature to quickly build a prototype
application that can generate simple CRUD (Create, Read, Update, Delete) interfaces.

Then comes an explanation of some of the basic concepts within the Grails ecosystem, including
environments, data sources, and deployment. Get ready—this is an action-packed chapter with loads of
information!

What Is Scaffolding?
Scaffolding is a Grails feature that allows you to quickly generate CRUD interfaces for an existing domain.
It offers several benefits, the most significant of which is that it serves as a superb learning tool, allowing
you to relate how the Grails controller and view layers interact with the domain model that you created.

You should note, however, that Grails is not just a CRUD framework. And scaffolding, although a
useful feature in your repertoire, is not the main benefit of Grails. If you’re looking for a framework that
provides purely CRUD-oriented features, better options are at your disposal.

As with a lot of Grails features, scaffolding is best demonstrated visually, so let’s plunge right in and see
what can be done.

Creating a Domain
Grails’s domain classes serve as the heart of your application and business-model concepts. If you were
constructing a bookstore application, for example, you would be thinking about books, authors, and
publishers. With gTunes you have albums, artists, songs, and other things in mind.

The most significant attribute that differentiates domain classes from other artifacts within a Grails
application is that they are persistent and that Grails automatically maps each domain class onto a
physical table in the configured database. (There will be more about how to change the database setup
later in the chapter.)

The act of mapping classes onto a relational database layer is also known as object-relational mapping
(ORM). The Grails ORM layer, called GORM, is built on the ever-popular Hibernate library (http://www.
hibernate.org).

Domain classes reside snugly in the grails-app/domain directory. You create a domain class by using
either the create-domain-class command from within interactive mode or your favorite IDE or text editor.

http://www.hibernate.org
http://www.hibernate.org

CHAPTER 2 n GETTING STARTED WITH GRAILS

16

Currently, the Song domain isn’t doing a great deal; it’s simply a blank class definition, as shown in
Listing 2-2.

Listing 2-2. The Song Domain Class

package com.gtunes
class Song {
 static constraints = {
 }
}

At this point, you should think about what aspects make up a “Song”. A Song typically has a title and
an artist, among other things. If you really want to go overboard, you could model your Song domain class

Type the helper command shown in Listing 2-1 into a command window from the root of the gTunes
project.

Listing 2-1. Creating the Song Domain Class

grails> create-domain-class com.gtunes.Song
| Created ile grails-app/domain/com/gtunes/Song.groovy
| Created ile test/unit/com/gtunes/SongTests.groovy
grails>

Listing 2-1 shows that you’ll be using a package to hold your domain classes. Groovy follows exactly
the same packaging rules as Java, and as with Java, it is good practice to use packages. You might not see
the benefit of packages in the beginning, but as your application grows and you begin taking advantage of
Grails plug-ins and integrating more Java code, you will appreciate the organization that they provide (for
more about plug-ins, see Chapter 13).

Once the command in Listing 2-1 completes, the result will be a new Song domain class located in the
grails-app/domain/com/gtunes directory, as dictated by the package prefix specified. Figure 2-1 shows the
newly created structure and the Song.groovy file containing the domain class definition.

Figure 2-1. The Song domain class and the Song.groovy file

17

CHAPTER 2 n GETTING STARTED WITH GRAILS

on all the fields you can populate in an MP3 file’s ID3 tag. But in this case keep it simple: add only the two
previously mentioned properties, as shown in Listing 2-3.

Listing 2-3. Adding Properties to the Song Domain Class

package com.gtunes
class Song {
 String title
 String artist

 static constraints = {
 title blank: false
 artist blank: false
 }
}

That was simple enough, and the class doesn’t look much different from your typical Groovy bean (see
the Appendix for information about Groovy beans). GORM essentially maps the class name onto the table
name and each property onto a separate column in the database, with their types relating to SQL types.
Don’t get too hung up on this now; we’ll be digging more deeply into domain classes and GORM in
Chapters 3 and 10. Also, the code in the constraints block will be discussed in more detail in Chapter 9. For
the moment, let’s move on to seeing the application in action.

Introducing Dynamic Scaffolding
Scaffolding comes in two flavors: dynamic (or runtime) and static (or template-driven). First, we’ll look at
dynamic scaffolding, where a CRUD application’s controller logic and views are generated at runtime.
Dynamic scaffolding does not involve boilerplate code or templates; it uses advanced techniques such as
reflection and Groovy’s metaprogramming capabilities to achieve its goals. However, before you can
dynamically scaffold your Song class, you need a controller.

You had a brief introduction to creating controllers in Chapter 1, and the controller code necessary to
enable scaffolding is minimal. Create the scaffolded controller for the Song class either manually or via the
command line, as shown in Listing 2-4.

Listing 2-4. Creating the SongController

grails> create-scaffold-controller com.gtunes.Song
| Created ile grails-app/controllers/com/gtunes/SongController.groovy
| Created ile grails-app/views/song
| Created ile test/unit/com/gtunes/SongControllerTests.groovy
grails>

Again, you should use the package prefix with the create-controller command, which will create the
SongController within the grails-app/controllers/com/gtunes directory (see Figure 2-2).

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 n GETTING STARTED WITH GRAILS

18

To enable dynamic scaffolding, the SongController defines a scaffold property with a value of true, as
shown in Listing 2-5.

Listing 2-5. Enabling Dynamic Scaffolding

package com.gtunes
class SongController {
 static scaffold = true
}

n Note Groovy automatically resolves class names, such as Song in Listing 2-5, to the java.lang.Class

instance without requiring the .class suffix. In other words Song = Song.class.

With that done, simply start up Grails with the grails run-app command, open a browser, and
navigate to the gTunes application at the usual link: http://localhost:8080/gTunes.

The Grails welcome page, first demonstrated in Chapter 1, will show the SongController instance in
the list of available controllers, as well as the usual comforting welcome message. Click the SongController
link to pull up a page listing all the Song objects (there may be none, of course), as depicted in Figure 2-3.

Figure 2-2. Locating the SongController in the directory

19

CHAPTER 2 n GETTING STARTED WITH GRAILS

Without breaking a sweat and in a grand total of three lines of code (excluding the package
declaration), you have managed to create a useful CRUD interface, one that lets you create and fully
manage the Song instances within the gTunes application. Each of the components of CRUD (Create, Read,
Update and Delete) is described in the rest of this section.

The Create Operation
The magic doesn’t end here. By clicking the “New Song” link at the top of the screen, you can create new
songs. While generating the views, Grails does its best to guess what type of field is required to edit a
property’s value. For example, if Grails finds a String, it will create a text field; if it finds a java.util.Date,
it will render drop-down boxes that allow you to select the date and time. Figure 2-4 shows an example of
what the generated song-creation interface looks like.

The Grails built-in validation mechanism, called constraints, can also affect how the interface is
rendered, including the order in which fields are displayed and the type of field that is rendered. Try
clicking the “Create” button; you’ll get a validation error stating that the duration must be specified, as
pictured in Figure 2-5. The validation messages hook into Grails’s internationalization support (often
referred to with the abbreviation i18n). But for now, all you need to know is that Grails is pulling these
messages from the properties files within the grails-app/i18n directory. (Constraints will be discussed in
Chapter 3 and internationalization in Chapter 8.)

Figure 2-3. The Song List page

CHAPTER 2 n GETTING STARTED WITH GRAILS

20

You could customize the message at this point, but for now the defaults will do. Now let’s try to create
a song with some valid data. Specifically, try to enter these values into the provided fields:

Artist: Soundgarden
Title: Mailman

Now click the “Create” button and move on to the next section of the chapter.

Figure 2-4. The Create Song page

Figure 2-5. How Grails handles validation

21

CHAPTER 2 n GETTING STARTED WITH GRAILS

Currently, you’re dealing with a trivial domain model with only a single Song domain class to account
for. However, another attribute of domain classes is that they typically have multiple relationships: one-to-
many, one-to-one, and so on. If you think about a Song for a moment, it is typically part of a collection of
Songs within an album. Let’s create an Album domain class to model this using the grails create-domain-
class command, as shown in Listing 2-6.

Listing 2-6. Creating the Album Domain Class

grails> create-domain-class com.gtunes.Album
| Created ile grails-app/domain/com/gtunes/Album.groovy
| Created ile test/unit/com/gtunes/AlbumTests.groovy
grails>

An Album has attributes of its own, including a title, but it also contains many songs. Listing 2-7 shows
how to set up a one-to-many relationship between Album and Song using the hasMany static property of
domain classes. The hasMany property is assigned a Groovy map where the key is the relationship name
and the value is the class, in this case Song, to which the association relates.

Listing 2-7. Defining a One-to-Many Relationship

package com.gtunes
class Album {
 String title

The Read Operation
Grails has obeyed instructions and duly created a new Song instance with the necessary data in the
database. It then redirects you to the “Show Song” screen, where you can view and admire a rendered view
of the Song instance you just created.

Additionally, as pictured in Figure 2-6, the “Show Song” screen provides two buttons to let you edit or
delete the Song instance from the database.

Figure 2-6. The Show Song screen

CHAPTER 2 n GETTING STARTED WITH GRAILS

22

 static hasMany = [songs:Song]
}

The preceding association is unidirectional. In other words, only the Album class knows about the
association, while the Song class remains blissfully unaware of it. To make the association bidirectional,
modify the Song class to include an Album local property, as shown in Listing 2-8. Now Album and Song have
a bidirectional, one-to-many association.

Listing 2-8. Making the Relationship Bidirectional

package com.gtunes
class Song {
 String title
 String artist
 Album album
}

In Chapter 3, we’ll delve into other kinds of relationships and how they map onto the underlying
database. For now, let’s create another scaffolded controller that can deal with the creation of Album
instances. Use the grails create-controller command and add the static scaffold = true property to
the class definition (see Listing 2-9).

Listing 2-9. Scaffolding the Album Class

package com.gtunes
class AlbumController {
 static scaffold = true
}

Now if you return to your browser and refresh the Song list, you’ll notice that the Song you entered
previously has mysteriously vanished. The reason for this is quite simple: By default, Grails is running with
an in-memory database, and updating domain classes creates a new instance of it. You might find this
useful for testing, but you can configure a different database if you require a less volatile storage
mechanism (we’ll discuss that later in this chapter).

More significant, however, is the fact that on the welcome page we have an additional
AlbumController. Click the AlbumController link, followed by the “New Album” button. Enter a title for the
Album—here it’s “Soundgarden”—and click the “Create” button to see your newly created Album displayed
(see Figure 2-7).

23

CHAPTER 2 n GETTING STARTED WITH GRAILS

You’ll also notice that the Album has a blank Songs field. Let’s fix that next.

The Update Operation
You can perform updates by clicking the “Edit” button. In this case, you want to add a Song, so click the
“Add Song” link to see the “Create Song” interface. This time, you’ll get a useful drop-down box that lets
you select which Album the Song should be part of (as shown in Figure 2-8). You’ll notice that scaffolding’s
default behavior is simply to call toString() on each element in the drop-down list. The default
toString() that Grails provides uses the class name and instance id, which is not the most pleasant thing
to present to a user. You can override this behavior by implementing your own toString() method inside
the Album class.

Next, populate the fields as described in the “The Create Operation” section and click the “Create”
button. You’ll notice that the “Show Song” screen provides a link back to the Album; clicking the link shows
the Album with the newly created Song instance appearing in the list of songs (see Figure 2-9). Grails’s
scaffolding, although not exuding genius, is clever enough to figure out what a one-to-many relationship is
and how to manage it accordingly.

Figure 2-7. The Show Album screen

CHAPTER 2 n GETTING STARTED WITH GRAILS

24

The Delete Operation
Finally, to complete the CRUD acronym, you can delete a particular Song or Album by clicking the “Delete”
button. Grails is kind enough to inquire whether you are completely sure that you’d like to proceed with
such a destructive operation.

This completes the tour of the dynamic-scaffolding capabilities of Grails; in the next section you’ll see
how to get access to the underlying controller and view the code that goes into these CRUD interfaces.

Figure 2-8. The Create Song screen

Figure 2-9. Show Album screen with a list of songs

25

CHAPTER 2 n GETTING STARTED WITH GRAILS

Static Scaffolding
Dynamic scaffolding can serve a number of purposes, from creating administration interfaces to providing
the basis of a real application. However, it often becomes useful to take customization to a new level,
particularly in terms of views. Fortunately, Grails provides the ability to take a domain class and generate a
controller and associated views from the command line through the following targets:

•	 grails generate-controller: Generates a controller for the specified domain class.

•	 grails generate-views: Generates views for the specified domain class.

•	 grails generate-all: Generates both a controller and associated views.

Called “static” or “template-driven” scaffolding, this approach offers benefits beyond simple code
generation. Notably, it provides an excellent learning tool to help you familiarize yourself with the Grails
framework and how everything fits together.

You’ve already created a domain model that relates specifically to the problem you’re attempting to
solve. Now you can generate code that relates to your domain. Let’s start by looking at how to generate a
controller.

Generating a Controller
To generate a controller that implements the CRUD functionality mentioned in the section about dynamic
scaffolding, take advantage of the grails generate-controller command. Like the other generate

commands, generate-controller takes a domain-class name as its first argument. For example, Listing 2-10
shows how to use the generate-controller command to output a new controller from the Album class.

Listing 2-10. Outputting a New Controller

grails> generate-controller com.gtunes.Album
| Generating controller for domain class com.gtunes.Album
> File /grails-app/controllers/com/gtunes/AlbumController.groovy already exists.
Overwrite?[y,n,a] y
> File /test/unit/com/gtunes/AlbumControllerTests.groovy already exists. Overwrite?[y,n,a] y
| Finished generation for domain class com.gtunes.Album
grails>

Notice that, because the AlbumController class already exists, the generate-controller command will
ask whether you want to overwrite the existing controller. Entering the value “y” for “yes” followed by
hitting Enter will complete the process.

At this point, you should probably examine the contents of this mysterious controller to see how
many thousands of code lines have been generated. If you’re coming from a traditional Java web-
development background, you might expect to implement a few different classes. For example, you would
likely need a controller that calls a business interface, which in turn invokes a Data Access Object (DAO)
that actually performs the CRUD operations.

Surely the DAO will contain mountains of ORM framework code and maybe a few lines of Java
Database Connectivity (JDBC) mixed in for good measure. Surprisingly—or not, depending on your
perspective—the code is extremely concise, well under 100 lines. That’s still not quite short enough to list
in full here, but we will step through each action in the generated controller to understand what it is doing.

The index action is the default; it is executed if no action is specified in the controller Uniform
Resource Identifier (URI). It simply redirects to the list action, passing any parameters along with it (see
Listing 2-11).

CHAPTER 2 n GETTING STARTED WITH GRAILS

26

Listing 2-11. The index Action

 def index() {
 redirect(action: "list", params: params)
 }

The list action provides a list of all albums, as shown in Listing 2-12. It delegates to the static list
method of the Album class to obtain a java.util.List of Album instances. It then places the list of Album
instances into a Groovy map literal (a java.util.LinkedHashMap under the covers), which is then returned
as the “model” from the controller to the view. (You’ll begin to understand more about models and how
they relate to views in Chapters 4 and 5.)

Listing 2-12. The list Action

 def list() {
 params.max = Math.min(params.max ? params.int('max') : 10, 100)
 [albumInstanceList: Album.list(params), albumInstanceTotal: Album.count()]
 }

But hold on a second. Before we get ahead of ourselves, have you noticed that you haven’t actually
written a static list method in the Album class? At this point, you will start to see the power of GORM.
GORM automatically provides a whole array of methods on every domain class you write through Groovy’s
metaprogramming capabilities, one of which is the list method. By looking through this scaffolded code,
you will get a preview of the capabilities GORM has to offer.

For example, the show action, shown in Listing 2-13, takes the id parameter from the params object
and passes it to the get method of the Album class. The get method, automatically provided by GORM,
allows the lookup of domain instances using their database identifiers. The result of the get method is
placed inside a model ready for display, as shown in Listing 2-13.

Listing 2-13. The show Action

 def show() {
 def albumInstance = Album.get(params.id)
 if (!albumInstance) {
 lash.message = message(code: 'default.not.found.message', args: [message(code:
'album.label', default: 'Album'), params.id])
 redirect(action: "list")
 return
 }

 [albumInstance: albumInstance]
 }

Notice how, in Listing 2-13, if the Album instance does not exist, the code places a message inside the
lash object, which is rendered in the view. The lash object is a great temporary storage for messages (or
message codes if you’re using i18n). It will be discussed in more detail in Chapter 4.

The action that handles deletion of albums is aptly named the delete action. It retrieves an Album for
the specified id parameter and, if it exists, deletes it and redirects it to the list action (Listing 2-14).

27

CHAPTER 2 n GETTING STARTED WITH GRAILS

Listing 2-14. The delete Action

 def delete() {
 def albumInstance = Album.get(params.id)
 if (!albumInstance) {
 lash.message = message(code: 'default.not.found.message', args: [message(code:
'album.label', default: 'Album'), params.id])
 redirect(action: "list")
 return
 }

 try {
 albumInstance.delete(lush: true)
 lash.message = message(code: 'default.deleted.message', args: [message(code:
'album.label', default: 'Album'), params.id])
 redirect(action: "list")
 }
 catch (DataIntegrityViolationException e) {
 lash.message = message(code: 'default.not.deleted.message', args:
[message(code: 'album.label', default: 'Album'), params.id])
 redirect(action: "show", id: params.id)
 }
 }

While similar to the show action, which simply displays an Album’s property values, the edit action
delegates to an edit view, which will render fields to edit the Album’s properties (see Listing 2-15).

Listing 2-15. The edit Action

 def edit() {
 def albumInstance = Album.get(params.id)
 if (!albumInstance) {
 lash.message = message(code: 'default.not.found.message', args: [message(code:
'album.label', default: 'Album'), params.id])
 redirect(action: "list")
 return
 }

 [albumInstance: albumInstance]
 }

You might be wondering at this point how Grails decides which view to display, given that the code for
the edit and show actions are almost identical. The answer lies in the power of convention. Grails derives
the appropriate view name from the controller and action names. In this case, since there are a controller
called AlbumController and an action called edit, Grails will look for a view at the location grails-app/
views/album/edit.gsp with the album directory inferred from the controller name and the edit.gsp file
taken from the action name. Simple, really.

For updating there is the update action, which again makes use of the static get method to obtain a
reference to the Album instance. The magical expression album.properties = params automatically binds
the request’s parameters onto the properties of the Album instance. Save the Album instance by calling the
save() method. If the save succeeds, an HTTP redirect is issued back to the user; otherwise, the edit view is
rendered again. The full code is shown in Listing 2-16.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 n GETTING STARTED WITH GRAILS

28

Listing 2-16. The update Action

 def update() {
 def albumInstance = Album.get(params.id)
 if (!albumInstance) {
 lash.message = message(code: 'default.not.found.message', args: [message(code:
'album.label', default: 'Album'), params.id])
 redirect(action: "list")
 return
 }

 if (params.version) {
 def version = params.version.toLong()
 if (albumInstance.version > version) {
 albumInstance.errors.rejectValue("version",
 "default.optimistic.locking.failure",
 [message(code: 'album.label', default: 'Album')] as Object[],
 "Another user has updated this Album while you were editing")
 render(view: "edit", model: [albumInstance: albumInstance])
 return
 }
 }

 albumInstance.properties = params

 if (!albumInstance.save(lush: true)) {
 render(view: "edit", model: [albumInstance: albumInstance])
 return
 }

 lash.message = message(code: 'default.updated.message', args: [message(code: 'album.
label', default: 'Album'), albumInstance.id])
 redirect(action: "show", id: albumInstance.id)
 }

To facilitate the creation of new Albums, the create action delegates to the create view. The create
view, like the edit view, displays appropriate editing fields. Note how the create action inserts a new Album

into the model to ensure that field values are populated from request parameters (Listing 2-17).

Listing 2-17. The create Action

 def create() {
 [albumInstance: new Album(params)]
 }

Finally, the save action will attempt to create a new Album instance and save it to the database (see
Listing 2-18).

Listing 2-18. The save Action

 def save() {
 def albumInstance = new Album(params)
 if (!albumInstance.save(lush: true)) {

29

CHAPTER 2 n GETTING STARTED WITH GRAILS

 render(view: "create", model: [albumInstance: albumInstance])
 return
 }

 lash.message = message(code: 'default.created.message', args: [message(code: 'album.
label', default: 'Album'), albumInstance.id])
 redirect(action: "show", id: albumInstance.id)
 }

In both the save and update actions, you alternate between using the redirect and render methods.
These will be cover in depth in Chapter 4, but briefly, the redirect method issues an HTTP redirect that
creates an entirely new request to a different action, while the render method renders a selected view to
the response of the current request.

Clearly, this has been only a brief overview of the various CRUD operations and what they do, without
elaboration on a lot of the magic that is going on here. There is, however, method in the madness. The
nitty-gritty details of controllers and how they work will surface in Chapter 4. For the moment, however,
let’s try out the newly generated controller by running the gTunes application once again via the grails run-
app target.

Once the server has loaded, navigate your browser to the AlbumController at the address http://
localhost:8080/gTunes/album. What happens? Well, not a great deal, actually. The result is a page-not-
found (404) error because the generated controller is not using dynamic scaffolding. Dynamic scaffolding
renders the views at runtime, but here there is just a plain old controller—there’s nothing special about it,
and there are no views.

n Note Set the scaffold property to the Album class, and the views will be generated with each action

overridden.

Generating the Views
It would be nice to have some views for your actions to delegate to. Fortunately, you can generate them
with the grails generate-views command, which is executed according to the same process described in
the section “Generating a Controller” (see Listing 2-19).

Listing 2-19. Generating Views

grails> generate-views com.gtunes.Album
| Finished generation for domain class com.gtunes.Album
grails>

CHAPTER 2 n GETTING STARTED WITH GRAILS

30

The resulting output from the command window will resemble Figure 2-10.
All in all, you can generate four views:

•	 list.gsp: Used by the list action to display a list of Album instances.

•	 show.gsp: Used by the show action to display an individual Album instance.

•	 edit.gsp: Used by the edit action to edit a Album instance’s properties.

•	 create.gsp: Used by the create action to create a new Album instance.

•	 _form.gsp: Used by the create and edit views.

n Note All the views use the main layout found at grails-app/views/layouts/main.gsp. This includes the

placement of title, logo, and any included style sheets. Layouts are discussed in detail in Chapter 5.

You now have a controller and views to perform CRUD. So what have you achieved beyond what you
saw in dynamic scaffolding? Well, nothing yet. The power of command-line scaffolding is that it gives you a
starting point to build your application. Having started with nothing, you now have a controller in which
to place your own custom business logic. You have views, which you can customize to your heart’s content.
And you accomplished all this while writing minimal code. Most developers are on a constant mission to
write less code, and scaffolding proves a useful tool toward achieving this goal.

With the AlbumController and associated views in place, delete the existing SongController and
repeat the steps in Listings 2-10 and 2-19 to generate a controller and views for the Song domain class.
You’re going to need the generated code as you build on the basic CRUD functionality in later chapters.

In the meantime, let’s move on to understanding more of what’s necessary to kick-start Grails
development, beginning with environments.

Figure 2-10. The generated scaffolding views

31

CHAPTER 2 n GETTING STARTED WITH GRAILS

Being Environmentally Friendly
It’s typical in any web-application production team to have a development configuration for the
application that can be configured to work with a locally installed database. This configuration sometimes
even differs from developer to developer, depending on the specific desktop configurations.

In addition, QA staff who test the work produced by developers have separate machines configured in
a way similar to the production environment. Thus, there are two environments so far: the development
configuration and the test configuration. The third is the production configuration, which is needed when
the system goes live.

This scenario is ubiquitous across pretty much every development project, with each development
team spinning custom automated-build solutions via Ant or another custom-build system, instead of
getting the solution from the framework itself.

Grails supports the concept of development, test, and production environments by default and will
configure itself accordingly when executed. Some of this is done completely transparently to the
developer. For example, autoreloading is enabled when Grails is configured in development mode but
disabled when it’s in production mode (to increase performance and minimize any security risk, however
small).

Executing Grails under different environments is remarkably simple. For instance, the following
command will run a Grails application with the production settings:

$ grails prod run-app

If you recall the output of the grails help command, you will remember that the basic usage of the
grails command is as follows:

Usage (optionals marked with *):
grails [environment]* [target] [arguments]*

In other words, the first optional token after the grails executable is the environment, and three
built-in options ship with Grails:

•	 prod: The production environment settings. Grails executes in the most efficient
manner possible, against all configured production settings.

•	 test: The test environment settings. Grails executes in the most efficient manner
possible, against all configured test settings.

•	 dev: The development environment settings. Grails is run in development mode
with tools and behavior (such as hot reloading) enabled to optimize developer
productivity.

Of course, Grails is not limited to just three environments. You can specify a custom environment by
passing in a system property called grails.env to the grails command. For example:

grails -Dgrails.env=myenvironment test-app

Here you execute the Grails test cases using an environment called myenvironment. All this environment
switching may be handy, but what does it mean in practical terms? For one thing, it allows you to configure
different databases for different environments, as you’ll see in the next section.

CHAPTER 2 n GETTING STARTED WITH GRAILS

32

Configuring Data Sources
Armed with your newly acquired knowledge of environments and how to switch between them, you’ll see
the implications when you start configuring data sources. What initial configuration steps are required to
get a Grails application up and running? None. That’s right; you don’t have to configure a thing.

Even configuring the data source is optional. If you don’t configure it, Grails will start up with an in-
memory H2 database. This is highly advantageous to begin with, particularly in terms of testing, because
you can start an application with a fresh set of data on each load.

However, since it is a pretty common requirement, let’s delve into data sources because you’ll
certainly need to configure them; plus, they’ll help you develop your knowledge of environments.

The DataSource.groovy File
When you create a Grails application, Grails automatically provides a grails-app/conf/DataSource.groovy

file that contains configuration for each environment (see Figure 2-11). You might find this convenient,
because it means most of the work is done for you, but you might prefer to use another database, such as
MySQL, rather than the provided H2 database.

Figure 2-11. The DataSource.groovy file

Defining a data source is one area where the strength of the Java platform becomes apparent. Java’s
database connectivity technology, JDBC, is extremely mature, with drivers available for pretty much every
database on the market. In fact, if a database provider does not deliver high-quality, stable JDBC drivers,
its product is unlikely to be taken seriously in the marketplace.

A data-source definition is translated into a javax.sql.DataSource instance that supplies JDBC
Connection objects. If you’ve used JDBC before, the process will be familiar, with the first step ensuring
that the driver classes, normally packaged within a JAR archive, are available on the classpath.

The DataSource.groovy file contains some common configuration setup at the top of the data-source
definition, an example of which is presented in Listing 2-20.

33

CHAPTER 2 n GETTING STARTED WITH GRAILS

Listing 2-20. Common Data-Source Configuration

dataSource {
 pooled = true
 driverClassName = "org.h2.Driver"
 username = "sa"
 password = ""
}

The snippet indicates that by default you want a pooled data source using the H2 driver with a
username of “sa” and a blank password. You could apply defaults to several other settings. Here’s a list of the
settings that the DataSource.groovy file provides:

•	 driverClassName: This is the class name of the JDBC driver.

•	 username: This is the username used to establish a JDBC connection.

•	 password: This is the password used to establish a JDBC connection.

•	 url: This is the JDBC URL of the database.

•	 dbCreate: This specifies whether to autogenerate the database from the domain
model.

•	 pooled: This specifies whether to use a pool of connections (it defaults to true).

•	 conf igClass: This is the class that you use to configure Hibernate.

•	 logSql: This setting enables SQL logging.

•	 dialect: This is a string or class that represents the Hibernate dialect used to
communicate with the database.

In addition to the standard properties described here, additional driver specific properties may be
configured by defining a properties block as part of the dataSource configuration, as shown in
Listing 2-21.

Listing 2-21. Configuring Additional Data-Source Properties

environments {
 production {
 dataSource {
 dbCreate = "update"
 url = "jdbc:h2:prodDb;MVCC=TRUE;LOCK_TIMEOUT=10000"
 pooled = true
 properties {
 maxActive = -1
 minEvictableIdleTimeMillis=1800000
 timeBetweenEvictionRunsMillis=1800000
 numTestsPerEvictionRun=3
 testOnBorrow=true
 testWhileIdle=true
 testOnReturn=true
 validationQuery="SELECT 1"
 }
 }

CHAPTER 2 n GETTING STARTED WITH GRAILS

34

 }
}

Now comes the interesting bit. Following the global dataSource block, you’ll see environment-specific
settings for each known environment: development, test, and production. Listing 2-22 presents a
shortened example of the environment-specific configuration.

Listing 2-22. Environment-Specific Data-Source Configuration

environments {
 development {
 dataSource {
 dbCreate = "create-drop" // one of 'create', 'create-drop', 'update', 'validate', ''
 url = "jdbc:h2:mem:devDb;MVCC=TRUE"
 }
 }

Notice that, by default, the development environment is configured to use an in-memory H2, with the
URL of the database being jdbc:h2:mem:devDb;MVCC=TRUE;LOCK_TIMEOUT=10000". Also note the dbCreate

setting, which allows you to configure how the database is autocreated.

n Note Hibernate users will be familiar with the possible values because dbCreate relates directly to the

hibernate.hbm2ddl.auto property.

The dbCreate setting of the development environment is configured as create-drop, which drops the
database schema and re-creates it every time the Grails server is restarted. This setting can prove useful for
testing because you start off with a clean set of data each time. The available settings for the dbCreate

property are as follows:

•	 create-drop: Drops and re-creates the database schema on each application load.

•	 create: Creates the database on application load.

•	 update: Creates and/or attempts an update to existing tables on application load.

•	 [blank]: Does nothing.

The production and test environments both use update for dbCreate so that existing tables are, not
dropped, but created or updated automatically. You might find it necessary in some production
environments to create your database schema manually. Or maybe creating your database schema is your
DBA’s responsibility. If either is the case, simply remove the dbCreate property altogether, and Grails will do
nothing, leaving this task in your hands or your colleague’s.

Configuring a MySQL Database
Building on the knowledge you’ve gained in the previous section about configuring an alternative
database, you’re now going to learn how to set up MySQL with Grails. You’re going to configure Grails to use
MySQL within the production environment; to achieve this, you need to tell Grails how to communicate
with MySQL. You’re using JDBC, so this requires a suitable driver. You can download drivers from the MySQL
web site, http://www.mysql.com.

In this book’s examples, we’ll be using version 5.1.6 of MySQL Connector/J. To configure the driver,
edit the grails-app/conf/BuildConig.groovy file shown in Figure 2-12.

http://www.mysql.com

35

CHAPTER 2 n GETTING STARTED WITH GRAILS

Edit the BuildConig.groovy file to include the Connector/J as a declared dependency. Dependency
Management will be covered in more detail later. For now, include something like this in BuildConig.
groovy:

Listing 2-23. The Connector/J Dependency

grails.project.dependency.resolution = {
 …
dependencies {
 // specify dependencies here under either 'build',
 // 'compile', 'runtime', 'test' or 'provided' scopes eg.

 runtime 'mysql:mysql-connector-java:5.1.19'
 }
}

With the driver in place, the next thing to do is configure the Grails dataSource to use the settings
defined by the driver’s documentation. This is common practice with JDBC (and equivalent technologies
on other platforms) and essentially requires the following information:

•	 the driver class name

•	 the URL of the database

•	 the username to log in with

•	 the password for the username

Currently the production dataSource is configured to use an H2 database that persists to a file. Listing
2-24 shows the production dataSource configuration.

Figure 2-12. BuildConfig.groovy

CHAPTER 2 n GETTING STARTED WITH GRAILS

36

Listing 2-24. The Production Data-Source Configuration

 production {
 dataSource {
 dbCreate = "update"
 url = "jdbc:h2:prodDb;MVCC=TRUE"
 pooled = true
 properties {
 maxActive = -1
 minEvictableIdleTimeMillis=1800000
 timeBetweenEvictionRunsMillis=1800000
 numTestsPerEvictionRun=3
 testOnBorrow=true
 testWhileIdle=true
 testOnReturn=true
 validationQuery="SELECT 1"
 }
 }
 }

Notice that the remaining settings (username, password, driverClassName, and so on) are inherited from
the global configuration, as shown in Listing 2-20. To configure MySQL correctly, you need to override a
few of those defaults as well as change the database URL. Listing 2-25 presents an example of a typical
MySQL setup.

Listing 2-25. MySQL Data-Source Configuration

 production {
 dataSource {
 dbCreate = "update"
 url = "jdbc:mysql://localhost/gTunes"
 driverClassName = "com.mysql.jdbc.Driver"
 username = "root"
 password = ""
 pooled = true
 properties {
 maxActive = -1
 minEvictableIdleTimeMillis=1800000
 timeBetweenEvictionRunsMillis=1800000
 numTestsPerEvictionRun=3
 testOnBorrow=true
 testWhileIdle=true
 testOnReturn=true
 validationQuery="SELECT 1"
 }
 }
 }

This setup assumes a MySQL server is running on the local machine, which has been set up with a
blank root user password. Of course, a real production environment might have the database on a
different machine and almost certainly with a more secure set of permissions. Also, note that you must
specify the name of the MySQL driver using the driverClassName setting.

37

CHAPTER 2 n GETTING STARTED WITH GRAILS

Configuring a JNDI Data Source
Another common way to set up a production data source in Grails is to use a container-provided Java
Naming and Directory Interface (JNDI) data source. This kind of setup is typical in corporate
environments where the configuration of a data source is not up to you but to the deployment team or
network administrators.

Configuring a JNDI data source in Grails couldn’t be simpler; specifying the JNDI name is the only
requirement. Listing 2-26 shows a typical JNDI setup.

Listing 2-26. JNDI Data-Source Configuration

production {
 dataSource {
 jndiName = "java:comp/env/jdbc/gTunesDB"
 }
}

Of course, this assumes that the work has been done to configure the deployment environment to
supply the JNDI data source correctly. Configuring JNDI resources is typically container-specific, and we
recommend that you review the documentation supplied with your container (such as Apache Tomcat) for
instructions.

Supported Databases
Because Grails leverages Hibernate, it supports every database that Hibernate supports. And because
Hibernate has become a de facto standard, it has been tried and tested against many different databases
and versions.

As it stands, the core Hibernate team performs regular integration tests against the following database
products:

•	 DB2 9.7

•	 Microsoft SQL Server 2008

•	 MySQL 5.1, 5.5

•	 Oracle 11g, 11g RAC

•	 PostgreSQL 8.4, 9.1

•	 Sybase ASE 15.5 (jConnect 6.0)

In addition, although not included in the Hibernate QA team’s testing processes, these database
products come with community-led support:

•	 Apache Derby

•	 HP NonStop SQL/MX 2.0

•	 Firebird 1.5 with JayBird 1.01

•	 FrontBase

•	 Informix

•	 Ingres

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 n GETTING STARTED WITH GRAILS

38

•	 InterBase 6.0.1

•	 Mckoi SQL

•	 PointBase Embedded 4.3

•	 Progress 9

•	 Microsoft Access 95, 97, 2000, XP, 2002, and 2003

•	 Corel Paradox 3.0, 3.5, 4.x, 5.x, and 7.x to 11.x

•	 a number of generic file formats including flat text, CSV, TSV, and fixed-length and
variable-length binary files

•	 XBase (any dBASE; Visual dBASE; SIx Driver; SoftC; CodeBase; Clipper; FoxBase;
FoxPro; Visual Fox Pro 3.0, 5.0, 7.0, 8.0, 9.0, and 10.0; xHarbour; Halcyon; Apollo;
GoldMine; or Borland Database Engine—compatible [BDE-compatible] database)

•	 Microsoft Excel 5.0, 95, 97, 98, 2000, 2001, 2002, 2003, and 2004

A few, mostly older, database products that don’t support JDBC metadata (which allows a database to
expose information about itself) require you to specify the Hibernate dialect explicitly, using the dialect

property of the data-source definition. You can find available dialects in the org.hibernate.dialect

package. There’ll be more to learn about data-source definitions in future chapters, including Chapter 12.
For now, since we have readied our application for the production environment, let’s move on to the next
step: deployment.

Deploying the Application
When you execute a Grails application using the run-app command, Grails configures the application to be
reloaded upon changes at runtime, allowing quick iterative development. This configuration does,
however, affect your application’s performance. The run-app command is thus best suited for development
only. For deployment onto a production system, use a packaged Web Application Archive (WAR) file. Doing
this follows Java’s mature deployment strategy and the separation of roles between developers and
administrators.

As a significant added bonus, Grails’s compliance with the WAR format means that IT production
teams don’t need to learn any new skills. The same application servers, hardware, profiling, and
monitoring tools that are used with today’s Java applications work with Grails, too.

Deployment with run-war
If you are satisfied with the built-in Tomcat container as a deployment environment, you can quickly
deploy your application by setting up Grails on your production environment and then checking out your
Grails application from the version-control system you have locally. Once you’ve done this, simply type

Grails> run-war

This command packages up Grails as a WAR file and then runs Tomcat using the packaged WAR on
port 8080. If you wish to change the port, you can follow the instructions in the “Step 6: Running the
Application” section of Chapter 1.

39

CHAPTER 2 n GETTING STARTED WITH GRAILS

Deployment with a WAR file
The run-war command is convenient, but you might want more control over your deployment
environment, or you might want to deploy onto another container, such as Apache Tomcat or BEA
WebLogic, instead of Tomcat.

What you need in these cases is a WAR file. The WAR file is the standardized mechanism for
deployment in the Java world. Every Java EE–compliant web container supports the format. But some
older containers might have quirks, so check out the http://grails.org/Deployment page on the wiki for
helpful info on container-specific issues.

To create a WAR archive, use Grails’ war command:

grails> war
| Done creating WAR target/gtunes-0.1.war
grails>

By default, if no environment is specified, Grails assumes use of the production environment for a
WAR file. However, as with other commands, you can change the environment if needed. For example:
$ grails> test war

Once you’ve run the command, a brand-new WAR file appears in the root of your project directory
(see Figure 2-13).

Figure 2-13. The gTunes WAR file

If the root directory is not a convenient location for the WAR file, you can always change it by
specifying the target WAR location as the last argument to the war command:

$ grails test war /path/to/deploy/gTunes.war

With the WAR file created, you just need to follow your container’s deployment instructions (which
might be as simple as dropping the file into a particular directory), and you’re done. Notice how the WAR
file includes a version number? Grails features built-in support for application versioning. You’ll learn
more about versioning and deployment in Chapter 11.

http://grails.org/Deployment

CHAPTER 2 n GETTING STARTED WITH GRAILS

40

Summary
Wow, that was a lot of ground to cover. You generated a simple CRUD interface, configured a different data
source, and produced a WAR file ready for deployment. You learned some of the basics about how
controllers work in Grails and previewed what is to come with GORM, Grails’s object-relational mapping
layer.

You also played with the Grails support for running different environments and configured a MySQL
database for production. All of this should have provide a solid grounding in the basics of working with
Grails. However, so far we’ve only touched on concepts such as domain classes, controllers, and views
without going into much detail. This is about to change, as we plunge head first into the gory details of
what makes Grails tick.

Starting with Chapter 3, we’ll begin the in-depth tour of the concepts in Grails. As we do that, we’ll
begin to build out the gTunes application and transform it from the prototype it is now into a full-fledged,
functional application.

41

n n n

CHAPTER 3

Understanding Domain Classes

Object-oriented (OO) applications almost always involve a domain model representing the business
entities that the application deals with. The gTunes application will include a number of domain classes,
including Artist, Album, and Song. Each of these domain classes has properties associated with it. You must
map those properties to a database in order to persist instances of those classes.

Developers of object-oriented applications face some difficult problems in mapping objects to a
relational database. This is not because relational databases are especially difficult to work with; the
trouble is that you encounter an “impedance mismatch”1 between the object-oriented domain model and
a relational database’s table-centric view of data.

n Note As the great majority of Grails applications are built on top of relational databases, this book is going to

focus on that approach. Note that Grails supports a growing number of datastores, including a number of

nonrelational datastores, including MongoDB, Redis, and Cassandra.

Fortunately, Grails does most of the hard work for you. It’s significantly simpler to write the domain
model for a Grails application than for many other frameworks. This chapter will look at the fundamentals
of a Grails domain model. Chapter 10 will cover more advanced features of the GORM technology.

Persisting Fields to the Database
By default, all the fields in a domain class are persisted to the database. For simple field types such as
Strings and Integers, each field in the class will map to a column in the database. Complex properties
might require multiple tables to persist all the data. The Song class from Chapter 2 contains two String
properties. The table in the database will contain a separate column for each of those properties.

In MySql, that database table will look something like Listing 3-1.

1 Scott W. Ambler, “The Object-Relational Impedance Mismatch,” http://www.agiledata.org/essays/
impedanceMismatch.html, 2006.

http://www.agiledata.org/essays/

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

42

Listing 3-1. The Song Table

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| id | bigint(20) | NO | PRI | NULL | auto_increment |

| version | bigint(20) | NO | | NULL | |

| artist | varchar(255) | NO | | NULL | |

| title | varchar(255) | NO | | NULL | |

+ + + + + + +

Notice that the table includes a column for each of the properties in the domain class, an id column,
and a version column. The id is a unique identifier for a row, and Grails uses the version column to
implement optimistic locking2.

Listing 3-1 shows the default mapping for a MySQL database. Grails provides a powerful DSL for
expressing how a domain model maps to the database. Details about the mapping DSL appear later, in the
“Customizing Your Database Mapping” section.

Validating Domain Classes
You’ll probably encounter business rules that constrain the valid values of a particular property in a
domain class. For example, a Person must never have an age that is less than zero. A credit card number
must adhere to an expected pattern. Rules like these should be expressed clearly and in only one place.
Luckily, Grails provides a powerful mechanism for expressing these rules.

A Grails domain class can express domain constraints simply by defining a public static property,
constraints, that has a closure as a value. Listing 3-2 shows a version of the Song class that has several
constraints defined.

Listing 3-2. The Song Domain Class

class Song {
 String title
 String artist
 Integer duration

 static constraints = {
 title(blank: false)
 artist(blank: false)
 duration(min: 1)
 }
}

The Song class in Listing 3-2 defines constraints for each of its persistent properties. The title and
artist properties cannot be blank. The duration property must have a minimum value of 1. When
constraints are defined, not every property necessarily needs to be constrained. The constraints closure
can include constraints for a subset of properties in the class.

2 Wikipedia, “Optimistic concurrency control,” http://en.wikipedia.org/wiki/Optimistic_concurrency_
control.

http://en.wikipedia.org/wiki/Optimistic_concurrency_

43

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

The validators used in Listing 3-2 are blank and min. Grails ships with a lot of standard validators that
cover common scenarios (see Table 3-1).

Table 3-1. Standard Validators in Grails

Name Example Description

blank login(blank:false) Set to false if a string value cannot be blank

creditCard cardNumber(creditCard:true) Set to true if the value must be a credit-card number

email homeEmail(email:true) Set to true if the value must be an e-mail address

inList login(inList:['Joe', 'Fred']) Value must be contained within the given list

min duration(min:1) Sets the minimum value

mnSizei children(minSize:5) Sets the minimum size of a collection or number
property

matches login(matches:/[a-zA-Z]/) Matches the supplied regular expression

max age(max:99) Sets the maximum value

maxSize children(maxSize:25) Sets the maximum size of a collection or number
property

notEqual login(notEqual:'Bob') Must not equal the specified value

nullable age(nullable:false) Set to false if the property value cannot be null

range age(range:16..59) Set to a Groovy range of valid values

scale salary(scale:2) Set to the desired scale for floating-point numbers

size children(size:5..15) Uses a range to restrict the size of a collection or
number

unique login(unique:true) Set to true if the property must be unique

url homePage(url:true) Set to true if a string value is a URL address

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

44

The constraints block in a domain class will help prevent invalid data from being saved to the
database. The save() method on a domain object will automatically validate against the constraints before
data are written to the database. Data are not written to the database if validation fails. If validation fails,
the save() method returns null. If validation passes, then the object is saved to the database, and the
save() method returns a reference to the object saved. Listing 3-3 demonstrates how code can react to the
return value of the save() method.

Listing 3-3. Validating a Song Object

// -68 is an invalid duration
def song = new Song(title:'The Rover',
 artist:'Led Zeppelin',
 duration:-68)
if(song.save()) {
 println "Song was created!"
} else {
 song.errors.allErrors.each { println it.defaultMessage }
}

An alternative approach is to invoke the save method with a failOnError parameter set to true, which
will cause the save() method to throw a grails.validation.ValidationException if validation fails. That
would look like song.save(failOnError: true).

An interesting aspect of Listing 3-3 is the use of the errors property on domain classes. This property
is an instance of the Spring Framework’s org.springframework.validation.Errors interface, which allows
advanced querying of validation errors. In Listing 3-3, when validation fails, the code generates a list of all
the errors that occurred and prints them to stdout.

Some of the more useful methods in the Spring Errors interface are shown in Listing 3-4.

Listing 3-4. Methods in the Spring Errors Interface

package org.springframework.validation

interface Errors {
 List getAllErrors();
 int getErrorCount();
 FieldError getFieldError(String ieldName);
 int getFieldErrorCount();
 List getFieldErrors(String ieldName);
 Object getObjectName();
 boolean hasErrors();
 boolean hasFieldErrors(String ieldName);
 // ... remaining methods
}

Occasionally you’ll find it useful to make changes to the domain model before committing to the
save() method. For such a case, Grails provides a validate() method, which returns a Boolean value to
indicate whether validation was successful. The semantics are exactly the same as in the example with the
save() method, except that the validate() method doesn’t attempt to save the instance to the database.

If validation fails, the application might want to make changes to the state of the domain object and
make another attempt at validation. All domain objects have a method called clearErrors(), which clears
any errors left over from a previous validation attempt. Listing 3-5 demonstrates how code might react to
the return value of the validate() method.

45

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

Listing 3-5. Validating a Song Object, Revisited

def song = new Song(title:'The Rover',
 duration:339)
if(!song.validate()) {
 song.clearErrors()
 song.artist = 'Led Zeppelin'
 song.validate()
}

Using Custom Validators
Grails provides a wide array of built-in validators to handle common scenarios. However, it is impossible
to foresee every feasible domain model and every specific kind of validation that an application might
need. Fortunately, Grails provides a mechanism that allows an application to express arbitrary validation
rules (see Listing 3-6).

Listing 3-6. Constraining the Password Property in the User Domain Class

class User {
 static constraints = {
 password(unique:true, length:5..15, validator:{val, obj ->
 if(val?.equalsIgnoreCase(obj.irstName)) {
 return false
 }
 })
 }
}

The validator in Listing 3-6 will fail if the password is equal to the irstName property of the User class.
The validator closure should return false if validation fails; otherwise it should return true. The first
argument passed to the closure is the value of the property to be validated. The second argument passed
to the closure is the object being validated. This second argument is often useful if validation requires the
inspection of the object’s other properties, as in Listing 3-6.

In addition, when false is returned from a custom validator, an error code such as user.password.
validator.error is produced. However, you can specify a custom error code by returning a string.

if(val?.equalsIgnoreCase(obj.irstName)) {
 return "password.cannot.be.irstname"
}

In this example, you can trigger a validation error simply by returning a string with the value
password.cannot.be.irstname. You’ll learn more about error codes and how they relate to other parts of the
application in later chapters. For now, let’s move on to the topic of transient properties.

Understanding Transient Properties
By default, every property in a domain class is persisted to the database. For most properties, this is the
right thing to do. However, occasionally a domain class will define properties that do not need to be
persisted. Grails provides a simple mechanism for specifying which properties in a domain class should
not be persisted. This mechanism is to define a public static property, transients, and assign to that

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

46

property a value that is a list of strings. Those strings represent the names of the class’s properties, which
should be treated as transient and not saved to the database (see Listing 3-7).

Listing 3-7. A Transient Property in the Company Domain Class

class Company {
 String name
 Integer numberOfEmployees
 BigDecimal salaryPaidYTD

 static transients = ['salaryPaidYTD']
}

In Listing 3-7, the salaryPaidYTD property has been flagged as transient and will not be saved to the
database. Note that the default generated schema for this domain class—the company table—does not
contain a column for the salaryPaidYTD property (see Listing 3-8).

Listing 3-8. The Company Table

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| id | bigint(20) | NO | PRI | NULL | auto_increment |

| version | bigint(20) | NO | | NULL | |

| name | varchar(255) | NO | | NULL | |

| number_of_employees | int(11) | NO | | NULL | |

+ + + + + + +

Not all persistent properties necessarily correspond to a field in a domain class. For example, if a
domain class has a method called getName() and a method called setName(), then that domain class has a
persistent property called name. It doesn’t matter that the class doesn’t have a field called “name.” Grails will
handle that situation by creating the appropriate column in the database to store the value of the name
property. But you can use the transients property to tell Grails not to do that if the property really should
not be persisted, as in Listing 3-9.

Listing 3-9. A Transient Property in the Company Domain Class

class Company {
 BigDecimal cash
 BigDecimal receivables
 BigDecimal capital

 BigDecimal getNetWorth() {
 cash + receivables + capital
 }

 static transients = ['netWorth']
}

47

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

Another approach for managing the netWorth property is to define it as a derived property. Derived
properties are read-only persistent properties whose values are derived by the database at the time of
retrieval. Because the values are derived, there is no corresponding column in the database to store the
value. Instead, a formula in the form of an SQL expression, which represents how the database should
derive the value, must be provided. In the case of the netWorth property, the value could be derived in the
database by adding the values of the CASH, RECEIVABLES, and CAPITAL columns in the table. Listing 3-10
shows what this would look like.

Listing 3-10. A Derived Property in the Company Domain Class

class Company {
 BigDecimal cash
 BigDecimal receivables
 BigDecimal capital
 BigDecimal netWorth

 static mapping = {
 netWorth formula: 'CASH + RECEIVABLES + CAPITAL'
 }
}

Note that the formula expressed there is SQL that must be understandable by the database. It is not
code that will be parsed and executed in the application. It will be executed in the database, and SQL is not
necessarily portable across relational databases. Defining derived properties, such as this one, means
potentially giving up some database portability. For many applications that will not be a problem, but it is
something to be aware of when the decision is made to use a derived property.

Customizing Your Database Mapping
As you’ve seen, Grails does a good job of mapping your domain model to a relational database without
requiring any kind of mapping file. Many developer productivity gains that Grails offers arise from its
Convention over Configuration (CoC) features. Whenever the conventions preferred by Grails are
inconsistent with your requirements, Grails provides a simple way for you to work with those scenarios.
The custom database mapping DSL in Grails falls in this category.

Grails provides an ORM DSL for expressing your domain mapping to help you deal with scenarios in
which the Grails defaults will not work for you. A common use case for taking advantage of the ORM DSL is
one where a Grails application is being developed on top of an existing schema that is not entirely
compatible with the default domain-class mappings of Grails.

Consider a simple Person class (see Listing 3-11).

Listing 3-11. The Person Domain Class

class Person {
 String irstName
 String lastName
 Integer age
}

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

48

The default mapping in MySQL for that class will correspond to a schema that looks like Listing 3-12.

Listing 3-12. The Default Person Table

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| id | bigint(20) | NO | PRI | NULL | auto_increment |

| version | bigint(20) | NO | | NULL | |

| age | int(11) | NO | | NULL | |

| irst_name | varchar(255 | NO | | NULL | |

| last_name | varchar(255) | NO | | NULL | |

+ + + + + + +

That works perfectly if you have a greenfield application that doesn’t need to map to an existing
schema. If the application does need to map to an existing schema, the schema will probably not match
up exactly with the Grails defaults. Imagine that a schema does exist and that it looks something like
Listing 3-13.

Listing 3-13. A Legacy Table Containing Person Data

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| person_id | bigint(20) | NO | PRI | NULL | auto_increment |

| person_age | int(11) | NO | | NULL | |

| person_irst_name | varchar(255) | NO | | NULL | |

| person_last_name | varchar(255) | NO | | NULL | |

+ + + + + + +

Notice that the table contains no version column and all the column names are prefixed with person_.
You’ll find it straightforward to map to a schema like that using the Grails ORM DSL. But to take advantage
of the ORM DSL, your domain class must declare a public property called mapping and assign a closure to
the property (see Listing 3-14).

Listing 3-14. Custom Mapping for the Person Domain Class

class Person {
 String irstName
 String lastName
 Integer age

 static mapping = {
 id column:'person_id'
 irstName column:'person_irst_name'
 lastName column:'person_last_name'

49

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

 age column:'person_age'
 version false
 }
}

The example in Listing 3-13 defines column names for each of the properties and turns off the version
property, which Grails uses for optimistic locking. (Optimistic locking is discussed in more detail in
Chapter 9.) These are just a couple of the features that the ORM DSL supports.

The default table name for persisting instances of a Grails domain class is the name of the domain
class. Person objects are stored in a person table and Company objects are stored in a company table. If Person
objects need to be stored in a people table, the ORM DSL allows that. Listing 3-15 includes the necessary
mapping code to store Person instances in the people table.

Listing 3-15. A Custom Table Mapping for the Person Domain Class

class Person {
 String irstName
 String lastName
 Integer age

 static mapping = {
 table 'people'
 }
}

We’ll cover custom database mapping in more detail in Chapter 9.

Building Relationships
Typically an application is not made up of a bunch of disconnected domain classes. More often, domain
classes have relationships to one another. Of course, not every domain class has a direct relationship with
every other domain class, but it is not common for a domain class to exist in total isolation from any other
domain class.

Grails provides support for several types of relationships between domain classes. In a one-to-one
relationship (the simplest type), each member of the relationship has a reference to the other. The
relationship represented in Listing 3-16 is a bidirectional relationship.

Listing 3-16. A One-to-One Relationship Between a Car and an Engine

class Car {
 Engine engine
}

class Engine {
 Car car
}

In this model, clearly a Car has one Engine and an Engine has one Car. The entities are peers in the
relationship; there is no real “owner.” Depending on application requirements, this might not be exactly
what you want. Often a relationship like this really does have an owning side. Perhaps an Engine belongs
to a Car, but a Car does not belong to an Engine. Grails provides a mechanism for expressing a relationship
like that, and Listing 3-17 demonstrates how to specify its owning side.

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

50

Listing 3-17. An Engine Belongs to a Car

class Car {
 Engine engine
}

class Engine {
 static belongsTo = [car:Car]
}

The value of the belongsTo property in the Engine class is a Map. The key in this map is “car”, and the
value associated with that key is the Car class. This property tells Grails that the Car is the owning side of
this relationship and that an Engine “belongs to” its owning Car. The key in the map can be named
anything—the name does not need to be the same as the owning-class name. However, naming the key
that way almost always makes sense. That key represents the name of a property that will be added to the
Engine class, as well as representing the reference back to the owner. The Engine class in Listing 3-16 has a
property, car, of type Car. When the Car and Engine classes are mapped to the relational database, there
will be a foreign key in the CAR table that references the primary key in the ENGINE table. There may be cases
where it is desirable to have the foreign key go in the other direction. That is, you may want to have a
foreign key in the ENGINE table that references the primary key in the CAR table. The way to do that is to
define a hasOne property in the Car class, as shown in Listing 3-18.

Listing 3-18. A Car hasOne Engine

class Car {
 static hasOne = [engine: Engine]
}

You might encounter situations where a relationship needs an owning side, but the owned side of the
relationship does not need a reference back to its owner. Grails supports this type of relationship using the
same belongsTo property, except that the value is a Class reference instead of a Map. With the approach
used in Listing 3-19, the Engine still belongs to its owning Car, but the Engine has no reference back to its
Car.

Listing 3-19. An Engine Belongs to a Car but Has No Reference to Its Owner

class Engine {
 static belongsTo = Car
}

One of the implications of having the belongsTo property in place is that Grails will impose cascaded
deletes. Grails knows that an Engine “belongs to” its owning Car, so any time a Car is deleted from the
database, its Engine will be deleted as well.

One-to-many relationships are equally simple to represent in Grails domain classes. Our gTunes
application will require several one-to-many relationships, including the relationship between an Artist
and its Albums and between an Album and its Songs. You might say that an artist has many albums and an
album has many songs. That “has many” relationship is expressed in a domain class with the hasMany
property (see Listing 3-20).

51

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

Listing 3-20. The hasMany Property

class Artist {
 String name

 static hasMany = [albums:Album]
}
class Album {
 String title

 static hasMany = [songs:Song]
 static belongsTo = [artist:Artist]
}

class Song {
 String title
 Integer duration

 static belongsTo = Album
}

In Listing 3-20, an Artist has many Albums, and an Album belongs to its owning Artist. An Album also
has a reference back to its owning Artist. An Album has many Songs, and a Song belongs to its owning
Album. However, a Song does not have a reference back to its owning Album.

The value of the hasMany property needs to be a Map. The keys in the map represent the names of
collection properties that will be added to the domain class, and the values associated with the keys
represent the types of objects that will be stored in the collection property. The Artist class has a domain
property, albums, that will be a collection of Album objects. The default collection type that Grails will use is
a java.util.Set, which is an unordered collection. Where this is the desired behavior, you don’t need to
declare the property explicitly. Grails will inject the property for you. If you need the collection to be a List
or a SortedSet, you must explicitly declare the property with the appropriate type, as shown in
Listing 3-21.

Listing 3-21. The Album Class Has a SortedSet of Song Objects

class Album {
 String title

 static hasMany = [songs:Song]
 static belongsTo = [artist:Artist]

 SortedSet songs
}

n Note For this to work, the Song class must implement the Comparable interface. This requirement isn’t

specific to Grails; it’s how standard SortedSet collections work in Java.

A Set is a collection of unique objects, duplicates are not allowed. A List is ordered. Hibernate has to
manage all of that ordering and uniqueness, which can be expensive in terms of performance. For

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

52

example, if an Album is updated with a new Song and the Song instances are being stored in a Set, Hibernate
has to go look at all of the Song instances that are associated with this Album so it can figure out if the new
one violates uniqueness. In this particular case the problem may not be terribly significant because an
Album isn’t going to have really large numbers of Songs associated with it. For relationships where the
collection might have a large number of elements, the problem gets more significant. To help manage
situations like these the relationship could use a Hibernate Bag. A Bag does not have to impose uniqueness
and does not have to maintain order so manipulating the contents of a Bag involve potentially significantly
fewer interactions with the database. The way to take advantage of a Bag is to explicitly declare the
collection type as shown above in Listing 3-19 but use java.util.Collection as the declared type of the
collection.

A domain class might represent the owning side of numerous one-to-many relationships. The Map
associated with the hasMany property might have any number of entries in it, each entry representing
another one-to-many-relationship. For example, if an Artist has many Albums but also has many
Instruments, you could represent that by adding another entry to the hasMany property in the Artist class,
as shown in Listing 3-22.

Listing 3-22. Multiple Entries in the hasMany Map

class Artist {
 String name

 static hasMany = [albums:Album, instruments:Instrument]
}

As stated earlier, the belongsTo property in the child class expresses that the child belongs to the
owner; if the owner is ever deleted, the children should be deleted as well. By default, Grails will configure
a cascading policy of all for this relationship. Cascading policy options are all, merge, save-update,
delete, lock, refresh, evict, replicate, and all-delete-orphan (only for one-to-many relationships).
Listing 3-23 demonstrates how to set the cascading policy for Songs that belong to an Album.

Listing 3-23. Customizing Cascade Behavior

class Album {
 String title

 static hasMany = [songs:Song]
 static belongsTo = [artist:Artist]

 static mapping = {
 songs cascade: 'delete'
 }
}

For information on and documentation of the Hibernate cascade policies, see http://docs.jboss.
org/hibernate/core/3.6/reference/en-US/html/objectstate.html#objectstate-transitive.

Extending Classes with Inheritance
Grails domain classes can extend other Grails domain classes. This inheritance tree might be arbitrarily
deep, but a good domain model will seldom involve more than one or two levels of inheritance.

http://docs.jboss

53

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

The syntax for declaring that a Grails domain class extends from another domain class is standard
Groovy inheritance syntax, as shown in Listing 3-24.

Listing 3-24. Extending the Person Class

class Person {
 String irstName
 String lastName
 Integer age
}

class Employee extends Person {
 String employeeNumber
 String companyName
}

class Player extends Person {
 String teamName
}

How should these classes map to the database? Should there be separate tables for each of these
domain classes? Should there be one table for all types of Person objects? Grails provides support for both
of those solutions. If all Person objects—including Players and Employees—are to be stored in the same
table, this approach is known as a table-per-hierarchy mapping. That is, a table will be created for each
inheritance hierarchy (see Listing 3-25). Grails imposes table-per-hierarchy mapping as the default for an
inheritance relationship.

Listing 3-25. The Person Table Representing a Table-per-Hierarchy Mapping

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| id | bigint(20) | NO | PRI | NULL | auto_increment |

| version | bigint(20) | NO | | NULL | |

| age | int(11) | NO | | NULL | |

| irst_name | varchar(255) | NO | | NULL | |

| last_name | varchar(255) | NO | | NULL | |

| class | varchar(255) | NO | | NULL | |

| company_name | varchar(255) | YES | | NULL | |

| employee_number | varchar(255) | YES | | NULL | |

| team_name | varchar(255) | YES | | NULL | |

+ + + + + + +

Notice that Listing 3-25 includes columns for all the attributes in the Person class, along with columns
for all the attributes in all the subclasses. In addition, the table includes a discriminator column, called
class. Because this table will house all kinds of Person objects, the discriminator column is required to
represent the specific type of Person represented in any given row. The application should never need to
interrogate this column directly, but the column is critical for Grails to do its work. The default value for

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

54

the discriminator column is the name of the class. The discriminator value may be customized in the
mapping block, as shown in Listing 3-26.

Listing 3-26. Specifying a Value for the Discriminator Column

class Employee extends Person {
 String employeeNumber
 String companyName

 static mapping = {
 // the value of the discriminator column for
 //Employee instances should be 'working people'
 discriminator 'working people'
 }
}

The example there invokes the discriminator method and passes a string as an argument. The string
represents a value for the discriminator for all rows that represent Person objects. There are several other
discriminator properties that may be configured (see Table 3-2).

Table 3-2. Discriminator Properties

Name Description

value The value to use for the discriminator

column The name of the column for storing the discriminator

formula An SQL expression that is executed to evaluate the type of the class

type The Hibernate type

The way to configure multiple properties for the discriminator is to pass named arguments to the
discriminator method in the mapping block, as shown in Listing 3-27.

Listing 3-27. Specifying Multiple Values for the Discriminator Column

class Employee extends Person {
 String employeeNumber
 String companyName

 static mapping = {
 discriminator value: '42', type: 'integer'
 }
}

See http://docs.jboss.org/hibernate/orm/3.6/reference/en-US/html/mapping.html#d0e6906 for
documentation and information about Hibernate discriminators.

The other type of inheritance mapping is known as table-per-subclass (see Listing 3-28).

http://docs.jboss.org/hibernate/orm/3.6/reference/en-US/html/mapping.html#d0e6906

55

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

Listing 3-28. Table-per-Subclass Mapping

class Person {
 String irstName
 String lastName
 Integer age

 static mapping = {
 tablePerHierarchy false
 }
}

Table-per-subclass mapping results in a separate table for each subclass in an inheritance hierarchy
(see Listing 3-29). To take advantage of a table-per-subclass mapping, the parent class must use the ORM
DSL to turn off the default table-per-hierarchy mapping.

Listing 3-29. The Person, Employee, and Player Tables with Table-per-Subclass Mapping

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| id | bigint(20) | NO | PRI | NULL | auto_increment |

| version | bigint(20) | NO | | NULL | |

| age | int(11) | NO | | NULL | |

| irst_name | varchar(255) | NO | | NULL | |

| last_name | varchar(255) | NO | | NULL | |

+ + + + + + +

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| id | bigint(20) | NO | PRI | NULL | |

| company_name | varchar(255) | YES | | NULL | |

| employee_number | varchar(255) | YES | | NULL | |

+ + + + + + +

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| id | bigint(20) | NO | PRI | NULL | |

| team_name | varchar(255) | YES | | NULL | |

+ + + + + + +

Which of these mappings should you use? The answer depends on several factors. One of the
consequences of the table-per-hierarchy approach is that none of the subclasses can have nonnullable

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

56

properties. Because no joins are being executed, however, queries will perform better, because all the
subclasses share a table that includes columns for all properties in all subclasses. When a Player is saved
to the person table, the company_name column will be left null, because players don’t have a company name.
Likewise, when an Employee is saved to the player table, the team_name column will be left null. One of the
consequences of using the table-per-subclass approach is that you must pay a performance penalty when
retrieving instances of the subclasses, because database joins must be executed to pull together all the
data necessary to construct an instance.

Grails lets you choose the approach that makes the most sense for your application. Consider your
application requirements and typical query use cases. These should help you decide which mapping
strategy is right for any particular inheritance relationship. Note that you don’t need to apply the same
mapping strategy across the entire application. There’s nothing wrong with implementing one inheritance
relationship using table-per-subclass mapping (because you must support nonnullable properties) and
implementing some other unrelated inheritance relationship using table-per-hierarchy mapping for
performance reasons.

Grails does support abstract classes in the inheritance hierarchy of persistent classes. The support for
dealing with abstract persistent classes is quite intuitive. For example, if Car and Truck are classes that each
extend the Vehicle class and the Vehicle class is abstract, you may query for all Vehicles; the results would
include Car and Truck instances.

Embedding Objects
Grails supports the notion of composition—think of it as a stronger form of relationship. With that kind of
relationship, it often makes sense to embed the “child” inline, where the “parent” is stored. Consider a
simple relationship between a Car and an Engine. If that relationship were implemented with composition,
the Engine would really be contained in the Car as far as persistence is concerned. That is, there will be one
table that will contain columns for all of the persistent properties in the Car class, as well as all of the
persistent properties of the Engine that belongs to a Car. Retrieving a Car and its Engine would not involve
joins across multiple tables, since all of the information would be stored in the same table. A consequence
of that is that if a Car is deleted, its Engine is deleted with it (see Listing 3-30).

Listing 3-30. A Composition Relationship Between the Car and Engine Domain Classes

class Car {
 String make
 String model
 Engine engine
}

class Engine {
 String manufacturer
 Integer numberOfCylinders
}

Normally Car objects and Engine objects are stored in separate tables; you would use a foreign key to
relate the tables to each other (see Listings 3-31 and 3-32).

57

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

Listing 3-31. The Car Table

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| id | bigint(20) | NO | PRI | NULL | auto_increment |

| version | bigint(20) | NO | | NULL | |

| engine_id | bigint(20) | NO | MUL | NULL | |

| make | varchar(255) | NO | | NULL | |

| model | varchar(255) | NO | | NULL | |

+ + + + + + +

Listing 3-32. The Engine Table

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| id | bigint(20) | NO | PRI | NULL | auto_increment |

| version | bigint(20) | NO | | NULL | |

| manufacturer | varchar(255) | NO | | NULL | |

| number_of_cylinders | int(11) | NO | | NULL | |

+ + + + + + +

To treat the relationship between those classes as composition, the Car class must instruct Grails to
“embed” the Engine in the Car. You do this by defining a public static property, embedded, in the Car class
and assign that property a list of strings that contains the names of all the embedded properties (see
Listing 3-33).

Listing 3-33. Embedding the Engine in a Car

class Car {
 String make
 String model
 Engine engine
 static embedded = ['engine']
}

With that embedded property in place, Grails knows that the Engine property of a Car object should be
embedded in the same table with the Car object. The car table will now look like Listing 3-34.

n Note Embedding properties is particularly useful in the MongoDB implementation of GORM, as it is very

common to nest documents within documents in MongoDB.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

58

Listing 3-34. The Car Table with the Engine Attributes Embedded

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| id | bigint(20) | NO | PRI | NULL | auto_increment |

| version | bigint(20) | NO | | NULL | |

| engine_manufacturer | varchar(255) | NO | | NULL | |

| engine_number_of_cylinders | int(11) | NO | | NULL | |

| make | varchar(255) | NO | | NULL | |

| model | varchar(255) | NO | | NULL | |

+ + + + + + +

Testing Domain Classes
Automated tests can be an important part of building complex applications and confirming that the
system behaves as intended. In particular, testing is an important part of building complex systems with a
dynamic language like Groovy. With dynamic languages, developers don’t get the same kinds of feedback
from the compiler that they might get if they were working with Java or another statically typed language.

For example, in Java if you make a typo in a method invocation, the compiler will let you know that
you have made the mistake. The compiler cannot flag that same error when you use Groovy, because of the
language’s dynamic nature and its runtime. With Groovy, many things are not known until runtime. You
must execute the code to learn whether it’s correct. Executing the code from automated tests is an
excellent way to ensure that the code is doing what it is supposed to do.

Grails offers first-class support for testing many aspects of your application. This section will look at
testing domain classes.

Grails directly supports two kinds of tests: unit tests and integration tests. Unit tests reside at the top
of the project in the test/unit/ directory, and integration tests reside in the test/integration/ directory.
You must understand the difference between unit tests and integration tests. Many dynamic things
happen when a Grails application starts up. One of the things Grails does at startup is augment domain
classes with a lot of dynamic methods, including validate() and save(). When you run integration tests,
all of that dynamic behavior is available, so a test can invoke the validate() or save() method on a
domain object, even though these methods do not appear in the domain-class source code.

When you run unit tests, however, that full dynamic environment is not fired up, and so methods such
as validate() and save() are not available. Starting up the whole dynamic environment comes at a cost.
For this reason, you should run tests that rely on the full Grails runtime environment only as integration
tests.

That said, Grails provides advanced capabilities that let you unit-test a lot of dynamic behavior in
domain classes and other artifacts. If you create a domain class using the create-domain-class command,
Grails will create a unit test automatically. If you execute grails create-domain-class com.gtunes.Song,
Grails will create grails-app/domain/com/gtunes/Song.groovy and test/unit/com/gtunes/SongTests.
groovy. Grails is encouraging you to do the right thing—to write tests for your domain classes. If you don’t
use the create-domain-class command to create your domain class, you can create the test on your own
(see Listing 3-35). Make sure to put the test in the appropriate directory.

59

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

Listing 3-35. The Unit Test for the Song Class, Generated Automatically

package com.gtunes

import grails.test.mixin.*
import org.junit.*

/**
 * See the API for {@link grails.test.mixin.domain.DomainClassUnitTestMixin} for usage
instructions
 */
@TestFor(Song)
class SongTests {

 void testSomething() {
 fail "Implement me"
 }
}

As you can see from Listing 3-35, the default unit test template applies the @TestFor annotation to the
test class and provides the Song class as the value for the annotation. This tells the testing framework that
this test is a test for the Song class. This is an important step; it is necessary in order for the testing
framework to rig up a lot of the dynamic behavior associated with the Song domain class. Grails unit tests
run with a robust in-memory GORM implementation backed by a ConcurrentHashMap, not a real database.
This in-memory implementation supports the majority of the GORM API, with the exception of string-
based queries. Testing string-based queries cannot be done in a unit test and must be covered with an
integration test or a functional test. Aside from string-based queries, most of your GORM interactions can
be tested in a unit test. The unit testing environment has a lower startup cost since it uses only a
ConcurrentHashMap for the store. Integration tests rely on a real database and will have additional
associated runtime overhead.

To run the test, invoke the test-app Grails command from the command line. The test-app
command will run all the unit tests and integration tests that are part of the project. To run only the unit
tests, run a command like “test-app unit:”. Likewise, “test-app integration:” will run only the
integration tests.

The test-app target will not only run the tests but also generate a report, including the status of all the
tests that were run. This report is a standard JUnit test report, which Java developers know very well. An
HTML version of the report will be generated under the project root at http://test/reports/html/index.
html.

The Song class in the gTunes application has title and duration properties (see Listing 3-36).

Listing 3-36. The Song Domain Class

package com.gtunes

class Song {
 String title
 String artist
 Integer duration
}

The application should consider a nonpositive duration to be an invalid value. The type of the
property is java.lang.Integer, whose valid values include the full range of values in a 32-bit signed int,

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

60

including zero and a lot of negative numbers. The application should include a unit test like that shown in
Listing 3-37, which asserts that the system will not accept nonpositive durations.

Listing 3-37. The Song Unit Test

package com.gtunes

import grails.test.mixin.*
import org.junit.*

/**
 * See the API for {@link grails.test.mixin.domain.DomainClassUnitTestMixin} for usage
instructions
 */
@TestFor(Song)
class SongTests {

 void testMinimumDuration() {

 // set the Song class up for constraints testing . . .
 mockForConstraintsTests Song

 // create a new Song
 def song = new Song(title: 'Some Title',
 artist: 'Some Artist',
 duration: 0)
 // make sure that validation fails . . .
 assert !song.validate()

 // make sure that the 'min' constraint failed . . .
 assert 'min' == song.errors['duration']

 }
}

Notice the call to the mockForConstraintsTests(Class) method in Listing 3-36, which provides a mock
implementation of the validate() method on the Song domain class. Executing grails test-app Song will
run the test. The test (see Listing 3-38) should fail initially because it contains no code specifying that 0 is
an invalid value for the duration property.

61

CHAPTER 3 n UNDERSTANDING DOMAIN CLASSES

Listing 3-38. Test Output for SongTests

$ grails test-app unit:
| Running 1 unit test... 1 of 1
| Failure: testMinimumDuration(com.gtunes.SongTests)
| Assertion failed:

assert 'min' == song.errors['duration']
 | | | |
 | | | null
 | | org.codehaus.groovy.grails.plugins.testing.GrailsMockErrors: 0 errors
 | com.gtunes.Song : null
 false

 at com.gtunes.SongTests.testMinimumDuration(SongTests.groovy:23)
| Completed 1 unit test, 1 failed in 826ms
| Tests FAILED - view reports in /projects/gtunes/target/test-reports

Starting with a failing test like this subscribes to the ideas of test-driven development (TDD). The test
represents required behavior, and it will “drive” the implementation to satisfy the requirement.

Adding a simple domain constraint to the Song class, as shown in Listing 3-39, should satisfy the test.

Listing 3-39. The Song Domain Class with a Constraint

package com.gtunes

class Song {

 String title
 String artist
 Integer duration

 static constraints = {
 duration min: 1
 }
}

With that constraint in place, the unit test should pass. The domain class is written to satisfy the
requirements expressed in the test. Specifically, the domain class considers any nonpositive value for
duration to be invalid.

More details on how to unit-test domain classes will be provided in Chapter 4, where domain class
behavior can be tested within the context of testing controller actions.

Summary
This chapter, which introduced the fundamentals of Grails domain classes, covered quite a bit of ground.
Grails provides slick solutions to common problems like validating domain classes and mapping to a
relational database. The GORM technology is responsible for much of that capability. GORM will be
explored in more detail in Chapter 9.

63

n n n

CHAPTER 4

Understanding Controllers

A Grails controller is a class that is responsible for handling requests coming in to the application. The
controller receives a request, potentially does some work with the request, and finally decides what should
happen next. What happens next might include the following:

•	 executing another controller action (possibly but not necessarily in the same
controller)

•	 rendering a view

•	 rendering information directly to the response

A controller is prototyped by default, meaning that a new instance is created for each request, so
developers don’t need to be as cautious about maintaining thread-safe code in a singleton controller. The
controller’s scope may be defined by using a static property in the controller named scope and assigning
that property a value of “singleton” or “session”. To change the default scope for all controllers in an
application, define a property in grails-app/conf/Conig.groovy named grails.controller.defaultScope
and assign it a value of “singleton” or “session”.

Think of controllers as the orchestrators of a Grails application. They provide the main entry point for
any Grails application by coordinating incoming requests, delegating them to services or domain classes
for business logic, and rendering views.

Let’s look at the basics of how to create a controller before moving on to such meatier subjects as data
binding and command objects.

Defining Controllers
A controller is a class defined under the grails-app/controllers directory. The class name must end with
“Controller” by convention. Controllers do not need to extend any special base class or implement any
special interfaces.

Listing 4-1 shows a typical controller, one residing at the location grails-app/controllers/
SampleController.groovy; it defines an action called index. The index action renders a simple textual
response.

CHAPTER 4 n UNDERSTANDING CONTROLLERS

64

Listing 4-1. The SampleController Class

class SampleController {

 def index() {
 render 'You accessed the Sample controller...'
 }
}

With this controller in place, a request to /sample/index will result in the String “You accessed the
Sample controller” being rendered back to the browser. You can see that actions, like the index action, are
defined as methods in a controller. A controller can define any number of actions, as shown in Listing 4-2.

Listing 4-2. Defining Multiple Actions

class SampleController {
 def irst() { ... }
 def second() { ... }
 def third() { ... }
 def fourth() { ... }
}

In Chapter 6, you will learn about the powerful URL-mapping support that Grails provides. By default,
URLs are mapped to controller actions by way of a convention. The first part of the URL represents which
controller to access, and the second part of the URL represents which action should be executed. For
example, /sample/irst will execute the irst action in the SampleController. Likewise, /sample/second will
execute the second action in the SampleController.

Setting the Default Action
You don’t necessarily need to specify the action to execute in the URL. If no action is specified, Grails will
execute the default action in the specified controller. You can identify the default action using the
following rules (see Listing 4-3):

•	 If the controller defines only one action, it becomes the default action.

•	 If the controller defines an action called index, it becomes the default action.

•	 If the controller defines a property called defaultAction, its value is the name of the
default action.

Listing 4-3. The Default Action

// Here the 'list' action is the default as there is only one action deined
class SampleController {
 def list() {}
}
// In this example 'index' is the default by convention
class SampleController {
 def list() {}
 def index() {}
}

65

CHAPTER 4 n UNDERSTANDING CONTROLLERS

// Here 'list' is explicitly set as the default
class SampleController {
 static defaultAction = 'list'
 def list() {}
 def index() {}
}

Logging
Logging, an important aspect of any application, allows the application to report textual information
about what is going on inside it. Various logging solutions exist on the Java platform, including third-party
logging solutions as well as the standard logging API introduced in Java 1.4. You face a certain amount of
complexity in configuring logging for an application.

Often, application developers will avoid this complexity by avoiding logging altogether. They opt
instead for simply printing messages using System.out.println and System.err.println. For a variety of
reasons, this is really not a good idea.

Fortunately, Grails tackles much of the complexity involved with setting up logging. A log property,
which is injected into every controller, is an instance of org.apache.commons.logging.Log. You don’t need
to write any code to initialize the log property because the framework handles that. Listing 4-4 documents
the org.apache.commons.logging.Log API.

Listing 4-4. The org.apache.commons.logging.Log Interface

public interface Log {
public void debug(Object msg);
public void debug(Object msg, Throwable t);
public void error(Object msg);
public void error(Object msg, Throwable t);
public void fatal(Object msg);
public void fatal(Object msg, Throwable t);
public void info(Object msg);
public void info(Object msg, Throwable t);
public void trace(Object msg);
public void trace(Object msg, Throwable t);
public void warn(Object msg);
public void warn(Object msg, Throwable t);
public boolean isDebugEnabled();
public boolean isErrorEnabled();
public boolean isFatalEnabled();
public boolean isInfoEnabled();
public boolean isTraceEnabled();
public boolean isWarnEnabled();
}

The log property that is injected into a controller can be used from any controller action or any
method within the controller (see Listing 4-5).

CHAPTER 4 n UNDERSTANDING CONTROLLERS

66

Listing 4-5. Using the log Property

class SampleController {
 def index() {
 log.info('In the index action...')
 // ...
 }
}

Logging Exceptions
Groovy translates all exceptions into runtime exceptions, so Groovy code is never forced to catch an
exception. This differs from what Java developers are used to. In any case, even though an application is
never forced to catch an exception, it makes sense to catch an exception in a lot of scenarios. In Groovy,
the details for how to catch an exception are exactly the same as in Java. There is no special Groovy syntax
for handling exceptions.

When an exception is caught in a controller, you’ll almost always want to log details about the
exception using the log property (see Listing 4-6).

Listing 4-6. Logging an Exception

class SampleController {
 def index() {
 try {
 // do something that might throw an exception
 } catch (Exception e) {
 log.error ('some message goes here', e)
 }
 }
}

Accessing Request Attributes
Java servlet developers will recognize components such as HttpServletRequest, HttpServletResponse,
HttpSession, ServletContext, and others. These are all standard players in the servlet space. The Grails
framework differs greatly from your standard servlet-based web frameworks, of course. However, Grails is
built on top of those same servlet APIs. Table 4-1 contains a list of standard attributes that are
automatically injected into Grails controllers.

Table 4-1. Standard Request Attributes

Attribute Description

actionName The name of the currently executing action

actionUri The relative URI of the executing action

controllerName The name of the currently executing controller

controllerUri The URI of executing controller

flash The object for working with flash scope

log An org.apache.commons.logging.Log instance

67

CHAPTER 4 n UNDERSTANDING CONTROLLERS

params A map of request parameters

request The HttpServletRequest object

response The HttpServletResponse object

session The HttpSession object

servletContext The ServletContext object

Many of the previously listed attributes are standard servlet API objects, whose documentation you
can find on Oracle’s Java technology web site, http://www.oracle.com/technetwork/java/. It is, however,
interesting to observe how working with a Grails controller differs from working with these objects.

A common way to interact with the request, for example, is to retrieve or set a request attribute. The
session and servlet context also have attributes that you can set or retrieve. Grails unifies these by
overriding the dot and subscript operators. Table 4-2 shows the difference between accessing request,
session, and servlet context attributes in regular Java servlets and accessing them in Grails controllers.

Table 4-2. Differences Between Request Attributes in Java Servlets and Grails Controllers

Java Servlet Grails Controller

request.getAttribute(“myAttr”); request.myAttr

request.setAttribute(“myAttr”, “myValue”); request.myAttr = “myValue”

session.getAttribute(“mAttr”); session.myAttr

session.setAttribute(“myAttr”, “myValue””); session.myAttr = “myValue”

servletContext.getAttribute(“mAttr”); servletContext.myAttr

servletContext.setAttribute(“myAttr”, “myValue””); servletContext.myAttr = “myValue”

Of course, if you are accustomed to writing code like that in the left column of the table, you can
continue to do so. Grails just makes it a little bit easier.

Using Controller Scopes
You can choose from a number of scopes when developing controllers. The following list defines all the
scopes available in order of their longevity

•	 request: Objects placed into the request are kept for the duration of the currently
executing request.

•	 lash: Objects placed into lash are kept for the duration of the current request and
the next request only.

•	 session: Objects placed into the session are kept until the user session is
invalidated, either manually or through expiration.

•	 servletContext: Objects placed into the servletContext are shared across the entire
application and kept for the lifetime of the application.

As you can see, each scope is unique and provides very different semantics. In an ideal world, sticking
to request scope allows you to maintain a completely stateless application. In terms of scalability, this has
significant advantages, as you do not need to consider issues such as replication of session state and
session affinity.

http://www.oracle.com/technetwork/java/

CHAPTER 4 n UNDERSTANDING CONTROLLERS

68

However, you can certainly scale stateful applications that use lash and session scope with container-
provided replication services or distributed data grids. The advantage of session scope is that it allows you
to associate data on the server with individual clients. This typically works using cookies to associate
individual users with their sessions.

•	 Finally, the servletContext is a rarely used scope that allows you to share state
across the entire application. Although this can prove useful, you should exercise
caution when using the servletContext because objects placed within it will not be
garbage-collected unless the application explicitly removes them. Also, access to the
servletContext object is not synchronized, so you need to do manual
synchronization if you plan to read and write objects from the servletContext
object, as shown in Listing 4-7.

Listing 4-7. Synchronized Access to the servletContext

def index() {
 synchronized(servletContext) {
 def myValue = servletContext.myAttr
 servletContext.myAttr = "changed"
 render myValue
 }
}

Of course, writing code like this will result in a serious bottleneck in your application, which leads us
to the best-practice usage of the servletContext object: in general, if you really need to use the
servletContext, you should prepopulate it with any values you need at startup and then read those values
only at runtime. This allows you to access the servletContext in an unsynchronized manner.

Understanding Flash Scope
The lash object is a map, accessible in the same way as the params object, the fundamental difference
being that key/value pairs stored in the lash object are stored in lash scope. What is lash scope? It’s best
explained with the problem it solves.

A common usage pattern in web applications is to do some processing and then redirect the request
to another controller, servlet, or whatever. This is not an issue in itself, except what happens when the
request is redirected? Redirecting the request essentially creates a brand-new request, wiping out all
previous data that might have resided in the request attributes. The target of the redirect often needs this
data, but unfortunately, the target action is out of luck. Some have worked around this issue by storing this
information in the session instead.

This is all fine and good, but the problem with the session is that developers often forget to clear out
this temporarily stored data, which places the burden on the developer to explicitly manage this state.
Figure 4-1 illustrates this problem in action.

The first request that comes in sets an attribute on the request called message. It then redirects the
request by sending a redirect response back to the client. This creates a brand-new request instance, which
is sent to the controller. Sadly, the message attribute is lost and evaluates to null.

www.allitebooks.com

http://www.allitebooks.org

69

CHAPTER 4 n UNDERSTANDING CONTROLLERS

To get around this little annoyance, the lash object stores its values for the next request—and the next
request only—after which they automatically vanish. This feature manages the burden of this kind of use
case for you. It’s another small but significant feature that allows you to focus on the problem at hand
instead of the surrounding issues.

One of the more common use cases for lash scope is to store a message that will display when some
form of validation fails. Listing 4-8 demonstrates how to store a hypothetical message in the lash object so
it’s available for the next request.

Listing 4-8. Storing a Message in Flash Scope

lash.message = 'I am available next time you request me!'

Remember that the lash object implements java.util.Map, so all the regular methods of this class are
also available. Figure 4-2 shows how lash scope solves the aforementioned problem. Here, on the first
request, you store a message variable to the lash object and then redirect the request. When the new
request comes in, you can access this message; no problem. The message variable will then automatically
be removed for the next request that comes in.

n Note The flash object does still use the HttpSession instance internally to store itself, so if you require any kind

of session affinity or clustering, remember that it applies to the flash object, too.

Figure 4-1. Request attributes and redirects

CHAPTER 4 n UNDERSTANDING CONTROLLERS

70

Accessing Request Parameters
A controller action is often given input that will affect the behavior of the controller. For example, if a user
submits a form that he or she has filled out, all the form’s field names and values will be available to the
controller in the form of request parameters. The standard servlet API provides an API for accessing
request parameters. Listing 4-9 shows how a controller might retrieve the userName request parameter.

Listing 4-9. Request Parameters via Standard Servlet API

def userName = request.getParameter('userName')
log.info("User Name: ${userName}")

One of the dynamic properties injected into a Grails controller is a property called params. This params
property is a map of request parameters. Listing 4-10 shows how a controller might retrieve the userName
request parameter using the params property.

Listing 4-10. Request Parameters via params Property

def userName = params.userName
log.info("User Name: ${userName}")

Request Parameter Type Conversions
Incoming request parameters are typically strings. If a controller action wants to accept a request
parameter named counter and use it to control how many times some operation may be executed, the
code might look something like Listing 4-11.

Figure 4-2. Using flash scope

71

CHAPTER 4 n UNDERSTANDING CONTROLLERS

Listing 4-11. Request Parameter Type Conversion

def index() {
 // since params.counter is a string, it must be converted to an int if
 // the application intends to use the value as a number
 def counter = params.counter.toInteger()
 // …
}

Grails provides convenience methods for doing this type of conversion on request parameters. Those
methods are available on the params object and have names that correspond to all eight of the primitive
types defined by Java (Boolean, byte, char, short, int, long, float, and double). The methods each accept
one or two arguments. The first argument is the name of the request parameter that is to be converted,
and the optional second argument is a default value that will be returned if a corresponding request
parameter cannot be found or if an error occurs during the conversion. Listing 4-12 demonstrates using
the int convenience method.

Listing 4-12. Using the int Type of Conversion Method

def index() {
 def counter = params.int('counter')
 // …
}

Another type of converting method is named list. The list method is useful when dealing with
multiple request parameters of the same name. The list method will return a list containing all of the
values associated with the specified request parameter name, as shown in Listing 4-13.

Listing 4-13. Using The list Type Conversion Method

def index() {
 for (name in params.list('name') {
 // do something with name
 }
}

If a controller action accepts parameters of simple types, including the eight primitive types, their
corresponding type wrappers, and java.lang.String, then Grails will automatically attempt the
corresponding type of conversion and pass the resulting value into the controller action as a method
argument. The two controller actions defined in Listing 4-14 accomplish the same thing.

Listing 4-14. Binding Request Parameters to Method Arguments

def irstAction() {
 def counter = params.int('counter')
 def name = params.name
 // …
}
def secondAction(int counter, String name) {
 // there is no need to interact with the params object as
 // the request parameters have been bound to the counter
 // and name method arguments
}

CHAPTER 4 n UNDERSTANDING CONTROLLERS

72

By default the method argument name will correspond to a request parameter name. If for some
reason the request parameter and the method argument need to have different names, then the grails.
web.RequestParameter annotation may be used to be explicit about which request parameter should be
bound to a particular method argument, as shown in Listing 4-15.

Listing 4-15. The RequestParameter Annotation

import grails.web.RequestParameter

class AdminController {

 // mainNumber will be initialized with the value
 // of params.accountNumber
 // accountType will be initialized with params.int('accountType')
 def action(@RequestParameter('accountNumber') String mainNumber,
 int accountType) {
 //
 }
}

Whether you are using the RequestParameter annotation or associating method arguments with
request parameters by convention, if a corresponding request parameter does not exist or a conversion
error occurs for method action arguments, then the default value for the corresponding type will be passed
in as the argument value. For Booleans this is false, for all of the other seven primitive types this is zero
(0), and for all reference types this is null. Controllers have an errors property that may contain errors
related to type conversions of request parameters. Listing 4-16 shows how a controller might interact with
the errors property.

Listing 4-16. A Controller’s errors Property

class AdminController {

 def action(String accountNumber, int accountType) {
 if(accountNumber == null && errors.hasErrors()) {
 def accountNumberError = errors.getFieldError(�accountNumber')
 if(accountNumberError != null) {
 // accountNumberError is an instance of
 // org.springframework.validation.FieldError
 // ...
 }
 }
 }
}

Rendering Text
In its most basic form, you can use the render method from a controller to output text to the response.
Listing 4-17 demonstrates how to render a simple string to the response.

73

CHAPTER 4 n UNDERSTANDING CONTROLLERS

Listing 4-17. Rendering a Simple String

render 'this text will be rendered back as part of the response'

Optionally, you can specify the contentType:

render text:'<album>Revolver</album>', contentType:'text/xml'

The most common use of the render method is to render a GSP view or a GSP template. We’ll cover
GSP in detail in Chapter 5.

Redirecting a Request
Often a controller action will need to redirect control to another controller action. This is a common thing
for a controller action to do, so Grails provides a simple technique to manage redirecting to another
controller action.

Grails provides all controllers with a redirect method that accepts a map as an argument. The map
should contain all the information that Grails needs to carry out the redirect, including the name of the
action to redirect to. In addition, the map can contain the name of the controller to redirect to.

Specifying the controller is required only if the request is being redirected to an action defined in a
controller other than the current controller. Listing 4-18 shows a standard redirect from the first action to
the second action within the sample controller.

Listing 4-18. A Simple Redirect

class SampleController {
 def irst() {
 // redirect to the "second" action...
 redirect action: "second"
 }
 def second() {
 // ...
 }
}

If the redirect is bound for an action in another controller, you must specify the name of the other
controller. Listing 4-19 demonstrates how to redirect to an action in another controller.

Listing 4-19. Redirecting to an Action in Another Controller

class SampleController {
 def irst() {
 // redirect to the 'list' action in the 'store' controller...
 redirect action: "list", controller: "store"
 }
}

Although the previous examples are pretty trivial, the redirect method is pretty flexible. Table 4-3
shows the different arguments that the redirect method accepts.

CHAPTER 4 n UNDERSTANDING CONTROLLERS

74

Table 4-3. Redirect Arguments

Argument Name Description

action The name of or a reference to the action to redirect to

controller The name of the controller to redirect to

id The id parameter to pass in the redirect

params A map of parameters to pass

uri A relative URI to redirect to

url An absolute URL to redirect to

As you can see, the redirect method allows you to effectively pass control from one action to the next.
However, often you simply want to formulate some data to be rendered by a view. In the next couple of
sections, we’ll take a look at how to achieve this.

Creating a Model
One of the most fundamental activities carried out in a controller is gathering data that will be rendered in
the view. A controller can gather data directly or delegate to Grails services or other components to gather
the data. However the controller gathers the data, the data are typically made available to the view in the
form of a map that the controller action returns. When a controller action returns a map, that map
represents data that the view can reference. Listing 4-20 displays the show action of the SongController.

Listing 4-20. Returning a Map of Data to Be Rendered by the View

class SongController {
 def show() {
 [song: Song.get(params.id)]
 }
}

Remember that return statements are optional in Groovy. Because the last expression evaluated in the
show action is a map, the map is the return value from this action. This map contains data that will be
passed in to the view to be rendered. In Listing 4-14, the sole key in the map is song and the value
associated with that key is a Song object retrieved from the database based on the id request parameter.

Now the view can reference this song. Whereas this map contains only a single entry, a map returned
from a controller action can include as many entries as is appropriate. Every entry represents an object
that the view can reference.

Rendering a View
The subject of views in Grails is so important that an entire chapter (Chapter 5) is dedicated to it. But for
now, you need to understand how Grails goes about view selection from a controller’s point of view. First,
let’s look at the default view-selection strategy.

75

CHAPTER 4 n UNDERSTANDING CONTROLLERS

Finding the Default View
As you saw in Listing 4-15, the SongController has a single action, called show. The show action returns a
model containing a single key, called song, which references an instance of the Song domain class.
However, nowhere in the code can you see any reference to the view that will be used to deal with the
rendering part of this action.

That’s perfectly understandable, because we haven’t explicitly told Grails what view to render. To
mitigate this problem, Grails makes that decision for you based on the conventions in the application. In
the case of the show action, Grails will look for a view at the location grails-app/views/song/show.gsp. The
name of the view is taken from the name of the action, while the name of the parent directory is taken
from the controller name. Simple, really.

But what if you want to display a completely different view? The ever-flexible render method comes to
the rescue again.

Selecting a Custom View
To tell Grails to render a custom view, you can use the render method’s view argument, as shown in
Listing 4-21.

Listing 4-21. Rendering a Custom View

class SongController {
 def show() {
 render view: "display", model: [song: Song.get(params.id)]
 }
}

Notice how you can use the model argument to pass in the model rather than the return value of the
action. In the example in Listing 4-21, we’re asking Grails to render a view called display. In this case, Grails
assumes you mean a view at the location grails-app/views/song/display.gsp. Notice how the view is
automatically scoped with the grails-app/views/song directory.

If the view you want to render is in another, possibly shared, directory, you can specify an absolute
path to the view:

render view:"/common/song", model:[song: Song.get(params.id)]

By starting with a / character, you can reference any view within the grails-app/views directory. In the
previous example, Grails will try to render a view at the location grails-app/views/common/song.gsp.

Rendering Templates
In addition to views, Grails supports the notion of templates—small snippets of view code that other views
can include. We’ll be covering templates in more detail in Chapter 5, but for now, just know that you can
render a template from a controller using the render method:

render template: "/common/song", model: [song: Song.get(params.id)]

In this case, Grails will try to render a template at the location grails-app/views/common/_song.gsp.
Notice how, unlike views, the name of the template starts with an underscore by convention.

CHAPTER 4 n UNDERSTANDING CONTROLLERS

76

Performing Data Binding
Often a controller action will need to create new domain objects and populate the properties of the
instance with values received as request parameters. Consider the Album domain class, which has
properties such as genre and title. If a request is made to the save action in the AlbumController, the
controller action could create a new Album and save it using a technique like that shown in Listing 4-22.

Listing 4-22. Populating an Album with Request Parameters

class AlbumController {
 def save() {
 def album = new Album()
 album.genre = params.genre
 album.title = params.title
 album.save()
 }
}

The approach in Listing 4-22 assigns values to domain properties based on corresponding request
parameters. It might work for simple models with a small number of properties, but as your domain model
grows in complexity, this code gets longer and more tedious. Fortunately, the Grails framework provides
some slick options for binding request parameters to a domain object.

Remember that the params object in your controller is a map of name/value pairs. You can pass maps
to a domain class’s constructor to initialize all the domain class’s properties with the corresponding
request parameters. Listing 4-23 shows a better approach to creating and populating an Album object.

Listing 4-23. Populating an Album by Passing params to the Constructor

class AlbumController {
 def save() {
 def album = new Album(params)
 album.save()
 }
}

n Caution The default data binding mechanism will bind all properties that are not static, not transient, and not

dynamically typed. The features detailed so far can leave your web application open to URL attacks due to the

automatic setting of properties from request parameters. This is a common issue among frameworks that perform

such conversion (including Ruby on Rails, Spring MVC, WebWork, and others). If you are developing a web application

with heightened security in mind, you should use fine-grained control over data binding through bindable constraint

and/or the bindData method (each described later), along with stricter validation.

As you can see, this is a much cleaner approach and scales better as the number of properties in a
domain class grows.

Occasionally, setting properties on a domain object that has already been constructed can prove
useful. For example, you retrieve a domain object from the database and then need to update it with
values passed to the controller as request parameters. In a case like this, passing a map of parameters to
the domain-class constructor will not help, because the object already exists. Grails provides yet another

77

CHAPTER 4 n UNDERSTANDING CONTROLLERS

slick solution here. You can use a domain class’s properties property in conjunction with request
parameters to update an existing object, as shown in Listing 4-24.

Listing 4-24. Updating an Existing Object with Request Parameters

class AlbumController {
 def update() {
 def album = Album.get(params.id)
 album.properties = params
 album.save()
 }
}

Whenever your application accepts user input, there is a chance that said input might not be what
your application requires. You’ve already seen in Chapter 3 how to define custom-validation constraints on
domain classes; now you’ll begin to understand how you can use data binding in combination with these
constraints to validate incoming data.

Validating Incoming Data
The mechanics of the data-binding and data-validation process in Grails has two phases. First, let’s revisit
the following line of code:

album.properties = params

At this point, Grails will attempt to bind any incoming request parameters onto the properties of the
instance. Groovy is a strongly typed language, and all parameters arrive as strings, so some type
conversion might be necessary.

Underneath the surface, Grails uses Spring’s data-binding capabilities to convert request parameters
to the target type if necessary. During this process, a type-conversion error can occur if, for example,
converting the String representation of a number to a java.lang.Integer is impossible. If an error occurs,
Grails automatically sets the persistent instance to read-only so it cannot persist unless you yourself
explicitly make it persist (refer to Chapter 10 for more information on automatic dirty checking).

If all is well, the second phase of validation commences. At this point, you validate the persistent
instance against its defined constraints, using either the validate() method or the save() method, as
described in Chapter 3:

album.validate()

Grails will validate each property of the Album instance and populate the Errors object with any
validation errors that might have occurred. This brings us nicely into a discussion of the Errors API.

The Errors API and Controllers
The mechanics of Grails’ validation mechanism is built entirely on Spring’s org.springframework.
validation package. As discussed in Chapter 3, whenever you validate a domain instance, a Spring org.
springspringframework.validation.Errors object is created and associated with the instance.

From a controller’s point of view, when you have a domain object in an invalid state—typically due to
invalid user input that changes an instance using data binding—you need to use branching logic to handle
the validation error.

Listing 4-25 shows an example of how to use data binding to update an Album instance and validate its
state.

CHAPTER 4 n UNDERSTANDING CONTROLLERS

78

Listing 4-25. Dealing with Validation Errors

def save() {
 def album = Album.get(params.id)
 album.properties = params
 if(album.save()) {
 redirect action: "show", id: album.id
 } else {
 render view: "edit", model: [album:album]
 }
}

Notice how in Listing 4-20 you can call the save() method, which triggers validation, and send the
user back to the edit view if a validation error occurs. When a user enters invalid data, the errors property
on the Album will be an Errors object containing one or more validation errors.

You can programmatically decipher these errors by iterating over them:

album.errors.allErrors.each { println it.code }

If you merely want to check whether an instance has any errors, you can call the hasErrors() method
on the instance:

if(album.hasErrors()) println "Something went wrong!"

In the view, you can render these using the <g:renderErrors> tag:

<g:renderErrors bean="${album}" />

You’ll be learning more about handling errors in the view through the course of the book, but as you
can see, it’s frequently the controller’s job to coordinate errors that occur and ensure the user enters valid
data.

Data Binding to Multiple Domain Objects
In the examples of data binding you’ve seen so far, the assumption has been that you wish to bind
parameters to a single domain instance. However, you might encounter a scenario in which you must
create several domain instances.

Consider, for example, the creation of Artist instances in the gTunes application. The application
might require that an Artist can exist only if he or she has released at least one Album. In this case, it makes
sense to create both the Artist and the first Album simultaneously.

To understand data binding when dealing with multiple domain instances, you first need to
understand how parameters are submitted from forms. Consider, for example, the case of updating an
Album and the line

album.properties = params

In this case, the expectation is that parameters are not namespaced in any way. In other words, to
update the title property of the Album instance, you can provide an HTML input such as the following:

<input type="text" name="title" />

Notice how the name of the <input> matches the property name. This clearly would not work in the
case of multiple domain classes, because you might have two different domain classes that have a
property called title. You can get around this problem namespacing any parameters passed using a dot:

79

CHAPTER 4 n UNDERSTANDING CONTROLLERS

<input type="text" name="album.title" />
<input type="text" name="artist.name" />
...

Now create and bind both Album and Artist instances by referring to them within the params object by
their respective namespaces:

def album = new Album(params["album"])
def artist = new Artist(params["artist"])

Data Binding with the bindData Method
The data-binding techniques you have seen so far are automatic and handled implicitly by Grails.
However, in some circumstances you might need to exercise greater control over the data-binding process
or bind data to objects other than domain classes. To help tackle this issue, Grails provides a bindData

method that takes the object to bind the data to and a java.util.Map.
The map should contain keys that match the property names of the target properties within the

passed object. As an example, if you wanted to ensure only the title property was bound to an Album

instance, you could use the code shown in Listing 4-26.

Listing 4-26. Using the bindData Method

class AlbumController {
 def save() {
 def album = Album.get(params.id)
 bindData(album, params, [include:"title"])
 // ...
 }
}

Notice how in Listing 4-26 you can pass the Album instance as the first argument, and the parameters
to bind to the instance as the second argument. The final argument is a map specifying that you wish to
include only the title property in the data-binding process. You could change the key within the map to
exclude if you wished to bind all properties except the title property.

Finally, as you saw in the previous section, you can bind to multiple domain instances using the
default data-binding mechanism in Grails. You can do this with the bindData method too, using the last
argument that specifies the prefix to filter by.

bindData(album, params, [include:"title"], "album")

In this example, the prefix album is passed as the last argument, making the bindData method bind all
parameters that begin with the album prefix.

Data Binding and Associations
The final topic to consider when doing data binding is how it relates to associations. The easiest case to
understand is many-to-one and one-to-one associations. For example, consider the artist property of the
Album class, which is a many-to-one association, as shown in Listing 4-27.

CHAPTER 4 n UNDERSTANDING CONTROLLERS

80

Listing 4-27. The artist Association of the Album Class

class Album {
 Artist artist
 // ...
}

You need to consider two cases when working with a many-to-one association like this. The first
involves creating new instances. Suppose you create a new Album instance using this code:

def album = new Album(params)

In this case, if any parameters reference the artist association, such as artist.name, a new Artist
instance will be automatically instantiated and assigned to the Album instance. The names of the
properties to set are taken from the value of the right side of the dot in the request-parameter name. With
artist.name, the property to set is name. To further clarify, the following <input> tag shows an example of a
form field that will populate the artist association of the Album class:

<input type="text" name="artist.name" />

The second scenario occurs when you are assigning an existing instance of an association (an existing
Artist, for example) or modifying an association. To do this, you need to pass the association’s identifier
using a request parameter with the .id suffix. For example, you can use the following <input> to specify
the Artist that should be associated with an existing or new Album:

<input type="text" name="artist.id" value="1" />

With single-ended associations out of the way, let’s consider associations that contain multiple
objects. For example, an Album has many Song instances in its songs associations. What if you wanted to
provide a form that enabled you to create an Album and its associated songs? To enable this, you can use
subscript-style references to populate or update multiple Song instances:

<input type="text" name="songs[0].title" value="The Bucket" />
<input type="text" name="songs[1].title" value="Milk" />

Note that the default collection type for association in Grails is a java.util.Set, so unless you change
the default to java.util.List, the order of entries will not be retained because Set types have no concept
of order. If you want to create a new Album instance and populate the songs association with an existing
collection of songs, then you can just specify their identifiers using the .id suffix:

<input type="text" name="songs[0].id" value="23" />
<input type="text" name="songs[1].id" value="47" />

The Bindable Constraint
As mentioned earlier, the default data binding mechanism will bind all properties which are not static, not
transient and not dynamically typed. The bindData method allows white lists and black lists to be provided
to gain more control over which properties are assigned values during data binding. An additional
technique supported by the framework is to be explicit about which properties are bindable in a
declarative way. Having done that, whenever data binding is carried out without supplying a white list or a
black list, only properties configured to be bindable will be assigned values during data binding. Listing
4-28 demonstrates the syntax for expressing the bindability of individual properties.

81

CHAPTER 4 n UNDERSTANDING CONTROLLERS

Listing 4-28. The bindable Constraint

class User {
 /* userName and salary would be bindable by default */
 String userName
 BigDecimal salary

 /* group and numberOfActiveGroups would not be bindable by default */
 def group
 transient int numberOfActiveGroups

 static constraints = {
 salary bindable: false
 group bindable: true
 }
}

If an instance of the User class defined in Listing 4-28 were created and data binding was carried out
with something like user.properties = params, only the userName and group properties would be subject
to data binding. Normally the salary property would be subject to data binding, but expressing bindable:
false for the property in the constraints block tells the framework otherwise. The salary property would
not be subject to data binding because bindable: false is expressed for that property in the constraints
block. The numberOfActiveGroups property would not be subject to data binding because it is transient.

Working with Command Objects
Sometimes a particular action doesn’t require the involvement of a domain class but still requires the
validation of user input. In this case, you might want to consider using a command object. A command
object is a class that has all the data-binding and data-validation capabilities of a domain class but is not
persistent. In other words, you can define constraints of a command object and validate them just like a
domain class.

Defining Command Objects
A command object requires the definition of class, just as with any other object. You can define command
classes in the grails-app/controllers directory or even in the same file as a controller. Unlike Java, Groovy
supports the notion of multiple class definitions per file, which is quite handy if you plan to use a
particular command object only for the controller you’re working with.

For example, you could define an AlbumCreateCommand that encapsulates the validation and creation of
new Album instances before they are saved. Listing 4-29 presents such an example.

Listing 4-29. An Example Command Object Definition

class AlbumCreateCommand {
 String artist
 String title
 List songs = []
 List durations = []

CHAPTER 4 n UNDERSTANDING CONTROLLERS

82

 static constraints = {
 artist blank:false
 title blank:false
 songs minSize:1, validator:{ val, obj ->
 if(val.size() != obj.durations.size())
 return "songs.durations.not.equal.size"
 }
 }

 Album createAlbum() {
 def artist = Artist.indByName(artist) ?: new Artist(name:artist)
 def album = new Album(title:title)
 songs.eachWithIndex { songTitle, i ->
 album.addToSongs(title:songTitle, duration:durations[i])
 }
 return album
 }
}

In Listing 4-29, you can see a command-object definition that is designed to capture everything
necessary to subsequently create a valid Album instance. Notice how you can define constraints on a
command object, just as in a domain class. The createAlbum() method, which is optional, is interesting
because it shows how you can use command objects as factories that take a valid set of data and construct
your domain instances. In the next section, you’ll see how to take advantage of the command object in
Listing 4-29.

Using Command Objects
In order to use a command object, you need to specify the command as the first argument in a controller
action. For example, to use AlbumCreateCommand, you need to have a save action, such as the one
shown in Listing 4-30.

Listing 4-30. Using a Command Object

class AlbumController {
 def save(AlbumCreateCommand cmd) {
 // ...
 }
}

You need to explicitly define the command object using its type definition as the first argument to the
action. Here’s what happens next: when a request comes in, Grails will automatically create a new
instance, bind the incoming request parameters to the properties of the instance, and pass it to you as the
first argument.

Providing the request parameters to a command like this is pretty trivial. Listing 4-31 shows an
example form.

Listing 4-31. Providing a Form to Populate the Data

<g:form url="[controller: 'album', action: 'save'] ">
 Title: <input type="text" name="title" />

 Artist: <input type="text" name="artist" />

83

CHAPTER 4 n UNDERSTANDING CONTROLLERS

 Song 1: <input type="text" name="songs[0]" />

 Song 2: <input type="text" name="songs[1]" />

 ...
</g:form>

You’ll probably want to make the input of the songs dynamic using some JavaScript; nevertheless, you
can see the concept in Listing 4-31. Once you’ve given the user the ability to enter data and you’re
capturing said data using the command object, all you need to do is validate it. Not all command objects
are validateable. In order for a command object to be validateable, the source code for the command
object class must be defined in the same source file as a controller that uses the command object, or the
command object class must be marked with the grails.validation.Validateable annotation. Note that
the grails.validation.Validateable annotation is not only for command object classes but may be
applied to any Groovy class that should have validation behavior associated with it. Listing 4-32 shows
how the save action’s logic might look with the command object in use.

Listing 4-32. Using the Command Object for Validation

def save(AlbumCreateCommand cmd) {
 if(cmd.validate()) {
 def album = cmd.createAlbum()
 album.save()
 redirect(action:"show", id:album.id)
 }
 else {
 render(view:"create", model:[cmd:cmd])
 }
}

As you can see, it’s now the command object that is ensuring the validity of the request, and we’re
using it as a factory to construct a perfectly valid Album instance. As with domain classes, command objects
have an Errors object, so you can use the <g:renderErrors> tag to display validation errors to the user.

<g:renderErrors bean="{cmd}" />

Imposing HTTP Method Restrictions
Often a web application needs to impose restrictions on which HTTP request methods are allowed for a
specific controller action. For example, it is generally considered a bad idea for a controller action to carry
out any destructive operation in response to an HTTP GET. Such operations should be limited to HTTP
POST and DELETE.

Implementing an Imperative Solution
One approach to dealing with this concern is for a controller action to inspect the request method and
prevent certain actions from being carried out in response to an inappropriate HTTP request method.
Listing 4-33 shows a simple imperative approach to the problem.

CHAPTER 4 n UNDERSTANDING CONTROLLERS

84

Listing 4-33. Inspecting the HTTP Request Method in a Controller Action

class SongController {
 def delete() {
 if(request.method == "GET") {
 // do not delete in response to a GET request
 // redirect to the list action
 redirect action: "list"
 } else {
 // carry out the delete here...
 }
 }
}

While this approach is fairly straightforward and does get the job done, it’s a tedious solution to the
problem. In a real-world application, this same logic would appear in many controller actions.

Taking Advantage of a Declarative Syntax
A better solution to limiting actions to certain HTTP request methods is to take advantage of a simple
declarative syntax that expresses which HTTP request methods are valid for a particular controller action.
Grails supports an approach like this through the optional allowedMethods property in a controller.

The allowedMethods property expresses which HTTP request methods are valid for any particular
controller action. By default, all HTTP request methods are considered valid for any particular controller
action. If you want an action to be accessible through specific request methods only, then you should
include the action in the allowedMethods property.

You should assign the allowedMethods property a value that is a map. The keys in the map should be
the names of actions that you want restricted. The value(s) associated with the keys should be a string
representing a specific request method or a list of strings representing all allowed methods for that
particular action. Listing 4-34 shows an example.

Listing 4-34. Restricting Access to Controller Actions Using the allowedMethods Property

class SomeController {
 // action1 may be invoked via a POST
 // action2 has no restrictions
 // action3 may be invoked via a POST or DELETE
 static allowedMethods = [action1: 'POST', action3: ['POST', 'DELETE']]
 def action1() { ... }
 def action2() { ... }
 def action3() { ... }
}

If the rules expressed in the allowedMethods property are violated, the framework will deny the request
and return a 405 error code, which the HTTP specification defines as “Method Not Allowed.”

Controller IO
As you’ve learned so far, controllers can control request flow through redirects and rendering views. In
addition to this, controllers might need to read and write binary input to and from the client. In this

85

CHAPTER 4 n UNDERSTANDING CONTROLLERS

section, we’ll look at how to read data, including file uploads, and how to write binary responses to the
client.

Handling File Uploads
One of the more common use cases when developing web applications is to allow the user to upload a
local file to the server using a multipart request. This is where the solid Grails foundation of Spring MVC
starts to shine through.

Spring has excellent support for handling file uploads via an extension to the servlet API’s
HttpServletRequest interface called org.springframework.web.multipart.MultipartHttpServletRequest,
the definition of which is in Listing 4-35.

Listing 4-35. The org.springframework.web.multipart.MultipartHttpServletRequest Interface

interface MultipartHttpServletRequest extends HttpServletRequest {
 public MultipartFile getFile(String name);
 public Map getFileMap();
 public Iterator getFileNames();
}

As you can see, the MultipartHttpServletRequest interface simply extends the default
HttpServletRequest interface to provide useful methods to work with files in the request.

Working with Multipart Requests

Essentially, whenever a multipart request is detected, a request object that implements the
MultipartHttpServletRequest interface is present in the controller instance. This provides access to the
methods seen in Listing 4-35 to access files uploaded in a multipart request. Listing 4-36 also shows how
you can define a multipart form using the <g:uploadForm> tag.

Listing 4-36. An Example Upload Form

<g:uploadForm action="upload">
 <input type="ile" name="myFile" />
 <input type="submit" value="Upload! " />
</g:uploadForm>

The important bits are highlighted in bold, but an upload form essentially requires two things:

•	 A <form> tag with the enctype attribute set to the value multipart/form-data. The
<g:uploadForm> in Listing 4-36 does this for you automatically.

•	 An <input> tag whose type attribute is set to the value ile.

In the previous case, the name of the file input is myFile; this is crucial because it’s the named
reference that you work with when using the getFile method of the MultipartHttpServletRequest
interface. For example, the code within an upload action will retrieve the uploaded file from the request
(see Listing 4-37).

CHAPTER 4 n UNDERSTANDING CONTROLLERS

86

Listing 4-37. Retrieving the Uploaded File

def upload() {
 def ile = request.getFile('myFile')
 // do something with the ile
}

Note that the getFile method does not return a java.io.File. Instead, it returns an instance of org.
springframework.web.multipart.MultipartFile, the interface detailed in Listing 4-38. If the file is not
found in the request, the getFile method will return null.

Listing 4-38. The org.springframework.web.multipart.MultipartFile Interface

interface MultipartFile {
 public byte[] getBytes();
 public String getContentType();
 public java.io.InputStream getInputStream();
 public String getName();
 public String getOriginalFilename();
 public long getSize();
 public boolean isEmpty();
 public void transferTo(java.io.File dest);
}

Many useful methods are defined in the MultipartFile interface. Potential use cases include the
following:

•	 Use the getSize() method to allow uploads only of certain file sizes.

•	 Reject empty files using the isEmpty() method.

•	 Read the file as a Java.io.InputStream using the getInputStream() method.

•	 Allow only certain file types to be uploaded using the getContentType() method.

•	 Transfer the file onto the server using the transferTo(dest) method.

As an example, the code in Listing 4-39 will upload a file to the server if it’s not empty and if it’s fewer
than 1,024 bytes in size.

Listing 4-39. File Uploads in Action

def upload() {
 def ile = request.getFile('myFile')
 if(ile && !ile.empty && ile.size < 1024) {
 ile.transferTo(new File("/local/server/path/${ile.name}"))
 }
}

Working directly with a MultipartHttpServletRequest instance is one way to manage file uploads, but
frequently you need to read the contents of a file. In the next section, we’ll look at how Grails makes this
easier through data binding.

87

CHAPTER 4 n UNDERSTANDING CONTROLLERS

Uploads and Data Binding

In the “Performing Data Binding” section, you saw how Grails handles automatic type conversion from
strings to other common Java types. What we didn’t discuss is how this capability extends to file uploads.
Grails, through Spring MVC, will automatically bind files uploaded to properties of domain-class instances
based on the following rules:

•	 If the target property is a byte [], the file’s bytes will be bound.

•	 If the target property is a String, the file’s contents as a string will be bound.

Suppose you want to allow users of the gTunes application to upload album art for each album. By
adding a new property to the Album domain class called art of type byte[], you automatically have the
capability to save the image data to the database, as shown in Listing 4-40.

Listing 4-40. Adding the art Property

class Album{
 byte[] art
 // ...
}

To bind an uploaded file, you simply need to add an art upload field that matches the art property
name to a <g:uploadForm> tag.

<input type="ile" name="art" />

The following line automatically handles binding the file to the Album:

def user = new Album(params)

Grails will automatically recognize the request as being multipart, retrieve the file, and bind the bytes
that make up the file to the art byte array property of the Album class. This capability also extends to usage
in conjunction with the properties property and bindData method discussed previously.

Reading the Request InputStream
If you want to get the text contained within the request body, you can use the inputStream property of the
request object, as shown in Listing 4-41.

Listing 4-41. Reading the Request Body

def readText() {
 def text = request.inputStream.text
 render "You sent $text"
}

Writing a Binary Response
You can send a binary response to the client using standard servlet API calls, such as the example in Listing
4-42, which uses the HttpServletResponse object to output binary data to the response in the form of a ZIP
file.

CHAPTER 4 n UNDERSTANDING CONTROLLERS

88

Listing 4-42. Writing Binary Data to the Response

def createZip() {
 byte[] zip = ... // create the zip from some source
 render ile: zip
}

The code uses the response object’s outputStream property in conjunction with Groovy’s overloaded
left shift << operator, which is present in a number of objects that output or append to something such as
java.io.Writer and java.lang.StringBuffer, to name just a couple.

Using Simple Interceptors
Frequently, it is useful to catch the flow of method execution by intercepting calls to certain methods. This
concept is the foundation of aspect-oriented programming (AOP), which allows the definition of
“pointcuts” (execution points) to be intercepted. You can then modify the intercepted execution through
the use of before, after, and around “advice.”

As the names suggest, before advice in AOP is code that can be executed before an intercepted method
call; after advice is code that can be executed after an intercepted method call. Around advice is code that
can replace the method call entirely. AOP’s great strength is providing support for implementing cross-
cutting concerns.

The example frequently used for this concept is the logging of method calls. Although the interception
mechanism in Grails by no means provides the same power and flexibility in terms of what pointcuts can
be intercepted, it does fulfill the basic need of intercepting calls to actions on controllers.

Additionally, interceptors are useful if they apply only to a single controller. If your requirement spans
multiple controllers, you’re better off having a look at filters (a topic covered in Chapter 14). With
interceptors you can either intercept all actions or provide more fine-grained control by specifying which
actions should be intercepted. Let’s look at a few examples, starting with before interceptors.

Before Advice
Luckily, as with the rest of Grails, there is no hefty XML configuration or annotation trickery required,
thanks to Convention over Configuration. All it takes to define a before interceptor is to create a closure
property named beforeInterceptor within the target controller, as shown in Listing 4-43.

Listing 4-43. A beforeInterceptor

def beforeInterceptor = {
 log.trace("Executing action $actionName with params $params")
}

Listing 4-43 uses the log object to output tracing information before any action within the defining
controller is executed. This example applies to every action defined in the controller. However, you can
apply more fine-grained control using interception conditions.

As an example, say you wanted to trace each time a user views an Album and each user’s country of
residence. You could define a beforeInterceptor as shown in Listing 4-44.

89

CHAPTER 4 n UNDERSTANDING CONTROLLERS

Listing 4-44. Using Interception Conditions

class AlbumController {
 private trackCountry = {
 def country = request.locale.country
 def album = Album.get(params.id)
 new AlbumVisit(country:country, album:album).save()
 }
 def beforeInterceptor = [action: trackCountry, only: 'show']
}

As you can see from Listing 4-44, you can define a beforeInterceptor using a map literal. The action

key defines the code that should execute. In this case, we’re using an only condition, which means that the
interceptor applies only to the show action. You could change this to an except condition, in which case the
interceptor would apply to all actions except the show action.

Finally, a beforeInterceptor can also halt execution of an action by returning false. For example, if
you want to allow only U.S. visitors to your site, you could send a 403 forbidden HTTP code if the user hails
from outside the United States (see Listing 4-45).

Listing 4-45. Halting Execution with a beforeInterceptor

class AlbumController {
 def beforeInterceptor = {
 if(request.locale != Locale.US) {
 response.sendError 403
 return false
 }
 }
}

After Advice
After advice is defined using the unsurprisingly named afterInterceptor property that again takes a
closure. The first argument passed to the closure is the resulting model from the action, as shown in
Listing 4-46.

Listing 4-46. An afterInterceptor Example

def afterInterceptor = { model ->
 log.trace("Executed $actionName which resulted in model: $model")
}

Again, in this rather trivial example, the logging mechanism traces any action that executes.

Testing Controllers
Grails uses mixins to provide special behavior for unit testing controllers. As an example, the
AlbumController class as it stands has no test coverage. If the controller were created with the create-
controller command, a unit test would have been created at the same time. If not, to create a test for this
controller, you need create a new test class. The default unit test that would have been generated by the
create-controller command is shown in Listing 4-47.

CHAPTER 4 n UNDERSTANDING CONTROLLERS

90

Listing 4-47. Controller Unit Test Template

package com.gtunes

import grails.test.mixin.*
import org.junit.*

@TestFor(AlbumController)
class AlbumControllerTests {

 void testSomething() {
 fail "Implement me"
 }
}

Let us consider a simple controller action that we want to test. Listing 4-48 shows a list action in the
AlbumController which returns a model that includes a list of all of the albums in the database.

Listing 4-48. A Simple Controller Action

package com.gtunes

class AlbumController {

 def list() {
 [albumList: Album.list()]
 }
}

A unit test that attempts to execute that action and verify that the model contains the expected
information might look like the code in Listing 4-49.

Listing 4-49. A Simple Controller Unit Test

package com.gtunes

import grails.test.mixin.*

@TestFor(AlbumController)
class AlbumControllerTests {

 void testListAction() {
 def model = controller.list()
 // make assertions about the model
 }
}

Attempting to run that test will lead to an error, as shown in Listing 4-50.

91

CHAPTER 4 n UNDERSTANDING CONTROLLERS

Listing 4-50. Controller Unit Test Failure

grails> test-app unit:
| Running 1 unit test... 1 of 1
| Failure: testListAction(com.gtunes.AlbumControllerTests)
| groovy.lang.MissingMethodException: No signature of method: com.gtunes.Album.list() is
applicable for argument types: () values: []
| Completed 1 unit test, 1 failed in 200ms
| Tests FAILED - view reports in target/test-reports
grails>

The problem with the test here is that the list action in the AlbumController is invoking the Album.
list() method, which isn’t available in our unit testing environment. Fortunately, the framework makes it
very easy to mock the entire GORM API so a unit test like this one can be carried out. One way to do this is
to use the @Mock annotation with a domain class argument. This instructs the framework to add the GORM
API to this domain class and provides a full in-memory implementation of GORM, which allows the full
GORM API to function without the need for a real database to be created. All of that is accounted for in the
more complete unit shown in listing 4-51.

Listing 4-51. Updated AlbumControllerUnitTests

package com.gtunes

import grails.test.mixin.*
import grails.test.mixin.domain.*

@TestFor(AlbumController)
@Mock(Album)
class AlbumControllerTests {

 void testListAction() {
 new Album(title: 'Trilogy').save()
 new Album(title: 'Tarkus').save()

 def model = controller.list()
 assert model.albumList?.size() == 2
 }
}

In Listing 4-51, we’re testing the returned model, but some controller actions write directly to the
response or issue a redirect rather than return a value. To test an action that writes to the response, you can
use the response object of the controller, which is an instance of the org.codehaus.groovy.grails.
plugins.testing.GrailsMockHttpServletResponse class, which indirectly extends the org.
springframework.mock.web.MockHttpServletResponse class and provides additional utility methods.

Several useful methods in the MockHttpServletResponse class allow you to inspect the state of the
current response. In particular, the getText() method provides access to what is currently written into the
response as a string. For example, if you have an action that renders some text to the response, you could
test it as shown in Listing 4-52.

CHAPTER 4 n UNDERSTANDING CONTROLLERS

92

Listing 4-52. Testing the Contents of the Response

void testIndex() {
 controller.index()
 assert 'Welcome to the gTunes store!' == response.text
}

Controllers in Action
In this section, you’ll learn how to build a simple login and registration system using Grails controllers. In
Chapter 12, we’ll be refactoring this system to use one of the more generic Grails security plugins, but for the
moment it will serve as a useful starting point.

One of the first things to consider when developing any site is the site’s point of entry. At the moment,
you’ve just created a bunch of scaffolded pages, but now it’s time to think about the real application for the
first time, starting with the home page.

Creating the gTunes Home Page
The gTunes application is a music store where users can log in, browse the available music, and purchase
music that they can then play. First, you need to establish a home page. You already have a
StoreController, so you can use that as the controller that deals with the home page. To make sure visitors
get routed to this controller, you can modify the grails-app/conf/ UrlMappings.groovy file to map visitors
to the root of the application to this controller (see Listing 4-53).

Listing 4-53. Routing Users to the Root of the Application to the StoreController

class UrlMappings {
 static mappings = {
 "/"(controller:"store")
 }
}

Notice how you can use a forward slash to tell Grails to map any request to the root of the application
to the StoreController. As you can see from the mapping, it is not mapping onto any particular action in
StoreController, which will trigger the default action. The default action is the index action, which
currently writes out a simple-text response. You need to change the index action so view delegation kicks
in.

def index() {}

Now instead of returning a text response, the index action delegates to the grails-app/ views/store/
index.gsp view, which you can use to render the home page. We’ll start with something simple that shows
just a welcome message; we can expand on this later. Listing 4-54 shows the markup code involved.

Listing 4-54. The gTunes Home Page

<html>
 <head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <meta name="layout" content="main">
 <title>gTunes Store</title>

93

CHAPTER 4 n UNDERSTANDING CONTROLLERS

 </head>
 <body id="body">
 <h1>Your online music store and storage service!</h1>
 <p>Manage your own library, browse music and purchase new tracks as they
 become available</p>
 </body>
</html>

The next step is to consider how to enable users to register, login, and logout. Before you can do that,
you need to define the notion of a user within the gTunes application. Let’s do that in the next section.

Adding the User Domain Class
To model users, you’ll need to create a User domain class that contains personal information such as first
name and last name, as well as the login and password for each user. To do so, you can use the create-
domain-class command:

grails create-domain-class com.gtunes.User

This will create a new domain class at the location grails-app/domain/com/gtunes/User.groovy. With
that done, you need to populate the User domain class with a few properties, as shown in
Listing 4-55.

Listing 4-55. The User Domain Class

package com.gtunes
class User {
 String login
 String password
 String irstName
 String lastName
 static hasMany = [purchasedSongs:Song]
}

As you can see, the code in Listing 4-56 captures only the basics about users, but you could easily
expand this information to include an address, contact number, and so on. One property to note is the
purchasedSongs association, which will hold references to all the Songs a User buys once you have
implemented music purchasing.

However, before we get too far ahead of ourselves, let’s add a few constraints to ensure domain
instances stay in a valid state (see Listing 4-56).

Listing 4-56. Applying Constraints to the User Class

class User {
 ...
 static constraints = {
 login blank:false, size:5..15,matches:/[\S]+/, unique:true
 password blank:false, size:5..15,matches:/[\S]+/
 irstName blank:false
 lastName blank:false
 }
}

CHAPTER 4 n UNDERSTANDING CONTROLLERS

94

With these constraints in place, you can ensure that a user cannot enter blank values or values that
don’t fall within the necessary size constraints. Also, note the usage of the unique constraint, which ensures
that the login property is unique to each user. We’ll revisit this in more detail later; for now, let’s focus on
login and registration.

Adding a Login Form
Because you already have a home page, it might make sense to add the login form there. But further down
the line, you’ll want to allow users to browse the gTunes music catalog anonymously, so users should be
able to login from anywhere. With this in mind, you need to add a login form to the grails-app/views/
layouts/main.gsp layout so that it’s available on every page.

Listing 4-57 shows the GSP code to do so. Note how you can check whether a user already exists in the
session object and display a welcome box or login form, accordingly.

Listing 4-57. Adding the Login Form Everywhere

<div id="loginBox" class="loginBox">
 <g:if test="${session?.user}">
 <div style="margin-top:20px">
 <div style="loat:right;">
 Proile | <g:link controller="user"
 action="logout">Logout</g:link>

 </div>
 Welcome back

 ${session?.user?.irstName}!

 You have purchased (${session.user.purchasedSongs?.size() ?: 0}) songs.

 </div>
 </g:if>
 <g:else>
 <g:form
 name="loginForm"
 url="[controller:'user',action:'login']">
 <div>Username:</div>
 <g:textField name="login"
 value="${ieldValue(bean:loginCmd, ield:'login')}">
 </g:textField>
 <div>Password:</div>
 <g:passwordField name="password"></g:passwordField>

 <input type="image"
 src="${createLinkTo(dir:'images', ile:'login-button.gif')}"
 name="loginButton" id="loginButton" border="0"></input>
 </g:form>
 <g:renderErrors bean="${loginCmd}"></g:renderErrors>
 </g:else>
</div>

95

CHAPTER 4 n UNDERSTANDING CONTROLLERS

In addition to providing a login box, you need to provide a link that allows a user to register. Once
logged in, the user will be able to click through the store to browse and click a “My Music” link to view
music already purchased. These links won’t display when the user isn’t logged in, so instead you can use
the screen real estate for a prominent link to the registration page. Listing 4-58 shows the registration link
added to the main.gsp layout.

Listing 4-58. Adding a Link to the Registration Page

 <div id="navPane">
 <g:if test="${session.user}">

 <g:link controller="user"
 action="music">My Music</g:link>
 <g:link controller="store"
 action="shop">The Store</g:link>

 </g:if>
 <g:else>
 <div id="registerPane">
 Need an account?
 <g:link controller="user"
 action="register">Signup now</g:link>
 to start your own personal Music collection!
 </div>
 </g:else>
 </div>

After getting the web designers involved and making a few Cascading Style Sheets (CSS) tweaks, the
home page has gone from zero to something a little more respectable (see Figure 4-3).

Figure 4-3. The gTunes home page

CHAPTER 4 n UNDERSTANDING CONTROLLERS

96

Implementing Registration
Before users can actually log in, they need to register with the site. You’ll need to run the create-
controller command to create a controller that will handle the site’s login and registration logic.

grails> create-controller com.gtunes.User
| Created ile grails-app/controllers/com/gtunes/UserController.groovy
| Created ile grails-app/views/user
| Created ile test/unit/com/gtunes/UserControllerTests.groovy
grails>

Once complete, the command will create a controller at the location grails-app/controllers/com /
gtunes/UserController.groovy. Open up this controller and add a register action, as shown in
Listing 4-59.

Listing 4-59. Adding a register Action

class UserController {
 def register() {}
}

As you can see from the example, the register action currently does nothing beyond delegating to a
view. Nevertheless, it gives you the opportunity to craft a registration form. Listing 4-60 shows the
shortened code from the grails-app/views/user/register.gsp view that will render the form.

Listing 4-60. The register View

 <body id="body">
 <h1>Registration</h1>
 <p>Complete the form below to create an account!</p>
 <g:hasErrors bean="${user}">
 <div class="errors">
 <g:renderErrors bean="${user}"></g:renderErrors>
 </div>
 </g:hasErrors>

 <g:form action="register" name="registerForm">
 <div class="formField">
 <label for="login">Login:</label>
 <g:textField name="login" value="${user?.login}"></g:textField>
 </div>
 <div class="formField">
 <label for="password">Password:</label>
 <g:passwordField name="password" value="${user?.password}"></g:passwordField>
 </div>
 <div class="formField">
 <label for="conirm">Conirm Password:</label>
 <g:passwordField name="conirm" value="${params?.conirm}"></g:passwordField>
 </div>
 <div class="formField">
 <label for="irstName">First Name:</label>
 <g:textField name="irstName" value="${user?.irstName}"></g:textField>
 </div>

97

CHAPTER 4 n UNDERSTANDING CONTROLLERS

 <div class="formField">
 <label for="lastName">Last Name:</label>
 <g:textField name="lastName" value="${user?.lastName}"></g:textField>
 </div>
 <g:submitButton class="formButton" name="register" value="Register"></g:submitButton>
 </g:form>
 </body>

The rendered registration form will look like the screenshot in Figure 4-4.
As you can see from Figure 4-4, you can also provide a confirm-password field to prevent users from

entering passwords incorrectly. With that done, let’s consider the controller logic. To implement
registration, you can take advantage of the data-binding capabilities of Grails to bind incoming request
parameters to a new user instance. At this point, validation takes over, and the rest comes down to a little
branching logic. Listing 4-61 shows the completed register action.

Figure 4-4. The Registration Screen

Listing 4-61. Implementing the register Action

def register() {
 if(request.method == 'POST') {
 def u = new User()
 u.properties['login', 'password', 'irstName', 'lastName'] = params
 if(u.password != params.conirm) {
 u.errors.rejectValue("password", "user.password.dontmatch")
 return [user:u]

CHAPTER 4 n UNDERSTANDING CONTROLLERS

98

 } else if(u.save()) {
 session.user = u
 redirect controller:"store"
 } else {
 return [user:u]
 }
 }
}

Many of the key concepts you’ve learned throughout the course of this chapter have been put to use
in Listing 4-61, including a few new ones. Let’s step through the code to see what’s going on. First the code
checks that the incoming request is a POST request, because doing all this processing is pointless unless a
form is submitted.

 if(request.method == 'POST') {

Then data binding takes over, as it binds the incoming request parameters to the User instance.

 def u = new User(params)

Then the code confirms whether the user has entered the correct password twice. If not, the password
is rejected altogether.

 if(u.password != params.conirm) {
 u.errors.rejectValue("password", "user.password.dontmatch")
 return [user:u]
 }

Notice how calling the rejectValue method of the org.springframework.validation.Errors interface
accomplishes this. The rejectValue method accepts two arguments: the name of the field to reject and an
error code to use. The code in Listing 4-61 uses the string user.password.dontmatch as the error code,
which will appear when the <g:renderErrors> tag kicks in to display the errors. If you want to provide a
better error message, you can open up the grails-app/i18n/messages.properties file and add a message
like this:

user.password.dontmatch=The passwords speciied don't match

Here’s one final thing to note: directly after the call to rejectValue, a model from the controller

action is returned, which triggers the rendering register.gsp so it can display the error.
You will notice that the code attempts to persist the user by calling the save() method. If the attempt

is successful, the user is redirected back to the StoreController.

 else if(u.save()) {
 session.user = u
 redirect controller:"store"
 }

Finally, if a validation error does occur as a result of calling save(), then a simple model is returned
from the register action so that the register view can render the errors:

 return [user:u]

99

CHAPTER 4 n UNDERSTANDING CONTROLLERS

Testing the Registration Code
Now let’s consider how to test the action using the unit testing techniques you learned about earlier. When
you ran the create-controller command, a new unit test for the UserController was created for you in
the test/unit directory.

Now write a test for the case in which a user enters passwords that don’t match. Listing 4-62 shows the
testPasswordsDontMatch case that checks whether a password mismatch triggers a validation error.

Listing 4-62. The testPasswordsDoNotMatch Test Case

void testPasswordsDoNotMatch() {
 request.method = 'POST'

 params.login = 'henry'
 params.password = 'password'
 params.conirm = 'wrongPassword'
 params.irstName = 'Henry'
 params.lastName = 'Rollins'

 def model = controller.register()
 def user = model.user

 assert user.hasErrors()
 assert 'user.password.dontmatch' ==
 user.errors['password'].code
}

Notice how the testPasswordsMatch test case populates the mockParams object with two passwords that
differ. Then you have a call to the register action, which should reject the new User instance with a user.
password.dontmatch error code. The last line of the test asserts that this is the case by inspecting the errors
object on the User instance:

assert 'user.password.dontmatch' ==
 user.errors['password'].code

The next scenario to consider is when a user enters invalid data into the registration form. You might
need multiple tests that check for different kinds of data entered. Remember, you can never write too
many tests! As an example of one potential scenario, Listing 4-63 shows a test that checks whether the user
enters blank data or no data.

Listing 4-63. The testRegistrationFailed Test

void testRegistrationFailed() {
 request.method = 'POST'

 params.login = ''

 def model = controller.register()
 def user = model.user

 assert user.hasErrors()
 assert session.user == null
 assert 'blank' == user.errors['login'].code

CHAPTER 4 n UNDERSTANDING CONTROLLERS

100

 assert 'nullable' == user.errors['irstName'].code
 assert 'nullable' == user.errors['lastName'].code
}

Once again, you can see the use of the errors object to inspect that the appropriate constraints have
been violated. Finally, you need to ensure two things to test a successful registration:

•	 The User instance has been placed in the session object.

•	 The request has been redirected appropriately.

Listing 4-64 shows an example of a test case that tests a successful user registration.

Listing 4-64. Testing Successful Registration

void testRegistrationSuccess() {
 request.method = 'POST'

 params.login = 'henry'
 params.password = 'password'
 params.conirm = 'password'
 params.irstName = 'Henry'
 params.lastName = 'Rollins'

 controller.register()

 assert '/store' == response.redirectedUrl
 assert session.user != null
}

With the tests written, let’s now consider how to allow users to log in to the gTunes application.

Allowing Users to Log In
Since you’ve already added the login form, all you need to do is implement the controller logic. A login
process is a good candidate for a command object because it involves capturing information—the login
and password—without needing to actually persist the data.

In this example you’re going to create a LoginCommand that encapsulates the login logic, leaving the controller
action to do the simple stuff. Listing 4-65 shows the code for the LoginCommand class, which is defined in
the same file as the UserController class.

Listing 4-65. The LoginCommand

class LoginCommand {
 String login
 String password
 private u
 User getUser() {
 if(!u && login) {
 u = User.indByLogin(login, [fetch:[purchasedSongs:'join']])
 }
 return u
 }

101

CHAPTER 4 n UNDERSTANDING CONTROLLERS

 static constraints = {
 login blank:false, validator:{ val, obj ->
 if(!obj.user)
 return "user.not.found"
 }
 password blank:false, validator:{ val, obj ->
 if(obj.user && obj.user.password != val)
 return "user.password.invalid"
 }
 }
}

The LoginCommand defines two properties that capture request parameters called login and password.
The main logic of the code, however, is in the constraints definition. First, the blank constraint ensures
that the login and/or password cannot be left blank. Second, a custom validator on the login parameter
checks whether the user exists:

login blank:false, validator:{ val, cmd ->
 if(!cmd.user)
 return "user.not.found"
}

The custom validator constraint takes a closure that receives two arguments: the value and the
LoginCommand instance. The code within the closure calls the getUser() method of the LoginCommand to
check whether the user exists. If the user doesn’t exist, the code returns an error code—“user.not.found”—
that signifies an error has occurred.

On the password parameter, another custom validator constraint checks whether the user has
specified the correct password:

password blank:false, validator:{ val, cmd ->
 if(cmd.user && cmd.user.password != val) return "user.password.invalid" }

Here the validator again uses the getUser() method of the LoginCommand to compare the password of
the actual User instance with the value of the password property held by the LoginCommand. If the password
is not correct, an error code is returned, triggering an error. You can add appropriate messages for each of
the custom errors returned by the LoginCommand by adding them to the grails-app/i18n/messages.
properties file:

user.not.found=User not found
user.password.invalid=Incorrect password

With that done, it’s time to put the LoginCommand to use by implementing the login action in the
UserController. Listing 4-66 shows the code for the login action.

Listing 4-66. The login Action

def login(LoginCommand cmd) {
 if(request.method == 'POST') {
 if(!cmd.hasErrors()) {
 session.user = cmd.getUser()
 redirect controller:'store'
 } else {
 render view:'/store/index', model:[loginCmd:cmd]
 }

CHAPTER 4 n UNDERSTANDING CONTROLLERS

102

 } else {
 render view:'/store/index'
 }
}

With the command object in place, the controller simply needs to do is what it does best: issue
redirects and render views. Again, like the register action, login processing kicks in only when a POST

request is received. Then if the command object has no errors, the user is placed into the session and the
request is redirected to the StoreController.

Testing the Login Process
Testing the login action differs slightly from testing the register action due to the involvement of the
command object. Let’s look at a few scenarios that need to be tested. First, you need to test the case when
a user is not found (see Listing 4-67).

Listing 4-67. The testLoginUserNotFound Test Case

void testLoginUserNotFound() {
 request.method = 'POST'

 params.login = 'frank'
 params.password = 'hotrats'

 controller.login()
 def cmd = model.loginCmd

 assert cmd.hasErrors()
 assert 'user.not.found' == cmd.errors['login'].code
 assert session.user == null
 assert '/store/index' == view
}

You can the inspect the command for errors, as demonstrated by the following two lines from
Listing 4-59:

 assert cmd.hasErrors()
 assert 'user.not.found' == cmd.errors['login'].code

The next scenario to test is when a user enters an incorrect password. Listing 4-68 shows the
testLoginPasswordInvalid test case that demonstrates how to do this.

Listing 4-68. The testLoginPasswordInvalid Test Case

void testLoginFailurePasswordInvalid() {
 request.method = 'POST'

 def u = new User(login: 'maynard',
 irstName: 'Maynard',
 lastName: 'Keenan',
 password: 'undertow').save()
 assert u != null

103

CHAPTER 4 n UNDERSTANDING CONTROLLERS

 params.login = 'maynard'
 params.password = 'lateralus'

 controller.login()
 def cmd = model.loginCmd

 assert cmd.hasErrors()
 assert 'user.password.invalid' ==
 cmd.errors['password'].code
 assert session.user == null
 assert '/store/index' == view
}

The last test to write is one that tests a successful login. Listing 4-69 shows how to do this.

Listing 4-69. The testLoginSuccess Test Case

void testLoginSuccess() {
 request.method = 'POST'

 def u = new User(login: 'maynard',
 irstName: 'Maynard',
 lastName: 'Keenan',
 password: 'undertow').save()
 assert u != null

 params.login = 'maynard'
 params.password = 'undertow'

 controller.login()

 assert session.user != null
 assert '/store' == response.redirectedUrl
}

Summary
And with that, you’ve implemented the login and registration process for the gTunes application. We’ll
present throughout the book many more examples of using controllers, but in this chapter you’ve obtained
a strong grounding in the core concepts that apply to controllers. From data binding and validation to
command objects, the Grails controller mechanism offers you a lot of tools. To fully see how everything fits
together, you’ll need a strong understanding of the Grails view technology—Groovy Server Pages (GSP). In
the next chapter, we’ll take a much closer look at GSP and what it has to offer, with its dynamic tag libraries
and templating mechanisms.

105

n n n

CHAPTER 5

Understanding Views

The topic of view technologies for web applications in the open source world appears to be rather popular,
at least if the seemingly endless number of them available for Java is any indication. There always seems to
be a newer, better one to learn if you grow tired of the incumbent JSP. JSP, however, remains the most
popular view technology produced by Sun to compete with Microsoft’s Active Server Pages (ASP), JSP has
become the industry standard, and there is a high level of developer knowledge surrounding JSP.

JSP allows developers to mix a traditional markup language such as HTML with bits of Java code (called
scriptlets) to produce dynamic output. On the downside, this facility is extremely open to abuse; therefore,
there are custom tag libraries that add the ability to abstract logic from a JSP page via tags. JSP has been
augmented with two missing ingredients, the JSP Standard Tag Library (JSTL) and an expression language
(EL), to bring it up to speed with some of its open source competitors.

Given JSP’s maturity, robustness, and familiarity within the industry, why on earth, then, would
anyone need yet another view technology for Grails with Groovy Server Pages (GSP)? The answer lies with the
Groovy runtime environment.

•	 To fully take advantage of Grails, the view technology requires knowledge of
Groovy’s runtime environment and associated dynamic method dispatching.

•	 Groovy provides a far more powerful expression language, including GPath
expressions, Groovy bean notation, and overrideable operators.

•	 Other Groovy features—such as regular expression support, GStrings, and an
expressive syntax for maps and lists—make it perfect for a view technology.

Of course, for any new view technology, it is important not to fall into the same traps that JSP fell into
in its early iterations. Mixing scriptlets and markup code is recognized as a bad thing, and to this end, GSP
provides a mechanism for creating custom tags, just as JSP does, but without sacrificing any agility.

The Basics
Having been exposed to GSP at various points throughout the book, you may already be verging on the
expert level. Still, discussing GSP’s basics could prove invaluable to helping you fully grasp all the concepts
within it.

It is important to note that GSP is actually remarkably similar to JSP, and you will know from experience
that, with JSP, a number of objects are simply available by default. These include the request, response,
and session objects—the same ones you saw in Chapter 4. If you recall, that particular discussion
mentioned that a few additional objects, including lash, are available to controllers. You’ll be pleased to

CHAPTER 5 n UNDERSTANDING VIEWS

106

know these can also be accessed from GSP views, as can an additional out attribute, which is a java.io.
Writer instance representing the response output. Table 5-1 describes the GSP attributes available.

Table 5-1. GSP Attributes

Attribute Description

application The ServletContext instance

flash The flash object for working with flash scope, as discussed in Chapter 7

out The response Writer instance

params A map of request parameters

request The HttpServletRequest instance

response The HttpServletResponse instance

session The HttpSession instance

You already know how to get to these from controllers, but what about in views? Unsurprisingly, GSP
supports the same constructs available in JSP, as well as a few additional ones. The next few examples may
start to look a little like a JSP 101 tutorial, but don’t be confused—you’re definitely dealing with Groovy, not
Java.

Understanding the Model
One of the fundamental activities in any MVC pattern, such as that which Grails employs, is to pass
information (the model) to the view for rendering. In Chapter 4 you saw this in action, but just to recap,
Listing 5-1 shows an example of how you can achieve this in Grails.

Listing 5-1. Creating the Model

package package com.gtunes
class StoreController {

 def shop() {
 def genreList =
 new DetachedCriteria(Album).distinct('genre').list()
 [genres:genreList.sort()]
 }
}

In Listing 5-1 (the shop action of the StoreController), the result is a map with one element, the key
for which is a string with the value genres. This key (and its value) is then placed in a GSP model (or
binding, for those more familiar with Groovy lingo), which makes it accessible as a variable, in the same
way as the page attributes in Table 5-1 were.

In the following sections, you will see examples of a genres variable being referenced. Just remember
that this variable didn’t appear by magic. As in the listing, it is passed to the view in code via the controller.

107

CHAPTER 5 n UNDERSTANDING VIEWS

Page Directives
GSP supports a limited subset of the page directives available in JSP. A page directive is an instruction
appearing at the top of a GSP that performs an action that the page relies on. As an example, it could set
the content type, perform an import, or set a page property, one that could even be container-specific.

One of the more useful of these is the contentType directive, which allows you to set the content type
of the response. This is useful in that it allows you to use GSP to output formats other than HTML markup,
including XML or plain text. In use, the directive is identical to JSP, with the directive appearing at the top
of the page and starting with <%@.

Listing 5-2 sets the content type to text/xml, which allows you to output XML. This can be useful
when working with Ajax and similar technologies.

Listing 5-2. The contentType Page Directive

<%@ page contentType="text/xml; charset=UTF-8" %>

Another page directive available is the import directive, which is analogous to the import statement in
a Java or Groovy class. However, because Groovy imports many classes by default and Grails encourages an
MVC architecture, where much of the logic should be placed in a controller and not the view, use of import
is not very common. Nevertheless, Listing 5-3 shows an example of importing the Time class from the
java.sql.* package.

Listing 5-3. The import Page Directive

 <%@ page import="java.sql.Time" %>

n Note Groovy imports the java.lang, java.util, java.io, java.net, groovy.lang, and groovy.util

packages by default.

Groovy Scriptlets
GSP tries to stay as true to JSP as possible, and therefore it supports traditional JSP scriptlet blocks using
the <%...%> syntax. Essentially, as soon as you type the opening <% declaration, you have entered the world
of Groovy and can type whatever Groovy code you so choose up until the closing %> declaration.

What this means is that you can use scriptlets to perform loops and logical if statements merely by
combining scriptlet declarations, as shown in Listing 5-4.

Listing 5-4. Scriptlets in Action

<html>
 <body>
 <% 3.times { %>
 <p>I'm printed three times!</p>
 <% } %>
 </body>
</html>

Note that scriptlets are available more to align the syntax with JSP. In practice, they are discouraged in
favor of GSP tags, which you will see in the “Built-in Grails Tags” section.

CHAPTER 5 n UNDERSTANDING VIEWS

108

Although the previous syntax allows arbitrary code to be inserted between the opening and closing
declarations, it doesn’t actually explicitly output anything when inside the scriptlet block. In other words,
as with the previous example, you have to use a closing %> bracket to close the scriptlet expression in order
to define what you want repeated three times. You can, however, use the out attribute mentioned earlier to
output to this response:

<% out << "print me!" %>

The previous code will print the text “print me!” to the response using the out attribute. As you can
imagine, having these out << statements all over the place can get a little tedious, so GSP supports another
syntax inherited from JSP through the <%=...%> statement (note the equal sign directly after the opening
declaration). Essentially, the following example is equivalent to what you saw in the previous code:

<%= "print me!" %>

Here the = sign after the opening scriptlet bracket ensures that the result of whatever follows is printed
to the response. The response in general is a mix of markup and code that results in some text being sent
to the browser or client. Now that you’ve seen GSP’s similarities with JSP, let’s look at a feature you won’t
find in JSP: the embedded GString.

GSP As GStrings
Since the introduction of JSTL, the use of scriptlets and declarations such as those shown in the previous
section has been looked down on a bit. Instead, there is an expression language in JSP that can be used in
combination with the <c:out> standard tag to output values, as shown in Listing 5-5.

Listing 5-5. JSP c:out Tag

<%-- Output the album title --%>
<p><c:out value="${album.title}" /></p>

n Tip The previous JSP example uses the syntax <%--...--%> for comments that should not be present in the

rendered response. These comments are also supported in GSP using the same syntax.

In addition to the previous rather verbose tag, you would also need to import the tag library, which
contains the <c:out> tag using a page directive at the top of the JSP. All this amounts to a lot of effort just to
use a tag that lets you render values to the response. Luckily, with GSP it is a little bit simpler, because of its
support for embedded GString values:

<p>${album.title}</p>

A GSP, if you think about it, is essentially one big GString, thus allowing the same ${...} expressions
nested within it as found in JSP. The expressions allowed within a GString are not, thankfully, limited to
simply referencing properties. The full capability Groovy offers in terms of navigating object graphs is at
your fingertips, which often becomes useful when iterating, as the next section will show.

109

CHAPTER 5 n UNDERSTANDING VIEWS

Built-in Grails Tags
GSP has a number of built-in tags for performing basic operations; they include looping, switching, and
using logical if statements. In general, because they promote a cleaner separation of concerns and allow
you to create well-formed markup, tags are preferable to embedding scriptlets. Each GSP tag requires the
prefix g: before the tag name so that it is recognized as a GSP tag. Unlike JSP, which requires directives to
import tag libraries, no additional page directive is needed.

n Note GSP also supports JSP custom tag libraries, which can be imported with the standard JSP taglib directive.

In the next few sections, you’ll see the tags that are built in to Grails. These tags are there by default
and require no extra work by the developer.

Setting Variables with Tags
Occasionally, it is useful to set the value of a variable or define a new variable within the scope (commonly
referred to as the page context) of a GSP. Both use cases can be achieved via the <g:set> tag, which will set
or define a variable in the page context regardless of whether it already exists. The <g:set> tag takes two
attributes: the var attribute, which defines the name of the variable to set, and a value attribute, which is
generally an expression:

<g:set var="albumTitle" value="${album.title}" />

By default, variables set with <g:set> are assumed to be within the page scope. What is more, you can
set a variable in the session scope simply by using the scope attribute:

<g:set scope="session" var="user" value="${user}" />

In addition to the session scope, a number of others are available.

•	 application: Stores variables for the scope of the whole application

•	 session: Stores variables for the scope of the user session

•	 lash: Stores variables for the current request and the next request only

•	 request: Stores variables for the scope of the current request

•	 page: Stores variables for the scope of the rendering page

Another fairly basic requirement, along with setting variables, is the ability to conditionally display
information. In the next section, you’ll see how you can achieve this.

Logical Tags
As previously mentioned, it is often useful to display information based on a condition. At the most basic
level, it is useful to have basic programming constructs such as if and else in the view to facilitate this.
GSP has the aptly named <g:if>, <g:elseif>, and <g:else> tags that, as with any regular programming
construct, are used in conjunction with one another to conditionally display output.

CHAPTER 5 n UNDERSTANDING VIEWS

110

The <g:if> and <g: elseif> tags take an attribute, called test, whose value can be in expression
language (that is, statements surrounded by ${..}), as shown in Listing 5-6.

Listing 5-6. Usage of Logical Blocks

<g:if test="${album?.year < 1980 && album?.genre == 'Rock'}">
 Classic rock
</g:if>
<g:elseif test="${album?.year >= 1980 && album?.genre == 'Rock'}">
 Modern Rock
</g:elseif>
<g:else>
 Other
</g:else>

An interesting aspect of the previous code is the use of Groovy’s safe dereference operator, ?.. The
operator really comes into its own when used in views, because it is often useful to navigate an object
graph and display information only if all elements navigated through don’t evaluate to null. If you look at
the views generated during scaffolding, you will observe a lot of this in action. Yet another useful feature of
the method is that it allows the optional execution of methods. For example, you may for some reason want
the title of the album in uppercase, in which case you would use an expression like the following:

${album.title.toUpperCase()}

Unfortunately, if either the album or title of the album in the previous code is null, a horrid
NullPointerException will be thrown. To circumvent this, the safe dereference operator comes to the
rescue:

${album?.title?.toUpperCase()}

Here the toUpperCase method is executed only if it can be reached; otherwise, the entire expression
evaluates to null. This is useful because null in GSP results in an empty string being printed to the
response.

That’s it for now on logical tags, although you will see their use popping up throughout the book.

Iterative Tags
Iterating over collections of objects is one of the more common tasks when working with any view
technology, GSP being no exception. Again, scriptlets could be used to achieve iteration, but why? You have
GSP tags, which allow for a much cleaner transition between code and markup.

The first tag we’ll cover is the <g:each> tag, which is essentially the tag equivalent of the Groovy each
method and in fact simply delegates to this method internally, as shown in Listing 5-7.

Listing 5-7. Iterating with <g:each>

<g:each in="${album.songs?}">
 ${it.title}
</g:each>

n Tip You can also use the safe dereference operator at the end of expressions (see the previous section). It will

not iterate if the songs property is null.

111

CHAPTER 5 n UNDERSTANDING VIEWS

Like its closely related JSTL cousin, the <g:each> tag allows the option of specifying the name of the
object within the current iteration. The name of the object, as with closures, defaults to an argument called
it, as shown in Listing 5-7. When using nested tags, however, it is good practice to name the variable being
iterated over, which you can do with the var attribute, as shown in Listing 5-8.

Listing 5-8. Iterating with <g:each> and a Named Variable

<g:each var="song" in="${album.songs?}">
 ${song.title}
</g:each>

GSP tags are, at root, just closures, and in Groovy the variable it refers to the default argument of the
innermost closure. If you use the <g:each> tag without declaring a var attribute and try to reference the
default it variable within a nested GSP tag, this will result in evaluating it to the current innermost tag and
not the surrounding <g:each> tag. By naming the variable used by <g:each> using the var attribute, you
circumvent this conflict and any similar ones. If you remember that GSP tags are closures, you will have no
trouble at all adapting to the mind-set. The next iterative tag GSP provides is the <g:while> tag, which
behaves like the traditional while loop by waiting for the expression specified within the test attribute to
evaluate to false. As with any while loop, the condition should always end up evaluating to false at some
point; otherwise, you will find yourself in a never-ending loop. Listing 5-9 shows an example that loops
while the variable i is greater than zero.

Listing 5-9. The <g:while> Tag

<g:set var="i" expr="${album.songs?.size()}" />
<g:while test="${i > 0}">
 <g:set var="i" expr="${i-1}" />
</g:while>

Here, you get the total number of songs from the album and store them in the variable i. You then start
a <g:while> loop that will decrement the i variable on each iteration. The loop will continue until i
reaches zero. The loop is equivalent to the following Groovy code:

while(i > 0) i=i-1

Using <g:each> and <g:while> is not the only way to loop over a collection. In the next section, you’ll
see constructs that provide the powerful combination of filtering and iteration.

Filtering and Iteration
Some of the new methods that accept closures in Groovy provide the powerful ability to filter and search
collections (such as collect, indAll, and grep). It would be a shame if that power couldn’t be extended into
GSP tags. Fear not—there are tag equivalents of these three that allow some pretty powerful filtering
capabilities.

The collect Tag

The <g:collect> tag allows you to iterate over and collect properties of objects within a collection. Say, for
example, you want the titles of all albums; you can achieve this simply with <g:collect>, as Listing
5-10 shows.

CHAPTER 5 n UNDERSTANDING VIEWS

112

Listing 5-10. Using <g:collect> to Collect Values

<g:collect in="${albums}" expr="${it.title}">
 ${it}
</g:collect>

In the previous example, an HTML list of album titles is created by passing a collection of albums to
the in attribute via the ${...} syntax. The second attribute, the expr attribute, contains an expression that
is used to specify what should be collected (in this case the title property). Again, use the default it
argument within the expression just as you would in a closure. In fact, the previous code is equivalent to
the scriptlet code in Listing 5-11.

Listing 5-11. Equivalent Scriptlet Using a Closure

 <% albums.collect{ it.title }.each { %>
 ${it}
 <%}%>

As you can see, the expression equates to what is found within the curly braces of the collect closure.
Whatever you place in there can also be placed inside the expr attribute.

Of course, you can also do this with a GPath expression. Recall what you learned about GPath: if you
reference the title property and use the dereference operator on a list of albums, a list of titles is
produced, as Listing 5-12 shows.

Listing 5-12. Using GPath to Iterate over Album Titles

 <g:each in="${albums.title}" >
 ${it}
 </g:each>

The <g:collect> tag does, however, give you another option and allows the logic within the expr
attribute to be in your control.

The findAll Tag

Collecting properties from a collection via the object graph is handy, but sometimes you want to iterate
over only those values that meet certain criteria. This is often achieved by iterating over all elements and
having nested if statements. However, using <g:indAll>, as shown in Listing 5-13, is far more elegant.

Listing 5-13. Using <g:findAll> to Locate Specific Elements

<g:indAll in="${albums}" expr="${it.songs?.title.contains('Love')}">
 ${it.title}
</g:indAll>

113

CHAPTER 5 n UNDERSTANDING VIEWS

This example is another interesting demonstration of the power of GPath, Groovy’s expression
language. The expression in bold references the default argument it, which is the current Album instance
being iterated over, and then uses GPath to retrieve a collection of all the names of the songs.

The songs property, too, is itself a collection (a java.util.Set, to be specific) and does not have a
title property, but GPath recognizes that the reference to the title property is an attempt to retrieve a
collection of name properties from the contained elements within the songs property.

Since the result is a collection, you can invoke the regular JDK contains method to look up all albums
that have the word Love in their title. The result, far more readable than a bunch of nested if statements, is
another case where you can see how a Groovy view technology like GSP makes a remarkable amount of
sense.

You’ve seen quite a few options for performing different kinds of logical statements and iteration.
Controlling the logical flow of a view is not, however, the only task you have when writing the view. One
common activity is linking controllers and actions, which you will look at next. But before that, there is
something important to note. This marks the end of the built-in tags. The tags you’ve seen so far are
internally handled and optimized by GSP. The next section shifts the focus to Grails dynamic tags and how
they differ from the built-in tags.

Grails Dynamic Tags
Dynamic tags in Grails are those provided through classes called tag libraries, which can be found within
the grails-app/taglib directory of any Grails project. Grails provides a number of tag libraries out of the
box that you will see in the next few sections. Then creating your own tag libraries will be explored.

First, you need to understand what makes dynamic tags different from other tags—that is, besides the
fact that they are provided by these libraries. Fundamentally, they can be used just as any other tag is. For
example, you can use the <g:link> tag like the built-in tags you saw previously without requiring any
import directive.

More interestingly, dynamic tags can also be invoked as methods from scriptlets and GString
expressions. Why is this useful? To maintain a clean syntax and valid XML, it is best to avoid nesting tags
within tag attributes. In JSP you often see code like that in Listing 5-14, code that can be difficult to read
and is not well-formed markup.

Listing 5-14. Unattractive JSP Example

<a href="<c:out value="${application.contextPath}" />/show.jsp">A dynamic link

Clearly, because of GSP’s rather JSP-like nature, this problem could have been inherited if it were not
for the dynamic nature of Groovy. So how would you invoke a GSP tag as a method call? Observe the
example in Listing 5-15.

Listing 5-15. An Example of a GSP Tag as a Method Call

<!-- With a regular tag -->
<a href="<g:createLink action="list" />">A dynamic link
<!-- As a method call -->
A dynamic link

The two previous examples produce the same result. They call a tag called createLink, which creates a
link to the list action. The second example, notably cleaner, produces well-formed markup. In addition,
the body of the tag can be provided as the last argument to the method call.

You can see an example of this in action in the create and edit views generated by scaffolding. As part
of form validation, these views highlight the problematic field by surrounding the offender with a red box.

CHAPTER 5 n UNDERSTANDING VIEWS

114

You achieve this through the hasErrors tags, which will evaluate if a particular bean field has any
validation errors and will set a CSS class, the name of which is the last argument on the surrounding div
element if the field contains errors (see Listing 5-16).

Listing 5-16. Field Validation Example

<div class="${hasErrors(bean:album,ield:'title','errors')}">
</div>

These are just a few examples. As you’ll soon see, you can create your own tags that can be invoked in
the same manner. First, however, let’s take a tour through the tags already available to you, starting with
linking.

Linking Tags
With all the controllers and actions that end up being created, remembering the URL patterns to link to
them may become a bit challenging. Also, depending upon the environment you deploy to, the context
path of your application could change. So how can you make sure you are always linking to the right place
in a consistent manner? Luckily, Grails provides a number of tags to handle linking in an elegant way, the
first of which is the aptly named <g:link>.

The Link Tag

The <g:link> tag will essentially create a simple HTML anchor tag based on the supplied attributes, which
include the following:

•	 controller: the controller name to link to

•	 action: the action name to link to

•	 id: the identifier to append to the end of the URI

•	 mapping: the name of the URL mapping to use

•	 params: any parameters to pass as a map

One of either the controller or the action attribute is required. If the controller attribute is specified
but no action attribute is specified, the tag will link to the default action of the controller. If, on the other
hand, an action attribute is specified but no controller attribute is specified, the currently executing
controller will be linked to.

Beyond the previous attributes, the <g:link> tag also supports all attributes that the regular HTML
anchor tag supports, which can be added as required.

It’s time for some examples. Using <g:link> is pretty simple and intuitive, and of course the values of
the attributes could just as well be expressions of the ${...} kind if dynamic linking is required (see
Listing 5-17).

Listing 5-17. Basic Linking with <g:link>

<g:link controller="album" action="list">list Albums</g:link>
<g:link action="show" id="l">Show album with id K/g:link>

Of interest may be the params attribute, which takes a map of request parameters to pass via the link.
In fact, the current request parameters can even be passed from one action to the other by using this

115

CHAPTER 5 n UNDERSTANDING VIEWS

attribute in combination with the params object, which you’ll recall is an instance of java.util.Map, as
shown in Listing 5-18.

Listing 5-18. Using Parameters with <g:link>

<g:link controller="album"
 action="list"
 params="[max:10,order:'title']">Show irst ten ordered by Title</g:link>
<g:link action="create"
 params="${params}">Pass parameters from this action to next</g:link>

The first example uses the params attribute in conjunction with a map of parameters and provides
your first exposure to another feature of GSP tags: attributes can be specified as maps with the [key:value]
syntax. This allows for composite attribute values and minimizes the need for messy nested tags.

Finally, the second example demonstrates what was mentioned previously. Instead of specifying a
map explicitly, you provide a reference to the params object via the ${...} expression syntax, which then
allows parameters to be passed from the current page to the linked page. Next you’ll see how to create links
to other resources.

n Note The linking tags in Grails automatically rewrite the links based on the URL mappings you have defined.

URL mappings will be covered in more detail in Chapter 6.

The createLink and resource Tags
The <g:createLink> tag has already been seen in action and so probably needs less of an introduction.
Simply put, if it’s not clear from the examples, <g:createLink> takes the same arguments as the <g:link>
tag, except that it produces just the textual link and not an HTML anchor tag. In fact, the <g:link> tag
actually delegates to <g:createLink> when creating its href attribute.

So what is this useful for? You could use it within a regular anchor tag or possibly as a value for a
JavaScript variable, as Listing 5-19 shows.

Listing 5-19. Examples of createLink

List Albums
<script type="text/javascript">
 var listAlbumsLink = "${createLink(action:'list')}";
</script>

Another tag, similar in both name and usage to <g:createLink>, is the <g:resource> tag, which allows
convenient linking to resources within the web application’s context path.

This tag is most commonly used for linking to images and style sheets and, again, can be seen in
action in the views generated by scaffolding:

<link rel="stylesheet"
 href="${resource(dir:'css',ile:'main.css')}"></link>

As is apparent from the previous examples and in Listing 5-19, both tags tend to be used via method
calls as opposed to markup, because the values produced by them are usually nested within attributes of
other tags.

CHAPTER 5 n UNDERSTANDING VIEWS

116

Now that linking has been covered, let’s look at another common activity: creating forms so that users
can enter data to be captured by server-side code. In the following section, you’ll see how Grails makes this
easier.

n Note The resource tag effectively replaces the createLinkTo tag. The createLinkTo tag is still included in

Grails 2 but is deprecated in favor of the resource tag. The resource tag provides more flexibility, some of which will

be discussed in Chapter 12.

Creating Forms and Fields
A form is most commonly a collection of fields that a user populates with data, although occasionally you
find forms that consist entirely of hidden fields and no user interaction whatsoever. Nevertheless, how this
is achieved depends on the type of field; in other words, the user’s interaction depends on whether it is a
text field, a drop-down select, or a radio button.

Clearly, certain fields map nicely onto existing Java (and hence Groovy) types. Check boxes are great
for Boolean values, text fields are good for strings, and selects are good when you have strings that can be
contained only within a certain list of values (such as enums in Java 5).

To this end, most Java web frameworks provide some mechanism to make form elements (or fields)
interoperate smoothly with Java types, Grails being no different. Before you get too deeply involved in
looking at the different kinds of fields, let’s take care of the basics by looking at how Grails helps in defining
forms.

The form Tag

Let’s build on what you have seen in linking by starting with the <g:form> tag, which is equivalent to the
standard HTML <form> tag, except that it allows the same arguments as those shown with the <g:link> tag
to allow easy submission to a specific controller or action or both, as shown in Listing 5-20.

Listing 5-20. An Example Form Tag from grails-app/views/user/register.gsp

<g:form action="register" name="registerForm">
 ...
</g:form>

By default, the <g:form> tag uses the POST method for form submissions; that is, the previous example
is roughly equivalent to the HTML definition (minus the closing tag):

<form action="/gTunes/user/register" method="POST" name="registerForm">
 ...
</form>

As an alternative to Listing 5-20, you can define the <g:form> tag using a single url attribute that uses
the key:value map syntax to define the controller and action combination (see Listing 5-21).

117

CHAPTER 5 n UNDERSTANDING VIEWS

Listing 5-21. A <g:form> Tag with url Attribute

<g:form url="[controller:'user', action:'register']">
 ...
</g:form>

Of course, a form is of little use without some fields, the first of which to be discussed is the text field.
In HTML, most fields are handled by the <input> tag, which has a type attribute to change its behavior and
appearance. The downside of this approach is that it is not clear what its purpose is from simply looking at
the tag.

Grails provides a number of wrapper tags that encapsulate the different types of HTML inputs into
more meaningful tags.

The textField Tag

First up is the <g:textField> tag. Unsurprisingly, it handles entry of textual values. The <g:textField> tag
takes a name attribute, representing the name of the parameter to send as part of the form submission,
along with the associated value attribute, as shown in Listing 5-22.

Listing 5-22. Example <g:textField> Usage

<g:form action="register" name="registerForm">
...
 <g:textField name="login" value="${user?.login}"></g:textField>
 ...
</g:form>

The previous <g:textField> definition will result in HTML input such as the following:

<input type="text" name="login" value="A Login Name" />

Check Boxes and Radio Buttons

Check boxes are often used as a representation of Boolean values from a domain model. Unfortunately,
many frameworks place a lot of burden on the developer both to render check boxes in their correct state
and to handle the server-side processing as to whether the boxes are checked.

Grails, on the other hand, provides a <g:checkBox> tag that accepts a Boolean value attribute and will
render the tag in its correct state. In addition, Grails transparently handles check box processing through
its automatic type conversion and data binding facility (discussed in Chapter 7), as shown in Listing 5-23.

Listing 5-23. Example <g:checkBox> Tag

<g:checkBox name="aBooleanValue" value="${true}" />

Closely related to check boxes are radio buttons, which are used in groups, because they represent a
one-from-many interaction. For example, two radio buttons must each be given the same name to be
placed in the same group, and only one button can be selected at a time.

Grails has a <g:radio> tag that provides a convenient way to define radio buttons and also to calculate
that one has been checked.

In Listing 5-24, two radio buttons are defined in the same group. The one that has been checked is
calculated using the hypothetical someValue variable.

CHAPTER 5 n UNDERSTANDING VIEWS

118

Listing 5-24. Example <g:radio> Tags

<p>
<g:radio name="myGroup" value="1" checked="${someValue == 1}" /> Radio 1 </p>
<p>
<g:radio name="myGroup" value="2" checked="${someValue == 2}" /> Radio 2 </p>

Handling Lists of Values

When dealing with enumerated values (those that can be only a specific set of values), it is often useful to
constrain what the user can enter by presenting an HTML select box as opposed to a free text-entry field.

To make creating selects much simpler, Grails provides a <g:select> tag that accepts a list or range of
values via a from attribute. The currently selected value can be set with the value attribute.

The example in Listing 5-25 creates a select to choose a genre.

Listing 5-25. Example <g:select> Usage

<g:select name="genre"
 from="${['Rock', 'Blues', 'Jazz']}"
 value="${album.genre}" />

The following is the resulting HTML select, given an album with a genre of Rock:

<select name="genre">
 <option value="Rock" selected="selected">Rock</option>
 <option value="Blues">Blues</option>
 <option value="Jazz">Jazz</option>
</select>

Clearly, going just by the two examples, using the <g:select> tag can save writing a few lines of code.
Its usefulness extends further, thanks to two additional attributes that allow <g:select> to be used in
combination with object graphs and relationships.

The first is the optionKey attribute, which allows customization of the value attribute within each
option tag of an HTML select. It may seem a little odd that an optionKey attribute customizes an attribute
called value, but if you think of each <option> element as a key/value pair, it begins to make sense. The
optionValue attribute, on the other hand, allows customization of the value that appears within the body
of each option tag.

Using these two in combination, for example, allows you to create a select from a list of domain object
instances, as shown in Listing 5-26.

Listing 5-26. Using <g:select> on a List of Domain Objects

<g:select name="album.id" from="${Album.list()}"
 optionKey="id" optionValue="title"/>

The previous example takes a list of albums and creates an HTML select where the value attribute
within the option tag is the id of the Album and the value within the body of each option is the title
property of each Album. The result will resemble the following:

<select name="album.id">
 <option value="1">Undertow</option>
 ...
</select>

119

CHAPTER 5 n UNDERSTANDING VIEWS

In addition to the general-purpose <g:select> tag, Grails provides a few others that may come in
handy. The <g:currencySelect>, <g:localeSelect>, and <g:timeZoneSelect> tags are convenience tags for
working with java.util.Currency, java.util.Locale and java.util.TimeZone instances, respectively.

Unlike the <g:select> tag, each of these takes only two attributes: a name attribute for the name of the
select and a value attribute, which takes an instance of one of the aforementioned classes, as shown in
Listing 5-27.

Listing 5-27. Currency, Locale, and Time Zone Selects

<%-- Sets the currency to the currency of the Locale within the request --%>
<g:currencySelect
 name="myCurrency"
 value="${ Currency.getInstance(request.locale) }" />
<%-- Sets the locale to the locale of the request --%>
<g:localeSelect name="myLocale" value="${ request.locale }" />
<%-- Sets value to default time zone --%>
<g:timeZoneSelect name="myTimeZone" value="${ TimeZone.getDefault() }" />

Working with Dates

Dates can be represented in a number of ways, from drop-down selects to advanced JavaScript calendars.
One of the more common ways, because of its nonreliance on JavaScript, is use of a combination of HTML
select boxes to specify date and time, with each select representing a time unit: year, month, day, minute,
hour, and second.

Grails provides support for creating such fields (and automatically performs type conversion onto
date instances) using the <g:datePicker> tag (see Listing 5-28).

Listing 5-28. A Basic Date Picker

<g:datePicker name="myDate" value="${new Date()}" />

At its most basic level, the <g:datePicker> tag takes a name attribute and a value attribute as a java.
util.Date instance. In the previous example, it creates a <g:datePicker> for the current time, which
consists of selects for the year, month, day, minute, hour, and second.

Clearly, it is not always useful to have that level of precision, so the <g:datePicker> tag provides the
aptly named precision attribute for changing how many selects it renders. For example, to render only the
year, month, and day selects, the following will suffice:

<g:datePicker name="myDate" value="${new Date()}" precision="day" />

All in all, Grails puts quite a few tools in your toolbox for simplifying the creation of forms. Given that
forms allow users to enter data, often in a free-form fashion, implementing form handling is often one of
the most challenging and error-prone activities in web application development.

To ensure data integrity, form validation is necessary. It can be achieved on the client side using
JavaScript. However, client-side validation should only ever be seen as a usability enhancement, not a
replacement for server-side validation. Luckily, Grails provides solid support for performing validation
with specialized validation and error-handling tags.

CHAPTER 5 n UNDERSTANDING VIEWS

120

Simplifying Forms with the Fields Plug-in

Creating and maintaining complicated forms with a lot of input fields can be tedious and often involves a
lot of copy-and-paste code. A form for inputting all of the fields related to creating a Person object may be
pretty much exactly the same as the form for inputting all of the fields related to an Account object, except
that the input fields would have different names. Consider a Person domain class that has irstName,
lastName, and age properties. A form to help create a person might include code like that shown in
Listing 5-29.

Listing 5-29. Form for Creating a Person

<div class="ieldcontain">
 <label for="age">
 <g:message code="person.age.label"
 default="Age" />
 *
 </label>
 <g:ield type="number"
 name="age"
 required=""
 value="${personInstance.age}"/>
</div>

<div class="ieldcontain">
 <label for="irstName">
 <g:message code="person.irstName.label"
 default="First Name" />

 </label>
 <g:textField name="irstName"
 value="${personInstance?.irstName}"/>
</div>

<div class="ieldcontain">
 <label for="lastName">
 <g:message code="person.lastName.label"
 default="Last Name" />

 </label>
 <g:textField name="lastName"
 value="${personInstance?.lastName}"/>
</div>

If you wanted to create a form for creating an Account object that had bankName, accountType, and
balance properties, you might copy and paste that code and then go through the code and replace
property names. Of course, managing all of that boilerplate code is not ideal.

The fields plug-in provides tools to help eliminate all that boilerplate. As an example, the fields plug-in
provides a GSP tag named all, which will render input fields for every property of a bean. The code in
Listing 5-29 could be replaced with the following:

<f:all bean="personInstance"/>

121

CHAPTER 5 n UNDERSTANDING VIEWS

Which would you rather write and maintain?
The fields plug-in provides a good bit more functionality than just the all tag. See http://grails.org/

plugin/ields for more information on the plug-in.

Validation and Error Handling
Since you learned how to apply constraints to your domain model in Chapter 3, clearly it becomes useful
at some point to display validation errors in the view when they occur. Of course, you could use scriptlets
to iterate over the errors of a domain object and output them explicitly, but that’s work that Grails can do
for you. Just to recap how validation works, take a look at the state diagram shown in Figure 5-1.

Create

new Album

Constraints?

Errors?

Persist

Instance

No

No

validate()

save()title = null

year = null

genre = null

The hasErrors Tag

Since errors do occur, it is often useful to display information conditionally. To this end, Grails provides a
<g:hasErrors> tag that supports the following attributes:

•	 bean: a bean instance to inspect for errors

•	 ield: the name of the field to check for errors

•	 model: an alternative to specifying a bean; an entire model (map) can be checked

You’ll recall that you have already seen the <g:hasErrors> tag used as a method, but it is also equally
applicable as a tag. Interestingly, if no attributes are specified whatsoever, the tag will scan the entire
request scope for beans and check each object found for errors. Since the <g:hasErrors> tag is often used
in conjunction with <g:eachError>, we’ll cover that next, followed by an example.

The eachError Tag

If a bean instance does have errors, it is useful to iterate over them and display each in turn. This can be
done simply with the <g:eachError> tag, which takes attributes identical to those expected by the
<g:hasErrors> tag.

Listing 5-30 demonstrates how to use the hasErrors and eachError tags to generate a list of error
messages for an Album instance.

Figure 5-1. Validation state diagram

http://grails.org/

CHAPTER 5 n UNDERSTANDING VIEWS

122

Listing 5-30. Displaying Errors

<g:hasErrors bean="${album}">
 <ul class="errors">
 <g:eachError bean="${album}">
 ${it.defaultMessage}
 </g:eachError>

</g:hasErrors>

In this instance, <g:hasErrors> checks whether there are any errors in the first place, and if there are, it
creates an HTML list. These errors are then iterated over via the <g:eachError> tag, which creates the list
bullets using the default message. The default messages for validation errors can be found in the grails-
app/il8n/message.properties message bundle.

If a list is all that is required, Grails makes it even easier to display errors via the <g:renderErrors> tag,
which encapsulates everything you’ve just seen. Essentially, it takes the same arguments as the
<g:eachError> tag, as well as an optional as attribute, which allows you to specify what to render the errors
as. Listing 5-29 shows how to render the errors as a simple HTML list:
<g:renderErrors bean="${album}" as="list" />

As noted previously, the examples shown so far use the default message. Clearly, the default message
is not always what is desired, and it is often useful to provide specific messages for each property within a
domain class. This is where the <g:message> tag comes into play, with support from Grails for
internationalization (i18n). Internationalization is covered in detail in Chapter 7.

Paginating Views
Rendering lists of data in a web application is a common thing to do. Grails provides an easy-to-use
mechanism for retrieving data from the database (GORM) and simple mechanisms for rendering the data
(GSPs and GSP tags).

Web applications often serve as a front end to a database that may contain large volumes of data. The
application may need to provide mechanisms for the user to manage navigating through all the data. For
example, the gTunes application may contain thousands of artists, albums, and songs. A page that lists all
the albums may be overwhelming and difficult for the user to work with (see Figure 5-2).

123

CHAPTER 5 n UNDERSTANDING VIEWS

Figure 5-2 represents what a user who requested a list of all the albums in the system that belong to
the Rock genre might see. This very long page includes several hundred albums. An argument could be
made that too much data is displayed on a single page. What if there were thousands of albums? Hundreds
of thousands of albums? Clearly, it would not make sense to present all those albums to the user on a
single page.

The gTunes application needs to be smart about presenting manageable lists of data to the user.
Instead of displaying hundreds or thousands of albums in a single list, maybe the application should
display only five or ten. If the application displays only five or ten albums on the page, then the application
also needs to provide a mechanism for the user to navigate around the larger virtual list to view the rest of
the albums five or ten at a time. Figure 5-3 represents a much more manageable interface.

Figure 5-2. A long list of albums

CHAPTER 5 n UNDERSTANDING VIEWS

124

The list in Figure 5-3 includes only ten albums. The view provides mechanisms for navigating over the
larger virtual list, which includes all the albums in this genre. This approach yields a much better user
experience, especially for scenarios where the user may be overwhelmed with large sets of data.

Since some complexity is involved in generating pagination controls like these, the application needs
to do several things: (1) retrieve smaller amounts of data from the database for each view; (2) provide
support for requesting the batch of records that fall immediately before or immediately after the current
batch; (3) provide a mechanism for jumping straight to an area of the list, as opposed to navigating
through the larger list a single page at a time; (4) know the total number of records in the larger list. All
these things normally involve writing a lot of code.

The good news is that Grails provides a really simple mechanism for managing all that. That
mechanism is a GSP tag called paginate. The paginate tag manages a lot of the tedious work that would
otherwise be required in order to provide UI elements for navigating over large lists of data.

The GSP responsible for rendering this list is in grails-app/views/store/genre.gsp. That page
includes the markup shown in Listing 5-31.

Listing 5-31. The genre.gsp <h1>Online Store</h1>

<h1>Online Store</h1>

<h2>Genre: ${genre.encodeAsHTML()}</h2>
<table border="0" class="albumsTable">
 <tr>
 <th>Artist</th>
 <th>Album</th>
 <th>Year</th>
 </tr>
 <g:each var="album" in="${albums}">
 <tr>

Figure 5-3. A paginated list of albums

125

CHAPTER 5 n UNDERSTANDING VIEWS

 <td>${album.artist.name}</td>
 <td><g:link action="show"
 controller="album"
 id="${album.id}">${album.title}</g:link>
 </td>
 <td>${album.year}</td>
 </tr>
 </g:each>

</table>
<div class="paginateButtons">
 <g:paginate controller="store"
 action="genre"
 params="[name:genre]"
 total="${totalAlbums}" />
</div>

The markup represented there renders an HTML table containing a header row and a row for each of
the elements in the albums collection. Notice the use of the paginate tag at the bottom of Listing 5-30. That
is all the code required in the GSP to render the pagination controls. The paginate tag takes care of all the
tedious work involved in generating the “Previous” and “Next” links, all of the links that support jumping
to a particular page, and all of the appropriate request parameters associated with each of those links. All
is handled by this single call to a GSP tag. The whole thing could barely be simpler!

The paginate tag is generating a number of links. The controller and action parameters tell the
paginate tag where each of those links should submit. In this particular case, all the links submit to the
genre action in the StoreController. If all the links reference the same controller action, you might wonder
how the application knows the difference between the user clicking one link as opposed to another. The
answer has to do with the fact that the paginate tag tacks a number of request parameters on the end of
each link; those request parameters are used by the controller action. For example, the “7” link points to
the URL /store/genre?offset=60&max=10&name=Rock. The “8” link points to the URL /store/genre?offset=
70&max=10&name=Rock. Notice that those links each include the same value for the max and name parameters,
but they include a different value for the offset parameter. That offset parameter is an important part of
the request, because through it the controller will know what page of data should be returned when the
user clicks one of those links. Let’s take a look at the relevant controller action.

Listing 5-32 includes the code that is in the genre action in the StoreController.

Listing 5-32. The genre Action

def genre() {
 def max = Math.min(params.int('max') ?: 10, 100)
 def offset = params.int('offset') ?: 0

 def total = Album.countByGenre(params.name)
 def albumList = Album.withCriteria {
 eq 'genre', params.name
 projections {
 artist {
 order 'name'
 }
 }
 maxResults max

CHAPTER 5 n UNDERSTANDING VIEWS

126

 irstResult offset
 }
 return [albums:albumList,
 totalAlbums:total,
 genre:params.name]
 }

n Note The query whose code is in Listing 5-32 uses the Hibernate Criteria API, whose general behavior will be

described next. The Criteria API is discussed in detail in the “Criteria Queries” section of Chapter 10.

The name request parameter is used in both of the previous queries. The first query is necessary to
count the number of albums in the database that belong to a certain genre. The second query actually
retrieves a list of albums. That second query does not retrieve all the albums that belong to a certain genre
but only a subset of at most ten of those albums.

For example, imagine there is a list of 1,000 albums, and each of them has an index associated with it
starting with 0 and running through 999. When a request is sent to the /store/genre?offset=60&max=10&na
me=Rock URL, the call to the Album.withCriteria(...) method will return ten of those albums, starting
with the Album at index 60. The max parameter represents the maximum number of albums that should be
returned.

Notice that the first line in the genre action assigns a default value of 10 to max if no max request
parameter is found. The int method on the params object accepts a string parameter, which represents the
name of a request parameter. If the request parameter exists, its value will be converted to an int and
returned. If the request parameter does not exist or if it cannot be converted to an int, then the method
returns null. If a max request parameter is found and the value is greater than 100, the system is falling
back to a max of 10. Displaying more than 100 albums per page would defeat the purpose of having the
pagination support in place.

The offset parameter represents the point in the larger list at which this list of ten should begin. If no
offset request parameter is supplied, the system defaults the value to 0, or the beginning of the list.

The map of data being returned by the genre action includes not only the list of albums but also values
for totalAlbums and genre, each of which is used in genre.gsp as a parameter to the paginate tag. All of this
needs to be kept in sync as part of the interaction between the controller action and the GSP.

The paginate tag supports a number of arguments. Table 5-2 lists those arguments.

Table 5-2. Arguments Supported by the paginate Tag

Argument Description

total Total number of elements in the larger list

controller Name of the controller to link to

action Name of the action to invoke

params Map of request parameters

offset Offset to be used if params.offset is not specified

max Maximum number of elements per page

prev Text for the “Previous” link

next Text for the “Next” link

id ID to use in links

maxsteps Number of steps displayed for pagination (the default is 10)

127

CHAPTER 5 n UNDERSTANDING VIEWS

All of the parameters supported by the paginate tag are optional except for the total parameter.
The default scaffolded list views in a Grails application include support for paginating the list and

defining a simple domain class, like the Car class shown in Listing 5-33.

Listing 5-33. A Car Domain Class

package com.demo

class Car {
 String make
 String model
}

Generate scaffolding for the Car class, and you will see that the default list action in the CarController
and the default grails-app/view/car/list.gsp include support for paginating the list of cars. Listing 5-34
shows the relevant part of the GSP.

Listing 5-34. grails-app/view/car/list.gsp

<div id="list-car" class="content scaffold-list" role="main">
 <h1><g:message code="default.list.label" args="[entityName]" /></h1>
 <g:if test="${lash.message}">
 <div class="message" role="status">${lash.message}</div>
 </g:if>
 <table>
 <thead>
 <tr>
 <g:sortableColumn property="make" title="${message(code: 'car.make.
label', default: 'Make')}" />
 <g:sortableColumn property="model" title="${message(code: 'car.model.
label', default: 'Model')}" />
 </tr>
 </thead>
 <tbody>
 <g:each in="${carInstanceList}" status="i" var="carInstance">
 <tr class="${(i % 2) == 0 ? 'even' : 'odd'}">

 <td><g:link action="show" id="${carInstance.id}">${ieldValue(bean:
carInstance, ield: "make")}</g:link></td>

 <td>${ieldValue(bean: carInstance, ield: "model")}</td>

 </tr>
 </g:each>
 </tbody>
 </table>
 <div class="pagination">
 <g:paginate total="${carInstanceTotal}" />
 </div>
</div>

CHAPTER 5 n UNDERSTANDING VIEWS

128

The only attribute specified in this call to the paginate tag is the required total attribute. Notice that
in this case the value of the total attribute is simply the total number of cars in the database. This is a little
bit different from the example shown earlier, where the value of the total attribute was not necessarily
that of the whole number of albums in the database but was the number of albums in the database that
belong to a particular genre.

Listing 5-35 shows the list action in the CarController.

Listing 5-35. Pagination Support in the CarController

class CarController {

 def list(Integer max) {
 params.max = Math.min(max ?: 10, 100)
 [carInstanceList: Car.list(params), carInstanceTotal: Car.count()]
 }

 ...
}

The default list action in the CarController will assign a value of 10 to the max request parameter if a
value is not supplied.

The application may take control over the order of the cars, using any number of techniques
supported by GORM. The simplest solution for this particular case is including the order clause in the
dynamic method, as shown in Listing 5-36.

Listing 5-36. Ordering Cars by Model Class CarController {

class CarController {

 def list(Integer max) {
 params.max = Math.min(max ?: 10, 100)
 [carInstanceList: Car.listOrderByModel(params),
 carInstanceTotal: Car.count()]
 }

 ...
}

With all of that in place, if the database includes more than ten cars, then the pagination support in
the view will kick in, as shown in Figure 5-4.

129

CHAPTER 5 n UNDERSTANDING VIEWS

Rendering GSP Templates
A GSP template is a special GSP file that contains only a fragment of a page. A GSP template can contain
markup that is rendered from various places in an application. In such a case, the template would facilitate
reuse. A template can be extracted from a page to simplify the containing page by breaking it down into
smaller, more manageable pieces. Whatever the reason for isolating part of a page into a reusable
template, Grails provides a really simple mechanism for rendering the template.

A template can contain just about anything that might appear in a normal GSP. One thing that makes
a template special is its file name. GSP templates must be defined in a file whose name begins with an
underscore. For example, a template that represents a list of albums might be defined in grails-app/
views/album/_albumList.gsp.

The render tag can be used in a GSP to render a GSP template. This tag accepts an attribute, template,
that represents the name of the template to be rendered. For example, to render the template in the
grails-app/views/album/_albumList.gsp file, you would specify /album/albumList as the value of the
template attribute when calling the render tag, as shown in Listing 5-37.

Listing 5-37. Rendering the albumList Template

<div id="artists">
<g:render template="/artist/artistList"/>
</div>

Notice that the template file name contains an underscore but the name of the template does not.
Rendering a template in a GSP is very much like taking the contents of the GSP template and putting

them inline in the containing GSP in place of calling the render tag.
Figure 5-5 shows an updated version of the gTunes application.

Figure 5-4. Paginating a list of cars

CHAPTER 5 n UNDERSTANDING VIEWS

130

Notice the three tabs across the top of the screen representing the latest albums, latest songs, and
newest artists. The markup required to generate the contents of each tab would clutter the GSP. Rather
than embed the markup for those tabs in the views/store/shop.gsp file, you can pull it all out into a series
of templates and render them from shop.gsp. Using templates to handle this will yield an application
easier to maintain than one with monolithic unmodular GSPs.

Listing 5-38 shows what those templates might look like.

Listing 5-38. GSP Templates for the Top Five Lists

<!-- grails-app/views/artist/_artistList.gsp -->
<ul class="list">
 <g:each in="${artists?}" var="artist">
 <li class="icon">
 <g:link controller="store" action="shop">
 <g:img dir="images/icons" ile="artist.png" />
 ${artist?.name}
 </g:link>

 </g:each>

<!-- grails-app/views/album/_albumList.gsp -->

Figure 5-5. Updated gTunes

131

CHAPTER 5 n UNDERSTANDING VIEWS

<ul class="list">
 <g:each in="${albums?}" var="album">
 <li class="icon">
 <g:link controller="album" action="show" id="${album?.id}">
 <g:img dir="images/icons" ile="album.png" />
 ${album.title}
 </g:link>

 </g:each>

<!-- grails-app/views/song/_songList.gsp -->
<ul class="list">
 <g:each in="${songs?}" var="song">
 <li class="icon">
 <g:link controller="store" action="shop">
 <g:img dir="images/icons" ile="song.png" />
 ${song.title}
 </g:link>

 </g:each>

n Note These are very simple templates that render unordered lists of strings. In Chapter 8 you will develop these

templates to contain some really slick Ajax-driven behavior. At that point, the value of knowing how to isolate markup into

templates will be even greater.

Notice that each template is iterating over a different collection (artists, albums, songs). Those
collections are data that must be passed into the template when the template is rendered. The way to pass
data into a GSP template is to specify an attribute, model, when calling the render tag. The value of the
model attribute should be a map containing all the data being passed in to the template. Listing 5-39 shows
the templates being rendered from the grails-app/views/store/shop.gsp and the appropriate data being
passed to each.

Listing 5-39. Rendering Templates from shop.gsp

<div id="top5Panel" class="top5Panel">
 <ul id="tabs" class="tabs clearix">
 <li class="selected">Latest Albums
 Latest Songs
 Newest Artists

 <div id="albums" class="top5Item">
 <g:render template="/album/albumList"
 model="[albums: top5Albums]"></g:render>
 </div>

CHAPTER 5 n UNDERSTANDING VIEWS

132

 <div id="songs" class="top5Item hide">
 <g:render template="/song/songList"
 model="[songs: top5Songs]"></g:render>
 </div>

 <div id="artists" class="top5Item list hide">
 <g:render template="/artist/artistList"
 model="[artists: top5Artists]"></g:render>
 </div>
</div>

The templates rendered here are /album/albumList, /song/songList, and /artist/ artistList. Each is
a fully qualified reference to a template. When a template name is fully qualified, the root refers to the
grails-app/views/ directory; so /artist/artistList refers to the template defined in the grails-app/
views/artist/_artistList.gsp file. Template references may be defined with a relative path as well.
Relative template paths are paths that do not begin with a forward slash.

For example, if instead of referring to /artist/artistList, the shop.gsp referred to the relative
artistList template, then Grails would look for the template in the same directory where shop.gsp lives.
Relative references can also include a directory structure. If the artistList template were defined in
grails-app/views/store/myTemplates/_artistList.gsp, then the grails-app/views/store/shop.gsp page
could refer to the template as myTemplates/artistList, since the myTemplates directory is in the same one
as shop.gsp.

Each of the calls to the earlier render tag includes a map of data being passed as the model attribute.
For shop.gsp to have that data, the controller action that rendered shop.gsp needs to supply those values.
In this case, the controller action is the shop action in StoreController, as shown in Listing 5-40.

Listing 5-40. The shop Action in StoreController

package com.gtunes

class StoreController {

 def shop() {
 def genreList =
 new DetachedCriteria(Album).distinct('genre').list()
 [top5Albums: Album.list(max:5, sort:"dateCreated", order:"desc"),
 top5Songs: Song.list(max:5, sort:"dateCreated", order:"desc"),
 top5Artists: Artist.list(max:5, sort:"dateCreated", order:"desc"),
 genres: genreList.sort()]
 }

 // ...
}

Notice that the controller action is returning values for albums, songs, and artists. The values are lists
containing the five most recently created albums, songs, and artists.

These templates have been defined to render these “Top 5” lists in the shop.gsp, but they are reusable
templates that can be used anywhere that the application needs to render lists of albums, artists, or songs.
It is commonplace for web applications to render the same pieces of information on a lot of pages. When
you see the same elements showing up in multiple places, consider pulling that markup out of your GSPs
and putting it in a reusable template.

133

CHAPTER 5 n UNDERSTANDING VIEWS

Creating Custom Tags
Custom tags in JSP constitute a wonderfully powerful feature. They provide the ability to cleanly separate
concerns between the view and controller logic. In MVC terms, they can be thought of as view helpers.
Unfortunately, for all their wonderful attributes, they are tremendously complicated to develop. The
reasons for this are understandable, because JSP tags attempt to account for every possible tag creation
scenario, including the following:

•	 simple tags that have attributes only but no body

•	 body tags that have both attributes and a body

•	 tags that have a parent-child relationship

•	 nested tags and a complete API for finding tag ancestors

The implication, however, is that the API for creating JSP custom tags is robust, to say the least. To
compound matters, additional information is required about the tag in a tag library descriptor (TLD) file
that is loaded on application startup. This makes tags difficult to reload without a server restart, because
the application server utilizes this file to configure the tag library. As you can imagine, all this is not very
agile; rather, it is a complete contradiction to the code-by-convention approach.

From a user’s perspective, developers rarely go to the effort of creating tags themselves, and typically the
ones used tend to be those provided by the frameworks and specifications, such as JSTL. This is rather a
shame, because the concept is sound, though the implementation is not.

So what can Grails and, more specifically, GSP provide to make creating tags simpler? Clearly,
supporting every tag type under the sun would result in a complicated API, much like that in JSP. In reality,
the most commonly used tags can be broken down into three categories:

•	 Simple tags: tags that have attributes but no body

•	 Logical tags: those that have a body that executes conditionally

•	 Iterative tags: tags that loop and execute the body of the tag one or more times

You will find that the majority of tags you come across fall into one of these categories. Since Grails is
all about making the common cases simple, creating a simplified API for these tag types seems only
logical. The question is, why create a new API at all? This is where Groovy and the power of closures start to
shine.

Creating a Tag Library
Having already seen quite a few Grails tags throughout this discussion, you may well have already browsed
the source and become familiar with what a Grails tag is all about. Whatever the case, it is important to
understand how to create a tag library from scratch.

It is generally good practice to place tags inside a library that encapsulates their general function,
much as a package does in Java.

A tag library is quite simply a class that ends with the convention TagLib in the class name and resides
snugly in the grails-app/taglib directory. Like the other Grails artifacts you’ve seen, a convenience target
exists for creating tag libraries. To create a new tag library for the gTunes application, you can run the
grails create-tag-lib target (see Listing 5-41).

CHAPTER 5 n UNDERSTANDING VIEWS

134

Listing 5-41. Creating the Gtunes Tag Library $ grails $ grails create-taglib

$ grails create-tag-lib com.gtunes.Gtunes
| Created ile grails-app/taglib/com/gtunes/GtunesTagLib.groovy
| Created ile test/unit/com/gtunes/GtunesTagLibTests.groovy

To see how to go about making a tag library, in the next section you’ll look at a basic tag. In Chapter 8
you’ll see how to write a custom tag library, one that will add some snazzy functionality to the gTunes
application for rendering album cover art.

Custom Tag Basics
First, let’s look at the basics. A tag is essentially a closure property that takes two arguments: the tag
attributes as a java.util.Map and the body of the tag as a closure (see Listing 5-42).

Listing 5-42. An Example Tag

package com.gtunes

class GtunesTagLib {

 def repeat = { attrs, body ->
 // retrieve the 'times' attribute and convert it to an int
 int n = attrs.int('times')

 // render the body 'n' times, passing a 1 based
 // counter into the body each time
 n?.times { counter ->
 out << body(counter + 1)
 }
 }
}

This example defines a tag called repeat, which looks for an attribute called times, which it attempts
to convert to an integer; it then uses Groovy’s built-in times method to execute the body multiple times.

As mentioned previously, the body is a closure and therefore can be invoked like a method. In
addition, you pass the number of the current iteration, as the variable counter, to the body as the first
argument to the closure call. Why is this useful? It means that the number is available as the default it
argument in the tag’s body. As an example, let’s try the new tag in a GSP view, as in Listing 5-43. Note that
the name of the tag in the markup matches the property name defined in the library shown in Listing 5-42.

Listing 5-43. Using the repeat Tag

<g:repeat times="3">
 Hello number ${it}
</g:repeat>

As you can see, the tag uses the default it argument to reference the value passed when the tag calls
the body closure. The resulting output will be the following:

135

CHAPTER 5 n UNDERSTANDING VIEWS

Hello number 1
Hello number 2
Hello number 3

All the tags that are bundled with Grails are defined in the g namespace. By default, all your own
custom tags are also put in the g namespace. To avoid naming conflicts with built-in tags and with tags
that may be installed into a project as part of a plug-in, you should define a namespace for your own tag
libraries. Defining a namespace for a tag library is as simple as declaring a static property called namespace
in the taglib class and assigning that property a String value, as shown in Listing 5-44.

Listing 5-44. Defining a Custom Namespace for a Tag Library class GtunesTagLib {

package com.gtunes

class GtunesTagLib {

 static namespace = 'gt'

 def repeat = { attrs, body ->
 // retrieve the 'times' attribute and convert it to an int
 int n = attrs.int('times')

 // render the body n times, passing a 1 based
 // counter into the body each time
 n.times { counter ->
 out << body(counter + 1)
 }
 }
}

With that namespace property in place, all the tags defined in the GTunesTagLib are now in the gt
namespace. Instead of referring to <g:repeat/>, GSPs should now refer to <gt:repeat/>.

Not only are Grails tags amazingly concise as compared with their JSP brethren, but it is important to
note that all changes to tags can be reloaded at runtime, just as with controllers. With no need to configure
tag library descriptors or restart servers, Grails tags become a far more interesting and agile proposition.

Testing a Custom Tag
As is true for most of your code in a Grails application, the code in custom tag libraries should be tested.
Testing a tag library can be tricky. The test needs a way to invoke a tag, provide parameters, provide a body,
and inspect the effect of invoking the tag. Fortunately, Grails provides a really slick mechanism for
managing all of that. Unit tests for custom tag libraries should use the @TestFor annotation to specify
which tag library is being tested. Listing 5-45 contains a unit test for the GtunesTagLib class defined earlier.

Listing 5-45. Testing GtunesTagLib

// test/unit/com/gtunes/GtunesTagLibTests.groovy
package com.gtunes

CHAPTER 5 n UNDERSTANDING VIEWS

136

import grails.test.mixin.*
import org.junit.*

@TestFor(GtunesTagLib)
class GtunesTagLibTests {

 void testRepeatTag() {
 // deine a snippet of markup to evaluate
 def template = '<gt:repeat times="3">Number ${it}
</gt:repeat>'

 // evaluate the snippet
 def result = applyTemplate(template)

 // make sure the result contains what we expect
 def expected = 'Number 1
Number 2
Number 3
'
 assert expected == result
 }
}

The testRepeatTag() method here renders a block of markup that invokes the repeat tag. The way to
do this is to pass a string, representing the markup to be evaluated, as an argument to the applyTemplate
method. The applyTemplate method returns a string that represents the result of evaluating the string
that was passed as an argument. The assertion at the bottom of the test method checks that the expected
result was rendered.

If the string being evaluated is dynamically driven by a model, the model may be passed as a second
argument to the applyTemplate method. Listing 5-46 shows an example of a model supplied to the
applyTemplate method.

Listing 5-46. Testing GtunesTagLib with a Model

// test/unit/com/gtunes/GtunesTagLibTests.groovy
package com.gtunes

import grails.test.mixin.*
import org.junit.*

@TestFor(GtunesTagLib)
class GtunesTagLibTests {

 void testRepeatTagWithAModel() {
 // deine a snippet of markup to evaluate
 def template =
 '<gt:repeat times="${someNumber}">Number ${it}
</gt:repeat>'

 // evaluate the snippet
 def result = applyTemplate(template, [someNumber: 2])

 // make sure the result contains what we expect
 def expected = 'Number 1
Number 2
'
 assert expected == result

137

CHAPTER 5 n UNDERSTANDING VIEWS

 // evaluate the snippet with a different model
 result = applyTemplate(template, [someNumber: 4])

 // make sure the result contains what we expect
 expected = 'Number 1
Number 2
Number 3
Number 4
'
 assert expected == result
 }
}

Summary
In this chapter you learned about the advanced view technology in Grails, about GSP, and about the array
of powerful tags that come packaged with it. You also learned how to build and test your own GSP tags, and
you further extended your knowledge of Groovy mocking in the process. In short, a lot of ground was
covered, and you should now have a clear idea of how powerful GSP is. What with GPath, an expression
language, and dynamic tag libraries, GSP has a lot to offer in terms of increasing your productivity and
enjoyment.

139

n n n

CHAPTER 6

Mapping URLs

Grails provides working URL mappings right out of the box. The default URL mapping configuration is yet
one more place that the Grails framework leverages the powerful idea of convention over configuration to
lessen the burden put on the application developer. Sometimes, though, you will want to deviate from the
convention and define your own custom mappings. For example, you may want to create more descriptive
and human-readable URLs. Grails gives you the ability to easily define these custom URL mappings.

Defining application-specific URL mappings is something that comes up all the time while building
web applications. The technique for configuring URL mappings in Grails is really powerful while
remaining very simple to work with. Like a lot of configuration options in a Grails application, configuring
custom URL mappings involves writing a little bit of Groovy code, and that’s it. In particular, no XML
configuration files are involved. This chapter will describe the flexible URL mapping system provided by
Grails and demonstrate how to manage both forward and reverse URL lookups, how to map requests to
controller actions or views, and how to map exceptions to controller actions and views, as well as
demonstrating how to test all of these actions.

Understanding the Default URL Mapping
The default URL mapping configuration in a Grails app is simple. The first part of the URL corresponds to
the name of a controller, and the second, optional part of the URL corresponds to the name of an action
defined in that controller. For example, the /store/index URL will map to the index action in the
StoreController. Specifying the action name is optional, so if the action name is left out of the URL, then
the default action for the specified controller will be executed. Default controller actions are described in
detail in the “Setting the Default Action” section of Chapter 4. Finally, the last piece of the URL is another
optional element that represents the value of a request parameter named id. For example, the /album/
show/42 URL will map to the show action in the AlbumController with a request parameter named id that
has a value of 42.

The definition of the default mapping is in grails-app/conf/UrlMappings.groovy. Listing 6-1 shows
what UrlMappings.groovy looks like by default.

Listing 6-1. Default grails-app/conf/UrlMappings.groovy

class UrlMappings {
 static mappings = {
 "/$controller/$action?/$id?"{
 constraints {
 // apply constraints here

CHAPTER 6 n MAPPING URLS

140

 }
 }
 "500"(view:'/error')
 }
}

The key to this mapping is the string "/$controller/$action?/$id?". Notice that the $action and $id

elements are both followed by a question mark. The question mark indicates an optional piece of the URL.
The $controller element has no question mark, so it is a required piece of the URL. A mapping can define
any number of optional elements. If a mapping does contain any optional elements, they must all appear
at the end of the pattern.

n Note The constraints block in the default mapping is empty. The constraints block is optional and will be

discussed in the “Applying Constraints to URL Mappings” section later in this chapter. The mapping that begins with

“500” will be discussed later in the “Mapping HTTP Response Codes” section.

Including Static Text in a URL Mapping
In the default mapping, each of the elements in the URL is a variable. Variable elements are prefixed with a
$ sign. A URL mapping can contain static elements as well. A static element in a URL mapping is simply
text that must be part of the URL in order for a particular mapping to apply. See Listing 6-2 for an example
of a mapping that contains static text.

Listing 6-2. Including Static Text in a Mapping

class UrlMappings { static mappings = {
 "/showAlbum/$controller/$action?/$id?" {
 constraints {
 // apply constraints here
 }
 }
}

This mapping will match URLs such as /showAlbum/album/show/42 and /showAlbum/album/list but
will not match a URL such as /album/show/42 since that one does not begin with /showAlbum.

Removing the Controller and Action Names from the URL
The controller and action names do not need to be part of the URL. These special elements can be
eliminated from the URL pattern and specified as properties of the mapping. As shown previously, the
default mapping supports a URL such as /album/show/42, which will map to the show action in the
AlbumController. An application can choose to support a URL such as /showAlbum/42 to access that same
controller action. The code in Listing 6-3 includes a mapping to support this.

141

CHAPTER 6 n MAPPING URLS

Listing 6-3. Specifying the Controller and Action as Properties of the Mapping

class UrlMappings {
 static mappings = {
 "/showAlbum/$id" {
 controller = 'album'
 action = 'show'
 }
 // ...
 }
}

The mapping engine in Grails provides support for an alternative syntax to express the same mapping.
Which technique is chosen is a matter of personal preference. Listing 6-4 shows the alternative syntax.

Listing 6-4. Specifying the Controller and Action as Parameters to the Mapping

class UrlMappings {
 static mappings = {
 "/showAlbum/$id"(controller:'album', action:'show')
 // ...
 }
}

Embedding Parameters in a Mapping
Of course, Grails supports request parameters using the standard HTTP request parameter notation. A
URL such as /showArtist?artistName=Rush will work if there is a mapping like that shown in Listing 6-5.

Listing 6-5. A Mapping for the /showArtist URL

class UrlMappings {
 static mappings = {
 "/showArtist"(controller:'artist', action:'show')
 // ...
 }
}

Accessing /showArtist?artistName=Rush would map to the show action in the ArtistController, and
a request parameter named artistName would be populated with the value Rush. Notice that the
artistName parameter is not represented anywhere in the mapping. This is because the mapping applies
to the /showArtist URL, and therefore any arbitrary parameters can be passed to that URL without
affecting the mapping.

Although this approach works, it has its drawbacks. One drawback is that the URL is just ugly, and it
would continue to get uglier as more request parameters were introduced.

The Grails URL mapping engine provides a much slicker solution to support custom URLs that have
request parameters embedded in the URL. Instead of /showArtist?artistName=Rush, let’s support a URL
such as /showArtist/Rush. The mapping in Listing 6-6 works perfectly for this.

CHAPTER 6 n MAPPING URLS

142

Listing 6-6. Embedding a Request Parameter in the URL

class UrlMappings {
 static mappings = {
 "/showArtist/$artistName"(controller:'artist', action:'show')
 // ...
 }
}

With this mapping, URLs such as /showArtist/Tool and /showArtist/Cream will be mapped to the
show action in the ArtistController with a request parameter named artistName, and the value of that
parameter will be whatever is in the last part of the URL; in the previous examples, these were the Tool and
Cream values. The action in the AlbumController would have access to the request parameter and could use
the parameter in whatever way is appropriate. See Listing 6-7.

Listing 6-7. Accessing a Request Parameter in the Controller Action

class ArtistController {
 def show() {
 def artist = Artist.indByName(params.artistName)
 // do whatever is appropriate with the artist...
 }
 }

A little snag that must be dealt with here is that the artist names may include characters that are not
valid in a URL. One technique that might be used to get around the snag is to URL-encode the parameters.
This technique would support accessing a band named Led Zeppelin with a URL such as /showArtist/
Led%20Zeppelin. Notice that the space in the name has been replaced with %20. Yuck! Let’s make an
application decision here and say that we’ll encode artist names by replacing spaces with underscores.
This will lead to a friendlier-looking URL: /showArtist/ Led_Zeppelin. The URL mapping doesn’t really
care about the value of the parameter, so it does not need to be changed to support it. However, the
controller action will need to be updated, since the underscores in the query parameter must be replaced
with spaces. Listing 6-8 represents an updating of the code in Listing 6-7 to deal with the underscores.

Listing 6-8. Decoding the Request Parameter to Replace Underscores with Spaces

class ArtistController {
 def show() {
 def nameToSearchFor = params.artistName.replaceAll('_', ' ')
 def artist = Artist.indByName(nameToSearchFor)
 // do whatever is appropriate with the artist...
 }
}

n Note This encoding/decoding problem exists even if the request parameter is not embedded in the URL. For

example, something like /showArtist?artistName=Led%20Zeppelin or /showArtist?artistName=Led_

Zeppelin would be necessary to deal with the space in the parameter value.

143

CHAPTER 6 n MAPPING URLS

Specifying Additional Parameters
In addition to embedding parameters in the URL, arbitrary request parameters may be specified as
properties of a particular mapping that never show up in the URL. Listing 6-9 includes an example.

Listing 6-9. Specifying Additional Request Parameters

class UrlMappings {
 static mappings = {
 "/showArtist/$artistName"(controller:'artist', action:'show') {
 format = 'simple'
 }

 "/showArtistDetail/$artistName"(controller:'artist', action:'show') {
 format = 'detailed'
 }
 // ...
 }
}

With this mapping in place, a request to the URL /showArtist/Pink_Floyd would map to the show

action in the ArtistController, and the request would include parameters named artistName and format

with the values Pink_Floyd and simple, respectively. A request to the URL /showArtistDetail/Pink_Floyd

would map to the same action and controller, but the format request parameter would have a value of
detailed.

Mapping to a View
Sometimes you might want a certain URL pattern to map directly to a view. This is useful when the view
does not require any data to be passed in and no controller action is required. In such a case, you can
define a URL mapping that is associated with a view rather than with a controller action. The syntax is the
same as mapping to an action except that a value must be specified for the view property instead of the
action property. Listing 6-10 demonstrates how to do this.

Listing 6-10. Mapping to a View

class UrlMappings { static mappings = {
"/"(view:'/welcome')
// ... } }

This mapping will handle all requests to the root of the application (/) by rendering the GSP at grails-
app/views/welcome.gsp. The mapping engine also allows a mapping to specify a view that belongs to a
particular controller. For example, Listing 6-11 demonstrates how to map the /ind URL to grails-app/
views/search/query.gsp.

Listing 6-11. Mapping to a View for a Particular Controller

class UrlMappings { static mappings = {
"/ind"(view:'query', controller:'search')
// ... } }

CHAPTER 6 n MAPPING URLS

144

Remember that no controller action is being executed for this mapping. The controller is being
specified only so the framework can locate the appropriate GSP.

Applying Constraints to URL Mappings
The URL mapping engine provides a really powerful mechanism for applying constraints to variables
embedded in a URL mapping. The constraints are similar those applied to domain objects. See the
“Validating Domain Classes” section in Chapter 3 for information about domain constraints. Applying
constraints to variables in a URL mapping can greatly simplify the job of weeding out certain kinds of
invalid data that would otherwise have to be dealt with in an imperative manner in a controller or service.

Consider a blogging application written in Grails. A typical format for a URL in a blogging system
might be something like /grailsblogs/2009/01/15/new_grails_release. To support a URL like that, you
might define a mapping as is done in Listing 6-12.

Listing 6-12. A Typical Blog-Type URL Mapping

class UrlMappings {
 static mappings = {
 "/grailsblogs/$year/$month/$day/$entry_name?" {
 controller = 'blog'
 action = 'display'
 constraints {
 // apply constraints here
 }
 }
 // ...
 }
}

With such a mapping in place, the URL /grailsblogs/2009/01/15/new_grails_release would map to
the display action in the BlogController with request parameters named year, month, day, and entry_name

and the values 2009, 01, 15, and new_grails_release, respectively.
A problem with this mapping is that it will match not only a URL such as /grailsblogs/2009/01/15/

new_grails_release but also a URL such as /grailsblogs/grails/rocks/big/time. In this case, the
controller action would receive the value grails for the year, rocks for the month, and so on. Dealing with
a scenario like this would complicate the logic in the controller. A better way to manage it is to apply
constraints to the mapping that would let the framework know that grails is not a valid match for the year

parameter in the mapping, for example. The constraints specified in Listing 6-13 use regular expressions to
limit the year, month, and day parameters to match only those values that include the right number of
digits and only digits.

Listing 6-13. Applying Constraints to Mapping Parameters

class UrlMappings {
 static mappings = {
 "/grailsblogs/$year/$month/$day/$entry_name?" {
 controller = 'blog'
 action = 'display'
 constraints {
 year matches: /[0-9]{4}/
 month matches: /[0-9]{2}/

145

CHAPTER 6 n MAPPING URLS

 day matches: /[0-9]{2}/
 }
 }

 // ...
 }
}

As is the case with domain-class constraints, mapping parameters may have as many constraints
applied to them as necessary. All the constraints must pass in order for the mapping to apply.

n Note There is a small syntactical difference between the way constraints are specified in a URL mapping and

how they are specified in a domain class. In a domain class, a constraints property is defined and assigned a value

that is a closure. In a URL mapping, you are calling a method named constraints and passing a closure as an

argument. This is why no equals sign is needed between constraints and the closure in a URL mapping but is needed

between constraints and the closure in a domain class.

Including Wildcards in a Mapping
You’ve seen how a mapping may contain static text as well as any number of variable parameters (optional
and required), and you’ve also seen how constraints may be applied to variable parameters. One more aid
to flexibility that you can use in a mapping definition is a wildcard. Wildcards represent placeholders in a
mapping pattern that may be matched by anything but do not represent information that will be passed as
request parameters. Wildcards in a mapping definition are represented by an asterisk (*). Listing 6-14
includes a mapping with a wildcard in it.

Listing 6-14. A Wildcard in a Mapping

class UrlMappings {
 static mappings = {
 "/images/*.jpg"(controller:'image')

 // ...
 }
}

This mapping will handle any request for a file under the /images/ directory that ends with the .jpg

extension. For example, this mapping will handle /images/header.jpg and /images/ footer.jpg, but it will
not match requests for .jpg files that may exist in some subdirectory under the /images/ directory. For
example, a request for something like /images/photos/president.jpg would not match. A double wildcard
can be used to match any number of subdirectories. Listing 6-15 shows a double wildcard mapping.

CHAPTER 6 n MAPPING URLS

146

Listing 6-15. A Double Wildcard in a Mapping

class UrlMappings {
 static mappings = {
 "/images/**.jpg"(controller:'image')
 // ...
 }
}

This mapping will match requests for things such as /images/header.jpg and /images/footer.jpg as
well as things such as /images/photos/president.jpg.

For some situations, it may be desirable for the value that matched the wildcard to be passed to the
controller as a request parameter. This is achieved by prepending a variable to the wildcard in the
mapping. See Listing 6-16.

Listing 6-16. A Double Wildcard with a Variable in a Mapping

class UrlMappings {
 static mappings = {
 "/images/$pathToFile**.jpg"(controller:'image')
 // ...
 }
}

In this case, the pathToFile request parameter would represent the part of the URL that matched the
wildcard. For example, a request for /images/photos/president.jpg would result in the pathToFile request
parameter having a value of photos/president.

Mapping to HTTP Request Methods
A URL mapping can be configured to map to different actions based on the HTTP request method.1 This
can be useful when building a system that supports RESTful APIs. For example, if a GET request is made to
the URL /artist/The_Beatles, then the controller may respond by generating a page that displays details
about the Beatles. If a DELETE request is made to the same URL, the controller may respond by attempting
to delete the Beatles and all of the band’s associated data (albums and so on). An application could deal
with all these requests in the same controller action by interrogating the request and reacting differently
based on the HTTP request method. Listing 6-17 shows what this might look like in the ArtistController.

Listing 6-17. Inspecting the HTTP Request Method in a Controller Action

class ArtistController {
 def actionName() {
 if(request.method == "GET") {
 // handle the GET
 } else if(request.method == "PUT") {
 // handle the PUT
 } else if(request.method == "POST") {
 // handle the POST
 } else if(request.method == "DELETE") {

1 See http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html for definitions of all the HTTP request
methods.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

147

CHAPTER 6 n MAPPING URLS

 // handle the DELETE
 }
 // ...
 }
}

This is tedious code and would likely be repeated in many places in your application. A better idea is
to configure a URL mapping that matches this URL and maps the request to different controller actions
based on the HTTP request method. See Listing 6-18 for an example.

Listing 6-18. Mapping to HTTP Request Methods

class UrlMappings {
 static mappings = {
 "/artist/$artistName" {
 controller = 'artist'
 action = [GET: 'show',
 PUT: 'update',
 POST: 'save',
 DELETE: 'delete']
 }

 // ...
 }
}

Note that the value assigned to the action property is, not the name of an action, but a map. The keys
in the map correspond to the names of HTTP request methods, and the values associated with the keys
represent the name of the action that should be invoked for that particular request method. If the mapping
is going to map those standard four HTTP request methods to those particular action names, then an
alternative, more concise syntax for expressing the same mapping may be used, as shown in Listing 6-19.

Listing 6-19. Mapping to HTTP Request Methods

class UrlMappings {
 static mappings = {
 "/artist/$artistName"(resource: "artist")
 // ...
 }
}

Mapping HTTP Response Codes
URL mappings may be defined for specific HTTP response codes. The default mapping includes a
mapping for the 500 response code (Internal Error).2 This mapping renders the /error view for any
internal error. This view is located at grails-app/views/error.gsp. This GSP renders stack information that
may be useful during development and debugging. Listing 6-20 represents the default error.gsp page.

2 See http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html for definitions of all the HTTP
response codes.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

CHAPTER 6 n MAPPING URLS

148

Listing 6-20. The Default grails-app/views/error.gsp Page

<body>
 <h1>Grails Runtime Exception</h1>
 <h2>Error Details</h2>
 <div class="message">
 Message: ${exception.message?.encodeAsHTML()}

 Caused by: ${exception.cause?.message?.encodeAsHTML()}

 Class: ${exception.className}

 At Line: [${exception.lineNumber}]

 Code Snippet:

 <div class="snippet">
 <g:each var="cs" in="${exception.codeSnippet}">
 ${cs?.encodeAsHTML()}

 </g:each>
 </div>
 </div>
 <h2>Stack Trace</h2>
 <div class="stack">
 <pre>
 <g:each in="${exception.stackTraceLines}">
 ${it.encodeAsHTML()}

 </g:each>
 </pre>
 </div>
</body>

You can add your own mappings for specific response codes. For example, if you want to map every
request for something that cannot be found to the default action in the StoreController, you can do so.
You can also map specific exception types to actions or views. Such custom mappings are shown in
Listing 6-21.

Listing 6-21. Custom Mapping for All 404 Response Codes

class UrlMappings {
 static mappings = {
 // 404s should be handled by the default
 //action in the store controller
 "404"(controller:'store')

 // IllegalArgumentExceptions should be handled by the
 // illegalArgument action in the errors controller
 "500"(controller: "errors", action: "illegalArgument",
 exception: IllegalArgumentException)

 // NullPointerException should be handled by the
 // nullPointer action in the errors controller
 "500"(controller: "errors", action: "nullPointer",
 exception: NullPointerException)

 // MyException should be handled by the
 // customException action in the errors controller

149

CHAPTER 6 n MAPPING URLS

 "500"(controller: "errors", action: "customException",
 exception: MyException)

 // all other exceptions should be handled by
 // the /errors/serverError view
 "500"(view: "/errors/serverError")

 // ...
 }
}

Taking Advantage of Reverse URL Mapping
You have seen how to support URLs such as /showArtist/Pink_Floyd instead of URLs such as /artist/
show/42. The support seen so far relates to handling a request to a URL. The other end of that interaction is
equally important. That is, you need a slick mechanism for generating links, one that takes advantage of
custom URL mappings. Fortunately, that mechanism is built into Grails and is as easy to work with as the
mapping mechanisms already seen.

The <g:link> GSP tag that is bundled with Grails is useful for generating links to certain controllers
and actions. See Listing 6-22 for a common use of the link tag.

Listing 6-22. The Link Tag

<td>
 <g:link action='show'
 controller='artist'
 id="${artist.id}">${artist.name}
 </g:link>
</td>

This tag will generate a link like Pink Floyd. That link to /artist/
show/42 is ugly. You would definitely prefer /showArtist/Pink_Floyd. The good news is that it is easy to get
the link tag to generate a link like the latter. You just tell the link tag what controller and action you want to
link to and supply all the necessary parameters that the custom mapping calls for. For example, see the
custom mapping in Listing 6-23.

Listing 6-23. A Mapping for the /showArtist/ URL

class UrlMappings {
 static mappings = {
 "/showArtist/$artistName"(controller:'artist', action:'show')
 // ...
 }
}

The link tag will generate a link that takes advantage of this mapping whenever a request is made for a
link to the show action in the ArtistController and the artistName parameter is supplied. In a GSP, that
would look something like the code in Listing 6-24.

CHAPTER 6 n MAPPING URLS

150

Listing 6-24. Reverse URL Mapping Using the Link Tag

<td>
 <g:link action='show'
 controller='artist'
 params="[artistName:${artist.name.replaceAll(' ', '_')}">
 ${artist.name}
 </g:link>
</td>

Named URL Mappings
There may be scenarios where multiple URL mappings match a given request for a reverse mapping and
the framework won’t necessarily know which mapping to apply. Named URL mappings solve this problem
by allowing a mapping to have a name associated with it and then referring to that name when requesting
a reverse URL mapping lookup. The framework can then use the name to unambiguously associate the
reverse mapping request to a specific URL mapping. Listing 6-25 defines a URL mapping with the name
artistDetails.

Listing 6-25. A Named URL Mapping

class UrlMappings {
 static mappings = {
 name artistDetails: "/showArtist/$artistName" {
 controller = "artist"
 action = "show"
 }
}

The link tag supports an optional attribute named mapping, which may be used to specify the name
of the mapping that should be used for this lookup. Listing 6-26 demonstrates this technique.

Listing 6-26. Specifying a Named URL mapping with the Link Tag

<g:link mapping="artistDetails"
 params="[artistName:${artist.name.replaceAll(' ', '_')}">
 ${artist.name}
</g:link>

Notice that there is no need to specify the controller or action name. The framework will locate the
mapping named "artistDetails" and will find the corresponding controller and action names as part of
the named URL mapping definition.

As an alternative to specifying the name of the URL mapping as the value of the mapping attribute on
the link tag, Grails supports invoking a tag in the link namespace whose name matches the mapping
name. When using this approach, parameters may be specified as attributes to the tag. Listing 6-27 shows
an example which generates the same link as the code in Listing 6-26.

Listing 6-27. Using the Link Namespace

<link:artistDetails artistName="${artist.name.replaceAll(' ', '_')}">
 ${artist.name}
</link:artistDetails>

151

CHAPTER 6 n MAPPING URLS

The code in Listing 6-27 is a good bit cleaner than the corresponding code in Listing 6-26.

Defining Multiple URL Mappings Classes
When an application defines a lot of custom URL mappings, the UrlMappings class may get long enough to
warrant breaking the mappings up into several mappings classes. Several small, focused mappings classes
will be easier to write and maintain than one monolithic class. To introduce new mappings classes, simply
define classes under grails-app/conf/ with a name that ends with UrlMappings. The structure of those
classes should be exactly the same as the default UrlMappings class. Listing 6-28 shows a custom mappings
class that would contain Artist-related mappings.

Listing 6-28. A URL Mappings Class for Artist Mappings

class ArtistUrlMappings {
 static mappings = {
 "/showArtist/$artistName" (controller:'artist', action:'display')
 }
}

Testing URL Mappings
As with most other aspects of your application, you are going to want to write automated tests for custom
URL mappings to assert that the application does in fact respond to requests in the way you intended.
Grails provides a really slick mechanism for writing those tests. The simplest way to test URL mappings is
to create a unit test for the URL mapping class that can be used to test custom mappings.

Listing 6-29 shows a simple mapping to support URLs like /showArtist/Jeff_Beck. A request to a URL
like that should map to the display action in the ArtistController.

Listing 6-29. A Custom URL Mapping

class UrlMappings {
 static mappings = {
 "/showArtist/$artistName" (controller:'artist', action:'display')
 // ...
 }
}

The assertForwardUrlMapping method can be used to assert that a request to a URL like /showArtist/
Jeff_Beck is sent to the appropriate controller action. The code in Listing 6-30 demonstrates what this test
might look like.

Listing 6-30. Unit-Testing a URL Mapping

@TestFor(ArtistUrlMappings)
@Mock(com.gtunes.ArtistController)
class ArtistUrlMappingsTests {

 void testShowArtistUrlMapping() {
 // assert that /showArtist/Jeff_Beck is handled by the
 // display action in the artist controller

CHAPTER 6 n MAPPING URLS

152

 assertForwardUrlMapping('/showArtist/Jeff_Beck',
 controller: 'artist', action: 'display')
 }
}

Note that it is important to mock any controllers relevant to the URL mappings that are tested. That is
accomplished by applying the Mock annotation to the test class and passing the corresponding URL
mapping class as an argument. In Listing 6-30 that is the ArtistController. The mapping defined in
Listing 6-29 includes an embedded variable, artistName. There is a simple mechanism for asserting that
such mapping variables are being assigned the correct value: just pass a closure as the last argument to the
assertForwardUrlMapping method, and in the closure assign values to properties with names that are
consistent with the embedded variable names. See Listing 6-31 for an example. This test will assert not
only that the request maps to the display action in the ArtistController but also that the artistName
request parameter is being populated with the correct value.

Listing 6-31. Testing URL Mapping Variables

@TestFor(ArtistUrlMappings)
@Mock(com.gtunes.ArtistController)
class ArtistUrlMappingsTests {

 void testShowArtistUrlMapping() {
 // assert that /showArtist/Jeff_Beck is handled by the
 // display action in the artist controller and a request
 // parameter named artistName exists with the value Jeff_Beck
 assertForwardUrlMapping('/showArtist/Jeff_Beck',
 controller: 'artist', action: 'display') {
 artistName = 'Jeff_Beck'
 }
 }
}

Listing 6-32 demonstrates a similar approach to testing whether reverse URL mapping is behaving as
expected. Note that the assert method is called assertReverseUrlMapping this time.

Listing 6-32. Testing Reverse URL Mapping

@TestFor(ArtistUrlMappings)
@Mock(com.gtunes.ArtistController)
class ArtistUrlMappingsTests {
 void testShowArtistReverseUrlMapping() {
 // assert that when a reverse url lookup is done for the
 // display action in the artist controller with a request
 // parameter named artistName with value Jeff_Beck, then
 // the generated url is /showArtist/Jeff_Beck
 assertReverseUrlMapping('/showArtist/Jeff_Beck',
 controller: 'artist', action: 'display') {
 artistName = 'Jeff_Beck'
 }
 }
}

153

CHAPTER 6 n MAPPING URLS

Often it is the case that you want to test both forward and reverse URL mapping. One way to do so is
to use the assertForwardUrlMapping method in addition to using the assertReverseUrlMapping method.
Although this combination will get the job done, it involves more work than you need to do. Using the
assertUrlMapping method will assert that both forward and reverse URL mapping are working, and if
either of them fail, the test will fail. See Listing 6-33 for an example.

Listing 6-33. Testing Both Forward and Reverse URL Mapping

@TestFor(ArtistUrlMappings)
@Mock(com.gtunes.ArtistController)
class ArtistUrlMappingsTests {
 void testForwardAndReverseUrlMapping() {
 assertUrlMapping('/showArtist/Jeff_Beck',
 controller: 'artist', action: 'display') {
 artistName = 'Jeff_Beck'
 }
 }
}

Summary
The URL mapping engine provided by Grails is very flexible. Nearly any URL pattern that you might want
to map to a particular controller action can easily be configured simply by writing a small amount of
Groovy code in UrlMappings.groovy. The framework provides a lot of mechanisms that enable you to
spend less time configuring the framework and more time solving business problems in your application.
The URL mapping engine is one more example of this. Custom URL mappings are simple to write and
simple to test.

4

155

n n n

CHAPTER 7

Internationalization

One of the great things about web applications is that they are really easy to distribute to a lot of people.
When deploying web applications to a broad audience, often the applications need to adapt and behave
differently under certain circumstances. For example, when a request from Spain is made to a web
application, the application may want to display messages to the user in Spanish, but the same application
will want to render messages in English if the request comes from New York. The adaptations made by the
application may involve more complexity than simply displaying different versions of text. An application
may need to impose different business rules based on the origin of a particular request.

Grails provides a number of mechanisms for dealing with the internationalization and localization of
a web application. In this chapter, we will explore those mechanisms, and you will see that
internationalizing a web application does not have to be terribly difficult.

Localizing Messages
When deploying a Grails application to a broad audience, you may want the application to display
messages in the user’s preferred language. One way of providing this capability is to have a separate
version of the application for each language you want to target. That approach has lots of problems.
Maintaining all those different versions and trying to keep them all in sync would be an awful lot of work.
A much better idea is to have a single version of the application that is flexible enough to display messages
in various languages using localized messages.

To support localized messages in your Grails application, you should be defining all user messages in
a properties file. In other words, user messages should not be hard-coded in GSP pages, GSP templates, or
anywhere else. Having messages in a properties file allows you to maintain all of them all in a single place.
It also lets you take advantage of the localization capabilities provided by Grails.

Defining User Messages
When a Grails app is created, the project includes a number of localized property files in the grails-app/
i18n/ directory. Figure 7-1 shows the contents of the grails-app/i18n/ directory.

CHAPTER 7 n INTERNATIONALIZATION

156

The messages.properties file in the grails-app/i18n/ directory contains default validation messages
in English. These messages are used when validation fails in a domain class or command object. You can
add your own application messages to this file. In addition to the default messages.properties file, this
directory has several other properties files that contain the same messages in other languages. For
example, “es” is the language code for Spanish, so messages_es.properties contains validation messages
in Spanish.

n Note The naming convention for the messages files follows the standard convention used by the java.util.

ResourceBundle class. For more information, see the documentation for java.util. ResourceBundle and java.util.

Locale: http://java.sun.com/j2se/1.5.0/docs/api/.

Property files are plain text files, which contain name-value pairs. Listing 7-1 represents a simple
properties file.

Listing 7-1. A Simple Property File

messages.properties
app.name=gTunes
book.title=The Deinitive Guide To Grails
favorite.language=Groovy
favorite.framework=Grails

Figure 7-1. The grails-app/i18n/ directory

http://java.sun.com/j2se/1.5.0/docs/api/

157

CHAPTER 7 n INTERNATIONALIZATION

Retrieving Message Values
In a standard Java or Groovy program, you would use the java.util.ResourceBundle class to retrieve
values from a properties file. Listing 7-2 demonstrates how you would retrieve and print the value of the
app.name property.

Listing 7-2. Using java.util.ResourceBundle

// JavaMessages.java
import java.util.ResourceBundle;

public class JavaMessages {

 public static void main(String[] args) {
 ResourceBundle bundle = ResourceBundle.getBundle("messages");
 String appName = bundle.getString("app.name");
 System.out.println("application name is " + appName);
 }
}

// GroovyMessages.groovy
def messages = ResourceBundle.getBundle('messages')
def appName = messages.getString('app.name')
println "application name is ${appName}"

The java.util.ResourceBundle class takes care of loading the properties file and providing an API to
retrieve the values of properties defined in the file. Grails provides a GSP tag called message that will
retrieve property values from the messages files in the grails-app/i18n/ directory. For the simplest case,
only the code attribute must be specified when calling the message tag. The code attribute tells the message

tag which property value should be retrieved. For example, if a property named gtunes.welcome is defined
in grails-app/i18n/messages.properties, the value of that property may be rendered in a GSP using code
like that shown in Listing 7-3.

Listing 7-3. Using the message Tag

<body>
...
<g:message code="gtunes.welcome"/>
... </body>

By default, Grails will decide which version of the property file to use based on the locale of the
current web request. Thus, you won’t often need to do anything special in your application code with
respect to localization. If you define your message properties in several language-specific versions of the
properties files under grails-app/i18n/, then Grails will use the appropriate file based on the client’s
locale.

Figure 7-2 represents the gTunes home page in English.

CHAPTER 7 n INTERNATIONALIZATION

158

There are several user messages represented in Figure 7-2. For example, on the left side of the screen is
a navigation area, which includes the “My Music” and “The Store” links. The labels for those links will
include different text when the application is accessed from different locales. The best way to deal with
that is to define those messages as properties and render the messages in the GSP with the message tag.
Listing 7-4 shows how those properties might be defined in grails-app/i18n/messages.properties.

Listing 7-4. User Messages in grails-app/i18n/messages.properties

gtunes.my.music=My Music
gtunes.the.store=The Store ...

With those properties defined, a GSP can render those values using the message tag, as shown in
Listing 7-5.

Listing 7-5. Rendering Property Values from a GSP

<div id="navButtons">

 <g:message code="gtunes.my.music"/>
 <g:link controller="store" action="shop">
 <g:message code="gtunes.the.store"/>
 </g:link>

</div>

Figure 7-2. gTunes in English

159

CHAPTER 7 n INTERNATIONALIZATION

Using URL Mappings for Internationalization
As shown previously, a request parameter named lang will tell the framework to use a specific language
code while processing this request. One way to specify the request parameter is to include it in the request
URL, as in http://localhost:8080/gTunes/?lang=es. Another way to specify the request parameter is by
defining a custom URL mapping, as shown in Listing 7-7.

With that code in place, you may add corresponding properties to as many of the other messages files
as you like. To support a Spanish version of the site, add corresponding properties to grails-app/i18n/
messages_es.properties, as shown in Listing 7-6.

Listing 7-6. User Messages in grails-app/i18n/messages_es.properties

gtunes.my.music=Mi Musica
gtunes.the.store=La Tienda

A simple way to test your Grails application’s localization is to include a request parameter named
lang and assign it a valid language code, such as “es” for Spanish (http://localhost:8080/ gTunes/
?lang=es). Figure 7-3 shows a Spanish version of the application.

Figure 7-3. gTunes in Spanish

CHAPTER 7 n INTERNATIONALIZATION

160

Listing 7-7. A URL Mapping for Localization

class UrlMappings {
 static mappings = {
 "/store/$lang"(controller:'store')

 // ...
 }
}

The mapping in Listing 7-7 will map all requests to a URL such as http://localhost:8080/gTunes/
en/ or http://localhost:8080/gTunes/es/, where “en” and “es” could be any valid language code.

Using Parameterized Messages
Often a user message may consist of more than simple static text. The message may need to include some
data that is not known until runtime. For example, gTunes displays a message that lets users know how
many songs they have purchased. The message reads something like this: “You have purchased (97)
songs.” The “97” part of that message is a piece of information that isn’t known until runtime.

Using java.text.MessageFormat
Java includes a class called java.text.MessageFormat. One of the things that java.text.MessageFormat is
useful for is supporting parameterized messages, such as the one described earlier, in a language-neutral
way. A parameterized message may contain any number of parameters, and the parameters are
represented with numbers surrounded by curly braces in the value of the message. Listing 7-8 shows how
the “You have purchased (97) songs.” message might be represented in grails-app/i18n/messages.
properties.

Listing 7-8. Defining a Parameterized Message

messages.properties
gtunes.purchased.songs=You have purchased ({0}) songs.
...

The value of the gtunes.purchased.songs message has one parameter in it. As is almost always the
case in Java and Groovy, the java.text.MessageFormat class uses a zero-based index; {0} in the message is
a placeholder for the value of the first parameter. If the message had multiple parameters, they would be
represented in the value of the message with placeholders like {0}, {1}, {2}, and so on.

The code in Listing 7-9 shows how java.text.MessageFormat might be used from a Java program.

Listing 7-9. Using MessageFormat to Populate a Parameterized Message with Java

// JavaMessages.java
import java.util.ResourceBundle;
import java.text.MessageFormat;

public class JavaMessages {

 public static void main(String[] args) {
 ResourceBundle bundle = ResourceBundle.getBundle("messages");

161

CHAPTER 7 n INTERNATIONALIZATION

 String songsPurchased = bundle.getString("gtunes.purchased.songs");
 String message = MessageFormat.format(songsPurchased, 97);
 System.out.println("message: " + message);
 }
}

Listing 7-10 shows a Groovy script that does the same thing.

Listing 7-10. Using MessageFormat to Populate a Parameterized Message with Groovy

import java.text.MessageFormat

def bundle = ResourceBundle.getBundle('messages')
def songsPurchased = bundle.getString('gtunes.purchased.songs')
def message = MessageFormat.format(songsPurchased, 97)

println "message: ${message}"

Using the message Tag for Parameterized Messages
Grails allows for parameterized messages to be used without the need for you, the application developer,
to deal directly with the java.text.MessageFormat class. The message tag supports an optional parameter
named args, and if that parameter is assigned a value, its value will be treated as a list of parameters that
need to be applied to the message. Listing 7-11 shows how to pass arguments to the message tag.

Listing 7-11. Using the message Tag to Populate a Parameterized Message

<div>
<g:message code="gtunes.purchased.songs" args="[97]"/>
</div>

Of course, for this or a similar message, you will probably not want to hard-code the parameter value
in a GSP like that. More likely, you will want that value to be dynamic. The code in Listing 7-12 is passing a
parameter to the message to be applied to the gtunes.purchased. songs message. If the currently logged
in user has purchased any songs, then the value of the parameter will be the number of songs he or she has
purchased; otherwise, the value of the parameter will be 0.

Listing 7-12. Using the message Tag to Populate a Parameterized Message Dynamically

<div> <g:message code="gtunes.purchased.songs"
args="[session.user.purchasedSongs?.size() ?: 0]"/> </div>

n Note Note the use of the so-called Elvis operator (?:) in the previous code. The Elvis operator is a shorthand

version of Java ternary operator where the return value for the true condition is the same as the expression being

evaluated. For example, the following expressions accomplish the same thing:

size = session.user.purchasedSongs?.size() ? session.user.purchasedSongs?.size() : 0 size =
session.user.purchasedSongs?.size() ?: 0

CHAPTER 7 n INTERNATIONALIZATION

162

Using Parameterized Messages for Validation
Notice that the default grails-app/i18n/messages.properties file contains a number of messages by
default. These messages are there to support the mechanism that is built in to Grails for validating domain
classes and command objects. Listing 7-13 shows a domain class that contains some constraints.

Listing 7-13. A Domain Class with Constraints

class Person {
 String irstName
 String lastName
 Integer age

 static constraints = {
 irstName size: 2..30, blank: false
 lastName size: 2..30, blank: false
 age min: 0
 }
}

These constraints are in place to make sure that the irstName and lastName properties are at least 2
characters, no more than 30 characters, and not blank. You might think that specifying a minimum length
of 2 would take care of the blank scenario, but that is not the case. A irstName that is simply three spaces
would satisfy the length constraint but not the blank constraint. The age property also is constrained: it
may never have a negative value. If an instance of the Person class is created that does not satisfy all of
those constraints, then a call to the validate() method on that instance would return false. Likewise, a call
to save() on the instance would fail.

The default scaffolded views for a domain class contain code to display any validation errors. Listing
7-14 shows a piece of the default grails-app/views/person/create.gsp.

Listing 7-14. create.gsp Containing Code to Render Validation Errors

<h1><g:message code="default.create.label" args="[entityName]" /></h1>
<g:if test="${lash.message}">
<div class="message" role="status">${lash.message}</div>
</g:if>
<g:hasErrors bean="${personInstance}">
<ul class="errors" role="alert">
 <g:eachError bean="${personInstance}" var="error">
 <li <g:if test="${error in org.springframework.validation.FieldError}">data-ield-
id="${error.ield}"</g:if>><g:message error="${error}"/>
 </g:eachError>

</g:hasErrors>

The hasErrors tag will render its body only if personInstance has errors. If personInstance does have
errors, then the renderErrors tag will render a list of all those errors, and that rendering process is using
the validation messages defined in grails-app/i18n/messages.properties.

Figure 7-4 shows what the user might see when attempting to create a Person in the user interface
with no irstName, no lastName, and a negative age.

163

CHAPTER 7 n INTERNATIONALIZATION

The error messages you see there are all defined in grails-app/i18n/messages.properties as
parameterized messages, as shown in Listing 7-15.

Listing 7-15. Default Validation Messages

default.invalid.min.message=\
 Property [{0}] of class [{1}] with value [{2}] is less than minimum value [{3}]
default.blank.message=Property [{0}] of class [{1}] cannot be blank
...

You may modify the values of these messages to suit your application. For example, if the default.
blank.message property was given a value of {0} is a required ield, then the user would be shown error
messages like those in Figure 7-5.

Figure 7-4. Validation messages in the user interface

CHAPTER 7 n INTERNATIONALIZATION

164

Changing the default validation message in this manner is useful when the validation message applies
to all usages of a particular validator. Often it will be necessary to provide a custom message for a validator
as it relates to a specific property in a specific class. For example, the min constraint might be applied to
the age property in the Person class, and the same constraint might be applied to the balance property in
the Account class. Describing a constraint violation for those two scenarios requires two separate
messages. If a person’s age is a negative number, it would of course not make sense to display “Account is
not allowed to be overdrawn” or a similar message. Likewise, the message displayed when an account has
a negative balance would be different from the message displayed when a person has a negative age. To
help deal with such situations, the framework supports the association of validation messages not only
with a particular constraint but also with a particular property in a particular class. Listing 7-16 shows
examples of messages with specific properties.

Listing 7-16. Property-Specific Validation Messages

person.age.min.notmet=A person may not have a negative age
account.balance.min.notmet=Account is not allowed to be overdrawn

Each of the framework-provided validators that support error messages has a specific error code
pattern or patterns; they are used to define error messages for that validator, messages that are related to
specific properties in specific classes. Those error codes are listed in Table 7-1.

Figure 7-5. Custom validation messages in the user interface

165

CHAPTER 7 n INTERNATIONALIZATION

Table 7-1. Custom error codes

Validator Error Code(s)

blank className.propertyName.blank

creditCard className.propertyName.creditCard.invalid

email className.propertyName.email.invalid

inList className.propertyName.not.inList

min className.propertyName.min.notmet

minSize className.propertyName.minSize.notmet

matches className.propertyName.matches.invalid

max className.propertyName.max.exceeded

maxSize className.propertyName.maxSize.exceeded

notEqual className.propertyName.notEqual

nullable className.propertyName.nullable

range className.propertyName.range.toosmall
className.propertyName.range.toobig

size className.propertyName.size.toosmall
className.propertyName.size.toobig

unique className.propertyName.unique

url className.propertyName.url.invalid

Using messageSource
The message tag is easy and sensible to use when a user message needs to be retrieved from messages.
properties and the message is going to be rendered in a GSP. However, sometimes an application may

CHAPTER 7 n INTERNATIONALIZATION

166

need to retrieve the value of a user message and do something with it other than render the value in a GSP.
For example, the message could be used in an e-mail message. In fact, the message could be used for any
number of things, and not all of them involve rendering text in a GSP.

Grails provides a bean named messageSource that can be injected into any Grails artefact, including
controllers, taglibs, other beans, and so on. The messageSource bean is an instance of the org.
springframework.context.MessageSource interface provided by the Spring Framework. This interface
defines three overloaded versions of the getMessage method for retrieving messages from the source.
Listing 7-17 shows the signatures of these methods.1

n Note Throughout the source code and documentation of Grails, the word artefact is used to refer to a Groovy file

that fulfills a certain concept (such as a controller, tag library, or domain class). Since it is spelled using the British

English spelling of artefact (as opposed to artifact), we will be using that spelling throughout the book to maintain

consistency with the APIs.

Listing 7-17. The MessageSource Interface

String getMessage(String code, Object[] args, Locale locale)
String getMessage(String code, Object[] args, String defaultMessage, Locale locale)
String getMessage(MessageSourceResolvable resolvable, Locale locale)

Since the messageSource bean participates in Grails’s dependency autowiring process, all you need to
do to get a reference to the bean is declare a property named messageSource in your Grails artefact. The
code in Listing 7-18 shows how to use the messageSource bean in a service.

Listing 7-18. Using messageSource in a Service

package com.gtunes

class StoreService {

 def messageSource

 def someServiceMethod() {
 def msg = messageSource.getMessage('gtunes.my.music', null, null)
 // ...
 }
 ...
}

Note that the second and third arguments are null. The second argument is an Object[], which would
be used to pass parameters to a parameterized message. The third argument is a java.util.Locale, which
may be specified to retrieve a message for any Locale other than the default Locale for this request. For
example, Listing 7-19 demonstrates retrieving a message in Italian.

Listing 7-19. Using messageSource and Specifying a Locale

package com.gtunes

1 See http://static.springsource.org/spring/docs/3.1.x/javadoc-api/ for complete documentation of the
MessageSource interface and related classes.

http://static.springsource.org/spring/docs/3.1.x/javadoc-api/

167

CHAPTER 7 n INTERNATIONALIZATION

class StoreService {

 def messageSource

 def someServiceMethod() {
 def msg = messageSource.getMessage('gtunes.my.music',
 null,
 Locale.ITALIAN)
 // ...
 }
 ...
}

From within a Controller or TagLib artefact, a simpler way to retrieve messages is to invoke the
message GSP tag as a method on the special g namespace variable available in those artefacts, as shown in
Listing 7-20

Listing 7-20. Invoking g.message() from a Controller

package com.gtunes

class StoreController {

 def index() {
 def msg = g.message(code:'gtunes.my.music')
 // …
 }
}

n Note The code in Listing 7-20 is effectively invoking the message tag, which is defined in the g namespace.

There isn’t really anything special about accessing the message tag, however. All tag libraries are accessible using

the very same technique.

Summary
Internationalization is an important aspect of building widely distributed applications. Grails provides a
number of mechanisms that make the process much easier than it might otherwise be. All the message
property files in a Grails application are located in the same place. Thus, an application developer does not
need to tell Grails where to look for these files. What’s more, as a Grails developer moves from one Grails
project to the next, he or she knows exactly where to look for the property files because they are always in
the same place. This is the practical working power of coding by convention. Also, retrieving messages
from a property file is a snap in a Grails application. The message tag is very easy to access and use from
GSP pages and GSP templates. The messageSource bean is easily accessible from wherever the application
may need it. All of these enhancements are built on top of proven and well-understood Java-platform
tools, including java.text. MessageFormat and org.springframework.context.MessageSource.

169

n n n

CHAPTER 8

Ajax

Ajax is a really important piece of the modern web application story. The technology was originally
developed by Microsoft to power a web-based version of its Outlook e-mail software. Microsoft
implemented Ajax as an ActiveX control that could be used by its browser, Internet Explorer, and be called
from JavaScript to perform asynchronous browser requests.

The advantage of the approach is that the browser doesn’t have to refresh the entire page to interact
with the server, thus allowing the development of applications that bear a closer resemblance to their
desktop counterparts. Since then, browsers other than Internet Explorer have standardized on a native
JavaScript object called XMLHttpRequest, which has largely the same API as Microsoft’s ActiveX control.

Writing Ajax Code
Writing JavaScript code can become rather repetitive and tedious. Fortunately, there are Ajax frameworks
that encapsulate much of this logic, ranging from the simple to the comprehensive. Efforts are underway
to standardize on a JavaScript library, but as is always the case with any collaborative effort, the process
could be long and painful and is likely never to satisfy everyone.

By default, Grails ships with the jQuery. Through the Grails plug-in system, you can add support for
alternative libraries that supply the underlying implementation of the Ajax tags in Grails.

Before you delve into the world of Ajax, you should revisit the gTunes application, since you’ll be
enhancing the gTunes application by adding a range of Ajax-powered features that improve the user
experience:

•	 the ability to log in asynchronously

•	 a new feature that allows you to search and filter songs within your library and the
store using Ajax-powered search fields

•	 finally, a slicker way of displaying albums and songs, including album art

So before getting too carried away, let’s move on to the guts of the chapter by improving the gTunes
application interface, Ajax style.

Ajax in Action
Let’s start with a simple example. Grails provides a set of tags that simplify the creation of such Ajax-
capable components as links, forms, and text fields. For example, to create an HTML anchor tag that, when

CHAPTER 8 n AJAX

170

clicked, executes an Ajax call, you can use the <g:remoteLink> tag. These tags, included in Grails since very
early versions, are still included, but for most cases the provided tags are not optimal. The tags were
developed before jQuery and similar libraries developed to a point where writing the JavaScript really
became the right thing to do. The examples shown here will show how to use jQuery to accomplish the
same tasks that the Ajax-enabled tags provide. Let’s try a “Hello World”–style example using jQuery. First
update StoreController by adding the action shown in Listing 8-1.

Listing 8-1. An Action That Renders the Date and Time

def showTime() {
 render "The time is ${new Date()}"
}

The showTime action in Listing 8-1 uses the render method, introduced in Chapter 4, to render a plain-
text response to the client that contains the current date and time, trivially obtained through Java’s java.
util.Date class. That was simple enough; now open the index.gsp file located in the grails-app/views/
store directory. In order to write your own Ajax in the page, you need to tell Grails which Ajax library to use.
You can do this through the <g:javascript> tag, which needs to go in the <head> section of your index.gsp
file, as shown in Listing 8-2.

Listing 8-2. Using the jQuery Library

<g:javascript library="jquery" />

In this case, you are telling Grails to use the jQuery library for Ajax. As a side effect, Grails will import
all the necessary jQuery dependencies into the page, so you’re ready to go. Now, within the body of the
index.gsp page, add the code shown in Listing 8-3, which uses jQuery’s api.

Listing 8-3. Using the jQuery Ajax Function

<g:link action="showTime" elementId="timeLink">Show the time!</g:link>
<div id="time">
</div>
<r:script>
 $('#timeLink').click(function() {
 $('#time').load(this.href); return false;
 });
</r:script>

What this does is add an HTML anchor tag (with the text “Show the time!”) to the page, which when
clicked will execute an asynchronous request to the showTime action of the StoreController. The jQuery
code will be executed when the link is clicked. That code will will initiate an Ajax request to the showTime
action and will use the response to update the DOM in the browser. In this case, you’ve provided an HTML
<div> element with an id of time just below the anchor tag. That div will be updated with the response of
this Ajax call. It is important that the JavaScript function return false in order to prevent the browser from
actually following the link. Following the link is not necessary as the Ajax call is going to accomplish the
desired behavior here.

Notice that the JavaScript code is all wrapped in the <r:script> tag provided by the resources plug-in.
By using the script tag, the JavaScript will always be loaded last on the page, thus optimizing page loading
time.

171

CHAPTER 8 n AJAX

Changing Your Ajax Provider
As it stands, you are using jQuery as the underlying library for the Ajax code. Indeed, jQuery is the default
JavaScript library for Grails applications because it’s a really powerful library—but what if you wanted to
use a different library? With Grails it’s very easy to swap to a different implementation via its plug-in
system. For example, say you wanted to use the Prototype plug-in instead of jQuery. Simply modify
BuildConig.groovy to include a dependency on the plug-in:

// grails-app/conf/BuildConig.groovy
grails.project.dependency.resolution = {

 ...

 plugins {
 runtime ":prototype:1.0"
 ...
 }
}

Now modify the <g:javascript> tag, changing the value of the library attribute to prototype:

<g:javascript library="prototype" />

With that, you have completed a trivial example of Ajax-enabling your application. Try clicking the
link to see what happens. Note that the current date and time gets placed into the <div> each time you
click the link! Figure 8-1 shows an example of this behavior.

Figure 8-1. A Simple Ajax call example

CHAPTER 8 n AJAX

172

In order for that to work, the jQuery JavaScript code would need to be rewritten to use the Prototype
API. In addition to Prototype, there are plug-ins for Dojo, Ext-JS, and Yahoo UI. The Grails plug-ins page
(http://grails.org/Plugins) provides the latest up-to-date information on the available plug-ins. While
Grails makes it easy for you to specify which JavaScript library you would like to use, swapping different
implementations in and out can be tedious work, as most of the JavaScript in the application will be
dependent on a particular JavaScript implementation.

Asynchronous Form Submission
Now that you have had a chance to explore a trivial example, let’s try something a little more challenging.
When building Ajax applications, it is often useful to submit a form and its data to the server
asynchronously. Currently, the login process of the gTunes application uses a regular form submission, but
wouldn’t it be useful if users could log in without a refresh?

The login form now contained within the grails-app/views/layouts/main.gsp layout submits using a
regular form. In other words, form submission is synchronous; it doesn’t occur in a background process, as
an Ajax request would. The jQuery library makes it fairly easy to create a form that will submit an Ajax
request.

However, before you write the jQuery code that is necessary to implement the new Ajax enabled form,

let’s move the code that renders the login form into its own GSP template. (The importance of doing this
will become clear later.) Now create a new file, grails-app/views/user/_loginForm.gsp, which will form
the basis of the template, and then cut and paste the code from the layout, so that the template looks like
Listing 8-4.

Listing 8-4. The Login Template

<p class="legend">Log in to your gTunes account</p>
<g:form name="loginForm" url="[controller:'user',action:'login']" class="form">
 <div class="input">
 <g:textField required="true"
 placeholder="Username"
 name="login"
 value="${ieldValue(bean:loginCmd, ield:'login')}" />
 <g:hasErrors bean="${loginCmd}" ield="login">
 <p class="error"><g:ieldError bean="${loginCmd}" ield="login" /></p>
 </g:hasErrors>
 </div>
 <div class="input">
 <g:passwordField required="true"
 placeholder="Password"
 name="password" />
 <g:hasErrors bean="${loginCmd}" ield="password">
 <p class="error">
 <g:ieldError bean="${loginCmd}" ield="password" />
 </p>
 </g:hasErrors>
 </div>
 <div class="submit">
 <input type="submit" value="Login" class="btn" />
 </div>
</g:form>

http://grails.org/Plugins

173

CHAPTER 8 n AJAX

Now create one more template to render the loginForm template and also render some of the markup
related to creating a new account. It makes sense to group all of this markup together because the two
sections (create new account and login) will always be rendered next to each other. Create a file called
grails-app/views/user/_loginBox.gsp that looks like Listing 8-5.

Listing 8-5. The loginBox Template

<div class="left">
 <h1>Need an account?</h1>
 <p class="legend"><g:link controller="user" action="register">Signup now</g:link> to start
your own personal Music collection!</p>
 <g:link controller="user" action="register" class="btn">Signup now</g:link>
</div>
<div class="right" id="loginBox">
 <h1>Already a member?</h1>
 <g:render template="/user/loginForm"/>
</div>

Now within the grails-app/views/store/index.gsp layout, use the <g:render> tag to render the
template, as shown in Listing 8-6.

Listing 8-6. Using the Tag to Display the Login Form

<g:render template="/user/loginBox"/>

With that done, it is time to write some jQuery code that will initiate the Ajax call and will handle the
response. That code should be defined in grails-app/views/store/index.gsp. See Listing 8-7.

Listing 8-7. Ajax Login Code

<r:script>
$(function() {
 $('#loginForm').ajaxForm(function(result) {
 $('#loginBox').html(result);
 });
});
</r:script>

That code depends on the jQuery Form Plug-in from https://github.com/malsup/form. Note that is
not a Grails plug-in. Download the jquery.form.js file from that repository and put it in the web-app/js/
directory. Once the file is in place, edit grails-app/conf/ApplicationResources.groovy to look like
Listing 8-8.

Listing 8-8. Add jQuery Form Code to ApplicationResources.groovy

// grails-app/conf/ApplicationResources.groovy
modules = {
 application {
 resource url:'js/application.js'
 resource url:'js/jquery.form.js'
 }
}

https://github.com/malsup/form

CHAPTER 8 n AJAX

174

The ApplicationResources.groovy file is a configuration file read by the resources plug-in. The
resources plug-in helps optimize the management of static resources like JavaScript files used by your
application. The code in Listing 8-8 defines a group of static resources, called a module, which contains
the two JavaScript files mentioned there. The r:script tag from Listing 8-7 is also provided by the
resources plug-in. One of the benefits of wrapping that JavaScript code in the r:script tag is that the
resources plug-in will make sure that the JavaScript is loaded at the bottom of the rendered page, which is
beneficial for optimizing page load times. The resources plug-in is discussed in more detail in Chapter 12.
For now, just configure the files as described and things should work just fine.

The ajaxForm function from Listing 8-7 will submit an Ajax request to the login controller action and
use the response to update the loginBox element in the DOM. No change is required to any of the input
fields or the Submit button. Now if you refresh the page and try to log in, a surprising thing will happen.
Surprisingly, you get the contents of the entire page placed within the loginBox <div>! This happens
because you updated the client code but paid no attention to the server logic, which is still displaying the
entire view. To correct this problem, you need to revisit the server-side code to render only a snippet of
HTML instead of the entire page.

Just in case you don’t recall the code in question, Listing 8-9 shows what the current code for the login
action of the UserController looks like.

Listing 8-9. The Current login Action Code

def login(LoginCommand cmd) {
 if(request.method == 'POST') {
 if(!cmd.hasErrors()) {
 session.user = cmd.getUser()
 redirect(controller:'store')
 }
 else {
 render(view:'/store/index', model:[loginCmd:cmd])
 }
 }
 else {
 render(view:'/store/index')
 }
}

At the moment, the code in Listing 8-9 renders the entire grails-app/views/store/ index.gsp view,
but you actually want only the login form displayed again (on login failure) or a welcome message
displayed if the user successfully logs in. Let’s refactor the code to achieve this goal; Listing 8-10 shows the
result.

Listing 8-10. Handing an Ajax Login Request

def login(LoginCommand cmd) {
 if(request.method == 'POST') {
 if(!cmd.hasErrors()) {
 session.user = cmd.getUser()
 render template: '/user/welcomeMessage'
 }
 else {
 render template: 'loginBox', model: [loginCmd: cmd]
 }

175

CHAPTER 8 n AJAX

 }
 else {
 render template: 'loginBox'
 }
}

You could, of course, take this further and deal with both Ajax and regular requests, but for the
moment that isn’t a requirement. As you can see from the code in Listing 8-10, what you’re doing is using
the template argument of the render method instead of the view argument, which allows you to reuse the
_loginForm.gsp template. In addition, you’ll need to create a grails-app/views/user/_welcomeMessage.gsp
template to deal with a successful login, the contents of which you can see in Listing 8-11.

Listing 8-11. The _welcomeMessage.gsp Template

<header id="header">
 <h1 id="logo">gTune</h1>
 <g:if test="${session?.user}">
 <div id="quickaccess">${session?.user?.irstName}, <g:link
controller="user" action="logout">Logout</g:link></div>
 <nav id="navigation" class="clearix">

 <li class="separator"><g:link controller="user" action="music">My
Music</g:link>
 <g:link controller="store" action="shop">The Store</g:link>

 </nav>
 </g:if>
</header>
<div id="message notice">
 <div style="margin-top:20px">
 Welcome back
 ${session?.user?.irstName}!

 You have purchased
 (${session.user.purchasedSongs?.size() ?: 0}) songs.

 </div>
</div>

The last bit of work is modify the main Sitemesh layout to take advantage of the newly created
welcomeMessage template, as shown in Listing 8-12.

Listing 8-12. Updated Main Sitemesh Layout

<body class="application">

 <div id="container">
 <div id="spinner" class="spinner" style="display:none;">

 </div>
 <div id="main">

CHAPTER 8 n AJAX

176

 <g:if test="${session?.user}">
 <g:render template="/user/welcomeMessage"/>
 </g:if>
 <g:layoutBody />
 <g:javascript library="application"/>
 </div>

 <footer id="footer">
 © gTunes 2012
 </footer>
 </div>
 <r:layoutResources />
</body>

Fun with Ajax Remote Linking
In an earlier example you implemented a bit of functionality that displayed the current time when the
anchor tag was clicked (not exactly groundbreaking stuff, we know). Let’s correct this by looking at a more
advanced example.

In Chapter 5, you created a few panels for the right side of the gTunes store; they displayed the newest
additions to the gTunes library for songs, albums, and artists, respectively. As a refresher, Listing 8-13
shows the code in question from the grails-app/views/store/shop.gsp file.

Listing 8-13. The Latest Content Panel

<div id="top5Panel" class="top5Panel">
 <h2>Latest Albums</h2>
 <div id="albums" class="top5Item">
 <g:render template="/album/albumList"
 model="[albums: top5Albums]" />
 </div>
 <h2>Latest Songs</h2>
 <div id="songs" class="top5Item">
 <g:render template="/song/songList" model="[songs: top5Songs]" />
 </div>
 <h2>Newest Artists</h2>
 <div id="artists" class="top5Item">
 <g:render template="/artist/artistList"
 model="[artists: top5Artists]" />
 </div>
</div>

Each of these uses a specific template to render a simple HTML unordered list for each category. It
would be nice if the list items, instead of being plain text, consisted of HTML links that used Ajax to display
details about the Album, Song, or Artist in question.

Let’s start with Album. If you recall from the domain model, an Album has a title, release year, genre,
artist, and a list of Songs that apply to that album. To begin with, create a template that can render that
information. Listing 8-14 shows the grails-app/views/album/_album.gsp template.

177

CHAPTER 8 n AJAX

Listing 8-14. Implementing the _album.gsp Template

<div id="album${album.id}" class="album">
 <div class="albumDetails">
 <div class="artistName">${artist.name}</div>
 <div class="albumTitle">${album.title}</div>
 <div class="albumInfo">
 Genre: ${album.genre ?: 'Other'}

 Year: ${album.year}
 </div>
 <div class="albumTracks">

 <g:each in="${album.songs?}" var="song">
 ${song.title}
 </g:each>

 </div>
 <div class="albumLinks">
 </div>
</div>

Now that you have a template, you can alter the grails-app/views/album/_albumList.gsp template to
use jQuery to call a controller action, display, on the AlbumController for each item in the list. Listing 8-15
shows (in bold) the changes made to the _albumList.gsp template.

Listing 8-15. Updating _albumList.gsp to use jQuery links

 <g:each in="${albums?}" var="album">
 <g:link update="musicPanel"
 controller="album"
 action="display"
 id="${album.id}"
 elementId=="albumLink${album.id}">${album.title}</g:link>
 <r:script>
 $('#albumLink${album.id}').click(function() {
 $('#musicPanel').load(this.href);
 return false;
 });
 </r:script>
 </g:each>

Once again you see that the JavaScript code is wrapped in the r:script tag, which causes all of the
JavaScript to be loaded at the end of the page for performance reasons. If a page includes several uses of
the r:script tag, all that code is merged into a single script tag at the bottom of the page.

Notice how you can use the update attribute to specify that you want the contents of the response to
be placed into an HTML <div> that has a DOM ID with the value musicPanel. If you refresh the page at this
point and try the links, you’ll notice that the Ajax part of the picture is working already! The downside is
that since there is no display action in the AlbumController at this point, you get a 404 “Page not found”
error from the server.

CHAPTER 8 n AJAX

178

Sadly, even with the CSS enhancements, Album details are looking a bit bland with all that text.
Wouldn’t it be nice to be able to display the album art for each album? Where there is a will, there is a
way—luckily, Apple has come to the rescue here by providing a REST-based web service that lets
developers look up album art from its massive pool of assets. The service is available at http://itunes.

Let’s correct that by opening AlbumController and implementing the display action. Listing 8-16
shows the code, which simply obtains the Album instance using the id parameter from the params object
and then uses it to render the _album.gsp template developed in Listing 8-14.

Listing 8-16. The display Action of AlbumController

def display() {
 def album = Album.get(params.id)
 if(album) {
 def artist = album.artist
 render(template:"album", model:[artist:artist, album:album])
 } else {
 render "Album not found."
 }
}

By adding a bit of CSS magic to enhance the look of the _album.gsp template, all of a sudden you have
album details being obtained via Ajax and rendered to the view. Figure 8-2 shows the result of your hard
work.

Figure 8-2. Displaying albums using Ajax

179

CHAPTER 8 n AJAX

apple.com/search. Open that URL in a web browser and you should see a response that looks something
like this:

{
 "resultCount":0,
 "results": []
}

That doesn’t look very interesting. Certainly it doesn’t look like anything that will help you display
album artwork in gTunes. What is shown there is the JSON response to our request. The problem is that we
didn’t really request anything useful, and so we didn’t get anything useful. Let’s make it a little more
interesting by including some request parameters. Try http://itunes.apple.com/search?media=music&enti
ty=album&attribute=albumTerm&term=Church+Of+Broken+Glass. That URL includes several request
parameters.

Event Name Description Value

media the media type to search for music

entity the type of results you want returned album

attribute the attribute you want to search for albumTerm

term the URL-encoded search criteria Church+Of+Broken+Glass

To summarize, the request URL above is searching for music for an album titled Church of Broken
Glass. That request should yield a response that looks something like this:

{
 "resultCount":1,
 "results": [
{"wrapperType":"collection", "collectionType":"Album", "artistId":80907270,
"collectionId":293455812, "amgArtistId":512604, "artistName":"Hammers of Misfortune",
"collectionName":"Church of Broken Glass", "collectionCensoredName":"Church of Broken Glass",
"artistViewUrl":"https://itunes.apple.com/us/artist/hammers-of-misfortune/id80907270?uo=4",
"collectionViewUrl":"https://itunes.apple.com/us/album/church-of-broken-glass/id293455812?uo=4",
"artworkUrl60":"http://a397.phobos.apple.com/us/r30/Music/98/da/c2/mzi.wvlbbglb.60x60-50.jpg",
"artworkUrl100":"http://a862.phobos.apple.com/us/r30/Music/98/da/c2/mzi.wvlbbglb.100x100-75.
jpg", "collectionPrice":9.99, "collectionExplicitness":"notExplicit", "trackCount":5,
"copyright":" 2008 Hammers of Misfortune", "country":"USA", "currency":"USD",
"releaseDate":"2008-09-30T07:00:00Z", "primaryGenreName":"Rock"}]
}

That response includes a lot of information—more than we need—but we can ignore most of it and
pull out just what we do need: the value of the artworkUrl100 attribute—http://a862.phobos.apple.com/
us/r30/Music/98/da/c2/mzi.wvlbbglb.100x100-75.jpg, in this case. That value represents a URL to the
corresponding album artwork.

The API supports a lot of other search options, but those listed above are all you need to satisfy our
requirements. More complete documentation of the search service is available at www.apple.com/itunes/
afiliates/resources/documentation/itunes-store-web-service-search-api.html.

With that done, it is time to create your first tag library. You’ll create an AlbumArtTagLib that deals with
obtaining album art from Amazon. To do this, start by running the create-tag-lib command:

n

http://itunes.apple.com/search?media=music&enti
https://itunes.apple.com/us/artist/hammers-of-misfortune/id80907270?uo=4
https://itunes.apple.com/us/album/church-of-broken-glass/id293455812?uo=4
http://a397.phobos.apple.com/us/r30/Music/98/da/c2/mzi.wvlbbglb.60x60-50.jpg
http://a862.phobos.apple.com/us/r30/Music/98/da/c2/mzi.wvlbbglb.100x100-75.jpg
http://a862.phobos.apple.com/us/r30/Music/98/da/c2/mzi.wvlbbglb.100x100-75.jpg
http://a862.phobos.apple.com/
http://www.apple.com/itunes/

CHAPTER 8 n AJAX

180

grails> create-tag-lib com.gtunes.AlbumArt
| Created ile grails-app/taglib/com/gtunes/AlbumArtTagLib.groovy
| Created ile test/unit/com/gtunes/AlbumArtTagLibTests.groovy
grails>

The create-tag-lib command will create a new empty AlbumArtTagLib that resembles Listing 8-17.

Listing 8-17. The AlbumArtTagLib Template

package com.gtunes
class AlbumArtTagLib {
}

The tag library is going to provide a custom GSP tag which will invoke the REST web service to retrieve
the album artwork URL and then output an img tag which points to that URL. There is a Grails plug-in
named rest-client-builder; it provides a RestBuilder class that makes it very easy to invoke a REST service
and deal with the response. To use the plug-in, we need to add code to BuildConig.groovy to express a
dependency on the plug-in.

// grails-app/conf/BuildConig.groovy

grails.project.dependency.resolution = {

 ...

 plugins {
 compile ":rest-client-builder:1.0.2"
 ...
 }
}

Using the RestBuilder class provided by the rest-client-builder plug-in is quite simple. (The plug-in’s
full documentation is at http://grails.org/plugin/rest-client-builder; we’ll cover the basics here.) The
RestBuilder class has an instance method, named get, which accepts a String argument; that argument
should be a URL that points to the service you want to invoke. The method returns a response that will
have a json property, a Grails JSONObject that represents an unordered collection of name/value pairs
parsed out of the JSON response. Listing 8-18 shows a simple usage.

Listing 8-18. Using the RestClient

def restBuilder = new RestBuilder()
def url = "http://someserver.com/someService"
def response = restBuilder.get(url)
def json = response.json
def someAttributeValue = json.someAttribute

Our tag will need to use the RestBuilder to invoke the service to retrieve the album artwork URL and
pull the artworkUrl100 value out of the response. Listing 8-19 shows a complete working version of the tag.

http://grails.org/plugin/rest-client-builder
http://someserver.com/someService

181

CHAPTER 8 n AJAX

Listing 8-19. The AlbumArtTagLib

package com.gtunes

import grails.plugins.rest.client.RestBuilder

class AlbumArtTagLib {

 static inal DEFAULT_ALBUM_ART_IMAGE = "/images/no-album-art.gif"

 static namespace = "music"

 def albumArt = { attrs, body ->
 def artistName = attrs.remove('artist')?.toString()
 def albumTitle = attrs.remove('album')?.toString()
 def width = attrs.int('width', 100)
 attrs.remove('width')
 def albumArt = DEFAULT_ALBUM_ART_IMAGE
 if(artistName && albumTitle) {
 try {
 def restBuilder = new RestBuilder()
 def url = "http://itunes.apple.com/search?term=${albumTitle.encodeAsURL()}&media=music&e
ntity=album&attribute=albumTerm"
 def response = restBuilder.get(url)
 def json = response.json
 // retrieve the list of search results
 def records = json.results

 // ind the record that has the correct
 // artist name and album title, note that
 // the service will return records that are
 // not an exact match
 def matchingRecord = records.ind { r ->
 r.artistName == artistName && r.collectionName == albumTitle
 }
 albumArt = matchingRecord?.artworkUrl100 ?: DEFAULT_ALBUM_ART_IMAGE
 } catch (Exception e) {
 log.error "Problem retrieving artwork: ${e.message}", e
 }
 }
 if(albumArt.startsWith("/")) albumArt = "${request.contextPath}${albumArt}"
 out << "<img width=\"$width\" src=\"${albumArt}\" border=\"0\""
 out << attrs.collect { attributeName, attributeValue ->
 " ${attributeName}=\"${attributeValue.encodeAsHTML()}\""
 }.join(' ')
 out << ">"
 }
}

Note that having all of this logic inside a GSP tag is not ideal. This will be refactored later in Chapter
10, but for now this code will suffice.

http://itunes.apple.com/search?term=

CHAPTER 8 n AJAX

182

Listing 8-20 shows a unit test for the AlbumArtTagLib.

Listing 8-20. The AlbumArtTagLibTests

package com.gtunes

import grails.plugins.rest.client.RestBuilder

import grails.test.mixin.*
import org.junit.*

@TestFor(AlbumArtTagLib)
class AlbumArtTagLibTests {

 void testNoAlbumSpeciied() {
 assert applyTemplate('<music:albumArt artist="Tool" />') == """<img width="100"
src="${AlbumArtTagLib.DEFAULT_ALBUM_ART_IMAGE}" border="0">"""
 }

 void testNoArtistSpeciied() {
 assert applyTemplate('<music:albumArt album="Lateralus" />') == """<img width="100"
src="${AlbumArtTagLib.DEFAULT_ALBUM_ART_IMAGE}" border="0">"""
 }

 void testGoodResult() {
 def artworkClient = new groovy.mock.interceptor.MockFor(RestBuilder)
 artworkClient.demand.get { String s ->
 def results = []
 results << [artistName: 'Thin Lizzy',
 collectionName: 'Jailbreak',
 artworkUrl100: 'http://somesite/jailbreak.jpg']
 results << [artistName: 'Tool',
 collectionName: 'Lateralus',
 artworkUrl100: 'http://somesite/lateralus.jpg']
 [json: [results: results]]
 }
 artworkClient.use {
 assert applyTemplate('<music:albumArt artist="Tool" album="Lateralus" />') == '<img
width="100" src="http://somesite/lateralus.jpg" border="0">'
 }
}

 void testSpecifyingImageWidth() {
 def artworkClient = new groovy.mock.interceptor.MockFor(RestBuilder)
 artworkClient.demand.get { String s ->
 def results = []
 results << [artistName: 'Thin Lizzy',
 collectionName: 'Jailbreak',
 artworkUrl100: 'http://somesite/jailbreak.jpg']
 results << [artistName: 'Tool',
 collectionName: 'Lateralus',

183

CHAPTER 8 n AJAX

 artworkUrl100: 'http://somesite/lateralus.jpg']
 [json: [results: results]]
 }
 artworkClient.use {
 assert applyTemplate('<music:albumArt artist="Tool" album="Lateralus" width="50"/>') ==
''
 }
 }
}

Finally, to put all the pieces together, you need to change the grails-app/views/ album/_album.gsp
template so that it can leverage the newly created <music:albumArt> tag. Listing 8-21 shows the
amendments to _album.gsp in bold.

Listing 8-21. Adding Album Art to the _album.gsp Template

<div id="album${album.id}" class="album"> <div class="albumArt">
 <music:albumArt artist="${artist}" album="${album}" />
</div> ... </div>

After further CSS trickery, Figure 8-3 shows what the new album art integration looks like. Much
better!

Figure 8-3. The album.gsp template with integrated album art

CHAPTER 8 n AJAX

184

Adding Effects and Animation
What’s been achieved so far is pretty neat, but it would be useful to spice it up with a few effects. Say you
want albums to fade in when you click the “Latest Album” links; the first thing to do is to make sure albums
are hidden to begin with. To do so, open the grails-app/views/ album/_album.gsp template, and ensure
the main HTML <div> has its style attribute set to display:none, as in Listing 8-22.

Listing 8-22. Hiding the Album

<div id="album${album.id}" class="album" style="display:none;">
... </div>

Now you can use jQuery’s fadeIn capability to execute the effect. Try adding the following to the
bottom of album.gsp:

<g:javascript>
 $('#album${album.id}').fadeIn('slow');
</g:javascript>

This executes the fade-in effect of the jQuery library. Now whenever one of the “Latest Album” links is
clicked, the album fades in nicely. Most notable Ajax libraries—many of which offer Grails plug-ins—
feature similar capabilities. Make sure you explore what is available in your Ajax library of choice!

Ajax-Enabled Form Fields
That previous section was quite an adventure, wasn’t it? You’re not done with Ajax yet. In this section, you’ll
learn how you can enable Ajax on form fields such as text inputs.

This is often useful if you’re implementing features such as autocomplete or an instant search
capability like Spotlight on Mac OS X. In fact, search is exactly what you’re going to aim to achieve in this
section. Sure, it is useful to be able to click the latest additions to the music library, but it is critical that
users of gTunes can search the back catalog of songs and albums.

Luckily, jQuery can be used to help implement the search feature. As a start, open the grails-app/
views/store/shop.gsp view. In this file you need to define a text field to accept search input and write
some jQuery code that will respond to input by invoking the search action, as shown in Listing 8-23.

Listing 8-23. Using the <g:remoteField> Tag

<div id="searchBox">
 <h1>Instant Search</h1>
 <g:textField id="searchField" name="searchField"/>
 <div id="searchResults" name="musicPanel"></div>
</div>
<r:script>
$("#searchField").keyup(function() {
 $("#searchResults").load("${createLink(action: 'search')}?q="+this.value);
});
</r:script>

Here, you have set up a text field that has a keyup event listener associated with it; it sends a request to
the search action of the StoreController.

185

CHAPTER 8 n AJAX

If you refresh the page and start typing, you’ll see that the field is already sending remote requests,
although you’re getting 404 errors in the page rather than anything useful. At this point, it is worth
considering how to implement a search. You could, of course, use Hibernate queries, but Hibernate is not
really designed to be used as a search engine, and designing your own search query language would be a
pain.

The Grails plug-in system comes to the rescue once again! One of the most popular plug-ins currently
available for Grails is the Searchable plug-in, which builds on Compass (http://www.compass-project.
org/) and Lucene (http://lucene.apache.org/).

n Note This example will demonstrate the most basic capabilities of the searchable plug-in. The full

documentation is available at http://grails.org/plugin/searchable.

As usual, installing Searchable is a trivial matter. Add the dependency to BuildConig.groovy:

// grails-app/conf/BuildConig.groovy
grails.project.dependency.resolution = {

 ...

 plugins {
 runtime ":searchable:0.6.4"
 ...
 }
}

The Searchable plug-in integrates with Grails by providing the ability to expose Grails domain classes
as searchable entities. At a simple level, it is possible to add search capabilities by adding the following line
to the domain class you want to search:

static searchable = true

However, it is typically the case that you want to search only a subset of the properties of the domain
class. This is, of course, perfectly possible with Searchable, and in fact it defines an entire DSL for mapping
between your classes and the search index (a topic beyond the scope of this book).

In this case, you’ll want to search on an album or song’s genre and title and on an artist’s name.
Listing 8-24 shows how to enable these searches using Searchable.

Listing 8-24. Enabling Search on the gTunes Domain

class Song {
 static searchable = [only: ['genre', 'title']]
 ...
}

Figure 8-4. The gTunes instance search box

http://www.compass-project.org/
http://www.compass-project.org/
http://lucene.apache.org/
http://grails.org/plugin/searchable

CHAPTER 8 n AJAX

186

class Album {
 static searchable = [only: ['genre', 'title']]
 ...
}
class Artist {
 static searchable = [only: ['name']]
 ...
}

Simple enough. Next, let’s implement the search action of the StoreController. Like GORM,
Searchable provides a bunch of new methods on domain classes that support searching, including the
following:

•	 search: returns a search result object containing a subset of objects matching the
query

•	 searchTop: returns the first result object matching the query

•	 searchEvery: returns all result objects matching the query

•	 countHits: returns the number of hits for a query

•	 termFreqs: returns term frequencies for the terms in the index (advanced)

For full data on what each method does and how it behaves, refer to the searchable documentation
mentioned above. For your needs, you’re going to use the search method to formulate the search results.
Listing 8-25 shows the implementation of the search action of the StoreController using Searchable APIs.

Listing 8-25. Using Searchable to Enable Search

 def search(String q) {
 def searchResults = [:]
 if(q) {
 searchResults.artistResults = trySearch { Artist.search("*${q}*", [max: 10]) }
 searchResults.albumResults = trySearch { Album.search("*${q}*", [max: 10]) }
 searchResults.songResults = trySearch { Song.search("*${q}*", [max: 10]) }
 }
 render template: 'searchResults', model: searchResults
 }

 private trySearch(Closure callable) {
 try {
 return callable()
 } catch (Exception e) {
 log.debug "Search Error: ${e.message}", e
 return []
 }
 }

The code is pretty simple. It obtains the q parameter representing the query and, if it isn’t blank, builds
a model that contains search results for albums, artists, and songs. One interesting aspect of this code is
the trySearch method, which demonstrates a compelling use of Groovy closures to deal with exceptions.
Since an exception will likely be the result of an error in the search syntax, it is preferable to log that error
and return an empty result than throw the error back to the user.

187

CHAPTER 8 n AJAX

Once the search results have been formulated within a searchResults variable, the code renders a _
searchResults.gsp template, passing the searchResults as the model. As Listing 8-26 demonstrates, the
grails-app/views/store/_searchResults.gsp template is trivial; it simply reuses such existing templates
as _albumList.gsp and _artistList.gsp to display results.

Listing 8-26. The _searchResults.gsp Template

<div id="searchResults" class="searchResults">
 <g:if test="${albumResults?.results}">
 <div id="albumResults" class="resultsPane">
 <h2>Album Search Results</h2>
 <g:render template="/album/albumList"
 model="[albums:albumResults.results]">
 </g:render>
 </div>
 </g:if>
 <g:if test="${artistResults?.results}">
 <div id="artistResults" class="resultsPane">
 <h2>Artist Search Results</h2>
 <g:render template="/artist/artistList"
 model="[artists:artistResults.results]">
 </g:render>
 </div>
 </g:if>
 <g:if test="${songResults?.results}">
 <div id="songResults" class="resultsPane">
 <h2>Song Search Results</h2>
 <g:render template="/song/songList"
 model="[songs:songResults.results]">
 </g:render>
 </div>
 </g:if>
</div>

Having called on your CSS prowess once more, you now have nicely formulated search results
appearing, and even better, because they’re using the same <g:remoteLink> tag as the “Latest Albums” lists
on the right of the screen, they’re Ajax-enabled right out of the box. Simply by clicking one of the search
results, you get an Album’s details pulled in via Ajax! Figure 8-5 shows the use of the search box and
demonstrates how wildcard capabilities using the asterisk (*) character are supported thanks to the
Searchable plug-in.

CHAPTER 8 n AJAX

188

A Note on Ajax and Performance
It is important to note the impact that using Ajax has on an application’s performance. Given the number
of small snippets of code that get rendered, it will come as little surprise that badly designed Ajax
applications have to deal with a significantly larger number of requests. What you have seen so far in this
chapter is a naive approach to Ajax development. You have waved the Ajax magic wand over your
application with little consideration of the performance implications.

Nevertheless, it is not too late to take some of these things into account. You can use several
techniques to reduce the number of requests an Ajax application performs before you start throwing more
hardware at the problem.

Remember that an Ajax call is a remote network call and therefore expensive. Things such as the Data
Transfer Object (DTO) are applicable in the Ajax world. Fundamentally, the DTO pattern serves as a
mechanism for batching operations into a single call and passing enough state to the server for several
operations to be executed at once. This pattern can be equally effective in Ajax, given that it is better to do
one call that transmits a lot of information than a dozen small ones.

Another popular technique is to move more complexity onto the client. Given that Ajax clients, in
general, occupy a single physical page, a fair amount of state can be kept on the client via caching. Caching
is probably the most important technique in Ajax development and, where possible, should be exploited
to optimize communications with the server.

Whichever technique you use, it will pay dividends in the long run, and the server infrastructure guys
will love you for it. The users of your application will also appreciate its faster response times and
interactivity.

Summary
In this chapter, you learned about the extensive range of adaptive Ajax tags that Grails offers and how to
apply them to give your gTunes application a more usable interactive interface. On this particular journey,
you also explored advanced Grails development, learning a lot more about how controllers, templates, and
the render method function in combination.

Figure 8-5. Instant search results using <g:remoteField> and Searchable

189

CHAPTER 8 n AJAX

In the past few chapters, you’ve been very much involved with the web layer of Grails in the shape of
controllers, GSP, tag libraries, and Ajax. However, everything you have looked at so far has used completely
stateless communication. In the next chapter, you’ll look at how Grails supports web flows for rich
conversations that span multiple pages.

191

n n n

CHAPTER 9

GORM

As you may have garnered from this book’s table of contents, the persistence layer of Grails is a critical part
of the picture. In Chapter 3 you were given a surface-level understanding of what domain classes are and
how they map onto the underlying database. In this chapter you’ll plunge headfirst into the inner workings
of GORM.

As a starting point, you’ll learn about the basic persistence operations involved in reading and writing
objects from a database. After going through the basics, you’ll then be taken through the semantics of
GORM, including as many corner cases and surprises as we’re able to fit into a single chapter.

Persistence Basics
Fortunately, we won’t be spending long on the foundations, since you’ve already been exposed to the
basics of GORM. Nevertheless, as a recap, let’s take a look at the basic read operations provided by GORM.

Reading Objects
Each domain class is automatically enhanced with a number of methods that allow you to query for
domain instances. The simplest of these is the get method, which takes the identifier of a domain class
and returns either an instance or null if no instance was found in the database. Listing 9-1 shows a simple
example, highlighted in bold, from the AlbumController you’ve already developed.

Listing 9-1. Using the get Method

class AlbumController {
 def show() {
 def album = Album.get(params.id)
 if(album) {
 }
 }
}

In addition to the simple get method, there is also a getAll method, which can take several identifiers
and return a List of instances. You can specify the identifiers as a List or using varargs; for example:

def albums = Album.getAll(1,2,3)

CHAPTER 9 n GORM

192

When using the get method, the object is loaded from the database in a modifiable state. In other
words, you can make changes to the object, which then get persisted to the database. If you want to load
an object in a read-only state, you can use the read method instead:

def album = Album.read(params.id)

In this case, the Album instance returned cannot be modified. Any changes you make to the object will
not be persisted. There is also a performance benefit because Hibernate does not have to keep track of
which properties have changed (dirty checking).

Listing, Sorting, and Counting
A common way to retrieve items from a database is to simply list them. Clearly, it is not always desirable to
list every instance, and the order in which they are returned is often important. GORM provides a list()
method, which takes a number of named arguments, including max, offset, sort, and order, to customize
the results, the definitions of which are listed here:

•	 max: the maximum number of instances to return

•	 offset: the offset relative to 0 of the first result to return

•	 sort: the property name to sort by

•	 order: the order of the results, either asc or desc for ascending and descending order,
respectively

In addition to list(), often used in combination with it, is the count() method, which counts the total
number of instances in the database. To demonstrate these, let’s look at some examples of their usage (see
Listing 9-2).

Listing 9-2. Using the list() Method

// get all the albums; careful, there might be many!
def allAlbums = Album.list()
// get the ten most recently created albums
def topTen = Album.list(max:10, sort:'dateCreated', order:'desc')
// get the total number of albums
def totalAlbums = Album.count()

As you can imagine, it is fairly simple to use the list() method to perform the pagination of results by
customizing the offset argument. In addition, there is a set of listOrderBy* methods that are variations
on the list() method.

The listOrderBy* methods provide an example where each method uses the properties on the class
itself in the method signatures. They are unique to each domain class, but it is just a matter of
understanding the convention to use them. Listing 9-3 is an example that lists all Album instances, ordered
by the dateCreated property, simply by invoking the listOrderByDateCreated() method.

Listing 9-3. Using listOrderBy

// all albums ordered by creation date
def allByDate = Album.listOrderByDateCreated()

Using standard bean conventions, the property name, starting with a capital letter, is appended to the
end of the method signature. You’ll see more examples of this later in the chapter when we cover dynamic
finders, including a variation of the count method.

193

CHAPTER 9 n GORM

Saving, Updating, and Deleting
As you’ve seen already, objects can be persisted by calling the save() method. For example, the code in
Listing 9-4 demonstrates how to persist an instance of the Album class, assuming it validates successfully.

Listing 9-4. Saving an Instance

def album = new Album(params)
album.save()

We’ll have more to say about how GORM persists objects to the database in “The Semantics of
GORM,” later in this chapter. For now, all you need to know is that at some point the underlying Hibernate
engine will execute an SQL INSERT to persist the Album instance to the database. Updating objects is
strikingly similar; doing so involves calling the same save() method on an existing persistent instance, as
shown in Listing 9-5.

Listing 9-5. Updating an Instance

def album = Album.get(1)
album.title = "The Changed Title"
album.save()

When the save() method is called, Hibernate automatically works out whether it should issue an SQL
INSERT or an SQL UPDATE. Occasionally, on certain older databases, Hibernate may get this decision wrong
and issue an UPDATE when it should be doing an INSERT. You can get around this by passing an explicit
insert argument to the save() method:

album.save(insert:true)

As for deleting objects, this is done with the delete() method:

album.delete()

That’s the simple stuff. Next you’ll be looking in more detail at associations in GORM and how those
work.

Associations
Chapter 3 already provided some detail on GORM associations in their different incarnations, but there is
a lot more to the associations that GORM supports. In a typical one-to-many association such as the songs
property of the Album class, the type is a java.util.Set. If you recall, the semantics of Set as defined by
javadoc don’t allow duplicates and have no order. However, you may want an association to have a
particular order.

One option is to use a SortedSet, which requires you to implement the Comparable interface for any
item placed into the SortedSet. For example, Listing 9-6 shows how to sort tracks by the trackNumber
property.

Listing 9-6. Using SortedSet to Sort Associations

class Album {
 ...
 SortedSet songs
}

CHAPTER 9 n GORM

194

class Song implements Comparable {
 ...
 int compareTo(o) {
 if(this.trackNumber > o.trackNumber) {
 return 1
 } else if(this.trackNumber < o.trackNumber) {
 return -1
 }
 return 0
 }
}

Alternatively, you can specify the sort order declaratively, using the mapping property introduced in
Chapter 3. For example, if you want to sort Song instances by track number for all queries, you can do so
with the sort method:

class Song {
 ...
 static mapping = {
 sort "trackNumber"
 }
}

You may not want to sort by the trackNumber property for every query or association, in which case
you can apply sorting to the songs association of the Album class only:

static mapping = {
 songs sort: "trackNumber"
}

Another way to change the way sorting is done is to use a different collection type, such as java.util.
List. Unlike a Set, a List allows duplicates and retains the order in which objects are placed into the List.
To support List associations, Hibernate uses a special index column that contains the index of each item
in the List. Listing 9-7 shows an example of using a List for the songs association.

Listing 9-7. Using a List Association

class Album {
 ...
 List songs
}

Set associations have no concept of order, but with a List you can index into a specific entry; for
example:

println album.songs[0]

GORM also supports associations being stored in a Hibernate Bag. A Bag is not necessarily ordered
and doesn’t have to guarantee uniqueness; for those reasons, it may be more performant for a lot of
situations. To use a Bag, declare the property—like the List declared in Listing 9-7—but use the type java.
util.Collection instead of java.util.List.

Finally, GORM also supports Map associations where the key is a String. Simply change the type from
List to Map in the example in Listing 9-7 and use a String instead of an Integer to access entries. For both
List and Map collection types, Grails creates an index column. In the case of a List, the index column holds
a numeric value that signifies its position in the List, while for a Map the index column holds the Map key.

195

CHAPTER 9 n GORM

Relationship Management Methods
As well as giving you the ability to map associations to the database, GORM also automatically provides
you with methods to manage those associations. The addTo* and removeFrom* dynamic methods allow you
to add and remove entries from an association. Additionally, both methods return the instance they are
called on, thus allowing you to chain method calls. Listing 9-8 shows an example of using the addToSongs
method of the Album class.

Listing 9-8. Using Relationship Management Methods

new Album(title:"Odelay",
 artist:beck,
 year:1996)
 .addToSongs(title:"Devil's Haircut",
 artist:beck, duration:342343)
 .addToSongs(title:"Hotwax", artist:beck, duration:490583)
 ...
 .save()

As you see from the example, you can pass just the Song values as named parameters to the addToSongs
method; GORM will automatically instantiate a new instance and add it to the songs association.
Alternatively, if you already have a Song instance, you can simply pass that into the addToSongs method.

Transitive Persistence
Whenever you save, update, or delete an instance in GORM, the operation can cascade to any associated
objects. The default cascade behavior in GORM is dictated by the belongsTo property first discussed in
Chapter 3. For example, if the Song class belongsTo the Album class, then whenever an Album instance is
deleted, all of the associated Song instances are deleted too. If there is no belongsTo definition in an
association, then saves and updates cascade, but deletes don’t.

If you need more control over the cascading behavior, you can customize it, using the cascade method
of the mapping block, as shown in Listing 9-9.

Listing 9-9. Customizing the Cascading Behavior

class Album {
 ...
 static mapping = {
 songs cascade:'save-udpate'
 }
}

A special cascade style, delete-orphan, exists in case you want a child object deleted if it is removed
from an association but not deleted explicitly.

n Tip For information on available cascade options, see the related section in the Hibernate documentation:

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/objectstate.

html#objectstate-transitive.

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/objectstate

CHAPTER 9 n GORM

196

The diagram uses the title and genre properties to look up an Album instance. There is a logical And
expression in the middle to ensure both values need to be equal in the query. This could be replaced with a
logical Or to look up an Album that either has a title of Beck or has a genre of Alternative.

We have, however, only brushed on what is possible with dynamic finders and method expressions.
Dynamic finders support a wide range of expressions that allow GreaterThan, LessThan, Like, and Between
queries, to name just a few, simply by appending an additional expression on the end of the property name.
Listing 9-10 shows some of these in action.

Querying
Pretty much every nontrivial application will need to query persistent data. With the underlying storage
medium of choice being the database, the typical way to achieve this historically has been with SQL.
Relational database systems, with their tables and columns, are significantly different enough from Java
objects that abstracting data access has been a long-term struggle for many an ORM vendor.

Hibernate provides an elegant enough Java API for querying objects stored in a database, but GORM
moves up to the next level by completely abstracting the bulk of data access logic. Don’t expect to see
many dependencies on the org.hibernate package in your codebase, because GORM nicely abstracts the
details of interaction with Hibernate. In the next few sections, we’ll cover the different ways you can query
with GORM, from dynamic finders to criteria GORM.

Note that while relational database systems are the most common type of database for Grails
applications, there are numerous so-called NoSQL databases gaining popularity and GORM has great
support for dealing with many of these. MongoDB is one of the more popular. See http://grails.org/
plugin/mongodb for more information about using GORM with MongoDB.

Dynamic Finders
Dynamic finders are among the most powerful concepts of GORM; as with the previously mentioned
listOrderBy* method, they use the property names of the class to perform queries. However, they are even
more flexible than this, because they allow logical queries such as And, Or, and Not to form so-called method
expressions. There can be hundreds of combinations for any given class, but, again, they’re fairly simple to
remember if you know the convention. Let’s look at an example of the indBy* method first (see Figure 9-1),
which locates a unique instance for the specified method expression.

Class

Prefix

Album.findByTitleAndGenre(“Beck”, “Alternative”)

Logical

AND

First

Argument

title

Property

genre

Property

Second

Argument

Figure 9-1. Basic dynamic finder syntax

http://grails.org/

197

CHAPTER 9 n GORM

Listing 9-10. Dynamic Finders in Action

// retrieve an album where the title contains 'Shake'
def album = Album.indByTitleLike('%Shake%')

// get an album created in last 10 days
def today = new Date()
def last10Days = Album.indByDateCreatedBetween(today-10,today)

// irst album that is not 'Rock'
def somethingElse = Album.indByGenreNotEqual('Rock')

Table 9-1 illustrates all the possible expressions that can be appended, the number of arguments they
expect, and an example of each in action.

Table 9-1. Available Dynamic Finder Method Expressions

Expression Arguments Example

Between 2 Album.findByDateCreatedBetween(today-10,today)

Equals 1 Album.findByTitleEquals(‘Aha Shake Heartbreak’)

GreaterThan 1 Album.findByDateCreatedGreaterThan(lastMonth)

GreaterThanOrEqual 1 Album.findByDateCreatedGreaterThanOrEqual(lastMonth)

Ilike 1 Album.findByTitleIlike(‘shake’)

InList 1 Album.findByTitleInList([‘Aha Shake Heartbreak’, ‘Odelay’])

IsNull 0 Album.findByGenreIsNull()

IsNotNull 0 Album.findByGenreIsNotNull()

LessThan 1 Album.findByDateCreatedLessThan(lastMonth)

LessThanOrEqual 1 Album.findByDateCreatedLessThanOrEqual(lastMonth)

Like 1 Album.findByTitleLike(‘Shake’)

NotEqual 1 Album.findByTitleNotEqual(‘Odelay’)

Rlike 1 Album.findByTitleRlike(/F.*/)

The indBy* method has two cousins that accept the same method expressions you’ve already seen.
The first is indAllBy*, which retrieves all the instances that match the method expression as a java.util.
List. Finally, there is the countBy* method, which returns the total number of instances found by the
method expression as an integer. It is worth opening up the Grails console, by typing grails console in a
command window, and playing with these methods to experiment with the different combinations and
discover just how easy they are to use.

You’ll find that GORM’s dynamic finders pretty much eliminate the need for a Data Access Object
(DAO) layer, which you typically need in Java applications. Remember those? No? OK, well, the process is
something like this:

1. Define an interface for the data access logic. The signatures will look strikingly
like the dynamic finder methods you’ve seen so far.

2. Implement the interface using a Java class.

3. Use Spring (or your IoC container of choice) to wire in dependencies, such as the
data source or Hibernate Session.

CHAPTER 9 n GORM

198

If you think about it, data access logic is extremely repetitive and heavily violates the DRY principles
Grails is founded on. Luckily, with GORM and its dynamic finders, you can forget the DAO.

In the next section, you’ll explore how Grails makes criteria more accessible via concise builder syntax.

Criteria Queries
Possibly one of the most powerful mechanisms for querying utilizes criteria. Criteria use a builder syntax
for creating queries using Groovy’s builder support. A builder in Groovy is essentially a hierarchy of
method calls and closures; it is perfect for “building” treelike structures such as XML documents or a
graphical user interface (GUI). Builders are also good candidates for constructing queries, particularly
dynamic queries, which are often constructed with the horrifically error-prone StringBuffer.

The Hibernate Criteria API is meant to reduce the risk of errors by providing a programmatic way to
construct “criteria” queries. However, Groovy’s expressive syntax and powerful metaprogramming support
has taken this to a new level of conciseness. Let’s start by looking at basic usage patterns of criteria, after
which we can move on to some more advanced examples.

Before you can perform a criteria query, you need a criteria instance for the class you want to query. To
facilitate this, GORM provides a createCriteria static method on each domain class. Once you have
acquired the criteria instance, one of four methods can be invoked, each of which expects a closure
argument:

•	 get: locates a unique instance for the query

•	 list: returns a list of instances for the query

•	 scroll: returns a ScrollableResults instance for the query

•	 count: returns the total results as an integer for the query

The most common use case involves the list() method on the criteria instance to perform the query,
as shown in Listing 9-11.

Listing 9-11. A Simple Criteria Query

def c = Album.createCriteria()
def results = c.list {
 eq('genre', 'Alternative')
 between('dateCreated', new Date()-30, new Date())
}

The previous example lists all the Album instances with a genre of Alternative created in the past 30
days. The nested method calls within the closure block translate into method calls on Hibernate’s org.
hibernate.criterion.Restrictions class, the API for which is too long to list here. Nevertheless, the eq and
between methods shown here are just two of many for performing all the typical queries found in query
languages such as SQL and HQL.

It is worth taking a look at the API on the Hibernate web site (http://docs.jboss.org/hibernate/
core/3.6/javadocs/org/hibernate/criterion/Restrictions.html) to see what is available and to get a
better understanding of the power that is at your fingertips. Of course, you can build queries similar to
those in Listing 9-11 with dynamic finder methods. What you haven’t really explored is the power of
closures and building the query up dynamically.

Consider for the moment that a closure is just a block of code; it can be assigned to a variable. Also,
consider that a closure can reference variables within its enclosing scope. Put the two together, and you
have a pretty powerful mechanism for reusing dynamically constructed queries.

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/criterion/Restrictions.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/criterion/Restrictions.html

199

CHAPTER 9 n GORM

As an example, say you have a map whose keys define the property names to be queried, and the
values define the value, such as the params object provided by Grails controllers. A query could easily be
built up from this map and assigned to a variable. Listing 9-12 provides an example of this concept in
action.

Listing 9-12. Dynamic Querying with Criteria

1 def today = new Date()
2 def queryMap = [genre: 'Alternative', dateCreated: [today-10,today]]
3 def query = {
4 // go through the query map
5 queryMap.each { key, value ->
6 // if we have a list assume a between query
7 if(value instanceof List) {
8 // use the spread operator to invoke
9 between(key, *value)
10 }
11 else {
12 like(key,value)
13 }
14 }
15 }
16
17 // create a criteria instance
18 def criteria = Album.createCriteria()
19
20 // count the results
21 println(criteria.count(query))
22
23 // reuse again to get a unique result
24 println(criteria.get(query))
25
26 // reuse again to list all
27 criteria.list(query).each { println it }
28
29 // use scrollable results
30 def scrollable = criteria.scroll(query)
31 def next = scrollable.next()
32 while(next) {
33 println(scrollable.getString('title'))
34 next = scrollable.next()
35 }

That fairly long example includes some fairly advanced concepts. To simplify understanding it, we’ve
included line numbers, and we’ll go through them one at a time. The first two lines in the following code
define a date instance from the current time and a map using Groovy’s map syntax that will dictate which
properties you’re going to query. The map’s keys are the property names to query, and the values define the
value to query by.

1 def today = new Date()
2 def queryMap = [genre: 'Alternative', dateCreated: [today-10,today]]

CHAPTER 9 n GORM

200

n Tip In Listing 9-12, to calculate the date range to be the past ten days, we took a java.util.Date instance

and subtracted ten from it. This is an example of Groovy’s operator overloading feature used to simplify date

operations.

On line 3 a closure is assigned to the query variable, which will be used in conjunction with the
criteria. The closure’s closing bracket is on line 15, but some important stuff is going on in the body of the
closure:

3 def query = {
 ...
15 }

First, a built-in GDK method called each is used to loop over each entry in the Map. Essentially, the
method iterates through each element in the map and passes the key and value to the passed closure as
arguments.

5 queryMap.each { key, value ->
 ...
14 }

Next up, the familiar instanceof operator is used to check whether the value passed is a List. If the
value passed is a List, you can invoke the between method to pass the key and the value. The value is split
into two arguments using Groovy’s * spread operator:

7 if(value instanceof List) {
8 // use the spread operator to invoke
9 between(key, *value)
10 }
11 else {
12 like(key,value)
13 }

The * spread operator’s job is to split apart a List or an array and pass the separated values to the
target. In this case, the between method—which actually takes three arguments, not two—is correctly
called, with the first element of the list being the second argument and with the second element being the
third argument.

Now let’s start to look at how the query, in the form of a closure, works with a criteria instance as a
reusable code block. As usual, of course, you have to create the criteria instance, which is accomplished on
line 18:

18 def criteria = Album.createCriteria()

The various methods of the criteria instance are then utilized using the same closure:

21 println(criteria.count(query))
24 println(criteria.get(query))
27 criteria.list(query).each { println it }

The first, on line 21, counts all the results for the query; the next prints out a unique result (if there is
one), and the last lists all the results for the query and then iterates through them, with the already
encountered each method printing each one to standard out.

One more usage, on line 30, uses the scroll method on criteria. This returns an instance of the
Hibernate class called org.hibernate.ScrollableResults, which has a similar interface to a JDBC java.

201

CHAPTER 9 n GORM

sql.ResultSet and shares many of the same methods. One major difference, however, is that the columns
of results are indexed from 0 and not 1, as in JDBC.

Querying Associations with Criteria

Often it is useful to execute a query that uses the state of an association as its criterion. So far, you have
performed queries against only a single class and not its associations. So how do you go about querying an
association?

The Grails criteria builder allows querying associations by using a nested criteria method call whose
name matches the property name. The closure argument passed to the method contains nested criteria
calls that relate to the association and not the criteria class. Say that you want to find all albums that
contain the word Shake. The criteria shown in Listing 9-13 will do this.

Listing 9-13. Querying Associations with Criteria

def criteria = Album.withCriteria {
 songs {
 ilike('title', '%Shake%')
 }
}

This is a fairly trivial example, but all the criteria you’ve seen so far can be nested within the nested
songs method call in the code listing. Combine this with how criteria can be built up from logical code
blocks, and it results in a pretty powerful mechanism for querying associations.

n Tip You can also combine association criteria, as shown in Listing 9-13, with regular criteria on the class itself.

Querying with Projections

Projections allow the results of criteria queries to be customized in some way. For example, you may want
to count only the number of results, as opposed to retrieving each one. In other words, they are equivalent
to SQL functions such as count, distinct, and sum.

With criteria queries, you can specify a projections method call that takes a closure and provides
support for these types of queries. Instead of criteria, however, the method calls within it map to another
Hibernate class, named org.hibernate.criterion.Projections.

Let’s adapt the example in Listing 9-14 by adding a projection that results in counting the distinct
Album titles in the Alternative genre.

Listing 9-14. Querying with Projections

def criteria = Album.createCriteria()
def count = criteria.get {
 projections {
 countDistinct('name')
 }
 songs {
 eq('genre', 'Alternative')
 }

CHAPTER 9 n GORM

202

}

Detached Criteria Queries
Criteria queries, as described in the previous section, are associated with the current Hibernate session
(see the section “The Semantics of GORM” for more information on the session). In practice, this means
that you can use criteria queries only with the current session, and they cannot be reused across sessions.
Attempting to execute a criteria query created with a different session, which potentially is no longer
present, will lead to an exception.

In order to facilitate the creation of shared, potentially global, criteria queries that can be reused
across the application, Grails 2.0 and above introduced the notion of a detached criteria query.
Represented by the grails.gorm.DetachedCriteria class, detached criteria queries are composable,
immutable query objects that do not hold an underlying connection to the database. They can be created
as global variables or class properties and reused across the application as needed.

Creating Detached Criteria Queries

To create an instance of the DetachedCriteria class, simply import the necessary package and pass the
target class to the constructor, as shown in Listing 9-15.

Listing 9-15. Creating a DetachedCriteria instance

import grails.gorm.*

def query = new DetachedCriteria(Album)

Once you have a reference to the DetachedCriteria instance, you can use the build method to apply
regular criteria-style query logic (see Listing 9-16).

Listing 9-16. Building a DetachedCriteria query

def newQuery = query.build {
 like('title', '%Shake%')
}

Listing 9-16 demonstrates an important aspect of build method: the original query is not mutated;
instead, a copy is returned with the criteria applied to the copy. Most operations on the DetachedCriteria
instance do not mutate the actual instance. Instead, they return a copy; hence, assigning the return value
of the build method to a new variable is required.

Executing Detached Criteria Queries

Once you have constructed the query you wish to execute, there are a number of ways to do so. In fact, the
DetachedCriteria API is very similar to the GORM API on domain classes and supports all of the typical
operations, including the list, get, and count methods. You can even execute dynamic finders on the
DetachedCriteria instance itself! Listing 9-17 shows a few examples of the kinds of queries you can execute
on a DetachedCriteria instance.

203

CHAPTER 9 n GORM

Listing 9-17. Executing a DetachedCriteria query

def list = query.list() // all results
def only10 = query.list(max:10) // pagination
def album = query.get() // one result
int total = query.count() // number of results
boolean alreadyExists = query.exists() // check for existence
def rockAlbums = query.indAllByGenre('Rock') // dynamic inders
def punkAlbums = query.list { // combine with other criteria
 like('genre', 'Punk')
}

As you can see from Listing 9-17, the DetachedCriteria API is extremely feature-rich, with a range of
ways to execute and compose queries.

Lazy Evaluation of Detached Criteria

In order to increase the performance of your Grails applications, one of the first places to optimize tends
to be the queries the application is executing.

Minimizing the network traffic caused by executing SQL queries on a remote database system can
significantly improve response times of your applications. It is fairly common when building an
application that logic resides in the view to conditionally display data retrieved from the database.

It would be fairly wasteful if a query were executed to obtain some data for the database only to be
omitted from view rendering by logic in the view. An interesting use of detached criteria is lazy evaluation,
which basically means that the query is executed only until use of the detached criteria.

The DetachedCriteria class implements the java.lang.Iterable interface; as a result, it can be used
as a collection-type object. As an example, take the following controller action from Listing 9-18.

Listing 9-18. Lazy DetachedCriteria queries

def showAlbums() {
 def rockAlbums = new DetachedCriteria(Album).build {
 eq('genre', 'Rock')
 }

 [rockAlbums: rockAlbums]
}

The action builds a DetachedCriteria instance called rockAlbums that is returned as the actual model
for the view. The view itself can then iterate over the DetachedCriteria instance as if it were a collection of
results, as shown in Listing 9-19.

Listing 9-19. Iterating over DetachedCriteria in the View

<g:each in="${rockAlbums}" var="album">
 <p>${album.title}</p>
</g:each>

The actual query execution will occur only upon iterating over the DetachedCriteria instance; in other
words, the query is lazily evaluated. Your view could contain conditional logic that disabled rendering of
the query results, without incurring the cost of the query itself.

CHAPTER 9 n GORM

204

Batch Updates and Deletes with Detached Criteria

Batch updating and deleting of data is fairly common in modern applications but not something to be
done lightly. The Grails framework tends to shy away from providing easy-use methods that perform
potentially destructive operations.

However, if you do need to perform batch updates or deletes, then detached criteria are a great way to
achieve that. Essentially, the DetachedCriteria API provides two methods, called deleteAll and updateAll,
that allow, respectively, deleting and updating all objects that match the query.

As an example, if you have a particular aversion to reggae music, this can be easily remedied with the
batch delete operation from Listing 9-20.

Listing 9-20. Batch Deleting with DetachedCriteria

def query = new DetachedCriteria(Album).build {
 eq "genre", "Reggae"
}
int deleteCount = query.deleteAll()

As you can see from the example in Listing 9-20, the deleteAll method returns the number of entities
that were deleted by the operation.

The updateAll method differs slightly in that it takes a map representing the properties and values you
wish to update. Listing 9-21 presents an example.

Listing 9-21. Batch Updating with DetachedCriteria

def query = new DetachedCriteria(Album).build {
 eq "genre", "Reggae"
}
int updateCount = query.updateAll(genre: "Rock")

Where Queries
Building on the DetachedCriteria API discussed in the previous section, where queries (named as such
after the where method, which is the main entry point to the API) provide a way to build compile-time-
checked, concise queries using syntax familiar to all Groovy developers.

Groovy’s collections API provides numerous “finder” methods that operate on collections and take
closure filter results. An example, using Groovy’s indAll method, can be seen in Listing 9-22.

Listing 9-22. Groovy Collection API findAll Method

def list = albums.indAll { it.genre == "Rock" }

The Grails where queries are modeled after this API, whereby you use native Groovy operators such as
==, >, <, and the like, to construct the query.

Where Query Basics

The where method accepts a closure, and within the body of the closure you can use native Groovy
operators to construct a DetachedCriteria instance. Listing 9-23 presents a basic example.

205

CHAPTER 9 n GORM

Listing 9-23. A Simple where Query

def query = Album.where { genre == "Rock" }
def results = query.list()

Unlike regular criteria queries, if you misspell the property name, in this case genre, you will receive a
compile-time error. The returned object is a DetachedCriteria instance; from there, all the features of the
DetachedCriteria API apply (lazy evaluation, dynamic finders, query composition, and so on).

In contrast to Groovy’s finder methods, the closure passed to the where method is not used to filter
results from a collection. Instead the closure is translated under the covers into an appropriate SQL query
(or in the case of alternative datastores like MongoDB, whatever native query API is required).

If you wish to execute the query and obtain the results immediately, there are two methods, called ind
and indAll, that can be used. Listing 9-24 shows these latter two methods in action.

Listing 9-24. Using findAll and find Queries for Eager Querying

def rockAlbums = Album.indAll { genre == "Rock" }
def undertow = Album.ind { title == "Undertow" }

Understanding Where Query Operators

In general the native Groovy operators map quite nicely onto their SQL equivalents when the query is
executed. Table 9-2 provides examples of the various supported Groovy operators, what they map to in the
SQL world, and an example of use.

Table 9-2. Available Where Query Operators

Operator SQL Example

== = Album.where { genre == “Rock” }

!= != or <> Album.where { genre != “Rock” }

> > Album.where { dateCreated > lastMonth }

>= >= Album.where { dateCreated >= lastMonth }

< < Album.where { dateCreated < lastMonth }

<= <= Album.where { dateCreated <= lastMonth }

in IN Album.where { genre in [“Rock”, “Punk”] }

==~ LIKE Album.where { genre ==~ “Ro%” }

=~ ILIKE Album.where { genre =~ “ro%” }

in 0..1 BETWEEN Album.where { dateCreated in (lastYear..lastMonth) }

== null IS NULL Album.where { genre == null }

!= null IS NOT NULL Album.where { genre != null }

A few of the above examples warrant further explanation. Notably, Groovy’s matching operator ==~ is
mapped onto LIKE, while Groovy’s find operator =~ is mapped onto the equivalent of the ILIKE operator
(case-insensitive like) in Postgres. Other databases that don’t have an ILIKE operator tend to use functions
to convert the text to upper or lower case during comparison.

CHAPTER 9 n GORM

206

Also, notice that Groovy ranges are used to construct SQL BETWEEN queries to obtain results within
between two given values.

Groovy’s regular logical operators can be used to construct conjunctions, disjunctions, and even
negations. Listing 9-25 presents an example that combines multiple logical operators.

Listing 9-25. Where Queries and Conjunctions/Disjunctions

def lastWeek = new Date() - 7
def rockAlbums = Album.where {
 genre == "Rock" && dateCreated > lastWeek && !artist.name == "Pink"
}

The previous example also introduced another capability of where queries, which is the ability to
query associations via the dot operator. The query in Listing 9-25 queries the name property of the artist
association!

Querying Associations with Where Queries

As mentioned in the previous section, using the dot operator you can query both single-ended and
collection-type associations. However, if you need to query multiple properties of a given association, it
could end up being very repetitive to use the dot operator over and over. For example, consider the code in
Listing 9-26.

Listing 9-26. Using the dot operator to query associations

def query = Song.where {
 album.title ==~ "A%" && album.dateCreated > new Date() - 7
}

The code in Listing 9-24 queries two properties of the album association: title and dateCreated.
Notice that the repetitive nature of using the dot operator as the name of the association is used twice, one
for each property. A more concise way to write this query can be seen in Listing 9-27.

Listing 9-27. Grouping Association Criterion

def query = Song.where {
 genre == "Rock" &&
 album { title ==~ "A%" && dateCreated > new Date() – 7 }
}

As you can see from Listing 9-25, you can use a closure after the name of the association to group
related criteria and avoid repeating the association name. Also, note that you can combine association
criteria with top-level criteria related to the class being queried.

In the case of collection types, used to model one-to-many and many-to-many associations, where
queries provide a few additional features designed to allow querying the size of a collection.

In general if you use the size() function on a collection and combine it with a regular Groovy
comparison operator, such as == or >, you can constrain the size of the collection returned by a query.
Listing 9-28 presents a simple example that limits the number of songs an album can contain.

207

CHAPTER 9 n GORM

Listing 9-28. Querying collection sizes

def shortAlbums = Album.where {
 songs.size() < 10
}

Note that, as mentioned previously, the closure code is never actually executed in this form, but
instead translated into an SQL query at runtime. So although it may seem like we are invoking the size()
method on the actual collection here, what we are actually doing is simply telling Grails that the query
results should be limited by the size() of the collection. Under the covers Grails will do the right thing and
produce an appropriate SQL query to be executed.

Subqueries and Functions

One advanced aspect of where queries is the use of subqueries. As of the time of writing, they can be used
only on the right-hand side of any Boolean expression. Consider Listing 9-29.

Listing 9-29. Using Subqueries

def longSongs = Song.where {
 duration > avg(duration)
}

The query in Listing 9-29 returns all the songs whose duration is greater than the average. This is
achieved by using the avg subquery on the right-hand side of the expression. A more elaborate example is
seen in Listing 9-30.

Listing 9-30. Using More Elaborate Subqueries

def longRockSongs = Song.where {
 genre == "Rock" && duration > avg(duration).of { genre == "Rock" }
}

In this case the avg subquery is used to find all the rock songs whose duration is longer than the
average rock song. To achieve this query, the of function is used on the result of the avg function. The of
function takes a closure, which can contain further Boolean expressions. Table 9-3 provides a
comprehensive list of the available subqueries.

Table 9-3. Available Subqueries

Subquery Description

avg the average of all values

sum the sum of all values

max the maximum value

min the minimum value

count the count of all values

property a list of all properties

The property subquery deserves a special mention; it differs in that instead of returning a single value,
as is the case with the avg subquery, the property subquery instead returns a list of values. Listing 9-31
presents an example of using the property subquery.

CHAPTER 9 n GORM

208

Listing 9-31. Using a property Subquery

def query = Song.where {
 duration < property(duration)
 }

The query in Listing 9-31 differs significantly from the query previously seen in Listing 9-27 in that it
compares the duration to the duration of all other properties. Since this is unlikely to be very efficient, the
property subquery is generally used in combination with the of function to constrain the number of
properties compared. An example of this can be seen in Listing 9-32.

Listing 9-32. Using a property Subquery with the of Function

def query = Song.where {
 duration < property(duration).of { genre == "Rock" }
 }

As you have probably noted from the various examples, the property name being queried should
always be on the left-hand side of a Boolean expression. There are, however, some additional functions
that can be applied to the property being queried. Table 9-4 lists these functions.

Table 9-4. Available Functions

Function Description

second the second of a date property

minute the minute of a date property

hour the hour of a date property

day the day of the month of a date property

month the month of a date property

year the year of a date property

lower converts a string property to lower case

upper converts a string property to upper case

length the length of a string property

trim trims a string property

The functions in Table 9-4 can, as of the time of writing, only be used on the left-hand side of an
expression. In other words, they should surround the property name. Listing 9-33 gives an example that
obtains all albums from 2012.

Listing 9-33. Using Functions on a Property

def query = Album.where {
 year(dateCreated) == 2012
}

209

CHAPTER 9 n GORM

Query by Example
An alternative to criteria queries is to pass an instance of the class you’re looking for to the ind or indAll
method. This is an interesting option when used in conjunction with Groovy’s additional implicit
constructor for JavaBeans, as shown in Listing 9-34.

Listing 9-34. Query by Example

def album = Album.ind(new Album(title:'Odelay'))

As you can see from Listing 9-15, the ind method uses the properties set on the passed Album instance
to formulate a query. Querying by example is a little limiting, because you don’t have access to some of the
more advanced expressions such as Like, Between, and GreaterThan when passing in the example. It is,
however, another useful addition to your toolbox.

HQL and SQL
Another way to perform queries is via the Hibernate Query Language (HQL), which is a flexible object-
oriented alternative to SQL. A full discussion of HQL is beyond the scope of this book; however, the
Hibernate documentation does cover it splendidly (http://docs.jboss.org/hibernate/core/3.6/
reference/en-US/html/queryhql.html). We will look at some basic examples of how GORM supports HQL
via more built-in methods.

Those who know SQL should not find it hard to adapt to HQL, because the syntactic differences are
minimal. GORM provides three methods for working with HQL queries: ind, indAll, and executeQuery.
Each method, when passed a string, will assume it’s an HQL query. The example in Listing 9-35 presents
the most basic case combined with indAll.

Listing 9-35. HQL via the findAll Method

// query for all albums
def allAlbums = Album.indAll('from com.g2one.gtunes.Album')

In addition, JDBC-style IN parameters (queries with question mark [?] placeholders) are supported by
passing a list as the second argument. Thanks to Groovy’s concise syntax for expressing lists, the result is
very readable, as presented in Listing 9-36.

Listing 9-36. HQL with Positional Parameters

// query for an Album by title def album = Album.ind(
'from Album as a where a.title = ?', ['Odelay'])

If positional parameters aren’t your preferred option, you can also use named parameters, using the
syntax shown in Listing 9-37.

Listing 9-37. HQL with Named Parameters

// query for an Album by title
def album = Album.ind('from Album as a where a.title = :theTitle',
 [theTitle:'Odelay'])

Notice how you use the colon character directly before the named parameter :theTitle. Then instead
of passing a list as the final argument to the ind method, you pass a map where the keys in the map match
the named parameters in the query.

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/queryhql.html
http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/queryhql.html

CHAPTER 9 n GORM

210

The methods ind and indAll assume the query is a query specific to the Album class and will validate
that this is so. It is possible, however, to execute other HQL queries via the executeQuery method, as shown
in Listing 9-38.

Listing 9-38. HQL via executeQuery

// get all the songs
def songs = Album.executeQuery('select elements(b.songs) from Album as a')

Clearly, there is a lot to learn about HQL, since it is possible to perform more advanced queries using
joins, aggregate functions, and subqueries. Luckily, the documentation on the Hibernate web site is an
excellent overview of what is possible and can help you on your way.

Pagination
Whichever way you query, a typically useful thing to be able to do is paginate through a set of results.
You’ve already learned that the list() method supports arguments such as max and offset that allow you
to perform pagination. For example, to obtain the first ten results, you can use the following:

def results = Album.list(max:10)

To obtain the following ten, you can use the offset argument:

def results = Album.list(max:10, offset:10)

While we’re on the topic of querying, you’ll be happy to know that the same arguments can be used to
paginate queries. For example, when using dynamic finders, you can pass a map as the last argument,
which specifies the max and offset arguments:

def results = Album.indAllByGenre("Alternative", [max:10, offset:20])

In fact, you can use any parameter covered in the previous “Listing, Sorting, and Counting” section,
such as sort and order:

def results = Album.indAllByGenre("Alternative", [sort:'dateCreated',
order:'desc'])

In the view, you can take advantage of the <g:paginate> tag that renders “Previous” and “Next” links,
as well as linked numbers to jump to a specific set of results à la Google. In its simplest form, the
<g:paginate> tag requires only the total number of records:

<g:paginate total="${Album.count()}" />

This example assumes you want to paginate the current controller action. If you don’t, you can
customize the controller that is actually performing the pagination using the same attributes accepted by
the <g:link> tag, such as controller and action:

<g:paginate controller="album" action="list" total="${Album.count()}" />

You can change the default “Previous” and “Next” links using the prev and next attributes,
respectively:

<g:paginate prev="Back" next="Forward" total="${Album.count()}" />

If internationalization (i18n) is a requirement, you can use the <g:message> tag, called as a method, to
pull the text to appear from message bundles:

211

CHAPTER 9 n GORM

<g:paginate prev="${message(code:'back.button.text')}"
 next="${message(code:'next.button.text')}"
 total="${Album.count()}" />

n Tip If you’re interested in the mechanics of i18n support in Grails, take a look at Chapter 7, which covers the

details of message bundles and switching locales.

Configuring GORM
GORM has a number of attributes that you may want to configure. Pretty much all the options available in
Hibernate are also available in GORM. One of the most fundamental things you’re likely to want to achieve
is to enable some form of SQL logging so that you can debug performance issues and optimize queries.

SQL Logging
If you’re purely interested in monitoring the amount of SQL traffic hitting the database, then a good option
to use is the logSql setting in the grails-app/conf/DataSource.groovy file:

dataSource {
 ...
 logSql = true
}

With this enabled, every SQL statement issued by Hibernate will be printed to the console. The
disadvantage of the logSql setting is that you get to see only the prepared statements printed to the
console and not the actual values that are being inserted. If you need to see the values, then set up a
special log4j logger in grails-app/conf/Conig.groovy as follows:

log4j = {
 ...
 logger {
 trace "org.hibernate.SQL", "org.hibernate.type"
 }
}

Specifying a Custom Dialect
Hibernate has, over the years, been heavily optimized for each individual database that it supports. To
support different database types, Hibernate models the concept of a dialect. For each database it supports,
there is a dialect class that knows how to communicate with that database.

There are even different dialects for different database versions. For example, for Oracle, there are
three dialect classes: Oracle8iDialect, Oracle9iDialect, and Oracle10gDialect. Normally, the dialect to
use is automatically detected from the database JDBC metadata. However, certain older database drivers
do not support JDBC metadata, in which case you may have to specify the dialect explicitly. To do so, you
can use the dialect setting of the grails-app/conf/DataSource.groovy file. As an example, if you use the
InnoDB storage engine for MySQL, you’ll want to use the MySQL5InnoDBDialect class, as shown in
Listing 9-39.

CHAPTER 9 n GORM

212

Listing 9-39. Customizing the Hibernate Dialect

dataSource {
 ...
 dialect = org.hibernate.dialect.MySQL5InnoDBDialect
}

Other Hibernate Properties
The logSql and dialect settings of the DataSource.groovy file demonstrated in the previous two sections
are actually just shortcuts for the hibernate.show_sql and hibernate.dialect properties of the Hibernate
SessionFactory. If you’re more comfortable using Hibernate’s configuration model, then you can do so
within a hibernate block in DataSource.groovy. In fact, you’ll note that the Hibernate second-level cache
(discussed later in the “Caching” section) is already preconfigured in this manner, as shown in Listing 9-40.

Listing 9-40. Regular Hibernate Configuration

hibernate {
 cache.use_second_level_cache=true
 cache.use_query_cache=false
 cache.provider_class=
 'net.sf.ehcache.hibernate.EhCacheRegionFactory '
}

You can configure all manner of things if you’re not satisfied with the defaults set up by Grails. For
example, to change your database’s default transaction isolation level, you could use the hibernate.
connection.isolation property:

hibernate {
 hibernate.connection.isolation=4
}

In this example, we’ve changed the isolation level to Connection.TRANSACTION_REPEATABLE_READ. Refer
to the java.sql.Connection class for the other isolation levels.

n Tip For the other configuration options available, see the Hibernate reference material: http://docs.jboss.

org/hibernate/core/3.6/reference/en-US/html/session-coniguration.html.

Within an application it may be that there are a lot of domain classes that have common configuration
settings. For example, it may be the case that you want versioning turned off for all domain classes across
the entire application. You can do this by specifying “version false” in the mapping block of every domain
class, but having to specify that in every domain class is tedious and leads to errors. Fortunately, mapping
settings like that can be configured globally in Config.groovy. See Listing 9-41 for an example.

Listing 9-41. Global GORM mapping Settings

grails.gorm.default.mapping = {
 // These will become default mapping settings for
 // all domain classes. These settings may be overridden
 // in the mapping block of any domain class.
 version false

http://docs.jboss

213

CHAPTER 9 n GORM

 autoTimestamp false
}

Similarly, global constraints may be defined in Conig.groovy (see Listing 9-42).

Listing 9-42. Global GORM Constraints

grails.gorm.default.constraints = {
 nullable true
 blank false
 size 1..20
}

The Semantics of GORM
As you have discovered, using GORM is pretty easy. It’s so easy, in fact, that you may be lulled into a false
sense of security and think that you never have to look at a database again. However, when working with
any ORM tool, it is absolutely critical to understand how and what the ORM tool is doing.

n Tip Since GORM is built on Hibernate, it may well be worth investing in a book specifically targeting Hibernate.

Still, we’ll do our best to cover the key aspects here.

If you start using an ORM tool without understanding its semantics, you will almost certainly run into
issues with the performance and behavior of your application. ORM tools are often referred to as an
example of a leaky abstraction (see http://www.joelonsoftware.com/articles/LeakyAbstractions.html)
because they attempt to isolate you from the complexities of the underlying database. Unfortunately, to
follow the analogy, the abstraction leaks quite frequently if you’re not aware of features such as lazy and
eager fetching, locking strategies, and caching.

This section will provide some clarity on these quirks to ensure that you don’t use GORM with the
expectation that it will solve world hunger. GORM is often compared, understandably, to ActiveRecord in
Rails. Unfortunately, users with Rails experience who adopt Grails are in for a few surprises because the
tools are really quite different. One of the primary differences is that GORM has the concept of a
persistence context, or session.

The Hibernate Session
Hibernate, like the Java Persistence API, models the concept of a persistence session using the org.
hibernate.Session class. The Session class is essentially a container that holds references to all known
instances of persistent classes—domain classes in Grails. In the Hibernate view of the world, you think in
terms of objects and delegate responsibility to Hibernate to ensure that the state of the objects is
synchronized to the database.

The synchronization process is triggered by calling the lush() method on the Session object. At this
point, you may be wondering how all of this relates to Grails, given that you saw no mention of a Session
object in Chapter 4. Essentially, GORM manipulates the Session object transparently on your behalf.

It is quite possible to build an entire Grails application without ever interacting directly with the
Hibernate Session object. However, for developers who are not used to the session model, there may be a
few surprises along the way. As an example, consider the code in Listing 9-43.

http://www.joelonsoftware.com/articles/LeakyAbstractions.html

CHAPTER 9 n GORM

214

Listing 9-43. Multiple Reads Return the Same Object

def album1 = Album.get(1)
def album2 = Album.get(1)
assertFalse album1.is(album2)

The code in Listing 9-1 shows a little gotcha for developers not used to the session model. The first call
to the get method retrieves an instance of the Album class by executing an SQL SELECT statement under the
covers—no surprises there. However, the second call to the get method doesn’t execute any SQL at all, and
in fact, the assertion on the last lines fails.

n Note In the example in Listing 9-43, the final assertFalse statement uses Groovy’s is method because == in

Groovy is equivalent to calling the equals(Object) method in Java.

In other words, the Session object appears to act like a cache; in fact, it is one. The Session object is
Hibernate’s first-level cache. Another area where this is apparent is when saving an object. Consider the
code in Listing 9-44.

Listing 9-44. Saving a Domain Class in Grails

def album = new Album(...)
album.save()

Now, assuming the Album instance validates, you may think from the code in Listing 9-2 that GORM
will execute an SQL INSERT statement when the save() method is called. However, this is not necessarily
the case, and in fact it depends greatly on the underlying database. GORM by default uses Hibernate’s
native identity generation strategy, which attempts to select the most appropriate way to generate the id of
an object. For example, in Oracle, Hibernate will opt to use a sequence generator to supply the identifier,
while in MySQL the identity strategy will be used. The identity generation strategy relies on the database
to supply the identity.

Since an identifier must be assigned by the time the save() method completes, if a sequence is used,
no INSERT is needed because Hibernate can simply increment the sequence in memory. The actual INSERT
can then occur later when the Session is flushed. However, in the case of the identity strategy, an INSERT is
needed since the database needs to generate the identifier. Nevertheless, the example serves to
demonstrate that it is the Session that is responsible for synchronizing the object’s state to the database,
not the object itself.

Essentially, Hibernate implements the strategy known as transactional write-behind. Any changes
made to persistent objects are not necessarily persisted when you make them or even when you call the
save() method. The advantage of this approach is that Hibernate can heavily optimize and batch up the
SQL to be executed, hence minimizing network traffic. In addition, the time for which database locks
(discussed in more detail in the “Locking Strategies” section) are held is greatly reduced by this model.

Session Management and Flushing
You may be worried at this point that you’re losing some kind of control by allowing Hibernate to take
responsibility for persisting objects on your behalf. Fortunately, GORM provides you with the ability to
control session flushing implicitly by passing in a lush argument to the save() or delete() method, as
shown in Listing 9-45.

215

CHAPTER 9 n GORM

Listing 9-45. Manually Flushing the Session

def album = new Album(...)
album.save(lush:true)

In contrast to the example in Listing 9-23, the code in Listing 9-24 will persist the object but also call
lush() on the underlying Session object. However, it is important to note that since the Session deals with
all persistent instances, other changes may be flushed in addition to the object that is saved. Listing 9-46
illustrates an example of this behavior.

Listing 9-46. The Effects of Flushing

def album1 = Album.get(1)
album1.title = "The Changed Title"
album1.save()
def album2 = new Album(..)
album2.save(lush:true)

The example in Listing 9-25 demonstrates the impact of passing the lush argument to the second
save() method. You may expect that an SQL UPDATE would be executed when save() is called on album1,

and then an INSERT would occur when save() is called on album2. However, the actual behavior is that both
the UPDATE and the INSERT occur on the call to save() on album2, since the lush:true argument passed
forces the underlying Session object to synchronize changes with the database.

You may be wondering at this point how the code in the listings you’ve seen so far can possibly use the
same Session instance and where this Session came from in the first place. Basically, when a request
comes into a Grails application, directly before a controller action executes, Grails will transparently bind a
new Hibernate Session to the current thread. The Session is then looked up by GORM’s dynamic methods,
such as get in Listing 9-8. When a controller action finishes executing, if no exceptions are thrown, the
Session is flushed, which synchronizes the state of the Session with the database by executing any
necessary SQL. These changes are then committed to the database.

However, that is not the end of the story. The Session is not closed but instead placed in read-only
mode prior to view rendering and remains open until view rendering completes. The reason for this is that
if the session were closed, any persistent instances contained within it would become detached. The result
is that if there were any noninitialized associations, the infamous org.hibernate.
LazyInitializationException would occur. Ouch! Of course, we’ll be saying more about
LazyInitializationException and ways to avoid the exception, including in-depth coverage of detached
objects later in the chapter.

To elaborate, the reason for placing the Session into read-only mode during view rendering is to avoid
any unnecessary flushing of the Session during the view-rendering process. Your views really shouldn’t be
modifying database state, after all! So that is how the standard Session life cycle works in Grails.

Obtaining the Session
As mentioned previously, the Session is basically a cache of persistent instances. Like any cache, the more
objects it has within it, the more memory it’s going to consume. A common mistake when using GORM is
to query for a large number of objects without periodically clearing the Session. If you do so, your Session
will get bigger and bigger, and eventually you may either cause your application’s performance to suffer or,
worse, run out of memory.

In these kinds of scenarios, it is wise to manage the state of your Session manually. Before you can do
so, however, you need a reference to the Session object itself. You can achieve this in two ways. The first
involves the use of dependency injection to get hold of a reference to the Hibernate SessionFactory object.

CHAPTER 9 n GORM

216

The SessionFactory has a method, called currentSession(), that you can use to obtain the Session
bound to the current thread. To use dependency injection, simply declare a local field called
sessionFactory in a controller, tag library, or service, as shown in Listing 9-47.

Listing 9-47. Using Dependency Injection to Obtain the Hibernate Session

def sessionFactory
...
def index() {
 def session = sessionFactory.currentSession()
}

As an alternative, you could use the withSession method that is available on any domain class. The
withSession method accepts a closure. The first argument to the closure is the Session object; hence, you
can code as in Listing 9-48.

Listing 9-48. Using the withSession Method

def index() {
 Album.withSession { session ->
 ...
 }
}

Let’s return to the problem at hand. To avoid memory issues when using GORM with a large amount
of data (note this applies to raw Hibernate too), you need to call the clear() method on the Session object
periodically so that the contents of the Session are cleared. The result is that the instances within the
Session become candidates for garbage collection, which frees up memory. Listing 9-49 shows an example
that demonstrates the pattern.

Listing 9-49. Managing the Hibernate Session

1 def index() {
2 Album.withSession { session ->
3 def allAlbums = Album.list()
4 for(album in allAlbums) {
5 def songs = Song.indAllByAlbum(album)
6 // do something with the songs
7 ...
8 session.clear()
9 }
10 }
11 }

The example in Listing 9-49 is rather contrived, but it serves to demonstrate effective Session
management when dealing with a large number of objects. On line 2, a reference to the Session is obtained
using the withSession method:

2 Album.withSession { session ->
 ...
10 }

Then, on line 3, a query is used to get a list of all the albums in the system, which could be big in itself,
and then iterate over each one:

217

CHAPTER 9 n GORM

3 def allAlbums = Album.list()
4 for(album in allAlbums) {
 ...
9 }

Critically, on line 5, a dynamic finder queries for all the Song instances for the current Album:

5 def songs = Song.indAllByAlbum(album)

Now, each time the indAllByAlbum method is executed, more and more persistent instances are being
accumulated in the Session. Memory consumption may at some point become an issue depending on
how much data is in the system at the time. To prevent this, the session is cleared on line 8:

8 session.clear()

Clearing the Session with the clear() method is not the only way to remove objects from Hibernate’s
grasp. If you have a single object, you can also call the discard() method. You could even use the *.
operator to discard entire collections of objects using this technique:

songs*.discard()

The advantage of this approach is that although the clear() method removes all persistent instances
from the Session, using discard() removes only the instances you no longer need. This can help in certain
circumstances because you may end up with a LazyInitializationException because removing the objects
from the Session results in them being detached (a subject we’ll discuss in more detail in the “Detached
Objects” section).

Automatic Session Flushing
Another common gotcha is that by default GORM is configured to flush the session automatically when
one of the following occurs:

•	 whenever a query is run;

•	 directly after a controller action completes, if no exceptions are thrown;

•	 directly before a transaction is committed.

This has a number of implications that you need to consider. Take, for example, the code in
Listing 9-50.

Listing 9-50. The Implications of Automatic Session Flushing

1 def album = Album.get(1)
2 album.title = "Change It"
3 def otherAlbums = Album.indAllWhereTitleLike("%Change%")
4
5 assert otherAlbums.contains(album)

You may think that because you never called save() on the album there is no way it could possibly have
been persisted to the database, right? Wrong. As soon as you load the album instance, it immediately
becomes a “managed” object as far as Hibernate is concerned. Since Hibernate is by default configured to
flush the session when a query runs, the Session is flushed on line 3 when the indAllWhereTitleLike
method is called and the Album instance is persisted. The Hibernate Session caches changes and pushes
them to the database only at the latest possible moment. In the case of automatic flushing, this is at the
end of a transaction or before a query runs that might be affected by the cached changes.

CHAPTER 9 n GORM

218

You may consider the behavior of automatic flushing to be a little odd, but if you think about it, it
depends very much on your expectations. If the object weren’t flushed to the database, then the change
made to it on line 2 would not be reflected in the results. That may not be what you’re expecting either!
Let’s consider another example where automatic flushing may present a few surprises. Take a look at the
code in Listing 9-51.

Listing 9-51. Another Implication of Automatic Session Flushing

def album = Album.get(1)
album.title = "Change It"

In Listing 9-16, an instance of the Album class is looked up and the title is changed, but the save()
method is never called. You may expect that since save() was never called, the Album instance will not be
persisted to the database. However, you’d be wrong again. Hibernate does automatic dirty checking and
flushes any changes to the persistent instances contained within the Session.

It is our recommendation that you should always call the save() method when persisting objects. The
save() method will call the Grails validation mechanism and mark the object as read-only, including any
associations of the object, if a validation error occurs. If you were never planning to save the object in the
first place, then you may want to consider using the read method instead of the get method, which returns
the object in a read-only state:

def album = Album.read(1)

If all of this is too dreadful to contemplate and you prefer to have full control over how and when the
Session is flushed, then you may want to consider changing the default FlushMode used by specifying the
hibernate.lush.mode setting in DataSource.groovy:

hibernate.lush.mode="manual"

The possible values of the hibernate.lush.mode setting are summarized as follows:

•	 manual: Flush only when you say so! In other words, only flush the session when the
flush:true argument is passed to save() or delete(). The downside with a manual
flush mode is that you may receive stale data from queries, and you must always
pass the flush:true argument to the save() or delete() method.

•	 commit: Flush only when the transaction is committed (see the next section).

•	 auto: Flush when the transaction is committed and before a query is run.

Nevertheless, assuming you stick with the default auto setting, the save() method might not, excuse
the pun, save you in the case of the code from Listing 9-15. Remember in this case the Session is
automatically flushed before the query is run. This problem brings us nicely onto the topic of transactions in
GORM.

Transactions in GORM
First things first—it is important to emphasize that all communication between Hibernate and the
database runs within the context of a database transaction regardless of whether you are explicit about the
transaction demarcation boundaries. The Session itself is lazy in that it only ever initiates a database
transaction at the last possible moment.

Consider the code in Listing 9-15 again. When the code is run, a Session has already been opened and
bound to the current thread. However, a transaction is initiated only on first communication with the
database, which happens within the call to get on line 1.

219

CHAPTER 9 n GORM

At this point, the Session is associated with a JDBC Connection object. The autoCommit property of the
Connection object is set to false, which initiates a transaction. The Connection will then be released only once
the Session is closed. Hence, as you can see, there is never really a circumstance where Grails operates
without an active transaction, since the same Session is shared across the entire request.

Given that there is a transaction anyway, you would think that if something went wrong, any problems
would be rolled back. However, without specific transaction boundaries and if the Session is flushed, any
changes are permanently committed to the database.

This is a particular problem if the flush is beyond your control (for instance, the result of a query). Then
those changes will be permanently persisted to the database. The result may be the rather painful one of
having your database left in an inconsistent state. To help you understand, let’s look at another illustrative
example, as shown in Listing 9-52.

Listing 9-52. Updates Gone Wrong

def save() {
 def album = Album.get(params.id)
 album.title = "Changed Title"
 album.save(lush:true)
 // something goes wrong
 throw new Exception("Ruh Roh!")
}

The example in Listing 9-52 shows a common problem. In the first three lines of the save action, an
instance of the Album class is obtained using the get method, the title is updated, and the save() method is
called and passes the lush argument to ensure updates are synchronized with the database. Then later in
the code, something goes wrong, and an exception is thrown. Unfortunately, if you were expecting
previous updates to the Album instance to be rolled back, you’re out of luck. The changes have already been
persisted when the Session was flushed! You can correct this in two ways; the first is to move the logic into
a transactional service. Services are the subject of Chapter 10, so we’ll be showing the latter option, which
is to use programmatic transactions. Listing 9-53 shows the code updated to use the withTransaction
method to demarcate the transactional boundaries.

Listing 9-53. Using the withTransaction Method

def save() {
 Album.withTransaction {
 def album = Album.get(params.id)
 album.title = "Changed Title"
 album.save(lush:true)
 ...
 // something goes wrong
 throw new Exception("Ruh Roh!")
 }
}

Grails uses Spring’s PlatformTransactionManager abstraction layer under the covers. In this case, if an
exception is thrown, all changes made within the scope of the transaction will be rolled back as expected.
The first argument to the withTransaction method is a Spring TransactionStatus object, which also allows
you to programmatically roll back the transaction by calling the setRollbackOnly() method, as shown in
Listing 9-54.

CHAPTER 9 n GORM

220

Listing 9-54. Programmatically Rolling Back a Transaction

def save() {
 Album.withTransaction { status ->
 def album = Album.get(params.id)
 album.title = "Changed Title"
 album.save(lush:true)
 ...
 // something goes wrong
 if(hasSomethingGoneWrong()) {
 status.setRollbackOnly()
 }
 }
}

Note that you need only one withTransaction declaration. If you were to nest withTransaction
declarations within each other, then the same transaction would simply be propagated from one
withTransaction block to the next. The same is true of transactional services. In addition, if you have a
JDBC 3.0–compliant database, then you can leverage savepoints, which allow you to roll back to a
particular point rather than roll back the entire transaction. Listing 9-55 shows an example that rolls back
any changes made after the Album instance was saved.

Listing 9-55. Using Savepoints in Grails

def save() {
 Album.withTransaction { status ->
 def album = Album.get(params.id)
 album.title = "Changed Title"
 album.save(lush:true)
 def savepoint = status.createSavepoint()
 ...
 // something goes wrong
 if(hasSomethingGoneWrong()) {
 status.rollbackToSavepoint(savepoint)
 // do something else
 ...
 }
 }
}

With transactions out of the way, let’s revisit a topic that has been touched on at various points
throughout this chapter: detached objects.

Detached Objects
The Hibernate Session is critically important to understand the nature of detached objects. Remember,
the Session keeps track of all persistent instances and acts like a cache, returning instances that already
exist in the Session rather than hitting the database again. As you can imagine, each object goes through
an implicit life cycle, a topic we’ll be looking at first.

221

CHAPTER 9 n GORM

The Persistence Life Cycle
Before an object has been saved, it is said to be transient. Transient objects are just like regular Java objects
and have no notion of persistence. Once you call the save() method, the object is in a persistent state.
Persistent objects have an assigned identifier and may have enhanced capabilities such as the ability to
lazily load associations. If the object is discarded by calling the discard() method or if the Session has
been cleared, it is said to be in a detached state. In other words, each persistent object is associated with a
single Session, and if the object is no longer managed by the Session, it has been detached from the
Session.

Figure 9-2 shows a state diagram describing the persistence life cycle and the various states an object
can go through. As the diagram notes, another way an object can become detached is if the Session itself is
closed. If you recall, we mentioned that a new Session is bound for each Grails request. When the request
completes, the Session is closed. Any objects that are still around, for example, held within the
HttpSession, are now in a detached state.

Create Object

save()

discard()

attach()

session.close()

Detached

Detached Persistent

PersistentTransient

Figure 9-2. The persistence life cycle

What is the implication of being in a detached state? For one, if a detached object that is stored in the
HttpSession has any noninitialized associations, then you will get a LazyInitializationException.

Reattaching Detached Objects
Given that it is probably undesirable to experience a LazyInitializationException, you can eliminate this
problem by reassociating a detached object with the Session bound to the current thread by calling the
attach() method, for example:

album.attach()

CHAPTER 9 n GORM

222

Note that if an object already exists in the Session with the same identifier, then you’ll get an org.
hibernate.NonUniqueObjectException. To get around this, you may want to check whether the object is
already attached by using the isAttached() method:

if(!album.isAttached()) {
album.attach() }

Since we’re on the subject of equality and detached objects, it’s important to bring up the notion of
object equality here. If you decide you want to use detached objects extensively, then it is almost certain
that you will need to consider implementing equals and hashCode for all of your domain classes that are
detached. Why? Well, if you consider the code in Listing 9-56, you’ll soon see why.

Listing 9-56. Object Equality and Hibernate

def album1 = Album.get(1)
album.discard()
def album2 = Album.get(1)
assert album1 == album2 // This assertion will fail

The default implementation of equals and hashCode in Java uses object equality to compare instances.
The problem is that when an instance becomes detached, Hibernate loses all knowledge of it. As the code
in Listing 9-35 demonstrates, loading two instances with the same identifier once one has become
detached results in you having two different instances. This can cause problems when placing these
objects into collections. Remember, a Set uses hashCode to work out whether an object is a duplicate, but
the two Album instances will return two different hash codes even though they share the same database
identifier!

To get around this problem, you could use the database identifier, but this is not recommended,
because a transient object that then becomes persistent will return different hash codes over time. This
breaks the contract defined by the hashCode method, which states that the hashCode implementation must
return the same integer for the lifetime of the object. The recommended approach is to use Groovy’s
equals and hashcode AST transformation to generate appropriate equals and hashcode methods. Marking a
class with the @EqualsAndHashCode annotation will trigger this transformation. See http://groovy.
codehaus.org/api/groovy/transform/EqualsAndHashCode.html for more information on the annotation.
Listing 9-57 shows an example implementation.

Listing 9-57. Implementing equals and hashCode

@groovy.transform.EqualsAndHashCode
class Album {
 ...
}

An important thing to remember is that you need to implement equals and hashCode only if you are:

•	 using detached instances extensively;

•	 placing the detached instances into data structures, like the Set and Map collection types,
that use hashing algorithms to establish equality.

The subject of equality brings us nicely onto another potential stumbling block. Say you have a
detached Album instance held somewhere like in the HttpSession and you also have another Album instance
that is logically equal (they share the same identifier) to the instance in the HttpSession. What do you do?
Well, you could just discard the instance in the HttpSession:

def index() {

223

CHAPTER 9 n GORM

 def album = session.album
 if(album.isAttached()) {
 album = Album.get(album.id)
 session.album = album
 }
}

However, what if the detached album in the HttpSession has changes? What if it represents the most up-to-
date copy and not the one already loaded by Hibernate? In this case, you need to consider merging.

Merging Changes
To merge the state of one, potentially detached, object into another, you need to use the static merge
method. The merge method accepts an instance, loads a persistent instance of the same logical object if it
doesn’t already exist in the Session, and then merges the state of the passed instance into the loaded
persistent one. Once this is done, the merge method then returns a new instance containing the merged
state. Listing 9-58 presents an example of using the merge method.

Listing 9-58. Using the merge Method

def index() {
 def album = session.album
 album = Album.merge(album)
 render album.title
}

Performance Tuning GORM
The previous section on the semantics of GORM showed how the underlying Hibernate engine optimizes
database access using a cache (the Session). There are, however, various ways to optimize the performance
of your queries. In the next few sections, we’ll be covering the different ways to tune GORM, allowing you
to get the best out of the technology. You may want to enable SQL logging by setting logSql to true in
DataSource.groovy, as explained in the previous section on configuring GORM.

Eager vs. Lazy Associations
Associations in GORM are lazy by default. What does this mean? Well, say you looked up a load of Album
instances using the static list() method:

def albums = Album.list()

To obtain all the Album instances, underneath the surface Hibernate will execute a single SQL SELECT
statement to obtain the underlying rows. As you already know, each Album has an Artist that is accessible
via the artist association. Now say you need to iterate over each song and print the Artist name, as
shown in Listing 9-59.

Listing 9-59. Iterating over Lazy Associations

def albums = Album.list()
for(album in albums) {

CHAPTER 9 n GORM

224

 println album.artist.name
}

The example in Listing 9-59 demonstrates what is commonly known as the N+1 problem. Since the
artist association is lazy, Hibernate will execute another SQL SELECT statement (N statements) for each
associated artist to add to the single statement to retrieve the original list of albums. Clearly, if the result
set returned from the Album association is large, you have a big problem. Each SQL statement executed
results in interprocess communication, which drags down the performance of your application. Listing
9-60 shows the typical output you would get from the Hibernate SQL logging, shortened for brevity.

Listing 9-60. Hibernate SQL Logging Output Using Lazy Associations

Hibernate:
 select
 this_.id as id0_0_,
 this_.version as version0_0_,
 this_.artist_id as artist3_0_0_,
 ...
 from
 album this_
Hibernate:
 select
 artist0_.id as id8_0_,
 ...
 from
 artist artist0_
 where
 artist0_.id=?
Hibernate:
 select
 artist0_.id as id8_0_,
 ...
 from
 artist artist0_
 where
 artist0_.id=?
...

A knee-jerk reaction to this problem would be to make every association eager. An eager association
uses an SQL JOIN so that all Artist associations are populated whenever you query for Album instances.
Listing 9-61 shows you can use the mapping property to configure an association as eager by default.

Listing 9-61. Configuring an Eager Association

class Album {
 ...
 static mapping = {
 artist fetch:'join'
 }
}

However, this may not be optimal either, because you may well run into a situation where you pull
your entire database into memory! Lazy associations are definitely the most sensible default here. If you’re

225

CHAPTER 9 n GORM

merely after the identifier of each associated artist, then it is possible to retrieve the identifier without
needing to do an additional SELECT. All you need to do is refer to the association name plus the suffix Id:

def albums = Album.list()
for(album in albums) {
 println album.artistId // get the artist id
}

However, as the example in Listing 9-38 demonstrates, there are certain examples where a join query
is desirable. You could modify the code as shown in Listing 9-62 to use the fetch argument.

Listing 9-62. Using the fetch Argument to Obtain Results Eagerly

def albums = Album.list(fetch:[artist:'join'])
for(album in albums) {
 println album.artist.name
}

If you run the code in Listing 9-41, instead of N+1 SELECT statements, you get a single SELECT that uses
an SQL INNER JOIN to obtain the data for all artists too. Listing 9-63 shows the output from the Hibernate
SQL logging for this query.

Listing 9-63. Hibernate SQL Logging Output Using Eager Association

select
 this_.id as id0_1_,
 this_.version as version0_1_,
 this_.artist_id as artist3_0_1_,
 this_.date_created as date4_0_1_,
 this_.genre as genre0_1_,
 this_.last_updated as last6_0_1_,
 this_.price as price0_1_,
 this_.title as title0_1_,
 this_.year as year0_1_,
 artist2_.id as id8_0_,
 artist2_.version as version8_0_,
 artist2_.date_created as date3_8_0_,
 artist2_.last_updated as last4_8_0_,
 artist2_.name as name8_0_
from
 album this_
inner join
 artist artist2_
 on this_.artist_id=artist2_.id

Of course, the static list() method is not the only case where you require a join query to optimize
performance. Luckily, dynamic finders, criteria, and HQL can all be used to perform a join. Using a
dynamic finder, you can use the fetch parameter by passing a map as the last argument:

def albums = Album.indAllByGenre("Alternative", [fetch:[artist:'join']])

Using criteria queries you can use the join method:

CHAPTER 9 n GORM

226

def albums = Album.withCriteria {
 ...
 join 'artist'
}

Finally, with HQL you can use a similar syntax to SQL by specifying the inner join in the query:
def albums = Album.indAll("from Album as a inner join a.artist as artist")

Batch Fetching
As you discovered in the previous section, using join queries can solve the N+1 problem by reducing
multiple SQL SELECT statements to a single SELECT statement that uses an SQL JOIN. However, join queries
too can be expensive, depending on the number of joins and the amount of data being pulled from the
database.

As an alternative, you could use batch fetching, which serves as an optimization of the lazy fetching
strategy. With batch fetching, instead of pulling in a single result, Hibernate will use a SELECT statement
that pulls in a configured number of results. To take advantage of batch fetching, you need to set the
batchSize at the class or association level.

As an example, say you had a long Album with 23 songs. Hibernate would execute a single SELECT to get
the Album and then 23 extra SELECT statements for each Song. However, if you configured a batchSize of 10
for the Song class, Hibernate would perform only 3 queries in batches of 10, 10, and 3. Listing 9-64 shows
how to configure the batchSize using the mapping block of the Song class.

Listing 9-64. Configuring the batchSize at the Class Level

class Song {
 ...
 static mapping = {
 batchSize 10
 }
}

Alternatively, you can also configure the batchSize on the association. For example, say you loaded 15
Album instances. Hibernate will execute a SELECT every time the songs association of each Album is
accessed, resulting in 15 SELECT statements. If you configured a batchSize of 5 on the songs association,
you would only get 3 queries. Listing 9-65 shows how to configure the batchSize of the songs association.

Listing 9-65. Configuring the batchSize of an Association

class Album {
 ...
 static mapping = {
 songs batchSize:10
 }
}

As you can see from this discussion on eager vs. lazy fetching, a large part of optimizing an
application’s performance lies in reducing the number of calls to the database. Eager fetching is one way to
achieve that, but you’re still making a trip to the database even if it’s only one.

An even better solution is to eliminate the majority of calls to the database by caching the results. In
the next section, we’ll be looking at different caching techniques you can take advantage of in GORM.

227

CHAPTER 9 n GORM

Caching
In the previous “The Semantics of GORM” section, you discovered that the underlying Hibernate engine
models the concept of a Session. The Session is also known as the first-level cache, because it stores the
loaded persistent entities and prevents repeated access to the database for the same object. However,
Hibernate also has a number of other caches including the second-level cache and the query cache. In the
next section, we’ll explain what the second-level cache is and show how it can be used to reduce the
chattiness between your application and the database.

The Second-Level Cache

As discussed, as soon as a Hibernate Session is obtained by GORM, you already have an active cache: the
first-level cache. Although the first-level cache stores actual persistent instances for the scope of the
Session, the second-level cache exists for the whole time that the SessionFactory exists. Remember, the
SessionFactory is the object that constructs each Session.

In other words, although a Session is typically scoped for each request, the second-level cache is
application scoped. Additionally, the second-level cache stores only the property values and/or foreign
keys rather than the persistent instances themselves. As an example, Listing 9-66 shows the conceptual
representations of the Album class in the second-level cache.

Listing 9-66. How the Second-Level Cache Stores Data

9 -> ["Odelay",1994, "Alternative", 9.99, [34,35,36], 4]
5 -> ["Aha Shake Heartbreak",2004, "Rock", 7.99, [22,23,24], 8]

As you can see, the second-level cache stores the data using a map containing multidimensional
arrays that represent the data. The reason for doing this is that Hibernate doesn’t have to require your
classes to implement Serializable or some persistence interface. By storing only the identifiers of
associations, it eliminates the chance of the associations becoming stale. The previous explanation is a bit
of an oversimplification; however, you don’t need to concern yourself too much with the detail. Your main
job is to specify a cache provider.

By default, Grails comes preconfigured with Ehcache as the cache provider. You can change the cache
configuration in DataSource.groovy by modifying the settings shown in Listing 9-67.

Listing 9-67. Specifying a Cache Provider

hibernate {
 cache.use_second_level_cache=true
 cache.use_query_cache=true
 cache.provider_class=
 'net.sf.ehcache.hibernate.EhCacheRegionFactory '
}

You can even configure a distributed cache such as Oracle Coherence or Terracotta, but be careful if your
application is dependent on data not being stale. Remember, cached results don’t necessarily reflect the
current state of the data in the database.

Once you have a cache provider configured, you’re ready to go. However, by default all persistent
classes have no caching enabled. You have to be very explicit about specifying what data you want cached
and what the cache policy is for that data.

CHAPTER 9 n GORM

228

There are essentially four cache policies available depending on your needs:

•	 read-only: If your application never needs to modify data after it is created, then use
this policy. It is also an effective way to enforce read-only semantics for your objects
because Hibernate will throw an exception if you try to modify an instance in a read-
only cache. Additionally, this policy is safe even when used in a distributed cache
because there is no chance of stale data.

•	 nonstrict-read-write: If your application rarely modifies data and transactional
updates aren’t an issue, then a nonstrict-read-write cache may be appropriate.
This strategy doesn’t guarantee that two transactions won’t simultaneously modify a
persistent instance. It is mainly recommended for usage in scenarios with frequent
reads and only occasional updates.

•	 read-write: If your application requires users to frequently modify data, then you
may want to use a read-write cache. Whenever an object is updated, Hibernate will
automatically evict the cached data from the second-level cache. However, there is
still a chance of phantom reads (stale data) with this policy, and if transactional
behavior is a requirement, you should not use a transactional cache.

•	 transactional: A transactional cache provides fully transactional behavior with no
chance of dirty reads. However, you need to make sure you supply a cache provider
that supports this feature, such as JBoss TreeCache.

So how do you use these different cache levels in a Grails application? Essentially, you need to mark
each class and/or association you want to cache using the cache method of the mapping block. For example,
Listing 9-68 shows how to configure the default read-write cache for the Album class and a read-only cache
for the songs association.

Listing 9-68. Specifying a Cache Policy

class Album {
 ...
 static mapping {
 cache true
 songs cache:'read-only'
 }
}

Now, whenever you query for results, before loading them from the database Hibernate will check
whether the record is already present in the second-level cache and, if it is, load it from there. Now let’s
look at another one of Hibernate’s caches: the query cache.

Query Caching

Hibernate, and hence GORM, supports the ability to cache the results of a query. Under some
circumstances this is useful but can also be problematic for a lot of situations. Enabling the query cache is
a controversial topic and the framework errs on the side of disabling the cache by default. The query cache
can be enabled and disabled using the hibernate.cache.use_query_cache setting in DataSource.groovy, as
shown in Listing 9-46. For more information on some of the issues with enabling the query cache see
http://tech.puredanger.com/2009/07/10/hibernate-query-cache/.

http://tech.puredanger.com/2009/07/10/hibernate-query-cache/

229

CHAPTER 9 n GORM

n Note The query cache works together with the second-level cache, so unless you specify a caching policy as

shown in the previous section, the results of a cached query will not be cached.

By default, even if query caching is enabled not all queries are cached. Like caching of instances, you
have to specify explicitly that a query needs caching. To do so, in the list() method you could use the
cache argument:

def albums = Album.list(cache:true)

The same technique can be used with dynamic finders using a map passed as the last argument:

def albums = Album.indAllByGenre("Alternative", [cache:true])

You can also cache criteria queries using the cache method:

def albums = Album.withCriteria {
 ...
 cache true
}

That’s it for caching; in the next section, we’ll cover the impacts of inheritance in ORM mapping.

Inheritance Strategies
As demonstrated in Chapter 3, you can implement inheritance using two different strategies called table-
per-hierarchy or table-per-subclass. With a table-per-hierarchy mapping, one table is shared between the
parent and all child classes, while table-per-subclass uses a different table for each subsequent subclass.

If you were going to identify one area of ORM technology that really demonstrates the object vs.
relational mismatch, it would be inheritance mapping. If you go for table-per-hierarchy, then you’re forced
to have not-null constraints on all child columns because they share the same table. The alternative
solution, table-per-subclass, could be seen as better since you avoid the need to specify nullable columns
as each subclass resides in its own table.

The main disadvantage of table-per-subclass is that in a deep inheritance hierarchy you may end up
with an excessive number of JOIN queries to obtain the results from all the parents of a given child. As you
can imagine, this can lead to a performance problem if not used with caution; that’s why we’re covering
the topic here.

Our advice is to keep things simple and try to avoid modeling domains with more than three levels of
inheritance when using table-per-subclass. Alternatively, if you’re happy sticking with table-per-hierarchy,
then you’re even better off because no JOIN queries at all are required. With that, we end our coverage of
performance tuning GORM. In the next section, we’ll be covering locking strategies and concurrency.

Locking Strategies
Given that Grails executes within the context of a multithreaded servlet container, concurrency is an issue
that you need to consider whenever persisting domain instances. By default, GORM uses optimistic
locking with versioning. What this means is that the Hibernate engine does not hold any locks on database
rows by performing a SELECT FOR...UPDATE. Instead, Hibernate versions every domain instance.

You may already have noticed that every table generated by GORM contains a version column.
Whenever a domain instance is saved, the version number contained within the version column is

CHAPTER 9 n GORM

230

incremented. Just before any update to a persistent instance, Hibernate will issue an SQL SELECT to check
the current version. If the version number in the table doesn’t match the version number of the instance
being saved, then an org.hibernate.StaleObjectStateException is thrown; it is wrapped in a Spring org.
springframework.dao.OptimisticLockingFailureException and rethrown.

The implication is that if your application is processing updates with a high level of concurrency, you
may need to deal with the case when you get a conflicting version. The upside is that since table rows are
never locked, performance is much better. So, how do you go about gracefully handling an
OptimisticLockingFailureException? Well, this is a domain-specific question. You could, for example, use
the merge method to merge the changes back into the database. Alternatively, you could return the error
to the user and ask him to perform a manual merge of the changes. It really does depend on the
application. Nevertheless, Listing 9-69 shows how to handle an OptimisticLockingFailureException using
the merge technique.

Listing 9-69. Dealing with Optimistic Locking Exceptions

def update() {
 def album = Album.get(params.id)
 album.properties = params
 try {
 if(album.save(lush:true)) {
 // success
 ...
 } else {
 // validation error
 ...
 }
 }
 catch(OptimisticLockingFailureException e) {
 album = Album.merge(album)
 }
}

If you prefer not to use optimistic locking, either because you’re mapping to a legacy database or
because you just don’t like it, then you can disable optimistic locking using the version method inside the
mapping closure of a domain class:

static mapping = {
 version false
}

If you’re not expecting a heavy load on your site, then an alternative may be to use pessimistic locking.
Unlike optimistic locking, pessimistic locking will perform SELECT FOR...UPDATE on the underlying table
row, which will block any other threads’ access to the same row until the update is committed. As you can
imagine, this will have an impact on the performance of your application. To use pessimistic locking, you
need to call the static lock() method, passing the identifier of the instance to obtain a lock. Listing 9-70
shows an example of using pessimistic locking with the lock method.

Listing 9-70. Using the lock Method to Obtain a Pessimistic Lock

def update() {
 def album = Album.lock(params.id)
 ...
}

231

CHAPTER 9 n GORM

If you have a reference to an existing persistent instance, then you can call the lock() instance
method, which upgrades to a pessimistic lock. Listing 9-71 shows how to use the lock instance method.

Listing 9-71. Using the lock Instance Method to Upgrade to a Pessimistic Lock

def update() {
 def album = Album.get(params.Id)
 album.lock() // lock the Instance
}

Note that you need to be careful when using the lock instance method because you still get an
OptimisticLockingFailureException if another thread has updated the row in the time it takes to get the
instance and call lock() on it! With locks out of the way, let’s move on to looking at GORM’s support for
events.

Events Auto Time Stamping
GORM has a number of built-in hooks you can take advantage of to hook into persistence events. Each
event is defined as a closure property in the domain class itself. The events available are as follows:

•	 onLoad/beforeLoad: fired when an object is loaded from the database

•	 beforeInsert: fired before an object is initially persisted to the database

•	 beforeValidate: fired before an object is validated

•	 beforeUpdate: fired before an object is updated in the database

•	 beforeDelete: fired before an object is deleted from the database

•	 afterInsert: fired after an object has been persisted to the database

•	 afterUpdate: fired after an object has been updated in the database

•	 afterDelete: fired after an object has been deleted from the database

These events are useful for performing tasks such as audit logging and tracking. For example, you
could have another domain class that models an AuditLogEvent that gets persisted every time an instance
gets accessed or saved. Listing 9-72 shows this concept in action.

Listing 9-72. Using GORM Events

class Album {
 ...
 def onLoad() {
 new AuditLogEvent(type:"read", data:title).save()
 }
 def beforeSave() {
 new AuditLogEvent(type:"save", data:title).save()
 }

 def beforeValidate() {
 // run before validation happens
 }

CHAPTER 9 n GORM

232

 def beforeValidate(List propertiesBeingValidated) {
 // run before validation happens and propertiesBeingValidated
 // is a List containing the names of all of the properties which
 // are about to be validated.
 }
}

GORM also supports automatic time stamps. Essentially, if you provide a property called dateCreated
or one called lastUpdated, GORM will automatically populate the values for it every time an instance is
saved or updated. In fact, you’ve already been using this feature, since the Album class has lastUpdated and
dateCreated properties. However, if you prefer to manage these properties manually, you can disable
automatic time stamping using the autoTimestamp method of the mapping block, as shown in Listing 9-73.

Listing 9-73. Disable Auto Time Stamping

class Album {
 ...
 static mapping = {
 autoTimestamp false
 }
}

Summary
You’ve now reached the end of this tour of GORM. As you’ve discovered, thanks in large part to Hibernate,
GORM is a fully featured dynamic ORM tool that blurs the lines between objects and the database. From
dynamic finders to criteria, there is a plethora of options for your querying needs. However, it’s not all
clever tricks; GORM provides solutions to such harder problems as eager fetching and optimistic locking.

Possibly the most important aspect of this chapter is the knowledge you have gained on the semantics
of GORM. By understanding the ORM tool you are using, you’ll find there are fewer surprises along the
way, and you’ll become a more effective developer. Although GORM pretty much eliminates the need for
data access layers such as those you typically find in pure Java applications, it doesn’t remove the need for
a structured way to group units of logic. In the next chapter, we’ll be looking at Grails services that provide
exactly this. Don’t go away!

233

n n n

CHAPTER 10

Services

A common pattern in the development of enterprise software is the so-called service layer that
encapsulates a set of business operations. With Java web development, it is generally considered good
practice to provide layers of abstraction and reduce coupling between the layers within an MVC
application.

The service layer provides a way to centralize application behavior into an API that can be utilized by
controllers or other services. Many good reasons exist for encapsulating logic into a service layer, but the
following are the main drivers:

•	 You need to centralize business logic into a service API.

•	 The use cases within your application operate on multiple domain objects and
model complex business operations that are best not mixed in with controller logic.

•	 Certain use cases and business processes are best encapsulated outside a domain
object and within an API.

If your requirements fall into one of these categories, creating a service is probably what you want to
do. Services themselves often have multiple dependencies; for example, a common activity for a service is
to interact with the persistence layer, whether that is straight JDBC or an ORM system, such as Hibernate.

Clearly, whichever system you use, you are potentially dependent on a data source, a session factory,
or maybe just another service. Configuring these dependencies in a loosely coupled way has been one of
the main challenges facing early adopters of the Java EE technology.

Like many other software development challenges, this problem is solved by a software design
pattern—in this case, one called Inversion of Control (IoC), or dependency injection. A project such as
Spring implements this pattern by providing an IoC container.

Grails uses Spring to configure itself internally, and it is this foundation that Grails builds on to
provide services by convention. Let’s jump straight into looking at what Grails services are and how to
create a basic service.

Understanding Service Basics
Services, like other Grails artefacts, follow a convention and don’t extend any base class. For example, say
that you decide to move logic related to retrieving album artwork out of the AlbumArtTagLib and into a
service; to do so, you would need to create a class called AlbumArtService, located in the grails-app/
services/ directory.

CHAPTER 10 n SERVICES

234

Unsurprisingly, there is a Grails target that allows you to conveniently create services. Building on
what was just mentioned, to create the AlbumArtService, you can execute the create-service target, which
will prompt you to enter the name of the service, as demonstrated in Listing 10-1.

Listing 10-1. Running the create-service Target

grails> create-service com.gtunes.AlbumArt
| Created ile grails-app/services/com/gtunes/AlbumArtService.groovy
| Created ile test/unit/com/gtunes/AlbumArtServiceTests.groovy

This will create the AlbumArtService class automatically and put it in the right place. The result will
resemble something like Listing 10-2.

Listing 10-2. grails-app/services/com/gtunes/AlbumArtService.groovy

package com.gtunes
class AlbumArtService {
 def serviceMethod() {
 }
}

The service contains one method, which is just a placeholder for a real method.

Services and Dependency Injection
It is important to note that services are singletons by default, which means there is only ever one instance
of a service. So how do you go about getting a reference to a service within a controller, for example? Well,
as part of its dependency injection support, Spring has a concept called autowiring that allows
dependencies to automatically be injected by name or type.

Grails services can be injected by name into a controller. For example, simply by creating a property
with the name albumArtService within the AlbumArtTagLib, the AlbumArtService instance will
automatically be available to the taglib. Listing 10-3 demonstrates how this is done.

Listing 10-3. Injecting a Service Instance into a Controller

class AlbumArtTagLib {
 AlbumArtService albumArtService
 ...
}

n Note The albumArtService property is statically typed in Listing 10-3. The property can be dynamically

typed, and injection will work in the same way.

The convention used for the name of the property is basically the property name representation of the
class name. In other words, it is the class name with the first letter set in lowercase type, following the
JavaBean convention for property names. You can then invoke methods on the singleton AlbumArtService
instance, even though you have done nothing to explicitly look it up or initialize it. The underlying Spring
IoC container handles all of this automatically.

You can use the same convention to inject services into other services, hence allowing your services to
interact within one another.

235

CHAPTER 10 n SERVICES

It is important that you let Grails inject service instances for you. You should never instantiate
instances of service classes directly. Later in this chapter, when we discuss transactions, you will see that
there is some special magic going on when Grails is allowed to inject service instances for you. You will get
none of those benefits if you create service instances yourself.

Now that you’ve been shown the basics of services, let’s see an example of implementing a service.

Services in Action
The AlbumArtTagLib in the gTunes application already contains quite a bit of logic and complexity. Pulling
that logic out of the taglib and into a service is a good idea.

In general, you should strive to keep your Grails controllers and taglibs tight and concise. You should
not let a lot of business complexity evolve in a controller or a taglib. When much complexity starts to
evolve in a controller or a taglib, that should be a red flag to you. You should then consider refactoring to
pull out a lot of that complexity. Much of it will fit perfectly into a service or multiple services.

Let’s take a look at the taglib code that is a good candidate for some refactoring. Listing 10-4 shows the
current state of the AlbumArtTagLib.

Listing 10-4. The AlbumArtTagLib Class

package com.gtunes

import grails.plugins.rest.client.RestBuilder

class AlbumArtTagLib {

 static inal DEFAULT_ALBUM_ART_IMAGE = "/images/no-album-art.gif"

 static namespace = "music"

 def albumArt = { attrs, body ->
 def artistName = attrs.remove('artist')?.toString()
 def albumTitle = attrs.remove('album')?.toString()
 def width = attrs.int('width', 100)
 attrs.remove('width')
 def albumArt = DEFAULT_ALBUM_ART_IMAGE
 if(artistName && albumTitle) {
 try {
 def restBuilder = new RestBuilder()
 def url = "http://itunes.apple.com/search?term=${albumTitle.encodeAsURL()}&media=music&e
ntity=album&attribute=albumTerm"
 def response = restBuilder.get(url)
 def json = response.json
 def records = json.results
 def matchingRecord = records.ind { r ->
 r.artistName == artistName && r.collectionName == albumTitle
 }
 albumArt = matchingRecord?.artworkUrl100 ?: DEFAULT_ALBUM_ART_IMAGE
 } catch (Exception e) {
 log.error "Problem retrieving artwork: ${e.message}", e
 }

http://itunes.apple.com/search?term=

CHAPTER 10 n SERVICES

236

 }
 if(albumArt.startsWith("/")) albumArt = "${request.contextPath}${albumArt}"
 out << "<img width=\"$width\" src=\"${albumArt}\" border=\"0\""
 out << attrs.collect { attributeName, attributeValue ->
 " ${attributeName}=\"${attributeValue.encodeAsHTML()}\""
 }.join(' ')
 out << ">"
 }
}

You should pull most of this code out of the taglib and put it into a service.

Defining a Service
The code that is being refactored out of the StoreController should be put into a service called
AlbumArtService. The AlbumArtService class should be defined in the grails-app/services/com/gtunes/
directory. That refactoring would yield an AlbumArtService like the one shown in Listing 10-5.

Listing 10-5. The getAlbumArt Method in the AlbumArtService

package com.gtunes

import grails.plugins.rest.client.RestBuilder

class AlbumArtService {

 static transactional = false

 static inal DEFAULT_ALBUM_ART_IMAGE = "/images/no-album-art.gif"

 String artworkRequestUrl =
 'http://itunes.apple.com/search?media=music&entity=album&attribute=albumTerm'

 def getAlbumArt(String artist, String album) {
 def imageUrl = DEFAULT_ALBUM_ART_IMAGE
 if(artist && album) {
 try {
 def restBuilder = new RestBuilder()
 def urlWithAlbumParam =
 "${artworkRequestUrl}&term=${album.encodeAsURL()}"
 def response = restBuilder.get(urlWithAlbumParam)
 def json = response.json
 def records = json.results
 def matchingRecord = records.ind { r ->
 r.artistName == artist && r.collectionName == album
 }
 imageUrl = matchingRecord?.artworkUrl100 ?: DEFAULT_ALBUM_ART_IMAGE
 } catch (Exception e) {
 log.error "Problem retrieving artwork: ${e.message}", e
 }
 }

http://itunes.apple.com/search?media=music&entity=album&attribute=albumTerm

237

CHAPTER 10 n SERVICES

 imageUrl
 }
}

Configuring Service Bean Properties
The AlbumArtService contains a property named artworkRequestUrl, which is a string that points to a
RESTful web service for retrieving album artwork. The value could be hard-coded into the
AlbumArtService, but a better idea may be to externalize the definition of that property value into a
configuration file. You can use a technique called property override configuration to specify the value of
this property in grails-app/conf/Conig.groovy. Every service in Grails translates into a Spring bean. The
name of the bean is formulated from the class name using bean conventions. Hence, the bean name for
AlbumArtService will be albumArtService. You can set properties on the albumArtService bean from Conig.
groovy by using the beans block, as shown in Listing 10-6.

Listing 10-6. Configuring Beans Using Config.groovy

beans {
 albumArtService {
 artworkRequestUrl =
 'http://itunes.apple.com/search?media=music&entity=album&attribute=albumTerm'
 }
}

One advantage of this approach is that thanks to the features offered by Conig.groovy, you can easily
specify per-environment values rather than hard-coding the value into the AlbumArtService class. With
that configuration code in place, the hard-coded value may be removed from the AlbumArtService class.
The property still needs to be declared as a field in the class but should not be assigned a value. The
framework will take care of initializing the property with the value specified in Conig.groovy.

Caching Service Methods
The getAlbumArt method in the AlbumArtService class is functional at the moment but could use some
improvement. One problem with the current implementation is that it is inefficient. Every time the
method is called, requests are being made to a remote service to retrieve a URL for some album art. One
thing to do that might help with this is implement some sort of caching mechanism, so when the artwork
for a particular album is requested, a request is made to the remote service to get the relevant artwork
URL, which then could be cached. So if another request arrives for artwork for that same album, instead of
making a call to the remote service, the URL can be retrieved from the local cache—a much more efficient
procedure. Writing efficient and reliable caching mechanisms can be complicated. Fortunately, a Grails
plug-in does all the hard work for you.

You can install the cache plug-in by adding the appropriate dependency declaration to grails-app/
conf/BuildConig.groovy, as shown in Listing 10-7.

Listing 10-7. Declaring a Dependency on the Cache Plug-in

// grails-app/conf/BuildConig.groovy
grails.project.dependency.resolution = {
 // ...
 plugins {

http://itunes.apple.com/search?media=music&entity=album&attribute=albumTerm

CHAPTER 10 n SERVICES

238

 compile ':cache:1.0.0'
 // ...
 }
}

With the plug-in installed, you need to tell the plug-in that all calls to the getAlbumArt method in the
AlbumArtService class should be cached. The way to do this is to annotate the method with the grails.
plugin.cache.Cacheable annotation, as shown in Listing 10-8.

Listing 10-8. Adding Caching Support to the getAlbumArt Method

package com.gtunes

// ...
import grails.plugin.cache.Cacheable

class AlbumArtService {

 // ...
 @Cacheable('albumArt')
 def getAlbumArt(String artist, String album) {
 // ...
 }
}

Notice that the Cacheable annotation is passing albumArt as an argument. This represents the name of
the cache that will be associated with this method. Some caches may be shared across numerous methods,
whereas others may be used by only one method. By default the keys for the cache will be the union of all
of the arguments that are being passed to the method, which for this case is exactly what is wanted. If the
getAlbumArt method is invoked numerous times with the same argument, the calls to the remote service
are made only once for each album.

The cache plug-in by default uses a relatively simple in-memory map for storage. For our demo
application this is fine, but more demanding caching requirements call for a more sophisticated cache.
There are several extensions to the main cache plug-in to support various cache implementations. For
example, there is a Redis implementation, an Ehcache implementation, and a Gemfire implementation.
When you use these more sophisticated implementations, the basic usage in your application stays the
same, but configuration details will vary.

We are using the cache plug-in in the most basic way and taking advantage of only a small part of its
capabilities. See http://grails.org/plugin/cache for more information on configuring and using the
cache plug-in.

Using a Service
The AlbumArtTagLib can now take advantage of the getAlbumArt method in the AlbumArtService. To do this,
the AlbumArtTagLib needs to define the albumArtService property and then invoke the getAlbumArt
method on that property, as shown in Listing 10-9.

http://grails.org/plugin/cache

239

CHAPTER 10 n SERVICES

Listing 10-9. Calling the getAlbumArt Method from the AlbumArtTagLib

package com.gtunes

class AlbumArtTagLib {

 static namespace = "music"

 def albumArtService

 def albumArt = { attrs, body ->
 def artist = attrs.remove('artist')?.toString()
 def album = attrs.remove('album')?.toString()
 def width = attrs.remove('width') ?: 200
 if(artist && album) {
 def albumArt = albumArtService.getAlbumArt(artist, album)
 if(albumArt.startsWith("/")) {
 albumArt = "${request.contextPath}${albumArt}"
 }
 out << "<img width=\"$width\" src=\"${albumArt}\" border=\"0\""
 attrs.each { k,v-> out << "$k=\"${v?.encodeAsHTML()}\" "}
 out << ">"
 }
 }
}

Managing Transactions
As mentioned previously, services often encapsulate business operations that deal with several domain
objects. If an exception occurs while executing changes, you may not want any earlier changes to be
committed to the database.

Essentially, you want an all-or-nothing approach, also known as a transaction. Transactions are
essential for maintaining database integrity via their ACID properties, which have probably been covered
in every book that has used a relational database. Nevertheless, let’s have a quick look at them here. ACID
stands for atomicity, consistency, isolation, and durability.

•	 atomicity: This refers to the fact that operations on data within a transaction must
be atomic. In other words, all tasks within a transaction will be completed or none at
all will be, thus allowing the changes to be rolled back.

•	 consistency: This requires that the database be in a consistent state before and after
any operations occur. There is no point attempting to complete a transaction if the
database is not in a legal state to begin with, and it would be rather silly if an
operation left the database’s integrity compromised.

•	 isolation: This refers to how transactions are isolated from all other operations.
Essentially, this means other queries or operations should never be exposed to data
that are in an intermediate state.

•	 durability: Once a transaction is completed, durability guarantees that the
transaction cannot possibly be undone. Thus, even if system failure occurs, the
committed transaction cannot at that point be aborted.

CHAPTER 10 n SERVICES

240

Grails services may declare a static property named transactional. When the transactional property
is set to true, the methods of the service are configured for transaction demarcation by Spring. What this
does is create a Spring proxy that wraps each method call and provides transaction management.

Grails handles the entire automatic runtime configuration for you, leaving you to concentrate on
writing the logic within your methods. If the service does not require any transaction management, set the
transactional property to false to disable transactions.

Another option is a service’s need to impose its own fine-grained control over transaction
management. The way to do this is to assign the transactional property a value of false and take
responsibility yourself for managing transactions. The static withTransaction method may be called on
any domain class; it expects a closure to be passed as an argument. The closure represents the transaction
boundary. Listing 10-10 has an example.

Listing 10-10. Using withTransaction in a Service

package com.gtunes
class StoreService {
 // turn off automatic transaction management
 static transactional = false
 void someServiceMethod() {
 Album.withTransaction {
 // everything in this closure is happening within a transaction
 // which will be committed when the closure completes
 }
 }
}

If the closure that is passed to the withTransaction method throws an exception, the transaction will
be rolled back. Otherwise, the transaction is committed.

Taking explicit control over rolling back the transaction is simple to do as well. It turns out that an
instance of the org.springframework.transaction.TransactionStatus interface is being passed as an
argument to the closure. One of the methods defined by the TransactionStatus interface is
setRollbackOnly().1 Calling the setRollbackOnly() method will ensure that the transaction gets rolled
back. Listing 10-11 demonstrates how to take advantage of this.

Listing 10-11. Using the TransactionStatus Argument

package com.gtunes
class StoreService {
 // turn off automatic transaction management
 static transactional = false
 void someServiceMethod() {
 Album.withTransaction { tx ->
 // do some work with the database
 // if the transaction needs to be rolled back for
 // any reason, call setRollbackOnly() on the
 // TransactionStatus argument...
 tx.setRollbackOnly()
 }
 }
}

1 You can find the full documentation for the TransactionStatus interface at http://static.
springsource.org/spring/docs/3.1.x/javadoc-api/.

241

CHAPTER 10 n SERVICES

Controllers and other Grails artefacts will, of course, need to get hold of a reference to the singleton
StoreService. As described earlier in this chapter, the best way to get hold of a reference to a service is to
take advantage of the automatic dependency injection provided by Grails.

Scoping Services
You must be careful about storing state in a service. By default all services are scoped as singletons and can
be used concurrently by multiple requests. Further, access to service methods is not synchronized. For
stateless services, none of that is a problem. If a service must maintain state, it should be scoped to
something other than singleton.

Grails supports several scopes for services. Which scope you use will depend on how your application
uses the service and what kind of state is maintained in the service. The support scopes are as follows:

•	 prototype: A new service is created every time it is injected into another class.

•	 request: A new service will be created per request.

•	 lash: A new service will be created for the current and next requests only.

•	 low: In Web Flow, the service will exist for the scope of the flow.

•	 conversation: In Web Flow, the service will exist for the scope of the conversation; in
other words, a root flow and its subflows.

•	 session: A service is created for the scope of a user session.

•	 singleton (default): Only one instance of the service ever exists.

If a service is to be scoped using anything other than singleton, the service must declare a static
property, scope, and assign it a value that is one of the support scopes listed earlier. See Listing 10-12.

Listing 10-12. A request Scoped Service

class SomeUsefulService {
 boolean transactional = true
 // this is a request scoped service
 static scope = 'request'
}

Choose the service scope carefully, and make sure your scope is consistent with the application’s
expectations of the service. Prefer stateless services; for these, the default scope, singleton, is almost
always optimum. When a service must maintain state, choose the scope that satisfies the application’s
requirements.

Testing Services
Since much of your business logic and complexity is encapsulated in services, it is important that these
components be tested. As far as tests are concerned, a service is just another class and can be tested as
such. The unit testing support provided for services is similar to that provided for other artefact types.

Listing 10-13 shows the default test that was created by the create-service command.

CHAPTER 10 n SERVICES

242

Listing 10-13. Default Service Unit Test Template

package com.gtunes

import grails.test.mixin.*
import org.junit.*

/**
 * See the API for {@link grails.test.mixin.services.ServiceUnitTestMixin} for usage
instructions
 */
@TestFor(AlbumArtService)
class AlbumArtServiceTests {

 void testSomething() {
 fail "Implement me"
 }
}

To test the AlbumArtService, fill that out using standard Groovy unit-testing techniques. See
Listing 10-14.

Listing 10-14. Unit-Testing AlbumArtService

package com.gtunes

import grails.plugins.rest.client.RestBuilder
import groovy.mock.interceptor.MockFor
import grails.test.mixin.*
//import org.junit.*

/**
 * See the API for {@link grails.test.mixin.services.ServiceUnitTestMixin} for usage
instructions
 */
@TestFor(AlbumArtService)
class AlbumArtServiceTests {

 void testNullAlbumAndArtist() {
 def result = service.getAlbumArt(null, null)
 assert AlbumArtService.DEFAULT_ALBUM_ART_IMAGE == result
 }

 void testGoodResult() {
 mockCodec org.codehaus.groovy.grails.plugins.codecs.URLCodec
 def artworkClient = new groovy.mock.interceptor.MockFor(RestBuilder)
 artworkClient.demand.get { String s ->
 def results = []
 results << [artistName: 'Thin Lizzy',
 collectionName: 'Jailbreak',

243

CHAPTER 10 n SERVICES

 artworkUrl100: 'http://somesite/jailbreak.jpg']
 results << [artistName: 'Tool',
 collectionName: 'Lateralus',
 artworkUrl100: 'http://somesite/lateralus.jpg']
 [json: [results: results]]
 }
 def result
 artworkClient.use {
 result = service.getAlbumArt('Tool', 'Lateralus')
 }
 assert 'http://somesite/lateralus.jpg' == result
 }
}

Note that the test refers to a property named service, which is provided by the testing framework and
is automatically initialized to be an instance of the class under test, in this case the AlbumArtService class.

Exposing Services
The services you write as part of a Grails application contain a large share of the business logic involved in
the application. Those services are easily accessed from just about anywhere in the application using the
automatic dependency injection built into Grails. It makes sense that a lot of that business logic may be
useful to other Grails applications. In fact, it may be useful to applications that aren’t Grails applications.
The automatic dependency injection works only within the application. There really isn’t any way to inject
those services into other applications. However, it is possible to access those services from other
applications, and Grails makes that really easy to do.

Making a service available to another process is known as exposing the service. A number of available
Grails plug-ins support exposing services using various remoting technologies. For example, one plug-in
greatly simplifies exposing services using the Java Management Extensions (JMX) technology.2 JMX, part of
the Java Platform since the J2SE 5.0 release, provides a really simple mechanism for monitoring and
managing resources within an application.

You can install the JMX plug-in by adding the appropriate dependency declaration to grails-app/
conf/BuildConig.groovy, as shown in Listing 10-15.

Listing 10-15. Declaring a Dependency on the JMX Plug-in

// grails-app/conf/BuildConig.groovy
grails.project.dependency.resolution = {
 // ...
 plugins {
 runtime ':jmx:0.7'
 // ...
 }
}

Like other remoting plug-ins available for Grails, the JMX plug-in will look in all service classes for a
property named expose. The expose property should be a list of Strings, and if the list contains the string
jmx, then the plug-in will expose that service using JMX.

2 You can find more information about JMX at http://java.sun.com/javase/technologies/core/mntr-
mgmt/javamanagement/.

c

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

CHAPTER 10 n SERVICES

244

Listing 10-16 shows a service in the gTunes application that has been exposed using JMX.

Listing 10-16. The StoreService Is Exposed Using JMX

package com.gtunes

class StoreService {

 static transactional = true

 static expose = ['jmx']
 int getNumberOfAlbums() {
 Album.count()
 }
 int getNumberOfAlbumsForGenre(String genre) {
 Album.countByGenre(genre)
 }
 }

The StoreService contains a single method, getNumberOfAlbums, which returns the number of Album
objects currently in the database. The service may contain any number of methods. All of the methods in
the service will be exposed as JMX operations.

In terms of code, to expose your services using JMX, you need only include jmx in the value of the
expose property. It couldn’t be simpler! There is another step that does not involve code. The way to enable
remote access to services that have been exposed using JMX is to set the com.sun.management.jmxremote
system property when the Grails application starts. A simple way to do this is to assign a value to the JAVA_
OPTS environment variable. The value should include -Dcom.sun.management.jmxremote. Note that the
property does not need to be assigned a value; it just needs to be set. For example, in a Bash shell, you can
interactively set the environment variable using the code shown in Listing 10-17.

Listing 10-17. Setting JAVA_OPTS in a Bash Shell

export JAVA_OPTS=-Dcom.sun.management.jmxremote
In a Windows shell you can use the code shown in Listing 10-18.

Listing 10-18. Setting JAVA_OPTS in a Windows Shell

 set JAVA_OPTS=-Dcom.sun.management.jmxremote

The com.sun.management.jmxremote system property must be set when the Grails application starts. If
the property is set after the Grails application has started, the application will not be affected.

Versions 5.0 and later of the J2SE include the Java Monitoring and Management Console, known as
JConsole. The JConsole application is a GUI tool for interacting with beans that have been exposed using
JMX.

With your Grails application up and running, start JConsole by running the jconsole command at a
command prompt. The application should open with the dialog box shown in Figure 10-1.

This dialog box allows selection of the agent you want to connect to. Typically you will see just one
agent in the list. Find your Grails application in the list, select it, and click the Connect button.

Once you have connected to an agent, the main JConsole window should appear, as shown in
Figure 10-2.

245

CHAPTER 10 n SERVICES

Figure 10-1. The Connect to Agent dialog box in JConsole

Figure 10-2. The main JConsole window

z

CHAPTER 10 n SERVICES

246

The main screen displays a lot of information about the Grails process. Click the MBeans tab at the
top of the screen to view all the accessible beans. On that screen, you should see a list of all of your JMX-
exposed services under the gtunes/service folder on the left, as shown in Figure 10-3.

Expand the Operations folder under StoreService. This will list all the operations that have been
exposed by this bean, including all the methods defined in your service, as shown in Figure 10-4.

Notice that for operations that require parameters, JConsole provides a text box, where the value of
the parameter is defined. Once that value is filled in, click the button that contains the operation name.
The operation will be invoked remotely, and the return value will be displayed.

Figure 10-3. Grails services exposed using JMX

247

CHAPTER 10 n SERVICES

The JMX plug-in is one of several Grails plug-ins that support exposing services using various
remoting technologies. There is an XML-RPC plug-in, as well as a Remoting plug-in that allows services to
be exposed via RMI, Hessian, Burlap, and Spring’s HttpInvoker. The Cxf and Axis2 plug-ins each support
exposing services via SOAP.

All of the remoting plug-ins use the same expose property in a service class as the trigger for exposing
a service using any particular technology. Listing 10-19 shows how you would expose the StoreService
using JMX and Axis2.

Listing 10-19. Exposing a Service Using JMX and Axis2

package com.gtunes
class StoreService {
 static transactional = true
 static expose = ['jmx', 'axis2']
 int getNumberOfAlbums() {
 Album.count()
 }
 int getNumberOfAlbumsForGenre(String genre) {
 Album.countByGenre(genre)
 }
}

Remember that in order for that code to work, you need to have the JMX and Axis2 plug-ins installed.

Figure 10-4. JMX operations

CHAPTER 10 n SERVICES

248

Exposing Grails services is a great way to allow applications to access business logic inside a Grails
application. In fact, you could build a Grails application that is just a service layer. That application might
consist of nothing more than domain classes and services that provide access to the data, similar to the
StoreService shown earlier. The application would not necessarily need to have any controllers, any views,
or anything else.

Summary
Services, important components in almost any nontrivial Grails application, are where much of the
application’s business logic and complexity belong.

In this chapter, you saw how Grails helps simplify an application by encouraging the isolation of that
complexity into services. You learned how you can easily take advantage of the power of Spring’s
dependency injection capabilities without the burden of having to write configuration files to instrument
Spring.

You also saw how transaction management works with respect to Grails services. For most scenarios,
the default method-level transaction demarcation is a perfect fit. For scenarios where the application
needs more fine-grained control over transactions, Grails provides a really simple mechanism for dealing
with them.

With so many options for exposing Grails services, using any number of remoting technologies, you
should make a habit of taking advantage of the power and flexibility that Grails services provide. If you do,
your applications will be easier to write, easier to understand, easier to maintain, and easier to test.

249

n n n

CHAPTER 11

Integration and Dependency

Management

So far, a number of the core concepts that underpin Grails have been explored. From controllers to GORM
and services, you should now have a pretty good understanding of what makes Grails tick. In this chapter,
you’ll learn how you can fit Grails into your existing ecosystem. We hope what you’ll get from this chapter
is a good understanding of how to go about including Grails in your build system, development tools,
reporting setup, and server environment.

There is a lot of ground to cover, so let’s get started by taking a closer look at configuration in Grails.

Grails and Configuration
Using Convention over Configuration (CoC), Grails significantly reduces the amount of configuration you
need to do. Crucially, however, it is convention over configuration, not convention instead of
configuration. There are still a number of different ways you can configure Grails.

Most configuration can be done using the central configuration mechanism within Grails. The file
grails-app/conf/Conig.groovy contains many configuration details for the application. You’ve already
seen this file being used at various points throughout the book. In the following sections, we’ll look closer
at how you use Conig.groovy to configure Grails and what configuration options are available to you.

Configuration Basics
The Conig.groovy file is a Groovy script similar to a regular Java properties file. You can set its properties
using the dot dereference operator:

grails.mime.ile.extensions = true

Since it’s a Groovy script, all the type information is retained. So in the previous example a Boolean
property called grails.mime.ile.extensions is set to true. To access this setting, use the conig property of
the grailsApplication object available in controllers and views:

assert grailsApplication.conig.grails.mime.ile.extensions == true

Besides settings specified on a single line, like the grails.mime.ile.extensions setting, Groovy also
supports group settings using blocks (see Listing 11-1).

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

250

Listing 11-1. Grouping Settings in Config.groovy

grails.mime {
 ile.extensions = true
 types = [html: 'text/html']
}

The example in Listing 11-1 will produce two entries in conig: grails.mime.ile. extensions and
grails.mime.types. You can also configure settings on a per-environment basis. That will be covered next.

Environment-Specific Configuration
As you discovered in Chapter 2, the grails-app/conf/DataSource.groovy file can be configured in an
environment-specific way because Grails uses the same mechanism to configure the DataSource as Conig.
groovy uses for the rest of the application.

Just as with DataSource.groovy, by using Conig.groovy you can specify environment-specific settings
using the environments block, as shown in Listing 11-2.

Listing 11-2. Environment-Specific Configuration

// set per-environment serverURL stem for creating absolute links
environments {
 development {
 grails.serverURL = "http://localhost:8080"
 } production {
 grails.serverURL = "http://www.gtunes.com"
 }
}

As Listing 11-2 demonstrates, the environments block can be used to specify a different grails.
serverURL setting for production and development environments. The grails.serverURL setting is one of a
number of built-in settings that you’ll be discovering through the course of this book.

Configuring Logging
Grails uses the popular Log4j (http://logging.apache.org/log4j/) library to configure logging.
Traditionally, Log4j has been configured with either a properties file format or XML. Grails, however,
provides a specific DSL for configuring logging. Within the Conig.groovy script, you can set a property
called log4j using a Groovy closure.

Within this closure, you can use the Log4j DSL to configure logging. Listing 11-3 shows the default
Log4j configuration in Grails that sets up logging for a bunch of packages internal to Grails.

Listing 11-3. The Default Log4j Configuration

// log4j coniguration
log4j = {
error 'codehaus.groovy.grails.web.servlet', // controllers
 'codehaus.groovy.grails.web.pages', // GSP
 'codehaus.groovy.grails.web.sitemesh', // layouts
 'codehaus.groovy.grails.web.mapping.ilter', // URL mapping
 'codehaus.groovy.grails.web.mapping', // URL Mapping

http://www.gtunes.com
http://logging.apache.org/log4j/

251

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

 'codehaus.groovy.grails.commons',// core / classloading
 'codehaus.groovy.grails.plugins',// plugins
 'codehaus.groovy.grails.orm.hibernate' // hibernate integration
}

As you can see from Listing 11-3, inside the body of the log4j closure, an error method is invoked. It is
passed a number of packages as arguments. The error method sets up the specified packages at the error
debug level. The following debug levels are available, going from least to most verbose.

•	 off: no logging at all

•	 fatal: to log only fatal errors, which are typically errors that would cause an
application to abort

•	 error: to log all errors that occur but still allow the application to continue running

•	 warn: to log scenarios that could be potentially harmful

•	 info: to log informational messages that describe the progress of the application

•	 debug: to log information that is used to debug an application

•	 trace: the level for even finer-grained events than the debug level

•	 all: to log all messages that occur

Sources within your own application can also be configured for logging. In Chapter 4 you learned
about the log property available in every controller, tag library, or service. The output of this log property
by default will use the root logging level of error. However, you can use the name of the class, starting with
grails.app, to configure different logging behavior. For example, if you want to see output from all log
statements in the UserController and AlbumArtService classes at the debug level, you could use the
configuration in Listing 11-4.

Listing 11-4. Setting the Debug Level

log4j {
 debug 'grails.app.controller.UserController',
 'grails.app.service.AlbumArtService'
}

Using sensible defaults, Grails will automatically configure a console appender that logs to standard
out while the root logger is set to the error level. You can also create your own custom Log4j appenders.
For example, the code in Listing 11-5 sets up an additional file appender that writes the log to a file.

Listing 11-5. Configuring a File Appender

log4j {
 appenders {
 rollingFile name:"myl_og",
 ile:"/var/log/gtunes.log", maxFileSize:"lMB",
 layout: pattern(conversionPattern: '%c{2} %m%n')
 }
}

The example in Listing 11-5 uses a rollingFile appender, which is an org.apache.log4j.
RollingFileAppender instance internally. Each named argument is a property of the org.apache.log4j.

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

252

RollingFileAppender class, so to understand the configuration options, you just have to look at the Log4j
APIs. The following is a list of the available Log4j appenders.

•	 jdbc: The org.apache.log4j.jdbc.DDBCAppender logs to a database connection.

•	 null: The org.apache.log4j.varia.NullAppender does nothing!

•	 console: The org.apache.log4j.ConsoleAppender logs to standard out.

•	 ile: This is an org.apache.log4j.FileAppender that logs to a single file.

•	 rollingFile: This is an org.apache.log4j.RollingFileAppender that logs to a file
that gets automatically backed up and re-created when a maximum size is hit.

You can also use the Log4j API yourself to create an appender programmatically and then simply call
the appender method, passing your appender, to add your own appender. Notice also that Listing 11-5 uses
the pattern method to define the layout property of the appender. This translates into an org.apache.
log4j.PatternLayout instance. You can use a number of other layout styles, including the following:

•	 xml:: An org.apache.log4j.xml.XMLLayout instance that outputs the log file in XML
format.

•	 html: An org.apache.log4j.HTMLLayout instance that outputs the logs in HTML.

•	 simple: An org.apache.log4j.SimpleLayout instance that outputs to a preconfigured
text format.

•	 pattern: An org.apache.log4j.PatternLayout instance that allows you to configure
the output from Log4j. See the javadoc API for details.

Once you have an appender, you have to tell Log4j which packages need to be logged to that
appender. Listing 11-6 shows an example of logging Hibernate output to the rollingFile appender,
defined earlier at the trace level.

Listing 11-6. Using an Appender

log4j {
 ...
 trace myLog:"org.hibernate"
 debug myLog:["org.codehaus.groovy.grails.web.mapping.ilter",
 "org.codehaus.groovy.grails.web.mapping"]
}

Notice that you reference the appender by the name given to it using the name argument. Finally, there
is one special logger for stack traces, which we’ll discuss in the next section.

Stack Trace Filtering
Whenever an exception is thrown in Grails, the exception’s stack trace will be filtered of all Groovy and
Grails internals before it is logged. This is very useful because it allows you to narrow the problem down to
how it relates to your code. Otherwise, with all the internal layers of Grails exposed, you could be sifting
through a rather large stack trace.

Normally, when an exception is thrown in development, you can work out from the filtered trace what
the problem is. On a rare occasion, you may want to inspect the full nonfiltered stack trace. Grails, by
default, sets up a special logger to which it will log the full stack trace. This logger writes to a file called
stacktrace.log in the root of your project.

253

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

However, you can quite easily override this default behavior to provide your own custom logger for
unfiltered stack traces. Listing 11-7 shows an example configuration that logs all unfiltered stack traces to a
rolling file appender.

Listing 11-7. Logging Unfiltered Traces

log4j {
appenders {
 rollingFile name:"stacktraceLog",
 ile:"/var/log/uniltered-stacktraces.log",
 maxFileSize:"1MB",
 layout: pattern(conversionPattern: '%c{2} %m%n')
}
error stacktraceLog:"StackTrace"

You can also disable this functionality completely by passing the grails.full.stacktrace argument at
the command line of your container or as an argument to the run-app command:
grails -Dgrails.full.stacktrace=true run-app

Externalized Configuration
During deployment, the Conig.groovy file is compiled into a class and packaged into the WAR. Although
this has its advantages, you may want to keep all configuration outside the main WAR file. For example, say
you wanted to allow logging to be configured outside the application; to achieve this, you can use the
externalized configuration mechanism in Grails.

Essentially, within Conig.groovy you can specify the grails.conig.locations setting to contain a list
of locations that need to be merged into the main configuration. Taking the logging example, Listing 11-8
shows how to externalize the logging configuration to a file in the USER_HOME directory.

Listing 11-8. Using Externalized Configuration

grails.conig.locations = ["ile:${userHome}/gtunes-logging.groovy"]

You can even allow the DataSource to be configured externally using this mechanism. Although
DataSource.groovy and Conig.groovy are separate files on the file system, Grails merges them into a single
logical configuration object. Hence, you can externalize, not just logging or any other configuration, but
the DataSource, as shown in Listing 11-9.

Listing 11-9. Externalizing DataSource Configuration

grails.conig.locations = ["ile:${userHome}/.settings/gtunes-logging.groovy",

 "ile:${userHome}/.settings/gtunesdatasource.groovy"]

If you prefer, you can also use static properties files in externalized configuration. Just use the
extension .properties when referring to the files, and use regular java.util.Properties file semantics for
configuration.

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

254

Declaring Dependencies
Dependency management for web applications can be tedious and complicated. Fortunately, Grails
provides a sophisticated but easy-to-use dependency management system that allows you to express your
dependencies in one place, in a declarative way, with minimal configuration. Grails will take it from there.
You have already taken advantage of this numerous times up to this point when modifying BuildConig.
groovy to express dependencies on plug-ins.

In this section we will take a closer look at all of the options available in BuildConig.groovy. Let’s start
by taking a look at the BuildConig.groovy file that is in gTunes now. See the code in Listing 11-10.

Listing 11-10. BuildConfig.groovy

grails.project.class.dir = "target/classes"
grails.project.test.class.dir = "target/test-classes"
grails.project.test.reports.dir = "target/test-reports"
grails.project.target.level = 1.6
grails.project.source.level = 1.6
//grails.project.war.ile = "target/${appName}-${appVersion}.war"

grails.project.dependency.resolution = {
 // inherit Grails' default dependencies
 inherits("global") {
 // uncomment to disable ehcache
 // excludes 'ehcache'
 }
 log "error" // log level of Ivy resolver, either 'error', 'warn', 'info', 'debug' or
'verbose'
 checksums true // Whether to verify checksums on resolve

 repositories {
 inherits true // Whether to inherit repository deinitions from plugins
 grailsPlugins()
 grailsHome()
 grailsCentral()
 mavenCentral()

 // uncomment these to enable remote dependency resolution from public Maven repositories
 //mavenLocal()
 //mavenRepo "http://snapshots.repository.codehaus.org"
 //mavenRepo "http://repository.codehaus.org"
 //mavenRepo "http://download.java.net/maven/2/"
 //mavenRepo "http://repository.jboss.com/maven2/"
 }
 dependencies {
 // specify dependencies here under either 'build', 'compile', 'runtime', 'test', or
'provided' scopes, e.g.

 runtime 'mysql:mysql-connector-java:5.1.21'
 }

 plugins {

http://snapshots.repository.codehaus.org
http://repository.codehaus.org
http://download.java.net/maven/2/
http://repository.jboss.com/maven2/

255

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

 runtime ":hibernate:$grailsVersion"
 runtime ":jquery:1.7.1"
 runtime ":resources:1.1.6"
 runtime ":searchable:0.6.4"
 compile ":cache:1.0.0"
 compile ":rest-client-builder:1.0.2"

 // Uncomment these (or add new ones) to enable additional resources capabilities
 //runtime ":zipped-resources:1.0"
 //runtime ":cached-resources:1.0"
 //runtime ":yui-minify-resources:0.1.4"

 build ":tomcat:$grailsVersion"
 }
}

It may look like there is a lot going on there, but don’t be intimidated. We will break this down into a
few easy-to-deal-with pieces.

The first few lines in the file define a number of properties: grails.project.class.dir, grails.
project.test.class.dir, and grails.project.test.reports.dir. These settings tell the Grails build system
where to put generated artefacts like class files and test reports. The default values represented there put
all of those things in a directory named target. Those values are all relative to the project root directory. If
you want to specify a fully qualified path to some other location, that works just as well:
grails.project.class.dir='/Development/artefacts/gtunes/classes/'

The next couple of properties are grails.project.target.level and grails.project.source.level,
which default to 1.6. Those settings tell the Grails compiler that your source code should be compatible
with Java 1.6 and that the compiler should generate 1.6 compatible byte code. If you are deploying to a
container that uses Java 1.5, then set the target level accordingly.

So far, none of the foregoing is really about dependency management. They are all configurations that
affect the build. The rest of the file is all about dependency management.

The rest of the file is all code defined inside of a closure, which is assigned to the grails.project.
dependency.resolution property. Most of that code falls into one of four categories: inherits, repositories,
dependencies, and plug-ins (see Listing 11-11).

Listing 11-11. Sections in BuildConfig.groovy

grails.project.dependency.resolution = {
 inherits("global") {
 ...
 }
 repositories {
 ...
 }
 dependencies {
 ...
 }
 plugins {
 ...
 }
}

Let’s examine each of those.

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

256

Inheriting Dependencies
The first section is the inherits section. This is where you can specify that you want to inherit dependencies
from the framework, which is what most applications are going to want to do. The framework has runtime
dependencies on a lot of things, including Spring, SiteMesh, and Hibernate. Since those runtime
dependencies need to be available when your application is run, the most common thing to do is to
express that you want to inherit those global dependencies from the framework. That is what the default
BuildConig.groovy file expresses by invoking inherits("global").

The inherits method there accepts an optional second parameter, a closure that may be used to
further configure what is being inherited. It may be the case that the application wants to inherit all of the
global dependencies but for some reason wants to exclude something, maybe multiple things, in
particular. The way to do that is by invoking the excludes method inside that closure and passing strings as
arguments. Those strings represent the names of dependencies that should be excluded, as shown in
Listing 11-12.

Listing 11-12. Excluding Inherited Dependencies

inherits("global") {
 excludes "ehcache", "oscache"
}

It may be the case that the application wants to inherit all of the global dependencies from the
framework but does not want those dependencies to be included in the WAR file when the application is
deployed. The most common use case for something like that is when numerous Grails applications are to
be deployed to the same container and you would like to avoid having all of those applications bundle
their own copies of the same dependencies. The dependencies can be installed into the container (see
your container’s documentation for details on how to do that); then slimmer WAR files are created for the
Grails applications that contain only the dependencies introduced by the applications themselves, not
those inherited from the framework. Listing 11-13 shows how to express that those dependencies will be
provided by the container with the defaultDependenciesProvided method.

Listing 11-13. Indicating That Default Dependencies Will Be Provided by the Container

grails.project.dependency.resolution = {
 defaultDependenciesProvided true
 inherits("global")
}

For most of the code in BuildConig.groovy, order is not important. This is an exception to that rule. It
is important that the defaultDependenciesProvided method be invoked before the inherit method;
otherwise all of the global dependencies will still be included in the generated WAR file.

Declaring Repositories
Applications will often have dependencies on things that are not provided by Grails. These may include
plug-ins and jar files for libraries that your application depends on, such as the MySQL Connector that
gTunes is using. Grails needs to know where to find those dependencies, and BuildConig.groovy allows for
the specification of a list of repositories where the dependency resolution system should look for those
dependencies. See Listing 11-14.

257

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

Listing 11-14. Configuring Repositories

grails.project.dependency.resolution = {
 repositories {
 grailsPlugins()
 grailsHome()
 grailsCentral()
 mavenCentral()
 ...
 }
}

The repositories section of the file is where you can express which repositories Grails should use for
resolving dependencies. The three that are configured by default are grailsPlugins(), grailsHome(), and
grailsCentral(). The first, grailsPlugins(), configures a resolver that can find dependencies bundled in
the lib/directory of any plug-ins that this project may depend on. The second, grailsHome(), configures a
resolver that can find all of the dependencies that are bundled with the framework. The third,
grailsCentral(), configures a resolver that can find dependencies in the main public Grails repositories,
which is where most Grails plug-ins are deployed. These three are in the file for newly created applications,
and most applications will need to leave them there. Some projects may want to augment them with
additional repositories, the most common of which is Maven Central; that is the repository that the
mavenCentral() method configures, of course. The gTunes application uses mavenCentral() as the place to
resolve the MySQL Connector.

For many applications, maybe most, the repositories mentioned are all that will be needed. However,
there are cases where you may want Grails to resolve dependencies from some other Maven repository,
perhaps one on your enterprise’s intranet. There is a simple way to configure those repositories in
BuildConig.groovy; it is done by using the mavenRepo method (see Listing 11-15).

Listing 11-15. Configuring Custom Repositories

grails.project.dependency.resolution = {
 repositories {
 // Do not inherit repositories from plug-ins
 inherits false

 mavenRepo name: 'codehaus', 'http://repository.codehaus.org'
 mavenRepo 'http://myserver.com/repo/'
 ...
 }
}

Notice that the codehaus repo is being given a name, which is optional. The name may be useful when
evaluating log files. Also notice the call to inherits false, which instructs the dependency resolution
system not to inherit repositories from plug-ins installed in the app. This is a very common use case if you
want to host your own plug-in repository.

The next section of the file is the dependencies section. That is where you express dependencies on
libraries (JAR files), which are not provided by the framework. The gTunes application currently has a
dependency on the MySQL Connector (see Listing 11-16).

http://repository.codehaus.org
http://myserver.com/repo/

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

258

Listing 11-16. A Runtime Library Dependency

grails.project.dependency.resolution = {
 ...
 dependencies {
 // specify dependencies here under either 'build',
 // 'compile', 'runtime', 'test', or 'provided' scopes, e.g.

 runtime 'mysql:mysql-connector-java:5.1.21'
 }
 ...
}

Notice that the MySQL Connector library is a runtime dependency. The library will be needed at
runtime when the application attempts to connect to the MySQL database, but since no code in the
application makes any direct references to MySQL code, there’s no need for the library to be available at
compile time. Several scopes are supported in addition to runtime (see Table 11-1).

Table 11-1. Dependency Scopes

Scope Description

build available to the build system only

compile available to the application at compile time

runtime available to the application at runtime but not at compile time

test available to tests but not the application at runtime

provided available at development time but not included in the WAR file

The string being passed to the scope method in Listing 11-16 describes the dependency. The syntax is
group:name:version, and so in mysql:mysql-connector-java:5.1.21, “mysql” is the group, “mysql-
connector-java” is the name, and “5.1.21” is, of course, the version. These terms will be familiar to anyone
who has worked with Maven.

An alternative syntax is to specify details of the artefact in the form of named arguments to the scope
method (see Listing 11-17).

Listing 11-17. Using Named Arguments to Express a Dependency

grails.project.dependency.resolution = {
 ...
 dependencies {
 runtime group: 'mysql'
 name: 'mysql-connector-java'
 version: '5.1.21'
 }
 ...
}

259

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

Multiple dependencies may be specified in a single call (see Listing 11-18).

Listing 11-18. Specifying Multiple Dependencies at Once

grails.project.dependency.resolution = {
 ...
 dependencies {
 // specify dependencies here under either 'build', 'compile', 'runtime', 'test', or
'provided' scopes, e.g.

 runtime 'mysql:mysql-connector-java:5.1.21'
 runtime 'commons-httpclient:commons-httpclient:3.1'

 // or ...

 runtime 'mysql:mysql-connector-java:5.1.21',
 'commons-httpclient:commons-httpclient:3.1'
 // or...

 runtime [[group: 'mysql', name: 'mysql-connector-java', version: '5.1.21'],
 [group: 'commons-httpclient', name: 'commons-httpclient', version: '3.1']]
 }
 ...
}

By default, when Grails resolves a dependency, the framework will resolve not only the expressed
dependency but also transitive dependencies. This means that if your application expresses a dependency
on library A, and library A depends on library B, and library B depends on library C, the system will resolve
all of those dependencies. Often this is desirable, as if your application uses A and A depends on B, you
probably need B to be there. There are times when you may want to disable transitive dependency
resolution. The syntax for doing so is shown in Listing 11-19.

Listing 11-19. Excluding Transitive Dependencies

grails.project.dependency.resolution = {
 ...
 dependencies {
 // specify dependencies here under either 'build', 'compile', 'runtime', 'test', or
'provided' scopes, e.g.

 runtime('mysql:mysql-connector-java:5.1.21') {
 transitive = false
 }

 // or...
 runtime group: 'mysql'
 name: 'mysql-connector-java'
 version: '5.1.21'
 transitive: false
 // or, exclude speciic dependencies, leaving all other transitive dependencies to be
resolved
 runtime('mysql:mysql-connector-java:5.1.21') {

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

260

 excludes 'xml-apis', 'commons-logging'
 }
 }
 ...
}

The last section in the BuildConig file is the plug-ins section, which you have used numerous times
already. This is where you express a dependency on plug-ins the application is going to use. The syntax for
expressing plug-in dependencies is very similar to that for expressing library dependencies, as shown
above. A noticeable difference is that plug-in dependencies, which do not require a group, default to org.
grails.plugins. See Listing 11-20.

Listing 11-20. Specifying Plug-in Dependencies

grails.project.dependency.resolution = {
 ...

 plugins {
 runtime ":hibernate:$grailsVersion"
 runtime ":jquery:1.7.1"
 runtime ":resources:1.1.6"
 runtime ":searchable:0.6.4"
 compile ":cache:1.0.0"
 compile ":rest-client-builder:1.0.2"
 build ":tomcat:$grailsVersion"
 }
}

Transitive plug-in resolution works very similarly to how transitive library resolution works. If you
express a dependency on plug-in A, and plug-in A depends on plug-in B, plug-in B will be resolved.
Exclusions are available for plug-in dependencies, just as for library dependencies (see Listing 11-21).

Listing 11-21. Excluding Transitive Plug-in Dependencies

grails.project.dependency.resolution = {
 ...

 plugins {
 runtime(':someplugin:1.0') {
 excludes 'pluginA', 'pluginB'
 }
 }
}

Understanding the Grails Build System
The Grails build system is powered by the Gant (http://gant.codehaus.org) build tool. Gant is a thin
wrapper around Apache Ant (http://ant.apache.org), the ever-popular Java build system. Unlike Ant,
which uses an XML format to describe a build, Gant uses a Groovy DSL. The benefit here is that you can
easily mix build logic with scripting in Groovy code. Listing 11-22 shows a typical example of a Gant build
script.

http://gant.codehaus.org
http://ant.apache.org

261

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

Listing 11-22. An Example of a Gant Build Script

targetDir = "build"
target(clean:"Cleans any compiled sources") {
delete(dir:targetDir) }

target(compile:"The compilation task") {
 depends(clean)
 mkdir(dir:"$targetDir/classes")
 javac(srcdir:"src/java",
 destdir:"$targetDir/classes")
}
target(jar:"Creates a DAR ile") {
 jar(destile:"$targetDir/app.jar",basedir:"$targetDir/classes")
}
target(dist:"The default task") {
 depends(compile, jar)
}
setDefaultTarget (dist)

Notice how the example in Listing 11-10 defines a number of targets by calling the target method.
These are equivalent to Ant’s <target> tag. Also, as you can see, you can specify dependencies between
targets using the depends method:

depends(compile, jar)

If you install Gant outside Grails, Gant includes its own command-line interface via the gant
command. The gant command will search for a file called build.gant, the same way Ant looks for build.
xml, and attempts to call it if found. Using the gant command, you can call an individual target or chain
more than one, as shown here:

$ gant clean jar

It’s at this point that you’ll begin to realize the differences between vanilla Gant and Grails. Although Gant
behaves much like Ant, Grails wraps Gant in its own grails command—the same one you’ve been using
throughout the book. The grails command uses conventions within a Grails project to try to automatically
figure out which script to execute. For example, when you run the command

$ grails create-app

Grails will search the following directories for a Gant script called CreateApp.groovy to execute:

•	 PRODECTHOME/scripts: The scripts directory of the current project.

•	 GRAILSHOME/scripts: The scripts directory of the location where you installed Grails.

•	 PLUGINS_HOME/*/scripts: Each installed plug-in’s scripts directory.

•	 USERHOME/.grails/scripts: The scripts directory within the .grails directory of the
current user’s home directory. The location of this is operating system dependent.

If a matching Gant script is found, the grails command will execute the default target of the Gant
script. In contrast to the gant command, the grails command is optimized for the Grails project layout, for
the plug-in system, and for the easy use of passing arguments.

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

262

Creating Gant Scripts
To help you understand this better, let’s take a look at a simple “Hello World”–style example. Using the
create-script command, create a new script called HelloWorld.groovy:

grails> create-script HelloWorld
| Created ile scripts/HelloWorld.groovy

As expected, you’ll end up with a new Gant script, HelloWorld.groovy, in the scripts directory of your
project. Figure 11-1 shows the script snugly in place.

Figure 11-1. The HelloWorld.groovy Gant script

Grails uses lowercase names separated by hyphens—for example, hello-world—when referencing
scripts but transforms the name into camelCase for the script name. Listing 11-23 shows the contents of
the generated HelloWorld.groovy script from Figure 11-1.

Listing 11-23. The Script Template

grailsHome = ant.project.properties."environment.GRAILS_HOME"
includeTargets << grailsScript("_GrailsInit")

target(main: "The description of the script goes here!") {
 // TODO
}
setDefaultTarget(main)

As you can see, the template pulls in some existing functionality from a script called _GrailsInit.
groovy in the scripts directory of the location where you installed Grails. It then defines a single target, the
default target, called main. To complete the “Hello World” example, use a println statement to print a
message:

includeTargets << grailsScript("_GrailsInit")

target(main: "The description of the script goes here!") {
 println 'Hello World!'
}

263

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

setDefaultTarget(main)

To run the hello-world script, just run this command using the grails executable:

grails> hello-world
| Environment set to development....
Hello World!
grails>

Grails will perform a search of all the directories mentioned previously and find the HelloWorld.
groovy script. Since the main target is the default target, Grails will execute it, and the “Hello World!”
message will be printed.

Of course, having the entire Ant API at your disposal allows you to do a lot more than just print
messages. Ant, along with its plug-ins, provides access to targets that allow you to manipulate the file
system, compile Java or Groovy code, perform XSLT transformations, and do just about anything else you
could dream of from the command line.

n Tip If you aren’t already familiar with the Apache Ant manual (most Java developers are), it may be useful to

take a look at it (http://ant.apache.org/manual/). The manual provides comprehensive information about

what you can do with Ant.

Command-Line Variables
The _GrailsInit.groovy script that was imported by HelloWorld.groovy in Listing 11-11 provides a bunch
of useful variables and targets. Here are some of them.

•	 grailsVersion: the version of Grails you’re using

•	 grailsEnv: the environment in which Grails is executing

•	 basedir: a string representing the base directory from which the script is executing

•	 baseFile: similar to basedir, but a Java. io.File representation

•	 userHome: the current user’s home directory as a string

•	 pluginsHome: the location where plug-ins are installed

•	 classesDir: the location to which classes are compiled

The grailsEnv variable deserves special mention. If you recall from Chapter 2, you can tell Grails to
run within the context of development, test, or production environments. To recap, the following
command will execute the run-app command using the production settings:

$ grails prod run-app

Your scripts can be equally environment-aware using the grailsEnv variable. For example, if you want
a Gant script to run only in the development environment, you can write code like this:

if(grailsEnv == 'development') {
// do something }

http://ant.apache.org/manual/

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

264

Some of the other variables, such as the pluginsHome and classesDir variables, are automatically
constructed by Grails. By default, Grails stores plug-ins and some compiled resources in your USER_HOME
directory under a special path. For example, you can find the gTunes application’s plug-in related code in
the directory USER_HOME/.grails/2.0.4/projects/gtunes/plugins.

As you can see, Grails takes the Grails version number and the project name to formulate a path within
the USER_HOME directory. If you are not happy with this location, then you can tell Grails to use a different path
by passing the grails. work.dir argument at the command line:

$ grails -Dgrails.work.dir=/tmp run-app

In fact, you can pass a whole load of different command-line arguments to customize the different
locations that Grails uses.

•	 grails.work.dir: the base location where all Grails work occurs, including the test
and source compilation directories

•	 grails.project.classes.dir: the location to which project sources are compiled

•	 grails.project.resource.dir: the location to which project static resources (such
as web.xml) are generated

•	 grails.project.test.class.dir: the location to which test sources are compiled

•	 grails.plugins.dir: the location where plug-ins are installed

•	 grails.global.plugins.dir: the location where global plug-ins are installed

Parsing Command-Line Arguments
Unlike raw Gant, the grails command doesn’t support chaining of targets; instead, it favors the easy
passing of command-line arguments. One useful target to depend on that is provided by the Init.groovy
script is the parseArguments target. The parseArguments target will read any command-line arguments and
produce a variable called argsMap, containing the values of the arguments in a more accessible form.

For example, say you wanted to enable the HelloWorld.groovy script to be able to print the name of
the person to say hello to in either uppercase or lowercase. You could allow the name to be passed as a
command-line argument and whether to print in uppercase or not as a command-line flag, as follows:

grails> hello-world John
| Environment set to development....
Hello John
grails> hello-world John -uppercase
| Environment set to development.....
HELLO JOHN
grails>

Implementing the handling of these is very simple. Listing 11-24 shows an updated HelloWorld.groovy
Gant script that gracefully handles these arguments.

Listing 11-24. Handling Command-Line Arguments

includeTargets << grailsScript("_GrailsInit")

target(main: "The description of the script goes here!") {
 def message = "Hello ${argsMap.params ? argsMap.params[0] : 'World'}"
 if(argsMap.uppercase) {

265

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

 println message.toUpperCase()
 } else {
 println message
 }
}

setDefaultTarget(main)

Notice that command-line flags (the arguments that start with – or --) are placed as Boolean values
into the argsMap. The example in Listing 11-12 shows how the -uppercase flag ends up as a Boolean value,
with the key uppercase inside the argsMap. You can also have flags with values; for example, if you passed
-uppercase=yes, then the value would be a String with the value yes in the argsMap.

All other arguments that are not flags are placed in the params key as a List that retains the order in
which they were passed.

Documenting Your Scripts
You may have noticed from the script template in Listing 11-11 that the main target has a placeholder for
the description of the target:

target(main: "The description of the script goes here!") {

You can provide additional information about a target, so that others understand better how to go
about using your script, by assigning a value to the USAGE property in the script. For example, to give
information about the hello-world script, you could make this modification:

includeTargets << grailsScript("_GrailsInit")

target(main: "Prints a Hello message") {
 def message = "Hello ${argsMap.params ? argsMap.params[0] : 'World'}"
 if(argsMap.uppercase) {
 println message.toUpperCase()
 } else {
 println message
 }
}

setDefaultTarget(main)

USAGE = '''
 hello-world [-uppercase] [NAME]

where
 -uppercase = Convert the message to all uppercase
 NAME = The name of the person to say hello to
'''

Then if any other users of your script should need help using the script, they can go to the help
command provided by Grails, as shown in Listing 11-25.

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

266

Listing 11-25. Getting Help from Gant Scripts

grails> help hello-world
| Environment set to development.....

 grails hello-world -- Prints a Hello message

Usage (optionals in square brackets):

 hello-world [-uppercase] [NAME]

where
 -uppercase = Convert the message to all uppercase
 NAME = The name of the person to say hello to
grails>

Reusing More of Grails
The inclusion of the GrailsInit.groovy script in Listing 11-11 is just one example of including an existing
Grails script. You can in fact include an array of different scripts that provide different features. For
example, say you want to make sure the tests run before your script is executed. You can include the _
GrailsTest.groovy script and depend on the allTests target, as shown in Listing 11-26.

Listing 11-26. Executing Tests

includeTargets << grailsScript('_GrailsTest')

target(main: "The description of the script goes here!") {
 depends allTests
}

setDefaultTarget main

Alternatively, if you want to make sure that the container is up and running, maybe in order to
perform some kind of automated functional tests, you can use the RunApp.groovy script. This, the same
script used when you type grails run-app at the command line, provides a target called runApp that you
can use to load the Tomcat container embedded in Grails. As an extension to this, the next section will look
at how to load Grails without even the need for a container.

Bootstrapping Grails from the Command Line
If you need access to the Grails environment from the command line, you can load Grails using the
GRAILS_HOME/scripts/Bootstrap.groovy script. This will enable you, for example, to use GORM from the
command line for batch processing.

To get started, you need to include the following Bootstrap.groovy script:

includeTargets << grailsScript("_GrailsBootstrap")
and then call the bootstrap target:
bootstrap()

Once this is done, a number of new variables will be created including the following:

267

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

•	 grailsApp: a reference to the org.codehaus.groovy.grails.commons.
GrailsApplication class, which allows you to inspect the conventions in a running
Grails application

•	 appCtx: the Spring ApplicationContext instance that contains the bean definitions for
the Grails application, as found at runtime.

•	 servletContext: a mock implementation of the ServletContext, usable from the
command line.

•	 pluginManager: a reference to the org.codehaus.groovy.grails.plugins.
GrailsPluginManager instance, which allows you to inspect the currently installed
plug-ins.

The most commonly used of these is the appCtx variable, which allows access to all the beans contained
within the Spring ApplicationContext. For example, if you need to obtain the Hibernate SessionFactory
and/or SQL DataSource, you can easily do so using the appCtx:

DataSource dataSource = appCtx.getBean("dataSource") SessionFactory SessionFactory = appCtx.
getBean("sessionFactory")

With the basics out of the way, let’s see a couple of examples that show how to use Gant to boost your
command-line productivity.

Gant in Action
Printing “Hello World!” to the command window is fun and all, but ultimately it’s not very useful. In the
following sections, you’ll be looking at a couple of real-world Gant scripts. The first is a script that will
allow you to quickly deploy to Tomcat.

Automated Deployment to Tomcat

Writing a Tomcat deployment script in Ant is pretty trivial, thanks to the targets that ship with Tomcat (see
http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html). However, before you can start this
example, you need to make sure you have Tomcat installed and TOMCAT_HOME set to the location where you
installed it. Then run the grails create-script command as follows:

$ grails create-script tomcat-deploy

With that done, you should have a TomcatDeploy.groovy file in the scripts directory of your project, as
shown in Figure 11-2.

http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

268

The TomcatDeploy.groovy script template will look identical to the HelloWorld.groovy template you
saw earlier. To begin with, you’re going to need to figure out the path to the Tomcat installation directory.
Inspecting the TOMCAT_HOME environment variable can help you achieve this:

grailsHome = ant.project.properties."environment.GRAILS_HOME"
tomcatHome = ant.project.properties."environment.TOMCAT_HOME"

With knowledge of the Tomcat directory in hand, the next thing to do is include the War.groovy script
available in GRAILS_HOME/scripts. The _GrailsWar.groovy template contains targets that allow you to
construct a valid WAR file:

includeTargets << grailsScript("_GrailsWar")

To take advantage of the Tomcat Ant tasks, you have to define them by calling the taskdef method.
This method relates to the <taskdef> target of Ant, so defining Ant tasks in Gant is pretty much identical to
doing so in pure Ant—minus the angle brackets:

ant.path(id:"tomcat.lib.path") {
 ileset(dir:"${tomcatHome}/server/lib",includes:"*.jar")
}
ant.taskdef(name:"deploy",
 classname:"org.apache.catalina.ant.DeployTask",
 classpathref:"tomcat.lib.path")

As you can see, the only tricky part is ensuring that all the JAR files for the DeployTask class are placed
onto the classpath appropriately using the JAR files available in your Tomcat installation directory. This is
done using the classpathref named argument and a predefined Ant path called tomcat.lib.path.

Moving onto the main target of the TomcatDeploy.groovy script, you can change it to depend on the war
target, which will ensure a valid WAR file is constructed before the rest of the code runs:

target(main: "Deploys the Grails application to Tomcat") {
 depends war
 ...
}

Once that is done, you need to establish the destination to publish the WAR to. You could, for example,
accept the destination as the first argument to the command and otherwise default to localhost:

Figure 11-2. The TomcatDeploy.groovy script

269

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

def dest = argsMap.params ? argsMap.params[0] : "http://localhost:8080/manager"

Once that is done, the rest is left to the deploy target supplied by the org.apache.cat-alina.ant.
DeployTask class:

deploy(war:warName, url:dest,
path:serverContextPath, username:"deployer", password:"secret")

The warName and serverContextPath variables are set up by the War.groovy script, which you can reuse
here. The deploy target also requires that you pass username and password arguments whenever deploying
to Tomcat. Given that you have a running instance of Tomcat locally, if you run the tomcat-deploy target
now, you’ll probably get a 401 error such as the following:

java.io.IOException: Server returned HTTP response code: 401 for URL: http://localhost:8080/
manager/deploy?path=%2FgTunes

The reason is that currently Tomcat doesn’t have a user called deployer with a password of secret
registered with it. To do so, you need to edit the TOMCAT_HOME/conf/tomcat-users.xml file and add a user
who has access to the Tomcat manager application, as shown in Listing 11-27.

Listing 11-27. Adding a Tomcat Deployer

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
 ...
 <user username="deployer" password="secret" roles="standard,manager"/>
</tomcat-users>

Once you have added the necessary Tomcat user, when you run the tomcat-deploy script, Grails will
successfully deploy your application to Tomcat, as demonstrated in Listing 11-28.

Listing 11-28. Deploying to Tomcat

$ grails tomcat-deploy ...
Done creating WAR /Developer/grails-dev/book/dgg/code/ch12/gTunes-0.1.war [deploy] OK - Deployed
application at context path /gTunes

You can, of course, take this further and write another tomcat-undeploy script or even combine them
into two scripts. Nevertheless, Listing 11-29 shows the full code for the TomcatDeploy.groovy scripts.

Listing 11-29. The TomcatDeploy.groovy Script

grailsHome = ant.project.properties."environment.GRAILS_HOME"
tomcatHome = ant.project.properties."environment.TOMCAT_HOME"

includeTargets << grailsScript("War")

ant.path(id:"tomcat.lib.path") {
 ileset(dir:"${tomcatHome}/server/lib",includes:"*.jar")
}
ant.taskdef(name:"deploy",
 classname:"org.apache.catalina.ant.DeployTask",
 classpathref:"tomcat.lib.path")
target(main: "Deploys the Grails application to Tomcat") {
 depends(parseArguments, war)

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

270

 def dest = argsMap.params ? argsMap.params[0] : "http://localhost:8080/manager"

 deploy(war:warName,
 url:dest,
 path:serverContextPath,
 username:"deployer",
 password:"secret")
}
setDefaultTarget(main)

Exporting Data to XML

Another fairly common use of command-line scripts is to allow the migration of data. This can be done by
performing an SQL dump of the database, but you may want to offer the ability to export all content held
in the database as XML, as some web applications such as Atlassian Confluence and JIRA do.

Let’s start by considering how you would write an export script that dumped all the relevant data from
the gTunes application into a single parsable XML document. First, you’ll need to create a new Gant script
called export-library-to-xml:

grails> create-script ExportLibraryToXml
| Created ile scripts/ExportLibraryToXml.groovy
grails>

With that done, you’re going to need to take advantage of the GRAILS_HOME/scripts/_GrailsBootstrap.
groovy script discussed earlier. To do so, simply include _GrailsBootstrap.groovy:

includeTargets << grailsScript("_GrailsBootstrap")

Inside the main target, you then need to depend on the bootstrap target:

depends bootstrap

First, using argsMap, you can work out the file to export to by either taking the first argument or
creating a name programmatically:

 def ile = argsMap.params ?
 new File(argsMap.params[0]) :
 new File("./gtunes-data=${System.currentTimeMillis()}.xml")

As mentioned previously, the bootstrap target will set up a grailsApp variable that holds a reference to
the GrailsApplication instance. This instance can be used to dynamically load classes using the
classLoader property. This needs to be done because Gant scripts cannot directly reference the classes in
your application, as they can’t know whether those classes have been compiled yet. Luckily, obtaining a
reference to any class using the classLoader is pretty trivial:

def artistClass = grailsApp.classLoader.loadClass('com.gtunes.Artist')

Unlike Java, with Groovy you can invoke any static method using a reference to java.lang.Class;
hence, you can use regular GORM methods easily even with a dynamically loaded class reference. The first
example of this is using the static count() method to figure out how many artists there are:

 def artistClass = grailsApp.classLoader.loadClass('com.gtunes.Artist')
 def artistCount = artistClass.count()

Now it’s time to create the XML. To do so, you’re going to use Groovy’s StreamingMarkupBuilder class.
Listing 11-30 shows how to construct and use StreamingMarkupBuilder.

271

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

Listing 11-30. Using StreamingMarkupBuilder to Write to a File

new FileWriter(ile) << new groovy.xml.StreamingMarkupBuilder().bind {
 music {
 ...
 }
}

Builders in Groovy allow you to construct hierarchies of nodes, a concept that fits nicely into the
construction of XML. In this case, the music method will become the root element <music> of the XML
document. In the next step, you initiate a transaction using the withTransaction method first discussed in
Chapter 10.

You use a transaction here so that a common Hibernate Session is shared for the remainder of the
code, hence avoiding a LazyInitializationException occurring when accessing uninitialized associations.
In Grails, unlike the server environment, the Hibernate Session is not managed for you in scripts, but by
using withTransaction, you can circumvent that:

artistClass.withTransaction {
 ...
}

Along with withTransaction, you’re going to take advantage of the withSession method to obtain a
reference to the Hibernate Session object used. As discussed in Chapter 10, when reading a large amount
of data into the Hibernate Session, you may run out of memory if you don’t periodically clear the Session.
Since you don’t exactly know how much data is in the database, you’re going to be doing that here:

artistClass.withSession { session ->
 ...
}

The next step, if you’ll excuse the pun, is to employ the step method, using the previously obtained
artistCount variable to perform pagination of records. With this technique, you can obtain, say, ten Artist
instances, including associations. You can manipulate them in some way and then clear the Session before
loading the next ten. Listing 11-31 shows the code in action.

Listing 11-31. Using the step Method to Paginate Records

0.step(artistCount, 10) { offset ->
 def artistList = artistClass.list(offset: offset,
 max: 10,
 fetch: [albums: 'join'])
 session.clear()
}

With a list of Artist instances in hand, now it’s just a matter of iterating over each one to create a
bunch of <artist> XML elements:

for(currentArtist in artistList) {
 artist(name: currentArtist.name) {
 ...
 }
}

Finally, you also need to include all the Album instances associated with each Artist and all the Song
instances associated with each Album. You can achieve this with a couple more nested loops:

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

272

for(currentAlbum in currentArtist.albums) {
 album(currentAlbum.properties['title', 'year', 'genre', 'price']) {
 for(currentSong in currentAlbum.songs) {
 song(currentSong.properties['title', 'duration'])
 }
 }
}

Notice how you can reference a subset of each Album instance’s property values using the subscript
operator and a list of property names:

currentAlbum.properties['title', 'year', 'genre', 'price']

With that, the export-library-to-xml script is complete. Listing 11-32 shows the full code listing for
the export-library-to-xml Gant script.

Listing 11-32. The Full export-library-to-xml Code

includeTargets << grailsScript("_GrailsBootstrap")

target(main: "Exports the gTunes database to XML") {
 depends bootstrap
 def ile = argsMap.params ?
 new File(argsMap.params[0]) :
 new File("./gtunes-data=${System.currentTimeMillis()}.xml")
 def artistClass = grailsApp.classLoader.loadClass('com.gtunes.Artist')
 def artistCount = artistClass.count()
 println "Creating XML for ${artistCount} artists"
 new FileWriter(ile) << new groovy.xml.StreamingMarkupBuilder().bind {
 music {
 artistClass.withTransaction {
 artistClass.withSession { session ->
 0.step(artistCount, 10) { offset ->
 def artistList = artistClass.list(offset: offset, max: 10, fetch: [albums:
'join'])
 for(currentArtist in artistList) {
 artist(name: currentArtist.name) {
 for(currentAlbum in currentArtist.albums) {
 album(currentAlbum.properties['title', 'year', 'genre', 'price']) {
 for(currentSong in currentAlbum.songs) {
 song(currentSong.properties['title', 'duration'])
 }
 }
 }
 }
 }
 session.clear()
 }
 }
 }
 }
 }

273

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

 println "Done. Created XML ${ile.absolutePath}"
}

setDefaultTarget(main)

As you can see from the full code in Listing 11-21, you can also add a couple of println statements just
to inform the user what is going on. You can now run the export-library-to-xml script using the grails
command, and out will pop an XML document, as shown in Listing 11-33.

Listing 11-33. Running the export-library-to-xml Script

$ grails export-library-to-xml
Creating XML for 498 artists
Done. Created XML /Developer/projects/gtunes/gtunes-data=1351863192571.xml

As you can see in this example, the script produces a file called gtunes-data-122224970.xml. The
contents of this file contain the XML built by StreamingMarkBuilder. Listing 11-34 shows an example.

Listing 11-34. Example Output XML

<?xml version="1.0"?>
<music>
 <artist name="The Killers">
 <album year="2006" title="Sam's Town" price="4.99" genre="Rock">
 <song title="Sam's Town" duration="246099"/>
 <song title="Enterlude" duration="49972"/>
 <song title="When You Were Young" duration="220499"/>
 ...
 </album>
 </artist>
 ...
</music>

Continuous Integration with Hudson
Agile and test-driven philosophies have been debated endlessly and are a subject beyond the scope of this
book. Nevertheless, if there is one agile practice that would bring immediate benefits to any project,
whether “traditional” or agile, it is continuous integration.

Continuous integration involves setting up a server that continuously (either on a schedule or through
monitoring for changes) builds the latest code, runs any tests, and produces a snapshot of the code for
distribution. The continuous integration server can perform all manner of additional tasks, from
producing coverage reports to creating the latest documentation and even sending e-mails or SMS
messages to notify of build failures.

This section will demonstrate how to use Hudson, an open source continuous integration server
available at https://hudson.dev.java.net/. To get started, you need to download the hudson.war
distribution of Hudson and deploy it to a container, such as Apache Tomcat. Deployment with Tomcat is a
simple matter of dropping the WAR into the TOMCAT_HOME/webapps directory and firing up Tomcat.

Then you can go to http://localhost:8080/hudson, assuming Tomcat is up and running on port 8080,
and you’ll be presented with the Hudson Dashboard.

The next step is to install the Grails plug-in for Hudson. From the main Dashboard screen, click the
“Manage Hudson” link, and then click the “Manage Plugins” link. On the Available tab, select the check box

https://hudson.dev.java.net/

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

274

next to the Grails plug-in, and click the “Install” button at the bottom of the page. Once you have installed
the plug-in, you’ll need to restart Hudson.

Once the Grails plug-in is installed, the next step is to configure your Grails installations in Hudson.
The plug-in, which does not come with its own version of Grails, uses a version that must be installed on
the system separately from Hudson. The plug-in allows you to configure as many different versions of
Grails as you like. This is useful if you are building multiple Grails projects in the same Hudson instance
and not all of those Grails projects are built with the same version.

To configure Grails installations in Hudson, click the “Manage Hudson” link on the main Dashboard
screen, then click the “Configure System” link. Figure 11-3 shows the part of this screen used to configure
your Grails installations.

Figure 11-3. Configuring Grails installations in Hudson

You can see that each Grails installation has a name and a GRAILS_HOME. The name is simply an
identifier that will help you select a particular version of Grails later when configuring jobs. The value of
GRAILS_HOME must point to a specific Grails installation directory. Notice that there is validation built in to
let you know whether the directory you have entered does not exist. The validation is not activated until
you tab out of the text field.

275

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

Once you have configured all your Grails installations, make sure you scroll all the way to the bottom
of the page and click the Save button.

With at least one Grails installation configured in Hudson, you are ready to create a job for a Grails
project. You create a job for a Grails project in the same way you would for any other project in Hudson.
From the main Dashboard screen, click the “New Job” link. Most often you will be creating a job for a so-
called free-style software project, and so you will select that radio button on the form to create a new job
(see Figure 11-4).

Once you click the OK button, you will be taken to the page where you configure all the details for how
this build will be carried out. This page allows you to define which version control system you are using,
paths to the project, a schedule for building the project, and so on. Near the bottom of the page is where
you will configure the actual build steps. Once the Grails plug-in is installed, a new build step, “Build With
Grails,” should show up, as shown in Figure 11-5.

Figure 11-4. Creating a new free-style job

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

276

When you select the “Build With Grails” build step, the page will be updated with a form that lets you
configure the Grails build. This will include at a minimum specifying a version of Grails to use and which
Grails targets to execute. A typical target to execute is the test-app target, but you can configure your job
to execute whichever targets make sense. Figure 11-6 shows the details of a Grails build.

The “Grails Installation” drop-down will include all the Grails installations you configured earlier.
Select the version of Grails that this job should be built with.

The “Targets” field lets you specify as many targets as you’d like to have executed as part of this build.
The targets will be executed in the order specified in this text box. If any arguments are to be passed to a
particular target, then the target name and the arguments should be surrounded by double quotes so the
plug-in knows to group them as one command.

There are fields for specifying the grails.work.dir and project.work.dir system properties.
The “Project Base Directory” field will typically be left blank, but it is important if the Grails project is

not at the root of the job’s working directory. For example, if your Grails project is in your SCM system at a
path like /projects/development/code/grails/gTunes/ and for some reason you need to configure this job
to check out everything under /projects/development/code/ grails/gTunes/, you will need to specify a
value for the “Project Base Directory” field. The problem here is that the job root is /projects/
development/code/grails/gTunes/; so the plug-in will execute all Grails commands from that directory.
Since that isn’t the root of the Grails project itself, all the Grails commands will fail. To support this
scenario, the “Project Base Directory” field should be given the value /projects/development/code/grails/
gTunes/; this is a relative path down from the job root directory to the root of the Grails project. With that
in place, all Grails commands will be executed from the /projects/development/ code/grails/gTunes/
directory.

Figure 11-5. The “Build With Grails” build step

277

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

All other aspects of configuring a Grails job in Hudson are no different from what they are for any
other type of project.

Adding Support to Your Favorite IDE
Java developers in general have become particularly reliant on the comfort of modern integrated
development environments (IDEs), largely because of the strictness of the Java language. From its static
typing rules to such quirks as its insistence on semicolons at the end of each line of code, it is hard to write
anything in Java without a little nagging from the compiler. Fortunately, modern IDEs such as the Groovy/
Grails Tool Suite (GGTS), Eclipse, and IntelliJ IDEA have made life a lot easier. In fact, they’ve done more
than that. With the advent of refactoring tools, Java has become one of the most maintainable languages
out there.

The tools in the dynamic language space are in general nowhere near as advanced as those available
for Java. On the other hand, many developers create entire applications in TextMate, jEdit, and other
simple text editors; they prefer their speed and efficiency to the relative clunkiness and slowness of a
robust, richly featured IDE. This is possible because of the simplicity of a framework such as Grails and the
relatively forgiving Groovy grammar. It is our view that you can certainly get away with using the simpler
tools during the early days of an application’s life cycle.

Figure 11-6. Configuring a Grails build

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

278

However, as the application grows and enters the maintenance phase, the need for an IDE will also
grow—particularly for refactoring and maintenance. Fortunately, although the tooling is much younger,
you do have options available to you. We will be covering them in the following sections.

Using The Groovy/Grails Tool Suite (GGTS)
The Groovy/Grails Tool Suite (GGTS) provides the best Eclipse-powered development environment for
building Groovy and Grails applications. GGTS provides support for the latest versions of Groovy and
Grails and is built on top of the latest Eclipse releases.

GGTS is available from http://grails.org/products/ggts. The download includes a double-click
installer that simplifies getting the tool installed, up, and running.

Configuring Grails Installations

GGTS ships with the latest version of Grails—that is, the one available when that version of GGTS was
created—but you can configure as many different version of Grails in the IDE as you like. This feature is
useful when you are upgrading projects from one version of Grails to another and working on multiple
projects that do not necessarily use the same versions of Grails.

To configure Grails installations within the IDE, open the application preferences and navigate to
Groovy ä Grails as shown in Figure 11-7.

Figure 11-7. Configuring Grails installations

This dialog allows you to configure as many already-installed Grails installations on your system as
you like. The check box in the table’s far left column allows you to indicate which version should be
selected by default when creating a new Grails application from within the IDE.

http://grails.org/products/ggts

279

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

Importing a Grails Project

Once you have your Grails installation(s) configured, the next step is to import your Grails project. Luckily,
Grails automatically creates Eclipse project and classpath files for you when you create the project. So to
import the project, select the File Import menu option, and then select the “Import” option, at which
point the dialog box shown in Figure 11-8 will appear.

Select the “Grails Project” option, and click the Next button. Now browse to the root of a Grails project
using the Browse button, and click Choose or OK. Once you have chosen the directory where the project is
located, GGTS will automatically detect that there are Eclipse project files within the specified root
directory and even in subdirectories within the root (see Figure 11-9).

Figure 11-8. Importing a Grails project into GGTS

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

280

Click the Finish button to complete the import. At this point, your project will be configured with the
correct source directories and classpath.

Running a Grails Application from GGTS

You can run a Grails application from GGTS by right-clicking on the project and selecting the “Run As”
menu. The submenu underneath “Run As” will include a number of options, including “Grails Command
(run-app)” (see Figure 11-10).

Figure 11-9. Importing a Grails project into Eclipse

281

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

If you want to run the application in the debugger, then instead of selecting the “Run As” menu
option, select “Debug As”. When running the application in the debugger, you can set breakpoints,
watches, and all the other things that Java developers are used to doing in their runtime debuggers.

GGTS gives the workspace a Grails perspective, which provides a smart view over all of the artefacts in
a Grails application, among other capabilities. There are wizards for creating artefacts and running
arbitrary commands. There is a Grails plug-in manager. GGTS provides a really flexible, really powerful
environment for building, testing, and debugging Grails applications, and it is fast becoming the IDE of
choice for Grails application developers. For more information on GGTS, see http://grails.org/
products/ggts.

Using Spring Tool Suite (STS) and Eclipse
Most developers who want to develop Grails applications in an Eclipse environment opt to use GGTS.
GGTS is built on top of Eclipse and provides everything that Eclipse provides, plus a whole bunch of
Groovy and Grails support. If for some reason you want to develop a Grails application in an Eclipse
environment but do not want to use GGTS, you can install the Groovy and Grails extensions into Eclipse or
STS and get the same capabilities—with just a little more work required to piece everything together. You’ll
find more information on how to do that at www.grails.org/STS+Integration.

Figure 11-10. Running a Grails application from GGTS

http://grails.org/
http://www.grails.org/STS+Integration

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

282

IntelliJ IDEA
JetBrains worked closely with the Groovy team when building much of the relevant support in IntelliJ.
(You’ll learn more about their support for Groovy and Grails and see their documentation at www.
jetbrains.com/idea/features/groovy_grails.html.) Figure 11-11 shows IntelliJ IDEA in action.

Figure 11-11. IntelliJ IDEA with the Groovy plug-in

NetBeans
Of the open source IDEs available, NetBeans (www.netbeans.org/) provides the most advanced support for
Groovy and Grails development. After making NetBeans one of the best Ruby IDEs on the market, Sun
began investing in Groovy and Grails support, and with the release of NetBeans 6.5, the results of that
investment have really begun to show. Featuring built-in Groovy support, the NetBeans plug-in provides
syntax highlighting, code completion, outline views, and menu options to easily access Grails commands.
Figure 11-12 shows what the NetBeans Groovy editor looks like.

http://www.jetbrains.com/idea/features/groovy_grails.html
http://www.jetbrains.com/idea/features/groovy_grails.html
http://www.netbeans.org/

283

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

There is a good write-up on what is currently available in NetBeans on the Grails web site: http://www.
grails.org/NetBeans+Integration.

Text Editors
There are a number of powerful text editors out there that provide varying levels of support for working
with Grails projects. Two of the more popular editors are TextMate and Sublime Text. For information on
using TextMate for editing Grails projects, see https://github.com/textmate/groovy-grails.tmbundle. For
information on using Sublime Text for editing Grails projects, see https://github.com/osoco/sublimetext-
grails.

Remote Debugging with an IDE

You can remote debug Grails by running the grails-debug executable as a substitute for the grails
executable.

n Tip The grails-debug executable simply sets up the necessary Java options to start Grails with a remote

debugger. You could configure these yourself by setting the JAVA_OPTS environment variable.

The grails-debug executable will start Grails with a debug JVM. The debugger is listening on port
5005, which is the default debugger port for Java. You can then create a remote debug configuration in your
IDE. For example, to do this with IntelliJ IDEA, go to the “Debug” menu and click “Edit Configurations”.
Then click the plus icon (+) at the top left and choose “Remote,” which will give you a remote debug
configuration, as shown in Figure 11-13.

Figure 11-12. NetBeans Groovy/Grails integration

https://github.com/textmate/groovy-grails.tmbundle
https://github.com/osoco/sublimetext-grails.Remote
https://github.com/osoco/sublimetext-grails.Remote
https://github.com/osoco/sublimetext-grails.Remote

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

284

You can leave the remaining settings as they are and just click the OK button in the bottom-right
corner. With that done, just select the remote debug configuration and hit the Debug button; IntelliJ will
connect to the Grails remote server. You can then set breakpoints in your applications sources, and IntelliJ
will stop at those points.

If you’re willing to be adventurous, you can add the Grails source code to your path and step into the
internals of Grails—but we’ll leave that decision up to you! With IDEs out of the way, we’re now going to
talk about how you integrate Grails into the server environment. From mail servers to containers, there is
still much to cover, so don’t go away.

n Note As of Grails 2.1, the Grails command line script supports a –debug argument, so instead of grails-

debug, you can use grails–debug. In a future version of Grails, the grails-debug.sh and grails-debug.

bat scripts will likely be removed.

Integration with E-mail Servers
It has become a frequent use case for web applications to send e-mails. The Simple Mail Transfer Protocol
(SMTP) is the enabler for mail delivery and has become pretty much the de facto standard for outgoing
e-mail. A number of different server products support SMTP, from Microsoft Exchange Server to the open
source Sendmail agent, which is available on most Unix systems.

n Note The configuration of an SMTP server is beyond the scope of this book; we will show you how to set up

Grails to talk to a successfully configured mail server.

Figure 11-13. An IntelliJ remote debug configuration

285

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

You can integrate mail with Grails in several ways. Since Grails is built on Spring, you could use the
org.springframework.mail abstraction, which provides a nicer API than JavaMail (http://java.sun.com/
products/javamail/). However, that involves a lot of manual configuration, so what we’ll be demonstrating
is how to integrate the Grails Mail plug-in with your application so as to enable the sending of
confirmation e-mails whenever a user registers on gTunes or makes a purchase.

To start, you need to update BuildConig.groovy to express a dependency on the mail plugin.

grails.project.dependency.resolution = {
 ...
 plugins {
 compile ":mail:1.0"
 ...
 }
}

The Mail plug-in already comes with JavaMail and its dependencies, so you don’t need to install any
more libraries or dependencies. It uses sensible defaults and automatically assumes your mail server is
running locally on port 25. However, if this is not the case, you can configure it by using some settings in
grails-app/conf/Conig.groovy. For example, Listing 11-35 shows how you could configure the mail server
to send e-mails using a Gmail account instead.

Listing 11-35. Configuring the Mail Plug-in for Gmail

grails {
 mail {
 host = 'smtp.gmail.com'
 port = 465
 username = 'youraccount@gmail.com'
 password = 'yourpassword'
 props = ['mail.smtp.auth': 'true',
 'mail.smtp.socketFactory.port': '465',
 'mail.smtp.socketFactory.class': 'javax.net.ssl.SSLSocketFactory',
 'mail.smtp.socketFactory.fallback': 'false']
 }
}

Notice in Listing 11-35 the use of the props setting, which allows you to configure the properties of the
JavaMail framework. However, for our purposes, we’ll assume that a mail server running locally is good
enough. Returning to the Mail plug-in itself, the main addition is a new method, sendMail, added to all
controllers. Listing 11-36 shows an example of its use at its simplest.

Listing 11-36. Sending a Simple Mail Message with sendMail

sendMail {
 to "john@g2one.com"
 subject "Hello John"
 body "How are you?"
}

If you need to access the sendMail method from other places in your application, such as tag libraries
and services, the Mail plug-in provides a mailService bean that is available via dependency injection.
Simply define a property called mailService in your tag library or service as follows:

http://java.sun.com/products/javamail/
http://java.sun.com/products/javamail/
mailto:youraccount@gmail.com
mailto:john@g2one.com

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

286

def mailService
The sendMail method can then be called using the mailService instance; for example:

mailService.sendMail {
 ...
}

In the example in Listing 11-30, a simple string is used for the body of the e-mail. However, it is equally
possible to use a GSP view to define the body. That is something you’ll be doing to send registration
confirmation e-mails to users of the gTunes application. Before you can do so, however, you need to
modify the User domain class in order to add a new email property. Listing 11-37 shows the change to the
User class.

Listing 11-37. Adding an email Property to the User Class

class User {
 String email
 ...
 static constraints = {
 ...
 email email:true, blank:false, unique:true
 }
}

As you can see in Listing 11-37, you’ve also applied a set of constraints to the email property. The email
constraint ensures that it is a valid e-mail address, the blank constraint makes sure blank values are not
allowed, and the unique constraint ensures that two users can’t register with the same e-mail address. With
this done, you need to modify the grails-app/views/user/register.gsp view to add a field for the email
property to the registration form. Listing 11-38 shows the necessary change to the register.gsp file.

Listing 11-38. Adding a Text Field for the email Property

<g:form action="register" name="registerForm">
 ...
 <div class="input clearix">
 <label for="email">Email *</label>
 <g:textField required="true" name="email" value="${user?.email}" />
 <g:hasErrors bean="${user}" ield="email">
 <p class="error"><g:ieldError bean="${user}" ield="email" /></p>
 </g:hasErrors>
 </div>

 ...
</g:form>

With that done, you now have an e-mail address to send confirmation e-mails to! To send an e-mail,
you’ll need to modify the register action of the UserController class to use the sendMail method to
deliver an e-mail. Listing 11-39 shows the changes to the register action.

Listing 11-39. Sending an E-mail Confirmation

def register() {
 ...
 else if(u.save()) {

287

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

 session.user = u
 try {
 sendMail {
 to u.email
 subject 'Registration Conirmation'
 body view: '/emails/conirmRegistration',
 model: [user: u]
 }
 } catch (Exception e) {
 log.error "Problem sending email ${e.message}", e
 }
 redirect controller:"store"

 }
 ...
}

Notice how in Listing 11-33 you can use the view argument of the body method to define the name of
the GSP view used to render the e-mail. As you can see, you can also pass a model with the model
argument. The code is wrapped in a try/catch block, just in case there is a problem sending the
confirmation mail. At the moment, the code simply logs the error, but you could place the message into a
queue to be re-sent later using a scheduled job—something you’ll be looking at in the next section.

As for the GSP itself, you need to create a new view at the location grails-app/views/emails/
conirmRegistration.gsp. The example in Listing 11-39 uses an absolute path to this location. If you don’t
specify an absolute path, then, as with regular views, the path is assumed to be relative to the current
controller. Listing 11-40 shows the conirmRegistration view that renders the e-mail contents.

Listing 11-40. The confirmRegistration View

<%@ page contentType="text/plain"%> Dear ${user.irstName} ${user.lastName},
Congratulations! You have registered with gTunes, giving you access to a huge collection of
music.
Your login id is: ${user.login}
You can use the following link to login: <g:createLink controller="store"
absolute="true" />
Kind Regards,
The gTunes Team

Note that the code in Listing 11-34 uses a GSP page directive to set the contentType to text/plain. The
default contentType is text/html, so if you want to send HTML mail instead, omit this line. With that,
you’ve implemented e-mail confirmation of registration. However, that’s not the end of our e-mail
adventures; in the next section you’ll learn how to send e-mails on a scheduled basis.

Deployment
Moving your application from a development environment onto a production or test server often presents
you with a number of choices. The options when deploying Grails are many and varied, and they run the
gamut from simple to complex. In the following sections, you’ll be looking at different ways of deploying
Grails and how to customize the deployment process.

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

288

Deploying with Grails
If you’re looking for a simple way to manage deployment and aren’t too concerned about fine-tuning the
details of your container, then deploying with Grails itself is certainly a simple way to go about it. To deploy
with Grails, all you need to do is install Grails on the target server and then use the run-war command from
the root of the project:

$ grails run-war

This will start a Tomcat server on port 8080. On this point, you can configure the ubiquitous Apache
HTTPD server (http://httpd.apache.org/) to use mod_proxy to relay requests to the Tomcat server. The
details of the configuration can be found at the Apache web site, http://tomcat.apache.org/connectors-
doc/webserver_howto/apache.html. Alternatively, you could even run Tomcat on port 80, so that it acts as
the primary web server:

$ grails -Dserver.port=80 run-war

As simple as this approach is, many organizations favor a more structured approach to deployment
and use that standard Java stalwart, the WAR file.

Deploying to a Container
You learned about creating a WAR file as early as Chapter 2. When thinking about deployment in the Java
world, the first thing that usually comes to mind is how to create a WAR. It is one of the strengths of the
Java platform that you can take a WAR file and deploy it onto a wide range of containers.

From the commercial 800-pound gorillas like IBM WebSphere and BEA WebLogic to the popular open
source containers like Tomcat and JBoss, there are options aplenty. Against the background of all this
helpful standardization, it is unfortunate that the way in which you deploy a WAR file is still not
standardized.

On something like Tomcat, it’s typically just a matter of dropping your WAR file into the TOMCAT_HOME/
webapps directory, while on WebSphere there is a fancy GUI wizard that allows you to upload a WAR file via
a browser. Nevertheless, there are some important things to consider when deploying to a container. The
following is a list of key points to remember when deploying with Grails.

•	 Make sure that the -server flag is passed to the JVM that runs your container to
enable the server VM. Running Grails on the client VM has a negative impact on
performance.

•	 Depending on the number of GSP views you have, you may need to allocate more
permgen space (the area of memory the JVM uses for dynamically compiled classes).
GSP views are compiled at runtime on first load into byte code, so they require
permgen space. You can allocate more permgen with the -XX:MaxPermSize=256m flag.

•	 It is advisable to allocate extra memory to the JVM when running a Grails
application. Simple Grails applications have been known to perform well on shared
virtual hosting with low memory, but the more you can allocate, the better. For
example, to allocate 512 megabytes of heap space, you can use the -Xmx512M flag.

Application Versioning and Metadata
You may have already noticed by now that when you run the grails war command, the generated WAR file
has a version number on the end of the file name. You may be wondering where this mysterious version

http://httpd.apache.org/
http://tomcat.apache.org/connectors-doc/webserver_howto/apache.html
http://tomcat.apache.org/connectors-doc/webserver_howto/apache.html
http://tomcat.apache.org/connectors-doc/webserver_howto/apache.html

289

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

number comes from. Basically, when you create a Grails application, the version number of the
application is set to 0.1 in the application’s metadata.

You can change the version number by calling the set-version command, as shown in Listing 11-41.

Listing 11-41. Setting the Application Version Number

grails set-version 0.2

Then when you build a new WAR, the version number from Listing 11-41 will be used instead. At
runtime you can inspect the application metadata using the grailsApplication object:

println grailsApplication.metadata."app.version"

or using the <g:meta> tag from a GSP, as shown in Listing 11-42.

Listing 11-42. Using Application Metadata

Version <g:meta name="app.version"/>
Built with Grails <g:meta name="app.grails.version"/>

Customizing the WAR
If you want to customize the way in which the WAR file is produced, you can consider taking advantage of
a number of hooks. For example, say you wanted to provide a different base web.xml template in order to
include your own custom servlets; you can do so with the grails.conig.base.webXml setting in grails-
app/conf/Conig.groovy:

grails.conig.base.webXml="ile:${userHome}/.settings/my-web.xml"

Also, if you need to change the location where the WAR file is generated, you can do so using the
grails.war.destFile property:

grails.war.destFile = "${tomcatHome}/webapps"

If you want to include additional resources in the WAR, you can do so with the grails.war.resources
setting, as shown in Listing 11-43.

Listing 11-43. Using the grails.war.resources Setting to Include Custom Resources

grails.war.resources = { stagingDir ->
// include static resources
 copy(dir:stagingDir) {
 ileset(dir:"/usr/var/www/htdocs")
 }
}

Notice how the closure assigned to grails.war.resources gets passed an argument that is the location
of the directory where the WAR is being built. You can then use custom copy steps to include whatever
extra resources you need. Once you actually have a WAR, you may want to perform some initial population
of the database state when the application loads. We’ll be covering how to do this in the next section.

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

290

Populating the Database with BootStrap Classes

Whenever an application loads for the first time, there may be some initial state that needs to be in place
for the application to operate correctly. One way to do this is with BootStrap classes. If you look at the
grails-app/conf directory, you may have noticed a class called BootStrap.groovy. Listing 11-44 shows the
template for this class.

Listing 11-44. The BootStrap Class

class BootStrap {
 def init = {
 servletContext ->
 }
 def destroy = {
 }
}

As you can see, there is an init method, which is called when the container first loads, and a destroy
method. The destroy method is called on container shutdown. It should be noted, though, that it is not
guaranteed to be invoked and hence shouldn’t be relied upon for anything critical.

Within the Bootstrap class, you can use GORM to populate the database. Thanks to GORM’s usage of
fluent APIs1, it is pretty easy to create an object graph, as Listing 11-45 shows.

Listing 11-45. Populating Data on Application Load

def init = {
 def album = new Album(title:"Because of the Times")
 album.addToSongs(title:"Knocked Up").addToSongs(title:"Charmer")
 ...
 new Artist(name:"Kings of Leon") .addToAlbums(album) .save(lush:true)
}

If you need to populate per-environment data, use the GrailsUtil class to obtain the environment
and perform a switch. See Listing 11-46 for an example.

Listing 11-46. Per-Environment Bootstrapping

def init = {
 switch(grails.util.GrailsUtil.environment) {
 case "development":
 // initialize in development here
 break
 case "production":
 // initialize in production here
 break
 }
}

1 A fluent API is often referred to as method chaining because it involves writing methods that return
objects in a manner such that multiple methods can be chained in a sequence. See www.martinfowler.com/
bliki/FluentInterface.html for a more complete definition.

http://www.martinfowler.com/

291

CHAPTER 11 n INTEGRATION AND DEPENDENCY MANAGEMENT

Summary
Integrating Grails covers a broad spectrum, as the number of topics covered in this chapter demonstrate.
They range from integration with command-line tools to your development environment to the servers
you finally deploy onto. Many options are available to you—so many that an entire book on the subject
wouldn’t be inappropriate. The good news is that many of the deployment options and techniques you use
in the Java space are equally applicable to Grails.

Whether it be with a Java EE–compliant container like Tomcat or your favorite build tool, there is
typically a way to get Groovy and Grails to work seamlessly in your environment. The next chapter will deal
with a whole new subject, one critical to the workings of Grails—the plug-in system. Throughout this book
you’ve already used many of the more prominent plug-ins in Grails.

Now it’s time for you to turn into a plug-in creator, to learn how you can modularize your application
through the use of plug-ins.

293

n n n

CHAPTER 12

Plug-ins

Up until now, you have been a consumer of the Grails plug-in system at various points throughout the
book. Plug-ins are very much a cornerstone of Grails. Grails itself is basically a plug-in runtime with little
knowledge beyond how to load and configure an installed set of plug-ins. Most of the core of Grails is
implemented as a suite of plug-ins for this runtime.

The Grails plug-in system is very flexible—so much so that it would be quite reasonable to write an
entire book on the subject. In this chapter, we aim to summarize the core concepts and demonstrate some
common use cases for the plug-in system. However, the full extent of what is achievable with the plug-in
system is left to your imagination.

Even if you don’t plan to write a plug-in to distribute to the world, we recommend you take the time to
read this chapter. Grails plug-ins are not just a way to enhance the functionality of an existing Grails
application; they are also an effective way to modularize your code. Later in this chapter, we will
demonstrate how you can use plug-ins to split your Grails application into separate maintainable plug-ins
that are composed together at runtime.

Plug-in Basics
The core of Grails is a plug-in runtime environment. However, to make it immediately useful, it ships with
a default set of plug-ins that you’ve already learned about, including GORM and the Grails MVC
framework. Along with the default plug-ins, Grails ships with a set of commands to automatically discover
and install new plug-ins. Let’s take a look at these first.

Plug-in Discovery
The Grails plug-in community is a hive of activity; it’s one of the most exciting areas of Grails. At the time of
writing, more than 850 plug-ins were available from the central repository. Providing a range of
functionality from job scheduling to search to reporting engines, all the plug-ins are discoverable through
the grails list-plugins command. To run the list-plugins command, simply type “grails list-
plugins” in a command window, as shown in Listing 12-1.

CHAPTER 12 n PLUG-INS

294

Listing 12-1. Running the list-plugins Command

$ grails list-plugins

What this will do is go off to the Grails central repository and download the latest published plug-in
list. The list is then formatted and printed to the console. You can see some typical output from the list-
plugins command in Listing 12-2, shortened for brevity.

Listing 12-2. Output from the list-plugins Command

$ grails list-plugins
| Downloading: plugins-list.xml

Plugins available in the grailsCentral repository are listed below:

acegi <0.5.3.2> -- Acegi Plugin
activemq <0.4.1> -- Grails ActiveMQ Plugin
activiti <5.9> -- Grails Activiti Plugin - Enabled
activiti-shiro <0.1.1> -- This plugin integrates Shiro Security
 ...

In the left column, you see the name of the plug-in, and in the middle is its latest released version.
Finally, on the right of the output, you see the short description for any given plug-in. If you want to obtain
more information about a particular plug-in, use the plugin-info command. Listing 12-3 shows how to
obtain more information about the audit-logging plug-in from Listing 12-2.

Listing 12-3. Using the plugin-info Command to Get Detailed Plug-in Information

$ grails plugin-info spring-security-core
| Downloading: spring-security-core-1.2.7.3.pom.sha1

--
Information about Grails plugin
--
Name: spring-security-core | Latest release: 1.2.7.3
--
Spring Security Core Plugin
--
Author: Burt Beckwith
--
Author's e-mail: beckwithb@vmware.com
--
Find more info here: http://grails.org/plugin/spring-security-core
--

Spring Security Core plugin

Dependency Deinition
--
 :spring-security-core:1.2.7.3

mailto:beckwithb@vmware.com
http://grails.org/plugin/spring-security-core

295

CHAPTER 12 n PLUG-INS

Required Repositories
--
 http://plugins.grails.org
 http://repo.grails.org/grails/plugins/
 http://repo.grails.org/grails/core/
 http://svn.codehaus.org/grails/trunk/grails-plugins
 http://repo1.maven.org/maven2/

Transitive Dependencies
--
 org.springframework.security:spring-security-core:3.0.7.RELEASE (compile)
 org.springframework.security:spring-security-web:3.0.7.RELEASE (compile)

Transitive Plugins
--

To get info about speciic release of plugin 'grails plugin-info [NAME] [VERSION]'

To get list of all plugins type 'grails list-plugins'

To install latest version of plugin type 'grails install-plugin [NAME]'

To install speciic version of plugin type 'grails install-plugin [NAME] [VERSION]'

For further information, see http://grails.org/plug-ins. As with the plugin-info command, you get
more information about the plug-in, including a long description, the author’s name, a link to the
documentation (http://grails.org/plug-in/spring-security-core), and more.

Plug-in Installation

This brings us to the topic of installing a plug-in into an application. To do so, express a dependency on the
plug-in in the grails-app/conf/BuildConig.groovy file. The code in Listing 12-4 demonstrates how to
express a compile-time dependency on version 1.2.7.3 of the spring-security-core plug-in.

Listing 12-4. Installing a Specific Version of a Plug-in with the install-plugin Command

grails.project.dependency.resolution = {
 ...
 repositories {
 ...
 }
 plugins {
 compile ':spring-security-core:1.2.7.3'
 ...
 }
 dependencies {
 ...
 }
 ...
}

http://plugins.grails.org
http://repo.grails.org/grails/plugins/
http://repo.grails.org/grails/core/
http://svn.codehaus.org/grails/trunk/grails-plugins
http://repo1.maven.org/maven2/
http://grails.org/plug-ins
http://grails.org/plug-in/spring-security-core

CHAPTER 12 n PLUG-INS

296

Local Plug-ins

Of course, the plug-ins you create may not necessarily live in the central Grails repository. Grails plug-ins
are packaged as simple zip files, and if you download a plug-in zip file from elsewhere, you can install it by
simply running the install-plugin command and passing in the location on disk of the plug-in. Listing
12-5 shows how to install a plug-in located in your home directory on a Unix system.

Listing 12-5. Installing a Local Plug-in

$ grails install-plugin ~/grails-spring-security-core-1.2.7.3.zip

To ease distribution within your team, instead of keeping your plug-ins locally on disk, you could host
your plug-ins on a local web server. For that case, the install-plugin command also supports plug-in
installation over HTTP. Listing 12-6 shows how to install the spring-security-core plug-in from a private
web server over HTTP, bypassing the Grails plug-in autodiscovery mechanism.

Listing 12-6. Installing Plug-ins over HTTP

$ grails install-plugin http://plugins.mydomain.com/spring-security-core/spring-security-core-
1.2.7.3.zip

Now that you’ve learned the basics of plug-in discovery and installation, let’s move on to how you go
about creating a plug-in and demonstrate the basics of plug-in creation and distribution. After that, you’ll
see how to create some useful plug-ins to enhance and modularize the gTunes sample application.

Creating Plug-ins

Creating plug-ins in Grails is as simple as creating regular applications. All you need to do is run the grails
create-plugin command and specify a name for your plug-in. In fact, what you will soon discover is that a
Grails plug-in is a Grails application. To understand this, create a simple Grails plug-in called simple-cache
that can provide caching services to a Grails application. You do this using the create-plugin command, as
shown in Listing 12-7.

Listing 12-7. Creating a Plug-in with the create-plugin Command

$ grails create-plugin simple-cache

The result is what looks like a regular Grails application. You have all the typical resources that make
up an application, including a grails-app directory. However, on closer inspection, you’ll notice there is a
file called SimpleCacheGrailsPlugin.groovy in the root of the project. This file contains a class that
represents the plug-in descriptor. Figure 12-1 shows the plug-in descriptor residing snugly in the root of
the project.

http://plugins.mydomain.com/spring-security-core/spring-security-core-1.2.7.3.zip
http://plugins.mydomain.com/spring-security-core/spring-security-core-1.2.7.3.zip

297

CHAPTER 12 n PLUG-INS

Providing Plug-in Metadata

The plug-in descriptor serves a number of purposes. The first and primary purpose is for the plug-in
author to provide metadata about the plug-in: the author name, version number, description, and so on.
Listing 12-8 shows the SimpleCacheGrailsPlugin class and the placeholder fields used to supply this
information.

Listing 12-8. The SimpleCacheGrailsPlugin Plug-in Descriptor

class SimpleCacheGrailsPlugin {
 // the plugin version
 def version = "0.1"
 // the version or versions of Grails the plugin is designed for
 def grailsVersion = "2.0 > *"
 // the other plugins this plugin depends on
 def dependsOn = [:]
 // resources that are excluded from plugin packaging
 def pluginExcludes = [
 "grails-app/views/error.gsp"
]

 // TODO Fill in these ields
 def title = "Simple Cache Plugin" // Headline display name of the plugin
 def author = "Your name"
 def authorEmail = ""
 def description = '''\
Brief summary/description of the plugin.
'''

 // URL to the plugin's documentation
 def documentation = "http://grails.org/plugin/simple-cache"

Figure 12-1. The simple-cache plug-in descriptor

http://grails.org/plugin/simple-cache

CHAPTER 12 n PLUG-INS

298

 ...
}

Properties such as author, title, and so on, appear in the list-plugins and plugin-info commands
when a plug-in is published to a Grails plug-in repository. The following list summarizes the available
properties and what they represent:

•	 author: The name of the plug-in author

•	 authorEmail: An e-mail contact address for the author

•	 title: A short title for the plug-in to appear in the right column of the list-plugins

command (see Listing 12-2)

•	 description: A longer, more detailed description that is displayed by the plug-in-
info command

•	 documentation: A link to the location of the documentation for the plug-in

All the properties in this list are optional; however, providing this information will help others
understand the purpose of your plug-in. Listing 12-9 shows the simple-cache plug-in’s metadata
information.

Listing 12-9. The simple-cache Plug-in Descriptor with Metadata Provided

class SimpleCacheGrailsPlugin {
 // the plugin version
 def version = "0.1"
 // the version or versions of Grails the plugin is designed for
 def grailsVersion = "2.0 > *"
 // the other plugins this plugin depends on
 def dependsOn = [:]
 // resources that are excluded from plugin packaging
 def pluginExcludes = [
 "grails-app/views/error.gsp"
]

 // TODO Fill in these ields
 def title = "Simple Cache Plugin" // Headline display name of the plugin
 def author = "Jeff Brown"
 def authorEmail = "jbrown@vmware.com"
 def description = '''\
A simple demo plugin which provides very simple caching services.
This plugin is for demonstration purposes only. For serious
caching needs, http://grails.org/plugins/cache is a real solution.
'''

 // URL to the plugin's documentation
 def documentation = http://grails.org/plugin/simple-cache

 ...
}

mailto:jbrown@vmware.com
http://grails.org/plugins/cache
http://grails.org/plugin/simple-cache

299

CHAPTER 12 n PLUG-INS

Supplying Application Artefacts
One of the more obvious ways a plug-in can enhance an existing application is by providing a new artefact,
such as a controller, tag library, or service.

Because a Grails plug-in is simply a Grails application, supplying an artefact is a simple matter of
creating it, just as you would in a regular application. For the simple-cache plug-in, you’ll implement a
service that provides application-layer caching. To do so, simply use the create-service command from
the root of the plug-in:

$ grails create-service com.cache.Cache

Once completed, you’ll end up with a new service at the location grails-app/services/com/cache/
CacheService.groovy. Because it’s pretty simple to do, you’ll also be implementing a little tag library to
perform content-level caching. To create the tag library, run the create-tag-lib command:

$ grails create-tag-lib com.cache.Cache

Note that since a Grails plug-in is simply a Grails application, you can run it just like a Grails
application! Just use the grails run-app command, and you’re on your way. This has significant benefits
for the plug-in developer in that plug-in development is not very different from regular application
development. You can run your plug-in like a regular application, and you can also test your plug-in like a
regular application using the test-app command. You can even install other plug-ins into a plug-in,
something that is critical when developing a plug-in that has dependencies on other plug-ins.

As for the CacheService and the CacheTagLib, we’ll get to the implementation details of these later. For the
moment, all you need to know is that when you package up your plug-in for distribution, it will provide
two new artefacts: a tag library and a service.

Plug-in Hooks
Let’s return to the plug-in descriptor. As well as providing metadata about the plug-in, the descriptor also
enables you to supply hooks into the plug-in runtime. Each hook is defined as a closure property and allows
the plug-in to participate in the various phases of the plug-in life cycle. The hooks are listed here in the
order of their execution:

•	 doWithWebDescriptor: This gets passed the XML for the web.xml file that has been
parsed by Groovy’s XmlSlurper into a GPathResult. See the “Modifying the Generated
WAR Descriptor” section later in the chapter for more information on this one.

•	 doWithSpring: This allows participation in the runtime configuration of Grails’
underlying Spring ApplicationContext. See the “Providing Spring Beans” section for
more information.

•	 doWithDynamicMethods: Executed after the construction of the ApplicationContext,

this is the hook that plug-ins should use to provide new behavior to Grails classes.
See the “Using Metaprogramming to Enhance Behavior” section later in the chapter
for more information.

•	 doWithApplicationContext: This is executed after the Grails ApplicationContext has
been constructed. The ApplicationContext instance is passed to this hook as the first
argument.

By default, the simple-cache plug-in you created earlier comes with empty implementations of all of
these. If you don’t plan to implement any of these hooks, you can simply delete them from the plug-in
descriptor. Listing 12-10 shows the various plug-in hooks, just waiting to be implemented.

CHAPTER 12 n PLUG-INS

300

n Note If you merely want to use plug-ins to provide application modularity, you can skip to the “Packaging and

Distributing a Grails Plug-in” section. The next few sections go into significant detail on how to hook into all aspects

of the Grails plug-in system.

Listing 12-10. Plug-in Hooks in the simple-cache Plug-in

class SimpleCacheGrailsPlugin {
 def version = 0.1
 ...
 def doWithWebDescriptor = { xml -> }
 def doWithSpring = {}

 def doWithDynamicMethods = { applicationContext -> }

 def doWithApplicationContext = { applicationContext -> }

}

Plug-in Variables

A number of implicit variables are available within the context of these hooks that allow you to inspect the
conventions within a running Grails application. The following are the available variables and associated
descriptions:

•	 application: An instance of the org.codehaus.groovy.grails.commons.
GrailsApplication class; it provides information about the loaded classes and the
conventions within them.

•	 manager: An instance of the org.codehaus. groovy.grails.plugins.
GrailsPluginManager class; it allows you to find out what other Grails plug-ins are
installed.

•	 plugin: A reference to the org.codehaus.groovy.grails.plugins.GrailsPlugin class,
which allows you to find out various information about the plug-in including its
name, version, and dependencies.

The GrailsApplication class is typically the most critical to understand if you plan to implement any
hooks that work with the Grails conventions. Essentially, it defines a number of dynamic properties that
map to each concept in a Grails application. For example, to obtain a list of the controller classes in a
GrailsApplication, you can do this:

def controllerClasses = application.controllerClasses

Note that when we refer to classes, we’re not talking about instances of the Java.lang.Class interface but
of the org.codehaus.groovy.grails.commons.GrailsClass interface, which defines a number of methods to
inspect the conventions within a GrailsApplication for a particular artefact type.

For example, given the CacheService created earlier, Listing 12-11 demonstrates some of the methods of
the GrailsClass interface and how they behave.

301

CHAPTER 12 n PLUG-INS

Listing 12-11. Using the Grails Convention APIs

GrailsClass serviceClass =
 application.getServiceClass("com.cache.CacheService")
assert "CacheService" == serviceClass.shortName
assert "Cache" == serviceClass.name
assert "com.cache.CacheService" == serviceClass.fullName
assert "cacheService" == serviceClass.propertyName
assert "cache" == serviceClass.logicalPropertyName
assert "com.cache" == serviceClass.packageName
assert true == serviceClass.getPropertyValue("transactional")

You’ll notice in Listing 12-11 the use of the getServiceClass method to obtain the CacheService by
name. The getServiceClass method is another dynamic method available on the GrailsApplication class.
Essentially, for each artefact type, the GrailsApplication class provides dynamic methods to access the
artefacts of that type, which are summarized here:

•	 get*Classes: to obtain a list of all the GrailsClass instances for a particular artefact
type, such as with getControllerClasses() or via property access such as
controllerClasses.

•	 get*Class(String name): to obtain a specific GrailsClass instance by name, as in ge
tControllerClass("HelloController").

•	 is*Class(Class theClass): to inquire whether a given Java.lang.Class is a
particular artefact type, as in isControllerClass(myClass).

The asterisks in the previous method names are substitutes for the relevant artefact types you are
interested in. Table 12-1 summarizes the different artefact types and shows an example of the typical use
for each.

Table 12-1. Summary of Existing Artefact Types

Artefact Type Example

Bootstrap def bootstrapClasses = application.getBootstrapClasses()

Codec def codecClasses = application.getCodecClasses()

Controller def controllerClasses = application.getControllerClasses()

Domain def domainClasses = application.getDomainClasses()

Filters def ilterClasses = application.getFiltersClasses()

Service def serviceClasses = application.getServiceClasses()

TagLib def tagLibClasses = application.getTagLibClasses()

UrlMappings def urlMappingClasses = application.getUrlMappingsClasses()

The artefact types in Table 12-1 cover existing artefacts, but Grails also lets you add your own artefact
types; we’ll look at them in the next section.

Custom Artefact Types

Out of the box, Grails ships with a set of features, including controllers, domain classes, and so on. As you
saw in the previous section, you can access all aspects of these via the GrailsApplication interface.

CHAPTER 12 n PLUG-INS

302

However, what if you want to add a new artefact type? Take, for example, the existing Quartz plug-in.
Quartz is a job-scheduling API that runs specified tasks on a scheduled basis. For example, you may want
to run some code at noon on the last Friday of every month. Quartz aims to address a situation of this
kind.

Look at the existing artefact types; none of them models the idea of a job. How can you extend Grails
and provide it new knowledge it about what a job is? Fortunately, you can find the answer in the Grails
org.codehaus.groovy.grails.commons.ArtefactHandler interface. Listing 12-12 shows the key methods of
the ArtefactHandler interface.

Listing 12-12. The ArtefactHandler Interface

public interface ArtefactHandler {
 String getType();
 boolean isArtefact(Class aClass);
 GrailsClass newArtefactClass(Class artefactClass);
}

The getType() method returns the type of the GrailsClass, which will be one of the values shown in
the first column of Table 13-1. The isArtefact(Class) method is responsible for identifying whether a
given class is of the current artefact type based on some convention. For example, does the class end with
the convention Controller? If so, then it’s a controller class.

The newArtefactClass(Class) method will create a new GrailsClass instance for the given java.lang.
Class. The ArtefactHandler interface has other methods, but most of them are abstracted away from you
because when implementing a custom ArtefactHandler, you’ll typically extend the org.codehaus.groovy.
grails.commons.ArtefactHandlerAdapter class. Look at Listing 12-13, which shows a possible
implementation for the Quartz plug-in.

Listing 12-13. An ArtefactHandler for the Quartz Plug-in

1 class JobArtefactHandler extends ArtefactHandlerAdapter {
2
3 static inal TYPE = "Job"
4
5 JobArtefactHandler() {
6 super(TYPE, GrailsClass, DefaultGrailsClass, TYPE)
7 }
8
9 boolean isArtefactClass(Class clazz) {
10 // class shouldn't be null and shoudd ends with Job sufix
11 if(!super.isArtefactClass(clazz)) return false
12 // and should have an execute method
13 return clazz.methods.ind { it.name == 'execute' } != null
14 }
15 }

There are a few key things to look at in the JobArtefactHandler in Listing 12-13. First, take a look at the
constructor on lines 5 to 7:

5 JobArtefactHandler() {
6 super(TYPE, GrailsClass, DefaultGrailsClass, TYPE)
7 }

303

CHAPTER 12 n PLUG-INS

The constructor calls the super implementation, passing four arguments:

•	 The artefact type: In this case, you’re using a constant, called TYPE, that has the value
Job.

•	 The interface to use for the artefact type: You could extend the GrailsClass interface to
provide a more specific interface such as GrailsJobClass.

•	 The implementation of the interface for the artefact type: Grails provides a default
implementation in the DefaultGrailsClass, but you could subclass this if you want
to provide custom logic within the artefact type.

•	 The suffix that the class name should end with for a Java.lang.Class to be considered
of the artefact type: The default implementation of the isArtefactClass method in
ArtefactHandlerAdapter will perform a check on the passed Java.lang.Class to
ensure that the class name ends with the specified suffix. As you can see on line 11
of Listing 12-13, the logic from the superclass isArtefact method is being reused.

The next thing to note about the code in Listing 12-13 is the implementation of the
isArtefactClass(Class) method, which checks that the class ends with the appropriate suffix by calling
the superclass implementation of isArtefactClass (Class) and whether the class possesses an execute
method. You can assert your expectations of the behavior of the JobArtefactHandler by writing a simple
unit test (see Listing 12-14).

Listing 12-14. Testing an ArtefactHandler

class JobArtefactHandlerTests extends GroovyTestCase {
 void testIsArtefact() {
 def handler = new JobArtefactHandler()
 assertTrue handler.isArtefactClass(TestJob)
 assertFalse handler.isArtefactClass(JobArtefactHandlerTests)

 GrailsClass jobClass = handler.newArtefactClass(TestJob)
 assertEquals "TestJob", jobClass.shortName
 assertEquals "Test", jobClass.name
 assertEquals "TestJob", jobClass.fullName
 assertEquals "testJob",jobClass.propertyName
 assertEquals "test",jobClass.logicalPropertyName
 assertEquals "", jobClass.packageName
 }
}
class TestJob {
 def execute() {}
}

At this point, there is one thing left to do. You have to tell your plug-in about the ArtefactHandler. Say
that you are creating the Quartz plug-in and you have a QuartzGrailsPlugin descriptor. If you add an
artefacts property that contains a list of provided artefacts, the plug-in will make Grails aware of the
JobArtefactHandler:

def artefacts = [new JobArtefactHandlerQ]

So once the Quartz plug-in is installed, if there is a class within the grails-app/jobs directory that
looks like the one in Listing 12-15, the JobArtefactHandler will approve the class as being a “job.”

CHAPTER 12 n PLUG-INS

304

Listing 12-15. An Example of a Job

class SimpleJob {
 def execute() {
 // code to be executed
 }
}

An added bonus of going through these steps is that suddenly the GrailsApplication object has
become aware of the new artefact type you just added. With this hypothetical Quartz plug-in installed, you
can use all the dynamic methods on the GrailsApplication object first shown in Listing 12-11. Listing
12-16 demonstrates a few examples using the SimpleJob from Listing 12-15.

Listing 12-16. Using the GrailsApplication Object to Inspect Jobs

def jobClasses = application.getJobClasses()
GrailsClass simpleJobClass = application.getJobClass("SimpleJob")
assert application.isJobClass(SimpleJob)

The key thing to learn from this section is that Grails provides you with an extensible convention-
based API. You are in no way restricted by the existing conventions and can easily start adding your own
ideas to the mix. The next section will look at how the idea of Convention over Configuration (CoC)
extends to the runtime configuration of Spring.

Providing Spring Beans
The doWithSpring hook allows you to specify new Spring beans
to configure at runtime using the Grails BeanBuilder domain-specific language (DSL) for Spring. Grails is
built completely on the Spring Framework. Grails has what is known as an ApplicationContext, which is
essentially a container provided by Spring that holds one or more beans. By default, each bean is a
singleton, meaning there is only one of them in the ApplicationContext.

As you learned in Chapter 10, Grails allows services to be autowired into controllers and tag libraries.
This autowire feature is powered by the Spring container and is often referred to as dependency injection.
An extremely powerful pattern, it allows you to effectively separate out dependencies and the construction
of those dependencies. That’s the theory. . . now let’s take a look at an example.

Earlier, you created a new service in the simple-cache plug-in called CacheService. The CacheService
is going to work in conjunction with a cache provider to provide application-layer caching to any user of
the simple-cache plug-in. Since it is a little pointless to reinvent the wheel and implement your own
homegrown caching implementation, you’re going to take advantage of the Ehcache library.

Plug-ins may register beans with the Spring application context by using doWithSpring. Listing 12-17
shows how to define a globalCache bean.

Listing 12-17. Defining Beans in doWithSpring

class SimpleCacheGrailsPlugin {
 ...
 def doWithSpring = {
 globalCache(org.springframework.cache.ehcache.EhCacheFactoryBean) {
 timeToLive = 300
 }
 }
}

305

CHAPTER 12 n PLUG-INS

The name of the bean is the name of the method, which in this case is globalCache. The bean class is
the first argument, while the closure passed as the last argument allows you to set property values on the
bean. In this case, a globalCache bean is configured to expire entries every 5 minutes (300 seconds).

With that done, let’s begin implementing the CacheService. First you need to get a reference to the
globalCache bean defined by the plug-in. To do this, simply add a property that matches the name of the
bean to the CacheService, as shown in Listing 12-18.

Listing 12-18. Obtaining Beans Supplied by doWithSpring

import net.sf.ehcache.Ehcache
class CacheService {
 static transactional = false
 Ehcache globalCache
 ...
}

The globalCache property is in bold in Listing 12-18. Note that transactions have been disabled for the
service by setting static transactional = false, since transactions won’t be a requirement for this
service.

Now let’s implement the caching logic. When implementing caching, the pattern is typically that you
look up an object from the cache, and if it doesn’t exist, you execute some logic that obtains the data to be
cached. Listing 12-19 shows some pseudocode for this pattern.

Listing 12-19. The Caching Pattern

def obj = cache.get("myentry")
if(!obj) {
 obj = ...
 // do some complex task to obtain obj
 cache.put("myentry", obj)
}
return obj

However, given that you have the power of closures at your disposal, it makes more sense to take
advantage of them to come up with a more elegant solution. Listing 12-20 shows how to implement
caching of entire logical blocks using closures.

Listing 12-20. Caching the Return Value of Blocks of Code Using Closures

1 import net.sf.ehcache.Ehcache
2 import net.sf.ehcache.Element
3
4 class CacheService {
5 ...
6 def cacheOrReturn(Serializable cacheKey, Closure callable) {
7 def entry = globalCache?.get(cacheKey)?.getValue()
8 if(!entry) {
9 entry = callable.call()
10 globalCache.put new Element(cacheKey, entry)
11 }
12 return entry
13 }
14 }

CHAPTER 12 n PLUG-INS

306

To understand what the code is doing in Listing 12-20, let’s step through it line by line. First, on line 7
an entry is obtained from the globalCache bean, which is an instance of the net.sf.ehcache.Ehcache class:

7 def entry = globalCache?.get(cacheKey)?.getValue()

Notice how you can use Groovy’s safe-dereference operator ?. to make sure that a
NullPointerException is never thrown when accessing the value, even if the globalCache property is null!
The get method of the globalCache instance returns a net.sf.ehcache.Element instance, which has a
getValue() method you can call to obtain the cached value. Next on lines 8 and 9 the code checks that the
returned value is null, and if it is, the passed closure is invoked, which returns the result that needs to be
cached:

8 if(!entry) {
9 def entry = callable.call()

The return value of the call to the closure is used to place a new cache entry into the cache on line 10:

10 globalCache.put new Element(cacheKey, entry)

Finally, on line 12 the cache entry is returned regardless of whether it is the cached version:

12 return entry

With that done, let’s see how to implement the CacheTagLib that can take advantage of the
CacheService in Listing 12-21.

Listing 12-21. Adding Content-Level Caching

class CacheTagLib {
 static namespace = "cache"

 CacheService cacheService
 def text = { attrs, body ->
 def cacheKey = attrs.key
 out << cacheService.cacheOrReturn(cacheKey) {
 body()
 }
 }
}

Once again, Listing 12-21 shows how to use dependency injection to get hold of a reference to the
CacheService in the CacheTagLib. The cacheOrReturn method is then used to cache the body of the tag using
the key attribute passed into the text tag. Notice how the CacheTagLib has been placed inside a
namespace, a concept you first learned about in Chapter 5.

Users of the simple-cache plug-in can now take advantage of content-level caching simply by
surrounding the body of markup code they want to cache with the <cache:text> tag that the CacheTagLib
provides. Listing 12-22 shows an example of its usage.

Listing 12-22. Using the Tag Provided by the simple-cache Plug-in

<cache:text key="myKey">
 This is an expensive body of text!
</cache:text>

307

CHAPTER 12 n PLUG-INS

Dynamic Spring Beans Using Conventions
In the previous section, you implemented the simple-cache plug-in using an Ehcache bean registered in
the Spring ApplicationContext. What this example didn’t demonstrate, though, is the ability to
dynamically create beans on the fly using the conventions in the project.

In the “Custom Artefact Types” section, you explored how to create a plug-in that identified Quartz
jobs. In a typical Spring application, you would need to use XML or annotations to configure each
individual job using the org.springframework.scheduling.quartz.JobDetailBean class. With a Grails plug-
in that knows about conventions, you can do it dynamically at runtime! Listing 12-23 shows this in action
in a QuartzGrailsPlugin plug-in descriptor.

Listing 12-23. Dynamically Creating Beans at Runtime

1 import org.springframework.scheduling.quartz.*
2
3 class QuartzGrailsPlugin {
4 ...
5 def doWithSpring ={
6 application.jobClasses.each { GrailsClass job ->
7 "${job.propertyName}"(JobDetailBean) {
8 name = job.name
9 jobClass = job.getClazz()
10 }
II }
12 ...
13 }
14 }

To better understand the code in Listing 12-23, let’s step through it. First, on line 6 the each method is
used to iterate over all the artefacts of type Job:

6 application.jobClasses.each { GrailsClass job ->

Then on line 7, a new bean is dynamically created using Groovy’s ability to invoke methods using a
String (or a GString) as the method name:

7 "${job.propertyName}"(JobDetailBean) {

In this case, given the SimpleJob from Listing 12-15, you would end up with a bean called simpleJob in
the Spring ApplicationContext that is an instance of the Quartz JobDetail class. The JobDetailBean class is
a Spring-provided helper class for creating Quartz JobDetail instances as Spring beans. Finally, on lines 8
and 9, the name of the job and the class of the job are set using properties of the GrailsClass interface:

name = job.name
jobClass = job.getClazz()

To finish up the Quartz plug-in, you could set up beans within doWithSpring for the Scheduler, using
Spring’s SchedulerFactoryBean, the triggers, and so on. However, since this serves mainly as a
demonstration of what is possible, we recommend you take a look at the excellent existing Quartz plug-in
for Grails, which is installable with the following command:

$ grails install-plugin quartz

CHAPTER 12 n PLUG-INS

308

Using Metaprogramming to Enhance Behavior

In the previous section, you saw how plug-ins can participate in the configuration of the Spring
ApplicationContext. Now let’s look at another area that plug-ins typically contribute to: the application
behavior. Groovy is a fully dynamic language that allows you to completely modify the behavior of a class
at runtime through its metaprogramming APIs.

n Tip If you want a book with significant coverage of Groovy’s metaprogramming capabilities, look at

Programming Groovy, by Venkat Subramaniam (Pragmatic Programmers, 2008).

Like Smalltalk, Ruby, Lisp, and other dynamic languages, Groovy features a (Meta Object Protocol
MOP). The key thing to remember is that it is the MOP that decides the behavior of Groovy code at
runtime, so code that looks as though it may do one thing at compile time could be made to do something
completely different. For each java.lang.Class that Groovy knows about, there is an associated MetaClass.
The MetaClass is what dictates how a particular method, constructor, or property behaves at runtime.

Groovy’s MetaClass allows you to add methods, properties, constructors, and static methods to any
class. For example, consider the code in Listing 12-24.

Listing 12-24. Adding New Methods to a Class

class Dog {}
Dog.metaClass.bark = { "woof!" }
assert "woof!" == new Dog().bark()

Here you have a simple class called Dog. Instances of the Dog class cannot, as it stands, bark. However,
by using the MetaClass, you can create a bark method with this expression:

Dog.metaClass.bark = { "woof!" }

Clearly, this example has only brushed the surface of what is possible. Groovy provides a whole lot of
capabilities related to runtime metaprogramming, all of which are available in the context of a Grails
application.

Let’s look at an example within the context of a Grails plug-in by trying to add the cacheOrReturn
method to all controllers to eliminate the need to inject the service via Spring first. Listing 12-25
demonstrates how, by simply delegating to the CacheService, you can add a cacheOrReturn method to all
controllers too.

n Tip If you prefer not to create a plug-in but would still like to do metaprogramming in your Grails application, we

recommend you do so within a Bootstrap class, a topic covered in Chapter 12.

Listing 12-25. Adding Methods to All Controllers

class SimpleCacheGrailsPlugin {
 ...
 def doWithDynamicMethods = { applicationContext ->
 def cacheService = applicationContext.getBean("cacheService")
 application.controllerClasses*.metaClass*.cacheOrReturn = {
 Serializable cacheKey, Closure callable ->

309

CHAPTER 12 n PLUG-INS

 cacheService.cacheOrReturn(cacheKey, callable)
 }
 }
}

Another important aspect to notice about the code in Listing 12-25 is the use of Groovy’s spread dot
operator *. to obtain all the MetaClass instances from all the controllerClasses and also the use of a
spread assignment to create a cacheOrReturn method for each MetaClass. That’s far easier than adding a
for or each loop!

Plug-in Events and Application Reloading
As well as the plug-in hooks discussed in the “Plug-in Hooks” section, plug-ins can also participate in a
number of events, including application reload events. Grails aims to minimize the number of application
restarts required during development time. However, since reloading is typically different for each artefact
type, the responsibility to reload is delegated to plug-ins.

A plug-in can essentially listen for three core events: onChange, onConigChange, and onShutdown. Let’s
take a look at onChange first, as it is the most common event dealt with by plug-ins. Each individual plug-in
can monitor a set of resources. These are defined by a property called watchedResources. For example, as
part of Grails core, there is a plug-in that provides support for internationalization (covered in Chapter 7)
through the use of message bundles found in the grails-app/i18n directory. The i18n plug-in defines its
watchedResources property as follows:

def watchedResources = "ile:./grails-app/i18n/*.properties"

What this says is that the i18n plug-in will monitor all files within the grails-app/i18n directory
ending with the file extension .properties.

n Tip If you’re wondering about the file-matching patterns the watchedResources property uses, take a look at

Spring’s org.springframework.core.io.support.PathMatchingResourcePatternResolver class, as

well as the Spring Core IO package in general, which Grails uses under the covers.

Whenever one of the properties files in the grails-app/il8n directory changes, Grails will
automatically trigger the onChange event of the plug-in or plug-ins, monitoring the file passing in a change
event object. The event object is essentially just a map containing the following entries:

•	 source: the source of the event, which is either a Spring org.springframework.core.
io.Resource instance, representing the file on disk, or the recompiled and changed
Java.lang.Class instance, if the watchResources property refers to Groovy classes

•	 application: a reference to the GrailsApplication instance

•	 manager: a reference to the GrailsPluginManager instance

•	 ctx: a reference to the Spring ApplicationContext instance

Typically the most important entry in the event map is the source, which contains a reference to the
source of the change. In the case of the i18n plug-in, the source entry would reference a Spring org.
springframework.core.io.Resource instance, since the properties files monitored by the i18n plug-in are
not Groovy classes. However, if you develop a plug-in where you choose to monitor Groovy classes instead,

CHAPTER 12 n PLUG-INS

310

Grails will automatically recompile the changed class and place the altered class within the source entry in
the event map.

Consider the Quartz plug-in discussed in previous sections. The watchedResources definition for that
plug-in would look something like this:

def watchedResources = "ile:./grails-app/jobs/**/*Job.groovy"

Whenever one of the Groovy files changes, Grails will recompile the class and pass you a reference to
the java.lang.Class instance representing the job. However, that is all Grails will do. It’s then up to you to
make whatever changes you deem necessary to the running application to ensure it is now in the correct
state. For example, in the “Dynamic Spring Beans Using Conventions” section, you saw how to
dynamically register new JobDetail beans for each job class. To implement reloading correctly for the
Quartz plug-in, you need to ensure that those beans are replaced with the new class. Listing 12-26 shows a
hypothetical implementation that takes the newly recompiled class and registers new beans with the
ApplicationContext.

Listing 12-26. Implementing onChange for the Quartz Plug-in

1 class QuartzGrailsPlugin {
2 def watchedResources = "ile:./grails-app/jobs/**/*Job.groovy"
3 ...
4
5 def onChange = { event ->
6 Class changedJob = event.source
7 GrailsClass newJobClass = application.addArtefact(changedJob)
8 def newBeans = beans {
9 "${newJobClass.propertyName}"(JobDetailBean) {
10 name = newJobClass.name
11 jobClass = newJobClass.getClazz()
12 }
13 }
14 newBeans.registerBeans(applicationContext)
15 }
16 }

Although the code is pretty short, it has quite a few new concepts to understand. Let’s walk through
them starting on line 6, where a reference to the event’s source is obtained:

6 Class changedJob = event.source

With the source in hand, the next thing the onChange event does is register the new Class with the
GrailsApplication instance by calling the addArtefact method:

7 GrailsClass newJobClass = application.addArtefact(changedJob)

The code on line 8 is pretty interesting. Here the implicit beans method is used; it takes a block of code
that uses the BeanBuilder syntax discussed in the “Providing Spring Beans” section. The beans method
returns a BeanBuilder instance containing the bean definitions (but not the instantiated beans
themselves):

8 def newBeans = beans {

The code on lines 8 to 13 is essentially the same as that in Listing 12-26; all the code does is create a
new JobDetailBean bean definition from the new class. Line 14 is far more interesting; it shows how to use

311

CHAPTER 12 n PLUG-INS

the registerBeans method of the BeanBuilder class to register all the bean definitions defined within the
BeanBuilder instance with the provided ApplicationContext:

14 newBeans.registerBeans(applicationContext)

Of course, not all plug-ins will need to register new beans based on an onChange event. This is a
requirement only if in the doWithSpring closure you registered beans that require reloading behavior. It
may be possible to work with the existing beans to implement effective reloading for a plug-in. For
example, the i18n plug-in discussed earlier simply clears the MessageSource cache, forcing it to be rebuilt:

def messageSource = applicationContext.getBean("messageSource")
if (messageSource instanceof ReloadableResourceBundleMessageSource) {
 messageSource.clearCache()
}

Other than the onChange event, the two other events available are onConigChange and onShutdown. The
onConigChange event is fired if the Grails global configuration file, found at grails-app/conf/Conig.groovy,
is changed by the user. In the case of the onConigChange event handler, the source of the change event is
the altered ConigObject. Often, plug-ins rely on settings found within Conig.groovy for configuration.
Remember, Grails uses Convention over Configuration, which means that conventions are used to ease
development, but configuration is still possible if required. Later in this chapter you’ll see an example that
uses the Grails ConigObject, which is obtainable using the getConig() method of the GrailsApplication
class.

Finally, the onShutdown event is fired when the shutdown() method of the GrailsPluginManager is called.
This happens, for example, when a Grails application is undeployed from a container and the Grails
servlet’s destroy() method is invoked.

Modifying the Generated WAR Descriptor
As discussed in Chapter 12, the web.xml file Grails uses to integrate with servlet containers is generated
programmatically. You saw in Chapter 12 that it is possible to modify the template used to generate web.
xml by using the install-templates command. However, it is also possible for plug-ins to modify web.xml
programmatically by using the doWithWebDescriptor hook.

Essentially, when the web.xml file is generated, it gets parsed into memory by Groovy’s DOMBuilder.
This parser creates an in-memory representation of the XML that you can modify. The
doWithWebDescriptor hook is passed a reference to the XML as the first argument to the
doWithWebDescriptor closure. XmlSlurper allows you to use a builder-like syntax to make modifications to
the XML.

As an example, one of the core Grails plug-ins is the URL mappings plug-in, which provides the
functionality covered in Chapter 6. The plug-in works by providing a Servlet filter that rewrites requests
onto the main Grails servlet. To add this Servlet filter to the mix, the doWithWebDescriptor implementation
of the URL mappings plug-in looks something like the code in Listing 12-27.

Listing 12-27. Example doWithWebDescriptor That Adds a New Servlet Filter

1 def doWithWebDescriptor = { webXml ->
2 def ilters = webXml.ilter
3 def lastFilter = ilters[ilters.size()-1]
4 lastFilter + {
5 ilter {
6 'ilter-name'('urlMapping')
7 'ilter-class'(UrlMappingsFilter.getName())

CHAPTER 12 n PLUG-INS

312

8 }
9 }
10 ...
11 }

To understand what the code in Listing 12-27 is doing, let’s look at it line by line. First, on line 2, a
GPath expression is used to get a list of all the existing <ilter> elements contained within the web.xml file:

def ilters = webXml.ilter

Then, on line 3, a reference to the last <ilter> element in the list is obtained:

def lastFilter = ilters[ilters.size()-1]

As you can see from the previous two examples, using Groovy’s XML APIs is nothing like using a Java
XML parser. The XML object parsed by XmlSlurper almost feels like a first-class object, with very little
evidence that the underlying data structure is in fact XML. Finally, onlines 4 through 9, the overridden +
operator is used to add a new <ilter> element directly after the last <ilter> element:

4 lastFilter + {
5 ilter {
6 'ilter-name'('urlMapping')
7 'ilter-class'(UrlMappingsFilter.getName())
8 }
9 }

Notice how in Groovy you can use strings for method names; for instance, you can choose an
idiomatic XML element name like <ilter-name> as the name of a method. The previous code will append
the following equivalent XML snippet to the web.xml document:

<ilter>
<ilter-name>urlMapping</ilter-name>
<ilter-class>
org.codehaus.groovy.grails.web.mapping.ilter.UrlMappingsFilter
</ilter-class>
</ilter>

As you see, Grails makes it pretty easy to participate in the generation of the web.xml file. Although not
a common thing to do in a plug-in, it is sometimes useful when you want to integrate legacy servlets,
filters, and so on. As mentioned previously, you could have used the grails install-templates command
and modified the web.xml template directly, but this technique allows you to create plug-ins that
automatically do this configuration for you. Reducing configuration, as well as embracing simplicity, is
very much the Grails way, and doWithWebDescriptor is just another example of that.

Packaging and Distributing a Grails Plug-in
Once you are confident that your plug-in is ready for distribution, you can package it using the grails
package-plugin command. In the command window, simply type grails package-plugin from the root of
your plug-in project, as shown in Listing 12-28.

313

CHAPTER 12 n PLUG-INS

Listing 12-28. Packaging a Plug-in

$ grails package-plugin
 ...

| Plugin packaged grails-simple-cache-0.1.zip

As you can see from the output in Listing 12-28, the package-plugin command generates a zip file
using the name and version number of your plug-in. In this case, you’re packaging the simple-cache plug-
in you developed earlier. Figure 12-2 shows an example of the resulting zip file.

Figure 12-2. The simple-cache plug-in’s packaged zip file

Using the steps explained earlier in this chapter in the “Plug-in Installation” section, you can now
install the simple-cache plug-in into other applications and make use of the tag library and services it
provides.

If you want to distribute your plug-in within the Grails central repository, you first need to obtain a
plug-in developer account for the Grails central repository. You can find the steps to do so on the Grails
web site at http://grails.org/Creating+Plugins.

Once you have obtained an account, you can publish your plug-in to the Grails central repository by
using the publish-plugin command, which is provided by the release plug-in.

$ grails publish-plugin

The publish-plugin command needs your authorization credentials in order to publish to the
repository. Those credentials should be defined in $HOME/.grails/settings.groovy, as shown in
Listing 12-29.

Listing 12-29. Plug-in Repository Credentials

// ~/.grails/settings.groovy
grails.project.repos.grailsCentral.username = 'your username'
grails.project.repos.grailsCentral.password = 'your password'

The publish-plugin command does all the heavy lifting for you in making sure that the appropriate
resources have been published in the repository and been tagged appropriately. The publish-plugin

http://grails.org/Creating+Plugins

CHAPTER 12 n PLUG-INS

314

command will also generate an updated plug-in list so that your plug-in appears whenever a Grails user
types the list-plugins command.

Local Plug-in Repositories
If you want to take advantage of the plug-in distribution and discovery mechanism in Grails on your own
local network, you can set up a local plug-in repository. The Grails plug-in repositories are currently
backed by a maven-compatible repository. Tools like Nexus and Artifactory can be used to help manage
these. Once you have a maven-compatible repository up and running, you need to configure the release
plug-in so that it knows about your repository. The way to do that is by defining a property in BuildConig.
groovy for each of the repositories that you want to interact with (see Listing 12-30).

Listing 12-30. Configuring Maven Repositories in BuildConfig.groovy

grails.project.repos.myRepo.url = "http://localhost:8081/myRepo"
grails.project.repos.myRepo.type = "maven"
grails.project.repos.myRepo.username = "admin"
grails.project.repos.myRepo.password = "password"
grails.project.repos.myRepo.portal = "grailsCentral"

grails.project.repos.myOtherRepo.url = "http://localhost:8081/myOtherRepo"
grails.project.repos.myOtherRepo.type = "maven"
grails.project.repos.myOtherRepo.username = "admin"
grails.project.repos.myOtherRepo.password = "password"
grails.project.repos.myOtherRepo.portal = "grailsCentral"

Now that you have configured the system to know about your own Maven repositories, you can
publish to them, as shown in Listing 12-31.

Listing 12-31. Publishing to a Custom Repository

grails publish-plugin –-repository=myRepo
grails publish-plugin –-repository=myOtherRepo

The release plug-in also supports publishing to your local Maven cache. This does not require any
repository server but instead installs directly to your file system under $HOME/.m2/. The maven-install
command will publish a plug-in to the local Maven cache. In order for an application to resolve plug-ins
that have been installed to the local Maven cache, mavenLocal() needs to be configured as a repository in
BuildConig.groovy, as shown in Listing 12-32.

Listing 12-32. Configuring the Local Maven Cache As a Repository

grails.project.dependency.resolution = {
 ...
 repositories {
 mavenLocal()
 ...
 }
 ...
}

315

CHAPTER 12 n PLUG-INS

With that, we’ve reached the end of this tour of the plug-in system. You’ve seen how to take advantage
of the plug-in system in many different ways. This section has touched on some ideas for plug-ins,
including the simple-cache plug-in and the Quartz plug-in, but the plug-in system is such a critical part of
the Grails ecosystem that the lessons learned should be put to further use. In the next section, you’ll be
applying what you’ve learned so far to create two new plug-ins for the gTunes application. Along the way,
you’ll discover how plug-ins in Grails can be used as both a way to extend the functionality of an existing
application and a way to effectively modularize your code base.

Plug-ins in Action
You’ve learned what plug-ins are and the basics of creating plug-ins. Now it is time to put that knowledge
to work by developing a couple of plug-ins for the gTunes application. The first one you’re going to create
is a plug-in that makes the album art service and tag library you developed in Chapter 8 into a reusable
plug-in. This is a perfect example of developing a plug-in to add functionality and enhance behavior.

Adding Behavior With Plug-ins
To start with, run the create-plugin command to create the basis of an album-art plug-in: $ grails
create-plugin album-art The next step is to move the AlbumArtService.groovy file and the
AlbumArtTagLib.groovy file into the newly created plug-in project. Once this is done, your plug-in should
be structured like Figure 12-3.

Figure 12-3. The structure of the album-art plug-in

Remember that the AlbumArtService class makes use of the RestBuilder class provided by the rest-
client-builder plug-in. The plug-in dependency needs to be expressed in the album-art plug-in’s
BuildConig.groovy; once the album-art plug-in is installed in the application, the dependency on rest-
client-builder may be removed from the application’s BuildConig.groovy. Also, don’t forget to move the

CHAPTER 12 n PLUG-INS

316

two tests that provide coverage for the AlbumArtService and AlbumArtTagLib from the application into the
plug-in. As mentioned previously, the great thing about plug-ins is that since they can be developed and
tested separately, they are useful for larger projects with multiple developers. With the
AlbumArtServiceTests and AlbumArtTagLibTests test cases included in the album-art plug-in, you can now
immediately test whether your plug-in is working by running the test-app command.

Once the tests are passed, you can add the plug-in metadata to the plug-in descriptor that describes
what this plug-in is all about. Listing 12-33 shows the updated plug-in descriptor with the metadata
provided.

Listing 12-33. Providing Metadata to the album-art Plug-in

class AlbumArtGrailsPlugin {
 def version = 0.1
 def author = "Joe Someone"
 def authorEmail = "joe@company.com"
 def title = "Album art look-up plugin"
 def description = 'A plug-in that provides facilities to look-up album art'
 ...
}

To spice things up even further, you’re going to do a bit of metaprogramming—first, by adding a
getAlbumArt method to all controllers and second by allowing instances of the Album class from the gTunes
application to retrieve their art simply by calling a getArt() method. The first case, in Listing 12-34, shows
the necessary code, which just gets the AlbumArtService instance and adds a method to all controllers that
delegate to the AlbumArtService.

Listing 12-34. Adding a getAlbumArt Method to All Controllers

class AlbumArtGrailsPlugin {
 ...
 def doWithDynamicMethods = { ctx ->
 def albumArtService = ctx.getBean("albumArtService")
 application.controllerClasses*.metaClass*.getAlbumArt = { String artist, String album ->
 return albumArtService.getAlbumArt(artist, album)
 }
 }
}

Adding a getArt() method to the Album class is a little trickier, because the plug-in doesn’t know
anything about the Album class. So to implement this enhancement, you’ll search the GrailsApplication
instance for a domain class called Album and, if it exists, add the getArt() method to it. Listing 12-35 shows
the modifications to the doWithDynamicMethods plug-in hook.

Listing 12-35. Adding a getAlbumArt Method to All Controllers

class AlbumArtGrailsPlugin {
 ...
 def doWithDynamicMethods = { ctx ->
 ...
 def albumClass = application.domainClasses.ind { it.shortName == 'Album' }
 if(albumClass) {
 albumClass.metaClass.getArt ={->
 albumArtService.getAlbumArt(delegate.artist?.name,

mailto:joe@company.com

317

CHAPTER 12 n PLUG-INS

 delegate.title)
 }
 }
 }
}

Notice how within the body of the new getArt method you can use the closure delegate to obtain the
artist and title. The delegate property of a closure, when used in this context, is equivalent to referring
to this in a regular method. With the code in Listing 12-35 in place, you can now obtain the URL to an
Album instance’s album art with the code shown in Listing 12-36.

Listing 12-36. Using the getArt() Method to Obtain Album Art

def album = Album.get(10)
println "The art for this album is at ${album.art}"

Note that, in Groovy, methods that follow bean conventions are accessible via the property access
notation, so the expression album.art is equivalent to album.getArt(). And with that, you have completed
the album-art plug-in.

Specifying Plug-in Locations on the File System
Several times during this book you have installed plug-ins into the gTunes application, something
normally done by expressing a dependency in the plug-ins section of BuildConig.groovy. This is the most
common way to express a dependency on a plug-in but not the only way. An application may express a
dependency on a plug-in from anywhere on the file system, even if the plug-in has never been packaged
and never been installed into a repository. This is useful for cases where you have the source code for the
plug-in and may want to be actively developing the plug-in while developing the application. The way to
express a dependency like this is to define a property in BuildConig.groovy where the property name is of
the form grails.plugin.location.<plugin name> and the value assigned to that property is a path to the
directory on the file system containing the source for the plug-in project (see Listing 12-37).

Listing 12-37. Installing the album-art Plug-in into gTunes

grails.plugin.location.'album-art'='../album-art'
...
grails.project.dependency.resolution = {
 ...
}

Note that the value assigned to the property is “../album-art”, a relative path; that path is relative to
the root directory of the gTunes application. For this to work, the album-art plug-in and the gTunes
application directory need to share a parent directory. Also, notice that part of the grails.plugin.
location.'album-art' property name is quoted; that is because the name of the plug-in has a hyphen in it.
A hyphen is not a valid character for an identifier in Groovy; seeing it, the compiler thinks that you are
trying to do subtraction. Groovy offers a simple way around this by quoting the property name that
contains the otherwise invalid character—namely, the hyphen.

Now you can start up the gTunes application, and it will behave exactly as before, except it is utilizing
the album-art plug-in’s functionality instead! One thing to note about the album-art plug-in is that
although it provides new functionality in the form of services, tag libraries, and new methods, it does not
comprise an entirely self-contained application. We’ll look at how you can achieve this in the next section.

CHAPTER 12 n PLUG-INS

318

Plug-ins for Application Modularity
As well as making it possible to extend the available APIs within a Grails application, plug-ins also provide
entire modules of application functionality. Many newcomers dismiss plug-ins as purely for plug-in
developers who are willing to jump into the core Grails APIs, but in fact, plug-ins are an extremely effective
way to modularize your application. In this section, you’ll learn how to create an entire application as a
plug-in that can be installed into the gTunes application.

To keep things simple, let’s tackle a very commonly demonstrated application in screencasts and
presentations around Grails: the blog. Yes, as with any self-respecting modern web application, the gTunes
application needs a blog, where the proprietors of the gTunes store can make big announcements about
new music, events, and so on. Luckily, a simple blog isn’t too complicated; it takes about five minutes to
implement in Grails.

The first step is to run the create-plugin command to make the blog plug-in:

$ grails create-plugin blog

This will create the blog plug-in and associated BlogGrailsPlugin descriptor. You can populate the
descriptor with some plug-in metadata. Listing 12-38 shows a sample blog plug-in descriptor.

Listing 12-38. Adding Metadata to the blog Plug-in

class BlogGrailsPlugin {
 def version = 0.1
 def author = "Joe Someone"
 def authorEmail = "joe@company.com"
 def title = "A blogging plugin"
 def description = 'A plugin that provides a blog facility'
 ...
}

Now it’s time to create a domain class that models a blog post:

$ grails create-domain-class com.blog.Post

Thinking about the Post domain class for a moment, it’s going to have the obvious things like a title
and a body, as well as a date posted. Putting this into practice, Listing 12-39 shows the Post domain class
containing the necessary properties.

Listing 12-39. The Post Domain Class Package com.blog

class Post {
 String title
 String body
 Date dateCreated
 Date lastUpdated
 static constraints = {
 title blank:false
 body type:"text", blank:false
 }
}

Note that the Post domain class is using the property names dateCreated and lastUpdated to take
advantage of auto time stamping capabilities in Grails that were first discussed in Chapter 9. With an

mailto:joe@company.com

319

CHAPTER 12 n PLUG-INS

appropriate domain class in place, to help you get started, you can use scaffolding to quickly generate a
controller and views for the Post domain class:

$ grails generate-all com.blog.Post

For this first revision of the blog plug-in, you’re going to support the creation of new entries only;
hence, you can remove the generated edit, update, and delete actions. In addition, you need to show only
the first five posts; therefore, you can use the max parameter to the static list method of the Post class to
specify that. Listing 12-40 shows the full code for the PostController.

Listing 12-40. The PostController for the blog Plug-in

package com.blog

class PostController {

 // only allow the save action to be accessed via a POST request
 static allowedMethods = [save: 'POST']

 def index() {
 redirect(action:list,params:params)
 }

 def list() {
 [postList: Post.list(max:5)]
 }

 def create() {
 [post: new Post(params)]
 }

 def save() {
 def post = new Post()
 post.properties['title', 'body'] = params
 if(!post.hasErrors() && post.save()) {
 lash.message = "Post ${post.id} created"
 redirect(action:list)
 } else {
 render(view:'create',model:[post:post])
 }
 }
}

Now let’s move onto the views. In the case of the blog plug-in, the list.gsp view is the most
important, because it will be responsible for showing each blog entry. However, the default scaffolding in
Grails displays the list view as a table, which is not very useful in this case. You can correct that by
modifying the list.gsp view to render a _post.gsp template instead. Listing 12-41 shows the updated
list.gsp code.

CHAPTER 12 n PLUG-INS

320

Listing 12-41. The blog Plug-in’s list.gsp View

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/> <meta name="layout"
content="${params.layout ?: 'main'}" /> <title>Post List</title>
</head>
<body>
<div class="nav">

<g:link class="create" action="create">New Post</g:link> </div> <div class="blog">
<h1>${grailsApplication.conig.blog.title ?: 'No Title'}</h1>
<g:render plugin="blog"
template="post" var="post"
collection="${postList?.reverse()}" /> </div> </body> </html>

There are a few key things to mention about the list.gsp view in Listing 12-41. First, note that when
using the <g:render> tag to render a template in a plug-in view, you must specify the plug-in that this
template belongs to; otherwise, Grails will attempt to resolve the template within the application it is
installed into. Second, take note of the usage of the grailsApplication variable to specify the blog title:

<h1>${grailsApplication.conig.blog.title ?: 'No Title'}</h1>

Here the implicit grailsApplication object is used to read a configuration setting from the grails-
app/conf/Conig.groovy file. If the setting called blog.title is specified in Conig.groovy, then the view will
use that. Hence, users of this plug-in are able to configure the blog to their needs. An alternative approach
to doing this would be to use the <g:message> tag, in which case the plug-in user has to specify the
message in the grails-app/i18n/messages.properties file. The choice is up to you.
Finally, take note of the HTML <meta> tag, which dictates what layout the list.gsp uses:

<meta name="layout" content="${params.layout ?: 'main'}" />

If there is a layout parameter within the params object, this tag will use that parameter for the layout;
otherwise, it uses the main layout. The main layout will, of course, resolve to grails-app/views/layouts/
main.gsp, but why the decision to allow customization via a parameter? The idea here is that the user of the
plug-in can very easily customize the layout of the blog through URL mappings. For example, consider the
URL mapping in Listing 12-42.

Listing 12-42. Using a URL Mapping to Customize the blog Plug-in’s Layout

class BlogUrlMappings {
 static mappings = {
 '/blog'(controller: 'post', action: 'list') {
 layout = 'funky'
 }
 }
}

If you add the URL mapping in Listing 12-42 to your grails-app/conf/BlogUrlMappings.groovy file,
users can go to the /blog URL and have the list action of the PostController execute, which in turn
renders the list.gsp view. However, notice how a property called layout is set inside the body of the
closure passed to the URL mapping definition. As you learned in Chapter 6, it is possible to pass
parameters in this way. The result is that for the /blog mapping, a layout called grails-app/views/layouts/

321

CHAPTER 12 n PLUG-INS

funky.gsp will be used instead! This is a pretty powerful pattern because it allows you to apply a different
layout simply by applying a new URL mapping to the same controller and action.

As for the _post.gsp template used in the <g:render> method of Listing 12-41, it is pretty simple and
just formats each Post instance appropriately. You can see the code for the _post.gsp template in
Listing 12-43.

Listing 12-43. The _post.gsp Template

<div id="post${post.id}" class="blogPost"> <h2>${post.title}</h2> <div class="body">
${post.body} </div>
<div class="desc">
Posted on <g:formatDate date="${post.dateCreated}" format="dd MMMMMM yy" /> </div>
</div>

With that, you have pretty much completed the list.gsp view. Figure 12-4 shows what the list.gsp
view looks like when you run the blog plug-in and head off to the list action of the PostController.

Figure 12-4. The list view of the blog plug-in

Since the view renders each Post directly in the list.gsp view, the show.gsp view has been made
redundant and can be deleted. Also, for the first revision, you’re interesting in creating new posts only, so
edit.gsp can be deleted, too. You can always add editing later!

Moving on to the create.gsp view, it too could use a little cleaning up. Also, it would be nice to provide
a rich text–editing capability for authoring the post. One of the plug-ins available for Grails is the CKEditor
plug-in, which adds support for CKEditor (http://ckeditor.com), a rich text–editing component. To install
the CKEditor plug-in into the blog plug-in add the corresponding dependency in BuildConig.groovy, as
shown in Listing 12-44.

Listing 12-44. Add a Dependency to CKEditor

grails.project.dependency.resolution = {

 ...

 plugins {
 runtime ":ckeditor:3.6.3.0"
 ...
 }
}

http://ckeditor.com

CHAPTER 12 n PLUG-INS

322

With that done, let’s enable CKEditor in _form.gsp by using the <ckeditor:editor> tag provided by the
CKEditor plug-in. Listing 12-45 shows the updated _form.gsp file with the usage of the <ckeditor:editor>
tag highlighted in bold.

Listing 12-45. Using the CKEditor to Enable Rich Text Editing

<%@ page import="com.blog.Post" %>

<div class="ieldcontain ${hasErrors(bean: postInstance, ield: 'title', 'error')} ">
 <label for="title">
 <g:message code="post.title.label" default="Title" />
 </label>
 <g:textField name="title" value="${postInstance?.title}" />
</div>

<div class="ieldcontain ${hasErrors(bean: postInstance, ield: 'body', 'error')} ">
 <ckeditor:editor name="body" height="300" width="500">
 ${postInstance?.body}
 </ckeditor:editor>
</div>

With the <ckeditor:editor> tag, you can specify that you want only a simple toolbar with basic
formatting options; otherwise, you’ll get a toolbar with almost as many options as a word processor like
Microsoft Word. The plug-in documentation at http://grails.org/plug-in/ckeditor covers all of the
configuration options. Figure 12-5 shows the create.gsp view, with the <ckeditor:editor> tag doing the
job of rendering a rich text–editing component.

http://grails.org/plug-in/ckeditor

323

CHAPTER 12 n PLUG-INS

Of course, both the list.gsp and create.gsp pages currently look rather uninspiring, but it is up to the
application you install the blog plug-in into to provide useful style information via CSS. Speaking of
installing the blog plug-in into an application, it is time to do exactly that! In the gTunes BuildConig.
groovy file, express a dependency on the plug-in using the same technique used earlier to express a
dependency on the album-art plug-in, as shown in Listing 12-46.

Listing 12-46. Installing the blog Plug-in into gTunes

grails.plugin.location.blog='../blog'
...
grails.project.dependency.resolution = {
 ...
}

Figure 12-5. Creating a post with CKEditor

CHAPTER 12 n PLUG-INS

324

Remember, the blog.title setting allows you to customize the blog title; simply adding the following
setting to Conig.groovy will do the trick:

// coniguration for the blog blog.title="The gTunes Weblog"

Run the gTunes application using the run-app command, and then navigate to the URL http://
localhost:8080/gTunes/post/list. Like magic, you have the blog plug-in running inside the gTunes
application exactly as it was before—except that it is now taking advantage of the gTunes application’s
main layout. Clicking the New Post button will take you to the create.gsp view you developed earlier.
Figure 12-6 shows the CKEditor component running within the gTunes application.

Figure 12-6. Creating blog posts in the gTunes application

325

CHAPTER 12 n PLUG-INS

If you type some content, including a title and body, and then hit the Post button, you’ll be able to
create new posts on the gTunes application blog, as shown in Figure 12-7.

Figure 12-7. A blog post in the gTunes application

Clearly, this is a very basic blog plug-in at the moment, one with no support for RSS, comments,
calendars, archives, and all that jazz. However, as a demonstration of the concept of using plug-ins to
separate your application in reusable modules, it’s a perfect example. A separate team of developers could
happily work on the blog plug-in and gradually integrate its functionality into the primary application over
time. You could even create an automated build, as you learned in Chapter 11, to build and test all your
plug-ins and install them into your main application for integrating testing. So plug-ins are definitely
worth a look, even if you don’t intend to become an expert on Grails internals.

Using the Resources Plug-in
The resources plug-in provides a lot of functionality related to managing static resources in your
application. This includes things like deferring the inclusion of Javascript files until the end of the
document to optimize page load times, preventing resources from being included in the same page
multiple times unnecessarily, correcting load order of resources, and others. The plug-in is quite flexible
and quite powerful. Here we will take a look at some of the basic functionality provided by the plug-in.
Let’s start by writing a couple of simple Javascript functions in separate files.

Listing 12-47. web-app/js/hello.js

function sayHello() {
 alert('Hello!');
}

CHAPTER 12 n PLUG-INS

326

Listing 12-48. web-app/js/goodbye.js

function sayGoodbye() {
 alert('Goodbye!');
}

Now let’s write a simple GSP page, one that will make use of those Javascript functions.

Listing 12-49. grails-app/views/index.gsp

<!doctype html>
<html>
 <head>
 <title>Resources Plugin Demo</title>
 <g:javascript library="jquery"/>
 <g:javascript src="hello.js"/>
 <g:javascript src="goodbye.js"/>
 <r:layoutResources/>
 </head>
 <body>
 <r:script>
 $('#helloLink').click(function() {
 sayHello();
 return false;
 });
 $('#goodbyeLink').click(function() {
 sayGoodbye();
 return false;
 });
 </r:script>
 <p>Say Hello</p>
 <p>Say Goodbye</p>
 <r:layoutResources/>
 </body>
</html>

When that GSP is rendered, the result will look something like Listing 12-50.

Listing 12-50. A Simple Rendered Page

<!doctype html>
<html>
 <head>
 <title>Welcome to Grails</title>
 <script src="/resourcesdemo/js/hello.js" type="text/javascript"></script>
 <script src="/resourcesdemo/js/goodbye.js" type="text/javascript"></script>
 <script src="/resourcesdemo/static/plugins/jquery-1.7.1/js/jquery/jquery-1.7.1.min.js"
type="text/javascript" ></script>
 </head>
 <body>
 <p>Say Hello</p>
 <p>Say Goodbye</p>
 <script type="text/javascript">

327

CHAPTER 12 n PLUG-INS

 $('#helloLink').click(function() {
 sayHello();
 return false;
 });
 $('#goodbyeLink').click(function() {
 sayGoodbye();
 return false;
 });
 </script>
 </body>
</html>

Most of the rendered page is very straightforward and maps closely to what is written in the GSP—and
probably maps pretty closely to what you expected. One interesting thing to note is that the Javascript that
is embedded into the page, the code that is attaching functions to the “hello” and “goodbye” anchor tags, is
rendered at the very bottom of the body, even though the code in the GSP is written at the top of the body.
This is our first look at one of the benefits offered by the resources plug-in. Best practice is to put all
Javascript at the bottom of the page to improve page load times. The resources plug-in is making that
happen. The plug-in is rendering the Javascript at the very bottom of the page. The layoutResources tag,
which is invoked at the bottom of the body in the GSP, is what actually does that. Let’s move on.

One of the features that the resources plug-in provides is the ability to define “modules,” or groups of
static resources, that should be loaded together. It may be that you want goodbye.js and hello.js to be
kept separate from a coding perspective to make them easier to maintain but you want them always to be
loaded together into a page. If that is the case, it may make sense to define those two .js files as part of a
module. Then pages that want to make use of the contents of the module don’t have to make references to
each of the static resources that are contained in the module; instead, they can simply express a
dependency on the module.

Now let’s edit grails-app/conf/ApplicationResources.groovy. In the file we’ll define a new module,
“messages,” and include both of your .js files in the module. The syntax for this task is shown in
Listing 12-51.

Listing 12-51. Defining the messages Module

modules = {
 application {
 resource url:'js/application.js'
 }

 // This deines a new module named "messages" and the
 // contents includes 2 js iles
 messages {
 resource url: 'js/hello.js'
 resource url: 'js/goodbye.js'
 }
}

Now remove references to the .js files from the GSP and replace it with <r:require
module="messages"/> to express that this page should include all of the .js files that are part of the
messages module. See Listing 12-52.

2

CHAPTER 12 n PLUG-INS

328

Listing 12-52. Including a Module

...

<head>
 <title>Welcome to Grails</title>
 <g:javascript library="jquery"/>
 <r:require module="messages"/>
 <r:layoutResources/>
</head>

...

Now the rendered page will look something like Listing 12-53.

Listing 12-53. The Rendered Page

<!doctype html>
<html>
 <head>
 <title>Welcome to Grails</title>
 <script src="/resourcesdemo/static/plugins/jquery-1.7.1/js/jquery/jquery-1.7.1.min.js"
type="text/javascript" ></script>
 </head>
 <body>
 <p>Say Hello</p>
 <p>Say Goodbye</p>
 <script src="/resourcesdemo/static/bundle-bundle_messages_defer.js" type="text/javascript"
></script>
 <script type="text/javascript">
 $('#helloLink').click(function() {
 sayHello();
 return false;
 });
 $('#goodbyeLink').click(function() {
 sayGoodbye();
 return false;
 });
 </script>
 </body>
</html>

Notice there are no longer references to hello.js and goodbye.js in the page; instead, there is a
reference to bundle-bundle_messages_defer.js. If you point your browser at that URL, you will see that the
file contains the union of the contents from your hello.js and goodbye.js files. Pretty slick stuff, indeed.
Let’s take this a little further.

Edit BuildConig.groovy and add a dependency on the yui-minify-resources plug-in, as shown in
Listing 12-54.

Listing 12-54. Depend on the yui-minify-resources Plug-in

grails.project.dependency.resolution = {

329

CHAPTER 12 n PLUG-INS

 ...

 plugins {
 runtime ":hibernate:$grailsVersion"
 runtime ":jquery:1.7.1"
 runtime ":resources:1.1.6"
 runtime ":yui-minify-resources:0.1.5"

 ...
 }
}

Including the yui-minify-resources plug-in will allow the resources plug-in to minify all of the
Javascript in the messages module. The rendered HTML will now include a reference to a file named
bundle-bundle_messages_defer.min.js (note that “min” is part of the file name), and that file will include a
minified version of all of the relevant Javascript.

The resources plug-in is capable of a lot more than what has been introduced here, but even the little
bit of functionality you’ve seen is quite valuable. The plug-in document at http://grails.org/plug-in/
resources has much more detail on the plug-in’s capabilities.

Using the Database Migration Plug-in
So far we haven’t dealt much with defining database tables and columns or any kind of DDL. GORM does a
great job of helping manage a lot of that. As you have seen, you can define your domain classes, and then
let GORM take it from there. If you want to customize the schema that is being generated or if you are
mapping your application to an existing schema, you can tweak some of the ORM details, like table names
and column names, by writing code in the mapping block of your domain classes. This is all very flexible
and very powerful but doesn’t take care of everything. For example, it may be that a particular version of
your application introduces new domain classes or new properties to existing domain classes; when that
happens, you need some way to migrate your schema from one version of your domain model to the next.
This is where the database migration plug-in comes into play. The database migration plug-in helps
manage the evolution of your database schema from one version of your domain model to the next.

Here’s an example scenario. Consider that you have a trivial application which contains a Person
domain class, such as that defined in Listing 12-55.

Listing 12-55. The Person Class

package migrationdemo

class Person {
 String irstName
 String lastName

 static constraints = {
 irstName blank: false, size: 1..35
 lastName blank: false, size: 1..35
 }
}

Your application is fully developed, and you are ready to ship to production. This is a good time to
create a snapshot of what your schema looks like. This snapshot will be a base point that may come into

http://grails.org/plug-in/

CHAPTER 12 n PLUG-INS

330

play later if your domain model changes. When the model does change, you will want to create a diff
between this initial snapshot and the schema that is necessary to support the future model after changes
have been made. A way to create this initial snapshot is with the dbm-generate-gorm-changelog command
provided by the database migration plug-in. In order to use that, the plug-in must first be installed, as
shown in Listing 12-56.

Listing 12-56. Installing the database-migration Plug-in

// grails-app/conf/BuildConig.groovy
grails.project.dependency.resolution = {
 ...

 plugins {
 runtime ":database-migration:1.2"
 ...
 }
}

Note that you need to install the plug-in if you are using Grails 2.0.x. As of Grails 2.1 the plug-in is
installed by default.

With the plug-in installed you can now execute the dbm-generate-gorm-changelog script.

$ grails dbm-generate-gorm-changelog changelog.groovy
| Packaging Grails application.....
| Finished dbm-generate-gorm-changelog

This will create grails-app/migrations/changelog.groovy. See Listing 12-57.

Listing 12-57. grails-app/migrations/changelog.groovy

databaseChangeLog = {

 changeSet(author: "jeff (generated)", id: "1352303958472-1") {
 createTable(tableName: "person") {
 column(autoIncrement: "true", name: "id", type: "bigint") {
 constraints(nullable: "false", primaryKey: "true",
 primaryKeyName: "personPK")
 }

 column(name: "version", type: "bigint") {
 constraints(nullable: "false")
 }

 column(name: "irst_name", type: "varchar(35)") {
 constraints(nullable: "false")
 }

 column(name: "last_name", type: "varchar(35)") {
 constraints(nullable: "false")
 }
 }
 }
}

331

CHAPTER 12 n PLUG-INS

Obviously that file contains, not SQL, but DSL code for defining your schema. The plug-in can
interpret that code and turn it into SQL suitable for execution in the database. The DSL is pretty intuitive.
You can probably read through the code and understand pretty much everything that is being expressed
there. It is important that you review this code and understand what is being expressed. You should not
blindly rely on the generated code. Make sure that it represents what you need before applying this code to
your production database. That process should include evaluating not only the DSL code but also the
generated SQL. A way to see the corresponding SQL code is by running the dbm-update-sql command, as
shown in Listing 12-58.

Listing 12-58. Running dbm-update-sql

$ grails dbm-update-sql
| Starting dbm-update-sql for database sa @ jdbc:h2:mem:devDb;MVCC=TRUE;LOCK_TIMEOUT=10000
-- ***
-- Update Database Script
-- ***
-- Change Log: changelog.groovy
-- Ran at: 11/7/12 8:04 AM
-- Against: SA@jdbc:h2:mem:devDb
-- Liquibase version: 2.0.5
-- ***

-- Create Database Lock Table
CREATE TABLE DATABASECHANGELOGLOCK (ID INT NOT NULL, LOCKED BOOLEAN NOT NULL, LOCKGRANTED
TIMESTAMP, LOCKEDBY VARCHAR(255), CONSTRAINT PK_DATABASECHANGELOGLOCK PRIMARY KEY (ID));

INSERT INTO DATABASECHANGELOGLOCK (ID, LOCKED) VALUES (1, FALSE);

-- Lock Database
-- Create Database Change Log Table
CREATE TABLE DATABASECHANGELOG (ID VARCHAR(63) NOT NULL, AUTHOR VARCHAR(63) NOT NULL, FILENAME
VARCHAR(200) NOT NULL, DATEEXECUTED TIMESTAMP NOT NULL, ORDEREXECUTED INT NOT NULL, EXECTYPE
VARCHAR(10) NOT NULL, MD5SUM VARCHAR(35), DESCRIPTION VARCHAR(255), COMMENTS VARCHAR(255), TAG
VARCHAR(255), LIQUIBASE VARCHAR(20), CONSTRAINT PK_DATABASECHANGELOG PRIMARY KEY (ID, AUTHOR,
FILENAME));

-- Changeset changelog.groovy::1352303958472-1::jeff (generated)::(Checksum: 3:cbe21510703560534
c81be19417709dd)
CREATE TABLE person (id BIGINT GENERATED BY DEFAULT AS IDENTITY NOT NULL, version BIGINT NOT
NULL, irst_name VARCHAR(35) NOT NULL, last_name VARCHAR(35) NOT NULL, CONSTRAINT personPK
PRIMARY KEY (id));

INSERT INTO DATABASECHANGELOG (AUTHOR, COMMENTS, DATEEXECUTED, DESCRIPTION, EXECTYPE, FILENAME,
ID, LIQUIBASE, MD5SUM, ORDEREXECUTED) VALUES ('jeff (generated)', '', NOW(), 'Create Table',
'EXECUTED', 'changelog.groovy', '1352303958472-1', '2.0.5', '3:cbe21510703560534c81be19417709dd'
, 1);
| Finished dbm-update-sql

Once you have reviewed the DSL code and the corresponding SQL and are happy that all is consistent
with your requirements, you can have that SQL executed against your production database in a couple of
different ways. One is to let the plug-in handle it for you at deployment time. To do that, you need to set

CHAPTER 12 n PLUG-INS

332

the grails.plug-in.databasemigration.updateOnStart conig property to true in Conig.groovy, as shown
in Listing 12-59.

Listing 12-59. Enable Automatic Schema Updating

// grails-app/conf/Conig.groovy
grails.plugin.databasemigration.updateOnStart = true

Note that for your production database you will most likely want to set dbCreate to “none” in grails-
app/conf/DataSource.groovy. The migrations plug-in is more controlled and safer way of managing
schema migrations. Using Hibernate’s schema generation tools by setting dbCreate to something like
“create-drop” is useful and efficient for your development environment, but probably not what you want
for production.

With updateOnStart set to true, the migration plug-in will make sure that your schema is up to date at
deployment time by generating and executing the SQL that corresponds to the latest migration DSL code.
Some applications will want to be a little more explicit about this before deployment time. If you want to
generate the schema ahead of time and do not want to set updateOnStart to true, a way to do that is with
the dbm-update script. The dbm-update script will evaluate the migration DSL, generate the corresponding
SQL, and send that SQL to the database for execution. Listing 12-60 shows the syntax for running the dbm-
update script against your production dataSource configuration from DataSource.groovy.

Listing 12-60. Update the Production Schema

$ grails prod dbm-update

Be careful about running anything against your production data source. Make sure that the SQL has
been reviewed and that you have appropriate backups in place.

Now that the production schema is consistent with your current domain model, you can create a WAR
file and deploy the WAR file to production; everything should be good to go for now. If you ever change your
domain model, you will need to generate a new migration script that will adapt your existing schema to
account for whatever changes have been made to the domain model. Let’s add a couple of new properties
to the Person class, as shown in Listing 12-61.

Listing 12-61. Add age and email Properties to the Person Class

package migrationdemo

class Person {
 String irstName
 String lastName
 Integer age
 String email

 static constraints = {
 irstName blank: false, size: 1..35
 lastName blank: false, size: 1..35
 email email: true
 age range: 16..66
 }
}

333

CHAPTER 12 n PLUG-INS

If we deployed that code to production, we would have problems, since there are no columns in the
person table to account for the age and email properties. The migration plug-in can help migrate the
existing schema to support the new properties. The dbm-gorm-diff script will evaluate your current
domain model, compare it with your existing schema, and then generate the code necessary to adapt your
existing schema to support your current domain model.

$ grails dbm-gorm-diff change1.groovy --add

The first argument to the dbm-gorm-diff command is the name of the DSL file that will be created—in
this case change1.groovy. The --add switch tells the migration plug-in to add an inlude to the root
changelog file that references this newly created file. See Listing 12-62.

Listing 12-62. The Contents of change1.groovy

databaseChangeLog = {

 changeSet(author: "jeff (generated)", id: "1352305604562-1") {
 addColumn(tableName: "person") {
 column(name: "age", type: "integer") {
 constraints(nullable: "false")
 }
 }
 }

 changeSet(author: "jeff (generated)", id: "1352305604562-2") {
 addColumn(tableName: "person") {
 column(name: "email", type: "varchar(255)") {
 constraints(nullable: "false")
 }
 }
 }
}

Notice that change1.groovy does not contain information about the entire domain model. The file
includes only information related to the differences between the current model and the current schema. In
this case it includes change sets related to the email and age properties. Run the dbm-update-sql script
again to see the corresponding SQL.

$ grails dbm-update-sql
| Starting dbm-update-sql for database sa @ jdbc:h2:devDB;MVCC=TRUE;LOCK_TIMEOUT=10000
-- ***
-- Update Database Script
-- ***
-- Change Log: changelog.groovy
-- Ran at: 11/7/12 8:36 AM
-- Against: SA@jdbc:h2:devDB
-- Liquibase version: 2.0.5
-- ***

-- Lock Database
-- Changeset changelog.groovy::1352303958472-1::jeff (generated)::(Checksum: 3:cbe21510703560534
c81be19417709dd)

CHAPTER 12 n PLUG-INS

334

CREATE TABLE person (id BIGINT GENERATED BY DEFAULT AS IDENTITY NOT NULL, version BIGINT NOT
NULL, irst_name VARCHAR(35) NOT NULL, last_name VARCHAR(35) NOT NULL, CONSTRAINT personPK
PRIMARY KEY (id));

INSERT INTO DATABASECHANGELOG (AUTHOR, COMMENTS, DATEEXECUTED, DESCRIPTION, EXECTYPE, FILENAME,
ID, LIQUIBASE, MD5SUM, ORDEREXECUTED) VALUES ('jeff (generated)', '', NOW(), 'Create Table',
'EXECUTED', 'changelog.groovy', '1352303958472-1', '2.0.5', '3:cbe21510703560534c81be19417709dd'
, 2);

-- Changeset change1.groovy::1352305604562-1::jeff (generated)::(Checksum:
3:0dce963c7c6e443c64ac983289725133)
ALTER TABLE person ADD age INT NOT NULL;

INSERT INTO DATABASECHANGELOG (AUTHOR, COMMENTS, DATEEXECUTED, DESCRIPTION, EXECTYPE, FILENAME,
ID, LIQUIBASE, MD5SUM, ORDEREXECUTED) VALUES ('jeff (generated)', '', NOW(), 'Add Column',
'EXECUTED', 'change1.groovy', '1352305604562-1', '2.0.5', '3:0dce963c7c6e443c64ac983289725133',
3);

-- Changeset change1.groovy::1352305604562-2::jeff (generated)::(Checksum:
3:d67ce27cffbfbc1c117fc0d3841e9a16)
ALTER TABLE person ADD email VARCHAR(255) NOT NULL;

INSERT INTO DATABASECHANGELOG (AUTHOR, COMMENTS, DATEEXECUTED, DESCRIPTION, EXECTYPE, FILENAME,
ID, LIQUIBASE, MD5SUM, ORDEREXECUTED) VALUES ('jeff (generated)', '', NOW(), 'Add Column',
'EXECUTED', 'change1.groovy', '1352305604562-2', '2.0.5', '3:d67ce27cffbfbc1c117fc0d3841e9a16',
4);

| Finished dbm-update-sql

Notice that the generated SQL is altering the person table to add columns for the new properties and is
also updating the DATABASECHANGELOG table, which is the table that the migration plug-in uses to keep track
of information about migrations that have been run. At this point you have the same options for having
the diff applied as when you initially created the schema. You can set the updateOnStart property to true or
run the dbm-update script explicitly.

The usage described above is a good introduction to some of the capabilities provided by the plug-in,
but the plug-in provides quite a bit more functionality than is described here. See the documentation at
http://grails.org/plug-in/database-migration for more details.

Summary
In this chapter, we hope you have learned the power of the Grails plug-in system, not just for plug-ins that
provide API enhancements but equally for use cases that provide fully functional application modules, like
those you saw in the previous section. Plug-in development is a very broad topic, and this chapter only
brushed the surface of what is possible. However, the chapter has given you enough knowledge to
investigate developing your own plug-ins.

From the basics of creating and populating plug-in metadata, to the intricacies of developing the
plug-in itself, and finally to the packaging and distribution of your plug-ins, this chapter has covered a lot
of ground. As you have seen, Grails provides a broad set of functionality out of the box, yet it can be
extended without limits through its plug-in system.

http://grails.org/plug-in/database-migration

335

n n n

Index

A

Ajax
ActiveX control, 169
asynchronous form submission

Ajax Login Code, 173
ApplicationResources.groovy file, 174
current login action code, 174
grails-app/views/layouts/main.gsp layout,

172
grails-app/views/store/index.gsp layout,

173
jQuery form code, 173
loginBox template, 173
login request handling, 174, 175
Login Template, 172
main Sitemesh layout, 175
resources plug-in, 174
_welcomeMessage.gsp template, 175

BuildConfig.groovy, 171
call example, 171
code, 169
fade-in effects, 184
form fields

BuildConfig.groovy, 185
countHits, 186
<g:remoteField> tag, 184, 188
gTunes domain, search enabling, 185
gTunes instance search box, 185
searchable plug-in, 185
search enabling, 186
searchEvery, 186
_searchResults.gsp template, 187
searchTop, 186

StoreController, search action, 186
termFreqs, 186

<g:javascript> tag, 170, 171
<g:remoteLink> tag, 170
JavaScript code, 169
jQuery Ajax function, 170
jQuery library, 170
performance, 188
remote linking

AlbumArtTagLib, 181
AlbumArtTagLibTests, 182, 183
AlbumController, display action, 178
_album.gsp template, 177, 183
_albumList.gsp updation, 177
BuildConfig.groovy, 180
Church of Broken Glass, 179
content panel, 176
create-tag-lib, 180
create-tag-lib command, 179
displaying albums, 178
JSON response, 179
request parameters, 179
RestBuilder class, 180
RestClient, 180

<r:script> tag, 170
showTime action, 170
StoreController, 170

AlbumArtService.groovy file, 315
AlbumController, 76
Artefact

arguments, 303
ArtefactHandler testing, 303
getType() method, 302
JobArtefactHandler, 302
newArtefactClass(Class) method, 302

n INDEX

336

Artefact (cont.)
types

ArtefactHandler Interface, 302
domain and filters, 301
isArtefact(Class) method, 302
service and bootstrap, 301
TagLib, codec and controller, 301
UrlMappings, 301

Aspect-oriented programming (AOP), 88
Atomicity, consistency, isolation, and durability

(ACID), 239
Automatic dependency injection, 243

B

beforeInterceptor, 88
Body tags, 133

C

CacheService, 299
CacheTagLib, 299
Closure property, 134
Command objects

AlbumCreateCommand, 82
definition, 81
Errors object, 83
grails.validation.Validateable annotation, 83
request parameters, 82
for validation, 83

Convention over Configuration (CoC), 249, 304
Criteria queries

associations, 201
builder syntax, 198
createCriteria static method, 198
criteria instance, 198
dynamic querying, 199
Groovy’s map syntax, 199
Groovy’s* spread operator, 200
Hibernate Criteria, 198
instanceof operator, 200
list() method, 198
projections, 201
reusable code block, 200
scroll method, 200
simple criteria query, 198

Custom Artefact Types, 307

D, E

Data, 77
DATABASECHANGELOG table, 334
Database Migration Plug-in

change1.groovy, 333
DATABASECHANGELOG table, 334
dbm-generate-gorm-changelog script, 330
dbm-gorm-diff command, 333
enable automatic schema updating, 332
GORM, 329
installation, 330
Person domain class, 329, 332
production schema, 332
running dbm-update-sql, 331
updateOnStart set, 332

Data binding
AlbumController, 76
and associations, 79
bindable constraint, 80
bindData method, 79
data validation, 77
errors API, 77
file uploads, 87
multiple domain objects, 78

Default Person Table, 48
Detached criteria queries

batch updates and deletes, 204
creation, 202
execution, 202, 203
lazy evaluation, 203

Dog. Instances class, 308
Domain-specific language (DSL), 304
doWithApplicationContext, 299
doWithDynamicMethods, 299
doWithSpring, 299
doWithWebDescriptor, 299
Dynamic finders, 196–198

F

Fields plug-in, 120

G

Gails-app/taglib directory, 113
<g:checkBox> tag, 117
<g:collect> tag, 111

337

 n INDEX

<g:createLink> tag, 115
<g:datePicker> tag, 119
<g:eachError> tag, 122
<g:each> tag, 110, 111
genre.gsp h1Online Store/h1, 124
getContentType() method, 86
getFile method, 86
getInputStream() method, 86
getSize() method, 86
getText() method, 91
<g:findAll> tag, 112
<g:form> tag, 116
<g:hasErrors> tag, 121
<g:link> tag, 114
GORM

associations
list and map association, 194
mapping property, 194
relationship management methods, 195
SortedSet, 193, 194
trackNumber property, 194
transitive persistence, 195

auto time stamping, 231, 232
configuration, 211–213
delete() method, 193
detached objects

merge method, 223
persistence life cycle, 221
reattaching, 221–223

list() method, 192
listOrderBy methods, 192
locking strategies, 229–231
max, 192
offset, 192
order, 192
performance tuning

batch fetching, 226
eager vs. lazy associations, 223–226
first-level cache, 227
inheritance strategies, 229
query cache, 228, 229
second-level cache, 227, 228

querying
criteria queries (see Criteria queries)
detached criteria queries (see Detached

criteria queries)
dynamic finders, 196–198
HQL and SQL, 209, 210
pagination, 210, 211
Where queries (see Where queries)

reading objects, 191, 192

save() method, 193
semantics

automatic session flushing, 217, 218
cache, 215
clear() method, 216, 217
currentSession() method, 216
dependency Injection, 216
findAllByAlbum method, 217
Hibernate session, 213, 214, 216
ORM tool, 213
SessionFactory, 216
session management and flushing, 214, 215
withSession method, 216

sort, 192
transactions, 218–220

GPath expression, 112
<g:radio> tags, 118
Grails

BootStrap Class, 290
build system

allTests target, 266
bootstrap, command line, 266
build script, 261
command-line arguments, 264
command-line variables, 263
CreateApp.groovy, 261
Gant, 260, 261
Gant script creation, 262
RunApp.groovy script, 266
script documentation, 265
target method, 261
Tomcat (see Tomcat)

and configuration
CoC, 249
Config.groovy file, 249, 250
environment-specific way, 250
externalization, 253
grails.mime.file.extensions, 249
logging (see Log4j library)
stack trace filtering, 252

continuous integration, Hudson
Build With Grails, 275, 276
definition, 273
free-style job creation, 275
installation process, 274
open source system, 273
“Project Base Directory,” 276
server, 273
targets, 276

dependency management
BuildConfig.groovy, 254, 255

n INDEX

338

Grails, dependency management (cont.)
inherit method, 256
properties, 255
repositories (see Repositories)
web applications, 254

deployment
application metadata, 289
container, 288
management, 288
Tomcat server, 288
version number, 289
WAR customization, 289

IDE (see Integrated development environments
(IDEs))

integration, e-mail servers
confirmRegistration View, 287
e-mail confirmation, 286, 287
mail message, 285
Mail plug-in, 285
mailService property, 285
org.springframework.mail abstraction, 285
registration, 286
SMTP, 284
user class, 286

grails-app/i18n/ directory, 155
GrailsApplication instance, 309
grails-app/views/store/shop.gsp, 131
Grails controller

action, 90
command objects (see Command objects)
custom view, 75
data binding (see Data binding)
default action, 64
Default View, 75
gTunes home page, 92
HTTP method restrictions, 83
interceptors

before advice, 88
after advice, 89
AOP, 88
around advice, 88

IO
file uploads, 85
reading InputStream request, 87
writing binary response, 87

logging
exceptions, 66
Java platform, 65
log property, 65
System.err.println, 65
System.out.println, 65

login form addition, 94
login process testing

testLoginPasswordInvalid test case, 102
testLoginSuccess test case, 103
testLoginUserNotFound test case, 102

MockHttpServletResponse class, 91
model creation, 74
multiple actions, 64
registration

error code, 98
implementation, 97
login action, 101
LoginCommand, 100
register action, 96
register view, 96
rejectValue method, 98
screen, 97
StoreController, 98
successful registration testing, 100
testPasswordsDoNotMatch test case, 99
testRegistrationFailed test, 99
validation error, 98

rendering text, 72
request attributes, 66
request parameters (see Request parameters)
request redirect method, 73
response contents testing, 92
SampleController class, 64
scopes

flash, 67
flash scope, 68
request, 67
servletContext, 67, 68
session, 67

singleton controller, 63
templates, 75
testing, create-controller command, 89
unit test failure, 91
unit test template, 90
updated AlbumControllerUnitTests, 91
user domain class, 93

Grails domain classes
building relationships, 49
database mapping, 47
embedding objects, 56
failOnError parameter, 44
gTunes application, 41
inheritance

groovy inheritance syntax, 53
Table-per-Hierarchy Mapping, 53
table-per-subclass, 54

339

 n INDEX

MySQL database, 41
object-oriented (OO) applications, 41
password property, 45
public static property, 42
save() method, 44
Song class, 42
song object validation, 44
Spring Errors interface, 44
standard validators, 43
test

building complex systems, 58
constraint song class, 61
create-domain-class command, 58
GORM, 59
Java, 58
SongTests output, 61
song unit tTest, 60

transient property, 45
validate() method, 44

Grails dynamic tags
createLink and resource tags, 115
creating forms and fields

basic date picker, 119
check boxes and radio buttons, 117
fields plug-in, 120
form tag, 116
handling lists of values, 118
textField tag, 117

custom tag basics, 134
custom tag testing, 135
field validation example, 114
JSP example, 113
link tags

attributes, 114
basic linking, 114
using parameters, 115

method call example, 113
paginating views

arguments supported, 126
domain class, 127
genre action, 125, 126
genre.gsp, 124, 125
grails-app/view/car/list.gsp, 127
list of albums, 122, 123
order clause, 128
paginated list of albums, 123, 124
pagination support, 128, 129

rendering GSP templates, 129
tag creation scenario, 133
tag library creation, 133
validation and error handling

eachError tag, 121–122
hasErrors tag, 121
state diagram, 121

Grails framework
application

code testing, 8
controller creation, 6
create-app command, 5
gTunes application structure, 6
HTML test reports, 10
printing a message, 8
standard Grails welcome page, 11
test-app command, 9

data sources configuration
DataSource.groovy file, 32
gTunes WAR file, 39
Hibernate supports, 37
in-memory H2 database, 32
JNDI Data Source configuration, 37
MySQL Database configuration, 34
run-war deployment, 38
WAR file, 38

environmentally friendly, 31
installing and configuration, 4
interactive mode, 12
Java ecosystem, 3
platform, 2
scaffolding (see Scaffolding)
simplicity and power, 1
song domain class creation, 16
song.groovy file, 16

_GrailsInit.groovy, 262
GrailsPluginManager instance, 309
Groovy/Grails Tool Suite (GGTS), 278
Groovy inheritance syntax, 53
Groovy scriptlets, 107
Groovy Server Pages (GSP)

attributes, 106
built-in Grails tags

collect tag, 111
findAll tag, 112
iterative tags, 110
logical tags, 109
setting variables, 109

dynamic tags (see Grails dynamic tags)
GStrings, 108
model creation, 106
page directives, 107
runtime environment, 105
scriptlets, 107

<g:select> tag, 118

n INDEX

340

<g:set> tag, 109
GSP template, 129
GStrings, 108
<g:textField> tag, 117
gTunes application, 41
<g:while> tag, 111

H

HelloWorld.groovy, 262–264
Hibernate criteria, 126
Hibernate queries, 185
HTTP request method, 146
HTTP response codes, 147
HttpServletRequest interface, 85

I

Integrated development environments (IDEs)
GGTS, 278
Grails installations, 278
Grails project

importing function, 279, 280
IntelliJ IDEA, 282
NetBeans, 282, 283
running Grails application, 280, 281
STS, 281
text editors, 283

Java language, 277
remote debug

configuration, 283, 284
grails-debug executable, 283
source code, 284

Internationalization
english gTunes, 157
grails-app/i18n/messages_es.property, 159
grails-app/i18n/messages.property, 158
java.util.ResourceBundle, 157
messageSource, 165
message Tag, 157
parameterized messages

custom error codes, 165
custom validation messages, 164
default validation messages, 163
domain class, constraints, 162
gsp containing code creation, 162
java.text.MessageFormat, 160
message tag, 161
property-specific validation messages, 164

validation messages, 163
rendering property values, GSP, 158
Spanish gTunes, 159
URL mappings, 159
user messages, 155

Inversion of Control (IoC), 233
isEmpty() method, 86
Iterative tags, 110, 133

J, K

Java Database Connectivity (JDBC), 25
Java Management Extensions (JMX)

Grails services exposing, 246
operations, 246, 247
plug-in, 243, 247
StoreService exposing, 244

Java Naming and Directory Interface (JNDI) data
source, 37

JSP scriptlets, 105
JSP Standard Tag Library (JSTL), 105

L

Logical tags, 109, 133
Log4j library

configuration, 250
debug levels, 251
DSL, 250
file appender, 251
file format/XML, 250
Hibernate output, 252
layout styles, 252

M

Maven repositories, 314
Meta Object Protocol (MOP), 308
MultipartFile interface, 86
MVC architecture, 107
MySQL database, 42

N

Named URL mappings, 150
Nested tags, 133
newArtefactClass(Class) method, 302

341

 n INDEX

NoSQL databases, 196
NullPointerException, 306

O

Object-relational mapping (ORM), 2, 15

P, Q

Package-plugin command, 313
Page context, 109
Page directives, 107
Person domain class, 47
Plug-in system

addArtefact method, 310
album-art Plug-in, 316
AlbumArtService.groovy file, 315
AlbumArtTagLib.groovy file, 315
application modularity

blog plug-in descriptor, 318
blog Plug-in, gTunes, 323
CKEditor, 321–323
layout, 320
list.gsp view, 319–321
PostController, 319
Post domain class, 318
_post.gsp template, 321

artefacts application, 299
create-plugin command, 296, 315
database migration (see Database Migration

Plug-in)
getAlbumArt method, 316
getArt() method, 316, 317
GrailsApplication instance, 309
GrailsPluginManager instance, 309
gTunes application

album-art plug-in, 317
blog post, 325
BuildConfig.groovy, 317
CKEditor component, 324

hooks
artefact types (see Artefact)
doWithApplicationContext, 299
doWithDynamicMethods, 299
doWithSpring, 299
doWithWebDescriptor, 299
getServiceClass method, 301
GrailsApplication, 300
Grails Convention APIs, 301

simple-cache Plug-in, 300
hypothetical implementation, 310
installation, 295
JobDetailBean, 310
list-plugins command, 293, 294
Maven repository, 314, 315
metadata, 297, 298
onChange, 309
onConfigChange, 309
onConfigChange event, 311
onShutdown, 309
packaging and distribution, 312–314
plugin-info Command, 294, 295
resources (see Resources plug-in)
SimpleCacheGrailsPlugin descriptor, 297
Spring ApplicationContext instance, 309
Spring beans

ApplicationContext, 304
CacheService, 304
CacheTagLib, 306
Caching Pattern, 305
closures, 305
content-level caching, 306
conventions, 307
dependency injection, 304
doWithSpring, 304, 305
DSL, 304
getValue() method, 306
globalCache bean, 305
NullPointerException, 306
simple-cache Plug-in, 306

spring-security-core, 296
WAR descriptor, 311, 312
watchedResources, 309
zip files, 296

Publish-plugin command, 313

R

Redirect arguments, 74
Relational Database Management System

(RDBMS), 2
Render tag, 129
Repeat tag, 134
Repositories

arguments, 258
configuration, 257
dependency scopes, 258
grailsCentral(), 257
grailsHome(), 257

n INDEX

342

Repositories (cont.)
grailsPlugins(), 257
mavenRepo method, 257
multiple dependencies, 259
MySQL, 258
plug-in dependencies, 260
runtime library dependency, 258
transitive dependency resolution, 259

RequestParameter annotation, 72
Request parameters

type conversions
errors property, 72
int type, 71
list type, 71
method arguments, 71
RequestParameter annotation, 72
strings, 70

userName, 70
via params property, 70
via standard servlet API, 70

Resources plug-in
grails-app/views/index.gsp, 326
Javascript files, 325
messages modules, 327
rendered Page, 328
rendered page, 326, 327
web-app/js/goodbye.js, 326
web-app/js/hello.js, 325
yui-minify-resources, 328

S

Safe dereference operator, 110
save() method, 77
Scaffolding

CRUD interfaces, 15
dynamic

create operation, 19
CRUD applicationcs controller logic, 17
delete operation, 24
read operation, 21
song controller creation, 17
song list page, 18
update operation, 23

static
administration interfaces creation, 25
AlbumController class, 25
create action, 28
delete action, 27
edit action, 27

generate-controller command, 25
generating views, 29
GORM, 26
index action, 26
JDBC, 25
list action, 26
save action, 28
show action, 26
update action, 27
URI, 25

Service layer
AlbumArtTagLib class, 235, 236
basics, 233
bean properties, 237
caching mechanisms, 237, 238
common activity, 233
dependency injection, 234, 235
exposing

Axis2 plug–ins, 247
com.sun.management.jmxremote system

property, 244
Grails services, 246
JAVA_OPTS setting, 244
JConsole application, 244, 245
JMX operations, 246, 247
JMX plug-in, 243, 247
main JConsole window, 244, 245
StoreService, 244

getAlbumArt method, 236–239
IoC, 233
main drivers, 233
scopes, 241
testing, 241–243
transactions managing, 239–241

SimpleCacheGrailsPlugin descriptor, 296
Simple Mail Transfer Protocol (SMTP), 284
Simple tags, 133
Spring ApplicationContext, 307
Spring ApplicationContext instance, 309
spring-security-core plug-in, 295
Spring Tool Suite (STS), 281
StoreController, 102

T

Table-per-Hierarchy Mapping, 53
Table-per-subclass, 54
Tag library, 133
Tomcat

advantage, 268

343

 n INDEX

data exportation to XML
Album, 271
bootstrap target, 270
classLoader, 270
export-library-to-xml code, 272, 273
export-library-to-xml script, 273
gTunes application, 270
music method, 271
output XML, 273
step method, 271
StreamingMarkupBuilder, 271

deployer, 269
deployment, 269
directory, 268
installation, 267
JAR files, 268
TomcatDeploy.groovy Script, 269, 270
TomcatDeploy.groovy script, 268
TOMCAT_HOME environment, 268
WAR file, 268

toUpperCase method, 110
TransactionStatus argument, 240
transferTo(dest) method, 86

U

Uniform Resource Identifier, 25
URL mapping

additional request parameters, 143
applying constraints

mapping parameters, 144
typical blog-type, 144
wildcards, 145

ArtistController, 152
Artist mappings, 151
artistName request parameter, 152
assertForwardUrlMapping method, 151
controller and action names removing, 140
definition, 139
embedding parameters, 141
forward and reverse testing, 153
grails-app/conf/UrlMappings.groovy, 139
HTTP request methods, 146
HTTP response codes, 147
link tag, 149
named URL mapping, 150
reverse testing, 152
/showArtist/ URL, 149
static text, 140
unit-testing, 151

view property, 143

V

validate() method, 77
Validation state diagram, 121

W, X

watchedResources, 309
Where queries

associations, 206, 207
basics, 204, 205
conjunctions/disjunctions, 206
example, 209
functions, 208
Groovy’s findAll method, 204
operators, 205
subqueries, 207, 208

withTransaction method, 240

Y, Z

yui-minify-resources plug-in, 328

The Definitive Guide to

Grails 2

n n n

Jeff Scott Brown

Graeme Rocher

The Definitive Guide to Grails 2

Copyright © 2013 by Jeff Scott Brown and Graeme Rocher

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is

concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction

on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic

adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted

from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied

specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser

of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright

Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.

Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to

prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4377-9

ISBN-13 (electronic): 978-1-4302-4378-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every

occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and

to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified

as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither

the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be

made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning

Lead Editor: Douglas Pundick

Technical Reviewer: Graeme Rocher

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan Gennick,

Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey

Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Katie Sullivan

Copy Editor: Thomas McCarthy

Compositor: Bytheway Publishing Services

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,

New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions

and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing

web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at www.

apress.com. For detailed information about how to locate your book’s source code, go to www.apress.com/source-code.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com
http://www.apress.com/source-code

To Mom.
Thanks for everything.

—Jeff Scott Brown

To Birjinia.
Thanks for being you. Maite zaitut.

—Graeme Rocher

v

Contents

n About the Author ..xiii

n About the Technical Reviewer ...xiv

n Acknowledgments ...xv

n Chapter 1: The Essence of Grails ..1

Simplicity and Power ..1

Grails, the Platform ...2

Living in the Java Ecosystem ...3

Installing and Configuring Grails ..4

Creating Your First Application ...5

Step 1: Creating the Application ...5

Step 2: Creating a Controller...6

Step 3: Printing a Message ...8

Step 4: Testing the Code ...8

Step 5: Running the Tests ...9

Step 6: Running the Application..10

Grails Interactive Mode ...12

Summary ..13

n Chapter 2: Getting Started with Grails ..15

What Is Scaffolding?...15

Creating a Domain ..15

Introducing Dynamic Scaffolding ...17

The Create Operation ..19

The Read Operation ..21

 n CONTENTS

vi

The Update Operation ...23

The Delete Operation ..24

Static Scaffolding ...25

Generating a Controller ...25

Generating the Views ..29

Being Environmentally Friendly ..31

Configuring Data Sources ...32

The DataSource.groovy File ..32

Configuring a MySQL Database ..34

Configuring a JNDI Data Source ...37

Supported Databases ...37

Deploying the Application ...38

Deployment with run-war ...38

Deployment with a WAR file ...39

Summary ..40

n Chapter 3: Understanding Domain Classes ..41

Persisting Fields to the Database ...41

Validating Domain Classes ...42

Using Custom Validators ...45

Understanding Transient Properties ...45

Customizing Your Database Mapping ...47

Building Relationships ..49

Extending Classes with Inheritance ...52

Embedding Objects ..56

Testing Domain Classes ...58

Summary ..61

n Chapter 4: Understanding Controllers ..63

Defining Controllers ..63

Setting the Default Action ...64

Logging ...65

Logging Exceptions ..66

Accessing Request Attributes ...66

Using Controller Scopes ...67

Understanding Flash Scope ..68

Accessing Request Parameters ..70

vii

 n CONTENTS

Request Parameter Type Conversions ..70

Rendering Text ..72

Redirecting a Request ..73

Creating a Model ..74

Rendering a View..74

Finding the Default View ...75

Selecting a Custom View ..75

Rendering Templates ..75

Performing Data Binding ..76

Validating Incoming Data ..77

The Errors API and Controllers ..77

Data Binding to Multiple Domain Objects ...78

Data Binding with the bindData Method ...79

Data Binding and Associations ...79

The Bindable Constraint ...80

Working with Command Objects ..81

Defining Command Objects ..81

Using Command Objects ..82

Imposing HTTP Method Restrictions ..83

Implementing an Imperative Solution ...83

Taking Advantage of a Declarative Syntax ..84

Controller IO ..84

Handling File Uploads ...85

Reading the Request InputStream ..87

Writing a Binary Response ...87

Using Simple Interceptors ..88

Before Advice ..88

After Advice ..89

Testing Controllers ..89

Controllers in Action ...92

Creating the gTunes Home Page...92

Adding the User Domain Class ...93

Adding a Login Form ..94

Implementing Registration ...96

Testing the Registration Code ...99

Allowing Users to Log In ...100

 n CONTENTS

viii

Testing the Login Process ...102

Summary ..103

n Chapter 5: Understanding Views ..105

The Basics ..105

Understanding the Model ...106

Page Directives ...107

Groovy Scriptlets ..107

GSP As GStrings ..108

Built-in Grails Tags ...109

Setting Variables with Tags ...109

Logical Tags ..109

Iterative Tags ..110

Filtering and Iteration ...111

Grails Dynamic Tags ...113

Linking Tags ..114

The createLink and resource Tags ...115

Creating Forms and Fields ..116

Validation and Error Handling ...121

Paginating Views ..122

Rendering GSP Templates...129

Creating Custom Tags ...133

Creating a Tag Library ...133

Custom Tag Basics..134

Testing a Custom Tag ..135

Summary ..137

n Chapter 6: Mapping URLs ..139

Understanding the Default URL Mapping ...139

Including Static Text in a URL Mapping ..140

Removing the Controller and Action Names from the URL ...140

Embedding Parameters in a Mapping ..141

Specifying Additional Parameters ..143

Mapping to a View ..143

Applying Constraints to URL Mappings ..144

Including Wildcards in a Mapping...145

Mapping to HTTP Request Methods ...146

ix

 n CONTENTS

Mapping HTTP Response Codes ...147

Taking Advantage of Reverse URL Mapping ...149

Named URL Mappings ..150

Defining Multiple URL Mappings Classes ...151

Testing URL Mappings ..151

Summary ..153

n Chapter 7: Internationalization ...155

Localizing Messages ..155

Defining User Messages ...155

Retrieving Message Values ...157

Using URL Mappings for Internationalization ...159

Using Parameterized Messages ...160

Using java.text.MessageFormat ...160

Using the message Tag for Parameterized Messages ..161

Using Parameterized Messages for Validation ...162

Using messageSource ..165

Summary ..167

n Chapter 8: Ajax ..169

Writing Ajax Code ...169

Ajax in Action ..169

Changing Your Ajax Provider ...171

Asynchronous Form Submission ..172

Fun with Ajax Remote Linking ..176

Adding Effects and Animation ..184

Ajax-Enabled Form Fields...184

A Note on Ajax and Performance ..188

Summary ..188

n Chapter 9: GORM ...191

Persistence Basics ...191

Reading Objects ..191

Listing, Sorting, and Counting ...192

Saving, Updating, and Deleting ...193

Associations ...193

Relationship Management Methods ...195

 n CONTENTS

x

Transitive Persistence...195

Querying ...196

Dynamic Finders ...196

Criteria Queries ...198

Detached Criteria Queries ...202

Where Queries ..204

Query by Example ...209

HQL and SQL ...209

Pagination ...210

Configuring GORM ..211

SQL Logging ...211

Specifying a Custom Dialect ...211

Other Hibernate Properties ...212

The Semantics of GORM ...213

The Hibernate Session ..213

Session Management and Flushing ..214

Obtaining the Session ...215

Automatic Session Flushing ...217

Transactions in GORM ..218

Detached Objects ...220

The Persistence Life Cycle..221

Reattaching Detached Objects ...221

Merging Changes ..223

Performance Tuning GORM ...223

Eager vs. Lazy Associations ..223

Batch Fetching ..226

Caching ...227

Inheritance Strategies ..229

Locking Strategies ..229

Events Auto Time Stamping ..231

Summary ..232

n Chapter 10: Services ...233

Understanding Service Basics ..233

Services and Dependency Injection ...234

Services in Action ...235

xi

 n CONTENTS

Defining a Service ..236

Configuring Service Bean Properties ..237

Caching Service Methods ...237

Using a Service ...238

Managing Transactions...239

Scoping Services ..241

Testing Services ...241

Exposing Services ..243

Summary ..248

n Chapter 11: Integration and Dependency Management ..249

Grails and Configuration ...249

Configuration Basics ...249

Environment-Specific Configuration ...250

Configuring Logging ...250

Stack Trace Filtering ...252

Externalized Configuration ...253

Declaring Dependencies ...254

Inheriting Dependencies ...256

Declaring Repositories..256

Understanding the Grails Build System ..260

Creating Gant Scripts ..262

Command-Line Variables ..263

Parsing Command-Line Arguments ..264

Documenting Your Scripts ..265

Reusing More of Grails ...266

Bootstrapping Grails from the Command Line ..266

Gant in Action ...267

Continuous Integration with Hudson ..273

Adding Support to Your Favorite IDE ...277

Using The Groovy/Grails Tool Suite (GGTS) ...278

Using Spring Tool Suite (STS) and Eclipse ..281

IntelliJ IDEA ..282

NetBeans ..282

Text Editors ...283

Integration with E-mail Servers ..284

Deployment ..287

xii

Deploying with Grails ..288

Deploying to a Container ..288

Application Versioning and Metadata ...288

Customizing the WAR ..289

Summary ..291

n Chapter 12: Plug-ins ..293

Plug-in Basics ..293

Plug-in Discovery ...293

Supplying Application Artefacts ..299

Plug-in Hooks ...299

Providing Spring Beans ..304

Dynamic Spring Beans Using Conventions ...307

Plug-in Events and Application Reloading ..309

Modifying the Generated WAR Descriptor ...311

Packaging and Distributing a Grails Plug-in ...312

Local Plug-in Repositories ..314

Plug-ins in Action ...315

Adding Behavior With Plug-ins ...315

Specifying Plug-in Locations on the File System ...317

Plug-ins for Application Modularity ..318

Using the Resources Plug-in ..325

Using the Database Migration Plug-in ..329

Summary ..334

n Index ..335

xiii

About the Author

 Jeff Scott Brown is an engineer at SpringSource, where he works as a member
of the Groovy and Grails development team. Jeff, a technologist for nearly 20
years, has been a member of the Grails team since the framework’s very early
days. Earlier he was part of G2One, the Groovy/Grails company that eventually
became part of SpringSource.

xiv

About the Technical Reviewer

 Graeme Rocher, a software engineer, a consultant, and an expert in dynamic
language, serves as head of Grails Development at SpringSource (www.
springsource.com). Graeme is the project lead of the open source Grails web
application framework (http://grails.org) and a coauthor of The Definitive Guide to
Grails (Apress). With Jeff Scott Brown, he is also an author of the present book.

http://www.springsource.com
http://www.springsource.com
http://grails.org

	Cover
	Title Page
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments

	Chapter 1: The Essence of Grails
	Simplicity and Power
	Grails, the Platform
	Living in the Java Ecosystem
	Installing and Configuring Grails
	Creating Your First Application
	Step 1: Creating the Application
	Step 2: Creating a Controller
	Step 3: Printing a Message
	Step 4: Testing the Code
	Step 5: Running the Tests
	Step 6: Running the Application

	Grails Interactive Mode
	Summary

	Chapter 2: Getting Started with Grails
	What Is Scaffolding?
	Creating a Domain
	Introducing Dynamic Scaffolding
	The Create Operation
	The Read Operation
	The Update Operation
	The Delete Operation

	Static Scaffolding
	Generating a Controller
	Generating the Views

	Being Environmentally Friendly
	Configuring Data Sources
	The DataSource.groovy File
	Configuring a MySQL Database
	Configuring a JNDI Data Source
	Supported Databases

	Deploying the Application
	Deployment with run-war
	Deployment with a WAR file

	Summary

	Chapter 3: Understanding Domain Classes
	Persisting Fields to the Database
	Validating Domain Classes
	Using Custom Validators
	Understanding Transient Properties
	Customizing Your Database Mapping
	Building Relationships
	Extending Classes with Inheritance
	Embedding Objects
	Testing Domain Classes
	Summary

	Chapter 4: Understanding Controllers
	Defining Controllers
	Setting the Default Action
	Logging
	Logging Exceptions
	Accessing Request Attributes
	Using Controller Scopes
	Understanding Flash Scope
	Accessing Request Parameters
	Request Parameter Type Conversions
	Rendering Text
	Redirecting a Request

	Creating a Model
	Rendering a View
	Finding the Default View
	Selecting a Custom View
	Rendering Templates

	Performing Data Binding
	Validating Incoming Data
	The Errors API and Controllers
	Data Binding to Multiple Domain Objects
	Data Binding with the bindData Method
	Data Binding and Associations
	The Bindable Constraint

	Working with Command Objects
	Defining Command Objects
	Using Command Objects

	Imposing HTTP Method Restrictions
	Implementing an Imperative Solution
	Taking Advantage of a Declarative Syntax

	Controller IO
	Handling File Uploads
	Reading the Request InputStream
	Writing a Binary Response

	Using Simple Interceptors
	Before Advice
	After Advice

	Testing Controllers
	Controllers in Action
	Creating the gTunes Home Page
	Adding the User Domain Class
	Adding a Login Form
	Implementing Registration
	Testing the Registration Code
	Allowing Users to Log In
	Testing the Login Process

	Summary

	Chapter 5: Understanding Views
	The Basics
	Understanding the Model
	Page Directives
	Groovy Scriptlets
	GSP As GStrings

	Built-in Grails Tags
	Setting Variables with Tags
	Logical Tags
	Iterative Tags
	Filtering and Iteration

	Grails Dynamic Tags
	Linking Tags
	The createLink and resource Tags
	Creating Forms and Fields
	Validation and Error Handling
	Paginating Views
	Rendering GSP Templates
	Creating Custom Tags
	Creating a Tag Library
	Custom Tag Basics
	Testing a Custom Tag

	Summary

	Chapter 6: Mapping URLs
	Understanding the Default URL Mapping
	Including Static Text in a URL Mapping
	Removing the Controller and Action Names from the URL
	Embedding Parameters in a Mapping
	Specifying Additional Parameters
	Mapping to a View
	Applying Constraints to URL Mappings
	Including Wildcards in a Mapping

	Mapping to HTTP Request Methods
	Mapping HTTP Response Codes
	Taking Advantage of Reverse URL Mapping
	Named URL Mappings
	Defining Multiple URL Mappings Classes
	Testing URL Mappings
	Summary

	Chapter 7: Internationalization
	Localizing Messages
	Defining User Messages
	Retrieving Message Values
	Using URL Mappings for Internationalization

	Using Parameterized Messages
	Using java.text.MessageFormat
	Using the message Tag for Parameterized Messages

	Using Parameterized Messages for Validation
	Summary

	Chapter 8: Ajax
	Writing Ajax Code
	Ajax in Action
	Changing Your Ajax Provider
	Asynchronous Form Submission
	Fun with Ajax Remote Linking
	Adding Effects and Animation
	Ajax-Enabled Form Fields
	A Note on Ajax and Performance
	Summary

	Chapter 9: GORM
	Persistence Basics
	Reading Objects
	Listing, Sorting, and Counting

	Associations
	Relationship Management Methods

	Querying
	Detached Criteria Queries
	Where Queries

	Configuring GORM
	SQL Logging
	Specifying a Custom Dialect

	The Semantics of GORM
	Session Management and Flushing
	Obtaining the Session

	Transactions in GORM
	Detached Objects
	The Persistence Life Cycle
	Reattaching Detached Objects
	Merging Changes

	Performance Tuning GORM
	Eager vs. Lazy Associations
	Inheritance Strategies

	Locking Strategies
	Events Auto Time Stamping
	Summary

	Chapter 10: Services
	Understanding Service Basics
	Services and Dependency Injection
	Services in Action
	Defining a Service
	Configuring Service Bean Properties
	Caching Service Methods
	Using a Service

	Managing Transactions
	Scoping Services
	Testing Services
	Exposing Services
	Summary

	Chapter 11: Integration and Dependency Management
	Grails and Configuration
	Configuration Basics
	Environment-Specific Configuration
	Configuring Logging
	Stack Trace Filtering
	Externalized Configuration

	Declaring Dependencies
	Inheriting Dependencies
	Declaring Repositories

	Understanding the Grails Build System
	Creating Gant Scripts
	Command-Line Variables
	Parsing Command-Line Arguments
	Documenting Your Scripts
	Reusing More of Grails
	Bootstrapping Grails from the Command Line
	Gant in Action

	Continuous Integration with Hudson
	Adding Support to Your Favorite IDE
	Using The Groovy/Grails Tool Suite (GGTS)
	Using Spring Tool Suite (STS) and Eclipse
	IntelliJ IDEA
	NetBeans
	Text Editors

	Integration with E-mail Servers
	Deployment
	Deploying with Grails
	Deploying to a Container
	Application Versioning and Metadata
	Customizing the WAR

	Summary

	Chapter 12: Plug-ins
	Plug-in Basics
	Plug-in Discovery
	Supplying Application Artefacts
	Plug-in Hooks
	Providing Spring Beans
	Dynamic Spring Beans Using Conventions
	Plug-in Events and Application Reloading
	Modifying the Generated WAR Descriptor
	Packaging and Distributing a Grails Plug-in
	Local Plug-in Repositories

	Plug-ins in Action
	Adding Behavior With Plug-ins

	Specifying Plug-in Locations on the File System
	Plug-ins for Application Modularity

	Using the Resources Plug-in
	Using the Database Migration Plug-in
	Summary

	Index
	A
	B
	C
	D, E
	F
	G
	H
	I
	J, K
	L
	M
	N
	O
	P, Q
	R
	S
	T
	U
	V
	W, X
	Y, Z

