

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

The ActionScript 3.0

Quick Reference Guide
For Developers and Designers
Using Flash CS4 Professional

David Stiller, Rich Shupe, Jen deHaan, and
Darren Richardson

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org

The ActionScript 3.0 Quick Reference Guide: For Developers and Designers Using Flash
CS4 Professional
by David Stiller, Rich Shupe, Jen deHaan, and Darren Richardson

Copyright © 2009 David Stiller and Rich Shupe. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol,
CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://safari.oreilly.com). For
more information, contact our corporate/institutional sales department:
(800) 998-9938 or corporate@oreilly.com.

Editor: Robyn Thomas
Production Editor: Michele Filshie
Copyeditor: Sohaila Abdulali
Technical Editors: Matthew Woodruff,
Anselm Bradford, and Eric Kramer
Proofreader: Nancy Bell

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessa-
myn Read

Printing History:
October 2008: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The ActionScript
3.0 Quick Reference Guide: For Developers and Designers Using Flash CS4 Profes-
sional, the image of the Ophiops, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and O’Reilly Media, Inc. was aware of a trademark claim, the designations have
been printed in caps or initial caps

While every precaution has been taken in the preparation of this book, the publisher
and authors assume no responsibility for errors or omissions, or for damages re-
sulting from the use of the information contained herein.

TM

This book uses RepKover, a durable and flexible lay-flat binding.

ISBN: 978-0-596-51735-9

[M]

1223315717

www.allitebooks.com

http://safari.oreilly.com
http://www.allitebooks.org

Adobe Developer Library, a copublishing partnership between O’Reilly Media Inc.
and Adobe Systems, Inc., is the authoritative resource for developers using Adobe
technologies. These comprehensive resources offer learning solutions to help devel-
opers create cutting-edge interactive web applications that can reach virtually any-
one on any platform.

With top-quality books and innovative online resources covering the latest tools for
rich-Internet application development, the Adobe Developer Library delivers expert
training, straight from the source. Topics include ActionScript, Adobe Flex®, Adobe
Flash®, and Adobe Acrobat® software.

Get the latest news about books, online resources, and more at adobedeveloper-
library.com.

www.allitebooks.com

http://www.allitebooks.org

To Scott Joplin, for doing his

thing like nobody’s business, then
sharing it.

-- David Stiller

To Jodi, Sally, and Claire for
putting up with so much.

-- Rich Shupe

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Foreword . xi

Preface . xiii

Part I. ActionScript 3.0 Introduced

1. Introducing ActionScript 3.0 . 3
Examining ActionScript 3.0, the Language 5
Exploring Flash Player API Updates 15
Understanding Players and Support 18
Learning ActionScript 3.0 on the Heels of 2.0 20
Deciding to Migrate or Write Code from Scratch 21

2. Discovering What You Need to Work with ActionScript 3.0 23
Flash CS4 Professional/Flex Builder 3 24
Flash Player 9 or Higher 24
Using Other Code Editors with Flash 32

3. Looking at the Changes in ActionScript 3.0 . 59
Major Changes and Obsolete Code 59
Major Syntax and Structure Changes 77
Additional ActionScript 3.0 Resources 84

4. Exploring the Benefits of Using ActionScript 3.0 . 85
Performance 86
Efficiency 93
Consistency 96
Standards and Portability Among Other Technologies 100

v

www.allitebooks.com

http://www.allitebooks.org

Part II. ActionScript and the Flash CS4 Authoring Tool

5. Creating and Working with Code . 105
Thinking in Terms of the Timeline 106
New Features in the Actions Panel and Script Windows 112
Setting ActionScript Preferences 120
Associating FLA Files with AS Files 126
Using Script Assist 130

6. Creating a Document Class . 137

7. Working with Library and Linkage Changes . 145
Linkages Now Reference Classes 145

8. Copying Motion as ActionScript 3.0 . 163
Copying Motion 163
Applying Motion to Other Objects 166

9. Using ActionScript 3.0 Components . 179
Overview of the Component Set 179
New and Removed Components 185
Changes in Writing Code for Components 188
Changing the Appearance of Components 199

10. Making Up for a Reduced Component Set . 207
Working Without Data Components in ActionScript 3.0 207
ActionScript 2.0 Components in ActionScript 3.0 SWF Files 219
Exploring Third-Party UI Components 224

11. Debugging and Troubleshooting . 231
Debugging Is a Good Thing 231
Testing Your ActionScript 3.0 Code 232
Reviewing Improvements in Debugging Over ActionScript 2.0 237
Exploring the Compiler Errors Panel 240
Using the Enhanced Debugging Workspace 250

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Part III. How Do I?

12. How Do I Draw with Code? . 267
12.0 Introduction 267
12.1 Creating a Display Object Dynamically 268
12.2 Referencing an Object’s Graphics Property 269
12.3 Defining a Line Style 270
12.4 Drawing a Line 271
12.5 Drawing a Curve 272
12.6 Defining a Fill Style 273
12.7 Drawing a Rectangle 274
12.8 Drawing a Rectangle with Rounded Corners 274
12.9 Drawing a Circle 276
12.10 Creating a Gradient Fill 277
12.11 Using a Drawn Shape as a Dynamic Mask 278
12.12 Caching Vector as Bitmap 280
12.13 Applying a Simple Bitmap Filter 281

13. How Do I Work with the Display List? . 283
13.0 Introduction 283
13.1 Choosing Which Type of Display Object to Use 284
13.2 Creating a New Display Object 286
13.3 Adding a Display Object to the Display List 287
13.4 Specifying the Depth of a Display Object 289
13.5 Finding a Display Object 291
13.6 Removing a Display Object from the Display List 292
13.7 Working with Children of a Display Object Container 293
13.8 Working with Parents of a Display Object 296
13.9 Casting a Display Object from One Type to Another 297
13.10 Changing the Parent of a Display Object 299
13.11 Referencing the Stage Through a Display Object 300

14. How Do I Work with Events? . 303
14.0 Introduction 303
14.1 Understanding Event Listeners 303
14.2 Capturing Mouse Events 305
14.3 Understanding Event Flow 307
14.4 Using Event Bubbling 308
14.5 Using the target and currentTarget Event Properties 310
14.6 Simulating a Mouse Up Outside Event 311
14.7 Capturing Frame Events 312

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

14.8 Improving Performance by Removing Event Listeners 314
14.9 Capturing Keyboard Events 315
14.10 Capturing Stage Events 317
14.11 Using a Timer to Dispatch Events 321
14.12 Dispatching Your Own Events 323
14.13 Manually Calling Event Listener Functions 325
14.14 Capturing an Event Before It Reaches Its Target 326
14.15 Setting the Execution Order of Events 328
14.16 Using Weak Listeners 330

15. How Do I Work with Text? . 333
15.0 Introduction 333
15.1 Creating a Text Field 334
15.2 Styling a Text Field 334
15.3 Creating a Password Field 336
15.4 Focusing a Text Field 337
15.5 Populating a Text Field 338
15.6 Automatically Sizing a Text Field 339
15.7 Scrolling a Text Field 341
15.8 Using Embedded Fonts 343
15.9 Formatting Text Using TextFormat 344
15.10 Formatting Text Using HTML 346
15.11 Formatting Text Using CSS 348
15.12 Adding Hyperlinks to Text 350
15.13 Triggering ActionScript from HTML Links 351
15.14 Selecting Text 352

16. How Do I Work with XML? . 355
16.0 Introduction 355
16.1 Creating an XML Object 356
16.2 Loading XML 357
16.3 Reading an Element Node 359
16.4 Reading a Text Node 360
16.5 Working with Multiple Nodes of the Same Name 362
16.6 Reading an Attribute 363
16.7 Finding Content Using Shorthand 364
16.8 Finding Content Using Conditionals 366
16.9 Reading HTML or Entities in XML Nodes 367
16.10 Deleting XML 369
16.11 Writing XML 369
16.12 Writing XML with Variables 372
16.13 Sending and Loading XML 373

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

17. How Do I Work with External Assets? . 377
17.0 Introduction 377
17.1 Loading and Applying a Cascading Style Sheet 378
17.2 Loading and Displaying an Image or SWF File 380
17.3 Communicating with an ActionScript 3.0 Loaded SWF 382
17.4 Communicating with an ActionScript 2.0 Loaded SWF 384
17.5 Unloading an Image or SWF File 387
17.6 Loading and Playing a Sound 391
17.7 Setting the Volume and Pan of a Sound 392
17.8 Visualizing the Amplitude of a Sound 393
17.9 Unloading a Sound 395
17.10 Loading and Playing a Video 397
17.11 Unloading a Video 399

Part IV. Migration

18. A Sample Migration . 403
A Simple Particle System 404
ActionScript 2.0 404
ActionScript 3.0 413
Migration Sample Summary 424

19. Where Did It Go? . 425
Introduction 425
Code Comparisons 426

Index . 451

Table of Contents | ix

Foreword

The battle, as it stood, had clearly defined lines. The artists liked ActionScript
1.0 and the programmers, let’s just say they weren’t happy (if they used Flash
at all!).

Then ActionScript 2.0 appeared and many artists started getting nervous until
they realized that they could basically ignore it. Programmers were a bit more
happy until they realized that the changes were mostly superficial. But in many
cases, it was enough to bring new programmers to Flash—which made the
artists even more nervous.

Fast forward to just a couple of years ago and ActionScript 3.0 rears its head.
The programmers embrace it like a brother, like the saviour of the Flash plat-
form. The artists, for the most part, ran and hid. As they dashed away from
terms like “classes” and “interfaces” they bemoaned the loss of what, for many
of them, was their first programming language.

This was real programming, they said. ActionScript 3.0 had wandered into the
land populated by frightening giants like Java and C++. It wasn’t fun anymore,
it was just scary.

Enter this book and its talented authors.

For the developers reading this, I have a confession to make that will probably
ring true with you as well. At first, ActionScript 3.0 intimidated the heck out
of me. Everything that I knew how to do was different. It felt like the ground
had been ripped out from under me. It was all sort of familiar, but so many
little things were different, I often felt like it would have been easier for me if
I hadn’t ever learned ActionScript 1.0 and 2.0. It took me quite a long time to
get a good sense of the language and to get back to that level of comfort I had
with earlier versions.

The good news for you, dear coder, is that if you haven’t yet made that tran-
sition and gained that level of comfort, your road is going to be a lot easier
thanks to this book. Honestly, I’m a bit jealous.

xi

For the artists reading this, the authors of this book are here to explain that
no, it’s not hard, it’s just different. Different in a way that is more powerful,
that lets your ideas go further. You have been doing “real” programming all
along and this is just the next logical step.

ActionScript 3.0 is a giant of a programming language. There is a lot to learn,
and conquering will take time and patience. But at the end of day (and the end
of this book) you will find that by learning ActionScript 3.0 not only are you
a better Flash developer, but also a better developer period. You’ll have under
your belt a good understanding of many core object-oriented concepts and can
take them to any other language you want to tackle—whether that be Python,
Java, C++, or just about anything else.

No matter what your background, the pages that follow will provide you with
some excellent knowledge, insight, and even a little bit of wisdom in the realm
of Flash and ActionScript. I’m lucky enough to personally know some of the
authors of this book so I can honestly tell you that you’re about to learn from
some of the best developers and teachers I know.

Happy learning!

—Branden Hall
CTO, Automatic Studios Ltd.

September 2008

xii | Foreword

Preface

ActionScript 3.0 introduced Flash developers to a new realm. In this improved
territory, ActionScript has emerged from the gym with a new physique. The
language is more powerful, more efficient, and—thanks to a new internal con-
sistency—easier to learn for those new to the Flash Platform. As the saying
goes, change is a good thing. On the other hand, too much of anything can be,
well, nerve-wracking. For many, ActionScript’s change equates to a chronic
attack of growing pains. Others, used to the paradigms and occasional quirks
of ActionScript 2.0, find the new ActionScript 3.0 practically unrecognizable.

In any case, the ongoing support for ActionScript 1.0 and 2.0, in both the Flash
authoring environment and Flash Player, means that learning ActionScript 3.0
is, for the immediate future, still an option. For now, you can choose when to
learn the new version of the language (and to what degree), applying your
newly earned knowledge on a project-by-project basis, if you want. Sometimes,
it’ll be easier to decide when to use ActionScript 3.0 than to decide whether
you should migrate existing code or start from scratch. For example, if you
want significant performance gains, or to use a new feature specific to Action-
Script 3.0, using the new language may be a foregone conclusion. How to arrive
at completed ActionScript 3.0 code, however, is another question, and that’s
where this book is useful.

This book aims to show you where Flash CS4 Professional and ActionScript
3.0 differ from prior releases of Flash and ActionScript, respectively. You can
use this text as a guide, helping you decide if new application features warrant
an upgrade, and assisting with the steeper learning curve imposed by the more
robust new language. Perhaps most importantly, this book will increase your
familiarity with ActionScript 3.0 structure and syntax, letting you adjust (or
abandon) ActionScript 2.0 coding practices more easily.

xiii

What Sets This Book Apart
Simple: Essentially, we’ve created two books in one. Or put another way, there
are two sections to the book, each using its own learning methodology.

Part I and Part II are written in classic tech-book formatting and prose. General
concepts are introduced and followed with expository prose and simple, de-
monstrative tutorials as necessary.

Part III and Part IV (especially Part III) are pure reference sections, designed
for you to quickly look up and learn from “How Do I...?” scenarios.

Think of the book as a seminar. The first half is presentation; the latter half is
Q&A.

What’s in This Book
When ActionScript 3.0 hit the streets, the reaction from the Flash crowd was
enormous, and not without a tremor of intimidation. Certain questions have
emerged—on the forums, in classrooms, user groups, and at conferences—
more often than others. This book answers the questions we most often en-
counter, questions that seem to pose the biggest stumbling blocks for longtime
users. The book’s in a hybrid format to serve two needs. The first half of the
book is something like a fireside chat, providing fairly broad coverage of Flash
CS4 Professional, and select overviews of ActionScript 3.0. The second half
presents many focused examples of ActionScript 3.0 syntax in small, digestible
chunks. Both halves are chock-full of hands-on demonstrations. Ideally, you
can hop between the two, and gear up or down to the pace that best suits your
needs at the time. Navigate the Table of Contents and/or Index to find quick
answers to specific questions about ActionScript 3.0 and its application.

Part I: Introduction to ActionScript 3.0
Part I of the text introduces a variety of tools to write ActionScript 3.0, while
relying on Flash CS4 Professional as its primary authoring environment. It then
discusses some of the attributes that make ActionScript 3.0 stand head and
shoulders above its predecessors. Topics include power and performance, the
benefits of strong data typing (including robust compile time warnings and
error messages) and how the new language architecture can improve your
workflow.

Chapter 1, Introducing ActionScript 3.0

Chapter 2, Discovering What You Need to Work with ActionScript 3.0

xiv | Preface

Chapter 3, Looking at the Changes in ActionScript 3.0

Chapter 4, Exploring the Benefits of Using ActionScript 3.0

Part II: ActionScript and the Flash CS4 Authoring Tool
Part II walks you through the Flash CS4 authoring tool with keen attention to
ActionScript-related interface elements, and helps you decide when to use the
timeline, and when to use classes, for coding. It also discusses the creation of
assets at runtime, how to convert timeline animation into ActionScript (for
manipulation and reuse), how to use, skin, and style user interface compo-
nents, and how to troubleshoot your code when things go awry.

Chapter 5, Creating and Working with Code

Chapter 6, Creating a Document Class

Chapter 7, Working with Library and Linkage Changes

Chapter 8, Copying Motion as ActionScript 3.0

Chapter 9, Using ActionScript 3.0 Components

Chapter 10, Making Up for a Reduced Component Set

Chapter 11, Debugging and Troubleshooting

Part III: How Do I?
Part III switches to cookbook-style—a concise look at a problem, solution,
and discussion for each of several issues. This format lets you hone in on syntax
and methodology in easily digestible recipes. It starts off by highlighting the
Graphics class, formerly the Drawing API, which the second half of the book
uses extensively for highly portable, code-only examples. It then discusses the
most significant changes introduced by ActionScript 3.0: the new display ar-
chitecture and event model. Next, you’ll discover new ways of using text for
display and interactivity. Finally, you’ll concentrate on input/output pro-
cesses, including sending and loading XML and variables, as well as loading
images, external SWFs, sound, and video.

Chapter 12, How Do I Draw with Code?

Chapter 13, How Do I Work with the Display List?

Chapter 14, How Do I Work with Events?

Chapter 15, How Do I Work with Text?

Chapter 16, How Do I Work with XML?

Chapter 17, How Do I Work with External Assets?

Preface | xv

Part IV: Migration
Part IV distills everything covered in Part I through Part III, and applies those
skills to the issue of migration—updating existing projects written in Action-
Script 2.0 to use ActionScript 3.0 code. This concept’s first application is the
migration of a simple particle system. The exercise highlights as many migra-
tion issues as possible in a short example, and helps you ask an important
question related to your own projects: should you migrate or rewrite? The final
chapter of the book serves as a cross-reference, and a code-comparison guide.
Specific migration issues are demonstrated in quick syntax examples, com-
paring ActionScript 2.0 and 3.0 uses. Where applicable, references to more
complete discussions elsewhere in the book are included, and select new ma-
terial in the same comparative format is also added.

Chapter 18, A Sample Migration

Chapter 19, Where Did It Go?

What’s Not in This Book
Due to the size and focus constraints of this book, many aspects of ActionScript
usage are necessarily excluded. First and foremost, this book focuses specifi-
cally on Flash CS4 Professional, although most of the examples work just fine
in Flash CS3. The Flash Platform has grown considerably, so if you prefer other
ActionScript coding environments, including Flex Builder, FDT, or
FlashDevelop (or even text editors, such as Notepad or TextMate, in conjunc-
tion with the Flex SDK command-line compiler), you may want to skim
through several of the examples to see if you think they’ll be helpful. In general,
you can easily adapt most of the book’s examples for ActionScript 3.0 projects
written in other tools, and you are introduced to a handful of those tools in
Chapter 2. However, very little additional material, such as Flex Builder
MXML documents or project files, is supplied. This book is a migration ref-
erence for Flash professionals, so you’ll see mostly FLA and AS files.

Secondly, this book is aimed at relatively experienced ActionScript 2.0 coders
who are making the move to ActionScript 3.0. It neither provides language
essentials nor serves as a comprehensive reference. As such, if you’re not al-
ready comfortable with ActionScript, and want to focus a bit more on funda-
mentals, you should seek out Learning ActionScript 3.0: A Beginner’s Guide by
Rich Shupe and Zevan Rosser (O’Reilly, 978-0-596-52787-7). Conversely, if
you’re looking for more of an in-depth reference book, you may prefer Essential
ActionScript 3.0 by Colin Moock (O’Reilly, 978-0-596-52694-8).

xvi | Preface

Finally, while it hits many of the high points, this volume doesn’t cover all
areas of ActionScript 3.0 interest, and may not satisfy advanced users’ needs.
If you want to immerse yourself in the more elaborate capabilities of the lan-
guage, you can either acquire the aforementioned Essential ActionScript 3.0
for broad coverage, or look into additional specialized books such as Action-
Script 3.0 Design Patterns: Object Oriented Programming Techniques by Wil-
liam Sanders and Chandima Cumaranatunge (O’Reilly, 978-0-596-52846-1)
for OOP and design patterns expertise.

Conventions Used in This Book
This book uses the following typographical conventions:

Menu options
Menu options are shown using the → character, such as File→Open.

Italic
Indicates new terms, URLs, email addresses, file names, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, envi-
ronment variables, statements, and keywords.

Constant width bold
Shows commands or other text that the user should type literally.

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

This is a note. It contains useful information about the
topic at hand, often highlighting important concepts or
best practices.

This is a warning. It helps you solve and avoid annoying
problems. Ignore at your own peril.

This Book’s Example Files
You can download the example files for this book at:

http://www.oreilly.com/catalog/9780596517359

Preface | xvii

http://www.oreilly.com/catalog/9780596517359

Note that, although alternative development platforms are discussed briefly,
the examples in this book are presented in the context of classes or timeline
frame scripts intended for use with the Flash authoring tool. Self-contained
examples are typically intended for inclusion in FLA files or as Flash document
classes, but you can adapt them for use in other environments (such as Flex
Builder) without support for those tools.

Using Code Examples
This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You don’t need to
contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code
from this book doesn’t require permission. Selling or distributing a CD-ROM
of examples from O’Reilly books does require permission. Answering a ques-
tion by citing this book and quoting example code doesn’t require permission.
Incorporating a significant amount of example code from this book into your
product’s documentation does require permission.

We appreciate, but don’t require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “The ActionScript 3.0
Quick Reference Guide: For Developers and Designers Using Flash CS4 Profes-
sional” by David Stiller, Rich Shupe, Jen deHaan, and Darren Richardson
Copyright © 2009 David Stiller and Rich Shupe, 978-0-596-51735-9.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets
you easily search thousands of top tech books, cut and paste code samples,
download chapters, and find quick answers when you need the most accurate,
current information. Try it for free at http://safari.oreilly.com.

xviii | Preface

www.allitebooks.com

http://safari.oreilly.com
http://www.allitebooks.org

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can find this page at:

http://oreilly.com/catalog/ 9780596517359

Acknowledgments

From David
Thanks to Rich, Jen, Darren, and the gang at O’Reilly. We took a trip to Oz
and had enough adventures to write a book about it! (Rich, you owe me a face-
to-face sit-down with Pentago!) For technical assistance and encouragement,
I’d like to extend gratitude to Marisa Bozza, Tink (Stephen Downs), Greg
Dove, Chris Georgenes, Tom Green, Branden Hall, Keenan Keeling, San
Khong, John Mayhew, Colin Moock, Robert Penner, Nivesh Rajbhandari,
Robert Reinhardt, Steve Schelter, and Kenneth J. Toley. Thanks and love to
my #1 woman, Dawn, who introduced me to Georges Méliès, and my #1 girl,
Meridian, für unser Abenteur mit Andersen und den Brüdern Grimm.

From Rich
Thanks to David, Jen, and Darren for making me part of the team. Thanks to
Robyn Thomas, Michele Filshie, Steve Weiss, and Dennis Fitzgerald for work-
ing with me again. You’re unmatched in my professional experience. Thanks
to our tech editors Matthew Woodruff, Eric Kramer, and Anselm Bradford.
Thanks to Marisa Bozza, Lee Brimelow, John Dowdell, Richard Galvan, Mally
Gardner, Stefan Gruenwedel, Jeff Kamarer, Vishal Khandpur, San Khong,
John Mayhew, Tony Mowatt, John Nack, Chris Nuuja, Ted Patrick, Nivesh
Ragbhandari, and Adobe. Special thanks to my staff at FMA and Mike Wills,
and my family for endless support. Last but not least, extra special thanks go
to Jodi, Sally, and Claire for everything.

Preface | xix

http://oreilly.com/catalog/ 9780596517359

PART I

ActionScript 3.0 Introduced

Part I seats you comfortably in the ActionScript 3.0 bistro, offers to take your
coat, and gives you a free basket of fresh bread, hot from the oven. You’ll get
drinks, of course, and be presented with a menu that unveils the variety of
tools you can use while exploring ActionScript 3.0. Specials include the Flash
authoring tool and Flash Player 10, with a dash of Flex Builder 3. You’ll also
see a few third-party script editors.

The first chapters touch on a number of ActionScript concepts, explored fur-
ther in Part II, Part III, and Part IV. These introductory tidbits are intended to
whet your appetite. They give you an overview of the new features of Action-
Script 3.0: what makes it easier to use and more powerful than its predecessor,
how to benefit from its richer warnings and error messages, and how the new
language can improve your workflow by helping you get organized.

Chapter 1, Introducing ActionScript 3.0

Chapter 2, Discovering What You Need to Work with ActionScript 3.0

Chapter 3, Looking at the Changes in ActionScript 3.0

Chapter 4, Exploring the Benefits of Using ActionScript 3.0

CHAPTER 1

Introducing ActionScript 3.0

If you chase perfection, you often catch excellence.

—William Fowble

The term “perfect” is a powerful word. From a practical standpoint, it repre-
sents a state that arguably cannot be achieved. Hey, that’s a relief already! This
book doesn’t expect the impossible. This isn’t the print version of an office
know-it-all, itching for you to slip up. You won’t hear any anxious hand
wringing in these pages over why you haven’t yet upgraded to, much less mas-
tered, ActionScript 3.0. (Yes, even though it was available in Flash CS3 Pro-
fessional.) Instead, the following chapters will take their cue from a sage ob-
servation by William Fowble: If you chase perfection, you often catch excel-
lence. In other words, chin up! Aim for the best and enjoy the road trip.
ActionScript 3.0—the current version of the programming language for the
Adobe Flash Platform—is a language that indeed catches excellence. This
book is designed to explain a bit about why that is. In so doing, our hope is to
help you chase perfection by introducing you to the improved organization,
syntax, and workflows of the new language. Catching excellence, for all of us,
is a matter of practice, and comes with time.

This book is going to introduce you to new ways of thinking about the Flash
Platform. ActionScript 3.0 requires these new ways because the language is
actually structured around them. That’s a big part of why the new language
improves on previous versions. Like its precursor, but to a greater extent,
ActionScript 3.0 is based on a specification called ECMAScript, which is a
standard proposed by a body of experts known as Ecma International. This
group is something like the World Wide Web Consortium (W3C), whose re-
sponsibility includes HTML, XML, CSS, and other widely used markup lan-
guages. Such a standard’s benefit is that ActionScript 3.0 isn’t just an arbitrary
language invented to meet Adobe’s needs. ECMAScript is a relatively mature
specification, already in its third revision. The Ecma International team in-

3

cludes authorities from industry powerhouses like Microsoft, the Mozilla
Foundation, and Adobe. The specification is built on the collective insight and
success of these diverse experts in the field. Of all the versions of ActionScript,
the current version comes closest into full compliance with this specification
—at this point, closer even than the other famous ECMAScript derivative,
JavaScript. This makes ActionScript 3.0 a model of best practices, habits you
can use in both Flash CS4 Professional and Flex Builder 3. In many cases, you
may even find that these practices benefit your involvement with existing
projects coded in previous versions of ActionScript. Sure, the syntactical de-
tails change, but achievement in programming is all about structure and pur-
pose. It’s the concepts and good habits that carry you.

For the nuts and bolts, the relevant ActionScript Language Reference is always
a mere keystroke away (the F1 key). Even so, a new set of Help docs can be
daunting, especially if you’re already well-versed in ActionScript 2.0. Fortu-
nately, the ActionScript 3.0 documentation is every bit as helpful as it used to
be, even if it looks different. The layout of the Help docs is still organized
around the layout of the language itself—around the classes that define the
objects you will use—and its class entries still summarize the usable apparatus
of each object: its characteristics, called properties; the things it can do, called
methods; and the things it can react to, called events. In the new documenta-
tion, code samples are presented as custom classes, rather than frame scripts.
This requires you test them as standalone, simple text files, according to the
new document class concept described in Chapter 6. Fortunately, this also
means you can test these classes in other programs, such as Flex Builder. This
book will help you get familiar not only with the new language, but also with
the documentation that explains it.

Keep in mind, ramping up to ActionScript 3.0 isn’t merely about learning the
latest syntax: it’s about becoming a better, more efficient programmer. This
isn’t meant to slight ActionScript 2.0 at all, but plenty has changed since its
introduction in late 2003. It’s no exaggeration to say that several aspects of the
language have been completely overhauled. In fact, ActionScript 3.0 requires
an entirely new virtual machine, which is the module inside Flash Player that
interprets compiled ActionScript. As of Flash Player 9, the runtime that dis-
plays Flash movies does so with two virtual machines: AVM1 for legacy SWF
files based on ActionScript 1.0 and 2.0, and the new AVM2 for ActionScript
3.0. That’s a first in the history of Flash Player. Thanks to the new virtual
machine, ActionScript 3.0 runs faster and more efficiently by an order of mag-
nitude. This bodes well for the overriding goal of the new language: to facilitate
a wide range of interactive media and Rich Internet Applications (RIAs)—to
do so simply, with better performance, and highly compatible with industry
standards. As you can imagine, an upgrade of this scale means you may have

4 | Chapter 1: Introducing ActionScript 3.0

to reshape some of your current habits. But take heart. Reshape doesn’t nec-
essarily mean tear down and rebuild. As ActionScript has matured, it has con-
sistently moved in the direction it currently stands. Again, honing your skills
in light of ActionScript 3.0 will help you in your current projects and also in
legacy project maintenance. Migration can be intimidating, but much of that
uncertainty comes from trying to find your stride. Once you take the first few
steps, the momentum keeps you going.

Here’s a look at some of the new features.

Examining ActionScript 3.0, the Language
Section 4 of the ECMAScript standard (http://www.ecma-international.org/
publications/files/ECMA-ST/Ecma-262.pdf) defines an important facet of any
language that implements it. Such languages “will provide not only the objects
and other facilities described in this specification but also certain environment-
specific host objects, whose description and behaviour are beyond the scope
of this specification.” In other words, any ECMAScript derivative needs a set
core functionality that stands on its own and will then provide additional
functionality specific to the environment that interprets it. This is exactly what
ActionScript 3.0 does, and its host environments include Flash Player for web
browsers, intended for Flash-enabled websites such as http://YouTube.com;
Flash Lite for devices, such as video games for your cell phone; and Adobe
Integrated Runtime (AIR) for applications installed on the hard drive, such as
eBay Desktop (http://desktop.ebay.com/).

Here is a brief summary of a number of core updates.

Runtime Exceptions
In ActionScript 2.0, many runtime errors failed without drawing attention to
themselves. On the plus side—and this is a very weak plus—this meant that
errors of this sort often failed “gracefully.” In other words, they might not halt
someone’s experience with something abrupt or laden with technical jargon,
such as an alert or dialog box. On the minus side, this also meant such errors
might go unnoticed by the developer—until complaints started rolling in that
people were experiencing slow playback or even lockups. Such errors could
be hard for developers to pinpoint and repair, precisely because they were
silent.

ActionScript 3.0 allows for a variety of runtime exceptions to be handled with
purpose. This includes Error objects generated both by the runtime
environment and, potentially, by the programmer. In ActionScript 3.0, the
Error class is considerably more robust than its forerunner, and tailor-made

Examining ActionScript 3.0, the Language | 5

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://YouTube.com
http://desktop.ebay.com/

Error objects can be built from this class as desired, inheriting and extending
its functionality to provide highly customized error messages. Exceptions can
even provide source file and line number information, which greatly enhances
the debugging experience, letting developers quickly track down errors.

Runtime Types
ActionScript 2.0 introduced the ability to strongly type variables, parameters,
and function return values. This was, and still is, an optional way to let Flash
know exactly what sort of data a particular variable, parameter, or return value
could cope with. This ability was a boon to developers in terms of debugging,
because it gave you a way to display error messages in cases of a type mis-
match. For example, if you were going to perform a math operation on two
numbers provided by the user, you might take those numbers from input text
fields. This would actually make them strings, which meant your math oper-
ation would give you unexpected results (for example, 1 + 2 would become
“12” instead of 3). By strongly typing the parameters of the function that per-
formed this operation—in other words, by specifying intended variable types
with a colon (:), then the type—you could benefit from a meaningful error
message in the Output panel such as this:

// ActionScript 2.0
var userVar1:String = inputField1.text;
var userVar2:String = inputField2.text;

function getSum(a:Number, b:Number):Number {
 return a + b;
}

trace(getSum(userVar1, userVar2));
// Displays:
Error Scene=Scene 1, layer=Layer 1, frame=1:Line 8: Type mismatch.
 getSum(userVar1, userVar2);.

A type mismatch notice is a great reminder to use something like parseInt()
or parseFloat() to convert those strings into numeric values. Useful indeed,
but this was only a first step in a good direction. In ActionScript 2.0, this sort
of error checking only occurred at compile time. Under many circumstances
—such as evaluating data from dynamic sources like XML—the feature wasn’t
“smart” enough to catch every contingency. In ActionScript 3.0, it is.

Sealed Classes
Following in the same vein as runtime exceptions and runtime types, Action-
Script 3.0 establishes the concept of sealed classes in a stricter, more formalized
way than in ActionScript 2.0. A sealed class is one that can’t have properties

6 | Chapter 1: Introducing ActionScript 3.0

or methods assigned to it at runtime, such as String. By default, classes in
ActionScript 3.0 are sealed, but this can be overruled when you write your own.

var str:String = "" // Or: new String();
str.customProperty = "This generates a compiler error.";
// Displays: Access of possibly undefined property customProperty
// through a reference with static type String.

In contrast, a class that actually can have properties and methods assigned to
it at runtime is called dynamic. One of the most familiar dynamic classes is
MovieClip, though historically speaking, many frame script developers haven’t
considered movie clips in terms of a class. The same could be said of buttons
and text fields, because you can create such elements with Flash’s drawing
tools. (Of the elements just mentioned, only movie clips are dynamic.) For
frame script coders, movie clips are often thought of simply as symbols or
timelines, and timelines have always been able to receive new variables at run-
time. True enough. What’s really going on, though, is that variables defined
in keyframe scripts are in reality dynamic properties of a MovieClip instance;
functions are actually dynamic methods.

Declaring a variable in a keyframe of the main timeline or in a movie clip’s
timeline is conceptually the same as the following:

var mc:MovieClip = new MovieClip();
mc.customProperty = "This is perfectly acceptable.";

Custom classes in ActionScript 3.0 can behave this way too, if and only if they
are declared with the dynamic attribute:

package {
 public dynamic class CustomClass() {
 // class code here
 }
}

On paper, this is also how it was in ActionScript 2.0, but in fact, even non-
dynamic classes could be altered at runtime by manipulation of the
Object.prototype property (inherited by all objects) or by the array access op-
erator ([]). Advanced programmers who used such an approach in the past
will find it no longer works in ActionScript 3.0 for sealed classes.

// ActionScript 2.0
var str:String = "";
str.customProperty = "Secret back door.";
// Displays: There is no property with the name 'customProperty'.

str["customProperty"] = "Secret back door.";
// Works just fine in ActionScript 2.0, but in 3.0 displays:
 Cannot create property customProperty on String.

Examining ActionScript 3.0, the Language | 7

In ActionScript 3.0, non-dynamic classes actually are what they claim to be.
This makes for stricter compile-time checking and improves memory usage
because class instances can now be guaranteed to require no more than a pre-
declared amount of system memory.

Method Closures
Of all the updates to ActionScript 3.0, it’s no surprise that developers, regard-
less of skill level, encounter one in particular early on: method closures. Why?
Because the introduction of method closures changes the point of view, or
scope, of methods in ActionScript 3.0.

Scope refers to the conceptual area of a program in which code executes. The
availability of code definitions, such as variables, functions, properties, and
methods, depends on the scope of the code being executed. For example, if a
variable is declared in a timeline frame, that variable can be referenced by any
other code in that frame, as long as that code appears after the declaration.
Even a function defined in that frame can reference the variable scoped to the
timeline, because scopes can be nested, and the flow moves from outer scope
to inner: the timeline’s definitions become available to the function.

// A variable declared here ...
var favoriteCereal:String = "Star Crunchers!";

// can be referenced here ...
trace(favoriteCereal); // Displays: Star Crunchers!

function myFunction():void {
 // and here ...
 trace(favoriteCereal); // Displays: Star Crunchers!
}
myFunction();

In contrast, a variable declared inside a function can only be referenced by that
function, because the scope of the function is confined to itself.

function myFunction():void {
 // A variable declared here ...
 var favoriteCereal:String = "Star Crunchers!";

 // can only be referenced here ...
 trace(favoriteCereal); // Displays: Star Crunchers!
}
myFunction();

// but not in the outer scope ...
trace(favoriteCereal);
// Displays:
Error Scene=Scene 1, layer=Layer 1, frame=1:Line 10:
 Access of undefined property favoriteCereal.

8 | Chapter 1: Introducing ActionScript 3.0

www.allitebooks.com

http://www.allitebooks.org

Up to now, this should be familiar to ActionScript 2.0 developers. How, then,
have things changed? Consider the next few examples.

In ActionScript 2.0, a button click might be handled like this:

// ActionScript 2.0
myButton.onRelease = buttonHandler;
function buttonHandler():Void {
 trace(this); // Displays: _level0.myButton
 // other event handler code
}

Prior to ActionScript 3.0, the scope of the function shown belonged to the
myButton instance. In this case, the button code could conveniently be abbre-
viated with the use of the this keyword, which self-referenced the current
scope (myButton). In some cases, this made for a handy way to achieve certain
goals. For example, to repeatedly loop a Sound instance in ActionScript 2.0,
the following would do:

// ActionScript 2.0
var audio:Sound = new Sound();
audio.loadSound("externalFile.mp3", true);
audio.onSoundComplete = completeHandler;
function completeHandler():Void {
 this.start();
}

Again, the function is scoped to the instance. In this case, the expression
this.start() amounts to invoking the Sound.start() method on the audio
instance. Although convenient in this sort of situation, difficulties arose when
the event handler needed to reference objects outside the scope of the function,
especially in custom classes.

To a large extent, this issue could be addressed in ActionScript 2.0 with the
Delegate class, which allowed you to reroute the scope as desired:

// ActionScript 2.0
import mx.utils.Delegate;
var audio:Sound = new Sound();
audio.loadSound("externalFile.mp3", true);
audio.onSoundComplete = Delegate.create(this, completeHandler);

function completeHandler():Void {
 audio.start();
}

The Delegate.create() method accepted two parameters: first, the desired
scope; second, the function or method to execute in that scope. Note that
because of this change, the function invokes audio.start() directly. In this
case, the this keyword no longer refers to the audio instance to which the

Examining ActionScript 3.0, the Language | 9

listener was attached, but rather to the timeline frame in which the listener
was assigned.

In ActionScript 3.0, method closures let a function or method remember where
it was defined. In short, you get the best of both worlds. In the following
ActionScript 3.0, written in a keyframe, the reference to this shows that the
scope belongs to the main timeline—to the frame in which the function is
defined, rather than to the myButton instance. No extra baggage, like the Dele
gate class, is required.

myButton.addEventListener(MouseEvent.CLICK, buttonHandler);
function buttonHandler(evt:MouseEvent):void {
 trace(this); // Displays: [object MainTimeline]
}

To reference the button rather than the frame, use the Event.target property
of the parameter that is passed into the function automatically by the event.
In this snippet, the parameter is arbitrarily named evt:

myButton.addEventListener(MouseEvent.CLICK, buttonHandler);
function buttonHandler(evt:MouseEvent):void {
 trace(evt.target); // Displays: [object SimpleButton]
 trace(evt.target.name); // Displays: myButton
}

ECMAScript for XML (E4X)
Flash has long supported XML, but the addition of ECMAScript for XML (E4X)
syntax is a significant productivity boost. Like ActionScript, E4X is an Ecma
International specification, which affords a powerful yet concise set of lan-
guage constructs for retrieving data from XML, and manipulating it.

In ActionScript 2.0, you can certainly navigate among the nodes of a loaded
XML document, but the effort becomes progressively more tedious as the
XML’s complexity increases. The ActionScript 2.0 XML class provides a handful
of necessary navigation properties, such as firstChild, nextSibling,
lastChild, and childNodes. Choosing from these, and assuming an XML docu-
ment has already been loaded and parsed into an XML instance named myXML,
you might select the title of the fifth track of The Beatles’ Abbey Road album
(“Octopus’s Garden”) like this:

// ActionScript 2.0
myXML.firstChild.firstChild.firstChild.childNodes[4].attributes.¬
 title;

// Contents of the loaded XML document
<?xml version="1.0" encoding="iso-8859-1"?>
<library>
 <artist name="The Beatles">
 <album name="Abbey Road">

10 | Chapter 1: Introducing ActionScript 3.0

 <track title="Come Together" />
 <track title="Something" />
 <track title="Maxwell's Silver Hammer" />
 <track title="Oh! Darling" />
 <track title="Octopus's Garden" />
 <track title="I Want You (She's So Heavy)" />
 <track title="Here Comes the Sun" />
 <track title="Because" />
 <track title="You Never Give Me Your Money" />
 <track title="Sun King" />
 <track title="Mean Mr. Mustard" />
 <track title="Polythene Pam" />
 <track title="She Came in Through the Bathroom Window" />
 <track title="Golden Slumbers" />
 <track title="Carry That Weight" />
 <track title="The End" />
 <track title="Her Majesty" />
 </album>
 </artist>
</library>

In the preceding whopping expression, myXML refers to the parsed XML docu-
ment; the three mentions of firstChild refer, respectively, to the <library>,
<artist>, and <album> nodes; and childNodes[4] refers to the fifth <track> node
(bear in mind, childNodes returns an array, and arrays start at zero). Finally,
the attributes property leads to the title attribute of the selected node.

E4X lets parsed XML be referenced as if it were a native object. This lets you
traverse the loaded data incredibly more intuitively. In the ActionScript 3.0
equivalent, the same track can be referenced like this:

// ActionScript 3.0
myXML.artist[0].album[0].track[4].@title;

or, thanks to the descendent accessor operator (..), even something as short
as this:

myXML..track[4].@title;

Which would you rather type?

In addition, you can compare data using a familiar set of operators. For ex-
ample, if the XML document at hand contains numerous recording artists, The
Beatles’ <artist> node could be singled out as easily as this:

myXML.artist.(@name == "The Beatles")

The E4X specification is available in Adobe PDF format at the
Ecma International website: http://www.ecma-international
.org/publications/files/ECMA-ST/Ecma-357.pdf.

Examining ActionScript 3.0, the Language | 11

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-357.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-357.pdf

Regular Expressions
The term regular expressions refers to a set of specialized language constructs
for retrieving data from strings (that is, text content), and manipulating such
data. In this regard, regular expressions (often abbreviated as regex) shares a
number of similarities with E4X: both mechanisms are compact and efficient
in their tasks. The syntax of regex tends to be initially harder to grasp than
E4X—here, normal letters and punctuation are used to represent whole sets
of characters, in addition to filtering rules—but the results are well worth the
effort.

What can you do with regular expressions? To answer that, consider two fa-
miliar methods of the String class, indexOf() and lastIndexOf(), which have
been available in ActionScript for years. These methods both accept two pa-
rameters: first, a string to look for within a container string; second, optionally,
where to start looking within the container string. Each method takes its start-
ing point from opposite ends of the container string.

var pangram:String = "The quick, brown fox jumps over a lazy dog.";

trace(pangram.indexOf("o")); // Displays 13
trace(pangram.indexOf("o", 14)); // Displays 18
trace(pangram.lastIndexOf("o")); // Displays 40

In the first trace() statement, only one parameter is supplied, "o", and the
return value is 13 because the letter “o” makes its first appearance at index 13
(starting with 0, the thirteenth character in the string pangram). In the second
statement, the return value is 18 because of the optional second parameter
14, which instructs the method to begin after the index of the first “o”. In the
third statement, the return value is 40 because the method lastIndexOf() be-
gins its search from the end of the string.

For simple searches, indexOf() and lastIndexOf() fit the bill, but what if the
requirement is something like “find all US ZIP codes,” which could be any 5-
number combination, or “find all words in this paragraph that contain three
or more vowels”? Suddenly, the task seems considerably more difficult, if not
impossible. Believe it or not, the RegExp class in ActionScript 3.0 handles this
requirement very easily. The solution requires a pattern of specialized charac-
ters, expressed either as an instance of the RegExp class or passed as a parameter
to one of the regex-related methods of the String class (match(), replace(), or
search()).

Given a variable, paragraph, set to the text content of the previous paragraph,
the following code shows how to retrieve words with three or more vowels:

var re:RegExp = /\b(\w*[aeiou]\w*){3}\b/gi;

var result:Object = re.exec(paragraph);

12 | Chapter 1: Introducing ActionScript 3.0

while (result != null) {
 trace(result[0]);
 result = re.exec(paragraph);
}
// Displays: searches, indexOf, lastIndexOf, requirement,
// something, and other words with three or more vowels

A full discussion of regular expressions syntax is beyond the scope of this book,
but here’s a brief overview of how the previous example works. A variable,
re, is set to an instance of the RegExp class by way of the RegExp delimiter
operator (/pattern/flags). Between the two slashes of this operator, the pat-
tern \b(\w*[aeiou]\w*){3}\b spells out the search requirement. After the sec-
ond slash, the flags (gi) configure the pattern as global and case insensitive.
The RegExp.exec() method executes the pattern on the string paragraph and
returns an object (result) that contains information about the search. The
search is repeated until result is null.

If the preceding example seems outlandish, imagine the same sort of power
applied to the validation of user input. You can manage even potentially com-
plex requirements without much difficulty. These include questions such as,
“Is this email address correctly formed?” (Checking for the “@” character isn’t
enough!) “Is this a valid telephone number?” (People might enter anything
from (123) 456-7890 to 123.456.46789 to 123456789.) “Has the user tried to
sneak in an inappropriate word by using a nonstandard spelling?” Patterns
that match these requirements not only find the strings in question, but can
also manipulate them in order to, for example, format telephone numbers
consistently or replace questionable words with Xs.

For an exhaustive and highly regarded treatise on regular ex-
pressions, be sure to read Mastering Regular Expressions, by
Jeffrey Friedl (O’Reilly). Numerous tutorials are also available
online at the unrelated http://www.regular-expressions.info/
website.

Namespaces
In advanced programming scenarios, the concept of namespaces brings a val-
uable new mechanism to ActionScript 3.0. In short, namespaces are essentially
custom access specifiers—like public, private, protected, and internal—ex-
cept with names you choose. Namespaces let you control the visibility of your
properties and methods, even to the point of overriding package structures.
They also let you qualify members under various guises. As a quick example,
you might develop an AIR application that performs one behavior while an
Internet connection is present, and another when no connection is present. By
using namespaces, you can define multiple versions of the same method that,

Examining ActionScript 3.0, the Language | 13

http://www.regular-expressions.info/

for instance, checks an online inventory when the user’s WiFi connection is
available but defaults to a cached version otherwise. Or you might define series
of variables in several languages, where the value of a variable depends on the
user’s regional settings. These distinctions are determined by custom prefixes
and the name qualifier operator (::):

// Three versions of the same String variable
english::newFeatures // Value of "Lots of new stuff"
german::newFeatures // Value of "Viele neue Sachen"
french::newFeatures // Value of "Plien de nouvelles choses"

Namespaces are outfitted with a Universal Resource Identifier (URI) to avoid
collisions, and are also used to represent XML namespaces when working with
E4X.

New Primitive Types
ActionScript 3.0 introduces two new primitive types, int and uint, bringing
the full list to Boolean, int, Null, Number, String, uint, and void (note the change
in capitalization from Void). These new numeric types reduce memory usage
in cases when a numeric value need only be an integer. How? The familiar
Number data type is an IEEE-754 double-precision floating-point number,
which, thanks to its structure, always requires 64 bits of memory. Number ob-
jects range from 1.79e+308 (1.79 with over 300 zeroes after it!) down to
5e-324. That’s an unimaginably large range, which isn’t always necessary.
Sometimes you just want to count through a for loop, and all you need is an
integer.

Enter int, which is a relatively small 32-bit number (only 4 bytes), whose range
is still an impressive 2,147,483,647 (over two billion) down to −2,147,483,648.
That range should do for most of the for loops you’ll encounter. By contrast,
uint numbers (unsigned integers) range from 0 to 4,294,967,295, which is the
same span as int, but entirely on the positive side of the number line. If your
for loop’s counter, or any other integer value, needs a higher range than offered
by int, uint makes a good choice—provided the range doesn’t dip below zero.
Neither type ever requests more than 32 bits of system memory.

One note of caution: because uint values are always positive,
take care when trying to subtract a uint into negative territory.
A uint rolls around to 4,294,967,295 if you subtract it past
zero, as the following code demonstrates.

var n:uint = 0;
trace(n); // Displays 0

n--;
trace(n); // Displays 4294967295

14 | Chapter 1: Introducing ActionScript 3.0

Exploring Flash Player API Updates
In the “ActionScript 3.0, the Language” section of this chapter, you learned
that the ECMAScript specification on which ActionScript is based actually
expects the language to provide functionality tailored to the platform that hosts
it. In the case of ActionScript, hosts include Flash Player, AIR, and Flash Lite
—all various flavors of the Flash Platform. Though each host is designed to
meet specific needs—websites, desktop applications, and mobile content, re-
spectively—their overlap is considerable. ActionScript 3.0 institutes a signifi-
cant restructuring of its application programming interface (API), summarized
handily in the colossal migration table available on the Adobe LiveDocs web-
site (http://help.adobe.com/en_US/AS3LCR/Flash_10.0/migration.html) and
also in the Help panel in the appendices of the ActionScript 3.0 Language and
Component Reference, under the heading “ActionScript 2.0 Migration”. In
large part, existing functionality has been restructured into packages that make
better sense from an organizational standpoint. However, Flash does have a
number of philosophical changes in the way it carries out its fundamental
tasks. The following paragraphs list some of the more notable updates.

As of the publication of this book, Flash Lite does not yet
support ActionScript 3.0, due to the inherent processor and
memory limitations of mobile devices. The features recounted
here apply to Flash Player 9 (and higher) and AIR, but won’t
apply to Flash Lite until that runtime adds support for
ActionScript 3.0.

DOM3 Event Model
Before ActionScript 3.0, you could handle events in Flash in at least five dif-
ferent ways, some of which were interchangeable:

• The legacy on() handler, available since Flash 2 and still in wide use, even
in ActionScript 2.0 scenarios, but gone in ActionScript 3.0

• The legacy onClipEvent() handler, also widely used and unavailable in
ActionScript 3.0

• The dot notation syntax that combined and replaced on() and
onClipevent() (for example Button.onPress = functionDefinition,
MovieClip.onEnterFrame, and so on)

• The addListener() method of several—but not all!—ActionScript 2.0
classes, such as TextField, Mouse, and MovieClipLoader

• The addEventListener() method used by the v2 component set (user in-
terface, data, and media components)

Exploring Flash Player API Updates | 15

http://help.adobe.com/en_US/AS3LCR/Flash_10.0/migration.html

This varied assortment was a result of incremental improvements to Action-
Script with every new release of the authoring tool, with the older approaches
retained for backward compatibility. For longtime Flash developers, each new
technique was simply a small addition to the workflow, but newcomers to
recent versions, such as Flash 8 or Flash CS3, were understandably confused
by an API with so many seemingly arbitrary possibilities.

Are on() and onClipEvent() really so bad? From a workflow
standpoint, no. From a practical standpoint, they aren’t nearly
as valuable as their dot notation replacement. In ActionScript
2.0, the combination of on() and onClipEvent() provide access
to only slightly more than half the events available to movie
clips and buttons. In addition, you can’t assign, manipulate,
or remove their event handlers at runtime. Their absence in
ActionScript 3.0 marks the end of a long transition period
from ActionScript 1.0 through 2.0.

Because ActionScript 3.0 relies on a new virtual machine, it can afford to make
a clean break in the way it handles events. With one small exception (discussed
in Chapter 4), event handling is now consolidated across the board into a
single, consistent approach: the EventDispatcher.addEventListener()

method. This mechanism is based on the W3C’s Document Object Model
(DOM) Level 3 Events Specification (http://www.w3.org/TR/DOM-Level-3
-Events/). This means that in ActionScript 3.0, event handling syntax is the
same in nearly all cases, no matter if the event dispatcher is a button, an audio
clip, or a loader object for XML or JPEG files. The basic structure looks like
this:

eventDispatchingObject.addEventListener(
 EventType,
 functionToPerform
);

Display List API
In ActionScript 3.0, movie clips can be instantiated with the new keyword as
easily as this:

var mc:MovieClip = new MovieClip();

which is more intuitive than what it took in ActionScript 2.0:

var mc:MovieClip = existingMovieClip.createEmptyMovieClip(¬
 instanceName, depth);

And it gets better. Depth management is now automatic. Notice that the ex-
pression new MovieClip() does not require a depth parameter. This change is

16 | Chapter 1: Introducing ActionScript 3.0

http://www.w3.org/TR/DOM-Level-3-Events/
http://www.w3.org/TR/DOM-Level-3-Events/

due to a fundamental new approach to the display of visual objects in Action-
Script 3.0: a concept called the display list, which represents the hierarchical
display of all graphical objects in Flash Player. This concept is embodied in
the DisplayObjectContainer class, the base class for all objects that can serve
as visual containers, including movie clips, the new Sprite and Loader classes,
and more. Thanks to inheritance, DisplayObjectContainer provides new meth-
ods to these classes for considerably better control over the management of
object z-order. For example, while the MovieClip class in ActionScript 2.0 fea-
tured getDepth() and swapDepths(), the ActionScript 3.0 version offers all of
these:

• addChild()

• addChildAt()

• contains()

• getChildAt()

• getChildByName()

• getChildIndex()

• removeChild()

• removeChildAt()

• setChildIndex()

• swapChildren()

• swapChildtenAt()

How’s that for control?

These methods are also available to Sprite, which is effectively a movie clip
without the overhead of a timeline; Loader, which loads external SWF files and
image files (JPEG, PNG, or GIF) at runtime; and any other class in the
DisplayObjectContainer family tree.

Under the display list system, objects can be re-parented at any time. This
ability simplifies cases in which groups of objects need to be manipulated at
once. Consider a jigsaw puzzle game, for example. If you want to combine
partially solved areas, so that snapped-together pieces move as one unit, you
can simply remove the piece from its current parent and add it as a child to the
parent that represents the partially solved group. Before ActionScript 3.0, this
action would have required individual sophisticated tracking of each jigsaw
piece.

Exploring Flash Player API Updates | 17

New Sound APIs
Flash Player 8 was the first to support 32 simultaneous sound channels, a
significant increase from the original eight-sound channel limit. Although
present for as long as Flash Player has supported sound, these sound channels,
as such, had no clear representation in code before ActionScript 3.0. In previ-
ous versions of the language, the Sound class was self-contained, handling all
of its functionality in a relatively simple manner, but at the cost of some clarity
of purpose. For example, in order to control the volume and panning of one
sound distinctly from another, you had to associate each sound with its own
movie clip. You made this association by way of an optional “target” parameter
in the Sound constructor function. Because target movie clips might or might
not contain other content, their ambiguous roles had the potential to confuse.

ActionScript 3.0 clarifies programmed sound by complementing the Sound
class with three companions: SoundChannel, SoundTransform, and SoundMixer.
These new APIs give you more explicit control over imported and embedded
sounds. The SoundMixer.computeSpectrum() method even lets you retrieve
spectral data from sounds, which you can use to program responses to changes
in audio pitch and volume.

Binary Data and Sockets
The new ByteArray class enables interoperability with existing custom proto-
cols, and lets advanced developers read, write, and manipulate data on the
byte level. This has led adventurous programmers to cultivate projects previ-
ously unheard of in Flash, such as Tinic Uro’s PNG encoder (http://www
.kaourantin.net/2005/10/png-encoder-in-as3.html, now updated and featured
in the as3corelib library at http://code.google.com/p/as3corelib/) and a dynamic
tone generator by André Michelle and Joa Ebert, capable of playing MIDI-like
Amiga MOD files (http://8bitboy.popforge.de/).

Understanding Players and Support
Although this book focuses primarily on the Flash authoring tool, it’s impor-
tant to realize that Adobe offers two official ActionScript 3.0 compilers. One
of these compilers is built into Flash CS4 itself. As you would expect, this one
takes into consideration objects in the document’s Library, as well as global
SWF file settings, such as background color and frame rate, as configured in
the Property inspector. This compiler can also compile previous versions of
ActionScript. Separate from that, there’s the command line compiler included
with the free Flex Software Development Kit (SDK) available at www.adobe
.com/go/flex_trial/. This second compiler is the one used by the Flex Builder

18 | Chapter 1: Introducing ActionScript 3.0

www.allitebooks.com

http://www.kaourantin.net/2005/10/png-encoder-in-as3.html
http://www.kaourantin.net/2005/10/png-encoder-in-as3.html
http://code.google.com/p/as3corelib/
http://8bitboy.popforge.de/
http://www.allitebooks.org

integrated development environment (IDE), which doesn’t include drawing
tools, timelines, or a library. In addition to ActionScript 3.0, the Flex compiler
understands MXML, the declarative markup language used for laying out Flex
applications. For want of a library, the second compiler lets metadata embed
assets into resultant SWF files. The Flash authoring tool supports only limited
metadata, an undocumented feature at the time of writing.

These distinct compilers serve independent workflows. To facilitate the de-
velopment of RIAs, the Flex SDK features an elaborate framework of user
controls and data handlers that aren’t available to the Flash authoring tool,
even though the framework is written in ActionScript 3.0. By comparison,
Flash offers a modest subset of user controls in its Components panel, includ-
ing support for the playback and manipulation of Flash video files (FLV).

In the end, there’s only one ActionScript 3.0, and it behaves the same when
compiled under either tool. The reason for this consistency is that Flash CS4
and the Flex SDK both publish SWF files for the same Flash Player 9 or higher.
It’s quite possible—and often done—to create custom classes that can be used
under either circumstance. The concept of the document class (see Chap-
ter 6), introduced in Flash CS3, means that an entire application, composed
of numerous external classes, can be compiled by Flash or the Flex command
line compiler (including Flex Builder) from identical source files.

Because ActionScript 3.0 requires AVM2, as mentioned earlier in this chapter,
Flash Player 9 is the minimum required runtime to display such content. Flash
Player 9 runs on numerous operating systems, including several versions of
Windows, Macintosh, Linux, and Solaris. Due to the varied nature of these
operating systems and occasional bug fixes required by each, in addition to
ongoing new features, Flash Player 9 includes a number of minor point relea-
ses, as summarized in Table 1-1. Flash CS4’s default output is aimed at Flash
Player 10, which may eventually see a list of minor point releases just as long.
Time will tell. To determine what version of Flash Player the user has installed,
reference the static version property of the Capabilities class.

Table 1-1. Flash Player 9 minor point releases

Flash Player
version Notable changes

9.0.16.0 ActionScript 3.0, including runtime exceptions and error handling, sealed classes, method clo-

sures, ECMAScript for XML (E4X), regular expressions, namespaces, new primitive types, DOM3

event model, display list APIs, new sound APIs, and binary data and sockets.

9.0.20.0 Bug fixes and optimizations related to the Intel-based Macintosh platform.

9.0.28.0 Support for Windows Vista operating system. Addition of ADDED_TO_STAGE and

REMOVED_FROM_STAGE event constants to let a DisplayObject monitor and know when

it can or cannot access its stage property. Security enhancements.

Understanding Players and Support | 19

Flash Player
version Notable changes

9.0.31.0 Support for Linux operating systems.

9.0.45.0 Bug fixes and improvements for Adobe Flash CS3 Professional. Affects only Windows and Mac-

intosh platforms.

9.0.47.0 Support for Solaris operating system. Security enhancements.

9.0.48.0 Linux security enhancements.

9.0.115.0 H.264 video and High Efficiency AAC (HE-AAC) audio codec support. Hardware acceleration,

hardware scaling, multi-threaded video decoding, and enhanced image scaling. Flash Player

cache enables common components, such as the Flex Framework, to be cached locally and then

used by any SWF from any domain. Flash Media Server buffering maintains stream buffer while

a stream is paused.

9.0.124.0 Media streaming security patch and minor display update for Windows Vista.

A full listing of all Flash Player release notes, including bug
fixes, can be found at http://www.adobe.com/support/documen
tation/en/flashplayer/releasenotes.html.

Learning ActionScript 3.0 on the Heels of 2.0
Pretend for a moment you’re a carpenter. For years, you were making do with
a hand-crank drill, but then the Macromedia Hardware Company introduced
an electric model called ActionScript 1.0 stamped with gold letters on the
handle. Beautiful thing! No reason to ever use anything else. Sure, you could
operate the drill only within six feet of an electrical outlet (because that was
the length of the cord), but the advantages were resoundingly clear. Plus, you
could always carry around an extension cable. A few years later, Macromedia
announced a new and improved ActionScript 2.0 model. This drill had an
optional battery back. For some, the new battery pack was a godsend, because
it freed them from the previous six foot limitation. They embraced the new
feature and literally found themselves running with it. Other carpenters found
the battery pack a bit too advanced. They weren’t sure, for example, if they
were supposed to drain the batteries completely before recharging. And hon-
estly, that was fine: the drill still had a cord, of course, so they continued within
their previous comfort zone, which was still a considerable improvement over
the hand-crank days. Carpenters were a happy bunch. Eventually, the Mac-
romedia Hardware Company became Adobe. Everyone looked forward to the
new drill—ActionScript 3.0—and when it came ... they found that the cord
had been replaced with a docking station. Suddenly, carpenters who had opted
not to use the ActionScript 2.0 battery pack felt trapped. They had no expe-

20 | Chapter 1: Introducing ActionScript 3.0

http://www.adobe.com/support/documentation/en/flashplayer/releasenotes.html
http://www.adobe.com/support/documentation/en/flashplayer/releasenotes.html

rience with batteries, but if they were going to use an ActionScript 3.0 model,
they had no choice.

It goes without saying that every analogy has its flaws. Certainly, the changes
in ActionScript 3.0 amount to more than the obvious benefit of a battery pack.
Clearly, the new APIs are more complex than the question of how to recharge
a set of batteries. In any case, ActionScript does a lot more than drill holes!
Still, it can be useful to think of ActionScript 2.0 as a preparatory transitional
period between, on one hand, the very roots of the language—that is, Action-
Script 1.0 and even earlier—and, on the other hand, the current version. As
with the carpenter story, numerous features in ActionScript 2.0, such as strict
typing (:Number, :Void, etc.) and formalized custom class files, were optional.
(Unlike the analogy, those particular features are still optional in ActionScript
3.0.) Voluntary though they were, such then-new conventions were an early
invitation to practice a more efficient workflow. Developers who opted to ex-
periment with object-oriented programming (OOP), to the point of writing
their own custom classes, may feel more at home with ActionScript 3.0 than
others. For those who were perfectly comfortable with the conventions of
ActionScript 1.0, they might understandably feel trepidation in light of the
current version, especially now that ActionScript 3.0 has dropped support for
some previously optional features, such as on() and onClipEvent(). Flipping
through the ActionScript 3.0 Language and Components Reference takes con-
siderably longer than before. Everything has been arranged into a potentially
overwhelming new hierarchy of packages. Most of the Help panel sample code
has been written as class files, to make it applicable both for keyframe and
class file programmers.

These changes are big, but not insurmountable. One of this book’s driving
purposes is to help you feel caught up, whether or not you pursued the optional
new conventions of ActionScript 2.0—the features that, in hindsight, were a
gentle ramp up to today’s recommended best practices. The important thing
to keep in mind is that ActionScript 3.0 is scalable in terms of complexity. If
you want to plunge headlong into OOP principles such as inheritance and
design patterns, ActionScript 3.0 will oblige. If you prefer to stick with tradi-
tional timeline coding, ActionScript 3.0 will oblige—with a number of provi-
sos covered in the following chapters.

Deciding to Migrate or Write Code from Scratch
If you work with a set of in-house templates, be they FLA files, custom classes,
or a combination of both, sooner or later you’ll have to decide how to update
them. For the sake of discussion, these files are stable ones that have made
your company money for years, and they work just fine. Nonetheless, you’d

Deciding to Migrate or Write Code from Scratch | 21

like to take advantage of the speed increases—or any of the other benefits—
afforded by ActionScript 3.0. Should you painstakingly tinker with existing
files, tweaking as you go, or should you ditch everything and start from square
one? Which approach would require less effort?

For better or worse, there is no sure-fire way to determine which endeavor is
more advantageous in a given situation. While you can theoretically upgrade
a FLA file’s Publish Settings to ActionScript 3.0 and compile without errors or
warnings, the prospect becomes progressively more unlikely as a project gains
in complexity. Chances are high that one incompatibility will occur in concert
with many: in other words, when it rains, it pours. That said, here are a few
thoughts to consider.

If all or most of your code exists on frames in a FLA file, you may have no
realistic choice but to migrate the ActionScript in place, for the obvious reason
that the code is so closely tied to the file’s visual design. To start from scratch
could require careful transportation of symbols from one FLA file to another,
possibly including intricate nested timeline effects. For simple banner ads and
linear slideshows, an in-place update may not be as difficult as it sounds.
Standalone calls to stop(), gotoAndPlay(), and the like, will carry over without
a hitch. By all means, select File→Publish Settings→Flash→Script→ActionScript
3.0, and then hold your breath and see what happens.

Don’t forget to exhale if the compile works, and frankly, prepare yourself now
for numerous entries in the Compiler Errors panel. If any of the frame code
involves event handlers, loads external assets, or even calls a new web page
(getURL() is now navigateToURL()), you’ll have to update it. The good news is,
the Compiler Errors panel is one of many helpful new tools in Flash CS4
(introduced in Flash CS3). This panel not only tells you where the erroneous
code is, by class file, scene, layer, keyframe, and line number, it often makes
suggestions on what to change, including a list of common migration issues.

The Compiler Errors panel and other debugging tools are cov-
ered in Chapter 11.

If most of your code exists in external class files, your project probably involves
more than a smattering of ActionScript. Although this likely means you’ll
spend more time on code migration (because there’s more of it!), the fact that
your code is separate means you can test and revise each class individually. In
either case, frame code or class files, this book will help you get your bearings.

22 | Chapter 1: Introducing ActionScript 3.0

CHAPTER 2

Discovering What You Need to
Work with ActionScript 3.0

Working with ActionScript 3.0 is an equation composed of two parts: you
need something to compile a program written in the language, and you need
something to display the results of that programming. In compiler territory,
you have quite a few development choices. In the most basic approach, Adobe
makes the Flex Software Development Kit (SDK) available to the public free
of charge (http://www.adobe.com/go/flex_trial/). This SDK includes the full
ActionScript 3.0 application programming interface (API), which is the full list
of core and Flash Player API classes described in the ActionScript 3.0 Language
and Components Reference, published on the Adobe LiveDocs website (http:
//help.adobe.com/en_US/AS3LCR/Flash_10.0/). In addition, the SDK includes
the Flex framework (component class library) and Flex command line com-
piler, letting programmers freely develop and deploy Flex applications using
any scripting integrated development environment (IDE). Because the Flex
framework is, itself, written in ActionScript 3.0, you don’t necessarily have to
learn a new language to use Flex. Without spending a dime, interested pro-
grammers can build anything from basic ActionScript 3.0 class files—which
you can also write in the Script window of Flash CS4 Professional—to full-
scale Flex applications that you can write with Flex Builder 3.

Displaying the results of your work requires Flash Player 9 or higher (Flash
CS4 publishes to Flash Player 10 by default). That may seem like the easy half
the equation, but there are actually several versions of Flash Player 9 and will
likely be several versions of Flash Player 10. The following sections give a brief
overview of the tools necessary to work with ActionScript 3.0. Later in the
chapter, you’ll learn about alternative scripting IDEs that you can use in co-
operation with the Flash authoring tool.

23

http://www.adobe.com/go/flex_trial/
http://help.adobe.com/en_US/AS3LCR/Flash_10.0/
http://help.adobe.com/en_US/AS3LCR/Flash_10.0/

Flash CS4 Professional/Flex Builder 3
The Flash CS4 Professional authoring tool is the latest in a running line of the
production tool that originally began life as a vector animation program. When
designers and developers hear the word “Flash,” they probably think first of
the Flash authoring tool, rather than Flex Builder, even though both applica-
tions are Adobe products that publish SWF files for the same Flash Player
runtime. In a few words, Flash CS4 can be summed up as the most appropriate
tool for traditional Flash designers and developers. This authoring tool features
numerous panels aimed at drawing and animation—consider the Timeline,
Color, Align, Transform, and Tools panels.

Flash authoring techniques often take advantage of a timeline metaphor, in
which the goings-on of a SWF file are thought of in terms of a playhead moving
along a timeline: navigation from one display state to another is the result of
“going to” and “playing” desired keyframes. In contrast, Flex Builder can be
summed up as the most appropriate tool for traditional programmers, espe-
cially those familiar with tools like Borland JBuilder for Java and Microsoft
Visual Studio for Visual Basic or C#. In fact, Flex Builder is built on the popular
open source Eclipse platform (http://www.eclipse.org/), and you can even buy
it as an Eclipse plug-in. Flex Builder is a coder’s environment and, as such,
provides no drawing tools or timelines, and only the most basic of color pa-
lettes. Even though ActionScript’s MovieClip class features methods such as
play(), stop(), and gotoAndPlay(), a Flex Builder developer is more likely to
think of movie clips—that is, timelines—in an abstract way, in terms of an
object-oriented programming (OOP) point of view.

To program and deploy ActionScript 3.0, you need only an ActionScript 3.0
compiler. Flash CS4 provides one, which is used when a FLA file’s publish
settings are configured for ActionScript 3.0. The Flex SDK also provides one,
which you can use with a command line interface (no graphical user interface,
just typing) or Flex Builder 3, which does the command line typing for you. If
Flash CS4 (or CS3) isn’t used, then you don’t need (indeed, you can’t create)
the FLA file familiar to traditional Flash developers. In either case, you may
use any simple text editor at a bare minimum, such as Notepad on Windows
or TextEdit on Mac, though most developers type their code into the Actions
panel or a Script window of Flash CS4, an edit window in Flex Builder, or one
of the external script editors discussed later in this chapter.

Flash Player 9 or Higher
Once a SWF file is compiled, it must be viewed in some version of Flash Player;
specifically, Flash Player 9 or higher, if the SWF file contains ActionScript 3.0.

24 | Chapter 2: Discovering What You Need to Work with ActionScript 3.0

http://www.eclipse.org/

Generally speaking, this tends to be a straightforward enterprise. As a reader
of this book, you’re presumably a Flash professional, which means you build
your content in the Flash authoring tool, and publish using either File→Publish
or Control→Test Movie. You already have Flash Player installed, of course, so
when you launch the SWF file, or view it in an HTML document, you see the
content, and then decide whether or not to upload it to a web server. For simple
projects, this process is often all it takes.

You might, however, find yourself in need of a particular minor point release
of Flash Player 9 or 10, like those listed in Table 1-1 of Chapter 1. If you want
to display your SWF file in full screen mode, for example, you need to test in
Flash Player 9.0.28.0 or higher. If you want to display H.264-encoded high
definition video, you need to test in Flash Player 9.0.115.0 or higher. Further,
you need to ensure that people visiting your website also have the same minor
point release. The Flash authoring tool gives you more than one version of
Flash Player for testing during development: debug and release players.

Debug Vs. Release Players
The application folder of Flash CS4 Professional includes installation files for
two distinct versions of Flash Player. These versions are located in Debug and
Release subfolders of the following locations:

• Windows: C:\Program Files\Adobe\Adobe Flash CS4\Players\

• Mac: /Applications/Adobe Flash CS4/Players/

These installation files include:

• Debug:

• Install Flash Player 10 ActiveX.exe: Debug installer for the ActiveX ver-
sion of Flash Player used by Internet Explorer on Windows.

• Install Flash Player 10 Plugin.exe: Debug installer for the plug-in version
of Flash Player used by Mozilla compatible browsers.

• Install Flash Player 10 UB.dmg: Debug installer for Flash Player on Mac.

• Release:

• Install Flash Player 10 ActiveX.exe: Release installer for the ActiveX
version of Flash Player used by Internet Explorer on Windows.

• Install Flash Player 10 Plugin.exe: Release installer for the plug-in ver-
sion of Flash Player used by Mozilla compatible browsers.

• Install Flash Player 10 UB.dmg: Release installer for Mac Flash Player.

Flash Player 9 or Higher | 25

Both folders, Debug and Release, contain identically named
files. Don’t let that confuse you!

These installation files let you install debug versions of Flash Player for testing
locally inside a browser—then to switch back to release versions any time you
please. Debug versions are identical to the non-debug-enabled (release) ver-
sions, except that the debug versions contain additional code to communicate
with Flash CS4. While convenient, because they avoid the delay of a download
from http://adobe.com, these files are limited to whatever minor point release
they represent. If the Adobe update utility hasn’t yet updated Flash CS4 on
your computer, these installation files might not let you test everything you’d
like to from within the authoring tool.

The latest installation files are available at http://www.adobe.com/support/flash
player/downloads.html. Older versions are archived at http://www.adobe.com/
go/tn_14266/ for testing purposes. To ensure that installations succeed, Adobe
recommends that you uninstall existing ActiveX controls and/or plug-ins be-
fore re-installing different versions. This can become tedious, so you may want
to consider downloading Flash Switcher, a third party Firefox extension to do
the work for you. Flash Switcher was written by Alessandro Crugnola and is
freely available on his website for Firefox 3 on Windows, Mac, and Linux:

http://www.sephiroth.it/weblog/archives/2008/04/flash_switcher_for_win
dows_osx_and_li.php

Flash Switcher includes the files necessary to test many, but
not all, versions of Flash Player. To make additional versions
available to the extension, install the desired version by hand
from http://www.adobe.com/go/tn_14266/, then select the ex-
tension’s icon from within Firefox and select Save As, as
shown in Figure 2-1.

In addition to installation files, the Release and Debug folders contain a stand-
alone executable: FlashPlayer.exe on Windows and Flash Player.app on Mac.
Flash CS4 uses this executable to create Projectors or view standalone content.
When you select Control→Test Movie, for example, the executable inside the
Release folder displays your SWF file in the authoring tool. When you select
Debug→Debug Movie, the executable inside the Debug folder is used instead.

The parent folder, Players, contains a copy of this executable. This copy is the
one used when you launch a local SWF file outside of the authoring tool, for
example by double-clicking a SWF file from the desktop. You can control

26 | Chapter 2: Discovering What You Need to Work with ActionScript 3.0

http://adobe.com
http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/go/tn_14266/
http://www.adobe.com/go/tn_14266/
http://www.sephiroth.it/weblog/archives/2008/04/flash_switcher_for_windows_osx_and_li.php
http://www.sephiroth.it/weblog/archives/2008/04/flash_switcher_for_windows_osx_and_li.php
http://www.adobe.com/go/tn_14266/

which version is used—debug or release—by copying (not moving!) the de-
sired executable from its respective Debug or Release folder into the Players
folder.

Debug versions of Flash Player are capable of logging trace() statement output
to a text file. For more information on this topic, see Chapter 11.

Making Sure Users Have the Necessary Version of Flash Player
Flash CS4 provides a convenient mechanism for ensuring that website visitors
have the version of Flash Player they need in order to view your content. It’s
a simple configuration under File→Publish Settings→HTML, as seen in Fig-
ure 2-2. Select “Detect Flash Version” as shown, and specify the desired version
numbers—here, 10, 0, and 2—which indicate the minimum version of Flash
Player your content requires. The fourth number, seen in the series 10.0.2.0,
identifies the internal build number, which may run a wide range during pri-
vate Adobe beta testing but is typically 0 for public releases; in any event, the
fourth number is irrelevant for ensuring compatibility in this context.

The first number isn’t editable from the HTML tab of this dialog box, and, in
any case, needs to be 9 or higher to support ActionScript 3.0. If you choose to

Figure 2-1. Adding a version of the Flash Player plug-in to the Flash Switcher Firefox
extension

Flash Player 9 or Higher | 27

publish to older versions of Flash Player, you may change the first number in
the version series by selecting this dialog box’s Flash tab, and then changing
the Version listbox selection to a previous version of Flash Player. Anything
lower than Flash Player 9 will force the Script listbox to change to ActionScript
2.0 or lower.

Version detection requires publishing for Flash Player 4 or
greater.

Employing version detection changes the way the authoring tool writes the
HTML it uses to embed a published SWF file. For that reason, it’s useful to
understand how the HTML is written by default. At the time this book was
being written (before the public release of Flash CS4), the default HTML tem-
plate—that is, no Flash Player version detection—generated an HTML docu-
ment with inline JavaScript (not an external .js file). This JavaScript embedded
the SWF file dynamically, a feature that was necessary for the Internet Explorer
browser between February of 2006 and April of 2008. Without such Java-

Figure 2-2. Detecting Flash Player version in HTML publish settings

28 | Chapter 2: Discovering What You Need to Work with ActionScript 3.0

www.allitebooks.com

http://www.allitebooks.org

Script, Internet Explorer users had to signify their intention to interact with
Active Content—that is, Flash, QuickTime, Java applets, and so on—by first
clicking the Active Content in their browser.

It may be that the commercial release of Flash CS4 no longer includes Java-
Script with its default HTML template, in which case the parameters in the
HTML tab of the Publish Settings dialog box will only affect the HTML itself.

As of November 2007, Microsoft announced its intention to
remove the “click to activate” behavior from Internet Explorer
in April 2008. Regardless, JavaScript embedding remains use-
ful because it allows for version detection and progressive en-
hancement, as discussed later in this chapter. For more infor-
mation, see Adobe’s Active Content Development Center
(http://www.adobe.com/devnet/activecontent/).

The configuration parameters shown in Figure 2-2 affect the HTML <param>
tags that appear as children of the <object> tag used by Internet Explorer.
These, in turn, correspond almost point for point with attributes of the com-
panion <embed> tag used by Mozilla compatible browsers.

One of these settings—codebase, which only appears in the HTML, not the
dialog box—is used only by Internet Explorer. If a user has an older version
of Flash Player installed, Internet Explorer compares the version number of
the installed ActiveX control against the codebase attribute to determine if an
upgrade is merited, in which case the user is prompted as shown in Fig-
ure 2-3. If Flash Player is absent altogether, the same installation prompt oc-
curs. For an example of the former case, consider that, as of the time this
chapter was written, the default codebase value was 10.0.2.0. In Flash CS3,
this value was 9.0.0.0, a “perfect” initial release number that has no real-life
Flash Player counterpart. If you needed to use, say, the
Event.ADDED_TO_STAGE event constant introduced in minor point release
9.0.28.0, then you could change the codebase value by hand after Flash CS3
generated the HTML. You can do the same with Flash CS4, if a higher minor
point release is required. Just make sure, if JavaScript is included, to update
any mention of codebase both in the JavaScript and the HTML.

In a sense, this is a rudimentary approximation of version detection, but it’s
essentially flawed. Why? From an aesthetic and usability standpoint, you want
to avoid an interruption of the user’s experience. In addition, Mozilla com-
patible browsers ignore codebase in favor of the roughly analogous
pluginspage attribute to determine whether to present a similar prompt. The
difference is that pluginspage makes no distinction among Flash Player

Flash Player 9 or Higher | 29

http://www.adobe.com/devnet/activecontent/

versions: Mozilla browsers always install the latest version, even if you don’t
need the latest.

By and large, encouraging the latest version of Flash Player seems to make
sense. Generally speaking, installation is a relatively trivial affair, even if it is
an interruption. If your website visitor has the latest version installed, it doesn’t
matter if your content requires only, say, 9.0.16.0. Modern browsers make
installation or upgrades practically effortless for most home users, but not
every user scenario occurs at home.

In most corporate, government, and educational settings (think libraries!), in-
dividual users are rarely given administrative rights to the computers they use.
These content viewers can’t agree to an upgrade when prompted by the
browser—in fact, the prompt may not even happen—so at best, such viewers
may be faced with an upgrade proposition they can’t act on and at worst, a
webpage with obviously missing content. By leaving the codebase attribute at
the lowest required value, you might steer clear of a few unnecessary inter-
ruptions for Internet Explorer users, but your best bet is version detection.

When “Detect Flash Version” is selected on in the HTML tab of the Publish
Settings dialog box, the JavaScript code is slightly altered, which comes as no
surprise. (Remember, if the HTML templates change in the commercial release
of Flash CS4, then it won’t be that the JavaScript is altered, but rather, that it
is introduced into the publish process.)

Figure 2-3. Internet Explorer prompting an installation of the Flash Player ActiveX control

30 | Chapter 2: Discovering What You Need to Work with ActionScript 3.0

The detection-specific JavaScript provides a mechanism more reliable than the
codebase or pluginspage HTML tag attributes. With detection engaged, the
user’s installed Flash Player can be checked against major, minor, and revision
values, as specified below the “Detect Flash Version” checkbox in the dialog
box.

In addition, a notable change happens to the HTML. In this case, content
inside the <noscript> tag no longer contains the backup <object> and
<embed> tags. Instead, you’re expected to provide your own alternate content.
This might be an explanatory line of text, as suggested by the generated
markup, but could just as easily be an image or any other valid HTML, in-
cluding, if you want to risk it, an alternate SWF file published for an older
version of Flash Player.

<noscript>
 // Provide alternate content for browsers that do not
 support scripting
 // or for those that have scripting disabled.
 Alternate HTML content should be placed here. This content
 requires the Adobe Flash Player.
 Get Flash
</noscript>

This markup is mirrored in an else clause just a few lines prior:

} else { // flash is too old or we can't detect the plugin
 var alternateContent = 'Alternate HTML content should ¬
 be placed here.'
 + 'This content requires the Adobe Flash Player.'
 + '
 Get Flash';
 document.write(alternateContent); // insert non-flash content
 }

This code is what gets displayed if the user has JavaScript enabled, but not the
minimum required version of Flash Player. Here too, the HTML written out
by JavaScript can be replaced with more appropriate or targeted content of
your own choosing. In this way, you can provide an experience of progressive
enhancement, in which essential content is presented to the user in all cases,
and augmented for the user who has Flash Player installed.

Using SWFObject

Be aware that the authoring tool’s built-in code templates aren’t your only
option for embedding a SWF file with JavaScript. SWFObject, a popular third-
party solution, provides an alternative approach that many consider even eas-
ier to use. The required swfobject.js JavaScript file, as well as additional sample
files, are freely available from a Google Code project maintained by Geoff
Stearns, who wrote the original script.

Flash Player 9 or Higher | 31

Download the swfobject_2_0.zip archive from http://code.google.com/p/swfob
ject/. At a minimum, you need to extract the swfobject.js file into the folder that
contains your HTML document. This JavaScript file replaces the
AC_RunActiveContent.js file that ships with Flash CS4, so you don’t need the
HTML document generated by the authoring tool when you use SWFObject.
Instead, create a new HTML document of your own. Use the SWFObject gen-
erator tool (an interactive form) at http://www.swffix.org/swfobject/generator/
to create the necessary HTML and JavaScript code. Paste this code into your
HTML document and upload the HTML, JavaScript and SWF files to your
server.

Using Other Code Editors with Flash
With an ActionScript 3.0 compiler in hand and Flash Player 9 or 10 to display
compiled content, you’re ready to start producing. If your projects involve
mainly timeline code, especially nested movie clip techniques, you’ll likely find
that the Actions panel is the most convenient place to compose ActionScript.
For more complex projects, where custom classes are in order, you also—or
exclusively—have to use a Script window. Script windows in Flash CS4 are
not true panels, so they don’t appear in the file menu like the Actions panel
does, under Window→Actions. To use a Script window, simply select
File→New→ActionScript file, or open an existing AS file. Although the Actions
panel and Script windows share some features, only Script windows deal with
the external text files necessary for custom classes.

For a detailed overview of changes to the Actions panel and
Script windows, see Chapter 5.

Of course, you have alternatives to coding in the Flash authoring tool, even if
you use the authoring tool’s compiler for deployment. The remainder of this
chapter focuses on a simple drag-and-drop application to demonstrate work-
flows in which a designer is responsible for FLA file maintenance while a de-
veloper writes ActionScript in an external script editor. The same person could
very well play both designer and developer roles. In such a case, the designer/
developer multitasks between the Flash authoring tool and an external script
editor, which becomes a sort of “superhero Actions panel.” Coding is done
externally, but SWF files are generally compiled in Flash CS4.

In team environments, this scenario may or may not be suitable. In cases where
virtually all content is generated by code, or where assets are loaded at runtime,

32 | Chapter 2: Discovering What You Need to Work with ActionScript 3.0

http://code.google.com/p/swfobject/
http://code.google.com/p/swfobject/
http://www.swffix.org/swfobject/generator/

designers and developers may indeed comfortably work in isolation. The only
purpose of FLA files in this case might be to store artwork, audio, fonts, and
the like for export as SWC files, which can be used as components in Flex
Builder 3. These assets might also be dynamically loaded as SWF files, if not
in their native formats. Under these circumstances, a project would almost
certainly be positioned as a Flex endeavor, and deployed with the Flex SDK
compiler.

In general terms, then, when ActionScript classes depend on library assets, the
Flash authoring tool should perform the compiling. For this reason, the fol-
lowing example specifically relies on library assets to demonstrate both the
benefits and considerations involved in separating code from content, espe-
cially when coding occurs outside of Flash.

Creating DragParrot, a Sample Class File
Although you can reproduce the functionality of the following class with time-
line code, doing so would largely defeat the purpose of using an external code
editor. This code defines a custom DragParrot class that, when configured as
the document class of a specific FLA file, results in a pre-drawn parrot in a circle
that you can drag only when a checkbox is selected (Figure 2-4). The Action-
Script is stored in an external text file, DragParrot.as, saved in the same folder
as its companion, DragParrotExample.fla. You can use the exact same code in
each of the script editors discussed in the following sections.

For more information on the new document class concept, see
Chapter 6.

It’s important to keep in mind that some of the assets required by
DragParrot are stored in a separate FLA file, included with the samples that
accompany this book. These assets are configured to be exported for Action-
Script in the Linkage area of the Symbol Properties dialog box accessible from
the Library panel. They don’t appear anywhere on the FLA file’s stage. Prior
to ActionScript 3.0, these assets would have been assigned a linkage identifier,
but the attaching mechanism has changed in the new language. Attachable
assets are now assigned a linkage class, which defines the asset in terms of an
appropriate base class, such as MovieClip or Sprite. This linkage class can be
composed of custom ActionScript, but it doesn’t have to be. In fact, by default,
the Flash authoring tool automatically writes this class for you, in which case
the class isn’t saved as a separate AS file, but included virtually into the SWF

Using Other Code Editors with Flash | 33

file. If you’re coding in an external script editor and compiling in Flash CS4,
you can trust that linkage classes are “magically” available at compile time.

For more information on the new linkage paradigm, see
Chapter 8.

The DragParrot class, shown in the following code, begins by importing a set
of external classes it needs to perform its tasks. The first of these, Parrot, ob-
viously stands out as a custom class. This is the linkage class handled by the
Flash authoring tool. As it happens, CheckBox is also a library asset (an instance
of the CheckBox component) and must be present in the library. After class
properties are declared, the constructor function, DragParrot(), calls on a
handful of descriptively named methods.

package {

 import Parrot;
 import fl.controls.CheckBox;
 import flash.display.Sprite;

Figure 2-4. The DragParrot class in action

34 | Chapter 2: Discovering What You Need to Work with ActionScript 3.0

 import flash.events.MouseEvent;

 public class DragParrot extends Sprite {

 private var _ball:Sprite;
 private var _parrot:Sprite;
 private var _checkbox:CheckBox;

 public function DragParrot() {
 drawBall();
 addParrot();
 makeCheckBox();
 assignEventHandlers();
 }

These methods are fairly basic. The first, drawBall(), calls on a special set of
functionality from the Graphics class, collectively known as the Drawing API,
to draw a light blue circle into a Sprite instance, and then adds this object to
the display list, so that it can be seen.

 private function drawBall():void {
 _ball = new Sprite();
 _ball.graphics.lineStyle();
 _ball.graphics.beginFill(0xB9D5FF);
 _ball.graphics.drawCircle(0, 0, 60);
 _ball.graphics.endFill();
 _ball.x = stage.stageWidth / 2;
 _ball.y = stage.stageHeight / 2;
 _ball.buttonMode = true;
 addChild(_ball);
 }

The addParrot() method attaches pre-drawn artwork from the companion
FLA file’s library by instantiating the linkage class Parrot. This object is added
to the display list of _ball (created in the previous method), which makes the
artwork a child of that object.

 private function addParrot():void {
 _parrot = new Parrot();
 _ball.addChild(_parrot);
 _parrot.x = _parrot.width / −2;
 _parrot.y = _parrot.height / 2 − ¬
 _ball.height / 2;
 }

There’s a reason why the _ball, _parrot, and _checkbox vari-
ables are preceded by an underscore. By popular convention,
many developers set private variables apart by using this punc-
tuation. This was a source of potential conflict in
ActionScript 2.0, because many built-in properties formerly
featured underscores for unrelated reasons. Their removal in
ActionScript 3.0 eliminates this confusion.

Using Other Code Editors with Flash | 35

The makeCheckBox() method attaches a component from the companion FLA
file’s library by instantiating the linkage class CheckBox. The checkbox is posi-
tioned in the lower left corner of the stage, given a label “Allow drag”, and
then added to the display list.

 private function makeCheckBox():void {
 _checkbox = new CheckBox();
 _checkbox.x = 10;
 _checkbox.y = stage.stageHeight - 30;
 _checkbox.label = "Allow drag";
 _checkbox.selected = true;
 addChild(_checkbox);
 }

Finally, assignEventHandlers() associates _ball with two event handler meth-
ods. Thanks to an if statement, the dragParrot() handler responds only when
the checkbox is turned on.

private function assignEventHandlers():void {
 _ball.addEventListener(MouseEvent.MOUSE_DOWN, ¬
 dragParrot);
 _ball.addEventListener(MouseEvent.MOUSE_UP, ¬
 dropParrot);
 }
 private function dragParrot(evt:MouseEvent):void {
 if (_checkbox.selected) {
 _ball.startDrag();
 }
 }
 private function dropParrot(evt:MouseEvent):void {
 _ball.stopDrag();
 }
 }
}

This class could have been written in a Script window of the Flash authoring
tool or in any simple text editor. The remaining sections touch on four popular
alternative ActionScript editors. Bear in mind, none of these applications ex-
clude the use of one another. If you like, sample each one to get a feel for their
nuances. You might just decide you like them all!

Coding with Flex Builder 3
As mentioned earlier in this chapter, Flex Builder 3 is Adobe’s answer to tra-
ditional programmers interested in developing for the Flash Platform. To be
sure, Flex Builder is hardly just a script editor. Its full benefit becomes clear
when you use it to leverage the Flex framework, which includes dozens of user
interface (UI) components and data classes not available in the Flash authoring
tool (though freely available with the Flex SDK). These elements are geared
toward the development of Rich Internet Applications (RIAs), which are Flex’s

36 | Chapter 2: Discovering What You Need to Work with ActionScript 3.0

specific focus. In addition to ActionScript 3.0, Flex Builder can create and edit
MXML, an XML-based markup language used to declaratively lay out interface
elements and, in conjunction with ActionScript 3.0, implement business logic
and facilitate remote procedure calls (RPCs). Built on the Eclipse platform,
Flex Builder benefits from hundreds of third-party plug-ins, which extend ba-
sic functionality across a wide range of topics. Many of these plug-ins are free
(see http://www.eclipseplugincentral.com/) and work with both the stand alone
version of Flex Builder and the version that is, itself, a plug-in for Eclipse.

For some comprehensive guides to Flex, including Flex
Builder 3, read Learning Flex 3 (O’Reilly), by Alaric Cole;
Programming Flex 3 (O’Reilly), by Joey Lott and Chafic Ka-
zoun; and Flex 3 Cookbook (O’Reilly), by Joshua Noble and
Todd Anderson.

Muscle notwithstanding, Flex Builder 3 is perfectly capable of creating and
editing straightforward ActionScript 3.0 classes. Although the Flash authoring
tool’s Actions panel and Script windows get the job done, the powerful editing
capabilities of Flex Builder raise the bar considerably.

1. If you don’t already have Flex Builder 3 installed, you can download a 60-
day trial version from http://www.adobe.com/products/flex/. Once the ap-
plication is installed, launch Flex Builder.

2. Select File→New→ActionScript Project from the File menu or right-click
(Command-click) in the Navigator view, as shown in Figure 2-5.

3. In the New ActionScript Project dialog box, name the project
DragParrotExample. Turn off “Use default location”, as shown in Fig-
ure 2-6, and then browse to the folder on your hard drive that contains
DragParrotExample.fla.

Click Next to continue.

Using Other Code Editors with Flash | 37

http://www.eclipseplugincentral.com/
http://www.adobe.com/products/flex/

Figure 2-5. Creating a new ActionScript project in Flex Builder 3

Figure 2-6. Storing the project in the same folder as a companion FLA file

4. In the Create an ActionScript Project dialog box (Figure 2-7), you have the
option of including additional source folders and assets with the Source
path and Library path tabs. Although they sound otherwise, these tabs

38 | Chapter 2: Discovering What You Need to Work with ActionScript 3.0

www.allitebooks.com

http://www.allitebooks.org

aren’t related to the Library panel in Flash. Ignore them, and change the
Main application file from the default DragParrotExample.as (automati-
cally named after the project) to DragParrot.as. By doing this, you’re cre-
ating a brand new AS file, rather than reusing the class file you wrote in
Flash CS4.

Click Finish to conclude.

5. At this point, you’re ready to code. As Figure 2-8 shows, Flex Builder has
already created a basic outline for you. A package and class have already
been declared; DragParrot extends Sprite, which is already imported; and
the constructor function, DragParrot(), is already written.

6. Add code to the existing ActionScript so that it looks like the code that
follows (new code in bold).

Figure 2-7. Assigning the main application file

Using Other Code Editors with Flash | 39

package {
 import flash.display.Sprite;

 public class DragParrot extends Sprite
 {
 private var _ball:Sprite;

 public function DragParrot()
 {
 _ball = new Sprite();
 }
 private function assignEventHandlers():void
 {

 }
 }
}

Flex Builder places open curly braces ({) on a new line.
This is a stylistic preference that has no effect on code
execution.

This detours slightly from the code shown earlier, but it’s enough to
showcase a number of Flex Builder enhancements. Like the Flash author-
ing tool, Flex Builder features code coloring and code hinting. In addition,
note that the Outline view (Figure 2-9) maintains a running catalog of
class members, including import statements, properties, and methods.

Figure 2-8. Reviewing the basic outline of DragParrot

40 | Chapter 2: Discovering What You Need to Work with ActionScript 3.0

Each kind displays its own icon to distinguish it from the others, and even
the constructor function is set apart from other methods by a green dot.
If you select any of the items in the Outline view, then the corresponding
section of code is highlighted. Likewise, as you click various elements in
the code editor, such as property and method declarations, the Outline
view changes to reflect your selection.

7. Complete the assignEventHandlers() method so that it looks like this:

 private function assignEventHandlers():void
 {
 _ball.addEventListener(MouseEvent.MOUSE_DOWN, ¬
 dragParrot);
 _ball.addEventListener(MouseEvent.MOUSE_UP, ¬
 dropParrot);
 }

Ensure that Project→Build Automatically is turned on. Save the file. When
you do, you see a powerful troubleshooting tool as shown in Fig-
ure 2-10. Circular red X icons appear next to lines with errors. In the Prob-
lems view (bottom center), errors are conveniently summarized in a group.
Clicking any of these rows highlights the relevant line of ActionScript. As
you correct issues, they automatically remove themselves from the Prob-
lems view, and the red X icons disappear.

In this case, one of the errors is that the MouseEvent event hasn’t been
defined. Scroll to the existing import statement, and then add the following
new line beneath it:

import flash.events.MouseEvent;

Save the file, and two of the four error messages go away. The remaining
errors show that the event handler methods, dragParrot() and
dropParrot(), haven’t yet been written.

Figure 2-9. The Outline view helps you navigate code

Using Other Code Editors with Flash | 41

Figure 2-10. Errors are displayed and summarized as they occur

8. Revise the ActionScript so that it looks like this:

package {

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class DragParrot extends Sprite {

 private var _ball:Sprite;

 public function DragParrot()
 {
 drawBall();
 assignEventHandlers();
 }
 private function drawBall():void
 {
 _ball = new Sprite();
 _ball.graphics.lineStyle();
 _ball.graphics.beginFill(0xB9D5FF);
 _ball.graphics.drawCircle(0, 0, 120);
 _ball.graphics.endFill();
 _ball.x = stage.stageWidth / 2;
 _ball.y = stage.stageHeight / 2;
 _ball.buttonMode = true;
 addChild(_ball);
 }

42 | Chapter 2: Discovering What You Need to Work with ActionScript 3.0

 private function assignEventHandlers():void
 {
 _ball.addEventListener(MouseEvent.MOUSE_DOWN, ¬
 dragParrot);
 _ball.addEventListener(MouseEvent.MOUSE_UP, ¬
 dropParrot);
 }
 private function dragParrot(evt:MouseEvent):void
 {
 _ball.startDrag();
 }
 private function dropParrot(evt:MouseEvent):void
 {
 _ball.stopDrag();
 }
 }
}

At this point, nothing in the class file yet relies on the FLA file with which
it shares a folder. To prove it, select Run→Debug DragParrot, and then
wait a few moments while Flex Builder 3 compiles the class. Before long,
a browser opens, as shown in Figure 2-11, and a draggable circle appears.
The teal background color is a result of Flex’s default preference settings.

Figure 2-11. Compiling in Flex Builder succeeds when code doesn’t rely on FLA file library
assets

Using Other Code Editors with Flash | 43

Because of the default scale mode used by Flex Builder 3, the
blue circle may not appear centered when the browser opens.
Don’t be surprised if you have to resize the browser repeatedly
and look in the corners. You could address this in the Drag
Parrot class, but remember, this SWF file is ultimately going
to be compiled in Flash CS4.

9. Close the browser, and return to Flex Builder 3. Locate the drawBall()
method by selecting it in the Outline view. Hover over the term _ball in
the final line, addChild(_ball);. When you do, a tooltip appears (Fig-
ure 2-12) that tells you the data type of _ball, which is Sprite, and that
this Sprite instance belongs to the DragParrot class.

Hold down the Ctrl (Command) key, and then move the mouse over var-
ious lines of code. The Ctrl (Command) key adds a temporary underline
to properties and methods. With the key still pressed, click _ball once
again. The ActionScript editor jumps to the definition of this term near
the top of the class. These hover and click techniques assist considerably
in code navigation.

Figure 2-12. Tooltips display data types

10. Time to wrap things up. Update the ActionScript one last time to look like
the code that follows.

package {

 import Parrot;
 import fl.controls.CheckBox;
 import flash.display.Sprite;

44 | Chapter 2: Discovering What You Need to Work with ActionScript 3.0

 import flash.events.MouseEvent;

 public class DragParrot extends Sprite {

 private var _ball:Sprite;
 private var _parrot:Sprite;
 private var _checkbox:CheckBox;

 public function DragParrot()
 {
 drawBall();
 addParrot();
 makeCheckBox();
 assignEventHandlers();
 }
 private function drawBall():void
 {
 _ball = new Sprite();
 _ball.graphics.lineStyle();
 _ball.graphics.beginFill(0xB9D5FF);
 _ball.graphics.drawCircle(0, 0, 120);
 _ball.graphics.endFill();
 _ball.x = stage.stageWidth / 2;
 _ball.y = stage.stageHeight / 2;
 _ball.buttonMode = true;
 addChild(_ball);
 }
 private function addParrot():void
 {
 _parrot = new Parrot();
 _ball.addChild(_parrot);
 _parrot.x = _parrot.width / −2;
 _parrot.y = _parrot.height / 2 -
 _ball.height / 2;
 }
 private function makeCheckBox():void
 {
 _checkbox = new CheckBox();
 _checkbox.x = 10;
 _checkbox.y = stage.stageHeight - 30;
 _checkbox.label = "Allow drag";
 _checkbox.selected = true;
 addChild(_checkbox);
 }
 private function assignEventHandlers():void
 {
 _ball.addEventListener(MouseEvent.MOUSE_DOWN, ¬
 dragParrot);
 _ball.addEventListener(MouseEvent.MOUSE_UP, ¬
 dropParrot);
 }
 private function dragParrot(evt:MouseEvent):void
 {
 if (_checkbox.selected) {

Using Other Code Editors with Flash | 45

 _ball.startDrag();
 }
 }
 private function dropParrot(evt:MouseEvent):void
 {
 _ball.stopDrag();
 }
 }
}

Error notices occur because of the references to Parrot
and CheckBox, which the Flex SDK compiler can’t locate.
For a detailed look at collaboration between Flash CS4
Professional and Flex Builder 3, read about the Flex
Component Kit for Flash CS3 extension on the Adobe
Exchange website http://www.adobe.com/cfusion/ex
change/index.cfm?event=extensionDetail&extid=
1273018.

Open DragParrotExample.fla in Flash CS4. Ensure that the Property in-
spector indicates DragParrot as the document class, and then select Con-
trol→Test Movie to compile the FLA file (and class) in the Flash compiler.

Coding with SE|PY
SE|PY is a free ActionScript editor for Windows and Mac written in Python
by Alessandro Crugnola. It was originally developed for ActionScript 2.0, yet
continues to be very popular and works quite well with ActionScript 3.0 and
even JavaScript. Information on SE|PY and downloads are available at www
.sephiroth.it/python/sepy.php. Helpful tips are occasionally posted at http://
www.sepy.it/. If you like what you see, consider making a PayPal donation.

Compared with Flex Builder 3, SE|PY (Figure 2-13) is a svelte application, and
purposefully so. It offers a quick-loading interface with a Swiss Army knife
assortment of practical minitools. When working with ActionScript 3.0, you’ll
use SE|PY to write your ActionScript, and then switch over to Flash to compile.
Here are a handful of the goodies that await you.

A number of tabs run down SE|PY interface’s left edge. The tab selected in
Figure 2-14, Members, is similar to the functionality of Flex Builder’s Outline
view. Class members are indicated by icons and, when double-clicked, high-
light the corresponding section of code. In this implementation, members are
displayed alphabetically, regardless of their order in the ActionScript, which
eases navigation. The input field at the top filters members as you type (Fig-
ure 2-14), so you can easily locate methods in complex class files. Notice that
the letters “dr” have highlighted methods whose names start with those char-

46 | Chapter 2: Discovering What You Need to Work with ActionScript 3.0

http://www.adobe.com/cfusion/exchange/index.cfm?event=extensionDetail&extid=1273018
http://www.adobe.com/cfusion/exchange/index.cfm?event=extensionDetail&extid=1273018
http://www.adobe.com/cfusion/exchange/index.cfm?event=extensionDetail&extid=1273018
http://www.sepy.it/
http://www.sepy.it/

acters. Adding “a” (“dra”) omits dropParrot() from the list, and so on. To clear
filtering, delete the contents of the input field.

The Snippets tab gives you a handy way to reduce the tedium of typing com-
mon blocks of code, fittingly known as snippets. The green cogwheel icon
(Figure 2-15) lets you categorize snippets by folder on your hard drive. You
might create folders for ActionScript 3.0, 2.0, JavaScript, and XML.

The next few steps walk you through the creation of a SE|PY snippet.

1. Download and install SE|PY, and then launch the application. Select the
Snippets tab, and then click the green cogwheel icon to locate or create a
folder for snippets.

2. Once a folder is created, right-click (Command-click) on the folder’s
name, and then select “Create new snippet”.

3. In the New Snippet dialog box, enter the name for..in trace, which you’ll
supply with a bit of templated code in a moment. Click OK to continue.
This action opens a new document tab.

4. In the new document tab, type the following ActionScript (and save):

trace("for..in obj trace");
for (var prop:String in obj) {

Figure 2-13. The slender but powerful SE|PY ActionScript editor

Using Other Code Editors with Flash | 47

 trace(prop + ": " + obj[prop]);
}

5. Select File→New to open a new document. Double-click your newly cre-
ated snippet in the Snippets tab to see it appear in the new document. So
far, this is only slightly better than pasting from the Clipboard. Here’s
where it gets interesting.

6. Right-click (Command-click) the snippet, and then select Edit. Update
the existing code to look like this:

Figure 2-14. The Members tab supports filtering

Figure 2-15. Snippets make it easier to type common blocks of code

48 | Chapter 2: Discovering What You Need to Work with ActionScript 3.0

www.allitebooks.com

http://www.allitebooks.org

trace("for..in @@obj@@ trace");
for (var prop:String in @@obj@@) {
 trace(prop + ": " + @@obj@@[prop]);
}

The addition of the @@ characters establishes obj as a kind of snippet-
specific variable. Save and switch to the new document. Double-click the
snippet again. This time, a dialog box opens, as shown in Figure 2-16.

This dialog box shows the obj variable on the right, and lets you provide
a custom value on the left. Enter the term this, click OK, and see the
custom snippet appear in the new document:

trace("for..in this trace");
for (var prop:String in this) {
 trace(prop + ": " + this[prop]);
}

You may add numerous variables to each snippet in this manner, which
gives you shortcuts to tailor-made blocks of code. If you wish, you can
even provide default (but changeable) values for these variables by using
the following syntax inside the snippet:

trace("for..in @@obj=[defaultValueHere]@@ trace");
for (var prop:String in @@obj@@) {
 trace(prop + ": " + @@obj@@[prop]);
}

Figure 2-16. Using a more sophisticated snippet

Using Other Code Editors with Flash | 49

You have nearly a dozen additional tabs and tools, including:

• Todo: Keeps track of commented reminders (for exam-
ple, // TODO optimize this loop!). Reminders are displayed in a clickable
tree view, like the Members tab, sorted by line number and script file.

• Variables: Displays declared variables in a clickable table, similar to the
Members tab.

• Unicode chars: Displays Unicode and ANSI character codes for basic and
extended character sets.

• Clipboard: Displays text content of the current Clipboard contents.

• XML Reader: Displays XML files in a collapsible tree view. Supports
XPath expressions for quick navigation.

• Class Explorer: Displays packages and classes like the Members tab, even
if those classes aren’t open as documents. Double-clicking a member
opens the relevant class file, and highlights the corresponding section of
code.

• Stickies: Maintains virtual “paper” sticky notes, configurable by color.

• SharedObject Reader: Displays the content of SharedObject files, the
Flash equivalent of a browser cookie. (This item and the remaining ones
are found in the file menu under Tools.)

• Regular Expression Toolkit: Provides an interface for testing regular
expressions patterns.

• Compare Files: Compares text files, which is great for locating changes
among multiple revisions, and compares file directories.

Coding with FlashDevelop
FlashDevelop is a compelling open source script editor for Windows designed
for ActionScript 3.0 and 2.0 development. Built on the Microsoft .NET Frame-
work, this application functions comfortably as a standalone IDE or in con-
junction the Flash authoring tool. FlashDevelop is produced by Mika Palmu,
Philippe Elsass, Nick Farina, and contributors. Information and downloads
are available at http://www.flashdevelop.org/ or http://osflash.org/flashdevelop/.

50 | Chapter 2: Discovering What You Need to Work with ActionScript 3.0

http://www.flashdevelop.org/
http://osflash.org/flashdevelop/

Figure 2-17. The FlashDevelop Start Page

1. Once FlashDevelop is installed, launch the application and note the Start
Page (Figure 2-17), which is similar to the Welcome Screen in Flash CS4.
The first time you run FlashDevelop, you may have to let it know where
your Flex SDK compiler is, if you plan to optionally compile ActionScript
3.0 SWF files without Flash.

2. Select Tools→Program Settings. This action opens the Settings dialog box.
Select AS3Context, locate the Flex SDK Location selection (Figure 2-18),
and then, on your hard drive, browse to the SDK. If you have Flex Builder
3 installed, you’ll find the SDK located within the application folder for
Flex Builder (for example, C:\Program Files\Adobe\Flex Builder 3\sdks
\3.0.0); otherwise, download and install the free Flex SDK, and then nav-
igate to that folder.

Click Close to continue.

3. Close the Start Page, and then select Project→New Project. This action
opens the New Project dialog box. Scroll to the ActionScript 3 section,
and then select Empty Project. Name this project DragParrotExample, and
then set its location to a folder that contains DragParrotExample.fla, as
shown in Figure 2-19. Click OK.

Using Other Code Editors with Flash | 51

4. FlashDevelop creates a new document for you named Untitled1.as. Select
File→Save to save this file into the project folder as DragParrot.as. In the
Project tab (Figure 2-20), right-click DragParrot.as, and then select Always
Compile. Doing so configures this class as the project’s main file.

5. At this point, you’re ready to start coding. Type the following ActionScript
into the DragParrot.as document (note, this is everything in the class that
doesn’t rely on library assets in the FLA file):

package {

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class DragParrot extends Sprite {

 private var _ball:Sprite;

 public function DragParrot(){
 drawBall();
 assignEventHandlers();
 }
 private function drawBall():void {
 _ball = new Sprite();
 _ball.graphics.lineStyle();
 _ball.graphics.beginFill(0xB9D5FF);
 _ball.graphics.drawCircle(0, 0, 120);

Figure 2-18. Configuring the Flex SDK location

52 | Chapter 2: Discovering What You Need to Work with ActionScript 3.0

 _ball.graphics.endFill();
 _ball.x = stage.stageWidth / 2;
 _ball.y = stage.stageHeight / 2;
 _ball.buttonMode = true;
 addChild(_ball);
 }
 private function assignEventHandlers():void {
 _ball.addEventListener(MouseEvent.MOUSE_DOWN, ¬
 dragParrot);
 _ball.addEventListener(MouseEvent.MOUSE_UP, ¬
 dropParrot);
 }
 private function dragParrot(evt:MouseEvent):void {
 _ball.startDrag();
 }
 private function dropParrot(evt:MouseEvent):void {
 _ball.stopDrag();
 }
 }
}

Figure 2-19. Creating an ActionScript 3.0 project

Using Other Code Editors with Flash | 53

Figure 2-20. Choosing the project’s main class file

6. Select Project→Properties, which opens a dialog box that configures the
settings for the DragParrotExample project. This project requires the
name of an output file—this is the SWF file that the Flex SDK compiler
will generate—so type DragParrotExample.swf in the Output File field, as
shown in Figure 2-21. Experiment with the Dimensions, Background
Color, and Framerate settings, if you like. The Test Movie area lets you
specify how the SWF file should be opened. Choose Popup for now, and
then click OK to close the dialog box.

7. Select Project→Test Movie to compile the SWF file. For now, the compile
succeeds, because DragParrot doesn’t rely on the FLA file’s library assets.
As soon as you update your code to include the Parrot and CheckBox classes
—along with the ActionScript that references them—you’ have to compile
in the Flash authoring tool, because the Flex SDK compiler can’t locate
the necessary assets. As with Flex Builder 3, you have workarounds for
dealing with this situation in FlashDevelop. Forums on the FlashDevelop
website offer a handful of tutorials on the subject.

Double-click DragParrotExample.fla in the Project tab to launch Flash
CS4. Return to Project→Properties, and then select the checkbox next to
“No output, only run pre/post build commands” (Figure 2-22).

Click OK to exit the dialog box.

8. Select Project→Test Movie, and note that FlashDevelop automatically
brings the Flash authoring tool to the forefront. In this way, FLA file library

54 | Chapter 2: Discovering What You Need to Work with ActionScript 3.0

assets are properly located by DragParrot, so that when your class is revised
to reference them, the compile succeeds.

FlashDevelop supports a remarkable number of the tools featured in the other
script editors discussed in this chapter. Naturally, individual nuances differ
from application to application, but FlashDevelop includes its own version of
the following:

• Outline tab similar to the Outline view in Flex Builder 3

• Code folding and code bookmarks

• Syntax checking and error warnings, by way of the Flex SDK

• Tasks interface for commented TODO reminders

• Introspective tooltips that display class member details

• Snippets

• SharedObject reader

• File comparison interface

• Built-in web browser

Figure 2-21. Configuring SWF file settings

Using Other Code Editors with Flash | 55

Coding with PrimalScript
PrimalScript, by SAPIEN Technologies, is a powerhouse script editor for Win-
dows. This application is conversant in ActionScript 2.0 and also 3.0—provi-
ded you help it out, which is discussed in the following steps. PrimalScript
gives you much of the expected code coloring, autoformatting, and code com-
pletion seen in the Flash authoring tool and Flex Builder. If you want to explore
other languages, you’re in luck, because PrimalScript supports over 40 more,
including HTML, CSS, JavaScript, Java, C#, PHP, Python, Ruby, Perl, Tcl,
and the list goes on. Application information and downloads are available at
http://www.primalscript.com/, with three editions to choose from: Standard,
Professional, and Enterprise. Fully functioning 45-day trials are available for
all editions.

Longtime users of PrimalScript may notice that the application manages just
fine in ActionScript 2.0 but offers minimal support in ActionScript 3.0 out the
box. To work around this limitation, you have to give the application access
to a set of specially formatted class definitions for ActionScript 3.0 called
intrinsic classes. Fortunately, FlashDevelop (discussed in the previous section)
includes an unofficial set of intrinsics, which you can re-use with PrimalScript:

Figure 2-22. Selecting the No output checkbox switches FlashDevelop to the Flash
authoring tool compiler

56 | Chapter 2: Discovering What You Need to Work with ActionScript 3.0

http://www.primalscript.com/

1. Download and install PrimalScript, and then launch the application. Se-
lect Tools→Options.

2. In the Options dialog box, select Environment→Directories. Use the el-
lipsis (...) button next to the AS Classpath field to browse for the intrinsic
classes, as shown in Figure 2-23. Select the C:\Program Files\FlashDevelop
\FirstRun\Library\AS3\intrinsic\ path from your FlashDevelop
installation.

3. Restart PrimalScript.

4. To verity that ActionScript 3.0 code hinting is now supported, select
File→New File→Script Files→ActionScript Class. Create a Sprite instance
—or some other ActionScript 3.0 class instance—such as this:

var s:Sprite = new Sprite();

Add a new line to your code and repeat the variable name (here, s), then
type dot (.) to bring up the PrimalSense menu, as shown in Figure 2-24.

Figure 2-23. Providing ActionScript 3.0 intrinsic classes to PrimalScript

Using Other Code Editors with Flash | 57

Like the other scripting IDEs mentioned in this chapter, PrimalScript features
numerous additional amenities, all of which can boost your workflow
productivity:

• Code folding and code bookmarks

• Advanced snippets

• Clipboard viewer

• Code browser, similar to Outline view in Flex Builder 3

• Integration with source control software

• File comparison interface

• Visual query builder and XML editor

• Built-in web browser and FTP client

• Configurable tools browser to launch related applications, such as
Dreamweaver

Figure 2-24. Adding intrinsic classes provides ActionScript 3.0 code completion

58 | Chapter 2: Discovering What You Need to Work with ActionScript 3.0

CHAPTER 3

Looking at the Changes in
ActionScript 3.0

The documentation for Flash CS4 Professional includes a tremendously useful
table titled “ActionScript 2.0 Migration.” An introductory caption humbly
states, “The following table describes the differences between ActionScript 2.0
and 3.0,” which leads to a catalog so lengthy, it would fill over 50 pages if
reproduced in this book. To locate this document, look in the appendixes of
the ActionScript 3.0 Language and Components Reference or search the term
“migration” in the Help panel. This document is also available on the Adobe
online Help Resource Center:

http://help.adobe.com/en_US/AS3LCR/Flash_10.0/migration.html

This chapter will help you find your bearings from a migration standpoint, and
navigate among these changes.

Major Changes and Obsolete Code
As programming languages evolve, existing workflows may change, new fea-
tures are usually added, and older features are sometimes removed. This is as
true for ActionScript as it is for Java, C#, Python, PHP, and countless others.
In the company of programmers at large, you’re not alone. The changes in
ActionScript 3.0 may seem startlingly plentiful, but historically speaking, Flash
has been through this sort of remodeling before. Developers encountered a
similar paradigm shift when Macromedia Flash 5 introduced the language that,
for clarity, was later renamed ActionScript 1.0. The original naming scheme
didn’t include version numbering, and was therefore referred to simply as
“ActionScript.” This was true even in Flash 4, which featured a fundamentally
different syntax in which objects were referenced by a relatively uncommon
mechanism called slash notation. The dot notation syntax of ActionScript 1.0,

59

http://help.adobe.com/en_US/AS3LCR/Flash_10.0/migration.html

in which nested objects are distinguished from one another by a dot (.), was
a major step toward making the language more accessible to developers from
other platforms. ActionScript 2.0 established a formalized structure for custom
classes and, in many ways, introduced a transitional period, in which many of
the current recommended best practices found a whispered beginning. Ac-
tionScript 3.0 expands and refines this formal class structure, while continuing
to extend a welcoming hand to traditional timeline programmers. The pithy
description by Adobe’s Kevin Lynch is apt: think of ActionScript 3.0 as evo-
lutionary, not revolutionary.

So yes, there are changes in the language. The good news is that they’re de-
signed to increase performance in Flash Player 9, 10, and future runtimes. Even
better, the changes are designed to help you stay more organized.

Major Changes in the API, Classes, and Language
One of the first things Flash developers often notice in ActionScript 3.0 is the
absence of underscores. Familiar MovieClip properties like _x, _y, _width, and
_height are now referenced simply as x, y, width, and height. This is a bit of a
jolt at first, but easy enough to remember with a mindset for change and au-
thoring tool assistance like code completion. It was only the original property
set, anyway, that featured the underscore prefixes. More recent ActionScript
1.0 and 2.0 properties, such as blendMode and cacheAsBitmap (introduced in
Flash Player 8), had already dropped the underscores, so developers generally
welcome the consistency offered by ActionScript 3.0. Values that used to range
in integers from 0 to 100, such as MovieClip._alpha and Sound.setVolume(),
now range in decimal values from 0 to 1. Even tweaks like these are straight-
forward enough, and arguably more cosmetic than anything else. The pro-
found change comes in the very nature in which ActionScript 3.0 is organized.
This understructure has shifted significantly, and insists on greater attention
to detail.

ActionScript has historically been a very forgiving language. In some ways, you
can draw a comparison between older versions of ActionScript and older ver-
sions of HTML. In the early days of web development, HTML was deceptively
unfussy. Styling was handled with straightforward tags, which all too
often became a redundant jumble. Closing </p> tags were optional, nested tags
could be closed out of sequence from how they were opened, and dozens of
other lenient practices led—or had the tendency to lead—to overtime head-
aches. Popular websites like The Web Standards Project (http://www.webstan
dards.org/) and CSS Zen Garden (http://www.csszengarden.com/) have since
sparked a surge of interest in a practice called semantic markup, in which great
care is taken to cleanly separate styling and formatting from content. This

60 | Chapter 3: Looking at the Changes in ActionScript 3.0

http://www.webstandards.org/
http://www.webstandards.org/
http://www.csszengarden.com/

separation usually relies on XHTML specifications, which are considerably
stricter than HTML, and coupled with Cascading Style Sheets (CSS). Ironic as
it may seem, adherence to a stricter standard has gradually made things easier
for web developers. It’s a bit like the idea that picking up after yourself
throughout the day saves you from facing an overwhelming mess at the end
of the week. ActionScript 3.0 is more disciplined than its predecessors in a
similarly helpful way.

ActionScript 3.0 is stricter

As an example of ActionScript 3.0’s strictness, consider one of programming’s
most basic building blocks: variables. Since its introduction in ActionScript
1.0, the var keyword has been optional (but always recommended!) for time-
line code. The following lines work just fine in a FLA file configured for
ActionScript 1.0 or 2.0 and placed in a frame script:

lumps = 2;
trace("I'll have " + lumps + " lumps, please.");
// Displays: I'll have 2 lumps, please.

Ideally, this variable should be declared with the var keyword:

var lumps = 2;

but before ActionScript 3.0, the compiler can (and does) declare lumps auto-
matically. While convenient on one level, this relaxed approach can lead to
unexpected behavior. How? The var keyword does more than merely an-
nounce new arrivals; it defines variables in terms of a specific scope, which, in
a few words, determines a variable’s “point of view,” its availability to other
objects. Take a look at this revision (changes in bold):

function sample() {
 lumps = 2;
 trace(lumps); // Displays: 2
}
sample();

trace("I'll have " + lumps + " lumps, please.");
// Displays: I'll have 2 lumps, please.

Here, the lumps variable is declared and traced inside a custom sample() func-
tion, which is immediately called after the function is defined. This is followed
by a second trace() statement outside the function that also references
lumps. Because of the omission of the var keyword, both traces are successful,
even if the developer’s intention is to keep this variable corralled to its function.
Add a second function, and all three scopes can still see the variable:

function sample() {
 lumps = 2;
 trace(lumps); // Displays: 2

Major Changes and Obsolete Code | 61

}
sample();

trace("I'll have " + lumps + " lumps, please.");
// Displays: I'll have 2 lumps, please.

function test() {
 trace(lumps); // Displays: 2
}
test();

This sort of spillover can be detrimental in cases where typical naming con-
ventions overlap among numerous functions. For example, if a temporary
string, str, is used to manipulate data in one function, havoc could ensue in
another if the same variable name is used elsewhere. Think of how often n, i,
or x are used to represent numeric values!

You’re much better off purposefully declaring a variable in its intended scope.
If spillover happens to be the desired effect, it’s still possible ... it just depends
on where the variable’s scope occurs. Note the output differences in these
revisions. In the first example, the variable is only available to one function;
in the second, the variable is available to two functions and the timeline. First,
when lumps is scoped to the sample() function:

function sample() {
 var lumps = 2;
 trace(lumps); // Displays: 2
}
sample();

trace("I'll have " + lumps + " lumps, please.");
// Displays: I'll have undefined lumps, please.

function test() {
 trace(lumps); // Displays: undefined
}
test();

Second, when it’s scoped to the main timeline:

var lumps = 2;

function sample() {
 trace(lumps); // Displays: 2
}
sample();

trace("I'll have " + lumps + " lumps, please.");
// Displays: I'll have 2 lumps, please.

function test() {
 trace(lumps); // Displays: 2

62 | Chapter 3: Looking at the Changes in ActionScript 3.0

}
test();

To underscore the notion of ActionScript 2.0 as a transitional language, con-
sider that undeclared variables aren’t allowed in classes, even if they do sneak
by in timeline code. When compiled, this no-frills ActionScript 2.0 class gen-
erates a compiler error, “There is no property with the name ‘lumps’.”:

class Sample {
 public function Sample() {
 lumps = 2;
 trace("I'll have " + lumps + " lumps, please.");
 }
}

You can address this error by preceding the lumps variable with the var key-
word, which scopes it to the class’s constructor function, Sample(), or by de-
claring the variable as a class property, which scopes it to the whole class,
available to any method:

class Sample {
 private var lumps:Number;
 public function Sample() {
 lumps = 2;
 trace("I'll have " + lumps + " lumps, please.");
 demo();
 }
 private function demo():Void {
 trace(lumps); // Also available here
 }
}

Class constructor functions must not define a return data type,
which explains the omission of :Void after Sample(), but the
presence of :Void after demo().

In ActionScript 3.0, FLA files, as a whole, are associated with something called
a document class, which defines the main timeline’s functionality. While you
may optionally write your own document class, you certainly don’t have to.
By default, the compiler automatically generates one for you. This default
document class is called MainTimeline and extends the MovieClip class. On the
surface, nothing has changed. The main timeline is still a movie clip, as it
always has been, but under the hood, a new structure is in place. The main
timeline is now defined by a class, which means that even timeline variables
must be formally declared, just as they were in ActionScript 2.0 classes.

Major Changes and Obsolete Code | 63

The main timeline can also extend the Sprite class, if you like.
For more information on document classes, see Chapter 7.

In an ActionScript 3.0 FLA file, the following, now-familiar keyframe script
generates the compiler error “1120: Access of undefined property lumps” be-
cause of the missing var keyword:

lumps = 2;
trace("I'll have " + lumps + " lumps, please.");

Adding var corrects the situation:

var lumps = 2;
trace("I'll have " + lumps + " lumps, please.");

Holding to a stricter standard encourages you to give more thought to the code
you write. Variables are just the beginning.

ActionScript 3.0 encourages programming with purpose

In ActionScript 2.0, all classes and functions in the Flash Player API were
global. These classes were aimed specifically at functionality provided by the
Flash Player runtime, over and above the core functionality outlined in the
ECMAScript specification. In this free-for-all, if you wanted to refer to the
MovieClip class in your code, you could do so without using an import directive,
even inside a custom class. An obvious benefit is that you could save a bit of
typing:

import MovieClip; // This line is not needed,
 // because the MovieClip class
 // is already understood
var mc:MovieClip = this.createEmptyMovieClip("myClip", 0);

The import directive lets the compiler know which class defi-
nition to use for interpreting the code you’ve written. Even in
ActionScript 2.0, import was necessary for classes in packages
like flash.filters, flash.geom, and flash.external, and was
often necessary for custom classes.

In ActionScript 3.0, only core classes are considered global, in the sense that
they belong to the top level of the overhauled packages hierarchy. Packages are
an organizational means of arranging classes into groups, usually based on
similar functionality. The lion’s share of ActionScript 3.0 classes is now ar-
ranged into such packages. The remainder, global functions and core classes,

64 | Chapter 3: Looking at the Changes in ActionScript 3.0

is listed under the All Packages→Top Level classes topic in the ActionScript
3.0 Language and Components Reference.

As with ActionScript 2.0, top-level classes don’t require the import directive—
either in timeline code or custom classes—but in contrast to how it used to
be, MovieClip is now categorized under flash.display.MovieClip, and must be
imported when used in external class files:

package {
 public class SampleClass {
 import flash.display.MovieClip;
 public function SampleClass() {
 var mc:MovieClip = new MovieClip();
 // Additional code here ...
 }
 }
}

In frame scripts, classes in the flash package join top-level classes in not re-
quiring an import compiler directive. This line, for example, works just fine on
its own in an ActionScript 3.0 frame script:

var mc:MovieClip = new MovieClip();

The concepts of packages and importing are discussed in greater detail in the
section “Major Syntax and Structure Changes” on page 77 in this chapter.
The subject is worth touching on at this point, however, because it helps pre-
pare you for the massive organizational shift you’ll find in the documentation’s
ActionScript 2.0 Migration table. This new structure’s benefit may not be self
evident, but it does reinforce a developer’s motivation to program with pur-
pose.

Here’s an example of how the new packages arrangement can lead to better
focus. Before ActionScript 3.0, you had numerous ways to load external assets
into a SWF file. The loadMovie() function was among the first and is still in
surprisingly wide use in ActionScript 2.0, as indicated by Adobe support forum
questions. In the beginning, this function was capable only of loading external
SWF files, but this changed as successive versions of Flash Player added sup-
port for other dynamically loadable file types, including JPEG, GIF, and PNG.
Note that a hint of potential confusion has already raised its head for new-
comers: this function, loadMovie(), expressly alludes to a “movie.” This is a
term commonly used to describe SWF files, but doesn’t suggest support for
images, even though loadMovie() easily loads image files in recent versions of
Flash Player. ActionScript 3.0 helps clear up such pitfalls in semantics.

Consider the following code exercises from the standpoint of an evolutionary
journey—a journey that, comparatively speaking, begins in somewhat ambig-
uous terms and develops into ActionScript that more clearly states its purpose.

Major Changes and Obsolete Code | 65

1. In a new ActionScript 2.0 FLA file, select frame 1 in the Timeline, and then
open the Actions panel. Type the following minimal ActionScript:

loadMovie("sample.png", container);

Create a new movie clip symbol and position it on the stage. Using the
Property inspector, give the new symbol the instance name container. Put
a PNG file named sample.png into the same folder as the FLA file, and then
select Control→Test Movie to see the image appear on the stage at runtime.
On its own, this code is all you need to load an image prior to ActionScript
3.0, but it doesn’t provide any data on load progress or completion. If you
want to display load progress or reposition the image when loading com-
pletes, then you have to set up a loop of some sort to continuously compare
the number of loaded bytes against the total number of bytes the image
contains.

2. Using the Actions panel, enter these additional lines of code:

var timer:Number = setInterval(checkProgress, 50);
function checkProgress():Void {
 container._visible = false;
 var loaded:Number = container.getBytesLoaded();
 var total:Number = container.getBytesTotal();
 var percent:Number = Math.round(loaded/total * 100);
 trace(percent);
 if (percent == 100 && container._width > 0) {
 clearInterval(timer);
 container._x = Stage.width / 2 - ¬
 container._width / 2;
 container._y = Stage.height / 2 - ¬
 container._height / 2;
 container._visible = true;
 }
}

Here, setInterval() repeatedly executes a custom checkProgress() func-
tion every 50 milliseconds. This function turns off the visibility of con-
tainer, so that it doesn’t seem to jump when later repositioned, and then
declares and sets the values of three variables. The first two, loaded and
total, are taken directly from the getBytesLoaded() and getBytesTotal()
methods of the MovieClip class, as invoked on container. The third,
percent, pits the previous values against each other to derive a percentage,
which could potentially be routed to a text field. Here, the value is traced
to the Output panel.

Finally, an if statement checks if percent is equal to 100. As a safety
backup, it also checks to see if container has a width greater than 0. The
second condition is present because of a timing issue. In this particular
solution, percent might actually reach 100 before the image is displayed,

66 | Chapter 3: Looking at the Changes in ActionScript 3.0

even if only by a few milliseconds. That could be enough to throw off the
repositioning code, because until the image shows up, container has a
default width of 0. When both of these conditions are met,
clearInterval() exits the setInterval() loop, centers container to the
stage, and then turns its visibility on.

Go ahead and test this revision. In the menu bar of the resultant SWF file,
select View→Simulate Download to imitate the loading at a slower pace.
The Output panel displays a mounting percentage, which leads to the
centered image at 100 percent.

So far, you’ve seen one approach out of many possible solutions. While it
makes reasonable sense when explained, the loadMovie()–setInterval()
combination isn’t as graceful as something that relies on event handlers.
Introduced with ActionScript 2.0, the MovieClipLoader class transforms
this loading process into something more like a conversation. After an
instance of the MovieClipLoader class is created, it is “spoken to” by way
of the loadClip() method and then “listened to” by way of the
onLoadProgress and onLoadInit event handlers.

3. Delete the existing code in your FLA file and replace it altogether with the
following new ActionScript 2.0:

var mcl:MovieClipLoader = new MovieClipLoader();
mcl.loadClip("sample.png", container);

var listener:Object = new Object();
listener.onLoadProgress = progressHandler;
listener.onLoadInit = loadInitHandler;
mcl.addListener(listener);

function progressHandler(mc:MovieClip, loaded:Number, ¬
 total:Number):Void {
 var percent:Number = Math.round(loaded/total * 100);
 trace(percent);
}
function loadInitHandler(mc:MovieClip):Void {
 mc._x = Stage.width / 2 - mc._width / 2;
 mc._y = Stage.height / 2 - mc._height / 2;
}

The percentage calculation and repositioning portions are identical in
principle to the previous version. The difference comes in the way these
portions are now carried out. In this case, the instruction to load is given
to an instance of the MovieClipLoader class (mcl), which manages the nec-
essary looping internally. This action removes a bit of clutter because it
sidesteps the need for something like setInterval(). Now that the timing
issue has been remedied, you no longer need to temporarily hide the con-
tainer symbol and reveal it later.

Major Changes and Obsolete Code | 67

To manage the events, an arbitrarily named variable, listener, is declared
and set to an instance of the Object class. This simple object acts on behalf
of mcl, pairing up functions with the onLoadInit and onLoadProgress events
of the MovieClipLoader class. These functions receive parameters auto-
matically, which progressHandler() uses to determine percentage and re-
positioning values.

As mentioned in Chapter 1, earlier versions of the lan-
guage had at least five ways to handle events. In Action-
Script 3.0, these five have been consolidated into a single
streamlined approach (with a few minor exceptions). For
more information, see the “DOM3 Event Model” on page
15 of Chapter 1; the “ActionScript Can No Longer Be
Attached to Objects” on page 117 of Chapter 6; and the
practical examples in Part IV of this book.

4. Select Control→Test Movie to verify that the SWF file behaves the same
as before, including the View→Simulate Download exercise.

This revision arranges the endeavor into coherent, simplified steps, where
separate functions perform the sub-goals of percentage reporting and re-
positioning. Bear in mind, the previous all-in-one function,
checkProgress(), is perfectly valid. From a nuts-and-bolts technical stand-
point, neither approach is superior, but if support forum questions are any
reflection of common workday scenarios, many developers take a copy-
and-paste approach to learning. They do what it takes to get the job done
and, under hectic schedules, acquire knowledge as time allows. When
solutions come in single blocks of code, the underlying principles can be
harder to digest.

ActionScript 3.0 tightens up the benefits initiated by the
MovieClipLoader class, reinforcing the theme of programming with pur-
pose. For starters, the loading mechanism is now defined by the Loader
class, which drops the seemingly “movie”-specific bias of previous func-
tions and classes. At this point, neither the listener object nor the con-
tainer movie clip is needed.

5. So it’s time to change gears. In a new ActionScript 3.0 FLA file, type the
following code into a frame script in frame 1:

var myLoader:Loader = new Loader();
myLoader.load(new URLRequest("sample.png"));
addChild(myLoader);

myLoader.contentLoaderInfo.addEventListener(
 ProgressEvent.PROGRESS,
 progressHandler
);

68 | Chapter 3: Looking at the Changes in ActionScript 3.0

myLoader.contentLoaderInfo.addEventListener(
 Event.COMPLETE,
 completeHandler
);

function progressHandler(evt:ProgressEvent):void {
 var loaded:int = evt.bytesLoaded;
 var total:int = evt.bytesTotal;
 var percent:int = Math.round(loaded / total * 100);
 trace(percent);
}
function completeHandler(evt:Event):void {
 myLoader.x = stage.stageWidth / 2 - ¬
 myLoader.width / 2;
 myLoader.y = stage.stageHeight / 2 - ¬
 myLoader.height / 2;
}

Once again, the percentage calculation and repositioning portions are
nearly the same. In this updated version, a variable myLoader is declared
and set to an instance of the Loader class, which is capable of loading SWF
files and image files (JPEGs, GIFs, and PNGs). Note that in this case, the
file path to sample.png isn’t merely a string, as before. In this case, it’s an
instance of the URLRequest class. In addition, the event handlers are asso-
ciated not with myLoader itself, but with a contentLoaderInfo property of
that object.

These objects are certainly new, presumably useful, and possibly over-
whelming. But what exactly are they? Clutter? Not a bit of it! Flash has
always been a creative toolbox. ActionScript 3.0 has tidied up the toolbox
and put labels next to each tool. You’ll learn more about this rigorously
organized new arrangement in the very next section.

6. Select Control→Test Movie to see that the SWF file behaves the same as
before. In the file menu of the SWF file, select View→Simulate Download
to test the percentage output.

ActionScript 3.0 is more organized, which makes it more efficient

On the face of it, the URLRequest class, seen in the previous example, acts as
nothing more than a container for storing file locations. It seems to be a five-
dollar way of saying “sample.png,” much like “salutations” is a five-dollar way
of saying “hello.” So what’s the point? Is URLRequest really necessary? What
was wrong with the simple string approach of earlier functions and classes?
To answer these questions, think again of the overhauled ActionScript 3.0
packages structure.

Before ActionScript 3.0, the MovieClip class supported a loadMovie() method,
which was practically equal in purpose to the standalone loadMovie() function.

Major Changes and Obsolete Code | 69

Wait a minute! Were there formerly two versions of loadMovie()? There were.
This sort of redundancy was frequent in older ActionScript. There were also
two versions of gotoAndPlay()—both function and method—and many oth-
ers, besides. This duplication was introduced in Flash 5, when the MovieClip
class began taking ownership of movie-clip–related functionality. Longstand-
ing functions became MovieClip methods overnight, yet the function versions
remained for backward compatibility.

The trouble is, this duplication sometimes went too far. The loadMovie()
method, especially, is a case in point. Because the MovieClip class defines movie
clip objects, these objects should certainly be able to do the things a movie clip
symbol can do: display animated timelines, move around the stage, change
dimensions, and so on—but the act of loading is a categorically distinct
discipline.

It makes good sense to coordinate the traits and functionality of loading into
an object that specializes in the field, so to speak. In ActionScript 3.0, precisely
this sort of thoughtful arrangement has occurred. As a subject matter expert
on loading, the Loader class should indeed feature an impressive array of load-
ing related skills. In this light, it’s not surprising that Loader should work in
collaboration with a subject matter expert on HTTP requests, which is what
the URLRequest class is. More than just a fancy way of describing file locations,
URLRequest objects have the potential to manage an HTTP request’s header,
its method (GET versus POST), its POST data, MIME content type, and so on.

This sort of rich granularity is echoed throughout the ActionScript 3.0 API.
For example, in the previous code exercise, the event handler was associated
with the Loader.contentLoaderInfo property of the myLoader instance. As it
happens, this property points to an instance of yet another class, LoaderInfo,
which specifically manages byte data and other information about SWF files
and image files. This class’s skill set paves the way for the bytesLoaded and
bytesTotal properties used by the progress event handler. Again, each step is
categorized neatly.

This sort of approach wasn’t unheard of, by the way, in older versions of
ActionScript. It just wasn’t as prevalent. The TextFormat class, for example,
compartmentalizes formatting from the text fields it collaborates with (rele-
vant code in bold).

// ActionScript 2.0
var tf:TextField = this.createTextField("sampleText", ¬
 0, 10, 50, 100, 20);
tf.selectable = false;
tf.autoSize = "center";

var styling:TextFormat = new TextFormat();
styling.font = "Blackadder";

70 | Chapter 3: Looking at the Changes in ActionScript 3.0

styling.color = 0xBA1424;
styling.letterSpacing = 1.5;

tf.setNewTextFormat(styling);
tf.text = "Cooperation!";

For good measure, here are another two examples that show how ActionScript
3.0 expands on this sort of helpful compartmentalization.

In ActionScript 1.0 and 2.0, the MovieClip class featured a handful of methods
collectively known as the Drawing API. You could reference a movie clip di-
rectly by its instance name and invoke, say, lineTo() and curveTo() to draw
shapes at runtime. In ActionScript 3.0, this same Drawing API has been real-
located to a more suitable Graphics class, which is now associated with movie
clips by way of the MovieClip.graphics property:

// ActionScript 2.0
myClip.lineTo(300, 200);

// ActionScript 3.0
myClip.graphics.lineTo(300, 200);

In ActionScript 3.0, the Sound class collaborates with three new classes—Sound

Channel, SoundTransform, and SoundMixer—to manage audio-related function-
ality. These duties were previously consigned to the Sound class alone. Previ-
ously, the concept of sound channels was managed by a non-intuitive associ-
ation between a Sound instance and a movie clip. In order to separate audio
into individual “channels,” you had to feed individual movie clip instance
names to each use of the new Sound() constructor. It was an easy procedure to
miss, and developers often wondered why adjusting the volume of one Sound
instance affected the volumes of others. Now, the improved, decentralized
functionality calls on specialized companion classes as needed.

// ActionScript 2.0
var mySound:Sound = new Sound();
mySound.loadSound("music.mp3", true);
mySound.setVolume(50);
mySound.stop();

// ActionScript 3.0
var mySound:Sound = new Sound();
mySound.load(new URLRequest("music.mp3"));

var myChannel:SoundChannel = mySound.play();
var myTransform:SoundTransform = myChannel.soundTransform;

myTransform.volume = 0.5;
myChannel.soundTransform = myTransform;
myChannel.stop();

Major Changes and Obsolete Code | 71

By delegating functionality to numerous classes, the new API keeps its objects
lean and focused. MovieClip instances are no longer burdened with loading
tasks or the Drawing API, but all the same, are easily associated with com-
panion classes that handle those duties. The concept goes even further: if you
want some of the basic characteristics of a movie clip but don’t need internal
animation—that is, if you don’t need to shuttle around a movie clip’s playhead
with gotoAndPlay()—then you now have the option of using the Sprite class
instead, which doesn’t carry the overhead of a timeline. Ultimately, this makes
your tools more refined, giving you functionality that suits the object at hand,
and leaving the extra tasks to other objects.

Obsolete Code
Waking up in a hotel room can sometimes be disorienting. You might reach
for your glasses or a cup of water that, at home, is always right where you
expect: at pillow height on the nightstand. Of course, hotel rooms are tempo-
rary. Soon enough, a red-eye flight takes you back to your humble abode,
where the comforts of familiarity snuggle their way back into your daily
routine.

No so with obsolete code! Unless you’re involved specifically with legacy sys-
tems, where you know users are locked in to an older version of Flash Player,
you’ll have to leave certain once-familiar paradigms in the dust. Some of these
ways have been deprecated for many versions of Flash, which means the term
in question was officially frowned upon at some point because it was likely to
be removed in the future. With ActionScript 3.0, that theoretical future has
finally arrived. The ActionScript 2.0 Migration table provides an exhaustive
list of features that ActionScript 3.0 no longer supports, but the following
collection provides a summary of many common—yet no longer usable—
practices.

on()/onClipEvent()

It is no longer possible to attach event handlers directly to objects, such as
movie clips, buttons, and components. This is a significant change, because
on() and onClipEvent() have been popular for years. Using direct attachment,
you could previously program a button to respond to a mouse click, for ex-
ample, by selecting the button symbol on the stage, opening the Actions panel,
and then typing something like this:

on (release) {
 // Desired code here
}

72 | Chapter 3: Looking at the Changes in ActionScript 3.0

This was optional as recently as ActionScript 2.0—an alternate approach to
referencing event handlers by instance name. In ActionScript 3.0, the object
in question must have an instance name, which is what uniquely identifies that
symbol or component as something ActionScript can speak to. In contrast,
direct attachment didn’t require instance names because the intended recipient
of your instruction was self-evident.

You can supply an instance name to an object by selecting it on the stage, and
then typing the instance name into the Property inspector. Assuming an in-
stance name myButton, here’s how ActionScript 3.0 associates the occurrence
of a mouse release with a function to be trigged by that occurrence:

myButton.addEventListener(MouseEvent.MOUSE_UP, function);

If you think of the Timeline as a grid, this code appears in a frame script that
aligns vertically in the same “column”—the same frame—as the button it re-
fers to. The term function in the previous line of code refers to an actual func-
tion definition, such as the following arbitrarily named mouseUpHandler():

myButton.addEventListener(MouseEvent.MOUSE_UP, ¬
 mouseUpHandler);

function mouseUpHandler(evt:MouseEvent):void {
 // Desired code here
}

The evt parameter refers to an instance of the MouseEvent class, which features
numerous useful properties you can optionally reference inside the function.
To find out what events are available for a button symbol, look up the
SimpleButton class in the ActionScript 3.0 Language and Components Refer-
ence. Click the “Show Inherited Events” hyperlink in the Events section, and
take your pick. One of these is mouseUp, and if you click on that, the Help panel
shows that the mouseUp event belongs to the MouseEvent class and is referenced
with the MouseEvent.MOUSE_UP constant. (A constant is simply a variable whose
value doesn’t change. Many classes store properties and events as constants in
this way. By using the constant, instead of the string “mouseUp”, you gain the
benefit of code coloring to show you’ve entered the right code.) In the same
way, the MovieClip class entry indicates what events are available for movie
clips, the ComboBox class shows events for the ComboBox component, etc.

The practical examples in Part IV of this book go into greater
detail on event handling, including keyboard events (respond-
ing to keystrokes) and optional aspects like event bubbling.

Major Changes and Obsolete Code | 73

getProperty()/setProperty()/tellTarget()

These functions still show up in hundreds of online tutorials, but they’re no
longer supported. Ever since ActionScript 1.0, their purpose has been simpli-
fied by dot notation. Consider a movie clip symbol with the instance name
myClip. To set its width using setProperty(), you would refer to the instance
name like this:

setProperty(myClip, _width, 200);

The updated approach is much easier on the eye (note the change from
_width to width):

myClip.width = 200;

attachMovie()/attachSound()

The procedure for pulling assets from the library at runtime has changed. It
still requires linkage information, but instead of a linkage identifier, Action-
Script 3.0 requires a linkage class, which is designated by the same Symbol
Properties dialog box you’re used to. Right-click (Ctrl-click) on an asset in the
library, and then choose Properties. When the dialog box opens, click the
Advanced button if it’s showing. This expands the Symbol Properties dialog
box to its full extent. Select Export for ActionScript, and then enter a name
into the Class field, as shown in Figure 3-1 (note that the Identifier field is
disabled).

Rather than invoking attachMovie() or attachSound() on a related MovieClip
or Sound instance, the library asset is attached by way of the new operator:

var mc:myClip = new myClip();

Visual objects, like movie clips and graphics, are then added to the display list,
which manages a SWF file’s visual objects:

addChild(mc);

For more information on this process, see Chapter 8, and the
practical examples in Part IV of this book.

74 | Chapter 3: Looking at the Changes in ActionScript 3.0

Figure 3-1. Specifying linkage properties

createEmptyMovieClip()/duplicateMovieClip()/createTextField()

In similar fashion, the MovieClip and TextField classes can now be instantiated
directly with the new operator. In both cases, the resultant objects must be
added to the display list.

// ActionScript 2.0
var mc:MovieClip = this.createEmptyMovieClip("myClip", 0);

// ActionScript 3.0
var mc:MovieClip = new MovieClip();
mc.name = "myClip"; // traditional instance name
addChild(mc);

Major Changes and Obsolete Code | 75

In the ActionScript 2.0 version, the MovieClip.createEmptyMovieClip()

method is invoked on a timeline with the global this property, but that could
be replaced with any valid movie clip reference, which would then become the
immediate parent of the new MovieClip instance. The Property-inspector–style
instance name (the string "myClip") is a required parameter, as is the second
parameter, depth, which here happens to be 0 (the lowest depth). Because
createEmptyMovieClip() returns a movie clip reference, the new instance can
be referred to in subsequent code either by the myClip instance name or the
mc variable.

In the ActionScript 3.0 version, depth is handled automatically (no depth pa-
rameter is required) and the Property-inspector–style instance name is op-
tional, as the new object can, in any case, be referenced by the mc variable.

eval()

The eval() function crops up often in legacy code and in many online tutori-
als. In older ActionScript, it was used to evaluate expressions as variables,
properties, or objects. When a variable or property name was evaluated, its
value was returned. When an object name or reference was evaluated, a new
reference to that object was returned. One typical use of eval() was to iterate
through sequentially named movie clip instances using a for loop. Here, three
movie clips with the instance names mc0, mc1, and mc2 are conveniently set
to a horizontal position of 200 all at once:

// ActionScript 2.0
for (var i:Number = 0; i < 3; i++) {
 eval("mc" + i)._x = 200;
}

While eval() is no longer available in ActionScript 3.0, the bracket notation
approach to the same task, using the array access operator ([]), still works:

// ActionScript 3.0
for (var i:int = 0; i < 3; i++) {
 this["mc" + i].x = 200;
}

Bracket notation requires that an object reference precede the array access
operator. In this case, the object reference is this, which refers to the timeline
in which these movie clips appear. If the three movie clips were nested inside
the timeline of another movie clip with the instance name container, then the
same ActionScript 3.0 for loop would look like this:

for (var i:int = 0; i < 3; i++) {
 container["mc" + i].x = 200;
}

76 | Chapter 3: Looking at the Changes in ActionScript 3.0

You can iterate through movie clips with an object reference, in which a var-
iable points to a given MovieClip instance, or by Property-inspector–style in-
stance name (that is, the MovieClip._name property in ActionScript 2.0 and the
MovieClip.name property in ActionScript 3.0). In ActionScript 3.0, array access
operator iteration through MovieClip.name property values only succeeds when
those instance names are provided by hand using the Property inspector. The
MovieClip.name property indicates the movie clip’s instance name, but is not
synonymous with it, as was the case with ActionScript 2.0’s MovieClip._name
property. If you prefer to iterate through MovieClip.name values generated by
code, make sure to use the DisplayObjectContainer.getChildByName() method
to locate those name values in the display list later:

for (var i:int = 0; i < 3; i++) {
 var mc:MovieClip = new MovieClip();
 mc.name = "mc" + i;
 this.addChild(mc);
}

for (i = 0; i < 3; i++) {
 mc = MovieClip(this.getChildByName("mc" + i));
 mc.graphics.lineStyle(3, 0xFF0000);
 mc.graphics.lineTo(0, 20);
 mc.x = 20 * i;
 // Locates dynamically generated movie clips
 // by name property and draws a short vertical
 // line in each
}

You can alternately use the DisplayObjectContainer.getChildAt() method to
locate display objects by their index number in a given display list. Both of
these methods can be invoked on the main timeline or on movie clips because
the MovieClip class inherits from DisplayObjectContainer. Note, however, that
the return value of both methods is typed as DisplayObject. For this reason,
you may need to cast the return value as MovieClip, as shown in the previous
example (MovieClip(object) or object as MovieClip)—otherwise the compiler
will not let you to reference MovieClip-specific members, such as
currentFrame or scenes.

Major Syntax and Structure Changes
The overwhelming majority of ActionScript’s native classes are now arranged
into packages, and packages must be imported into class files to be used. This
importing is accomplished by way of the import directive, like this:

import fl.controls.CheckBox;
import flash.display.MovieClip;
import flash.events.MouseEvent;

Major Syntax and Structure Changes | 77

Lines like these tell the compiler exactly which classes are meant by any sub-
sequent references to CheckBox, MovieClip, and MouseEvent in your code. After
all, you might very well be using the Adobe-supplied CheckBox component,
but you could just as easily be using some third-party user interface compo-
nent, whose package might be com.niftystuff.CheckBox. The import directive
clarifies any ambiguity by setting the record straight from the beginning.

If, by chance, you intend to use two distinct classes that share the same name,
you must precede each reference with the fully qualified package for clarity.
Otherwise, the class name alone is sufficient:

import com.niftystuff.CheckBox;
import fl.controls.CheckBox;
import flash.display.MovieClip;

var cb1:com.niftystuff.CheckBox = new com.niftystuff.¬
 CheckBox();
var cb2:fl.controls.CheckBox = new fl.controls.CheckBox();
var mc:MovieClip = new MovieClip();

When appearing in class files, import directives are generally positioned im-
mediately inside the package declaration:

package {
 import flash.display.MovieClip;
 public class SampleClass {
 public function SampleClass() {
 // Constructor code here
 }
 }
}

This practice makes any imported classes available to the whole package. If
placed inside the class declaration, the imports are available only to the class:

package {
 public class SampleClass {
 import flash.display.MovieClip;
 public function SampleClass() {
 // Constructor code here
 }
 }
}

In frame scripts, import directives must appear once in each frame used.

Importing and Packages
If you’re already familiar with importing, you won’t discover anything new
with the technique; it’s just that in writing ActionScript 3.0 classes, you’ll find
that your blocks of import statements are more crowded than they used to be.

78 | Chapter 3: Looking at the Changes in ActionScript 3.0

The ECMAScript specification defines a set of core functionality that, in
ActionScript 3.0, appears as a small collection of top-level classes, listed under
the All Packages→Top Level classes topic in the ActionScript 3.0 Language and
Components Reference. There are only a couple dozen of these, which include
such customary classes as Array, Function, Math, and Object. These classes are
readily available, without importing, in custom classes and timeline code alike.
The rest, comprising hundreds of other classes, including the Flash Player API
(all the features unique to the Flash Player runtime) necessitate imports when
used in custom classes. Fortunately, you need only a single import per refer-
enced class. That is, importing flash.text.TextField once in a custom class
lets you create as many text fields as you like in that class.

Though you don’t encounter it as often in timeline code, the import directive
is valid only for the frame in which it’s placed. If you import a class inside a
script on frame 1 and wish to use the same class in frame 5, then you have to
import the referenced class again in frame 5. This step is necessary because, in
ActionScript 3.0, timeline frames are effectively treated as methods of the
MovieClip instance they belong to—methods of the default MainTimeline docu-
ment class. Just as imports inside a class declaration are available only to that
class, but not that class’s package, imports inside a method are available only
to that method.

In addition to the top-level classes, the ActionScript 3.0 packages hierarchy
has three main branches: flash, adobe, and fl. Of these, the flash and adobe
packages have a sort of “backstage pass” when referenced in timeline code:
none of them requires the import directive when used in frame scripts. The
flash packages consist of the Flash Player API and encompass most of the
traditional Flash classes like MovieClip, TextField, and SimpleButton (button
symbols). The adobe package contains functions and classes used to automate
the authoring tool. These correspond to the Flash JavaScript application pro-
gramming interface (JavaScript API)—also known as JSFL—outlined in the
Extending Flash section in the documentation. The JavaScript API lets you run
batch scripts on large volumes of FLA files and even create new panels and
tools. The other main branch, fl, does require imports in frame scripts and
tends to involve components, so not only do you need one import directive for
each referenced type of component, you also need a copy of that component
in the FLA file’s library. Remember, custom classes always require imports
when dealing with packaged classes that ship with the Flash authoring tool.

Major Syntax and Structure Changes | 79

ActionScript 2.0 provided a sneak peek of the thorough pack-
age hierarchy currently in effect. The mx packages (mainly
components) were fairly analogous to the current fl packages,
and some of the flash packages were available for Flash Player
8, including flash.filters, flash.display for the Bitmap
Data class, and flash.geom for a handful of geometry-related
classes like Matrix, Point, and Rectangle.

Namespaces
Namespaces give you a way to control access to properties and methods in
custom classes. ActionScript 2.0 had only two built-in namespaces: the access
control specifiers public and private, which affected (and still affect) the
availability of class members to outside code. ActionScript 3.0 increases this
number to four by introducing protected and internal. These built-in speci-
fiers work only in class files, and must precede class, property, and method
declarations:

package {
 public class SampleClass {
 private var numValue:Number;
 public function SampleClass() {
 // Constructor code here
 }
 }
}

By default, ActionScript 2.0 members belonged to the public namespace unless
specified otherwise. In ActionScript 3.0, this has changed to internal, which
lets class members be accessed by any code in the same package. Members
specified as protected are available only to the class that defines them, and to
any subclasses of that class. Members specified as private are available only
to the defining class, and public members are accessible to any outside code.

Developers now have the option to create custom namespaces to further ma-
nipulate object access. This is possible with class access control specifiers and
useful when employed in advanced scenarios. On the other hand, namespaces
can be a stumbling block if they unexpectedly sneak up on you. In ActionScript
3.0, this can happen with loaded XML data.

In XML, namespaces, when present, are specified with an xmlns attribute.
Consider the XML example introduced in Chapter 1—but with one key dif-
ference: the presence of a namespace indicating a hypothetical music service
(namespace in bold):

<?xml version="1.0" encoding="iso-8859-1"?>
<library xmlns:albums="http://www.adobe.com/albumlistings/">
 <artist name="The Beatles">

80 | Chapter 3: Looking at the Changes in ActionScript 3.0

 <album name="Abbey Road">
 <track title="Come Together" />
 <track title="Something" />
 <track title="Maxwell's Silver Hammer" />
 <track title="Oh! Darling" />
 <track title="Octopus's Garden" />
 <track title="I Want You (She's So Heavy)" />
 <track title="Here Comes the Sun" />
 <track title="Because" />
 <track title="You Never Give Me Your Money" />
 <track title="Sun King" />
 <track title="Mean Mr. Mustard" />
 <track title="Polythene Pam" />
 <track title="She Came in Through the Bathroom Window" />
 <track title="Golden Slumbers" />
 <track title="Carry That Weight" />
 <track title="The End" />
 <track title="Her Majesty" />
 </album>
 </artist>
</library>

Numerous XML sources feature this sort of identifying data, such as iTunes
playlists, blog RSS feeds, and even XHTML documents. ActionScript 2.0 ig-
nored XML namespaces, but in ActionScript 3.0, XML namespaces cascade
from parent elements to their children. In this case, for example, the
<library> element’s xmlns attribute is applied automatically to the remaining
elements in the document.

At this point, tracing all <track> elements displays the following output:

var myXML:XML = new XML();
var xmlLoader:URLLoader = new URLLoader();
xmlLoader.load(new URLRequest("cds.xml"));
xmlLoader.addEventListener(
 Event.COMPLETE,
 function(evt:Event):void {
 myXML = XML(evt.target.data);
 trace(myXML..track);
 }
);
// Displays:
// <track title="Come Together"
// xmlns:albums="http://www.adobe.com/albumlistings/"/>
// <track title="Something"
// xmlns:albums="http://www.adobe.com/albumlistings/"/>
// <track title="Maxwell's Silver Hammer"
// xmlns:albums="http://www.adobe.com/albumlistings/"/>
// ...

Note the presence of the albums namespace as an attribute of each <track>
element, even though the original XML only shows this attribute for the
<library> element. Why is this a problem? The tricky part is that XML name-

Major Syntax and Structure Changes | 81

spaces aren’t required to have an identifier, such as the one shown (albums).
Note the lack of the albums identifier in this revision:

<?xml version="1.0" encoding="iso-8859-1"?>
<library xmlns="http://www.adobe.com/albumlistings/">

At this point, a trace of all <track> elements comes back with nothing at all.
In fact, you can’t see any of the elements now, because the namespace has no
identifier.

To address this issue, you can use the new Namespace class:

var myXML:XML = new XML();
var xmlLoader:URLLoader = new URLLoader();
xmlLoader.load(new URLRequest("cds.xml"));
xmlLoader.addEventListener(
 Event.COMPLETE,
 function(evt:Event):void {
 myXML = XML(evt.target.data);
 var ns:Namespace = new Namespace("http://¬
 www.adobe.com/albumlistings/");
 trace(myXML..ns::track);
 }
);

Here, an arbitrarily named variable, ns, is declared and set to an instance of
the Namespace class, whose constructor function receives the namespace Uni-
form Resource Identifier (URI) specified in the xmlns attribute. This allows ns
to be used as a prefix for subsequent element references, by way of the ::
operator (myXML..ns::track).

If you don’t know the URI beforehand, you can use the XML.namespace()
method to retrieve it:

var ns:Namespace = new Namespace(myXML.namespace());
trace(myXML..ns::track);

Data Types and Typing
Before ActionScript 3.0, the default value of declared, but uninitialized, objects
was always undefined, even if strongly typed:

// ActionScript 2.0
var b:Boolean;
trace(b); // Displays: undefined

var str:String;
trace(str); // Displays: undefined

var d:Date;
trace(d); // Displays: undefined

var a:Array;

82 | Chapter 3: Looking at the Changes in ActionScript 3.0

trace(a); // Displays: undefined

var n:Number;
trace(n); // Displays: undefined

Due to the more memory-efficient nature of objects in ActionScript 3.0, this
has changed. Now, the special undefined value applies only to variables that
are untyped, such as var n (that is, declared, but not typed and not given an
initial value). As a recommended best practice, objects should be strongly
typed as a rule, so that the compiler will request only the minimum system
memory required for each object. The default value of variables now depends
on the corresponding data type:

// ActionScript 3.0
var b:Boolean;
trace(b); // Displays: false

var str:String;
trace(str); // Displays: null

var d:Date;
trace(d); // Displays: null

var a:Array;
trace(a); // Displays: null

var n:Number;
trace(n); // Displays: NaN (Not a Number)

var i:int;
trace(i); // Displays: 0

Clearly, code that may have compared values to undefined in the past will no
longer behave as expected. Even comparisons to null can no longer be as-
sumed as useful, because some data types default to other values.

var someValue:Number;
if (someValue == undefined || someValue == null) {
 // In ActionScript 3.0, someValue is none of these
}

The upshot is that a theme discussed earlier in this chapter is bolstered yet
again, that of programming with purpose. In ActionScript 3.0, in a more fun-
damental way than ever, each type of object has its own characteristics and
consumes its own unique portion of system resources. This variety elicits an
attention to detail that, with practice, leads to better programming. Action-
Script 3.0 is the chess coach that encourages you to consider your move before
even touching a piece. That’s good advice!

Major Syntax and Structure Changes | 83

Additional ActionScript 3.0 Resources
ActionScript 3.0 is an extensive subject, more so than any of its forerunners.
An exhaustive exploration is beyond the scope or focus of this book, but ad-
ditional resources are certainly available. For a solid foundation, consider
Learning ActionScript 3.0: A Beginner’s Guide (O’Reilly), by Rich Shupe and
Zevan Rosser. For hundreds of ready-to-use solutions to real-world problems,
consider the ActionScript 3.0 Cookbook (O’Reilly), by Joey Lott, Darron Schall,
and Keith Peters. For a comprehensive overview of the language, consider
Essential ActionScript 3.0 (O’Reilly), by Colin Moock, which steps through
ActionScript 3.0 in a thorough 900+ pages.

The Adobe Developer Connection website features a constantly rotating as-
sortment of free articles and tutorials written by top community experts. Each
of Adobe’s developer tools has its own entry point, and relevant URLs for
ActionScript include the following:

http://www.adobe.com/devnet/actionscript/
http://www.adobe.com/devnet/flash/
http://www.adobe.com/devnet/flex/
http://www.adobe.com/devnet/air/

Trevor McCauley has been working with Flash since 2000, a passion that
eventually led to his being hired by Adobe. Trevor is an avid developer, trainer,
writer, and conference speaker on topics related to Flash. His “ActionScript 3
Tip of the Day” thread at http://kirupa.com (http://www.kirupa.com/forum/
showthread.php?t=223798) became something of a legend after the release of
Flash CS3 and continues to help developers make the transition from old to
new. He also provides free tutorials and sample files at his website, http://
senocular.com (http://www.senocular.com/flash/tutorials.php).

84 | Chapter 3: Looking at the Changes in ActionScript 3.0

http://www.adobe.com/devnet/actionscript/
http://www.adobe.com/devnet/flash/
http://www.adobe.com/devnet/flex/
http://www.adobe.com/devnet/air/
http://kirupa.com
http://www.kirupa.com/forum/showthread.php?t=223798
http://www.kirupa.com/forum/showthread.php?t=223798
http://senocular.com
http://senocular.com
http://www.senocular.com/flash/tutorials.php

CHAPTER 4

Exploring the Benefits of Using
ActionScript 3.0

It has been said, and generally agreed, that in spite of how funny it would make
a person look, two heads are better than one. The point of this adage, of course,
is that collaboration can be a remarkably productive venture. Flash Player 10
promotes this ideal thanks to its two virtual machines, the software modules
inside Flash Player that execute ActionScript programs. Until Flash Player 9,
only a single virtual machine was necessary. It handled (and still handles) ev-
erything code-related from the very beginnings of ActionScript to the formal
object-oriented programming (OOP) paradigm introduced with ActionScript
2.0. The architectural changes and improvements introduced with Action-
Script 3.0, however, were substantial enough in Flash Player 9 to warrant a
new virtual machine specifically optimized for the new language.

This new module, named ActionScript Virtual Machine 2 (AVM2), works in-
dependently of the previous player codebase. It was unveiled in a prerelease
version of Flash Player 9, originally slated as Flash Player 8.5. (There was no
commercial release of Flash Player 8.5; in the final public release, its version
number shipped as 9.) Legacy support is still handled by the previous code-
base, now renamed ActionScript Virtual Machine 1 (AVM1) and remains as a
companion module inside Flash Players 9 and 10 to support backward com-
patibility. Meanwhile, AVM2 ushers ActionScript 3.0 into an arena of in-
creased performance, efficiency, and an internal consistency that makes the
language easier for newcomers to learn. In this way, both old and new code
are able to function with maximum efficiency and performance.

In addition to benefiting from two heads, so to speak, Flash Player 10 encour-
ages another nuance on the concept of collaboration: that of adherence to
standards. Because other Flash Platform development tools rely on the same
ECMAScript specification as Flash CS4, your work in ActionScript 3.0 leads
directly to portability among other Adobe technologies, such as Flex and

85

Adobe Integrated Runtime (AIR), formerly codenamed Apollo. Learn Action-
Script 3.0 in terms of the Flash authoring tool, and you already have a leg up
on building online and desktop-based Rich Internet Applications (RIAs) and
occasionally connected desktop applications.

Performance
In Adobe benchmarks, ActionScript 3.0 has been shown to increase applica-
tion performance by an order of magnitude. This means that even complex
programs can potentially execute with 10 times the speed and efficiency of
ActionScript 2.0. That’s the sort of impressiveness that rivals a juggler with
flaming bowling pins—who is also spinning plates, while riding a unicycle on
a tightrope with no net. To be sure, some of this improvement results from
enhancements to the Flash Player runtime itself, from successively better ren-
dering with each release, the advent of bitmap caching in Flash Player 8, and
hardware acceleration in Flash Player 9.0.115.0. Ultimately, though, perform-
ance depends on how well your code is written, on adherence to recommended
best practices, and the boost of being executed on AVM2.

In early 2005, a participant in the Flash ActionScript support forum posed a
question about using ActionScript to render something called the Mandelbrot
set, which is one of the most popular examples of a series of infinitely complex
geometric shapes called fractals. Chances are good you’ve seen the Mandelbrot
set depicted on progressive rock album covers, as the underlying mechanism
for computer-generated (CG) effects like realistic mountain terrains, or even
as the printed pattern on a handful of bowties at a programming convention.
The initial view of this geometric set, seen in Figure 4-1, is defined by a com-
plicated mathematical formula. This trait makes it a good candidate for show-
casing the speed increases of ActionScript 3.0, as the code discussed in 2005
can be compared side by side with a modern interpretation.

In fact, you can re-create a version of the original SWF file yourself and evaluate
its performance against an ActionScript 3.0 version on your own computer.

86 | Chapter 4: Exploring the Benefits of Using ActionScript 3.0

Figure 4-1. The Mandelbrot set

1. Create a new ActionScript 2.0 FLA file. Use the Property inspector to set
the document’s dimensions to 340 pixels by 240 pixels and the background
color to #000000 (black). Type the following code into frame 1 of a script
layer:

var startTime:Number = getTimer();

var image:MovieClip = this.createEmptyMovieClip("mcImage", 0);
image._x = 240;
image._y = 120;

var colors:Array = new Array(
 0x000000, 0x0E0E0E, 0x1C1C1C, 0x2A2A2A, 0x383838,
 0x464646, 0x555555, 0x636363, 0x717171, 0x7F7F7F,
 0x8D8D8D, 0xB9B9B9, 0xAAAAAA, 0xB8B8B8, 0xC6C6C6,
 0xD4D4D4, 0xE2E2E2, 0xF0F0F0, 0xFFFFFF
);
var k:Number = −120;
var zArr:Array = new Array();

var myTimer:Number = setInterval(drawLine, 1);

Performance | 87

This step sets up a startTime variable, which metaphorically clicks a stop-
watch into action. This variable is compared to the getTimer() function
again at the end, which then displays total elapsed seconds. The image
variable holds a reference to a movie clip, which is used as a canvas on
which the Drawing API plots a series of line segments that represent the
Mandelbrot set. The colors variable points to an array of color values used
during the drawing, k and zArr are used in the fractal calculation, and
myTimer is eventually used to halt the repeated triggering of a custom
drawLine() function, as looped once every millisecond by the
setInterval() function.

2. Next comes the drawLine() function, which is the brain of the whole op-
eration. Type the following code after the existing ActionScript code:

function drawLine():Void {
 var j:Number = 0;
 var x:Number = 0;
 var y:Number = 0;
 var n:Number = 0;
 var zAbs:Number = 0;
 for (j = −240; j <= 100; j++) {
 x = 0;
 y = 0;
 n = 0;
 do {
 n++;
 zArr = f(x, y, j / 100, k / 100);
 x = zArr[0];
 y = zArr[1];
 zAbs = zArr[2];
 if (n >= 20) {
 break;
 }
 } while (zAbs <= 4);
 if (zAbs > 4) {
 image.lineStyle(1, colors[n], 100);
 image.moveTo(j, k - 1);
 image.lineTo(j, k);
 }
 }
 k++;
 if (k >= 0) {
 clearInterval(myTimer);
 duplicate();
 }
}

For the sake of this demonstration, it doesn’t matter if the Mandelbrot
formula seems clear as mud. Just count on it that the magic happens inside
the do..while statement, one of whose lines calls a custom f() function.
The line segments are drawn by the calls to lineStyle(), moveTo(), and

88 | Chapter 4: Exploring the Benefits of Using ActionScript 3.0

lineTo(), and the final if statement decides when to stop the
setInterval() loop by calling clearInterval(), then completing the mir-
ror image of the drawing with a call to the custom duplicate() function.

3. Here are the final short blocks of code, the f() and duplicate() functions.
Type the following code after the existing ActionScript code. Note that
the last line of the duplicate() function uses trace() to report the elapsed
time to the Output panel.

function f(x:Number, y:Number, a:Number, b:Number):Array {
 var rPart:Number = x * x - y * y + a;
 var iPart:Number = 2 * x * y + b;
 return new Array(rPart, iPart, rPart * rPart + iPart * iPart);
}
function duplicate():Void {
 var flip:MovieClip = image.duplicateMovieClip("mcFlip", 1);
 flip._yscale = −100;
 flip._y -= 2;
 trace((getTimer() - startTime) / 1000);
}

4. Select Control→Test Movie to see your handiwork (Figure 4-2).

Special thanks to Keith Gladstien, PhD, MD (http://www.kglad.com/), for
permission to reprint a version of his code in this book. See Keith’s website
for additional exploration of the Mandelbrot set in Flash.

Figure 4-2. An ActionScript 2.0 rendering of the Mandelbrot set

Performance | 89

http://www.kglad.com/

Your own performance results may vary, depending on your computer’s power
and speed. You may even want to test repeatedly and take an average of elapsed
times, remembering that results will vary for individual users who view your
published content. You’ll clearly see the sequential improvement when you
configure the publish settings for this FLA file among various versions of Flash
Player (File→Publish Settings→Flash→Version) Table 4-1 shows the averaged
results of one such series of tests.

Table 4-1. Speed of Mandelbrot set as rendered in various versions of Flash Player

Flash Player version ActionScript version Elapsed time (in seconds)

Flash Player 6 ActionScript 2.0 21.847

Flash Player 7 ActionScript 2.0 15.225

Flash Player 8 ActionScript 2.0 13.729

Flash Player 9 ActionScript 2.0 10.338

Flash Player 9 ActionScript 3.0 2.853

Flash Player 10 ActionScript 2.0 15.557 *

Flash Player 10 ActionScript 3.0 6.387 *

* At the time of writing, Flash Player 10 actually performed more slowly than
Flash Player 9. This should be addressed before Flash is publicly released.

Updating the Code to ActionScript 3.0
To experience the Mandelbrot set on your own in a matter of 2 to 3 seconds,
save your current file as MandelbrotAS3.fla, and then complete the following
steps. Great care has been taken to maintain the overall structure of this code,
so that it parallels the ActionScript 2.0 version approximately line for line.

1. Configure the FLA file’s publish settings for Flash Player 9 or 10
(File→Publish Settings→Flash→Version), and then change the Action-
Script version to ActionScript 3.0.

2. Update the existing code as follows (changes in are bold):

var startTime:int = getTimer();

var image:Sprite = new Sprite();
image.x = 240;
image.y = 120;
addChild(image);

var colors:Array = new Array(
 0x000000, 0x0E0E0E, 0x1C1C1C, 0x2A2A2A, 0x383838,
 0x464646, 0x555555, 0x636363, 0x717171, 0x7F7F7F,
 0x8D8D8D, 0xB9B9B9, 0xAAAAAA, 0xB8B8B8, 0xC6C6C6,

90 | Chapter 4: Exploring the Benefits of Using ActionScript 3.0

 0xD4D4D4, 0xE2E2E2, 0xF0F0F0, 0xFFFFFF
);
var k:int = −120;
var zArr:Array = new Array();

var myTimer:Timer = new Timer(1, 0);
myTimer.addEventListener(TimerEvent.TIMER, drawLine);
myTimer.start();

This time, the int data type is used in cases where numerical values are
integers, simply because int values consume a smaller memory footprint
than Number values. Similarly, image is set to an instance of the Sprite class,
rather than MovieClip, because Sprite is perfectly adequate—it supports
the necessary Drawing API—and it’s the smaller data type. In this case,
the timer mechanism is an instance of the Timer class.

3. Here’s the updated version of the drawLine() function. Update the existing
function to look like this:

function drawLine(evt:TimerEvent):void {
 var j:int = 0;
 var x:Number = 0;
 var y:Number = 0;
 var n:int = 0;
 var zAbs:int = 0;
 for (j = −240; j <= 100; j++) {
 x = 0;
 y = 0;
 n = 0;
 do {
 n++;
 zArr = f(x, y, j / 100, k / 100);
 x = zArr[0];
 y = zArr[1];
 zAbs = zArr[2];
 if (n >= 20) {
 break;
 }
 } while (zAbs <= 4);
 if (zAbs > 4) {
 image.graphics.lineStyle(1, colors[n], 100);
 image.graphics.moveTo(j, k - 1);
 image.graphics.lineTo(j, k);
 }
 }
 k++;
 if (k >= 0) {
 myTimer.stop();
 duplicate();
 }
}

Performance | 91

Not a whole lot changes, as you can see. The function now accepts a pa-
rameter, as required by the TimerEvent class, and its return value is changed
from Void to the lowercase void. Appropriate Number types are changed to
int, and the Drawing API is now routed through a Graphics instance, as
referenced by the Sprite.graphics property. Rather than
clearInterval(), the timer is halted by way of the Timer.stop() method.

4. Finally, here are the ActionScript 3.0 versions of the f() and
duplicate() functions. Update the last blocks of code to look like this:

function f(x:Number, y:Number, a:Number, b:Number):Array {
 var rPart:Number = x * x - y * y + a;
 var iPart:Number = 2 * x * y + b;
 return new Array(rPart, iPart, rPart * rPart + iPart * iPart);
}
function duplicate():void {
 var bmpData:BitmapData = new BitmapData(340, 120, true, 0x000000);
 var mat:Matrix = new Matrix(1, 0, 0, 1, 240, 120);
 bmpData.draw(image, mat);
 var bmp:Bitmap = new Bitmap(bmpData);
 bmp.scaleY = −1;
 bmp.y = 238;
 addChild(bmp);
 swapChildren(bmp, image);
 trace((getTimer() - startTime) / 1000);
}

The f() function doesn’t change at all. Since ActionScript 3.0 no longer
supports the equivalent of MovieClip.duplicateMovieClip(), the
duplicate() function requires a few more lines than its ActionScript 2.0
counterpart. Here, the BitmapData class is used to take a snapshot of the
pixels drawn into the image sprite. These pixels are drawn into a Bitmap
object, and then flipped to provide the mirror image. Because the line
segments are drawn into the upper-left quadrant of the sprite—that is, left
of 0 in the x-axis and above 0 in the y-axis—a matrix object is used to
reposition the pixels into the lower-right quadrant (240 pixels over and
120 pixels down).

5. Select Control→Test Movie to see the increased rendering speed. As an
added bonus, note that rendering occurs even more quickly when the
image sprite is added to the display list only after the Mandelbrot calcula-
tions are made. Add two slashes to line 6 of Step 2 to comment it out:

var image:Sprite = new Sprite();
image.x = 240;
image.y = 120;
//addChild(image);

and then insert the same line into the duplicate() function of Step 4.

92 | Chapter 4: Exploring the Benefits of Using ActionScript 3.0

function duplicate():void {
 var bmpData:BitmapData = new BitmapData(340, 120);
 var mat:Matrix = new Matrix(1, 0, 0, 1, 240, 120);
 bmpData.draw(image, mat);
 var bmp:Bitmap = new Bitmap(bmpData);
 bmp.scaleY = −1;
 bmp.y = 238;
 addChild(image);
 addChild(bmp);
 swapChildren(bmp, image);
 trace((getTimer() - startTime) / 1000);
}

This step can shave off an additional second from the total elapsed time.
Thanks again to Keith Gladstien, PhD, MD (http://www.kglad.com/) for
input.

Efficiency
Imagine a warehouse with numerous and greatly varied products: everything
from Fabergé eggs to collectible trading cards to garden rakes. In order to make
shipping very easy, the warehouse manager has stocked a limited range of
cardboard box sizes; in fact, all their dimensions are the same, one size fits all.
As hoped for, everything is indeed easy to pack. The rakes fit into the boxes
just fine, and so do the eggs and cards—it’s just that anything smaller than a
rake also needs several bucketsful of Styrofoam peanuts. For small shipments,
this arrangement isn’t so bad, but the trading cards happen to belong to a
collectible franchise named Pokémon. One of these days—and the phenom-
enon will seem to explode overnight—several thousand customers are going
to order individually wrapped packs of cards within the span of one week.
When that happens, a vein will start to throb on the manager’s forehead. Ob-
viously, the packaging for these cards will take up more room than necessary
—considerably more—and it may not be possible to fit all the required boxes
on the shipping dock.

Thanks mainly to the addition of runtime types in ActionScript 3.0, Flash
Players 9 and 10 can generally avoid this sort of scenario. To continue the
somewhat loose analogy, you can think of runtime types as a well-organized
assortment of custom-fitted cardboard boxes. Because the boxes aren’t any
larger than they need to be, storing them becomes a relatively efficient en-
deavor. In the real world, AVM2 is capable of requesting, or allocating, only
the system memory it needs to create the objects called for by the various
classes used in your code. Not only that, but the hierarchy of native Action-
Script 3.0 classes has been considerably reorganized to take better advantage
of a tiered system of complexity.

Efficiency | 93

http://www.kglad.com/

A quick look at the MovieClip class illustrates this principle, though the same
notion applies to most other ActionScript 3.0 classes. First, consider the
ActionScript 2.0 implementation of MovieClip. Consulting the ActionScript
2.0 Language Reference in the onboard documentation, you’ll find that the
family tree for the MovieClip class is remarkably small. This class inherits from
the Object class alone (Figure 4-3), which is the base class upon which all
classes are established.

This characteristic means the ActionScript 2.0 version of the MovieClip class
carries practically all its own baggage. As often as not, this makes it heavier
than it needs to be from the standpoint of system resources. If you want a visual
object whose movement you can program around the stage, MovieClip is gen-
erally the most appropriate choice in ActionScript 2.0. All you really need for
this sort of movement is a pair of properties that relate to the movie clip’s x
and y coordinates. The ActionScript 2.0 MovieClip class delivers the _x and
_y properties right to your fingertips—but you also get a number of properties
you don’t really need in this situation, such as _currentframe and _total
frames (you won’t be using the movie clip’s timeline), in addition to timeline-
related methods like play(), stop(), gotoAndPlay(), and so on. Even worse,
the ActionScript 2.0 version of MovieClip includes a method for loading ex-
ternal assets (loadMovie()), and several more for drawing shapes (lineStyle(),

Figure 4-3. In ActionScript 2.0, the MovieClip class isn’t compartmentalized

94 | Chapter 4: Exploring the Benefits of Using ActionScript 3.0

moveTo(), lineTo(), curveTo(), and others). These additional class members
add to the overall weight of every MovieClip instance, even if you don’t use
them.

In ActionScript 3.0, the MovieClip class acquires most of its functionality from
the Sprite class (Figure 4-4). In fact, movie clips are sprites; they’re just sprites
with timelines. In turn, the Sprite class inherits most of its functionality from
DisplayObjectContainer, which inherits most of its features from
InteractiveObject, then DisplayObject, EventDispatcher, and finally Object—
each type getting progressively simpler toward the parent side and taking up
a smaller footprint of system memory.

If you don’t need the overhead of a timeline, use Sprite for your programmatic
animation. It has x and y properties, but isn’t encumbered by currentFrame or
totalFrames properties, nor by the aforementioned timeline- or drawing-
related methods. The Sprite class still lets you draw shapes—which means
the ActionScript 3.0 MovieClip class does as well—but this set of functionality
is deferred to the new Graphics class, and is associated with a given sprite or
movie clip by way of its graphics property. Loading duties are separated alto-
gether, and are the new Loader class’s responsibility.

Figure 4-4. In ActionScript 3.0, the efficiently tiered family tree of the MovieClip class lets
you control the size of the object you need

Efficiency | 95

By strongly typing your variables and function return values in ActionScript
3.0, you give explicit instructions to the compiler to pack its goods into the
sort of cardboard boxes that fit like a glove. Strong typing requires nothing
more than a colon (:) and data type name.

var intergerValue:int = 1;
var nonIntegerValue:Number = 1.2;
var aSprite:Sprite = new Sprite();

var someFunction():void {
 // function code here
}

It’s true that variables and function return values could be strongly typed in
ActionScript 2.0, and doing so was useful: the practice facilitated authoring
tool assistance like code hinting, and provided more comprehensive error
warnings at compile time—but compile time is where the benefits ended. Once
a SWF file is produced, AVM1 loses any remembrance of an object’s type.
AVM2 remembers.

Consistency
Ironically, one of ActionScript 3.0’s most elegant aspects is a potential stum-
bling block to longtime Flash developers, only because, as the adage goes, old
habits die hard. Flash pioneers will remember when on() and onClipEvent()
were not only the most popular ways to handle button and movie clip events,
they were the only way. If you wanted to repeatedly trigger a custom function
or simply a handful of instructions, you could associate your intentions with,
say, the enterFrame event of a particular movie clip symbol. You could select
the symbol, open the Actions panel—which was then temporarily linked to
that symbol—and then type something like this:

onClipEvent(enterFrame) {
 // responsive code here
}

If you wanted to handle another event, you would use the same
onClipEvent() function (the same formatting), in cahoots with that other
event. Both event handlers were attached to the object in question:

onClipEvent(enterFrame) {
 // responsive code here
}
onClipEvent(release) {
 // mouse-related code here
}

When Flash MX hit the scene a few years later, the same basic concept took
on a new alternative procedure, which was optional. In this other approach,

96 | Chapter 4: Exploring the Benefits of Using ActionScript 3.0

event handling code could be attached to frames instead of directly to objects.
This meant the desired recipient of your instructions—a movie clip, button,
or the like—now needed an instance name, otherwise ActionScript would have
no idea which object you were talking to. Instance names were usually provi-
ded by way of the Property inspector, but could also be determined by code.
In the new format, dot notation provided the necessary association (here, the
instance name is myClip):

myClip.onEnterFrame = function():Void {
 // responsive code here, inside
 // an anonymous function literal
}
myClip.onRelease = aNamedCustomFunction;
function aNamedCustomFunction():Void {
 // mouse-related code here, inside
 // a named function definition
}

The dot notation approach brought with it a number of benefits that often
went unnoticed.

• Finer grained control

• 11 button events, versus the previous 8

• 18 movie clip events, versus the previous 9

• Easier maintenance, because code could be stored in a single frame, rather
than scattered among potentially dozens of objects

• More flexibility, as events could be assigned, deleted, and changed
programmatically

As new versions of Flash Player continued to bring new functionality, two
additional event handling mechanisms entered the developer’s lexicon: an
addListener() method, used by such classes as Stage, MovieClipLoader, Key,
and Mouse, and an addEventListener() method, used by ActionScript 2.0 com-
ponents. Both of these new formats worked in a similar way, requiring an
Object instance to act as liaison between the object in question and the meth-
ods defined by its class. The two could even share the same listener object:

var listener:Object = new Object();
listener.onKeyUp = keyUpHandler;
listener.click = clickHandler;

function keyUpHandler():Void {
 // keyboard-related code here
}
function clickHandler(evt:Object):Void {
 // button component code here
}

Consistency | 97

Key.addListener(listener);
myComponentButton.addEventListener("click", listener);

Because these additions happened over subsequent releases of the Flash au-
thoring tool, longtime developers could add them piecemeal to their skill sets,
but you can easily see how a newcomer might be mystified by so many choices.

In ActionScript 3.0, event handling has very nearly been consolidated into a
single consistent approach, similar to the one used by ActionScript 2.0 com-
ponents. In fact, the only exception happens with the NetStream class, and even
then, only when you need to respond to video metadata or cue points. The
exception still makes use of an Object instance, and shares many elements of
the listener mechanisms in ActionScript 2.0 (exception cases in bold):

var nc:NetConnection = new NetConnection();
nc.connect(null);
var ns:NetStream = new NetStream(nc);
videoPlayer.attachNetStream(ns);

var listener:Object = new Object();
listener.onMetaData = metaDataHandler;
listener.onCuePoint = cuePointHandler;

function metaDataHandler(evt:Object):void {
 // meta data code here
}
function cuePointHandler(evt:Object):void {
 // cue point code here
}

ns.client = listener;
ns.play("someVideoFile.flv");

Everything else uses the new EventDispatcher.addEventListener() method,
which is inherited by all classes capable of dispatching events. Inheritance
provides this event listening method in the same way it provides Sprite meth-
ods (and other functionality) to the MovieClip class, as touched on in the sec-
tion entitled “Efficiency” on page 93 of this chapter. Events of all of these
objects—movie clips, buttons, components, text fields, the stage, sounds,
programmatic tweens, instances of the new Timer class, and more—are han-
dled the same way far and wide.

// Assuming instances of MovieClip, TextField, and Tween ...
myClip.addEventListener(Event.ENTER_FRAME, enterFrameHandler);
myTextField.addEventListener(Event.SCROLL, scrollHandler);
myTween.addEventListener(TweenEvent.MOTION_FINISH,¬
 motionFinishHandler);

function enterFrameHandler(evt:Event):void {
 // responsive code here
}

98 | Chapter 4: Exploring the Benefits of Using ActionScript 3.0

function scrollHandler(evt:Event):void {
 // scroll-related code here
}
function motionFinishHandler(evt:TweenEvent):void {
 // tween-related code here
}

For additional examples of ActionScript 3.0 event handling,
see the section “Creating DragParrot, a Sample Class File” on
page 33 in Chapter 2; the section “ActionScript Can No Lon-
ger Be Attached to Objects” on page 117 in Chapter 5; and
the practical examples in Part III and Part IV of this book.

In addition to bringing together a consistent event handling model, Action-
Script 3.0 unifies the approach employed to instantiate objects. In previous
versions of ActionScript, you could easily create, for example, an array, string,
or generic Object instance. The new statement neatly took care of it:

var a:Array = new Array();
var s:String = new String();
var o:Object = new Object();

Of course, some objects, such as these, had optional shortcut constructors
(and still do):

var a:Array = [];
var s:String = "";
var o:Object = {};

but in either case, the construction of the desired object was a tidy process.

For other ActionScript 2.0 classes, notably MovieClip and TextField, it wasn’t
so graceful. Instantiation of these objects required an existing MovieClip in-
stance (often the main timeline, often referred to with this), to use the
createEmptyMovieClip() and createTextField() methods:

var mc:MovieClip = this.createEmptyMovieClip("myClip", ¬
 this.getNextHighestDepth());
var tf:TextField = this.createTextField("myTextField", ¬
 this.getNextHighestDepth(), 0, 0, 100, 22);

As these objects were created, the MovieClip instance on which these methods
were invoked became the immediate parent of the new movie clip or text field.
In the code shown, this parent is the main timeline, via this, but any movie
clip instance name would do, in which case the referenced movie clip would
become the new object’s parent. Once it was established, you couldn’t change
this parent/child relationship.

Consistency | 99

In ActionScript 3.0, even movie clips and text fields can be constructed with
the new statement:

var mc:MovieClip = new MovieClip();
var tf:TextField = new TextField();

At this point, the mc and tf variables are bona fide instances of their respective
classes. The movie clip can be drawn into with the Drawing API, positioned
and animated over time. You can assign the text field plain text or HTML
formatted text, and so on. When either object is ready for display, it can be
added to the display list of any descendant of the DisplayObjectContainer class,
which includes the main timeline, movie clips, sprites, and any class that sup-
ports the addChild() method. In this way, you can reparent visual objects in
ActionScript 3.0 as often as you like.

For more information on the display list concept, see the prac-
tical examples in Part IV of this book.

Standards and Portability Among Other Technologies
If your Flash development has led you into parallel work with HTML/
XHTML, CSS, and JavaScript, you may already be familiar with the benefits
of adherence to standards. The stakes in web development differ from those
in Flash, because web developers have to make sure their content displays and
behaves nearly the same—or, ideally, exactly the same—across a potentially
sizeable number of browsers. This can be a sublimely challenging task, but the
effort is reduced when browser manufacturers acknowledge and uphold the
specifications on which these languages and technologies are based.

In contrast, Flash Player provides, for the most part, a single consistent runtime
across any browser or operating system that supports the ActiveX control or
plug-in. In the world of Flash development, the discipline involved in adhering
to standards has already been taken care of. Adobe has leveraged this cohesive
approach to let Flash developers step into the realms of Flex and AIR with
relative ease. How? Because all of these tools rely on the same ActionScript 3.0
language, even though Flex and AIR support additional features.

Flex (http://www.adobe.com/products/flex/) is a highly productive, free open
source platform for building and maintaining expressive web applications. The
Flex framework, which includes dozens of visual layout components, user in-
terface components, and data classes for connection to databases and web
services, is written in ActionScript 3.0. This means that even though the Flex
API contains new functionality, it operates with the same principles of per-

100 | Chapter 4: Exploring the Benefits of Using ActionScript 3.0

http://www.adobe.com/products/flex/

formance, efficiency, and consistency demonstrated earlier in this chapter.
Though its output overlaps with the sort of applications traditionally associ-
ated with Java or the .NET platform, Flex runs on ActionScript 3.0. If your
interests lead you in the direction of Rich Internet Applications (RIAs), you’ll
find that your barrier to entry is significantly reduced when you choose Flex
as your path.

The Adobe Integrated Runtime (AIR) (http://www.adobe.com/products/air/)
lets Flash, Flex, and Dreamweaver developers use their existing skills to build
applications that deploy to the desktop. AIR integrates elements of the WebKit
browser engine (used by Safari), Flash Player 10, and Acrobat to provide a rich
environment for combining the benefits of traditional web technologies like
HTML, CSS, and JavaScript with the multimedia aspects of Flash and the PDF
file format. AIR also works with the SQLite database management system.
Even among these varied avenues, ActionScript 3.0 provides a familiar appa-
ratus for channeling the unique strengths of each into a unified user experience.

Standards and Portability Among Other Technologies | 101

http://www.adobe.com/products/air/

PART II

ActionScript and the Flash CS4
Authoring Tool

Part II explores using the new paradigms of ActionScript 3.0 as they pertain
to the Flash CS4 authoring tool. These chapters walk you through the Actions
panel, help you decide when to use frame scripts as opposed to class files, and
how to rethink the on()/onClipEvent() approach to event handling. You’ll
learn about the benefits of a document class and how to work with linkage
changes, and see examples of how to dynamically attach movie clips, bitmap
images, audio files, and fonts at runtime.

By the time you’re through, you’ll also be able to convert timeline animation
into ActionScript (and then manipulate and reuse that code); use, skin, and
style user interface components; work beyond the built-in component set, in-
cluding some of the missing data components; and troubleshoot your code in
the debugging workspace when things go awry.

Chapter 5, Creating and Working with Code

Chapter 6, Creating a Document Class

Chapter 7, Working with Library and Linkage Changes

Chapter 8, Copying Motion as ActionScript 3.0

Chapter 9, Using ActionScript 3.0 Components

Chapter 10, Making Up for a Reduced Component Set

Chapter 11, Debugging and Troubleshooting

CHAPTER 5

Creating and Working with Code

Chapter 2 introduced the idea that ActionScript can be associated with a FLA
file in more ways than one. Your approach is typically contingent on the com-
plexity of a project and the manner in which certain visual effects are achieved.
For example, you might be involved in a project that contains numerous time-
line animations—think in terms of an interactive corporate mascot, whose
responsiveness depends on a collection of canned manual tweens. This may
require at least some code in selected keyframes of the animated timeline(s) in
question. On the other hand, your project might consist of nothing more than
a custom video player, in which case every asset could appear inside a single
frame, and possibly be generated entirely with code. In this latter case, most
or all of your ActionScript might be stored outside the authoring tool
altogether.

In a nutshell, ActionScript 3.0 code can be placed in:

• Keyframes of a movie clip timeline, often the main timeline

• External code snippets, which are external text files with an .as extension,
formatted just like keyframe code and brought into a timeline with the
include directive

• Custom classes, which are also external text files with an .as extension,
but structured with the package definition and class definition keywords
and referenced by a timeline with the import directive

In ActionScript 2.0, you could also attach code directly to objects—not just
to keyframes, but to the “surface” of movie clip symbols, buttons, and com-
ponents—by way of the Actions panel or the Behaviors panel. ActionScript
3.0 no longer supports this ability. In fact, the Behaviors panel is disabled when
a FLA file’s publish settings are configured for ActionScript 3.0. The implica-
tions of this change are discussed in the section “Exploring New Features in
the Actions Panel and Script Windows,” later in this chapter.

105

Although you can use third-party script editors in conjunction with Flash CS3
Professional (see Chapter 2), the Actions panel is likely your most convenient
first stop when it comes to timeline code. This is true for the simple reason
that timeline code is physically attached to a FLA file’s keyframes, so its place-
ment requires the authoring tool regardless of where the code is created. For
relatively simple projects, it takes less effort to type your ActionScript directly
into the Actions panel than to continuously swap between the authoring tool
and another editor. If you find yourself getting cramped in the Actions panel,
especially in complex projects, that might be a nudge to consider moving your
code to external files, possibly formatting them as custom classes. An example
of this is shown in the section “Associating FLA Files to AS Files” in this
chapter.

Thinking in Terms of the Timeline
When you use the Actions panel, keep in mind that your code operates under
the auspices of a timeline metaphor, a workflow immediately familiar to Flash
designers and people who work with video editing software. During authoring,
the Timeline and Motion Editor provide a draggable playhead (Figure 5-1) that
manages the display of visual elements present in a given frame (that is, in a
given moment of time). As you drag the playhead manually along a timeline,
you can watch as each keyframe updates the visual display, often in conjunc-
tion with motion tweens and shape tweens. At runtime, a SWF file proceeds
in the same manner, executing ActionScript as the playhead enters any key-
frame that contains code.

Figure 5-1. The Timeline playhead triggers both code and display updates

Only the Timeline works in conjunction with the Actions
panel. The Motion Editor is strictly designed for visual
content.

106 | Chapter 5: Creating and Working with Code

In fact, ActionScript takes higher priority than visual updates. When Flash
Player encounters a keyframe, it first executes any ActionScript it finds, and
only then updates the display. This distinction is subtle, but important. Con-
sider the following example, in which a for loop is mistakenly used to update
the position of a movie clip with the instance name myClip:

// Incorrect code
for (var i:int = 0; i < 50; i++) {
 myClip.x += 2;
}

The expression inside this loop, myClip.x += 2, increments the x property of
myClip by 2 pixels on each turn. This may give the impression that myClip will
inch to the right in 2-pixel steps, traveling a total of 100 pixels over time, but
that isn’t what actually happens. In practice, the movie clip jumps immediately
to the right—the full distance. Why? When the playhead enters this frame,
Flash Player executes the for loop first, all in one go, and only then updates
the visual elements of the frame, including myClip. By the time that update
happens, the value of x has already been increased to 100.

To successfully animate this movement with ActionScript, you could use an
Event.ENTER_FRAME handler, which triggers its instructions every time the play-
head enters a frame. This action happens even when the playhead has been
halted with a stop() method (think of the playhead as an idling engine that
rotates even when the car is standing still).

myClip.addEventListener(Event.ENTER_FRAME, slideClip);

function slideClip(evt:Event):void {
 if (myClip.x < 100) {
 myClip.x += 2;
 } else {
 myClip.removeEventListener(Event.ENTER_FRAME, ¬
 slideClip);
 }
}

In this revision, the x property of myClip is incremented only once per frame
entry. The if statement removes the event listener, which has been triggering
slideClip(), when x reaches 100.

In another approach, you could use the Tween class and one of the many easing
classes located in the same fl.transitions package:

import fl.transitions.Tween;
import fl.transitions.easing.*;

var tw:Tween = new Tween(myClip, "x", Strong.easeInOut, ¬
 0, 100, 1.5, true);

Thinking in Terms of the Timeline | 107

This time, the related classes must be imported. The first line brings in
Tween, and the second line brings in all the classes of the easing package in one
swoop, thanks to the wildcard character (*): Regular, Strong, Elastic, Bounce,
Back, and None. A variable is declared—here, tw—and instructions are given
by way of a series of parameters. Again, myClip is moved along its x-axis, using
a combination strong ease in/ease out. The starting position is 0, and the des-
tination is 100. Here, the tween lasts 1.5 seconds (the final parameter, true,
interprets the previous parameter in terms of seconds, rather than frames).

Thanks to looping mechanisms like Event.ENTER_FRAME and Tween, a single
frame of ActionScript can perform animation that might otherwise span hun-
dreds or even thousands of frames. This can be a tremendous advantage, but
even so, certain scenarios demand an artist’s touch.

Figure 5-2 shows an interactive cartoon character, Grotto, created by Chris
Georgenes (http://mudbubble.com/). Grotto “sleeps” until the user “disturbs”
him by moving the mouse cursor over his massive form. If the user chooses
not to, the animation simply loops and Grotto slumbers on.

The required programming isn’t especially difficult, but it can become over-
complicated if forced into a single frame. Here, the movie clip’s instance name,
appropriately enough, is grotto:

grotto.addEventListener(Event.ENTER_FRAME, slumber);
function slumber(evt:Event):void {
 if (grotto.currentFrame == 129) {
 grotto.gotoAndPlay(1);
 }
 if (grotto.currentFrame == grotto.totalFrames) {
 grotto.stop();
 }
}

grotto.addEventListener(MouseEvent.MOUSE_OVER, wake);
function wake(evt:MouseEvent):void {
 grotto.gotoAndPlay(174);
}

Two event handlers run the show here. First, an Event.ENTER_FRAME handler
checks the MovieClip.currentFrame property of grotto to see if that movie clip’s
current frame equals 129, which happens to be a good place to loop the play-
head. If currentFrame indeed equals 129, grotto is instructed to play again from
frame 1 of its own timeline, which loops the sleeping sequence. Second, a
MouseEvent.MOUSE_OVER handler breaks out of this loop by sending grotto di-
rectly to frame 174, which leads to frames in which the monster opens his eyes.
Back in the Enter.ENTER_FRAME handler, if currentFrame equals the total number
of frames in that timeline—in other words, if the full animation has run its
course—grotto is instructed to stop.

108 | Chapter 5: Creating and Working with Code

http://mudbubble.com/

This code’s problem is that the Event.ENTER_FRAME handler incessantly triggers
the custom slumber() function. At a default frame rate of 24 frames per second
(fps), slumber() would be executed approximately every 42 milliseconds! As
it turns out, this particular FLA file has a frame rate of 30fps, which makes the
situation even worse. In spite of all this triggering, the value of currentFrame
meets the criteria for action on only two possible frames. Clearly, this code
isn’t as efficient or easy to work with as it could be!

Here’s another approach.

By adding a few short lines of code to keyframes in the grotto timeline, you can
drop the convoluted event handler altogether, leaving only the
MouseEvent.MOUSE_OVER handler:

grotto.addEventListener(MouseEvent.MOUSE_OVER, wake);
function wake(evt:MouseEvent):void {
 grotto.gotoAndPlay(174);
}

Figure 5-2. An interactive character responding to the mouse cursor (“Grotto” character
created by Chris Georgenes, http://mudbubble.com, used with permission)

Thinking in Terms of the Timeline | 109

http://mudbubble.com

That’s the same wake() function as before; no changes. Meanwhile, the func-
tionality previously managed by the Event.ENTER_FRAME handler is now provi-
ded by two effortless frame scripts in the grotto timeline:

// In frame 129 of the grotto movie clip:
gotoAndPlay(1);

// In frame 810 of the grotto movie clip:
stop();

To attach ActionScript to a desired frame, simply select that frame in the
Timeline, and then add a new keyframe (Insert→Timeline→Keyframe). With
the keyframe selected, open the Actions panel, and then start typing, as shown
in Figure 5-3. If the Actions panel is already open, it automatically updates to
point to the selected keyframe.

Figure 5-3. The selected frame determines where the Actions panel attaches its code
(“Grotto” character created by Chris Georgenes, http://mudbubble.com, used with
permission)

110 | Chapter 5: Creating and Working with Code

http://mudbubble.com

ActionScript can be attached to any keyframe of any layer, but
this practice often leads to confusion, as code may become
lost among potentially hundreds of keyframes and layers. As
a best practice, Adobe recommends that, when code is
present, you should place it in a dedicated scripts layer at the
top of any timeline. This action puts code keyframes in im-
mediate view. Most developers name this layer scripts or
actions, but the name doesn’t matter as long as it descriptively
distinguishes the layer.

Note that the lower-left corner of the Actions panel (Figure 5-4) offers a hier-
archical tree view of coded keyframes in the main timeline (Scene 1), as well
as coded keyframes in the timelines of movie clip symbols. In this case, only
one symbol exists (the animated character named Monster in the library—
grotto is the instance name), but additional symbols would be just as easy to
locate in this area. You can select frames either by clicking a keyframe of the
Timeline or, for quicker access, clicking one of the tree view nodes. At bottom-
center, a pushpin icon lets you open the scripts of more than one frame at a
time.

That discussion covers the basics of how to attach code to keyframes. The
actual writing of code happens in the Script pane on the right side, which is

Figure 5-4. A tree view in the lower left provides quick access to keyframe code

Thinking in Terms of the Timeline | 111

handier than ever thanks to a number of enhancements introduced in Flash
CS3 and still present in Flash CS4.

New Features in the Actions Panel and Script Windows
When a FLA file is configured for ActionScript 3.0, the Flash authoring tool
provides two interfaces for writing code: the Actions panel and Script win-
dows. You use the Actions panel, available under Window→Actions, for cre-
ating and editing code attached to timeline keyframes, as seen earlier in this
chapter.

Script windows are used for creating and editing code stored in external
ActionScript files. Just like FLA files, Script windows are displayed as tabbed
documents rather than in a panel. As Figure 5-5 shows, the selection of a Script
window temporarily disables authoring tool panels, which become active
again when a FLA file is selected. To open a Script window, select
File→New→ActionScript file, or open an existing ActionScript file.

The features of both the Actions panel and Script windows overlap consider-
ably. Flash professionals will already be familiar with the features carried over

Figure 5-5. Script windows, which edit external ActionScript file, are displayed as tabbed
documents

112 | Chapter 5: Creating and Working with Code

from previous versions of the authoring tool, but to cover the bases, the next
sections provide a brief overview of existing features before launching into the
new items.

Actions Panel
Figure 5-6 shows the Actions panel’s toolbar, whose buttons are described
from left to right.

• Add a New Item to the Script: Provides a list of the full ActionScript
3.0 application programming interface (API). Select and click to add prop-
erties, methods, and events to the current position of the cursor in the
Script pane.

• Find: Opens a Find and Replace dialog box.

• Insert a Target Path: Opens an Insert Target Path dialog box with a
tree view of targettable objects, such as movie clips, text fields, buttons,
and components, by instance name. Select the desired target, and then
click OK to add the target path to the current position of the cursor in the
Script pane.

• Check Syntax: Provides guidance for some—but not all—syntax er-
rors. This feature is not as thorough as the compiler errors, compiler
warnings, and runtime errors discussed in Chapter 11.

• Auto Format: Formats Actions panel code according to user prefer-
ences set using Edit→Preferences→Auto Format (Flash→Preferen-
ces→Auto Format). Erroneous code can’t be formatted, so this button acts
as a kind of secondary syntax checker.

• Show Code Hint: Displays a tooltip with expected parameters when
the cursor is positioned immediately after a method call’s first parenthesis.

• Debug Options: Adds and removes breakpoints, and clears all break-
points. Breakpoints are discussed in detail in Chapter 11.

• Show/Hide Toolbox: Shows and hides the Actions panel’s left side.

• Script Assist: Isn’t covered in this book, as the feature isn’t
especially useful with ActionScript 3.0.

• Help: Opens the onboard documentation in a browser.

Figure 5-6. The Actions panel toolbar

New Features in the Actions Panel and Script Windows | 113

The following is erroneous code which the Check Syntax
button failed to catch:

var num:int = 1;
var num:int = 2;

In ActionScript 3.0, variables can’t be declared more than
once in the same scope. If you run the syntax checker
against these two lines, you get a message saying, “This
script contains no errors,” which is misleading. The syn-
tax checker also misses capitalization errors, such as
tracE() or trAce(), and is dependable only in terms of
gross structural syntax. For confident testing, watch the
Compiler Errors panel during the compile process.

Collapsible code sections

As of Flash CS3, the Actions panel supports collapsible code sections, a prac-
tice known as code folding. This feature lets you temporarily condense one or
more lines of text into a stand-in button, which helps reduce clutter in long or
complex passages of code. The collapsed button displays the first few charac-
ters of the folded text for easy identification (see Figure 5-7). Line numbering
is properly accounted for. Hovering over the button causes a tooltip to display
a longer excerpt of the folded text, and double-clicking expands the code to
its original state. Collapsed sections can be nested, and are saved with the FLA
file, so they’re remembered when you close and reopen the authoring tool.

Figure 5-7. Collapsed code folds into a button you can easily expand

114 | Chapter 5: Creating and Working with Code

Figure 5-8. Selecting code displays a pair of minus (Windows) or arrow (Mac) icons

To collapse a section of code, use the mouse or arrow keys to select a number
of adjacent lines. A pair of minus icons (Windows) or arrow icons (Mac) appear
to the left of the selection (Figure 5-8). You have the following options for
collapsing the code:

• Click one of the minus or arrow icons.

• Click the Collapse Between Braces button in the Actions panel toolbar.

• Click the Collapse Section button in the Actions panel toolbar. Holding
Alt while clicking collapses code outside the selection.

• Right-click (Ctrl-click) the selection, and then choose one of the collapse-
related options:

• Collapse Between Braces doesn’t require a selection, and folds text be-
tween two curly braces ({}) when the cursor is positioned between such
braces.

• Collapse Selection folds the current selection.

• Collapse Outside Section folds everything but the current selection.

To expand a previously collapsed section of code, choose any of the
following:

• Double-click the folded text, which looks like a button.

New Features in the Actions Panel and Script Windows | 115

• Right-click (Ctrl-click), and then select one of the expand options.

• Click the Expand All button in the Actions panel toolbar.

Shortcuts for quickly adding and removing code comments

Now you can handle code commenting with a few clicks, rather than typing.
This may seem like a marginal benefit, like a sprinter who shaves his legs to
gain a few seconds, but every little bit helps. For every distraction cast aside,
you gain additional time and focus spent on actual coding.

Commenting lets you add instructional notes to your code that are ignored by
the compiler. You have two ways to comment. A line comment is designated
by two slashes (//) in a given line, and affects only the line in which it appears:

// This handles the NET_STATUS event ...
function statusHandler(evt:NetStatusEvent):void {
 if (evt.info.code == "NetStream.Play.Stop") {
 removeChild(vid); // Removes video from
 // the display list
 }
}

Note that a line comment can begin before or after executable code.

A block comment is also designated by a special character sequence, /* ...
*/, only this time, everything between those characters is affected:

/*
This handles the NET_STATUS event ...
function statusHandler(evt:NetStatusEvent):void {
 if (evt.info.code == "NetStream.Play.Stop") {
 removeChild(vid);
 }
}
*/

Developers often use both block and line comments during
troubleshooting to temporarily isolate regions of code.

You can certainly type these character sequences by hand, but using the new
shortcuts will save you time. To comment out a region of code, use the mouse
or arrow keys to select a number of adjacent lines. At this point, you have two
options, either of which will do:

• Right-click (Ctrl-click) the selection, and then choose one of the comment-
related options:

• Apply /* */ Comment wraps the selection in a block comment

116 | Chapter 5: Creating and Working with Code

• Apply // Comment precedes each line in the selection with double
slashes; if no selection is made, the double slashes appear wherever the
cursor is positioned

• Click the Apply block comment button or the Apply line comment
button in the Actions panel toolbar.

To uncomment a region of code, choose any of the following:

• Select the comment, right-click (Ctrl-click), and then choose Remove
Comment

• Click the Remove Comment button in the Actions panel’s toolbar.

Script Windows
Figure 5-9 shows a Script window’s toolbar. Of the buttons shown, every one
performs exactly as described in the section “Actions Panel.” The only differ-
ence is that Script windows don’t feature a Script Assist button. Instead, they
display a Target drop-down menu, which was introduced in Flash CS3.

Figure 5-9. A Script window toolbar

The Target drop-down list becomes active when one or more FLA files are
open in addition to the current script document. The drop-down list displays
each of the open FLA files and lets you specify which one should be compiled
in concert with the current script document (when using Control→Test Movie
or Debug→Debug Movie).

ActionScript Can No Longer Be Attached to Objects
In the earliest days of ActionScript, code could be attached directly to objects
in much the same way it can be attached to frames. You can’t attach code in
the same manner in ActionScript 3.0. Direct attachment to objects was made
possible by two functions, on() and onClipEvent(), which were supported as
recently as ActionScript 2.0. In fact, these functions are still available in Flash
CS4, but only when a FLA file’s publish settings are configured for versions of
ActionScript other than 3.0.

This change has a potentially significant impact on certain traditional Flash
developer workflows. For example, the Behaviors panel replies on the on() and
onClipEvent() functions for many of its behaviors. Because these functions are

New Features in the Actions Panel and Script Windows | 117

no longer supported, the Behaviors panel is disabled in FLA files that use the
language’s latest version.

If you were a fan of the Behaviors panel but find yourself wanting or needing
to work in ActionScript 3.0, keep your chin up! The secret to this panel is that
it’s nothing more than a ghostwriter. It writes ActionScript, and so can you.
Obviously, some uses of the Behaviors panel are more involved than others,
but here’s an investigative effort into reproducing some functionality by hand.

1. Create an ActionScript 3.0 FLA file. In the Timeline, rename the default
layer to information. Use the Text tool to create a static text field with a
paragraph of stand-in text, as shown in Figure 5-10.

2. Convert the text field to a movie clip symbol, and then give it the instance
name mcInfo in the Property inspector.

3. Double-click the movie clip to enter its timeline. Select frame 2 in the
timeline, and then add a keyframe. This action duplicates the text field in
frame 1. Update the text field in frame 2 with different stand-in text.

4. Select Edit→Edit Document to return to the main timeline. Add a new
layer, and then name it buttons. In the new layer, use one of the drawing
tools to draw a shape, and then convert the shape to a button symbol.
Drag a second instance of this button from the Library to the same new
layer, as shown in Figure 5-11.

If this were an ActionScript 2.0 FLA file, you could use the Behaviors panel
to attach a prewritten code template to each button, instructing it to dis-
play its corresponding text field by sending mcInfo to the relevant key-
frame. Instead, you’re going to see how easy it can be to write this sort of
ActionScript 3.0 by hand.

5. Use the Property inspector to give both button symbols an instance name.
For this demonstration, use btnLeft and btnRight. Add a new layer to the
main timeline for your code. Select frame 1 of this new layer, and then
enter the following code into the Actions panel:

mcInfo.stop();

btnLeft.addEventListener(MouseEvent.CLICK, leftHandler);
function leftHandler(evt:MouseEvent):void {
 mcInfo.gotoAndStop(1);
}

btnRight.addEventListener(MouseEvent.CLICK, rightHandler);
function rightHandler(evt:MouseEvent):void {
 mcInfo.gotoAndStop(2);
}

118 | Chapter 5: Creating and Working with Code

The first line tells mcInfo to stop where it is (frame 1), which displays the
first text field. The remaining two code blocks associate mouse-related
event handlers to the button symbols, using the same structure seen else-
where throughout this chapter. Button symbols are defined by the
SimpleButton class, which, like MovieClip, inherits functionality from the
EventDispatcher class, including addEventListener(). This method part-
ners an event with a custom function, as shown. Because this code appears
in the same frame as the assets to which it refers, the playhead has no
problem wiring up all the parts when it enters this frame during playback.

For more information on the new event handling model,
see Chapter 4, and the practical examples in Part III and
Part IV of this book.

6. Select Control→Test Movie to verify that the buttons correctly update
mcInfo.

Figure 5-10. The beginnings of a FLA file that will be wired up with behaviors

New Features in the Actions Panel and Script Windows | 119

Figure 5-11. Dragging a second button into position

Setting ActionScript Preferences
Working with ActionScript in the Flash authoring tool is a customizable ex-
perience. You have several places to set your preferences, discussed in the
following sections. Some of these preferences pertain to the appearance of code
in the Actions panel and Script windows, while others affect the way Action-
Script is compiled.

Preferences Dialog Box
Select Edit→Preferences (Flash→Preferences) to open the authoring tool’s gen-
eral Preferences dialog box. This dialog box influences Flash CS4 across the
board, from ActionScript to the drawing tools, text characteristics, and how
graphic assets are imported from other applications.

ActionScript

In the Preferences dialog box’s Category list area, select ActionScript to review
and edit ActionScript preferences (Figure 5-12).

120 | Chapter 5: Creating and Working with Code

Most of these settings affect the appearance of code in the Actions panel and
Script windows, including font face and size, the tab size for optional
automatic indentation, and configurable syntax colors for optional code col-
oring. You can toggle code hinting here, and delay tooltips for code hinting in
quarter-second increments from 0 to 4 seconds.

The ActionScript 3.0 Settings button manages source and library path settings
for built-in and custom class packages, as well as SWC files (components built
in Flash or Flex) that bundle ActionScript and/or visual assets. Clicking this
button opens a dialog box named ActionScript 3.0 Advanced Settings, with
four areas to specify file paths (Figure 5-13).

Figure 5-12. ActionScript preferences

Setting ActionScript Preferences | 121

Figure 5-13. The ActionScript 3.0 Advanced Settings dialog box manages Source and
Library path settings

• Flex SDK Path: Only necessary when a FLA file collaborates with assets
from the Flex framework. Without such collaboration, Flash documents
ignore this field. By default, this path points to a file named flex.swc,
installed with Flash CS4, but you can change this path to a different lo-
cation of the Flex Software Development Kit (SDK)—such as the install
folder for Flex Builder 3, for example—if you prefer.

• Source Path: In Flash CS3, this setting was formerly configured with two
paths: a dot (.) indicating the FLA file’s current folder, and $(AppConfig)/
ActionScript 3.0/Classes, which pointed to the built-in, or intrinsic, classes
native to ActionScript 3.0. In Flash CS4, these paths are located in a per-
FLA dialog box discussed in the “Flash Publish Settings” on page 124 of
this chapter. Because these paths are now located elsewhere, this setting
is empty in this dialog box. You can optionally add paths to custom

122 | Chapter 5: Creating and Working with Code

classes, including third-party code distributed as AS files, by clicking the
 Add New Path button, and then clicking the Browse to Path button.

• Library Path: Developers can distribute their ActionScript as AS files or
SWC files. The difference is primarily that the SWC format can hold nu-
merous files—including the subfolders that represent package structures
—in a single archive, like ZIP or SIT files. This provides a degree of pro-
tection because a SWC’s contents are self-contained. If you want FLA files
to use third-party code stored in SWC files, click the Add New Path
button, and then click the Browse to SWC File button to point to a
SWC file or the Browse to Path button to point to a folder of SWC files.

• External Library Path: This setting follows the same concept as Library
Path, but for SWC files that contain visual or audio assets for use as run-
time shared libraries. This provides developers a way to re-use elements
stored in a central location, which is useful in team settings.

The Source Path setting, also known as a classpath setting, tells the compiler
where to look for corresponding AS files when classes are referenced in
ActionScript 3.0 code. If you write a custom class file (touched on later in this
chapter), you can safely compile when your AS file is located in the same folder
as the FLA file that uses it. You’ll soon realize, however, how handy it is to
keep a full library of custom class files within reach. This is where the Source
Path setting becomes useful.

In Windows, for example, you might keep a folder named ActionScript 3.0
Classes inside your My Documents folder. If you have a library of custom sound
classes arranged in a package called com.loudmouth.sound, it means your
ActionScript 3.0 Classes folder contains a subfolder named com, which in turn
contains nested subfolders loudmouth and sound, which finally contain the
custom class files in question. Adding the location of My Documents\Action
Script 3.0 Classes to your Source Path setting lets you reference these custom
classes in the same manner as built-in classes. For example, to reference any
class inside the com.loudmouth.sound package, you could use the import direc-
tive like this: import com.loudmouth.sound.*. After this line, classes in the
custom package can be referenced by class name alone, just like the built-in
MovieClip class.

Auto Format

In the Preferences dialog box’s Category list area, select Auto Format to review
and edit formatting preferences for ActionScript (Figure 5-14).

A handful of checkboxes let you specify your styling choices for ActionScript
code. A text area gives you a visual preview.

Setting ActionScript Preferences | 123

The Auto Format feature is best suited for frame scripts. Using
it with external class files often formats that code incorrectly,
sometimes rendering it unusable.

Flash Publish Settings
With an ActionScript 3.0 FLA file open, select File→Publish Set-
tings→Flash→Settings to open a FLA-file–specific equivalent to the Action-
Script 3.0 Advanced Settings dialog box (Figure 5-15) discussed earlier. This
dialog box offers one of the two locations to specify a FLA file’s document
class (see Chapter 6 for details), as well as source and library path settings that
may be pertinent to only the document at hand. Notice the dot (.) entry in the
Source Path tab. The Library path tab contains the default path $(AppConfig)/
ActionScript 3.0/libs, which points to the Flash CS4 intrinsic files for Action-
Script 3.0. You can specify additional classpaths and SWC files as described
in the “ActionScript” subsection of the “Preferences Dialog Box” on page
120 earlier in this chapter.

By default, when classes are compiled into a SWF file, these classes are expor-
ted into frame 1. In most cases this is appropriate, but advanced developers
may choose to override this setting by changing the frame number displayed.

Figure 5-14. Auto Format preferences for ActionScript

124 | Chapter 5: Creating and Working with Code

You can toggle Strict mode and Warnings mode here. These two affect the
volume of guidance sent to the Compiler Errors and Output panels during
compiling (see Chapter 11 for details).

The “Automatically declare stage instances” setting pertains to class files that
refer to assets in a companion FLA file—assets that have already been given
instance names on the stage. Technically, these instance names should be de-
clared as properties in the class definition, but because they already exist as
instance names on the stage, declaring them as properties can cause a conflict
at compile time. You can omit these declarations in the class file as long as this
checkbox is selected.

The Dialect drop-down list determines which flavor of ActionScript the com-
piler uses. As discussed in Chapter 1, ActionScript 3.0 is an implementation
of the ECMA-262 specification. As it happens, ActionScript is stricter than the
specification requires. While ECMAScript allows for prototype-based inheri-
tance, the ActionScript dialect does not. Advanced developers who wish to

Figure 5-15. Preferences specific to the current FLA file

Setting ActionScript Preferences | 125

make use of this feature may set the dialect to ECMAScript, but the recom-
mended default is ActionScript 3.0, which lets SWF files perform more effi-
ciently due to the omission of prototype-related infrastructure.

Associating FLA Files with AS Files
At the beginning of this chapter, ActionScript was described as something that
can be written in external files as well as keyframes. When stored outside a
FLA file, ActionScript is saved as a simple text file with an .as extension, such
as commonFunctions.as. In complex projects especially, it often makes sense
to store ActionScript in external files. You can organize script files into code
libraries for common re-use, easily searched, and edited with any simple text
editor or a Script window of the Flash authoring tool. For an overview on a
selection of external script editors, see Chapter 2.

When a FLA file is published, its ActionScript is “baked in”
to the compiled SWF file. This is roughly analogous to the way
the layers in Photoshop PSD file are no longer available in an
exported JPG. It is important to understand that FLA files
must be republished when external code is updated.

External ActionScript can be referenced by a FLA file in four ways: as a snippet,
brought into Flash with the include directive; as a class, referenced by the
timeline with the import directive and instantiated in keyframe code; as a
document class, which requires no code in the FLA file at all; and finally, as a
linkage class. These last two options are covered in Chapter 6 and Chap-
ter 7, respectively.

To see how AS files can improve workflow efficiency, consider the following
keyframe ActionScript, which displays and loops the video content shown in
Figure 5-16.

var vid:Video = new Video(320, 240);
addChild(vid);

var nc:NetConnection = new NetConnection();
nc.connect(null);

var ns:NetStream = new NetStream(nc);
vid.attachNetStream(ns);

var listener:Object = new Object();
listener.onMetaData = function(evt:Object):void {};
ns.client = listener;

ns.addEventListener(NetStatusEvent.NET_STATUS, ¬
 statusHandler);

126 | Chapter 5: Creating and Working with Code

function statusHandler(evt:NetStatusEvent):void {
 if (evt.info.code == "NetStream.Play.Stop") {
 ns.seek(0);
 }
}

ns.play("Peter_Pringle_Theremin.flv");

Figure 5-16. Keyframe coded video content (performance by Peter Pringle, http://
PeterPringle.com, used with permission)

If you want a series of videos, each as a separate SWF file in its own HTML
document, you can copy the original FLA file as often as necessary. Only the
final line would need to be updated, in order to point to a different FLV file.
This approach works in a pinch, but if the functionality changes—for example,
the video should now rewind and pause, rather than loop—additional code
must be revised in each separate FLA file. To avoid this, you can begin to
abstract your code—that is, lift the reusable portion for general application—
by consolidating the repetitive elements into a single script file. This way, the
whole series of FLA files can then look to the same external code for
instructions.

Code Snippets
The Actions panel gives you an export feature that facilitates the creation of
code snippets. Just click the panel’s menu, as shown in Figure 5-17, and then
select Export Script. This action opens a Save As dialog box that lets you save
the code content of the selected frame as an AS file.

Associating FLA Files with AS Files | 127

http://PeterPringle.com
http://PeterPringle.com

To use this external file, delete the existing keyframe code—all but the last
line, in this case—and then use the include directive:

include "VideoPlayback_scr.as";
ns.play("Peter_Pringle_Theremin.flv");

Because the AS and FLA files are in the same folder, only the script’s file name
is necessary. For files in separate locations, include the full file path between
the quotation marks after the include directive.

In ActionScript 2.0, the include directive was preceded by the
pound sign—#include—and the line that contained it could
not end with a semicolon. In ActionScript 3.0, the pound sign
is gone and the semicolon is optional, but recommended.

At this point, only the two lines shown are necessary in each separate FLA file,
where the second line will be updated to point to the corresponding FLV file.
At compile time, the include directive effectively pastes the content of Video
Playback_scr.as into the keyframe, as if it had never been exported. The benefit
to your workflow is that any change made to the AS file is now updated au-
tomatically in each companion FLA file as it’s recompiled.

Figure 5-17. Exporting keyframe code to an external script file

128 | Chapter 5: Creating and Working with Code

Classes
Custom classes potentially give you an even greater sense of abstraction. Just
as built-in classes define native objects like MovieClip, TextField, Array, and
the like, custom classes define custom objects that can be just as useful. The
structure of classes requires a package and class declaration. Class properties
are declared near the top, and import directives are required for every addi-
tional class referenced in the code. Class code is saved as simple text, with the
same file name as the class itself. In this case, the file name would be
VideoPlayback.as because the class itself is called VideoPlayback.

package {

 import flash.display.MovieClip;
 import flash.events.NetStatusEvent;
 import flash.media.Video;
 import flash.net.NetConnection;
 import flash.net.NetStream;

 public class VideoPlayback {

 private var _vid:Video;
 private var _nc:NetConnection;
 private var _ns:NetStream;
 private var _listener:Object;

 public function VideoPlayback(timeline:MovieClip, ¬
 file:String) {
 init(timeline, file);
 }
 private function init(timeline:MovieClip, ¬
 file:String):void {
 _vid = new Video(320, 240);
 timeline.addChild(_vid);

 _nc = new NetConnection();
 _nc.connect(null);

 _ns = new NetStream(_nc);
 _vid.attachNetStream(_ns);

 _listener = new Object();
 _listener.onMetaData = function(¬
 evt:Object):void {};
 _ns.client = _listener;

 _ns.addEventListener(NetStatusEvent.NET_STATUS, ¬
 statusHandler);

 _ns.play(file);
 }
 private function statusHandler(¬

Associating FLA Files with AS Files | 129

 evt:NetStatusEvent):void {
 if (evt.info.code == "NetStream.Play.Stop") {
 _ns.seek(0);
 }
 }

 }
}

To use this class, delete all of the existing keyframe code and use the import
directive instead:

import VideoPlayback;
new VideoPlayback(this, "Peter_Pringle_Theremin.flv");

Note the lack of quotation marks and file extension: you’re importing a class
this time, not a text file. After this line, the custom class can be instantiated
with the new keyword, just like any built-in class. This includes the possibility
of parameters, as shown. If the AS and FLA files are in the same folder, the
import directive is optional, provided that the FLA file’s Source Path setting
includes the dot (.) entry discussed in the “Flash Publish Settings” on page
124 of this chapter.

At this point, each separate FLA file needs only the two lines shown, where a
custom VideoPlayback object manages the video content when you give it a
target timeline and the file path of an FLV file. Any change to the class is
automatically updated for each companion FLA file as it’s recompiled.

Using Script Assist
The concept of Script Assist has existed in many versions of the Flash authoring
tool, and has evolved over the years. Prior to Adobe’s acquisition of Macro-
media, Flash MX developers encountered a similar feature in an Actions panel
preference setting for Normal Mode versus Expert Mode. Think of Script
Assist as a built-in form of on-the-job training that can potentially expand your
overall understanding of the ActionScript 3.0 API. Just be advised, Script Assist
can also be a very tedious tool, so its usefulness depends largely on your per-
sonal learning preferences. This feature temporarily sets the Actions panel’s
Script pane as read-only, and gives you an alternative approach to adding,
removing, and editing code.

Consider a FLA file with three movie clip symbols already on the stage. Each
symbol has a unique instance name: mcA, mcB, and mcC. In this hypothetical
scenario, you would like to program the second symbol, mcB, to respond to a
mouse click that sends the current webpage to a new URL. In order to use
Script Assist in this endeavor, it helps to mentally enter into a research-oriented

130 | Chapter 5: Creating and Working with Code

state of mind. Why? Because using Script Assist is a bit like forgoing the high-
way (typing is faster!) in favor of numerous back roads. You’ll need a map.

These three symbols are movie clips, which means they’re instances of the
MovieClip class. Your first stop, then, may very well be the onboard docu-
mentation, in order to consult the MovieClip class entry of the ActionScript 3.0
Language and Components Reference (Figure 5-18). Classes define objects,
and you can effectively think of class entries as Owner’s Manuals for the object
in question. Entries typically cover one or more of the following categories,
depending on the functionality of the class: properties, which describe the ob-
ject’s characteristics; methods, which describe what the object can do; and
events, which describe what the object can react to.

In this scenario, you’d like to program mcB to respond to a mouse click, so
you scroll the Events heading to see if this goal is even possible with movie
clips. Under the Events heading, make sure to click the Show Inherited Events
hyperlink to unveil events that the MovieClip class inherits from other classes
in its family tree. Sure enough, supported events include click, mouseUp, and
other mouse-related responses.

In order to associate an event with a function, you need mcB to actually do
something; namely, to make the event/function association. The things an

Figure 5-18. The onboard documentation, displaying the MovieClip class entry

Using Script Assist | 131

object can do are called methods, so you scroll to the Public Methods heading
and, this time, click the Show Inherited Methods hyperlink. The MovieClip
class supports an addEventListener() method inherited from the
EventDispatcher class. Click the EventDispatcher hyperlink to learn that this
class belongs to the flash.events package. Now it’s time to use this informa-
tion.

When selected, the Actions panel’s Script Assist button changes the Script
pane as shown in Figure 5-19. The area at the bottom is no longer editable by
direct typing, so the addEventListener() method must be assigned to mcB with
the “Add a new item to the script” button. Remember, movie clips inherit
from EventDispatcher, which resides in the flash.events package. Clicking
the blue plus icon leads you to the desired method by way of a series of sub-
menus: flash.events→EventDispatcher→Methods→addEventListener.

Selecting this method updates the Script pane as shown in Figure 5-20. At this
point, clicking into the Object input field activates the “Insert a target path”
button, which you can use to build a reference to mcB by way of a dialog box
(you could alternately type mcB directly into the Object input field). Note that
the flash.events.EventDispatcher package has been automatically imported.
Strictly speaking, this isn’t necessary for every class referenced in keyframe
code, but its presence doesn’t hurt anything.

Figure 5-19. Script Assist changes the Actions panel’s Script pane

132 | Chapter 5: Creating and Working with Code

Each input field indicates the particular sort of input it needs. The type and
listener fields, for example, represent the first two parameters required by the
addEventListener() method: a string and a function, respectively. The re-
maining parameters are set between brackets—for example, [useCapture]—
which tells you the remaining parameters are optional.

As you researched earlier in the onboard documentation, movie clips support
a click event, which is displayed as a hyperlink in the documentation. Clicking
that hyperlink shows that the click event belongs to the MouseEvent class, and
should be referenced as the CLICK constant. Now you can type
MouseEvent.CLICK into the type input field. As you do, Script Assist continues
to build the addEventListener() expression in the non-editable bottom region
of the Script pane. In this way, you may continue to supply parameters, such
as a custom clickHandler reference in the listener field (Figure 5-21).

Sometimes Script Assist is, frankly, not worth the effort. To actually write the
clickHandler() function you just referenced, you would have to click the blue
plus icon again to add a new expression. This time, the choice would be Lan-
guage Elements→Statements, Keywords & Directives→definition key-
word→function, which is arguably unintuitive, even for a seasoned program-
mer. After choosing “function”, you’d see the Script pane update as shown in
Figure 5-22, and you could again fill out the input fields in the Script pane’s
upper half.

Figure 5-20. Using the “Insert a target path” button to build an object reference

Using Script Assist | 133

You might just find it easier to deselect the Script Assist button at this point,
and then type in the remaining code by hand:

function clickHandler(evt:MouseEvent):void {
 var url:URLRequest = new URLRequest("http://www.domain.com/");
 navigateToURL(url);
}

The choice is yours.

Figure 5-21. Building expressions with Script Assist

134 | Chapter 5: Creating and Working with Code

Figure 5-22. Configuring a custom function with Script Assist

Using Script Assist | 135

CHAPTER 6

Creating a Document Class

Flash CS4 Professional lets you associate a document class with your FLA file.
The document class is an optional class definition that controls the main time-
line, and is constructed when the main timeline initializes. If you choose not
to provide your own document class, then Flash generates one for you in
documents configured for ActionScript 3.0. The choice is yours, which means
you can migrate to this new feature at your own pace. As a note of encour-
agement, you won’t find anything unusual in FLA files with automatically
generated document classes. The main timeline operates and feels the same as
it used to. You can still put frame scripts where you like; it’s just that the main
timeline has taken on a more formalized structure behind the scenes.

In FLA files with a custom document class, the main timeline can be program-
med to offer additional functionality in a way that feels built-in. You could,
for example, create a document class with a pauseFrame() method, something
that pauses the timeline for a given number of seconds, then lets it continue.
(This suggestion is demonstrated later in this chapter.) Thanks to the docu-
ment class, using the new pauseFrame() method becomes as hassle-free as using
stop() or gotoAndPlay(): just type it into whatever frame script meets your
needs. This addition to the Flash workflow is useful in team environments
where designer and developer disciplines may not overlap, because it allows
for complete separation of assets from code. It hasn’t always been so easy.

Shortly after the introduction of ActionScript 2.0 in Flash MX 2004 (version
7 of the authoring tool), developers began to experiment with bona fide class
files. This was the introduction of external text files capable of defining new
data types—flexible, portable, custom objects that could be used in the same
way as familiar native objects, such as Array, Date, and Math. It wasn’t long
before a new breed of Flash developer emerged: adventurous coders whose
every goal involved the reduction of the main timeline to a single frame. From
a programming standpoint, the traditional jumble of nested timeline code had
been artfully curtailed into the minimalist beauty of a Zen garden. This was a

137

completely new way to program in Flash, and could justly be described as
revolutionary.

The best part was, designers who chose to could happily continue writing
frame scripts where needed. Meanwhile, developers could pursue their own
passions away from timelines and drawing tools. For developers coming from
other backgrounds, such as Java or C#, the new paradigm made Flash more
comfortable, because it came closer to matching their own workflow in which
an application of any complexity begins with a single entry point, a class usu-
ally named Main.

In spite of such improvements, these ActionScript trailblazers had to halt one
step shy of their ultimate ambition. Until Flash CS3, you couldn’t associate
the main timeline directly with an entry point class file. That first and only
keyframe had to have, at minimum, a single line of code to kick start the ap-
plication. Something like this:

var application:Main = new Main();

Or even simpler:

new Main();

This single line of code may not seem like much of a hindrance, but keep in
mind, Flash is a unique authoring environment in that it appeals equally to
both artists and coders. Some Flash users prefer not to touch ActionScript at
all, even if it’s only one line. Now they don’t have to, because every last shred
of code can be saved in a simple text file external to the FLA file.

You have two ways to attach a document class to a FLA file: the Property
inspector and the Publish Settings dialog. Here’s a look at both.

1. Create a new ActionScript 3.0 FLA file, and then save it as
SampleDocClass.fla.

2. Create a new ActionScript file, and then save it as MainMovie.as in the
same folder as SampleDocClass.fla.

3. Type the following code in MainMovie.as:

package {
 import flash.display.Sprite;
 import flash.events.Event;
 public class MainMovie extends Sprite {
 var sp:Sprite;
 // constructor
 public function MainMovie() {
 init();
 }
 private function init():void {
 sp = new Sprite();
 sp.graphics.beginFill(0x0099FF, 1);

138 | Chapter 6: Creating a Document Class

 sp.graphics.drawRect(−50,−50,100,100);
 sp.graphics.endFill();
 sp.x = 100;
 sp.y = 100;
 addChild(sp);
 addEventListener(Event.ENTER_FRAME, rotateSquare);
 }
 private function rotateSquare(event:Event):void {
 sp.rotation += 5;
 }
 }
}

4. Save your changes, and then return to SampleDocClass.fla. To prove
there’s nothing up anyone’s sleeve, select Control→Test Movie, and note
the blank SWF file. The document class has not yet been assigned. Close
the SWF file.

5. In your work area, click the Stage or pasteboard. This action updates the
Property inspector to reflect the properties of the FLA document itself.
Open the Property inspector, and then type the name of the document
class, MainMovie, into the Document class field, as shown in Figure 6-1.
Note that the .as file extension is omitted: this isn’t the name of the file,
but rather of the class itself.

6. Select Control→Test Movie again. This time, you see a rotating blue square
—without any ActionScript actually in the FLA file.

7. Close the SWF file, and then, in the Property inspector, click the Profile
area’s Edit button to open the Publish Settings dialog box (you can also
open this box by selecting File→Publish Settings). Select the Flash tab, and
then click the Settings button next to the Script drop-down list. This action
opens the Advanced ActionScript 3.0 Settings dialog, as shown in Fig-
ure 6-2.

Notice that the Document class field is already filled in, because you pre-
viously entered it in the Property inspector. If you change or remove it
here, it’s also changed or removed in the Property inspector, and vice
versa.

8. Click the green checkmark next to the Document class field. You see an
alert box that verifies the location of MainMovie.as. Click the pencil icon,
and Flash switches the active document from SampleDocClass.fla to Main
Movie.as, opening it if necessary. The Property inspector also features a
pencil icon that does the same thing.

In the previous example, the FLA and AS files are located in the same folder.
Generally, this arrangement makes the most sense for document classes,
though strictly speaking you can place a document class wherever you like.
For example, in a team environment, you may have a number of commonly

Creating a Document Class | 139

used code libraries arranged into packages. Packages are a logical organization
of classes, arranged in hierarchical folders that are often stored in a centralized
location. Hypothetically, your company’s in-house classes might be referenced
in packages such as com.companyname.utilies, com.companyname.graphics, and
the like.

If your document class resides in a package structure, you must provide the
fully qualified namespace to that document class, in either the Class field of
the Property inspector or the Advanced ActionScript 3.0 Settings dialog box.
If MainMovie.as was located inside a folder named companyname, located in
turn inside a folder named com, the full namespace would be com.company
name.MainMovie. In most cases, however, the document class corresponds to
the specific requirements of the FLA file, and therefore resides in the same
folder for easy access. The document class may very well depend on any num-
ber of additional classes, including shared code libraries in other packages. In
order to make use of those classes, the document class must reference them
with import directives as needed.

Figure 6-1. Assigning a document class with the Property inspector

140 | Chapter 6: Creating a Document Class

For more information on the import directive, see the “Major
Syntax and Structure Changes” on page 77 in Chapter 3 and
the “Associating FLA Files with AS Files” on page 126 in
Chapter 5.

A document class must extend either the Sprite class or MovieClip class, de-
pending on the application’s needs. If the document class controls the main
timeline with MovieClip methods such as gotoAndPlay() or gotoAndStop(), or
if the main timeline has frame scripts—in other words, if the main timeline
needs to behave like a movie clip—the document class must extend MovieClip.

In the MainMovie.as example, the only methods used, addChild() and
addEventListener(), are supported by the smaller Sprite class, so extending
Sprite is sufficient. Because MovieClip extends Sprite, movie clip objects ben-
efit from all the functionality available to sprite objects, but have the additional
overhead of a timeline. In order to save memory and possibly increase per-

Figure 6-2. Assigning a document class by way of the Publish Settings dialog box

Creating a Document Class | 141

formance, it’s best to have your document class extend as small a base class as
possible.

For an example that requires MovieClip, consider the following document
class, CompanyTemplate, which could prove useful in a workflow for banner ad
designers. One of the perennial questions on the Adobe support forums in-
volves temporarily pausing, and then resuming the main timeline. While you
can certainly add filler keyframes to extend the timeline, this manual approach
quickly becomes tedious when numerous pauses are needed, especially in FLA
files with high frame rates. To make matters worse, revisions can potentially
mean the painstaking removal of extra frames, which can be difficult in time-
lines with dozens of layers. Wouldn’t it be great if something like a
pauseFrame() method were built into the language? A document class makes
it so:

package {
 import flash.display.MovieClip;
 import flash.events.TimerEvent;
 import flash.utils.Timer;
 public class CompanyTemplate extends MovieClip {
 private var _timer:Timer;
 // constructor
 public function CompanyTemplate() {
 _timer = new Timer(1000, 1);
 _timer.addEventListener(TimerEvent.TIMER, ¬
 resumeFrame);
 }
 // Pause frame
 public function pauseFrame(seconds:Number):void {
 stop();
 _timer.delay = seconds * 1000;
 _timer.start();
 }
 // Resume frame
 private function resumeFrame(evt:TimerEvent):void {
 play();
 }
 }
}

This class’s methods, pauseFrame() and resumeFrame(), employ the stop() and
play() methods of the MovieClip class, which means CompanyTemplate must
extend MovieClip in order to go about its business.

A Timer instance is declared as the private _timer property, which is then in-
stantiated in the constructor function and associated with the resumeFrame()
method. The pauseFrame() method is conveniently called from any number of
frame scripts in main timeline. It halts the timeline via MovieClip.stop(), and
then sets the Timer.delay property of _timer to a value in seconds provided by
the frame script. Because the delay property expects milliseconds, the incom-

142 | Chapter 6: Creating a Document Class

ing seconds parameter is multiplied by 1,000. At this point, _timer is told to
begin its work, which is to eventually call resumeFrame()—but all this com-
plexity is neatly tucked away for designers who simply want to pause the main
timeline with a simple line of code.

There’s a reason why the _timer property is preceded by an
underscore. By popular convention, many developers set pri-
vate properties apart by the using this punctuation. This was
a source of potential conflict in ActionScript 2.0, because
many built-in properties formerly featured underscores for
unrelated reasons. Their removal in ActionScript 3.0 elimi-
nates this confusion.

To use this document class, save it as CompanyTemplate.as, associate it with
a FLA file as described earlier, and then add a keyframe where desired (Fig-
ure 6-3).

Use the Actions panel and enter, for example, pauseFrame(5);, which pauses
the chosen frame for 5 seconds, and then resumes. Because the
CompanyTemplate class is associated with the main timeline—in fact, is the main

Figure 6-3. Preparing to use a document class method in a frame script

Creating a Document Class | 143

timeline at runtime—the pauseFrame() method executes as naturally as stop(),
play(), or any other MovieClip method.

Company-wide technical policies of any stripe can be managed in this way for
whole teams of designers/developers, who needn’t be bothered with the un-
derlying mechanics of the custom functionality. As policies and requirements
change, the document class can be updated without interrupting the workflow
of the team members who use it. Because the document class imports other
classes as needed, the complexity of its custom features isn’t tied to a single
class file.

144 | Chapter 6: Creating a Document Class

CHAPTER 7

Working with Library and Linkage
Changes

Like its forerunner, ActionScript 3.0 supports the attachment of library assets
at runtime, but the mechanics have changed. The only class methods that now
contain the word “attach” relate to connecting the SWF file to an external
device, such as NetStream.attachCamera(), which lets the user transmit web-
cam input. You don’t find familiar methods like MovieClip.attachMovie() and
Sound.attachSound() anywhere, so how can you access the library now at run-
time? The answer’s gratifyingly elegant, and even in its simple approach, Ac-
tionScript 3.0 gives you more elaborate options than before.

Linkages Now Reference Classes
Prior to ActionScript 3.0, you could optionally assign library assets a linkage
identifier in the Library panel. This procedure provided a unique label for the
chosen asset, so that you could single it out at runtime when needed, and pull
it to the stage. Linkage identifiers are still possible in Flash CS4 Professional
when a FLA file is configured for an older version of ActionScript. To access
an asset’s linkage properties, right-click (Ctrl-click) the asset as shown in Fig-
ure 7-1, and then select Properties.

Selecting Properties opens the Symbol Properties dialog box, whose Linkage
area is initially the same for documents configured for any version of Action-
Script. The Export for ActionScript checkbox is enabled, but nothing else in
that area is enabled (Figure 7-2).

145

The difference arrives when you select that Export for ActionScript checkbox.
In ActionScript 2.0 documents, the Identifier field is enabled and automatically
populated with the selected asset’s library name (Figure 7-3). The Class field
is enabled for optional association with a custom class file—you don’t need
this for garden variety attaching—and the Base class field is disabled, because
it applies only to ActionScript 3.0. Finally, the Export in first frame checkbox
is enabled and automatically selected.

The identifier name is technically unrelated to the asset’s li-
brary name, and you can change it to another name, if desired.

ActionScript 2.0 presents numerous ways to attach assets at runtime, but the
variety isn’t always a blessing. Too many choices can make the syntax hard to
remember. The MovieClip and Sound classes, for example, support
attachMovie() and attachSound() methods, respectively, to attach movie clips
and audio files from the library. Image files, such as JPEGs, GIFs, and PNGs,
require the BitmapData.loadBitmap() method. Fonts are referenced by linkage

Figure 7-1. Right-click (Ctrl-click) an asset to access its linkage properties

146 | Chapter 7: Working with Library and Linkage Changes

identifier in instances of TextFormat or StyleSheet. Oddly, button symbols
can’t be attached unless converted to movie clips.

In contrast, ActionScript 3.0 unifies these mechanisms into a single approach,
and supports every sort of asset a library can hold, other than graphic symbols.
In an ActionScript 3.0 FLA file, checking Export for ActionScript enables a
different set of input fields in the Symbol Properties dialog box, as shown in
Figure 7-4.

This time, the linkage Identifier field is disabled and the asset’s name has au-
tomatically been supplied for the Class field instead. The Base class field is
enabled and automatically populated with an appropriate related class (this
bottle asset happens to be a movie clip symbol, and the base class is set to the
fully qualified package flash.display.MovieClip).

This configuration seems to indicate that ActionScript 3.0 linkage requires a
custom class. In truth, it does; but the authoring tool lends a hand by writing
this class for you. If you click OK at this point, then you see an alert that tells
you as much (Figure 7-5). Select the “Don’t warn me again” checkbox if you

Figure 7-2. The initial state of the Symbol Properties dialog box

Linkages Now Reference Classes | 147

prefer not to see this warning every time you supply linkage properties to a
library asset. Click OK to acknowledge the alert.

In the FLA file illustrated, the asset in question is a drawing of a half-submerged
bottle, which has been converted to a movie clip symbol. The library name of
this asset is “bottle,” which provides the default class name. When the SWF
file is compiled, a custom bottle class is written on your behalf that extends
MovieClip, which means you can “attach” the bottle asset by instantiating it
and adding it to the display list. For example, you could declare a variable
named asset, strongly type it as bottle, and set it to a new instance of the
bottle class like this:

var asset:bottle = new bottle();

Because the bottle class extends MovieClip, it supports all the features defined
by that class, including x, y, width, and height properties. To center this asset,
you could use the following two new lines:

Figure 7-3. Linkage properties in ActionScript 1.0 and 2.0 documents

148 | Chapter 7: Working with Library and Linkage Changes

var asset:bottle = new bottle();
asset.x = (stage.stageWidth / 2) − (asset.width / 2);
asset.y = (stage.stageHeight / 2) − (asset.height / 2);

Figure 7-4. Linkage properties in ActionScript 3.0 documents

Figure 7-5. The authoring tool gives a warning before writing the linkage class

Linkages Now Reference Classes | 149

Keep in mind that, like any visual object in ActionScript 3.0, the bottle instance
must be added to the display list in order to be seen (shown in bold):

var asset:bottle = new bottle();
asset.x = (stage.stageWidth / 2) − (asset.width / 2);
asset.y = (stage.stageHeight / 2) − (asset.height / 2);
addChild(asset);

Now, the SWF file shows the attached movie clip symbol (Figure 7-6).

Figure 7-6. A library asset attached at runtime

Naming Classes
By longstanding convention, class names begin with a capital letter. If the class
name is composed of more than one word, this convention is applied to each
word and spaces are removed, which is why, for example, “movie clip” be-
comes MovieClip. Though perfectly acceptable from a technical standpoint,
advanced programmers may cringe at a class named bottle, so to stay consis-
tent with recommended best practices, you may want to rename your linkage
classes accordingly. In this case, the change would be Bottle, and the instan-
tiation would changes as follows:

var asset:Bottle = new Bottle();

If your asset’s library name happens to contain spaces—for example, “floating
bottle”—the authoring tool removes those spaces for you, suggesting

150 | Chapter 7: Working with Library and Linkage Changes

floatingbottle as your class name, in which case the manual change to
FloatingBottle not only defers to convention but also makes the class name
easier to read.

In addition to spaces, many other characters are not allowed in class names.
Like variables, class names can’t begin with a number or any punctuation other
than an underscore (_) or dollar sign ($). If your library asset happens to include
invalid characters, you see the warning shown in Figure 7-7 when you click
OK in the Symbol Properties dialog box.

Figure 7-7. Class names must contain valid characters

Specifying a Base Class
In most cases, you can stick with the base class supplied automatically for you
in the Base class field of the Symbol Properties dialog box. The authoring tool
is smart enough to recognize the file format of the associated asset and, for
example, suggests the following base classes for various types of assets:

• flash.display.MovieClip: movie clip symbol

• flash.display.SimpleButton: button symbol

• flash.display.BitmapData: image files (JPEG, GIF, PNG, BMP, TIFF, and
so on)

• flash.media.Sound: audio files (MP3, WAV, AIFF, and so on)

• flash.text.Font: font files

In the case of images and audio, Flash supports more file
formats for importing than it does for the loading of ex-
ternal files.

If a movie clip symbol contains only one frame and no nested multiframe as-
sets, then it effectively meets the criteria of a sprite, and you may change its
base class accordingly (Figure 7-8). By extending the Sprite class, your asset
avoids the slight memory overhead of the MovieClip class.

Linkages Now Reference Classes | 151

Writing a Custom Class
If you like, you can write your own class to provide additional functionality
for an attached asset. Custom classes must extend the same base class
displayed in the Symbol Properties dialog box.

To make the submerged bottle drift back and forth, for example, you could
write something like the custom FloatingBottle class that follows, which ex-
tends Sprite:

package {
 import flash.display.Sprite;
 import flash.events.Event;
 public class FloatingBottle extends Sprite {
 private var _driftCounter:Number;
 // constructor
 public function FloatingBottle() {
 _driftCounter = 0;
 addEventListener(Event.ENTER_FRAME, drift);
 }
 private function drift(evt:Event):void {
 _driftCounter += 0.12;

Figure 7-8. Simple, one-frame movie clip symbols may be configured to extend Sprite

152 | Chapter 7: Working with Library and Linkage Changes

 this.x += Math.cos(_driftCounter) * 2;
 }
 }
}

In this case, the Class field in the Symbol Properties dialog box must be set to
FloatingBottle and the Base class must be set to flash.display.Sprite, as
shown in Figure 7-9.

Figure 7-9. Custom classes are entered by hand

The actual class file, FloatingBottle.as, must appear in same folder as the FLA
file if no package is provided in the Class field. If your class file exists elsewhere,
be sure to include its package information in the Symbol Properties dialog box.

For more information on packages, see the section “Importing
and Packages” on page 78 in Chapter 3 and Figure 5-12 in
Chapter 5.

To verify that the custom class is available, in the Symbol Properties dialog
box, click the green checkmark button next to the Class field. Doing so gives

Linkages Now Reference Classes | 153

you a message that tells where the class was found or that one will be auto-
matically generated upon export. The pencil button opens the associated class
file in a Script window of the authoring tool (Figure 7-10). No warning is given
for custom classes when you click the OK button, because the authoring tool
doesn’t have to write a class for you.

Figure 7-10. The pencil button next to the Class field opens the associated class file

The instantiation of assets based on custom classes is no different from those
with automatically generated classes. The following lines attach the same bot-
tle library asset, positioning it slightly lower than the center of the stage. This
time, the bottle drifts back and forth because a frame loop repeatedly executes
the drift() method of the FloatingBottle class.

var fb:FloatingBottle = new FloatingBottle();
fb.x = (stage.stageWidth / 2) – (fb.width / 2);
fb.y = ((stage.stageHeight / 2) – (fb.height / 2)) + 50;
addChild(fb);

Recognizing the Associated Class
Because each type of asset represents its own class, instantiation must follow
the rules that normally pertain to that class. A seagull photo imported into the

154 | Chapter 7: Working with Library and Linkage Changes

library as seagull.png represents the BitmapData class. Assuming a default (au-
tomatically written) class is set as Seagull in the Symbol Properties dialog box,
the asset can be added to the stage in conjunction with the Bitmap class, as is
true of any BitmapData instance:

var sg:Seagull = new Seagull(150, 286);
var bmp:Bitmap = new Bitmap(sg);
addChild(bmp);

The BitmapData constructor function requires a width and height, here ob-
tained from the Bitmap Properties dialog box for this asset. Right-click (Ctrl-
click) an asset in the library, and then select Properties to open this dialog box.
Notice, in Figure 7-11, that linkage properties are also available from this di-
alog box.

Figure 7-11. Bitmap dimensions can be obtained from the Bitmap Properties dialog box
(seagull photo by Patrick Nijhuis, used with permission)

In this case, the bmp variable points to an instance of the Bitmap class, which
features x and width properties, just like movie clips. To position the image

Linkages Now Reference Classes | 155

before adding it to the display list, simply configure the desired properties (new
code in bold).

var sg:Seagull = new Seagull(150, 286);
var bmp:Bitmap = new Bitmap(sg);
bmp.x = stage.stageWidth - bmp.width;
addChild(bmp);

An audio file imported into the library as waves.mp3 represents the Sound class.
Assuming a default (automatically written) class is set as Waves in the Symbol
Properties dialog box, the asset can be instantiated the same as any Sound
instance:

var wv:Waves = new Waves();
wv.play();

With FloatingBottle, Seagull, and Waves attached to the SWF file at runtime,
the SWF looks like Figure 7-12. (You’ll just have to trust that the bottle’s
drifting, and roaring ocean waves are audible.)

Figure 7-12. A SWF file with dynamically attached assets (seagull photo by Patrick Nijhuis,
used with permission)

Attaching Fonts
One of the benefits of designing in Flash, as opposed to traditional HTML, is
that SWF files can embed fonts. While you don’t need ActionScript to use

156 | Chapter 7: Working with Library and Linkage Changes

embedded fonts, you can certainly instantiate text fields dynamically and for-
mat them with instances of the TextFormat or StyleSheet classes, which, in
turn, can reference fonts stored in the library.

To embed a font and make it available to ActionScript 3.0, use the following
steps:

1. Create a new FLA file, and, inside the Library panel, right-click (Ctrl-
click), and then select New Font, as shown in Figure 7-13. You can also
make this selection from the panel menu in the upper right (just below the
X that closes the panel).

Figure 7-13. Adding a font to the library

This opens a Font Symbol Properties dialog box (Figure 7-14) that lets you
select an installed font and give it a name. The name you give can differ
from the font’s actual name; in fact, because different versions of the font
(bold, italic, and so on) must be included as separate assets, you may find
it useful to provide a name that indicates the style used. The content of
the Name field becomes the asset’s library name. If you click the Advanced

Linkages Now Reference Classes | 157

button, you can already assign linkage information in this step; otherwise,
proceed to Step 2.

Figure 7-14. Importing a font to the library

When including font variants, make sure to select the
desired variant in the Style drop-down. Faux variants are
often available—such as Faux Bold, shown—when the
actual variant is not installed on the computer that pub-
lishes the SWF file. Bitmap text refers to bitmapped fonts,
which are not composed of vector shapes. Most fonts are
vector-based, and as such scale cleanly. By choosing Bit-
map text, you rasterize vector font outlines, which means
they do not scale cleanly. The Size field pertains only to
bitmapped fonts, so it makes no difference what value it
reads for vector fonts.

2. Once imported, the font appears in the library with a representative “A”
icon. Right-click (Ctrl-click) the asset, and then choose Properties, just as
when assigning linkage to any other asset. In the Font Symbol Properties
dialog box, click the Advanced button if necessary. Select Export for
ActionScript, and then provide a meaningful class name, such as
GentiumNormal, as shown in Figure 7-15. Verify that the base class is
flash.text.Font. Click OK to exit the dialog box. Embedding is complete!

3. Select frame 1 in the main timeline, and then type the following Action-
Script into the Actions panel:

var gentium:GentiumNormal = new GentiumNormal();

var fmt:TextFormat = new TextFormat();
fmt.font = gentium.fontName;
fmt.size = 32;

An arbitrarily named variable, gentium, is declared and set to an instance
of the GentiumNormal class defined in the Font Symbol Properties dialog

158 | Chapter 7: Working with Library and Linkage Changes

box in Step 2. Remember, this linkage class extends Font, so the gentium
object supports all the functionality defined by the Font class. Next, an-
other variable, fmt, is set to an instance of the TextFormat class. The op-
erative line is where the font property of the TextFormat instance (fmt) is
set to the fontName property of the gentium instance.

Figure 7-15. Providing a linkage class to a font

4. To use this formatting object with text field, add the following code after
the existing ActionScript:

var myTextField:TextField = new TextField();
myTextField.autoSize = "left";
myTextField.embedFonts = true;
myTextField.defaultTextFormat = fmt;
myTextField.text = "Lorem ipsum dolor sit amet."
addChild(myTextField);

A third variable, myTextField, is declared and set to an instance of the
TextField class. The operative lines show the embedFonts property set to
true and the defaultTextFormat property set to the TextFormat instance
(fmt) created in Step 3. The TextField class also supports a
setTextFormat() method to format text already displayed in a text field,

Linkages Now Reference Classes | 159

but the defaultTextFormat property sets the default formatting. The
setTextFormat() method works like this:

regularText.text = "Lorem ipsum dolor sit amet."
regularText.setTextFormat(fmt);

and can be constrained to individual characters with additional
parameters.

Gentium is an elegant, effectively open source typeface
designed by Victor Gaultney and freely released under
the SIL Open Font License (http://scripts.sil.org/OFL).
Files for Windows, Mac, and Linux are available for
download at http://scripts.sil.org/Gentium_download and
http://scripts.sil.org/Gentium_basic.

5. Alternatively, you can format text using Cascading Style Sheets (CSS)
markup, either stored in an external CSS file or defined directly in
ActionScript. Add the following new lines after the existing code:

var css:StyleSheet = new StyleSheet();
css.setStyle("p", {fontFamily:gentium.fontName, fontSize:32});
css.setStyle("a", {textDecoration:"underline"});

Here, an arbitrarily named variable, css, is declared and set to an instance
of the StyleSheet class. In the next two lines, the StyleSheet.setStyle()
method is invoked on css to declare two new styles: a p element selector,
which affects all <p> HTML elements, and an a element selector, which
affects all <a> HTML elements. (The HTML in this example refers to a
text field, rather than the HTML document that would theoretically em-
bed this SWF file.)

The setStyle() method accepts two parameters: a string representing the
element to stylize, and an object to define the style’s properties. In this
case, the object is declared with curly braces ({}) as a shortcut to bypass
the expression new Object(). The fontFamily property is set to
gentium.fontName, just as the TextFormat.font property was set in Step 3.

The StyleSheet class is especially useful for formatting
hyperlinks, but it supports only a small subset of the ac-
tual CSS specification, just as Flash text fields support
only a small subset of the HTML specification. See the
StyleSheet class entry in the ActionScript 3.0 Language
and Components Reference for full details.

160 | Chapter 7: Working with Library and Linkage Changes

http://scripts.sil.org/OFL
http://scripts.sil.org/Gentium_download
http://scripts.sil.org/Gentium_basic

6. Here’s a second text field to illustrate use of the StyleSheet instance. Add
the following code after the existing ActionScript:

var webText:TextField = new TextField();
webText.autoSize = "left";
webText.embedFonts = true;
webText.styleSheet = css;
webText.htmlText = "<p>Lorem ipsum dolor ¬
 sit amet.</p>";
webText.y = 52;
addChild(webText);

This time, the text field’s styleSheet property is set to the css instance
created in Step 5, and its htmlText property is set to an HTML-formatted
string, including <p> and <a> elements.

7. Select Control→Test Movie to see both text fields display a message with
the embedded Gentium font (Figure 7-16).

Figure 7-16. An embedded font in simple and HTML-formatted text

Linkages Now Reference Classes | 161

CHAPTER 8

Copying Motion as ActionScript 3.0

Flash CS4 Professional features an interesting tool, introduced in Flash CS3,
that helps bridge the gap between programmed and timeline-based animation.
Available from the Timeline panel, this feature facilitates collaboration be-
tween designers and developers by converting timeline tweens and keyframe
settings into ActionScript 3.0 code, and sometimes a flexible XML-based for-
mat used by the new Animator class. The ActionScript involved is generated
automatically. This feature lets a designer use traditional animation techni-
ques, complete with motion guides and easing, to provide sophisticated mo-
tion templates that a developer can harness to program animation for any
number of additional objects, even in separate FLA files.

Copying Motion
Imagine a project in which three photos are each required to respond visually
to a mouse click. The photos are expected to start small, and then increase in
size and rotate slightly while easing to a stop. Ideally, this motion should in-
clude a bit of blur along the y-axis. The developer assigned to this project is
perfectly comfortable writing the necessary ActionScript, but doesn’t have a
stylistic sense of how the motion should ultimately be conveyed. Conversely,
the designer on this project is thoroughly comfortable finessing the motion,
but doesn’t know the first thing about code. How can these team members
combine their efforts?

The clear answer is to make use of the authoring tool’s Copy Motion as
ActionScript 3.0 feature, which can capture the following characteristics of a
motion tween:

• Position

• Scale

• Skew

163

• Rotation

• Transformation point

• Color

• Blend mode

• Orientation to path

• Scale

• Cache as bitmap setting

• Frame labels

• Motion guides

• Custom easing

• Filters

Flash CS4 now gives you two distinct tweening models. The new approach,
which works in conjunction with the new Motion Editor panel, generates
property arrays of motion tween data on a frame-by-frame basis. The old ap-
proach—familiar to longtime Flash users and now known as a classic tween—
translates keyframe data alone into an XML format that’s less dense, relatively
speaking, and easier to modify by direct code manipulation.

Because the Copy Motion as ActionScript 3.0 feature is a marriage of timeline-
and code-based tweening, this chapter pays tribute to the wedding rhyme
“something old, something new,” and picks the best of both worlds to achieve
its goal.

In this imaginary team setting, the designer gets the project rolling—for start-
ers, with the new tweening model—and then hands off the motion data to the
developer. You can follow along by playing both roles.

1. In a new ActionScript 3.0 FLA file, use the Rectangle tool to draw an
approximately 300 × 400 pixel rectangle on the stage.

2. Convert the rectangle to a movie clip symbol named standin, with its reg-
istration point in the center, and then position it just above the lower
middle edge of the stage. Use the Free Transform tool to resize the movie
clip to approximately 25 percent of its actual size (Figure 8-1).

3. In the Timeline, select frame 20, and then add a new frame (Insert→Time-
line→Frame) to produce a span of frames. Flash’s new tweening model
creates property keyframes for you. Right-click (Ctrl-click) anywhere in-
side the span of frames, and then select Create Motion Tween. This action
sets the current layer apart as a Motion Tween layer, so you can take ad-
vantage of the new Motion Editor panel to configure tween characteristics.

164 | Chapter 8: Copying Motion as ActionScript 3.0

4. Select frame 20. This step indicates your intent to apply changes to that
frame. Now select the movie clip, and then use the Free Transform tool
to resize the movie clip’s dimensions to approximately 80 percent. Make
sure to rotate the rectangle as described in the hypothetical project re-
quirements (for example, apply a 15-degree rotation) and reposition the
movie clip up toward the top of the stage.

5. Open the Motion Editor panel by clicking its tab or selecting Win-
dow→Motion Editor. Note the three hot text values along the bottom-left
corner (Figure 8-2). Hover over these to see a tooltip of their names: Graph
Size, Expanded Graph Size, and Viewable Frames. These hot text values
adjust the settings of the property graphs inside the Motion Editor panel.
Click and hold over the number for Viewable Frames. While holding down
the mouse button, slide the mouse left and right to adjust the number. As
you do, note that the number of visible frames in the Motion Editor panel’s
graphs update to match. Set the Viewable Frames value to 20, to show the
full number of frames in your tween span.

6. Scrub the playhead—that is, drag the playhead back and forth—to assess
your work. As you do, note that a yellow diamond appears in the graphs’
Keyframe column when the playhead encounters a property keyframe.

Figure 8-1. Preparing to create a motion template

Copying Motion | 165

This is an Add or Remove Keyframe button, which does what its name
describes. Drag the playhead to frame 1.

7. Scroll vertically if necessary to locate the Filters. Click the Add Color,
Filter, or Ease button, and then select Blur. Change the default Blur X and
Blur Y values to 0, and then drag the playhead to frame 13. Add a keyframe
to the Blur Y row by clicking the Add Keyframe button or right-clicking
(Ctrl-clicking) the curve and choosing Add Keyframe from the context
menu. Change the Blur Y value to 40 at this new keyframe. Finally, drag
the playhead to frame 20, add another keyframe to the Blur Y row, and
then, in that last keyframe, change the Blur Y value to 0 again.

8. Select the Timeline—not in the Motion Editor panel, but the panel labeled
Timeline—and then click the Motion Tween layer to select it. Use the
Property inspector’s Ease hot text to apply an ease of 100. If you like, scrub
the playhead again or press Enter (Return) to preview the animation with
the easing. When you’re satisfied, right-click (Ctrl-click) inside the span
of frames, and then select Copy Motion as ActionScript 3.0.

At this point, the authoring tool has copied some text to the
clipboard on your behalf, so be careful to avoid selecting
Edit→Copy or otherwise replacing the clipboard contents.

You may now remove your designer hat.

Applying Motion to Other Objects
With your motion data copied to the clipboard, it’s time to don your developer
hat and put that data to use.

Figure 8-2. Investigating the Motion Editor panel

166 | Chapter 8: Copying Motion as ActionScript 3.0

1. Create a new ActionScript 3.0 FLA file. In the Timeline, select frame 1,
and then open the Actions panel as if to type some code. Instead, paste
the contents of the clipboard. You should now see a considerable amount
of ActionScript in the Actions panel. The actual code pasted depends on
the tweens you made in your role as designer, but you should see some-
thing like the following:

import fl.motion.AnimatorFactory;
import fl.motion.MotionBase;
import flash.filters.*;
import flash.geom.Point;
var __motion_standin_2:MotionBase;
if(__motion_standin_2 == null) {
 import fl.motion.Motion;
 __motion_standin_2 = new Motion();
 __motion_standin_2.duration = 20;

 // The following calls to addPropertyArray assign data values
 // for each tweened property. There is one value in the Array
 // for every frame in the tween, or fewer if the last value
 // remains the same for the rest of the frames.
 __motion_standin_2.addPropertyArray("x", [0,0,0,0,0,0,0,0,0,0,¬
 0,0,0,0,0,0,0,0,0,0]);
 __motion_standin_2.addPropertyArray("y", [0,−14.7562,−28.7166,¬
 −41.8812,−54.2425,−65.8156,−76.5852,−86.5591,−95.7297,¬
 −104.104,−111.683,−118.467,−124.454,−129.638,−134.026,¬
 −137.611,−140.408,−142.401,−143.598,−144]);
 __motion_standin_2.addPropertyArray("scaleX", [0.25,0.31,0.36,¬
 0.41,0.46,0.50,0.54,0.58,0.62,0.65,0.68,0.70,0.73,0.75,¬
 0.76,0.78,0.79,0.79,0.80,0.80]);
 __motion_standin_2.addPropertyArray("scaleY", [0.25,0.31,0.36,¬
 0.41,0.46,0.50,0.54,0.58,0.62,0.65,0.68,0.70,0.73,0.75,¬
 0.76,0.78,0.79,0.79,0.80,0.80]);
 __motion_standin_2.addPropertyArray("skewX", [0]);
 __motion_standin_2.addPropertyArray("skewY", [0]);
 __motion_standin_2.addPropertyArray("rotationConcat", [0,¬
 −1.53716,−2.99142,−4.36279,−5.65047,−6.85604,−7.97792,¬
 -−9.01691,9.9722,−10.8446,−11.6341,−12.3407,−12.9644,¬
 −13.5044,−13.9616,−14.335,−14.6263,−14.834,−14.9587,¬
 −15.0005]);

 // This call to initFilters supplies the Motion with an Array
 // of the fully-qualified class names of the filters in the
 // target's DisplayObject.filters list, in the same order and
 // indices.
 __motion_standin_2.initFilters(["flash.filters.BlurFilter"],¬
 [0]);

 // The following calls to addFilterPropertyArray assign data
 // values for each tweened filter's properties.
 __motion_standin_2.addFilterPropertyArray(0, "blurX", [0]);
 __motion_standin_2.addFilterPropertyArray(0, "blurY", [0,¬
 6.48999,12.63,18.42,23.8567,28.9467,33.6833,38.07,36.3943,¬

Applying Motion to Other Objects | 167

 30.08,24.3657,19.2514,14.7371,10.8286,7.52001,4.81715,¬
 2.70857,1.20572,0.302858,0]);
 __motion_standin_2.addFilterPropertyArray(0, "quality",¬
 [BitmapFilterQuality.LOW]);

 // Create an AnimatorFactory instance, which will manage
 // targets for its corresponding Motion.
 var __animFactory_standin_2:AnimatorFactory = new AnimatorFactory(¬
 __motion_standin_2);

 // Call the addTarget function on the AnimatorFactory
 // instance to target a DisplayObject with this Motion.
 // __animFactory_standin_2.addTarget(<instance name goes here>);
}

Note a number of important aspects here:

• Several import directives in the first few lines, which let you use the
AnimatorFactory class and other related classes

• The declaration of a __motion_standin_2 variable (the actual variable
name may vary), which is at first set to an instance of the MotionBase
class, and later to a Motion instance

• Numerous lines of automatically generated motion-related Action-
Script (these are the tween property arrays)

• A call to the AnimationFactory.addTarget() method, invoked on an
instance named __animFactory_standin_2 (again, the actual variable
name may vary)

2. On its own, this pasted code can’t produce anything visual. It expects a
DisplayObject instance, which means you have to provide one. Select
File→Import→Import to Library, and then locate three image files approx-
imately 300 × 400 pixels apiece.

3. Create a new layer in the timeline, and then drag each image to the stage.
Convert each image to a movie clip symbol. Use the Free Transform tool
to resize each movie clip to 25 percent of its actual size, and then arrange
the movie clips as shown in Figure 8-3.

The MovieClip class inherits functionality from
DisplayObject, so movie clip symbols meet the needs of
the AnimatorFactory class, which expects a DisplayOb
ject instance.

4. Select the movie clip on the left, and then give it the instance name
photo1. Return to the Actions panel, and then uncomment the last line of
code by removing the leading double slashes (change shown in bold).

168 | Chapter 8: Copying Motion as ActionScript 3.0

// Call the addTarget function on the AnimatorFactory
 // instance to target a DisplayObject with this Motion.
 __animFactory_standin_2.addTarget(<instance name goes here>);

Replace the expression <instance name goes here> with the instance name
photo1.

Figure 8-3. Preparing the recipients of the motion data

5. Select Control→Text Movie to compile the SWF file. Thanks to the Copy
Motion as ActionScript 3.0 feature, the left movie clip now mimics the
animation created in a separate FLA file by the designer (Figure 8-4).

So far, so good! The designer created a motion template with all the subtlety
that comes from a manual approach. The developer then applied that motion
to another object—including changes in position, scale, rotation, and blur—
with very little effort. In this exercise, the motion data happened to be copied
and pasted in the same authoring environment, but bear in mind, the pasted
code is nothing more than text. The designer could just as easily have sent the
motion data in an email message.

This is a useful start, but the property arrays in the generated code are fairly
unwieldy. Consider the array for the y property.

Applying Motion to Other Objects | 169

__motion_standin_2.addPropertyArray("y", [0,−14.7562,−28.7166,¬
 −41.8812,−54.2425,−65.8156,−76.5852,−86.5591,−95.7297,¬
 −104.104,−111.683,−118.467,−124.454,−129.638,−134.026,¬
 −137.611,−140.408,−142.401,−143.598,−144]);

Figure 8-4. Programmed animation, accomplished automatically

Those values represent a frame-by-frame snapshot of the destination
DisplayObject instance’s vertical movement. Which of those values represents
the keyframe at frame 13? What if any of these values needs to be changed by
hand in the code? These questions don’t have easy answers!

In the remainder of this chapter, you’ll see how the developer can tweak this
animation by having the designer export it as automatically generated XML.
The developer can then edit the XML and even revise the ActionScript to make
the animation more responsive. The trick is to use classic tweens.

Going Retro for the Sake of XML
It doesn’t take long to redo the animation using classic tweens.

170 | Chapter 8: Copying Motion as ActionScript 3.0

1. Return to your motion template FLA file. In the Timeline, right-click (Ctrl-
click) the layer with the Motion Tween, and then select Remove Tween.

2. Select frame 20, and then insert a keyframe (Insert→Timeline→Keyframe).
In frame 20, resize the rectangle movie clip to 80 percent, rotate it, and
reposition it toward the top of the stage. Right-click (Ctrl-click) anywhere
between frames 1 and 20, and then select Create Classic Tween. In the
Ease area of the Property inspector, make sure the Rotate drop-down dis-
plays Auto and the Scale checkbox is selected. Apply an Ease value of 100.

3. Select frame 13 and insert a keyframe. Select the movie clip and, using the
Filters area of the Property inspector, add a blur and set the Blur Y property
to 40. Scrub the playhead, if you like, to preview your work.

4. At this point, you have three keyframes in your span of frames. The first
two keyframes have classic tweens applied. Carefully select all frames but
the last keyframe—that is, all frames that have a tween—and then right-
click (Ctrl-click) and select Copy Motion as ActionScript 3.0. When you
do, Flash prompts you with the dialog box shown in Figure 8-5. Type
photo1, and then click OK to close the dialog box.

Figure 8-5. With classic tweens, Copy Motion as ActionScript 3.0 prompts for an instance
name

At this point, again, the authoring tool has copied text to the
clipboard on your behalf. Be careful to avoid selecting
Edit→Copy or otherwise replacing the clipboard contents.

5. Return to the FLA file with the three photos. Delete the existing Action-
Script, and then replace it by pasting the current contents of the clipboard.
As before, your own generated code may vary from what is shown here.
Nonetheless, it’ll look something like this:

import fl.motion.Animator;
var photo1_xml:XML = <Motion duration="20" xmlns="fl.motion.*"
 xmlns:geom="flash.geom.*" xmlns:filters="flash.filters.*">
 <source>
 <Source frameRate="24" x="275.95" y="334.5" scaleX="1.001"

Applying Motion to Other Objects | 171

 scaleY="1" rotation="0" elementType="movie clip"
 symbolName="standin">
 <dimensions>
 <geom:Rectangle left="0" top="0" width="83.95"
 height="108.95"/>
 </dimensions>
 <transformationPoint>
 <geom:Point x="0.4997022036926742"
 y="0.5002294630564479"/>
 </transformationPoint>
 </Source>
 </source>

 <Keyframe index="0" tweenSnap="true" tweenSync="true">
 <tweens>
 <CustomEase>
 <geom:Point x="0.4502575506968478" y="0"/>
 <geom:Point x="0.7075778422117028"
 y="0.6092627089536725"/>
 </CustomEase>
 </tweens>
 <filters>
 <filters:BlurFilter blurX="0" blurY="0" quality="1"/>
 </filters>
 </Keyframe>

 <Keyframe index="12" tweenSnap="true" tweenSync="true"
 x="−11.399999999999977" y="−104.44999999999999"
 scaleX="2.451548451548452" scaleY="2.453" rotation="−11.3">
 <tweens>
 <CustomEase>
 <geom:Point x="0.29906669248852413"
 y="0.5760325983121745"/>
 <geom:Point x="0.6150788560295106" y="1"/>
 </CustomEase>
 </tweens>
 <filters>
 <filters:BlurFilter blurX="0" blurY="40" quality="1"/>
 </filters>
 </Keyframe>

 <Keyframe index="19" x="−15" y="−137.95"
 scaleX="2.9180819180819184" scaleY="2.921" rotation="−15">
 <filters>
 <filters:BlurFilter blurX="0" blurY="0" quality="1"/>
 </filters>
 </Keyframe>
</Motion>;

var photo1_animator:Animator = new Animator(photo1_xml, photo1);
photo1_animator.play();

Don’t worry if that looks like just as much code as before. There are a
number of important changes this time.

172 | Chapter 8: Copying Motion as ActionScript 3.0

• Only a single import directive in the first line, which allows use of the
Animator class

• The declaration of a photo1_xml variable, set to an instance of the XML
class and populated with a lengthy XML document (the motion tween
data)

• The declaration of a photo1_animator variable in the next-to-last line,
set to an instance of the Animator class and presented with two
parameters: the XML instance photo1_xml, and the instance name
photo1, as supplied by the designer

• A call to the Animator.play() method, invoked on photo1_animator

How is this more useful than data gathered from the new tweening model? It
all depends on whether or not you plan to edit frame properties in the code.
In this case, the XML represents snapshots of merely the keyframes. In con-
trast, the other approach flooded you with 20 snapshots of every frame in the
tween span. Here, there are only three, and because they’re keyframes, you
can type in your changes and let Flash interpolate the in-between values for
you.

Editing the Default XML
Fast-forward half a week. The designer’s out sick today, but that doesn’t stop
the team lead from letting you know (in a panic!) that the animation needs to
be adjusted. The blur effect is a tad heavy, says the client, and the rotation
needs to lean ever so slightly more to the left. Surely this is an easy fix, right?

As it turns out, the answer’s yes.

1. In the three photos FLA file, open the Actions panel again, and then take
another look at the XML. The basic structure looks like this (with most
of the information removed for the sake of brevity):

<Motion attributes omitted >
 <source>
 // elements omitted
 </source>

 <Keyframe attributes omitted >
 // elements omitted
 </Keyframe>

 <Keyframe attributes omitted >
 // elements omitted
 </Keyframe>

 <Keyframe attributes omitted >
 // elements omitted

Applying Motion to Other Objects | 173

 </Keyframe>
</Motion>;

The <source> element, and its children, describe the default state of the
original stand-in rectangle. The remaining sibling elements, <Keyframe>,
and their children, represent the three keyframes used in the designer’s
FLA file, frames 1, 13, and 20. This adjustment’s goal is to reduce the blur
effect slightly—that’s in the second <Keyframe> element—and increase the
rotation by a smidgeon—that’s in the third.

2. Obviously, your personal adjustments will vary depending on the exact
nature of your own XML, so feel free to experiment. One possibility might
look like this (operative changes in bold):

<Keyframe index="12" tweenSnap="true" tweenSync="true"
 x="−11.399999999999977" y="−104.44999999999999"
 scaleX="2.451548451548452" scaleY="2.453" rotation="−11.3">
 <tweens>
 <CustomEase>
 <geom:Point x="0.29906669248852413"
 y="0.5760325983121745"/>
 <geom:Point x="0.6150788560295106" y="1"/>
 </CustomEase>
 </tweens>
 <filters>
 <filters:BlurFilter blurX="0" blurY="20" quality="1"/>
 </filters>
</Keyframe>

<Keyframe index="19" x="−18" y="−137.95"
 scaleX="2.9180819180819184" scaleY="2.921" rotation="−15">
 <filters>
 <filters:BlurFilter blurX="0" blurY="0" quality="1"/>
 </filters>
</Keyframe>

In the first of the listed <Keyframe> elements, the blurY attribute of a nested
<filters> element has been changed from 40 to 20. In the second, a
rotation attribute has been changed from −15 to −18.

It’s worth noting that the index attributes of these <Key
frame> elements don’t match the frame numbers of the
actual keyframes in the timeline: they’re behind by one
number apiece. This discrepancy occurs because the
<Keyframe> elements start their counting from 0, rather
than 1. So the XML version of frame 13 is listed as 12,
and the XML version of frame 20 listed as 19.

3. Select Control→Test Movie to see the updated visuals.

174 | Chapter 8: Copying Motion as ActionScript 3.0

Editing the Default ActionScript
Now that the animation satisfies the customer, it’s time to make the photos
respond to mouse clicks.

1. To let each movie clip respond separately to ActionScript instructions,
each symbol needs its own unique instance name. Select each move clip
in turn, and then use the Property inspector to give them the instance
names photo1, photo2, and photo3.

2. Open the Actions panel one last time, and then comment out the final two
lines of the existing code:

//var photo1_animator:Animator = new Animator(photo1_xml, ¬
 photo1);
//photo1_animator.play();

3. Type the following new ActionScript after the commented code:

photo1.buttonMode = true;
photo1.addEventListener(MouseEvent.CLICK, clickHandler);
photo2.buttonMode = true;
photo2.addEventListener(MouseEvent.CLICK, clickHandler);
photo3.buttonMode = true;
photo3.addEventListener(MouseEvent.CLICK, clickHandler);

var photo1_animator:Animator = new Animator(photo1_xml, ¬
 photo1);

function clickHandler(evt:MouseEvent):void {
 photo1_animator.rewind();
 photo1_animator.target = evt.target as MovieClip;
 photo1_animator.play();
}

The first six lines configure each movie clip in the same way. Setting the
Sprite.buttonMode property to true causes the mouse pointer to change
from the default arrow to the cursor used for hyperlinks when the mouse
hovers over each movie clip (this is possible because the MovieClip class
inherits functionality from Sprite). The EventDispatcher.addEventLis
tener() method associates each movie clip with a custom
clickHandler() function in response to mouse clicks (possible because the
MovieClip class also inherits from EventDispatcher).

The clickHandler() function is executed any time one of the movie clips
is clicked.

Applying Motion to Other Objects | 175

The clickHandler function does three tasks:

• Invokes rewind() on the most recent animation, as represented by the
photo1_animator instance (this resets an enlarged image to its original
state)

• Sets the target property of photo1_animator to the selected (clicked)
movie clip symbol, by way of the MouseEvent.target property (to assure
photo1_animator that its new target is indeed a movie clip, the reference
is cast as a movie clip with the as operator)

• Invokes play() on the newly targeted photo1_animator instance, which
sets the most recently clicked movie clip in motion

4. Select Control→Test Movie to experience the updated interactivity (Fig-
ure 8-6).

Figure 8-6. Responsive animation, programmed with very little custom code

176 | Chapter 8: Copying Motion as ActionScript 3.0

Be aware that the XML generated by the Copy Motion as
ActionScript 3.0 feature is influenced by three XML
namespaces:

• xmlns="fl.motion.*"

• xmlns:geom="flash.geom.*"

• xmlns:filters="flash.filters.*"

These namespaces must be accounted for if you intend to
navigate these XML elements with ECMAScript for XML
(E4X) syntax. For more information, see the section “Name-
spaces” on page 80 in Chapter 3.

Applying Motion to Other Objects | 177

CHAPTER 9

Using ActionScript 3.0 Components

It’s entirely possible, of course, to produce Flash content without ActionScript.
Even if not interactive, such content typically bears the visual distinction of
compelling custom artwork, which is why the Flash authoring tool has ap-
pealed to designers and developers alike for years. When ActionScript does
enter the equation, the creative possibilities extend even further, occasionally
venturing into territory that, in recent years, has become the mainstay of Flex;
namely, Rich Internet Applications (RIAs). When you develop content that
requires sophisticated user input—for example, when input text fields aren’t
enough, and you need radio buttons, combo boxes, and the like—the Com-
ponents panel becomes your genie in a bottle. The Flash CS4 Professional
ActionScript 3.0 component set, introduced in Flash CS3, is easier to skin and
use, and performs more efficiently, than ever before.

Overview of the Component Set
Out of the box, the Components panel (Window→Components) offers a
handy number of predesigned components—often informally called widgets or
controls—that provide a wide range of features without the need for compli-
cated programming. In ActionScript 3.0 documents, these components are
divided into two categories: User Interface (UI) and Video, as seen in Fig-
ure 9-1. The UI group contains numerous components comparable to HTML
<form> elements, such as CheckBox, RadioButton, ComboBox, and Button. The
Button component differs from button symbols in that you can select and de-
select it to switch it on and off, it has a built-in disabled state, and shares other
features consistent with the component set as a whole. This group also con-
tains useful components that have no equivalent in HTML, such as
ColorPicker, NumericStepper, and TileList.

The Video group contains the FLVPlayback component, used to deploy video
files in Flash with drag-and-drop ease; the FLVPlaybackCaptioning component,

179

which facilitates captioning for foreign language subtitles and the hearing im-
paired; and numerous video-specific user interface components, such as a
standalone play button, mute button, and volume control slider.

Increased Performance and Reduced File Size
The UI and Video components have been rewritten from the ground up in
ActionScript 3.0, which lets them benefit from the same performance en-
hancements recounted throughout this book (in particular, see Chapter 4).
This also means you can’t mix and match the components with those that were
written for ActionScript 2.0. Fortunately, the Components panel automati-
cally updates its choices depending on the version of ActionScript selected for
the current FLA file. If you start in one version of ActionScript, add compo-
nents to the stage or library, and then change the FLA file’s publish settings to
ActionScript 3.0—or vice versa—you’ll see warning messages when you try to
compile the SWF file, and the compile will fail.

The performance improvement for ActionScript 3.0 components is substantial
and can be demonstrated with a simple for loop, using practically the same

Figure 9-1. The Components panel, showing User Interface and Video components

180 | Chapter 9: Using ActionScript 3.0 Components

code for a side-by-side comparison between ActionScript 2.0 and 3.0
components.

1. Create a new ActionScript 2.0 FLA file, and then open the Components
panel. Drag a copy of the ComboBox component to the stage. Use the Prop-
erty inspector to give this component the instance name myComboBox.

2. Select frame 1 in the Timeline, and then open the Actions panel. Enter the
following ActionScript 2.0 code:

var startTime:Number = getTimer();

for (var i:Number = 0; i < 50000; i++) {
 myComboBox.addItem({label:i, data:i});
}

trace((getTimer() - startTime) / 1000);

In this code, a startTime variable performs the ActionScript equivalent to
starting a stopwatch. A for loop increments a numeric variable, i, from 0
to 49,999, which populates the ComboBox instance with 50,000 label/
data pairs. Finally, the “stopwatch” is halted, and the result is converted
to seconds and displayed in the Output panel.

3. Select Control→Test Movie to review the length of time it takes your SWF
file to display. Be prepared to wait several seconds! Your actual elapsed
time may vary, depending on the speed of your computer, but in one series
of tests, the code in Step 2 executes in 6.337 seconds.

The following steps demonstrate an equivalent test using the ActionScript
3.0 version of the same component.

4. Create a new ActionScript 3.0 FLA file, and then drag a copy of the
ComboBox component to the stage. Give it the instance name myComboBox.

5. Select frame 1 in the Timeline, and then enter the following ActionScript
3.0 into the Actions panel:

var startTime:int = getTimer();

for (var i:int = 0; i < 50000; i++) {
 myComboBox.addItem({label:i, data:i});
}

trace((getTimer() - startTime) / 1000);

This code is almost identical. In fact, the only change is the numeric var-
iable typing, from Number to int.

6. Select Control→Text Movie to review the new elapsed time. Again, your
actual results may vary, but in one series of tests, the ActionScript 3.0

Overview of the Component Set | 181

version of this same component displayed in 1.419 seconds, which is a
remarkable increase in speed.

In addition to working more efficiently, the components tend to add signifi-
cantly less weight to SWF files than their ActionScript 2.0 counterparts. Ta-
ble 9-1 shows a comparison of the components shared by both languages.

Table 9-1. File sizes contributed by ActionScript 2.0 components versus ActionScript 3.0
components (only shows components shared by both languages)

Component AS 2.0 file size AS 3.0 file size

Button 27KB 15KB

CheckBox 28KB 15KB

ComboBox 56KB 35KB

DataGrid 59KB 40KB

Label 23KB 14KB

List 48KB 29KB

Loader (now named UILoader) 27KB 15KB

NumericStepper 29KB 18KB

ProgressBar 26KB 16KB

RadioButton 29KB 16KB

ScrollPane 39KB 22KB

TextArea 40KB 21KB

TextInput 25KB 15KB

UIScrollBar 34KB 18KB

FLVPlayback 35KB 57KB

It’s important to realize that these file sizes aren’t cumulative. In both Action-
Script 2.0 and 3.0, each component shares its common framework with other
components in the component set for that language. The biggest penalty comes
with the first component’s file size; additional components add only a small
increase because they share most of the programming framework already pro-
vided by the first component. For example, the combined weight of the
ActionScript 3.0 versions of Button and CheckBox is only 17KB—not the 30KB
you might expect—which is only 2KB more than either component alone.

Feature Changes
In ActionScript 2.0 documents, components are generally stored in the Library
as discrete entities. In ActionScript 3.0 documents, the introduction of even a
single component creates a new library folder named Component Assets. This

182 | Chapter 9: Using ActionScript 3.0 Components

folder contains movie clip symbols used by the components’ skins, and must
not be deleted unless respective components are purposefully removed from
the FLA file (skinning is discussed in greater detail in the sections “Styling
Components with Code” and “Skinning Components Manually” in this chap-
ter). Figure 9-2 shows the same three components—Button, CheckBox, and
ComboBox—as dragged into an ActionScript 2.0 FLA file (left side) versus an
ActionScript 3.0 FLA file (right side). Note the Component Assets folder on
the right, and note also that the ActionScript 3.0 version of ComboBox carries
with it a copy of List and TextInput, whose respective weights are already
included in the total file size for ComboBox.

You can configure all components in the Component Inspector panel (Win-
dow→Component Inspector), as shown in Figure 9-3. Just select the compo-
nent on the stage and arrange the settings as you please. In ActionScript 3.0
documents, the Bindings and Schema tabs of the Component Inspector panel
are clickable, but their panes are disabled, as they apply only to data compo-
nents, which are not compatible with ActionScript 3.0.

Figure 9-2. The same three components displayed in the libraries of an ActionScript 2.0
document (left) and an ActionScript 3.0 document (right)

Overview of the Component Set | 183

Because of the general event handling changes in ActionScript 3.0, the com-
ponents are programmed somewhat differently from the ActionScript 2.0 set.
For details, see the section “Changes in Writing Code for Components” on
page 188 later in this chapter.

Although it has an application programming interface (API) and can be fully
programmed like any other component, the ActionScript 3.0 FLVPlayback
component has been updated so that its composition can be customized with-
out any need for code.

1. Create a new ActionScript 3.0 FLA file, and then open the Components
panel. Drag a copy of the FLVPlayback component to the stage. No instance
name is necessary. Save this file as CustomVideo.fla, because you’re going
to use it again later in this chapter.

2. Select the Component Inspector panel, and then ensure that the skin
property is set to None. You don’t need a skin in this case, because in the
next step you’ll be supplying a pair of individual skin elements to cus-
tomize video playback features.

3. Drag a copy each of the PausePlayButton and SeekBar components, and
position them on the stage wherever you prefer. If you like, change the
dimensions of the FLA file to match the surface area taken up by these
components. None of the components requires instance names.

4. With the FLVPlayback component selected, use the Component Inspector
panel to set the source property to an FLV file, as shown in Figure 9-4.
Click OK to close the Content Path dialog box.

Figure 9-3. ComboBox component parameters, as displayed in the Component Inspector
panel

184 | Chapter 9: Using ActionScript 3.0 Components

5. Select Control→Test Movie to verify that the PausePlayButton and Seek
Bar components do indeed control video playback, even without the use
of ActionScript or instance names (Figure 9-5).

New and Removed Components
Flash CS3 introduced six components for use in ActionScript 3.0 documents
that remain available in Flash CS4: ColorPicker, Slider, TileList,
FLVPlaybackCaptioning, CaptionButton, and FullScreenButton. These compo-
nents are demonstrated in the section “Changes in Writing Code for Compo-
nents” on page 188 later in this chapter. In conjunction with these additions,
a number of previously available components have been removed, which only
happens when a FLA file is configured for ActionScript 3.0. The removed items
consist of the non-visual data components, including XMLConnector and Web
ServiceConnector; the media components, superseded in Flash 8 by FLVPlay
back; and the following UI components: Accordion, Alert, DateChooser, Date
Field, Menu, MenuBar, Tree, and Window.

Figure 9-4. Customizing the FLVPlayback component without code

New and Removed Components | 185

The media components are actually intended for ActionScript
1.0 but still function in ActionScript 2.0 documents. They are
not, however, compatible with ActionScript 3.0.

The full list of authoring tool components for ActionScript 2.0 and 3.0 is shown
in Table 9-2, Table 9-3, Table 9-4, and Table 9-5.

Table 9-2. Data components available with Flash CS4 Professional

Component AS 2.0 AS 3.0

DataHolder X

DataSet X

RDBMSResolver X

WebServiceConnector X

XMLConnector X

XUpdateResolver X

Figure 9-5. The FLVPlayback component and video-related UI components collaborate,
even without ActionScript (theremin performance by Peter Pringle, http://PeterPringle
.com, used with permission)

186 | Chapter 9: Using ActionScript 3.0 Components

http://PeterPringle.com
http://PeterPringle.com

Table 9-3. Media components available with Flash CS4 Professional

Component AS 2.0 AS 3.0

MediaController X Superseded by FLVPlayback

MediaDisplay X Superseded by FLVPlayback

MediaPlayback X Superseded by FLVPlayback

Table 9-4. User Interface components available with Flash CS4 Professional

Component AS 2.0 AS 3.0

Accordion X

Alert X

Button X X

CheckBox X X

ColorPicker X

ComboBox X X

DataGrid X X

DateChooser X

DateField X

Label X X

List X X

Loader X X (renamed UILoader)

Menu X

MenuBar X

NumericStepper X X

ProgressBar X X

RadioButton X X

ScrollPane X X

Slider X

TextArea X X

TextInput X X

TileList X

Tree X

UIScrollBar X X

Window X

New and Removed Components | 187

Table 9-5. Video components available with Flash CS4 Professional

Component AS 2.0 AS 3.0

FLVPlayback X X

FLVPlaybackCaptioning X

BackButton X X

BufferingBar X X

CaptionButton X

ForwardButton X X

FullScreenButton X

MuteButton X X

PauseButton X X

PlayButton X X

PlayPauseButton X X

SeekBar X X

StopButton X X

VolumeBar X X

For details on how to work around many of the missing com-
ponents in ActionScript 3.0 documents, see Chapter 10.

Changes in Writing Code for Components
Thanks to the improved event-handling model in ActionScript 3.0, writing
code for the component set is as straightforward as any of the event handling
examples illustrated in other chapters of this book. Like movie clip symbols
and button symbols, components inherit from the EventDispatcher class,
which means they all support the addEventListener() method that lets you
associate an event with a custom function that responds to that event. The
similarity among the following examples underscores the consistency inherent
throughout the ActionScript 3.0 API. These examples demonstrate how to use
the UI components that weren’t available in versions of the authoring tool
prior to Flash CS3.

Until you get familiar with a particular component, your first step in program-
ming one should always be to consult its class entry in the ActionScript 3.0
Language and Components Reference, available at a moment’s notice from
the documentation (Window→Help), which opens in a browser window. A

188 | Chapter 9: Using ActionScript 3.0 Components

class entry’s Events summary, in particular, lets you know immediately what
events a component supports, as well as what data type the event belongs to.
For example, the ColorPicker class entry features a change event. Clicking on
the hyperlink for this event indicates that the event is referenced by way of the
ColorPickerEvent class, as seen in Figure 9-6.

All the components reveal their secrets in this way, so you can easily program
them. In all cases, the parameters shown in the Component Inspector panel
correspond to properties of the component’s class. Properties may be config-
ured in the panel, with ActionScript, or a combination of both.

ColorPicker
The ColorPicker component displays a clickable color chip that expands into
a configurable color palette that lets you select a color or type in a color
(Figure 9-7). Assuming a ColorPicker component on the stage with the in-
stance name myColorPicker and a movie clip with the instance name
myMovieClip,the following ActionScript handles the selection of a color from
the component’s configurable color palette:

import fl.events.ColorPickerEvent;

var myColor:ColorTransform = new ColorTransform();

myColorPicker.addEventListener(ColorPickerEvent.CHANGE, ¬

Figure 9-6. The ColorPicker component documentation

Changes in Writing Code for Components | 189

 changeHandler);
function changeHandler(evt:ColorPickerEvent):void {
 myColor.color = myColorPicker.selectedColor;
 myMovieClip.transform.colorTransform = myColor;
}

Figure 9-7. The ColorPicker component allows the user to specify colors

The ColorPickerEvent class must be imported, even in a frame script, because
it isn’t part of the flash package. A myColor variable is declared and set to an
instance of the ColorTransform class, waiting to be used in response to a
change event from the component. The operative code here is the
addEventListener() method, which associates the ColorPickerEvent.CHANGE
event constant with a custom changeHandler() function.

The changeHandler() function sets the color property of the myColor instance
to the currently selected color, and is then assigned to the colorTransform
property of a movie clip with the instance name myMovieClip. All
DisplayObject objects, including movie clip symbols and sprites, support color
transformation in this way.

The color palette of the ColorPicker component is fully customizable, and can
display up to 1,024 colors. To have the myColorPicker instance display red,
white, and blue, simply assign an array of hexadecimal values to the
ColorPicker.colors property:

myColorPicker.colors = new Array(0xFF0000, 0xFFFFFF, 0x0000FF);

Slider
The Slider component provides a slider with a draggable knob that optionally
snaps to a configurable range of values (Figure 9-8).

As Figure 9-9 indicates, the Slider component can be displayed horizontally,
but is easily set to a vertical orientation by a change to the direction parameter
(the first entry in the Name column). Numerous other parameters are availa-

190 | Chapter 9: Using ActionScript 3.0 Components

ble. The liveDragging parameter determines how often Slider dispatches its
change event. When liveDragging is set to true, SliderEvent.CHANGE is dis-
patched while the knob is dragged, as often as the Slider.value property up-
dates. When set to false, the SliderEvent.CHANGE event is dispatched only
when you release the knob.

The maximum and minimum parameters define the component’s range of select-
able values, and snapInterval determines the rate at which snapping should
occur. The tickInterval parameter determines the distribution of visible tick
marks, and value determines the starting position of the knob.

According to the Slider class documentation, a snapIn
terval value of 0 is supposed to mean continuous dragging,
but this isn’t what actually happens. In a range from 0 to 10,
a snapInterval value of 1 snaps the knob to the values 0, 1, 2,
3, etc. A value of 5 snaps the knob to the values 0, 5, and 10.
To achieve continuous dragging, enter a very small value, such
as 0.1.

Figure 9-8. The Slider component lets users select from a range of values

Figure 9-9. The Slider component parameters

Changes in Writing Code for Components | 191

The following ActionScript shows the Slider component as a volume slider,
assuming its range is set from 0 to 1. The volume setting is taken from the
Slider.value property (see code in bold):

import fl.events.SliderEvent;

var mySound:Sound = new Sound();
mySound.load(new URLRequest("sampleSong.mp3"));
var myChannel:SoundChannel = mySound.play();
var myTransform:SoundTransform = new SoundTransform();

mySlider.addEventListener(SliderEvent.CHANGE, changeHandler);
function changeHandler(evt:SliderEvent):void {
 myTransform.volume = mySlider.value;
 myChannel.soundTransform = myTransform;
}

A Sound instance is associated with a SoundChannel instance, which makes it
available to volume transformations. Here again, the actual event handler is
very simple: the SliderEvent.CHANGE event is associated with a custom
changeHandler() function, which invokes the Slide.value property on the
mySlider instance in order to update the volume property of a SoundTransform
instance that, in turn, updates the volume of the Sound instance.

TileList
The TileList component is comparable in some ways to an HTML table or a
simplified version of the DataGrid component. In a nutshell, it provides a grid
of rows and columns to display images (Figure 9-10).

Figure 9-10. The TileList component displays a grid of images

192 | Chapter 9: Using ActionScript 3.0 Components

Like the Slider component, the properties of TileList are easy to configure in
the Component Inspector panel (Figure 9-11). The columnCount and
rowCount parameters determine the number of columns and rows in the grid,
respectively, while columnWidth and rowHeight determine their dimensions.
The direction parameter specifies whether images progress sequentially
across or down the grid before wrapping. Scrolling is configured with scroll
Policy parameter, which you can set to auto, on, or off.

Figure 9-11. The TileList component parameters

The following ActionScript produces the 2 by 2 grid shown in Figure 9-10:

myTileList.addItem({label:"Sandmen", source:"sandmen.jpg"});
myTileList.addItem({label:"Braids", source:"braids.jpg"});
myTileList.addItem({label:"Jumping", source:"jumping.jpg"});
myTileList.addItem({label:"Crazy", source:"crazy.jpg"});

myTileList.addEventListener(Event.CHANGE, changeHandler);

function changeHandler(evt:Event):void {
 trace(myTileList.selectedItem.label);
}

Note that the change event for this component comes directly from the Event
class, which means no import directive is necessary in frame scripts that handle
TileList events.

Changes in Writing Code for Components | 193

FLVPlaybackCaptioning and CaptionButton
Video subtitles and captions have been possible for several releases of Flash,
but until the FLVPlaybackCaptioning component, introduced in Flash CS3, they
required custom programming. In ActionScript 3.0 documents, you can now
add captioning to your videos without code. You do need an XML document
that adheres to the World Wide Web Consortium’s (W3C) specification for
TimedText (TT) documents (http://www.w3.org/AudioVideo/TT/). The Cap
tionButton component selects and deselects captioning. Here’s an example of
a TimedText XML document:

<?xml version="1.0" encoding="iso-8859-1"?>
<tt xmlns="http://www.w3.org/2006/04/ttaf1"
 xmlns:tts="http://www.w3.org/2006/04/ttaf1#styling">
<head>
 <styling>
 <style id="1" tts:textAlign="left"
 tts:fontFamily="Arial" />
 <style id="2" tts:textAlign="center"
 tts:fontFamily="Arial" />
 </styling>
</head>
<body>
 <div>
 <p begin="00:00:09.50" dur="1000ms" style="1">
 Okay, action!</p>
 <p begin="00:00:11.00" dur="2800ms" style="2">
 Twinkle, twi ... le</p>
 <p begin="00:00:15.50" dur="1500ms" style="1">
 Okay, action!</p>
 <p begin="00:00:17.50" dur="4600ms" style="2">
 Twink ... le ... tink [hiccup]! Oh!</p>
 <p begin="00:00:22.75" dur="2100ms" style="1">
 Okay, action!</p>
 <p begin="00:00:25.75" end="00:00:29.25" style="2">
 Twinkle, twinkle, little star</p>
 <p begin="00:00:29.75" end="00:00:32.50" style="2">
 how I wonder what you are</p>
 <p begin="00:00:33.00" end="00:00:36.00" style="2">
 bup bup bup ... world so high,</p>
 <p begin="00:00:36.50" end="00:00:39.00" style="2">
 like a diamond in the sky,</p>
 <p begin="00:00:39.50" end="00:00:40.00" style="2">
 Oh!</p>
 <p begin="00:00:41.25" end="00:00:41.75" style="2">
 Oh dear.</p>
 <p begin="00:00:42.25" end="00:00:43.25" style="1">
 Action!</p>
 <p begin="00:00:43.50" end="00:00:47.00" style="2">
 [sproing! sproing! sproing!]</p>
 <p begin="00:00:48.00" end="00:00:53.00" style="2">
 How I wonder what you are. Bup!</p>

194 | Chapter 9: Using ActionScript 3.0 Components

http://www.w3.org/AudioVideo/TT/

 <p begin="00:00:54.00" end="00:00:55.50" style="2">
 Buh buh buh, oh ...</p>
 <p begin="00:00:56.00" end="00:00:57.00" style="2">
 Buh buh, oh ...</p>
 <p begin="00:00:57.50" end="00:00:58.50" style="2">
 Nooo!</p>
 </div>
</body>
</tt>

Note that a <styling> element, nested in the <head> element, allows for the
declaration of styles—here, left- and center-alignment—that can be referenced
by an id attribute later in the body of the document. Note, also, the alternate
ways to specify the duration of a caption, including collaborative begin and
dur attributes, such as begin="00:00:09.50" dur="1000ms", and collaborative
begin and end pairings, such as begin="00:00:25.75" end="00:00:29.25". Once
a TimedText document is prepared, the process of captioning is trivial.

Drag a copy of the FLVPlayback and FLVPlaybackCaptioning components to the
stage. Neither component needs an instance name. FLVPlaybackCaptioning
becomes invisible at runtime. Position it where you like.

Use the Component Inspector panel to configure the skin parameter of the
FLVPlayback component to None or to one of the skins with the word “Under”
in the name, like SkinUnderPlaySeekCaption (this is important because skins
with “Over” in the name obscure the captioning text field). Set the source
parameter to a video file that correlates with the TimedText document.

Select the FLVPlaybackCaptioning component, and then set its source param-
eter to the location of the TimedText document, as shown in Figure 9-12.

Figure 9-12. Configuring the source parameter

Changes in Writing Code for Components | 195

At runtime, captions are automatically transferred from XML format to visual
display, as seen in Figure 9-13. The CaptionButton component is built-in to
any skin whose name contains the word “Caption” and allows the user to select
and deselect captions. If no skin is selected, captions are displayed by default.
The CaptionButton component can also be used on its own, apart from any
skin, in the same manner described in the FLVPlayback exercise in the “Feature
Changes” on page 182 of this chapter.

FullScreenButton
The FullScreenButton component exists as a built-in element of several of the
provided skins for the FLVPlayback component, as well as a standalone com-
ponent used with FLVPlayback. Ultimately, the FullScreenButton component
is just a button that invokes the FLVPlayback.enterFullScreenDisplayState()
method. To demonstrate its use, you have to view the SWF file and video
content in a properly configured browser window.

1. Open the CustomVideo.fla file created in this chapter’s “Feature Changes”
on page 182, and then resave it as FullScreenButton.fla.

2. Open the Components panel, and then drag a copy of the
FullScreenButton component to the stage. No instance name is necessary.

Figure 9-13. The FLVPlaybackCaptioning component provides video captions without
ActionScript (“Andréa” character created by Chris Georgenes, http://mudbubble.com, used
with permission)

196 | Chapter 9: Using ActionScript 3.0 Components

http://mudbubble.com

 3. Select File→Publish Settings→HTML, and then change the Template drop-
down list to “Flash Only - Allow Full Screen,” as shown in Figure 9-14.

The selection of this template automatically inserts crucial lines of code
in the HTML that embeds the SWF file, although the addition can cer-
tainly be made by hand. If you prefer to work manually, you have to add
a new <param> element inside the existing <object> element to explicitly
permit full-screen viewing (new code in bold):

<object><param name="allowFullScreen" value="true" />

then add a corresponding attribute to the companion <embed> element:

<embed src="FullScreenButton.swf" ... other attributes ...
 allowFullScreen="true" ... />

Figure 9-14. Preparing the HTML code for full-screen video

Changes in Writing Code for Components | 197

These additions must be mirrored in the JavaScript function that appears
in the same HTML document.

4. Select File→Publish Preview→HTML to launch the SWF file in a browser.
Click the FullScreenButton component to see the video display in full-
screen mode (Figure 9-15). Press the Esc key at any time to exit full-screen
mode.

Note that during full-screen mode, the video UI controls are hidden from
view. This happens because the FLVPlayback.fullScreenTakeOver prop-
erty is set to true by default.

5. Close the SWF file. Select the FLVPlayback component on the stage, and
then use the Property inspector to name it myFLVPlayback. Select frame 1
in the Timeline, and then open the Actions panel. Enter the following
code:

myFLVPlayback.fullScreenTakeOver = false;

6. Select File→Publish Preview→HTML once again to launch the SWF file in
a browser. Note that this time, the components remain visible in either
mode (Figure 9-16).

Figure 9-15. A video displayed in full-screen mode

198 | Chapter 9: Using ActionScript 3.0 Components

Changing the Appearance of Components
The standard look and feel of the ActionScript 3.0 component set can be freely
changed, a procedure called styling or skinning, depending on how you go
about it.

Styling Components with Code
The StyleManager class lets you reference special styling properties—called
styles—for each component. For example, in the Help menu’s ActionScript
3.0 Language and Components Reference, if you consult the class entry for the
Button component, you find that in addition to Public Properties, Public
Methods, and Events summaries, the Button class also features a summary for
Styles, as seen in Figure 9-17. Make sure to always click “Show Inherited
Styles” to see them all.

Figure 9-16. A video in full-screen mode with video UI components (theremin performance
by Peter Pringle, http://PeterPringle.com, used with permission)

Changing the Appearance of Components | 199

http://PeterPringle.com

One of these styles (not shown in Figure 9-17) is called textFormat, which
makes a quick and useful demonstration of two StyleManager methods.

1. Create an ActionScript 3.0 FLA file, and then open the Components panel.
Drag a copy of the Button and CheckBox components to the stage.

2. Select frame 1 in the Timeline, and then open the Actions panel. Enter the
following code:

import fl.managers.StyleManager;
import fl.controls.Button;
import fl.controls.CheckBox;

var myTextFormat:TextFormat = new TextFormat();
myTextFormat.size = 26;

StyleManager.setStyle("textFormat", myTextFormat);

The StyleManager, Button, and CheckBox classes must be imported, even in
frame scripts, because none of these classes belongs to the flash package.
A myTextFormat variable is declared and set to an instance of the
TextFormat class, and then has its size property set to 26. Finally, the static
StyleManager.setStyle() method is invoked, with "textFormat" as the
first parameter, and the myTextFormat instance as the other. The "textFor
mat" parameter is a string that refers to the textFormat style that both of
these components happen to share.

Figure 9-17. Style properties of the Button class

200 | Chapter 9: Using ActionScript 3.0 Components

3. Select Control→Test Movie to experience a font size that’s too large for
the current dimensions of the components (Figure 9-18), showing that the
setStyle() method applies styling to all components in a document that
feature the textFormat style.

Figure 9-18. Component text formatting changed with ActionScript

4. Close the SWF file, and then return to the Actions panel. Update the ex-
isting ActionScript so that it looks like this (changes in bold):

import fl.managers.StyleManager;
import fl.controls.Button;
import fl.controls.CheckBox;

var myTextFormat1:TextFormat = new TextFormat();
myTextFormat1.size = 26;

var myTextFormat2:TextFormat = new TextFormat();
myTextFormat2.size = 8;

StyleManager.setStyle("textFormat", myTextFormat1);
StyleManager.setComponentStyle(Button, "textFormat", ¬
 myTextFormat2);

This time, two TextFormat instances exist. The first one, as before, is fed
into the StyleManager.setStyle() method, and updates the textFormat
style of both components. The second one, which was configured with a
smaller font size, is fed into the StyleManager.setComponentStyle()
method, which accepts one additional parameter; namely, the class name
of one of the components, Button. This second method overrides the
global formatting established by the setStyle() method, because it calls
out a particular component type by name.

5. Select Control→Test Movie again to verify that the Button component now
has a much smaller font size (Figure 9-19).

6. Close the SWF file again. You’ve seen how to affect the styling of all com-
ponents in a document, and you’ve also seen how to affect the styling of
all of one type of component. The final way to stylize components is to
invoke the UIComponent.setStyle() method, which is inherited by each

Changing the Appearance of Components | 201

component individually. Select the CheckBox component, and then use the
Property inspector to give it the instance name myCheckBox. Return again
to the Actions panel, and then update the existing code so it looks like this
(changes in bold):

import fl.managers.StyleManager;
import fl.controls.Button;
import fl.controls.CheckBox;

var myTextFormat1:TextFormat = new TextFormat();
myTextFormat1.size = 26;

var myTextFormat2:TextFormat = new TextFormat();
myTextFormat2.size = 8;

var myTextFormat3:TextFormat = new TextFormat();
myTextFormat3.size = 12;

StyleManager.setStyle("textFormat", myTextFormat1);
StyleManager.setComponentStyle(Button, "textFormat", ¬
 myTextFormat2);
myCheckBox.setStyle("textFormat", myTextFormat3);

A third TextFormat instance has been added, this one routed specifically
to the myCheckBox instance, via its inherited UIComponent.setStyle()
method. The original size-26 formatting is still in effect, but the Button
component overrides it, thanks to its more specifically honed myTextFor
mat2 instance. Here, the CheckBox component also overrides it, thanks to
its even more specifically honed myTextFormat3 instance.

7. Select Control→Test Movie one last time to verify that the CheckBox com-
ponent now features a practically normal-sized font (Figure 9-20).

The textFormat style isn’t the only property available, of course. Many com-
ponents feature an icon style, for example, that lets you incorporate a small
image into the component’s display. Consult the class entry of the compo-
nent(s) in question, and have fun experimenting!

Figure 9-19. Formatting focused on one specific type of component

202 | Chapter 9: Using ActionScript 3.0 Components

Skinning Components Manually
It goes without saying that some design choices are more successful when
implemented manually. Changing the actual make-up of a component’s skin
—that is, redrawing or manipulating the actual movie clips that comprise a
component’s features—is called skinning, and from a designer’s standpoint,
it couldn’t be any more intuitive than the following steps.

1. Create a new ActionScript 3.0 FLA file, and then open the Components
panel. Drag a copy of the Button component to the stage.

2. Double-click the Button component on the stage, just as you would to edit
in place any movie clip symbol. Doing so opens the component into an
“exploded view” that reveals each element of its default skin, as seen in
Figure 9-21.

3. Double-click the representation of the over state to enter the timeline of
that element. Most component skins take advantage of 9-slice scaling, as
seen in Figure 9-22. The dashed lines indicate which portions of the image
will scale when resized and which portions won’t. In Figure 9-22, the cor-
ner regions maintain their present aspect ratios, while the top, bottom,
and sides stretch as necessary.

4. Individual component skins may vary, but you’ll typically find a number
of timeline layers already in place. Here, these include layers named
highlight and fill. Carefully select the content of these layers, and then
delete it. Select the Paint Bucket tool, choose a markedly different fill color,
such as pink, and then click inside the border layer stroke to fill the roun-
ded rectangle.

5. Select Edit→Edit Document to return to the main timeline. Drag another
copy of the Button component from the Library to the stage.

Figure 9-20. Formatting focused on one specific instance of a component

Changing the Appearance of Components | 203

6. Select Control→Test Movie, and then move your cursor over and away
from both Button components to verify that their over states have visually
changed.

Figure 9-21. The default skin of the Button component, ready for editing

204 | Chapter 9: Using ActionScript 3.0 Components

Figure 9-22. The over state of the Button component, showing 9-slice scaling lines

Changing the Appearance of Components | 205

CHAPTER 10

Making Up for a Reduced
Component Set

In spite of the component improvements discussed in Chapter 9, the overall
number of components in the Flash authoring tool has been reduced for
ActionScript 3.0 FLA files. The data components, in particular, have been re-
moved completely and now belong to the Flex framework. A handful of user
interface (UI) components, such as Accordion, Tree, and Window, are also
absent.

See Table 9-2 through Table 9-5 in Chapter 9 for a full list of
new and removed components.

These components are still available for ActionScript 2.0 documents, but the
Components panel adjusts its contents based on a FLA file’s publish settings
(File→Publish Settings→Flash→Script). Even if you start in an ActionScript 2.0
document, and then add components to the Library panel and change your
publish settings, you will only see error messages when you compile. Compo-
nents designed for different versions of ActionScript can’t be mixed in the same
FLA file. This chapter discusses a number of ways to work around (or work
without) Flash components no longer supported in ActionScript 3.0.

Working Without Data Components in ActionScript 3.0
The data components in ActionScript 2.0 offered a panel-based interface for
configuring sophisticated data interactions among UI components and even
external data sources, such as XML documents and databases. In a sense, they
provided a more complex, but similar apparatus to the Script Assist feature of

207

the Actions panel, best suited to older ActionScript. Developers who routinely
work with complex data binding are generally going to find a more comfortable
workflow in Flex Builder 3, which is specifically geared toward Rich Internet
Application (RIA) development. You may, however, encounter the occasional
need for some of these features in the Flash authoring tool. The following
sections discuss the implementation of a pair of popular data components in
ActionScript 2.0, and then recommend a replacement workflow for Action-
Script 3.0 documents.

Creating an XMLConnector Scenario in ActionScript 2.0
In ActionScript 2.0, one of the XMLConnector component’s uses was to load,
parse, and use XML data to populate UI components. During this process, a
copy of the DataBindingClasses component (Window→Common Libra-
ries→Classes) was automatically added to the library, which facilitated nearly
codeless data binding among components; that is, components could be con-
figured to influence the data content and visual display of other components
automatically. You could do this with barely any use of ActionScript, but the
process was fairly involved and required a well organized bit of fiddling among
tabs of the Component Inspector panel, as demonstrated in the following ex-
ample. Although the XMLConnector component was potentially helpful to de-
signers, you can reproduce the functionality illustrated here with relatively
little effort in ActionScript 3.0. One approach is discussed immediately after
the ActionScript 2.0 version.

1. Create a new ActionScript 2.0 FLA file, and then save it as
XMLConnector.fla. In the Timeline, rename the default layer to scripts,
and then add a new layer named components.

2. Open the Components panel. With the components layer selected, drag a
copy of the XMLConnector component to the stage. It doesn’t matter where
you position this component, because, like all data components, it be-
comes invisible at runtime. Select the XMLConnector component, and then
use the Property inspector to give it the instance name xmlConn.

3. Drag a copy of the ComboBox and TextInput components to the stage. Give
the ComboBox component the instance name myComboBox, and the
TextInput component the instance name myTextInput.

4. Create a new XML document in the same folder as XMLConnector.fla,
and then save the new document as cds.xml (this is the same file used in
Chapter 1, so you may copy that one, if you like). The contents of this
XML file should read as follows:

<?xml version="1.0" encoding="iso-8859-1"?>
<library>

208 | Chapter 10: Making Up for a Reduced Component Set

 <artist name="The Beatles">
 <album name="Abbey Road">
 <track title="Come Together" />
 <track title="Something" />
 <track title="Maxwell's Silver Hammer" />
 <track title="Oh! Darling" />
 <track title="Octopus's Garden" />
 <track title="I Want You (She's So Heavy)" />
 <track title="Here Comes the Sun" />
 <track title="Because" />
 <track title="You Never Give Me Your Money" />
 <track title="Sun King" />
 <track title="Mean Mr. Mustard" />
 <track title="Polythene Pam" />
 <track title="She Came in Through the Bathroom Window" />
 <track title="Golden Slumbers" />
 <track title="Carry That Weight" />
 <track title="The End" />
 <track title="Her Majesty" />
 </album>
 </artist>
</library>

5. Select xmlConn, and then open the Component Inspector panel (Win-
dow→Component Inspector). Select the Parameters tab, and then enter
cds.xml as the value of the URL parameter. Set the direction parameter to
receive, as shown in Figure 10-1. This associates the XMLConnector com-
ponent with the cds.xml document.

Figure 10-1. Configuring the XMLConnector component

6. Select the Component Inspector panel’s Schema tab. Select the existing
results schema, and then click the far right arrow button to browse for
the cds.xml document (Figure 10-2).

Working Without Data Components in ActionScript 3.0 | 209

7. When the XML document is displayed in the Schema tab, notice the
results→library→artist→album→track node, as shown in Figure 10-3.
This node represents the numerous <track> elements of the XML docu-
ment, which are going to be displayed by the ComboBox component.

8. Select the myComboBox instance. In the Component Inspector panel, select
the Bindings tab, and then click the button to add a binding. This opens
the Add Binding dialog box. Select dataProvider, and then click OK to
close the dialog box. In the Bindings tab, double-click the bound to pa-
rameter to open the Bound To dialog box.

9. In the Bound To dialog box, as shown in Figure 10-4, select XMLConnector,
<xmlConn> on the left (this is the xmlConn instance) and the deeply nested
track node on the right, as noted in Step 7. Click OK to close the dialog
box. This action automatically adds the DataBindingClasses component
to the library.

10. At this point, the myComboBox instance is associated with the <track> ele-
ments of the XML document, thanks to the XMLConnector component.
Now you just need a trigger. Select frame 1 of the scripts layer, and then
open the Actions panel. Type the following ActionScript:

xmlConn.trigger();

Figure 10-2. Establishing the XML for the results schema

210 | Chapter 10: Making Up for a Reduced Component Set

Select Control→Test Movie to confirm that the ComboBox component dis-
plays the names of the tracks from The Beatles’ Abbey Road album (Fig-
ure 10-5).

11. To demonstrate data binding between the ComboBox and TextInput com-
ponents, close the SWF file, and then continue with a few additional steps.
Select the myTextInput instance, and then return to the Component In-
spector panel’s Bindings tab. Click the button to open the Add Binding
dialog box. You see one choice for text, which refers to the TextIn
put.text property of the component (the text it displays). Select the
text binding, then click OK to close the dialog box.

12. In the Bindings tab, double-click the bound to parameter to open the
Bound To dialog box. As shown in Figure 10-6, select ComboBox, <myCombo
Box> on the left, and selectedItem on the right, which refers to the
ComboBox.selectedItem property of the myComboBox instance.

Figure 10-3. Selecting the <track> elements of the XML document

Working Without Data Components in ActionScript 3.0 | 211

Figure 10-4. Binding the ComboBox component with the XMLConnector component

Figure 10-5. A ComboBox component displaying data from an XML file

13. Turn on the “Use path expression” checkbox, and then enter the expres-
sion title, as shown in Figure 10-6. This associates the title property of
the currently selected item in the ComboBox—namely, a <track> element’s

212 | Chapter 10: Making Up for a Reduced Component Set

title attribute—with the TextInput.text property of the myTextInput in-
stance. Click OK to close the dialog box.

14. Select Control→Test Movie to confirm that the TextInput component up-
dates automatically to display the current value of the ComboBox

component.

Recreating an XMLConnector Scenario in ActionScript 3.0
ActionScript 3.0 has no data components to recreate the XMLConnector, but
you can reproduce the features just described in ActionScript 3.0 with sur-
prisingly little code. It’s a matter of loading the XML document and responding
to a couple pertinent events.

1. Create a new ActionScript 3.0 FLA file, and then name it XMLConnector
Mimic.fla. Rename the default layer in the Timeline to scripts, and then
add a new layer named components.

2. With the components layer selected, open the Components panel, and then
drag a copy of the ComboBox and TextInput components to the stage. Give
the ComboBox component the instance name myComboBox, and the
TextInput component the instance name myTextInput.

3. Select frame 1 of the scripts layer, and then open the Actions panel. Enter
the following code:

var myXML:XML = new XML();
var xmlLoader:URLLoader = new URLLoader();

Figure 10-6. Binding the TextInput component with the ComboBox component

Working Without Data Components in ActionScript 3.0 | 213

xmlLoader.load(new URLRequest("cds.xml"));
xmlLoader.addEventListener(Event.COMPLETE, completeHandler);

function completeHandler(evt:Event):void {
 myXML = XML(evt.target.data);
 var len:int = myXML..track.length();
 for (var i:int = 0; i < len; i++) {
 myComboBox.addItem({label:myXML..track[i].@title});
 }
 myComboBox.addEventListener(Event.CHANGE, changeHandler);
}

function changeHandler(evt:Event):void {
 myTextInput.text = myComboBox.selectedLabel;
}

In the first four lines, the variable myXML is declared and set to an instance
of the XML class. Another variable, xmlLoader, is set to a URLLoader instance
and used to request the cds.xml document. Finally, the Event.COMPLETE
event, which indicates that the XML document has loaded, is associated
with a custom completeHandler() function.

The completeHandler() function parses the XML document, and routes
its contents to the myXML instance. Using ECMAScript for XML (E4X) syn-
tax, the remainder of this function uses a for loop to repeatedly invoke
ComboBox.addItem() on the myComboBox instance in order to supply it with
labels. Finally, the Event.CHANGE event constant is associated with a custom
changeHandler() function, which updates the TextInput.text property of
the myTextInput instance.

See the section “Namespaces” on page 80 in Chapter 3,
for more detailed information on E4X and the navigation
of XML documents.

4. Select Control→Test Movie to confirm that the ComboBox component cor-
rectly displays track information that the TextInput component updates
automatically to display the current value of the ComboBox component.
Compare the ActionScript 2.0 and 3.0 SWF files for this exercise, and
you’ll see that the ActionScript 3.0 SWF file weighs less than half of its
companion’s file size.

Creating a WebServiceConnector Scenario in ActionScript 2.0
Web services provide an XML-based mechanism for data exchange by way of
a protocol called Simple Object Access Protocol (SOAP), (http://www.w3.org/
TR/soap12-part0/), whose specification is maintained by the World Wide Web
Consortium (W3C), the same body responsible for the HTML specification.

214 | Chapter 10: Making Up for a Reduced Component Set

http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part0/

SOAP messages can be consumed with the ActionScript 2.0 WebServiceConnec
tor data component.

1. Create a new ActionScript 2.0 FLA file, and then name it
WebServiceComponent.fla. In the Timeline, rename the default layer to
scripts, and create a new layer named component.

2. With the component layer selected, open the Components panel, and then
drag a copy of the WebServiceConnector component to the stage. Use the
Property inspector to give the component the instance name wsConn.

3. Open the Web Services panel (Window→Other Panels→Web Services).
Unfortunately, this panel is active only in ActionScript 2.0 documents, but
it provides a handy way to check what methods are available from any
number of Web services, in addition to what parameters those methods
expect. Click the Define Web services button (a blue globe) to open the
Define Web Services dialog box. In this dialog box, click the button to
add a new Web service URL. Enter http://www.w3schools.com/webservi
ces/tempconvert.asmx?WSDL, and then click the OK button to close the
dialog box. This action updates the Web Services panel (Figure 10-7) to
show the name of a particular Web service provided by http://w3schools
.com, TempConvert, which features two methods. Open the params node
beneath FahrenheitToCelsius() to see that a single string parameter is ex-
pected: a value in Fahrenheit, to be converted to Celsius.

4. With the WebServiceConnector component selected, open the Component
Inspector panel, and then set the WSDLURL parameter to http://www
.w3schools.com/webservices/tempconvert.asmx?WSDL, the operation pa-
rameter to FahrenheitToCelsius, and the other two parameters to true
(Figure 10-8). This action prepares the wsConn instance to use the
FahrenheitToCelsius() method of the TempConvertWeb service.

5. Select frame 1 of the scripts layer, and then open the Actions panel. Type
the following ActionScript:

wsConn.addEventListener("result", resultHandler);
wsConn.params = ["451"];
wsConn.trigger();

function resultHandler(evt:Object):Void {
 trace(evt.target.results);
};

This associates the WebServiceConnector.result event with a custom
resultHandler() function that traces the value returned by the Web serv-
ice. The WebServiceConnector.params property of the wsConn instance is set
to an Array instance (the square brackets, [], are a shorthand for the ex-
pression new Array()). In honor of Ray Bradbury’s novel Fahrenheit 451,

Working Without Data Components in ActionScript 3.0 | 215

http://www.w3schools.com/webservices/tempconvert.asmx?WSDL
http://www.w3schools.com/webservices/tempconvert.asmx?WSDL
http://w3schools.com
http://w3schools.com
http://www.w3schools.com/webservices/tempconvert.asmx?WSDL
http://www.w3schools.com/webservices/tempconvert.asmx?WSDL

the string "451" is provided as the sole value of the params array. Some
methods receive numerous parameters, would be added in a comma-
delimited list. Finally, the WebServiceConnector.trigger() method nudges
the wsConn instance into action.

6. Select Control→Test Movie to confirm that the value 232.777777777778
(the Celsius value for 451 degrees Fahrenheit) appears in the Output
panel. In the menu bar of the SWF file, select View→Bandwidth Profiler
to see that the file weighs 40KB.

Recreating a WebServiceConnector Scenario in ActionScript 3.0
No ActionScript 3.0 equivalent to WebServiceConnector ships with the au-
thoring tool, but a free third-party extension, written by Pieter Michels (http:
//www.wellconsidered.be/), neatly fits the bill. Pieter kindly granted permission

Figure 10-7. Reviewing Web service methods in the Web Services panel

Figure 10-8. Preparing to consume a publicly available Web service

216 | Chapter 10: Making Up for a Reduced Component Set

http://www.wellconsidered.be/
http://www.wellconsidered.be/

for the use of his extension in conjunction with this book. His WebService
component extension, available at http://www.wellconsidered.be/blog/as3-web
service-component/, provides three Web service–related classes, demonstrated
in this exercise.

To reproduce the WebService connector feature in ActionScript 3.0, you need
to download Pieter Michels’ WebService Component extension from http://
www.wellconsidered.be/blog/as3-webservice-component/. When the download
is complete, unpack the ZIP archive, and then double-click the
wellconsidered_ws.mxp file to open it in the Adobe Extension Manager (Fig-
ure 10-9). Click the Accept button, and then click the OK button to see the
extension included among your list of extensions, which will vary from the
one depicted.

Make sure the new extension is turned on by ensuring the checkbox in the
Enabled column is selected in the On/Off column (Figure 10-10).

Shut down the Flash authoring tool, and then launch it again so that the ex-
tension is activated at startup.

Figure 10-9. Agreeing to the standard Adobe Extension Manager disclaimer

Working Without Data Components in ActionScript 3.0 | 217

http://www.wellconsidered.be/blog/as3-webservice-component/
http://www.wellconsidered.be/blog/as3-webservice-component/
http://www.wellconsidered.be/blog/as3-webservice-component/
http://www.wellconsidered.be/blog/as3-webservice-component/

1. Create a new ActionScript 3.0 FLA file, and then name it
WebServiceExtension.fla. Rename the default layer in the Timeline to
scripts.

2. Open the Components panel and note that a new folder, named
wellconsidered, is now available. Open this new folder, and then drag a
copy of the Operation, OperationEvent, and WebService components to the
library. These provide a virtual be.wellconsidered.services package for
three classes corresponding to the three components in the library. These
classes will be referenced in the ActionScript in Step 3.

3. Select frame 1 of the scripts layer, and then open the Actions panel. Type
the following code:

import be.wellconsidered.services.WebService;
import be.wellconsidered.services.Operation;
import be.wellconsidered.services.events.OperationEvent;

var ws:WebService = new WebService("http://www.w3schools.com/¬
 webservices/tempconvert.asmx?WSDL");

var op:Operation = new Operation(ws);
op.FahrenheitToCelsius("451");

Figure 10-10. The WebService component extension, installed and active

218 | Chapter 10: Making Up for a Reduced Component Set

op.addEventListener(OperationEvent.COMPLETE, completeHandler);
function completeHandler(evt:OperationEvent):void {
 trace(evt.data);
}

op.addEventListener(OperationEvent.FAILED, failedHandler);
function failedHandler(evt:OperationEvent):void {
 trace(evt.data);
}

After the required classes are imported, a ws variable is declared and set to
an instance of the custom WebService class, which is fed the URL of the
TempConvert Web service as a parameter. An op variable is set to an instance
of the custom Operation class, which is associated with the ws instance.
The remote FahrenheitToCelsius() method is invoked on the op instance,
and passed in the string "451" parameter.

Finally, two events are associated with respective custom functions: the
OperationEvent.COMPLETE event is triggered when the Operation instance
receives data from the Web service, in which case the value
232.777777777778 is sent to the Output panel; if the Web service is un-
available, or some other error occurs, then the OperationEvent.FAILED
event may be handled to gracefully deal with the situation.

4. Select Control→Text Movie to verify that the Web service communication
succeeds. In the file menu of the SWF file, select View→Bandwidth Profiler
to see that the file weighs a mere 6KB.

ActionScript 2.0 Components in ActionScript 3.0 SWF
Files
Even though you can’t include ActionScript 2.0 components in ActionScript
3.0 FLA files (and vice versa), an interesting detour lets you load ActionScript
2.0 SWF files at runtime by ActionScript 3.0 SWF files. Intercommunication
between such SWF files is possible by way of the native LocalConnection and
ExternalInterface classes. Renowned Flash guru Grant Skinner (http://gskin
ner.com/) offers a set of free classes named SWFBridge, written in ActionScript
2.0 and 3.0, to facilitate this communication. In this way, ActionScript 2.0
components, such as Accordion and DateField, can be incorporated into an
ActionScript 3.0 workflow.

Download Grant’s classes from http://www.gskinner.com/blog/archives/2007/
07/swfbridge_easie.html. When the download is complete, unpack the ZIP
archive, and then decide on a folder in which to store the files used for the
following exercise. The SWFBridge classes are organized into a
com.gskinner.utils package, so make sure to create corresponding

ActionScript 2.0 Components in ActionScript 3.0 SWF Files | 219

http://gskinner.com/
http://gskinner.com/
http://www.gskinner.com/blog/archives/2007/07/swfbridge_easie.html
http://www.gskinner.com/blog/archives/2007/07/swfbridge_easie.html

com/gskinner/utils subfolders inside your chosen exercise folder. Place the
SWFBridgeAS2.as and SWFBridgeAS3.as files into the utils subfolder before
continuing.

You can also store these classes in separate folders, such as a
repository of routinely accessed ActionScript 2.0 and 3.0
classes, as long as you configure your global classpath settings
to be aware of those locations. See Chapter 5 for more details.

1. Create a new ActionScript 2.0 FLA file and name it ContentAS2.fla.
Rename the default layer in the Timeline to scripts, and then create a new
layer named components.

2. With the components layer selected, open the Components panel, and then
drag a copy of the Accordion and DateField components to the left side of
the stage. Use the Property inspector to give the Accordion component the
instance name myAccordion, and the DateField component the instance
name myDateField.

3. To provide some content for the myAccordion instance, use the Create New
Symbol dialog box (Insert→New Symbol) a few times to create two or three
movie clip symbols. In turn, double-click each symbol in the library to
enter its timeline. Use the drawing tools to draw a few shapes to distinguish
each symbol, or import a unique graphic file into each symbol. When
finished, right-click (Ctrl-click) each symbol in the library, and then select
Properties. Select the Export for ActionScript checkbox to provide a
unique linkage identifier for every symbol.

4. Select the myAccordion instance. In the Component Inspector panel,
double-click to configure the childLabels, childNames, and childSymbols
parameters to correspond to movie clip symbols created in Step 3. For
example, if you have three movie clips that contain photos of a child
building snowmen in the sand, showing off her braids, and jumping, you
might configure the childLabels parameter with descriptive labels like
Sandmen, Braids, and Jumping, as seen in Figure 10-11. The childNames
parameter refers to yet-to-be-created instance names for these symbols, so
you might use mcSandmen, mcBraids, and mcJumping. Finally, childSym
bols refers to the symbols’ linkage identifiers, so you might use sandmen,
braids, and jumping.

5. Select Control→Test Movie to verify that the Accordion component dis-
plays your content, as seen in Figure 10-12. Click from pane to pane to
switch from one movie clip to the next.

220 | Chapter 10: Making Up for a Reduced Component Set

Figure 10-11. Preparing the Accordion component

Figure 10-12. Verifying the Accordion component

ActionScript 2.0 Components in ActionScript 3.0 SWF Files | 221

6. Close the SWF file. Select frame 1 of the scripts layer, and then open the
Actions panel. Enter the following ActionScript:

import com.gskinner.utils.SWFBridgeAS2;

var myBridge:SWFBridgeAS2 = new SWFBridgeAS2("connectionID", this);

The SWFBridgeAS2 class is imported, and a myBridge variable is declared,
and set to a instance of the SWFBridgeAS2 class. This variable will manage
the bridge of communication between this SWF file and the host Action-
Script 3.0 SWF file that’ll eventually load it. Two parameters are provided
to the myBridge instance: an arbitrarily named connection identifier
("connectionID"), and a reference to the current SWF file (this).

Continue entering the following code:

function selectSegment(segment:Number):Void {
 myAccordion.selectedIndex = segment;
}

Here, a custom selectSegment() function selects which pane of the
Accordion component to display, by setting the Accordion.selectedIndex
property of the myAccordion instance to an incoming parameter, segment.
The ActionScript 3.0 SWF file that loads this file at runtime will trigger
this function.

Enter the remainder of the ActionScript 2.0 code:

var accListener:Object = new Object();
accListener.change = accChangeHandler;
myAccordion.addEventListener("change", accListener);
function accChangeHandler(evt:Object):Void {
 myBridge.send("notifyComboBox", evt.target.selectedIndex);
}

var dfListener:Object = new Object();
dfListener.change = dfChangeHandler;
myDateField.addEventListener("change", dfListener);
function dfChangeHandler(evt:Object):Void {
 myBridge.send("notifyTextInput", evt.target.selectedDate);
}

These two blocks of code do practically the same thing. In each case, a
listener variable is declared, and set to an instance of the Object class.
These listener objects act as event handling stand-ins on behalf of the
myAccordion and myDateField instances. Each listener is associated with
the change event of its corresponding component, set to trigger a com-
panion function that sends a message to the forthcoming ActionScript 3.0
SWF file by way of the myBridge instance.

Each event handler invokes the SWFBridgeAS2.send() method on the
myBridge instance, and tells the ActionScript 3.0 SWF file what to do. For

222 | Chapter 10: Making Up for a Reduced Component Set

example, when the user changes the myAccordion instance, it uses the
myBridge instance to trigger a function in the ActionScript 3.0 SWF file by
way of the string reference "notifyComboBox", passing a parameter whose
value is the number of its own index.

7. Select Control→Test Movie again to update the ActionScript 2.0 SWF file.

8. Create a new ActionScript 3.0 FLA file, and then name it
ContentAS3.fla. Rename the default layer in the Timeline to scripts, and
create a new layer named components.

9. With the components layer selected, open the Components panel, and then
drag a copy of the ComboBox and TextInput components to the stage. Use
the Property inspector to give the ComboBox component the instance name
myComboBox, and the TextInput component the instance name
myTextInput. Arrange these components on the right side of the stage, in
order to make room for the ActionScript 2.0 SWF file.

10. Select the myComboBox instance. In the Component Inspector panel, double-
click to configure the dataProvider parameter to correspond to the movie
clip symbols displayed by the Accordion instance in the ActionScript 2.0
SWF file. For example, click the button to add a new entry. In the new
entry, change the label field to Sandmen, and the data field to 0. Add a
second new entry. In the second new entry, change the label field to
Braids and the data field to 1. Create a third new entry. In the third new
entry, change the label field to Jumping, and the data field to 2.

11. Select frame 1 of the scripts layer, and then open the Actions panel. Type
the following ActionScript 3.0:

import com.gskinner.utils.SWFBridgeAS3;

var myBridge:SWFBridgeAS3 = new SWFBridgeAS3("connectionID", this);

So far, the code’s nearly identical. The ActionScript 3.0 version instanti-
ates its own myBridge variable, only this time the variable’s set to an in-
stance of the SWFBridgeAS3 class. The "connectionID" parameter here
matches the one specified in the ActionScript 2.0 file, which opens a single
channel of communication between the two SWF files.

Continue entering the following code:

var myLoader = new Loader()
myLoader.load(new URLRequest("contentAS2.swf"));
addChild(myLoader);

Here, a Loader instance loads the ActionScript 2.0 SWF file and adds it to
the display list.

ActionScript 2.0 Components in ActionScript 3.0 SWF Files | 223

Continue with the following code:

function notifyComboBox(num:int):void {
 myComboBox.selectedIndex = num;
}

function notifyTextInput(str:String):void {
 myTextInput.text = str;
}

These functions define the behavior of the notifications sent by the Ac-
tionScript 2.0 SWF file, whose event handlers trigger notifyComboBox()
and notifyTextInput() by way of the string references "notifyComboBox"
and "notifyTextInput" (see Step 6).

Continue entering the remaining code, which sends a message to the Ac-
tionScript 2.0 SWF file, using the by-now familiar SWFBridge.send()
method:

myComboBox.addEventListener(Event.CHANGE, changeHandler);

function changeHandler(evt:Event):void {
 myBridge.send("selectSegment", evt.target.selectedIndex);
}

12. Select Control→Test Movie to experience the collaboration between
ActionScript 2.0 and 3.0 SWF files. Note that selecting various panes in
the Accordion component updates the ComboBox component in the host
SWF file, and vice versa. Note also that various selections of the Date
Field component update the TextInput component in the host SWF file
(Figure 10-13).

For alternatives to SWFBridge, experiment with the free ActionScript Bridge
component by Jumpeye, available at www.JumpeyeComponents.com/Flash
-Components/Various/ActionScript-Bridge-91/, and FlashInterface, by Robert
Taylor, available at www.flashextensions.com/products/flashinterface.php.

Exploring Third-Party UI Components
Numerous third-party companies have developed components for Flash, some
of which require licensing fees and some of which are free. A Google search
on “ActionScript 3.0 Flash components” will lead you to a number of com-
ponent repositories, as well as tutorials to help you create your own. Here is
an example of two ready-made component providers.

224 | Chapter 10: Making Up for a Reduced Component Set

Yahoo! ASTRA Components
The Yahoo! Developer Network (http://developer.yahoo.com/) offers a number
of ActionScript 3.0 UI components under the BSD free software license, as part
of a Flash component set (http://developer.yahoo.com/flash/astra-flash/) called
ASTRA. Components are installed with the Adobe Extension Manager and
closely match the API, syntax, and library folder structure of the built-in
ActionScript 3.0 component set. ASTRA components include:

• AutoComplete: provides a list of suggestions from a supplied dataset based
on the characters entered by the user

• AlertManager: manages the queuing of alert windows

• AudioPlayback: conceptually similar to FLVPlayback, but for audio files

• BarChart, ColumnChart, LineChart, and PieChart: display tabular data in
various graphical representations

Figure 10-13. Collaboration between ActionScript 2.0 and 3.0 SWF files, thanks to Grant
Skinner’s SWFBridge classes

Exploring Third-Party UI Components | 225

http://developer.yahoo.com/
http://developer.yahoo.com/flash/astra-flash/

• Menu and MenuBar: ActionScript 3.0 versions of the native ActionScript 2.0
equivalents

• TabBar: facilitates switching among various application states

• Tree: an ActionScript 3.0 version of the native ActionScript 2.0 equivalent

Here’s a quick demonstration of the Yahoo! ASTRA TabBar component.

1. Download the ASTRA component set from http://developer.yahoo.com/
flash/astra-flash/. When the download completes, unpack the ZIP archive,
and then double-click the Astra.mxp file to open it in the Adobe Extension
Manager. Follow the steps described for installing Pieter Michels’ Web-
Service component extension earlier in this chapter (see the “Recreating a
WebServiceConnector Scenario in ActionScript 3.0” on page 216). Shut
down the Flash authoring tool, and then launch it again so that the ex-
tension is activated at startup.

2. Create a new ActionScript 3.0 FLA file, and then open the Components
panel. Drag a copy of the TabBar component from the Yahoo! folder to the
stage. Use the Property inspector to give this component the instance name
myTabBar.

3. Select the myTabBar instance. In the Component Inspector panel, double-
click to configure the dataProvider parameter. In the Values dialog box
that opens, click the button to add a new entry. In the new entry, change
the label field to Home, and the data field to home. Add a second new entry.
In the second new entry, change the label field to About Us, and the
data field to about us. Create a third new entry. In the third new entry,
change the label field to Contact Us, and the data field to contact us. Set
the autoSizeTabsToTextWidth parameter to true to ensure that the labels
expand to fit their content.

4. In the Timeline, select frame 1, and then open the Actions panel. Enter
the following code:

import com.yahoo.astra.fl.events.TabBarEvent;

myTabBar.addEventListener(TabBarEvent.ITEM_CLICK, clickHandler);

function clickHandler(evt:TabBarEvent):void {
 trace(evt.item.data);
}

226 | Chapter 10: Making Up for a Reduced Component Set

http://developer.yahoo.com/flash/astra-flash/
http://developer.yahoo.com/flash/astra-flash/

Here, an import directive makes the TabBarEvent class available to this
frame script. The myTabBar component instance is referenced by instance
name and associated with a custom clickHandler() function to handle the
TabBarEvent.ITEM_CLICK event. Inside the clickHandler() function, a
trace() function references the data property of the currently selected tab,
and sends its value to the Output panel. In actual practice, you might use
the expression evt.item.data inside a call to gotoAndPlay(), to send the
timeline to a frame label associated with the selected tab.

5. Select Control→Test Movie to verify that tab selection sends correspond-
ing values to the Output panel.

This syntax is from the Astra Library Documentation
(http://developer.yahoo.com/flash/astra-flash/classrefer
ence/), which thoroughly covers the full ASTRA API.

Jumpeye Components
Jumpeye offers a wide variety of attractive ActionScript 3.0 UI components for
sale on its website: www.JumpeyeComponents.com/Flash-Components/. Com-
ponents include:

• Accordion Panel V3: provides horizontal and vertical multipane selection,
like the native ActionScript 2.0 Accordion component, but much more
powerful and configurable

• Loader Pro: loads images or animations, both from the library or external
files, with visual transitions

• Color Picker Pro: provides robust color picking capability with a variety
of user interfaces

• Thumbnail Slider: loads images and displays them as a scrollable thumb-
nail carousel

• ToolTip 2007 Pro: provides highly configurable tool tips when the user
hovers over designated areas

• Numerous additional audio/video, menu, and transition effects
components

As a gift to readers of this book, Jumpeye has offered a special coupon code
that lets you download its Accordion Panel V3 component free of charge. Read
on to see how to cash in, and check out the quick demonstration.

Exploring Third-Party UI Components | 227

http://developer.yahoo.com/flash/astra-flash/classreference/
http://developer.yahoo.com/flash/astra-flash/classreference/

1. Create a user account on the Jumpeye Components website. Navigate to
the Accordion Panel V3 webpage (www.JumpeyeComponents.com/Flash
-Components/User-Interface/Accordion-Panel-V3-40/). Click the Add to
Shopping Cart button.

2. On the Shopping Cart page, enter this coupon code into the field titled
“Enter your discount coupon number here”:

e0a5a7f2573beb2171da4b38f1j13058

3. Click the Check button. This action refreshes the web page to indicate a
full discount. Click the Check Out button. Verify your customer infor-
mation, and then click the Post Your Order button. When the web page
refreshes, click the hyperlink that says, “Go to download page.” Down-
load the component.

4. When the download is complete, unpack the ZIP archive, and then dou-
ble-click the AccordionPanelV3AS3.mxp file to open it in the Adobe Ex-
tension Manager. Follow the steps described for installing Pieter Michels’
WebService component extension earlier in this chapter (see the “Recre-
ating a WebServiceConnector Scenario in ActionScript 3.0” on page
216). Shut down the Flash authoring tool, and then launch it again so that
the extension is activated at startup.

5. Open the accordion_panel.fla file included with the download. Note that
a copy of the component already exists on the stage, and has the instance
name accordionPanel.

6. In the Parameters panel, note that the xmlPath parameter already shows
the value acc_panel.xml. This parameter points to an XML document in-
cluded with the other sample files from the ZIP archive. Open the XML
document to see its contents:

<?xml version="1.0" encoding="UTF-8"?>
<component name="Accordion Panel v3">
<data childStyle="style1">
<item title="Jumpeye" contentPath="images/img1.jpg"/>
<item title="Working" contentPath="images/img2.jpg"/>
<item title="Drawing" contentPath="images/img3.jpg"/>
<item title="On meeting" contentPath="images/img4.jpg"/>
<item title="Having fun" contentPath="images/img5.jpg"/>
</data>
</component>

These XML nodes give you a straightforward way to let the component
know what content to display.

7. Select Control→Test Movie to verify that clicking on headings displays the
corresponding pane.

228 | Chapter 10: Making Up for a Reduced Component Set

8. Delete one of the <item> nodes in the XML document, and then save the
file. In the Flash authoring tool, select Control→Test Movie again to verify
that the corresponding pane is no longer present.

The full Jumpeye Accordion Panel V3 API is available in
the AccordionPanelV3.pdf file included with the ZIP
archive.

Exploring Third-Party UI Components | 229

CHAPTER 11

Debugging and Troubleshooting

Debugging Is a Good Thing
Murphy’s Law may be pessimistic, but at some point for all of us, the adage
rings true: If something can go wrong, it will. Despite your best intentions, the
SWF files you produce will sooner or later perform in unexpected ways. Maybe
an audio clip will fail to play or a button will get stuck in its rollover state. In
complex situations, the likelihood of a Murphyism is bound to increase, es-
pecially in projects comprised of numerous ActionScript classes or SWF files.
This all makes perfect sense, of course. Complexity means a developer has to
keep more in mind while working. Humans simply have a limit to the number
of details they can juggle at once, so the occasional particulars get overlooked.
The cause of unexpected behavior is usually the result of an error in the de-
veloper’s logic, though certainly other factors may come into play. An external
asset, such as a JPEG file, might be missing from the server; a needed database
might be inaccessible; perhaps a typo has crept into the code. The challenge
in all these cases is straightforward. Once a SWF file is compiled, the timeline
and all vestiges of ActionScript are gone. Assets and programming code have
been compiled into bytecode, which is effectively indecipherable to the eye—
and unchangeable.

How, then, can a developer see what’s going on, other than to experience the
error(s) directly and make minimally informed guesses? The answer hinges on
debugging, which is a skill, and ultimately a way of thinking, that will help you
tremendously in your Flash endeavors. Fortunately, Flash CS4 Professional
features a number of updated debugging tools. Some of these work just fine
for documents configured for ActionScript 2.0, but the most beneficial im-
provements appear with ActionScript 3.0.

231

Testing Your ActionScript 3.0 Code
Programmers tend to learn a famous motto early on, especially when the
teacher isn’t a book or mentor, but rather a challenging experience. There’s
nothing like a fiasco to make a learning point stick, especially when you have
to stay late at the office to fix it! The motto goes like this: Test early, test often.
This bears repeating. Test early, test often.

This motto is a good one because it keeps you from getting ahead of yourself.
If you type 100 lines of code, either in a keyframe or class file, and only test at
that point ... well, you’re taking a pretty big risk. If your ActionScript has errors,
the issue (or issues) might stem from any one (or more) of those 100 lines. To
be sure, some errors do cause chain reactions, so you really can’t guarantee
that you’ll see only a handful of errors at once. Sometimes you’ll see dozens.
Ideally, though, you’ll want to grind through as few simultaneous errors as
possible. Testing early and testing often helps keep those numbers down.

Compiler Errors
You can perform testing, in its most basic form, by the simple act of running
a SWF file in the Flash authoring tool (Control→Test Movie, or Control→Test
Scene). If invalid code causes the compiler concern, it alerts you by sending an
announcement to the Compiler Errors panel. This alert occurs without any
effort on your part. In fact, errors brought to light in this way are the sort that
keep a SWF file from compiling in the first place, so a user never sees this
category of errors.

The Compiler Errors panel gives you a brief description of each error, and lets
you know where to find it, including relevant asset names and scene, layer,
frame, and line numbers. For more information on this panel, see the section
“Exploring the Compiler Errors Panel” on page 240 later in this chapter.

The Flash authoring tool lets you configure the degree to which the Compiler
Errors panel displays its messages. This is determined by a pair of modes called
Strict Mode and Warnings Mode, which can be set on a per-FLA file basis
under File→Publish Settings→Flash→Settings.

232 | Chapter 11: Debugging and Troubleshooting

You can get a full list of ActionScript 3.0 compiler errors from
the built-in documentation (search “compiler errors”), or on-
line at the Adobe online Help Resource Center:

http://help.adobe.com/en_US/AS3LCR/Flash_10.0/compi
lerErrors.html

Some errors appear only when you compile in Strict Mode
(enabled by default). Strict mode is determined by the pres-
ence of a check mark under File→Publish Settings→Flash→Set-
tings→Strict Mode.

Compiler Warnings
Once a SWF file compiles, it is finally capable of trying to carry out the in-
structions you’ve given it. Even so, your technically valid code may not be
written according to the recommended best practices of Adobe. As an exam-
ple, consider type declaration, which is optional in ActionScript 3.0. It’s pos-
sible and valid to declare variables without including a post colon suffix:

// type declared
var worthANickel:int = 5;

// type not declared
var worthADime = 10;

However, omitting the type declaration keeps you from benefiting from
ActionScript 3.0’s improved efficiency in Flash Player 9 and higher. For ex-
ample, in ActionScript 3.0, the int type (a 32-bit signed integer) takes up less
system memory than the Number type (a 64-bit double precision non-integer).
If you choose to refrain from explicitly specifying a variable’s data type, Flash
has no choice but to request as much memory as it reasonably can, on the
chance that the variable might be a string, a date, or some other object that
requires more RAM. For this reason alone, although type declarations are not
required, they’re definitely a good idea. Compiler warnings provide a good
reminder of recommended best practices like this one, and they also appear in
the Compiler Errors panel.

In addition, some of these warnings are geared toward developer education.
Certain programming concepts, sometimes specific to ActionScript, seem in-
tuitive right away, while others may sink in only after months of experience.
For example, the default value of many data types is null; that is, variables that
have been declared and include type declarations but have not yet been as-
signed a value.

var str:String;
trace(str); // Displays: null

Testing Your ActionScript 3.0 Code | 233

http://help.adobe.com/en_US/AS3LCR/Flash_10.0/compilerErrors.html
http://help.adobe.com/en_US/AS3LCR/Flash_10.0/compilerErrors.html

var d:Date;
trace(d); // Displays: null

var mc:MovieClip;
trace(mc); // Displays: null

If you compare any of these to null with an if statement, the expression eval-
uates to true:

var str:String;
if (str == null) {
 trace("default value is null");
} else {
 trace("default value is something else");
}
// Displays: default value is null

If you’re new to Flash programming, you might assume that the default value
for all data types is null, but as it turns out, instances of Boolean, int, uint,
and Number are by default false, 0, 0, and NaN (Not a Number), respectively.

In the following example, the comparison of the default value of a Boolean to
null is actually interpreted as false:

var b:Boolean;
if (b == null) {
 trace("default value is null");
} else {
 trace("default value is something else");
}
// Displays: default value is something else

In practice, this means your ActionScript might not always behave as you had
intended. Many compiler warnings help steer you in the right direction.

Finally, a number of compiler warnings relate specifically to ActionScript 2.0–
3.0 migration issues. You may consider these Help docs migration warnings a
collection of freebie insider tips!

A full list of ActionScript 3.0 compiler warnings can be ob-
tained from the built-in documentation (search “compiler
warnings”), or online at the Adobe online Help Resource
Center:

http://help.adobe.com/en_US/AS3LCR/Flash_10.0/compi
lerWarnings.html

Note that some warnings appear only when you compile in
Warnings Mode (enabled by default). Warnings mode is de-
termined by the presence of a check mark in File→Publish Set-
tings→Flash→Settings→Warnings Mode.

234 | Chapter 11: Debugging and Troubleshooting

http://help.adobe.com/en_US/AS3LCR/Flash_10.0/compilerWarnings.html
http://help.adobe.com/en_US/AS3LCR/Flash_10.0/compilerWarnings.html

Runtime Errors
Runtime errors occur, by definition, at runtime—in other words, after a SWF
file has passed the rounds of compiler errors and warnings. Because of this,
runtime errors are often a bit harder to track down than the sort described
earlier. After all, the ActionScript involved has already passed the test: it’s valid,
and has already been converted to bytecode. At that point, the scenes, layers,
and line numbers shown in compiler errors and warnings are effectively mean-
ingless. For this reason, notifications of runtime errors do not (cannot!) pro-
vide an X-marks-the-spot treasure map to erroneous ActionScript. In fact, the
code itself might actually be just fine. The culprit may well be a malformed
external file. Don’t let that alarm you, though. While not as precise as compiler
errors and warnings in terms of location, runtime error messages do try to show
where they originated.

Figure 11-1 shows an example error in which a SWF file attempts to load an
XML document that provides file data for a slideshow. In this case, the
ActionScript is correct; it’s the XML that contains an error (one of the elements,
<slide>, is missing its matching end-tag, </slide>). Because this SWF file is
being tested in the Flash authoring tool, the runtime error is displayed in the
Output panel.

Figure 11-1. A runtime error, displayed in the Output panel

Helpfully, this message indicates that the trouble happened during the execu-
tion of a function named loadHandler() in the main timeline, as seen in the
first line that starts with the word “at.” Further hints—the mention of
EventDispatcher and URLLoader/onComplete()—suggest that loadHandler() is
an event handler. These are all signposts that should at least give you a head
start as you re-examine your source files. Given the error’s description, “the
element type ‘slide’ must be terminated...,” and the hints on where to look,
you have considerably more information to go on than in previous versions of
Flash, which provided only compiler errors and warnings.

Testing Your ActionScript 3.0 Code | 235

To a certain extent, runtime errors are only as helpful as your naming con-
ventions and coding practices. For example, the ActionScript that loads the
XML in Figure 11-1 might look something like this:

var myXML:XML = new XML();
var xmlLoader:URLLoader = new URLLoader();
xmlLoader.load(new URLRequest("slideshow.xml"));
xmlLoader.addEventListener(Event.COMPLETE, loadHandler);

That last line of code associates a custom function, loadHandler(), with an
Event.COMPLETE event. This event is dispatched when the xmlLoader instance
finishes loading the slideshow.xml file. The loadHandler() function might look
like this:

function loadHandler(evt:Event):void {
 myXML = XML(evt.target.data);
 myComboBox.dataProvider = new DataProvider(myXML);
}

There’s certainly nothing wrong with that function—it’s valid ActionScript—
but because the error message mentions loadHandler() by name, you know
where to find it in the source file’s frame script. The lack of any obvious errors
in the function itself may nudge you into looking at the XML file, where the
error actually occurs.

In this scenario, the warning message’s guidance is helpful because
loadHandler() is defined as a named function. This event handler might just as
well have been written as a function literal, also known as an anonymous func-
tion, in which the function’s code appears directly as a parameter of
addEventListener() (changes in bold):

var myXML:XML = new XML();
var xmlLoader:URLLoader = new URLLoader();
xmlLoader.load(new URLRequest("slideshow.xml"));

xmlLoader.addEventListener(
 Event.COMPLETE,
 function (evt:Event):void {
 myXML = XML(evt.target.data);
 myComboBox.dataProvider = new DataProvider(myXML);
 }
);

If so, the runtime error inevitably becomes less clear, simply because the event
handler function no longer has a name.

TypeError: Error #1085: The element type "slide" must be
 terminated by the matching end-tag "</slide>".
 at MethodInfo-392()
 at flash.events::EventDispatcher/dispatchEventFunction()
 at flash.events::EventDispatcher/dispatchEvent()
 at flash.net::URLLoader/onComplete()

236 | Chapter 11: Debugging and Troubleshooting

This time, the function formerly known as loadHandler() is referenced as
MethodInfo-392(). Cryptic? Perhaps. The compiler automatically assigns a
name to the anonymous function. Ultimately, everything must have a refer-
ence, so Flash does what it needs to in order to keep track of the instructions
you’ve given it. Bear this trait in mind as you program, and avoid anonymous
functions if you want to improve the clarity of your error messages.

A full list of ActionScript 3.0 runtime errors can be obtained
from the built-in documentation (search “run-time errors”),
or online at the Adobe online Help Resource Center:

http://help.adobe.com/en_US/AS3LCR/Flash_10.0/runti
meErrors.html

Note that runtime errors appear regardless of your settings for
compiler errors and warnings, located under File→Publish
Settings→Flash→Settings.

Reviewing Improvements in Debugging Over
ActionScript 2.0
So far, you’ve seen a number of ways in which Flash communicates problems
without you having to take any action (other than to address the errors, of
course!). But true problem solving, at minimum, is an interactive process. Ide-
ally, it’s proactive. The remainder of the chapter fleshes out the Compiler Er-
rors panel in greater detail, and introduces additional debugging tools that
require input from you, ranging from the simplest—the humble trace() func-
tion—to the improved debug workspace.

Don’t Underestimate trace()
The trace() function bears some similarity to good old low-tech paper sticky
notes. Regardless of how powerful (and portable) PDAs and cell phones have
become, replete with programmable reminders, alarms, and automated email
dispatches, nothing beats the convenience of those stick-anywhere yellow
notes. They’re lightweight, informative, and reusable. Likewise, the trace()
function makes a terrific and uncomplicated tool.

In short, the trace() function sends information to the Output panel. The
information it sends is entirely up to you. Doing so is as easy as passing an
expression to the function as a parameter. To ensure that a button is respond-
ing to mouse clicks, for example, you might pass in a simple confirmation
string.

Reviewing Improvements in Debugging Over ActionScript 2.0 | 237

http://help.adobe.com/en_US/AS3LCR/Flash_10.0/runtimeErrors.html
http://help.adobe.com/en_US/AS3LCR/Flash_10.0/runtimeErrors.html

myButton.addEventListener(MouseEvent.CLICK, onClick);
function onClick(evt:MouseEvent):void {
 trace("This button is working!");
}

Of course, you’re not limited to strings. The trace() function is great for
bringing all sorts of things to light, from the current value of a custom variable
to the contents of an XML node; from the position of a movie clip (for example,
the MovieClip.x property) to an object’s data type when used with the is
operator.

var s:Sprite = new Sprite();
trace(s is Sprite); // Displays true
trace(s is Number); // Displays false

Be aware that trace() always outputs a string, no matter what expression you
feed it. When passed any object, the function essentially invokes the
Object.toString() method defined for that object (remember, all objects in
ActionScript inherit from the Object class, which means all objects have a
toString() method).

So, has anything changed for this elementary debugging tool in ActionScript
3.0? The answer is yes, even though it’s a small update. Sometimes it’s the little
things that can make your day! The trace() function now accepts multiple
parameters, separated by commas. If you’re heavily into using trace(), this
can save you a degree of typing.

var n:Number = 42;
var b:Boolean = true;
var d:Dictionary = new Dictionary();
trace(n, b, d); // Displays 42 true [object Dictionary]

In previous versions of ActionScript, the same output would have required a
bit of string wrangling:

trace(n + " " + b + " " + d);
// Displays the same, but tedious to type

Trace statements display only when enabled. This situation
occurs when two settings in the Flash authoring tool are in
agreement. The checkbox under File→Publish Settings
→Flash→Omit trace actions must be deselected. Also, the
Output panel’s filter level must be set to Verbose. The filter
level is available under the Output panel’s menu in the up-
per-right corner (beneath the X that closes the panel).

Runtime Errors Displayed in Flash Player 9 and Higher
Runtime errors are available only in ActionScript 3.0, which means they’re
available only as of Flash Player 9. Returning to the example shown earlier

238 | Chapter 11: Debugging and Troubleshooting

(Figure 11-1), if the same SWF file is embedded in an HTML document and
viewed in a browser, the error message appears in a dialog box presented to
the user, as shown in Figure 11-2. In ActionScript 2.0 or 1.0, something like
this would likely have failed silently—meaning, the user may have seen partial
elements of the user interface, but none of the slideshow photos. In fact, in
such a scenario, it might not even be absolutely clear that something has gone
wrong. The website may simply come across as incomplete or abandoned.
ActionScript 3.0 fixes that. Because runtime errors are visually obvious—that
dialog box is hard to miss!—the developer sees and addresses errors before the
SWF file goes public.

Figure 11-2. A runtime error, displayed in a browser

To see runtime errors in a browser, as demonstrated in Fig-
ure 11-2, you must have a debug version of Flash Player 9 or
higher installed. Debugging is introduced in the “Debug Vs.
Release Players” on page 25 of Chapter 2 and explored further
in this chapter.

Reviewing Improvements in Debugging Over ActionScript 2.0 | 239

Exploring the Compiler Errors Panel
The Compiler Errors panel gives you a remarkably direct road map to errors
and warnings related to the process that compiles FLA source files to published
SWF files. If multiple errors or warnings are found, the Compiler Errors panel
displays one line item per message, as shown in Figure 11-3.

Figure 11-3. The Compiler Errors panel, showing three frame script errors

Notice that the Compiler Errors panel gives you quite a bit of information. The
panel’s tab reports the number of errors found (three, in this case). The status
bar at the bottom of the panel duplicates this information for convenience.
Three columns inside the panel dictate where to locate the problem (these are
the Location and Source columns; only Location appears in Figure 11-3) and
a detailed summary of the error (the Description column).

The Location column provides the scene, layer, frame, and line number of the
offending code, which is incredibly useful for files whose ActionScript is dis-
tributed among numerous keyframes or class files. The Source column shows
the line of code itself. In cases where code has been placed inside the nested
timeline of a movie clip symbol, the Location column mentions that symbol
by name, and then the layer, frame, and line number, as before. In Fig-
ure 11-4, an error occurs in the scripts layer of a movie clip symbol whose
library name is “space ship.”

Figure 11-4. Errors in nested movie clip scripts revealed

In this scenario, it doesn’t matter what scene or layer the symbol appears in—
several instances might, in fact, appear in many places. Likewise, it doesn’t

240 | Chapter 11: Debugging and Troubleshooting

matter if any of the symbol’s instances has been given an instance name in the
Property inspector, as only the original asset in the library needs correction.

When erroneous ActionScript has been placed in external class files instead of
keyframes, the Location column states the name of the ActionScript file, and
then the line number. If at any time the panel seems too cramped, bring your
mouse pointer over a line item, as shown in Figure 11-5. This brings up a tooltip
that displays the full content of all three columns.

To copy the content of the Description or Source column to the clipboard,
right-click (Ctrl-click) the desired line item and select the appropriate option
from the context menu. You’ll also find an option for clearing all the panel’s
line items (Clear) and for jumping to the location of the actual line of Action-
Script (Go to Source). The latter moves the playhead automatically to the rel-
evant keyframe, opens the Actions panel if necessary, and highlights the guilty
line number. This happens even in nested movie clip timelines, in which case
the movie clip symbol is opened in the Symbol Editor from the library. If the
code is in an ActionScript class file, then Flash jumps to the relevant line,
opening the AS file if necessary.

This line jumping is a remarkable productivity booster and can also be acti-
vated by the Go to Source button in the lower-right corner of the panel, which
becomes enabled when you click a line item to select it. In fact, this feature is
so welcome, there’s even a third way to trigger it: simply double-click the de-
sired line item.

Using the Compile Errors Panel to Open Code
Double-clicking a Compiler Errors panel line item is the quickest route to ac-
cessing and fixing problematic code. Here’s a quick example.

1. In a new ActionScript 3.0 FLA file, use the Rectangle tool to draw a small
shape anywhere on the Stage.

2. Convert the shape to a movie clip symbol, and then double-click the sym-
bol to enter its timeline.

Figure 11-5. A tooltip with the full content of an error entry

Exploring the Compiler Errors Panel | 241

3. Inside the symbol’s timeline, add a new layer named scripts. Add a key-
frame in frame 15 of the scripts layer, and then open the Actions panel.
Type the following invalid ActionScript:

var shouldBeNumeric:Number = "But this is a string.";

4. Choose Edit→Edit Document to return to the main timeline.

5. Choose Control→Test Movie to see an implicit coercion error in the Com-
piler Errors panel.

6. Close the Actions panel. Double-click the error in the Compiler Errors
panel to see Flash reopen the Actions panel and jump automatically to the
correct line number of frame 15 of the movie clip symbol’s timeline.

Interpreting and Understanding Errors
Admittedly, the numbers assigned to compiler errors, warnings and runtime
errors aren’t self-explanatory. Compiler errors range from 1000 to 1209, warn-
ings from 1009 to 3607, and runtime errors from 1000 to 2157. The numbers
are completely arbitrary (at least, to non-Adobe employees), so you can’t easily
group them by some pattern or mnemonic device, such as, “Ah, those 1-800
phone numbers are the toll free ones.” While you may eventually find yourself
recognizing the numbers of a handful of your own pet errors, the bottom line
is that you’ll want to pay attention to their descriptions. As a note of encour-
agement, even if the numeric assignments don’t have much inherent meaning,
they’re great for using as search terms at the Adobe website, Google, and your
favorite tech blogs.

These errors and warnings are listed in the ActionScript 3.0 Language Refer-
ence (search Help for “compiler errors,” “compiler warnings,” and “run-time
errors”). Skim through the documentation’s Code Message heading for any of
these terms, and you’ll see that for the most part, the messages themselves are
fairly straightforward. True, not all of them necessarily make sense when they
occur. That trait is demonstrated later in this chapter with “Compiler Error:
1037: Packages cannot be nested.” But even that message comes together after
an explanation, and a fair number of errors and warnings feature a Description
heading in the same table that shows the Code Message heading. The content
of that Description column, when it does appear, may overlap with the De-
scription column of the Compiler Errors panel. Even so, it often elaborates,
including code samples.

One of the most helpful things you can bear in mind when interpreting errors
and warnings is that ActionScript 3.0 is an object-oriented language—this
version more so than any other. The ActionScript 3.0 Language and Compo-
nents Reference is neatly organized into a structure that matches the hierarchy

242 | Chapter 11: Debugging and Troubleshooting

of the application programming interface (API) of Flash itself; in other words,
in a structure that matches the very composition of the language. If an error
or warning mentions a class file you don’t think you’re using, look up that
class and investigate its placement in the class hierarchy (essentially a family
tree). You might, for example, see a compiler error concerning the
DisplayObject class, even though you suspect the issue is related to a button
symbol. As Figure 11-6 shows, the DisplayObject class listing, like all class
listings, shows a collection of hyperlinks just below the main heading.

These links include Package, Inheritance, and Subclasses. The Package head-
ing tells what major branch of the API this class belongs to (in this case, the
flash.display package). The Inheritance heading tells what classes this class
inherits from. Here, it’s easy to see that all DisplayObject objects are also in-
stances of EventDispatcher—they feature all the functionality of that class, plus
functionality of their own—and are also instances, ultimately, of the Object
class. The Subclasses heading tells what classes further extend this class by
inheriting from it. In this hypothetical scenario, you’re looking for something
that seems like a button, because your hunch tells you a button symbol is at
fault. Of the choices shown, InteractiveObject seems like the best bet. Cer-
tainly, it won’t always be this easy, but be sure to always let your fingers do
the walking through the documentation.

Figure 11-6. A class listing in the ActionScript 3.0 Language Reference

Exploring the Compiler Errors Panel | 243

The documentation is the closest resource and often the quickest way to find
your bearings. Clicking InteractiveObject brings you to the listing for that
class, whose own Subclasses heading includes an entry called SimpleButton,
which in fact is the class that defines button symbols.

The authoring tool includes Help content that is installed lo-
cally on your hard drive. If you don’t have an Internet con-
nection, you’re not entirely out of luck, but the local content
is limited to the Using Flash book and the ActionScript 3.0
Language and Components Reference. For anything outside
of that, including ActionScript 2.0 reference documentation,
you do need to be online.

Identifying Common Errors and What They Mean
Coming from any level of ActionScript 2.0 experience, you may find yourself
“stuck” with old habits that were perfectly fine before, perhaps even recom-
mended best practices. New syntax changes things. Some changes are rela-
tively obvious, because they get abundant coverage in the Adobe Developer
Connection (http://www.adobe.com/devnet/); the improved ActionScript 3.0
event handling model comes to mind. Other changes may show up on your
doorstep at midnight unannounced, pushing their way past you to the fridge,
thanking you in advance for a place to crash—through mouthfuls of your last
leftover pizza. Here’s a list of some of most common gate-crashers.

Be careful where you type your code

Many of the ActionScript 3.0 guides on the market—and in fact, most of the
code samples in the ActionScript 3.0 Language Reference—are written in class
format, complete with package and class declarations. When such code is
typed or pasted into a keyframe, you see the following compiler error:

Compiler Error: 1037: Packages cannot be nested.

This error happens because every ActionScript 3.0 SWF file is associated with
a default document class (see Chapter 6), which can be optionally overridden
by a custom class. This means the SWF file’s code already exists inside a pack-
age automatically. The introduction of a second (seemingly original) package
declaration in timeline code causes those two packages to be nested, which
isn’t allowed.

To test sample code that’s formatted as a class, make sure to set it as the docu-
ment class of your FLA file or create an instance of it in your timeline code:

var codeSample:ExampleCode = new ExampleCode();

244 | Chapter 11: Debugging and Troubleshooting

http://www.adobe.com/devnet/

Alternatively, though it may take more effort, you can “lift” the relevant code
sample from its class trappings by removing the package and class declarations
and any exclusively class-related elements, such as public and private member
attributes, converting constants to variables, and the like.

Here’s an example that lets you test a code sample from the ActionScript 3.0
Language Reference in a timeline keyframe. This example is taken directly
from the Graphics.moveTo() method listing:

package {
 import flash.display.Sprite;
 import flash.display.CapsStyle;
 import flash.display.LineScaleMode;
 public class Graphics_moveToExample extends Sprite {
 public function Graphics_moveToExample():void {
 graphics.lineStyle(3, 0x990000, 0.25, false, ¬
 LineScaleMode.NONE, CapsStyle.SQUARE);
 graphics.moveTo(10, 20);
 graphics.lineTo(20, 20);
 graphics.moveTo(30, 20);
 graphics.lineTo(50, 20);
 graphics.moveTo(60, 20);
 graphics.lineTo(80, 20);
 graphics.moveTo(90, 20);
 graphics.lineTo(110, 20);
 graphics.moveTo(120, 20);
 graphics.lineTo(130, 20);
 }
 }
}

As written, you can’t test this ActionScript from a keyframe. It must be saved
as an ActionScript (.as) file named Graphics_moveToExample.as in the same
folder as a new ActionScript 3.0 FLA file. The FLA file’s document class must
be set to Graphics_moveToExample, as explained in Chapter 6.

The point of this sample code is to demonstrate the moveTo() method, which
is simple enough to illustrate and actually use in a timeline setting. Note that
this class extends Sprite, which means that when used as a document class, it
treats the main timeline as a Sprite instance. Because the Sprite class and
MovieClip class share the same family tree, both inherit a graphics property
from DisplayObject. This means that even the default document class—that
is, the absence of a custom document class (just a plain old FLA file)—can be
used for this example. Contrast the previous package-based code with the fol-
lowing pared-down revision:

function Graphics_moveToExample():void {
 graphics.lineStyle(3, 0x990000, 0.25, false, ¬
 LineScaleMode.NONE, CapsStyle.SQUARE);
 graphics.moveTo(10, 20);
 graphics.lineTo(20, 20);

Exploring the Compiler Errors Panel | 245

 graphics.moveTo(30, 20);
 graphics.lineTo(50, 20);
 graphics.moveTo(60, 20);
 graphics.lineTo(80, 20);
 graphics.moveTo(90, 20);
 graphics.lineTo(110, 20);
 graphics.moveTo(120, 20);
 graphics.lineTo(130, 20);
}
Graphics_moveToExample();

The package and class declarations are gone. The import statements are gone.
The constructor function, along with its public attribute, has been removed.
What remains is the part that actually demonstrates the moveTo() method. If
you paste the revised version in frame 1 of a new ActionScript 3.0 FLA file and
test the movie, you see a dashed line in the upper-left corner of the stage. The
dashed line occurs because lineTo() draws while moveTo() merely moves the
pen.

Remember to omit property underscores

Years ago, most of the familiar movie clip getter/setter properties were prece-
ded by an underscore (MovieClip._x, _y, _width, _height, _currentframe, and
so on). As ActionScript matured and new properties were introduced, the un-
derscore was omitted for the new properties (MovieClip.hitArea, scale9Grid,
forceSmoothing, and so on). This led to a perplexing situation for newcomers,
as it wasn’t apparent without longtime experience why some properties had
the underscore and others didn’t. It was simply a matter of a historical change
in convention. This scenario was frustrating for seasoned developers new to
Flash because, by widely held convention (even in other programming lan-
guages), private class members are often preceded with an underscore to set
them apart—yet the MovieClip getter/setter properties, and also those of the
TextField class and others, were public.

In ActionScript 3.0, the underscore has been dropped across the board as a
relic of the past. Still, you may find that your fingers automatically type
mc._width when you actually mean mc.width.

// Assumes a movie clip symbol with the instance name mcBox
mcBox._x = 400; // Displays compiler warning

If you do, then you see a compiler warning when the compiler is configured
for Warnings Mode:

Compiler Warning: 1058: Migration issue: The property _x is no
longer supported. Use the DisplayObject.x property instead.

You may also see an error in the Output panel:

ReferenceError: Error #1056: Cannot create property _x on flash.display.Sprite.

246 | Chapter 11: Debugging and Troubleshooting

Don’t be thrown by the mention of DisplayObject or Sprite: the MovieClip
class is a descendent of both classes (its full pedigree is DisplayOb

ject→InteractiveObject→DisplayObjectContainer→Sprite→MovieClip). Just
drop the underscore and the warning goes away:

mcBox.x = 400; // Updates movie clip's horizontal position

Referencing movie clip’s parent requires explicit conversion (casting)

Imagine a relatively simple movie, such as a banner ad or corporate presenta-
tion. The main timeline moves from frame to frame, then halts—thanks to a
keyframe stop() call—and waits for a nested movie clip in that frame to display
an animation of its own. The last keyframe of the nested movie clip tells the
main timeline to continue again by issuing a call to MovieClip.play() in the
following manner:

// Last keyframe of a movie clip symbol in the main timeline
this.parent.play();

That seems like a straightforward exercise, but in ActionScript 3.0 it generates
a potentially confusing compiler error when the compiler is configured for
Strict Mode.

Compiler Error: 1061: Call to a possibly undefined method play
 through a reference with static type flash.display: ¬
 DisplayObjectContainer.

How is MovieClip.play() an undefined method, much less static? As it turns
out, the problem here is nothing more than a confusion of data type. From the
point of view of the movie clip’s timeline code, the expression this.parent
thinks it’s referencing a DisplayObjectContainer instance, and that particular
class appears too early in the MovieClip inheritance chain to feature a play()
method. Movie clip symbols are instances of DisplayObjectContainer, but ad-
ditional inheritance eventually gives them the properties, methods, and events
featured in the MovieClip class.

To nudge ActionScript 3.0 in the right direction, use the as operator or relevant
class function—in this case, MovieClip()—to explicitly convert, or cast, the
reference:

// Last keyframe of a movie clip symbol in the main timeline
(this.parent as MovieClip).play();

Or:

MovieClip(this.parent).play();

Exploring the Compiler Errors Panel | 247

In some cases, the as operator is the only real choice for cast-
ing. Date(someValue) doesn’t convert to the Date data type, but
instead behaves the same as new Date.toString().
Array(someValue) behaves the same as new

Array(someValue), which sets a new array to the length speci-
fied by a numeric parameter.

Variables can be declared only once per timeline or class

In ActionScript 2.0, you could declare a variable in one frame, then declare it
again in another (or even the same) frame, or declare the variable more than
once in a class file. In fact, re-declaring a variable was a handy way of clearing
it out and starting fresh. It tended to happen in one particular circumstance,
especially: for statements. Due to the strict nature of ActionScript 3.0, the
following pair of for statements generates a compiler error because the variable
i has been declared more than once in the same scope.

for (var i:int = 0; i < someUpperLimit; i++) {
 // loop code here
}
// Displays compiler error
for (var i:int = 0; i < someArray.length; i += 2) {
 // loop code here
}
Compiler Error: 1151: A conflict exists with definition
 variable name in namespace internal (or relevant namespace).

A compiler warning can also be generated by this issue.

Compiler Warning: 3596: Duplicate variable definition.

To fix these multiple declarations, drop the var definition keyword in the sec-
ond (or any subsequent) update of the value of the previously declared variable
(change in bold):

for (var i:int = 0; i < someUpperLimit; i++) {
 // loop code here
}
for (i = 0; i < someArray.length; i += 2) {
 // loop code here
}

Undeclared timeline variables cannot be referenced

In a common practice ActionScript 2.0 timeline code, an if statement could
be used to check for the existence of a variable. If the variable hadn’t yet been
declared, or hadn’t yet been given a value, a reference to it returned null or
undefined, which resolved to false in an if statement. People often used this
technique for checking variables passed into the SWF file from external code,
such as JavaScript, as with FlashVars.

248 | Chapter 11: Debugging and Troubleshooting

In ActionScript 3.0, any reference to an undeclared variable generates a com-
piler error when the compiler is configured for strict mode.

if (someUndeclaredVariable) { // Displays compiler error
 // variable exists
} else {
 // variable does not exist
}

Or:

// Displays compiler error
if (someOtherUndeclaredVariable != null) {
 // variable exists
} else {
 // variable does not exist
}

Generates an error:

Compiler Error: 1120: Access of undefined property variable name.

To avoid this error, precede the variable with the this expression keyword,
which causes Flash to interpret the variable as a class property. In ActionScript
3.0, after all, the main timeline is associated with a default document class (see
Chapter 6), which can be overridden by a custom class. In either case, timeline
variables are ultimately class properties. The inclusion of this reminds the
compiler of that point and keeps the compiler error at bay.

Properties and methods cannot be referenced from a null reference

Related closely to the previous example, ActionScript 3.0 generates a runtime
error if you try to reference properties or methods of an object that hasn’t yet
been given a value. (In the previous example, it was a reference to the variable
or object itself that caused a compiler error.)

var aNullObject:Object; // Declared, but not given a value
if (aNullObject.someProperty) { // Runtime error
 // property exists
} else {
 // property does not exist
}

Results in the error:

TypeError: Error #1009: Cannot access a property or method
of a null object reference.

Note that the variable (an Object instance) does exist, but doesn’t yet contain
the property referenced, someProperty. To avoid the runtime error, use the
logical AND operator (&&) to test for the object first:

var aNullObject:Object; // Declared, but not given a value
if (aNullObject && aNullObject.someProperty) {

Exploring the Compiler Errors Panel | 249

 // property exists
} else {
 // property does not exist
}

Or use a try..catch..finally block:

var aNullObject:Object;
try {
 if (aNullObject.aProperty) {
 // property exists
 }
} catch (e:Error) {
 // property does not exist
 trace("Caught error: " + e);
} finally {
 // trace("bad reference!");
}

Troubleshooting
How do you eat an elephant? One bite (or maybe one byte!) at a time. This
adage has been a gentle encouragement since Lao Tzu first rendered it as The
journey of a thousand miles begins with one step. In short, and in terms of
programming, it speaks to breaking down large problems into smaller com-
ponents, and then repeating the process until the first step (or first bite) be-
comes clear. In development environments, that first step, no matter how long
the journey, tends to be easier when it’s small. Remember, testing early and
testing often helps to keep you from getting overwhelmed.

When you do encounter an error or warning you truly can’t make heads or
tails of, your situation is ready for troubleshooting. Troubleshooting is a “di-
vide and conquer” approach to problem solving, in which your main aim as a
developer is to isolate potential sources of the trouble at hand and, by a process
of elimination, find the actual causes and fix them. The trace() statement,
mentioned earlier in this chapter, is a good entry point into the troubleshooting
process. Two other tools, the Compiler Errors panel and Output panel, are
just as important and may be the instruments that alerted you to the trouble
in the first place. The most powerful tool in your arsenal is the mechanism that
lets you see into a SWF file’s inner workings at runtime. It’s called the debug-
ging workspace, and it’s only available for ActionScript 3.0 documents.

Using the Enhanced Debugging Workspace
FLA documents configured for ActionScript 2.0 and earlier do have a debug-
ging tool, but it exists as a fairly cramped environment, packed into a single
panel called the ActionScript 2.0 Debugger panel (Figure 11-7).

250 | Chapter 11: Debugging and Troubleshooting

To be sure, the old panel is no slouch. It does get the job done. In addition,
it’s your only choice if your document’s Publish Settings are configured for
anything other than ActionScript 3.0 (see File→Publish Settings→Flash). In
contrast, using the updated workspace is like stepping from an office cubicle
into a swank conference lounge. Its panels are separate, which means you’ll
find plenty of elbow room, and the panels can be collapsed, expanded, and
rearranged like those of any other workspace (Figure 11-8).

Using the new debugger is relatively easy, but you should be aware of a few
changes before diving into an example.

For better or worse, the ActionScript 2.0 Debugger panel’s introspective tree
view is no longer available in the new workspace. This is unfortunate, because
the tree view was a useful discoverability tool. In addition, two file menu se-
lections in the debug version of Flash Player have disappeared for SWF files
published in ActionScript 3.0. Those selections were List Objects and List
Variables, each of which sent a text-based snapshot to the Output panel of the
objects and variables resident in memory at the time the selections were made.
The closest approximation now for the List Objects and List Variables selec-
tions is the new public describeType() function, found in the flash.utils
package.

Figure 11-7. The ActionScript 2.0 Debugger panel

Using the Enhanced Debugging Workspace | 251

Use a trace() statement to display the results to the Output panel in XML
format:

trace(describeType(objectReference));

// In timeline code, for example, the following
// provides a data dump of the timeline:
trace(describeType(this));

The option for the SWF files in tabs preference is located un-
der Edit (Flash)→Preferences→General→Workspace→Open
test movie in tabs. ActionScript 3.0 SWF files are displayed in
windows only during debugging, but may be displayed in tabs
during normal testing.

Using the Debugger Workspace
In ActionScript 3.0 FLA files, debugging is possible only with documents that
actually contain ActionScript. That trait may seem self-evident, but the Ac-
tionScript 2.0 Debugger panel can be displayed regardless of the presence or
absence of code. If you select Debug→Debug Movie for a codeless ActionScript
3.0 file, you see an alert box warning: “You cannot debug this SWF because
it does not contain ActionScript.” Can’t argue with that.

Figure 11-8. The debugging workspace

252 | Chapter 11: Debugging and Troubleshooting

To demonstrate the debugging environment, you need a bit of code. The
slightest smattering will do.

1. In a new ActionScript 3.0 FLA file, select frame 1 in the Timeline, and then
open the Actions panel. Type the following minimal ActionScript:

trace("Just a bit of code.");

Figure 11-9. A very basic debugging session

2. Select Debug→Debug Movie to enter the debugging workspace. Note the
empty Debug Console panel and Variables panel on the left side (Fig-
ure 11-9). These panels are empty for a reason, which will be covered
shortly. The SWF file itself appears in the debug version of Flash Player,
just off center in the figure. The Actions panel may or may not be present,
but if so, any changes you make will require a new debug session. The area
just below the document tabs, near the top on the right, indicates that
ActionScript has been found in Scene 1, Layer 1, Frame 1. In cases where
ActionScript appears in several scenes or frames, this area of the debugging
workspace displays each of those locations as a clickable line item. The
largest pane, middle-right and behind the other content, shows the code
for the currently selected frame or, if an AS file is open, the code in the
script file whose tab is selected.

Using the Enhanced Debugging Workspace | 253

This is another change from the older debugger. In the
ActionScript 2.0 Debug panel, as debugging starts, the
panel waits for you to choose which script(s) to examine,
including external AS files, which needn’t be open when
debugging starts. Any classes that are referenced with
import statements, in keyframe or external files, are made
available in a list box. In the new workspace, AS files must
be opened prior to debugging if you wish to examine their
contents before debugging begins.

Finally, the Output panel appears at the bottom right (obscured, here) and
behaves as it does during authoring.

3. End the debugging session by any of the following methods: close Flash
Player, close the SWF file’s tab in the Flash authoring environment, or, in
the Debug Console panel of the workspace, click the red X.

Breakpoints

In order to get the most out of a debugging session, you need to add break-
points. A breakpoint is a special toggle that lets you pause the execution of
code inside a SWF file. Breakpoints are easy to add, both to timeline or external
ActionScript. Just locate the desired line number, and then click to the left of
it, in the gutter, until a red circle appears (Figure 11-10).

Figure 11-10. Adding a breakpoint

254 | Chapter 11: Debugging and Troubleshooting

To remove a breakpoint, click the red circle to make it disappear. Alternatively,
you can right-click (Ctrl-click) to the left of a line and select Toggle Breakpoint
from the context menu, which adds or removes a red circle. To remove all
breakpoints at once, select Remove Breakpoints in This File. Flash CS4 is smart
enough to remember your breakpoints even after you close the authoring tool,
whether they appear in timeline or class code. You may add as many break-
points as you wish. In the next few steps, you’ll learn how they work.

1. Continuing with the same FLA file, use the Actions panel to add a break-
point to the left of line 1, which contains the trace() function.

2. Select Debug→Debug Movie to re-enter the debugging workspace. Note
the difference among the panels: Flash Player no longer shows, because it
hasn’t yet opened (the breakpoint in the first line of code has halted the
movie). In addition, both the Debug Console panel and the Variables
panel now display information, as seen in Figure 11-11 (click the + sign
or arrow triangle inside the Variables panel to open the nodes shown).

In the upper left, the Debug Console panel displays an interesting bit of
information in an area known as the call stack: Untitled_fla::MainTime
line/frame1. The call stack shows the currently executing method, in an
ordered list of all methods under execution. Here, the list displays only
one item because only one method is executing. Unless you associate a
FLA file with a custom document class (see Chapter 6), an automatic
document class is assigned by default. This class is named MainTimeline,
and keyframe scripts are considered methods of that class, which explains
the MainTimeline/frame1 reference, functionally equivalent to the more
familiar syntax MainTimeline.frame1(). In complex movies, you may see
many entries in the call stack, as potentially numerous methods call each
other, and then remove themselves as execution completes.

The Variables panel displays the properties of the object currently in
scope, which is still MainTimeline. Click the + sign or arrow triangle next
to the word this, and you see the familiar properties of the MovieClip class,
which is the data type of the main timeline in this scenario. The values of
these properties reflect the current state of the main timeline as movie clip.
The currentLabels property, for example, is an empty array, because the
main timeline hasn’t been given any frame labels. The x and y properties
are 0 and 0, because the main timeline is inherently positioned in the
stage’s upper-left corner.

The expressions after some properties, for example
(@120aec1), are hexadecimal representations of their
addresses in memory.

Using the Enhanced Debugging Workspace | 255

3. In the Debug Console panel, click the green arrow button. Two things
happen when you do: first, Flash Player appears; second, the Output panel
displays the trace() message, “Just a bit of code.” The buttons along the
top of the Debug Console panel let you control the playback of your
breakpoints (Figure 11-12).

The green arrow resumes normal play of the SWF file until the next break-
point is encountered. The red X closes the current debugging session. The
remaining three arrow buttons let you Step Over, Step In, and Step Out
of your breakpoints.

• Step Over causes the debugger to move to the very next line of code
and pause, as though it has encountered a breakpoint. By clicking this
button repeatedly, you can step through your code line by line, keeping
an eye on the Variables panel to see how values change.

• Step In jumps to any function or method referenced on the current
breakpoint, and then steps through the code of that function or method
line by line.

• Step Out moves the debugger immediately to the exit point of the cur-
rent function or method, typically where the function or method re-
turns a value.

Figure 11-11. The debugger workspace, halted on a breakpoint

256 | Chapter 11: Debugging and Troubleshooting

Figure 11-12. Debug Console panel buttons, with a new method in the call stack

Stepping Through a Debugging Example
Here’s a slightly more complex—but still very simple—example that demon-
strates the Debug Console panel and Variables panel in action.

1. In a new ActionScript 3.0 FLA file, use the Oval tool to draw a small shape
in the stage’s upper-left. Convert the shape to a movie clip symbol, and
then use the Property inspector to give it the instance name btnOrb.

2. Use the Text tool to add a text field to the right of the movie clip. Use the
Property inspector to make sure this text field is set to Dynamic Text, has
a width and height of approximately 300 pixels, is set to Multiline, and
has the instance name tfReply.

3. Create a new layer, and then name it scripts. Save the FLA file as
DecisionMakerDemo.fla.

4. Create a new ActionScript file, and then save it as DecisionMaker.as.

5. Type the following code into the ActionScript file:

package {
 public class DecisionMaker {
 private var _replies:Array;
 public function DecisionMaker() {
 _replies = new Array("Yes", "You betcha", "No", ¬
 "No Way", "Maybe");
 }
 public function getReply():String {
 return _replies[getRandomMessage()];
 }
 private function getRandomMessage():int {
 var count:int = _replies.length;
 var float:Number = Math.random() * count;
 var index:int = Math.ceil(float);
 return index;
 }
 }
}

Using the Enhanced Debugging Workspace | 257

This ActionScript defines a class, DecisionMaker, that answers yes/no
questions. The code contains an error that’ll be spelled out in the debug-
ging workspace.

6. Save DecisionMaker.as, and then return to DecisionMakerDemo.fla. In
frame 1 of the scripts layer, type the following ActionScript:

var dm:DecisionMaker = new DecisionMaker();

btnOrb.addEventListener(MouseEvent.CLICK, onClick);
function onClick(evt:MouseEvent):void {
 tfReply.appendText(dm.getReply() + "\n");
}

7. Select Control→Test Movie to test the movie.

8. When the SWF file opens in Flash Player, click the “orb” button several
times to populate the dynamic text field with replies. Occasionally, you
should see “null” among the answers, as shown in Figure 11-13.

9. Close Flash Player.

10. A breakpoint would be useful, but where should it go? The “orb” button
clearly works, because text does appear when the button is clicked, so the
FLA file shouldn’t need a breakpoint. Return to DecisionMaker.as and add
a breakpoint to line 7 (the first line of the getReply() definition).

11. Select Debug→Debug Movie to enter the debugging workspace. Click the
“orb” button in Flash Player. Note that Flash stops at the breakpoint (you
may have to drag Flash Player aside to see the panels you’re interested in).
The call stack in the Debug Console panel now shows two methods
(Figure 11-14) because the onClick() function in the timeline has called
the getReply() method in the class file.

The Variables panel now shows properties of the current object, the
DecisionMaker instance, which features a _replies array with five ele-
ments, 0 through 4, and a length property of 5.

12. Click the Step Over button, and watch the small yellow arrow move from
the breakpoint in line 7 to the next line. Click the Step In button to enter
the getRandomMessage() method referenced in that line. The call stack up-
dates with a third method—the one you just entered—and the Variables
panel now displays the three variables declared in the
getRandomMessage() method: count, float, and index.

13. Click the Step Over button again. The yellow arrow moves to line 11.
Continue clicking Step Over to advance to line 12, 13, and onward. The
count variable updates to 5, the float variable to a random number, and
so on. You will eventually exit the function through the return statement,
at which point Flash Player proceeds as usual, until it encounters another

258 | Chapter 11: Debugging and Troubleshooting

breakpoint. The green arrow (Continue) button also returns Flash Player
to a normal execution flow.

Figure 11-13. A simple application in need of troubleshooting

Figure 11-14. The call stack showing two methods, with properties of the current scope
below

Using the Enhanced Debugging Workspace | 259

If nothing jumps out at you, then you may have to repeat the process a few
times. This is the patient discipline of a good troubleshooter. The clues really
are right in front of you.

Eventually, you see the float variable get assigned a number greater than 4,
which gets rounded up to 5 and assigned to the index variable in line 13. The
trouble with 5 in this scenario is that the _replies property, an Array instance,
has a total of five elements. Arrays start their count at zero, as shown in the
Variables panel in step 12, which displayed elements 0 through 4. There is no
element 5. Aha!

The cause of that occasional number 5 is the Math.ceil() method in line 13,
which always rounds up. Change that method to this (change in bold):

var index:int = Math.floor(float);

Math.floor() always rounds down, which ensures that index is always a num-
ber between 0 and 4.

Debugging Remotely
Flash is a medium designed for the Web. Even with the advent of the Adobe
Integrated Runtime (AIR), it’s safe to say that most Flash content is currently
displayed in a browser—and browsers don’t feature the Flash debugging
workspace. In spite of this inevitable gap, you can bridge published SWF files
past their browser host environments in order to communicate with the Flash
authoring tool. The process is called remote debugging.

To allow Flash CS4 to remotely debug a SWF file, you need to indicate your
intent by selecting the checkbox at File→Publish Settings→Flash→Permit de-
bugging. Adding that checkmark enables a Password input field (Fig-
ure 11-15) intended to let you password protect a SWF file to ensure that only
you can debug it. Unfortunately, this password field is only supported by
ActionScript 2.0 documents. The Permit debugging option saves breakpoints
and other debug information into the compiled SWF file, which can increase
file size. In light of this, when it’s time for deployment, you may want to disable
remote debugging and perhaps enable Omit trace actions in the same prefer-
ences dialog box.

With remote debugging enabled, select Debug→Begin Remote Debugging Ses-
sion→ActionScript 3.0. The debugging workspace appears, and the Output
panel displays the message “Waiting for Player to connect...”. At this point,
launch the SWF file in a browser and then right-click (Ctrl-click) and select
Debugger. You need a debug version of the Flash Player ActiveX control or
plug-in for this to work, as described in the next section (you may also use the

260 | Chapter 11: Debugging and Troubleshooting

debug version of the standalone Flash Player). The SWF file connects with the
authoring tool and debugging continues as before.

Logging trace() Statements from a Browser
The Flex documentation has a trick that explains how to configure the debug
version of Flash Player to log trace() statements to a local text file. Fortunately,
it works for Flash too, and it doesn’t involve the debugging workspace. In order

Figure 11-15. Configuring a SWF file for remote debugging

Using the Enhanced Debugging Workspace | 261

to make use of this technique, you’ll have to install the debug version of Flash
Player as an ActiveX control or plug-in. You can find the necessary files within
the installation folder of Flash CS4:

• Windows: C:\Program Files\Adobe\Adobe Flash CS4\Players\Debug\

• Mac: /Applications/Adobe Flash CS4/Players/Debug/

These files are also available from the Adobe website:

http://www.adobe.com/support/flashplayer/downloads.html

1. Uninstall your current version of Flash Player with the uninstall file here:
http://www.adobe.com/support/flashplayer/downloads.html#uninstaller

2. Close all your browsers, and then launch the desired installation file. The
one with “ActiveX” in the filename is for Internet Explorer; the one with
“Plugin” is for other browsers in Windows, such as Firefox; the one with
“UB” is for Mac. For convenience, you may want to use one browser for
debugging and one for normal viewing. You know the debug version has
been properly installed when you right-click (Ctrl-click) a SWF file in the
relevant browser: the context menu has a new option named Debugger.

3. Create a new text file named mm.cfg in the following location:

• Windows: C:\Documents and Settings\<user name>\mm.cfg

• Mac: /Library/Application Support/Adobe/mm.cfg

Add the following content to mm.cfg, and then save the file:

ErrorReportingEnable=1
TraceOutputFileEnable=1
MaxWarnings=0

4. If you’re on a Windows machine, you’ll have to perform the following
additional steps:

1. On the Desktop, right-click on My Computer, and then, from the
context menu, select Properties.

2. In the System Properties dialog box, select the Advanced tab, and then
click the Environment Variables button.

3. In the User variables area (not the System variables area), click the
New button, add the following new variable, and then click OK:

• Variable name: HOMEDRIVE

• Variable value: C:\

4. Click the New button again, add the following new variable, and then
click OK:

• Variable name: HOMEPATH

• Variable value: C:\Documents and Settings\<user name>

262 | Chapter 11: Debugging and Troubleshooting

http://www.adobe.com/support/flashplayer/downloads.html
http://www.adobe.com/support/flashplayer/downloads.html#uninstaller

5. Click OK until the remaining dialog boxes are closed.

6. Restart your computer.

At this point, when you view a SWF file in a browser that has the debug version
of Flash Player installed, any trace() statements in that SWF file are written
to a text file named flashlog.txt. This text file is cleared and restarted each time
you view the SWF file in a new browser session. The location of flashlog.txt
used to be configurable, but this changed with version 9.0.28.0 of Flash Player.
The current location is:

• Windows: C:\Documents and Settings\<user name>\Application Data\Mac
romedia\Flash Player\Logs\flashlog.txt

• Mac: <user name>:Library:Preferences:Macromedia:Flash Player:
Logs:flashlog.txt

Alessandro Crugnola wrote a Firefox extension called
FlashTracer that reads from flashlog.txt. This free exten-
sion is available at http://www.sephiroth.it/firefox/.

Using the Enhanced Debugging Workspace | 263

http://www.sephiroth.it/firefox/

PART III

How Do I?

Part III begins a new look at ActionScript, focusing on how you accomplish a
task? This part of the book is presented cookbook-style—a concise look at a
problem, solution, and discussion for each of several issues. This format lets
you hone in on syntax and methodology in easily digestible recipes.

Part III starts off by highlighting the Graphics class, formerly the Drawing API.
Reviewing this material at the outset lets you explore the remainder of the book
topics using code-only solutions. Then you’ll learn the most significant
changes introduced by ActionScript 3.0, the new display architecture and
event model. Next, you’ll discover new ways of using text for display and
interactivity. Finally, you’ll concentrate on input/output processes, including
sending and loading XML, and variables, as well as loading images, external
SWF files, sound, and video.

Chapter 12, How Do I Draw with Code?

Chapter 13, How Do I Work with the Display List?

Chapter 14, How Do I Work with Events?

Chapter 15, How Do I Work with Text?

Chapter 16, How Do I Work with XML?

Chapter 17, How Do I Work with External Assets?

CHAPTER 12

How Do I Draw with Code?

12.0 Introduction
In addition to importing assets, or creating them in the Flash authoring envi-
ronment, you can include assets in your projects by drawing them dynamically
with ActionScript at runtime. Much of the last half of this book will take ad-
vantage of this approach to minimize the number of custom assets required,
and let you generate content exclusively with code. For that reason, this section
starts off with a brief introduction to drawing with code.

A code-only approach doesn’t easily offer the artistic range afforded if you can
use imported or hand-drawn assets, but significant tradeoffs include increased
flexibility and reduced file size. Indeed, an entirely new creative horizon be-
comes available with code-generated art, and using ActionScript combined
with previously created assets is, of course, the best of both worlds.

You have two primary methods of drawing with code: manipulating vectors
with the Graphics class, and manipulating pixels with the BitmapData and/or
related classes. This chapter will primarily focus on the former, but will also
discuss a few simple pixel-based techniques, such as bitmap caching and basic
filters.

To effectively demonstrate some of the concepts in this chap-
ter, you need to use a display object or two. Part I and
Part II of this book covered the creation and use of display
objects throughout, and you’ll look at some of those concepts
again in Chapter 13. For clarity, however, the first recipe in
this chapter reviews the process of creating a display object
into which you can draw, since you need a display object for
the subsequent recipes.

267

12.1 Creating a Display Object Dynamically

Problem
You want to create a display object that will serve as an empty canvas for
drawing.

Solution
Use the new keyword to create an instance of a class that is part of the
DisplayObject class hierarchy, and then add it to the display list.

Discussion
Display objects and the display list are covered in more detail in Chapter 13.
However, in case you haven’t yet read the first half of this book, you’ll find it
handy now if you know just enough about the display list to create an empty
display object to serve as a canvas on which you can draw with code. The
combination of creating a new display object and drawing on it with the tech-
niques discussed here lets you create code-only movie clips, sprites, buttons,
and more.

All display objects can be created using the new keyword. The following two
examples create a movie clip and sprite, respectively:

var mc:MovieClip = new MovieClip();
var sp:Sprite = new Sprite();

Neither the movie clip nor the sprite, however, is ever visible to the user unless
you add them to the display list. To add a display object to the display list, use
the addChild() method. The following, for example, adds the previously cre-
ated sprite to the display list:

addChild(sp);

In this scenario, the sprite would be visible because you added it to the display
list, but the movie clip would not be visible. (So far, the sprite has no content
but is still technically viewable as an empty canvas. The remainder of this
chapter will show how to draw into the sprite.) The movie clip, however, can-
not be seen even if it already has content, until you add it to the display list.

See Also
“13.2 Creating a New Display Object” on page 286 for more information on
creating a display object.

268 | Chapter 12: How Do I Draw with Code?

12.2 Referencing an Object’s Graphics Property

Problem
You want to efficiently reference the graphics property of a display object, such
as a sprite or the main timeline, to use as the target for vector-based drawing.

Solution
Store a reference to the graphics property in a variable.

Discussion
To draw with vectors, you must first reference the graphics property of a dis-
play object. Then you can access the methods and properties of the Graphics
class, which is responsible for dynamic vector drawing. You can reduce code
length and improve performance by storing a reference to the property in a
variable, and using that variable thereafter where you would otherwise have
referenced the property directly.

If you want to draw into a display object, for example, such as the sprite sp
you created in “12.1 Creating a Display Object Dynamically” on page 268, you
can reference its graphics property like so:

var g:Graphics = sp.graphics;

Thereafter, you need only refer to g when using a method or property of the
Graphics class. You can also reference the graphics property of the main time-
line with the following:

var g:Graphics = this.graphics;

This line of code assumes you are writing the script in the main timeline, so
the this keyword refers to the correct display object: the main timeline itself.

While it’s a matter of personal coding preference, drawing di-
rectly on the main timeline isn’t usually as useful as being able
to contain your drawing in a display object you can manipu-
late later.

12.2 Referencing an Object’s Graphics Property | 269

12.3 Defining a Line Style

Problem
You want to specify the appearance of a line you wish to draw.

Solution
Use the lineStyle() method of the Graphics class to define line attributes.

Discussion
The last line of the following code block sets any lines subsequently drawn
into the display object sp to be of 1-pixel thickness and blue in color. The line
settings for the Graphics object g remain in effect until changed or reset.

var sp:Sprite = new Sprite();
addChild(sp);
var g:Graphics = sp.graphics;
g.lineStyle(1, 0x0000FF);

The first parameter is thickness, a pixel value, with 0 being a hairline. The
second parameter is the color of the line.

You also have additional optional parameters that closely mimic the Property
inspector settings. These parameters include alpha, pixelHinting (also called
stroke hinting, a Boolean to determine if the lines are drawn on the whole
pixel), scaleMode (to determine if and how lines are scaled when the parent
container is scaled), caps (specifying type of line end cap used), joints (spec-
ifying type of joint type used), and miterLimit (determining how sharp corners
appear).

If you want to clear everything previously drawn into the display object, you
can use the clear() method of the Graphics class. However, because a line isn’t
drawn when a pixel thickness isn’t specified, you can also clear just the line
attributes by passing no parameters to the lineStyle() method.

g.lineStyle();

See Also
“12.6 Defining a Fill Style” on page 273 for a demonstration of using multiple
lineTo() commands to create a triangle.

270 | Chapter 12: How Do I Draw with Code?

12.4 Drawing a Line

Problem
You want to draw a line from point A to point B.

Solution
Use the moveTo() and lineTo() methods of the Graphics class.

Discussion
Drawing a line works the same way it does with pen and paper. First, you place
your pen at the first point of the line. If you don’t take this first step in Flash,
the line begins at the origin (0, 0) of the display object, such as the registration
point of a parent sprite or even the top-left corner of the Flash stage. Also like
pen and paper, combining moveTo() and lineTo() method calls in your scripts
lets you draw complex shapes without creating one continuous line.

To draw a line on the stage from point (100, 100), to point (300, 100), use the
following code:

var g:Graphics = this.graphics;
g.lineStyle(1, 0x0000FF);
g.moveTo(100,100);
g.lineTo(300,100);

In most cases, you have greater control if you draw into a container display
object so you can easily manipulate your sprite or movie clip as a whole. When
drawing onto the sprite or movie clip, the registration point of assets drawn
into the display object is (0, 0), regardless of the display object’s x and y co-
ordinates on the stage, because the drawn assets inside are relative to the dis-
play object’s coordinate space, not that of the stage. So, you’re better off ach-
ieving the previous goal of drawing a line on the stage from (100, 100) to (300,
100) by drawing a line from (0, 0) to (200, 0), and positioning the display
object.

var sp:Sprite = new Sprite();
addChild(sp);
sp.x = sp.y = 100;
var g:Graphics = sp.graphics;
g.lineStyle(1, 0x0000FF);
g.lineTo(200,0);

12.4 Drawing a Line | 271

In this case, because you want the line to begin from the rel-
ative origin point of (0, 0), you can omit the moveTo() method
call.

To demonstrate the ease with which you can now manipulate the drawn assets
as a whole, the following line will rotate the container sprite 45 degrees, thus
rotating the line inside.

sp.rotation = 45;

See Also
“12.6 Defining a Fill Style” on page 273 for a demonstration of using multiple
lineTo() commands to create a triangle.

12.5 Drawing a Curve

Problem
You want to draw a curve from point A to point B.

Solution
Use the curveTo() method of the Graphics class.

Discussion
Drawing a curve is similar to drawing a line, in that a curve is drawn from the
current drawing point to a new point. However, the curveTo() method adds a
third point, called a control point or handle, to shape the curve. ActionScript
creates curves that use one control point for two points. This trait is in contrast
to many drawing applications, such as Adobe Illustrator, which uses one or
more control points for every point.

Placing the control point is an important part of determining the shape of your
curve. For example, consider turning the line from “12.4 Drawing a Line” on
page 271 into a concave arc, resembling a smile. To pull the curve down in the
middle, you might select a control point halfway between and below the two
end points. Therefore, if the line spans from (0, 0) to (200, 0), one possible
choice for a control point is (100, 100). These x and y coordinates are passed
to the curveTo() method as the first and second arguments, while the desti-

272 | Chapter 12: How Do I Draw with Code?

nation or end point x and y coordinates are the last two arguments of the
method.

var sp:Sprite = new Sprite();
addChild(sp);
sp.x = sp.y = 100;
var g:Graphics = sp.graphics;
g.lineStyle(1, 0x0000FF);
g.curveTo(100, 100, 200, 0);

Omitting moveTo() in the code sets the first point at (0, 0), or the sprites reg-
istration point. The final result is a curve that starts at (0, 0), ends at (200, 0),
but is curved through a control point of (100, 100).

12.6 Defining a Fill Style

Problem
You want to fill a drawn shape with a color.

Solution
Use the beginFill() and endFill() methods of the Graphics class.

Discussion
In “12.3 Defining a Line Style” on page 270, you learned how to define a line
style, but even a closed line has no fill without specifying a fill style. The
beginFill() method specifies a color and opacity to fill any shapes drawn until
you call the endFill() method.

When you use a fill, if drawn shapes aren’t closed (meaning the line does not
end at its starting point), the shapes are closed for you. To demonstrate this
effect, the following code draws a complete triangle even though the instruc-
tion that draws the last side of the triangle is commented out (to prevent it
from drawing). If you remove the beginFill() and endFill() instructions from
this code, then you see only the two lines specified, because the fill process is
no longer auto-closing the shape.

var sp:Sprite = new Sprite();
addChild(sp);
sp.x = sp.y = 100;
var g:Graphics = sp.graphics;
g.lineStyle(2, 0xFF0000);
g.beginFill(0x0000FF, 1);
g.moveTo(0, -50);
g.lineTo(50, 50);

12.6 Defining a Fill Style | 273

g.lineTo(-50, 50);
//g.lineTo(0, -50);
g.endFill();

12.7 Drawing a Rectangle

Problem
You want to draw a rectangle.

Solution
Use the drawRect() method of the Graphics class.

Discussion
ActionScript 3.0 has added a few methods to draw geometric shapes, removing
the need to build them with multiple line segments. Creating a rectangle is as
easy as calling drawRect(), passing in the rectangle’s x and y location, followed
by height and width.

var sp:Sprite = new Sprite();
addChild(sp);
sp.x = sp.y = 100;
var g:Graphics = sp.graphics;
g.lineStyle(1, 0x0000FF);
g.drawRect(0, 0, 100, 60);

All primitives in this chapter, except for a circle, are drawn down and to the
right of the x and y coordinates specified. When drawing into a parent con-
tainer, as in this example, this trait results in a registration point at the upper-
left corner of the shape. To draw this rectangle around its center point, offset
the x and y values passed into drawRect() by half the width and half the height,
respectively. The following substitute line makes the rectangle center-aligned
within its parent container, sp.

g.drawRect(−50, −30, 100, 60);

12.8 Drawing a Rectangle with Rounded Corners

Problem
You want to draw a rectangle with rounded corners.

274 | Chapter 12: How Do I Draw with Code?

Solution
Use the drawRoundRect() method of the Graphics class.

Discussion
This variance on drawRect() requires a fifth parameter that represents the di-
ameter of a circle used to round off the rectangle’s corners. The last line of the
following code creates a 100 × 60 pixel rectangle with rounded corners that
have a radius of 15.

var sp:Sprite = new Sprite();
addChild(sp);
sp.x = sp.y = 100;
var g:Graphics = sp.graphics;
g.lineStyle(1, 0x0000FF);
g.drawRoundRect(0, 0, 100, 60, 15);

The fifth parameter requires a diameter, rather than a potentially more intuitive
radius, to easily support the optional sixth parameter. Instead of specifying
only a diameter to build the rectangle’s corners, you can also specify a height
and width, constructing your corner from an ellipse. This method gives you
more granular control over the corner shapes. The following substitute line,
for example, uses an ellipse with a width of 30 and a height of 50 to create its
corners.

g.drawRoundRect(0, 0, 100, 60, 30, 50);

You can also use the under-documented method drawRoundRectComplex() that
requires eight parameters. The first four are, again, the x, y, width, and height
of the rectangle. The last four, however, are the diameters of each corner circle,
in the order of upper-left, upper-right, lower-left, lower-right. The following
substitute line for the previous example would create a tab shape, with a
straight bottom edge, and two rounded top corners:

g.drawRoundRectComplex(0, 0, 100, 40, 20, 20, 0, 0);

See Also
“12.7 Drawing a Rectangle” on page 274 for drawing a rectangle and “12.9
Drawing a Circle” on page 276 for drawing a circle.

12.8 Drawing a Rectangle with Rounded Corners | 275

12.9 Drawing a Circle

Problem
You want to draw a circle.

Solution
Use the drawCircle() method of the Graphics class.

Discussion
In addition to x and y starting coordinates, drawing a circle requires only one
additional argument value: the radius of the circle (half its diameter, or width/
height). The following code creates a circle that is 40 × 40 pixels by using a
radius of 20.

var sp:Sprite = new Sprite();
addChild(sp);
sp.x = sp.y = 100;
var g:Graphics = sp.graphics;
g.lineStyle(1, 0x0000FF);
g.drawCircle(0, 0, 20);

The circle is drawn differently. Instead of drawing with its origin at the upper-
left corner of the shape, as is true with other primitives, the circle’s origin is its
center. To draw a circle that’s below and to the right of its parent container’s
registration point, you must offset the x and y coordinates by the amount used
for the circle’s radius. The following substitute line aligns the circle to the top-
left corner of the sprite.

g.drawCircle(20, 20, 20);

You can also draw an ellipse using the drawEllipse() method. Rather than
accepting a radius as its third parameter, it accepts a width and height as pa-
rameters three and four, just like drawRect(). Also like drawing a rectangle, the
default registration point of the ellipse is the upper-left corner (in contrast to
the drawCircle() method’s default center registration point). Substituting the
following for the drawCircle() instruction in the prior example draws an ellipse
that is 100 pixels wide and 50 pixels tall.

g.drawEllipse(0, 0, 100, 50);

276 | Chapter 12: How Do I Draw with Code?

See Also
“12.7 Drawing a Rectangle” on page 274 for drawing a rectangle and “12.8
Drawing a Rectangle with Rounded Corners” on page 274 for drawing rec-
tangle with rounded corners.

12.10 Creating a Gradient Fill

Problem
You want to create a gradient fill to replace solid colors when filling drawn
shapes.

Solution
Use the beginGradientFill() and endFill() methods of the Graphics class.

Discussion
To create a gradient fill, you must first understand its component parts. First
is the type of gradient: linear or radial. Next is a set of parallel arrays (arrays
with an equal number of objects in the same order) that represent up to 15
colors in the gradient. These arrays contain the color values themselves, their
alpha values, and the amount of the total gradient each color is meant to oc-
cupy, respectively. Finally, an optional matrix can be used to rotate, scale,
skew, or offset the location of the gradient. Here is the gradient fill creation
segment:

var gradType:String = GradientType.LINEAR;
var colors:Array = [0x000000, 0x000000];
var alphas:Array = [1, 0];
var ratios:Array = [0, 255];
var matrix:Matrix = new Matrix();
matrix.createGradientBox(100, 100, 0, 0, 0);

The color values use standard hexadecimal notation. The alpha values are
expressed in decimal notation of percent values between 0 and 1. However,
the ratio of color quantity, is expressed as an increasing set of numbers between
0 and 255, representing their position along the gradient.

An equally spaced two-color gradient, such as this example uses, is created
using the two extreme values of 0 and 255. Both colors are full at the ends of
the gradient, and mix together in the middle. Adding another equally spaced
third color would require a ratio array of 0, 127, and 255. Finally, to skew a
gradient toward one dominant color, you might use a ratio array of 0 and 127.

12.10 Creating a Gradient Fill | 277

This would show the first color in one third of the gradient and mix over to
the second color that occupied two thirds of the gradient.

The last part of creating a gradient is the optional matrix to manipulate its
position, scale, and angle. You create the matrix with the standard use of the
new keyword, but editing it can get complex. Fortunately, you have a special
method of the Matrix class specifically for this purpose, createGradient
Box(). The eponymous method accepts a width, height, rotation, horizontal
translation, and vertical translation to manipulate the gradient for you.

This example uses a width and height that matches the size of the rectangle
itself, and no horizontal or vertical translation is specified, so the full gradient
is visible. With a rotation of 0, the gradient moves from first color to last color,
in a left to right direction.

Finally, these values are passed into the beginGradientFill() method (used in
place of the beginFill() method of prior recipes) in the order discussed: gra-
dient type, color array, alpha array, ratio array, and matrix. The result is a
smooth gradient from opaque black to transparent.

var sp:Sprite = new Sprite();
addChild(spMask);
sp.x = sp.y = 100;
var g:Graphics = sp.graphics;
g.beginGradientFill(gradType, colors, alphas, ratios, matrix);
g.drawRect(0, 0, 100, 100);
g.endFill();

12.11 Using a Drawn Shape as a Dynamic Mask

Problem
You want to mask a display object with another display object created at
runtime.

Solution
Draw the mask using the Graphics class, and then use the mask property of
shape, sprite, and movie clip display objects.

Discussion
This recipe adds only one significant new line to material covered in previous
recipes. However, due to subtle changes (variable names, size, and fill style),
the complete code has been collected here. This example combines two sprites,

278 | Chapter 12: How Do I Draw with Code?

one with a rectangle with a solid fill, and another with a rectangle with a gra-
dient fill. The solid rectangle is on the bottom and is 300 pixels wide by 300
pixels tall. The top rectangle contains a gradient of 100 percent alpha black to
0 percent alpha black (transparent), and measures only 100 × 100 pixels.

The last line of this recipe is the important one. To use one display object to
dynamically mask another, set the mask property of the maskee, to the mask.

var sp:Sprite = new Sprite();
addChild(sp);
var g:Graphics = sp.graphics;
g.lineStyle();
g.beginFill(0x000099, 1);
g.drawRect(0, 0, 300, 300);
g.endFill();

var gradType:String = GradientType.LINEAR;
var colors:Array = [0x000000, 0x000000];
var alphas:Array = [1, 0];
var ratios:Array = [0, 255];
var matrix:Matrix = new Matrix();
matrix.createGradientBox(100, 100, 0, 0, 0);

var spMask:Sprite = new Sprite();
addChild(spMask);
spMask.x = spMask.y = 100;
var gMask:Graphics = spMask.graphics;
gMask.beginGradientFill(gradType, colors, alphas, ratios, matrix);
gMask.drawRect(0, 0, 100, 100);
gMask.endFill();

sp.mask = spMask;

Note that this minimal approach supports only 1-bit masks. That is, any non-
transparent pixel, no matter what the alpha value of that pixel, is considered
opaque and part of the mask. This example uses a gradient that changes from
100 percent alpha to 0 percent alpha to emphasize that the alpha data has no
effect, by default, on the mask.

However, 8-bit masks, or masks with varying degrees of alpha values, are sup-
ported when using bitmap caching, as seen in the next recipe.

See Also
“12.6 Defining a Fill Style” on page 273 and “12.10 Creating a Gradient Fill”
on page 277 for how to create a solid or gradient fill, and see “12.12 Caching
Vector as Bitmap” on page 280 for how to cache a bitmap.

12.11 Using a Drawn Shape as a Dynamic Mask | 279

12.12 Caching Vector as Bitmap

Problem
You want to use pixel-based effects on vector assets and/or attempt to increase
performance of vector rendering.

Solution
Temporarily work with a visual asset as a bitmap, by temporarily storing bit-
map representation of the asset.

Discussion
You need significant CPU processing power to composite and render moving
vectors many times a second. In some cases, you can improve performance by
treating the vector asset as a bitmap, behind the scenes. In simple terms, Flash
Player takes a screenshot of the vector any time a major transformation, such
as changes to rotation, alpha, or scale, occurs and composites the bitmap ver-
sion rather than the vector asset itself.

Because the bitmap version is cached, you have no degradation of visual quality
any time a major transformation occurs. However, the need to maintain an
equivalent bitmap also means performance can actually worsen if you use this
feature injudiciously. Therefore, bitmap caching is not recommended if the
asset is rotating, scaling, or changing opacity frequently.

More directly, sometimes you need to temporarily convert a vector to bitmap
to apply pixel-based effects, like filters and 8-bit masks. In some cases, this
process is automatic, such as when you’re applying a simple filter like a drop
shadow. In other cases, you must explicitly enable the feature.

This recipe adds only two lines of code to the very end of the prior “12.11
Using a Drawn Shape as a Dynamic Mask” on page 278 to use a drawn shape
as a dynamic mask. The repeated code has been omitted.

sp.cacheAsBitmap = true;
spMask.cacheAsBitmap = true;

By enabling bitmap caching for both the mask and maskee, both can be com-
posited as bitmaps. Then you can use the gradient alpha values in the mask
when displaying the underlying content.

280 | Chapter 12: How Do I Draw with Code?

See Also
“12.10 Creating a Gradient Fill” on page 277 for creating a gradient fill and
“12.11 Using a Drawn Shape as a Dynamic Mask” on page 278 to use a drawn
shape as a dynamic mask.

12.13 Applying a Simple Bitmap Filter

Problem
You want to apply simple bitmap filter effects to a display object, such as drop
shadow, bevel, or blur.

Solution
Use one of the simple filter classes, including DropShadowFilter(),
BevelFilter() or BlurFilter().

Discussion
Applying simple filters to display objects is very easy for two reasons. First, the
filter classes are easy to use and work similarly to the way the same filters are
applied in the Flash authoring environment. Second, there is a built-in
filters property in any display object that can have a filter applied, making it
straightforward to set the property to the filters you wish to add.

Creating a filter follows the same pattern as most other instantiations in Ac-
tionScript 3.0, using the new keyword. Conveniently, the parameters for setting
the values of the filter are all optional, and use default values if none are speci-
fied. This means that, at minimum, you can create filters using the following
example format, which demonstrates the drop shadow and bevel filters:

var dsFilter:DropShadowFilter = new DropShadowFilter();
var bvFilter:BevelFilter = new BevelFilter();

You can apply the filters just as easily by setting the filters property of your
display object. The filters property requires an array to let multiple filters be
applied at the same time (such as applying both a bevel and a drop shadow).
When applying only one filter, you need only pass a single-item array to the
property. The following new script creates a filled rectangle, and applies a drop
shadow effect:

var sp:Sprite = new Sprite();
addChild(sp);
sp.x = sp.y = 100;

12.13 Applying a Simple Bitmap Filter | 281

var g:Graphics = sp.graphics;
g.lineStyle(1, 0x000099);
g.beginFill(0x0000FF, 1);
g.drawRect(0, 0, 100, 60);
g.endFill();

var ds:DropShadowFilter = new DropShadowFilter();
sp.filters = [ds];

If you wanted to apply both a drop shadow filter and a bevel filter, the last
block of code would read:

var ds:DropShadowFilter = new DropShadowFilter();
var bv:BevelFilter = new BevelFilter();
sp.filters = [ds, bv];

To manipulate a filter’s settings, you can use different optional settings for
each filter. The first batch of settings for the drop shadow filter are relatively
intuitive numerical values, in this order: distance offset (pixels), angle (de-
grees), color (in hexadecimal notation), alpha (decimal percent range, 0–1),
extent of blur in the x direction, extent of blur in the y direction, strength (the
amount of color applied and degree of spread), and quality (how many times
the filter’s applied). The last batch of options are three Booleans that represent
the special setting of this filter—whether or not the shadow is cast inside the
shape (to represent a “hole” in the canvas, for example), whether or not the
underlying shadow is knocked out (revealing the canvas), and whether or not
the object casting the shadow is hidden (leaving only the shadow).

So, if you want to create a lighter, softer shadow, cast down and to the left,
you might substitute the previous filter instantiation with the following:

var ds:DropShadowFilter = new DropShadowFilter(5, 135, 0x000099, .5, 10, 10);

You can also change values after creating a setting by manipulating the desired
property directly. You just have to remember to reapply the filters to the display
object after any change. For example, revisit the filter setup at the beginning
of this recipe:

var ds:DropShadowFilter = new DropShadowFilter();
sp.filters = [ds];

You could then change a specific setting, such as the angle, in the filter, and
then reapply the filter to see your change in action. The following code changes
the angle from the default 45 to 135:

ds.angle = 135;
sp.filters = [ds];

282 | Chapter 12: How Do I Draw with Code?

CHAPTER 13

How Do I Work with the Display
List?

13.0 Introduction
The new display architecture is one of the two biggest ActionScript changes
in version 3.0. (The other biggest change comes in the form of the new event
model, which the next chapter covers.) In this chapter, you’ll learn the basics
of displaying content, which have been simplified over prior versions of
ActionScript in a few ways.

To begin with, presenting visual assets to the user has become much more
consistent. Previous ActionScript versions gave you a handful of different ways
to display a movie clip, for example, and many more when factoring in the
display of all types of visible assets. In ActionScript 3.0, however, all visual
assets are displayed in the same general manner: create the asset (if necessary)
using the new keyword, and then add it to the display list.

The display list is a type of linear array (although with its own access methods)
of objects that the user can see. In simple terms, an empty SWF file has an
empty display list, a SWF file with a single movie clip has a display list that
contains one item, and so on. (More accurately, each SWF file includes the
stage and main timeline at the root of the display list, but you can’t remove
these, and so they’re not included as list indices.)

Although the display list can contain only objects with visual data, you can
create such a display object without adding it to the display list. That is, a
sound can’t be a display object because you can’t see it, but you can create a
movie clip (which can be visible) without adding it to the display list.

You can hide a display object while it’s in the display list (by manipulating its
visible or alpha properties, or even moving it offstage or covering it up with
another display object). You can also remove an item from the display list

283

without removing it from memory, thereby making it invisible to the user.
Remember, however, that if an object has a visual component, it’s a display
object and therefore can be included in the display list and, conversely, objects
that are incapable of being seen by the user can’t be display objects and there-
fore can’t be included in the display list.

13.1 Choosing Which Type of Display Object to Use

Problem
You want to identify which kind of display object is best suited for a particular
task.

Solution
Review the display object classes to determine which has the most useful set
of properties, methods and/or events to satisfy your needs.

Discussion
Understanding the display list begins with looking at the classes that make up
the collection of all objects that can be part of the display list, as seen in
Figure 13-1. They originate with the DisplayObject class, which defines the
basic properties, methods, and events all display objects share.

This chapter focuses on the most common display objects, but an overview of
all the display list classes helps clarify their purposes. Begin on the left of
Figure 13-1, with three eponymous classes.

DisplayObject

SimpleButton TextField

Stage Loader

InteractiveObject

DisplayObjectContainer

Sprite

MovieClip

Video AVM1Movie MorphShape StaticTextBitmapShape

Figure 13-1. Hierarchy of display list classes

284 | Chapter 13: How Do I Work with the Display List?

Shape is a lightweight class that requires very little memory and performance
overhead because it has no timeline or mechanism for reacting to mouse
events. The result of creating and drawing into a shape with ActionScript is
the same as the element created when you draw a shape by hand in the Flash
authoring environment. Accomplishing this with code is a new feature in Ac-
tionScript 3.0.

Bitmap and Video classes are used, as you might expect, to display bitmaps and
videos spawned from ActionScript. Skipping for a moment to the right half of
Figure 13-1, you find three classes that you’re less likely to use directly.
AVM1Movie references loaded SWF files created using ActionScript 1.0 or 2.0,
MorphShape refers to timeline-based shape tweens, and StaticText refers to
non-interactive text elements created in the Flash IDE. You can’t create in-
stances of these classes, but they’re used as parent classes for other display
objects.

Moving back to the center of the figure, InteractiveObject can’t be instanti-
ated directly, but is a parent class for all interactive elements in the display list.
The third row of the figure contains SimpleButton, TextField (so, in Action-
Script 3.0, you can create true buttons on the fly), and another parent class
that can’t be instantiated, DisplayObjectContainer. This latter class adds the
ability for a display object to have children. While a bitmap couldn’t contain
a nested movie clip, for example, any child of the DisplayObjectContainer class
can.

The Stage class can’t be instantiated but does give you access to stage prop-
erties from any display object in the display list. Loader is used to load external
display assets such as images and other SWF files, and Sprite is simply a movie
clip without a timeline, provided for memory and performance optimization.
Finally, MovieClip adds a timeline to Sprite, and the collection of display list
classes is complete.

Choosing an appropriate display object depends largely on the task at hand.
Some choices are clear, such as when dynamic bitmaps, videos, buttons, or
text fields must be created, using their respective classes, or when external
assets must be loaded into a Loader instance.

Others aren’t as obvious, but will soon become second nature. Shape instances
serve primarily as canvases for dynamically drawing assets using the
Graphics class, as discussed in Chapter 12. Because shapes have no timeline
or user event capabilities, they’re best suited for drawing backgrounds and
other objects that aren’t interactive. Movie clips are useful for frame-based
animations, just as in the Flash IDE, and sprites are optimal for ActionScript-
based animations when you don’t need a timeline, but you do need user events.

13.1 Choosing Which Type of Display Object to Use | 285

See Also
Chapter 12

13.2 Creating a New Display Object

Problem
You want to create an asset, such as a movie clip or sprite, which is derived
from one of the DisplayObject classes.

Solution
Use the new keyword to create instances from scratch or from a Library linkage
class.

Discussion
Creating any new display object is consistent throughout ActionScript 3.0,
using the new keyword to spawn a new instance of the display object’s class.
Typically, you want to store that instance in a variable that’s also typed to the
display object’s class, or a relevant parent class. The following examples show
the creation of four different display objects, and their corresponding variable
references with data typing.

var mc:MovieClip = new MovieClip();
var sp:Sprite = new Sprite();
var tf:TextField = new TextField();
var sh:Shape = new Shape();

Building on that consistency, you can also create an instance of a Library-based
display object using the same syntax. The only difference is that instead of
using one of Flash’s built-in classes, you should use the name of the Library
element’s linkage class.

For more information about using the Library and linkage
classes, see Chapter 7.

In this next example, a Library movie clip has been given a linkage class of
Ball. The syntax still uses the new keyword to create an instance of the class,
and stores the instance in a variable typed with the same class.

var ballObj:Ball = new Ball();

286 | Chapter 13: How Do I Work with the Display List?

If desired, you can also type the variable with a relevant parent display class.
For example, the Library element may have originated as a movie clip and,
when given the linkage class of Ball, extended MovieClip as its base class. You
could type the new instance of the Ball class as MovieClip, Sprite, or
DisplayObject. You could use any one of the following three possible lines.
This example relates to casting display objects to different data types, which
will be covered later in the chapter.

var ballObj:MovieClip = new Ball();
var ballObj:Sprite = new Ball();
var ballObj:DisplayObject = new Ball();

While you can work with display objects immediately after creating them, you
can’t see them until they’re added to the display list. This topic is covered in
the next recipe.

See Also
“13.3 Adding a Display Object to the Display List” on page 287 for adding a
display object to the display list.

13.3 Adding a Display Object to the Display List

Problem
You want a display object to be visible to the user.

Solution
Use the addChild() method of the display object container’s class to add the
object to the display list.

Discussion
A display object must be in the display list if it’s ever to be visible at runtime
or be responsible for providing access to other display properties (such as a
stage reference). This quality is independent of the visible or alpha property
values of a display object, or other techniques for showing or hiding a visual
asset.

The following script creates a new sprite and positions it at point (30, 30).

var sp:Sprite = new Sprite();
sp.x = sp.y = 30;

13.3 Adding a Display Object to the Display List | 287

However, even though the sprite has x and y coordinates that are within the
stage, you can’t see it until it’s added to the display list. The following method
adds the specified display object to the top of the display list, regardless of the
number of items already in the list.

addChild(sp);

The display list isn’t just a linear array of display objects; it’s also contiguous.
That is, it can’t have gaps between display objects. This is a device for auto-
mating and optimizing depth management, and eliminates the need for the
getNextHighestDepth() method in prior versions of ActionScript. Rather than
specifying an arbitrarily high depth number to be sure a new visual asset is on
top of another, using addChild() automatically appends the display object to
the end (top) of the display list.

Further, the list automatically adjusts itself to eliminate any gaps. If you remove
an object from the display list (discussed later in this chapter), then all objects
higher in the list automatically drop down. If you insert an object in a position
lower than other objects in the list (also discussed later in this chapter), then
the higher objects all bump up a position.

So far, the sprite has no content, but you can add visual data through the use
of another display object. The following script segment creates a shape and
draws into it a 40-pixel by 40-pixel yellow square.

var sh:Shape = new Shape();
var g:Graphics = sh.graphics;
g.lineStyle(1, 0x000000);
g.beginFill(0xFFFF00, 1);
g.drawRect(0, 0, 40, 40);
g.endFill();

Previously, the sprite was added to the main timeline but, in this case, the shape
will be added to the sprite. Display objects can be added to other display ob-
jects, and the former become children of the latter.

sp.addChild(sh);

You can certainly draw directly into a sprite. However, in addition to demon-
strating hierarchical, or nested, display objects, this emphasizes that not all
display objects behave the same way. On its own, the shape couldn’t function
as an interactive element because it can’t process mouse clicks, among other
events. However, by adding the shape to a sprite, the shape can then, by ex-
tension, be clickable.

288 | Chapter 13: How Do I Work with the Display List?

See Also
“13.1 Choosing Which Type of Display Object to Use” on page 284 for choos-
ing a display object type, “13.4 Specifying the Depth of a Display Object” on
page 289 for setting the depth of an object, “13.6 Removing a Display Object
from the Display List” on page 292, for removing an object from a display list,
and “13.9 Casting a Display Object from One Type to Another” on page
297 for recasting a display object type.

13.4 Specifying the Depth of a Display Object

Problem
You want to place a display object at a particular visual stacking depth, or swap
the visual depths of two display objects.

Solution
Based on need, use the addChild(), addChildAt(), setChildIndex(),
swapChildren(), or swapChildrenAt() methods of the display object container’s
class.

Discussion
You’ll often find it helpful to alter the depths at which display objects reside.
Consider, for example, an interactive jigsaw puzzle. To simulate a real-world
puzzle experience, it helps to move the clicked piece to the top of the pile while
dragging it to the puzzle board.

You have several ways to change the stacking order of display objects. The first
is simply to add the same object to the display again. In the following code, a
sprite (red, 0xFF0000) is added to the display list first, followed by a movie
clip (blue, 0x0000FF). However, the first sprite is added to the display list
again. Because it’s the same object, it’s automatically removed from its prior
position and placed in its new position. As a result, the sprite moves to the top
of the stacking order.

var sp:Sprite = new Sprite();
drawSquare(sp, 0xFF0000);
sp.x = sp.y = 20;
addChild(sp);

var mc:MovieClip = new MovieClip();
drawSquare(mc, 0x0000FF);
mc.x = mc.y = 40;

13.4 Specifying the Depth of a Display Object | 289

addChild(mc);

addChild(sp);

function drawSquare(obj:Object, col:uint):void {
 var g:Graphics = obj.graphics;
 g.beginFill(col, 1);
 g.drawRect(0, 0, 40, 40);
 g.endFill();
}

You also have more direct ways of placing a display object at a specific level.
The addChildAt() method is a companion to addChild() but lets you dictate a
destination depth for the display object. The method has two parameters: the
object being placed, and the target depth. As with addChild(), the object on
which this method is called dictates scope—the display list to which this child
will be added. Omitting an object reference before the method adds the child
to the current scope—the display list in which the omitted object resides.

For example, the following adds a library symbol, stored in the variable
boxSp, to the bottom of the main timeline (the current scope) by specifying a
depth of zero.

var boxSp:Sprite = new Box();
addChildAt(boxSp, 0);

For example, the following adds a display object to the main timeline (the
current scope) because no target for addChild() is specified. In this case, it adds
a library symbol, stored in the variable boxSp, to the bottom of the main time-
line by specifying a depth of zero.

var boxSp:Sprite = new Box();
addChildAt(boxSp, 0);

If you wanted to add boxSp to the bottom of the child list of an existing display
object container, such as the previously created movie clip mc, the syntax would
follow the examples for addChild()and look like this:

mc.addChildAt(boxSp, 0);

See Also
“13.3 Adding a Display Object to the Display List” on page 287 for adding a
display object to the display list.

290 | Chapter 13: How Do I Work with the Display List?

13.5 Finding a Display Object

Problem
You need to create a reference to a display object, but you have access to only
its name or position in the display list.

Solution
Use the getChildAt() or getChildByName() methods of the display object con-
tainer’s class.

Discussion
People often want to access a display object without already having a reference
to the object in question. For example, you may want to generate an object’s
name by combining strings or accepting user input, or you may want to loop
through all children of a container addressing each item by child index.

The first line of the following ActionScript block retrieves a reference to an
object by using its name. The second shows how to reference the bottom-most
display object (because it gets the display list child at depth zero).

var dispObj:DisplayObject = getChildByName("claire");
var dispObj2:DisplayObject = getChildAt(0);

Both these methods are really useful. The latter makes it possible to work with
an object at any depth, even without knowing which object currently occupies
that position in the display list. You virtually require the former when creating
display objects with ActionScript because of a small change in the new version
of the language.

In ActionScript 2.0, you could use a name that was added to a symbol instance
with code to reference its properties or methods. That is, if you created an
empty movie clip, you could assign it a name with ActionScript, and then use
that name as a proper instance name as if it were applied in Flash’s Property
inspector.

In ActionScript 3.0, you can’t do this any more. The string used for the in-
stance’s name property remains a string—a property value—and can’t be
evaluated as an object. The following code example illustrates this point. The
first code segment creates, names, and positions a display object, and then
adds it to the display list. The second segment traces the x coordinate of the
display object, using its programmatically assigned name as an instance

13.5 Finding a Display Object | 291

reference. The result is an error because the value of the name property isn’t
understood to be a proper object.

var sp:Sprite = new Sprite();
sp.name = "claire";
sp.x = 100;
addChild(sp);

trace(claire.x);
//yields error:
//1120: Access of undefined property claire.

The simple solution is to use the getChildByName() method to return a fully
qualified object reference, as seen here:

var dispObj:DisplayObject = getChildByName("claire");
trace(dispObj.x);
//yields 100

See Also
“13.4 Specifying the Depth of a Display Object” on page 289, for setting the
depth of the display object.

13.6 Removing a Display Object from the Display List

Problem
You want a display object to be hidden from view, unable to receive events,
and/or disassociated from familial relationship with other display objects.

Solution
Use the removeChild() or removeChildAt() methods of the display object con-
tainer’s class to remove the object from the display list.

Discussion
You have a few ways to hide a display object, and more than one way to block
events from reaching a display object. These tasks required a little thinking in
prior versions of ActionScript, but are incredibly easy when using the display
list. You just have to remove the display object in question from the display list.

The following line removes a display object sp from the scope in which the
display object resides. Continuing the scenario shared by other recipes in this
chapter, consider the sprite, sp, in the main timeline.

292 | Chapter 13: How Do I Work with the Display List?

removeChild(sp);

As with addChild(), you can also invoke this method in another scope. The
following, for example, removes a hypothetical nested movie clip mc from its
parent sp.

sp.removeChild(mc);

Finally, just as you could add a child to a specific depth with addChildAt(),
you can also remove a child from a specific depth. The following example
removes the first child, or child at the lowest depth, of all nested display objects
within sp.

sp.removeChildAt(0);

Note that none of these methods removes a child from memory. They all re-
move only the object in question from the display list. So you can temporarily
remove a child from the display list and restore it later. If you want to remove
a display object from memory as well, you can set it to null.

The following repeats the earlier example of removing sprite sp from the dis-
play list, but then also nullifies the sprite so it can be marked for removal from
memory by the garbage collector.

removeChild(sp);
sp = null;

See Also
“13.3 Adding a Display Object to the Display List” on page 287 for adding a
display object to the display list and “13.4 Specifying the Depth of a Display
Object” on page 289 for setting the depth of a display object.

13.7 Working with Children of a Display Object Container

Problem
You want to determine if a display object has children or a particular child, or
you want to disable the mouse events of all children.

Solution
Check to see if a display object is of type DisplayObjectContainer to see if it
can have children. Use the numChildren property to determine if a display object
container has children, or the contains() method to determine if a particular

13.7 Working with Children of a Display Object Container | 293

child of the container exists. Use the mouseChildren property to enable or dis-
able mouse events for all children of a container.

Discussion
Every visible element is a display object but not all display objects are display
object containers as shown in Figure 13-1. Neither shapes, bitmaps, nor vid-
eos, for example, are display object containers and, therefore, can’t have
children.

When trying to work with children of an object, it helps to avoid errors by first
making sure that the object can have children. You do this by checking to see
if the instance in question qualifies as a DisplayObjectContainer data type,
using the is operator. This conditional traces a result if mc is a movie clip,
because a movie clip is a display object container:

var mc:MovieClip = new MovieClip();

if (mc is DisplayObjectContainer) {
 trace("container");
}

You can use this technique to make sure that any properties or methods of a
container are used without error. For example, the following code replaces the
string in the previous trace statement with a use of the numChildren property
to see how many children are nested within the movie clip:

if (mc is DisplayObjectContainer) {
 trace(mc.numChildren);
}

If you want to see if a particular child exists, you can use the contains()
method. The following example traces a result only if a child reference sp is
found inside the container mc.

var mc:MovieClip = new MovieClip();
var sp:Sprite = new Sprite();
mc.addChild(sp);
addChild(mc);

if (mc is DisplayObjectContainer) {
 if (mc.contains(sp)) {
 trace("sp found");
 }
}

Finally, it’s handy to know how to prevent children of a display object from
receiving mouse events. This will become more apparent when events are dis-
cussed in the next chapter, but consider this example. If you dynamically create
a display object to serve as a button, and add to that object a text field child

294 | Chapter 13: How Do I Work with the Display List?

to serve as the button’s label, then the text field reacts to the cursor and possibly
trap mouse events when not wanted.

For example, you may not see the hand cursor responsible for indicating the
presence of an interactive element and, depending on how you set up your file,
the text field may prevent the button from reacting to a mouse click.

While you certainly want a text field to be able to react to the mouse at other
times, the button label in this example shouldn’t interfere with standard user
interface design. In this case, it’s handy to use the mouseChildren property of
the button object to disable mouse events for all children.

To demonstrate this change, you need a little code for handling text and events
before covering that material in greater detail in later chapters. For now, the
ActionScript has been broken into four segments. The last two blocks set up
the text and mouse event, respectively.

The first block creates a new sprite, draws a yellow rectangle inside, and adds
the sprite to the display list. The second block contains two properties that
illustrate the usefulness of mouseChildren. The buttonMode property tells Flash
Player to treat the sprite as if it were a button, and display the desired hand
cursor when rolling over the button. The commented line uses the
mouseChildren property, and will be explained following the script.

var sp:Sprite = new Sprite();
var g:Graphics = sp.graphics;
g.beginFill(0xFFFF00, 1);
g.drawRect(0, 0, 100, 30);
g.endFill();
addChild(sp);

sp.buttonMode = true;
//sp.mouseChildren = false;

addLabel(sp);
function addLabel(obj:Sprite):void {
 var txtFrmt:TextFormat = new TextFormat();
 txtFrmt.size = 24;
 txtFrmt.align = TextFormatAlign.CENTER;

 var txtFld:TextField = new TextField();
 txtFld.width = 100;
 txtFld.height = 30;
 txtFld.text = "Label";
 txtFld.setTextFormat(txtFrmt);

 obj.addChild(txtFld);
}

sp.addEventListener(MouseEvent.CLICK, onClick);
function onClick(evt:MouseEvent):void {

13.7 Working with Children of a Display Object Container | 295

 trace("button clicked");
}

By default, mouseChildren is true, letting children of an object receive events.
In this state, you’ll notice that the cursor doesn’t change from pointer to hand
when rolling over the button. This is because the text field is the same size of
the button, and is intercepting the cursor before it reaches the button. By un-
commenting the mouseChildren line, thereby setting the property to false, no
children of the sprite receive mouse events, and the button behaves normally.

See Also
“13.1 Choosing Which Type of Display Object to Use” on page 284.

13.8 Working with Parents of a Display Object

Problem
You want to refer to a parent or ancestor of a display object.

Solution
Use the parent property of the display object.

Discussion
You’ll often need to reference a parent or ancestor—a parent’s parent, or (in-
formally) grandparent—of a display object. Accessing the parent of a display
object is similar to working your way through a directory structure on your
computer. Any parent of a display object also qualifies as a display object con-
tainer by the mere fact that it has children. Moving up one level, so to speak,
from child to container requires only the use of the parent property.

The following example revisits the red and blue squares from earlier recipes.
The parent, or blue movie clip, is positioned at point (20, 20) in the main
timeline. The child, or red sprite, is offset another 30 pixels in both the x and
y directions. Since a display object’s location is relative to its parent, querying
the x location of the child returns a value of 30, but the x location of its parent
is 20.

To check these results, the third block of this script traces the x coordinate of
the sprite and its parent.

var mc:MovieClip = new MovieClip();
drawSquare(mc, 0x0000FF);

296 | Chapter 13: How Do I Work with the Display List?

mc.x = mc.y = 20;
addChild(mc);

var sp:Sprite = new Sprite();
drawSquare(sp, 0xFF0000);
sp.x = sp.y = 30;
mc.addChild(sp);

trace(sp.x);
trace(sp.parent.x);

function drawSquare(obj:Object, col:uint):void {
 var g:Graphics = obj.graphics;
 g.beginFill(col, 1);
 g.drawRect(0, 0, 40, 40);
 g.endFill();
}

This works without further qualification because the x prop-
erty is available to both display objects and display object
containers. When you attempt to use a property or method
that isn’t universally available, the ActionScript 3.0 compiler
may object and require additional information to handle the
request. You can see this in the next recipe.

See Also
“13.9 Casting a Display Object from One Type to Another” on page 297 for
casting a display object from one type to another.

13.9 Casting a Display Object from One Type to Another

Problem
You want to explicitly convert a display object from one type to another. Al-
ternately, you receive a compiler error telling you that a property or method
you’re trying to manipulate may be undefined due to a static reference to
DisplayObject or DisplayObjectContainer.

Solution
Cast the display object to the appropriate type, officially declaring its type for
the compiler.

13.9 Casting a Display Object from One Type to Another | 297

Discussion
Casting is the process of explicitly changing an object from one data type to
another. For example, you can change a string to an integer by casting it with
int(). The following casts two strings, and traces the outcome of adding the
resulting integers.

trace(int("1") + int("2"));
// 3

If the strings had not been cast to integers prior to using the plus (+) operator,
the result would have been an execution that concatenated the strings “1” and
“2” to get “12” rather than adding the two numbers 1 and 2 to get 3. You can
also cast from one related display object type to another, and the following
scenario is a good example of when this is required.

In the previous recipe, the parent property was used to query the x location of
a parent container. This was possible because both the parent and child had
an x property. However, quite often the ActionScript compiler is unsure
whether or not a targeted parent has the requested property or method in its
class.

For instance, a movie clip could be a child of a sprite, or a sprite could be a
child of a movie clip. If you were to query a property that applied only to a
movie clip, using nothing more than a passing reference to a display object’s
parent, the compiler wouldn’t know the data type of the parent and, therefore,
couldn’t know if the property existed. Here’s some example code:

var mc:MovieClip = new MovieClip();
drawSquare(mc, 0x0000FF);
mc.x = mc.y = 20;
addChild(mc);

var sp:Sprite = new Sprite();
drawSquare(sp, 0xFF0000);
sp.x = sp.y = 20;
mc.addChild(sp);

var totFr:int = sp.parent.totalFrames;
trace(totFr);

function drawSquare(obj:Object, col:uint):void {
 var g:Graphics = obj.graphics;
 g.beginFill(col, 1);
 g.drawRect(0, 0, 40, 40);
 g.endFill();
}

In this situation, you get an error that says something like this:

298 | Chapter 13: How Do I Work with the Display List?

//1119: Access of possibly undefined property
totalFrames through a reference with static type flash.display:DisplayObjectContainer.

Briefly, totalFrames is a property of a movie clip but is missing from other types
of display object containers (such as sprite). Without telling the compiler the
parent is a movie clip, it throws an error.

The solution is to cast the parent as type MovieClip, just as the previous ex-
ample cast from string to integer using int().

var totFr:int = MovieClip(sp.parent).totalFrames;
trace(totFr);

Once the compiler explicitly knows this, it doesn’t generate an error, and the
script functions as intended.

See Also
“13.8 Working with Parents of a Display Object” on page 296 for working
with the parents of display objects.

13.10 Changing the Parent of a Display Object

Problem
You want to move a child display object from one parent to another.

Solution
Use the addChild() method (or equivalent) and ActionScript 3.0’s automatic
display list management to re-parent the child on the fly.

Discussion
One of the display list’s greatest qualities is the ability to change a display
object’s parent with very little effort. In the following setup, the sprite sp is a
child of the movie clip mc. As a result, the sprite displays at point (50, 50),
which is the location of mc.

var mc:MovieClip = new MovieClip();
mc.x = mc.y = 50;
addChild(mc);

var sp:Sprite = new Sprite();
var g:Graphics = sp.graphics;
g.beginFill(0xFF00FF, 1);
g.drawRect(0, 0, 40, 40);

13.10 Changing the Parent of a Display Object | 299

g.endFill();
mc.addChild(sp);

var mc2:MovieClip = new MovieClip();
mc2.x = mc2.y = 150;
addChild(mc2);

//mc2.addChild(sp);

However, if you uncomment the last line of the script, sp is again added to the
display list, but this time, as a child of mc2. Because the same display object
reference is being added to the display list twice, the first occurrence is
automatically removed from the list, and the object moves to become a child
of mc2. Consequently, the sprite now displays at point (150, 150), the location
of mc2.

Re-parenting on the fly has many benefits. Consider, for example, a drag-and-
drop scenario where every time you drop an item onto a new parent, the item
becomes a child of the drop target. You could easily use this setup to group
objects, manipulate their properties as a single item, and even remove an entire
group of objects from the display list, simply by altering one parent.

13.11 Referencing the Stage Through a Display Object

Problem
You want to work with properties, methods, or events related to the stage,
using a display object as a point of reference.

Solution
Use the stage property of any relevant display object already in the display list.

Discussion
ActionScript 3.0 no longer has a ubiquitous reference to the stage. Instead, you
typically access the stage through the stage property of a display object. For
this to be possible, however, the display object must be a child of a display list.

The following attempt to query the stage frame rate generates an error because
the stage property of the display object is null. You can see this directly by
trying to trace the stage property itself, in the last line of this script block.

var sp:Sprite = new Sprite();
trace(sp.stage);
//null

300 | Chapter 13: How Do I Work with the Display List?

trace(sp.stage.frameRate);
//TypeError: Error #1009: Cannot access a property
or method of a null object reference at main_fla::MainTimeline/frame1()

Once the display object is added to the display list, however, the stage property
is valid, and no error occurs. The stage property also then correctly traces a
reference to the Stage instance.

addChild(sp);
trace(sp.stage);
//[object Stage]

trace(sp.stage.frameRate);
//12

You most often encounter this issue when using classes, simply because it’s
easier to get a reference to the stage within a Flash timeline frame script. This
is because the main timeline itself is automatically a part of the display list,
and can reference the stage. However, this timeline-based example still illus-
trates the problem and, ideally, this will help you avoid null object reference
errors when the stage is involved.

13.11 Referencing the Stage Through a Display Object | 301

CHAPTER 14

How Do I Work with Events?

14.0 Introduction
The new event model is one of the biggest changes ActionScript 3.0 introduces.
Gone are the event handlers of prior versions, such as onRelease or the more
antiquated on(release) handler applied directly to symbol instances. The new
model makes use exclusively of event listeners. In simple terms, event listeners
are established to monitor for the occurrence of a particular event, and then
execute a function when that event is received. Since listeners are required for
all event processing, this chapter both explains and uses them extensively.

Even if you have experience with event listeners from prior versions of
ActionScript (perhaps from use with components or objects for capturing key
events), the event flow is quite different in ActionScript 3.0. Events can cascade
down through the display list and bubble back up to the root of the file, al-
lowing for advanced event handling. In line with the focus of this quick answer
guide, this chapter covers the basic essentials of event processing, but provides
an adequate overview to get you started.

14.1 Understanding Event Listeners

Problem
You want to understand the basic operation of an event listener.

Solution
Create an event listener and accompanying function to execute when a desired
event is received.

303

Discussion
The first part of reacting to an event is to create an event listener. You do this
by using the addEventListener() method, attaching the listener to the object
that will be the event. Intermediate to advanced use of the event model suggests
a variety of places to attach listeners, some of which this chapter demonstrates.
This example, however, uses the direct approach, and attaches the listener to
the interactive object that a user will click: a sprite referenced by sp.

sp.addEventListener(MouseEvent.CLICK, onClick);

The method requires two arguments. The first is the event for which the lis-
tener must listen. Typically, you use constants provided for this purpose but,
as you’ll learn later in this chapter, you can also use strings. In this case, a
mouse click has been specified by using the CLICK event of the MouseEvent class.

The second argument is the name of the function you want to trigger when
the event occurs. The function used as a listener function is like any other
function except that listener functions require an argument, even though ar-
guments in standalone functions are optional. This is because the event model
is designed to pass on information about the event, the target of the event (the
interactive element that was clicked, for example), which object the listener is
attached to, and related information (such as stage locations, modifier key
usage, and other data). Just like other arguments, a data type should be speci-
fied for the listener argument for type checking. The type provided should be
the type of the event associated with the listener.

function onClick(evt:MouseEvent):void {
 trace("button clicked");
}

Here is an example script that shows a listener in action. When you click the
red sprite, the onClick() listener function is triggered, and the string is traced
to the Output panel. In later recipes in this chapter, you’ll learn how to work
with the item that the user clicked, and parse data from the argument.

var sp:Sprite = new Sprite();
drawSquare(sp, 0xFF0000);
sp.x = sp.y = 100;
sp.buttonMode = true;
addChild(sp);

sp.addEventListener(MouseEvent.CLICK, onClick);
function onClick(evt:MouseEvent):void {
 trace("sprite clicked");
}

function drawSquare(obj:Object, col:uint):void {
 var g:Graphics = obj.graphics;
 g.beginFill(col, 1);

304 | Chapter 14: How Do I Work with Events?

 g.drawRect(0, 0, 40, 40);
 g.endFill();
}

14.2 Capturing Mouse Events

Problem
You want to execute code when the user interacts with an element using the
mouse, for example enlarging an object when rolling over it with the mouse.

Solution
Listen for one or more events from the MouseEvent class.

Discussion
In the previous recipe, you learned the basics of event listeners, using a mouse
click as an example. This recipe demonstrates not only how to react to other
mouse events, but also the ability to attach more than one listener to an object.
This ability lets you perform different actions based on each event, even when
interacting with the same object.

The following script excerpt works when interacting with a display object
called sp. When rolling over the object, sp becomes 150 percent larger than its
original size. When rolling out, sp returns to its original size.

sp.addEventListener(MouseEvent.MOUSE_OVER, onOver);
sp.addEventListener(MouseEvent.MOUSE_OUT, onOut);

function onOver(evt:MouseEvent):void {
 sp.scaleX = sp.scaleY *= 1.5;
}
function onOut(evt:MouseEvent):void {
 sp.scaleX = sp.scaleY = 1;
}

The code is very similar to the previous recipe’s example. The event-related
differences are that two listeners are used, each listens for a different event,
and each calls a different function. In essence, the listener code has been dou-
bled to account for the new listener set, but both listeners are attached to the
same object.

The next script example uses separate mouse down and up events, in contrast
to the use of the CLICK event, which triggers after the consecutive executions
of both down and up events (forming a complete “click”). This script turns on

14.2 Capturing Mouse Events | 305

object dragging when you click on a display object, and turns off dragging
when you release the mouse over the display object.

A very important change in this script is the introduction of the target property
seen in the onDown() function. This property, parsed from the listener function
argument, contains the target that dispatched the event. Using this property,
you can avoid hard-coding the object in the function.

For example, this script successfully drags either of two display objects, using
only one set of functions. That is, relevant listeners are attached to each object,
but both listeners reference the same functions. If the object being manipulated
inside the functions were hard-coded, rather than identified through the
event’s target property, only the hard-coded object would move, regardless
of which the user tried to drag.

var sp:Sprite = new Sprite();
drawCir(sp, 0x9900AA);
sp.x = sp.y = 100;
addChild(sp);

var sp2:Sprite = new Sprite();
drawCir(sp2, 0x00AA00);
sp2.x = sp2.y = 200;
addChild(sp2);

sp.addEventListener(MouseEvent.MOUSE_DOWN, onDown);
sp.addEventListener(MouseEvent.MOUSE_UP, onUp);

sp2.addEventListener(MouseEvent.MOUSE_DOWN, onDown);
sp2.addEventListener(MouseEvent.MOUSE_UP, onUp);

function onDown(evt:MouseEvent):void {
 evt.target.startDrag();
}
function onUp(evt:MouseEvent):void {
 stopDrag();
}

function drawCir(obj:Object, col:uint):void {
 var g:Graphics = obj.graphics;
 g.beginFill(col, 1);
 g.drawCircle(0, 0, 40);
 g.endFill();
}

A later recipe will improve upon this script by correctly reacting when the
mouse is released outside the bounds of the display object.

306 | Chapter 14: How Do I Work with Events?

See Also
“14.1 Understanding Event Listeners” on page 303 for understanding event
listeners, “14.5 Using the target and currentTarget Event Properties” on page
310 for when to use target and currentTarget properties, and “14.6 Simulating
a Mouse Up Outside Event” on page 311 for simulating a mouse up outside
event.

14.3 Understanding Event Flow

Problem
You want a basic understanding of the flow of events in ActionScript 3.0.

Solution
Review the capture, target, and bubbling phases, with particular attention to
the default use of target and bubbling phases.

Discussion
Events flow through a SWF file in a specified manner, and mechanisms exist
to work with these events in multiple ways. For ease of discussion, this recipe
will discuss the flow of a MouseEvent.CLICK event, and assume the user clicked
on a movie clip that’s nested inside another movie clip found in the main
timeline. Looking at Figure 14-1, the movie clip clicked by the user is mc2, and
is also labeled as “target.”

When someone clicks the movie clip, the event actually starts at the stage and
begins to move through the display list. It makes its way through the display
objects until it encounters the object on which she clicked. This is the target
of the event. Rather than stopping when it reaches the target, the event con-
tinues on its round trip journey back through the display list to the main time-
line and stage.

The initial journey to, but not including, the target is the capture phase of the
event model. The actual time spent with the target is the target phase, and the
return journey back to the stage is the bubbling phase.

The capture phase is the period during which Flash Player is trying to identify
the object that dispatched the event. Starting at the stage, the event moves
through display objects until the target’s found, at which point the phase ends.
By default, the capture phase is not used. “14.14 Capturing an Event Before It

14.3 Understanding Event Flow | 307

Reaches Its Target” on page 326, “Using the Capture Phase,” discusses turn-
ing on this phase.

The target and bubbling phases however, which listeners employ by default,
are used in virtually every ActionScript 3.0 project. The importance of the
target phase is probably fairly obvious. Briefly, Flash Player is processing a
mouse click (for example) at the object on which the user clicked. This model
is called the event-processing model in prior versions of ActionScript.

The bubbling phase brings new power to ActionScript. Using event bubbling,
you can attach a listener to a parent object, and the desired event acts on all
of its children. The next recipe demonstrates.

See Also
“14.4 Using Event Bubbling” on page 308 for event bubbling, and “14.14
Capturing an Event Before It Reaches Its Target” on page 326 for using the
capture phase.

14.4 Using Event Bubbling

Problem
You want to simplify code and add power to event processing by capturing
events as they move through the display list from one object to another.

Stage

Root

mc1

mc2 mc3

target

Figure 14-1. Event flow in ActionScript 3.0

308 | Chapter 14: How Do I Work with Events?

Solution
Attach an event listener to a display object container and let event bubbling
act on its children.

Discussion
In “14.2 Capturing Mouse Events” on page 305, the example script used a
direct approach to event processing by attaching an event listener to each dis-
play object. This recipe includes a modified version of that example that takes
advantage of event bubbling. You see two significant changes.

First, a display object container has been created, into which two circle sprites
have been added. Second, instead of attaching a listener to each sprite, one
listener is attached to the container. The default behavior to bubble events
means that all its children can process the event.

var contnr:Sprite = new Sprite();
addChild(contnr);

var sp:Sprite = new Sprite();
drawCir(sp, 0x9900AA);
sp.x = sp.y = 100;
contnr.addChild(sp);

var sp2:Sprite = new Sprite();
drawCir(sp2, 0x00AA00);
sp2.x = sp2.y = 200;
contnr.addChild(sp2);

contnr.addEventListener(MouseEvent.MOUSE_DOWN, onDown);
contnr.addEventListener(MouseEvent.MOUSE_UP, onUp);

function onDown(evt:MouseEvent):void {
 evt.target.startDrag();
}
function onUp(evt:MouseEvent):void {
 stopDrag();
}

function drawCir(obj:Object, col:uint):void {
 var g:Graphics = obj.graphics;
 g.beginFill(col, 1);
 g.drawCircle(0, 0, 40);
 g.endFill();
}

Only the clicked circle is dragged (instead of the container and, therefore, both
children) because only the target of the event is affected. The evt.target prop-
erty always refers to the circle receiving the mouse down event.

14.4 Using Event Bubbling | 309

See Also
“14.5 Using the target and currentTarget Event Properties” on page 310 for
when to use target and currentTarget properties.

14.5 Using the target and currentTarget Event Properties

Problem
When parsing data from an event listener function argument, you want to
know when to use the target and currentTarget properties.

Solution
Use target when you want to know which object is the recipient of the event,
and use currentTarget when you want to know to which object the event lis-
tener is attached.

Discussion
In one regard, the distinction between the target and currentTarget is straight-
forward. The object acted upon by the event (the button that’s clicked, the
sprite that’s rolled over, etc.) is the target, while the object to which the listener
is attached is the currentTarget. The two properties can refer to the same object
when the event dispatcher is also the object with the listener. This circum-
stance is true when attaching a listener directly to a button, for example.
Clicking on the button dispatches the mouse event (button is target), and the
listener is attached to the button (button is currentTarget).

When to use each property, however, is not always clear. The following script
demonstrates a draggable window metaphor. A window-like sprite is drawn
and, within it, a drag bar is drawn. An event listener starts dragging on mouse
down, stops dragging on mouse up, and is attached to the window sprite.

var window:Sprite = new Sprite();
drawRoundedRectangle(window, 0x000099, 200, 200);
window.x = window.y = 100;
addChild(window);

var dragBar:Sprite = new Sprite();
drawRoundedRectangle(dragBar, 0x000033, 200, 40);
window.addChild(dragBar);

window.addEventListener(MouseEvent.MOUSE_DOWN, onDown);
window.addEventListener(MouseEvent.MOUSE_UP, onUp);

310 | Chapter 14: How Do I Work with Events?

function onDown(evt:MouseEvent):void {
 //evt.target.startDrag();
 evt.currentTarget.startDrag();
}
function onUp(evt:MouseEvent):void {
 stopDrag();
}

function drawRoundedRectangle(obj:Object, col:uint, ¬
 w:Number, h:Number):void {
 var g:Graphics = obj.graphics;
 g.lineStyle(1, col);
 g.beginFill(col, .5);
 g.drawRoundRect(0, 0, w, h, 20);
 g.endFill();
}

Attaching the listener to the window sprite means that any child of that display
object container can process the mouse event. This outcome occurs because
the default behavior (unchanged in this example) lets the children capture the
event during bubbling.

The most common approach of using the target property within the listener
function means that you can drag the container and any child within. This
ability creates the unfortunate side effect of being able to drag the bar by itself,
without dragging the window along with it. See this in action by switching
between the two bolded lines in the onDown() function of this example (com-
menting out the line not in use).

As written, however, currentTarget is used in the function, so only the object
to which the listener is attached can be dragged. As a result, dragging the
window drags the window, and dragging the bar also drags the window.

14.6 Simulating a Mouse Up Outside Event

Problem
You want a means of insuring that mouse events occurring outside the bounds
of a display object can be processed. However, ActionScript 3.0 has no equiv-
alent to the onReleaseOutside event found in prior versions of ActionScript.

Solution
Add an additional listener to the stage responsible for reacting to mouse up
events.

14.6 Simulating a Mouse Up Outside Event | 311

Discussion
In certain ActionScript 3.0 scenarios, such as drag-and-drop activities, an ap-
plication can go awry due to the lack of a “mouse up outside” event. Consider
the simple drag-and-drop example in “14.4 Using Event Bubbling” on page
308. If, while dragging one of the circle sprites in that example, you accidentally
release the mouse button while the cursor is not over the same sprite, the
dragging behavior doesn’t cease. The sprite in question didn’t receive the
mouse up event required to execute the stopDrag() method. To stop the drag-
ging, you must click on the sprite again to ensure that the mouse button is
released over the sprite, and a mouse up event occurs.

Although earlier versions of ActionScript had a built-in event mechanism
(onReleaseOutside) for this scenario, ActionScript 3.0 doesn’t include this
feature.

Instead, you must add a listener to the stage to receive the mouse up event
(because the event doesn’t occur at the display object). In most cases, you can
even just associate the listener to the same function used by the display object
listener. Only one line of code needs to be added to “14.4 Using Event Bub-
bling” on page 308, like the example shown here in bold, to achieve the desired
result.

contnr.addEventListener(MouseEvent.MOUSE_DOWN, onDown);
contnr.addEventListener(MouseEvent.MOUSE_UP, onUp);

stage.addEventListener(MouseEvent.MOUSE_UP, onUp);

See Also
“14.4 Using Event Bubbling” on page 308 for event bubbling.

14.7 Capturing Frame Events

Problem
You want to use a recurring event to repeatedly trigger a function.

Solution
Use the Event.ENTER_FRAME event.

312 | Chapter 14: How Do I Work with Events?

Discussion
A frame script is executed only once each time the Flash playhead enters a
frame span. The playhead must leave the frame span and re-enter it again to
execute the script a subsequent time. If, for example, you stop the playhead in
a frame that contains a frame script, then that script doesn’t behave as if it were
in a frame loop executing continuously.

You can, however, use the Event.ENTER_FRAME event to repeatedly trigger a
function. This event is available to sprites and movie clips (including the main
timeline), and triggers as many times per second as dictated by the frame rate
of your SWF file. The following example adds 10 degrees to the current rota-
tion of a sprite, each time the event occurs.

var sp:Sprite;
drawSquare();

sp.addEventListener(Event.ENTER_FRAME, onLoop);

function onLoop(evt:Event):void {
 evt.target.rotation += 10;
}

function drawSquare():void {
 sp = new Sprite();
 var g:Graphics = sp.graphics;
 g.beginFill(0x000099, 1);
 g.drawRect(0, 0, 40, 40);
 g.endFill();
 sp.x = sp.y = 100;
 addChild(sp);
}

It is very important to remove enter frame event listeners when
you’re no longer using them, as a later recipe will demonstrate.
Not removing the listeners can prevent them from being col-
lected by the garbage collector. This trait can be especially
intrusive when the listener’s in a SWF file that you wish to
load into another SWF file. If the listener wasn’t properly re-
moved in the loaded content, it can prevent the loaded file
from being unloaded.

See Also
“14.8 Improving Performance by Removing Event Listeners” on page 314 for
removing event listeners.

14.7 Capturing Frame Events | 313

14.8 Improving Performance by Removing Event
Listeners

Problem
You want to remove any unused event listeners to reduce memory and per-
formance overhead.

Solution
Use the removeEventListener() method to remove a specific event listener.

Discussion
As you might imagine, performing an unnecessary task repeatedly can waste
resources. In the case of event listeners, both memory and performance are at
risk if you don’t remove unused listeners.

A listener is unnecessary when your application no longer needs to rely on it
to capture an event. For example, if a button’s never clicked, you still need its
listener if the button can be clicked. That is, the need to react to that button
click still remains, even if the button’s not used. However, tasks that will no
longer be needed can be eliminated upon the completion of an event. For
instance, if your project contains a one-time load process, listeners for events
such as progress, error checking, and load-complete can all be removed once
the loading has concluded.

The bold lines in the following code can be inserted in the onLoop() function
in the previous recipe. Assume this project design requires only that the rota-
tion add 10 degrees per event, and then stop once the rotation reaches or
exceeds 135 degrees. The rotation is stopped, therefore, by removing the event
listener in a conditional within the listener function.

function onLoop(evt:Event):void {
 evt.target.rotation += 10;
 if (evt.target.rotation >= 135) {
 sp.removeEventListener(Event.ENTER_FRAME, onLoop);
 }
}

The removeEventListener() method requires arguments. You must specify the
coupling of event and listener function that must be removed, because you can
create multiple listeners for the same object that listen for the same event but
trigger different functions, or that trigger the same function upon the occur-
rence of different events.

314 | Chapter 14: How Do I Work with Events?

If you use any optional listener features, such as invoking the capture phase,
setting event priority, or using weak references (all discussed in later recipes),
you shouldn’t include these parameters in the removal process. For example,
the following hypothetical listener uses a weak reference, but the removal of
that same listener does not include those same parameter values.

sp.addEventListener(Event.ENTER_FRAME, onLoop, false, 0, true);
sp.removeEventListener(Event.ENTER_FRAME, onLoop);

Removing listeners is important for memory management and
performance, but it’s crucial when it comes to loading and
unloading external assets. Enter frame event listeners that ha-
ven’t been removed from a loaded SWF file, for example, pre-
vent that SWF file from being unloaded at runtime.

See Also
“14.7 Capturing Frame Events” on page 312 for capturing frame events and
“14.10 Capturing Stage Events” on page 317 through “14.12 Dispatching
Your Own Events” on page 323 for optional event listener features.

14.9 Capturing Keyboard Events

Problem
You want to respond to keyboard input from the user.

Solution
Listen for the KeyboardEvent.KEY_DOWN event and parse keyboard input from
the listener argument.

Discussion
Two example uses for Keyboard event listeners include attaching them to a
text field, in which case they respond only when the text field has focus, or
attaching them to the stage, which is ideal for navigation systems. The
following script uses a listener to demonstrate a few methods and properties
related to key events.

The first three lines of the onKeyPressed() function use the event charCode
property to look for text input. The charCode property is the numeric value of
a key found in the designated character set. (UTF-8 is the default character
set.) A key with a corresponding text character returns a charCode greater than

14.9 Capturing Keyboard Events | 315

zero for each character. For example, lowercase a and uppercase A have dif-
ferent charCode values.

Using the String method fromCharCode()translates this number into a string
value. Other keys, such as Tab, Backspace, arrow keys, and so forth, return a
charCode of zero, letting you filter them out, if desired.

The remainder of the onKeyPressed() function is a navigation example, ex-
plained after the script.

var sp:Sprite;
drawSquare();

stage.addEventListener(KeyboardEvent.KEY_DOWN, onKeyPressed);
function onKeyPressed(evt:KeyboardEvent):void {
 if (evt.charCode > 0) {
 trace(String.fromCharCode(evt.charCode), "= char code", evt.charCode);
 }

 var shiftMod:int = 1
 if (evt.shiftKey) { shiftMod = 10 };

 if (evt.keyCode == Keyboard.RIGHT) {
 sp.x += shiftMod;
 } else if (evt.keyCode == Keyboard.DOWN) {
 sp.y += shiftMod;
 }
}

function drawSquare():void {
 sp = new Sprite();
 var g:Graphics = sp.graphics;
 g.beginFill(0x000099, 1);
 g.drawRect(0, 0, 40, 40);
 g.endFill();
 sp.x = sp.y = 20;
 addChild(sp);
}

The next two lines use the event shiftKey property to see if the Shift key is
pressed. Starting with a value of 1, the value of shiftMod is changed to 10 only
if shiftKey is true (meaning the Shift key is pressed). As a result, the sprite is
moved 1 pixel at a time unless the Shift key is pressed, in which case the sprite
is moved 10 pixels at a time.

The last conditional block checks the value of keyCode. The keyCode property
returns a numeric value that corresponds to the value of a key on the keyboard,
not a specific character on that key. For example, the 1 on a keypad and the
1 on the main keyboard return different keyCode values, but lowercase a and
uppercase A return the same keyCode values.

316 | Chapter 14: How Do I Work with Events?

You can use the keyCode property for things like navigation by comparing its
value to constants of the KeyboardEvent class that stand for the arrow keys. In
this recipe, the x-coordinate of the sprite sp is changed when the right arrow
key is pressed, and the y-coordinate of sp is changed when the down arrow
key is pressed.

14.10 Capturing Stage Events

Problem
You want to determine when the user resizes the stage, when the mouse leaves
the stage, or when the user enters full-screen mode.

Solution
Listen for the Event.RESIZE, Event.MOUSE_LEAVE, and Event.FULLSCREEN events,
respectively.

Discussion
Using stage events can add a real professional touch to your work, and possibly
even solve a problem or two. The first event discussed in this recipe is for
determining when the user resizes the stage. This can occur when resizing a
player, or projector window, or resizing a browser window with a SWF file set
to percent size mode (instead of pixels or match movie size).

Before demonstrating the feature, you must set the stage scaleMode and
align properties to not scale, and to align to the upper-left corner of the win-
dow, when resized, as seen in the first two lines of the following script. Without
setting the scaleMode this way, the SWF file and all its contents scale to match
the window size, instead of just resizing the canvas on which non-scaled con-
tent resides. The blue circle in the following script enlarges or reduces based
on window size adjustments, rather than just repositioning itself to re-center
in a changing stage size.

Similarly, if you don’t set the align property to align to the top left of the
window, then the content in the SWF file appears to move around unpredict-
ably as the alignment is affected by varying window size. You can witness this
behavior, and that of scaling content, by commenting out one or both of the
first lines in this script, and setting the SWF file size in the publishing template
to percent.

14.10 Capturing Stage Events | 317

The remainder of the script does nothing more than position a sprite, with a
blue circle therein, in the center of the stage—both initially, and every time
the stage is resized.

stage.scaleMode = StageScaleMode.NO_SCALE;
stage.align = StageAlign.TOP_LEFT;
stage.addEventListener(Event.RESIZE, onStageResize);

function onStageResize (evt:Event):void {
 positionSprite();
}

var sp:Sprite = drawSprite();
addChild(sp);
positionSprite();

function positionSprite():void {
 sp.x = stage.stageWidth/2;
 sp.y = stage.stageHeight/2;
}

function drawSprite():Sprite {
 var mySprite = new Sprite();
 var g:Graphics = mySprite.graphics;
 g.beginFill(0x0000FF, 1);
 g.drawCircle(0, 0, 20);
 g.endFill();
 return mySprite;
}

The Stage class also has two other very handy events: Event.MOUSE_LEAVE and
Event.FULLSCREEN. The former can tell you when the user’s mouse has left the
bounds of the Flash Player stage. This feature lets you drop performance de-
mands when the SWF file no longer has user focus (by dropping the frame
rate, for example) or merely alerting the user that his mouse is still needed.

The latter event can trigger programmed behavior if the user switches to full-
screen mode. This could be used to reposition UI elements or, as in this recipe,
display text that reminds the user to return to normal mode using the Escape
key (a fact that is only automatically displayed by Flash Player for a brief
moment).

These features don’t work in the Flash interface’s embedded player, so test the
following scripts in a browser. To enable both features, change your HTML
publishing template (File→Publish Settings→HTML→Template) to “Flash
Only - Allow Full Screen.” Thereafter, you can test using the Flash shortcut,
File→Publish Preview→HTML.

To easily demonstrate the use of Event.MOUSE_LEAVE, the first part of the fol-
lowing script draws a gray background the same size of the stage, and a red

318 | Chapter 14: How Do I Work with Events?

box that is 100 × 100 pixels. When the mouse leaves the stage (as shown by
the gray rectangle), the red box will fade to 50 percent opaque. After the script,
you’ll learn how to respond to the mouse returning to the stage.

var backSprite:Sprite = drawSquare(0xDDDDDD, stage.stageWidth, ¬
 stage.stageHeight);
addChildAt(backSprite, 0);

var foreSprite:Sprite = drawSquare(0xFF0000, 100, 100);
addChild(foreSprite);

stage.addEventListener(Event.MOUSE_LEAVE, onLeave);
function onLeave(evt:Event):void {
 foreSprite.alpha = .5;

 stage.addEventListener(MouseEvent.MOUSE_MOVE, onEnter);
 function onEnter(evt:MouseEvent):void {
 foreSprite.alpha = 1;
 stage.removeEventListener(MouseEvent.MOUSE_MOVE, onEnter);
 }
}

function drawSquare(col:uint, w:Number, h:Number):Sprite {
 var tempSprite:Sprite = new Sprite();
 var g:Graphics = tempSprite.graphics;
 g.beginFill(col, 1);
 g.drawRect(0, 0, w, h);
 g.endFill();
 return tempSprite;
}

Flash Player doesn’t detect the mouse leaving the stage if the
mouse is down.

There is no direct opposite of the Event.MOUSE_LEAVE event. That is, using
ActionScript, you can’t automatically detect when the mouse returns to the
Flash stage. However, while the mouse is moving on the stage,
MouseEvent.MOUSE_MOVE events are triggered. Therefore, one way to determine
if the mouse has re-entered the stage is to set up an event listener that listens
for mouse movement.

For greatest efficiency, this recipe adds the event listener only when the mouse
leaves the stage, and then removes the listener when the mouse is again de-
tected on the stage. (Removing event listeners was discussed in “14.8 Improv-
ing Performance by Removing Event Listeners” on page 314.)

Finally, the Event.FULLSCREEN event is demonstrated in the following contin-
uation of the previous script. This passage picks up from the previous code

14.10 Capturing Stage Events | 319

block by using the foreground sprite as a button. Each time the button’s
clicked, the screen mode is changed, and a text message is displayed or re-
moved, accordingly.

The first listener just reacts to a mouse event, but it does include the
displayState property of the stage. This property can tell you if the screen is
in full-screen or normal mode. The second listener dispatches the Event.FULL
SCREEN event each time the stage enters or leaves full-screen mode. (Separate
events for entering and exiting full-screen mode don’t exist.)

Just before creating the second listener, a text field is initialized and positioned,
using the stage’s fullScreenWidth and fullScreenHeight properties. After the
listener detects each display state change, the resulting screen mode value is
queried. In full-screen mode, the text field is added to the display list, and the
field is later removed from the display list upon return to normal mode.

Object initializations are typically consolidated at the top of a
script, but the text field creation in this example has been
placed immediately before the listener for tutorial context.
This process simplifies the later option of combining the
scripts in this recipe into one cumulative file.

stage.scaleMode = StageScaleMode.NO_SCALE;
stage.align = StageAlign.TOP_LEFT;

foreSprite.addEventListener(MouseEvent.CLICK, onClick);
function onClick(evt:Event):void {
 if (stage.displayState == StageDisplayState.NORMAL) {
 stage.displayState = StageDisplayState.FULL_SCREEN;
 } else {
 stage.displayState = StageDisplayState.NORMAL;
 }
}

var noticeFld:TextField = addNotice("Press ESC to return to normal view");
stage.addEventListener(Event.FULLSCREEN, onFull);
function onFull(evt:Event):void {
 if (stage.displayState == StageDisplayState.FULL_SCREEN) {
 addChild(noticeFld);
 } else {
 removeChild(noticeFld);
 }
}

function addNotice(msg:String):TextField {
 var txtFrmt:TextFormat = new TextFormat();
 txtFrmt.size = 14;
 txtFrmt.bold = true;

320 | Chapter 14: How Do I Work with Events?

 var txtFld:TextField = new TextField();
 txtFld.autoSize = TextFieldAutoSize.LEFT;
 txtFld.text = msg;
 txtFld.setTextFormat(txtFrmt);

 txtFld.x = stage.fullScreenWidth/2 - txtFld.width/2;
 txtFld.y = stage.fullScreenHeight - txtFld.height;
 return txtFld;
}

The resize and full-screen events can be used together. If you
copy and paste all of the scripts in this recipe into one file, then
not only can you enter full-screen mode but the blue circle re-
centers itself into the middle of the screen each time you
change screen modes. During full-screen mode, the mouse
leave event isn’t dispatched.

See Also
“14.8 Improving Performance by Removing Event Listeners” on page 314 for
removing listeners.

14.11 Using a Timer to Dispatch Events

Problem
You want to use a recurring event that’s not linked to the frame rate, or a one-
time event that’s delayed.

Solution
Use a timer and specify the duration between event dispatches, and how many
events are dispatched.

Discussion
The first step in using timer events is to create and start a timer. ActionScript
3.0’s new Timer class essentially provides a consistent mechanism to replace
the setInterval() and setTimeout() methods, so you can use them a bit more
easily.

The Timer class accepts two arguments. The first is the duration between
events, in milliseconds. If you want an event to occur every 5 seconds, this
value would be 5000. This duration begins counting when the timer is started,

14.11 Using a Timer to Dispatch Events | 321

before the first event is fired, so you can also use it to delay the dispatching of
a single event. The second is an optional finite number of times you want the
timer event to fire.

The following sample uses the syntax for delaying an event (by dispatching it
only once), firing an event a finite number of times, and looping an event
infinitely by specifying no limit of occurrences, respectively. All samples use a
duration of 1000 milliseconds (one second).

new Timer(1000, 1);
new Timer(1000, 10);
new Timer(1000);

Here’s a demonstration of a timer in action. This example, expanded over the
remainder of this recipe, and the next recipe, is based on the metaphor of a
quiz timer. You may wish to monitor time throughout a quiz or test with reg-
ular reminders. If, for example, you wanted to time an hour-long quiz, you
might want reminders every 10 minutes to gauge your progress. (To make this
code easy to test, it uses an interval of 2 seconds, rather than 10 minutes.)

The first two lines of this block create and start a timer that fires every 2 seconds
for a total of six times. The next four lines add an event listener to the timer,
to trigger the onRemind() function every time a timer event is received. The
function traces “reminder” to the Output panel. (In a real-world example, this
might sound a chime, or move a progress bar.)

var timr:Timer = new Timer(2000, 6);
timr.start();

timr.addEventListener(TimerEvent.TIMER, onRemind, false, 0, true);
function onRemind(evt:TimerEvent):void {
 trace("reminder");
}

The Timer class has another handy event called TimeEvent.TIMER_COMPLETE that
notifies you when the timer has dispatched an event the designated number
of times. (When an infinite timer is desired, this event never fires.) This ability’s
very useful for cleaning up after your timer, as the following section of code
demonstrates.

The first line of the listener function stops the timer, the second two lines
remove both listeners from this recipe, and the last line traces that the result
as a simple visual cue of the function’s success.

timr.addEventListener(TimerEvent.TIMER_COMPLETE, onRemindFinal);
function onRemindFinal(evt:TimerEvent):void {
 evt.target.stop();
 evt.target.removeEventListener(TimerEvent.TIMER, onRemind);
 evt.target.removeEventListener(TimerEvent.TIMER_COMPLETE, onRemindFinal);

322 | Chapter 14: How Do I Work with Events?

 trace("timer complete, listeners removed");
}

Removing event listeners for timers is a very important con-
cept to understand because, like event listeners, timers can
prevent a SWF file from being unloaded. As an extra rub,
timers can’t be unloaded unless they’re stopped first.

See Also
“14.8 Improving Performance by Removing Event Listeners” on page 314 for
removing event listeners and “14.12 Dispatching Your Own Events” on page
323 for using custom events.

14.12 Dispatching Your Own Events

Problem
You want to create and dispatch a custom event, rather than rely on
pre-existing ActionScript 3.0 events.

Solution
Use the dispatchEvent() method to send a custom event and use that same
event as the first argument of an event listener.

Discussion
You’ll probably find yourself, at one point or another, wishing that an
ActionScript class had one or two additional events to fill a void in your project.
Moreover, you’ll probably want to add events to custom classes that you write
yourself.

Any class (including your own) that extends the ActionScript 3.0
EventDispatcher class can send an event. This includes many display objects
(such as the main timeline), meaning that you can also dispatch events from
frame scripts.

This example builds on the previous recipe to dispatch an event when a timer’s
halfway through its cycle. If you imagine the code required to check for the
halfway point of a timer cycle, you might assume an additional mechanism,
such as an enter frame event would be required. A listener with a conditional
might continuously compare the timer’s progress with your desired value, to

14.12 Dispatching Your Own Events | 323

determine if the halfway point has been reached. This way works, of course,
but the ability to dispatch events makes this process a bit easier.

One of the ideas behind event dispatching is to take advantage of something
that has already occurred, and use that as an occasion to inform another part
of your application that an event has occurred. For example, an event might
be dispatched after a load process completes or a sound finishes playing.

In this case, you can take advantage of the fact that the timer is firing at regular
intervals and, when a condition has been met, dispatch your own event. This
process removes the unneeded overhead of an enter frame event, for example,
that might otherwise be required to check to see if the condition has been
satisfied. All that remains is to set up a listener to react to your custom event.

If you want to go all the way and make your event follow the same practices
as ActionScript 3.0 classes, you can create your own event class. This class
could define a public constant for each event, and let you specify your event
the same way you would any other—MyLoadEvent.DONE, as a hypothetical ex-
ample. However, in many cases this is overkill. Since these constants are just
consistent, reliable stand-ins for strings, primarily used for more structured
data type checking, you can use a string directly, if preferred.

In the following example, (the bold lines of which can be added to the previous
recipe) a conditional uses the Timer properties repeatCount and currentCount
to see if at least half the timer events have been dispatched. Upon that occur-
rence, the custom event halfway is dispatched and trapped by its own listener.

function onRemind(evt:TimerEvent):void {
 trace("reminder");
 if (evt.target.currentCount >= evt.target.repeatCount/2) {
 dispatchEvent(new Event("halfway"));
 }
}
addEventListener("halfway", onHalfway, false, 0, true);
function onHalfway(evt:Event):void {
 trace("halfway point reached");
}

As seen in the added conditional, creating the event is as straightforward as
instantiating any object, using the new keyword. The process uses the Event
class to form the custom event, and the dispatchEvent() method to send it on
its way.

If you want your event to bubble up through the display list,
to be available to other display objects, set the optional
bubbles property to true when creating the new event:

dispatchEvent(new Event("halfway", true));

324 | Chapter 14: How Do I Work with Events?

See Also
“14.11 Using a Timer to Dispatch Events” on page 321 for context with using
timer events.

14.13 Manually Calling Event Listener Functions

Problem
You want to explicitly call a function used by an event listener without gen-
erating argument errors.

Solution
Pass a custom event or null reference to the function when called.

Discussion
The ActionScript 3.0 event model requires that each listener function contain
a parameter for receiving event data. This system’s very useful for parsing in-
formation about the event but can also generate errors when calling the func-
tion manually (because no event is being passed to the listener function).

Consider the following example. A listener that triggers the function
onClick() is attached to the stage. When trying to call the function manually,
an error is thrown.

stage.addEventListener(MouseEvent.CLICK, onClick);
function onClick(evt:MouseEvent):void {
 //function contents
}

onClick();
//results in error

To prevent the error, you can create a custom event of the type needed by the
listener.

onClick(new MouseEvent(MouseEvent.CLICK));

Alternately, you can pass null with the function call.

onClick(null);

However, this may create other errors depending on how your function is
structured. For example, if your listener function parses event-related infor-
mation from its parameter, you may receive a null-object error.

14.13 Manually Calling Event Listener Functions | 325

The following example demonstrates that generating a stand-in event is han-
dled properly both when the function’s purpose is unrelated to the event (as
seen in the first line of the function, tracing a string) and when event data is
used (as seen in the second line, tracing the target of the event). The result of
the latter trace is null because the event is artificial and, therefore, there’s no
event target, but it doesn’t generate an error.

stage.addEventListener(MouseEvent.CLICK, onClick);
function onClick(evt:MouseEvent):void {
 trace("onClick executed");
 trace(evt.target);
}

onClick(new MouseEvent(MouseEvent.CLICK));

14.14 Capturing an Event Before It Reaches Its Target

Problem
You want to process an event before it gets to its target using the capture phase.

Solution
Use the optional useCapture parameter of the addEventListener() method.

Discussion
The addEventListener() method has three optional parameters. The first is
useCapture, a Boolean, that determines the phase of the event. The first line of
the following syntax is an example event listener with the two mandatory ar-
guments, while the second shows the useCapture parameter with its default
value of false.

sp.addEventListener(MouseEvent.CLICK, onClick);
sp.addEventListener(MouseEvent.CLICK, onClick, false);

This default value processes the event during the target/bubbling phases, and
has been used throughout this chapter and discussed in “14.5 Using the target
and currentTarget Event Properties” on page 310. Setting this value to true
switches the event processing stage to the capture phase, meaning the event
will move through the display list on its first leg of the journey but not reach
the target.

Most programmers rarely use this phase. The capture phase may sometimes
be used to stop an event from continuing to propagate through the display list.

326 | Chapter 14: How Do I Work with Events?

Another use, however, is to prevent a display object container from reacting
to an event, but let the container’s children respond to that same event.

In “14.2 Capturing Mouse Events” on page 305, you learned how to act only
on a target of an event. However, this process required a separate listener for
each target. In “14.4 Using Event Bubbling” on page 308, you learned how to
apply a listener to a display object container so that all of the container’s chil-
dren could automatically react to the event. In this recipe, you also attach a
listener to a container, but use the capture phase so only the children can react.

A scenario that discusses all of these approaches might be dragging two chil-
dren of a display object container. Applying listeners directly to the children
means only the children are draggable, but you need two listeners. Applying
a listener to the container requires only one listener but, by default, the con-
tainer’s also draggable. Using the capture phase in the latter instance, however,
means that the children are draggable, but the container remains fixed.

The mouse down listener in this example has been changed to use the capture
phase (note the third argument, true).

var contnr:Sprite = new Sprite();
drawRoundedRectangle(contnr, 0x000099, 130, 130);
contnr.x = contnr.y = 100;
addChild(contnr);

var child0:Sprite = new Sprite();
drawRoundedRectangle(child0, 0x000033, 40, 40);
child0.x = child0.y = 20;
contnr.addChild(child0);

var child1:Sprite = new Sprite();
drawRoundedRectangle(child1, 0x330000, 40, 40);
child1.x = child1.y = 70;
contnr.addChild(child1);

contnr.addEventListener(MouseEvent.MOUSE_DOWN, onDown, true);
contnr.addEventListener(MouseEvent.MOUSE_UP, onUp);

function onDown(evt:MouseEvent):void {
 evt.target.startDrag();
}
function onUp(evt:MouseEvent):void {
 stopDrag();
}

function drawRoundedRectangle(obj:Object, col:uint, w:Number, h:Number):void {
 var g:Graphics = obj.graphics;
 g.lineStyle(1, col);
 g.beginFill(col, .5);
 g.drawRoundRect(0, 0, w, h, 20);

14.14 Capturing an Event Before It Reaches Its Target | 327

 g.endFill();
}

See Also
“14.8 Improving Performance by Removing Event Listeners” on page 314 for
information about removing event listeners, and “14.14 Capturing an Event
Before It Reaches Its Target” on page 326 regarding the capture phase.

14.15 Setting the Execution Order of Events

Problem
You need to use the same event to trigger multiple listener functions, but want
to set or change the order in which those functions are executed.

Solution
Use the optional priority parameter of the addEventListener() method.

Discussion
The second of three optional parameters of the addEventListener() method
sets the execution order of multiple occurrences of the same event. For exam-
ple, three listeners that use mouse up, down, and click events, respectively,
aren’t affected by this setting. However, three listeners that all use mouse up
events are ordered according to the use of the priority parameter.

The following shows this parameter with its default value of 0. Because the
order of parameters is fixed, using the second optional parameter requires the
use of the first. However, you can simply pass in the default values of any
parameters you don’t wish to change.

sp.addEventListener(MouseEvent.CLICK, onClick, false, 0);

This recipe’s example traces a message to the Output panel when the mouse
button is clicked over the stage. The first unique event dispatched clears the
variable used to contain the message, and the last unique event dispatched
traces the assembled message. In between, however, are three occurrences of
the same event. They consecutively assemble a verb, noun, and adjective based
on order of execution because no priority is specified. The result is the ques-
tion, “is Claire beautiful” (punctuation omitted intentionally).

328 | Chapter 14: How Do I Work with Events?

However, if you comment out the original trio of mouse up listeners, and
comment in their twins, then you see that the optional priority parameter has
been used. This parameter accepts a non-negative integer, and executes the
same events based on the highest priority number first. (Any listener without
a priority specified uses the default priority value of 0.) This changes the traced
output, executing the functions in the order of noun, verb, adjective. The result
is the tracing of the true statement, “Claire is beautiful,” to the Output panel.

var msg:String = "";

stage.addEventListener(MouseEvent.MOUSE_DOWN, onClear);

stage.addEventListener(MouseEvent.MOUSE_UP, onVerb);
stage.addEventListener(MouseEvent.MOUSE_UP, onNoun);
stage.addEventListener(MouseEvent.MOUSE_UP, onAdjective);

/*
stage.addEventListener(MouseEvent.MOUSE_UP, onVerb, false, 1);
stage.addEventListener(MouseEvent.MOUSE_UP, onNoun, false, 2);
stage.addEventListener(MouseEvent.MOUSE_UP, onAdjective, false, 0);
*/

stage.addEventListener(MouseEvent.CLICK, onShowMsg);

function onClear(evt:Event):void {
 msg = "";
}

function onNoun(evt:Event):void {
 msg += "Claire ";
}

function onVerb(evt:Event):void {
 msg += "is ";
}

function onAdjective(evt:Event):void {
 msg += "beautiful ";
}

function onShowMsg(evt:Event):void {
 trace(msg);
}

You can use variables can be used for priority values, so that
you can change the execution order of listener functions on
the fly.

14.15 Setting the Execution Order of Events | 329

14.16 Using Weak Listeners

Problem
In addition to good memory management practices, you want to increase the
likelihood that an unwanted object will be removed from memory.

Solution
Use the optional useWeakReference parameter of the addEventListener()
method.

Discussion
The third and last optional parameter of the addEventListener() method sub-
stitutes a weak reference to the listener for the strong, persistent connection
used by default. Weak references are support tools to help with memory man-
agement. Flash Player uses a common memory management method called
garbage collection to clear unused elements from memory. It marks any unused
elements for collection, and then, during more efficient periods in your appli-
cation, sweeps through and clears everything up.

If you’re not careful about removing unwanted objects from memory, you can
run into performance and/or memory problems. A very important part of this
process is removing unused event listeners, as discussed in “14.8 Improving
Performance by Removing Event Listeners” on page 314. However, using weak
references for listeners lets Flash help a bit when determining which objects
are set for removal from memory. The basic idea of weak listeners is: if the
object to which a reference was being maintained no longer exists, don’t let
the reference prevent garbage collection.

Think of the relationship between milk and its surrounding carton. If there’s
milk in the carton, the carton shouldn’t be thrown away. However, when the
milk’s gone, you don’t want to keep the carton in your refrigerator. That out-
come is the effect with a normal (default) event listener. A reference remains,
and the empty carton isn’t available for collection.

Metaphorically, the milk’s a button, the carton’s an event listener, and the
refrigerator’s the total available memory. Proper memory management re-
quires that you throw the milk carton in the trash when the milk’s gone, and
wait for the garbage collectors to pick it up and take it away on their next visit.
However, if you forget to throw the carton away, a weak reference may help.
There’s no longer any milk in the carton (the button has been deleted). There-

330 | Chapter 14: How Do I Work with Events?

fore, since there’s no longer a link between carton and milk (button and lis-
tener), the carton can be discarded.

To enable weak listeners, all you need to do is set the last optional parameter
of the addEventListener() method to true. You can do this without being
forced to use either of the first two parameters simply by reiterating their de-
fault values. The following line of script enables a weak reference for a display
object called sp, and a listener function called onClick(). Neither the capture
phase nor priority features are being used.

sp.addEventListener(MouseEvent.CLICK, onClick, false, 0, true);

Using weak listeners is not a substitute for explicitly removing
listeners!

See Also
“14.8 Improving Performance by Removing Event Listeners” on page 314 for
information about removing event listeners.

14.16 Using Weak Listeners | 331

CHAPTER 15

How Do I Work with Text?

15.0 Introduction
This chapter will cover the basics of creating, formatting, and interacting with
text fields and the text therein. Focusing on the mechanics of using text fields,
rather than on string manipulations, this chapter will bring you up to speed
with the essentials you need to add text to any project.

Flash uses three different kinds of text fields: static, dynamic, and input. The
latter two types can be created and affected by ActionScript; they’re the focus
of this chapter. Whenever you wish to exert ActionScript control over text,
you turn to a dynamic text field. However, if you require user input, including
anything from entering a user name and password to completing an essay, then
you need to graduate to an input text field—essentially, dynamic fields with
added user input features.

You’ll see in the first recipe of this chapter that you can very easily create a text
field, and setting it to behave as a dynamic or input field is simply a matter of
using a single property. This capability also means that you can switch between
these two types, if the need arises.

The third text type, static, is accessible via ActionScript to a very limited degree,
but only the Flash interface can create static text fields. You can retrieve text
from a static text field, using the StaticText or TextSnapshot classes, but you
must walk through the display list to find the desired field. Additionally, the
Flash interface may break your text into multiple fields after compilation, as
in the case with vertical text, so the ActionScript queries to static text elements
are of marginal use.

333

15.1 Creating a Text Field

Problem
You want to create a text field using ActionScript, rather than the Text tool in
the Flash interface.

Solution
You can create text fields in the same manner as other display objects, using
the new keyword and appropriate class, TextField.

Discussion
Creating a text field is consistent with creating any other display object, but
setting the type property of the field determines its functionality. Regardless
of whether you want a dynamic or input text field, new TextField() is still used
to create the object, and the field must be added to the display list to be visible.
The following example simply creates two different text fields to demonstrate
the use of the type property.

var score:TextField = new TextField();
score.type = TextFieldType.DYNAMIC;
addChild(score);

var userName:TextField = new TextField();
userName.type = TextFieldType.INPUT;
addChild(userName);

New fields will be added to the display list using all their default properties,
including a somewhat awkward 100 × 100-pixel size, so it’s necessary to style
the field after creation. In this case, style is a loosely used term for defining
basic appearance and functionality.

15.2 Styling a Text Field

Problem
You want to establish a look and basic feature set for a text field.

Solution
Use a variety of properties of the TextField class that apply to the field, rather
than the text therein. Formatting of the text itself is discussed in a later recipe.

334 | Chapter 15: How Do I Work with Text?

Discussion
The following script creates and styles a basic dynamic text field. The first
block of code creates the text field.

var txtFld:TextField = new TextField();
txtFld.type = TextFieldType.DYNAMIC;
addChild(txtFld);

txtFld.width = 300;
txtFld.height = 20;

txtFld.border = true;
txtFld.borderColor = 0x666666;
txtFld.background = true;
txtFld.backgroundColor = 0xCCCCCC;

txtFld.multiline = true;
txtFld.wordWrap = true;
txtFld.selectable = false;

The second block sets the width and height of the text field. This is important
because, without this, adding a text field to other display objects conforms
those objects to a minimum of 100 × 100 pixels, if the dimensions or size
characteristics aren’t changed. This process can be confusing at first, especially
in situations where the text must be small, such as in the case of a label for a
button.

The third block sets the graphical appearance of the field, manipulating the
border and background. Both characteristics are optional and, if turned on,
can be colored. This example uses a charcoal border and light gray
background.

The last block defines three basic behavioral features of the field, letting any
text the field may contain wrap to multiple lines and not be selectable. The
latter option’s useful when you want to prevent text selection highlighting
from marring a design. If the ability to select text (to copy to the clipboard, for
example) isn’t part of your product feature set, setting the selectable property
to false is a good way to override this default behavior.

Finally, one more feature can be helpful in a big-picture way. You can, at the
field level, set the color of all text in the field. Setting text color would ordinarily
be a formatting task but, if you don’t need character- or word-specific color
formatting, you can set text color this way:

txtFld.textColor = 0x660000;

15.2 Styling a Text Field | 335

See Also
“15.1 Creating a Text Field” on page 334 for creating a text field.

15.3 Creating a Password Field

Problem
You want to hide user input to avoid password entry from being viewable to
the casual onlooker.

Solution
Use the displayAsPassword property to replace input characters with asterisks.

Discussion
To display asterisks instead of user input characters, you just need to use an
input field and set the displayAsPassword property to true.

var pssWrd:TextField = new TextField();
pssWrd.type = TextFieldType.INPUT;
addChild(pssWrd);

pssWrd.displayAsPassword = true;

Additional text field properties, however, might also prove helpful for pass-
word input. The maxChars property limits the number of characters the user
can type in the field, and the restrict property limits which characters can be
entered. The latter can use limited regular expression patterns to specify char-
acters, including simple ranges like lowercase a through z (which converts all
uppercase letters to lowercase) and numbers 0 through 9, as seen in the next
code block.

It also helps to clearly define the size and visibility of the field so the user can
easily find it. Here, width and height are specified, as are the use of a border
and background.

pssWrd.maxChars = 15;
pssWrd.restrict = "a-z0-9";

pssWrd.width = 100;
pssWrd.height = 14;
pssWrd.border = true;
pssWrd.background = true;

336 | Chapter 15: How Do I Work with Text?

Next, let’s create a minimal setup for checking a password. The first two blocks
of the following script segment create a button to submit the password. When
the button’s clicked, the listener at the end of the script checks the text of the
field to see if the text entered by the user matches “actionscript3”. If so, then
it traces “success” to the Output panel. If not, then the script empties the field
for a subsequent user entry.

var sp:Sprite = new Sprite();
drawSquare(sp, 0x000099);
sp.x = 110;
sp.buttonMode = true;
addChild(sp);

function drawSquare(obj:Object, col:uint):void {
 var g:Graphics = obj.graphics;
 g.beginFill(col, 1);
 g.drawRect(0, 0, 14, 14);
 g.endFill();
}

sp.addEventListener(MouseEvent.CLICK, onClick, false, 0, true);
function onClick(evt:MouseEvent):void {
 if (pssWrd.text == "actionscript3") {
 trace("success");
 } else {
 pssWrd.text = "";
 }
}

15.4 Focusing a Text Field

Problem
You want to programmatically place the text insert cursor inside a text field.

Solution
Use the focus property of the stage to give focus to a specified field.

Discussion
When clicking on an editable text field, the text insert cursor is typically placed
into the field, letting the user begin typing. This process is referred to as giving
focus to the field. In some instances, however, you may need to accomplish
this goal programmatically.

15.4 Focusing a Text Field | 337

Consider, for example, the previous recipe, in which a user types a password
into an input field. If the password is incorrect, then the field is cleared, but
the user must still click in the field to type. The following code block adds one
new line (shown in bold) to the last function of the previous recipe, automat-
ically preparing the field for text entry. It does this step by setting the focus
property of the stage to the text field reference—in this case, pssWrd.

function onClick(evt:MouseEvent):void {
 if (pssWrd.text == "actionscript3") {
 trace("success");
 } else {
 pssWrd.text = "";
 pssWrd.stage.focus = pssWrd;
 }
}

The syntax in this new line demonstrates access to the stage through a display
object. This line could have been written in a slightly simpler form:

stage.focus = pssWrd;

However, this would work only because the optional this reference to the
main timeline, though omitted, is implied. The stage is, in reality, being ac-
cessed through the main timeline, a movie clip display object. Using the syntax
featured in the script segment helps remind you that ActionScript 3.0 has no
global reference to the stage. You can also remember this principle by always
using the this reference.

this.stage.focus = pssWrd;

See Also
“15.3 Creating a Password Field” on page 336 for creating a password field
and “13.11 Referencing the Stage Through a Display Object” on page 300 for
referencing the stage through a display object.

15.5 Populating a Text Field

Problem
You want to add text to a text field.

338 | Chapter 15: How Do I Work with Text?

Solution
Use the text property of the TextField class to replace text, or add text to an
empty field. Use the appendText() method to add text to the end of an already
populated field.

Discussion
While using the text property of a text field isn’t new for ActionScript 3.0, and
was demonstrated in “15.3 Creating a Password Field” on page 336, the new
appendText() method of the TextField class warrants attention. Briefly, this
method achieves the same goal as txtFld.text += "string value", but much
faster. That is, rather than manually appending text to a field using the com-
pound operator +=, use the appendText() method to accomplish the same task.

To easily demonstrate this process, start with the field setup from “15.2 Styling
a Text Field” on page 334, and then add the following two lines to your script:

txtFld.text = "I Am";
txtFld.appendText(" the Fly");

The result is the string “I Am the Fly” because " the Fly” was appended to the
starting text without overwriting it.

See Also
“15.2 Styling a Text Field” on page 334 for creating and styling a text field.

15.6 Automatically Sizing a Text Field

Problem
You want a text field to expand to accommodate dynamic input.

Solution
Use the autoSize property of the TextField class to resize a text field based on
input and alignment choice.

Discussion
This recipe continues the previous code example, which has been collected
here again for convenience. The first portion of the following script initializes
a field and populates it with a single line of text, “I Am the Fly”.

15.6 Automatically Sizing a Text Field | 339

var txtFld:TextField = new TextField();
txtFld.type = TextFieldType.DYNAMIC;
addChild(txtFld);

txtFld.width = 300;
txtFld.height = 20;

txtFld.border = true;
txtFld.borderColor = 0x666666;
txtFld.background = true;
txtFld.backgroundColor = 0xCCCCCC;

txtFld.multiline = true;
txtFld.wordWrap = true;
txtFld.selectable = false;

txtFld.text = "I Am";
txtFld.appendText(" the Fly");

txtFld.autoSize = TextFieldAutoSize.LEFT;
txtFld.appendText("\nin the ointment");

The two new bold lines are responsible for adding a second line to the field,
and automatically resizing the field to accommodate. The text field’s auto
Size property is set to automatically resize the field, using its left edge as an
anchor for left-justified text. The new line is added using the appendText()
method, but preceding the string with a new line character, \n.

To see the property in action, test the script with and without commenting the
autoSize instruction. You find that, despite enabling the multiline and word
Wrap properties, the field shows only one line of text without the effect of the
autoSize property.

This outcome occurs because the height of the field is fixed at 20 pixels, so,
even with the text spanning two lines, the second line isn’t visible. The auto
Size property automatically resizes the field in one or more directions, based
on the setting you use.

The constants of the TextFieldAutoSize class are LEFT, RIGHT, and CEN-
TER. If you choose LEFT as the autoSize anchor, then the field expands or
contracts on the right side, as well as the bottom side, in the case of any new
lines or carriage returns. RIGHT has the opposite effect, resizing to the left and
down, and CENTER equally distributes field resizing to the left and right, as well
as along the bottom edge if new lines are added.

In all cases, if the wordWrap property is turned on, the specified width (or default
width, if nothing is specified) of the field is preserved, and only the bottom
edge of the field is resized. You can see this in action by commenting in and
out the wordWrap instruction during testing.

340 | Chapter 15: How Do I Work with Text?

15.7 Scrolling a Text Field

Problem
You want to programmatically scroll text within a fixed field height.

Solution
Use the scrollV and scrollH properties of the TextField class.

Discussion
The first part of the following script is similar to several of the previous recipes
in this chapter. It creates a dynamic text field, configures basic appearance and
functionality attributes, and populates the field.

In this case, two subtle changes warrant comment. First, the height is fixed at
150 pixels, instead of 20, to show multiple lines. Second, text is added to the
field with a loop, using a newline character, which ensures that multiple lines
exist for scrolling. However, the bolded code, explained following the script,
controls the scrolling.

var txtFld:TextField = new TextField();
txtFld.type = TextFieldType.DYNAMIC;
addChild(txtFld);

txtFld.width = 150;
txtFld.height = 150;

txtFld.border = true;
txtFld.background = true;

txtFld.multiline = true;
txtFld.wordWrap = true;
txtFld.selectable = false;

txtFld.text = "I Am the Fly";
for (var i:int = 1; i <= 20; i++) {
 txtFld.appendText("\n" + i + " I am the fly in the ointment");
}

this.addEventListener(Event.ENTER_FRAME, onScroll, false, 0, true);
function onScroll(evt:Event):void {
 if (mouseY < txtFld.height/2) {
 txtFld.scrollV--;
 } else {
 txtFld.scrollV++;
 }
}

15.7 Scrolling a Text Field | 341

In this simple example, an enter frame event listener monitors the mouse, and
scrolls the text based on the position of the mouse relative to the field. If the
mouse is above the horizontal center of the field, the text scrolls up until the
top of the field is reached. If the mouse is below the field center, the text scrolls
down until the bottom of the field is reached.

If you would rather use a scrollbar to manage text scrolling, you can easily
create a dynamic instance of the UIScrollBar component. Making sure you
have a copy of the component in your library, you can replace the manual
scrolling code (in bold) from the previous example with the following:

import fl.controls.UIScrollBar;

var uiScroll:UIScrollBar = new UIScrollBar();
addChild(uiScroll);
uiScroll.scrollTarget = txtFld;
uiScroll.x = txtFld.x + txtFld.width;
uiScroll.y = txtFld.y;
uiScroll.height = txtFld.height;

This first line of this new code block imports the necessary class because com-
ponent classes are not automatically accessible during compilation. The next
two lines create a scroll bar instance and add it to the display list. The next line
associates the scroll bar with the desired field. Finally, the remaining lines
position the scroll bar at the upper-right corner of the text field, and set the
scroll bar’s height to match that of the field.

You can also scroll a text field horizontally. This ability’s useful when you want
to enable long lines without line wrapping—for a navigation system, perhaps.
In the case of manual scrolling, the principles behind the process are similar,
but the scrollH property is measured in pixels, rather than lines (as is the case
with scrollV). Proportional typefaces prevent you from relying on character
width for consistent scrolling.

When using the component, you need to set the direction property of the
UIScrollBar instance to a horizontal equivalent, as when using the ScrollBar
Direction.HORIZONTAL constant in the revised code that follows. (Note that you
must also import that class if you plan to use the constant.) You also need to
reposition the scroll bar (to the bottom of the field in this example.

import fl.controls.UIScrollBar;
import fl.controls.ScrollBarDirection;

var uiScroll:UIScrollBar = new UIScrollBar();
addChild(uiScroll);
uiScroll.scrollTarget = txtFld;
uiScroll.direction = ScrollBarDirection.HORIZONTAL;
uiScroll.x = txtFld.x;
uiScroll.y = txtFld.y + txtFld.height;
uiScroll.width = txtFld.width;

342 | Chapter 15: How Do I Work with Text?

To see this in action, you can modify the previous script by replacing the scroll
bar code as indicated; changing the width and height of the field to narrow and
tall (100 and 270, respectively, should work nicely); and setting the field’s
wordWrap property to false.

See Also
“15.2 Styling a Text Field” on page 334 for defining the display attributes and
functionality of a text field, and “15.5 Populating a Text Field” on page 338
for populating a text field.

15.8 Using Embedded Fonts

Problem
You want to use a custom font, but you want to make sure the font is viewable
even on computers that don’t have that font installed.

Solution
Use the embedFonts property to support the use of an embedded font when
formatting text.

Discussion
Using system fonts keeps your files small and efficient, but typically restricts
you to using only fonts commonly found in most operating systems. To use a
custom typeface reliably, you must use an embedded font so the required font
outlines are included in your SWF file.

Furthermore, embedded fonts are required for certain graphical effects, such
as rotation and alpha transparency, when used on text fields. Without em-
bedded fonts, text can disappear from fields when these and similar transfor-
mations are applied.

To use embedded fonts, you need only one parameter, embedFonts. The fol-
lowing example code uses embedded fonts in a hypothetical field called
txtFld. The next few recipes cover specifying the use of a particular font.

txtFld.embedFonts = true;

15.8 Using Embedded Fonts | 343

In the Flash interface, you can’t embed fonts using only
ActionScript. See Chapter 7, for an overview of embedding
fonts using the Library panel.

If you enable support for this feature, but fail to specify an
embedded font with the correct linkage class, then the text
doesn’t appear. If this situation occurs, you may be able to
quickly test to see if the embedded font is the problem by
commenting out the embedFonts line of your script and switch-
ing to using a local system font. If the text appears, you can
then investigate the embedding process and correct the
problem.

See Also
“15.9 Formatting Text Using TextFormat” on page 344 through “15.11 For-
matting Text Using CSS” on page 348 for specifying font use.

15.9 Formatting Text Using TextFormat

Problem
You want to create a text-formatting object that can be applied to text fields.

Solution
Create an instance of the TextFormat class.

Discussion
Arguably the simplest way to use ActionScript to format text is to use
TextFormat instances. Like Cascading Style Sheets (CSS), you can apply them
to many fields, and edits to the instance are reflected across all its uses. How-
ever, TextFormat instances are somewhat easier to create.

The first step in formatting text this way is to create a TextFormat instance. It
must exist before attempting to apply it to a text field. The first block of this
recipe’s code creates the instance, and sets the font and color of the text. It
then turns on bold, italic, and underline, but as separate Boolean properties
to make it easier to mix and match these effects.

344 | Chapter 15: How Do I Work with Text?

The second block controls common type attributes for size, leading, and letter
spacing. All values are in pixels, but the leading value only applies to the space
between lines of text.

The last block sets the left and right margins as well as the indent of the first
line in every paragraph, both in pixels.

var txtFrmt:TextFormat = new TextFormat();
txtFrmt.font = "Arial";
txtFrmt.color = 0x990000;
txtFrmt.bold = true;
txtFrmt.italic = true;
txtFrmt.underline = true;

txtFrmt.size = 14;
txtFrmt.leading = 4;
txtFrmt.letterSpacing = 1;

txtFrmt.leftMargin = txtFrmt.rightMargin = 3;
txtFrmt.indent = 9;

The next step is to apply the TextFormat instance to your text field. The fol-
lowing code block instantiates and populates a text field, and shows the first
way to use the formatter you just created.

var txtFld:TextField = new TextField();
txtFld.type = TextFieldType.DYNAMIC;
addChild(txtFld);

txtFld.width = 200;
txtFld.height = 200;

txtFld.border = true;
txtFld.background = true;

txtFld.multiline = true;
txtFld.wordWrap = true
txtFld.selectable = false;

txtFld.defaultTextFormat = txtFrmt;
for (var i:int = 1; i <= 20; i++) {
 txtFld.appendText("All work and no play makes Jack a dull boy.");
}

The for loop in the last three lines populates the field with a single paragraph.
Immediately before any text is added to the field, however, the defaultText
Format property of the field is set to the TextFormat instance you created. By
using this approach, new text added to the field inherits the formatting. This
characteristic is most helpful for formatting an empty field for user input.

The next approach is to make a one-time change to text that already exists.
Instead of using the defaultTextFormat property before the text’s added to the

15.9 Formatting Text Using TextFormat | 345

field, you can use the setTextFormat() method after the field is populated. To
see this change in action, comment out the defaultTextFormat line in your
script to prevent any initial formatting, and then add the following line after
the loop.

txtFld.setTextFormat(txtFrmt);

The visual appearance doesn’t change because you’re using the same format-
ting code, but you can use this approach any time, instead of only before adding
content to the field.

When formatting existing text, you can also specify a range of characters rather
than changing all text in the field. To do this, you must add two indices to the
setTextFormat() method, as seen here:

txtFld.setTextFormat(txtFrmt, 43, 85);

The first is the index of the first character to be formatted, and the last is the
index of the character after the text you wish to format. That is, the text for-
matted is firstIndex to lastIndex-1. (This method is a fairly standard way to
identify character ranges, and offers the benefit of being able to specify the
length of the string as the last index.)

Using TextFormat instances doesn’t work on fields that use a
style sheet. For more information, see “15.11 Formatting Text
Using CSS” on page 348.

15.10 Formatting Text Using HTML

Problem
You want to use HTML to format a text field.

Solution
Use the limited HTML rendering capabilities of text fields.

Discussion
Flash supports a limited number of HTML tags that you can use to add for-
matting and functionality to text fields. Table 15-1 lists the tags available in
ActionScript, as well as relevant notes, if applicable.

346 | Chapter 15: How Do I Work with Text?

Table 15-1. HTML tags supported by Flash Player

HTML tag Notes

 Supported attributes include: color, face, size.

 Bold version of font must exist to work.

<i> Italic version of font must exist to work.

<u>

 Supported attributes include: class.

<p> multiline must be enabled to work. Supported attributes include: align, class.

 multiline must be enabled to work.

 All lists are bulleted. Ordered and unordered qualifiers are ignored.

 Supported attributes include: src, width, height, align, hspace, vspace, id. Can

embed external images (JPG, GIF, PNG) and SWF files with automatic text flow around source.

<a> Supported attributes include: href, event, target.

<textformat> Used to apply limited subset of TextFormat properties to enclosed text. Supported attributes

include: blockindent, indent, leading, leftmargin, rightmargin, tabstops.

To demonstrate that HTML can also be combined with other features for
added effect, a simple example will be constructed over the next few recipes.
To begin, this script shows the use of paragraph, bold, italic, and font tags to
style a line of text. Related upcoming recipes will also make use of span, list,
anchor, and break tags.

var txtFld:TextField = new TextField();
txtFld.autoSize = TextFieldAutoSize.LEFT;
txtFld.multiline = true;
txtFld.selectable = false;
addChild(txtFld);

txtFld.htmlText = "<p>Interactive
 <i>Text</i> Demonstration</p>";

Beyond the somewhat restrictive subset of supported tags, working with
HTML is quite straightforward. In the ActionScript 3.0 implementation of
HTML, the only point worthy of note is that you no longer need to first enable
HTML support. Simply adding text with the htmlText property (instead of the
text property) automatically makes HTML features available.

See Also
“15.11 Formatting Text Using CSS” on page 348 through “15.13 Triggering
ActionScript from HTML Links” on page 351 for additional use of HTML.

15.10 Formatting Text Using HTML | 347

15.11 Formatting Text Using CSS

Problem
You want to use Cascading Style Sheets to format text.

Solution
Use the StyleSheet class and corresponding styleSheet property of the Text
Field class.

Discussion
As with HTML, ActionScript supports a limited set of CSS properties. You can
see these properties in Table 15-2. Note that, for consistency, the correspond-
ing ActionScript property names don’t have hyphens.

Table 15-2. CSS tags supported by Flash Player

CSS property Notes

<color> Font color in 0xRRGGBB format.

<display> Controls display of item. Values include: none, block, inline.

font-family Font name. Corresponding ActionScript property changed to fontFamily.

font-size Font size in pixels. Corresponding ActionScript property changed to fontSize.

font-style Font style. Values include: italic, normal. Corresponding ActionScript property

changed to fontStyle.

font-weight Font style. Values include: bold, normal. Corresponding ActionScript property changed

to fontWeight.

kerning Turns kerning on or off. Values include: true, false. Works only when using embedded

fonts and in SWF files created on the Windows platform.

leading Font leading in pixels. Not officially supported. Similar to: text-height. Works well

in internal style object, but may not be reliable in loaded CSS.

letter-spacing Tracking in pixels. Corresponding ActionScript property changed to letterStyle.

margin-left Positions left margin in pixels. Corresponding ActionScript property changed to

marginLeft.

margin-right Positions right margin in pixels. Corresponding ActionScript property changed to

marginRight.

text-align Specifies text alignment behavior. Values include: left, right, center or

justify. Corresponding ActionScript property changed to textAlign.

text-decoration Underlines text. Values include: underline, none. Corresponding ActionScript prop-

erty changed to textDecoration.

348 | Chapter 15: How Do I Work with Text?

CSS property Notes

text-indent Indents first-line paragraph indent in pixels. Corresponding ActionScript property

changed to textIndent.

You have two ways to work with CSS in ActionScript. The first is to create
style objects inline, which is covered in this recipe. The second is to load an
external CSS document, which will be covered in Chapter 17.

The style sheet’s application is the same in both cases. So, the basics of the
inline method involve creating an object for each style, and then registering
that object with its corresponding HTML tag or CSS class. The following script
creates a simple example style sheet that contains two arbitrarily named styles
for use over the next few recipes. Together, they demonstrate the use of class-
based and tag-based styles. The first is called task, and is a custom class for
adding emphasis to items or subheads. The second style is called link, and is
associated with the anchor HTML tag for use in the next two recipes.

Building on the HTML of the prior recipe, the bold code is new. The first two
segments create custom objects and assign the desired CSS properties and val-
ues. The third segment creates an instance of the StyleSheet class, and uses
the setStyle() method to associate the objects with the class and tag identifier.
Upon completion of this process, the StyleSheet instance css can be applied
to a text field (discussed following the script).

var task:Object = new Object();
task.fontFamily = "Verdana";
task.fontSize = 14;
task.leading = 4;
task.letterSpacing = 1;
task.textIndent = 14;

var link:Object = new Object();
link.color = "#0000FF";
link.textDecoration = "underline"
link.fontStyle = "italic";

var css:StyleSheet = new StyleSheet();
css.setStyle(".task", task);
css.setStyle("a", link);

var txtFld:TextField = new TextField();
txtFld.autoSize = TextFieldAutoSize.LEFT;
txtFld.multiline = true;
txtFld.selectable = false;
addChild(txtFld);

txtFld.styleSheet = css;
txtFld.htmlText = "<p>Interactive
<i>Text</i> Demonstration</p>";

15.11 Formatting Text Using CSS | 349

txtFld.htmlText += "
The following tasks are possible:";

The last line of this script is standard HTML fare for using CSS. A custom class
is applied in a tag that surrounds the desired text. (The next two recipes
use the anchor tag.)

However, the application of the style sheet is noteworthy because you must
apply it before text is added to the field. This action happens in the first line
of the last code block, before the field is populated with the htmlText property.

See Also
“15.10 Formatting Text Using HTML” on page 346 for use of HTML as well
as “15.12 Adding Hyperlinks to Text” on page 350 and “15.13 Triggering
ActionScript from HTML Links” on page 351 for additional use of CSS.

15.12 Adding Hyperlinks to Text

Problem
You want to place a hyperlink in a text field

Solution
Use HTML, and an anchor tag, to add the link, similar to the corresponding
approach of adding a hyperlink to an HTML page.

Discussion
Adding standard hypertext links in ActionScript uses the same process as add-
ing links in HTML. The optional target attribute is also supported for opening
links in another window.

txtFld.htmlText += "Search:
 Google";

Although this code works on its own if a field called txtFld
already exists, it’s designed to be added to the previous recipes
as an ongoing example. The list tag is added simply to dem-
onstrate additional use of HTML formatting.

350 | Chapter 15: How Do I Work with Text?

See Also
“15.10 Formatting Text Using HTML” on page 346 and “15.12 Adding Hy-
perlinks to Text” on page 350 for information on formatting with HTML and
CSS, and “15.13 Triggering ActionScript from HTML Links” on page 351 for
additional functionality triggered from HTML links.

15.13 Triggering ActionScript from HTML Links

Problem
You want to execute an ActionScript 3.0 function from a link in a text field.

Solution
Use HTML and an anchor tag to add the link, but use the ActionScript 3.0
event: protocol instead of the http: protocol, which is reserved for standard
links.

Discussion
Triggering ActionScript from HTML links in ActionScript 3.0 is similar to the
same process in ActionScript 2.0, but the system now makes use of the
ActionScript 3.0 event model. Previously, the link’s http: protocol was re-
placed with asfunction: and a corresponding function was typically created
for each unique use of this feature.

Currently, the process is similar in that the http: protocol is replaced with
event: but the corresponding executable code is less tightly coupled with the
link. That is, the link now dispatches a TextEvent that can be handled in the
usual event listener manner, granting much more power and flexibility to the
process.

txtFld.htmlText += "Trace:
 Show Message";

txtFld.addEventListener(TextEvent.LINK, linkHandler);
function linkHandler(evt:TextEvent):void {
 if (evt.text == "showMsg") {
 trace("Specific function code executes here");
 }
}

15.13 Triggering ActionScript from HTML Links | 351

Although this code works on its own if a field called txtFld
already exists, it’s designed to be added to the previous recipes
as an ongoing example.

See Also
“15.10 Formatting Text Using HTML” on page 346 through “15.12 Adding
Hyperlinks to Text” on page 350 for additional HTML and CSS formatting,
and hyperlink use.

15.14 Selecting Text

Problem
You want to programmatically select text in a field, akin to if a user selects the
text with the mouse.

Solution
Use the setSelection() method of the TextField class.

Discussion
The following script passage initializes a field, and populates it with a simple
line of text. It then attaches a mouse down event listener to the stage that
programmatically selects five characters of that text, characters 6 through 10,
thereby selecting the second word, “ipsum.”

var txtFld:TextField = new TextField();
txtFld.width = 200;
txtFld.selectable = false;
txtFld.type = TextFieldType.DYNAMIC;
txtFld.text = "Lorem ipsum dolor sit amet.";
addChild(txtFld);

stage.addEventListener(MouseEvent.MOUSE_DOWN, onSelectWord, false, 0, true);
function onSelectWord(evt:MouseEvent):void {
 txtFld.setSelection(6,11);
}

352 | Chapter 15: How Do I Work with Text?

Remember that text operations like this typically specify a
range using the first desired character and the last desired
character plus 1. Additionally, the character count is zero-
based, with the first character having an index of 0, not 1. See
“15.9 Formatting Text Using TextFormat” on page 344 for
more information.

The next code block adds another feature that lets you replace selected text
with a new string. A similar listener structure is used, this time listening for a
mouse up event, and replaces the selection, after first checking to make sure a
selection exists. This latter task is accomplished by making sure the beginning
and end of the selected text aren’t the same (which would indicate no
selection).

stage.addEventListener(MouseEvent.MOUSE_UP, onReplaceWord, false, 0, true);
function onReplaceWord(evt:MouseEvent):void {
 if (txtFld.selectionBeginIndex != txtFld.selectionEndIndex) {
 txtFld.replaceSelectedText("LOREM");
 }
}

Finally, if you’ve struggled with text selection and object focus in the past,
you’ll be overjoyed to know that ActionScript 3.0 handles this issue quite well.
ActionScript 3.0 even has a feature that prevents the selection highlight from
disappearing when the field loses focus, as seen here.

txtFld.alwaysShowSelection = true;

To see this feature in action, add the previous line to the end of the onSelect
Word() function, and comment out the listener that invokes onReplaceWord().
(You need to do this step because, if the word is replaced immediately, you
don’t see the effect of maintaining the selection.) Clicking alternately on the
stage and directly on the text shows the visual difference between when the
text field has focus and when it doesn’t.

15.14 Selecting Text | 353

CHAPTER 16

How Do I Work with XML?

16.0 Introduction
XML (Extensible Markup Language) is a flexible way to structure data for
storage, transmission, and parsing. Traditional name-value pairs, used by
standard GET and POST form actions, are fine for transferring small amounts
of simple data. However, this technique isn’t well suited for large amounts of
data or when you have to carefully organize the data.

For example, name-value pairs are limited to associations that link a single
value with a single variable. Complex associations where variables must be
grouped in some manner are arguably impossible, or would require multiple
variables with similar names.. You could get a basic database-like structure
this way with name-value pairs:

?user1namefirst=John&user1namelast=Public&
user1joined=2007&user1reg=yes&

Using XML, however, you can easily associate related variables. The preceding
name-value pair submission could be represented this way in XML:

<user>
 <first>John</first>
 <last>Public</last>
 <joined reg="yes">2007</joined>
</user>

You can imagine, when this data enlarges to many users, how much more easily
you can work with a single variable that contains data that’s organized
consistently.

Although this book discusses ActionScript 3.0’s ability to manipulate XML, it
can’t delve into the basics of XML. However, you’ll find a bountiful supply of
information online. One such resource is the World Wide Web Consortium
home for XML coverage, http://www.w3c.org/XML/.

355

http://www.w3c.org/XML/

For the purposes of this chapter, you must know only a few basic things, to
understand any errors you may see when experimenting.

All but a few administrative tags are self-defined. You need only decide how
to structure your content in a consistent manner so that both the server (if
present) and client can understand it.

• Tags and attributes must be of a consistent case (lowercase recommen-
ded).

• A root node must enclose all other content.

• All tags must be closed (either with a balancing close tag or as a self-closing
tag).

• All tags must be properly nested.

• All attribute values must be quoted.

• Whitespace is ignored by default.

• Flash doesn’t validate XML by version or Document Type Definition
(DTD).

One or two other simple rules apply, and will be covered in the remainder of
this chapter, but XML use in Flash is pretty straightforward. ActionScript 3.0
has also gone a long way to simplifying things.

The previous functionality of the XML class has been moved over to the
XMLDocument class and included primarily to improve support for legacy
projects. Don’t use this outdated technique. The new XML class is used mainly
for working with your entire XML data set as a whole, and supporting classes
such as XMLList are used to work with specific content. Familiar dot syntax,
like the kind used for ActionScript itself to traverse objects, properties, meth-
ods, and so on, is now used in place of the verbose familial navigation from
prior versions of ActionScript.

16.1 Creating an XML Object

Problem
You want to create an object to hold XML data for parsing.

Solution
Create an instance of the XML class.

356 | Chapter 16: How Do I Work with XML?

Discussion
You have a few ways to populate an instance of the XML class. Firstly, you can
add data to an empty instance, as needed. “16.11 Writing XML” on page
369, discusses this approach. The second approach is to assign data to the
instance immediately. ActionScript 3.0 makes this easy because you can type
the XML in human-readable form, complete with white space, and carriage
returns don’t break the assignment. The following example creates an object,
products, which nearly all of the recipes in this chapter use.

var products:XML =
 <root>
 <season quarter="3">Fall</season>
 <whatsnew>
 <promotion>Fall Sale</promotion>
 </whatsnew>
 <books>
 <book>
 <title series="learning">Learning ActionScript 3.0</title>
 <authors>Shupe and Rosser</authors>
 </book>
 <book>
 <title series="cookbook">ActionScript 3.0 Cookbook</title>
 <authors>Lott, Schall, and Peters</authors>
 </book>
 <book>
 <title series="animal">Essential ActionScript 3.0</title>
 <authors>Moock</authors>
 </book>
 </books>
 </root>;

The third method is to start with a string of valid XML, and then pass that to
the constructor of the XML class, as seen in the following very concise example
— quite handy for dynamic creation of XML starting with a text source (such
as user input).

var xmlString:String = "<root><username>J. G. Thirlwell</username></root>"
var xml:XML = new XML(xmlString);

16.2 Loading XML

Problem
You want to load XML from an external document or server.

16.2 Loading XML | 357

Solution
Create an instance of the URLLoader class to load the XML, and then create an
instance of the XML class with the loaded data.

Discussion
Although the next chapter discusses working with external assets, people most
often work with XML in ActionScript by loading XML from a server or external
document. As such, the following example demonstrates the basics you need.

To load XML, you must start with an instance of the URLLoader class. This class
is used to load text, variables, and binary data. Because the XML must be
loaded before it can be parsed, an event listener is commonly used to process
the incoming data after the Event.COMPLETE event is dispatched (indicating that
the load is complete). Finally, you must process all URLs using a URLRequest,
which can then be passed to the load() method seen in the third line of code
that follows.

var xmlLoader:URLLoader = new URLLoader();
xmlLoader.addEventListener(Event.COMPLETE, onComplete, false, 0, true);
xmlLoader.load(new URLRequest("store.xml"));

function onComplete(evt:Event):void {
 var xmlData:XML = new XML(evt.target.data);
 trace(xmlData);
}

The onComplete() listener function then converts the loaded data into an XML
instance (using the last technique discussed in “16.1 Creating an XML Object”
on page 356), and traces the data to show you a visual result for testing.

Using an instance of the URLRequest class may seem extraneous
when simply loading an asset (as opposed to just using a
string). However, you see in “16.12 Writing XML with Vari-
ables” on page 372 that you can configure the instance for
sending data, and the consistent use in all cases is a wonderful
hallmark of ActionScript 3.0.

See Also
“16.1 Creating an XML Object” on page 356 for creating an XML object.

358 | Chapter 16: How Do I Work with XML?

16.3 Reading an Element Node

Problem
You want to isolate a portion of a larger XML object to work with a single
element node.

Solution
Use the familiar dot-syntax object model introduced in ActionScript 3.0 to
work with XML, and target an element node.

Discussion
ActionScript 3.0’s implementation of XML lifts a pretty big weight off your
shoulders when it comes to parsing data. You no longer need to use a series of
sequential methods and/or properties to traverse an XML tree. Instead, you
need only walk through nodes using dot syntax similar to the ActionScript
document object model with which you’re already familiar.

To begin, examine this chapter’s primary sample XML:

var products:XML =
 <root>
 <season quarter="3">Fall</season>
 <whatsnew>
 <promotion>Fall Sale</promotion>
 </whatsnew>
 <books>
 <book>
 <title series="learning">Learning ActionScript 3.0</title>
 <authors>Shupe and Rosser</authors>
 </book>
 <book>
 <title series="cookbook">ActionScript 3.0 Cookbook</title>
 <authors>Lott, Schall, and Peters</authors>
 </book>
 <book>
 <title series="animal">Essential ActionScript 3.0</title>
 <authors>Moock</authors>
 </book>
 </books>
 </root>;

The first node, the root node, is a requirement of XML. Although its presence
is confirmed, it’s basically ignored when it comes to parsing. For this reason,
some developers prefer to assign it an obvious name, such as “root” (as in this

16.3 Reading an Element Node | 359

case) or “wrapper,” to reinforce that they should skip it when referencing
content.

So, to reference a node, start with the XML object as a whole, and then continue
to add nested children until you get what you want. You’ll learn what to do
when you have more than one node with the same name in the same parent
tag but for now, look at a simple example. Only one node’s called whatsnew,
so that node’s address is products.whatsnew. Tracing that content in the fol-
lowing script reveals that all data contained in that node is referenced:

trace(products.whatsnew);
/*
<whatsnew>
 <promotion>Fall Sale</promotion>
</whatsnew>
*/

Other examples include:

• books: products.books

• book: products.books.book

• title: products.books.book.title

If you wish to store a reference to an element node, its data type is XMLList.
This is the class used to work with one or more content nodes of the XML object,
and will be discussed in “16.5 Working with Multiple Nodes of the Same
Name” on page 362. Once you have a reference, you can then parse the con-
tent of that particular node.

var bks:XMLList = products.whatsnew;
trace(bks.promotion);

16.4 Reading a Text Node

Problem
You want to access text nested within an element node.

Solution
Use the familiar dot-syntax object model introduced in ActionScript 3.0 to
work with XML, and use the text() method to target a text node.

360 | Chapter 16: How Do I Work with XML?

Discussion
Reading a text node is essentially the same as reading an element node. How-
ever, you should remember one subtlety that. When you read an element node
that contains no children (also known as simple content), ActionScript nicely
returns that node’s content. The result of reading that node appears to be a
String, and even behaves like a String for your convenience. For example, con-
sider the following manipulations of the season element node of this chapter’s
sample XML:

trace(products.season);
//Fall;
trace(products.season.charAt(0));
//F

Note that even the String method charAt() functioned correctly when applied
to the season node, even though it’s an element. You can verify the node’s
element status using the nodeKind() method:

trace(products.season.nodeKind());
//element

This on-the-fly casting is a nice feature when you’re dealing with simple con-
tent. You can work with the element or its content, based on your own needs.
If, however, you specifically need to work with a text node, you need to take
an extra step. One such step is to use the text() method.

trace(products.season.text());
//Fall
trace(products.season.text().nodeKind());
//text

Usually you don’t need this extra step because ActionScript automatically re-
turns the content of an element node, if it has no children. Furthermore, you
can’t logically think of complex content (child element nodes) as text, so this
characteristic isn’t really a limitation. (This issue may be unintentional, as
when HTML tags are interpreted as XML child nodes, but this issue’s dis-
cussed in “16.9 Reading HTML or Entities in XML Nodes” on page 367.)

However, you may still wish to occasionally take the extra step to use the
text() method to work with text nodes, because of its main purpose. It was
designed to create an XMLList of text nodes, as explained in the following
recipe.

See Also
“16.3 Reading an Element Node” on page 359 for reading element nodes.

16.4 Reading a Text Node | 361

16.5 Working with Multiple Nodes of the Same Name

Problem
You want to easily work through one or more nodes of the same name in one
data structure.

Solution
Create an instance of the XMLList class by targeting the desired repeating
element.

Discussion
One of the ActionScript 3.0’s XML implementation’s most spectacular fea-
tures is that it can automatically traverse an XML structure and create a list of
all occurrences of a specific node. For clarity of discussion, take another look
at this chapter’s sample XML:

var products:XML =
 <root>
 <season quarter="3">Fall</season>
 <whatsnew>
 <promotion>Fall Sale</promotion>
 </whatsnew>
 <books>
 <book>
 <title series="learning">Learning ActionScript 3.0</title>
 <authors>Shupe and Rosser</authors>
 </book>
 <book>
 <title series="cookbook">ActionScript 3.0 Cookbook</title>
 <authors>Lott, Schall, and Peters</authors>
 </book>
 <book>
 <title series="animal">Essential ActionScript 3.0</title>
 <authors>Moock</authors>
 </book>
 </books>
 </root>;

If you look closely, you see that a book node is repeated three times and, thanks
to the design of this XML document, each node’s contents are consistent. As
you can see, title appears in each of these nodes.

Previously, to get to all title nodes, you had to do a bit of juggling. Most often,
you could traverse either up or down the tree storing references each time you
reached a title node, or create a copy of the most relevant portion of the XML,

362 | Chapter 16: How Do I Work with XML?

and then delete unwanted elements. What a pain. Now, with the magic of
ActionScript 3.0, you can automatically create a list of all like nodes:

var bookTitles:XMLList = products.books.book.title;
trace(bookTitles);
/*
<title series="learning">Learning ActionScript 3.0</title>
<title series="cookbook">ActionScript 3.0 Cookbook</title>
<title series="animal">Essential ActionScript 3.0</title>
*/

Since an XMLList instance behaves like an array, you can work with individual
nodes in the list.

trace(bookTitles[0]);
//Learning ActionScript 3.0

One of the things you should watch out for, however, is that length, an array
property that returns the number of items in the array, is actually a method
when you use it on an instance of the XMLList class.

trace(bookTitles.length());
//3

For data typing purposes, note that even a single node is typed as an XMLList
instance, because it’s possible for more than one node of the same name to exist.

trace(products.season is XMLList);
//true

Finally, as mentioned in the previous recipe, the text() method creates an
XMLList of text nodes (ActionScript’s trace() method doesn’t insert commas
into list output):

var titleTxt:XMLList = products.books.book.title.text();
trace(titleTxt);
//Learning ActionScript 3.0ActionScript 3.0 CookbookEssential ActionScript 3.0
trace(titleTxt[0]);
//Learning ActionScript 3.0;

16.6 Reading an Attribute

Problem
You want to read an attribute from an element node.

Solution
Use the attribute (@) operator.

16.6 Reading an Attribute | 363

Discussion
Attributes are properties found within a node, just like similar properties found
within HTML tags. An example in this chapter’s sample XML is the quarter
attribute of the season node.

<season quarter="3">Fall</season>

You can target attributes with the same dot syntax used for element nodes,
simply by preceding the attribute name with an at symbol (@).

trace(products.season.@quarter);
//3

As with element and text nodes, you can also create an XMLList of attributes.
(ActionScript’s trace() method doesn’t insert commas into list output):

trace(products.books.book.title.@series);
//learningcookbookanimal

Finally, if you have an uncooperative attribute name, such as a name contain-
ing hyphens, you can use the attribute() method to specify the desired at-
tribute. Similarly, if you prefer to remain consistent with the use of the attribute
operator, then you can use bracket syntax, as the following hypothetical ex-
amples show.

simple.example.attribute("hyphenated-name");
simple.example.@["hyphenated-name"];

Both these approaches are akin to similar tasks relevant to array manipulation
and, as with arrays, are handy for working with dynamically generated names.
For example, you could use a for loop to loop through a series of numbered
attributes:

simple.example.attribute("attname" + i);
simple.example.@["attname" + i];

See Also
“16.3 Reading an Element Node” on page 359 for reading an element node.

16.7 Finding Content Using Shorthand

Problem
You want to work with content nodes in an XML object without knowing their
exact locations.

364 | Chapter 16: How Do I Work with XML?

Solution
Use the descendent (..) or wildcard (*) operators.

Discussion
Sometimes you may want to pull data from separate but similar nodes. For
example, you may want to retrieve content from all siblings in a particular
node, even if they’re unique. In this case, you can use a wildcard (the asterisk,
*) to stand in for the element node name.

The following example creates an XMLList of all text nodes within the first
book node of this chapter’s sample XML. First, revisit the XML, reproduced
here:

var products:XML =
 <root>
 <season quarter="3">Fall</season>
 <whatsnew>
 <promotion>Fall Sale</promotion>
 </whatsnew>
 <books>
 <book>
 <title series="learning">Learning ActionScript 3.0</title>
 <authors>Shupe and Rosser</authors>
 </book>
 <book>
 <title series="cookbook">ActionScript 3.0 Cookbook</title>
 <authors>Lott, Schall, and Peters</authors>
 </book>
 <book>
 <title series="animal">Essential ActionScript 3.0</title>
 <authors>Moock</authors>
 </book>
 </books>
 </root>;

Note that the child nodes are title and authors. Due to the wildcard, the text
from both of these nodes is retrieved.

trace(products.books.book[0].*.text());
//Learning ActionScript 3.0Shupe and Rosser

In fact, the book node itself is an XMLList containing three books. Omitting the
bracket and zero index in the preceding script segment returns the title and
authors for all three books, easily storable in one XMLList instance, if you want.

The descendent operator, two dots (..), functions in a somewhat similar man-
ner, but stands in for nested levels of nodes. The operator traverses the XML
object looking for any specified node, wherever it may be. The following snip-
pet, for example, returns an XMLList of all three titles, even though title isn’t

16.7 Finding Content Using Shorthand | 365

at the root of the XML object. Instead, the first level (books) and second level
(book) are both traversed to find title in the third level of the XML structure.

trace(products..title);

See Also
“16.3 Reading an Element Node” on page 359 and “16.4 Reading a Text Node”
on page 360 for reading element and text nodes.

16.8 Finding Content Using Conditionals

Problem
You want to retrieve one or more nodes based on a specific value.

Solution
Filter content by element or attribute value using logical comparisons.

Discussion
Another ActionScript 3.0 XML gem is the ability to filter content when re-
trieving it. A simple test, like those in a basic if statement, can be added to the
dot syntax address, and only nodes satisfying that test are returned. You just
have to wrap the test in parentheses, and then place the entire expression where
the original object would have been.

The following examples retrieve single element nodes based first on the value
of another element node, and second based on the value of an attribute. For
comparison, however, start with the same path to these items, without the
conditionals:

//products.books.book.authors
//products.books.book.title.@series

The first path references an XMLList of all authors nodes in all book nodes, and
the second creates an XMLList of all series attributes in all title nodes of all
book nodes. If you know which specific node you want, then you can use
bracket syntax and specify an index. If you don’t know that information, how-
ever, or you want to find every occurrence that satisfies a test, you can rely on
conditionals. Using the conditionals filters the content, resulting in the return
of only one node in each example.

366 | Chapter 16: How Do I Work with XML?

trace(products.books.book.(authors=="Shupe and Rosser"));
/*
<book>
 <title series="learning">Learning ActionScript 3.0</title>
 <authors>Shupe and Rosser</authors>
</book>
*/

trace(products.books.book.title.(@series=="learning"));
//Learning ActionScript 3.0

See Also
“16.3 Reading an Element Node” on page 359 for reading an element node
and “16.6 Reading an Attribute” on page 363 for reading an attribute.

16.9 Reading HTML or Entities in XML Nodes

Problem
You want to parse an XML object so enclosed XML-valid entities appear cor-
rectly, and enclosed HTML isn’t interpreted as XML child nodes.

Solution
Use XML-valid entity encoding or enclose content that could be interpreted
as XML within a CDATA tag.

Discussion
If you use characters in your data that are also part of the XML specification,
they’ll probably cause errors or unpredictable behavior because they’ll be mis-
interpreted as part of the XML structure rather than as part of the content.
XML has five entities, shown in Table 16-1 in both original and encoded forms.

Table 16-1. The five entities included in the XML specification

Entity Encoded Form Notes

< < less than

> > greater than

& & ampersand

' ' apostrophe

" " quotation mark

16.9 Reading HTML or Entities in XML Nodes | 367

The following shows how to represent the apostrophe using entity encoding.

//incorrect: <publisher>O’Reilly</publisher>
//correct: <publisher>O'Reilly</publisher>

You can also successfully include XML-invalid text in a text node by using the
<![CDATA[]]> tag. This structure basically tells the XML parser to ignore ev-
erything within its inner brackets, and treat that content like regular text. You
can use this structure well when you allow HTML tags in an XML text node.
XML nodes are bounded by the < and > signs just like HTML tags are, so the
HTML is thought to be one or more nested XML nodes. The following example
includes both the normal apostrophe and the HTML underline tags without
entity encoding, because it’s wrapped within a CDATA tag.

//incorrect: <publisher><u>O’Reilly</u></publisher>
//correct: <publisher><![CDATA[<u>O’Reilly</u>]]></publisher>

You can encode the < and > signs too, of course, but it can be quite tedious.
The following example adds a publisher node to all book nodes of this chap-
ter’s sample XML, and demonstrates the three examples of including XML-
invalid content in text nodes. The last part of the script dynamically creates a
text field, and then populates it with HTML to show that the nested underline
tags aren’t misinterpreted.

var products:XML =
 <root>
 <season quarter="3">Fall</season>
 <whatsnew>
 <promotion>Fall Sale</promotion>
 </whatsnew>
 <books>
 <book>
 <title series="learning">Learning ActionScript 3.0</title>
 <authors>Shupe and Rosser</authors>
 <publisher>O'Reilly</publisher>
 </book>
 <book>
 <title series="cookbook">ActionScript 3.0 Cookbook</title>
 <authors>Lott, Schall, and Peters</authors>
 <publisher><![CDATA[<u>O'Reilly</u>]]></publisher>
 </book>
 <book>
 <title series="animal">Essential ActionScript 3.0</title>
 <authors>Moock</authors>
 <publisher><u>O'Reilly</u></publisher>
 </book>
 </books>
 </root>;

var txtFld:TextField = new TextField();
addChild(txtFld);

368 | Chapter 16: How Do I Work with XML?

txtFld.type = TextFieldType.DYNAMIC;
txtFld.htmlText = products.books.book[1].publisher;

16.10 Deleting XML

Problem
You want to remove nodes from an XML object.

Solution
Use the delete operator.

Discussion
Sometimes it’s easier to delete unwanted XML content than to reference ex-
tensive amounts of desired content in an XML instance. In those cases, you
can use the delete operator to delete an element, text node, or attribute. The
syntax for identifying the XML object in question is the same as referencing it,
and the delete operator then precedes this path.

delete products.whatsnew;

This process is also useful when writing XML, which is discussed in the next
recipe.

See Also
“16.11 Writing XML” on page 369 for writing content.

16.11 Writing XML

Problem
You want to dynamically build an XML object at runtime.

Solution
Adapt XML reading techniques to writing content, and consider adding the
use of methods such as appendChild(), prependChild(), and insertChild
After().

16.11 Writing XML | 369

Discussion
You’ll often find it convenient to write XML, either for use within the same
SWF file, transmission to a database, or even to save to an external file. Most
of the tasks you need to write XML are identical to reading the same XML
object, except that you find the path to the object on the left side of an equal
sign.

To demonstrate each of the major writing techniques, this recipe adds new
content to the ongoing sample used throughout this chapter. Excerpts from
the XML, enclosed in comments to separate the resulting XML from the
ActionScript, demonstrate these techniques. At the end of the recipe, the new
content is shown fully assembled. This recipe begins by using writing techni-
ques similar to those used in reading XML.

Writing an element node without any additional qualifying information places
the node at the end of the XML object. Here, you can see that a shirts node
is added to the end of the object, just before the close of the root node. (The
ellipsis at the start of the comment indicates that output has been removed for
the sake of brevity.)

products.shirts = <shirts />;
/*
 ...
 </books>
 <shirts/>
</root>
*/

Writing a text node simply requires that you add text as a child to an existing
element node. (You can also add both element and text nodes simultaneously,
as demonstrated in a moment.)

products.shirts.tshirt = "Lemur";
/*
<shirts>
 <tshirt>Lemur</tshirt>
</shirts>
*/

Adding an attribute requires only the target node and content.

products.shirts.tshirt.@size = "XL";
/*
<tshirt size="XL">Lemur</tshirt>
*/

You can also write content using methods. The appendChild() method is like
the first example in this recipe, in that it adds the child to the end of the node
to which the method’s attached.

370 | Chapter 16: How Do I Work with XML?

products.shirts.appendChild(<tank />);
/*
<shirts>
 <tshirt size="XL">Lemur</tshirt>
 <tank/>
</shirts>
*/

The prependChild() method offers new functionality by adding the new node
to the beginning of the node to which the method is attached.

products.shirts.prependChild(<longsleeve />);
/*
<shirts>
 <longsleeve/>
 <tshirt size="XL">Lemur</tshirt>
 <tank/>
</shirts>
*/

Finally, the insertChildAfter() method lets you add a node after any specific
node. That is, rather than automatically adding to the end of the node to which
the method is attached, it’s added immediately after the sibling node specified
in the method’s first parameter.

products.shirts.insertChildAfter(products.shirts.tshirt, <onesie/>);
/*
<shirts>
 <longsleeve/>
 <tshirt size="XL">Lemur</tshirt>
 <onesie/>
 <tank/>
</shirts>
*/

Including the delete process from “16.10 Deleting XML” on page 369, the
altered products XML object should now look like this:

<root>
 <season quarter="3">Fall</season>
 <books>
 <book>
 <title series="learning">Learning ActionScript 3.0</title>
 <authors>Shupe and Rosser</authors>
 </book>
 <book>
 <title series="cookbook">ActionScript 3.0 Cookbook</title>
 <authors>Lott, Schall, and Peters</authors>
 </book>
 <book>
 <title series="animal">Essential ActionScript 3.0</title>
 <authors>Moock</authors>
 </book>
 </books>

16.11 Writing XML | 371

 <shirts>
 <longsleeve/>
 <tshirt size="XL">Lemur</tshirt>
 <onesie/>
 <tank/>
 </shirts>
</root>

See Also
“16.3 Reading an Element Node” on page 359, “16.4 Reading a Text Node”
on page 360, and “16.6 Reading an Attribute” on page 363 for relevant XML
reading techniques, as well as “16.10 Deleting XML” on page 369 for deleting
XML content.

16.12 Writing XML with Variables

Problem
You want to use variables, or other dynamic data, when writing XML.

Solution
Wrap dynamic content in braces ({}).

Discussion
If you review “16.1 Creating an XML Object” on page 356, which discussed
creating an XML object, it’s probably not much of a stretch to imagine using
a variable to write dynamic content in the second method, because you could
perform any String operation on the content before sending it to the construc-
tor of the XML class. Here’s an example adapted from “16.1 Creating an XML
Object” on page 356:

var uName:String = "Clint Ruin"

var xmlString:String = "<root><username>" + uName + "</username></root>"
var xml:XML = new XML(xmlString);

However, another technique is not as obvious. You can also use variables to
populate XML content node by node, including element nodes, text nodes,
and attributes. To do so, you need only enclose the variable in braces to prevent
the XML class parser from seeing the variable name as an XML object name.

Adapting the preceding code snippet, you would use the uName variable this
way to write a text node:

372 | Chapter 16: How Do I Work with XML?

var uName:String = "Clint Ruin";
var userxml:XML =
 <root>
 <username>{uName}</username>
 </root>;

Here’s an expanded example demonstrating the addition of an element node,
an attribute, and an attribute value. It is certainly unlikely that you would need
to do all this dynamically. With this approach, you typically add text nodes or
attribute values. However, this example shows that you can dynamically create
any of these XML objects.

var uName:String = "Clint Ruin";
var reg:XML = <registered/>;
var psswrd:String = "DJ_OTESFU";
var versionAttr:String = "current";

var user:XML =
 <root>
 <username>{uName}</username>
 {reg}
 <password {versionAttr}={psswrd}/>
 </root>;

trace(user);
/*
<root>
 <username>J. G. Thirlwell</username>
 <registered/>
 <password current="DJ_OTESFU"/>
</root>
*/

See Also
“16.1 Creating an XML Object” on page 356 for creating an XML object.

16.13 Sending and Loading XML

Problem
You want to send XML to a server, and process XML received from a response.

Solution
Configure a URLRequest instance, and use the load() method of the URL
Loader class.

16.13 Sending and Loading XML | 373

Discussion
XML is ideal for transferring data to and from a server. This very basic example
sends XML to a PHP script that saves a file to the server, and then returns an
XML object in response. This example is taken from Learning ActionScript
3.0 by Rich Shupe and Zevan Rosser (O’Reilly), and used by permission.

The first block of the script creates an XML object from a string, as shown in
“16.1 Creating an XML Object” on page 356. The second block creates another
XML object to contain the XML returned from the server after submission.

The third block creates a URLRequest instance, as in “16.2 Loading XML” on
page 357 but, this time, configures the instance for sending as well as loading.
It specifies the server script location, attaches the XML to the data property,
sets the contentType of the submission to “text/xml,” and then specifies the
POST method for transmission.

The fourth block creates an instance of the URLLoader, which you also saw in
“16.2 Loading XML” on page 357, as well as adds event listeners for the com-
pletion of the response loading, and for the unfortunate possibility of an IO
error—both of whose functions are explained after the script.

ActionScript

var respTxt:TextField = new TextField();
respTxt.type = TextFieldType.DYNAMIC;
addChild(respTxt);

var xmlString:String = "<?xml version='1.0' encoding= ¬
 'ISO-8859-1'?><root><value>Sally</value><value>Claire</value></root>"
var kids:XML = new XML(xmlString);

var xmlResponse:XML;

var xmlURLReq:URLRequest = new URLRequest(¬
 "http://<your domain>/savexml.php");
xmlURLReq.data = kids;
xmlURLReq.contentType = "text/xml";
xmlURLReq.method = URLRequestMethod.POST;

var xmlSendLoad:URLLoader = new URLLoader();
xmlSendLoad.addEventListener(Event.COMPLETE, onComplete, false, ¬
 0, true);
xmlSendLoad.addEventListener(IOErrorEvent.IO_ERROR, onIOError, false, ¬
 0, true);
xmlSendLoad.load(xmlURLReq);

function onComplete(evt:Event):void {
 try {
 xmlResponse = new XML(evt.target.data);
 respTxt.text = xmlResponse.status;

374 | Chapter 16: How Do I Work with XML?

 removeEventListener(Event.COMPLETE, onComplete);
 removeEventListener(IOErrorEvent.IO_ERROR, onIOError);
 } catch (err:TypeError) {
 respTxt.text = "An error occured when communicating ¬
 with server:\n" + err.message;
 }
}

function onIOError(evt:IOErrorEvent):void {
 respTxt.text = "An error occurred when attempting to load ¬
 the XML.\n" + evt.text;
}

The last two blocks of the ActionScript are the listener functions. When the
response is completely loaded, onComplete() is triggered. This function at-
tempts to create an XML object from the response received, put the status
node into a text field, and remove both listeners as an example of good memory
management. (This example assumes the data will be sent to the server only
once, so you won’t need the listeners later.) If XML isn’t returned successfully
from the server, then an alternate message is placed in the text field. A similar
error message is placed in the field in the event of an IO error.

Although explaining PHP in depth is beyond the scope of this book, the
following simple script is the server component of the example. It receives the
incoming data, writes it to a file called data.txt in the same directory as the
PHP script, and then sends back one of two messages, both formatted as an
XML compliant string with the message wrapped in a status node. If successful,
the script sends back “File saved.” If not successful, the script sends back one
possible explanation for the error, “PHP write error. Check permissions.”

PHP

<?php

if (isset($GLOBALS["HTTP_RAW_POST_DATA"])){
 $data = $GLOBALS["HTTP_RAW_POST_DATA"];

 $file = fopen("data.txt","w");
 fwrite($file, $data);
 fclose($file);

 if (!$file) {
 echo("<root><status>PHP write error. Check ¬
 permissions.</status></root>");
 } else {
 echo("<root><status>File saved.</status></root>");
 }
}

?>

16.13 Sending and Loading XML | 375

You certainly don’t have to save XML files to a server to use the send and load
feature. In fact, you’re much more likely to send XML to a database or other
server script such as a login mechanism. However, this tidy example demon-
strates the requisite features, and you can take it from here.

376 | Chapter 16: How Do I Work with XML?

CHAPTER 17

How Do I Work with External
Assets?

17.0 Introduction
Flash is capable of many tasks by only using assets that have been created or
imported into the authoring environment. However, one of its greatest
strengths is its ability to work with external assets at runtime. Flash Player can
load several kinds of assets including plain text, XML, HTML, CSS, URL-
encoded variables, images, sound, video, and other SWF files, to name some
examples. It can even load raw binary data.

This chapter provides a brief overview of loading and unloading a few of these
external asset types. You can do very different things with each asset type,
depending on the asset, security restrictions, and the version of Flash Player
you’re targeting. However, the recipes here should give you some idea of
what’s possible, as well as warn you about some possible pitfalls, to help you
along the way.

To improve your memory management efforts, and to save some possible de-
bugging time, you should know a little about how Flash Player 9 and later
flushes objects from RAM. In short, you can’t immediately remove something
from memory. Instead, Flash Player uses a process called garbage collection.
When an object is no longer in use, Flash Player marks it for collection. Sub-
sequently, during an optimal low in processor demand, the garbage collector
sweeps through and collects all objects previously marked for removal.

Unlike your neighborhood trash removal service, however, you can’t predict
when garbage collection will occur, and you can’t reliably force the process.
As long as you’re aware of how this system works, you should be able to
maintain your code that improves your chances of efficient memory manage-
ment and more effective garbage collection.

377

17.1 Loading and Applying a Cascading Style Sheet

Problem
You want to apply the same text styling to one or more text fields, particularly
those containing HTML-based content from internal or external sources.

Solution
Use the URLLoader class to load an external Cascading Style Sheet (CSS) into
an instance of the StyleSheet class, and apply the latter instance to text fields.

Discussion
The URLLoader class can load plain text, name/value pair variables (such as
those in a URL), or binary data. As seen in the first block of the following script,
this example uses two such loaders—one for an external HTML file and one
for an external CSS document—and a StyleSheet instance to contain the data
from the CSS file.

The following two functions are very similar, loading first the CSS document,
then the HTML document. In both cases, event listeners for load complete
and input/output (IO) errors are added, and the content’s loaded. If either
process generates an IO error, the onIOErr() function at the end of the script
is called.

When the CSS document is loaded, the onCSSLoaded() listener function creates
a StyleSheet instance, parses the loaded CSS document to create the requisite
styles, and then repeats the loading process for the HTML file.

When the HTML file is loaded, the onLoadHTML() listener function stores the
incoming HTML in a local variable, creates a text field, and then sets several
basic text field properties (discussed in Chapter 14). It also applies the style
sheet, populates the htmlText property with the loaded HTML data, and adds
the field to the display list. Finally, the function removes all listeners you don’t
need any more.

var htmlFile:URLLoader;
var cssStyles:StyleSheet;
var cssFile:URLLoader;

function loadCSS() {
 cssFile = new URLLoader();
 cssFile.addEventListener(Event.COMPLETE, onCSSLoaded, false, 0, true);
 cssFile.addEventListener(IOErrorEvent.IO_ERROR, onIOErr, false, 0, true);
 cssFile.load(new URLRequest("demo.css"));

378 | Chapter 17: How Do I Work with External Assets?

}
loadCSS();

function onCSSLoaded (evt:Event):void {
 cssStyles = new StyleSheet();
 cssStyles.parseCSS(evt.target.data);
 htmlFile = new URLLoader();
 htmlFile.addEventListener(Event.COMPLETE, onHTMLLoaded, false, 0, true);
 htmlFile.addEventListener(IOErrorEvent.IO_ERROR, onIOErr, false, 0, true);
 htmlFile.load(new URLRequest("demo.html"));
}

function onHTMLLoaded(evt:Event):void {
 var htmlData:String = evt.target.data;
 var txtFld = new TextField();
 txtFld.width = 550;
 txtFld.multiline = true;
 txtFld.wordWrap = true;
 txtFld.autoSize = TextFieldAutoSize.LEFT;
 txtFld.selectable = false;
 txtFld.styleSheet = cssStyles;
 txtFld.htmlText = htmlData;
 addChild(txtFld);

 cssFile.removeEventListener(Event.COMPLETE, onCSSLoaded);
 cssFile.removeEventListener(IOErrorEvent.IO_ERROR, onIOErr);
 htmlFile.removeEventListener(Event.COMPLETE, onHTMLLoaded);
 htmlFile.removeEventListener(IOErrorEvent.IO_ERROR, onIOErr);
}

function onIOErr(evt:IOErrorEvent):void {
 trace("A loading error occurred:", evt.text);
}

You must apply a StyleSheet instance to a text field before
populating it with text.

Samples of HTML and CSS files required for this exercise to work, follow:

HTML: demo.html

<body>
Use CSS to Style Text

A Simple Example

<p>Lorem ipsum dolor sit amet,sed do eiusmod tempor incididunt ut
 labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
 ullamco laboris nisi ut aliquip ex ea commodo consequat.</p>
</body>

17.1 Loading and Applying a Cascading Style Sheet | 379

CSS: demo.css

body {
 font-family: Verdana;
 margin-left: 6px;
 margin-right: 6px;
}

p {
 text-indent: 20px;
}

.heading {
 font-size: 18px;
 font-weight: bold;
 letter-spacing: 1px;
 color: #FF6633;
}

.subheading {
 font-size: 14px;
 font-style: italic;
 text-align: right;
}

See Also
“15.1 Creating a Text Field” on page 334 for creating a text field, “15.5 Pop-
ulating a Text Field” on page 338 for populating a text field, “15.6 Automat-
ically Sizing a Text Field” on page 339 for auto-sizing a text field, “15.10 For-
matting Text Using HTML” on page 346 for supported HTML, “15.11 For-
matting Text Using CSS” on page 348 for supported CSS.

17.2 Loading and Displaying an Image or SWF File

Problem
You want to display an image or SWF from an external source.

Solution
Use the Loader class to load an external JPG, GIF, PNG, or SWF file, and then
add it to the display list.

380 | Chapter 17: How Do I Work with External Assets?

Discussion
You can fairly simply load a display object, such as an image or SWF file. You
need to start with an instance of the Loader class, and then use its load()
method to load the content. Consistency is a hallmark of ActionScript 3.0. You
must use a URLRequest instance for every URL.

Then you add the image or SWF file to the display list after the load is complete.
You add it by using the addChild() method inside an event listener function
that triggers when the Event.COMPLETE event is received. This event’s not avail-
able to the Loader instance, but rather to the related LoaderInfo class. You can
immediately access an instance of this class by using the contentLoaderInfo
property of the Loader you created, so you don’t have to instantiate another
class.

After the load complete event is received, the image is added to the display list.
Since the event listener was added to the contentLoaderInfo property, rather
than the Loader itself, you must add the evt.target.content to the display list,
rather than the more typical evt.target. For more information, see Chapter 14.

var ldr:Loader = new Loader();
ldr.load(new URLRequest("loadMe.jpg"));

ldr.contentLoaderInfo.addEventListener(Event.COMPLETE, ¬
 onLoaded, false, 0, true);
function onLoaded(evt:Event):void {
 addChild(evt.target.content);
 evt.target.removeEventListener(Event.COMPLETE, onLoaded);
}

Although this example loads an image, loading a SWF file uses the same syn-
tax. You need only change the path inside the URLRequest to resolve to a SWF
file. However, you may wish to consider other additional features. For exam-
ple, when loading a SWF file, you may want to delay display or further action
until the SWF file has fully initialized. The next recipe demonstrates this ap-
proach.

See Also
“17.3 Communicating with an ActionScript 3.0 Loaded SWF” on page 382
for information about working with loaded content after it is loaded or ini-
tialized.

17.2 Loading and Displaying an Image or SWF File | 381

17.3 Communicating with an ActionScript 3.0 Loaded
SWF

Problem
Having loaded a SWF file that was coded using ActionScript 3.0, you want to
communicate between the parent and the loaded SWF file.

Solution
Cast the content of a Loader instance as a movie clip and get or set properties,
or invoke methods, of that movie clip.

Discussion
When you load a SWF file into a Loader instance, the content of that instance
contains the SWF file and all data therein. Essentially, the main timeline of the
loaded SWF file is a movie clip, so you can access the methods or properties
of the loaded SWF file the same way you access similar attributes of a movie
clip. Hereafter, the host, or parent, SWF file is called “Loader” and the loaded
SWF is called “Loadee.”

Loadee: loadee.swf

Starting with the loaded content, you need a SWF file named loadee.swf. To
demonstrate a variety of communication tasks, the file should include a pre-
created animated movie clip called anim on the stage and the following script.

The first line stops the movie clip from playing so that another SWF file may
start it later. The first function traces a hard-coded string to the Output panel.
The second function accepts a string argument from a function call, and traces
a new string that includes that argument value. The last function also accepts
an argument value, but this time it’s a number, and the function returns a new
value (adding 1 to the incoming value) to the script from which it was called.
None of the functions are called within the loadee.

anim.stop();

function sayHello():void {
 trace("Hello, from your loadee!");
}

function showMsg(msg:String=""):void {
 trace("Loadee here again. You said, '" + msg + "'");
}

382 | Chapter 17: How Do I Work with External Assets?

function returnSum(num:Number=0):Number {
 return (num + 1);
}

Loader: loader.swf

The loadee is then loaded into a host, or parent, SWF file. To do so, you must
create an instance of the Loader class, add it to the display list, and then load
the desired content, as the first block of the following script shows.

In order to communicate with the new SWF file, it must be fully loaded. Listen
for an Event.COMPLETE event before proceeding, to make sure the content is
loaded.

var loader:Loader = new Loader();
addChild(loader);
loader.load(new URLRequest("loadee.swf"));

loader.contentLoaderInfo.addEventListener(Event.COMPLETE, callLoadee, ¬
 false, 0, true);
function callLoadee(evt:Event):void {
 var loadee:MovieClip = MovieClip(loader.content);
 loadee.anim.play();
 loadee.sayHello();
 loadee.showMsg("Hi, from Loader!");
 trace("Loader sent 1 to Loadee and got back:", loadee.returnSum(1));
 evt.target.removeEventListener(Event.INIT, callLoadee);
}

The first line of the callLoadee() function stores a reference to the loaded
content, rather than the existing Loader instance. The casting to MovieClip is
required because a Loader instance can also load images, for which such com-
munication attempts don’t apply. As such, the compiler must know your
property and method access is legal.

The second line targets the animated movie clip, and tells it to play. Because
the clip was initially stopped, if it plays when loaded, then you know this
method did its job.

The third line calls a function in the loaded SWF file. The result is the tracing
of the string, “Hello, from your loadee!” The fourth line accomplishes a similar
task but passes a value into the loadee to vary the outcome of the function.
The result is the tracing of the modified string, “Loadee here again. You said,
‘Hi, from Loader!’”

Finally, the last line of callLoadee() also calls a function and passes in a value
to affect its outcome. However, in this case, a value is returned to the parent
SWF file. Passing in 1 returns a value of 2, at which point the parent traces,

17.3 Communicating with an ActionScript 3.0 Loaded SWF | 383

“Loader sent 1 to Loadee and got back: 2” to the Output panel. This demon-
strates round-trip communication and getting data from a loaded SWF file.

You can add a Loader instance without content to the display
list without generating an error. However, if you prefer, you
can add the instance to the display list with an event listener
after the loader issues an Event.COMPLETE event (indicating the
content has been loaded).

See Also
“17.2 Loading and Displaying an Image or SWF File” on page 380 for loading
a SWF.

17.4 Communicating with an ActionScript 2.0 Loaded
SWF

Problem
Having loaded a SWF file that was coded using ActionScript 2.0, you want to
communicate between the parent and the loaded SWF file.

Solution
Use a LocalConnection object to communicate between host and loaded SWF
file.

Discussion
Although ActionScript 3.0 can easily load SWF files created using ActionScript
2.0, the two versions of the language can’t coexist in the same file. ActionScript
3.0 was written from the ground up and exists in its own virtual machine—a
player within a player, if you will—in Flash Player.

As such, an ActionScript 3.0 SWF file can’t communicate directly with an
ActionScript 2.0 SWF file. One way you can get around this limitation is to
use a LocalConnection object. Just as you can use local connections to com-
municate between multiple SWF files in a browser window, or between SWF
file and projector, you can use the technique to communicate between Ac-
tionScript Virtual Machine 2 (AVM2, used for ActionScript 3.0) and AVM1

384 | Chapter 17: How Do I Work with External Assets?

(ActionScript 1.0/2.0). Note that an ActionScript 3.0 SWF file can load an
ActionScript 2.0 SWF file, but the reverse isn’t possible.

This example shows how to control an animation and trigger a function, while
passing data into the AVM1 SWF file. To test all functionality, you need an
animated movie clip in the loaded SWF file.

Starting with the host, or parent SWF file, the first step in this process is to
load the SWF file. In this case, the loaded SWF file is named as2.swf, and the
parent SWF file, although not referenced by filename in the script, is as3.swf.

In this example, the communication is triggered by a button click, but it’s still
a good idea to enable this functionality only after the loaded content is ready.
Otherwise, you may initiate communication prematurely and encounter an
unresponsive button or even errors. Here, the local connection, button, and
event listener are all created only after the receipt of the init event, as you see
in the previous recipe. The listener’s contents are explained after the script.

Hereafter, the host, or parent, SWF file is called “Loader” and the loaded SWF
file is called “Loadee.”

Loader: as3.swf

var loader:Loader = new Loader();
loader.load(new URLRequest("as2.swf"));
addChild(loader);

loader.contentLoaderInfo.addEventListener(Event.INIT, onInit, false, 0, true);
function onInit(evt:Event):void {
 var as3as2LC:LocalConnection = new LocalConnection();

 var sendBtn:Sprite = new Sprite();
 sendBtn.buttonMode = true;
 sendBtn.graphics.beginFill(0x000099);
 sendBtn.graphics.drawCircle(0, 0, 15);
 sendBtn.graphics.endFill();
 sendBtn.x = sendBtn.y = 30;
 addChild(sendBtn);

 sendBtn.addEventListener(MouseEvent.CLICK, onSendBtn);
 function onSendBtn(evt:MouseEvent):void {
 as3as2LC.send("crossVM","playClip");
 as3as2LC.send("crossVM","showMsg", "Hello, from AS3!");
 }
}

The first line of the event listener function initializes the local connection. The
second block of the event listener function creates the button used to trigger
the communication, and adds it to the display list.

17.4 Communicating with an ActionScript 2.0 Loaded SWF | 385

The final block of the event listener function creates the button event listener.
When you click the button, two messages go through the local connection.
This step uses the send() method of the LocalConnection instance, as3as2LC.
The first argument value is the name of the local connection. This connection
is like the telephone number or radio channel over which the connected objects
communicate, increasing security. Any participating parties must send or re-
ceive along this “channel” to successfully communicate. In this case, the host
sends over the “crossVM” connection, and the loaded SWF file must connect
to this same channel to receive instructions and respond.

The first message sent triggers a function called playClip(), and the second
message triggers a function called showMsg() but also passes along the string
argument “Hello, from AS3!”

Loadee: as2.swf

In the loaded SWF file, the first block of code stops the animated movie clip.
The clip is played by instruction issued across the local connection. The vari-
able name used to store the connection in the loadee doesn’t have to be the
same as the variable used in the parent SWF file. Instead, the correct connec-
tion is established because the loadee connects to the same channel created by
the loader, “crossVM”.

The last two blocks of code are simple functions, but one thing is atypical.
Each block is a method of the LocalConnection instance. You can confine ac-
cess from the connection to only those functions you wish to be executed from
a connecting remote SWF file.

anim.stop();

var as3as2LC:LocalConnection = new LocalConnection();
as3as2LC.connect("crossVM");

as3as2LC.playClip = function():Void {
 anim.play();
};

as3as2LC.showMsg = function(msg:String):Void {
 if (msg == undefined) { msg = ""; }
 trace("Loadee here. You said, '" + msg + "'");
};

See Also
“17.2 Loading and Displaying an Image or SWF File” on page 380 for loading
a SWF file.

386 | Chapter 17: How Do I Work with External Assets?

17.5 Unloading an Image or SWF File

Problem
You want to reduce RAM and performance overhead by unloading an image
or SWF file.

Solution
Use the unload() method of the Loader class, but be sure to clean up first by
stopping timers, closing streams, removing listeners, and more!

Discussion
The first part of this recipe is simple. A single method unloads a loaded image
or SWF file, and the optional additional steps of removing the Loader instance
from the display list and nullifying the variable reference are also demonstra-
ted. Hereafter, the host, or parent, SWF file is called “Loader” and the loaded
SWF file is called “Loadee.”

Loadee: loadee.swf

Beginning with the loadee, the first line of the SWF files frame script sets its
frame rate to 1 frame per second. This step is only helpful from a tutorial
standpoint because it reduces the number of times text will be traced to the
Output panel later on during testing.

The next three lines simply draw a maroon circle into the main timeline at
point (500, 40) to provide visual feedback to see when the file’s loaded and
unloaded.

stage.frameRate = 1;

this.graphics.beginFill(0x990000);
this.graphics.drawCircle(500, 40, 20);
this.graphics.endFill();

Loader: loader.swf

Now look at this recipe’s host, or parent, SWF file. The first block of the fol-
lowing script loads and displays a SWF file as discussed in “17.2 Loading and
Displaying an Image or SWF File” on page 380. The second block creates and
displays a sprite that serves as a button. The last block adds an event listener
that calls its function when the button sprite is clicked.

17.5 Unloading an Image or SWF File | 387

The first line of the listener function unloads the Loader instance. The second
line removes the instance from the display list, and the last line nullifies the
instance so the garbage collector can collect it from memory.

var loader:Loader = new Loader();
addChild(loader);
loader.load(new URLRequest("loadee.swf"));

var unloadBtn:Sprite = new Sprite();
unloadBtn.buttonMode = true;
unloadBtn.graphics.beginFill(0x000099);
unloadBtn.graphics.drawCircle(0, 0, 15);
unloadBtn.graphics.endFill();
unloadBtn.x = unloadBtn.y = 30;
addChild(unloadBtn);

unloadBtn.addEventListener(MouseEvent.CLICK, onClick, false, 0, true);
function onClick(evt:MouseEvent):void {
 if (loader != null) {
 loader.unload();
 removeChild(loader);
 loader = null;
 }
}

But wait...there’s more!

This process appears to be straightforward and, as described, works with sim-
ple content such as loaded images in almost every case. However, when it
comes to the average loaded SWF file, many problems arise. Put simply, many
features, when used, prevent a SWF file from unloading. This recipe covers
some of the most common examples of this problem.

This issue’s widely discussed, however, so if you run into a situation in which
your content isn’t unloading, you may be able to find additional information
on the web. Grant Skinner, for example, has written several posts about mem-
ory management and related topics in his blog. One in particular, covers many
of the concerns discussed here, and links to other related topics in his archive:
http://www.gskinner.com/blog/archives/2008/04/failure_to_unlo.html.

Enter frame events

One of the easiest problems to run into is also one of the easiest problems to
miss. If a loaded SWF file contains an enter frame event listener that hasn’t
been removed, the SWF file can’t be unloaded. You can see this in action by
adding the following to the loadee script, republishing, and testing the loader/
loadee relationship again. This code adds an event listener where none existed
before, and then traces a simple string to the Output panel every time an enter
frame event occurs.

388 | Chapter 17: How Do I Work with External Assets?

http://www.gskinner.com/blog/archives/2008/04/failure_to_unlo.html

addEventListener(Event.ENTER_FRAME, onLoop, false, 0, true);
function onLoop(evt:Event):void {
 trace("loaded enter frame");
}

When you try to unload the SWF file, although the visual feedback appears to
show that the content has unloaded, you notice the trace continues forever.
You can’t unload the SWF file.

The workaround is to be certain you remove all enter frame event listeners
before trying to unload the applicable SWF file. One approach to this problem
is to add a “clean-up” function to your SWF files. Inside this routine, place
any maintenance instructions, such as the removal of event listeners, and call
the function before unloading. Here’s an example of the function that should
be inserted into the loadee.

function cleanUp():void {
 removeEventListener(Event.ENTER_FRAME, onLoop);
}

The following snippet is an example of code you can add to the parent SWF
file, in the existing event listener responsible for triggering the unloading proc-
ess. The entire attempt is wrapped in a try..catch statement so that any re-
sulting errors can be suppressed from end-user view. The clean-up process is
invoked in the first two lines of the try segment.

First a local variable is created to reference the content of loader, as described
in “17.3 Communicating with an ActionScript 3.0 Loaded SWF” on page
382. Then the cleanUp() function you added to the loaded SWF file is called
prior to unloading.

function onClick(evt:MouseEvent):void {
 try {
 var loadee:MovieClip = MovieClip(loader.content);
 loadee.cleanUp();
 loader.unload();
 removeChild(loader);
 loader = null;
 } catch (err:Error) {
 trace("Error unloading:", err.message);
 }
}

If you test this improved setup, you find that removing the enter frame event
listener before unloading lets the SWF file fully unload. Not only do the visual
elements disappear from view, but the tracing caused by the loaded SWF file
ceases.

17.5 Unloading an Image or SWF File | 389

Timers

You can see the same scenario in action with a running timer. If you substitute
the enter frame addition to the original loaded SWF file, loadee.swf, with this
timer addition, then you witness the same behavior. This new code triggers a
trace every second.

var tmr:Timer = new Timer(1000);
tmr.addEventListener(TimerEvent.TIMER, onTimer, false, 0, true);
tmr.start();
function onTimer(evt:TimerEvent):void {
 trace("loaded timer");
}

The solution is similar, but the timer must be stopped prior to removing the
listener. The garbage collector can’t ever collect a running timer. The timer
reference should also be nullified after the listener’s removed.

function cleanUp():void {
 tmr.stop();
 tmr.removeEventListener(TimerEvent.TIMER, onTimer);
 tmr = null;
}

Since the host SWF file was set to call the cleanUp() function after its button
was clicked, no further change to the host is required. Upon adding the pre-
ceding code to the loaded SWF file, you find that the tracing ceases and this
version can also be collected from memory.

Streams and connections

Unfortunately, the list of steps to remove a SWF file from memory doesn’t stop
at enter frame and timer listeners. Several other causes may prevent a SWF file
from being unloaded, and here are a few of the most common solutions.

Loaded SWFs with Video
Pause and close all NetStream instances, remove all related event listeners,
and then nullify the NetStream instances. Then close all NetConnection in-
stances, remove all related event listeners, and nullify the NetConnection
instances.

Loaded SWFs with Sound
Stop all sounds from playing, close all streams, remove all related listeners,
and nullify any Sound, and SoundChannel instances.

Loaded SWFs with Local Connections
Close all LocalConnection instances, remove all related listeners, and nul-
lify the LocalConnection instances.

390 | Chapter 17: How Do I Work with External Assets?

A step in the right direction

Although stated at the outset of this chapter, this section bears repeating. This
list of memory management issues and workarounds is by no means complete.
However, this peek into the complex world of unloading content in Action-
Script 3.0 may give you a head start when it comes to debugging your own
projects.

See Also
“17.2 Loading and Displaying an Image or SWF File” on page 380 for loading
a SWF file.

17.6 Loading and Playing a Sound

Problem
You want to load and play an external MP3 file.

Solution
Create an instance of the Sound class to load and play the sound, and store the
sound in an instance of the SoundChannel class for discrete control.

Discussion
ActionScript 3.0 introduces a much more granular level of control over sound
playback. Previously, the Sound class did most of the heavy lifting, but Action-
Script 3.0 introduces a few new classes to both add and distribute functionality.

You still begin working with an external MP3 file by creating an instance of
the Sound class, loading a file, and playing the sound. People also often wait
for the sound to load before playing the file. You do this step in ActionScript
3.0 with an event listener added to the Sound instance, as you see in the fol-
lowing script.

However, a new class is introduced into the equation before the sound is
played. The SoundChannel class creates a discrete sound channel that you can
control separately from other sound channels (up to 32). When the sound is
played, it’s played into the new sound channel the way a single musical in-
strument is assigned to a specific channel in an audio mixing console.

var snd:Sound = new Sound();
snd.addEventListener(Event.COMPLETE, onComplete, false, 0, true);
snd.load(new URLRequest("music.mp3"));

17.6 Loading and Playing a Sound | 391

var channel:SoundChannel = new SoundChannel();
function onComplete(evt:Event):void {
 channel = snd.play();
 snd.removeEventListener(Event.COMPLETE, onComplete);
}

Finally, after the sound is played into a discrete channel, you no longer need
its load complete listener, so it’s removed. You can also manipulate (“17.7
Setting the Volume and Pan of a Sound” on page 392) and visualize the sound
(“17.8 Visualizing the Amplitude of a Sound” on page 393) without affecting,
or being affected by, other sounds in the SWF file.

“17.6 Loading and Playing a Sound” on page 391 through
“17.9 Unloading a Sound” on page 395 can be combined into
a single script to demonstrate in one file all the sound features
discussed in these recipes.

17.7 Setting the Volume and Pan of a Sound

Problem
You want to change the volume and/or pan (degree of the sound in each of
the left and right stereo channels) of a sound.

Solution
Start with the SoundTransform property of the SoundChannel class, and set the
values of the volume and pan properties.

Discussion
Building on “17.6 Loading and Playing a Sound” on page 391, this recipe adds
volume and pan control. The bolded lines in this recipe’s code can be added
to the onComplete() function from “17.6 Loading and Playing a Sound” on
page 391 to randomly assign a volume and pan level to the sound when it’s
initially played.

The first bold line creates trans, an instance of another new sound class,
SoundTransform, by querying the soundTransform property of the sound chan-
nel. Continuing the real-world metaphor started in “17.6 Loading and Playing
a Sound” on page 391, using the SoundTransform class (either directly or
through a sound channel’s soundTransform property) is similar to adjusting the
volume slider and/or pan knob on a single channel of an audio mixing console.

392 | Chapter 17: How Do I Work with External Assets?

These values were formerly in the ActionScript 2.0 Sound class
and have been moved to make transforming sounds more
consistent with other such alterations, like color transforma-
tions, in ActionScript 3.0. As with color transformations,
when altering a sound’s volume or pan setting you must first
edit a transformation instance (either newly created or re-
trieved from an existing channel, as in this example), and then
apply (or reapply) the edited transformation to the sound
channel.

function onComplete(evt:Event):void {
 channel = snd.play();
 snd.removeEventListener(Event.COMPLETE, onComplete);
 var trans:SoundTransform = channel.soundTransform;
 trans.volume = Math.random();
 trans.pan = Math.random() * 2 - 1;
 channel.soundTransform = trans;
}

The second bold line automatically sets the volume of trans to a random num-
ber between 0 and 1. The third bold line sets the pan of trans to a random
number between −1 and 1.

New to ActionScript 3.0, ranges similar to percentage values
(0–100) are now 0 to 1. Values of the volume property range
from 0 to 1, and values of the pan property range from −1 to
1. (−1 is far-left, 1 is far-right, and 0 is dead center).

Finally, trans is reapplied to the soundTransform property of channel, resulting
in a random volume between mute and full, and a random pan between far-
left and far-right each time the SWF file runs.

See Also
“17.6 Loading and Playing a Sound” on page 391 for loading and playing a
sound.

17.8 Visualizing the Amplitude of a Sound

Problem
You want to display the amplitude of a sound during playback.

17.8 Visualizing the Amplitude of a Sound | 393

Solution
Use the leftPeak and rightPeak properties of a sound’s channel to control the
visual appearance of one or more display objects.

Discussion
This recipe builds on “17.6 Loading and Playing a Sound” on page 391 and
“17.7 Setting the Volume and Pan of a Sound” on page 392, and visualizes
sound during playback. You can easily do this if you create traditional peak
meters that increase in size with a sound’s amplitude. The first two blocks of
this recipe’s script create these peak meters by drawing blue and green sprites
(for the left and right stereo channels, respectively), 20 × 100 pixels in size,
with a bottom-center registration point.

The last code block contains an event listener that sets the height of these
sprites to the value of an ActionScript sound channel’s leftPeak and right
Peak properties. These properties contain the left and right stereo amplitudes,
respectively, of any sound channel at query time. These values are always be-
tween 0 and 1, so multiplying them by 100 yields a maximum height of 100
pixels at full amplitude, and a minimum height of zero during silence.

var leftPeakSP:Sprite = createBar(0x0000FF);
leftPeakSP.x = 20;
leftPeakSP.y = 120;
addChild(leftPeakSP);
var rightPeakSP:Sprite = createBar(0x00FF00);
rightPeakSP.x = 50;
rightPeakSP.y = 120;
addChild(rightPeakSP);

function createBar(col:uint):Sprite {
 var sp:Sprite = new Sprite();
 var g:Graphics = sp.graphics;
 g.beginFill(col);
 g.drawRect(0, 0, 20, -100);
 g.endFill();
 return sp;
}

addEventListener(Event.ENTER_FRAME, onLoop, false, 0, true);
function onLoop(evt:Event):void {
 leftPeakSP.height = channel.leftPeak * 100;
 rightPeakSP.height = channel.rightPeak * 100;
}

394 | Chapter 17: How Do I Work with External Assets?

See Also
“17.6 Loading and Playing a Sound” on page 391 for loading and playing a
sound and “17.7 Setting the Volume and Pan of a Sound” on page 392 for
setting the volume and pan of a sound.

17.9 Unloading a Sound

Problem
To minimize impact on performance and available memory, you want to un-
load a sound after it has served its purpose.

Solution
Stop the sound, close the sound stream, and nullify the Sound and SoundChan
nel instances.

Discussion
Building on “17.6 Loading and Playing a Sound” on page 391 through “17.8
Visualizing the Amplitude of a Sound” on page 393, this recipe adds the ability
to unload a sound. The first block of code creates a clickable sprite used to
unload a sound, and the second block adds an event listener to the sprite that
responds when the user clicks on the sprite.

The first step in the listener function is to stop sound playback using the
stop() method of the SoundChannel instance. Next, the sound stream is closed.
All sound files, whether they’re streaming from a server or from a local file,
have a stream. This stream essentially refers to the background downloading
of file content while the sound is playing.

Closing the stream means you can halt the download process even if data
remains to be downloaded. This process is attempted in a try..catch state-
ment because the stream may be fully loaded by the time this instruction is
issued. A try..catch statement tries the requested commands, and catches any
errors thrown so they can be suppressed from end-user view. For debugging
purposes, the statement will trace the error to the Output panel in authoring
mode only.

After the channel playback is stopped and the sound stream is closed, you can
choose to nullify either or both variables, and remove the enter frame listener

17.9 Unloading a Sound | 395

(created in the previous recipe) to allow everything to be collected. The re-
maining four lines are explained after the script passage.

var unloadBtn:Sprite = new Sprite();
unloadBtn.buttonMode = true;
unloadBtn.graphics.beginFill(0x990000);
unloadBtn.graphics.drawRect(0, 0, 20, 20);
unloadBtn.graphics.endFill();
unloadBtn.x = 520;
unloadBtn.y = 10;
addChild(unloadBtn);

unloadBtn.addEventListener(MouseEvent.CLICK, onUnloadBtn, false, 0, true);
function onUnloadBtn(evt:MouseEvent):void {
 channel.stop();
 try {
 snd.close();
 } catch (err:IOError) {
 trace("Close stream error:", err.message);
 }

 var trans:SoundTransform = channel.soundTransform;
 trans.volume = 0;
 channel.soundTransform = trans;
 SoundMixer.stopAll();

 channel = null;
 snd = null;

 removeEventListener(Event.ENTER_FRAME, onLoop);
}

Depending on how you write your code, you may sometimes find that a sound
continues to play even after its stream has been closed, because the portion of
the external file that’s already been streamed, up to the point of closing the
stream, is still eligible for playback.

Stopping playback in the channel may be enough to prevent the sound from
continuing to play. If not, you may want to try one or two additional steps.
You may also want to mute the sound channel immediately after stopping it,
so that if content continues to play it won’t be heard, and/or stop all sounds
playing through the global SoundMixer class—the last of the new sound classes
discussed in this chapter. The SoundMixer class is analogous to the master mixer
on an audio mixing console. All discrete sound channels flow through the
SoundMixer and, therefore, can be stopped all at once.

See Also
“17.6 Loading and Playing a Sound” on page 391 for loading and playing a
sound and “17.7 Setting the Volume and Pan of a Sound” on page 392 for

396 | Chapter 17: How Do I Work with External Assets?

setting the volume and pan of a sound, and “17.8 Visualizing the Amplitude
of a Sound” on page 393 for visualizing the amplitude of a sound.

17.10 Loading and Playing a Video

Problem
You want to load and play an external FLV or H.264 video source.

Solution
Create NetConnection and NetStream instances, as well as a Video object for
display, and then play the NetStream instance.

Discussion
You have a few ways to play videos in Flash, the simplest of which is to use
one of the provided components designed for this purpose. However, in some
situations you don’t want to commit to the memory/file size to use the com-
ponents, or you may even be dissatisfied with a component’s functionality and
want to create your own player.

In these cases, the functionality of a player you create can range from simple
to robust, depending on how much time you want to put into coding its fea-
tures. This recipe covers the bare essentials, adding a few features in descriptive
segments. When you’ve completed this recipe, be sure to look at “17.11 Un-
loading a Video” on page 399 for information about unloading the video con-
tent.

The first step in creating your own ActionScript video player is to create an
instance of the Video class, and add it to the display list, to provide you with
a display object on which to watch your video. You see this in the first two
lines of the following script segment. Describing a real-world parallel, this is
like getting a television.

The second step is to instantiate a NetConnection object, as seen in the second
two lines of the script. This part lets you connect to a streaming video server,
but passing a value of null to the connect() method also lets you work with
progressive download video sources. Using a NetConnection is loosely analo-
gous to selecting which video on demand (VOD) service you wish to watch.

The next step is to create a NetStream instance, specifying the NetConnection
instance as its argument, and attaching the stream to the Video instance, as
seen in lines 5 and 6 of the following script. This step is somewhat akin to

17.10 Loading and Playing a Video | 397

selecting which video category offered by the previously selected VOD service
to watch (comedy, drama, and so on).

Finally, playing the video of your choice is like choosing and playing the video
from the previously selected genre that you want to view.

var vid:Video = new Video();
addChild(vid);

var vidConnection:NetConnection = new NetConnection();
vidConnection.connect(null);

var vidStream:NetStream = new NetStream(vidConnection);
vid.attachNetStream(vidStream);

vidStream.play("<your_video_here>.flv");

Although the previous bare-bones example works, you may also want to han-
dle automatically triggered events associated with the video. For instance, you
may receive notifications or errors associated with metadata embedded or
injected into the video, or even data from cue points added when encoding the
video.

The following script segment creates an object designed to trap this informa-
tion to prevent errors from appearing at runtime. This segment creates an ob-
ject with functions attributed to each of the onMetaData and onCuePoint event
handlers. This object is then passed to the client property of the NetStream
instance.

As a result, the cited functions respond to incoming metadata and/or cue
points. In this example, the duration metadata entry is traced to the Output
panel, as well as any cue point text data that may be encoded into the video.

var infoClient:Object = new Object();
infoClient.onMetaData = onMetaData;
infoClient.onCuePoint = onCuePoint;
vidStream.client = infoClient;

function onMetaData(info:Object):void {
 trace("duration:", info.duration);
}
function onCuePoint(info:Object):void {
 trace("cuepoint:", info.parameters.text);
}

In addition to listening for metadata and cue point information, you may also
want to react to any asynchronous errors that may occur when attempting to
play a video. This error usually occurs when a server calls a method that the
client hasn’t defined, so it’s handy to have active when scripting a no-frills
video player.

398 | Chapter 17: How Do I Work with External Assets?

The following segment adds event listeners for asynchronous event errors to
both the NetConnection and NetStream objects.

vidConnection.addEventListener(AsyncErrorEvent.ASYNC_ERROR, ¬
 onAsyncError, false, 0, true);
vidStream.addEventListener(AsyncErrorEvent.ASYNC_ERROR, ¬
 onAsyncError, false, 0, true);
function onAsyncError(evt:AsyncErrorEvent):void {
 trace(evt.text);
}

Finally, if you want your video to do more than just play, then you want to
script an accompanying controller. This recipe provides one example of con-
troller functionality by creating a button to toggle the pause state of the video.

var pauseBtn:Sprite = new Sprite();
pauseBtn.buttonMode = true;
pauseBtn.graphics.beginFill(0x000099);
pauseBtn.graphics.drawRect(0, 0, 20, 20);
pauseBtn.graphics.endFill();
pauseBtn.y = vid.y + vid.height + 5;
addChild(pauseBtn);

pauseBtn.addEventListener(MouseEvent.CLICK, onPauseToggle, false, ¬
 0, true);
function onPauseToggle(evt:MouseEvent):void {
 vidStream.togglePause();
}

See Also
“17.11 Unloading a Video” on page 399 for information about unloading a
video.

17.11 Unloading a Video

Problem
You want to unload a video after it has served its purpose.

Solution
Pause and close NetStream instances. Close NetConnection instances. Remove
all listeners and nullify all stream and connection references.

17.11 Unloading a Video | 399

Discussion
Building on “17.10 Loading and Playing a Video” on page 397, this recipe
provides a mechanism for unloading the video. The first block of code creates
a button to click for unloading, and adds it to the display list. The second block
of code creates the button’s event listener.

To unload a video, you must first pause and then close the NetStream instance
(vidStream). You must then remove any event listeners added to this instance
(such as the asynchronous error listener used in this example) and nullify the
instance to let it be collected. You must then close the NetConnection instance
(vidConnection), remove any listeners attached thereto, and nullify that in-
stance to allow it, too, to be collected.

var unloadBtn:Sprite = new Sprite();
unloadBtn.buttonMode = true;
unloadBtn.graphics.beginFill(0x990000);
unloadBtn.graphics.drawRect(0, 0, 20, 20);
unloadBtn.graphics.endFill();
unloadBtn.x = vid.width - 20;
unloadBtn.y = vid.y + vid.height + 5;
addChild(unloadBtn);

unloadBtn.addEventListener(MouseEvent.CLICK, onUnloadBtn, false, 0, true);
function onUnloadBtn(evt:MouseEvent):void {
 vidStream.pause();
 vidStream.close();
 vidStream.removeEventListener(AsyncErrorEvent.ASYNC_ERROR, onAsyncError);
 vidStream = null;
 vidConnection.close();
 vidConnection.removeEventListener(AsyncErrorEvent.ASYNC_ERROR, ¬
 onAsyncError);
 vidConnection = null;
 //
 removeChild(vid);
 vid = null;
}

Only after all of these steps can the garbage collector remove the video. Finally,
if you’re also finished with the video object used to display the video, then you
can remove it from the display list, remove any relevant event listeners, and
nullify that instance, as well.

See Also
“17.10 Loading and Playing a Video” on page 397 for information regarding
loading and playing a video.

400 | Chapter 17: How Do I Work with External Assets?

PART IV

Migration

Part IV distills everything covered in Part I through Part III and applies those
skills to the issue of migration—updating legacy projects written in Action-
Script 2.0 to shiny new ActionScript 3.0 code.

You’ll start by walking through a sample migration of a particle system. The
chapter highlights as many migration issues as possible in a simple example,
and you’ll acquire some practical experience with the various steps required
to modernize your code. You’ll start to address the important question: should
I migrate or rewrite? The answer’s not always simple.

The final chapter concludes the book with a dual-purpose cross-reference and
code-comparison chapter. Specific migration issues are demonstrated in quick
syntax examples, comparing ActionScript 2.0 and 3.0 uses. Where applicable,
references to more complete discussions elsewhere in the book are included.
Select new material in the same comparative format rounds out the book.

Chapter 18, A Sample Migration

Chapter 19, Where Did It Go?

CHAPTER 18

A Sample Migration

You’ll typically find it fairly straightforward to choose which version of
ActionScript to use when you start a new project. You usually decide based on
which version of the Flash Player you’re trying to target, the need for enhanced
performance, or a specific feature you wish to use. Deciding what to do with
existing projects, however, is another matter. Often you need to determine
whether or not it’s worth the time and effort to migrate to ActionScript 3.0
from a prior version of the language, or just to start over.

You can’t easily determine what to do; each project’s characteristics probably
significantly affect your decision. The clarity of your existing code, the extent
to which you use particular features, project size, and your comfort level,
among other factors, help you decide.

This chapter walks you through a small-scale, manufactured example of a mi-
gration from ActionScript 2.0 to ActionScript 3.0. Read the text linearly, as
code isn’t always explained in detail twice. It is very important to understand
that this example isn’t a demonstration of real-world best practices at work.
This example is significantly constrained, and attempts to insert as many mi-
gration issues as possible into its tiny footprint. Throughout the example, what
may appear to be odd choices, poorly optimized code, or even mistakes, have
been intentionally injected into the code to either set up a migration task or
bring the two versions into a parallel structure.

For example, objects are added out of order intentionally to demonstrate depth
management, different methods of providing or checking default values have
been used, objects are created in a variety of ways, both component and custom
buttons are used, function/method placement isn’t consolidated, and so on.
The project demonstrates both timeline- and class-based coding, but is by no
means an example of good object oriented programming practices. The class
and timeline are coupled too tightly, to mention one example.

403

If you remember that this scenario is artificial, designed to illustrate migration
issues, it may help you form a plan or checklist of sorts to help when it comes
time to update your next legacy project.

A Simple Particle System
This representative example creates a particle system that performs a few basic
tasks. At startup, it plays an ambient audio loop. It then attempts to draw a
blue square particle upon each enter frame event, based on a simple condi-
tional. If successful, the particle moves away from the center of the stage, ro-
tating and fading to transparency. Each time a particle is created, its name is
added to a text field.

Finally, two buttons add functionality to the system. The first opens a web
page. The second selects the previously created particle, replaces its content
with a larger red square, and plays a new random sound. The altered particle
affects its associated sound, panning based on the particle’s position, and fad-
ing based on the particle’s alpha.

Both examples require a custom button with a linkage of "BtnLink" and a
Button component. The ActionScript 2.0 FLA file also requires an empty movie
clip called "Particles." These assets are provided in the downloadable source
files (see Preface).

ActionScript 2.0
To start, the complete ActionScript 2.0 code will be presented, with numbered
lines. The project features a single class used by a brief frame script in the main
timeline. This structure helps demonstrate migration issues related to the use
of classes, as well as general syntax. Discussion of each script follows, with a
general explanation following the ActionScript 2.0 code, and migration com-
ments following the ActionScript 3.0 code.

Main Timeline
The main timeline builds the user interface, and creates an instance of the
Particles class by adding a movie clip to which the class is linked. The class
does all the work with the particles, and will be explained in a moment.

1 import mx.controls.Button;
2
3 if (!imgURL) {
4 var imgURL:String = "bg.jpg";
5 }
6

404 | Chapter 18: A Sample Migration

7 var txtFrmt:TextFormat = new TextFormat();
8 txtFrmt.align = "right";
9 var txtFld:TextField = this.createTextField("particleInfo", 1, 380, ¬
 10, 100, 380);
10 txtFld.setNewTextFormat(txtFrmt);
11
12 bg = this.createEmptyMovieClip("bckgrnd", 2);
13 bg.loadMovie(imgURL);
14 bg.swapDepths(txtFld);
15
16 var snd:Sound = new Sound();
17 snd.loadSound("../audio/bass_back.mp3");
18 snd.onLoad = function(success:Boolean):Void {
19 if (success) {
20 snd.setVolume(10);
21 snd.start(0, 100);
22 }
23 };
24
25 var particles:MovieClip = attachMovie("Particles", "particles", 3);
26
27 var controls:MovieClip = this.createEmptyMovieClip("btns", 4);
28 controls._y = 360;
29
30
31 var linkBtn:MovieClip = controls.attachMovie("BtnLink","link", 5);
32 linkBtn._x = 20;
33 linkBtn.siteLink = "http://www.learningactionscript3.com/";
34 linkBtn.onRelease = function():Void {
35 getURL(this.siteLink, "_blank");
36 };
37
38 var changePBtn:Button = controls.createClassObject(mx.controls.Button, ¬
 "chng", 6, {label:"Change"});
39 changePBtn.move(changePBtn.x + 120, 0);
40 function changeParticle():Void {
41 var p:MovieClip = particles["particle" + (particles.count - 1)];
42 p.clear();
43 p.beginFill(0xFF0000);
44 makeRect(p, -20, -20, 40, 40);
45 p.endFill();
46 particles.particleSound(p);
47 }
48 changePBtn.addEventListener("click", changeParticle);
49
50 function makeRect(mc:MovieClip, xp:Number, yp:Number, w:Number, ¬
 h:Number):Void {
51 mc.moveTo(xp, yp);
52 mc.lineTo(xp + w, yp);
53 mc.lineTo(xp + w, yp + h);
54 mc.lineTo(xp, yp + h);
55 mc.lineTo(xp, yp);
56 }

ActionScript 2.0 | 405

The following includes discussions of ActionScript 2.0 syntax, but also a basic
explanation of the project—much of which applies to both ActionScript 2.0
and 3.0 versions.

Import

Line 1 imports the Button component class to make it accessible to the
compiler.

FlashVars

Lines 3 through 5 check for the presence of a variable called imgURL, and
then initialize it to the URL of a background image in case no value for
the variable is found. This step lets you pass a path to a background image
into the project through the HTML host file. If this feature isn’t used, the
hard-coded background image isn’t displayed.

TextFormat

Lines 7 and 8 create a simple TextFormat instance to right-justify text in a
field.

TextField

Lines 9 and 10 dynamically initialize a TextField. Line 9 creates the field
and gives it an instance name of particleInfo, places the field at a depth
of level 1, places the field at point (380, 10), and sizes the field to a width
of 100 pixels and height of 380 pixels. Line 10 applies the previously
created TextFormat to the field.

Depth Management
ActionScript 2.0 requires that you set a level for every asset added to your
project. Asset levels are hard-coded in lines 9, 12, 25, 27, 31, and 38. This
step requires either careful preplanning or arbitrary level assignment (but-
tons between 100 and 200, movie clips between 300 and 400, and so on)
and a good memory.

You can determine the next available level for symbol instances like movie
clips, using the getNextHighestDepth() method. However, significant
problems arise when adding components (which occurs later in the script)
because the getNextHighestDepth() method can return errant levels be-
ginning with 1048576. Not only does this wreak havoc with your level
management, it’s outside the valid level range, making it impossible to
remove assets dynamically.

To get around this problem, you can adopt the significantly more con-
fusing approach of using the DepthManager class, created for managing
depths of Version 2 Components, generally making things more difficult.

Line 14 swaps the depths of the text field and background image, making
the background image the bottom-most asset. The text field and back-
ground were added in reverse order to demonstrate this feature.

406 | Chapter 18: A Sample Migration

Variable Declaration
ActionScript 2.0 allows sloppy variable use such as not declaring or typing
the variable bg in line 12.

Image Loading
Lines 12 and 13 display a background image. Line 12 creates an empty
movie clip, and sets its depth to level 2. Line 13 loads the image.

Sound
Lines 16 through 23 play a background sound. Line 16 creates an instance
of the Sound class. Line 17 loads the sound.

Handling Events
Lines 18 through 23 create an event handler to process, in this case, a load
complete event. Upon load completion, it sets the volume of the sound to
10 percent, so you can clearly hear other sounds atop this one, and plays
the sound from the beginning, looping 100 times for longer play time.
Another event handler appears in lines 34 through 36.

Void
Line 18 uses Void to tell the compiler that no data’s returned from the
function. This action occurs again on lines 34 and 40.

Percent Values Scale
Line 20 manipulates a percent scale, and uses values between 0 and 100.

Dynamic Creation of Movie Clip and Instantiation of Custom Class
Line 25 creates an instance of a Library-based movie clip with a linkage
name of Particles. It gives the clip an instance name of particles, and
sets its depth to level 3. Note here that the Particles class responsible for
particle control can only easily be integrated into the project by associating
the class with a movie clip. This quality means that you have to have at
least an empty movie clip in your Library, already set up with the appro-
priate class name.

Alternatives to this approach include manipulating the movie clip proto-
type, which is a bit messy and very difficult to bring forward into Action-
Script 3.0, or switching to object-oriented techniques and using compo-
sition. Both approaches are significantly more involved than relying on a
Library symbol.

Lines 27 and 31 also dynamically create movie clip instances. Line 27 cre-
ates an empty container (positioned in line 28) to hold buttons, and line
31 creates the first of two buttons, the functionally of which is discussed
next. Both lines hard code depths, to 4 and 5, respectively.

Finally, line 38 also dynamically creates a movie clip equivalent, in this
case a component. This step is relevant because, in the space of a dozen

ActionScript 2.0 | 407

or so lines of code, you see three separate ways, each with unique char-
acteristics, to place visible content on the stage.

Property Underscores
Line 28 demonstrates that the movie clip’s _y property, like most proper-
ties in ActionScript 2.0, is preceded by an underscore.

Custom Button Instantiation
Lines 31 through 36 add a Library-based custom button with a linkage
name of BtnLink to the project. Line 31 places it into the controls movie
clip, gives it an instance name of link, and sets its depth to level 5.

Line 32 positions the x location of the button. The y location remains 0,
and appears to be 360 because the button is in the controls movie clip—
which, itself, appears at a y location of 360.

Lines 34 through 36 add a mouse release event handler to the button.

Dynamic versus Sealed Classes
Line 33 dynamically creates a property called siteLink, and then populates
it with a string. This step’s really nothing more than a variable, but here
it’s an example of dynamic versus sealed classes. In ActionScript 2.0, you
could add properties to instances of most classes, even though this practice
wasn’t recommended. In ActionScript 3.0, however, most classes are
sealed, meaning you can’t dynamically alter them in this way. You can use
this approach only with select dynamic classes in ActionScript 3.0.

The siteLink property is being added to the button, which you can’t do
in ActionScript 3.0. The “ActionScript 3.0” on page 413 discusses why
this example was included, and also discusses another more directly anal-
ogous example.

Opening a URL
Line 35 opens a URL in a new window, getting the URL from the site
Link property of the button to which the event handler is attached.

Dynamically Instantiating a Component
Lines 38 through 48 add and empower a Button component. (As with a
custom asset, a Button component must be in your Library.) Two different
kinds of user-clickable objects demonstrate both the use of movie clips
and the use of components.

Line 38 adds the button to the controls container movie clip, gives it an
instance name of chng, sets it depth to level 6, and gives it a label of
“Change.” Line 39 uses the button’s move() method to set it to an x posi-
tion of 120, leaving the y position at 0, to be affected by the position of
the parent container. The extraneous use of the x property (rather than
setting the value to 120 directly) is to show that ActionScript 2.0 v2 com-
ponents use properties without underscores, contrary to other properties.

408 | Chapter 18: A Sample Migration

Lines 40 through 48 apply an event listener to the button. Lines 40 through
47 define the function triggered by the button’s click event, set in line 48.

Lines 41 through 45 are discussed in the following paragraphs, and line
46 triggers the particleSound() method of the selected particle in the
Particles class.

Accessing Objects by Instance Name
Line 41 creates a reference to the previously created particle by accessing
the movie clips within the particles movie clip and finding the particle
by instance name. The instance name is built with the string "particle"
and the number of the current particle minus 1.

Using the Drawing API
Lines 42 through 45 clear the contents of the particle, create a red fill, call
a function that draws a centered, 40 × 40 pixel rectangle in the selected
particle, and close the fill.

Lines 50 through 56 use the lineTo() and moveTo() methods to draw a
rectangle, as the drawRect() method doesn’t exist in ActionScript 2.0.

Particles Class
The Particles class creates each particle, establishes its behavior, and ulti-
mately removes it from the project.

1 import mx.utils.Delegate;
2
3 class Particles extends MovieClip {
4
5 private var _count:Number;
6 private var _soundNum:Number = 0;
7 private var _tempSound:Sound;
8
9 public function Particles() {
10 _x = Stage.width / 2;
11 _y = Stage.height / 2;
12
13 _tempSound = new Sound();
14 _tempSound.loadSound("../audio/note0.mp3");
15 _tempSound.onLoad = Delegate.create(this, ¬
 onSoundPreloaded);
16 }
17
18 private function onSoundPreloaded(success:Boolean):Void {
19 if (success) {
20 if (_soundNum < 7) {
21 _soundNum++;
22 _tempSound.loadSound("../audio/note" + _¬
 soundNum + ".mp3");
23 }

ActionScript 2.0 | 409

24 }
25 }
26
27 private function onEnterFrame():Void {
28 makeParticle(0x0066CC, Math.random() * 10 + 10);
29 }
30
31 private function makeParticle(col:Number, ¬
 size:Number):Void {
32 if (!col){ col = 0x003366; }
33 if (!size){ size = 20; }
34
35 if (Math.random() * 10 <= 2) {
36 if (_count == undefined) { _count = 0; }
37
38 var p:MovieClip = this.createEmptyMovieClip("particle" + _¬
 count, this.getNextHighestDepth());
39 _count++;
40 p.beginFill(col);
41 _parent.makeRect(p, -size/2, -size/2, size, size);
42 p.endFill();
43
44 p.xVel = Math.random() * 10 - 5;
45 p.yVel = Math.random() * 2 - 1;
46 p.onEnterFrame = onRunParticle;
47
48 _parent.txtFld.text += p._name + "\n"
49 _parent.txtFld.scroll = _parent.txtFld.maxscroll;
50 }
51 }
52
53 public function particleSound(p:MovieClip):Void {
54 if (!p.snd && _soundNum > 0){
55 var num:Number = int(Math.random() * _soundNum);
56 p.snd = new Sound();
57 p.snd.loadSound("../audio/note" + num + ".mp3");
58 p.snd.onLoad = function(success:Boolean):Void {
59 p.snd.start();
60 }
61 }
62 }
63
64 private function onRunParticle():Void {
65 var p:MovieClip = this;
66 p._x += p.xVel;
67 p._y += p.yVel;
68 p._rotation += 5;
69 p._alpha -= 2;
70
71 if (p.snd) {
72 p.snd.setVolume(p._alpha / 10);
73 p.snd.setPan(p._x / this._parent._x * 200)
74 }
75

410 | Chapter 18: A Sample Migration

76 if (p._alpha <= 0) {
77 p.removeMovieClip();
78 }
79 }
80
81 public function get count():Number {
82 return _count;
83 }
84 }

The following features a brief explanation of particle behavior. Where appro-
priate, comments have been added to address ActionScript 2.0-specific con-
cepts and, occasionally, to explain decisions made to demonstrate migration
issues. Basic syntax issues discussed in the main timeline aren’t mentioned
again.

Import
Line 1 imports the Delegate class to make it accessible to the compiler.

Class Structure
Lines 3 and 9 make up the key elements of the ActionScript 2.0 class
structure. You’ll see later that ActionScript 3.0 begins a class with the
package identifier. Line 3 shows that this class extends MovieClip. (It’s
linked to a Library movie clip.) The class constructor beginning on line 9
centers the particle system on the stage, and creates and preloads the first
particle-specific sound.

Class Properties
Lines 5 through 7 create class properties but only initialize one. This step
factors later into the use of default values.

Number Data Types
Lines 5 and 6 use the Number data type for integer counters because no
other number data types are available. You can also see this property in
lines 31 and 55. The value assigned in line 55, as a good example, is always
an integer, but must still be typed as Number.

Access to the Stage
Lines 10 and 11 show that Stage is a global object.

Method Closure
Line 15 assigns the onLoad() event handler for the sound created and loa-
ded in lines 13 and 14, respectively. Delegate is used here, however, to
demonstrate that ActionScript 2.0 does not have method closures. Due to
this setup, the Delegate class must pass the relevant scope to the event
handler for it to access the needed properties.

Preloading Sounds
To prevent delays when triggering sounds later, lines 18 through 25 load
seven additional sounds, but don’t play them. The name of the audio file

ActionScript 2.0 | 411

contains indices 0 through 7. The first sound, note0.mp3, was loaded in
the class constructor, so the soundNum property is incremented before the
load.

Class Enter Frame Method
Lines 27 through 29 demonstrate that, because this class extends Movie
Clip, ActionScript 2.0 lets you create a method for a movie clip event
handler, without any further assignment. That is, because the method has
the same name as a MovieClip event handler, it’s executed upon every
movie clip enter frame event. This method attempts to create a blue par-
ticle that’s between 10 and 20 pixels square.

Particle Creation
Lines 31 through 51 create each particle. Individual aspects of this func-
tion will be discussed in separate headers, but the basic creation process
is as follows. Line 35 checks to see if a newly created random number
between 0 and 10 is less than or equal to 2. If so, it creates the particle.
This action both prevents a particle from being created on every enter
frame, and adds a nice feeling of randomness to the process.

Each particle is drawn into an empty movie clip, with its depth set to the
next highest available level. It’s given an instance name of particleN,
where N is an integer from the _count variable, incremented each time a
particle’s created. A fill of the color passed into the method is created, a
rectangle is drawn using the makeRect() function discussed in the main
timeline (using the size passed into the function), and the fill’s closed.

Next, random x and y velocities are chosen for each particle, providing
movement between 5 and −5 for x and between 1 and −1 for y. The onRun
Particle() method is then assigned as the enter frame event handler for
each particle. (This step’s in contrast to the enter frame event handler
assigned at the class level that creates the particles.)

Finally, the name of the particle, and a subsequent new line, are added to
the text field in the main timeline (the particle’s parent). This step is dis-
cussed in detail in the upcoming note, “Manipulating Text Fields.”

Default Values
Lines 32 and 33 validate the argument values of col and size, assigning
values if none are found. ActionScript 2.0 has no built-in mechanism for
assigning default values in functions. As such, you must assign them man-
ually.

Further, line 36 checks for a value of undefined in _count and, if found,
initializes the property to 0. This demonstrates a change in the way
ActionScript 3.0 handles default values, and this is also why _count wasn’t
initialized in line 5.

412 | Chapter 18: A Sample Migration

Accessing Objects in the Parent
Lines 41, 48, and 49 all access objects in the parent, in this case the main
timeline.

Manipulating Text Fields
The name of the particle, and a subsequent new line, are added to the text
field in the main timeline (the particle’s parent). The text field is then
scrolled to the bottom line so you can always see the newly added name.

Particle Sound
Lines 53 through 62 create and play particle-specific sound. A validation
first tests to be sure a sound for this particle doesn’t already exist, and that
at least one sound has preloaded (via the incremented counter in line 21).
If so, a random number is chosen from the current number of preloaded
sounds (line 57) and a new sound is created and stored in the snd property
within the current particle. The random sound is then loaded and played
upon load completion.

(Many people consider it a best practice to group private and public meth-
ods (and properties). However, this method’s optional, and has been ne-
glected in order to arrange this example in a slightly more linear fashion
for easier explanation.

Particle Behavior
Lines 64 through 79 establish the independent behavior for each particle.
For each enter frame event, lines 66 and 67 add the x and y velocity values
to the particle’s location, line 68 rotates the particle 5 degrees, and line 69
reduces the alpha by 2 percent.

Lines 71 through 74 controls particle-specific audio. The volume and pan
of the sound are set according to the particle’s alpha and x coordinate,
respectively.

Finally, lines 76 through 78 remove the particle when its alpha is less than
or equal to 0.

Getter
The last three lines of the class create a getter that returns the value of the
_count property when requested, as seen in line 41 of the main timeline
frame script.

ActionScript 3.0
The following are the ActionScript 3.0 versions of the two previous scripts.
Only language version-specific comments are included here so, if you’re un-
clear on overall functionality, see the equivalent ActionScript 2.0 section.

ActionScript 3.0 | 413

Main Timeline
The following is the main timeline frame script.

1 import fl.controls.Button;
2
3 var imgURL:String = "bg.jpg";
4 if (root.loaderInfo.parameters.imgURL) {
5 imgURL = root.loaderInfo.parameters.imgURL;
6 }
7 var txtFrmt:TextFormat = new TextFormat();
8 txtFrmt.align = TextFormatAlign.RIGHT;
9 var txtFld:TextField = new TextField();
10 txtFld.x = 380;
11 txtFld.y = 10;
12 txtFld.width = 100;
13 txtFld.height = 380;
14 txtFld.defaultTextFormat = txtFrmt;
15 addChild(txtFld);
16
17 var bg:Loader = new Loader();
18 addChildAt(bg, 0);
19 bg.load(new URLRequest(imgURL));
20
21 var snd:Sound = new Sound();
22 snd.load(new URLRequest("../audio/bass_back.mp3"));
23 snd.addEventListener(Event.COMPLETE, onSoundLoaded, false, 0, ¬
 true);
24 function onSoundLoaded(evt:Event):void {
25 var sndChannel:SoundChannel = new SoundChannel();
26 sndChannel = evt.target.play(0, 100);
27 var sndTransform:SoundTransform = sndChannel.soundTransform;
28 sndTransform.volume = .1;
29 sndChannel.soundTransform = sndTransform;
30 evt.target.removeEventListener(Event.COMPLETE, onSoundLoaded);
31 }
32
33 var particles:Particles = new Particles();
34 addChild(particles);
35
36 var controls:MovieClip = new MovieClip();
37 controls.y = 360;
38 addChild(controls);
39
40 var siteLink:String = "http://www.learningactionscript3.com/";
41 var linkBtn:SimpleButton = new BtnLink();
42 linkBtn.x = 20;
43 controls.addChild(linkBtn);
44
45 linkBtn.addEventListener(MouseEvent.CLICK, onShowLink, false, 0, ¬
 true);
46 function onShowLink(evt:MouseEvent):void {
47 navigateToURL(new URLRequest(siteLink), "_blank");
48 }

414 | Chapter 18: A Sample Migration

49
50 var changePBtn:Button = new Button();
51 changePBtn.x = 120;
52 changePBtn.label = "Change";
53 controls.addChild(changePBtn);
54
55 changePBtn.addEventListener(MouseEvent.CLICK, onChangeParticle,¬
 false, 0, true);
56 function onChangeParticle(evt:MouseEvent):void {
57 var p:MovieClip = MovieClip(particles.getChildByName(¬
 "particle" + (particles.count - 1)));
58 if (p != null) {
59 p.graphics.clear();
60 p.graphics.beginFill(0xFF0000);
61 p.graphics.drawRect(-20, -20, 40, 40);
62 p.graphics.endFill();
63 particles.particleSound(p);
64 }
65 }

The following is an explanation of ActionScript 3.0-specific issues that appear
in the main timeline frame script.

Import

Notice in Line 1 that the class path has changed from mx to fl.

FlashVars

FlashVars are no longer stored as global variables in the root timeline.
Instead, they’re stored in the parameters object of the LoaderInfo instance
of the root, as seen in line 4.

TextFormat

Although you can use appropriate string values, it is a best practice to use
relevant constants for many property values in ActionScript 3.0. In this
case, the format’s align property is populated with the RIGHT constant of
the TextFormatAlign class, used in line 8.

The application of the TextFormat instance in line 14 has been changed
from setNewTextFormat() to defaultTextFormat().

TextField

All display objects are created with a simple consistent new <class
name>() structure. The ActionScript 2.0 TextField creation method is
replaced with the ActionScript 3.0 instantiation (line 9) and followed by
the assignment of property values (lines 10 through 14).

Depth Management
The ActionScript 3.0 display list automatically handles depth manage-
ment so you don’t have to manually assign levels or worry about methods
like getNextHighestDepth() or the DepthManager. As such, you don’t see
any level assignments in any of the object instantiation routines.

ActionScript 3.0 | 415

However, you can still control depths. For example, you still have a swap
Depths() method for moving the background image below the text field,
as seen in line 14 of the ActionScript 2.0 main timeline frame script code.
However, you have an easier way to handle this when objects are added
to the display list. In ActionScript 2.0, existing objects are replaced when
a new object is added to the same level. ActionScript 3.0, however, moves
all objects above the target level one level higher, and then inserts the
addition where specified.

Therefore, you can easily place the background image behind the text field
when the image is added, as seen in line 18. The addChildAt() method is
used, specifying level 0. The background image appears in level 0, and the
text field is moved to level 1.

Variable Declaration
While you can in some cases omit typing a variable, all variables must be
declared with the var identifier.

Image Loading
Rather than creating an empty movie clip, a Loader display object is used
lines (17 through 19). Instead of using the image path as a string for the
load() method, ActionScript 3.0 requires a consistent use of the
URLRequest class for processing the URL prior to use.

Sound
Although the creation of the Sound instance is the same (line 21), sound
management diverges significantly from that point on. Loading is similar,
with a change of method name to the more consistent load() and the ever-
needed URLRequest instance instead of a string. The event handling is sig-
nificantly different in ActionScript 3.0 (and is explained in a moment), but
the idea behind it, as it pertains to sound, is the same: wait until the sound
is loaded, and then proceed.

However, three new classes play a big part of sound management. First,
each sound is typically played into its own discrete sound channel, an
instance of the SoundChannel class (lines 25 and 26). This step is a require-
ment if you wish to perform sound transformations. Where the volume and
pan properties existed in the Sound class in ActionScript 2.0, they’re now
accessible through the soundTransform property of the SoundChannel class.

To effect such a change, an instance of the second new class, SoundTrans
form is derived from the SoundChannel soundTransform property (line 27),
the desired property is changed (volume, line 28) and the new instance is
reapplied to the SoundChannel soundTransform property once again
(line 29).

416 | Chapter 18: A Sample Migration

The third new class, not used in this example, is the SoundMixer class. This
class lets you manipulate all the sounds at once. The isolation of sounds
into their own discrete channels lets you control each sound separately
and with greater precision.

Handling Events
Event handling is very different in ActionScript 3.0. For detailed informa-
tion, see Chapter 14. From a migration standpoint, event handlers are no
longer attached to the target of the event. Instead, event listeners are cre-
ated, specifying an event to listen for, and a function to trigger upon an
occurrence of that event (lines 23 through 31).

A mandatory parameter is used to receive information from the event that
can be used inside the function. For example, the target of the event in the
mentioned listener is the snd object. That is referenced by evt.target in
lines 26 and 30.

The events are specified as constants, as discussed previously with the
TextFormat align property, and optional parameters allow more granular
control over when the event is processed (capture or target/bubbling pha-
ses and priority) as well as whether weak references are used for a little
backup help in the memory management department.

Finally, you should remove the listener when you no longer need it, for
optimal memory management (line 30). You also find event listeners in
lines 45 through 48, and 55 through 65.

Void
Void is now lower case (lines 24, 46, 56).

Percent Values Scale
Percent value scales are now from 0 to 1 (instead of 0 to 100).

Dynamic Creation of Movie Clip and Instantiation of Custom Class
ActionScript 3.0 lets you much more easily use custom classes as display
objects. You don’t need to rely on a Library-based symbol, or more con-
voluted methods, to instantiate the class. Instead, provided the class ex-
tends MovieClip, Sprite, Shape, or another applicable display object, you
just need to instantiate it the way you would any other display object: new
<classname>(); (line 33). You must then add the instance to the display
list for the user to see it.

Another movie clip is dynamically generated in line 36. Note the simplicity
of creating an empty movie clip container (to hold buttons). Rather than
using one of many methods, such as createEmptyMovieClip(), the consis-
tent new MovieClip() approach is all you need, coupled with the add
Child() method on line 38.

ActionScript 3.0 | 417

Property Underscores
Line 37 is one example of the fact that ActionScript 3.0 properties are not
preceded by an underscore.

Custom Button Instantiation
The same custom button used in the ActionScript 2.0 version can be in-
stantiated here as a proper button (SimpleButton, line 41) rather than using
a MovieClip method and typing the instance as a MovieClip or Object. It’s
then positioned, and added to the display list (lines 42 and 43,
respectively).

Dynamic versus Sealed Classes
In this case, however, the SimpleButton class is a sealed class, so you can’t
add the site URL used by the button as a property. In this case, it’s stored
in a standard variable.

You could have brought these two examples into a more parallel structure
by using movie clips for buttons in both cases, because MovieClip is a
dynamic class and would allow the addition of a property. However, the
purpose of this chapter is not to change the way you want to work, but to
understand how best to migrate a legacy project to the new syntax of
ActionScript 3.0. Taking advantage of the new SimpleButton class is de-
sirable, and even lets you create a button entirely from code (no Library
assets) if preferred.

To see an exact parallel, you can add an example property to the text field
instance in both versions of the project. In the ActionScript 2.0 version,
adding

txtFld.inUse = true;

after line 10 works. However, adding the same line in the ActionScript 3.0
version after line 15 generates an error because the TextField class is sealed
in ActionScript 3.0.

Opening a URL
Line 47 shows the new syntax for accessing a URL, using the navigate
ToURL() method and URLRequest instance.

Dynamically Instantiating a Component
Adding a component to your project on the fly is really no different from
adding a movie clip or other display object. Just use the Button class as
you would another display object class, as seen in line 50. (As with a cus-
tom asset, a Button component must be in your Library.)

Accessing Objects by Instance Name
You can’t access a dynamically created object directly by instance name.
That is, setting the name property in ActionScript 3.0 doesn’t make it

418 | Chapter 18: A Sample Migration

possible to reference the object using the dot syntax object model. Instead,
you must use the getChildByName() method, as seen in line 57.

Using the Graphics Class (formerly the Drawing API)
Although the clear(), beginFill(), and endFill() methods are the same
in ActionScript 3.0, they’re methods of the Graphics class, accessed
through the graphics property instance of each relevant display object.
Further, you don’t need a custom function to draw a rectangle, as the new
drawRect() method does that for you.

Particles Class
The Particles class functionality is the same in ActionScript 3.0. It creates
each particle, establishes its behavior, and ultimately removes it from the
project.

1 package {
2
3 import flash.display.*;
4 import flash.events.*;
5 import flash.media.*;
6 import flash.net.*;
7
8 public class Particles extends Sprite {
9
10 private var _count:int;
11 private var _soundNum:int = 0;
12 private var _tempSound:Sound;
13
14 public function Particles() {
15 addEventListener(Event.ADDED_TO_STAGE, onAdded, ¬
 false, 0, true);
16 addEventListener(Event.ENTER_FRAME, onLoop, false, ¬
 0, true);
17 _tempSound = new Sound(new URLRequest(¬
 "../audio/note0.mp3"));
18 _tempSound.addEventListener(Event.COMPLETE, ¬
 onSoundPreloaded, false, 0, true);
19 }
20
21 private function onAdded(evt:Event):void {
22 x = this.stage.stageWidth / 2;
23 y = this.stage.stageHeight / 2;
24 removeEventListener(Event.ADDED_TO_STAGE, onAdded);
25 }
26
27 private function onSoundPreloaded(evt:Event=null):void {
28 _tempSound.removeEventListener(Event.COMPLETE, ¬
 onSoundPreloaded);
29 if (_soundNum < 7) {
30 _soundNum++;

ActionScript 3.0 | 419

31 _tempSound = new Sound(new URLRequest(¬
 "../audio/note" + _soundNum + ".mp3"));
32 _tempSound.addEventListener(Event.COMPLETE, ¬
 onSoundPreloaded, false, 0, true);
33 }
34 }
35
36 private function onLoop(evt:Event):void {
37 makeParticle(0x0066CC, Math.random() * 10 + 10);
38 }
39
40 private function makeParticle(col:uint=0x003366, ¬
 size:Number=20):void {
41 if (Math.random() * 10 <= 2) {
42 var p:MovieClip = new MovieClip();
43
44 if (isNaN(_count)) { _count = 0; }
45 p.name = "particle" + _count;
46 _count++;
47
48 p.graphics.beginFill(col);
49 p.graphics.drawRect(-size/2, -size/2, size, size);
50 p.graphics.endFill();
51
52 p.xVel = Math.random() * 10 - 5;
53 p.yVel = Math.random() * 2 - 1;
54
55 p.addEventListener(Event.ENTER_FRAME, ¬
 onRunParticle, false, 0, true);
56 addChild(p);
57
58 MovieClip(parent).txtFld.appendText(p.name + "\n");
59 MovieClip(parent).txtFld.scrollV = ¬
 MovieClip(parent).txtFld.maxScrollV;
60 }
61 }
62
63 public function particleSound(p:MovieClip):void {
64 if (!p.snd && _soundNum > 0) {
65 var num:int = int(Math.random()*_soundNum);
66 p.snd = new Sound(new URLRequest(¬
 "../audio/note" + num + ".mp3"));
67 p.channel = new SoundChannel();
68 p.channel = p.snd.play();
69 }
70 }
71
72 private function onRunParticle(evt:Event):void {
73 evt.target.x += evt.target.xVel;
74 evt.target.y += evt.target.yVel;
75 evt.target.rotation += 5;
76 evt.target.alpha -= .02;
77
78 if (evt.target.snd) {

420 | Chapter 18: A Sample Migration

79 var trans = evt.target.channel.soundTransform;
80 trans.volume = evt.target.alpha / 10;
81 trans.pan = (evt.target.x / this.x) * 2;
82 evt.target.channel.soundTransform = trans;
83 }
84
85 if (evt.target.alpha <= 0) {
86 if (evt.target.snd) {
87 evt.target.channel.stop();
88 }
89 evt.target.removeEventListener(Event.ENTER_FRAME, ¬
 onRunParticle);
90 removeChild(MovieClip(evt.target));
91 }
92 }
93
94 public function get count():int {
95 return _count;
96 }
97 }
98 }

As with the ActionScript 2.0 section, basic syntax issues discussed in the main
timeline won’t be mentioned again.

Class Structure
Line 1 shows that all ActionScript 3.0 classes must be enclosed in a
package statement. This line would also be where you would include a
path to the class, if desired. Lines 8 and 14 remain consistent with Ac-
tionScript 2.0.

Import
Lines 3 through 6 import all the classes to make them accessible to the
compiler. Unlike ActionScript 2.0, even classes in Flash Player must be
imported.

Class Properties
Lines 10 through 12 are consistent with ActionScript 2.0.

Number Data Types
Lines 10 and 11 use the int data type because you don’t need float values.
You can also see this characteristic in lines 40 and 65. 40 is a good example,
as the uint data type is used, because a color value can’t be negative.

Much has been made of the performance of the uint data type and, to a
lesser degree, the int data type, so you can decide whether or not to use
them. This is just an example.

Access to Stage
Unlike ActionScript 2.0, the stage isn’t a global object. Instead, you must
access the stage through a display object. The Particles class both extends
MovieClip, and is added to the display list in the main timeline frame script,

ActionScript 3.0 | 421

so you can access the stage without passing a reference to it through the
constructor.

However, you can access the stage only after the display object has been
added to the display list. Therefore, this class can’t access the stage within
its constructor, as the class hasn’t yet been fully initialized. Instead, a new
event listener is added to listen for the Event.ADDED_TO_STAGE event
(line 15). Once this event fires, the display object is part of the display list,
and the stage reference doesn’t return null.

Lines 21 through 25 contain the function used for this purpose and, be-
cause the listener is no longer necessary, it’s removed upon execution of
this function. (The this keyword is not strictly needed because the relevant
scope is the class itself, but it’s been added to emphasize that you’re ac-
cessing the stage through a display object.)

Class Enter Frame Event
The use of the enter frame event for the class is the same; however, note
that, because event handlers no longer exist, you can’t just name a function
onEnterFrame() and expect it to work. You must convert that structure to
an event listener design, seen in lines 16 and 36 through 38.

Method Closures
You no longer need the Delegate class, as ActionScript 3.0 supports
method closures.

Preloading Sounds
The sound preloading routine hasn’t changed, and doesn’t include any
ActionScript 3.0 syntax issues that haven’t already been discussed, with
one small exception. If you pass a valid URLRequest instance to the
Sound class constructor, as in line 31, the load() method is automatically
called.

It’s also a good idea to look this method over with regard to removing
listeners. It’s important to remove the load complete listener from _temp
Sound after each sound has been loaded (or, if you prefer, after the last
sound has loaded) to prevent the listener from remaining on the last sound.

Particle Creation
ActionScript 3.0 has nothing unique in the makeParticle() method that
hasn’t been, or won’t be, discussed elsewhere. However, be sure to read
about changes to default values, accessing objects in the parent, and using
the Drawing API (now commonly referred to as the Graphics class).

Default Values
ActionScript 3.0 allows the assignment of default values to method argu-
ments, as seen in line 40. This action makes the associated arguments

422 | Chapter 18: A Sample Migration

optional, but all optional arguments must appear at the end of the method
signature.

Further, default values for data types have changed in ActionScript 3.0.
For example, line 44 can no longer test for undefined, as the default value
for number data types is NaN (not a number). As such, you must use the
isNan() method to validate its value.

As is true with many intentionally injected migration issues in this
exercise, this could have been handled a different way. This property could
have been initialized in line 10, for example, but was not so this issue could
be discussed.

Accessing Objects in the Parent
In Lines 58 and 59, the particle must cast the type of its parent before it
can access the parent’s methods or properties. Without this step, the
compiler knows only that the parent’s a display object container, but not
what kind. The compiler, therefore, doesn’t recognize the txtFld property
of the parent.

When cast to a MovieClip, however, the compiler knows that MovieClip is
a dynamic class and can, therefore, have custom properties. It then looks
for txtFld in the parent. and finds the text field you created.

Manipulating Text Fields
When adding text to the text field (line 58), the appendText() method was
used, as it’s much faster than the compound operator +=. Furthermore,
the property scrollV must be updated to the value of maxScrollV (line 59).

Particle Sound
Nothing about the particleSound() method that is unique to ActionScript
3.0 hasn’t already been discussed. Line 64 checks to make sure the parti-
cle’s Sound instance hasn’t already been created, and that _soundNum has
been incremented to be sure the sounds have preloaded. Line 65 creates
a random number within the count of available sounds, line 66 creates an
instance of the Sound class and loads the sound, and lines 67 and 68 create
a SoundChannel instance and play the sound.

Particle Behavior
The behavior of the ActionScript 3.0 particles isn’t unique, but a few very
important concepts should be discussed. To begin, the first number of the
product used for the sound transformation pan value is calculated using
the particle’s x divided by the Particles class’ x (line 81). This step’s in
contrast to the ActionScript 2.0 calculation, which divides the first number
by the class’s parent’s x value (line 73 of the ActionScript 2.0 class code).
ActionScript 2.0 requires the Library movie clip to instantiate the class this
way, so the movie clip must be referenced in the calculation. ActionScript

ActionScript 3.0 | 423

3.0 lets you add this class to the display list directly, so only the class needs
to be referenced.

Next, you must stop the sound, and remove the event listener, before
removing the particle. Otherwise, the particle and its attendant objects,
(such as listeners) won’t be collected by the garbage collector and purged
from memory.

The compiler must be told that the object is a MovieClip to prevent an error
from occurring, because the compiler sees only the target of the method
as an Object that may or may not be removable. However, this issue has
already been addressed in the “Accessing Objects in the Parent (Type
Casting)” section of this discussion.

Getter
Nothing unique about the count() getter method is unique to ActionScript
3.0 hasn’t already been discussed

Migration Sample Summary
This is a small example of one possible migration path used to update a legacy
project to ActionScript 3.0. Although awkward coding choices were made to
show the largest number of migration issues practical in this size example, the
exercise is still relatively close to a real-world scenario.

Having read this chapter, you may want to see if you can migrate this example
on your own. Once you try the process a few times, you’ll have a pretty good
idea of what you need, and you can evaluate the effectiveness of migration on
a case-by-case basis. Depending on the extent of the changes, you may wish
to use the old project as a kind of template, and then code the new version
from scratch.

424 | Chapter 18: A Sample Migration

CHAPTER 19

Where Did It Go?

Introduction
Migrating from ActionScript 2.0 to ActionScript 3.0 is as much a matter of
following subtle changes in the development of the language as learning new
features. In many cases, all you’ll need to do to upgrade a script, you just have
to change a class name or, perhaps, change from a method to a property. These
kinds of changes are typically easy to identify because you need minor adjust-
ments. In other cases, however, you may find yourself searching for missing
functionality. Like looking up an unfamiliar word in the dictionary, you need
a place to start.

What’s Included
This chapter is essentially a cross-reference to material covered elsewhere in
this book, but also includes additional material not otherwise discussed. The
primary goal is to help you find something you used in ActionScript 2.0 but
appears to be missing or significantly changed in ActionScript 3.0.

Itemizing every change introduced by ActionScript 3.0 is beyond the scope of
this book. However, you can find a concise, table-based guide called “Action-
Script 2.0 Migration” in the Help system by searching for “migration” or by
looking online at http://livedocs.adobe.com/flex/2/langref/migration.html.
While this table doesn’t include examples, it does point you to the correct new
Help entry in ActionScript 3.0 syntax, if one exists.

When you know specifically what to look for, and in which package or class
to look, the Help table is probably the best place to start. However, you can
use this chapter as a supplemental tool to preplan migration efforts by identi-
fying known issues that affect a broader category such as asset display or
sound, for example. Loosely organizing topics into larger categories this way

425

http://livedocs.adobe.com/flex/2/langref/migration.html

is particularly helpful when changes affect more than one property, method,
or event, and even span multiple classes.

In all cases, the code snippets are not fully realized scripts but rather syntax
examples to point you in the right direction.

What’s Not Included
A few things won’t be addressed here, so that the chapter can cover as much
as possible of what you’re most likely to run into during a migration session.
So, this chapter doesn’t cover:

Syntax deprecated in ActionScript 2.0
Some ActionScript syntax introduced with version 1.0 of the language was
replaced with better, or more standards-compliant, syntax in ActionScript
2.0. Examples include operators like gt (string greater than), <> (mathe-
matical not equal to), and or (logical or), global functions like
tellTarget() (for object addressing prior to the use of dot-syntax), and
object properties like __proto__ (an early OOP technique).

Features entirely new in ActionScript 3.0
This chapter is primarily designed to help you find ActionScript 3.0 sol-
utions to problems you’re used to solving with ActionScript 2.0. New
material’s included here, but the focus is on migration rather than taking
advantage of features introduced for the first time with ActionScript 3.0.
Much of the entirely new material is discussed in earlier chapters of this
book.

Repetition of consistent changes across multiple categories or topics
One of the concepts stressed throughout this book is the consistency that
version 3.0 of ActionScript brings to the language. Some changes, such as
the new event architecture, apply to many classes and aren’t repeated
herein.

Code Comparisons
Half the battle when upgrading existing projects is knowing how to change
older code. The remainder of this chapter identifies select migration issues and
compares ActionScript 2.0 and 3.0 syntax.

Language Fundamentals
Several very basic changes introduced in ActionScript 3.0 affect the way a script
is structured. Ranging from default values to scope issues, these language fun-
damentals are not category-specific.

426 | Chapter 19: Where Did It Go?

Examining and using default values

ActionScript 2.0: Checking variables for initial values often involves a com-
parison against null or undefined.

var userNum:Number;
if (userNum == undefined) {
userNum = 1;
}

ActionScript 3.0: A value of undefined can be used only for untyped variables.
Every data type now has a default value, as seen in Table 19-1.

Table 19-1. Data type default values

Data type Default value

int 0

uint 0

Number NaN

Object null

String null

Boolean false

untyped (*) undefined

all other (including user-defined classes) null

Equality can be used for most default value validations, but the isNaN() method
should be used for the Number data type.

var userNum:Number;
if (isNaN(userNum)) {
 userNum = 1;
}

Additionally, ActionScript 3.0 allows the assignment of default values for
function parameters. See Chapter 18, for more information about default
values.

Referencing objects by evaluated expression

ActionScript 2.0: You can dynamically build a reference to an object using
the eval() to evaluate an expression. For example, you can refer to

trace(eval("this.myClip" + i));

ActionScript 3.0: The eval() method is gone. Although using scope bracket
syntax, such as this["myClip" + i], is still possible, using getChildByName() is
the recommended practice.

trace(this.getChildByName("myClip" + i));

Code Comparisons | 427

See “13.5 Finding a Display Object” on page 291 for more information about
finding a display object by name.

Creating global variables and functions

ActionScript 2.0: The declaration _global lets you create global variables and
functions.

_global.userName = "David Thomas";
_global.pereUbu = function ():Void {
 getURL("http://ubuprojex.net/");
}
trace(userName);
pereUbu();

ActionScript 3.0: Global variables and functions have been removed. Use a
static class member, a Singleton (a class that allows only one instance), or, for
variables accessible to an entire display list (which isn’t really global), you can
rely on the root reference. See the next entry. The following snippet is an ex-
ample of the static class member approach. The Global class allows the storage
of variables in a dynamically populated object.

Global.as

package {
 public class Global {
 public static var vars:Object = {};
 }
}

Elsewhere, in another class or frame script, you can store variables as object
properties, including functions. To demonstrate, the last three lines of this
snippet trigger the global function after a one-second delay.

import Global;
Global.vars.userName = "David Thomas";
Global.vars.pereUbu = function():void {
 navigateToURL(new URLRequest("http://ubuprojex.net/"));
}

trace(Global.vars.userName);
var tmr:Timer = new Timer(1000, 1);
tmr.addEventListener(TimerEvent.TIMER, Global.vars.pereUbu, false, 0, true);
tmr.start();

Be aware that, like ActionScript 2.0 global variables, this simple approach
doesn’t use type checking for variable values.

Accessing the root of a SWF file

ActionScript 2.0: The _root is the host SWF file played by Flash Player re-
gardless of whether it is standalone (which makes it the _root) or loaded into

428 | Chapter 19: Where Did It Go?

another SWF file (which makes the parent SWF file the _root). This makes
addressing a movie clip, or storing a variable, unpredictable. The _lockroot
property helps work around this problem by allowing _root references to re-
main SWF-file-specific. If _lockroot is set to true, when a SWF file is loaded
into a parent SWF file, _root in the loadee SWF file is still the main timeline
of the loadee, and _root in the loader SWF file is still the main timeline of the
loader.

_root.mc._x = 100;
_root.userName = "Kramer";

ActionScript 3.0: The new root is the senior most display object in the current
scope, and functions somewhat as if _lockroot is true in ActionScript 2.0. If
you choose to use root as a variable repository, then you must first cast it as
MovieClip so you can dynamically assign properties (variables).

MovieClip(root).mc.x = 100;
MovieClip(root).userName = "Kramer";

See “13.8 Working with Parents of a Display Object” on page 296 and “13.9
Casting a Display Object from One Type to Another” on page 297, as well as
Chapter 18, for more information about dynamic versus sealed classes.

Using delegates

ActionScript 2.0: The Delegate class is used to link scope with the execution
of a function or method.

_tempSound.onLoad = Delegate.create(this, onSoundPreloaded);

ActionScript 3.0: This is now unnecessary due ActionScript 3.0’s method
closure. See the “Method Closures” on page 8 of Chapter 18 for more infor-
mation.

Display
Controlling visual elements in Flash is entirely different in ActionScript 3.0,
so you see many changes from previous versions, large and small. For an in-
depth look at display objects and the display list, see Chapter 13.

Accessing the Stage

ActionScript 2.0: The Stage is a top-level class and you can get to it from
anywhere.

trace(Stage.width);

ActionScript 3.0: You can access the Stage only through a display object
that’s part of the display list. This example also demonstrates a subtle differ-

Code Comparisons | 429

ence in the name of the property to specify width, changing from width in
ActionScript 2.0 to stageWidth.

var sp:Sprite = new Sprite();
addChild(sp);
trace(sp.stage.stageWidth);

See “13.11 Referencing the Stage Through a Display Object” on page 300 for
more information about accessing the stage through a display object.

Accessing a parent

ActionScript 2.0: The _parent property identifies the parent of a symbol in-
stance or loaded SWF file.

this._parent.gotoAndStop(2);

ActionScript 3.0: The parent property works the same way, but ActionScript
3.0 has many more display object types, so the compiler sometimes needs to
be told that the requested property or method of a parent is legal. For example,
a parent could be a sprite, rather than a movie clip, in which case frame nav-
igation actions wouldn’t apply. Telling the compiler that the parent’s a movie
clip by casting it as such eliminates any possible confusion.

MovieClip(this.parent).gotoAndStop(2);

See “13.9 Casting a Display Object from One Type to Another” on page 297
for more information about accessing a parent of a display object and casting
from one data type to another.

Creating an empty movie clip

ActionScript 2.0: Creating an empty movie clip requires the createEmptyMo
vieClip() method, a new instance name, and a level. The clip is automatically
displayed.

var mc:MovieClip = this.createEmptyMovieClip("clip", 1);

ActionScript 3.0: You create all display objects using the new keyword and
appropriate class, and you must add them to the display list to be visible.

var mc:MovieClip = new MovieClip();
addChild(mc);

See “13.2 Creating a New Display Object” on page 286 for more information
about creating a new movie clip.

430 | Chapter 19: Where Did It Go?

Adding a library movie clip to the stage

ActionScript 2.0: Adding an existing movie clip to the stage requires the
attachMovie() method, the symbol’s linkage name, a new instance name, and
a level. The clip is automatically displayed.

var mc:MovieClip = this.attachMovie("Help","helpHeadline",2);

ActionScript 3.0: You create all display objects using the new keyword and
appropriate class. Instead of using a linkage name, you use a symbol’s class
name, and instantiate the clip just like an empty movie clip. You can type the
reference variable to the class type if it helps clarify your intent, but you need
not write a custom class for this feature to work. You can also type to Movie-
Clip, for example, if you prefer (as seen here). See “Creating a bitmap” on page
431” for more information. You must add the instance to the display list to
make it visible.

var mc:MovieClip = new Help();
addChild(mc);

See “13.2 Creating a New Display Object” on page 286 for more information
about adding a library element to the display list.

Duplicating a movie clip

ActionScript 2.0: You can duplicate a movie clip instance using the
duplicateMovieClip() method, a reference to the original clip, a new instance
name, and a new level.

duplicateMovieClip(mc, "mc2", 2);

ActionScript 3.0: This functionality has been removed. The recommended
approach is to use new to create another instance of the relevant movie clip,
but this will not inherit any of the original movie clip’s attributes. To accom-
plish something similar in ActionScript 3.0, you must create a custom clone
method that analyzes the original and attempts to apply all of its attributes to
the copy.

Creating a bitmap

ActionScript 2.0: Create a BitmapData object, and attach it to a movie clip
using the attachBitmap() method, specifying a level.

import flash.display.BitmapData;
var bmpMC:MovieClip = this.createEmptyMovieClip("bmpContainer", 1);
var bmpData:BitmapData = new BitmapData(200, 200);
bmpMC.attachBitmap(bmpData, 2);

ActionScript 3.0: Create a Bitmap instance and add it to the display list.

Code Comparisons | 431

var bmp:Bitmap = new Bitmap();
addChild(bmp);

Adding a library bitmap to the stage

ActionScript 2.0: This process is similar to the ActionScript 2.0 method for
creating a bitmap but, rather than creating a new BitmapData instance, you use
loadBitmap() method and the library bitmap’s linkage name to create an in-
stance from the bitmap.

var bmpD:BitmapData = BitmapData.loadBitmap("Logo");
var mc:MovieClip = this.createEmptyMovieClip("mc", 2);
mc.attachBitmap(bmpD, 2);

ActionScript 3.0: Specify a linkage class for the bitmap in the library, and
create a new instance of the class. You must add it to the display list for it to
be visible. Here again, you can type to the custom class, or to the base class.
In this example, the custom class is used. See “Adding a library movie clip to
the stage” on page 431 for more information.

var logoBmp:Logo = new Logo(100,100);
var bmp:Bitmap = new Bitmap(logoBmp);
addChild(bmp);

Checking the level of a display object

ActionScript 2.0: You can get the level of a symbol instance by using the
_level property.

var mc:MovieClip = this.createEmptyMovieClip("clip", this.getNextHighestDepth());
trace(mc._level);
//_level0

ActionScript 3.0: The _level property has been removed. Use the getChil
dIndex() method of a display object container instead.

var mc:MovieClip = new MovieClip();
addChild(mc);
trace(getChildIndex(mc));

Getting the highest unused depth

ActionScript 2.0: Use the getNextHighestDepth() method (or the DepthMan
ager class when using version 2.0 components).

var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth());

ActionScript 3.0: Depth management is automatic and the highest level is
automatically used when adding to the display list.

var mc:MovieClip = new MovieClip();
addChild(mc);

432 | Chapter 19: Where Did It Go?

See “13.3 Adding a Display Object to the Display List” on page 287 for more
information about adding a display object to the display list using the highest
available depth.

Swapping display object depths

ActionScript 2.0: Use the swapDepths() method.

mc1.swapDepths(mc2);

ActionScript 3.0: For corresponding functionality, use the swapChildren()
method to swap known display objects, or the swapChildrenAt() method to
swap the children in two depths. However, you can also use the addChild()
method to place a child at the top of the display list, or addChildAt() method
to place it at a specific level. All children above move up a level, accordingly.

swapChildren(mc1, mc2);
swapChildrenAt(0, 1);

See “13.4 Specifying the Depth of a Display Object” on page 289 for more
information about specifying the depth of a display object.

Accessing a display object by name

ActionScript 2.0: You can access a symbol instance using a programmatically
created instance name instead of a variable reference.

this.createEmptyMovieClip("clip", 1);
trace(clip._x);
//0

ActionScript 3.0: This option’s no longer a part of the display object creation
process, so you can’t use a programmatically created instance name to access
display objects.

var mc:MovieClip = new MovieClip();
addChild(mc);
mc.name = "clip";
trace(clip.x)
//error

Instead, use the getChildByName() method.

trace(getChildByName("clip"));
//[object MovieClip]

Actually, this method’s consistent with ActionScript 2.0. The only difference
is that you can assign an instance name during creation. Even in ActionScript
2.0, you can’t access a movie clip through the value of its name property.

var mc:MovieClip = this.createEmptyMovieClip("clip", 1);
mc.name = "clip2";
trace(clip2._x);

Code Comparisons | 433

//undefined
trace(clip._x);
//0

See “13.5 Finding a Display Object” on page 291 for more information about
finding a display object by name.

Removing a display object

ActionScript 2.0: Use the removeMovieClip() method to remove a movie clip
or button instance.

removeMovieClip(mc);

ActionScript 3.0: Use the removeChild() method to remove any display ob-
ject.

removeChild(mc);

See “13.6 Removing a Display Object from the Display List” on page 292 for
more information about removing a display object from the display list.

Using the drawing API

ActionScript 2.0: Drawing API methods are part of the MovieClip class, letting
you draw into movie clips without reference to any other classes.

mc.lineStyle(1, 0x000000);
mc.lineTo(10, 10);

ActionScript 3.0: Drawing API methods have been moved to the Graphics
class, and you can access them through the graphics property in shapes, sprites,
and movie clips.

mc.graphics.lineStyle(1, 0x000000);
mc.graphics.lineTo(10, 10);

See all of Chapter 12, for more information about using the Graphics class.

Checking for display object collisions

ActionScript 2.0: Use the hitTest() method to check for a collision with
another symbol instance (the first line) or point (the second line).

trace(mc.hitTest(mc2));
trace(mc.hitTest(100, 100));

ActionScript 3.0: Use the hitTestObject() method or hitTestPoint()
method to check for a collision with a display object or point, respectively.

trace(mc.hitTestObject(mc2));
trace(mc.hitTestPoint(100, 100));

434 | Chapter 19: Where Did It Go?

Assigning a mask to movie clip

ActionScript 2.0: Use the setMask() method to assign one movie clip as a
mask for another movie clip.

mc.setMask(mc2);

ActionScript 3.0: The process is the same as in ActionScript 2.0 but mask is
a property.

mc.mask = mc2;

See “12.11 Using a Drawn Shape as a Dynamic Mask” on page 278 for more
information about assigning a mask to a display object.

Events
Like the display architecture, the ActionScript 3.0 event model differs greatly
from previous versions. From handling built-in events to dispatching custom
events, significant changes present new migration challenges.

Using event handlers

ActionScript 2.0: Event handlers commonly take the form of onEventName()
and are methods of the object meant to react to the event. The following is an
example of a button frame event:

helpBtn.onRelease = buttonRelease;
function buttonRelease():Void {
 trace("button action here");
}

ActionScript 3.0: Event listeners now handle all events exclusively.

helpBtn.addEventListener(MouseEvent.CLICK, onClick, false, 0, true);
function onClick(evt:MouseEvent):void {
 trace("button action here");
}

See all of Chapter 14, for extensive discussions about events, as well as Chap-
ter 18, for information about components and a comparison of event listener
use in ActionScript 2.0 and 3.0.

Adding and removing listeners

ActionScript 2.0: Some classes, including Key, Mouse, MovieClipLoader, Stage,
TextField, and Selection use the addListener() method to register event lis-
teners, and the removeListener() method to remove listeners.

var txtListener:Object = new Object();
txtListener.onChanged = function(tf:TextField):Void {
 trace(tf.text);

Code Comparisons | 435

 tf.removeListener(txtListener);
};
txtFld.addListener(txtListener);

ActionScript 3.0: All listeners are registered using the addEventListener()
method, and removed using the removeEventListener() method.

txtFld.addEventListener(Event.CHANGE, onChange);
function onChange(evt:Event):void {
 trace(evt.target.text);
 evt.target.removeEventListener(Event.CHANGE, onChange);
};

See all of Chapter 14 for extensive discussions about events, as well as infor-
mation about components and a comparison of event listener use in Action-
Script 2.0 and 3.0.

Enabling event dispatching

ActionScript 2.0: You must prepare an object for event broadcasting.

AsBroadcaster.initialize(obj);

ActionScript 3.0: You no longer need to prepare an object for event dis-
patching. All classes that extend EventDispatcher, including all display objects,
can automatically dispatch events.

Dispatching events

ActionScript 2.0: Use the broadcastMessage() method of AsBroadcaster to
broadcast events.

obj.broadcastMessage("edited");

ActionScript 3.0: Use the dispatchEvent() method of the EventDispatcher
class to dispatch events.

dispatchEvent(new Event("edited"));

See “14.12 Dispatching Your Own Events” on page 323 for more information
about dispatching custom events.

Trapping a mouse up event outside a display object’s boundaries

ActionScript 2.0: Use the onReleaseOutside event.

mc.onReleaseOutside = function ():Void {
 trace("onReleaseOutside called");
};

ActionScript 3.0: This event has been removed from ActionScript 3.0. Attach
an additional mouse up event listener to the stage to simulate a mouse up

436 | Chapter 19: Where Did It Go?

outside the display object. See “14.6 Simulating a Mouse Up Outside Event”
on page 311 for more information about simulating a mouse up outside event.

mc.addEventListener(MouseEvent.MOUSE_UP, onUp, false, 0, true);
function onUp(evt:MouseEvent):void {
 trace("mouse up behavior");
}
stage.addEventListener(MouseEvent.MOUSE_UP, onUp, false, 0, true);

Text
Several changes have been made to the TextField, TextFormat, and related
classes, affecting everything from creating text fields to triggering functions
from hyperlinks.

Creating a new text field

ActionScript 2.0: Use the createTextField() method, supplying an instance
name, level, x and y coordinates, and width and height. The instance is auto-
matically added to the stage.

var txtFld:TextField = this.createTextField("txt", 1, 0, 0, 100, 100);

ActionScript 3.0: Use the new keyword and TextField constructor, and add
it the display list. The level is determined automatically, and the default values
of x:0, y:0, width:100, and height:100 are used. Alternatively, each property
can be set individually.

var txtFld:TextField = new TextField();
addChild(txtFld);

See “15.1 Creating a Text Field” on page 334 for more information about
creating a text field.

Populating a text field with plain text

ActionScript 2.0: Populate the first string using the equal (=) operator and
add to that text using the plus-equal (+=) compound operator.

txtFld.text = "start";
txtFld.text += "continue";

ActionScript 3.0: Populate the first string using the equal (=) operator and
add to that text using the appendText() method for better performance. See
“15.5 Populating a Text Field” on page 338 for more information.

txtFld.text = "start";
txtFld.appendText("continue");

Code Comparisons | 437

Populating a text field with HTML

ActionScript 2.0: Use the same techniques for populating a field with plain
text, but set the html property to true and use the htmlText property instead
of the text property to assign the text.

txtFld.html = true;
txtFld.htmlText = "start";
txtFld.htmlText += "continue";

ActionScript 3.0: The same process is used for ActionScript 3.0, but the
html property is unnecessary, and it’s been removed. Note that, unlike when
working with plain text, there’s no append method, and you use the plus-equal
(+=) compound operator.

txtFld.htmlText = "start";
txtFld.htmlText += "continue";

See “15.10 Formatting Text Using HTML” on page 346 for more information
about using HTML in a text field.

Setting a default text format

ActionScript 2.0: Use the setNewTextFormat() method to assign a text format
before adding text to the field.

txtFld.setNewTextFormat(txtFrmt);
txtFld.text = "Rex Stout";

ActionScript 3.0: The same process is used for ActionScript 3.0, but default
TextFormat is a property.

txtFld.defaultTextFormat = txtFrmt;
txtFld.text = "Rex Stout";

See “15.9 Formatting Text Using TextFormat” on page 344 for more infor-
mation about formatting text with a TextFormat instance.

Using a text field as a variable

ActionScript 2.0: You can assign dynamic and input text fields variable
names in the Property inspector. The field then displays the value of the vari-
able throughout its use.

ActionScript 3.0: This feature has been removed.

Scrolling a text field

ActionScript 2.0: Assign to the scroll property a number of the line to which
you wish to scroll. Using the maxScroll property for this value scrolls the field
to the end of the text.

438 | Chapter 19: Where Did It Go?

txtFld.scroll = txtFld.maxscroll;

Horizontal scrolling is also possible, using hscroll and maxhscroll,
respectively.

ActionScript 3.0: You use the same process for ActionScript 3.0 but the
properties are scrollV and maxScrollV.

txtFld.scrollV = txtFld.maxScrollV;

Horizontal scrolling is also possible, using scrollH and maxScrollH, respec-
tively. See “15.7 Scrolling a Text Field” on page 341 for more information
about scrolling a text field, as well as Chapter 18 for a comparison of text
scrolling in ActionScript 2.0 and 3.0.

Triggering an ActionScript function with a hyperlink

ActionScript 2.0: Use the asfunction protocol to trigger a function. You can
pass an argument to the function by following the function name with the
argument value.

function doIt(msg:String):Void {
 trace(msg);
}

txtFld.htmlText = "link";

ActionScript 3.0: Use the event protocol to trigger an event listener. You can
pass a value to the function by querying the text properties.

txtFld.htmlText = "link";

txtFld.addEventListener(TextEvent.LINK, linkHandler);
function linkHandler(evt:TextEvent):void {
 if (evt.text == "doIt") {
 trace("doIt");
 }
}

See “15.13 Triggering ActionScript from HTML Links” on page 351 for more
information about triggering ActionScript functions from text hyperlinks.

Sound
For all code snippets in this category, the following variables are used.

var snd:Sound = new Sound();
var sndChannel:SoundChannel = new SoundChannel();
var sndTransform:SoundTransform = new SoundTransform();

The Sound class is available to both ActionScript 2.0 and 3.0, while SoundChan
nel and SoundTransform are available to ActionScript 3.0 only. The SoundChan

Code Comparisons | 439

nel class lets you play sounds in discrete channels for more granular control.
The SoundTransform class contains transformation controls like pan and vol-
ume. You use a fourth class, SoundMixer, in ActionScript 3.0 to control all
sounds in all channels, but it’s a static class and doesn’t need instantiating.

Loading and playing an external sound

ActionScript 2.0: Use the loadSound() method of the Sound class, and pass
the sound path name to the method as a string. Play the sound using the
start() method of the Sound class.

var snd:Sound = new Sound();
snd.loadSound("sound.mp3");
snd.onLoad = function():Void {
 snd.start();
};

ActionScript 3.0: Use the load() method of the Sound class and use the sound
path name in a URLRequest instance. Play the sound using the play() method
of the Sound class, assigning the sound to a channel.

snd.load(new URLRequest("sound.mp3"));
snd.addEventListener(Event.COMPLETE, onComplete, false, 0, true);
function onComplete(evt:Event):void {
 channel = snd.play();
 snd.removeEventListener(Event.COMPLETE, onComplete);
}

See “17.6 Loading and Playing a Sound” on page 391 for more information
about loading and playing sounds.

Playing an internal sound from the library

ActionScript 2.0: Use the attachSound() method of the Sound class, passing
the library linkage name to the method. Play the sound using the start()
method of the Sound class.

snd.attachSound("beep");
snd.start();

ActionScript 3.0: Use the sound’s class name to create an instance of the
sound, and play it into a channel using the play() method.

var beepSound:Sound = new Beep();
sndChannel = beepSound.play();

Stopping a sound

ActionScript 2.0: Use the stop() method of the Sound class.

snd.stop();

440 | Chapter 19: Where Did It Go?

ActionScript 3.0: Use the stop() method of the SoundChannel class.

sndChannel.stop();

Getting or setting a sound’s volume or pan

ActionScript 2.0: Use the getVolume() and setVolume() methods of the
Sound class.

snd.setVolume(snd.getVolume()*.5);
snd.setPan(snd.getPan()*−1);

ActionScript 3.0: Modify the SoundTransform instance of the sound using
the volume and pan properties, and reapply the transformation. See the next
entry for more information.

sndTransform = sndChannel.soundTransform;
sndTransform.volume *= .5;
sndTransform.pan *= −1;
sndChannel.soundTransform = sndTransform;

Further, the complexity of ActionScript 2.0’s simultaneous volume and pan
transformation approach is no longer needed.

ActionScript 2.0: Use the getTransform() method to store the current sound
transformation of a sound in an object. Set the sound transformation proper-
ties. (The ll and lr values dictate what percentage of the left channel sound
plays in the left and right channels, respectively. The rl and rr values dictate
what percentage of the right channel sound plays in the left and right channels,
respectively.) Reapply the transformation to the sound.

var sndTrans:Object = snd.getTransform();
sndTrans.ll = 0;
sndTrans.lr = 0;
sndTrans.rl = 100;
sndTrans.rr = 100;
snd.setTransform(sndTrans);

ActionScript 3.0: The general idea behind the sound transformation process
is the same as with ActionScript 2.0 but less cryptic. You need only adjust the
volume and pan properties of the SoundTransform instance rather than building
the confusing object required in ActionScript 2.0. Note that percentage values
are between 0 and 1, not 0 and 100. To transform a single sound, use the
SoundChannel instance.

See the “Getting or setting a sound’s volume and pan” entry to modify a single
sound or, to transform all sounds, use the SoundMixer class.

sndTransform = SoundMixer.soundTransform;
sndTransform.volume = 1;
sndTransform.pan = 1;
SoundMixer.soundTransform = sndTransform;

Code Comparisons | 441

See “17.7 Setting the Volume and Pan of a Sound” on page 392, as well as
Chapter 18 for more information about setting the volume and pan of a sound.

Getting a sound’s duration

ActionScript 2.0: Use the duration property of the Sound class.

trace(snd.duration);

ActionScript 3.0: Use the length property of the Sound class.

trace(snd.length);

Getting a sound’s current time

ActionScript 2.0: Use the position property of the Sound class.

trace(snd.position);

ActionScript 3.0: Use the position property of the SoundChannel class.

trace(sndChannel.position);

Getting a loaded sound’s bytes loaded or total bytes

ActionScript 2.0: After using the loadSound() method, use the getBytesLoa
ded() and/or getBytesTotal() methods of the Sound class.

trace(snd.getBytesLoaded() + " of " + snd.getBytesTotal() + " bytes loaded");

ActionScript 3.0: Use the bytesLoaded and/or bytesTotal properties of the
Sound class.

trace(snd.bytesLoaded + " of " + snd.bytesTotal + " bytes loaded");

Stopping all sounds

ActionScript 2.0: Use the global stopAllSounds() method.

stopAllSounds();

ActionScript 3.0: Use the stopAll() method of the SoundMixer class.

SoundMixer.stopAll();

Setting the buffer time of loaded sounds

ActionScript 2.0: Set the global _soundbuftime property to the number of
seconds you wish to buffer.

_soundbuftime = 3;

ActionScript 3.0: Set the bufferTime property of the SoundMixer class to the
number of seconds you wish to buffer.

SoundMixer.bufferTime = 3;

442 | Chapter 19: Where Did It Go?

Network
Much of the IO (input/output) processes in ActionScript have changed with
version 3.0. URLs are handled consistently, loading content classes are more
specialized, and unloading assets requires quite a bit more attention. For ad-
ditional information not covered here, see Chapter 17.

Using FlashVars

ActionScript 2.0: FlashVars are stored in the main timeline of a SWF file and,
if you don’t find them, then you can use default values instead.

if (!imgURL) {
 var imgURL:String = "bg.jpg";
}

ActionScript 3.0: FlashVars are stored in the parameters object of the Loader
Info class, and can be accessed through the loaderInfo property of the root.

var imgURL:String = "bg.jpg";
if (root.loaderInfo.parameters.imgURL) {
 imgURL = root.loaderInfo.parameters.imgURL;
}

See Chapter 18 for another example of using FlashVars.

Getting the URL of a SWF file

ActionScript 2.0: Use the global _url property from the _root.

trace(_root._url);

ActionScript 3.0: Use the url property of the root loaderInfo instance.

trace(root.loaderInfo.url);

You can see another example of accessing a URL, this time of loaded content,
in the next section.

Loading and unloading an image or SWF file using loadMovie

ActionScript 2.0: Use the loadMovie() method of the MovieClip class.

var bg:MovieClip = this.createEmptyMovieClip("bgImg", 1);
bg.loadMovie("image.jpg");

To unload the image or SWF file, use the unloadMovie() method of the Movie
Clip class.

bg.unloadMovie();

Code Comparisons | 443

ActionScript 3.0: Use the load() method of the Loader() class, a display ob-
ject that can load images or SWF files. To unload the image or SWF file, use
the unload() method of the instance.

var bg:Loader = new Loader();
addChild(bg);
bg.load(new URLRequest("image.jpg"));

bg.contentLoaderInfo.addEventListener(Event.INIT, onImageLoaded, false, 0, true);
function onImageLoaded(evt:Event):void {
 trace("bg URL:", bg.contentLoaderInfo.url);
 bg.unload();
}

See “17.2 Loading and Displaying an Image or SWF File” on page 380 and
“17.5 Unloading an Image or SWF File” on page 387 for more information
about loading and unloading external SWF files or images.

Loading and unloading an image or SWF file using MovieClipLoader

ActionScript 2.0: You can also use the MovieClipLoader class to load images
or SWF files, in conjunction with a listener.

var bg:MovieClip = this.createEmptyMovieClip("img", 1);

var mclListener:Object = new Object();
mclListener.onLoadInit = function(mc:MovieClip) {
 trace(mc._url);
}

var bg_mcl:MovieClipLoader = new MovieClipLoader();
bg_mcl.addListener(mclListener);
bg_mcl.loadClip("image.jpg", bg);

ActionScript 3.0: MovieClipLoader has been removed. Use the Loader class
instead. See the “Loading and unloading an image or SWF file using loadMo-
vie” entry for a sample use of the Loader class.

Loading variables using LoadVars

For both ActionScript 2.0 and 3.0 versions of this example, a text file called
userdata.txt contains the following URL-encoded variables.

user1=Sally&age1=2&user2=Claire&age2=0

ActionScript 2.0: Use the load() method of the LoadVars class to load the
variables. After loading, use the decode() method to convert the loaded string
to object properties.

var ldVar:LoadVars = new LoadVars();
ldVar.onLoad = function(success:Boolean) {
 if (success) {

444 | Chapter 19: Where Did It Go?

 trace(this);
 ldVar.decode();
 trace(ldVar.user1);
 } else {
 trace("Error loading variables.");
 }
};
ldVar.load("userdata.txt");

ActionScript 3.0: Use the load() method of the URLLoader class to load the
variables. Due to the dataFormat property of URLLoaderDataFormat.VARIABLES,
the loaded data can already be queried by variable name.

var req:URLRequest = new URLRequest("userdata.txt");
var vars:URLLoader = new URLLoader();
vars.dataFormat = URLLoaderDataFormat.VARIABLES;
vars.addEventListener(Event.COMPLETE, onVarsLoaded);
try {
 vars.load(req);
} catch (err:Error) {
 trace("Variable load error:", err.message);
}

function onVarsLoaded(evt:Event):void {
 var ldr:URLLoader = URLLoader(evt.target);
 trace(ldr.data);
 trace(ldr.data.user1);
}

Sending variables using LoadVars

ActionScript 2.0: To send data to a server, define both send and receive in-
stances of LoadVars, create variable properties and values in the send instance,
and use the sendAndLoad() method of the class. The following example assumes
that a server-based script returns a name-value pair with a variable called
confirm.

var result_lv:LoadVars = new LoadVars();
result_lv.onLoad = function(success:Boolean) {
 if (success) {
 trace(result_lv.confirm);
 } else {
 trace("LoadVars error.");
 }
};
var login_lv:LoadVars = new LoadVars();
login_lv.user = "pfj";
login_lv.pass = "isn";
login_lv.sendAndLoad("http://<yourdomain>/login.php", result_lv, "POST");

ActionScript 3.0: To send variables to a server in ActionScript 3.0, first create
the variables as properties of a URLVariables instance. Then assign the instance
to the data property of a URLRequest instance that links to your server script.

Code Comparisons | 445

To receive data returned by the server, use the load() method, as seen in the
previous ActionScript 3.0 example in this entry. If you don’t need a response,
use the sendToURL() method, as seen here.

var vars:URLVariables = new URLVariables();
vars.name = "Graham Lewis";

var req:URLRequest = new URLRequest("http://<yourdomain>/login.php");
req.data = vars;

try {
 sendToURL(req);
} catch (err:Error) {
 trace("Error sending vars:", err.message);
}

Connecting to a URL in a web browser

ActionScript 2.0: Use the global getURL() method.

getURL("http://www.google.com", "_blank");

ActionScript 3.0: Use the global navigateToURL() method with a
URLRequest instance.

navigateToURL(new URLRequest("http://www.google.com"), "_blank");

See Chapter 18 for additional examples of opening a URL.

Miscellaneous
Entirely written from scratch, changes permeate every nook and cranny of
ActionScript 3.0, and some don’t necessarily warrant their own category.

Examining property underscores and name changes

ActionScript 2.0: Many, but not all, properties are preceded by an
underscore:

toolTip._x = this._xmouse;

ActionScript 3.0: Property names don’t begin with an underscore and, on
occasion, have been renamed to be more consistent with ActionScript 3.0
naming conventions, including the use of camel case.

toolTip.x = this.mouseX;

See Chapter 18 for additional examples of property underscores.

446 | Chapter 19: Where Did It Go?

Using event and constant names

ActionScript 2.0: Event and constant names (as well as properties serving the
role of a constant), don’t share any particular naming or usage conventions.
Seen here, the value for the autoSize property is a string.

var txtFld:TextField = this.createNewTextField("txt", 1, 0, 0, 100, 100);
txtFld.autoSize = "left";

ActionScript 3.0: Corresponding structures are stored in classes for consis-
tent use and reliable recall. The value for the autoSize property in this syntax
is a constant.

var txtFld:TextField = new TextField();
txtFld.autoSize = TextFieldAutoSize.LEFT;

See “15.6 Automatically Sizing a Text Field” on page 339 for information about
automatically sizing a text field, including the use of the corresponding con-
stant.

Using Intervals and Timeouts

ActionScript 2.0: Repeating timed executions of functions are achieved with
the setInterval() method and halted with the clearInterval() method, as
seen in the following code. Note that you must manually halt the process if
you want a finite number of executions.

//setInterval
var i:Number = 0;
var intID:Number = setInterval(showMsg, 1000);
function showMsg():Void {
 trace("interval");
 i++;
 if (i == 5) { clearInterval(intID); }
}

A single, delayed execution of a function is achieved with the setTimeout()
method, and halted by the clearTimeout() method, as you see in the following
new example.

//setTimeout
var timeoutID:Number = setTimeout(showMsg, 1000);
function showMsg():Void {
 trace("timeout");
 clearTimeout(timeoutID);
}

ActionScript 3.0: The Timer class makes intervals and timeouts easy. An on-
going timer functions much the same way as an interval, but with the consis-
tency of event listeners. (Note that the timer must be started.) All timers must
be stopped, and their event listeners removed when no longer needed, or the
file containing the timer cannot be unloaded.

Code Comparisons | 447

//ongoing interval
var i:int = 0;
var timr:Timer = new Timer(1000);
timr.addEventListener(TimerEvent.TIMER, onTimer, false, 0, true);
function onTimer(evt:TimerEvent):void {
 trace("interval behavior");
 i++
 if (i == 5) {
 timr.stop();
 timr.removeEventListener(TimerEvent.TIMER, onTimer);
 }
}
timr.start();

A single execution (as in when setTimeout() is desired), or even a finite number
of executions not limited to 1, is even easier to use. An optional second pa-
rameter of the Timer class lets you specify how many times the timer fires and
automatically stops the timer after the last execution.

//single execution
var i:int = 0;
var timr2:Timer = new Timer(1000, 1);
timr2.addEventListener(TimerEvent.TIMER, onTimer, false, 0, true);
function onTimer(evt:TimerEvent):void {
 trace("timeout behavior");
 timr2.removeEventListener(TimerEvent.TIMER, onTimer);
}
timr2.start();

See “14.11 Using a Timer to Dispatch Events” on page 321 for more informa-
tion about using Timers.

Getting and setting the year of a date instance

ActionScript 2.0: The getYear() method of the Date class returns a year in-
teger since 1900. (The year 2008 yields 108, for example.) Similarly, the set
Year() method lets you set the year of a date object.

var today:Date = new Date();
today.setYear(today.getYear() + 1);

ActionScript 3.0: This method was removed because it was not ECMA-
compliant. Use the getFullYear() and setFullYear() methods instead, which
use full years, such as 2008. (Consider switching to these methods exclusively
in any ongoing ActionScript 2.0 projects, as well, to make future migration to
ActionScript 3.0 easier.)

var today:Date = new Date();
today.setFullYear(today.getFullYear() + 1);

448 | Chapter 19: Where Did It Go?

Accessing private namespaces

ActionScript 2.0: Subclasses can access private properties or methods of a
super class.

ActionScript 3.0: The private namespace now restricts access to a class.

Code Comparisons | 449

Index

Symbols
" (quotation marks), XML entity, 367
& (ampersand)

&& (logical AND) operator, 249
XML entity, 367

' (apostrophe), encoding as entity in XML,
368

* (asterisk), wildcard operator, 365
+= (plus-equal) operator, 438
. (dot), 16

(see also dot syntax)
. . (descendent accessor) operator, 11,

365
: (colon)

: : (name qualifier) operator, 14, 82
< and > (angle brackets), XML entities,

367
= (equal) operator, 437
@ (at sign), attribute operator, 363
[] (square brackets)

array access operator, 76
scope bracket syntax, 427

_ (underscores) in property names, 246
{ } (curly braces)

enclosing dynamic XML content, 372
{ (open curly brace) on new lines

written with Flex Builder 3,
40

A
access control specifiers, 80
Accordion Panel V3 component, 227
Accordion.selectedIndex property, 222

Actions panel, 105
new features, 112
tree view of keyframe code, 111

ActionScript 2.0, 4
(see also migration to ActionScript 3.0)
explanations of syntax in particle

system code, 406
ActionScript 2.0 Migration table, 72
ActionScript 3.0

additional resources, 84
API restructuring, 15
binary data and sockets, 18
changes from ActionScript 2.0, 59–84

major changes in API, classes, and
language, 60–72

major syntax and structure changes,
77–83

obsolete code, 72–77
ECMAScript for XML (E4X), 10
event handling, 15
learning after version 2.0, 21
method closures, 8
migration to versus writing code from

scratch, 22
namespaces, 14
new primitive types, 14
new sound APIs, 18
regular expressions, 12
runtime types, 6
sealed classes, 7
writing using external code editors with

Flash, 32
writing with FlashDevelop, 50
writing with Flex Builder 3, 37–46

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

451

writing with PrimalScript editor, 56
writing with SEIPY, 46

ActionScript 3.0 event: protocol, 351
ActionScript Virtual Machine 2 (AVM2),

85
ActiveX control, debug version of Flash

Player as, 262
addChild() method, 100, 268

adding display object to display list,
287

changing parent of display object, 299
specifying depth of display object on

display list, 290
addChildAt() method, 290
addEventListener() method, 15, 97, 304

priority parameter, 328
registering listeners, 436
useCapture parameter, 326
useWeakReference parameter, 330

addListener() method, 15, 97
Adobe Developer Connection website, 84
Adobe Extension Manager, 217
Adobe Integrated Runtime (AIR), 260
Adobe LiveDocs website, 15, 23
Adobe online Help Resource Center, 59
AIR (Adobe Integrated Runtime), 15, 260

integration of web technologies, 101
align property (Stage), 317
amplitude of a sound, visualizing, 393
animation, 107
animations

choosing appropriate display object,
285

frame-based and ActionScript-based,
285

Animator class, 163, 173
AnimatorFactory class, 168
anonymous functions, 236
API (application programming interface)

ActionScript 3.0, 23
changes in ActionScript 3.0, 70

leanness and focus, 72
restructuring in ActionScript 3.0, 15

apostrophe ('), entity coding in XML, 368
appendChild() method, 370
appendText() method (TextField), 339,

437
array access operator ([]), 76

AS files, associating with FLA files, 126–
130

classes, 129
code snippets, 127
improvement of workflow by AS files,

126
as operator, use in casting, 247
assets, 377

(see also external assets)
attachable, 34
attached, writing custom class for,

152
attaching at runtime in ActionScript

2.0, 147
attaching at runtime in ActionScript

3.0, 147
based on custom classes, instantiation

of, 154
class naming, 150
recognizing associated class, 154
specifying base class, 151

ASTRA components, 225
attachMovie() function (obsolete), 74
attachSound() function (obsolete), 74
attribute (@) operator, 363
attribute() method, 364
attributes, XML elements, 364
audio, 439

controlling sound volume or pan, 441
controlling volume and pan of loaded

sound file, 392
duration of sounds, 442
getting bytes loaded or total bytes for a

loaded sound, 442
getting current time for a sound, 442
loading and playing a sound, 391
loading and playing external sounds,

440
new classes for management in

ActionScript 3.0, 71
new sound APIs in ActionScript 3.0,

18
playing internal sounds from the

library, 440
preloading sounds in ActionScript 2.0,

412
preloading sounds in ActionScript 3.0,

422

452 | Index

removal of SWFs with sound from
memory, 390

setting buffer time of loaded sounds,
442

sound in in ActionScript 3,0 code
example, 417

stopping a sound, 440
stopping all sounds, 442
unloading sound files, 395
visualizing sound amplitude during

playback, 393
autoSize property (TextField), 339
AVM1 and AVM2 (virtual machines), 4
AVM1Movie class, 285

B
background property (TextField), 336
base class, specifying for asset class, 151
beginFill() method, 273
Behaviors panel, 118
Bitmap class, 156, 285

creating instance and adding it to
display list, 431

Bitmap Properties dialog box, 155
BitmapData class, 155, 267, 431
bitmaps

adding library bitmap to the stage,
432

applying simple bitmap filter to display
object, 281

caching vector as bitmap, 280
creating, 431

Boolean type, 14
default value of instances, 234

border property (TextField), 336
bracket notation, 76
breakpoints, 254
browsers

runtime errors displayed in, 239
trace() statements logged to local text

file, 262
bubbling phase, events, 307

using, 308
bufferTime property (SoundMixer), 442
button clicks, handling in ActionScript 2.0

and 3.0, 9
Button components

decreased file size in ActionScript 3.0,
182

feature changes, 183
skinning manually, 203
style properties, 199

buttonMode property, 295
buttons

custom button instantiation in
ActionScript 2.0, 408

ByteArray class, 18
bytesLoaded and bytesTotal properties

(Sound), 442

C
call stack, 255
Capabilities class, version property, 19
CaptionButton component, 194
capture phase, events, 307

processing an event before it reaches its
target, 326

capturing mouse events, 305
Cascading Style Sheets (see CSS)
casting

display object from one type to another,
297

Loader instance content as movie clip,
382

referencing movie clip parent, 247
simple content, XML object, 361

CDATA tags, 367
changeHandler() function, 190
charCode property, 316
CheckBox components

feature changes, 183
text formatting, 202

class constructor functions
scoping a variable to, 63
use in casting, 247

class format, code written in, 244
class members, availability to outside

code, 80
classes

changes in ActionScript 3.0, 64
class structure in ActionScript 2.0 code,

411
class structure in ActionScript 3.0,

421

Index | 453

compiler errors or warnings about,
243

custom, ActionScript 3.0 code in, 105
display object, 284
document class dependencies, 140
documentation in ActionScript 3.0

Language Reference, 243
dynamic versus sealed, ActionScript

2.0, 408
dynamic versus sealed, ActionScript

3.0, 418
experimentation with class files,

ActionScript 2.0, 137
external ActionScript referenced by

FLA files, 129
fully qualified class names, 78
naming, 150
researching with Script Assist, 131
sealed, 6
writing custom class for attached asset,

152
cleanUp() function, 390
CLICK event, 304

flow of, 307
clickHandler() function, 175
code comments, shortcuts for, 116
code editors external to Flash, 32–58

FlashDevelop, 50
Flex Builder 3, 37–46
PrimalScript, 56
SEIPY, 46

code examples in this book, xviii
code snippets, 105, 127
codebase HTML tag attribute, 29
collisions among display objects, 434
ColorPicker component, 189
ColorPickerEvent class, 189
ColorTransform class, 190
ComboBox components

decreased file size, 182
feature changes, 183
performance improvement in

ActionScript 3.0, 181
CompanyTemplate class (example), 142
Compiler Errors panel, 22, 240–250

copying Description or Source column
to clipboard, 241

errors in nested move clip scripts, 240

identifying and understanding
common errors, 244

interpreting and understanding errors,
242

Location and Source columns, 240
troubleshooting indecipherable errors,

250
using to open code, 241

compiler errors, ActionScript 2.0, 63
compiler warnings, 233
compilers

in ActionScript 3.0, 19
ActionScript 3.0, 24
Flex command line compiler, 23

Component Inspector panel, 189
configuring components, 183
configuring skin parameter of

FLVPlayback, 195
components, 179–204

changing appearance of, 199–204
manually skinning components,

203
styling with code, 199

Components panel, 179
decreased file sizes in ActionScript 3.0,

182
dynamic instantiation in ActionScript

3.0, 418
feature changes, 183
instantiating dynamically in

ActionScript 2.0, 408
new and removed in ActionScript 3.0,

185
performance improvements and

reduced file size, 180
UI and Video groups, 179
writing code for, changes in, 188–198

ColorPicker component, 189
FLVPlaybackCaptioning and

CaptionButton, 194
FullScreenButton component, 196
Slider component, 190
TileList component, 192

conditionals, using to find XML content,
366

connections
closing for removal of SWF files, 390

454 | Index

pausing and closing for video file
unloading, 399

consistency in ActionScript 3.0, 96
event handling, 96
object instantiation, 99

constants, 73
names of, 447

content nodes in XML object, finding
using shorthand, 364

contentLoaderInfo property, 69
controllers, scripting video file controller,

399
Copy Motion as ActionScript 3.0 feature,

163
applying motion to other objects, 166
copying motion, 163
editing default ActionScript to respond

to mouse clicks, 175
editing default XML for motions, 173
redoing animation using classic tweens,

170
createEmptyMovieClip() function

(obsolete), 75
createTextField() function (obsolete), 75
Crugnola, Alessandro, 26
CSS (Cascading Style Sheets)

applying stylesheet to external asset,
378

formatting text, 160
tags supported by Flash Player, 348

cue points in video files, 398
currentTarget property, 310
curveTo() method, 272

D
data binding

codeless, in ActionScript 2.0, 208
between ComboBox and TextInput

components, 211
data classes, 36
data components

available with Flash CS4 Professional,
186

removed in ActionScript 3.0, 185
working without, 208

data types
casting display object from one type to

another, 297

changes in ActionScript 3.0, 82
default value, 233
default values, 427
number data types in ActionScript 3.0,

421
primitive types, new in ActionScript

3.0, 14
runtime types, 6
type declaration, 233

DataBindingClasses component, 208
Date class, getFullYear() and

setFullYear() methods, 448
Debug Console panel, 255
debug versions (Flash Player), 25
Debugger panel, 250
debugging

importance of, 231
logging trace() statements from a

browser, 261
remote, 260

debugging improvements, 237
Compiler Errors panel, 240–250
runtime erro display in Flash Player 9

or higher, 239
trace() function, 237

debugging workspace, 250–263
basic debugging session, 252
breakpoints, 254
example of Debug Console and

Variables panels in action,
257

default values
in ActionScript 2.0, 412, 423
differences between ActionScript 2.0

and 3.0, 427
defaultTextFormat property (TextField),

345, 438
Delegate class, 9
delegates, 429
delete operator, 369
depth management, 16, 76

ActionScript 2.0, 406
ActionScript 3.0 code, 415
display objects on display list, 288
getting highest unused depth, 432
specifying display object depth on

display list, 289
swapping display object depths, 433

Index | 455

descendent accessor operator (. .), 11,
365

describeType() function, 251
Dialect drop-down menu, 125
dispatchEvent() method

(EventDispatcher), 323, 436
display, 429–435, 430

(see also display lists; display objects)
accessing display object by name, 433
accessing the stage, 429
adding library bitmap to the stage,

432
adding library movie clip to the stage,

431
assigning mask to a movie clip, 435
checking for display object collisions,

434
checking level of display objects, 432
creating bitmaps, 431
depth management, 432
duplication of movie clips, 431
removing display objects, 434

display lists, 17, 268, 283–301
accessing Stage through display object,

430
adding display object, 287
adding visual objects to, 74
casting display object from one type to

another, 297
changing parent of a display object,

299
choosing type of display object to use,

284
creating new display object, 286
finding a display object, 291
hierarchy of classes comprising, 284
locating display objects by index

number, 77
referencing stage through a display

object, 300
removing a display object, 292
specifying depth of display object, 289
working with display object container

children, 293
working with display object parents,

296
display objects, 300

(see also display lists)

accessing a parent, 430
checking level of, 432
creating dynamically, 268
hiding while in display list, 283
referencing graphics property, 269
root, 429
swapping depths, 433

displayAsPassword property (TextField),
336

DisplayObject class, 284
compiler error concerning, 243

DisplayObjectContainer class, 17, 285
contains() method, 294
getChildAt() method, 77
getChildByName() method, 77
mouseChildren property, 295
numChildren property and, 294

document class, 33, 63, 137–144
association with SWF files, 244
attaching to FLA file, 138
pausing and resuming main timeline,

142
preparing to use in frame script, 143
requirement to extend MovieClip or

Sprite class, 141
DOM3 event model, 16
dot syntax, 15, 74

benefits of, 97
isolating element node in XML object,

359
isolating text node in XML object, 360
targeting attributes in XML element

node, 364
use with XML, 356

drag-and-drop activities
draggable window (example), 310
mouse up outside event, 312

DragParrot custom class, 33
Drawing API

changes in ActionScript 3.0, 71
Graphics class in ActionScript 3.0,

419
move from MovieClip class to Graphics

class, 434
using in ActionScript 2.0, 409

drawing with code, 267–282
applying simple bitmap filter to display

object, 281

456 | Index

caching vector as bitmap, 280
creating display object dynamically,

268
creating gradient fill, 277
defining fill style, 273
defining line style, 270
drawing a curve, 272
drawing a line, 271
drawing a rectangle, 274
drawing circles, 276
drawing rectangle with rounded

corners, 274
referencing display object's graphics

property, 269
using shape as dynamic mask, 278

duplicateMovieClip() function (obsolete),
75

duration of sounds, 442
dynamic attribute, 7
dynamic classes, 7
dynamic text fields, 333
dynamic tone generator, 18

E
E4X (ECMAScript for XML), 10
easing classes, 107
Ebert, Michelle and Joa, 18
Eclipse IDE, 24
ECMAScript, 3

characteristic of languages
implementing, 5

ECMAScript for XML (E4X), 10
editors (see code editors external to Flash)
efficiency of ActionScript 3.0, 93
element node, reading in XML object,

359
embedFonts property (TextField), 343
endFill() method, 273
entity encoding (XML), 367
equal (=) operator, 437
errors, 244

(see also Compiler Errors panel)
compiler errors, 232
documentation, 242
helpfulness of error messages, 236
identifying and understanding

common errors, 244
runtime, 235

runtime error handling in ActionScript
3.0, 5

runtime errors
display in Flash Player 9, 239

eval() function, 76
event handlers, 72

(see also events)
obsolete practice of direct attachment

to objects, 72
referencing by instance name in

ActionScript 3.0, 73
Event.ENTER_FRAME, 107
Event.ENTER_FRAME event, 312
Event.FULLSCREEN event, 317
Event.MOUSE_LEAVE event, 317
Event.RESIZE event, 317
Event.target property, 10
event: protocol, 351
EventDispatcher class, 323, 436

addEventListener() method, 16, 98,
132

components' inheritance from, 188
events, 303–331, 435

adding and removing listeners, 435
animation responding to mouse clicks,

175
associating with functions, 131
calling event listener functions

manually, 325
capturing before reaching target, 326
capturing frame events, 312
capturing keyboard events, 315
capturing mouse events, 305
capturing when leaving or resizing

stage, or switching to full
screen, 317

dispatching, 436
dispatching using a timer, 321
dispatching your own, 323
DOM3 event model, 15
enabling event dispatching, 436
event flow in ActionScript 3.0, 307
event handling in ActionScript 2.0,

407
event handling in ActionScript 3.0, 98,

417
event listeners, 303

Index | 457

event listeners for asynchronous event
errors in video playback,
399

event listeners handling events in
ActionScript 3.0, 435

event names, 447
execution order of functions triggered

by an event, 328
improved memory management using

weak listeners, 330
loading and display of external assets,

381
onMetaData and onCuePoint event

handlers for video file, 398
removing unused event listeners to

enhance performance, 314
simulating outside mouse up event,

311
supported by a component, 189
trapping mouse up event outside

display object boundaries,
436

triggering event listener with a
hyperlink, 439

using event bubbling, 308
using event handlers in ActionScript

2.0, 435
example code, xviii
exceptions, 5

(see also errors)
runtime, 5

external assets, 377–400
communicating with ActionScript 2.0-

based loaded SWF, 384
communication with ActionScript 3.0-

based loaded SWF, 382
controlling volume and pan of loaded

sound file, 392
loading and applying CSS stylesheet,

378
loading and displaying an image or

SWF, 380
loading and playing a video, 397
loading and playing an MP3 file, 391
unloading a video, 399
unloading an image or SWF, 387–391
unloading sound files, 395
visualizing amplitude of a sound, 393

ExternalInterface class, 219

F
fill style, defining, 273
filter classes, 281
<filters> element, editing, 174
fl.transitions package, 107
FLA files

associating with AS files, 126–130
attaching a document class, 138
creating, 24
document class, 33

Flash authoring tool
alternatives to, 32
reduced component set for

ActionScript 3.0, 207
Flash CS4

components available in, 185
remote debugging of SWF file, 260
Script windows, 32

Flash CS4 Professional, 24
accessing asset linkage properties, 145
data, media, UI, and video

components, 186
updated debugging tools, 231

Flash document classes, xviii
Flash Lite, 15
Flash Player

configuring to log Trace() statements
to local file, 261

CSS tags supported, 348
ensuring users have necessary version,

27
HTML tags supported, 346
location of flashlog.txt file, 263

Flash Player 9, 19
minor point releases, 19

Flash Player 9 (or higher), 25
debug versus release versions, 25
display of runtime errors, 239

Flash Player API, 23
updates, 15

Flash Publish settings, 124
Flash Switcher, 26
FlashDevelop editor, 50

configuring Flex SDK location, 51
configuring SWF file settings, 54
creating ActionScript 3.0 project, 51

458 | Index

switching to Flash authoring tool
compiler, 54

tools included with, 55
flashlog.txt file, 263
FlashVars, 443

ActionScript 2.0 code, 406
ActionScript 3.0 code, 415

Flex Builder 3, 24
coding with, 37–46

basic outline for new class, 39
code coloring and code hinting, 41
code navigation aids, 44
creating ActionScript project, 37
Outline view of class members, 41
tooltips displaying data types, 44
troubleshooting tool, 41

Flex Builder IDE compiler, 19
Flex Component Kit for Flash CS3

extension, 46
Flex framework, 23
Flex platform for building web

applications, 100
Flex SDK, 23

compiler, 19
floating-point numbers, IEEE-754 double

precision, 14
FLV (Flash video files), 19
FLVPlayback component, 179

configuring skin parameter, 195
customizing without using code, 184

FLVPlaybackCaptioning component, 180
configuring source parameter, 195
writing code for, 194

focus property (stage), 337
Font Symbol Properties dialog box, 158
fonts

embedding and making available to
ActionScript 3.0, 157

using embedded fonts, 343
formatting text

setting default format, 438
using CSS, 348
using TextFormat, 344

frame events
capturing, 312
removal of loaded SWF files and, 388

full-screen mode, switching to, 318
FullScreenButton component, 196

fully qualified class names, 78
function literals, 236
functions

associating events with, 131
definitions of, 73
event listener, calling manually, 325
global functions, removal in

ActionScript 3.0, 428
method closure and, 10
redundancy in older versions of

ActionScript, 70
triggered by an event, setting execution

order, 328
triggering ActionScript function with a

hyperlink, 439

G
garbage collection, 390
getChildAt() method, 291
getChildByName() method, 291, 433
getChildIndex() method, 432
getProperty() function (obsolete), 74
gradient fill, creating, 277
Graphics class, 267, 285

beginFill() and endFill() methods,
273

beginGradientFill() and endFill()
methods, 277

curveTo() method, 272
drawCircle() method, 276
drawing API, 71, 434
drawRect() method, 274
drawRoundRect() method, 275
drawRoundRectComplex() method,

275
lineStyle() method, 270
moveTo() and lineTo() methods, 271
moveTo() method, 245
using in ActionScript 3.0, 419

graphics property, referencing for an
object, 269

H
hitTestObject() method, 434
hitTestPoint() method, 434
horizontal scrolling of text fields, 342
HTML

Index | 459

ActionScript triggered from links, 351
detection of Flash Player version in

publish settings, 28
document generation with

SWFObject, 32
enclosed in XML nodes, reading, 367
hyperlinks for text, 350
loading external HTML file and

applying CSS stylesheet, 378
populating text fields with, 438
preparing for full-screen video, 197
using to format text fields, 346
written by Flash authoring tool, 29

hyperlinks
adding to text, 350
triggering an ActionScript function,

439

I
IDEs (integrated development

environments), 23
images

loading and displaying external images,
381

loading and unloading, 443
loading in ActionScript 2.0, 407, 416
unloading, 387–391

import directives, 77
importing, packages and, 79
include directive, 128
indexOf() method (String), 12
inheritance, class listings in ActionScript

3.0 Language Reference, 243
inline creation of style objects, 349
input text fields, 333
insertChildAfter() method, 371
instance names, 77

referencing event handlers by, 73
instantiation

assets based on custom classes, 154
dynamic custom class instantiation in

ActionScript 3.0, 417
dynamic instantiation of custom class

in ActionScript 2.0, 407
dynamically instantiating a

component, ActionScript
2.0, 408

object instantiation in ActionScript 3.0,
99

int type, 14
default value of instances, 234
system memory used by, 233

int() function, 298
integrated development environments

(IDEs), 23
InteractiveObject class, 285
internal (access control specifier), 80
Internet Explorer, embedding Flash

Player, 29
intervals, 447
intrinsic classes, 56
IO (input/output) processes, 443

J
JavaScript, 4

AC_FL_RunContent() function, 198
detection of Flash version, 30
embedding of SWF files, 29
SWFObject, 31

Jumpeye commponents, 227

K
keyboard events, capturing, 315
KeyboardEvent class, 317
keyCode property, 316
<Keyframe> elements, editing to adjust

blur, 174
keyframes

ActionScript 3.0 code in, 105–112
errors from code in class format, 244
location of errors in, 240

L
language changes in ActionScript 3.0,

426–429
(see also ActionScript 3.0)
default values, 427
delegates, 429
global variables and functions, 428
referencing objects by evaluated

expression, 427
root of SWF files, accessing, 429

lastIndexOf() method (String), 12

460 | Index

leftPeak and rightPeak properties, sound
channels, 394

length property (Sound), 442
length() method (XMLList), 363
level of display objects, 432
library and linkage changes, 145–161

attaching fonts, 157
linkages referencing classes, 145
naming classes, 150
recognizing associated class for assets,

154
specifying base class, 151
writing custom class for attached asset,

152
library path settings, 121
lineStyle() method, 270
lineTo() method, 270
linkage class, 34, 74

naming, 150
Parrot custom class, 34
providing for imported font, 158
using to create Library-based display

object instance, 286
writing by authoring tool, 148

linkage identifiers, 145
linkage properties

ActionScript 1.0 and 2.0 documents,
146

ActionScript 3.0 documents, 147
links

hyperlinks in text, 350
triggering ActionScript from HTML

links, 351
List components, feature changes, 183
listeners, event, 305

(see also events)
improved memory management using

weak listeners, 330
manually calling functions, 325
removing unused to enhance

performance, 314
understanding basic operations of,

303
using target or currentTarget properties

to parse data from, 310
Loader class, 17, 95, 285

contentLoaderInfo property, 70, 381
load() method, 444

loading external image file or SWF,
380

removal of SWF file or image loaded
into an instance, 387

SWF file loaded into an instance,
casting as movie clip, 382

unload() method, 387
LoaderInfo class, 70, 381

FlashVars stored in parameters object,
443

LocalConnection class, 219
LocalConnection objects, 384

removal of loaded SWFs with, 390
logical AND operator (&&), 249
logical comparisons, 366
lumps variable, automatic declaration, 61

M
Main class, 138
Mandelbrot set, rendering, 86–93

speed in different versions of Flash
Player, 90

updating code to ActionScript 3.0, 90
mask property, 278, 435
masking display object with another

display object, 278
Matrix class, createGradientBox()

method, 278
maxChars property (TextField), 336
mc variable, 76
McCauley, Trevor, 84
media components available with Flash

CS4 Professional, 186
metadata in video files, 398
method closures, 8

in ActionScript 3.0, 422
lacking in ActionScript 2.0, 411

methods
inability to reference from a null

reference, 249
redundancy in older versions of

ActionScript, 70
Michels, Pieter, 217
migration to ActionScript 3.0, 403–424

ActionScript 2.0 example code, 404–
413

main timeline, 404–409
Particles class, 409

Index | 461

ActionScript 3.0 example code, 413–
424

main timeline, 414–419
Particles class, 419–424

audio, 439
display, 429–435
events, 435
language changes in ActionScript 3.0,

426–429
text, 437

MorphShape class, 285
motion, 175

(see also Copy Motion as ActionScript
3.0 feature)
applying to other objects, 166
copying, 163

Motion class instance, 168
Motion Editor panel, 166
MotionBase class, 168
mouse events

capturing, 305
CLICK event, flow of, 307
mouse leaving bounds of Flash Player

stage, 318
simulating outside display object

bounds, 311
target and currentTarget properties in

parsing event listener data,
310

text selection, 352
trapping mouse up event outside

display object boundaries,
436

using event bubbling, 309
MouseEvent class, 73

constants for event types, 304
listening for events from, 305
target property, 176

mouseUp event, 73
moveTo() method, 245, 271
movie clips, 24

(see also timelines)
adding library movie clip to the stage,

431
assigning mask to, 435
casting Loader instance content as,

382

creating, differences in ActionScript 2.0
and 3.0, 430

creation with new statement, 100
duplicating, 431
dynamic creation in ActionScript 2.0,

407
dynamic creation in ActionScript 3.0,

417
instantiation in ActionScript 3.0, 16
iterating through with an object

reference, 77
referencing parent, requirement for

explicit conversion, 247
MovieClip class, 7, 285

ActionScript 2.0 versus 3.0, 94
currentFrame property, 108
direct instantiation with new operator,

75
document class extending, 141
drawing API methods, 71, 434
graphics property, 71
loadMovie() method, 70
methods, listed, in ActionScript 3.0,

17
name property, 77
play() method, 247
property names, 246
stop() and play() methods, 142

MovieClip() function, 299
Mozilla browsers, Flash Player

installation, 30
MP3 file (external), loading and playing,

391
MXML, 19

N
name qualifier operator (: :), 14, 82
named functions, 236
Namespace class, 82
namespaces, 14, 80

access to private namespaces, 449
document class residing in package

structure, 140
XML, 80
XML generated by Copy Motion as

ActionScript 3.0, 177
NaN (not a number), 234
NetConnection objects, 397

462 | Index

closing and nullifying, 390
event listeners for asynchronous event

errors, 399
instantiating, 397
pausing and closing while unloading a

video, 399
NetStream class, 98
NetStream objects, 397

client property, 398
creating, 398
event listeners for asynchronous event

errors, 399
pausing and closing, 390
pausing and closing while unloading a

video, 399
new keyword

consistency in ActionScript 3.0 object
instantiation, 99

creating display objects, 268, 286, 430
movie clip instantiation in ActionScript

3.0, 16
new operator

attaching library assets at runtime, 74
direct instantiation of MovieClip and

TextField classes, 75
nodeFind() method, 361
Null type, 14
null values, 233

comparisons to, 83
passing to event listener function, 325

Number data type, 14
default value of instances, 234
system memory used by, 233

number data types, 421

O
Object class, 94

prototype property, 7
toString() method, 238

object initializations, 320
object instantiation, 99
object references, building in Script Assist,

132
object-oriented programming (OOP) and

ActionScript 3.0, 21
objects

accessing a parent, 430
accessing by instance name, 409, 419

accessing in the parent, 423
ActionScript attachment to, 117
data types and typing, 83
re-parenting in display list system, 17
referencing by evaluated expression,

427
referencing graphics property, 269
Script Assist documentation, 131

obsolete code, 72–77
attachMovie()/attachSound(), 74
createEmptyMovieClip(),

duplicateMovieClip() and
createTextField(), 75

eval() function, 76
getProperty()/setProperty()/

tellTarget(), 74
on()/onClipEvent(), 72

on()/onClipEvent() methods, changes in
ActionScript 3.0, 72, 118

onClick() listener function, 304
onDown() listener function, 306
onKeyPressed() function, 316
operating systems

consistent Flash Player runtime, 100
supporting Flash Player 9, 19

OperationEvent component, 218

P
packages

in ActionScript 3.0, 64
document class in package structure,

140
imported into class files, 77
importing and, 79
links to in compiler errors, 243
package declaration in class format

code, 244
pan level for loaded sound file, 392
pan property, 441
parameters, strongly typed, 6
parent object

accessing for display objects, 430
changing for display object, 299

parent property, display objects, 296
particle system (example), 404–424

ActionScript 2.0 code, 404–413
main timeline, 404–409
Particles class, 409

Index | 463

ActionScript 3.0 code
main timeline, 414–419
Particles class, 419–424

password field, creating, 336
patterns, 12
pauseFrame() and resumeFrame()

methods (example), 142
performance

benefits of ActionScript 3.0, 86–93
improvement with ActionScript 3.0

components, 181
PHP script saving file to server and

returning XML object, 375
pluginpage HTML tag attribute, 30
plus-equal (+=) operator, 438
PNG encoder, 18
portability among technologies, 100
position property (SoundChannel), 442
preferences for ActionScript, 120–126

Auto Format preferences, 123
Flash Publish settings, 124
Preferences dialog box, 120

prependChild() method, 371
PrimalScript editor, 56

features, 58
providing with ActionScript 3.0

intrinsic classes, 57
primitive types, new in ActionScript 3.0,

14
priority parameter (addEventListener()

method), 328
private (access control specifier), 80
properties

declaring a variable as class property,
63

inability to reference from a null
reference, 249

naming in ActionScript 2.0, 408
naming in ActionScript 2.0 and 3.0,

446
serving as constants, names of, 447
uderscore (_) in names, 246

Property inspector
attaching document class to FLA file,

138
instance names for objects, 73

Property-inspector-style instance names,
77

protected (access control specifier), 80
prototype property (Object), 7
public (access control specifier), 80
Publish settings (Flash), 124
Publish Settings dialog, assigning a

document class, 138

Q
quotation marks ("), XML entity, 367

R
RegExp class, 12
regular expressions, 12
release versions (Flash Player), 25
remote debugging, 260
removeChild() method, 292, 434
removeChildAt() method, 292
removeEventListener() method, 314

removing listeners, 436
resize events, 317
restrict property (TextField), 336
resumeFrame() method (example), 142
return values, strongly typed, 6
root node (XML object), 360
root of SWF files, accessing, 429
runtime types, 93

S
scaleMode property (Stage), 317
scope, 8

buttonHandler() function prior to
ActionScript 3.0, 9

variables, 61
Script Assist, 130

building an object reference, 132
building expressions, 133
changing Actions panel Script pane,

132
configuring a custom function, 133

script editors (see code editors external to
Flash)

Script windows, 112
toolbar, 117

scrollbars, creating for text scrolling, 342
scrolling text fields, 341, 438
scrollPolicy parameter, TileList

component, 193

464 | Index

sealed classes, 6
searches, using regular expressions, 12
SEIPY ActionScript editor, 46

additional tabs and tools, 50
Snippets tab, 47

selectable property (TextField), 335
selecting text in a field, 352
setProperty() function (obsolete), 74
Shape class, 285
shiftKey property, 316
simple content (XML object), 361
SimpleButton class, 73, 244, 285
Skinner, Grant, 219
skinning components manually, 203
skins

built-in CaptionButton component,
196

built-in FullScreenButton component,
196

configuring for FLVPlayback
component, 195

Slider component, 190
example volume slider, 192

SliderEvent.CHANGE constant, 191
slideshow, runtime error in XML data

document, 235
SOAP protocol, 215
software development kit (SDK) (see Flex

SDK)
sound (see audio)
Sound class

attachSound() method, 440
bytesLoaded or bytesTotal properties,

442
collaboration with new classes for

audio management, 71
creating instance to load and play

external sound file, 391
imported audio file representing, 156
length property, 442
load() method, 440
nullification of instance during sound

file unloading, 395
play() method, 440

SoundChannel class, 18, 71
controlling loaded sound file playback,

391

nullificationn of instance during sound
file unloading, 396

position property, 442
soundTtransform property, 392
stop() method, 441

SoundMixer class, 18, 71, 396
bufferTime property, 442
stopAll() method, 442
using to transform all sounds, 441

SoundTransform class, 18, 71, 392
volume and pan properties, 441

<source> element, 174
source and library path settings, 121
spectral data from sounds, 18
Sprite class, 17, 95, 285

buttonMode property, 175
creating sprite object and adding to

display list, 287
document class extending, 141

stage
access to, in ActionScript 2.0, 411
accessing in ActionScript 2.0 and 3.0,

429
accessing in ActionScript 3.0, 422
adding a library bitmap, 432
adding library movie clip to, 431
focus property, giving focus to specified

text field, 337
Stage class, 285

events, 317
stage property, 300
standards and portability among

technologies, 100
static class members, 428
static text fields, 333
StaticText class, 285
streams

closing sound streams, 395
creating NetStream instance, 398
pausing and closing for video file

unloading, 399
unloading SWF files with video

streams, 390
Strict mode, 125
strictness in ActionScript 3.0, 61
String class, 14

charAt() method, 361

Index | 465

indexOf() and lastIndexOf() methods,
12

strings, trace() function output, 237
style properties, Button class, 199
StyleManager class, 199

setStyle() method, 200
StyleSheet class, 160, 348

external CSS loaded into an instance,
378

setStyle() method, 349
subclasses, links to information in

compiler errors, 243
swapping display object depths, 433
SWF files

accessing the root, 429
communication with ActionScript 2.0-

based loaded SWF, 384
communicationg with ActionScript

3.0-based loaded SWF, 382
document class associated with, 244
with dynamically attached assets, 156
embedding fonts, 157
external, loading and displaying, 381
getting URL for, 443
loading and unloading, 443
management of visual objects by

display lists, 74
remote debugging by Flash CS4, 260
unloading, 387–391
using ActionScript 2.0 components in

3.0 SWF files, 219
SWFBridge class, send() method, 224
SWFBridge classes, 219
SWFBridgeAS2 class, 222
SWFObject class, 31
Symbol Properties dialog box, 145
syntax and structure changes (major), 77–

83
data types and typing, 82
importing and packages, 79
namespaces, 80

T
target phase, events, 308
target property, events, 306

determining when to use, 310
tellTarget() function() (obsolete), 74
TestFormat class, 70

testing code, 232–237
compiler errors, 232
compiler warnings, 233
runtime errors, 235

text, 333–353, 437
adding hyperlinks, 350
automatically sizing text fields, 339
creating password fields, 336
creating text fields, 334, 437
creating text fields with new statement,

100
embedded fonts, 343
focusing a text field, 337
formatting in text fields using

TextFormat, 344
formatting using CSS, 160, 348
formatting using HTML, 346
formatting using imported font, 159
populating text field with plain text,

437
populating text fields, 338
populating text fields with HTML,

438
scrolling in text fields, 341, 438
selecting, 352
setting default format, 438
static, dynamic, and input text fields,

333
styling text fields, 334
triggering ActionScript from HTML

links, 351
triggering ActionScript functions with

hyperlinks, 439
using text field as a variable, 438

text editors, creation of FLA files, 24
text node, reading in XML object, 360
text property (TextField), 339
text() method, 361, 363
TextField class, 159, 285, 334

alwaysShowSelection property, 353
appendText() method, 339
autoSize property, 339
defaultTextFormat property, 345
direct instantiation with new operator,

75
htmlText property, 347
properties used in styling, 334

466 | Index

scrollV and maxScrollV properties,
341

setSelection() method, 352
setTextFormat() method, 159, 346
styleSheet property, 348
text property, 339

TextFieldAutoSize class, 340
TextFormat class, 200, 344
textFormat style property, 200
TextInput components, feature changes,

183
this keyword, 9

avoiding compiler errors with
undeclared variables, 249

this property, 76
this.start() function, 9
TileList component, 192
TimedText XML document (example),

194
timeline metaphor, 24
timelines, 7, 24, 106–112

(see also movie clips)
association with entry point class, 138
attaching ActionScript to desired

frame, 110
main timeline and document class, 63
main timeline, ActionScript 3.0 particle

system code, 414–419
main timeline, particle system

(ActionScript 2.0), 404–409
pausing then resuming main timeline,

142
scope of variables within, 62
variables scoped to, 8

timeouts, 447
Timer class, 321

intervals and timeouts, 447
repeatCount and currentCount

properties, 324
Timer objects, 142
TimerEvent.TIMER_COMPLETE event,

322
timers

and removal of SWF files, 390
using to dispatch events, 321

toString() method, 238
totalFrames property, movie clips, 299
trace() function

acceptance of multiple parameters in
ActionScript 3.0, 238

importance in debugging, 237
logging statements from a browser,

261
transformation of sounds (see

SoundTransform class)
troubleshooting, 250
try. .catch. .finally block, 250
Tween class, 107
tweening models, Flash CS4, 164
tweens

MorphShape class, 285
using classic tweens for animation,

170
type mismatch, 6
types (see data types)
typing, changes in ActionScript 3.0, 82

U
UI components, 36, 179

available with Flash CS4 Professional,
186

Flash CS3 and later, using, 188
third party, 224

Jumpeye components, 227
Yahoo! ASTRA components, 225

UIComponent class, setStyle() method,
202

uint type, 14
default value of instances, 234

UIScrollBar component, instancing to
manage text scrolling, 342

undefined value, 83
unload() method (Loader), 387
unloading images or SWF files, 444
URIs, 14

namespace, 82
url property, 443
URLLoader class, 358

load() method, 373, 445
loading external CSS into StyleSheet

instance, 378
URLLoaderDataFormat class, 445
URLRequest class, 69

configuring instance for sending and
loading, 374

URLRequest objects, 358

Index | 467

data property, 446
loading sounds, 440
navigateToURL() method, 446

URLs
connecting to a URL in a web browser,

446
getting for SWF files, 443

URLVariables class, 445
Uro, Tinic, 18
useCapture parameter,

addEventListener() method,
326

user input, content requiring, 179
useWeakReference parameter

(addEventListener() method),
330

V
var keyword, 61

changes in ActionScript 3.0, 61
variables

changes in ActionScript 3.0, 61
data types, 83
declaration in ActionScript 2.0, 407
declaration in ActionScript 3.0 code,

416
declaration once per timeline or class,

248
defined in keyframe scripts, 7
differences between ActionScript 2.0

and 3.0, 428
loading, 444
private variable names, 35
sending to a server, 445
specifying intended type, 6
text field used as (ActionScript 2.0),

438
undeclared timeline variables, inability

to reference, 248
untyped, 83
writing XML containing variables, 372

Variables panel, 255
vectors

caching vector as bitmap, 280
manipulation with Graphics class, 267

version detection, 29
version property, Capabilities class, 19
vertical scrolling in text fields, 341

video
displayed in full-screen mode, 196
loading and playing external video,

397
removal of loaded SWFs with video

from memory, 390
unloading video files, 399

Video class, 285
creating instance and adding to display

list, 397
video components, 179

available with Flash CS4 Professional,
188

virtual machines
ActionScript Virtual Machine 2

(AVM2), 85
AVM1 and AVM2, 4

visual assets, display of, 283
visual containers,

DisplayObjectContainer base
class, 17

void type, 14
volume control

getting or setting a sound's volume,
441

for loaded sound file, 393
volume slider (example), 192

W
Warnings mode, 125
warnings, compiler, 233
weak listeners, 330
web browsers

embedding Flash applications, 29
Flash Player Debug and Release

versions, 25
standards and portability of content,

100
web page for this book, xix
WebService component extension, 217
WebServiceConnector scenario, 215–219

creating in ActionScript 2.0, 215
recreating in ActionScript 3.0, 217

wildcard (*) operator, 365
windows

draggable (example), 310
resizing, 317

wordWrap property (TextField), 340

468 | Index

X
XML, 355–376

creating object to hold XML data for
parsing, 356

deleting, 369
ECMAScript for XML (E4X), 10
editing default XML for animation,

173
error in document providing slideshow

data, 235
finding content using conditionals,

366
finding content using shorthand, 364
generated by Copy Motion as

ActionScript 3.0,
namespaces, 177

loading from external document or
server, 357

namespaces, 80
online information resources, 355
reading a text node, 360
reading an element node, 359
reading attribute from an element

node, 363
reading HTML or entities in nodes,

367
sending and loading, 373
TimedText XML document (example),

194
working with multiple nodes of same

name, 362
writing, 369
writing XML with variables, 372

XML class, 10, 356
creating an instance, 356
namespace() method, 82

XMLConnector scenario, 208–214
creating in ActionScript 2.0, 208
recreating in ActionScript 3.0, 213

XMLDocument class, 356
XMLList class, 362

creating XMLList of text nodes
(example), 365

length() method, 363
xmlns attribute, 80

Y
Yahoo! ASTRA components, 225
year of a date instance, 448

Index | 469

About the Authors
David Stiller is a resident author at www.communitymx.com (over 50 articles),
co-author of Foundation Flash CS3 for Designers (friends of ED) and contrib-
utor to How to Cheat in Adobe Flash CS3 (Focal Press). He blogs regularly at
quip.net/blog/ and is a longtime regular on the Adobe Flash and ActionScript
support forums.

Rich Shupe is the co-author of Learning ActionScript 3.0 (O’Reilly) and has
been teaching ActionScript programming to students of all levels since the
language became available. He founded his own training and development
company, FMA, in 1995 and is a faculty member of New York's School of
Visual Arts' MFA Computer Art Dept. He writes about ActionScript at
www.LearningActionScript3.com.

Jen DeHaan is a software quality engineer on the Flash authoring team at
Adobe Systems, Inc. She is an author and co-author of 17 books (and tech
editor for several others) over the past five versions of Flash. Jen's latest blog
is at www.flashthusiast.com.

Darren Richardson is a technical editor for O'Reilly Media. He gained high
visibility among Flash and ActionScript developers by writing over 50 articles
for Web Designer Magazine and community-related sites. He can be found on
a nearly daily basis blogging at www.playfool.com/blog/.

Colophon
The reptiles on the cover are ophiops.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe
ITC Garamond. The text font is Linotype Burka; the heading font is Adobe
Myriad Condensed; and the code font is LucasFont’s TheSans Mono Con-
densed.

	Table of Contents
	Foreword
	Preface
	What Sets This Book Apart
	What’s in This Book
	Part I: Introduction to ActionScript 3.0
	Part II: ActionScript and the Flash CS4 Authoring Tool
	Part III: How Do I?
	Part IV: Migration

	What’s Not in This Book
	Conventions Used in This Book
	This Book’s Example Files
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	From David
	From Rich

	Part I. ActionScript 3.0 Introduced
	Chapter 1. Introducing ActionScript 3.0
	Examining ActionScript 3.0, the Language
	Runtime Exceptions
	Runtime Types
	Sealed Classes
	Method Closures
	ECMAScript for XML (E4X)
	Regular Expressions
	Namespaces
	New Primitive Types

	Exploring Flash Player API Updates
	DOM3 Event Model
	Display List API
	New Sound APIs
	Binary Data and Sockets

	Understanding Players and Support
	Learning ActionScript 3.0 on the Heels of 2.0
	Deciding to Migrate or Write Code from Scratch

	Chapter 2. Discovering What You Need to Work with ActionScript 3.0
	Flash CS4 Professional/Flex Builder 3
	Flash Player 9 or Higher
	Debug Vs. Release Players
	Making Sure Users Have the Necessary Version of Flash Player
	Using SWFObject

	Using Other Code Editors with Flash
	Creating DragParrot, a Sample Class File
	Coding with Flex Builder 3
	Coding with SE|PY
	Coding with FlashDevelop
	Coding with PrimalScript

	Chapter 3. Looking at the Changes in ActionScript 3.0
	Major Changes and Obsolete Code
	Major Changes in the API, Classes, and Language
	ActionScript 3.0 is stricter
	ActionScript 3.0 encourages programming with purpose
	ActionScript 3.0 is more organized, which makes it more efficient

	Obsolete Code
	on()/onClipEvent()
	getProperty()/setProperty()/tellTarget()
	attachMovie()/attachSound()
	createEmptyMovieClip()/duplicateMovieClip()/createTextField()
	eval()

	Major Syntax and Structure Changes
	Importing and Packages
	Namespaces
	Data Types and Typing

	Additional ActionScript 3.0 Resources

	Chapter 4. Exploring the Benefits of Using ActionScript 3.0
	Performance
	Updating the Code to ActionScript 3.0

	Efficiency
	Consistency
	Standards and Portability Among Other Technologies

	Part II. ActionScript and the Flash CS4 Authoring Tool
	Chapter 5. Creating and Working with Code
	Thinking in Terms of the Timeline
	New Features in the Actions Panel and Script Windows
	Actions Panel
	Collapsible code sections
	Shortcuts for quickly adding and removing code comments

	Script Windows
	ActionScript Can No Longer Be Attached to Objects

	Setting ActionScript Preferences
	Preferences Dialog Box
	ActionScript
	Auto Format

	Flash Publish Settings

	Associating FLA Files with AS Files
	Code Snippets
	Classes

	Using Script Assist

	Chapter 6. Creating a Document Class
	Chapter 7. Working with Library and Linkage Changes
	Linkages Now Reference Classes
	Naming Classes
	Specifying a Base Class
	Writing a Custom Class
	Recognizing the Associated Class
	Attaching Fonts

	Chapter 8. Copying Motion as ActionScript 3.0
	Copying Motion
	Applying Motion to Other Objects
	Going Retro for the Sake of XML
	Editing the Default XML
	Editing the Default ActionScript

	Chapter 9. Using ActionScript 3.0 Components
	Overview of the Component Set
	Increased Performance and Reduced File Size
	Feature Changes

	New and Removed Components
	Changes in Writing Code for Components
	ColorPicker
	Slider
	TileList
	FLVPlaybackCaptioning and CaptionButton
	FullScreenButton

	Changing the Appearance of Components
	Styling Components with Code
	Skinning Components Manually

	Chapter 10. Making Up for a Reduced Component Set
	Working Without Data Components in ActionScript 3.0
	Creating an XMLConnector Scenario in ActionScript 2.0
	Recreating an XMLConnector Scenario in ActionScript 3.0
	Creating a WebServiceConnector Scenario in ActionScript 2.0
	Recreating a WebServiceConnector Scenario in ActionScript 3.0

	ActionScript 2.0 Components in ActionScript 3.0 SWF Files
	Exploring Third-Party UI Components
	Yahoo! ASTRA Components
	Jumpeye Components

	Chapter 11. Debugging and Troubleshooting
	Debugging Is a Good Thing
	Testing Your ActionScript 3.0 Code
	Compiler Errors
	Compiler Warnings
	Runtime Errors

	Reviewing Improvements in Debugging Over ActionScript 2.0
	Don’t Underestimate trace()
	Runtime Errors Displayed in Flash Player 9 and Higher

	Exploring the Compiler Errors Panel
	Using the Compile Errors Panel to Open Code
	Interpreting and Understanding Errors
	Identifying Common Errors and What They Mean
	Be careful where you type your code
	Remember to omit property underscores
	Referencing movie clip’s parent requires explicit conversion (casting)
	Variables can be declared only once per timeline or class
	Undeclared timeline variables cannot be referenced
	Properties and methods cannot be referenced from a null reference

	Troubleshooting

	Using the Enhanced Debugging Workspace
	Using the Debugger Workspace
	Breakpoints

	Stepping Through a Debugging Example
	Debugging Remotely
	Logging trace() Statements from a Browser

	Part III. How Do I?
	Chapter 12. How Do I Draw with Code?
	12.0 Introduction
	12.1 Creating a Display Object Dynamically
	Problem
	Solution
	Discussion
	See Also

	12.2 Referencing an Object’s Graphics Property
	Problem
	Solution
	Discussion

	12.3 Defining a Line Style
	Problem
	Solution
	Discussion
	See Also

	12.4 Drawing a Line
	Problem
	Solution
	Discussion
	See Also

	12.5 Drawing a Curve
	Problem
	Solution
	Discussion

	12.6 Defining a Fill Style
	Problem
	Solution
	Discussion

	12.7 Drawing a Rectangle
	Problem
	Solution
	Discussion

	12.8 Drawing a Rectangle with Rounded Corners
	Problem
	Solution
	Discussion
	See Also

	12.9 Drawing a Circle
	Problem
	Solution
	Discussion
	See Also

	12.10 Creating a Gradient Fill
	Problem
	Solution
	Discussion

	12.11 Using a Drawn Shape as a Dynamic Mask
	Problem
	Solution
	Discussion
	See Also

	12.12 Caching Vector as Bitmap
	Problem
	Solution
	Discussion
	See Also

	12.13 Applying a Simple Bitmap Filter
	Problem
	Solution
	Discussion

	Chapter 13. How Do I Work with the Display List?
	13.0 Introduction
	13.1 Choosing Which Type of Display Object to Use
	Problem
	Solution
	Discussion
	See Also

	13.2 Creating a New Display Object
	Problem
	Solution
	Discussion
	See Also

	13.3 Adding a Display Object to the Display List
	Problem
	Solution
	Discussion
	See Also

	13.4 Specifying the Depth of a Display Object
	Problem
	Solution
	Discussion
	See Also

	13.5 Finding a Display Object
	Problem
	Solution
	Discussion
	See Also

	13.6 Removing a Display Object from the Display List
	Problem
	Solution
	Discussion
	See Also

	13.7 Working with Children of a Display Object Container
	Problem
	Solution
	Discussion
	See Also

	13.8 Working with Parents of a Display Object
	Problem
	Solution
	Discussion
	See Also

	13.9 Casting a Display Object from One Type to Another
	Problem
	Solution
	Discussion
	See Also

	13.10 Changing the Parent of a Display Object
	Problem
	Solution
	Discussion

	13.11 Referencing the Stage Through a Display Object
	Problem
	Solution
	Discussion

	Chapter 14. How Do I Work with Events?
	14.0 Introduction
	14.1 Understanding Event Listeners
	Problem
	Solution
	Discussion

	14.2 Capturing Mouse Events
	Problem
	Solution
	Discussion
	See Also

	14.3 Understanding Event Flow
	Problem
	Solution
	Discussion
	See Also

	14.4 Using Event Bubbling
	Problem
	Solution
	Discussion
	See Also

	14.5 Using the target and currentTarget Event Properties
	Problem
	Solution
	Discussion

	14.6 Simulating a Mouse Up Outside Event
	Problem
	Solution
	Discussion
	See Also

	14.7 Capturing Frame Events
	Problem
	Solution
	Discussion
	See Also

	14.8 Improving Performance by Removing Event Listeners
	Problem
	Solution
	Discussion
	See Also

	14.9 Capturing Keyboard Events
	Problem
	Solution
	Discussion

	14.10 Capturing Stage Events
	Problem
	Solution
	Discussion
	See Also

	14.11 Using a Timer to Dispatch Events
	Problem
	Solution
	Discussion
	See Also

	14.12 Dispatching Your Own Events
	Problem
	Solution
	Discussion
	See Also

	14.13 Manually Calling Event Listener Functions
	Problem
	Solution
	Discussion

	14.14 Capturing an Event Before It Reaches Its Target
	Problem
	Solution
	Discussion
	See Also

	14.15 Setting the Execution Order of Events
	Problem
	Solution
	Discussion

	14.16 Using Weak Listeners
	Problem
	Solution
	Discussion
	See Also

	Chapter 15. How Do I Work with Text?
	15.0 Introduction
	15.1 Creating a Text Field
	Problem
	Solution
	Discussion

	15.2 Styling a Text Field
	Problem
	Solution
	Discussion
	See Also

	15.3 Creating a Password Field
	Problem
	Solution
	Discussion

	15.4 Focusing a Text Field
	Problem
	Solution
	Discussion
	See Also

	15.5 Populating a Text Field
	Problem
	Solution
	Discussion
	See Also

	15.6 Automatically Sizing a Text Field
	Problem
	Solution
	Discussion

	15.7 Scrolling a Text Field
	Problem
	Solution
	Discussion
	See Also

	15.8 Using Embedded Fonts
	Problem
	Solution
	Discussion
	See Also

	15.9 Formatting Text Using TextFormat
	Problem
	Solution
	Discussion

	15.10 Formatting Text Using HTML
	Problem
	Solution
	Discussion
	See Also

	15.11 Formatting Text Using CSS
	Problem
	Solution
	Discussion
	See Also

	15.12 Adding Hyperlinks to Text
	Problem
	Solution
	Discussion
	See Also

	15.13 Triggering ActionScript from HTML Links
	Problem
	Solution
	Discussion
	See Also

	15.14 Selecting Text
	Problem
	Solution
	Discussion

	Chapter 16. How Do I Work with XML?
	16.0 Introduction
	16.1 Creating an XML Object
	Problem
	Solution
	Discussion

	16.2 Loading XML
	Problem
	Solution
	Discussion
	See Also

	16.3 Reading an Element Node
	Problem
	Solution
	Discussion

	16.4 Reading a Text Node
	Problem
	Solution
	Discussion
	See Also

	16.5 Working with Multiple Nodes of the Same Name
	Problem
	Solution
	Discussion

	16.6 Reading an Attribute
	Problem
	Solution
	Discussion
	See Also

	16.7 Finding Content Using Shorthand
	Problem
	Solution
	Discussion
	See Also

	16.8 Finding Content Using Conditionals
	Problem
	Solution
	Discussion
	See Also

	16.9 Reading HTML or Entities in XML Nodes
	Problem
	Solution
	Discussion

	16.10 Deleting XML
	Problem
	Solution
	Discussion
	See Also

	16.11 Writing XML
	Problem
	Solution
	Discussion
	See Also

	16.12 Writing XML with Variables
	Problem
	Solution
	Discussion
	See Also

	16.13 Sending and Loading XML
	Problem
	Solution
	Discussion
	ActionScript
	PHP

	Chapter 17. How Do I Work with External Assets?
	17.0 Introduction
	17.1 Loading and Applying a Cascading Style Sheet
	Problem
	Solution
	Discussion
	HTML: demo.html
	CSS: demo.css

	See Also

	17.2 Loading and Displaying an Image or SWF File
	Problem
	Solution
	Discussion
	See Also

	17.3 Communicating with an ActionScript 3.0 Loaded SWF
	Problem
	Solution
	Discussion
	Loadee: loadee.swf
	Loader: loader.swf

	See Also

	17.4 Communicating with an ActionScript 2.0 Loaded SWF
	Problem
	Solution
	Discussion
	Loader: as3.swf
	Loadee: as2.swf

	See Also

	17.5 Unloading an Image or SWF File
	Problem
	Solution
	Discussion
	Loadee: loadee.swf
	Loader: loader.swf
	But wait...there’s more!
	Enter frame events
	Timers
	Streams and connections
	A step in the right direction

	See Also

	17.6 Loading and Playing a Sound
	Problem
	Solution
	Discussion

	17.7 Setting the Volume and Pan of a Sound
	Problem
	Solution
	Discussion
	See Also

	17.8 Visualizing the Amplitude of a Sound
	Problem
	Solution
	Discussion
	See Also

	17.9 Unloading a Sound
	Problem
	Solution
	Discussion
	See Also

	17.10 Loading and Playing a Video
	Problem
	Solution
	Discussion
	See Also

	17.11 Unloading a Video
	Problem
	Solution
	Discussion
	See Also

	Part IV. Migration
	Chapter 18. A Sample Migration
	A Simple Particle System
	ActionScript 2.0
	Main Timeline
	Particles Class

	ActionScript 3.0
	Main Timeline
	Particles Class

	Migration Sample Summary

	Chapter 19. Where Did It Go?
	Introduction
	What’s Included
	What’s Not Included

	Code Comparisons
	Language Fundamentals
	Examining and using default values
	Referencing objects by evaluated expression
	Creating global variables and functions
	Accessing the root of a SWF file
	Using delegates

	Display
	Accessing the Stage
	Accessing a parent
	Creating an empty movie clip
	Adding a library movie clip to the stage
	Duplicating a movie clip
	Creating a bitmap
	Adding a library bitmap to the stage
	Checking the level of a display object
	Getting the highest unused depth
	Swapping display object depths
	Accessing a display object by name
	Removing a display object
	Using the drawing API
	Checking for display object collisions
	Assigning a mask to movie clip

	Events
	Using event handlers
	Adding and removing listeners
	Enabling event dispatching
	Dispatching events
	Trapping a mouse up event outside a display object’s boundaries

	Text
	Creating a new text field
	Populating a text field with plain text
	Populating a text field with HTML
	Setting a default text format
	Using a text field as a variable
	Scrolling a text field
	Triggering an ActionScript function with a hyperlink

	Sound
	Loading and playing an external sound
	Playing an internal sound from the library
	Stopping a sound
	Getting or setting a sound’s volume or pan
	Getting a sound’s duration
	Getting a sound’s current time
	Getting a loaded sound’s bytes loaded or total bytes
	Stopping all sounds
	Setting the buffer time of loaded sounds

	Network
	Using FlashVars
	Getting the URL of a SWF file
	Loading and unloading an image or SWF file using loadMovie
	Loading and unloading an image or SWF file using MovieClipLoader
	Loading variables using LoadVars
	Sending variables using LoadVars
	Connecting to a URL in a web browser

	Miscellaneous
	Examining property underscores and name changes
	Using event and constant names
	Using Intervals and Timeouts
	Getting and setting the year of a date instance
	Accessing private namespaces

	Index

