‘V.-,
. .i;l k. . s . ..

For Developers and Designers Using
Flash CS4 Professional

i

ActionScript 3.0
Quick Reference

David Stiller,
Adobe Rich Shupe,
Developer Jen deHaan &
Library Darren Richardson

O'REILLY® !,.*.,‘

vww .allitebooks.cond



http://www.allitebooks.org

Flash/ActionScript

O’REILLY"

ActionScript 3.0 Quick Reference Guide

Written by four of the top experts in
the industry, including a member of
Adobe’s Flash product team, this

: guide is designed specifically to help
Flash designers and developers make the leap
from ActionScript 2.0 to ActionScript 3.0 quickly
and painlessly. Formatted so you can find any
topic easily, ActionScript 3.0 Quick Reference
Gutide explains:

¢ Object-oriented programming (OOP)
concepts, such as packages and classes

= ActionScript 3.0 features and player enhance-
ments that improve performance

*«  Workflow differences between ActionScript
2.0 and ActionScript 3.0 including tools,
code editing, component sets, and image
and font rendering

= Where did it go? A guide to help you find
familiar features in ActionScript 3.0, such
as global functions, operators, properties
and statements

* How do I? Step-by-step solutions for
performing tasks with ActionScript 3.0,
including input, sound, video, display, events,
text, and more

Also included are overviews of Flash and
ActionScript features. ActionScript 3.0 is a huge
upgrade to Flash’s programming language
and this guide helps you upgrade your skills
to match it.

www.oreilly.com
adobedeveloperlibrary.com

US $34.99 CAN $34.99
ISBN: 978-0-596-51735-9

53499
1 UMAOO OO i

780596"517359

Safari

Books Ontme

vww .allitebooks.cond

“No matter wheat your

background, this book
will provide you with
excellent knowledge,
insight, and even a little
bit of wisdom in the
realm of Flash and
ActionScript.”

—Branden Hall, CTO,
Automatic Studios Lrd.
from the Foreword

David Stiller is a resident
author at CommunityMX.com
and a regular on the Flash and
ActionScript support forums.

Rich Shupe, co-author of
Learning ActionScript 3.0
(O'Reilly), teaches ActionScript
programming at New York’s
School of Visual Arts” MFA
Computer Art Department.

Jen deHaan is a software

quality engineer on the Flash
authoring team at Adobe
Systems, Inc.

Darren Richardson writes
articles for Web Designer
Magazine and community-
related sites.

**2 Free online edition
for 45 days with
purchase of this book.
Details on last page.


http://www.allitebooks.org

The ActionScript 3.0
Quick Reference Guide

For Developers and Designers
Using Flash CS4 Professional

David Stiller, Rich Shupe, Jen deHaan, and
Darren Richardson

O’REILLY"

Beijing - Cambridge - Farnham - KéIn - Sebastopol + Taipei « Tokyo

[vww allitebooks.cond



http://www.allitebooks.org

The ActionScript 3.0 Quick Reference Guide: For Developers and Designers Using Flash
(54 Professional
by David Stiller, Rich Shupe, Jen deHaan, and Darren Richardson

Copyright © 2009 David Stiller and Rich Shupe. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol,
CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://safari.oreilly.com). For
more information, contact our corporate/institutional sales department:
(800) 998-9938 or corporate@oreilly.com.

Editor: Robyn Thomas Indexer: Ellen Troutman Zaig
Production Editor: Michele Filshie Cover Designer: Karen Montgomery
Copyeditor: Sohaila Abdulali Interior Designer: David Futato
Technical Editors: Matthew Woodruff, Illustrators: Robert Romano and Jessa-
Anselm Bradford, and Eric Kramer myn Read

Proofreader: Nancy Bell

Printing History:
October 2008: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The ActionScript
3.0 Quick Reference Guide: For Developers and Designers Using Flash CS4 Profes-
sional, the image of the Ophiops, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and O’Reilly Media, Inc. was aware of a trademark claim, the designations have
been printed in caps or initial caps

While every precaution has been taken in the preparation of this book, the publisher
and authors assume no responsibility for errors or omissions, or for damages re-
sulting from the use of the information contained herein.

RepKover.

=F®=  This book uses RepKover, a durable and flexible lay-flat binding.
ISBN: 978-0-596-51735-9

M]

1223315717

vww allitebooks.conl



http://safari.oreilly.com
http://www.allitebooks.org

' ‘ Adobe
‘ Developer

Adobe | Library

Adobe Developer Library, a copublishing partnership between O’Reilly Media Inc.
and Adobe Systems, Inc., is the authoritative resource for developers using Adobe
technologies. These comprehensive resources offer learning solutions to help devel-
opers create cutting-edge interactive web applications that can reach virtually any-
one on any platform.

With top-quality books and innovative online resources covering the latest tools for
rich-Internet application development, the Adobe Developer Library delivers expert
training, straight from the source. Topics include ActionScript, Adobe Flex®, Adobe
Flash®, and Adobe Acrobat® software.

Get the latest news about books, online resources, and more at adobedeveloper-
library.com.

vww allitebooks.conl



http://www.allitebooks.org

To Scott Joplin, for doing his
thing like nobody’s business, then
sharing it.

-- David Stiller

To Jodi, Sally, and Claire for
putting up with so much.

-- Rich Shupe

vww allitebooks.conl



http://www.allitebooks.org

Table of Contents

Foreword .......oonniiii Xi

Preface ..ot xiii

Partl. ActionScript 3.0 Introduced
Introducing ActionScript3.0 .....ooviiiiiiiiii i 3
Examining ActionScript 3.0, the Language 5
Exploring Flash Player API Updates 15
Understanding Players and Support 18
Learning ActionScript 3.0 on the Heels of 2.0 20
Deciding to Migrate or Write Code from Scratch 21
Discovering What You Need to Work with ActionScript 3.0 ............. 23
Flash CS4 Professional/Flex Builder 3 24
Flash Player 9 or Higher 24
Using Other Code Editors with Flash 32
Looking at the Changes in ActionScript3.0 .........covvvvvivnnnnnn.. 59
Major Changes and Obsolete Code 59
Major Syntax and Structure Changes 77
Additional ActionScript 3.0 Resources 84
Exploring the Benefits of Using ActionScript 3.0 ..................... 85
Performance 86
Efficiency 93
Consistency 96
Standards and Portability Among Other Technologies 100

[vww allitebooks.cond



http://www.allitebooks.org

Partll. ActionScript and the Flash (54 Authoring Tool

5. Creatingand WorkingwithCode ...........ccovviiiiiiiiiiinninns 105
Thinking in Terms of the Timeline 106
New Features in the Actions Panel and Script Windows 112
Setting ActionScript Preferences 120
Associating FLA Files with AS Files 126
Using Script Assist 130
6. CreatingaDocumentClass ..........ccovviiiiiiiinininennnnen. 137
7. Working with Library and Linkage Changes ........................ 145
Linkages Now Reference Classes 145
8.  Copying Motion as ActionScript3.0 .........ccoviiiiniiniinnennens 163
Copying Motion 163
Applying Motion to Other Objects 166
9.  Using ActionScript 3.0 Components ..........covvvenvneinennnnnnns 179
Overview of the Component Set 179
New and Removed Components 185
Changes in Writing Code for Components 188
Changing the Appearance of Components 199
10. Making Up for a Reduced ComponentSet ............ccovvvvvnenntn 207
Working Without Data Components in ActionScript 3.0 207
ActionScript 2.0 Components in ActionScript 3.0 SWF Files 219
Exploring Third-Party UI Components 224
11.  Debugging and Troubleshooting ................ccoevviiiinaa.n. 231
Debugging Is a Good Thing 231
Testing Your ActionScript 3.0 Code 232
Reviewing Improvements in Debugging Over ActionScript 2.0 237
Exploring the Compiler Errors Panel 240
Using the Enhanced Debugging Workspace 250

vi | Table of Contents

[vww allitebooks.cond



http://www.allitebooks.org

Partlll. HowDoI?

12

13.

14.

How Do lDrawwithCode? ......ccvvrviriiiiiiiiiiiennennes

12.0 Introduction

12.1 Creating a Display Object Dynamically
12.2 Referencing an Object’s Graphics Property
12.3 Defining a Line Style

12.4 Drawing a Line

12.5 Drawing a Curve

12.6 Defining a Fill Style

12.7 Drawing a Rectangle

12.8 Drawing a Rectangle with Rounded Corners
12.9 Drawing a Circle

12.10 Creating a Gradient Fill

12.11 Using a Drawn Shape as a Dynamic Mask
12.12 Caching Vector as Bitmap

12.13 Applying a Simple Bitmap Filter

How Do | Work with the Display List? .............ccovvvnvnnen.

13.0 Introduction

13.1 Choosing Which Type of Display Object to Use
13.2 Creating a New Display Object

13.3 Adding a Display Object to the Display List

13.4 Specifying the Depth of a Display Object

13.5 Finding a Display Object

13.6 Removing a Display Object from the Display List
13.7 Working with Children of a Display Object Container
13.8 Working with Parents of a Display Object

13.9 Casting a Display Object from One Type to Another
13.10 Changing the Parent of a Display Object

13.11 Referencing the Stage Through a Display Object

How Do I Work withEvents? ........covvviiviiiniinninnennennns

14.0 Introduction

14.1 Understanding Event Listeners

14.2 Capturing Mouse Events

14.3 Understanding Event Flow

14.4 Using Event Bubbling

14.5 Using the target and currentTarget Event Properties
14.6 Simulating a Mouse Up Outside Event

14.7 Capturing Frame Events

... 267

267
268
269
270
271
272
273
274
274
276
277
278
280
281

283
283
284
286
287
289
291
292
293
296
297
299
300

303
303
303
305
307
308
310
311
312

Table of Contents | vii

[vww allitebooks.cond



http://www.allitebooks.org

14.8 Improving Performance by Removing Event Listeners 314

14.9 Capturing Keyboard Events 315
14.10 Capturing Stage Events 317
14.11 Using a Timer to Dispatch Events 321
14.12 Dispatching Your Own Events 323
14.13 Manually Calling Event Listener Functions 325
14.14 Capturing an Event Before It Reaches Its Target 326
14.15 Setting the Execution Order of Events 328
14.16 Using Weak Listeners 330
15. HowDolWorkwithText? ...........cooiiiiiiiiiiiiiiiiiin, 333
15.0 Introduction 333
15.1 Creating a Text Field 334
15.2 Styling a Text Field 334
15.3 Creating a Password Field 336
15.4 Focusing a Text Field 337
15.5 Populating a Text Field 338
15.6 Automatically Sizing a Text Field 339
15.7 Scrolling a Text Field 341
15.8 Using Embedded Fonts 343
15.9 Formatting Text Using TextFormat 344
15.10 Formatting Text Using HTML 346
15.11 Formatting Text Using CSS 348
15.12 Adding Hyperlinks to Text 350
15.13 Triggering ActionScript from HTML Links 351
15.14 Selecting Text 352
16.  HowDolWorkwithXML? ............oooviiiiiiiiiiiiiiiii, 355
16.0 Introduction 355
16.1 Creating an XML Object 356
16.2 Loading XML 357
16.3 Reading an Element Node 359
16.4 Reading a Text Node 360
16.5 Working with Multiple Nodes of the Same Name 362
16.6 Reading an Attribute 363
16.7 Finding Content Using Shorthand 364
16.8 Finding Content Using Conditionals 366
16.9 Reading HTML or Entities in XML Nodes 367
16.10 Deleting XML 369
16.11 Writing XML 369
16.12 Writing XML with Variables 372
16.13 Sending and Loading XML 373
viii | Table of Contents

vww allitebooks.conl



http://www.allitebooks.org

17.  How Do | Work with External Assets? ..................oooveininn 377
17.0 Introduction 377
17.1 Loading and Applying a Cascading Style Sheet 378
17.2 Loading and Displaying an Image or SWF File 380
17.3 Communicating with an ActionScript 3.0 Loaded SWF 382
17.4 Communicating with an ActionScript 2.0 Loaded SWF 384
17.5 Unloading an Image or SWF File 387
17.6 Loading and Playing a Sound 391
17.7 Setting the Volume and Pan of a Sound 392
17.8 Visualizing the Amplitude of a Sound 393
17.9 Unloading a Sound 395
17.10 Loading and Playing a Video 397
17.11 Unloading a Video 399

PartIV. Migration

18. ASample Migration .........ccoviiiiiiiiiiieiiiiiieneeneenaenn, 403
A Simple Particle System 404
ActionScript 2.0 404
ActionScript 3.0 413
Migration Sample Summary 424

19. WhereDidItGo? ... 425
Introduction 425
Code Comparisons 426

T D N 451

Table of Contents

| ix






Foreword

The battle, as it stood, had clearly defined lines. The artists liked ActionScript
1.0 and the programmers, let’s just say they weren’t happy (if they used Flash
at all!).

Then ActionScript 2.0 appeared and many artists started getting nervous until
they realized that they could basically ignore it. Programmers were a bit more
happy until they realized that the changes were mostly superficial. But in many
cases, it was enough to bring new programmers to Flash—which made the
artists even more nervous.

Fast forward to just a couple of years ago and ActionScript 3.0 rears its head.
The programmers embrace it like a brother, like the saviour of the Flash plat-
form. The artists, for the most part, ran and hid. As they dashed away from
terms like “classes” and “interfaces” they bemoaned the loss of what, for many
of them, was their first programming language.

This was real programming, they said. ActionScript 3.0 had wandered into the
land populated by frightening giants like Java and C++. It wasn’t fun anymore,
it was just scary.

Enter this book and its talented authors.

For the developers reading this, I have a confession to make that will probably
ring true with you as well. At first, ActionScript 3.0 intimidated the heck out
of me. Everything that [ knew how to do was different. It felt like the ground
had been ripped out from under me. It was all sort of familiar, but so many
little things were different, I often felt like it would have been easier for me if
[ hadn’t ever learned ActionScript 1.0 and 2.0. It took me quite a long time to
get a good sense of the language and to get back to that level of comfort I had
with earlier versions.

The good news for you, dear coder, is that if you haven’t yet made that tran-
sition and gained that level of comfort, your road is going to be a lot easier
thanks to this book. Honestly, I'm a bit jealous.

Xi



For the artists reading this, the authors of this book are here to explain that
no, it’s not hard, it’s just different. Different in a way that is more powerful,
that lets your ideas go further. You have been doing “real” programming all
along and this is just the next logical step.

ActionScript 3.0 is a giant of a programming language. There is a lot to learn,
and conquering will take time and patience. But at the end of day (and the end
of this book) you will find that by learning ActionScript 3.0 not only are you
a better Flash developer, but also a better developer period. You’ll have under
your belt a good understanding of many core object-oriented concepts and can
take them to any other language you want to tackle—whether that be Python,
Java, C++, or just about anything else.

No matter what your background, the pages that follow will provide you with
some excellent knowledge, insight, and even a little bit of wisdom in the realm
of Flash and ActionScript. I'm lucky enough to personally know some of the
authors of this book so I can honestly tell you that you’re about to learn from
some of the best developers and teachers I know.

Happy learning!

—Branden Hall
CTO, Automatic Studios Ltd.
September 2008

xii | Foreword



Preface

ActionScript 3.0 introduced Flash developers to a new realm. In this improved
territory, ActionScript has emerged from the gym with a new physique. The
language is more powerful, more efficient, and—thanks to a new internal con-
sistency—easier to learn for those new to the Flash Platform. As the saying
goes, change is a good thing. On the other hand, too much of anything can be,
well, nerve-wracking. For many, ActionScript’s change equates to a chronic
attack of growing pains. Others, used to the paradigms and occasional quirks
of ActionScript 2.0, find the new ActionScript 3.0 practically unrecognizable.

In any case, the ongoing support for ActionScript 1.0 and 2.0, in both the Flash
authoring environment and Flash Player, means that learning ActionScript 3.0
is, for the immediate future, still an option. For now, you can choose when to
learn the new version of the language (and to what degree), applying your
newly earned knowledge on a project-by-project basis, if you want. Sometimes,
it’ll be easier to decide when to use ActionScript 3.0 than to decide whether
you should migrate existing code or start from scratch. For example, if you
want significant performance gains, or to use a new feature specific to Action-
Script 3.0, using the new language may be a foregone conclusion. How to arrive
at completed ActionScript 3.0 code, however, is another question, and that’s
where this book is useful.

This book aims to show you where Flash CS4 Professional and ActionScript
3.0 differ from prior releases of Flash and ActionScript, respectively. You can
use this text as a guide, helping you decide if new application features warrant
an upgrade, and assisting with the steeper learning curve imposed by the more
robust new language. Perhaps most importantly, this book will increase your
familiarity with ActionScript 3.0 structure and syntax, letting you adjust (or
abandon) ActionScript 2.0 coding practices more easily.

xiii



What Sets This Book Apart

Simple: Essentially, we’ve created two books in one. Or put another way, there
are two sections to the book, each using its own learning methodology.

Part I and Part IT are written in classic tech-book formatting and prose. General
concepts are introduced and followed with expository prose and simple, de-
monstrative tutorials as necessary.

Part IIT and Part IV (especially Part III) are pure reference sections, designed
for you to quickly look up and learn from “How Do I...?” scenarios.

Think of the book as a seminar. The first half is presentation; the latter half is
Q&A.

What's in This Book

When ActionScript 3.0 hit the streets, the reaction from the Flash crowd was
enormous, and not without a tremor of intimidation. Certain questions have
emerged—on the forums, in classrooms, user groups, and at conferences—
more often than others. This book answers the questions we most often en-
counter, questions that seem to pose the biggest stumbling blocks for longtime
users. The book’s in a hybrid format to serve two needs. The first half of the
book is something like a fireside chat, providing fairly broad coverage of Flash
CS4 Professional, and select overviews of ActionScript 3.0. The second half
presents many focused examples of ActionScript 3.0 syntax in small, digestible
chunks. Both halves are chock-full of hands-on demonstrations. Ideally, you
can hop between the two, and gear up or down to the pace that best suits your
needs at the time. Navigate the Table of Contents and/or Index to find quick
answers to specific questions about ActionScript 3.0 and its application.

Part I: Introduction to ActionScript 3.0

Part I of the text introduces a variety of tools to write ActionScript 3.0, while
relying on Flash CS4 Professional as its primary authoring environment. It then
discusses some of the attributes that make ActionScript 3.0 stand head and
shoulders above its predecessors. Topics include power and performance, the
benefits of strong data typing (including robust compile time warnings and
error messages) and how the new language architecture can improve your
workflow.

Chapter 1, Introducing ActionScript 3.0
Chapter 2, Discovering What You Need to Work with ActionScript 3.0

xiv | Preface



Chapter 3, Looking at the Changes in ActionScript 3.0
Chapter 4, Exploring the Benefits of Using ActionScript 3.0

Part Il: ActionScript and the Flash (54 Authoring Tool

Part I walks you through the Flash CS4 authoring tool with keen attention to
ActionScript-related interface elements, and helps you decide when to use the
timeline, and when to use classes, for coding. It also discusses the creation of
assets at runtime, how to convert timeline animation into ActionScript (for
manipulation and reuse), how to use, skin, and style user interface compo-
nents, and how to troubleshoot your code when things go awry.

Chapter 5, Creating and Working with Code

Chapter 6, Creating a Document Class

Chapter 7, Working with Library and Linkage Changes
Chapter 8, Copying Motion as ActionScript 3.0
Chapter 9, Using ActionScript 3.0 Components
Chapter 10, Making Up for a Reduced Component Set
Chapter 11, Debugging and Troubleshooting

PartIll: How Do I?

Part III switches to cookbook-style—a concise look at a problem, solution,
and discussion for each of several issues. This format lets you hone in on syntax
and methodology in easily digestible recipes. It starts off by highlighting the
Graphics class, formerly the Drawing API, which the second half of the book
uses extensively for highly portable, code-only examples. It then discusses the
most significant changes introduced by ActionScript 3.0: the new display ar-
chitecture and event model. Next, you’ll discover new ways of using text for
display and interactivity. Finally, you’ll concentrate on input/output pro-
cesses, including sending and loading XML and variables, as well as loading
images, external SWFs, sound, and video.

Chapter 12, How Do I Draw with Code?

Chapter 13, How Do I Work with the Display List?
Chapter 14, How Do I Work with Events?

Chapter 15, How Do I Work with Text?

Chapter 16, How Do I Work with XML?

Chapter 17, How Do I Work with External Assets?

Preface | xv



Part IV: Migration

Part IV distills everything covered in Part I through Part I1I, and applies those
skills to the issue of migration—updating existing projects written in Action-
Script 2.0 to use ActionScript 3.0 code. This concept’s first application is the
migration of a simple particle system. The exercise highlights as many migra-
tion issues as possible in a short example, and helps you ask an important
question related to your own projects: should you migrate or rewrite? The final
chapter of the book serves as a cross-reference, and a code-comparison guide.
Specific migration issues are demonstrated in quick syntax examples, com-
paring ActionScript 2.0 and 3.0 uses. Where applicable, references to more
complete discussions elsewhere in the book are included, and select new ma-
terial in the same comparative format is also added.

Chapter 18, A Sample Migration
Chapter 19, Where Did It Go?

What's Not in This Book

Due to the size and focus constraints of this book, many aspects of ActionScript
usage are necessarily excluded. First and foremost, this book focuses specifi-
cally on Flash CS4 Professional, although most of the examples work just fine
in Flash CS3. The Flash Platform has grown considerably, so if you prefer other
ActionScript coding environments, including Flex Builder, FDT, or
FlashDevelop (or even text editors, such as Notepad or TextMate, in conjunc-
tion with the Flex SDK command-line compiler), you may want to skim
through several of the examples to see if you think they’ll be helpful. In general,
you can easily adapt most of the book’s examples for ActionScript 3.0 projects
written in other tools, and you are introduced to a handful of those tools in
Chapter 2. However, very little additional material, such as Flex Builder
MXML documents or project files, is supplied. This book is a migration ref-
erence for Flash professionals, so you’ll see mostly FLA and AS files.

Secondly, this book is aimed at relatively experienced ActionScript 2.0 coders
who are making the move to ActionScript 3.0. It neither provides language
essentials nor serves as a comprehensive reference. As such, if you’re not al-
ready comfortable with ActionScript, and want to focus a bit more on funda-
mentals, you should seek out Learning ActionScript 3.0: A Beginner’s Guide by
Rich Shupe and Zevan Rosser (O’Reilly, 978-0-596-52787-7). Conversely, if
you’re looking for more of an in-depth reference book, you may prefer Essential
ActionScript 3.0 by Colin Moock (O’Reilly, 978-0-596-52694-8).

xvi | Preface



Finally, while it hits many of the high points, this volume doesn’t cover all
areas of ActionScript 3.0 interest, and may not satisfy advanced users’ needs.
If you want to immerse yourself in the more elaborate capabilities of the lan-
guage, you can either acquire the aforementioned Essential ActionScript 3.0
for broad coverage, or look into additional specialized books such as Action-
Script 3.0 Design Patterns: Object Oriented Programming Techniques by Wil-
liam Sanders and Chandima Cumaranatunge (O’Reilly, 978-0-596-52846-1)
for OOP and design patterns expertise.

Conventions Used in This Book

This book uses the following typographical conventions:

Menu options
Menu options are shown using the - character, such as File-~Open.

Italic
Indicates new terms, URLs, email addresses, file names, and file
extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, envi-
ronment variables, statements, and keywords.

Constant width bold
Shows commands or other text that the user should type literally.

Constant width italic
Shows text that should be replaced with user-supplied values or by values
determined by context.

W
. This is a note. It contains useful information about the
s topic at hand, often highlighting important concepts or

oY
N o .
}1-%“ best practices.

This is a warning. It helps you solve and avoid annoying

W@ problems. Ignore at your own peril.

This Book’s Example Files

You can download the example files for this book at:

http://www.oreilly.com/catalog/9780596517359

Preface | xvii


http://www.oreilly.com/catalog/9780596517359

Note that, although alternative development platforms are discussed briefly,
the examples in this book are presented in the context of classes or timeline
frame scripts intended for use with the Flash authoring tool. Self-contained
examples are typically intended for inclusion in FLA files or as Flash document
classes, but you can adapt them for use in other environments (such as Flex
Builder) without support for those tools.

Using Code Examples

This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You don’t need to
contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code
from this book doesn’t require permission. Selling or distributing a CD-ROM
of examples from O’Reilly books does require permission. Answering a ques-
tion by citing this book and quoting example code doesn’t require permission.
Incorporating a significant amount of example code from this book into your
product’s documentation does require permission.

We appreciate, but don’t require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “The ActionScript 3.0
Quick Reference Guide: For Developers and Designers Using Flash CS4 Profes-
sional” by David Stiller, Rich Shupe, Jen deHaan, and Darren Richardson
Copyright © 2009 David Stiller and Rich Shupe, 978-0-596-51735-9.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Saf When you see a Safari® Books Online icon on the cover of your
ararl  vorice technology book, that means the book is available online

through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets
you easily search thousands of top tech books, cut and paste code samples,
download chapters, and find quick answers when you need the most accurate,
current information. Try it for free at http://safari.oreilly.com.

xviii | Preface

[vww allitebooks.cond



http://safari.oreilly.com
http://www.allitebooks.org

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can find this page at:

http://oreilly.com/catalog/ 9780596517359

Acknowledgments

From David

Thanks to Rich, Jen, Darren, and the gang at O’Reilly. We took a trip to Oz
and had enough adventures to write a book about it! (Rich, you owe me a face-
to-face sit-down with Pentago!) For technical assistance and encouragement,
I'd like to extend gratitude to Marisa Bozza, Tink (Stephen Downs), Greg
Dove, Chris Georgenes, Tom Green, Branden Hall, Keenan Keeling, San
Khong, John Mayhew, Colin Moock, Robert Penner, Nivesh Rajbhandari,
Robert Reinhardt, Steve Schelter, and Kenneth J. Toley. Thanks and love to
my #1 woman, Dawn, who introduced me to Georges Mélies, and my #1 girl,
Meridian, fiir unser Abenteur mit Andersen und den Briidern Grimm.

From Rich

Thanks to David, Jen, and Darren for making me part of the team. Thanks to
Robyn Thomas, Michele Filshie, Steve Weiss, and Dennis Fitzgerald for work-
ing with me again. You’re unmatched in my professional experience. Thanks
to our tech editors Matthew Woodruff, Eric Kramer, and Anselm Bradford.
Thanks to Marisa Bozza, Lee Brimelow, John Dowdell, Richard Galvan, Mally
Gardner, Stefan Gruenwedel, Jeff Kamarer, Vishal Khandpur, San Khong,
John Mayhew, Tony Mowatt, John Nack, Chris Nuuja, Ted Patrick, Nivesh
Ragbhandari, and Adobe. Special thanks to my staff at FMA and Mike Wills,
and my family for endless support. Last but not least, extra special thanks go
to Jodi, Sally, and Claire for everything.

Preface | xix


http://oreilly.com/catalog/ 9780596517359




PART I
ActionScript 3.0 Introduced

Part I seats you comfortably in the ActionScript 3.0 bistro, offers to take your
coat, and gives you a free basket of fresh bread, hot from the oven. You’ll get
drinks, of course, and be presented with a menu that unveils the variety of
tools you can use while exploring ActionScript 3.0. Specials include the Flash
authoring tool and Flash Player 10, with a dash of Flex Builder 3. You’ll also
see a few third-party script editors.

The first chapters touch on a number of ActionScript concepts, explored fur-
ther in Part II, Part 11, and Part IV. These introductory tidbits are intended to
whet your appetite. They give you an overview of the new features of Action-
Script 3.0: what makes it easier to use and more powerful than its predecessor,
how to benefit from its richer warnings and error messages, and how the new
language can improve your workflow by helping you get organized.

Chapter 1, Introducing ActionScript 3.0

Chapter 2, Discovering What You Need to Work with ActionScript 3.0
Chapter 3, Looking at the Changes in ActionScript 3.0

Chapter 4, Exploring the Benefits of Using ActionScript 3.0






CHAPTER 1
Introducing ActionScript 3.0

Ifyou chase perfection, you often catch excellence.

—William Fowble

The term “perfect” is a powerful word. From a practical standpoint, it repre-
sents a state that arguably cannot be achieved. Hey, that’s a relief already! This
book doesn’t expect the impossible. This isn’t the print version of an office
know-it-all, itching for you to slip up. You won’t hear any anxious hand
wringing in these pages over why you haven’t yet upgraded to, much less mas-
tered, ActionScript 3.0. (Yes, even though it was available in Flash CS3 Pro-
fessional.) Instead, the following chapters will take their cue from a sage ob-
servation by William Fowble: If you chase perfection, you often catch excel-
lence. In other words, chin up! Aim for the best and enjoy the road trip.
ActionScript 3.0—the current version of the programming language for the
Adobe Flash Platform—is a language that indeed catches excellence. This
book is designed to explain a bit about why that is. In so doing, our hope is to
help you chase perfection by introducing you to the improved organization,
syntax, and workflows of the new language. Catching excellence, for all of us,
is a matter of practice, and comes with time.

This book is going to introduce you to new ways of thinking about the Flash
Platform. ActionScript 3.0 requires these new ways because the language is
actually structured around them. That’s a big part of why the new language
improves on previous versions. Like its precursor, but to a greater extent,
ActionScript 3.0 is based on a specification called ECMAScript, which is a
standard proposed by a body of experts known as Ecma International. This
group is something like the World Wide Web Consortium (W3C), whose re-
sponsibility includes HTML, XML, CSS, and other widely used markup lan-
guages. Such a standard’s benefit is that ActionScript 3.0 isn’t just an arbitrary
language invented to meet Adobe’s needs. ECMAScript is a relatively mature
specification, already in its third revision. The Ecma International team in-




cludes authorities from industry powerhouses like Microsoft, the Mozilla
Foundation, and Adobe. The specification is built on the collective insight and
success of these diverse experts in the field. Of all the versions of ActionScript,
the current version comes closest into full compliance with this specification
—at this point, closer even than the other famous ECMAScript derivative,
JavaScript. This makes ActionScript 3.0 a model of best practices, habits you
can use in both Flash CS4 Professional and Flex Builder 3. In many cases, you
may even find that these practices benefit your involvement with existing
projects coded in previous versions of ActionScript. Sure, the syntactical de-
tails change, but achievement in programming is all about structure and pur-
pose. It’s the concepts and good habits that carry you.

For the nuts and bolts, the relevant ActionScript Language Reference is always
a mere keystroke away (the F1 key). Even so, a new set of Help docs can be
daunting, especially if you’re already well-versed in ActionScript 2.0. Fortu-
nately, the ActionScript 3.0 documentation is every bit as helpful as it used to
be, even if it looks different. The layout of the Help docs is still organized
around the layout of the language itself—around the classes that define the
objects you will use—and its class entries still summarize the usable apparatus
of each object: its characteristics, called properties; the things it can do, called
methods; and the things it can react to, called events. In the new documenta-
tion, code samples are presented as custom classes, rather than frame scripts.
This requires you test them as standalone, simple text files, according to the
new document class concept described in Chapter 6. Fortunately, this also
means you can test these classes in other programs, such as Flex Builder. This
book will help you get familiar not only with the new language, but also with
the documentation that explains it.

Keep in mind, ramping up to ActionScript 3.0 isn’t merely about learning the
latest syntax: it’s about becoming a better, more efficient programmer. This
isn’t meant to slight ActionScript 2.0 at all, but plenty has changed since its
introduction in late 2003. It’s no exaggeration to say that several aspects of the
language have been completely overhauled. In fact, ActionScript 3.0 requires
an entirely new virtual machine, which is the module inside Flash Player that
interprets compiled ActionScript. As of Flash Player 9, the runtime that dis-
plays Flash movies does so with two virtual machines: AVM1 for legacy SWF
files based on ActionScript 1.0 and 2.0, and the new AVM2 for ActionScript
3.0. That’s a first in the history of Flash Player. Thanks to the new virtual
machine, ActionScript 3.0 runs faster and more efficiently by an order of mag-
nitude. This bodes well for the overriding goal of the new language: to facilitate
a wide range of interactive media and Rich Internet Applications (RIAs)—to
do so simply, with better performance, and highly compatible with industry
standards. As you can imagine, an upgrade of this scale means you may have

4 | Chapter1: Introducing ActionScript 3.0



to reshape some of your current habits. But take heart. Reshape doesn’t nec-
essarily mean tear down and rebuild. As ActionScript has matured, it has con-
sistently moved in the direction it currently stands. Again, honing your skills
in light of ActionScript 3.0 will help you in your current projects and also in
legacy project maintenance. Migration can be intimidating, but much of that
uncertainty comes from trying to find your stride. Once you take the first few
steps, the momentum keeps you going.

Here’s a look at some of the new features.

Examining ActionScript 3.0, the Language

Section 4 of the ECMAScript standard (http://www.ecma-international.org/
publications/files/ECMA-ST/Ecma-262.pdf) defines an important facet of any
language that implements it. Such languages “will provide not only the objects
and other facilities described in this specification but also certain environment-
specific host objects, whose description and behaviour are beyond the scope
of this specification.” In other words, any ECMAScript derivative needs a set
core functionality that stands on its own and will then provide additional
functionality specific to the environment that interprets it. This is exactly what
ActionScript 3.0 does, and its host environments include Flash Player for web
browsers, intended for Flash-enabled websites such as http://YouTube.com;
Flash Lite for devices, such as video games for your cell phone; and Adobe
Integrated Runtime (AIR) for applications installed on the hard drive, such as
eBay Desktop (http://desktop.ebay.com/).

Here is a brief summary of a number of core updates.

Runtime Exceptions

In ActionScript 2.0, many runtime errors failed without drawing attention to
themselves. On the plus side—and this is a very weak plus—this meant that
errors of this sort often failed “gracefully.” In other words, they might not halt
someone’s experience with something abrupt or laden with technical jargon,
such as an alert or dialog box. On the minus side, this also meant such errors
might go unnoticed by the developer—until complaints started rolling in that
people were experiencing slow playback or even lockups. Such errors could
be hard for developers to pinpoint and repair, precisely because they were
silent.

ActionScript 3.0 allows for a variety of runtime exceptions to be handled with
purpose. This includes Error objects generated both by the runtime
environment and, potentially, by the programmer. In ActionScript 3.0, the
Error class is considerably more robust than its forerunner, and tailor-made

Examining ActionScript 3.0, the Language | 5


http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://YouTube.com
http://desktop.ebay.com/

Error objects can be built from this class as desired, inheriting and extending
its functionality to provide highly customized error messages. Exceptions can
even provide source file and line number information, which greatly enhances
the debugging experience, letting developers quickly track down errors.

Runtime Types

ActionScript 2.0 introduced the ability to strongly type variables, parameters,
and function return values. This was, and still is, an optional way to let Flash
know exactly what sort of data a particular variable, parameter, or return value
could cope with. This ability was a boon to developers in terms of debugging,
because it gave you a way to display error messages in cases of a type mis-
match. For example, if you were going to perform a math operation on two
numbers provided by the user, you might take those numbers from input text
fields. This would actually make them strings, which meant your math oper-
ation would give you unexpected results (for example, 1 + 2 would become
“12” instead of 3). By strongly typing the parameters of the function that per-
formed this operation—in other words, by specifying intended variable types
with a colon (:), then the type—you could benefit from a meaningful error
message in the Output panel such as this:
// ActionScript 2.0

var userVarl:String = inputField1.text;
var userVar2:String = inputField2.text;

function getSum(a:Number, b:Number):Number {
return a + b;
}

trace(getSum(userVari, userVar2));

// Displays:

**Error** Scene=Scene 1, layer=Layer 1, frame=1:Line 8: Type mismatch.
getSum(userVarl, userVar2);.

A type mismatch notice is a great reminder to use something like parseInt()
or parseFloat() to convert those strings into numeric values. Useful indeed,
but this was only a first step in a good direction. In ActionScript 2.0, this sort
of error checking only occurred at compile time. Under many circumstances
—such as evaluating data from dynamic sources like XML—the feature wasn’t
“smart” enough to catch every contingency. In ActionScript 3.0, it is.

Sealed Classes

Following in the same vein as runtime exceptions and runtime types, Action-
Script 3.0 establishes the concept of sealed classes in a stricter, more formalized
way than in ActionScript 2.0. A sealed class is one that can’t have properties

6 | Chapter1: Introducing ActionScript 3.0



or methods assigned to it at runtime, such as String. By default, classes in
ActionScript 3.0 are sealed, but this can be overruled when you write your own.
var str:String = "" // Or: new String();
str.customProperty = "This generates a compiler error.";

// Displays: Access of possibly undefined property customProperty
// through a reference with static type String.

In contrast, a class that actually can have properties and methods assigned to
it at runtime is called dynamic. One of the most familiar dynamic classes is
MovieClip, though historically speaking, many frame script developers haven’t
considered movie clips in terms of a class. The same could be said of buttons
and text fields, because you can create such elements with Flash’s drawing
tools. (Of the elements just mentioned, only movie clips are dynamic.) For
frame script coders, movie clips are often thought of simply as symbols or
timelines, and timelines have always been able to receive new variables at run-
time. True enough. What’s really going on, though, is that variables defined
in keyframe scripts are in reality dynamic properties of a MovieClip instance;
functions are actually dynamic methods.

Declaring a variable in a keyframe of the main timeline or in a movie clip’s
timeline is conceptually the same as the following:

var mc:MovieClip = new MovieClip();
mc.customProperty = "This is perfectly acceptable.";

Custom classes in ActionScript 3.0 can behave this way too, if and only if they
are declared with the dynamic attribute:
package {
public dynamic class CustomClass() {
// class code here
}

}

On paper, this is also how it was in ActionScript 2.0, but in fact, even non-
dynamic classes could be altered at runtime by manipulation of the
Object.prototype property (inherited by all objects) or by the array access op-
erator ([]). Advanced programmers who used such an approach in the past
will find it no longer works in ActionScript 3.0 for sealed classes.

// ActionScript 2.0

var str:String = "";

str.customProperty = "Secret back door.";
// Displays: There is no property with the name 'customProperty'.

str["customProperty"] = "Secret back door.";
// Works just fine in ActionScript 2.0, but in 3.0 displays:
Cannot create property customProperty on String.

Examining ActionScript 3.0, the Language | 7



In ActionScript 3.0, non-dynamic classes actually are what they claim to be.
This makes for stricter compile-time checking and improves memory usage
because class instances can now be guaranteed to require no more than a pre-
declared amount of system memory.

Method Closures

Of all the updates to ActionScript 3.0, it’s no surprise that developers, regard-
less of skill level, encounter one in particular early on: method closures. Why?
Because the introduction of method closures changes the point of view, or
scope, of methods in ActionScript 3.0.

Scope refers to the conceptual area of a program in which code executes. The
availability of code definitions, such as variables, functions, properties, and
methods, depends on the scope of the code being executed. For example, if a
variable is declared in a timeline frame, that variable can be referenced by any
other code in that frame, as long as that code appears after the declaration.
Even a function defined in that frame can reference the variable scoped to the
timeline, because scopes can be nested, and the flow moves from outer scope
to inner: the timeline’s definitions become available to the function.

// A variable declared here ...
var favoriteCereal:String = "Star Crunchers!";

// can be referenced here ...
trace(favoriteCereal); // Displays: Star Crunchers!

function myFunction():void {
// and here ...
trace(favoriteCereal); // Displays: Star Crunchers!

myFunction();

In contrast, a variable declared inside a function can only be referenced by that
function, because the scope of the function is confined to itself.

function myFunction():void {
// A variable declared here ...
var favoriteCereal:String = "Star Crunchers!";

// can only be referenced here ...
trace(favoriteCereal); // Displays: Star Crunchers!

myFunction();

// but not in the outer scope ...

trace(favoriteCereal);

// Displays:

**¥Error** Scene=Scene 1, layer=lLayer 1, frame=1:lLine 10:
Access of undefined property favoriteCereal.

8 | Chapter1: Introducing ActionScript 3.0

[vww allitebooks.cond



http://www.allitebooks.org

Up to now, this should be familiar to ActionScript 2.0 developers. How, then,
have things changed? Consider the next few examples.

In ActionScript 2.0, a button click might be handled like this:

// ActionScript 2.0

myButton.onRelease = buttonHandler;

function buttonHandler():Void {
trace(this); // Displays: _levelo.myButton
// other event handler code

}

Prior to ActionScript 3.0, the scope of the function shown belonged to the
myButton instance. In this case, the button code could conveniently be abbre-
viated with the use of the this keyword, which self-referenced the current
scope (myButton). In some cases, this made for a handy way to achieve certain
goals. For example, to repeatedly loop a Sound instance in ActionScript 2.0,
the following would do:

// ActionScript 2.0

var audio:Sound = new Sound();

audio.loadSound("externalFile.mp3", true);

audio.onSoundComplete = completeHandler;

function completeHandler():Void {
this.start();

Again, the function is scoped to the instance. In this case, the expression
this.start() amounts to invoking the Sound.start() method on the audio
instance. Although convenient in this sort of situation, difficulties arose when
the event handler needed to reference objects outside the scope of the function,
especially in custom classes.

To a large extent, this issue could be addressed in ActionScript 2.0 with the
Delegate class, which allowed you to reroute the scope as desired:

// ActionScript 2.0

import mx.utils.Delegate;

var audio:Sound = new Sound();

audio.loadSound("externalFile.mp3", true);
audio.onSoundComplete = Delegate.create(this, completeHandler);

function completeHandler():Void {
audio.start();
}

The Delegate.create() method accepted two parameters: first, the desired
scope; second, the function or method to execute in that scope. Note that
because of this change, the function invokes audio.start() directly. In this
case, the this keyword no longer refers to the audio instance to which the

Examining ActionScript 3.0, the Language | 9



listener was attached, but rather to the timeline frame in which the listener
was assigned.

In ActionScript 3.0, method closures let a function or method remember where
it was defined. In short, you get the best of both worlds. In the following
ActionScript 3.0, written in a keyframe, the reference to this shows that the
scope belongs to the main timeline—to the frame in which the function is
defined, rather than to the myButton instance. No extra baggage, like the Dele
gate class, is required.

myButton.addEventListener (MouseEvent.CLICK, buttonHandler);

function buttonHandler(evt:MouseEvent):void {
trace(this); // Displays: [object MainTimeline]

To reference the button rather than the frame, use the Event.target property
of the parameter that is passed into the function automatically by the event.
In this snippet, the parameter is arbitrarily named evt:
myButton.addEventListener (MouseEvent.CLICK, buttonHandler);
function buttonHandler(evt:MouseEvent):void {

trace(evt.target); // Displays: [object SimpleButton]
trace(evt.target.name); // Displays: myButton

ECMAScript for XML (E4X)

Flash haslong supported XML, but the addition of ECMAScript for XML (E4X)
syntax is a significant productivity boost. Like ActionScript, E4X is an Ecma
International specification, which affords a powerful yet concise set of lan-
guage constructs for retrieving data from XML, and manipulating it.

In ActionScript 2.0, you can certainly navigate among the nodes of a loaded
XML document, but the effort becomes progressively more tedious as the
XML’s complexity increases. The ActionScript 2.0 XML class provides a handful
of necessary navigation properties, such as firstChild, nextSibling,
lastChild, and childNodes. Choosing from these, and assuming an XML docu-
ment has already been loaded and parsed into an XML instance named myXML,
you might select the title of the fifth track of The Beatles’ Abbey Road album
(“Octopus’s Garden”) like this:
// ActionScript 2.0

myXML.firstChild.firstChild.firstChild.childNodes[4].attributes.-
title;

// Contents of the loaded XML document
<?xml version="1.0" encoding="iso0-8859-1"?>
<library>
<artist name="The Beatles">
<album name="Abbey Road">

10 | Chapter1: Introducing ActionScript 3.0



<track title="Come Together" />
<track title="Something" />
<track title="Maxwell's Silver Hammer" />
<track title="Oh! Darling" />
<track title="Octopus's Garden" />
<track title="I Want You (She's So Heavy)" />
<track title="Here Comes the Sun" />
<track title="Because" />
<track title="You Never Give Me Your Money" />
<track title="Sun King" />
<track title="Mean Mr. Mustard" />
<track title="Polythene Pam" />
<track title="She Came in Through the Bathroom Window" />
<track title="Golden Slumbers" />
<track title="Carry That Weight" />
<track title="The End" />
<track title="Her Majesty" />
</album>
</artist>
</library»>

In the preceding whopping expression, myXML refers to the parsed XML docu-
ment; the three mentions of firstChild refer, respectively, to the <library>,
<artist>, and <album> nodes; and childNodes[4] refers to the fifth <track> node
(bear in mind, childNodes returns an array, and arrays start at zero). Finally,
the attributes property leads to the title attribute of the selected node.

E4X lets parsed XML be referenced as if it were a native object. This lets you
traverse the loaded data incredibly more intuitively. In the ActionScript 3.0
equivalent, the same track can be referenced like this:

// ActionScript 3.0
myXML.artist[0].album[0].track[4].@title;

or, thanks to the descendent accessor operator (..), even something as short
as this:

myXML. .track[4].@title;
Which would you rather type?

In addition, you can compare data using a familiar set of operators. For ex-
ample, if the XML document at hand contains numerous recording artists, The
Beatles’ <artist> node could be singled out as easily as this:

myXML.artist.(@name == "The Beatles")

The E4X specification is available in Adobe PDF format at the
\ Ecma International website: http://www.ecma-international
W .org/publications/filessECMA-ST/Ecma-357.pdf.

Examining ActionScript 3.0, the Language | 11


http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-357.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-357.pdf

Regular Expressions

The term regular expressions refers to a set of specialized language constructs
for retrieving data from strings (that is, text content), and manipulating such
data. In this regard, regular expressions (often abbreviated as regex) shares a
number of similarities with E4X: both mechanisms are compact and efficient
in their tasks. The syntax of regex tends to be initially harder to grasp than
E4X—here, normal letters and punctuation are used to represent whole sets
of characters, in addition to filtering rules—but the results are well worth the
effort.

What can you do with regular expressions? To answer that, consider two fa-
miliar methods of the String class, index0f() and lastIndex0f(), which have
been available in ActionScript for years. These methods both accept two pa-
rameters: first, a string to look for within a container string; second, optionally,
where to start looking within the container string. Each method takes its start-
ing point from opposite ends of the container string.

var pangram:String = "The quick, brown fox jumps over a lazy dog.";

trace(pangram.index0f("o")); // Displays 13
trace(pangram.index0Of("o", 14)); // Displays 18
trace(pangram.lastIndex0f("0")); // Displays 40

In the first trace() statement, only one parameter is supplied, "o0", and the
return value is 13 because the letter “0” makes its first appearance at index 13
(starting with 0, the thirteenth character in the string pangram). In the second
statement, the return value is 18 because of the optional second parameter
14, which instructs the method to begin after the index of the first “o0”. In the
third statement, the return value is 40 because the method lastIndex0f() be-
gins its search from the end of the string.

For simple searches, index0f() and lastIndex0f() fit the bill, but what if the
requirement is something like “find all US ZIP codes,” which could be any 5-
number combination, or “find all words in this paragraph that contain three
or more vowels”? Suddenly, the task seems considerably more difficult, if not
impossible. Believe it or not, the RegExp class in ActionScript 3.0 handles this
requirement very easily. The solution requires a pattern of specialized charac-
ters, expressed either as an instance of the RegExp class or passed as a parameter
to one of the regex-related methods of the String class (match(), replace(), or
search()).

Given a variable, paragraph, set to the text content of the previous paragraph,
the following code shows how to retrieve words with three or more vowels:

var re:Regkxp = /\b(\w*[aeiou]\w*){3}\b/gi;

var result:Object = re.exec(paragraph);

12 | Chapter1: Introducing ActionScript 3.0



while (result != null) {
trace(result[o0]);
result = re.exec(paragraph);

// Displays: searches, indexOf, lastIndexOf, requirement,
// something, and other words with three or more vowels

A full discussion of regular expressions syntax is beyond the scope of this book,
but here’s a brief overview of how the previous example works. A variable,
re, is set to an instance of the RegExp class by way of the RegExp delimiter
operator (/pattern/flags). Between the two slashes of this operator, the pat-
tern \b(\w*[aeiou]\w*){3}\b spells out the search requirement. After the sec-
ond slash, the flags (gi) configure the pattern as global and case insensitive.
The RegExp.exec() method executes the pattern on the string paragraph and
returns an object (result) that contains information about the search. The
search is repeated until result is null.

If the preceding example seems outlandish, imagine the same sort of power
applied to the validation of user input. You can manage even potentially com-
plex requirements without much difficulty. These include questions such as,
“Is this email address correctly formed?” (Checking for the “@” characterisn’t
enough!) “Is this a valid telephone number?” (People might enter anything
from (123) 456-7890 to 123.456.46789 to 123456789.) “Has the user tried to
sneak in an inappropriate word by using a nonstandard spelling?” Patterns
that match these requirements not only find the strings in question, but can
also manipulate them in order to, for example, format telephone numbers
consistently or replace questionable words with Xs.

% For an exhaustive and highly regarded treatise on regular ex-
pressions, be sure to read Mastering Regular Expressions, by
Qs Jeffrey Friedl (O’Reilly). Numerous tutorials are also available

" online at the unrelated http://www.regular-expressions.info/
website.

Namespaces

In advanced programming scenarios, the concept of namespaces brings a val-
uable new mechanism to ActionScript 3.0. In short, namespaces are essentially
custom access specifiers—Ilike public, private, protected, and internal—ex-
cept with names you choose. Namespaces let you control the visibility of your
properties and methods, even to the point of overriding package structures.
They also let you qualify members under various guises. As a quick example,
you might develop an AIR application that performs one behavior while an
Internet connection is present, and another when no connection is present. By
using namespaces, you can define multiple versions of the same method that,

Examining ActionScript 3.0, the Language | 13


http://www.regular-expressions.info/

for instance, checks an online inventory when the user’s WiFi connection is
available but defaults to a cached version otherwise. Or you might define series
of variables in several languages, where the value of a variable depends on the
user’s regional settings. These distinctions are determined by custom prefixes
and the name qualifier operator (::):

// Three versions of the same String variable

english::newFeatures // Value of "Lots of new stuff"

german: :newFeatures // Value of "Viele neue Sachen"
french: :newFeatures // Value of "Plien de nouvelles choses"

Namespaces are outfitted with a Universal Resource Identifier (URI) to avoid
collisions, and are also used to represent XML namespaces when working with
E4X.

New Primitive Types

ActionScript 3.0 introduces two new primitive types, int and uint, bringing
the full list to Boolean, int, Null, Number, String, uint, and void (note the change
in capitalization from Void). These new numeric types reduce memory usage
in cases when a numeric value need only be an integer. How? The familiar
Number data type is an IEEE-754 double-precision floating-point number,
which, thanks to its structure, always requires 64 bits of memory. Number ob-
jects range from 1.79e+308 (1.79 with over 300 zeroes after it!) down to
5e-324. That’s an unimaginably large range, which isn’t always necessary.
Sometimes you just want to count through a for loop, and all you need is an
integer.

Enter int, which is a relatively small 32-bit number (only 4 bytes), whose range
isstillan impressive 2,147,483,647 (over two billion) down to -2,147,483,648.
That range should do for most of the for loops you’ll encounter. By contrast,
uint numbers (unsigned integers) range from 0 to 4,294,967,295, which is the
same span as int, but entirely on the positive side of the number line. If your
for loop’s counter, or any other integer value, needs a higher range than offered
by int, uint makes a good choice—provided the range doesn’t dip below zero.
Neither type ever requests more than 32 bits of system memory.

One note of caution: because uint values are always positive,
“%"@ take care when trying to subtract a uint into negative territory.

A uint rolls around to 4,294,967,295 if you subtract it past
zero, as the following code demonstrates.

var n:uint = 0;
trace(n); // Displays 0

n--;
trace(n); // Displays 4294967295

14 | Chapter1: Introducing ActionScript 3.0



Exploring Flash Player APl Updates

In the “ActionScript 3.0, the Language” section of this chapter, you learned
that the ECMAScript specification on which ActionScript is based actually
expects the language to provide functionality tailored to the platform that hosts
it. In the case of ActionScript, hosts include Flash Player, AIR, and Flash Lite
—all various flavors of the Flash Platform. Though each host is designed to
meet specific needs—websites, desktop applications, and mobile content, re-
spectively—their overlap is considerable. ActionScript 3.0 institutes a signifi-
cant restructuring of its application programming interface (API), summarized
handily in the colossal migration table available on the Adobe LiveDocs web-
site (http://help.adobe.com/en_US/AS3LCR/Flash_10.0/migration.html) and
also in the Help panel in the appendices of the ActionScript 3.0 Language and
Component Reference, under the heading “ActionScript 2.0 Migration”. In
large part, existing functionality has been restructured into packages that make
better sense from an organizational standpoint. However, Flash does have a
number of philosophical changes in the way it carries out its fundamental
tasks. The following paragraphs list some of the more notable updates.

W N
AN As of the publication of this book, Flash Lite does not yet
:‘:\ support ActionScript 3.0, due to the inherent processor and
\ . . . . .
* Ws memory limitations of mobile devices. The features recounted

" here apply to Flash Player 9 (and higher) and AIR, but won’t
apply to Flash Lite until that runtime adds support for
ActionScript 3.0.

DOM3 Event Model

Before ActionScript 3.0, you could handle events in Flash in at least five dif-
ferent ways, some of which were interchangeable:

* The legacy on() handler, available since Flash 2 and still in wide use, even
in ActionScript 2.0 scenarios, but gone in ActionScript 3.0

* The legacy onClipEvent() handler, also widely used and unavailable in
ActionScript 3.0

* The dot notation syntax that combined and replaced on() and
onClipevent() (for example Button.onPress = functionDefinition,
MovieClip.onEnterFrame, and so on)

* The addListener() method of several—but not alll—ActionScript 2.0
classes, such as TextField, Mouse, and MovieClipLoader

* The addEventListener() method used by the v2 component set (user in-
terface, data, and media components)

Exploring Flash Player API Updates | 15


http://help.adobe.com/en_US/AS3LCR/Flash_10.0/migration.html

This varied assortment was a result of incremental improvements to Action-
Script with every new release of the authoring tool, with the older approaches
retained for backward compatibility. For longtime Flash developers, each new
technique was simply a small addition to the workflow, but newcomers to
recent versions, such as Flash 8 or Flash CS3, were understandably confused
by an API with so many seemingly arbitrary possibilities.

W

Are on() and onClipEvent() really so bad? From a workflow
standpoint, no. From a practical standpoint, they aren’t nearly
as valuable as their dot notation replacement. In ActionScript
2.0, the combination of on() and onClipEvent() provide access
to only slightly more than half the events available to movie
clips and buttons. In addition, you can’t assign, manipulate,
or remove their event handlers at runtime. Their absence in
ActionScript 3.0 marks the end of a long transition period
from ActionScript 1.0 through 2.0.

vy

Because ActionScript 3.0 relies on a new virtual machine, it can afford to make
a clean break in the way it handles events. With one small exception (discussed
in Chapter 4), event handling is now consolidated across the board into a
single, consistent approach: the EventDispatcher.addEventlListener()
method. This mechanism is based on the W3C’s Document Object Model
(DOM) Level 3 Events Specification (http://www.w3.0rg/TR/IDOM-Level-3
-Events/). This means that in ActionScript 3.0, event handling syntax is the
same in nearly all cases, no matter if the event dispatcher is a button, an audio
clip, or a loader object for XML or JPEG files. The basic structure looks like
this:
eventDispatchingObject.addEventListener(
EventType,
functionToPerform

)s

Display List API
In ActionScript 3.0, movie clips can be instantiated with the new keyword as
easily as this:

var mc:MovieClip = new MovieClip();

which is more intuitive than what it took in ActionScript 2.0:

var mc:MovieClip = existingMovieClip.createEmptyMovieClip(-
instanceName, depth);

And it gets better. Depth management is now automatic. Notice that the ex-
pression new MovieClip() does not require a depth parameter. This change is

16 | Chapter1: Introducing ActionScript 3.0


http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-Events/

due to a fundamental new approach to the display of visual objects in Action-
Script 3.0: a concept called the display list, which represents the hierarchical
display of all graphical objects in Flash Player. This concept is embodied in
the DisplayObjectContainer class, the base class for all objects that can serve
as visual containers, including movie clips, the new Sprite and Loader classes,
and more. Thanks to inheritance, DisplayObjectContainer provides new meth-
ods to these classes for considerably better control over the management of
object z-order. For example, while the MovieClip class in ActionScript 2.0 fea-
tured getDepth() and swapDepths(), the ActionScript 3.0 version offers all of
these:

e addChild()

e addChildAt()

* contains()

* getChildAt()

* getChildByName()
* getChildIndex()
* removeChild()

e removeChildAt()
* setChildIndex()
* swapChildren()

* swapChildtenAt()

How’s that for control?

These methods are also available to Sprite, which is effectively a movie clip
without the overhead of a timeline; Loader, which loads external SWF files and
image files (JPEG, PNG, or GIF) at runtime; and any other class in the
DisplayObjectContainer family tree.

Under the display list system, objects can be re-parented at any time. This
ability simplifies cases in which groups of objects need to be manipulated at
once. Consider a jigsaw puzzle game, for example. If you want to combine
partially solved areas, so that snapped-together pieces move as one unit, you
can simply remove the piece from its current parent and add it as a child to the
parent that represents the partially solved group. Before ActionScript 3.0, this
action would have required individual sophisticated tracking of each jigsaw
piece.

Exploring Flash Player API Updates | 17



New Sound APls

Flash Player 8 was the first to support 32 simultaneous sound channels, a
significant increase from the original eight-sound channel limit. Although
present for as long as Flash Player has supported sound, these sound channels,
as such, had no clear representation in code before ActionScript 3.0. In previ-
ous versions of the language, the Sound class was self-contained, handling all
of its functionality in a relatively simple manner, but at the cost of some clarity
of purpose. For example, in order to control the volume and panning of one
sound distinctly from another, you had to associate each sound with its own
movie clip. You made this association by way of an optional “target” parameter
in the Sound constructor function. Because target movie clips might or might
not contain other content, their ambiguous roles had the potential to confuse.

ActionScript 3.0 clarifies programmed sound by complementing the Sound
class with three companions: SoundChannel, SoundTransform, and SoundMixer.
These new APIs give you more explicit control over imported and embedded
sounds. The SoundMixer.computeSpectrum() method even lets you retrieve
spectral data from sounds, which you can use to program responses to changes
in audio pitch and volume.

Binary Data and Sockets

The new ByteArray class enables interoperability with existing custom proto-
cols, and lets advanced developers read, write, and manipulate data on the
byte level. This has led adventurous programmers to cultivate projects previ-
ously unheard of in Flash, such as Tinic Uro’s PNG encoder (http://www
.kaourantin.net/2005/10/png-encoder-in-as3.html, now updated and featured
in the as3corelib library at http://code.google.com/p/as3corelib/) and a dynamic
tone generator by André Michelle and Joa Ebert, capable of playing MIDI-like
Amiga MOD files (http://8bitboy.popforge.de/).

Understanding Players and Support

Although this book focuses primarily on the Flash authoring tool, it’s impor-
tant to realize that Adobe offers two official ActionScript 3.0 compilers. One
of these compilers is built into Flash CS4 itself. As you would expect, this one
takes into consideration objects in the document’s Library, as well as global
SWEF file settings, such as background color and frame rate, as configured in
the Property inspector. This compiler can also compile previous versions of
ActionScript. Separate from that, there’s the command line compiler included
with the free Flex Software Development Kit (SDK) available at www.adobe
.com/go/flex_trial/. This second compiler is the one used by the Flex Builder

18 | Chapter1: Introducing ActionScript 3.0

[vww allitebooks.cond



http://www.kaourantin.net/2005/10/png-encoder-in-as3.html
http://www.kaourantin.net/2005/10/png-encoder-in-as3.html
http://code.google.com/p/as3corelib/
http://8bitboy.popforge.de/
http://www.allitebooks.org

integrated development environment (IDE), which doesn’t include drawing
tools, timelines, or a library. In addition to ActionScript 3.0, the Flex compiler
understands MXML, the declarative markup language used for laying out Flex
applications. For want of a library, the second compiler lets metadata embed
assets into resultant SWF files. The Flash authoring tool supports only limited
metadata, an undocumented feature at the time of writing.

These distinct compilers serve independent workflows. To facilitate the de-
velopment of RIAs, the Flex SDK features an elaborate framework of user
controls and data handlers that aren’t available to the Flash authoring tool,
even though the framework is written in ActionScript 3.0. By comparison,
Flash offers a modest subset of user controls in its Components panel, includ-
ing support for the playback and manipulation of Flash video files (FLV).

In the end, there’s only one ActionScript 3.0, and it behaves the same when
compiled under either tool. The reason for this consistency is that Flash CS4
and the Flex SDK both publish SWF files for the same Flash Player 9 or higher.
It’s quite possible—and often done—to create custom classes that can be used
under either circumstance. The concept of the document class (see Chap-
ter 6), introduced in Flash CS3, means that an entire application, composed
of numerous external classes, can be compiled by Flash or the Flex command
line compiler (including Flex Builder) from identical source files.

Because ActionScript 3.0 requires AVM2, as mentioned earlier in this chapter,
Flash Player 9 is the minimum required runtime to display such content. Flash
Player 9 runs on numerous operating systems, including several versions of
Windows, Macintosh, Linux, and Solaris. Due to the varied nature of these
operating systems and occasional bug fixes required by each, in addition to
ongoing new features, Flash Player 9 includes a number of minor point relea-
ses, as summarized in Table 1-1. Flash CS4’s default output is aimed at Flash
Player 10, which may eventually see a list of minor point releases just as long.
Time will tell. To determine what version of Flash Player the user has installed,
reference the static version property of the Capabilities class.

Table 1-1. Flash Player 9 minor point releases

Flash Player

version Notable changes

9.0.16.0 ActionScript 3.0, including runtime exceptions and error handling, sealed classes, method clo-
sures, ECMAScript for XML (E4X), regular expressions, namespaces, new primitive types, DOM3
event model, display list APIs, new sound APIs, and binary data and sockets.

9.0.20.0 Bug fixes and optimizations related to the Intel-based Macintosh platform.

9.0.28.0 Support for Windows Vista operating system. Addition of ADDED_TO_STAGE and

REMOVED_FROM_STAGE event constants to letaDisplayObject monitorand know when
it can or cannot access its stage property. Security enhancements.

Understanding Players and Support | 19



Flash Player

version Notable changes

9.0.31.0 Support for Linux operating systems.

9.0.45.0 Bug fixes and improvements for Adobe Flash (S3 Professional. Affects only Windows and Mac-
intosh platforms.

9.0.47.0 Support for Solaris operating system. Security enhancements.

9.0.48.0 Linux security enhancements.

9.0.115.0 H.264 video and High Efficiency AAC (HE-AAC) audio codec support. Hardware acceleration,

hardware scaling, multi-threaded video decoding, and enhanced image scaling. Flash Player
cache enables common components, such as the Flex Framework, to be cached locally and then
used by any SWF from any domain. Flash Media Server buffering maintains stream buffer while
a stream is paused.

9.0.124.0 Media streaming security patch and minor display update for Windows Vista.

A full listing of all Flash Player release notes, including bug
fixes, can be found at hitp://www.adobe.com/support/documen
Ve tation/en/flashplayer/releasenotes.html.

Learning ActionScript 3.0 on the Heels of 2.0

Pretend for a moment you’re a carpenter. For years, you were making do with
a hand-crank drill, but then the Macromedia Hardware Company introduced
an electric model called ActionScript 1.0 stamped with gold letters on the
handle. Beautiful thing! No reason to ever use anything else. Sure, you could
operate the drill only within six feet of an electrical outlet (because that was
the length of the cord), but the advantages were resoundingly clear. Plus, you
could always carry around an extension cable. A few years later, Macromedia
announced a new and improved ActionScript 2.0 model. This drill had an
optional battery back. For some, the new battery pack was a godsend, because
it freed them from the previous six foot limitation. They embraced the new
feature and literally found themselves running with it. Other carpenters found
the battery pack a bit too advanced. They weren’t sure, for example, if they
were supposed to drain the batteries completely before recharging. And hon-
estly, that was fine: the drill still had a cord, of course, so they continued within
their previous comfort zone, which was still a considerable improvement over
the hand-crank days. Carpenters were a happy bunch. Eventually, the Mac-
romedia Hardware Company became Adobe. Everyone looked forward to the
new drill—ActionScript 3.0—and when it came ... they found that the cord
had been replaced with a docking station. Suddenly, carpenters who had opted
not to use the ActionScript 2.0 battery pack felt trapped. They had no expe-

20 | Chapter1: Introducing ActionScript 3.0


http://www.adobe.com/support/documentation/en/flashplayer/releasenotes.html
http://www.adobe.com/support/documentation/en/flashplayer/releasenotes.html

rience with batteries, but if they were going to use an ActionScript 3.0 model,
they had no choice.

It goes without saying that every analogy has its flaws. Certainly, the changes
in ActionScript 3.0 amount to more than the obvious benefit of a battery pack.
Clearly, the new APIs are more complex than the question of how to recharge
a set of batteries. In any case, ActionScript does a lot more than drill holes!
Still, it can be useful to think of ActionScript 2.0 as a preparatory transitional
period between, on one hand, the very roots of the language—that is, Action-
Script 1.0 and even earlier—and, on the other hand, the current version. As
with the carpenter story, numerous features in ActionScript 2.0, such as strict
typing (:Number, :Void, etc.) and formalized custom class files, were optional.
(Unlike the analogy, those particular features are still optional in ActionScript
3.0.) Voluntary though they were, such then-new conventions were an early
invitation to practice a more efficient workflow. Developers who opted to ex-
periment with object-oriented programming (OOP), to the point of writing
their own custom classes, may feel more at home with ActionScript 3.0 than
others. For those who were perfectly comfortable with the conventions of
ActionScript 1.0, they might understandably feel trepidation in light of the
current version, especially now that ActionScript 3.0 has dropped support for
some previously optional features, such as on() and onClipEvent(). Flipping
through the ActionScript 3.0 Language and Components Reference takes con-
siderably longer than before. Everything has been arranged into a potentially
overwhelming new hierarchy of packages. Most of the Help panel sample code
has been written as class files, to make it applicable both for keyframe and
class file programmers.

These changes are big, but not insurmountable. One of this book’s driving
purposes is to help you feel caught up, whether or not you pursued the optional
new conventions of ActionScript 2.0—the features that, in hindsight, were a
gentle ramp up to today’s recommended best practices. The important thing
to keep in mind is that ActionScript 3.0 is scalable in terms of complexity. If
you want to plunge headlong into OOP principles such as inheritance and
design patterns, ActionScript 3.0 will oblige. If you prefer to stick with tradi-
tional timeline coding, ActionScript 3.0 will oblige—with a number of provi-
sos covered in the following chapters.

Deciding to Migrate or Write Code from Scratch

If you work with a set of in-house templates, be they FLA files, custom classes,
or a combination of both, sooner or later you’ll have to decide how to update
them. For the sake of discussion, these files are stable ones that have made
your company money for years, and they work just fine. Nonetheless, you’d

Deciding to Migrate or Write Code from Scratch | 21



like to take advantage of the speed increases—or any of the other benefits—
afforded by ActionScript 3.0. Should you painstakingly tinker with existing
files, tweaking as you go, or should you ditch everything and start from square
one? Which approach would require less effort?

For better or worse, there is no sure-fire way to determine which endeavor is
more advantageous in a given situation. While you can theoretically upgrade
a FLA file’s Publish Settings to ActionScript 3.0 and compile without errors or
warnings, the prospect becomes progressively more unlikely as a project gains
in complexity. Chances are high that one incompatibility will occur in concert
with many: in other words, when it rains, it pours. That said, here are a few
thoughts to consider.

If all or most of your code exists on frames in a FLA file, you may have no
realistic choice but to migrate the ActionScript in place, for the obvious reason
that the code is so closely tied to the file’s visual design. To start from scratch
could require careful transportation of symbols from one FLA file to another,
possibly including intricate nested timeline effects. For simple banner ads and
linear slideshows, an in-place update may not be as difficult as it sounds.
Standalone calls to stop(), gotoAndPlay(), and the like, will carry over without
ahitch. By all means, select File»Publish Settings—Flash—Script—ActionScript
3.0, and then hold your breath and see what happens.

Don’t forget to exhale if the compile works, and frankly, prepare yourself now
for numerous entries in the Compiler Errors panel. If any of the frame code
involves event handlers, loads external assets, or even calls a new web page
(getURL() is now navigateToURL()), you’ll have to update it. The good news is,
the Compiler Errors panel is one of many helpful new tools in Flash CS4
(introduced in Flash CS3). This panel not only tells you where the erroneous
code is, by class file, scene, layer, keyframe, and line number, it often makes
suggestions on what to change, including a list of common migration issues.

W

The Compiler Errors panel and other debugging tools are cov-
ered in Chapter 11.

Bor

If most of your code exists in external class files, your project probably involves
more than a smattering of ActionScript. Although this likely means you’ll
spend more time on code migration (because there’s more of it!), the fact that
your code is separate means you can test and revise each class individually. In
either case, frame code or class files, this book will help you get your bearings.

22 | Chapter1: Introducing ActionScript 3.0



CHAPTER 2
Discovering What You Need to
Work with ActionScript 3.0

Working with ActionScript 3.0 is an equation composed of two parts: you
need something to compile a program written in the language, and you need
something to display the results of that programming. In compiler territory,
you have quite a few development choices. In the most basic approach, Adobe
makes the Flex Software Development Kit (SDK) available to the public free
of charge (http://www.adobe.com/go/flex_trial/). This SDK includes the full
ActionScript 3.0 application programming interface (API), which is the full list
of core and Flash Player API classes described in the ActionScript 3.0 Language
and Components Reference, published on the Adobe LiveDocs website (http:
/fhelp.adobe.com/en_US/AS3LCR/Flash_10.0/). In addition, the SDK includes
the Flex framework (component class library) and Flex command line com-
piler, letting programmers freely develop and deploy Flex applications using
any scripting integrated development environment (IDE). Because the Flex
framework is, itself, written in ActionScript 3.0, you don’t necessarily have to
learn a new language to use Flex. Without spending a dime, interested pro-
grammers can build anything from basic ActionScript 3.0 class files—which
you can also write in the Script window of Flash CS4 Professional—to full-
scale Flex applications that you can write with Flex Builder 3.

Displaying the results of your work requires Flash Player 9 or higher (Flash
CS4 publishes to Flash Player 10 by default). That may seem like the easy half
the equation, but there are actually several versions of Flash Player 9 and will
likely be several versions of Flash Player 10. The following sections give a brief
overview of the tools necessary to work with ActionScript 3.0. Later in the
chapter, you’ll learn about alternative scripting IDEs that you can use in co-
operation with the Flash authoring tool.

23


http://www.adobe.com/go/flex_trial/
http://help.adobe.com/en_US/AS3LCR/Flash_10.0/
http://help.adobe.com/en_US/AS3LCR/Flash_10.0/

Flash (54 Professional/Flex Builder 3

The Flash CS4 Professional authoring tool is the latest in a running line of the
production tool that originally began life as a vector animation program. When
designers and developers hear the word “Flash,” they probably think first of
the Flash authoring tool, rather than Flex Builder, even though both applica-
tions are Adobe products that publish SWF files for the same Flash Player
runtime. In a few words, Flash CS4 can be summed up as the most appropriate
tool for traditional Flash designers and developers. This authoring tool features
numerous panels aimed at drawing and animation—consider the Timeline,
Color, Align, Transform, and Tools panels.

Flash authoring techniques often take advantage of a timeline metaphor, in
which the goings-on of a SWF file are thought of in terms of a playhead moving
along a timeline: navigation from one display state to another is the result of
“going to” and “playing” desired keyframes. In contrast, Flex Builder can be
summed up as the most appropriate tool for traditional programmers, espe-
cially those familiar with tools like Borland JBuilder for Java and Microsoft
Visual Studio for Visual Basic or C#. In fact, Flex Builder is built on the popular
open source Eclipse platform (http://www.eclipse.org/), and you can even buy
it as an Eclipse plug-in. Flex Builder is a coder’s environment and, as such,
provides no drawing tools or timelines, and only the most basic of color pa-
lettes. Even though ActionScript’s MovieClip class features methods such as
play(), stop(), and gotoAndPlay(), a Flex Builder developer is more likely to
think of movie clips—that is, timelines—in an abstract way, in terms of an
object-oriented programming (OOP) point of view.

To program and deploy ActionScript 3.0, you need only an ActionScript 3.0
compiler. Flash CS4 provides one, which is used when a FLA file’s publish
settings are configured for ActionScript 3.0. The Flex SDK also provides one,
which you can use with a command line interface (no graphical user interface,
just typing) or Flex Builder 3, which does the command line typing for you. If
Flash CS4 (or CS3) isn’t used, then you don’t need (indeed, you can’t create)
the FLA file familiar to traditional Flash developers. In either case, you may
use any simple text editor at a bare minimum, such as Notepad on Windows
or TextEdit on Mac, though most developers type their code into the Actions
panel or a Script window of Flash CS4, an edit window in Flex Builder, or one
of the external script editors discussed later in this chapter.

Flash Player 9 or Higher

Once a SWF file is compiled, it must be viewed in some version of Flash Player;
specifically, Flash Player 9 or higher, if the SWF file contains ActionScript 3.0.

24 | Chapter2: Discovering What You Need to Work with ActionScript 3.0


http://www.eclipse.org/

Generally speaking, this tends to be a straightforward enterprise. As a reader
of this book, you’re presumably a Flash professional, which means you build
your content in the Flash authoring tool, and publish using either File->Publish
or Control-Test Movie. You already have Flash Player installed, of course, so
when you launch the SWF file, or view it in an HTML document, you see the
content, and then decide whether or not to upload it to a web server. For simple
projects, this process is often all it takes.

You might, however, find yourself in need of a particular minor point release
of Flash Player 9 or 10, like those listed in Table 1-1 of Chapter 1. If you want
to display your SWF file in full screen mode, for example, you need to test in
Flash Player 9.0.28.0 or higher. If you want to display H.264-encoded high
definition video, you need to test in Flash Player 9.0.115.0 or higher. Further,
you need to ensure that people visiting your website also have the same minor
point release. The Flash authoring tool gives you more than one version of
Flash Player for testing during development: debug and release players.

Debug Vs. Release Players

The application folder of Flash CS4 Professional includes installation files for
two distinct versions of Flash Player. These versions are located in Debug and
Release subfolders of the following locations:

* Windows: C:\Program Files\Adobe\Adobe Flash CS4\Players\

* Mac: /Applications/Adobe Flash CS4/Players/
These installation files include:

* Debug:

* Install Flash Player 10 ActiveX.exe: Debug installer for the ActiveX ver-
sion of Flash Player used by Internet Explorer on Windows.

* Install Flash Player 10 Plugin.exe: Debug installer for the plug-in version
of Flash Player used by Mozilla compatible browsers.

* Install Flash Player 10 UB.dmg: Debug installer for Flash Player on Mac.
* Release:

* [Install Flash Player 10 ActiveX.exe: Release installer for the ActiveX
version of Flash Player used by Internet Explorer on Windows.

* Install Flash Player 10 Plugin.exe: Release installer for the plug-in ver-
sion of Flash Player used by Mozilla compatible browsers.

* Install Flash Player 10 UB.dmg: Release installer for Mac Flash Player.

Flash Player 9 or Higher | 25



Both folders, Debug and Release, contain identically named
files. Don’t let that confuse you!

These installation files let you install debug versions of Flash Player for testing
locally inside a browser—then to switch back to release versions any time you
please. Debug versions are identical to the non-debug-enabled (release) ver-
sions, except that the debug versions contain additional code to communicate
with Flash CS4. While convenient, because they avoid the delay of a download
from http://adobe.com, these files are limited to whatever minor point release
they represent. If the Adobe update utility hasn’t yet updated Flash CS4 on
your computer, these installation files might not let you test everything you’d
like to from within the authoring tool.

The latest installation files are available at hitp://www.adobe.com/support/flash
player/downloads.html. Older versions are archived at hitp://'www.adobe.com/
go/tn_14266/for testing purposes. To ensure that installations succeed, Adobe
recommends that you uninstall existing ActiveX controls and/or plug-ins be-
fore re-installing different versions. This can become tedious, so you may want
to consider downloading Flash Switcher, a third party Firefox extension to do
the work for you. Flash Switcher was written by Alessandro Crugnola and is
freely available on his website for Firefox 3 on Windows, Mac, and Linux:

http://www.sephiroth.it/weblog/archives/2008/04/flash_switcher_for_win
dows_osx_and_li.php

N
o Flash Switcher includes the files necessary to test many, but
. not all, versions of Flash Player. To make additional versions
o Qla available to the extension, install the desired version by hand
" from http://www.adobe.com/go/tn_14266/, then select the ex-
tension’s icon from within Firefox and select Save As, as
shown in Figure 2-1.

In addition to installation files, the Release and Debug folders contain a stand-
alone executable: FlashPlayer.exe on Windows and Flash Player.app on Mac.
Flash CS4 uses this executable to create Projectors or view standalone content.
When you select Control-Test Movie, for example, the executable inside the
Release folder displays your SWF file in the authoring tool. When you select
Debug—Debug Movie, the executable inside the Debug folder is used instead.

The parent folder, Players, contains a copy of this executable. This copy is the
one used when you launch a local SWF file outside of the authoring tool, for
example by double-clicking a SWF file from the desktop. You can control

26 | Chapter2: Discovering What You Need to Work with ActionScript 3.0


http://adobe.com
http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/go/tn_14266/
http://www.adobe.com/go/tn_14266/
http://www.sephiroth.it/weblog/archives/2008/04/flash_switcher_for_windows_osx_and_li.php
http://www.sephiroth.it/weblog/archives/2008/04/flash_switcher_for_windows_osx_and_li.php
http://www.adobe.com/go/tn_14266/

) adobe - Mozilla Firefox 3 Beta 5 o o ] 3

Ele Edt Wiew History Bookmarks | Tooks Help

=

Print

a B . x c Web Search Ctrl+k )

Back  Forward Stop Relos  Downloads Cel+3 jistory

adohe, comf 77 - NG| soose £

2

Search far. & '\‘ N

Adobe

Error Console: Chrhshift+1
Adblock Plus... Ctrl+Shift-+£
Fage Info

# Flash 9.0 1124
4 Flash 8.0 124

# Flash 7.0163
Clear Private Data... Chrb+Shift--Del

IE Tab Options 4 Flash 5030

Qptians Settings

L2 B

y

‘l CREATIVE LICENSE

Products and solutions

Get 5
ADOBE" AIR™

F Get ADOBE" $ =
FLASH® PLAYER

Get
ADOBE" READER®
Products

"= Adobe Store = Adobe Store

Batian Pramibiin Acrobat 8 Professional

[ N

Coranise

|
Bee .

Figure 2-1. Adding a version of the Flash Player plug-in to the Flash Switcher Firefox
extension

which version is used—debug or release—by copying (not moving!) the de-
sired executable from its respective Debug or Release folder into the Players

folder.

Debug versions of Flash Player are capable of logging trace() statement output
to a text file. For more information on this topic, see Chapter 11.

Making Sure Users Have the Necessary Version of Flash Player

Flash CS4 provides a convenient mechanism for ensuring that website visitors
have the version of Flash Player they need in order to view your content. It’s
a simple configuration under File-Publish Settings=HTML, as seen in Fig-
ure 2-2. Select “Detect Flash Version” as shown, and specify the desired version
numbers—here, 10, 0, and 2—which indicate the minimum version of Flash
Player your content requires. The fourth number, seen in the series 10.0.2.0,
identifies the internal build number, which may run a wide range during pri-
vate Adobe beta testing but is typically O for public releases; in any event, the
fourth number is irrelevant for ensuring compatibility in this context.

The first number isn’t editable from the HTML tab of this dialog box, and, in
any case, needs to be 9 or higher to support ActionScript 3.0. If you choose to

Flash Player 9 or Higher | 27



Publish Settings 3 1‘

Current profile: IDeFauIt

Farmats I Flash  HTML |

Template: IFlash nly j Info |

V' Detect Flash Yersion

Version: 10 .ID .|2
Dimensions: IMatch Movie ‘l

“idth: Height:
I 550 % I 400 pixels

Flayback: [~ Paused at start v Display menu
¥ Loop ™ Device font

Quiality: lh
‘Window Mode: lm
HTML alignment: IDeFauIt ‘l
Scale: IW

Horizontal: ‘ertical:
Flash alignment: ICenter j ICenter j

v show Warning messages

Publish | Ok I Cancel |

Figure 2-2. Detecting Flash Player version in HTML publish settings

publish to older versions of Flash Player, you may change the first number in
the version series by selecting this dialog box’s Flash tab, and then changing
the Version listbox selection to a previous version of Flash Player. Anything
lower than Flash Player 9 will force the Script listbox to change to ActionScript
2.0 or lower.

Version detection requires publishing for Flash Player 4 or

‘*‘%@ greater.

Employing version detection changes the way the authoring tool writes the
HTML it uses to embed a published SWF file. For that reason, it’s useful to
understand how the HTML is written by default. At the time this book was
being written (before the public release of Flash CS4), the default HTML tem-
plate—that is, no Flash Player version detection—generated an HTML docu-
ment with inline JavaScript (not an external .js file). This JavaScript embedded
the SWF file dynamically, a feature that was necessary for the Internet Explorer
browser between February of 2006 and April of 2008. Without such Java-

28 | Chapter2: Discovering What You Need to Work with ActionScript 3.0

vww allitebooks.conl



http://www.allitebooks.org

Script, Internet Explorer users had to signify their intention to interact with
Active Content—that is, Flash, QuickTime, Java applets, and so on—by first
clicking the Active Content in their browser.

It may be that the commercial release of Flash CS4 no longer includes Java-
Script with its default HTML template, in which case the parameters in the
HTML tab of the Publish Settings dialog box will only affect the HTML itself.

W

As of November 2007, Microsoft announced its intention to
remove the “click to activate” behavior from Internet Explorer
Qs in April 2008. Regardless, JavaScript embedding remains use-
" ful because it allows for version detection and progressive en-
hancement, as discussed later in this chapter. For more infor-
mation, see Adobe’s Active Content Development Center
(http://www.adobe.com/devnet/activecontent/).

The configuration parameters shown in Figure 2-2 affect the HTML <param>
tags that appear as children of the <object> tag used by Internet Explorer.
These, in turn, correspond almost point for point with attributes of the com-
panion <embed> tag used by Mozilla compatible browsers.

One of these settings—codebase, which only appears in the HTML, not the
dialog box—is used only by Internet Explorer. If a user has an older version
of Flash Player installed, Internet Explorer compares the version number of
the installed ActiveX control against the codebase attribute to determine if an
upgrade is merited, in which case the user is prompted as shown in Fig-
ure 2-3. If Flash Player is absent altogether, the same installation prompt oc-
curs. For an example of the former case, consider that, as of the time this
chapter was written, the default codebase value was 10.0.2.0. In Flash CS3,
this value was 9.0.0.0, a “perfect” initial release number that has no real-life
Flash Player counterpart. If you needed to wuse, say, the
Event.ADDED_TO_STAGE event constant introduced in minor point release
9.0.28.0, then you could change the codebase value by hand after Flash CS3
generated the HTML. You can do the same with Flash CS4, if a higher minor
point release is required. Just make sure, if JavaScript is included, to update
any mention of codebase both in the JavaScript and the HTML.

In a sense, this is a rudimentary approximation of version detection, but it’s
essentially flawed. Why? From an aesthetic and usability standpoint, you want
to avoid an interruption of the user’s experience. In addition, Mozilla com-
patible browsers ignore codebase in favor of the roughly analogous
pluginspage attribute to determine whether to present a similar prompt. The
difference is that pluginspage makes no distinction among Flash Player

Flash Player 9 or Higher | 29


http://www.adobe.com/devnet/activecontent/

fj sampleMovie - Windows Internet Explorer ; = ||:||1|

@T\__: =[] httpuumm.sample.comiSampleovie.htm x| | ¢4 || X | [sooge -
¢ 2 () sampleMovie | | - - e - b Page + (G Todk + 7
=
[
Internet Explorer - Security Warning ] |

Do you want to install this software?
Mame: Adobe Flash Player Installer
Publisher: Adobe Systems Incorporated

¥ |M0re options Install | Don't Install I

@ ‘while files From the Internet can be useful, this file bvpe can potentially harm
wour computer, Only install sofkbware from publishers you trust, What's the risk?

=
Waiting For http: /e, sz | NGNS ’_ l_ l_ ’_ ’_ E |@ Internet | HI00% v g

Figure 2-3. Internet Explorer prompting an installation of the Flash Player ActiveX control

versions: Mozilla browsers always install the latest version, even if you don’t
need the latest.

By and large, encouraging the latest version of Flash Player seems to make
sense. Generally speaking, installation is a relatively trivial affair, even if it is
aninterruption. If your website visitor has the latest version installed, it doesn’t
matter if your content requires only, say, 9.0.16.0. Modern browsers make
installation or upgrades practically effortless for most home users, but not
every user scenario occurs at home.

In most corporate, government, and educational settings (think libraries!), in-
dividual users are rarely given administrative rights to the computers they use.
These content viewers can’t agree to an upgrade when prompted by the
browser—in fact, the prompt may not even happen—so at best, such viewers
may be faced with an upgrade proposition they can’t act on and at worst, a
webpage with obviously missing content. By leaving the codebase attribute at
the lowest required value, you might steer clear of a few unnecessary inter-
ruptions for Internet Explorer users, but your best bet is version detection.

When “Detect Flash Version” is selected on in the HTML tab of the Publish
Settings dialog box, the JavaScript code is slightly altered, which comes as no
surprise. (Remember, if the HTML templates change in the commercial release
of Flash CS4, then it won’t be that the JavaScript is altered, but rather, that it
is introduced into the publish process.)

30 | Chapter2: Discovering What You Need to Work with ActionScript 3.0



The detection-specific JavaScript provides a mechanism more reliable than the
codebase or pluginspage HTML tag attributes. With detection engaged, the
user’s installed Flash Player can be checked against major, minor, and revision
values, as specified below the “Detect Flash Version” checkbox in the dialog
box.

In addition, a notable change happens to the HTML. In this case, content
inside the <noscript> tag no longer contains the backup <object> and
<embed> tags. Instead, you’re expected to provide your own alternate content.
This might be an explanatory line of text, as suggested by the generated
markup, but could just as easily be an image or any other valid HTML, in-
cluding, if you want to risk it, an alternate SWF file published for an older
version of Flash Player.
<noscript>
// Provide alternate content for browsers that do not
support scripting
// or for those that have scripting disabled.
Alternate HTML content should be placed here. This content
requires the Adobe Flash Player.

<a href="http://www.macromedia.com/go/getflash/">Get Flash</a>
</noscript>

This markup is mirrored in an else clause just a few lines prior:

} else { // flash is too old or we can't detect the plugin
var alternateContent = 'Alternate HTML content should -
be placed here.'
+ 'This content requires the Adobe Flash Player.'
+ '<a href=http://www.macromedia.com/go/getflash/>
Get Flash</a>';
document.write(alternateContent); // insert non-flash content

}

This code is what gets displayed if the user has JavaScript enabled, but not the
minimum required version of Flash Player. Here too, the HTML written out
by JavaScript can be replaced with more appropriate or targeted content of
your own choosing. In this way, you can provide an experience of progressive
enhancement, in which essential content is presented to the user in all cases,
and augmented for the user who has Flash Player installed.

Using SWFObject

Be aware that the authoring tool’s built-in code templates aren’t your only
option for embedding a SWF file with JavaScript. SWFObject, a popular third-
party solution, provides an alternative approach that many consider even eas-
ier to use. The required swfobject.js JavaScript file, as well as additional sample
files, are freely available from a Google Code project maintained by Geoff
Stearns, who wrote the original script.

Flash Player 9 or Higher | 31



Download the swfobject_2_0.zip archive from http://code.google.com/p/swfob
ject/. Ata minimum, you need to extract the swfobject.js file into the folder that
contains your HTML document. This JavaScript file replaces the
AC_RunActiveContent.js file that ships with Flash CS4, so you don’t need the
HTML document generated by the authoring tool when you use SWFODbject.
Instead, create a new HTML document of your own. Use the SWFObject gen-
erator tool (an interactive form) at http://www.swffix.org/swfobject/generator/
to create the necessary HTML and JavaScript code. Paste this code into your
HTML document and upload the HTML, JavaScript and SWF files to your
server.

Using Other Code Editors with Flash

With an ActionScript 3.0 compiler in hand and Flash Player 9 or 10 to display
compiled content, you're ready to start producing. If your projects involve
mainly timeline code, especially nested movie clip techniques, you’ll likely find
that the Actions panel is the most convenient place to compose ActionScript.
For more complex projects, where custom classes are in order, you also—or
exclusively—have to use a Script window. Script windows in Flash CS4 are
not true panels, so they don’t appear in the file menu like the Actions panel
does, under Window—Actions. To use a Script window, simply select
File-New—ActionScript file, or open an existing AS file. Although the Actions
panel and Script windows share some features, only Script windows deal with
the external text files necessary for custom classes.

N
. For a detailed overview of changes to the Actions panel and
ﬁ:‘ Script windows, see Chapter 5.
S s
15

Of course, you have alternatives to coding in the Flash authoring tool, even if
you use the authoring tool’s compiler for deployment. The remainder of this
chapter focuses on a simple drag-and-drop application to demonstrate work-
flows in which a designer is responsible for FLA file maintenance while a de-
veloper writes ActionScript in an external script editor. The same person could
very well play both designer and developer roles. In such a case, the designer/
developer multitasks between the Flash authoring tool and an external script
editor, which becomes a sort of “superhero Actions panel.” Coding is done
externally, but SWF files are generally compiled in Flash CS4.

In team environments, this scenario may or may not be suitable. In cases where
virtually all content is generated by code, or where assets are loaded at runtime,

32 | Chapter2: Discovering What You Need to Work with ActionScript 3.0


http://code.google.com/p/swfobject/
http://code.google.com/p/swfobject/
http://www.swffix.org/swfobject/generator/

designers and developers may indeed comfortably work in isolation. The only
purpose of FLA files in this case might be to store artwork, audio, fonts, and
the like for export as SWC files, which can be used as components in Flex
Builder 3. These assets might also be dynamically loaded as SWF files, if not
in their native formats. Under these circumstances, a project would almost
certainly be positioned as a Flex endeavor, and deployed with the Flex SDK
compiler.

In general terms, then, when ActionScript classes depend on library assets, the
Flash authoring tool should perform the compiling. For this reason, the fol-
lowing example specifically relies on library assets to demonstrate both the
benefits and considerations involved in separating code from content, espe-
cially when coding occurs outside of Flash.

Creating DragParrot, a Sample Class File

Although you can reproduce the functionality of the following class with time-
line code, doing so would largely defeat the purpose of using an external code
editor. This code defines a custom DragParrot class that, when configured as
the document class of a specific FLA file, results in a pre-drawn parrot in a circle
that you can drag only when a checkbox is selected (Figure 2-4). The Action-
Script is stored in an external text file, DragParrot.as, saved in the same folder
as its companion, DragParrotExample.fla. You can use the exact same code in
each of the script editors discussed in the following sections.

W N
\
SN For more information on the new document class concept, see
.“,“ Chapter 6.
.0 -
15N

I’s important to keep in mind that some of the assets required by
DragParrot are stored in a separate FLA file, included with the samples that
accompany this book. These assets are configured to be exported for Action-
Script in the Linkage area of the Symbol Properties dialog box accessible from
the Library panel. They don’t appear anywhere on the FLA file’s stage. Prior
to ActionScript 3.0, these assets would have been assigned a linkage identifier,
but the attaching mechanism has changed in the new language. Attachable
assets are now assigned a linkage class, which defines the asset in terms of an
appropriate base class, such as MovieClip or Sprite. This linkage class can be
composed of custom ActionScript, butit doesn’t have to be. In fact, by default,
the Flash authoring tool automatically writes this class for you, in which case
the class isn’t saved as a separate AS file, but included virtually into the SWF

Using Other Code Editors with Flash | 33



E DragParrotExample.swi Y =] B
Filz V¥iew Contral Debug

m Allowy drag

Figure 2-4. The DragParrot class in action

file. If you’re coding in an external script editor and compiling in Flash CS4,
you can trust that linkage classes are “magically” available at compile time.

For more information on the new linkage paradigm, see
Chapter 8.

The DragParrot class, shown in the following code, begins by importing a set
of external classes it needs to perform its tasks. The first of these, Parrot, ob-
viously stands out as a custom class. This is the linkage class handled by the
Flash authoring tool. As it happens, CheckBox is also a library asset (an instance
of the CheckBox component) and must be present in the library. After class
properties are declared, the constructor function, DragParrot(), calls on a
handful of descriptively named methods.

package {
import Parrot;

import fl.controls.CheckBox;
import flash.display.Sprite;

34 | Chapter2: Discovering What You Need to Work with ActionScript 3.0



import flash.events.MouseEvent;
public class DragParrot extends Sprite {

private var _ball:Sprite;
private var _parrot:Sprite;
private var _checkbox:CheckBox;

public function DragParrot() {
drawBall();
addParrot();
makeCheckBox () ;
assignEventHandlers();

}

These methods are fairly basic. The first, drawBall(), calls on a special set of
functionality from the Graphics class, collectively known as the Drawing API,
to draw a light blue circle into a Sprite instance, and then adds this object to
the display list, so that it can be seen.

private function drawBall():void {
_ball = new Sprite();
_ball.graphics.lineStyle();
_ball.graphics.beginFill(0xB9D5FF);
_ball.graphics.drawCircle(0, 0, 60);
_ball.graphics.endFill();
_ball.x = stage.stageWidth / 2;
_ball.y = stage.stageHeight / 2;
_ball.buttonMode = true;
addChild(_ball);

}

The addParrot() method attaches pre-drawn artwork from the companion
FLA file’s library by instantiating the linkage class Parrot. This object is added
to the display list of _ball (created in the previous method), which makes the
artwork a child of that object.

private function addParrot():void {
_parrot = new Parrot();
_ball.addChild(_parrot);
_parrot.x = _parrot.width / -2;
_parrot.y = _parrot.height / 2 - =
_ball.height / 2;

}
W8
AN There’s a reason why the ball, parrot, and _checkbox vari-
:‘: ables are preceded by an underscore. By popular convention,
* Qi8¢ many developers set private variables apart by using this punc-

tuation. This was a source of potential conflict in
ActionScript 2.0, because many built-in properties formerly
featured underscores for unrelated reasons. Their removal in
ActionScript 3.0 eliminates this confusion.

Using Other Code Editors with Flash | 35



The makeCheckBox () method attaches a component from the companion FLA
file’s library by instantiating the linkage class CheckBox. The checkbox is posi-
tioned in the lower left corner of the stage, given a label “Allow drag”, and
then added to the display list.
private function makeCheckBox():void {

_checkbox = new CheckBox();

_checkbox.x = 10;

_checkbox.y = stage.stageHeight - 30;

_checkbox.label = "Allow drag";

_checkbox.selected = true;

addChild(_checkbox);

}

Finally, assignEventHandlers() associates _ball with two event handler meth-
ods. Thanks to an if statement, the dragParrot() handler responds only when
the checkbox is turned on.
private function assignEventHandlers():void {
_ball.addEventListener(MouseEvent.MOUSE_DOWN, -
dragParrot);
_ball.addEventListener (MouseEvent.MOUSE_UP, -

dropParrot);
}

private function dragParrot(evt:MouseEvent):void {
if (_checkbox.selected) {
_ball.startDrag();
}
}

private function dropParrot(evt:MouseEvent):void {
_ball.stopDrag();
}

}

This class could have been written in a Script window of the Flash authoring
tool or in any simple text editor. The remaining sections touch on four popular
alternative ActionScript editors. Bear in mind, none of these applications ex-
clude the use of one another. If you like, sample each one to get a feel for their
nuances. You might just decide you like them all!

Coding with Flex Builder 3

As mentioned earlier in this chapter, Flex Builder 3 is Adobe’s answer to tra-
ditional programmers interested in developing for the Flash Platform. To be
sure, Flex Builder is hardly just a script editor. Its full benefit becomes clear
when you use it to leverage the Flex framework, which includes dozens of user
interface (UI) components and data classes not available in the Flash authoring
tool (though freely available with the Flex SDK). These elements are geared
toward the development of Rich Internet Applications (RIAs), which are Flex’s

36 | Chapter2: Discovering What You Need to Work with ActionScript 3.0



specific focus. In addition to ActionScript 3.0, Flex Builder can create and edit
MXML, an XML-based markup language used to declaratively lay out interface
elements and, in conjunction with ActionScript 3.0, implement business logic
and facilitate remote procedure calls (RPCs). Built on the Eclipse platform,
Flex Builder benefits from hundreds of third-party plug-ins, which extend ba-
sic functionality across a wide range of topics. Many of these plug-ins are free
(see http://www.eclipseplugincentral.com/) and work with both the stand alone
version of Flex Builder and the version that is, itself, a plug-in for Eclipse.

og For some comprehensive guides to Flex, including Flex
.‘.:‘ Builder 3, read Learning Flex 3 (O’Reilly), by Alaric Cole;

T Usy Programming Flex 3 (O’Reilly), by Joey Lott and Chafic Ka-
* zoun; and Flex 3 Cookbook (O’Reilly), by Joshua Noble and

Todd Anderson.

Muscle notwithstanding, Flex Builder 3 is perfectly capable of creating and
editing straightforward ActionScript 3.0 classes. Although the Flash authoring
tool’s Actions panel and Script windows get the job done, the powerful editing
capabilities of Flex Builder raise the bar considerably.

1. If you don’t already have Flex Builder 3 installed, you can download a 60-
day trial version from http://www.adobe.com/products/flex/. Once the ap-
plication is installed, launch Flex Builder.

2. Select File»New—ActionScript Project from the File menu or right-click
(Command-click) in the Navigator view, as shown in Figure 2-5.

3. In the New ActionScript Project dialog box, name the project
DragParrotExample. Turn off “Use default location”, as shown in Fig-
ure 2-6, and then browse to the folder on your hard drive that contains
DragParrotExample.fla.

Click Next to continue.

Using Other Code Editors with Flash | 37


http://www.eclipseplugincentral.com/
http://www.adobe.com/products/flex/

Fx Flex Development - Adobe Flex Builder 3

File Edt Mavigate Search Project Data Run Window Help

JEEI ot a o A R
= ==
SNEREN

| new [ERERER

| ez i

o Pasie (7 Flex Library Project

— [ Profect

2y Tmport,

224 Export ' ML Application

—— 3 ML Comporert
& | Refresh ‘B MR Module

i ActionScript File
i) ActionScript Class
i) ActionScript Tnkerface:
) C55 File:
(f Folder
L File

oz
o= Outine &% L [ Other...

an outline i not

21 probems £3
0 errors, 0 warrings, Oinfos
Description. = | Resource

s
v

Figure 2-5. Creating a new ActionScript project in Flex Builder 3

Fx Mew ActionScript Project ] _|ol x|

Create an ActionScript project.

Specify the location of the Files in the new project., |

Project name: | DragParrotExample

~Project contents

[ Use default lacation

Folder: I C:ADocuments and SettingsiUseriMy Documentsiiy Projects\Books) act

—Flex SDK wersion LE
&+ Use default SOK (currently "Flex 3" Configure Flex SDKs. ..

' Use a specific S0K: IFIex 3 ‘I

(71 = Back | Mext = | Einish | Cancel |

Figure 2-6. Storing the project in the same folder as a companion FLA file

4. In the Create an ActionScript Project dialog box (Figure 2-7), you have the
option of including additional source folders and assets with the Source
path and Library path tabs. Although they sound otherwise, these tabs

38 | Chapter2: Discovering What You Need to Work with ActionScript 3.0

vww allitebooks.conl



http://www.allitebooks.org

Fx Mew ActionScript Project =10 il

Create an ActionScript project.

5

Set the build paths For the new ActionScript project. |

=

[ Source path | =, Library path

Additional source folders outside of the main source Folder:

Add Folder. ..

Edit...

Remoye

o

a1y ]

Main source Folder: | Browse..,

Main application file: | DragF‘arrc-t.asI Browse...

Output Falder: | bin-debug Browse. ..

ali L LR

Cukput Folder URL: |

(7) < Back | Mext = | Firiish I Cancel

Figure 2-7. Assigning the main application file

aren’t related to the Library panel in Flash. Ignore them, and change the
Main application file from the default DragParrotExample.as (automati-
cally named after the project) to DragParrot.as. By doing this, you’re cre-
ating a brand new AS file, rather than reusing the class file you wrote in
Flash CS4.

Click Finish to conclude.

. At this point, you’re ready to code. As Figure 2-8 shows, Flex Builder has
already created a basic outline for you. A package and class have already
been declared; DragParrot extends Sprite, which is already imported; and
the constructor function, DragParrot(), is already written.

. Add code to the existing ActionScript so that it looks like the code that
follows (new code in bold).

Using Other Code Editors with Flash | 39



Fx Flex Development - DragParrotExample/DragParrot.as - Adobe Flex Builder 3

Fle Edit Source Mavigate Search Project Dota Run Window Hel
[Ci-He )0 -3-8-@a-| 4] -5l-6-0 -
g Flex Navigator 13 = .

o B g 7| 1opackage (

=] q(:l]DragPaerlExamp\e z import flash.display.Sprite;
(& bin-debug @
= htmktemplate 4 public class DragParrot extends Sprite
i} N ¢
DragParrat. as o R
B 0 agParratExample fla : !("“'llv function DragParrot()
8 )
2 +
10 ¥
11
=l
Brouine 21| B W 0 70|
21 prabiems 5 |
E] 8 {default package)
i 0 errors, O warrings, 0 infos
= mports R & I
=D DragParrot LERLLIED esource at
© DragParrat()

o> Flex Buider 3 will expire in 61 days. | Wrikable Insert

Figure 2-8. Reviewing the basic outline of DragParrot

package {
import flash.display.Sprite;

public class DragParrot extends Sprite

{
private var _ball:Sprite;
public function DragParrot()
{
_ball = new Sprite();
}
private function assignEventHandlers():void
{
}
}
}
N

Flex Builder places open curly braces ({) on a new line.

This is a stylistic preference that has no effect on code
2Us' execution.

This detours slightly from the code shown earlier, but it’s enough to
showcase a number of Flex Builder enhancements. Like the Flash author-
ing tool, Flex Builder features code coloring and code hinting. In addition,
note that the Outline view (Figure 2-9) maintains a running catalog of
class members, including import statements, properties, and methods.

40 | Chapter2: Discovering What You Need to Work with ActionScript 3.0




0= Outline E@l B s e 770
B 8 (default package)

E|‘ = imparts

- “— Flash.display. Sprite
DragFarrot
o _ball: Sprite
o @ DragParro()
i B assignEventHandlers’ : void

Figure 2-9. The Outline view helps you navigate code

Each kind displays its own icon to distinguish it from the others, and even
the constructor function is set apart from other methods by a green dot.
If you select any of the items in the Outline view, then the corresponding
section of code is highlighted. Likewise, as you click various elements in
the code editor, such as property and method declarations, the Outline
view changes to reflect your selection.

. Complete the assignEventHandlers() method so that it looks like this:

private function assignEventHandlers():void

_ball.addEventListener(MouseEvent.MOUSE_DOWN, -
dragParrot);

_ball.addEventListener(MouseEvent.MOUSE_UP, -
dropParrot);

}

Ensure that Project—Build Automatically is turned on. Save the file. When
you do, you see a powerful troubleshooting tool as shown in Fig-
ure 2-10. Circular red X icons appear next to lines with errors. In the Prob-
lems view (bottom center), errors are conveniently summarized in a group.
Clicking any of these rows highlights the relevant line of ActionScript. As
you correct issues, they automatically remove themselves from the Prob-
lems view, and the red X icons disappear.

In this case, one of the errors is that the MouseEvent event hasn’t been
defined. Scroll to the existing import statement, and then add the following
new line beneath it:

import flash.events.MouseEvent;
Save the file, and two of the four error messages go away. The remaining

errors show that the event handler methods, dragParrot() and
dropParrot(), haven’t yet been written.

Using Other Code Editors with Flash | 41



Fx Flex Development - DragParrotExample /DragParrot.as - Adobe Flex Builder 3 =18 x|
Fle Edit Source Novigale Search Project Data Run Window Help
-0 %-0-@@-] 48 -5 G- - i [ e oo
5 Flex Mavigator Sﬂ = O |15 i ﬁ‘
F ‘ BE T 1=package { [m
B 3 DragporrotExample i import flash.display.Sprite;
= bin-debug i )
& himbtmplate 4 public class DragParrot extends Sprite
H [
DragParrot.as .
A oraqparrctexample.fia : private var _ball:Sprite;
= public function DragParrot (]
B ¢
10 _ball = new Sprite();
11 ¥
128 private function sssignEventHandlers()iveid
13 [
B14 _ball.addEventlistener (MouseEvent . MOUSE_DOWN, dragParrot); -
315 _ball.addEventListener (MouseEvent. NOUSE UP, dropParrot): |

[&gs 3
. ¥

18 b

K|

EZowne 2| B W o YO
= z [21 probiens £2 |

Bl 8 (defaul package
® ¢ e 4 errors, 0 wamings, 0 infos

e ‘Dm:::rml Description_= [Resowce [ path [tocation_|
bal : Sprite = ¥ Ervors (4 items)
-6 Dragpamot) D 1120: Access of undefined property drz DragParrot.as | DragPatratExample lire 14
. » T @ 1120: Access of undefined property drc DragParrokt.as | DragParratExample line 15
@ 1120: Access of undefined property Mo DragParrot.as | DragParrotExample line 14
@ 1120: Access of undefined property Mo DragParrot.as | DragParrotExample line 15
[ o ‘ irikable ‘ Insert | 15:57 |

Figure 2-10. Errors are displayed and summarized as they occur

8. Revise the ActionScript so that it looks like this:
package {

import flash.display.Sprite;
import flash.events.MouseEvent;

public class DragParrot extends Sprite {
private var _ball:Sprite;
public function DragParrot()

drawBall();
assignEventHandlers();

}

private function drawBall():void

{
_ball = new Sprite();
_ball.graphics.lineStyle();
_ball.graphics.beginFill(0xB9D5FF);
_ball.graphics.drawCircle(o, 0, 120);
_ball.graphics.endFill();
_ball.x = stage.stageWidth / 2;
_ball.y = stage.stageHeight / 2;
_ball.buttonMode = true;
addChild(_ball);

42 | Chapter2: Discovering What You Need to Work with ActionScript 3.0




private function assignEventHandlers():void

_ball.addEventListener(MouseEvent.MOUSE_DOWN, -
dragParrot);

_ball.addEventListener(MouseEvent.MOUSE_UP, -
dropParrot);

}

private function dragParrot(evt:MouseEvent):void

_ball.startDrag();
}

private function dropParrot(evt:MouseEvent):void

_ball.stopDrag();
}

}

At this point, nothing in the class file yet relies on the FLA file with which
it shares a folder. To prove it, select Run—Debug DragParrot, and then
wait a few moments while Flex Builder 3 compiles the class. Before long,
a browser opens, as shown in Figure 2-11, and a draggable circle appears.
The teal background color is a result of Flex’s default preference settings.

o

e __________ _  CLkeew

Figure 2-11. Compiling in Flex Builder succeeds when code doesn’t rely on FLA file library
assets

Using Other Code Editors with Flash | 43



’—_ Because of the default scale mode used by Flex Builder 3, the

“m blue circle may not appear centered when the browser opens.

Don’tbe surprised if you have to resize the browser repeatedly

and look in the corners. You could address this in the Drag

Parrot class, but remember, this SWF file is ultimately going
to be compiled in Flash CS4.

9. Close the browser, and return to Flex Builder 3. Locate the drawBall()
method by selecting it in the Outline view. Hover over the term _ball in
the final line, addChild(_ball);. When you do, a tooltip appears (Fig-
ure 2-12) that tells you the data type of _ball, which is Sprite, and that
this Sprite instance belongs to the DragParrot class.

Hold down the Ctrl (Command) key, and then move the mouse over var-
ious lines of code. The Ctrl (Command) key adds a temporary underline
to properties and methods. With the key still pressed, click ball once
again. The ActionScript editor jumps to the definition of this term near
the top of the class. These hover and click techniques assist considerably
in code navigation.

aszsignEventHandlers(); ;I
¥
private function drawBall() :void
i
_ball = new Spriter):
_ball.graphics.linestyle(]:
_ball.graphics.beginFill (OXxESDSFF) ;
_ball.graphics.drawCirele(d, 0, 120);
_ball.graphics.endFilli};
_ball.x = stage.stageWidth / 2:
_ball.y = stage.stageHeight / 2:
_ball.buttonMode = true;
addChild{_balll);
i

Sprite _ball - DragParrat
private function assignEventHandlersi() :void

{ -
| I d|

Figure 2-12. Tooltips display data types

10. Time to wrap things up. Update the ActionScript one last time to look like
the code that follows.

package {

import Parrot;
import fl.controls.CheckBox;
import flash.display.Sprite;

44 | Chapter2: Discovering What You Need to Work with ActionScript 3.0



import flash.events.MouseEvent;
public class DragParrot extends Sprite {

private var _ball:Sprite;
private var _parrot:Sprite;
private var _checkbox:CheckBox;

public function DragParrot()

{
drawBall();
addParrot();
makeCheckBox() ;
assignEventHandlers();

}

private function drawBall():void

{
_ball = new Sprite();
_ball.graphics.lineStyle();
_ball.graphics.beginFill(0xB9D5FF);
_ball.graphics.drawCircle(o, 0, 120);
_ball.graphics.endFill();
_ball.x = stage.stageWidth / 2;
_ball.y = stage.stageHeight / 2;
_ball.buttonMode = true;
addChild(_ball);

}

private function addParrot():void

{
_parrot = new Parrot();
_ball.addChild(_parrot);
_parrot.x = _parrot.width / -2;
_parrot.y = _parrot.height / 2 -

_ball.height / 2;

}

private function makeCheckBox():void

{
_checkbox = new CheckBox();
_checkbox.x = 10;
_checkbox.y = stage.stageHeight - 30;
_checkbox.label = "Allow drag";
_checkbox.selected = true;
addChild(_checkbox);

}

private function assignEventHandlers():void

_ball.addEventListener(MouseEvent.MOUSE_DOWN, -
dragParrot);

_ball.addEventListener (MouseEvent.MOUSE_UP, -
dropParrot);

}

private function dragParrot(evt:MouseEvent):void

if (_checkbox.selected) {

Using Other Code Editors with Flash



_ball.startDrag();

}
private function dropParrot(evt:MouseEvent):void
{

_ball.stopDrag();
}

}
}

Error notices occur because of the references to Parrot
"@ and CheckBox, which the Flex SDK compiler can’t locate.

For a detailed look at collaboration between Flash CS4
Professional and Flex Builder 3, read about the Flex
Component Kit for Flash CS3 extension on the Adobe
Exchange website http://www.adobe.com/cfusion/ex
change/index.cfm?event=extensionDetail&extid=
1273018.

Open DragParrotExample.fla in Flash CS4. Ensure that the Property in-
spector indicates DragParrot as the document class, and then select Con-
trol>Test Movie to compile the FLA file (and class) in the Flash compiler.

Coding with SE|PY

SE|PY is a free ActionScript editor for Windows and Mac written in Python
by Alessandro Crugnola. It was originally developed for ActionScript 2.0, yet
continues to be very popular and works quite well with ActionScript 3.0 and
even JavaScript. Information on SE[PY and downloads are available at www
.sephiroth.it/python/sepy.php. Helpful tips are occasionally posted at http:/
www.sepy.it/. If you like what you see, consider making a PayPal donation.

Compared with Flex Builder 3, SE|PY (Figure 2-13) is a svelte application, and
purposefully so. It offers a quick-loading interface with a Swiss Army knife
assortment of practical minitools. When working with ActionScript 3.0, you’ll
use SE|PY to write your ActionScript, and then switch over to Flash to compile.
Here are a handful of the goodies that await you.

A number of tabs run down SE|PY interface’s left edge. The tab selected in
Figure 2-14, Members, is similar to the functionality of Flex Builder’s Outline
view. Class members are indicated by icons and, when double-clicked, high-
light the corresponding section of code. In this implementation, members are
displayed alphabetically, regardless of their order in the ActionScript, which
eases navigation. The input field at the top filters members as you type (Fig-
ure 2-14), so you can easily locate methods in complex class files. Notice that
the letters “dr” have highlighted methods whose names start with those char-

46 | Chapter2: Discovering What You Need to Work with ActionScript 3.0


http://www.adobe.com/cfusion/exchange/index.cfm?event=extensionDetail&extid=1273018
http://www.adobe.com/cfusion/exchange/index.cfm?event=extensionDetail&extid=1273018
http://www.adobe.com/cfusion/exchange/index.cfm?event=extensionDetail&extid=1273018
http://www.sepy.it/
http://www.sepy.it/

i SE|PY ActionScript Editor (T2, Documents and Settings',David My Documents' My Projects'Books'\Actior iz i D|5|
File Edit Search Insert Yiew Tools Flush Help

OBWX S| xbaAl |EEGET | 08T
>7 ill _/ ) Dragparrot.as x 1 4 b x

S-4J] DragParrot.as
B2 Imports
s Parrob
% Ffl.controls, CheckBox
% flash.events.MouseEvent
= Flash.display. Sprite
ff DragParrat()
i addParrot()iveid
+¢f assignEventHandlersi):void
| dragParrot{evt:MouseEvent):v AL
L drawBalivoid z
¢ dropParrotievt:MouseEvent):y [
g makeCheckBox():void

4

private var _checkbox:CheckBox: =
7# constructor
public function DragParroct() {
drawBall():
addParrot () : M
makeCheckBox () ;
assignEventHandlers():

| private function drawBall():void {

_hall = new Sprite():

<7 use drawing API to draw a circle
ball .graphics.linel3tyle():
ball .graphics.beginFill {DxB9D5FF) ;
ball .graphics.drawCircle(0, 0, 120);:
ball .graphics.endFill():
ball.z = stage.stageWidth ~ 2:
ball.y = stage.stageHeight ~ 2:
_hall .buttonMode = true; m
<7 add _ball to display list
addChild (_ball):

| — (]
DragParrot.as: 548
drawBall()void

}

private function addParrot():void {
#7 attach parrot asset from Library
_parrot = new Parrot():
# add ta _ball's display list
_hall.addChild{_parrot):
_parrot.xz _parrot.width ~ -2

| @& Flash a1 ‘ Ky Todo ‘ B Members | | Snippets | (. Workspace

_parrot.y _parret.height ~ 2 - _hall.l=
E >
File Saved. 2356 characters 19 1
A

Figure 2-13. The slender but powerful SE|PY ActionScript editor

«,_»

acters. Adding “a” (“dra”) omits dropParrot() from the list, and so on. To clear
filtering, delete the contents of the input field.

The Snippets tab gives you a handy way to reduce the tedium of typing com-
mon blocks of code, fittingly known as snippets. The green cogwheel icon
(Figure 2-15) lets you categorize snippets by folder on your hard drive. You
might create folders for ActionScript 3.0, 2.0, JavaScript, and XML.

The next few steps walk you through the creation of a SE|PY snippet.

1. Download and install SE|PY, and then launch the application. Select the
Snippets tab, and then click the green cogwheel icon to locate or create a
folder for snippets.

2. Once a folder is created, right-click (Command-click) on the folder’s
name, and then select “Create new snippet”.

3. Inthe New Snippet dialog box, enter the name for. .in trace, which you’ll
supply with a bit of templated code in a moment. Click OK to continue.
This action opens a new document tab.

4. In the new document tab, type the following ActionScript (and save):

trace("for..in obj trace");
for (var prop:String in obj) {

Using Other Code Editors with Flash | 47



W

=

DragParrot.as

= Imports

: = Parrot

= fl.controls. CheckBox

= flash.events.MouseEvent
e Flash. display, Sprite

----- Ffl DragParrot(}

«{Q addParrot{:void

‘{9 assignEsentHandlers():void

@‘3 dragParrok{evt:MouseEvent): void
-l drawBall):void

QQ dropParrat{evt: MouseEvent): vaid
i makeCheckBowx()void

@ for.in.as

41| for.in trace.as

Kl [»]
DragParrot, as: 1068
addParrot(:void

= BE
o

&% Todo | # Members | F | Snippets | { . Workspace

Figure 2-14. The Members tab supports filtering

> %\?)

|Change Snippets working directoryl

Snippets | i Workspace

Figure 2-15. Snippets make it easier to type common blocks of code

trace(prop + + obj[prop]);

5. Select File=New to open a new document. Double-click your newly cre-
ated snippet in the Snippets tab to see it appear in the new document. So
far, this is only slightly better than pasting from the Clipboard. Here’s
where it gets interesting.

6. Right-click (Command-click) the snippet, and then select Edit. Update
the existing code to look like this:

48 | Chapter2: Discovering What You Need to Work with ActionScript 3.0

[vww allitebooks.cond



http://www.allitebooks.org

i SE| PY ActionScript Editor {Document3*) e P ] 3

File Edit Search Insert WYiew Tooks Flush Help

OBEKIO«=0aRAR[EENGED | DE [T |Z 4

>7 RO T DragParotas | R for.ntaceas Document3 * X 4 kX
g’ A53 snippets if [
E For. in trace
zl
Wariables list
Yariable value | ariable name |

abj

ok I Cancel Don't change

‘ @& Flash aFT | K Todo | B® Members | [ srippets | (. Workspace

O

Figure 2-16. Using a more sophisticated snippet
trace("for..in @@obj@@ trace");
for (var prop:String in @@obje@) {
trace(prop + ": " + @@obj@@[prop]);
}

The addition of the @@ characters establishes obj as a kind of snippet-
specific variable. Save and switch to the new document. Double-click the
snippet again. This time, a dialog box opens, as shown in Figure 2-16.

This dialog box shows the obj variable on the right, and lets you provide
a custom value on the left. Enter the term this, click OK, and see the
custom snippet appear in the new document:
trace("for..in this trace");
for (var prop:String in this) {
trace(prop + ": " + this[prop]);
}

You may add numerous variables to each snippet in this manner, which
gives you shortcuts to tailor-made blocks of code. If you wish, you can
even provide default (but changeable) values for these variables by using
the following syntax inside the snippet:

trace("for..in @@obj=[defaultValueHere]@@ trace");

for (var prop:String in @@obj@@) {

trace(prop + ": " + @obj@@[propl);
}

Using Other Code Editors with Flash | 49




You have nearly a dozen additional tabs and tools, including:

Todo: Keeps track of commented reminders (for exam-
ple, // TODO optimize this loop!). Reminders are displayed in a clickable
tree view, like the Members tab, sorted by line number and script file.

Variables: Displays declared variables in a clickable table, similar to the
Members tab.

Unicode chars: Displays Unicode and ANSI character codes for basic and
extended character sets.

Clipboard: Displays text content of the current Clipboard contents.
XML Reader: Displays XML files in a collapsible tree view. Supports
XPath expressions for quick navigation.

Class Explorer: Displays packages and classes like the Members tab, even
if those classes aren’t open as documents. Double-clicking a member
opens the relevant class file, and highlights the corresponding section of
code.

Stickies: Maintains virtual “paper” sticky notes, configurable by color.

SharedObject Reader: Displays the content of SharedObject files, the
Flash equivalent of a browser cookie. (This item and the remaining ones
are found in the file menu under Tools.)

Regular Expression Toolkit: Provides an interface for testing regular
expressions patterns.

Compare Files: Compares text files, which is great for locating changes
among multiple revisions, and compares file directories.

Coding with FlashDevelop

FlashDevelop is a compelling open source script editor for Windows designed
for ActionScript 3.0 and 2.0 development. Built on the Microsoft .NET Frame-
work, this application functions comfortably as a standalone IDE or in con-
junction the Flash authoring tool. FlashDevelop is produced by Mika Palmu,
Philippe Elsass, Nick Farina, and contributors. Information and downloads
are available at http://www.flashdevelop.org/ or http://osflash.org/flashdevelop/.

50 | Chapter2: Discovering What You Need to Work with ActionScript 3.0


http://www.flashdevelop.org/
http://osflash.org/flashdevelop/

8 FlashDevelop o ] 5|

File  Edit %ew Search Insert Project  Tools  Syntax  Help

IDAEBE|D |4 0|k e WM g | %3 5

Start Page } w X || Project o x

.SHDEVELOP

Home Documentation Release Hotes About

Recent Projects FlashDevelop.org

D DragParrotExample Start Page -: Adobe Flex 3
[ BallDropProject beta 3 release — Create a new projerct

Open: Project... Author: Philippe ar 9
Open an existing project
New: Project... FlashDevelop needs an update

if wou want to use the beta 3
SDK,

Latest Version Update FlashDevelop for Flex
3 beta 3
3.0.0 Beta5: Download here!

Start Page :: Undocumented

shortcuts
Author: Philippe
You probably didn't know all of

them,.. +| &8 outline |5 Project |L ] Files

[ Output H’«u“:} Resuls ]|J Tasks |

Figure 2-17. The FlashDevelop Start Page

1. Once FlashDevelop is installed, launch the application and note the Start
Page (Figure 2-17), which is similar to the Welcome Screen in Flash CS4.
The first time you run FlashDevelop, you may have to let it know where
your Flex SDK compiler is, if you plan to optionally compile ActionScript
3.0 SWF files without Flash.

2. Select Tools—Program Settings. This action opens the Settings dialog box.
Select AS3Context, locate the Flex SDK Location selection (Figure 2-18),
and then, on your hard drive, browse to the SDK. If you have Flex Builder
3 installed, you’ll find the SDK located within the application folder for
Flex Builder (for example, C:\Program Files\Adobe\Flex Builder 3\sdks
\3.0.0); otherwise, download and install the free Flex SDK, and then nav-
igate to that folder.

Click Close to continue.

3. Close the Start Page, and then select Project—=New Project. This action
opens the New Project dialog box. Scroll to the ActionScript 3 section,
and then select Empty Project. Name this project DragParrotExample, and
then set its location to a folder that contains DragParrotExample.fla, as
shown in Figure 2-19. Click OK.

Using Other Code Editors with Flash | 51



EE x|
Main— AS3Context [ Disable Help
ActionSeripk 3 cantext For the ASCompletion engine.
[ FlashDevelop
B as3
Plugins A53 Classpath C:Documents and Settings',David'Local 5
Defaulk Flash version 2
Ik ASZConkext Disable Flex Debugger Hosting False
b AS3Context Fl ian C:Program Files', Adobe',Flex Builder 3\_.&
ik ASCompletion E Common
i DabaEncoder Check Syntax On Save False:
Ik FileExplorer Enable Completion True
i FlashConnect Generate Imporks True
5 Flashviewer Lazy Classpath Exploration False:
ik HaeConkest List &ll Types In Campletion True
Ik LayoutManager Flay AFter Build True
2 QutputPanel Show Qualfied Types In Completion True
Lk ProjectManager User Classpath String[] Array
i ResultsPanel El Documentation
i StartPage Docurnentation Command Line http:/funany . google, comysearch?q="%2Zactionscri
ik TaskListPanel
3 ML Completion Flex SDK Location
The path to the Flex DK on your computer,

@ Settings will take effect as soon as you edit them successfully,

Close |

4

Figure 2-18. Configuring the Flex SDK location

4. FlashDevelop creates a new document for you named Untitled].as. Select
File—Save to save this file into the project folder as DragParrot.as. In the
Project tab (Figure 2-20), right-click DragParrot.as, and then select Always

Compile. Doing so configures this class as the project’s main file.

5. Atthis point, you’re ready to start coding. Type the following ActionScript
into the DragParrot.as document (note, this is everything in the class that

doesn’t rely on library assets in the FLA file):
package {

import flash.display.Sprite;
import flash.events.MouseEvent;

public class DragParrot extends Sprite {
private var ball:Sprite;

public function DragParrot(){
drawBall();
assignEventHandlers();

}

private function drawBall():void {
_ball = new Sprite();
_ball.graphics.lineStyle();
_ball.graphics.beginFill(0xB9D5FF);
_ball.graphics.drawCircle(0, 0, 120);

52 | Chapter2: Discovering What You Need to Work with ActionScript 3.0




_ball.graphics.endFill();
_ball.x = stage.stageWidth / 2;
_ball.y = stage.stageHeight / 2;

_ball.buttonMode =
addChild(_ball);

private function assignEventHandlers():void {
_ball.addEventListener(MouseEvent.MOUSE_DOWN, -

dragParrot);

_ball.addEventListener(MouseEvent.MOUSE_UP, -

dropParrot);
}

private function dragParrot(evt:MouseEvent):void {

_ball.startDrag();
}

private function dropParrot(evt:MouseEvent):void {

_ball.stopDrag();
}

New Project ﬂ

rInstaled Templates

ActionScript 3

.Empty Praoject
[_Flash IDE Project
:’:]Flex 2 Project
OHEX 3 Projeck
:'-JAIR Fler 3 Projector
::,]AIR Projector
f;:lDefauIt Project

HaXe

B

An emply project written in ActionScript 3 For Flash Player 9

Marne: IDragParrotExampIe

Location IC:'I,Documents and SettingsDavidi My DocumentsiMy ProjectsiBookstAckion Browse, ., |

[~ Create directary For project

Wil Create: Ci\Documents and SettingsiDavidiMy DocumentsiMy ProjectsiBooksActionScript 3.0 - The Quick.,

[0 4 Cancel |

Figure 2-19. Creating an ActionScript 3.0 project

Using Other Code Editors with Flash | 53




DragParrotExample - FlashDevelop N o [ 73]

Fle Edit View Search Insert Project Tools Syntax  Help

HERFENS =2 e|d | e s | MO & |5 %58 b Debug -

DragParrot.as | > X

1 = ]
() DragParrotEnample (A53)

ﬁ

Bl oo
DragPar| = G

Execute

ALWayE Campile

| cut
Copy
@ Delste
Rename
Hide: File
| Show Hidden Items

< |
[Q Output HLE} Results ]|f Tasks |

Line: 1 | Column: 1 | EOL: {CR+LF) | Encoding: 8 Bits | Untitled1,as

&8 Outline | () Project |1 Files

Figure 2-20. Choosing the project’s main class file

6. Select Project—Properties, which opens a dialog box that configures the
settings for the DragParrotExample project. This project requires the
name of an output file—this is the SWF file that the Flex SDK compiler
will generate—so type DragParrotExample.swf in the Output File field, as
shown in Figure 2-21. Experiment with the Dimensions, Background
Color, and Framerate settings, if you like. The Test Movie area lets you
specify how the SWF file should be opened. Choose Popup for now, and
then click OK to close the dialog box.

7. Select Project—Test Movie to compile the SWF file. For now, the compile
succeeds, because DragParrot doesn’t rely on the FLA file’s library assets.
Assoon as you update your code to include the Parrot and CheckBox classes
—along with the ActionScript that references them—you” have to compile
in the Flash authoring tool, because the Flex SDK compiler can’t locate
the necessary assets. As with Flex Builder 3, you have workarounds for
dealing with this situation in FlashDevelop. Forums on the FlashDevelop
website offer a handful of tutorials on the subject.

Double-click DragParrotExample.fla in the Project tab to launch Flash
CS4. Return to Project—Properties, and then select the checkbox next to
“No output, only run pre/post build commands” (Figure 2-22).

Click OK to exit the dialog box.

8. Select Project—Test Movie, and note that FlashDevelop automatically
brings the Flash authoring tool to the forefront. In this way, FLA file library

54 | Chapter2: Discovering What You Need to Work with ActionScript 3.0



DragParrotExample (AS53) Properties ll

Oukput |Classpaths I Build I Cormpiler Options |
r— Platfarm

Target wersion: IFIash Flayer 9 "I

[~ Mo output, only run prefpost build cormmands.

—General

Cukput File: IDragParrotExampIe.st Browse. ., |

Dirnensions: IBDD b ) px
Background Color: D I#FFFFFF
Framerate: ISD fps

— Test Movie

Open SWF in: M

K i I Cancel | Apply

Figure 2-21. Configuring SWF file settings

assets are properly located by DragParrot, so that when your class is revised

to reference them, the compile succeeds.

FlashDevelop supports a remarkable number of the tools featured in the other
script editors discussed in this chapter. Naturally, individual nuances differ
from application to application, but FlashDevelop includes its own version of
the following;:

Outline tab similar to the Outline view in Flex Builder 3
Code folding and code bookmarks

Syntax checking and error warnings, by way of the Flex SDK
Tasks interface for commented TODO reminders
Introspective tooltips that display class member details
Snippets

SharedObject reader

File comparison interface

Built-in web browser

Using Other Code Editors with Flash | 55



DragParrotExample (AS3) Properties |

Dukput ICIasspaths | Ewild | Compiler Options |

—PlatForm

Target version: IFIash Player 9 'I

I R GERE Bl P pire oSt Bl Eammandss
—Gtneral

Cukput File: Im Browse. . |
Dimensians: Iﬁ x |&00 px

Background Colar: I:l W
Framerate; I? fps

— Test Mawvie

Open SWE in: IPUpup 'I
[9]4 I Cancel | Apply

Figure 2-22. Selecting the No output checkbox switches FlashDevelop to the Flash
authoring tool compiler

Coding with PrimalScript

PrimalScript, by SAPIEN Technologies, is a powerhouse script editor for Win-
dows. This application is conversant in ActionScript 2.0 and also 3.0—provi-
ded you help it out, which is discussed in the following steps. PrimalScript
gives you much of the expected code coloring, autoformatting, and code com-
pletion seen in the Flash authoring tool and Flex Builder. If you want to explore
other languages, you’re in luck, because PrimalScript supports over 40 more,
including HTML, CSS, JavaScript, Java, C#, PHP, Python, Ruby, Perl, Tcl,
and the list goes on. Application information and downloads are available at
http://www.primalscript.com/, with three editions to choose from: Standard,
Professional, and Enterprise. Fully functioning 45-day trials are available for
all editions.

Longtime users of PrimalScript may notice that the application manages just
fine in ActionScript 2.0 but offers minimal support in ActionScript 3.0 out the
box. To work around this limitation, you have to give the application access
to a set of specially formatted class definitions for ActionScript 3.0 called
intrinsic classes. Fortunately, FlashDevelop (discussed in the previous section)
includes an unofficial set of intrinsics, which you can re-use with PrimalScript:

56 | Chapter2: Discovering What You Need to Work with ActionScript 3.0


http://www.primalscript.com/

=t pplication
P General Snippets Folder; IE: WProgram FilestSaPIENPrimalS cript 2007 Ente J
[=I- Enviranmenk

Languages Templates: IC: “Program FileshSAPIENWPrimalS cript 2007 Ente J

File Groups
Print
Directories

Info Mexus: IC: “Documents and Settings'D avid\Application D J

ty Scripts: IC: WDocuments and SettingshD avid\My Documen J

Backup Macros Folder: IC: “Program FilesySAPIENPrimalS cript 2007 Ente J

Task Lisk Projects: IC: WDocuments and SettingshD avidiMy Documen J

|- Source Contral

E]__ Text Editar A5 Classpath: Iiles'\FIashDevelop\FirstFIun'\Librar_l,l\.f-‘-.S3\inlrinsic H
£
[

;" ;)B?utgsgill?l MET SDK and Framework
- Seript Settings
5DK: | =]

Framewark: IC: WAIND OWwS Microzoft NE T Framework w35 J

Q. I Cancel | Help

Figure 2-23. Providing ActionScript 3.0 intrinsic classes to PrimalScript

1

. Download and install PrimalScript, and then launch the application. Se-

lect Tools—>Options.

. In the Options dialog box, select Environment—Directories. Use the el-

lipsis (...) button next to the AS Classpath field to browse for the intrinsic
classes, as shown in Figure 2-23. Select the C:\Program Files\FlashDevelop
\FirstRun\Library\AS3\intrinsic\  path  from your FlashDevelop
installation.

. Restart PrimalScript.
. To verity that ActionScript 3.0 code hinting is now supported, select

File»New File»Script Files—ActionScript Class. Create a Sprite instance
—or some other ActionScript 3.0 class instance—such as this:

var s:Sprite = new Sprite();

Add a new line to your code and repeat the variable name (here, s), then
type dot (.) to bring up the PrimalSense menu, as shown in Figure 2-24.

Using Other Code Editors with Flash | 57



12
13! war s:3prite = new Spritel):
14; =5.

ﬁ accessibilityProperties i’
iy accessibilibyProperties
G addChild
@ addChildat
ﬁ alpha
- alpha
4 arelnaccessibleChjectsUnderPoint
ﬁ blendMade
iy blendMode

5 buttanMade =l

Figure 2-24. Adding intrinsic classes provides ActionScript 3.0 code completion

Like the other scripting IDEs mentioned in this chapter, PrimalScript features
numerous additional amenities, all of which can boost your workflow
productivity:

* Code folding and code bookmarks

* Advanced snippets

* Clipboard viewer

¢ Code browser, similar to Outline view in Flex Builder 3

* Integration with source control software

* File comparison interface

* Visual query builder and XML editor

* Built-in web browser and FTP client

* Configurable tools browser to launch related applications, such as
Dreamweaver

58 | Chapter2: Discovering What You Need to Work with ActionScript 3.0



CHAPTER 3
Looking at the Changes in
ActionScript 3.0

The documentation for Flash CS4 Professional includes a tremendously useful
table titled “ActionScript 2.0 Migration.” An introductory caption humbly
states, “The following table describes the differences between ActionScript 2.0
and 3.0,” which leads to a catalog so lengthy, it would fill over 50 pages if
reproduced in this book. To locate this document, look in the appendixes of
the ActionScript 3.0 Language and Components Reference or search the term
“migration” in the Help panel. This document is also available on the Adobe
online Help Resource Center:

http://help.adobe.com/en_US/AS3LCR/Flash_10.0/migration.html

This chapter will help you find your bearings from a migration standpoint, and
navigate among these changes.

Major Changes and Obsolete Code

As programming languages evolve, existing workflows may change, new fea-
tures are usually added, and older features are sometimes removed. This is as
true for ActionScript as it is for Java, C#, Python, PHP, and countless others.
In the company of programmers at large, you’re not alone. The changes in
ActionScript 3.0 may seem startlingly plentiful, but historically speaking, Flash
has been through this sort of remodeling before. Developers encountered a
similar paradigm shift when Macromedia Flash 5 introduced the language that,
for clarity, was later renamed ActionScript 1.0. The original naming scheme
didn’t include version numbering, and was therefore referred to simply as
“ActionScript.” This was true even in Flash 4, which featured a fundamentally
different syntax in which objects were referenced by a relatively uncommon
mechanism called slash notation. The dot notation syntax of ActionScript 1.0,

59


http://help.adobe.com/en_US/AS3LCR/Flash_10.0/migration.html

in which nested objects are distinguished from one another by a dot (.), was
a major step toward making the language more accessible to developers from
other platforms. ActionScript 2.0 established a formalized structure for custom
classes and, in many ways, introduced a transitional period, in which many of
the current recommended best practices found a whispered beginning. Ac-
tionScript 3.0 expands and refines this formal class structure, while continuing
to extend a welcoming hand to traditional timeline programmers. The pithy
description by Adobe’s Kevin Lynch is apt: think of ActionScript 3.0 as evo-
lutionary, not revolutionary.

So yes, there are changes in the language. The good news is that they’re de-
signed to increase performance in Flash Player 9, 10, and future runtimes. Even
better, the changes are designed to help you stay more organized.

Major Changes in the API, Classes, and Language

One of the first things Flash developers often notice in ActionScript 3.0 is the
absence of underscores. Familiar MovieClip properties like x, y, width, and
_height are now referenced simply as x, y, width, and height. This is a bit of a
jolt at first, but easy enough to remember with a mindset for change and au-
thoring tool assistance like code completion. It was only the original property
set, anyway, that featured the underscore prefixes. More recent ActionScript
1.0 and 2.0 properties, such as blendMode and cacheAsBitmap (introduced in
Flash Player 8), had already dropped the underscores, so developers generally
welcome the consistency offered by ActionScript 3.0. Values that used to range
in integers from 0 to 100, such as MovieClip. alpha and Sound.setVolume(),
now range in decimal values from 0 to 1. Even tweaks like these are straight-
forward enough, and arguably more cosmetic than anything else. The pro-
found change comes in the very nature in which ActionScript 3.0 is organized.
This understructure has shifted significantly, and insists on greater attention
to detail.

ActionScript has historically been a very forgiving language. In some ways, you
can draw a comparison between older versions of ActionScript and older ver-
sions of HTML. In the early days of web development, HTML was deceptively
unfussy. Styling was handled with straightforward <font> tags, which all too
often became a redundant jumble. Closing </p> tags were optional, nested tags
could be closed out of sequence from how they were opened, and dozens of
other lenient practices led—or had the tendency to lead—to overtime head-
aches. Popular websites like The Web Standards Project (http://www.webstan
dards.org/) and CSS Zen Garden (http://www.csszengarden.com/) have since
sparked a surge of interest in a practice called semantic markup, in which great
care is taken to cleanly separate styling and formatting from content. This

60 | Chapter3: Looking at the Changes in ActionScript 3.0


http://www.webstandards.org/
http://www.webstandards.org/
http://www.csszengarden.com/

separation usually relies on XHTML specifications, which are considerably
stricter than HTML, and coupled with Cascading Style Sheets (CSS). Ironic as
it may seem, adherence to a stricter standard has gradually made things easier
for web developers. It’s a bit like the idea that picking up after yourself
throughout the day saves you from facing an overwhelming mess at the end
of the week. ActionScript 3.0 is more disciplined than its predecessors in a
similarly helpful way.

ActionScript 3.0 is stricter

As an example of ActionScript 3.0’s strictness, consider one of programming’s
most basic building blocks: variables. Since its introduction in ActionScript
1.0, the var keyword has been optional (but always recommended!) for time-
line code. The following lines work just fine in a FLA file configured for
ActionScript 1.0 or 2.0 and placed in a frame script:

lumps = 2;

trace("I'll have " + lumps + " lumps, please.");

// Displays: I'll have 2 lumps, please.

Ideally, this variable should be declared with the var keyword:

var lumps = 2;

but before ActionScript 3.0, the compiler can (and does) declare lumps auto-
matically. While convenient on one level, this relaxed approach can lead to
unexpected behavior. How? The var keyword does more than merely an-
nounce new arrivals; it defines variables in terms of a specific scope, which, in
a few words, determines a variable’s “point of view,” its availability to other
objects. Take a look at this revision (changes in bold):
function sample() {
lumps = 2;
trace(lumps); // Displays: 2

sample();

trace("I'1l have " + lumps + " lumps, please.");
// Displays: I'll have 2 lumps, please.

Here, the lumps variable is declared and traced inside a custom sample() func-
tion, which is immediately called after the function is defined. This is followed
by a second trace() statement outside the function that also references
lumps. Because of the omission of the var keyword, both traces are successful,
even if the developer’sintention is to keep this variable corralled to its function.
Add a second function, and all three scopes can still see the variable:
function sample() {
lumps = 2;
trace(lumps); // Displays: 2

Major Changes and Obsolete Code | 61



sample();

trace("I'll have " + lumps + " lumps, please.");
// Displays: I'll have 2 lumps, please.

function test() {
trace(lumps); // Displays: 2

}
test();

This sort of spillover can be detrimental in cases where typical naming con-
ventions overlap among numerous functions. For example, if a temporary
string, str, is used to manipulate data in one function, havoc could ensue in
another if the same variable name is used elsewhere. Think of how often n, i,
or x are used to represent numeric values!

You’re much better off purposefully declaring a variable in its intended scope.
If spillover happens to be the desired effect, it’s still possible ... it just depends
on where the variable’s scope occurs. Note the output differences in these
revisions. In the first example, the variable is only available to one function;
in the second, the variable is available to two functions and the timeline. First,
when lumps is scoped to the sample() function:

function sample() {

var lumps = 2;

trace(lumps); // Displays: 2
sample();

trace("I'1l have " + lumps + " lumps, please.");
// Displays: I'll have undefined lumps, please.

function test() {
trace(lumps); // Displays: undefined

test();
Second, when it’s scoped to the main timeline:
var lumps = 2;

function sample() {
trace(lumps); // Displays: 2

sample();

trace("I'll have " + lumps + " lumps, please.");
// Displays: I'll have 2 lumps, please.

function test() {
trace(lumps); // Displays: 2

62 | Chapter3: Looking at the Changes in ActionScript 3.0



}
test();

To underscore the notion of ActionScript 2.0 as a transitional language, con-
sider that undeclared variables aren’t allowed in classes, even if they do sneak
by in timeline code. When compiled, this no-frills ActionScript 2.0 class gen-

>,

erates a compiler error, “There is no property with the name ‘lumps’.”:

class Sample {
public function Sample() {
lumps = 2;
trace("I'1l have " + lumps + " lumps, please.");

}

You can address this error by preceding the lumps variable with the var key-
word, which scopes it to the class’s constructor function, Sample(), or by de-
claring the variable as a class property, which scopes it to the whole class,
available to any method:

class Sample {

private var lumps:Number;
public function Sample() {

lumps = 2;
trace("I'11l have " + lumps + " lumps, please.");
demo();

private function demo():Void {
trace(lumps); // Also available here

}

W

N Class constructor functions must not define a return data type,
fs. which explains the omission of :Void after Sample(), but the
T Uy presence of :Void after demo().

In ActionScript 3.0, FLA files, as a whole, are associated with something called
a document class, which defines the main timeline’s functionality. While you
may optionally write your own document class, you certainly don’t have to.
By default, the compiler automatically generates one for you. This default
document class is called MainTimeline and extends the MovieClip class. On the
surface, nothing has changed. The main timeline is still a movie clip, as it
always has been, but under the hood, a new structure is in place. The main
timeline is now defined by a class, which means that even timeline variables
must be formally declared, just as they were in ActionScript 2.0 classes.

Major Changes and Obsolete Code | 63



The main timeline can also extend the Sprite class, if you like.
For more information on document classes, see Chapter 7.

In an ActionScript 3.0 FLA file, the following, now-familiar keyframe script
generates the compiler error “1120: Access of undefined property lumps” be-
cause of the missing var keyword:

lumps = 2;
trace("I'll have " + lumps + " lumps, please.");

Adding var corrects the situation:

var lumps = 2;
trace("I'1l have " + lumps + " lumps, please.");

Holding to a stricter standard encourages you to give more thought to the code
you write. Variables are just the beginning.

ActionScript 3.0 encourages programming with purpose

In ActionScript 2.0, all classes and functions in the Flash Player API were
global. These classes were aimed specifically at functionality provided by the
Flash Player runtime, over and above the core functionality outlined in the
ECMAScript specification. In this free-for-all, if you wanted to refer to the
MovieClip classinyour code, you could do so without using an import directive,
even inside a custom class. An obvious benefit is that you could save a bit of
typing:
import MovieClip; // This line is not needed,
// because the MovieClip class

// is already understood
var mc:MovieClip = this.createEmptyMovieClip("myClip", 0);

B
. The import directive lets the compiler know which class defi-
:‘:\ nition to use for interpreting the code you’ve written. Even in
A . . . .
* 9lse ActionScript 2.0, import was necessary for classes in packages

like flash.filters, flash.geom, and flash.external, and was
often necessary for custom classes.

In ActionScript 3.0, only core classes are considered global, in the sense that
they belong to the top level of the overhauled packages hierarchy. Packages are
an organizational means of arranging classes into groups, usually based on
similar functionality. The lion’s share of ActionScript 3.0 classes is now ar-
ranged into such packages. The remainder, global functions and core classes,

64 | Chapter3: Looking at the Changes in ActionScript 3.0



is listed under the All Packages—Top Level classes topic in the ActionScript
3.0 Language and Components Reference.

As with ActionScript 2.0, top-level classes don’t require the import directive—
either in timeline code or custom classes—but in contrast to how it used to
be, MovieClip is now categorized under flash.display.MovieClip, and must be
imported when used in external class files:
package {
public class SampleClass {
import flash.display.MovieClip;
public function SampleClass() {

var mc:MovieClip = new MovieClip();
// Additional code here ...

}

In frame scripts, classes in the flash package join top-level classes in not re-
quiring an import compiler directive. This line, for example, works just fine on
its own in an ActionScript 3.0 frame script:

var mc:MovieClip = new MovieClip();

The concepts of packages and importing are discussed in greater detail in the
section “Major Syntax and Structure Changes” on page 77 in this chapter.
The subject is worth touching on at this point, however, because it helps pre-
pare you for the massive organizational shift you’ll find in the documentation’s
ActionScript 2.0 Migration table. This new structure’s benefit may not be self
evident, but it does reinforce a developer’s motivation to program with pur-
pose.

Here’s an example of how the new packages arrangement can lead to better
focus. Before ActionScript 3.0, you had numerous ways to load external assets
into a SWF file. The loadMovie() function was among the first and is still in
surprisingly wide use in ActionScript 2.0, as indicated by Adobe support forum
questions. In the beginning, this function was capable only of loading external
SWEF files, but this changed as successive versions of Flash Player added sup-
port for other dynamically loadable file types, including JPEG, GIF, and PNG.
Note that a hint of potential confusion has already raised its head for new-
comers: this function, loadMovie(), expressly alludes to a “movie.” This is a
term commonly used to describe SWF files, but doesn’t suggest support for
images, even though loadMovie() easily loads image files in recent versions of
Flash Player. ActionScript 3.0 helps clear up such pitfalls in semantics.

Consider the following code exercises from the standpoint of an evolutionary
journey—a journey that, comparatively speaking, begins in somewhat ambig-
uous terms and develops into ActionScript that more clearly states its purpose.

Major Changes and Obsolete Code | 65



1. Inanew ActionScript 2.0 FLA file, select frame 1 in the Timeline, and then
open the Actions panel. Type the following minimal ActionScript:

loadMovie("sample.png", container);

Create a new movie clip symbol and position it on the stage. Using the
Property inspector, give the new symbol the instance name container. Put
a PNG file named sample.png into the same folder as the FLA file, and then
select Control-Test Movie to see the image appear on the stage at runtime.
On its own, this code is all you need to load an image prior to ActionScript
3.0, but it doesn’t provide any data on load progress or completion. If you
want to display load progress or reposition the image when loading com-
pletes, then you have to set up aloop of some sort to continuously compare
the number of loaded bytes against the total number of bytes the image
contains.

2. Using the Actions panel, enter these additional lines of code:

var timer:Number = setInterval(checkProgress, 50);
function checkProgress():Void {

container._visible = false;

var loaded:Number = container.getByteslLoaded();

var total:Number = container.getBytesTotal();
var percent:Number = Math.round(loaded/total * 100);
trace(percent);

if (percent == 100 &8 container. width > 0) {
clearInterval(timer);
container._x = Stage.width / 2 - =
container. width / 2;
container._y = Stage.height / 2 - -
container._height / 2;
container._visible = true;

}

Here, setInterval() repeatedly executes a custom checkProgress() func-
tion every 50 milliseconds. This function turns off the visibility of con-
tainer, so that it doesn’t seem to jump when later repositioned, and then
declares and sets the values of three variables. The first two, loaded and
total, are taken directly from the getBytesLoaded() and getBytesTotal()
methods of the MovieClip class, as invoked on container. The third,
percent, pits the previous values against each other to derive a percentage,
which could potentially be routed to a text field. Here, the value is traced
to the Output panel.

Finally, an if statement checks if percent is equal to 100. As a safety
backup, it also checks to see if container has a width greater than 0. The
second condition is present because of a timing issue. In this particular
solution, percent might actually reach 100 before the image is displayed,

66 | Chapter3: Looking at the Changes in ActionScript 3.0



even if only by a few milliseconds. That could be enough to throw off the
repositioning code, because until the image shows up, container has a
default width of 0. When both of these conditions are met,
clearInterval() exits the setInterval() loop, centers container to the
stage, and then turns its visibility on.

Go ahead and test this revision. In the menu bar of the resultant SWF file,
select View—Simulate Download to imitate the loading at a slower pace.
The Output panel displays a mounting percentage, which leads to the
centered image at 100 percent.

So far, you’ve seen one approach out of many possible solutions. While it
makes reasonable sense when explained, the loadMovie()—setInterval()
combination isn’t as graceful as something that relies on event handlers.
Introduced with ActionScript 2.0, the MovieCliploader class transforms
this loading process into something more like a conversation. After an
instance of the MovieClipLoader class is created, it is “spoken to” by way
of the loadClip() method and then “listened to” by way of the
onLoadProgress and onLoadInit event handlers.

. Delete the existing code in your FLA file and replace it altogether with the
following new ActionScript 2.0:

var mcl:MovieCliplLoader = new MovieCliplLoader();
mcl.loadClip("sample.png", container);

var listener:Object = new Object();
listener.onlLoadProgress = progressHandler;
listener.onlLoadInit = loadInitHandler;
mcl.addListener(listener);

function progressHandler(mc:MovieClip, loaded:Number, -
total:Number):Void {
var percent:Number = Math.round(loaded/total * 100);
trace(percent);

}

function loadInitHandler(mc:MovieClip):Void {
mc. x = Stage.width / 2 - mc. width / 2;
mc._y = Stage.height / 2 - mc._height / 2;

}

The percentage calculation and repositioning portions are identical in
principle to the previous version. The difference comes in the way these
portions are now carried out. In this case, the instruction to load is given
to an instance of the MovieClipLoader class (mcl), which manages the nec-
essary looping internally. This action removes a bit of clutter because it
sidesteps the need for something like setInterval(). Now that the timing
issue has been remedied, you no longer need to temporarily hide the con-
tainer symbol and reveal it later.

Major Changes and Obsolete Code | 67



To manage the events, an arbitrarily named variable, listener, is declared
and set to an instance of the Object class. This simple object acts on behalf
ofmcl, pairing up functions with the onLoadInit and onLoadProgress events
of the MovieCliploader class. These functions receive parameters auto-
matically, which progressHandler() uses to determine percentage and re-
positioning values.

W

As mentioned in Chapter 1, earlier versions of the lan-
guage had at least five ways to handle events. In Action-
* Qe Script 3.0, these five have been consolidated into a single
* streamlined approach (with a few minor exceptions). For
more information, see the “DOM3 Event Model” on page
15 of Chapter 1; the “ActionScript Can No Longer Be
Attached to Objects” on page 117 of Chapter 6; and the
practical examples in Part IV of this book.

4. Select Control-Test Movie to verify that the SWF file behaves the same
as before, including the View—Simulate Download exercise.

This revision arranges the endeavor into coherent, simplified steps, where
separate functions perform the sub-goals of percentage reporting and re-
positioning. Bear in mind, the previous all-in-one function,
checkProgress(), is perfectly valid. From a nuts-and-bolts technical stand-
point, neither approach is superior, but if support forum questions are any
reflection of common workday scenarios, many developers take a copy-
and-paste approach to learning. They do what it takes to get the job done
and, under hectic schedules, acquire knowledge as time allows. When
solutions come in single blocks of code, the underlying principles can be
harder to digest.

ActionScript 3.0 tightens up the benefits initiated by the
MovieClipLoader class, reinforcing the theme of programming with pur-
pose. For starters, the loading mechanism is now defined by the Loader
class, which drops the seemingly “movie”-specific bias of previous func-
tions and classes. At this point, neither the listener object nor the con-
tainer movie clip is needed.

5. So it’s time to change gears. In a new ActionScript 3.0 FLA file, type the
following code into a frame script in frame 1:

var mylLoader:Loader = new Loader();
myLoader.load(new URLRequest("sample.png"));
addChild(myLoader);

myLoader . contentLoaderInfo.addEventListener(
ProgressEvent.PROGRESS,
progressHandler

3

68 | Chapter3: Looking at the Changes in ActionScript 3.0



myLoader . contentLoaderInfo.addEventListener(
Event.COMPLETE,
completeHandler

)s

function progressHandler(evt:ProgressEvent):void {
var loaded:int = evt.bytesloaded;
var total:int = evt.bytesTotal;
var percent:int = Math.round(loaded / total * 100);
trace(percent);

}
function completeHandler(evt:Event):void {
myLoader.x = stage.stageWidth / 2 - -
myLoader.width / 2;
myLoader.y = stage.stageHeight / 2 - -
myLoader.height / 2;
}

Once again, the percentage calculation and repositioning portions are
nearly the same. In this updated version, a variable myLoader is declared
and set to an instance of the Loader class, which is capable of loading SWF
files and image files (JPEGs, GIFs, and PNGs). Note that in this case, the
file path to sample.png isn’t merely a string, as before. In this case, it’s an
instance of the URLRequest class. In addition, the event handlers are asso-
ciated not with myLoader itself, but with a contentLoaderInfo property of
that object.

These objects are certainly new, presumably useful, and possibly over-
whelming. But what exactly are they? Clutter? Not a bit of it! Flash has
always been a creative toolbox. ActionScript 3.0 has tidied up the toolbox
and put labels next to each tool. You’ll learn more about this rigorously
organized new arrangement in the very next section.

. Select Control-Test Movie to see that the SWF file behaves the same as

before. In the file menu of the SWF file, select View—Simulate Download
to test the percentage output.

ActionScript 3.0 is more organized, which makes it more efficient

On the face of it, the URLRequest class, seen in the previous example, acts as
nothing more than a container for storing file locations. It seems to be a five-
dollar way of saying “sample.png,” much like “salutations” is a five-dollar way
of saying “hello.” So what’s the point? Is URLRequest really necessary? What
was wrong with the simple string approach of earlier functions and classes?
To answer these questions, think again of the overhauled ActionScript 3.0
packages structure.

Before ActionScript 3.0, the MovieClip class supported a loadMovie() method,
which was practically equal in purpose to the standalone loadMovie() function.

Major Changes and Obsolete Code | 69



Wait a minute! Were there formerly two versions of loadMovie()? There were.
This sort of redundancy was frequent in older ActionScript. There were also
two versions of gotoAndPlay()—both function and method—and many oth-
ers, besides. This duplication was introduced in Flash 5, when the MovieClip
class began taking ownership of movie-clip—related functionality. Longstand-
ing functions became MovieClip methods overnight, yet the function versions
remained for backward compatibility.

The trouble is, this duplication sometimes went too far. The loadMovie()
method, especially, is a case in point. Because the MovieClip class defines movie
clip objects, these objects should certainly be able to do the things a movie clip
symbol can do: display animated timelines, move around the stage, change
dimensions, and so on—but the act of loading is a categorically distinct
discipline.

It makes good sense to coordinate the traits and functionality of loading into
an object that specializes in the field, so to speak. In ActionScript 3.0, precisely
this sort of thoughtful arrangement has occurred. As a subject matter expert
on loading, the Loader class should indeed feature an impressive array of load-
ing related skills. In this light, it’s not surprising that Loader should work in
collaboration with a subject matter expert on HTTP requests, which is what
the URLRequest class is. More than just a fancy way of describing file locations,
URLRequest objects have the potential to manage an HTTP request’s header,
its method (GET versus POST), its POST data, MIME content type, and so on.

This sort of rich granularity is echoed throughout the ActionScript 3.0 APL
For example, in the previous code exercise, the event handler was associated
with the Loader.contentLoaderInfo property of the myLoader instance. As it
happens, this property points to an instance of yet another class, LoaderInfo,
which specifically manages byte data and other information about SWF files
and image files. This class’s skill set paves the way for the bytesLoaded and
bytesTotal properties used by the progress event handler. Again, each step is
categorized neatly.

This sort of approach wasn’t unheard of, by the way, in older versions of
ActionScript. It just wasn’t as prevalent. The TextFormat class, for example,
compartmentalizes formatting from the text fields it collaborates with (rele-
vant code in bold).

// ActionScript 2.0

var tf:TextField = this.createTextField("sampleText", -

0, 10, 50, 100, 20);
tf.selectable = false;
tf.autoSize = "center";

var styling:TextFormat = new TextFormat();
styling.font = "Blackadder";

70 | Chapter3: Looking at the Changes in ActionScript 3.0



styling.color = 0xBA1424;
styling.letterSpacing = 1.5;

tf.setNewTextFormat(styling);
tf.text = "Cooperation!";

For good measure, here are another two examples that show how ActionScript
3.0 expands on this sort of helpful compartmentalization.

In ActionScript 1.0 and 2.0, the MovieClip class featured a handful of methods
collectively known as the Drawing API. You could reference a movie clip di-
rectly by its instance name and invoke, say, lineTo() and curveTo() to draw
shapes at runtime. In ActionScript 3.0, this same Drawing API has been real-
located to a more suitable Graphics class, which is now associated with movie
clips by way of the MovieClip.graphics property:

// ActionScript 2.0

myClip.lineTo(300, 200);

// ActionScript 3.0
myClip.graphics.lineTo(300, 200);

In ActionScript 3.0, the Sound class collaborates with three new classes—Sound
Channel, SoundTransform, and SoundMixer—to manage audio-related function-
ality. These duties were previously consigned to the Sound class alone. Previ-
ously, the concept of sound channels was managed by a non-intuitive associ-
ation between a Sound instance and a movie clip. In order to separate audio
into individual “channels,” you had to feed individual movie clip instance
names to each use of the new Sound() constructor. It was an easy procedure to
miss, and developers often wondered why adjusting the volume of one Sound
instance affected the volumes of others. Now, the improved, decentralized
functionality calls on specialized companion classes as needed.

// ActionScript 2.0

var mySound:Sound = new Sound();

mySound.loadSound("music.mp3", true);

mySound. setVolume(50);
mySound.stop();

// ActionScript 3.0
var mySound:Sound = new Sound();
mySound.load(new URLRequest("music.mp3"));

var myChannel:SoundChannel = mySound.play();
var myTransform:SoundTransform = myChannel.soundTransform;

myTransform.volume = 0.5;
myChannel.soundTransform = myTransform;
myChannel.stop();

Major Changes and Obsolete Code | 71



By delegating functionality to numerous classes, the new API keeps its objects
lean and focused. MovieClip instances are no longer burdened with loading
tasks or the Drawing API, but all the same, are easily associated with com-
panion classes that handle those duties. The concept goes even further: if you
want some of the basic characteristics of a movie clip but don’t need internal
animation—that is, if you don’t need to shuttle around a movie clip’s playhead
with gotoAndPlay()—then you now have the option of using the Sprite class
instead, which doesn’t carry the overhead of a timeline. Ultimately, this makes
your tools more refined, giving you functionality that suits the object at hand,
and leaving the extra tasks to other objects.

Obsolete Code

Waking up in a hotel room can sometimes be disorienting. You might reach
for your glasses or a cup of water that, at home, is always right where you
expect: at pillow height on the nightstand. Of course, hotel rooms are tempo-
rary. Soon enough, a red-eye flight takes you back to your humble abode,
where the comforts of familiarity snuggle their way back into your daily
routine.

No so with obsolete code! Unless you’re involved specifically with legacy sys-
tems, where you know users are locked in to an older version of Flash Player,
you’ll have to leave certain once-familiar paradigms in the dust. Some of these
ways have been deprecated for many versions of Flash, which means the term
in question was officially frowned upon at some point because it was likely to
be removed in the future. With ActionScript 3.0, that theoretical future has
finally arrived. The ActionScript 2.0 Migration table provides an exhaustive
list of features that ActionScript 3.0 no longer supports, but the following
collection provides a summary of many common—yet no longer usable—
practices.

on()/onClipEvent()

It is no longer possible to attach event handlers directly to objects, such as
movie clips, buttons, and components. This is a significant change, because
on() and onClipEvent() have been popular for years. Using direct attachment,
you could previously program a button to respond to a mouse click, for ex-
ample, by selecting the button symbol on the stage, opening the Actions panel,
and then typing something like this:
on (release) {
// Desired code here

}

72 | Chapter3: Looking at the Changes in ActionScript 3.0



This was optional as recently as ActionScript 2.0—an alternate approach to
referencing event handlers by instance name. In ActionScript 3.0, the object
in question must have an instance name, which is what uniquely identifies that
symbol or component as something ActionScript can speak to. In contrast,
directattachmentdidn’t require instance names because the intended recipient
of your instruction was self-evident.

You can supply an instance name to an object by selecting it on the stage, and
then typing the instance name into the Property inspector. Assuming an in-
stance name myButton, here’s how ActionScript 3.0 associates the occurrence
of a mouse release with a function to be trigged by that occurrence:

myButton.addEventListener(MouseEvent.MOUSE_UP, function);

If you think of the Timeline as a grid, this code appears in a frame script that
aligns vertically in the same “column”—the same frame—as the button it re-
fers to. The term function in the previous line of code refers to an actual func-
tion definition, such as the following arbitrarily named mouseUpHandler():

myButton.addEventListener (MouseEvent.MOUSE_UP, -
mouseUpHandler);

function mouseUpHandler (evt:MouseEvent):void {
// Desired code here
}

The evt parameter refers to an instance of the MouseEvent class, which features
numerous useful properties you can optionally reference inside the function.
To find out what events are available for a button symbol, look up the
SimpleButton class in the ActionScript 3.0 Language and Components Refer-
ence. Click the “Show Inherited Events” hyperlink in the Events section, and
take your pick. One of these is mouseUp, and if you click on that, the Help panel
shows that the mouseUp event belongs to the MouseEvent class and is referenced
with the MouseEvent.MOUSE_UP constant. (A constant is simply a variable whose
value doesn’t change. Many classes store properties and events as constants in
this way. By using the constant, instead of the string “mouseUp”, you gain the
benefit of code coloring to show you’ve entered the right code.) In the same
way, the MovieClip class entry indicates what events are available for movie
clips, the ComboBox class shows events for the ComboBox component, etc.

W
- The practical examples in Part IV of this book go into greater
L) detail on event handling, including keyboard events (respond-
“wh a8 . . . .
ks ing to keystrokes) and optional aspects like event bubbling.

Major Changes and Obsolete Code | 73



getProperty()/setProperty()/tellTarget()

These functions still show up in hundreds of online tutorials, but they’re no
longer supported. Ever since ActionScript 1.0, their purpose has been simpli-
fied by dot notation. Consider a movie clip symbol with the instance name
myClip. To set its width using setProperty(), you would refer to the instance
name like this:

setProperty(myClip, width, 200);

The updated approach is much easier on the eye (note the change from
_width to width):

myClip.width = 200;

attachMovie()/attachSound()

The procedure for pulling assets from the library at runtime has changed. It
still requires linkage information, but instead of a linkage identifier, Action-
Script 3.0 requires a linkage class, which is designated by the same Symbol
Properties dialog box you’re used to. Right-click (Ctrl-click) on an asset in the
library, and then choose Properties. When the dialog box opens, click the
Advanced button if it’s showing. This expands the Symbol Properties dialog
box to its full extent. Select Export for ActionScript, and then enter a name
into the Class field, as shown in Figure 3-1 (note that the Identifier field is
disabled).

Rather than invoking attachMovie() or attachSound() on a related MovieClip
or Sound instance, the library asset is attached by way of the new operator:

var mc:myClip = new myClip();

Visual objects, like movie clips and graphics, are then added to the display list,
which manages a SWF file’s visual objects:

addChild(mc);

W
SN For more information on this process, see Chapter 8, and the
“‘:‘ practical examples in Part IV of this book.
S s
15N

74 | Chapter3: Looking at the Changes in ActionScript 3.0



Symbol Properties

x|
Name: Isample clip OF I
Type: IMovie Clip 'l Cancel |

Edit | Basic |

™ Enable guides For 9-slice scaling

Linkage
V¥ Export for ActionScript

[V Export in frame 1

Identifier:

Class: I iy Clip o P

Base class: IFIash.dispIay.MovieCIip o y’

—Sharing
[~ Export For runtime sharing
™| Irmpart for runtime shating

wrLs |

[~ Source

Browse. .. | File:
Symbal,.. | Symbol name: Symbol 1

I~ | always update before publishing

Figure 3-1. Specifying linkage properties

createEmptyMovieClip()/duplicateMovieClip()/createTextField()

In similar fashion, the MovieClip and TextField classes can now be instantiated
directly with the new operator. In both cases, the resultant objects must be
added to the display list.

// ActionScript 2.0
var mc:MovieClip = this.createEmptyMovieClip("myClip", 0);

// ActionScript 3.0

var mc:MovieClip = new MovieClip();

mc.name = "myClip"; // traditional instance name
addChild(mc);

Major Changes and Obsolete Code | 75



In the ActionScript 2.0 version, the MovieClip.createEmptyMovieClip()
method is invoked on a timeline with the global this property, but that could
be replaced with any valid movie clip reference, which would then become the
immediate parent of the new MovieClip instance. The Property-inspector—style
instance name (the string "myClip") is a required parameter, as is the second
parameter, depth, which here happens to be 0 (the lowest depth). Because
createEmptyMovieClip() returns a movie clip reference, the new instance can
be referred to in subsequent code either by the myClip instance name or the
mc variable.

In the ActionScript 3.0 version, depth is handled automatically (no depth pa-
rameter is required) and the Property-inspector—style instance name is op-
tional, as the new object can, in any case, be referenced by the mc variable.

eval()

The eval() function crops up often in legacy code and in many online tutori-
als. In older ActionScript, it was used to evaluate expressions as variables,
properties, or objects. When a variable or property name was evaluated, its
value was returned. When an object name or reference was evaluated, a new
reference to that object was returned. One typical use of eval() was to iterate
through sequentially named movie clip instances using a for loop. Here, three
movie clips with the instance names mc0, mc1, and mc2 are conveniently set
to a horizontal position of 200 all at once:

// ActionScript 2.0

for (var i:Number = 0; i < 3; i++) {

eval("mc" + i). x = 200;
}

While eval() is no longer available in ActionScript 3.0, the bracket notation
approach to the same task, using the array access operator ([ ]), still works:
// ActionScript 3.0
for (var i:int = 0; i < 3; i++) {
this["mc" + i].x = 200;
}

Bracket notation requires that an object reference precede the array access
operator. In this case, the object reference is this, which refers to the timeline
in which these movie clips appear. If the three movie clips were nested inside
the timeline of another movie clip with the instance name container, then the
same ActionScript 3.0 for loop would look like this:

for (var i:int = 0; i < 3; i++) {

container["mc" + i].x = 200;
}

76 | Chapter3: Looking at the Changes in ActionScript 3.0



You can iterate through movie clips with an object reference, in which a var-
iable points to a given MovieClip instance, or by Property-inspector—style in-
stance name (that is, the MovieClip. name property in ActionScript 2.0 and the
MovieClip.name property in ActionScript 3.0). In ActionScript 3.0, array access
operator iteration through MovieClip.name property values only succeeds when
those instance names are provided by hand using the Property inspector. The
MovieClip.name property indicates the movie clip’s instance name, but is not
synonymous with it, as was the case with ActionScript 2.0’s MovieClip. name
property. If you prefer to iterate through MovieClip.name values generated by
code, make sure to use the DisplayObjectContainer.getChildByName () method
to locate those name values in the display list later:
for (var i:int = 0; i < 3; i++) {
var mc:MovieClip = new MovieClip();

mc.name = "mc" + i;
this.addChild(mc);

for (i =0; i< 3; i++) {
mc = MovieClip(this.getChildByName("mc" + i));
mc.graphics.lineStyle(3, 0xFF0000);
mc.graphics.lineTo(0, 20);
mc.x = 20 * i;
// Locates dynamically generated movie clips
// by name property and draws a short vertical
// line in each

}

You can alternately use the DisplayObjectContainer.getChildAt() method to
locate display objects by their index number in a given display list. Both of
these methods can be invoked on the main timeline or on movie clips because
the MovieClip class inherits from DisplayObjectContainer. Note, however, that
the return value of both methods is typed as DisplayObject. For this reason,
you may need to cast the return value as MovieClip, as shown in the previous
example (MovieClip(object) or object as MovieClip)—otherwise the compiler
will not let you to reference MovieClip-specific members, such as
currentFrame or scenes.

Major Syntax and Structure Changes

The overwhelming majority of ActionScript’s native classes are now arranged
into packages, and packages must be imported into class files to be used. This
importing is accomplished by way of the import directive, like this:

import fl.controls.CheckBox;

import flash.display.MovieClip;
import flash.events.MouseEvent;

Major Syntax and Structure Changes | 77



Lines like these tell the compiler exactly which classes are meant by any sub-
sequent references to CheckBox, MovieClip, and MouseEvent in your code. After
all, you might very well be using the Adobe-supplied CheckBox component,
but you could just as easily be using some third-party user interface compo-
nent, whose package might be com.niftystuff.CheckBox. The import directive
clarifies any ambiguity by setting the record straight from the beginning.

If, by chance, you intend to use two distinct classes that share the same name,
you must precede each reference with the fully qualified package for clarity.
Otherwise, the class name alone is sufficient:

import com.niftystuff.CheckBox;

import fl.controls.CheckBox;
import flash.display.MovieClip;

var cbi:com.niftystuff.CheckBox = new com.niftystuff.-
CheckBox();

var cb2:fl.controls.CheckBox = new fl.controls.CheckBox();

var mc:MovieClip = new MovieClip();

When appearing in class files, import directives are generally positioned im-
mediately inside the package declaration:
package {
import flash.display.MovieClip;
public class SampleClass {

public function SampleClass() {
// Constructor code here
}

}

This practice makes any imported classes available to the whole package. If
placed inside the class declaration, the imports are available only to the class:
package {
public class SampleClass {
import flash.display.MovieClip;

public function SampleClass() {
// Constructor code here
}

}

In frame scripts, import directives must appear once in each frame used.

Importing and Packages

If you’re already familiar with importing, you won’t discover anything new
with the technique; it’s just that in writing ActionScript 3.0 classes, you’ll find
that your blocks of import statements are more crowded than they used to be.

78 | Chapter3: Looking at the Changes in ActionScript 3.0



The ECMAScript specification defines a set of core functionality that, in
ActionScript 3.0, appears as a small collection of top-level classes, listed under
the All Packages—Top Level classes topic in the ActionScript 3.0 Language and
Components Reference. There are only a couple dozen of these, which include
such customary classes as Array, Function, Math, and Object. These classes are
readily available, without importing, in custom classes and timeline code alike.
The rest, comprising hundreds of other classes, including the Flash Player API
(all the features unique to the Flash Player runtime) necessitate imports when
used in custom classes. Fortunately, you need only a single import per refer-
enced class. That is, importing flash.text.TextField once in a custom class
lets you create as many text fields as you like in that class.

Though you don’t encounter it as often in timeline code, the import directive
is valid only for the frame in which it’s placed. If you import a class inside a
script on frame 1 and wish to use the same class in frame 5, then you have to
import the referenced class again in frame 5. This step is necessary because, in
ActionScript 3.0, timeline frames are effectively treated as methods of the
MovieClip instance they belong to—methods of the defaultMainTimeline docu-
ment class. Just as imports inside a class declaration are available only to that
class, but not that class’s package, imports inside a method are available only
to that method.

In addition to the top-level classes, the ActionScript 3.0 packages hierarchy
has three main branches: flash, adobe, and f1. Of these, the flash and adobe
packages have a sort of “backstage pass” when referenced in timeline code:
none of them requires the import directive when used in frame scripts. The
flash packages consist of the Flash Player API and encompass most of the
traditional Flash classes like MovieClip, TextField, and SimpleButton (button
symbols). The adobe package contains functions and classes used to automate
the authoring tool. These correspond to the Flash JavaScript application pro-
gramming interface (JavaScript API)—also known as JSFL—outlined in the
Extending Flash section in the documentation. The JavaScript API lets you run
batch scripts on large volumes of FLA files and even create new panels and
tools. The other main branch, 1, does require imports in frame scripts and
tends to involve components, so not only do you need one import directive for
each referenced type of component, you also need a copy of that component
in the FLA file’s library. Remember, custom classes always require imports
when dealing with packaged classes that ship with the Flash authoring tool.

Major Syntax and Structure Changes | 79



ActionScript 2.0 provided a sneak peek of the thorough pack-

age hierarchy currently in effect. The mx packages (mainly

Qs components) were fairly analogous to the current f1 packages,

" and some of the flash packages were available for Flash Player
8, including flash.filters, flash.display for the Bitmap
Data class, and flash.geom for a handful of geometry-related
classes like Matrix, Point, and Rectangle.

Namespaces

Namespaces give you a way to control access to properties and methods in
custom classes. ActionScript 2.0 had only two built-in namespaces: the access
control specifiers public and private, which affected (and still affect) the
availability of class members to outside code. ActionScript 3.0 increases this
number to four by introducing protected and internal. These built-in speci-
fiers work only in class files, and must precede class, property, and method
declarations:

package {

public class SampleClass {
private var numValue:Number;

public function SampleClass() {
// Constructor code here
}

}

By default, ActionScript 2.0 members belonged to the public namespace unless
specified otherwise. In ActionScript 3.0, this has changed to internal, which
lets class members be accessed by any code in the same package. Members
specified as protected are available only to the class that defines them, and to
any subclasses of that class. Members specified as private are available only
to the defining class, and public members are accessible to any outside code.

Developers now have the option to create custom namespaces to further ma-
nipulate object access. This is possible with class access control specifiers and
useful when employed in advanced scenarios. On the other hand, namespaces
can be a stumbling block if they unexpectedly sneak up on you. In ActionScript
3.0, this can happen with loaded XML data.

In XML, namespaces, when present, are specified with an xmlns attribute.
Consider the XML example introduced in Chapter 1—but with one key dif-
ference: the presence of a namespace indicating a hypothetical music service
(namespace in bold):

<?xml version="1.0" encoding="iso0-8859-1"?>

<library xmlns:albums="http://www.adobe.com/albumlistings/">
<artist name="The Beatles">

80 | Chapter3: Looking at the Changes in ActionScript 3.0



<album name="Abbey Road">
<track title="Come Together" />
<track title="Something" />
<track title="Maxwell's Silver Hammer" />
<track title="Oh! Darling" />
<track title="Octopus's Garden" />
<track title="I Want You (She's So Heavy)" />
<track title="Here Comes the Sun" />
<track title="Because" />
<track title="You Never Give Me Your Money" />
<track title="Sun King" />
<track title="Mean Mr. Mustard" />
<track title="Polythene Pam" />
<track title="She Came in Through the Bathroom Window" />
<track title="Golden Slumbers" />
<track title="Carry That Weight" />
<track title="The End" />
<track title="Her Majesty" />
</album>
</artist>
</library»>

Numerous XML sources feature this sort of identifying data, such as iTunes
playlists, blog RSS feeds, and even XHTML documents. ActionScript 2.0 ig-
nored XML namespaces, but in ActionScript 3.0, XML namespaces cascade
from parent elements to their children. In this case, for example, the
<library> element’s xmlns attribute is applied automatically to the remaining
elements in the document.

At this point, tracing all <track> elements displays the following output:

var myXML:XML = new XML();
var xmllLoader:URLLoader = new URLLoader();
xmlLoader.load(new URLRequest("cds.xml"));
xmlLoader.addEventListener (
Event.COMPLETE,
function(evt:Event):void {
myXML = XML(evt.target.data);
trace(myXML. .track);

}
)5
// Displays:
// <track title="Come Together"
// xmlns:albums="http://www.adobe.com/albumlistings/"/>
// <track title="Something"
// xmlns:albums="http://www.adobe.com/albumlistings/"/>
// <track title="Maxwell's Silver Hammer"
// xmlns:albums="http://www.adobe.com/albumlistings/"/>
/] ...

Note the presence of the albums namespace as an attribute of each <track>
element, even though the original XML only shows this attribute for the
<library> element. Why is this a problem? The tricky part is that XML name-

Major Syntax and Structure Changes | 81



spaces aren’t required to have an identifier, such as the one shown (albums).
Note the lack of the albums identifier in this revision:

<?xml version="1.0" encoding="iso0-8859-1"?>
<library xmlns="http://www.adobe.com/albumlistings/">

At this point, a trace of all <track> elements comes back with nothing at all.
In fact, you can’t see any of the elements now, because the namespace has no
identifier.

To address this issue, you can use the new Namespace class:

var myXML:XML = new XML();
var xmllLoader:URLLoader = new URLLoader();
xmlLoader.load(new URLRequest("cds.xml"));
xmlLoader.addEventListener (
Event.COMPLETE,
function(evt:Event):void {
myXML = XML (evt.target.data);
var ns:Namespace = new Namespace("http://-
www.adobe.com/albumlistings/");
trace(myXML. .ns::track);

)s
Here, an arbitrarily named variable, ns, is declared and set to an instance of
the Namespace class, whose constructor function receives the namespace Uni-
form Resource Identifier (URI) specified in the xmlns attribute. This allows ns
to be used as a prefix for subsequent element references, by way of the ::
operator (myXML. .ns: :track).

If you don’t know the URI beforehand, you can use the XML.namespace()
method to retrieve it:

var ns:Namespace = new Namespace(myXML.namespace());
trace(myXML..ns::track);

Data Types and Typing
Before ActionScript 3.0, the default value of declared, but uninitialized, objects
was always undefined, even if strongly typed:

// ActionScript 2.0
var b:Boolean;
trace(b); // Displays: undefined

var str:String;
trace(str); // Displays: undefined

var d:Date;
trace(d); // Displays: undefined

var a:Array;

82 | Chapter3: Looking at the Changes in ActionScript 3.0



trace(a); // Displays: undefined

var n:Number;
trace(n); // Displays: undefined

Due to the more memory-efficient nature of objects in ActionScript 3.0, this
has changed. Now, the special undefined value applies only to variables that
are untyped, such as var n (that is, declared, but not typed and not given an
initial value). As a recommended best practice, objects should be strongly
typed as a rule, so that the compiler will request only the minimum system
memory required for each object. The default value of variables now depends
on the corresponding data type:
// ActionScript 3.0

var b:Boolean;
trace(b); // Displays: false

var str:String;
trace(str); // Displays: null

var d:Date;
trace(d); // Displays: null

var a:Array;
trace(a); // Displays: null

var n:Number;
trace(n); // Displays: NaN (Not a Number)

var i:int;

trace(i); // Displays: 0
Clearly, code that may have compared values to undefined in the past will no
longer behave as expected. Even comparisons to null can no longer be as-
sumed as useful, because some data types default to other values.

var someValue:Number;

if (someValue == undefined || someValue == null) {
// In ActionScript 3.0, someValue is none of these
}

The upshot is that a theme discussed earlier in this chapter is bolstered yet
again, that of programming with purpose. In ActionScript 3.0, in a more fun-
damental way than ever, each type of object has its own characteristics and
consumes its own unique portion of system resources. This variety elicits an
attention to detail that, with practice, leads to better programming. Action-
Script 3.0 is the chess coach that encourages you to consider your move before
even touching a piece. That’s good advice!

Major Syntax and Structure Changes | 83



Additional ActionScript 3.0 Resources

ActionScript 3.0 is an extensive subject, more so than any of its forerunners.
An exhaustive exploration is beyond the scope or focus of this book, but ad-
ditional resources are certainly available. For a solid foundation, consider
Learning ActionScript 3.0: A Beginner’s Guide (O’Reilly), by Rich Shupe and
Zevan Rosser. For hundreds of ready-to-use solutions to real-world problems,
consider the ActionScript 3.0 Cookbook (O’Reilly), by Joey Lott, Darron Schall,
and Keith Peters. For a comprehensive overview of the language, consider
Essential ActionScript 3.0 (O’Reilly), by Colin Moock, which steps through
ActionScript 3.0 in a thorough 900+ pages.

The Adobe Developer Connection website features a constantly rotating as-
sortment of free articles and tutorials written by top community experts. Each
of Adobe’s developer tools has its own entry point, and relevant URLs for
ActionScript include the following:

http://www.adobe.com/devnet/actionscript/
http://www.adobe.com/devnet/flash/
http://www.adobe.com/devnet/flex/
http://'www.adobe.com/devnet/air/

Trevor McCauley has been working with Flash since 2000, a passion that
eventually led to his being hired by Adobe. Trevor is an avid developer, trainer,
writer, and conference speaker on topics related to Flash. His “ActionScript 3
Tip of the Day” thread at http://kirupa.com (http://www.kirupa.com/forum/
showthread.php?t=223798) became something of a legend after the release of
Flash CS3 and continues to help developers make the transition from old to
new. He also provides free tutorials and sample files at his website, http://
senocular.com (http://'www.senocular.com/flash/tutorials.php).

84 | Chapter3: Looking at the Changes in ActionScript 3.0


http://www.adobe.com/devnet/actionscript/
http://www.adobe.com/