
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Daniel Hinojosa

Testing in Scala

www.allitebooks.com

http://www.allitebooks.org

ISBN: 978-1-449-31511-5

[LSI]

Testing in Scala
by Daniel Hinojosa

Copyright © 2013 Daniel Hinojosa. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Maria Gulick
Production Editor: Christopher Hearse

Copyeditor: Rebecca Freed
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

January 2013: First Edition

Revision History for the First Edition:

2013-01-23 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449315115 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Testing in Scala, the image of Bailey’s Shrew, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449315115
http://www.allitebooks.org

Table of Contents

Preface. vii

1. Setup. 1
Setup in Mac OS X, Mac OS X Lion, and Linux 1
Setup in Windows 1
Using SBT 2
SBT Folder Organization 3
The Build File 3
About Our Examples 4
Creating Our Examples Using TDD, ScalaTest, and SBT 5

2. Structure and Configuration of Simple Build Tool (SBT). 9
Directories in SBT 9
The Importance of Good Infrastructure 10

Triggered Executions 11
What If I Need an Extra Repository? 13
Format of Dependencies Line 13
Updating Changes from the Build File 14

Bringing Some Sources and Documentation 14
Running SBT 15

From the Shell 15
Interactive Mode 15

Basic Tasks 16
Using the Scala Interpreter 17

Knowing Your History 18
Conclusion 19

3. ScalaTest. 21
Setting up ScalaTest in SBT 22
Matchers 23

iii

www.allitebooks.com

http://www.allitebooks.org

Types of Matchers 23
MustMatchers 29

Exception Handling 30
Informers 31
GivenWhenThen 32
Pending Tests 33
Ignoring Tests 34
Tagging 35

Running Tags From the Command Prompt 36
Running Tags in SBT 36

Specifications 36
FunSpec 36
WordSpec 38
FeatureSpec 40
FreeSpec 44
FlatSpec 45
JUnitSuite 47
TestNGSuite 49

Fixtures 51
Anonymous Objects 51
Fixture Traits 53
OneInstancePerTest 54
Before and After 55

4. Specs2. 57
Setting Up Specs2 in SBT 57
Unit Specification 58
Matchers 60

Simple Matchers 60
String Matchers 60
Relational Operator Matchers 61
Floating-Point Matchers 61
Reference Matchers 62
Iterable Matchers 62
Seq and Traversable Matchers 62
Map Matchers 63
XML Matchers 63
Partial Function Matchers 64
Other Matchers 65

Acceptance Specification 65
Chaining Tests 74
Given/When/Then 74

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Data Tables 77
Tagging 79
Fixtures 81

5. Mocking. 91
EasyMock 95

EasyMock with ScalaTest 101
Mockito 102

Mockito with Specs2 105
ScalaMock 106

Mocking Traits 109
Mocking Classes 110
Mocking Singleton Objects 114
Mocking Companion Objects 117
Mocking Functions 120
Mocking Finals 120

6. ScalaCheck. 125
Properties 126
Constraining Properties 128
Grouping Properties 131

Custom Generators 137
Arbitrary 139
Labeling 139
ScalaCheck with ScalaTest 141

Generators 144
ScalaCheck with Specs2 145

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

This book started off as a magazine article for a popular conference, No Fluff, Just
Stuff. The article became a presentation, then the presentation became a book. It became
evident early on that Scala had something good going on when it came to testing—not
only with its variety of quality open source software, but also with automated test
generation.

This book revolves around music, albums, artists, and bands. It makes the topics less
dry, even though testing is wonderfully exciting, and it includes music from different
generations. So anyone alive today will likely encounter a band or an artist that they will
like. Music is universal, and relatable to most people. Using music in techical books as
examples is not new: two of my favorite O’Reilly titles, Hibernate: A Developer’s Note‐
book and Learning the bash Shell, 3rd Edition used music in some of the examples, and
I loved the idea so much I use it in constantly in teaching, in speaking, and of course in
writing.

Much of the production code is simple—some might say pedestrian. The intent of the
book is not to impress with overly fanciful or verbose production code, but to focus on
testing code. As for the testing code, I also try to keep that simple, but I always provide
some extra explanation if the code becomes unfamiliar or esoteric.

Audience
This book assumes some Scala knowledge, but recognizes that readers might not know
all the nooks and crannies of the language. Therefore, all that is required is basic famil‐
iarity. And some Ruby and Python programmers may wander over to learn something

vii

www.allitebooks.com

http://www.nofluffjuststuff.com/home/main
http://www.nofluffjuststuff.com/home/main
http://shop.oreilly.com/product/9780596006969.do
http://shop.oreilly.com/product/9780596006969.do
http://shop.oreilly.com/product/9780596009656.do
http://www.allitebooks.org

different. For those groups, perhaps a quick introduction to Scala is in order. This may
be fairly simple for Ruby and Python developers. I believe they are more apt to under‐
stand Scala concepts than Java programmers, since many of Scala’s language constructs
have been used in Ruby and Python for years.

If the reader still does not feel that comfortable with Scala, either visit the Scala web‐
site for tutorials, read Dean Wampler and Alex Payne’s book, Programming Scala
(O’Reilly), peruse the Daily Scala blog or attend some great conferences, many hosted
by O’Reilly, that cover Scala.

Another learning opportunity is learning Scala through Scala Koans. Koans are small,
Zen-like interactive lessons, meant to foster learning without overwhelming detail. Each
lesson is short and comes with its own bite-sized epiphany. New koans are added all the
time, and is a fantastic way to learn the language. The koans by yourself which is the
lonely way to go, or at a local conference where it is interactive and conducive to more
questions and answers.

Organization of This Book
Chapter 1, Setup

This chapter is about setting up a sample project to be used in the book.

Chapter 2, Structure and Configuration of Simple Build Tool (SBT)
This chapter consists of a slightly deeper introduction to Simple Build Tool, an open
source, Scala based tool and competitor to ant, maven, and gradle. This chapter
covers basic commands, using interactive mode, packaging, and using SBT’s history.

Chapter 3, ScalaTest
This chapter shows how to use ScalaTest both on the command line and with SBT.
The chapter covers how to use the different specifications, how to tag tests, how to
use MustMatchers and ShouldMatchers domain-specific languages (DSLs), and
how to incorporate some of the popular Java-based frameworks, like JUnit and
TestNG. This chapters also covers strategies for creating test fixtures with ScalaTest.

Chapter 4, Specs2
Specs2 is an alternative testing framework that covers its two styles of specifications,
unit and acceptance. This chapter delves into its own matcher DSLs, how to use
data tables, and how to tag tests. The chapter also covers its own strategies for
creating test fixtures with Specs2.

Chapter 5, Mocking
This chapter covers mocking, the art of substituting large subsystems with objects
rehearsed to perform your will to make Scala unit tests isolated. This chapter covers
the Java mocking frameworks EasyMock and Mockito, and how they interact with
Scala. This chapter will also cover how to use ScalaTest’s sugar to incorporate Easy‐

viii | Preface

www.allitebooks.com

http://www.scala-lang.org
http://www.scala-lang.org
http://shop.oreilly.com/product/9780596155964.do
http://daily-scala.blogspot.com/
http://www.scalakoans.org/
http://en.wikipedia.org/wiki/K%C5%8Dan
http://www.allitebooks.org

Mock with ScalaTest, and how to use Specs2 sugars with Mockito. Finally, this
chapter covers a home-grown mocking framework called ScalaMock, which sup‐
ports mocking for some of the toughest constructs to mock—like functions, com‐
panion and singleton objects, and final classes and methods.

Chapter 6, ScalaCheck
This chapter covers an amazing tool that generates fake data for tests and does so
thoroughly by creating a set of fake data for tests. This chapter covers how to ma‐
nipulate ScalaCheck to give you the test data needed for effective unit testing. Fi‐
nally, the chapter wraps up by showing some ScalaCheck sugars that are available
in ScalaTest and Specs2.

About the Book
This book enhances the Scala language with standard test-driven development practices,
highlighting the best testing tools today. This book will cover both the ScalaTest and the
Specs2 testing frameworks, which help you create quick and easy tests. Testing is also
often the most overlooked aspect of introductory programming language books. This
book is dedicated to mending that gap.

We will run all these tests using Simple Build Tool (SBT). SBT is similar to some earlier
build tools and competitors: Maven, Gradle, and Buildr. What makes SBT highly at‐
tractive is its ease of use and the small size of the build file. Type a few lines of code for
your build file and you’re off and running on your project. We will also cover SBT’s
wonderful triggered execution feature, which complements test-driven development by
building and testing code whenever a file is saved.

ScalaTest and Specs2 are two of the most dominant testing frameworks for Scala around
today. Each framework has a different intent and goal, but they share the same ideal of
making testing concise, and they both leverage the Scala programming language to make
testing easy and fun. Testing frameworks are nothing new, of course, and have been used
with other programming languages for years. Those familiar with other programming
languages and their testing tools will find some similarities with Scala’s current testing
tools. ScalaTest and Specs2 borrowed ideas from Cucumber. But upon these shoulders
of giants, Scala testing systems have also stepped out on their own and created some of
the most mind-blowing testing tools found in any language.

Testing in Scala will also illustrate mocking code, so as to keep our tests isolated from
large subsystems and networks. Mocking is, in essence, creating a substitute for various
objects to isolate tests from volatile elements of their environment (such as the contents
of databases) and to help unit tests run fast. This book shows how you can use Scala
with Java-based mocking frameworks that have been used for years by Java

Preface | ix

programmers, EasyMock and Mockito. We will also introduce you to a new framework,
ScalaMock. Formerly known as Borachio, ScalaMock was inspired by Java’s EasyMock
and Mockito but takes their work further, even offering support for mocking final classes
and Scala objects.

Following mocking, we will also generate a massive battery of prefabricated test data
using Scala Check, which is borrowed heavily from the Haskell programmed testing
framework called QuickCheck. Scala Check has preconfigured formulas to generate
strings, numbers, and other various objects automatically. Scala Check also offers for‐
mulas to generate your own custom test objects.

This book will be organized in a TDD fashion: test first, fail; test again, succeed maybe;
test again, succeed, and so on.

Because Scala is a deep forest of coding possibilities, my intent is to start on familiar
ground, with the imperative programming paradigm, and work our way to the Scala
functional programming paradigm, discovering some things about functional pro‐
gramming along the way. I will describe some Scala calls that may be obscure, either to
introduce you to some constructs that you may not be familiar with, or as a refresher
for those that are familiar with Scala.

All code in this book is compiled using JDK 1.7.0, Scala 2.9.2, SBT 0.11.0, ScalaTest 1.8,
Specs2 1.12, ScalaCheck 1.10, and ScalaMock 2.4.

Test-Driven Development
Test-driven development is the art of architecting software by specifying a requirement
through a test before writing production code. There are many advantages to writing
software in this manner. One is that you define what the software needs to do before
setting it down in the program. The methodology gives the developer an idea of what
the object should look like and be used for before it is built. This is the same simple idea
as having someone hold up a picture for you before you commit any nails to the wall.
During this time of reflection, you may decide that picture is the wrong size, the wrong
color, too high, or too low. How does this translate to software?

Test-driven development starts with tests, each meant to define a single purpose such
as “Write customer data to a database”, “Move a sprite to the corner of screen,” or “Send
out notifications that a meeting registration even has occured.” The programmer writes
the test using the class in question as if he were a developer using the API. Consider
how a user would instantiate the object, etc. What problems would the end user en‐
counter by calling the methods? What errors or exceptions should the end user expect?

The class and its methods don’t have to exist when you create the test. In fact, while
you’re creating the test, you may decide to move methods around, remove them, or add
new ones.

x | Preface

After developing the test, create the shell of the class and methods with no body. The
point of this exercise is to start the test in a failed state. There is no point to running
tests that always succeed even when code is missing or incorrect; you want to make sure
a test complains when the code it is testing doesn’t work.

Once that has been established, add the data types, variables, and method body required
to pass the test. At the first attempt, the test may still not pass; that’s OK. Further attempts
should yield success. When a successful state has been accomplished, if there is a sense
that more supporting methods are needed for the class, add another test, add the method
signature without the implementation, make the test fail, and then add the production
code to satisfy the test.

The adage “Don’t throw good money after bad” also plays an important role in test-
driven development. Developing a test may clue you in that the class you’re planning to
test will be irrelevant or misplaced in the project. The more test-driven development is
employed, the more tuned in the developer will be to detecting any “code smell”. In the
end, don’t be afraid to throw it all away if the test and its corresponding production class
doesn’t pass the smell test.

Another point that programmers often overlook is that unit tests are to be isolated. Unit
testing in test-driven development is not meant to test other external dependencies, like
networks and databases. Many frameworks and developers will hijack the term “unit
testing” to test their code against an application server or other large networks. Testing
with other large systems and objects is properly labeled integration testing and is gen‐
erally done after the initial unit testing has been performed. To isolate unit tests from
large systems, so you can test code without actually making calls to these large systems,
employ mocks and dummies to interact with the subject under test.

After the initial test and production code produce successful results, turn to refactoring.
Refactoring is changing the production code to get rid of any duplicate blocks, combine
methods that repeat themselves, rename methods and variables to make their names
consistent, and move methods between any parent class or move them to each child
class element.

During this phase, tests will be used as a guide to alert the developer that the code still
works. Refactoring is perhaps the most important reason why unit testing is so vital.
Since there is a harness for the code being written, you can make changes with confi‐
dence.

Another benefit to test-driven development is that an organization can separate devel‐
opment teams while they share the same interface. Both teams can agree on certain
shared traits and models, and then go off on their own intensive paths where one team
implements the trait or interface and the other codes up objects that depend on the trait
or interface. For instance, two teams could decide on the methods needed for data access,
after which one team creates a data access object (DAO) for an Oracle or a MongoDB

Preface | xi

http://martinfowler.com/bliki/CodeSmell.html

datastore, while the other team works on the business methods using the DAO without
actually needing a hard-coded DAO to do the work. When both teams are done, all
objects can be developed together and tested as an integration test. The beautiful moral
to this story is that large systems can be developed with very little waiting.

Test-driven development does take time—a lot of time, since bad habits die hard. From
our first “Hello World,” programmers have begun with production code. It takes effort
to rewire our brains to think in a “test, write, refactor, repeat” mind set. With practice,
test-driven development will pay dividends not only in good code, but in malleable code
that you can change on a whim.

Test-driven development lets you build only what you need. It is not surprising that after
a few test-write-refactor iterations, code becomes reliable and stable—essentially a work
of art.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, data types, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You

xii | Preface

do not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: "Testing in Scala by Daniel Hinojosa (O’Reil‐
ly). Copyright 2013 Daniel Hinojosa, 978-1-449-31511-5.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari Books Online is an on-demand digital library that delivers ex‐
pert content in both book and video form from the world’s leading
authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/TestingScala.

Preface | xiii

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/TestingScala

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Foremost, I would like to thank Dawn Ramirez for everything I can think of.

Additionally, thanks go to O’Reilly and my editors Andy Oram and Maria Stallone, for
their editing and guidance with my first book.

My tech reviewers were Bill Venners, Eric Torreborre, Rahul Phulore, and Josh Seureth.
Thanks to them for many corrections and suggestions.

Thanks to Mark Harrah for developing SBT; to Bill Venners, Eric Torreborre, Paul
Butcher, Cedric Beust, Kent Beck, Erich Gamma, and Rickard Nilsson for their excellent
testing products; and to Jay Zimmerman, Venkat Subramaniam, Jared Richardson,
Matthew McCullough, and Tim Berglund for networking, inspiration, and a wide range
of opportunities.

And for their general support, many thanks go to Ruth Weiner, Kelby Zorgdrager, Bruce
Budagher, Michael Budagher, Dianne Marsh, Jason Porter, Kito Mann, Ian Hlavats, Ken
Helfer, Dwight Coles, Darold Parker, Gunnar Hillert, Daniel Allen, Mike Arms, Steve
Wall, John Ericksen, Robert Engelhardt, Stephen Chin, Marek Novotny, Rodney Russ,
Daniel Glauser, and Jeffrey Hulten. Of course family: Mateo Hinojosa, Lydia Hinojosa,
Martha Arriola, Jose Arriola, Rosemary Hinojosa, and Hilda Ornelas.

xiv | Preface

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Setup

Simple Build Tool (hereafter called SBT) is a build tool specifically used for Scala
projects. SBT uses actual Scala for its build language. SBT runs and compiles Java and
Scala files and uses the Maven directory structure. SBT also has a interesting feature
called triggered executions that will recompile code or run tests whenever you change a
file, among other great features. SBT supports multitiered projects and is highly exten‐
sible, thanks to its plug-in infrastructure. Just like other build tools, it can package
projects and is also extensible by allowing the end user to add more features to the build
tool. But unlike other build tools it has a built-in Read-Eval-Print-Loop (REPL) inter‐
active console. The interactive console in SBT can also import a project’s class files so
that you can experiment with existing project code.

Setup in Mac OS X, Mac OS X Lion, and Linux
Setting up SBT is fairly straightforward. Download the sbt JAR file from the website and
place it in the ~/bin directory, which you may have to create in your home directory.
Next, create a shell file called sbt that will hold the command to launch XSBT:

java -jar -Dfile.encoding=UTF8 -Xmx1536M -Xss1M -XX:+CMSClassUnloadingEnabled
 -XX:MaxPermSize=256m `dirname $0`/sbt-launch.jar "$@"

Setup in Windows
Setting up SBT in Windows is also straightforward. Create a .bat file called sbt.bat in a
directory of your choosing, and write the following contents there:

set SCRIPT_DIR=%~dp0
java -Xmx512M -jar "%SCRIPT_DIR%sbt-launch.jar" %*

1

https://github.com/harrah/xsbt

Next, be sure that your current .bat file is located in a directory that is currently mapped
to your path in your environment. Depending on your system, add the directory where
you placed sbt to your path.

For Windows XP, right-click My Computer and then click Properties. Once in the System
Properties window, click the Advanced Tab. Click the Environment Variables button.
This should bring up the Environment Variables dialog. You will see two sets of envi‐
ronment variables: User Variables and System Variables. User Variables take effect only
in your profile, not the entire system. System variables are for system-wide settings. If
your account is an Administration account and has full access to your machine, you can
add a system variable.

Using SBT
To get started, create a folder for your project. For the project in this book we will create
a folder (directory) called testingscala. Change into that directory and run the ./sbt
program. An Internet connection is required for this step, since some dependencies are
required to initialize your directory. When you are finished, you should see the > SBT
prompt:

$ mkdir testingscala
$ cd testingscala
$ sbt
:: retrieving :: org.scala-tools.sbt#boot-app
 confs: [default]
 1 artifacts copied, 0 already retrieved (838kB/31ms)
Getting Scala 2.9.1 (for sbt)...
:: retrieving :: org.scala-tools.sbt#boot-scala
 confs: [default]
 3 artifacts copied, 0 already retrieved (15178kB/292ms)
Getting org.scala-tools.sbt sbt_2.9.1 0.10.1 ...
:: retrieving :: org.scala-tools.sbt#boot-app
 confs: [default]
 36 artifacts copied, 0 already retrieved (6414kB/103ms)
[info] Set current project to default-362242 (in build file:/home/danno/.sbt/
plugins/)
[info] Set current project to default-cef86a (in build file:/home/danno/
testingscala/)
>

Next, type exit at the SBT prompt, since you need to return to your operating system
prompt to set up your folder organization and your build file.

2 | Chapter 1: Setup

SBT Folder Organization
SBT adheres to the Maven standard of folder organization. All source production files
go into src/main and all test files go into src/test. For our small introduction to test-driven
development, using Scala tests on Java production code, all we need is a src/test/scala
directory and a src/main/java directory.

The Build File
The build file is a plain Scala file, placed in the root of the project, called build.sbt. Here
the developer specifies basic attributes such as the project name and version, the Scala
version, and all the dependencies required. SBT makes use of the Maven-style reposi‐
tories to download the binary and source JARs required for your project. One obvious
benefit to that procedure is that you never have to commit large JAR file dependencies
to your project, since they are automatically downloaded when you run update.

Once you have an SBT project ready to go, make sure it uses the latest ScalaTest de‐
pendency. In the build.sbt file, include your scalatest dependency. This will download
the scalatest library and place it on the test classpath automatically.

name := "Testing Scala"

version := "1.0"

scalaVersion := "2.9.2"

libraryDependencies += "org.scalatest" %% "scalatest" % "1.8" % "test"

org.scalatest will look in the maven and scala central repositories by default to look
for the dependency scalatest_2.9.2. The reason it knows to look for scala
test_2.9.2 and not plain scalatest is because the line includes two percent signs %%
in the address. %% will append an underscore and the scala version number to the name
of the library. If you don’t want SBT to control the scala version and wish to do it yourself,
you can specify your own version using % instead of %%.

Here is the last line of the build.sbt file written differently, but accomplishing the same
goal.

libraryDependencies += "org.scalatest" % "scalatest_2.9.2" % "1.8" % "test"

Also note that the declaration consains a scope for our dependency. This would ensure
that all classes from this dependency will be loaded only for testing. It will not be used
during compilation or packaging.

SBT Folder Organization | 3

Now run reload within sbt, which will compile any sbt files, and update, which will
download and set up the dependencies. At the command prompt, it is possible to call
run sbt reload update to combine operations. The command will both reload build.sbt
with the latest changes and update all the dependencies from any repositories.

To run SBT in an interactive shell of its own, run sbt, and then do the reload and update
from within the sbt console as in the following example.

> reload
[info] Set current project to default-ca9689 (in build file:/home/danno
 /development/testingscala/project/plugins/)
[info] Set current project to default-1f0130 (in build file:/home/danno
 /development/testingscala/)
> update
[info] Updating {file:/home/danno/development/testingscala/}default-1f0130...
[info] Done updating.
[success] Total time: 9 s, completed Sep 25, 2011 4:01:06 PM
>

That’s all it takes to get a fairly simple setup ready for a standard project with testing.

Testing Java using Scala also might give you an excuse to slip some Scala
in at work or in your personal projects. Testing in Scala is a great way
to learn the language, and if you do it at work in a project you are familiar
with, you can see the benefits of Scala in your own domain.

We will place our tests in the src/test/scala folder of the project, and we’ll eventually place
our production code in the src/main/scala directory.

About Our Examples
Since this book’s focus is on testing, particularly in Scala, I am going to keep the pro‐
duction/target code simple. Don’t assume that I’m endorsing the use of TDD just on
simple code. TDD is amazing with the most challenging of code, and it’s indispensible
in times that require some mental clarity and focus.

Our code samples will be a mix of something fun and something relevant. The samples
will include a digital jukebox with albums (yes, even in the digital era I still call them
albums). Each album will with have an artist associated with it. The artist class will have
a band subclass, and each Band will have a collection of artist associated with it. The
collections we use for these examples will be the powerful lists, sets, maps, and arrays
that come with Scala.

Of course, what good is a digital jukebox without some persistence? Each song will need
to persisted into some sort of database, whether it is a classic SQL database or a

4 | Chapter 1: Setup

www.allitebooks.com

http://www.allitebooks.org

newfangled NoSQL database. The reason we require an example of storing to a database
is because we need it for mocking using a framework such as Mockito, EasyMock, or
ScalaMock. If you are unfamiliar with the topic of mocking, you can learn about it in
Chapter 5.

Creating Our Examples Using TDD, ScalaTest, and SBT
Let’s start SBT triggered execution. Triggered execution in SBT makes TDD exciting
and intuitive, since it runs every time there is a change to the code. Because one of TDD’s
most basic tenets is that unit testing needs to be a constantly repeateable and constantly
evolving, SBT will run that test for you without added involvement.

To start triggered execution, run SBT using the command sbt on your Mac or Linux
box, or sbt.bat on your Windows system. If you do so successfully you should receive
an sbt> prompt. At this prompt, type ~test. SBT is now listening for your next save.
Every time you save a production file, and every time you save your test, SBT will wake
up and run your tests again. This is a very nice tool because it keeps your mind focused
on your test and your production file. This focused development will not only help you
to achieve your goals faster, but will produce a better product in the long run.

We will create our first simple test in the src/test/scala/com/oreilly/testingscala/ folder,
calling the test AlbumTest.

Package folders are a matter of taste. If you want to create a Scala file
without the com, oreilly, and testingscala folders, you are certainly free
to do so. You can also opt to just have an AlbumTest file in the src/test/
scala folder while keeping the same package name. The choice is up to
you and/or your team. All class files will be expanded into their corre‐
sponding folders in the target/scala-2.9.2/test-classes folder after com‐
pilation.

src/test/scala/com/oreilly/testingscala/AlbumTest.scala.

package com.oreilly.testingscala

import org.scalatest.FunSpec
import org.scalatest.matchers.ShouldMatchers

class AlbumTest extends FunSpec with ShouldMatchers {
 describe("An Album") {
 it ("can add an Artist object to the album") {
 val album = new Album("Thriller", 1981,

Creating Our Examples Using TDD, ScalaTest, and SBT | 5

 new Artist("Michael", "Jackson"))
 }
 }
}

This is a small example of a FunSpec in ScalaTest. We will cover ScalaTest in its own
chapter. For this example, FunSpec is a trait, which is a class in Scala that has its own
concrete implementation but can be mixed into another class rather like Java interfaces.
Our trait FunSpec allows us to think of our test as a behavior-driven test. Behavior-
driven development is a refinement on test-driven development. Behavior-driven de‐
velopment provides storied, easy-to-read test reporting to help include other stake‐
holders such as QA teams in your testing process. When a test has more fluid descrip‐
tions of a test, it is also easier to debug since the test-driven developer is able to be
expressive and describe the exact intent of the test. When the bug occurs, it is easier to
decipher “test that a withdrawal cannot occur when an account has zero funds” than to
understand a JUnit-style “testWithdrawalWithZeroFunds.” This expressiveness in de‐
scribing the test is what Dan North, in his introduction to Behavior Driven Develop‐
ment, refers to as bringing the business vocabulary into the codebase.

When you save AlbumTest for the first time, the sbt console shows that SBT’s triggered
execution ran when you saved changes.

> ~test
1. Waiting for source changes... (press enter to interrupt)
[info] Compiling 1 Scala source to /home/danno/testing_scala_book.git
 /testingscala/target/scala-2.9.2/test-classes...
[error] /home/danno/testing_scala_book.git/testingscala/src/test/scala
 /com/oreilly/testingscala/AlbumTest.scala:9: not found: type Album
[error] val album = new Album("Thriller", 1981,
[error] ^
[error] one error found
[error] {file:/home/danno/testing_scala_book.git/testingscala/}default-cef86a
 /test:compile: Compilation failed
[error] Total time: 1 s, completed Nov 29, 2011 1:35:43 PM

Our test failed because we haven’t created an Album or Artist class yet. But this is
common in test-driven development. We create the test first by creating code that re‐
sembles how we want to use the class. Kent Beck in Test Driven Development: By Ex‐
ample recommends creating a list of tests before writing code. The point is to first es‐
tablish the test and make it fail, which we have done successfully.

The next course of action is to satisfy this test to make it pass (maybe). We do so by
creating some classes.

src/main/scala/com/oreilly/testingscala/Album.scala.

package com.oreilly.testingscala

class Album (val title:String, val year:Int, val artist:Artist)

6 | Chapter 1: Setup

http://dannorth.net/introducing-bdd
http://dannorth.net/introducing-bdd
http://www.pearsonhighered.com/educator/product/Test-Driven-Development-By-Example/9780321146533.page
http://www.pearsonhighered.com/educator/product/Test-Driven-Development-By-Example/9780321146533.page

src/main/scala/com/oreilly/testingscala/Artist.scala.

package com.oreilly.testingscala

class Artist (val firstName: String, val lastName: String)

If you are unfamiliar with Scala, notice that these class declarations are shorter than
normal and have and a sprinkle of keywords that you may not be expecting. Also, the
variable declarations come before their types are declared. The val keyword creates
getters for each of the field names, but no setters. Our class in this case is immutable
(unable to be changed), which is preferred in Scala, but it is not a hard-and-fast rule.
Scala also allows for mutability. For more information about the Scala language and
immutability, please refer to Programming Scala by Dean Wampler and Alex Payne.

After adding the two classes, when we look at SBT’s response we are rewarded with green
text (which unfortunately doesn’t show up too well if you are reading a black-and-white
book). In our response we have an AlbumTest one assertion that has passed. We can add
Artist object to the album.

4. Waiting for source changes... (press enter to interrupt)
[info] Compiling 1 Scala source to /home/danno/testing_scala_book.git/testings-
cala/target
 /scala-2.9.2/classes...
[info] Compiling 2 Scala sources to /home/danno/testing_scala_book.git/testings-
cala/target
 /scala-2.9.2/classes...
[info] Compiling 1 Scala source to /home/danno/testing_scala_book.git/testings-
cala/target
 /scala-2.9.2/test-classes...
[info] AlbumTest:
[info] An Album
[info] - can add a Artist object to the album
[info] Passed: : Total 1, Failed 0, Errors 0, Passed 1, Skipped 0
[success] Total time: 4 s, completed Nov 29, 2011 2:18:38 PM
5. Waiting for source changes... (press enter to interrupt)

Our result now will show behavior-driven development’s storied reporting in plain
English: “An album can add an Artist object to the album.”

The last statement of our triggered executions states that it is waiting for more changes.
It also gives you instructions for exiting the triggered execution by pressing Enter.
Whenever there is any change to any of the code, the test will run again, giving you the
immediate feedback that you need for effective test-driven development.

In the following sections we will cover how to create loads of fake data with ScalaCheck,
and how to use mocking within Scala using EasyMock, Mockito, and one of the latest
mocking frameworks, ScalaMock, formerly known as Mockito. Later we will cover more
about SBT, ScalaTest, and its competitor Specs2. We will cover some gotchas with Scala
development, including some of the harder concepts to test such as Scala objects.

Creating Our Examples Using TDD, ScalaTest, and SBT | 7

http://shop.oreilly.com/product/9780596155964.do

CHAPTER 2

Structure and Configuration of Simple
Build Tool (SBT)

After the previous chapter, you should know how to create a simple project with Simple
Build Tool, or SBT. Obviously there is more to this bleeding-edge utility.

“Bleeding edge” is the best way to describe SBT. Its 1.0 version is still
under development. At the time of writing this book, we are looking at
version 0.11.2. This book is authored using version 0.11.0. The differ‐
ences are immense between the two development versions. Please refer
to the wiki on github for the latest in SBT.

Directories in SBT
The directories in SBT are styled after the Maven build convention. This avoids confu‐
sion and helps any seasoned Java developer to get started with SBT. Run tree at your
command prompt in project root’s src/ directory (which works across the board on
Windows, Linux, and Mac OS X) you can see the folder setup of sbt.

The src directory has two children, main and test. main is where the production code
will reside, and test is where the test code will reside. Each of these directories contains
a resources directory, which contains any dependent files required either by the test or
production code. These files can be META-INF configuration files, images, properties,
etc.

9

https://github.com/harrah/xsbt/wiki/

├── src
│ ├── main
│ │ ├── java
│ │ │ └── com
│ │ │ └── oreilly
│ │ │ └── testingscala
│ │ ├── resources
│ │ └── scala
│ │ └── com
│ │ └── oreilly
│ │ └── testingscala
│ │ ├── Album.scala
│ │ └── Artist.scala
│ └── test
│ ├── resources
│ └── scala
│ └── com
│ └── oreilly
│ └── testingscala
│ └── AlbumTest.scala

One thing you may notice about this tree is that we can have two different kinds of
production and test files, those written in Scala and those written in Java. If you have a
Java production file, place it in the src/main/java folder. If you have Scala production
file, place that in the src/main/scala directory.

Apologies all around to Windows users, because you probably already
know the score, but I should state it formally. Unix, Linux, and Mac OS
X users use a forward slash (/) for folder delimiters, whereas Windows
users use backslash (\) except for URL resolution.

The build.sbt contains the configuration and is placed within the root folder of the
project (revisiting the build file from our introduction).

The Importance of Good Infrastructure
An important topic for any new language is the organization of your workspace. This
is turn is often determined by the standard tools needed for developing a particular
language. C/C++ projects tend not to have a particular folder structure, though a few
structures have attained popularity. C/C++ projects are typically built with make, which
offers no particular structure (except in the Berkeley version). Ruby projects are often
organized according to conventions defined by Rake, the predominant build tool in the
Ruby environment.

Java projects originally had no project structure laid out, and developers often thought
of different ways to organize source code and compiled code. When the XML-based

10 | Chapter 2: Structure and Configuration of Simple Build Tool (SBT)

build tool called Ant came onto the scene, it didn’t address how folders should be struc‐
tured in Java projects, and it allowed developers to continue to go their own way. Then
Maven came on to the scene and created and set the standard folder stucture for Java
projects. Today, the standard folder structure that Maven first introduced is still used.
Since the advent of Maven, other frameworks have come up to the plate to reimagine
the programming environment. Gradle is a Groovy-based build tool that compiles and
runs Java, Groovy, and Scala projects. Gradle uses the Groovy programming language
for its build-tool integrating scripting language as an essential part of the tool. Buildr is
another player that uses JRuby to build and run Java, Groovy, and Scala projects. Buildr
uses JRuby to define the build script and is structured using very simple tasks without
the need for plug-ins. Though they are different in technology, both Gradle and Buildr
adhere to the folder structure set by Maven.

And, just like Maven, Gradle, and Buildr, SBT abides by this standardized directory
arrangement; however, like its predecessor and its competitors, SBT is written in Scala,
including plug-ins. What makes this common infrastucture so important should already
be evident. New developers are aware where files will be located—no need to scurry to
find source code and JAR files. Since SBT adheres to the infrastructure set by Maven
many years ago, it stamps the learning curve down, as most seasoned Java developers
can find their way around.

This book will cover SBT because it is actually written in Scala and is becoming the
standard build tool for the language for various good reasons.

Triggered Executions
Perhaps one of the most intriguing facets of SBT is the use of triggered executions.
Triggered executions are specialized tasks that will run once, display the result of the
task, and wait until a file has changed. After a change has been detected it will rerun the
task. This in itself makes testing an incredible experience.

The following example encompasses pretty much all you need for a basic SBT file.

build.sbt.

name := "Testing Scala"

version := "1.0"

scalaVersion := "2.9.2"

libraryDependencies += "org.scalatest" %% "scalatest" % "1.8" % "test"

The Importance of Good Infrastructure | 11

1. Typesafe is the company founded by Martin Odersky, inventor of Scala, and Jonas Bonér, inventor of Akka,
an amazing messaging stack and memory management software

The name key defines the name of project, “Testing Scala” in this example. The version
of our project is 1.0. scalaVersion specifies the Scala version that we want to compile
and run our project under. We will see shortly how we can switch the versions of Scala
in an ad-hoc fashion and try our code out under different versions of Scala. The lines
of the build file must be separated by blank lines.

The last line lists the dependencies required for our project. A project dependency is any
library that you need for your project to work. There are millions (taking a guess) of
repositories out there, but only a few stand out. In fact, depending on what type of project
you are working on, the repositories that you use may change. For example, if you are
working with the Spring framework (unrelated to this book), you’d likely include a
springsource repository in your build file. A later section explains the format of this
line.

For dependency management, SBT uses Apache Ivy, which brings Maven’s dependency
management system as a product onto its own. Ivy looks up a project’s dependency in
a repository and downloads them onto the a local repository. The local repository will
be located in the user home directory inside of the .ivy2/cache folder. The purpose of
storing dependencies onto a separate location from the project is so that the project can
be lightweight with just the source code. No longer will you have to include dependencies
in your project and commit them to your version control system, and waiting for that
process to complete.

Don’t know Git or Github?
Not knowing these is a violation of programmer ethics and punishable
by noodle whip! In seriousness: Git is a cross-platform, open source
version control system. It is also a distributed version control system, so
developers can collaborate without a central repository to commit their
code to. Every node is a repository, and each repository can share
branches and code with each other.
Github is where social networking meets version control. Dare I say…
Facebook for programmers. Programmers don’t talk about their day,
though. They post code to projects, or gists. Gists are code snippets
pasted on Github used for discussion or just showing off.

Our build file has no repositories to declare, since everything we need will come from
either the maven1 or the Typesafe 1 repositories.

12 | Chapter 2: Structure and Configuration of Simple Build Tool (SBT)

http://ant.apache.org/ivy

What If I Need an Extra Repository?
As a Scala developer, you’ll probably require a typesafe repository, the main maven1
repository, or some specialized repository hosted on github. SBT by default includes the
maven central, and typesafe repositories automatically. If you wish to view which re‐
positories are included with SBT, run view resolvers and the sbt prompt. If you wish
to include other repositories in your build, you can add them to the resolvers variable
of your build.sbt file.

resolvers += "Codehaus stable repository" at "http://repository.codehaus.org/"

In the above sample, resolvers is a sequence of Resolver types. += adds the arbitrary
name Codehaus stable repository and the nonarbitrary URL http://repository.code‐
haus.org/ as a repository for SBT to analyze when it requires a library. += is an operator
overload that adds a value to a preexisting list of items. We also use this operator when
adding dependencies in the next section.

Format of Dependencies Line
In our example build file, we included a dependency in the form of:

libraryDependencies += "org.scalatest" %% "scalatest" % "1.8" % "test"

Now let’s see what that means, piece by piece. libraryDependencies is a variable that
holds all the dependencies for this project. += is the operator overload that signifies that
the dependency we are providing will be added to the library dependencies that have
already been established. In the above example, using += assumes that there is already
a preexisting list of dependencies—we just wish to add some dependencies to that list.

Now to explain the meaning of the double percent sign %%. To start with, the previous
example can be written as follows, with just single percent signs:

libraryDependencies += "org.scalatest" % "scalatest_2.9.2" % "1.8" % "test"

By convention, Scala libraries stored in a repository are named product__scala-version_.
Suppose, we created a “grande-taco” project and compiled it against Scala versions 2.8.0,
2.9.0, 2.9.1, and 2.9.2. In the repository, you would see the grande-taco_2.8.0, grande-
taco_2.9.0, grande-taco_2.9.1 and grande-taco_2.9.2 subdirectories.

One benefit of declaring your dependencies with %% is that you can switch Scala ver‐
sions easily in SBT and it will download the appropriate libraries based on the version
of Scala you are using. When your project matures and is ready for packaging and
installing onto a repository, SBT can also package and install your project using a list of
Scala versions that you declare.

There will be one reason why you may prefer the spelled-out versions with a single %
instead of %%. If the Scala version that you are using is not available in the repository,

What If I Need an Extra Repository? | 13

http://www.github.org

you must supply an explicit dependency instead of one that relies on the Scala version
number. For example, if grande-taco is a required dependency and you are using Scala
version 2.8.1, but you have not installed a version of the dependency compiled with that
Scala version, you will request a nonexistent grande-taco_2.8.1 and will get an unre‐
solved dependency error. If you have a hard dependency replacement, you may decide
to use the explicit address.

libraryDependencies += "org.grande-taco" % "grande-taco_2.9.2" % "1.2" % "test"

Updating Changes from the Build File
When you are done adding the necessary dependencies, it’s time to reload. Either enter
the sbt shell and run reload, or enter sbt reload at the command line. In either case,
reloading will compile your build files only and verify that they are correct. If there is a
problem with your build file, fix the issue and reload it again.

After a successful reload, run update either by entering update at the sbt prompt or by
running sbt update at the command line. Updating will download all the dependencies
required by your project and will report any issues with the download. If you find that
you have entered the dependencies incorrectly, fix any issues, and run the reload and
update again.

Where do the dependencies go?
Dependencies by default will be located in your .ivy2/cache directory in
your home directory. If the dependencies for your project are already
downloaded, sbt will use the local versions without resorting to what
is infamously called “downloading the Internet.”

Bringing Some Sources and Documentation
All open-source libraries have source code; mature libraries have documentation.

If you wish to bring sources and documentation into your project, change your de‐
pendency declarations in your build.sbt.

libraryDependencies += "org.scalatest" % "scalatest_2.9.2" % "1.8" % "test"
 withSources() withJavadocs()

withSources() downloads source code for the specific libraries, and withJavadocs()
returns the documentation for those dependencies.

14 | Chapter 2: Structure and Configuration of Simple Build Tool (SBT)

www.allitebooks.com

http://www.allitebooks.org

Running SBT
You can run SBT from your command prompt (Bash, Zsh, Powershell, or DOS Prompt)
or go into SBT interactive mode to run commands from within SBT.

From the Shell
You can run any command from sbt from within your shell, by calling a list of tasks as
arguments.

$sbt clean compile

If you wish to run an sbt task that requires arguments, you can pass the task and argu‐
ments as one using quotation marks:

$sbt clean compile "test-only com.oreilly.testingscala.AlbumTest"

We’ll learn more about test-only later in this chapter.

Interactive Mode
SBT has its own powerful shell from which to run tasks. Perhaps one of the amazing
things about SBT interactive mode is that it’s a fully functioning shell with tab comple‐
tion. For example, if you wanted to see all tasks that start with a t, you can type t at the
shell and you’ll get a list of tasks that start with t:

target task-temporary-directory tasks test

test-frameworks test-listeners test-loader test-only

test-options test: this-project this-project-ref

transitive-classifers transitive-update trap-exit triggered-message

Tab completion in SBT goes beyond tab completion for tasks. It can tab-complete on
class names and arguments as well. For example, continuing with our test, if we wish
just to test only com.oreilly.testingscala.AlbumTest, we merely have to type the first few
characters of the test’s fully qualified name:

>test-only com.

and hit the Tab key. The SBT shell then offers the response test classes:

-- com.oreilly.testingscala.AlbumTest

The -- is meant for calling our tests with options. We will discuss options in the chapters
about ScalaTest and Specs2—Chapter 3 and Chapter 4, respectively.

Running SBT | 15

Basic Tasks
The basic tasks for SBT are very easy to remember, and many of these action names have
come historically from Maven. Here is a rundown of some of the basic tasks that you
will need for this book, and for basic use of SBT.
compile

Compiles any of the src/main/java and src/main/scala files and places the class files
in a target/scala_version/classes folder in the root of the project, where the Scala
version is replaced with the version that Scala is compiled under. Remember that
Scala compiles to the same class files as Java, so only one folder is required for the
compiled classes.

Before continuing with the other tasks, a little introduction of the target
folder is in order, for those who haven’t used Maven or any of its suc‐
cessors, like Buildr, Gradle, and of course SBT. The target folder will
contain class files, generated reports, and pretty much any machine-
generated artifact that isn’t source code. When a clean task is invoked,
the target folder by default will be deleted. Do not put any critical file,
like a source file or configuration file, into the target folder.

clean

Removes the target folder containing all compiled and filtered configuration files.

test:compile

Compiles the test classes in src/test/java and src/test/scala only and places the class
files in target/scala_version/testclasses folder.

test

Runs all the tests. Options can be added to select which tests will actually run.

test-only

Runs a list of specified tests delimited by a space.

reload

As we have experienced, compiles our build file with the latest settings.

update

Downloads any dependencies required for the project.

package

Creates a JAR file of your classes and places them in the target/scala_version direc‐
tory in a JAR file named for your project.

16 | Chapter 2: Structure and Configuration of Simple Build Tool (SBT)

package-doc

Creates a JAR named project_name_scala_version-project_version-javadoc.jar with
all the scaladoc and javadoc documentation in the target/scala_version folder.

package-src

Creates a jar named project_name_scala_version-project_version-src.jar in the tar‐
get/scala_version folder.

console-quick

Does the same thing as console with the difference that it runs immediately without
compiling any classes with changes. This is beneficial when you want to verify the
previous state of your classes.

console-project

Runs a console, without any of production classes in the classpath, but with the SBT
project classes. This is used for the development of Scala plug-ins.

test:console and test:console-quick
These tasks load not only production classes, but test classes and test dependencies
too. This is a great feature because you can play around with some test code before
making it a class.

test:console

will compile any new classes before running the interpreter, whereas
test:console-quick will run the interpreter without any compilation.

At the time of writing this book, SBT contains 246 tasks and settings. If
you wish to view all of them, run the tasks task. To get help on a task,
you can run the task help task-name. Don’t invest too much time in the
help task, since much of it won’t display anything until a later version
of SBT arrives with more of those help files filled out. If you want to see
what values are set to each of these tasks, run show task-name to display
its current settings.

Using the Scala Interpreter
SBT has an embedded Scala interpreter that can be used to run a few examples, try out
ideas, or even engineer some production code. The nice thing about the way SBT does
it is that, at your request, it class-loads all your production code, all your testing code,
or all your project code with its dependencies. As you can gather, this is an amazing
advancement in a build tool!

To run a Scala interpreter within SBT, run the console task. This class-loads all your
production code and libraries into the interpreter.

Basic Tasks | 17

http://www.scala-lang.org/docu/files/tools/scaladoc.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html

2. Joda time is an immutable data/time/chronology library. It can serve as a full replacement of java.util.Date
and java.util.Calendar! It is a library that we will use a lot in this book

> console
[info] Compiling 2 Scala sources to /home/danno/testing_scala_book.git
 /testingscala/target/scala-2.9.2/classes...
[info] Starting scala interpreter...
[info]
Welcome to Scala version 2.9.2 (Java HotSpot(TM) 64-Bit Server VM, Java
1.6.0_20).
Type in expressions to have them evaluated.
Type :help for more information.

scala>

Within our Scala interpreter we can now import a package from a dependency that we
declared in our build file. If, for example, you made Joda-Time 2 a dependency, you could
import org.joda.time within the Scala interpreter and use it.

scala> import org.joda.time._
import org.joda.time._

scala> val dateTime = new DateTime()
dateTime: org.joda.time.DateTime = 2011-12-01T11:26:06.509-07:00

Knowing Your History
SBT remembers all the commands you enter and saves them to a cache. The history can
be reused even after leaving SBT and restarting it. The history commands shown in
Table 2-1 are available.

Table 2-1. History of commands in SBT
Command Description

! Show history command help, including commands in
this table

!! Execute the previous command again

!: Show all previous commands

!:n Show previous n commands

!n Execute the nth command in previous command
history (!:)

!-n Execute the nth command before this one

!string Execute the previous command that begins with string

!?string Execute most recent command that contains string

18 | Chapter 2: Structure and Configuration of Simple Build Tool (SBT)

You can quit the console at any time by typing the command :quit which will get you
back into the sbt shell. If you wish to quit the sbt shell, merely type quit, and you will
be returned to your normal Bash, Zsh, Windows, or Powershell shell.

Conclusion
This chapter has only touched the surface of what SBT does. At the time of writing, SBT
still has not reached version 1.0, but it has been a fully functional build tool for quite
some time. It is constantly evolving with contributions and ideas from the Scala com‐
munity. SBT may have a slightly higher learning curve than other build tools, but its
functionality and speed are well worth the mental investment. Another interesting fea‐
ture is the ability to change Scala versions ad hoc within your project. I deliberately used
the word interesting since some voodoo is sometimes needed to ensure that all the
dependencies use the correct version. Triggered execution is by far the most valuable
feature in SBT (in my opinion), and we will use it throughout the rest of this book.

Knowing Your History | 19

CHAPTER 3

ScalaTest

ScalaTest is a popular testing framework created by programmer Bill Venners specifi‐
cally for Scala. ScalaTest is an extensive behavior-driven development (BDD) suite with
numerous built-in specs, but it also intergrates with some of the classic testing frame‐
works like JUnit and TestNG. ScalaTest also has two assertion dialects to choose from,
depending how you want your test to read. ScalaTest’s learning curve is fast, and it runs
automatically in the test plug-in installed with SBT.

ScalaTest offers several different flavors of tests. The most basic one is the FunSpec,
which we used to add an Artist to an Album in our introduction. It contains a standard
storyboard that describes the reason for the existence of the test using a describe clause
and subsequent tests that fulfill that description. As we saw in our introductory chapter,
AlbumTest.scala took the form:

package com.oreilly.testingscala

import org.scalatest.FunSpec
import org.scalatest.matchers.ShouldMatchers

class AlbumTest extends FunSpec with ShouldMatchers {
 describe("An Album") {
 it ("can add a Artist object to the album") {
 val album = new Album("Thriller", 1981,
 new Artist("Michael", "Jackson"))
 album.artist.firstName should be ("Michael")
 }
 }
}

21

AlbumTest in this example extends FunSpec. This is a standard BDD specification.
FunSpec is a trait, which means that is mixed into a class. This mixed-in trait provides
us with a few methods to run our test: describe and it. describe is the subject of the
test. In our case we are testing an Album, that is subject under specification. Each test is
specified using an it method, which is mixed in from FunSpec.

it is used to describe the purpose of the test.

In our example, the it method verifies that we can add an Artist to an Album at con‐
struction time.

AlbumTest also mixed in the trait ShouldMatchers. The ShouldMatchers trait provides
a DSL used to make the assertions. In AlbumTest, the ShouldMatchers trait was used
to form the assertion:

album.artist.firstName should be ("Michael")

Note the should verb in the statement. The lefthand side of the assertion will typically
be the object whose state is being investigated, and the righthand side will typically be
the value that is expected. If any matcher fails, the matcher will throw a Test
FailedException. At that point, ScalaTest will trap that error and report it as a failed
test. If the matcher succeeds, nothing happens, and the test continues.

Setting up ScalaTest in SBT
ScalaTest can be run on the command line or through a build tool like SBT, as we have
already prepared.

We can run our earlier AlbumTest with a command issued within the project folder:

$ scala -cp scalatest-1.8.jar org.scalatest.tools.Runner -p . -o -s AlbumTest

ScalaTest is meant to be readable at the output, giving a clean, storylike output. If you
have terminal coloring, tests that pass will be formatted with the color green, giving you
intuitive feedback about the success of your code.

To use ScalaTest in SBT, include the dependency vector in build.sbt as described in
Chapter 2. For a refresher, either one of these lines will work.

libraryDependencies += "org.scalatest" %% "scalatest" % "1.8" % "test"

libraryDependencies += "org.scalatest" % "scalatest_2.9.2" % "1.8" % "test"

For information about what each of these settings mean, please refer to Chapter 2.

The next section will discuss the many ways a developer can write assertions using
ScalaTest.

22 | Chapter 3: ScalaTest

Matchers
In the previous example, we made an assertion that the first name of the Thriller artist’s
was indeed Michael. These assertions check that the code results in a state that we are
expecting.

ScalaTest’s assertions come in two flavors: MustMatchers and ShouldMatchers. The only
difference between them is the language that shows up in the testing report.

Types of Matchers
ScalaTest provides a range of matchers for many situations. In the following subsections
we’ll illustrate them with Should Matchers, because Must Matchers work the same way.

Simple matchers
Simple matchers perform the simple act of asserting one value with another.

src/test/scala/com/oreilly/testingscala/ShouldMatcherSpec.scala.

 val list = 2 :: 4 :: 5 :: Nil
 list.size should be (3)

The right hand value that is being evaluated must be enclosed in parentheses. While
there is an urge to not use parentheses in the last part of an assertion, it is required. If
you miss the parentheses there will be a compilation error. For example list.size
should be 3 is incorrect and will not compile. The assertion should be changed to
list.size should be (3) in order for it to compile.

The same assertion can be made using the equal method:

 list.size should equal(3)

There rarely is any value in asserting a condition using == and != in ScalaTest, because
the line will be evaluated but no actual testing assertion will be made. For example,
merely stating that list.size == 4 in the previous example will be evaluated to
false, but the test will still continue to run and possibly report a successful completion
since a TestFailedException is not thrown.

String matchers
ScalaTest includes matchers that aid in making assertions about strings. You can deter‐
mine whether one string contains another, starts with a particular string, ends with a
particular string, or matches a regular expression. For more information on regular
expressions and how to sculpt them effectively, see Mastering Regular Expressions by
Jeffrey E.F. Friedl (O’Reilly).

 val string = """I fell into a burning ring of fire.
 I went down, down, down and the flames went higher"""

Matchers | 23

 string should startWith("I fell")
 string should endWith("higher")
 string should not endWith "My favorite friend, the end"
 string should include("down, down, down")
 string should not include ("Great balls of fire")

 string should startWith regex ("I.fel+")
 string should endWith regex ("h.{4}r")
 string should not endWith regex("\\d{5}")
 string should include regex ("flames?")

 string should fullyMatch regex ("""I(.|\n|\S)*higher""")

These are examples of ScalaTest’s string matchers. Using a Johnny Cash lyric, the first
assertion checks that this particular lyric starts with “I fell,” while the second assertion
checks that the lyric ends with the String “higher.” The third assertion uses not to assert
that Jim Morrison and Johnny Cash lyrics are not mixed. The fourth assertion asserts
that indeed the lyrics “down, down, down” are included. The fifth assertion makes sure
that Jerry Lee Lewis’s lyrics are not included in the Ring of Fire, because having Great
Balls of Fire in Ring of Fire might violate a some fire codes in some counties.

The sixth through ninth assertions use regular expressions. The last assertion uses
fullyMatch as a modifier to regex to assert that the entire lyric must match the regular
expression.

A keen eye will have noticed that the last assertion uses triple quotes
instead of single quotes for the regular expression. This is preferable
because in Scala a triple quote, or raw string, saves you from having to
escaping each backslash (\) and make it two backslashes (\\). For more
information on escaping backslashes and raw strings, refer to Program‐
ming Scala by Dean Wampler and Alex Payne (O’Reilly).

Relational operator matchers
ScalaTest supports relational operators. These examples should be self-explanatory.

 val answerToLife = 42
 answerToLife should be < (50)
 answerToLife should not be > (50)
 answerToLife should be > (3)
 answerToLife should be <= (100)
 answerToLife should be >= (0)
 answerToLife should be === (42)
 answerToLife should not be === (400)

24 | Chapter 3: ScalaTest

www.allitebooks.com

http://www.allitebooks.org

Perhaps the only ScalaTest that requires explanation is the triple-equal operator (===).
The operator is used to evaluate whether the right hand side is equal to the left. As
mentioned previously, using Scala’s equals operator (==) will only evaluate equality, but
never assert equality, so it’s best to stick with should be, should equal, or ===.

Floating-point-matchers
Floating-point arithmetic in the Java virtual machine (JVM) is a nasty business—worthy
of a Discovery Channel reality show.

Consider the operation 0.9 - 0.8. A seasoned Java developer knows that this is not an
innocent call. Running that operation in a Scala REPL will result in
0.09999999999999998. ScalaTest provides a buffer to account for some of these inac‐
curacies using a plusOrMinus method.

(0.9 - 0.8) should be (0.1 plusOrMinus .01)
(0.4 + 0.1) should not be (40.00 plusOrMinus .30)

In the first line, the righthand side operation asserts that the answer is 0.1 plus or minus
a discrepancy of 0.1. The second line in the example is not based much in reality, but
just shows that plusOrMinus can be used in any kind of circumstance that you can invent.

Reference matchers

In Scala, a very important point to consider is that the == operator evaluates the natural
equality for value types and object identity for reference types, not reference equality.
In ScalaTest, the === will assert object equality. But to test object references, ScalaTest
offers theSameInstanceAs:

val garthBrooks = new Artist("Garth", "Brooks")
val chrisGaines = garthBrooks

garthBrooks should be theSameInstanceAs (chrisGaines)

val debbieHarry = new Artist("Debbie", "Harry")
garthBrooks should not be theSameInstanceAs(debbieHarry)

This example will instantiate a new Artist, Garth Brooks—perhaps you’d recognize
him as one of your friends in low places. The Garth Brooks object is referenced by the
garthBrooks variable, and also by the chrisGaines variable. The third line asserts that
the object the garthBrooks variable is referencing is the same object. The last two lines
of the example assert that a Debbie Harry object is not the same object as Garth Brooks.
If he is, well, congratulations go out to Garth Brooks for pulling a really nifty trick.

Iterable matchers

For Iterable, one of many types in Scala that make up a collection, ScalaTest provides
a couple of methods to help you make assertions.

Matchers | 25

http://en.wikipedia.org/wiki/Chris_Gaines
http://www.scala-lang.org/api/current/index.html#scala.collection.Iterable

List() should be('empty)
8 :: 6 :: 7 :: 5 :: 3 :: 0 :: 9 :: Nil should contain(7)

The first line uses an 'empty Scala symbol to assert that an Iterable is empty.

Symbols in Scala are defined as object scala.Symbol and are typically used as identifiers
and keys. Symbols are immutable placeholders, and unlike strings that are used as a
definition or a setting than a String to represent a name, account number, etc.

The second line in the above example asserts that Jenny’s number actually contains the
number 7 in the List.

Seq and traversable matchers

ScalaTest has length and size matchers to determine the size of a Seq or Traversa
ble. According to the ScalaDoc, length and size are equivalent, therefore their use
depends on your preference.

(1 to 9) should have length (9)
(20 to 60 by 2) should have size (21)

Map matchers

ScalaTest has a special matcher syntax for Map. Assertions with Map include the ability
to ask whether a key or value is in the Map.

val map = Map("Jimmy Page" -> "Led Zeppelin", "Sting" -> "The Police",
 "Aimee Mann" -> "Til\' Tuesday")
map should contain key ("Sting")
map should contain value ("Led Zeppelin")
map should not contain key("Brian May")

The example is self-explanatory. Given a map of artist names with their associated band
names, assertions are made that Sting is associated with the Police and that Jimmy
Page is associated with Led Zeppelin. The last line, an assertion is made that Brian
May, guitarist for Queen, is not in the map.

Compound matchers

ScalaTest’s and and or methods can be used to create compound assertions in a test.

val redHotChiliPeppers = List("Anthony Kiedis", "Flea", "Chad Smith", "Josh
 Klinghoffer")
redHotChiliPeppers should (contain("Anthony Kiedis") and
 (not contain ("John Frusciante")
 or contain("Dave Navarro")))

This example is a list of the current members of the Red Hot Chili Peppers as a List of
String objects. The assertion is made that the List contains singer Anthony Kiedis
but does not contain former guitarists, John Frusciante and Dave Navarro.

26 | Chapter 3: ScalaTest

http://www.scala-lang.org/api/current/index.html#scala.collection.Seq

1. Everything is treated as an object and an object reference in Scala, but in compiled bytecode all bets are off.

In practice, using compound matchers will pose some difficulty with the parentheses.
Here are some rules to keep in mind when engineering compound assertions. First,
parentheses must be included around and and or assertions. Secondly, remember that
the righthand assertion must also be wrapped in parentheses. The following line would
not compile.

redHotChiliPeppers should not contain "The Edge" or contain "Kenny G"

To fix the first issue, we apply parentheses around the or assertion.

redHotChiliPeppers should not (contain "The Edge" or contain "Kenny G")

This still will not compile, because we don’t have parentheses around the righthand side
of the assertions The Edge or Kenny G. After we repair this, the example should look as
follows and should compile.

redHotChiliPeppers should not (contain ("The Edge") or contain ("Kenny G"))

Another rule to keep in mind with compound matchers is that and and or are not short-
circuited. In other words, all clauses are evaluated even when other languages would
decide they are unnecessary and would skip their evaluation. The following example
illustrates that rule.

var total = 3
redHotChiliPeppers should not (contain ("The Edge") or contain {total += 6;
 "Kenny G"})
total should be (9)

The above contrived example will set a var variable to 3. If you are unfamiliar with var,
var is a non-final variable with the ability to change the reference1. Under short-
circuiting in another language such as Lisp or Perl, total would never be increased by
6, because the Red Hot Chili Peppers don’t contain The Edge and therefore the first
assertion is true. A short-circuiting language would stop and not evaluate the second
clause. But since ScalaTest does not short circuit, both clauses are evaluated.

Lastly, Scala rarely deals with null because Scala has Some(...) and None to avoid these
cases. But Java uses null, a lot, and since ScalaTest is Java-friendly, there will be cir‐
cumstances where you care about null when architecting test cases.

gorillaz should (not be (null) and contain ("Damon Albarn"))

The previous example will generate the ever-so-hated NullPointerException when a
developer if gorillaz is referencing null. To avoid this prickly message, undo com‐
pound assertions and place each assertion on a line of its own:

gorillaz should not be (null)
gorillaz should contain ("Damon Albarn")

Matchers | 27

If gorrillaz is null, the test still won’t pass, which is correct. But this time the other
test won’t throw a NullPointerException.

Property matchers
ScalaTest has also a clever way to assert that an object’s properties (found through its
getter methods) are valid in one cohesive check.

import scala.collection.mutable.WrappedArray
val album = new Album("Blizzard of Ozz", 1980, new Artist("Ozzy", "Osbourne"))
album should have (
 'title ("Blizzard of Ozz"),
 'year (1980),
 'artist (new Artist("Ozzy", "Osbourne"))
)

Property matchers can be used to reflect on the object’s properties and make assertions
on those properties. This example checks that the album Blizzard of Ozz was created in
1980 by some chap named Ozzy Osbourne. Assertions can be made to be sure that the
title, year, and artist are indeed the ones given at instantiation. It is worth remembering
that Artist is a class whose parameters are val, therefore getters are created automat‐
ically by Scala and using property assertions will work. It would also work to make all
the properties of Artist a var, since var creates both a getter and a setter implicitly.

java.util.Collection matchers

Since ScalaTest is Java friendly, it can be used to make a assertions about basic java.util
collections in the same way that it can test Scala collections. The following example
shows many of the methods used previously, like should have length, should con
tain, etc.

import java.util.{List => JList, ArrayList => JArrayList, Map => JMap,
 HashMap => JHashMap}

val jList: JList[Int] = new JArrayList[Int](20)
jList.add(3); jList.add(6); jList.add(9)

val emptyJList: JList[Int] = new JArrayList[Int]()

emptyJList should be('empty)
jList should have length (3)
jList should have size (3)
jList should contain(6)
jList should not contain (10)

val backupBands: JMap[String, String] = new JHashMap()
backupBands.put("Joan Jett", "Blackhearts")
backupBands.put("Tom Petty", "Heartbreakers")

28 | Chapter 3: ScalaTest

backupBands should contain key ("Joan Jett")
backupBands should contain value ("Heartbreakers")
backupBands should not contain key("John Lydon")

The top line may look esoteric to beginners. Since there is a List container in Scala as
well as in Java, Scala provides an import alias that can be used to rename classes used
within the class. In the previous example, whenever a java.util.List is required, it
will be referred to in the test class as JList. ArrayList will be referred to as JList, Map
as JMap, and HashMap as JHashMap.

The first half of the example creates a JList of Int referenced by jList and an empty
JList of Int called emptyJList. The following five lines just make an assertion about
java.util.List using the same ScalaTest language as for Scala collections. backup
Bands is a java.util.Map construct that maps a headliner with the backup band using
the same ScalaTest map assertions used for Scala maps.

There is no extra setup or hassle to get ScalaTest to work with “Plain Old Java.”

MustMatchers
What is the difference between ShouldMatchers and MustMatchers? Nothing except
how you would like the assertion to display on the output. Do not expect that should
should pass through, while a must matcher will throw a TestFailedException. If an
assertion is not met using either matcher, a TestFailedException will be thrown re‐
gardless of whether you use should or must. The following is a small cross-section of all
the examples seen in the previous section, except the word should is replace with the
word must.

val list = 2 :: 4 :: 5 :: Nil
list.size must be(3)

val string = """I fell into a burning ring of fire.
 I went down, down, down and the flames went higher"""
string must startWith regex ("I.fel+")
string must endWith regex ("h.{4}r")

val answerToLife = 42
answerToLife must be < (50)
answerToLife must not be >(50)

val garthBrooks = new Artist("Garth", "Brooks")
val chrisGaines = garthBrooks
val debbieHarry = new Artist("Debbie", "Harry")
garthBrooks must be theSameInstanceAs (chrisGaines)

(0.9 - 0.8) must be(0.1 plusOrMinus .01)

Matchers | 29

List() must be('empty)
1 :: 2 :: 3 :: Nil must contain(3)
(1 to 9).toList must have length (9)
(20 to 60 by 2).toList must have size (21)

val map = Map("Jimmy Page" -> "Led Zeppelin", "Sting" -> "The Police",
 "Aimee Mann" -> "Til\' Tuesday")
map must contain key ("Sting")
map must contain value ("Led Zeppelin")
map must not contain key("Brian May")

val redHotChiliPeppers = List("Anthony Kiedis", "Flea", "Chad Smith",
 "Josh Klinghoffer")
redHotChiliPeppers must (contain("Anthony Kiedis") and
 (not contain ("John Frusciante")
 or contain("Dave Navarro")))

Exception Handling
There are a couple of ways in ScalaTest to verify that an expected exception is made and
trapped. The first way is by placing the volatile code in an intercept block. The intercept
block is analogous to the barrels used by bomb sqauds to defuse bombs: any code ex‐
pected to throw an exception is placed in the block. If the code does not throw the
expected exception, the test will fail.

 "An album" should {
 "throw an IllegalArgumentException if there are no acts when created" in {
 intercept[IllegalArgumentException] {
 new Album("The Joy of Listening to Nothing", 1980, List())
 }
 }
 }

This example is a standard spec that expects an IllegalArgumentException when an
Album is created with no Artist. If the instantiation of Album does not throw an excep‐
tion, the test itself will fail.

Another way to assert that an exception should be thrown is to use either a Should
Matcher or MustMatcher to assert that the call indeed throws the necessary Excep
tion. This is done using an evaluating block and either a must or should clause to
check that it produces the expected Exception, as seen in the following example.

val thrownException = evaluating {new Album("The Joy of Listening to Nothing",
 1980, List())} must produce [IllegalArgumentException]
thrownException.getMessage() must be ("An Artist is required")

The two examples do nearly the same thing, but the second one using the evaluating
clause allows the developer to introspect the Exception and assert information about
the exception after it has been thrown. One of the benefits of using this method is that
a call often throws different exceptions, and it is good practice to find out exactly which

30 | Chapter 3: ScalaTest

one was thrown. If by chance the class Album does has two different cases where an
IllegalArgumentException is thrown (say, one when there is no Artist placed onto
the album, and one where the album year is less than 1900) it would be wise to introspect
the exception and make sure that the right one was captured. If it isn’t, the test should
fail. The evaluating example just shown does extra analysis to ensure that the
IllegalArgumentException that is thrown indeed the one that was expected.

Informers
Before continuing further into the different specifications, an introduction to some of
the tools available in ScalaTest is in order. We’ll start with informers—not the kind that’ll
rat you out. Informers in ScalaTest are spices, analogous to debug statements, that can
be applied anywhere in a test to display information about the test. To apply an informer,
merely add an info(String) method anywhere within your test.

Informers provide enhanced feedback on the test and give any stakeholder on the project
a clear picture of the purpose of your test.

class AlbumSpec extends FunSpec with ShouldMatchers {
 describe("An Album") {
 it("can add an Artist to the album at construction time") {
 val album = new Album("Thriller", 1981, new Artist("Michael", "Jackson"))
 info("Making sure that Michael Jackson is indeed the artist of Thriller")
 album.acts.head.asInstanceOf[Artist].firstName should be("Michael")
 album.acts.head.asInstanceOf[Artist].lastName should be("Jackson")
 }
 }
}

The testing results will give us the informer’s results, prepended with + to denote that
the printout comes from an informer. Running test-only com.oreilly.testingsca
la.AlbumSpec will render the following response in SBT. As a reminder test-only takes
a test class argument so that SBT will only test one class. In our case that’s com.oreil
ly.testingscala.AlbumSpec.

> test-only com.oreilly.testingscala.AlbumSpec
[info] Compiling 1 Scala source to /home/danno/testing_scala_book.git
 /testingscala/target/scala-2.9.2/test-classes...
[info] AlbumSpec:
[info] An Album
[info] - can add an Artist to the album at construction time
[info] + Making sure that Michael Jackson is indeed the artist of Thriller
[info] Passed: : Total 1, Failed 0, Errors 0, Passed 1, Skipped 0
[success] Total time: 4 s, completed Dec 19, 2011 11:16:12 AM

Informers | 31

GivenWhenThen
These are three words any test-driven developer will remember. ScalaTest, as well as
Specs2, which will be covered later in the book, uses the three phases to document the
scenario and outcome of a test. Just about every process and recipe in the world can be
described with GivenWhenThen.

Given we have eggs, milk, flour, sugar, baking powder, and baking soda. When mixed
together and placed in an oven of 350°F, then we partake in an opulent cake!

Testing is the same. Each test has a Given that is the initial state of a test. In this initial
state we typically gather any nouns or ingredients to the test. Following is a When: which
actions or verbs are to be performed on the nouns provided in the Given clause. Finally,
Then specifies the results of the test, where all post-action analysis takes place.

The silent partner in the GivenWhenThen trait is the and method. It serves to break apart
any given, when, and then if any of those clauses get too unwieldy. It should be visibly
evident that a given, when, or then clause has perhaps gotten big if the string describing
the test is littered with and+s. For example, if a then clause states that "the
act should be an instance of +Artist and the artist’s first and last names should
be Michael Jackson" it would be better to break the then clause apart, making it both
more readable and more logically categorized. For instance: “the act should be an in‐
stance of Artist" and “the Artist’s first and last names should be Michael Jackson.”

GivenWhenThen in the back end are just informers that help the test-driven developer
organize her thoughts in a familiar structure. GivenWhenThen is a trait that can be mixed
into any test. This is particularly useful for a Spec that doesn’t have a strict structure.

GivenWhenThen can therefore be applied anywhere where needed. The technique goes
particularly well with FunSpec, [“FunSpec” (page 36)] and FeatureSpec, [“FeatureS‐
pec” (page 40)].

The following example retrofits the Album test, mixing in GivenWhenThen methods.

class AlbumSpec extends FunSpec with ShouldMatchers with GivenWhenThen {
 describe("An Album") {
 it("can add an Artist to the album at construction time") {
 given("The album Thriller by Michael Jackson")
 val album = new Album("Thriller", 1981, new Artist("Michael", "Jackson"))

 when("the album\'s artist is obtained")
 val artist = album.artist

 then("the artist obtained should be an instance of Artist")
 artist.isInstanceOf[Artist] should be (true)

 and("the artist's first name and last name should be Michael Jackson")
 artist.firstName should be("Michael")

32 | Chapter 3: ScalaTest

 artist.lastName should be("Jackson")
 }
 }
}

Pending Tests
Each test trait lets you mark a test as pending. pending is a placeholder for tests that
have not been defined. The benefit of pending is that it lets you quickly jot down an
idea, perhaps something that popped into your mind while you were focused on some‐
thing else. pending also is a great way to map out a course of tests before actual imple‐
mentation, possibly eliminating some ideas that you thought would make sense at first
but didn’t after delineating the purpose of all the tests.

In a Spec, after each it clause the corresponding block returns pending for any test that
is not implemented or just not ready.

When I first had the idea for AlbumTest and was jotting down possible tests to include,
pending might have made the test look like the following:

class AlbumSpec extends FunSpec with ShouldMatchers with GivenWhenThen {
 describe("An Album") {
 it("can add an Artist to the album at construction time") {pending}
 it("can add opt to not have any artists at construction time") {pending}
 }
}

The tests marked as pending will generate output marked pending when run either at
the command prompt or through SBT.

[info] AlbumSpec:
[info] An Album
[info] - can add an Artist to the album at construction time (pending)
[info] - can add opt to not have any artists at construction time (pending)

An interesting use of pending is to keep that keyword on the bottom of the test while
implementing it, so that the test is still considered under construction. When the test is
ready, let it run by removing the pending statement.

class AlbumSpec extends FunSpec with ShouldMatchers {
 describe("An Album") {
 it("can add an Artist to the album at construction time") {
 val album = new Album("Thriller", 1981, new Artist("Michael", "Jackson"))
 info("Making sure that Michael Jackson is indeed the artist of Thriller")
 pending
 }

 it("can add opt to not have any artists at construction time") {pending}
 }
}

Pending Tests | 33

This example is a test still in progress. As long as the test compiles, you can run it through
ScalaTest and the last pending guarantees that the test runner will still treat this as a
pending test. ScalaTest will not cruelly discipline the test-driven developer with failures
for an incomplete test. Note that the previous example also contains an informer that is
rendered in the test results, as seen below, even though the test is pending. If the test is
marked as pending, ScalaTest will still honor any informers, including GivenWhenTh
en methods.

[info] AlbumSpec:
[info] An Album
[info] - can add an Artist to the album at construction time (pending)
[info] + Making sure that Michael Jackson is indeed the artist of Thriller
[info] - can add opt to not have any artists at construction time (pending)

Ignoring Tests
A developer is often unsure of the validity of a test, whether it’s because the production
code has been phased out, the test or production code is too complex, or something is
just plum broken. So each of the ScalaTest traits lets you temporarily disable certain
tests. How a test is ignored depends on the trait, and the various ways will be covered
with their respective traits.

To ignore any poor or broken test, replace the it keyword with ignore. The following
example adds another test to the FunSpec. This test is ignored though, because it uses
ignore instead of it.

package com.oreilly.testingscala

import org.scalatest.FunSpec
import org.scalatest.matchers.ShouldMatchers

class AlbumSpec extends FunSpec with ShouldMatchers {
 describe("An Album") {

 //Code removed for brevity

 ignore("can add a Producer to an album at construction time") {
 new Album("Breezin\'", 1976, new Artist("George", "Benson"))
 //TODO: Figure out the implementation of an album producer
 }
 }
}

In this example, which perhaps is oversimplified, the developer may be stalled while
waiting for more information about the data set or the application. If you view the
response from the SBT console or command prompt, the earlier tests are still valid and
run, while the ignored test is displayed with a message stating that it has been ignored.

34 | Chapter 3: ScalaTest

www.allitebooks.com

http://www.allitebooks.org

[info] AlbumSpec:
[info] An Album
[info] - can add an Artist to the album at construction time
[info] - can add a Producer to an album at construction time !!! IGNORED !!!

Simply changing ignore to it will make the test available for testing.

Tagging
Tagging categorizes tests so that they can run as part of a group. Tagging is very much
like tagging a blog entry, where the subject of the blog entry is categorized with keywords
so that not only can search engines find the entry, but users can click a word cloud to
see similar entries. In testing, it is very useful to categorize tests for several reasons:

• Some tests are slow and you might want to skip them at times.
• Some tests check related functionality and should be run together.
• You may want to categorize tests as unit tests, integration tests, acceptance tests, or

any other type.

While this book focuses mostly on unit testing using test-driven development there are
other type of testing. Integration testing involves tests whose objects work with another,
or examines how objects work with outside systems or the Internet. Integration testing
takes place after unit testing, therefore after test-driven development.

Another level of testing is acceptance testing, which takes the program out for a test drive
to see whether it is ready for deployment. Acceptance testing deals with usability and
how the stakeholders of the product react to the developer’s masterpiece.

Outside of these main levels of testing, there are other categories to consider. Security
testing: how carefully contained and safe is the code? Performance testing: How fast does
the application respond in production? Load and stress testing: In a server environment,
how many users can hit the server, and can the server respond adequately?

Though it is difficult, many projects do have unit, integration, and acceptance testing
for all code that is developed.

All testing traits in ScalaTest can be tagged with strings describing the test. Each testing
trait has its own methodology to tag the test, but when the tagging is done, tests can be
run either from the command prompt or SBT.

Tagging | 35

Running Tags From the Command Prompt
To specify which tests should be included when invoking ScalaTest using the Runner,
add the -n option followed either by the name of the tag or by a list of names of tags
surrounded by double quotes. To exclude any test by tag, use the -l option. Examples
will appear in the sections covering each individual Spec.

Running Tags in SBT
SBT cannot currrently invoke the test task with tags, but tags can be used with the
test-only task. To run a specific tag for a particular test class, append -- to the name
of the class and apply either the -n or -l options. As with the command line, the option
is followed by an individual tag name or by a list tag names in double quotes. Each spec
has its own methodology of tagging and will be covered appropriately in each individual
Spec.

The main reason the test task does not recognize tags is that SBT is
still its infancy (ScalaTest and Specs2 are mere toddlers) and each of the
built-in testing frameworks supported by SBT must support tagging. At
the time of writing, ScalaTest and Specs2 have tagging ability, but
ScalaCheck does not.

Specifications
FunSpec
The following FunSpec is a full example mixing in some Informer, GivenWhenThen,
adding pending and ignore and a tag.

src/test/scala/com/oreilly/testingscala/AlbumSpecAll.scala.

package com.oreilly.testingscala

import org.scalatest.matchers.ShouldMatchers
import org.scalatest.{Tag, GivenWhenThen, FunSpec}

class AlbumSpecAll extends FunSpec with ShouldMatchers with GivenWhenThen {
 describe("An Album") {
 it("can add an Artist to the album at construction time", Tag("construc-
tion")) {
 given("The album Thriller by Michael Jackson")
 val album = new Album("Thriller", 1981, new Artist("Michael", "Jackson"))

 when("the artist of the album is obtained")

36 | Chapter 3: ScalaTest

 val artist = album.artist

 then("the artist should be an instance of Artist")
 artist.isInstanceOf[Artist] should be(true)

 and("the artist's first name and last name should be Michael Jackson")
 artist.firstName should be("Michael")
 artist.lastName should be("Jackson")
 info("This is still pending, since there may be more to accomplish in
this test")
 pending
 }

 ignore("can add a Producer to an album at construction time") {
 //TODO: Add some logic to add a producer.
 }
 }
}

The above is a complete test that contains most of the features in a regular FunSpec. The
first test is tagged as a construction test. The first test also mixes in GivenWhenThen
informer methods to provide some testing structure. It also contains a regular Inform
er, and is finally marked as pending. The second test is ignored. Following is the end
result of this particular FunSpec.

> ~test-only com.oreilly.testingscala.AlbumSpecAll
[info] AlbumSpecAll:
[info] An Album
[info] - can add an Artist to the album at construction time (pending)
[info] + Given The album Thriller by Michael Jackson
[info] + When Artist of the album is obtained
[info] + Then the Artist should be an instance of Artist
[info] + And the artist's first name and last name should be Michael Jackson
[info] + This is still pending, since there may be more to accomplish in this
test
[info] - can add a Producer to an album at construction time !!! IGNORED !!!
[info] Passed: : Total 2, Failed 0, Errors 0, Passed 0, Skipped 2

This is a sample of running a test, to only invoke tests with the tag of construction.
Note that the ignored test of the FunSpec did not run since it wasn’t tagged with the
“construction” tag.

> ~test-only com.oreilly.testingscala.AlbumSpecAll -- -n construction
[info] AlbumSpecAll:
[info] An Album
[info] - can add an Artist to the album at construction time (pending)
[info] + Given The album Thriller by Michael Jackson
[info] + When Artist of the album is obtained
[info] + Then the Artist should be an instance of Artist

Specifications | 37

[info] + And the artist's first name and last name should be Michael Jackson
[info] + This is still pending, since there may be more to accomplish in this
test
[info] Passed: : Total 1, Failed 0, Errors 0, Passed 0, Skipped 1

WordSpec
A WordSpec is another type of Spec available in ScalaTest. WordSpec makes heavy use
of the items when, should, and can with the ability to combine these words with any
means possible. when, should, and can are methods belonging to String by use of
implicit wrapper. Implicit wrappers are Scala’s way of adding functionality to a class.
Let’s continue on our musical journey, this time to the Hotel California.

package com.oreilly.testingscala

import org.scalatest.matchers.ShouldMatchers
import org.scalatest.WordSpec

class AlbumWordSpec extends WordSpec with ShouldMatchers {
 "An Album" when {
 "created" should {
 "accept the title, the year, and a Band as a parameter, and be able to
read
 those parameters back" in {
 new Album("Hotel California", 1977,
 new Band("The Eagles", new Artist("Don", "Henley"),
 new Artist("Glenn", "Frey"),
 new Artist("Joe", "Walsh"),
 new Artist("Randy", "Meisner"),
 new Artist("Don", "Felder")))
 }
 }
 }
}

Of course, the existing code must have some changes to make this new test work. First
off, an Act class is created. Act will be a superclass for both an Artist and a new class,
Band. Album will be refactored to include multiple acts instead of just one artist. Ar
tist will also be refactored to extend an Act.

src/main/scala/com/oreilly/testingscala/Act.scala.

package com.oreilly.testingscala

class Act

src/main/scala/com/oreilly/testingscala/Album.scala.

package com.oreilly.testingscala

class Album (val title:String, val year:Int, val acts:List[Act])

38 | Chapter 3: ScalaTest

src/main/scala/com/oreilly/testingscala/Band.scala.

package com.oreilly.testingscala

class Band(name:String, members:List[Artist]) extends Act

WordSpec also gives the developer a different perspective on testing by forcing him to
consider many when cases. In the AlbumWordSpec example, conditions are defined before
any assertions. Each specification is a sentence in its own right. With the when we declare
the subject of the test, followed by a block. The should block can be used with a subject
or a condition of the test. For example, we can create another test that declares the subject
within a should clause.

src/main/scala/com/oreilly/testingscala/AlbumWordSpec.scala.

 "An album" should {
 "throw an IllegalArgumentException if there are no acts when created" in {
 intercept[IllegalArgumentException] {
 new Album("The Joy of Listening to Nothing", 1980, List())
 }
 }
 }

The last example introduces some new concepts. The intercept[IllegalArgumentEx
ception] is a method that takes a type parameter and has a block that will trap an
exception defined in the type parameter of intercept, in this case, an IllegalArgumen
tException. If an IllegalArgumentException is not caught within the intercept block
the test will fail, stating that the Exception that was expected was not thrown.

Another concept from the last example that may be unfamiliar is List(): _*. This has
nothing to do with ScalaTest: it is a Scala workaround that converts any scala.Seq to
fit into a varargs declaration. Since Album’s third parameter in its main constructor,
acts, is a vararg declaration that accepts one or more Acts we must use the _* construct.

Naturally, the IllegalArgumentException has not been handled. Inserting a Scala
require method will prevent any bad data from being applied during object construc‐
tion.

package com.oreilly.testingscala

class Album (val title:String, val year:Int, val acts:Act*) {
 require(acts.size > 0)
}

The last example uses informers to verify that the intercept successfully traps the Ille
galArgumentException. We can continue to add more lines to the lines, possibly to add
more assertions.

Specifications | 39

FeatureSpec
FeatureSpec is a test that categorizes a test in a set of features. A feature is simply a single
feature of the software that is to be delivered. Each feature will have various scenarios
of that feature. Each scenario represents a successful or failed test that defines what the
object under the test can or cannot do. The more scenarios per feature, the less doubt
remains that an object is unstable.

Each feature must have a unique string to describe the desired feature of the software
that is being tested. Each scenario string must also be unique.

package com.oreilly.testingscala

import org.scalatest.matchers.ShouldMatchers
import org.scalatest.FeatureSpec

class AlbumFeatureSpec extends FeatureSpec with ShouldMatchers {
 feature("An album's default constructor should support a parameter that ac-
cepts
 Option(List(Tracks)) ") { ... }
 feature("An album should have an addTrack method that takes a track and re-
turns
 an immutable copy of the Album with the added track") { ... }
}

In the above example, AlbumFeatureSpec of course will extend the FeatureSpec trait
and the ShouldMatchers trait for the should assertion language. The example
FeatureSpec+ is divided up into features. These features are essentially a list of deliv‐
erables for the object that is under test.

In this example, an Album should have another constructor that handles an option of a
list of new objects called Tracks. The final feature is that an Album should have a method
called addTrack that accepts a new Track object and returns another immutable Al
bum instance.

Options in Scala are a near replacement for null. Instead of expressing
no result in a return value as null, which was standard in Java and C+
+, a Scala developer would return None. If there is a value that can be
returned it would be wrapped in Some. For example, returning the years
the Cleveland Browns won the Super Bowl would return None, and for
the San Francisco 49ers, a choice would be Some(1981, 1984, 1988,
1989, 1994). Learning Scala is not in the scope of this book: please
refer to Programming Scala for more information on the Option[T]
type.

Implementing the first feature, we wish to create a couple of scenarios.

40 | Chapter 3: ScalaTest

• An Album is given a list of 3 tracks exactly
• An Album is given an empty list
• An Album is given null

package com.oreilly.testingscala

import org.scalatest.matchers.ShouldMatchers
import org.scalatest.FeatureSpec

class AlbumFeatureSpec extends FeatureSpec with ShouldMatchers {
 feature("An album's default constructor should support a parameter that
 accepts Option(List(Tracks))") {
 scenario ("Album's default constructor is given a list of the 3 tracks
 exactly for the tracks parameter") {pending}
 scenario ("Album's default constructor is given an empty List for the
 tracks parameter") {pending}
 scenario ("Album's default constructor is given null for the tracks
 parameter") {pending}
 }
 feature("An album should have an addTrack method that takes a track and re-
turns an immutable copy of the Album with the added track") { }
}

These examples are drawn out to reenact how test-driven development would look as
you’re working with ScalaTest. They also show how pending can be used just to hold a
space for the developer to fill in the test later. AlbumFeatureSpec in the above example
is intended to add a few scenarios and list them as pending. The next phase will be to
start implementing some of these tests.

src/test/scala/com/oreilly/testingscala/AlbumFeatureSpec.scala.

package com.oreilly.testingscala

import org.scalatest.matchers.ShouldMatchers
import org.scalatest.FeatureSpec

class AlbumFeatureSpec extends FeatureSpec with ShouldMatchers {
 feature("An album's default constructor should support a parameter that ac-
cepts
 Option(List(Tracks))") {
 scenario("Album's default constructor is given a list of the 3 tracks exact-
ly
 for the tracks parameter") {
 val depecheModeCirca1990 = new Band("Depeche Mode",
 new Artist("Dave", "Gahan"),
 new Artist("Martin", "Gore"),
 new Artist("Andrew", "Fletcher"),
 new Artist("Alan", "Wilder"))

 val blackCelebration = new Album("Black Celebration", 1990,

Specifications | 41

 List(new Track("Black Celebration"),
 new Track("Fly on the Windscreen"),
 new Track("A Question of Lust")), depecheModeCirca1990: _*)

 album.tracks should have size(3)
 }

 scenario("Album's default constructor is given an empty List for the
 tracks parameter") {pending}
 scenario("Album's default constructor is given null for the tracks
 parameter") {pending}
 }
 feature("An album should have an addTrack method that takes a track and
 returns an immutable copy of the Album with the added track") {pending}
}

The first scenario is filled in the previous example. The test creates a band
depecheModeCirca1990+, and attempts to create an album, blackCelebration, with a
list of Tracks. This moment is a good time to look back and judge the API—is it clear
and understandable? Is it a clean API?

At this time, you may want to create some feature or scenario with pending after
thinking through the design of the Album object—before the brain becomes occupied
with other thoughts.

After the design introspection, and jotting down some ideas with feature and scenar
io, create the Track class (just enough to satisfy the test—no more, no less), and modify
the parameters of the Album constructor to satisfy the test and make it pass.

/src/main/scala/com/oreilly/testingscala/Album.scala.

class Album (val title:String, val year:Int, val tracks:Option[List[Track]],
val acts:Act*) {

 require(acts.size > 0)

 def this(title:String, year:Int, acts:Act*) = this (title, year, None,
acts:_*)
}

/src/main/scala/com/oreilly/testingscala/Track.scala.

package com.oreilly.testingscala

class Track(name:String)

The constructor for Album has been updated to include the parameter for track with a
type of Option[List[Track]]. The acts parameter has been moved to the last param‐
eter, since according to the Scala specification, any repeated parameter must be the last
of a function or method. In the last example, the Track class was created.

42 | Chapter 3: ScalaTest

The next example is the implementation for the next scenario: “Album’s default con‐
structor is given an empty List for the tracks parameter.” This time, though, it will use
the GivenWhenThen trait to structure the test.

package com.oreilly.testingscala

import org.scalatest.matchers.ShouldMatchers
import org.scalatest.{GivenWhenThen, FeatureSpec}

class AlbumFeatureSpec extends FeatureSpec with ShouldMatchers with GivenWhenTh-
en {
 feature("An album's default constructor should support a parameter that ac-
cepts
 Option(List(Tracks))") {

 //Lines removed for brevity

 scenario("Album's default constructor is given a None for the tracks
 parameter") {
 given("the band, the Doobie Brothers from 1973")
 val theDoobieBrothersCirca1973 = new Band("The Doobie Brothers",
 new Artist("Tom", "Johnston"),
 new Artist("Patrick", "Simmons"),
 new Artist("Tiran", "Porter"),
 new Artist("Keith", "Knudsen"),
 new Artist("John", "Hartman"))

 when("the album is instantiated with the title, the year, none tracks,
 and the Doobie Brothers")
 val album = new Album("The Captain and Me", 1973, None,
 theDoobieBrothersCirca1973)

 then("calling the albums's title, year, tracks, acts property should yield
 the same results")
 album.title should be("The Captain and Me")
 album.year should be(1973)
 album.tracks should be(None)
 album.acts(0) should be(theDoobieBrothersCirca1973)
 }

 //Lines removed for brevity
 }
}

In the above example, what gets generated in the output in SBT is a very fluid statement
of how the test performed.

An album's default constructor should support a parameter that accepts
 Option(List(Tracks))
[info] Scenario: Album's default constructor is given a list of the 3 tracks
 exactly for the tracks parameter

Specifications | 43

[info] Scenario: Album's default constructor is given a None for the tracks
 parameter
[info] Given the band, the Doobie Brothers from 1973
[info] When the album is instantiated with the title, the year, none tracks,
 and the Doobie Brothers
[info] Then calling the albums's title, year, tracks, acts property should
 yield the same results

FreeSpec
FreeSpec is a test that is free of any restraint; the developer can craft it however she sees
fit. Each element is of the story line is a string followed by -{. FreeSpec is engineered
for the testing developer who wishes not to adhere to any pre-fabricated structure.
FreeSpec tests are also attractive for test-driven developers who don’t use or prefer
English as a primary testing language.

GivenWhenThen can be useful in FreeSpec just to bring some structure into the test if
needed.

package com.oreilly.testingscala

import org.scalatest.matchers.ShouldMatchers
import org.scalatest.FreeSpec

class JukeboxFreeSpec extends FreeSpec with ShouldMatchers {

 "given 3 albums" - {
 val badmotorfinger = new Album("Badmotorfinger", 1991, None,
 new Band("Soundgarden"))
 val thaDoggFather = new Album("The Dogg Father", 1996, None,
 new Artist("Snoop Doggy", "Dogg"))
 val satchmoAtPasadena = new Album("Satchmo At Pasadena", 1951, None,
 new Artist("Louis", "Armstrong"))
 "when a juke box is instantiated it should accept some albums" -{
 val jukebox = new JukeBox(Some(List(badmotorfinger, thaDoggFather,
 satchmoAtPasadena)))
 "then a jukebox's album catalog size should be 3" in {
 jukebox.albums.get should have size (3)
 }
 }
 }

 "El constructor de Jukebox puedo aceptar la palabra clave de 'None'" - {
 val jukebox = new JukeBox(None)
 "y regresas 'None' cuando llamado" in {
 jukebox.albums should be(None)
 }
 }
}

44 | Chapter 3: ScalaTest

www.allitebooks.com

http://www.allitebooks.org

In FreeSpec, the developer has free reign with the structure. Each statement that doesn’t
contain any tests within the block terminates with -{. If the statement will contain the
assertions required for the test, then an in keyword is required. In the above example,
within the "given some albums" block, three albums of varying genres are instantiated.
Within the next block, "when a juke box is intantiated it should accept some
albums" a Jukebox is instantiated with the Some list of Albums. Again, each of these
statements end in -{ since these blocks do not contain any of the assertions within. The
block then a jukebox’s album catalog size should be 3 on the other hand does
contain an assertion there that block ends with in { instead of -{.

In the last block of JukeboxFreeSpec the test is written in Spanish, since a FreeSpec
and with the exception of the keyword in. It doesn’t force any rules like should, when,
etc. in a test. To translate, the first statement of the second test says “The constructor of
jukebox should accept the keyword None. The last statement of the second test says “and
return None when called” after the test assertion is made.

Just to finish out this section, the production code resulting from these tests has changed.
For readers who are keeping track, the following is what JukeBox could look like.

package com.oreilly.testingscala

class JukeBox (val albums:Option[List[Album]]) {
 def readyToPlay = albums.isDefined
}

FlatSpec
For the developer with simple tastes, there is the FlatSpec, a no-nonsense, flat behavior-
driven design spec meant to just declare the purpose of the test and implement it.
FlatSpec is so named since the test is flat and lined up against the left side of the test.
FlatSpec can either be written in a long or short form. First, here is the long form.

package com.oreilly.testingscala

import org.scalatest.matchers.MustMatchers
import org.scalatest.FlatSpec
import org.joda.time.Period

class TrackFlatSpec extends FlatSpec with MustMatchers {
 behavior of "A Track"

 it should """have a constructor that accepts the name and the length of the
 track
 in min:sec and returns a joda.time.Period when track.period is
 called""" in {
 val track = new Track("Last Dance", "5:00")
 track.period must be(new Period(0, 5, 0, 0))
 }

Specifications | 45

 it must """throw an IllegalArgumentException with the message \"Track name
 cannot be blank\"
 if the name of the track is blank.""" in {
 val exception = evaluating(new Track("")) must produce
 [IllegalArgumentException]
 exception.getMessage must be ("requirement failed: Track name cannot be
 blank")
 }
}

The TrackFlatSpec example above extends the FlatSpec trait, and is using MustMatch
ers for must assertion grammar. In a FlatSpec the declaration of the class under a test
occurs first, followed by one or more sentence specifications.

In the above example, the subject is Track. Each sentence specification supports the
subject. Each supporting sentence specification starts with the word it followed by
should, must, or can. The use of should, must, or can has nothing to do with the
MustMatchers or ShouldMatchers trait. Those keywords belong to the FlatSpec trait.
Looking at the above example, the first sentence specification uses it should, while the
second sentence specification uses it must. At the end of each of sentence specification
the word it is used as it is in other ScalaTest traits—to encapsulate the test logic.

Given the above test example, the Track class has changes that need to be made in order
to satisfy the test.

package com.oreilly.testingscala

import org.joda.time.format.PeriodFormatterBuilder

class Track(val name: String, val length: String) {

 require(name.trim().length() != 0, "Track name cannot be blank")

 def this(name: String) = this (name, "0:00")

 def period = {
 val fmt = new PeriodFormatterBuilder()
 .printZeroAlways()
 .appendMinutes()
 .appendSeparator(":")
 .printZeroAlways()
 .appendSeconds()
 .toFormatter()
 fmt.parsePeriod(length)
 }
}

This implementation uses the idea of a Period in Joda Time. A Period is a period of
time that is not tied to any chronological calendar or any time zone. It specifies a length

46 | Chapter 3: ScalaTest

of time without an exact start or end time, and without measuring milliseconds. This is
perfect for mesauring and storing a music track’s length of time. The above example also
uses a PeriodFormatterBuilder to create a Parser and Printer of the Period. A Parser
will convert a String representation like “05:00” to a 5-minute Period. A Printer will
do the opposite and convert a Period object into a String represenation. PeriodFor
matterBuilder uses a Builder design pattern. The Builder pattern typically starts with
an object, and allows the developer to add certain ingredients into that builder to create
a custom object. In the above example, PeriodFormatterBuilder is instantiated, and
certain elements are added to create the perfect Formatter for our needs. For more
information on Period, visit the Joda-Time website. For more information on the
Builder design pattern, please refer to Head First Design Patterns by Eric Freeman,
Elisabeth Robson, Bert Bates, and Kathy Sierra and published by O’Reilly.

JUnitSuite
For the developer who fancies classic testing structures. ScalaTest supports JUnit testing
using a JUnitSuite trait. The test class must extend JUnitTestSuite to mark the test
as a JUnit-style test. The rest is tried-and-true JUnit. To include JUnit in the project,
modify the build.sbt file to include the repository location of the latest JUnit library. At
the time of this writing, JUnit is at 4.10.

libraryDependencies ++= Seq("org.scalatest" % "scalatest_2.9.2" % "1.8" % "test"
 withSources() withJavadoc(),
 "joda-time" % "joda-time" % "1.8" withSources()
 withJavadoc(),
 "junit" % "junit" % "4.10" withSources()
 withJavadoc())

In the above snippet of the build.sbt file, "junit" % "junit" % "4.10" withSources()
withJavadoc()) is added to the Seq of repository vectors. After adding the dependen‐
cies required for JUnit, reload and update the project using sbt.

The following sample creates a mutable artist member variable that is used to hold
the subject under test, in this case an artist. The subject under test undergoes two
distinct tests using a distinct artist that is initialized with the startup() method.

package com.oreilly.testingscala

import org.scalatest.junit.JUnitSuite
import org.junit.{Test, Before}
import org.junit.Assert._

class ArtistJUnitSuite extends JUnitSuite {
 var artist:Artist = _

 @Before
 def startUp() {

Specifications | 47

http://joda-time.sourceforge.net/key_period.html
http://shop.oreilly.com/product/9780596007126.do

 artist = new Artist("Kenny", "Rogers")
 }

 @Test
 def addOneAlbumAndGetCopy() {
 val copyArtist = artist.addAlbum(new Album("Love will turn you around",
 1982, artist))
 assertEquals(copyArtist.albums.size, 1)
 }

 @Test
 def addTwoAlbumsAndGetCopy() {
 val copyArtist = artist
 .addAlbum(new Album("Love will turn you around", 1982, artist))
 .addAlbum(new Album("We've got tonight", 1983, artist))
 assertEquals(copyArtist.albums.size, 2)
 }
}

For those unfamiliar with JUnit, it was the first open-source testing framework devel‐
oped for Java. The original JUnit ran by creating methods that started with the word
test. If the JUnit Test Runner encountered a method named testEquality and the
method started with the word test, the method would be executed as a test. With the
advent of Java 1.5, annotations became popular for Java developers and JUnit started
using @Test annotations to let the JUnit Test Runner know that the method is a test. For
developers who are feeling particularly nostalgic, there is a JUnit3Suite that can be
used to relive the testing methodology from JUnit 3.x.

The @Before annotation is used to tell the runner that the startUp() method in our
example is to run before each method of the test is run. Therefore for each test, a new
instance of Kenny Rogers will be created before the test. This ensures that each test has
a Kenny Rogers of its own. Truly, a benefit.

Not shown here, the @After annotation is used on method that preforms and cleanup
after the test. The reason for a cleanup in the above example is there is no need to set
the artist to Kenny Rogers again. If that were required, the following code would be used
for the cleanup method.

 @After
 def shutDown() {this.artist = null}

The method shutDown() is a kind of hack since the JUnitSuite is not immutable. If you
are thinking that making the call def shutDown() {this.artist = _} would’ve
worked, it wouldn’t—since within a block the _ is considered a parameter of the function
that makes up the method, therefore setting it to null is required. An unfortunate cir‐
cumstance, but such manipulation is sometimes required in order to make a Scala
method with a Java method.

48 | Chapter 3: ScalaTest

The @Before and @After constructs are known as fixtures. Fixtures provide the setup
and tearDown/shutDown methods that are used. Up to this point, fixtures in ScalaTest
have not been covered, but we will discuss these strategies later in this chapter.

TestNGSuite
TestNG is another popular Java-based testing framework, with many more features than
JUnit. It brought many new ideas to the Java testing worlds, including DataProviders
—which can provide a list of data to a testing method—and groups—which are analo‐
gous to tagging in ScalaTest. These are only a few of the features included in TestNG.
ScalaTest takes great care to ensure that all the TestNG features work under ScalaTest.
First, it’s necessary to include testng in the libraryDependencies setting of
build.sbt. Below is a snippet to include the a testng dependency in the Seq of de‐
pendency vectors.

libraryDependencies ++= Seq("org.scalatest" % "scalatest_2.9.2" % "1.8" % "test"
 withSources() withJavadoc(),
 "joda-time" % "joda-time" % "1.8" withSources()
 withJavadoc(),
 "junit" % "junit" % "4.10" withSources()
 withJavadoc(),
 "org.testng" % "testng" % "6.1.1" % "test"
 withSources() withJavadoc())

After completing the reload and update required to bring the testng dependency into
the project, the following is a sample of a TestNG test used in ScalaTest using a Data
Provider and TestNG groups.

package com.oreilly.testingscala

import org.scalatest.testng.TestNGSuite
import collection.mutable.ArrayBuilder
import org.testng.annotations.{Test, DataProvider}
import org.testng.Assert._

class ArtistTestNGSuite extends TestNGSuite {

 @DataProvider(name = "provider")
 def provideData = {
 val g = new ArrayBuilder.ofRef[Array[Object]]()
 g += (Array[Object]("Heart", 5.asInstanceOf[java.lang.Integer]))
 g += (Array[Object]("Jimmy Buffet", 12.asInstanceOf[java.lang.Integer]))
 g.result()
 }

 @Test(dataProvider = "provider")

Specifications | 49

 def testTheStringLength(n1:String, n2:java.lang.Integer) {
 assertEquals(n1.length, n2)
 }
}

provideData is a method that returns an Array[Array[Object]] with test data used
for the test. provideData is also annotated with @DataProvider and given an arbitrary
name: provider. The data provided by the provider will call a test method requesting
the data using the dateProvider parameter in a Test annotation. In the same, test
TheStringLength method is annotated with Test and requests the data provider named
provider. The testTheStringLength will now become two tests—one for each row of
data provided by the provider. This strategy cuts boilerplate code down, and gives the
test developer and a single point of focus for testing.

Below are the results generated from ArtistTestNGSuite.

> ~test-only com.oreilly.testingscala.ArtistTestNGSuite
[TestNG] Running:
 Command line suite

\===
Command line suite
Total tests run: 2, Failures: 0, Skips: 0
\===

[info] ArtistTestNGSuite:
[info] ArtistTestNGSuite:
[info] - testTheStringLength(Heart,5)
[info] - testTheStringLength(Jimmy Buffet,12)
[info] Passed: : Total 2, Failed 0, Errors 0, Passed 2, Skipped 0
[success] Total time: 1 s, completed Dec 27, 2011 3:08:48 PM

Of course, what good is a test if you can’t tag for filtering purposes? In TestNG, tagging
is called groups, and groups can be leveraged along with ScalaTest to include the groups
in a test and run as if they were tags. In the following example, the method
testTheStringLength test annotation will also include the group tag
word_count_analysis.

@Test(dataProvider = "provider", groups=Array("word_count_analysis"))
 def testTheStringLength(n1:String, n2:java.lang.Integer) {
 assertEquals(n1.length, n2)
}

Running the test again in sbt, this time with the -n switch for test only to include tests
with word_count_analysis will run the same results.

> ~test-only com.oreilly.testingscala.ArtistTestNGSuite -- -n word_count_analy-
sis
[TestNG] Running:
 Command line suite

50 | Chapter 3: ScalaTest

\===
Command line suite
Total tests run: 2, Failures: 0, Skips: 0
\===

[info] ArtistTestNGSuite:
[info] ArtistTestNGSuite:
[info] - testTheStringLength(Heart,5)
[info] - testTheStringLength(Jimmy Buffet,12)
[info] Passed: : Total 2, Failed 0, Errors 0, Passed 2, Skipped 0
[success] Total time: 1 s, completed Dec 27, 2011 3:07:50 PM

Fixtures
Each test can potentially have the same subject or subjects under test. Each test also has
the potential of using the same object dependencies or data used in each test. It makes
no sense to constantly set up each of those subjects and their dependencies. A fixture is
the ability to create these subjects and their dependenies once and have them be reused
in each test. Fixtures can allow either the same instance or different dependencies based
on the needs of the test, and can also allow sharing of testing structures to ensure that
certain rules pass regardless of the object being used. The Scala language itself has
methods to do some of the “fixturing” for the developer, while ScalaTest contains some
solutions of its own. Each Spec also has its way of producing these fixtures. JUnit and
TestNG integration, which is covered in later sections, also contains its own fixture
structures.

Anonymous Objects
First fixture strategy doesn’t require anything from ScalaTest, since the solution is purely
a Scala solution. It uses an anonymous object, which is just a fancy term for an object
that can be created without a name. The anonymous object, once created, can be reused
in every test, and it will generate a brand-new dependency object upon request.

package com.oreilly.testingscala

import org.scalatest.matchers.ShouldMatchers
import org.scalatest.FunSpec

class AlbumFixtureSpec extends FunSpec with ShouldMatchers {

 def fixture = new {
 val letterFromHome = new Album("Letter from Home", 1989,
 new Band("Pat Metheny Group"))
 }

 describe("The Letter From Home Album by Pat Metheny") {
 it("should get the year 1989 from the album") {

Fixtures | 51

 val album = fixture.letterFromHome
 album.year should be (1989)
 }
 }
}

The above specification contains a fixture method that creates an anonymous object
in Scala with the variable letterFromHome. Every time the method fixture is called, a
new object is always created. This creates a unique fixture for each individual test. Within
the test block, the call fixture.letterFromHome will provide a unique Album. If the
Album in this case were mutable, any other tests within the Spec would not get the
mutated object that was changed in another test.

Just to drive the point home even futher, instead of using an immutable object like
Album, the following example will use a mutable collection: AlbumMutableFixtureS
pec will use a ListBuffer, which is a mutable list of objects—in this case, a list of albums.

package com.oreilly.testingscala

import org.scalatest.FunSpec
import org.scalatest.matchers.ShouldMatchers

class AlbumMutableFixtureSpec extends FunSpec with ShouldMatchers {
 def fixture = new {
 import scala.collection.mutable._
 val beachBoys = new Band("Beach Boys")
 val beachBoysDiscography = new ListBuffer[Album]()
 beachBoysDiscography += (new Album("Surfin' Safari", 1962, beachBoys))
 }

 describe("Given a single fixture each beach boy discography initially
 contains a single album") {
 it("then after 1 album is added, the discography size should have 2") {
 val discographyDeBeachBoys = fixture.beachBoysDiscography
 discographyDeBeachBoys += (new Album("Surfin' Safari", 1962,
 fixture.beachBoys))
 discographyDeBeachBoys.size should be(2)
 }

 it("then after 2 albums are added, the discography size should return 3") {
 val discographyDeBeachBoys = fixture.beachBoysDiscography
 discographyDeBeachBoys += (new Album("Surfin' Safari", 1962,
 fixture.beachBoys))
 discographyDeBeachBoys += (new Album("All Summer Long", 1964,
 fixture.beachBoys))
 discographyDeBeachBoys.size should be(3)
 }
 }
}

52 | Chapter 3: ScalaTest

Both tests in the above example will pass. The fixture is a factory that generates a very
basic Beach Boys discography and each time fixture.beachBoysDiscography is called
a new instance is passed. If instead only an instance of the discography, rather than a
fixture, were used, then the discography would be shared and the instance used in one
test would be the same used in another test. The results would vary and be inconsistent.

Fixture Traits
An alternate strategy with ScalaTest is to create a custom Fixture trait in order to ensure
that each test gets a unique subject to test. Every trait that is mixed into an object retains
it’s own methods and is not shared. For a little catching up with Scala, a trait is much
like an interface in Java, except that it is concrete and its member variables will be mixed
into the class that extends the the trait. The following example is similar to the above
test except that it employs a trait instead of an anonymous object.

package com.oreilly.testingscala

import org.scalatest.matchers.ShouldMatchers
import org.scalatest.FunSpec

class AlbumFixtureTraitSpec extends FunSpec with ShouldMatchers {

 trait AlbumFixture {
 val letterFromHome = new Album("Letter from Home", 1989,
 new Band("Pat Metheny Group"))
 }

 describe("The Letter From Home Album by Pat Metheny") {
 it("should get the year 1989 from the album") {
 new AlbumFixture {
 letterFromHome.year should be(1989)
 }
 }
 }
}

Using a trait for the fixture encapsulates all the fixtures required per test. In order to
make use of the fixture, within each test, an anonymous instantiation of the trait is
required. Above, new AlbumFixture is called to anonymously create an object that ex‐
tends the AlbumFixture trait. Since the trait is mixed in, anything that extends the trait
will have access to its variables, methods, and functions. Therefore, no special magic is
required: letterFromHome is obtainable and ready to make assertions about its state.

Fixtures | 53

OneInstancePerTest
Outside the strategies that come with the Scala language, ScalaTest has its strategy to
guarantee that each test will have its very own instance. The next example uses a OneIn
stancePerTest trait to provide one instance per test.

package com.oreilly.testingscala

import org.scalatest.matchers.ShouldMatchers
import collection.mutable.ListBuffer
import org.scalatest.{FreeSpec, OneInstancePerTest}

class AlbumListOneInstancePerTestFreeSpec extends FreeSpec with ShouldMatchers
 with OneInstancePerTest {
 val graceJonesDiscography = new ListBuffer[Album]()
 graceJonesDiscography += (new Album("Portfolio", 1977, new Artist("Grace",
 "Jones")))

 "Given an initial Grace Jones Discography" - {
 "when an additional two albums are added, then the discography size should
 be 3" in {
 graceJonesDiscography += (new Album("Fame", 1978, new Artist("Grace",
 "Jones")))
 graceJonesDiscography += (new Album("Muse", 1979, new Artist("Grace",
 "Jones")))
 graceJonesDiscography.size should be(3)
 }

 "when one additional album is added, then the discography size
 should be 2" in {
 graceJonesDiscography += (new Album("Warm Leatherette", 1980,
 new Artist("Grace", "Jones")))
 graceJonesDiscography.size should be(2)
 }
 }

 "Given an initial Grace Jones Discography " - {
 "when one additional album from 1980 is added, then the discography size
should be 2" in {
 graceJonesDiscography += (new Album("Nightclubbing", 1981, new Ar-
tist("Grace", "Jones")))
 graceJonesDiscography.size should be(2)
 }
 }
}

The above example uses a subject that is a mutable ListBuffer of Album. Each grace
Jones discography is generated per test. Since this test does indeed function and passes,
the assertions prove that each test is getting its own discography. The special secret in

54 | Chapter 3: ScalaTest

www.allitebooks.com

http://www.allitebooks.org

this test is the OneInstancePerTest which will create a test suite per test. Therefore each
test will have its own subjects and dependencies. The example uses a FreeSpec test. Each
Spec in ScalaTest is different, and what is defined as a test in each spec is different. For
the last example, a test is considered to be what is contained in the in clause of a test.

Before and After
To have the best control of what gets initialized as well as what gets torn down with a
test, the trait BeforeAndAfter is the elixir to provide such functionality. In the following
example, the BeforeAndAfter trait is included, this time with a WordSpec to initialize
the Human League’s discography with one album. During the test, another album is
added, and an assertion is made on the size of the mutable discography. After the test,
the mutable discography is cleared.

package com.oreilly.testingscala

import collection.mutable.ListBuffer
import org.scalatest.{BeforeAndAfter, WordSpec}
import org.scalatest.matchers.ShouldMatchers

class AlbumBeforeAndAfterFixtureSpec extends WordSpec with ShouldMatchers
 with BeforeAndAfter {
 val humanLeagueDiscography = new ListBuffer[Album]()

 before {
 info("Starting to populate the discography")
 humanLeagueDiscography += (new Album("Dare", 1981,
 new Band("Human League")))
 }

 "A mutable ListBuffer of albums" should {
 "have a size of 3 when two more albums are added to the Human League
 Discography" in {
 humanLeagueDiscography += (new Album("Hysteria", 1984,
 new Band("Human League")))
 humanLeagueDiscography += (new Album("Crash", 1986,
 new Band("Human League")))
 humanLeagueDiscography should have size (3)
 }

 "have a size of 2 when one more album is added to the Human League
 Discography" in {
 humanLeagueDiscography += (new Album("Romantic", 1990,
 new Band("Human League")))
 humanLeagueDiscography should have size (2)
 }
 }

 after {

Fixtures | 55

 info("Clearing the discography")
 humanLeagueDiscography.clear()
 }
}

Some additional notes regarding the above example—first, the before and after blocks
are members of the BeforeAndAfter trait. The trait also guarantees that the member
variables of the Spec, in this case a WordSpec, are unique per each test. In a WordSpec
the test is also defined by the in block. When running the example, notice the number
of times a discography is initialized and also torn down. There are two because, like the
OneInstancePerTest, a separate suite is created and used per test; therefore, there will
always be more than one before and after invocation.

2. Waiting for source changes... (press enter to interrupt)
[info] Compiling 1 Scala source to /home/danno/testing_scala_book.git
 /testingscala/target/scala-2.9.2/test-classes...
[info] AlbumBeforeAndAfterFixtureSpec:
[info] A mutable ListBuffer of albums
[info] + Starting to populate the discography
[info] - should have a size of 3 when two more albums are added to
 the Human Discography
[info] + Clearing the discography
[info] + Starting to populate the discography
[info] - should have a size of 2 when one more album is added to
 the Human Discography
[info] + Clearing the discography
[info] Passed: : Total 2, Failed 0, Errors 0, Passed 2, Skipped 0

ScalaTest is an excellent testing framework. A study of the internals of the framework
is also a great way to understand Scala, and to understand the language itself. ScalaTest’s
matching language is intuitive, and the different specification allows the test-driven
developer to choose his own testing style. ScalaTest’s integration with JUnit and TestNG
is also valuable for the developer who wishes to bring tests from Java into Scala, making
it a great entry point from Java to Scala. There is more to learn about ScalaTest and that
is the integration with ScalaCheck as we will see in the last chapter of the book.

56 | Chapter 3: ScalaTest

CHAPTER 4

Specs2

Specs2 is a testing framework with a different focus and perspective that’s different from
ScalaTest’s. Much like ScalaTest’s, Specs2 works with SBT, but it has some unique dif‐
ferences that a developer may choose based on the functionality needed. Specs2 has a
different set of matchers, a different way of structuring tests, as well as DataTable spec‐
ifications, AutoExamples, and Fitnesse style specifications used for collaboration pur‐
poses with the stakeholders of your project. Specs2 tests are also unique in that they are
concurrently executed in each thread.

Setting Up Specs2 in SBT
Since the book is focused on testing frameworks used with SBT, the following setup in
build.sbt will bring in some dependencies and resolvers that are required for Specs2 to
run.

name := "Testing Scala"

version := "1.0"

scalaVersion := "2.9.2"

resolvers ++= Seq(
 "snapshots" at "http://scala-tools.org/repo-snapshots",
 "releases" at "http://scala-tools.org/repo-releases")

resolvers ++= Seq(
 "sonatype-snapshots" at "http://oss.sonatype.org/content
 /repositories/snapshots",
 "sonatype-releases" at "http://oss.sonatype.org/content
 /repositories/releases")

libraryDependencies ++= Seq(
 "org.scalatest" % "scalatest_2.9.2" % "1.8" % "test" withSources()

57

http://etorreborre.github.com/specs2/

 withJavadoc(),
 "joda-time" % "joda-time" % "1.6.2" withSources() withJavadoc(),
 "junit" % "junit" % "4.10" withSources() withJavadoc(),
 "org.testng" % "testng" % "6.1.1" % "test" withSources() withJavadoc(),
 "org.specs2" %% "specs2" % "1.12.3" withSources() withJavadoc(),

The build.sbt file must be edited to include a new element: a resolvers setting. resolv
ers is a list or Seq of Maven repositories for SBT to look for any required dependencies.
The ++= operator is an SBT-0 overloaded operator that tells SBT to add the resolvers
that follow the list that comes with SBT out of the box. The Specs2 library is housed in
the oss sonatype repository, therefore the repository URLs must be declared so that
sbt will know where to look. For Specs2, the oss.sonatype.org snapshot and release
repository are required for the build so those URLs are added.

The first few elements in the libraryDependencies setting have already been described
and used in the previous chapters. The last dependency is needed to use Specs2. The
specs2 dependency is the core library and as mentioned in the first chapter, withSour
ces() and withJavadoc() will also download jar files containing the source code and
the java/scaladoc respectively in the ivy local repository.

After making these amendments to build.sbt, run sbt and enter reload in the inter‐
active shell, or run sbt reload at the shell command prompt.

Unit Specification
The first flavor of test in Specs2 is the unit specification. It has a similar intent to Scala‐
Test, but is distinguished by its structure and design.

package com.oreilly.testingscala

import org.specs2.mutable._
import org.joda.time.Period

class JukeboxUnitSpec extends Specification {
 "A Jukebox" should {
 """have a play method that returns a copy of the jukebox that selects
 the first song on the first album as the current track""" in {
 val groupTherapy = new Album("Group Therapy", 2011,
 Some(List(new Track("Filmic", "3:49"),
 new Track("Alchemy", "5:17"),
 new Track("Sun & Moon", "5:25"),
 new Track("You Got to Go", "5:34"))), new Band("Above and Beyond"))
 val jukebox = new JukeBox(Some(List(groupTherapy)))
 val jukeboxNext = jukebox.play
 jukeboxNext.currentTrack.get.name must be_==("Filmic")
 jukeboxNext.currentTrack.get.period must be_==(new Period(0, 3, 49, 0))

58 | Chapter 4: Specs2

 //Must be 3 minutes and 49 seconds
 }
 }
}

The unit specification in Spec2 starts with a string that describes the class undergoing
the test. The description ends with a should method, and starts a block that should be
familiar ground. Within the should block are one or more String test descriptions. The
should block then ends with an in block containing the actual test code. In the previous
example, “A Jukebox” specifies what is to be tested, and within the should block is one
test, which describes a play method and the behavior that is expected from the test.

Note that this unit specification imports import org.specs2.mutable._. This is a dif‐
ferent package from the acceptance specification covered later in this chapter.

The code within the in block contains a declaration of an album by the group Above
and Beyond. The code also instantiates a jukebox with one album, runs the method play
(which has not been implemented yet since we are TDDers). A jukebox is immutable,
so invoking the method can’t change the current state of the jukebox. Instead, it instan‐
tiates a new object and returns it with a different state. That new jukebox is assigned to
the variable jukeboxNext. The last two lines of the test are the expectations. The test
asserts that the current track name after play has been invoked is "Filmic" and that
the Period of the track is 3 minutes and 49 seconds.

When comparing and contrasting Specs2 with ScalaTest, it should strike you that the
matchers are different. In JukeboxUnitSpec, the test for equality uses must be_== in‐
stead of ScalaTest’s must be (...). Each testing framework has its own set of matchers
and its own strengths. In Specs2, each block of testing expectations returns a Result
object.

Another interesting point is that all Specs2 tests are asynchronous and each runs in its
thread using a Promise. Promises are processes that run on separate threads asynchro‐
nously using Actors and send objects, in this case an ExecutedResult to one another.
Every Specs2 test sends each test as a message to an actor, and the result of the test is
sent back as a ExecutedResult message.

In the previous test, the two expectations will generate a Result type of success. If any
of the test expectations were to fail, a FailureException would be thrown, which en‐
capsulates a Failure object. Contrast this with ScalaTest, which throws a Test
FailedException if a test has failed. Specs2 offers a few more states to return for a test,
including anError to indicate that some unknown exception has occured, skipped if
the tester wishes for the test to be skipped at this time, and pending if the test is still
under construction. The decision whether a test is skipped or pending follows the same
logic as it does in ScalaTest.

The resulting production code is driven by the test.

Unit Specification | 59

package com.oreilly.testingscala

class JukeBox private (val albums:Option[List[Album]],
 val currentTrack:Option[Track]) {
 def this(albums:Option[List[Album]]) = this(albums, None)
 def readyToPlay = albums.isDefined
 def play = new JukeBox(albums, Some(albums.get(0).tracks.get(0)))
}

Specs2 offers two major constructs for authoring tests: at this time we are only covering
unit specification. Specs2 offers varying ways to organize your tests. But first, a quick
introduction of Specs2 matchers is in order to get a better feel for the framework.

Matchers
Specs2 offers an abundance of matchers, sometimes offering aliases for the same match‐
ers just to offer the test developer a choice.

Simple Matchers
The following example tests for equality using Specs2 Matchers, showing how it differs
from ScalaTest. The example uses Fleetwood Mac’s Rumours album and merely tests the
title. The second half of the example asserts that the title of the Rumours album has
nothing to do with Aerosmith’s Sweet Emotion.

val rumours= new Album("Rumours", 1977,
Some(List(new Track("Second Hand News", "2:43"),
 new Track("Dreams", "4:14"),
 new Track("Never Going Back Again", "2:02"),
 new Track("Don't Stop", "3:11"))), new Band("Fleetwood Mac"))

rumours.title must be_==("Rumours")
rumours.title must beEqualTo("Rumours")
rumours.title must_== ("Rumours")
rumours.title mustEqual "Rumours"
rumours.title should_== "Rumours"
rumours.title === "Rumours"
rumours.title must be equalTo ("Rumours")

rumours.title must not be equalTo("Sweet Emotion")
rumours.title must_!= "Sweet Emotion"
rumours.title mustNotEqual "Sweet Emotion"
rumours.title must be_!=("Sweet Emotion")
rumours.title !== "Sweet Emotion"

String Matchers
Specs2 also offers an extensive list of matchers meant specifically for strings, including
some powerful regular expresssion matchers.

60 | Chapter 4: Specs2

val boston = new Album("Boston", 1976,
 Some(List(new Track("More Than a Feeling", "4:44"),
 new Track("Peace of Mind", "5:02"),
 new Track("Foreplay/Long Time", "7:47"),
 new Track("Rock and Roll Band", "2:59"))), new Band("Boston"))

boston.title must beEqualTo("BoSTon").ignoreCase
boston.title must beEqualTo(" Boston").ignoreSpace
boston.title must beEqualTo(" BoStOn ").ignoreSpace.ignoreCase
boston.title must contain ("os")
boston.title must startWith ("Bos")
boston.title must endWith ("ton")
boston.title must not startWith ("Char")
boston.title must have size(6)
boston.title must beMatching ("B\\w{4}n")
boston.title must beMatching ("""B\w{4}n""")
boston.title must =~("""B\w{4}n""")
boston.title must find("""(os.)""").withGroups("ost")

Most lines are self-explanatory. String can be matched with a must beMatching(...)
method. The examples given use both the regular strings and raw strings, so there is no
need to escape the backslash. beMatching can be replaced with =~. Finally, Specs2 string
matching can find a substring with in a string and assert that the regular expression
groups found are equal to the expected results. The regular expression B\w{4}n refers
to a B followed by any four characters found in a word, and finishing with n.

Relational Operator Matchers
The following example reproduces the ScalaTest answer-of-life example from Relatio
nalOperatorMatchers in ScalaTest to illustrate its relational operators. These operators
can use either a DSL-like syntax or symbolic operators to set expectations.

val answerToLife = 42
answerToLife should be_<(50)
answerToLife should not be_>(50)
answerToLife must beLessThan(50)
answerToLife should be_>(3)
answerToLife must beGreaterThan(3)
answerToLife should be_<=(100)
answerToLife must beLessThanOrEqualTo(100)
answerToLife should be_>=(0)
answerToLife must beGreaterThanOrEqualTo(0)
answerToLife === (42)

Floating-Point Matchers
Specs2 also offers inexact measurements of floating-point calculations much like Scala‐
Test, but with a different DSL structure.

Matchers | 61

(4.0 + 1.2) must be_==(5.2)
(0.9 - 0.8) must beCloseTo (0.1, .01)
(0.4 + 0.1) must not beCloseTo (40.00, .30)
(0.4 + 0.1) must not be closeTo (40.00, .30)

Reference Matchers
Garth Brooks time again—this time analyzing reference matchers in Specs2.

val garthBrooks = new Artist("Garth", "Brooks")
val chrisGaines = garthBrooks

garthBrooks must beTheSameAs(chrisGaines)

val debbieHarry = new Artist("Debbie", "Harry")
garthBrooks must not beTheSameAs (debbieHarry)

Iterable Matchers
These use the same iterator tests from ScalaTest, with a few interesting new versions.

(Nil must be).empty
List(1, 2, 3) must not be empty
List(1, 2, 3) must contain(3)
List(1, 2, 3) must not contain (5)
List(4, 5, 6) must not contain(7, 8, 9)
List(1, 2, 3, 4, 5, 6) must contain(3, 4, 5).inOrder
List(4, 5, 6) must contain(4, 5, 6).only.inOrder
List(1, 2) must have size (2)
List(1, 2) must have length (2)

Seq and Traversable Matchers
Specs2 contains a some really neat tricks for asserting conditions within any Seq or
Traversable.

List("Hello", "World") must containMatch("ll") // matches with .*ll.*
List("Hello", "World") must containMatch("Hello") // matches with .*ll.*
List("Hello", "World") must containPattern(".*llo") // matches with .*llo
List("Hello", "World") must containPattern("\\w{5}")
List("Hello", "World") must containMatch("ll").onlyOnce
List("Hello", "World") must have(_.size >= 5)
List("Hello", "World") must haveTheSameElementsAs(List("World", "Hello"))

The first and second lines determine whether any of the elements contain the string.
The third and fourth lines determine whether any of the line items contain a particular
pattern (regular expression). The fifth line calls a modifier method onlyOne, which
asserts that ll is in a string of lists somewhere and that it occurs in that particular list

62 | Chapter 4: Specs2

only one time. The sixth matcher accepts a Boolean function and asserts that every
element in the Traversable abides by it. In this case, each element must have a size
greater than 5. The last line item matches the Seq on the left side with the Seq on the
right side.

Map Matchers
Using the map of singers to bands shown in MapMatchers of ScalaTest, here are the
analogous matchers for Specs2.

val map = Map("Jimmy Page" -> "Led Zeppelin", "Sting" -> "The Police",
 "Aimee Mann" -> "Til\' Tuesday")
map must haveKey("Sting")
map must haveValue("Led Zeppelin")
map must not haveKey ("Brian May")
map must havePair("Aimee Mann" -> "Til\' Tuesday")

All these methods are fairly straightforward. All matchers can determine whether the
map has a particular key, a particular value, or pair. And each matcher can check the
opposite expectations with a not modifier.

XML Matchers
Specs2 has some special sugar to determine whether two XML Elem elements are equal
without regard to white space. For those still unfamiliar with Scala, Scala has built-in
support for XML. Each XML element, is of type Elem; therefore, Specs2 can compare
these objects and their spacing either strictly or leniently. Consider the sample ColdPlay
album list that follows, where the <albums> parent tag nest five separate albums.

val coldPlayAlbums = <albums>
 <album name="Parachutes"/>
 <album name="A Rush of Blood to the Head"/>
 <album name="X&Y"/>
 <album name="Viva la Vida or Death and All His Friends"/>
 <album name="Mylo Xyloto"/>
 </albums>

We might naively try to match it as follows, but the match will fail.

coldPlayAlbums must beEqualTo(<albums>
 <album name="Parachutes"/>
 <album name="A Rush of Blood to the Head"/>
 <album name="X&Y"/>
 <album name="Viva la Vida or Death and All His Friends"/>
 <album name="Mylo Xyloto"/>
 </albums>)

Matchers | 63

The stack trace of the failed test is too hideous to paste in the book, but it shows that
the match does not work even though both XML elements are equal, because beEqual
To is tripped up by the different spacing. To test for XML equality, replace beEqualTo
with beEqualToIgnoringSpace, or change be_== to be_==\.

coldPlayAlbums must beEqualToIgnoringSpace(<albums>
 <album name="Parachutes"/>
 <album name="A Rush of Blood to the Head"/>
 <album name="X&Y"/>
 <album name="Viva la Vida or Death and All His Friends"/>
 <album name="Mylo Xyloto"/>
 </albums>)

Partial Function Matchers
Partial functions determine whether a predicate applies to their input and, if so, run the
code you specify. The following example uses PartialFunctions to determine whether
a given record is a gold album, a platinum album, or, as a joke, an alternative album.

val goldPartialFunction: PartialFunction[Int, String] = new PartialFunc-
tion[Int, String] {
 //States that this partial function will take on the task
 def isDefinedAt(x: Int) = x >= 500000

 //What we do if this does partial function matches
 def apply(v1: Int) = "Gold"
}

val platinumPartialFunction: PartialFunction[Int, String] = {case x: Int if
 (x >= 1000000) => "Platinum"}
val junkPartialFunction: PartialFunction[Int, String] = {case x: Int if
 (x < 500000) => "Alternative"}

val riaaCertification = goldPartialFunction
 orElse platinumPartialFunction orElse junkPartialFunction
riaaCertification must beDefinedAt (100)
riaaCertification must beDefinedBy (100 -> "Alternative")

GoldPartialFunction determines whether the number given is greater than 500,000
and, if so, returns Gold. platinumPartialFunction and junkPartialFunction are also
partial functions, but are created through case statements. The variable riaaCertifi
cation combines the three partial functions into one. riaaCertification accepts an
Int input to represent the number of albums sold and outputs the resulting record status.

The line riaaCertification must beDefinedAt (100) asserts that the given value is
supported in the riaaCertification partial function chain. The last line asserts that
the given value to a partial function will indeed return the ideal result. This example
asserts that, given album sales of 100, the result will be labeled as Alternative.

64 | Chapter 4: Specs2

Other Matchers
A few more matchers come with the Specs2 matchers, and it’s amazing that both Specs2
and ScalaTest push the envelope of matchers.

On a side note, Specs2 is very flexible when it comes to matchers, and you can make
custom matchers if desired. In the following snippet of code, two matchers are created
and can be used with in Specs2. beEven can be in an expectation that states 4 must
beEven. "Flash" must beCapitalizedAs ("FLASH") The ^^ in the following code
represents a function that returns what the expected value should be if an exception is
returned. What is interesting about the last matcher is that it is built upon another
Matcher, capitalized.

def beEven: Matcher[Int] = (i: Int) => (i % 2 == 0, i+" is even", i+" is odd")

def beCapitalizedAs(capitalized: String) = be_==(capitalized) ^^
 ((_:String).toUpperCase)

Acceptance Specification
An acceptance specification separates what the test is expected to do from what actually
happens during the test. An oversimplified example of using a Specs2 acceptance spec‐
ification follows.

package com.oreilly.testingscala

import org.specs2.Specification

class SimpleAcceptanceSpec extends Specification { def is =
 "This is a simple specification" ^
 "and this should run f1" ! f1 ^
 "and this example should run f2" ! f2

 def f1 = success
 def f2 = pending
}

A very important item to note is the Specification that is imported into the package.
This is org.specs2.Specification and not import org.specs2.mutable._, which is
used in the unit specification that is covered in the first section of this chapter.

In SimpleAcceptanceSpec, the method that bootstraps the entire test for the class is the
method is. The method returns a Fragments object containing all the examples. The
SimpleAcceptanceSpec contains two examples. One will run the f1 method, as dictated
after the intro string, and the next should run f2. The ! notation is used to divide the
test and does so in its own separate thread.

Acceptance Specification | 65

Carets divide the specifications. Any string that does not call a method using the !
operator is considered a header for the following tests. For SimpleAcceptanceSpec,
This is a simple specification is a string followed by a ^ but not a !, so it will not
be considered a test and will merely echo the results of sbt or the Specs2 runner. On the
other lines, the carets divide the specifications. The last line requires no final caret since
it needs no division from a following specification.

The result from each of the actors are returned and the results are reported in SBT.

[info] Compiling 1 Scala source to /home/danno/testing_scala_book.git
 /testingscala/target/scala-2.9.2/test-classes...
[info] This is a simple specification
[info] + and this should run f1
[info] * and this example should run f2 PENDING
[info]
[info] Total for specification SimpleAcceptanceSpec
[info] Finished in 87 ms
[info] 2 examples, 0 failure, 0 error, 1 pending (+1)
[info] Passed: : Total 2, Failed 0, Errors 0, Passed 1, Skipped 1
[success] Total time: 5 s, completed Dec 28, 2011 9:22:26 PM

If you do not wish to run each method in its own thread, it can be annotated with an
argument to make it sequential. To do this, merely add args(sequential=true) to the
test as follows:

/src/test/scala/com/oreilly/testingscala/SimpleSequentialAcceptanceSpec.scala.

class SimpleSequentialAcceptanceSpec extends Specification { def is =
 args(sequential = true) ^
 "This is a simple specification" ^
 "and this should run f1" ! f1 ^
 "and this example should run f2" ! f2

 def f1 = success
 def f2 = pending
}

In the specification results above, the + indicates that and this should run f1 ran
successfully. The last test result shown next to PENDING and bears a * symbol to state
that the test is pending. Notice that This is a simple specification has no preceding
symbol, because the line never invoked an actor with !. It is just considered informa‐
tional, much like the way informers are used in ScalaTest.

The previous example was boring, so it’s time to get back to the music. We’ll create a
simple Artist test that adds a middle name to an artist and expects a fullName method
to get the full name of the artist. The overall goal is to make sure that an Artist object
can optionally include a middle name.

package com.oreilly.testingscala

66 | Chapter 4: Specs2

import org.specs2.Specification

class ArtistAcceptanceSpec extends Specification { def is =
 "An artist should have a middle name at construction" ^
 """An artist should be able to be constructed with a middle name and
 get it back calling 'middleName'""" ! makeAnArtistWithMiddleName ^
 """An artist should be able to have a full name made of the first
 and last name
 given a first and last name at construction time""" !
 testFullNameWithFirstAndLast ^
 """An artist should be able to have a full name made of the first,
 middle and last name
 given a first, middle, and last name at construction time""" !
 testFullNameWithFirstMiddleAndLast

 def makeAnArtistWithMiddleName = pending
 def testFullNameWithFirstAndLast = pending
 def testFullNameWithFirstMiddleAndLast = pending
}

This is a beefier example of the test created initially in this section. Three test specifi‐
cations support this topic. Each calls one of the three methods implemented in the
following code and tests the results. All three testing results at the moment will return
a Result of pending, because we’re still thinking over how to implement the production
code.

[info] Compiling 1 Scala source to /home/danno/testing_scala_book.git/testings-
cala
 /target/scala-2.9.2/test-classes...
[info] An artist should have a middle name at construction
[info] * An artist should be able to be constructed with a middle name and
[info] get it back calling 'middleName' PENDING
[info] * An artist should be able to have a full name made of the first and
 last name
[info] given a first and last name at construction time PENDING
[info] * An artist should be able to have a full name made of the first, middle
and last name
[info] given a first, middle, and last name at construction time
PENDING
[info]
[info] Total for specification ArtistAcceptanceSpec
[info] Finished in 124 ms
[info] 3 examples, 0 failure, 0 error, 3 pendings
[info] Passed: : Total 3, Failed 0, Errors 0, Passed 0, Skipped 3
[success] Total time: 6 s, completed Dec 28, 2011 10:04:01 PM

Next it’s time to fill in the pending specifications, and give them some concrete tests.

package com.oreilly.testingscala

import org.specs2.Specification

Acceptance Specification | 67

class ArtistAcceptanceSpec extends Specification { def is =
 "An artist should have a middle name at construction" ^
 """An artist should be able to be constructed with a Option[String]
 middle name and
 get it back calling 'middleName'""" ! makeAnArtistWithMiddleName ^
 """An artist should be able to have a full name made of the first
 and last name
 given a first and last name at construction time"""
 ! testFullNameWithFirstAndLast ^
 """An artist should be able to have a full name made of the first,
 middle and last name
 given a first, middle, and last name at construction time"""
 ! testFullNameWithFirstMiddleAndLast

 def makeAnArtistWithMiddleName = {
 val vaughn = new Artist("Stevie", "Ray", "Vaughn")
 vaughn.middleName must be_==(Some("Ray"))
 }

 def testFullNameWithFirstAndLast = {
 val luther = new Artist("Luther", "Vandross")
 luther.fullName must be_==("Luther Vandross")
 }

 def testFullNameWithFirstMiddleAndLast = {
 val bonJovi = new Artist("Jon", "Bon", "Jovi")
 bonJovi.fullName must be_==("Jon Bon Jovi")
 }
}

The example fills in some expectations regarding the middle names for an Artist using
the artists Stevie Ray Vaughn, guitarist extraordinare; Luther Vandross, voice extraor‐
dinaire; and Jon Bon Jovi, steel horse rider extraordinaire.

Adding compile-time errors and run-time exceptions to meet the specification require‐
ments, including breaking some of the previous tests, makes the production code more
robust with some extra functionality.

package com.oreilly.testingscala

case class Artist(firstName: String, middleName: Option[String],
 lastName: String, albums: List[Album]) extends Act {
 def this(firstName: String, lastName: String) = this (firstName, None,
 lastName, Nil)

 def this(firstName: String, middleName: String, lastName: String) =
 this (firstName, Some(middleName), lastName, Nil)

 def getAlbums = albums

 def addAlbum(album: Album) = new Artist(firstName, middleName, lastName,

68 | Chapter 4: Specs2

 album :: albums)

 def fullName = middleName match {
 case Some(x) => firstName + " " + x + " " + lastName
 case _ => firstName + " " + lastName
 }
}

The changes in Artist include an extra parameter in the default constructor, and an
additional constructor to support some of the older tests that still need to create an artist
with first and last name only. The last method is a fullName method that uses pattern
matching to determine whether the artist has a middle name; if so, it returns the first,
middle, and last names divided by spaces; if not, it returns the first and last names. The
results in SBT or the Specs2 runner show the progress of TDD.

[info] Compiling 1 Scala source to /home/danno/testing_scala_book.git/testings-
cala/target/scala-2.9.2/test-classes...
[info] An artist should have a middle name at construction
[info] + An artist should be able to be constructed with a Option[String] mid-
dle name and
[info] get it back calling 'middleName'
[info] + An artist should be able to have a full name made of the first and
last name
[info] given a first and last name at construction time
[info] + An artist should be able to have a full name made of the first, middle
and last name
[info] given a first, middle, and last name at construction time
[info]
[info] Total for specification ArtistAcceptanceSpec
[info] Finished in 236 ms
[info] 3 examples, 0 failure, 0 error
[info] Passed: : Total 3, Failed 0, Errors 0, Passed 3, Skipped 0
[success] Total time: 5 s, completed Dec 28, 2011 10:45:29 PM

Specs2 offers formatting tags to prettify the end results of the tests. Some formatting is
implicit. Any text that directly follows another is indented under the preceding text.
Thus, in the previous example, An artist should have a middle name at construc
tion is followed by a ^ to delineate the end of the line. Since the next element following
the ^ is also a String, it is indented and labeled with a + mark.

Adjacent specification examples (examples defined by both the string description and
the call to the test) will have the same indentation level. Thus, in the ArtistAcceptan
ceSpec, the two specification examples will have the same indentation level.

"""An artist should be able to be constructed with a Option[String] middle name
and
 get it back calling 'middleName'""" ! makeAnArtistWithMiddle-
Name ^
"""An artist should be able to have a full name made of the first and last name
 given a first and last name at construction time""" ! testFullNameWithFirst-
AndLast

Acceptance Specification | 69

If either the next string after the specification or the specification example is not to be
indented, you can add a ^p tag after the previous caret. The ^p tag terminates the line
with a carriage return and decrements the indentation by 1 for the next specification
example or string. This is nearly analogous to the <p> tag in HTML/XHTML. In the
next example, a ̂ p is added to separate the test, since the next test will focus on creating
an alias, and it is a perfect place to add a paragraph delimiter.

package com.oreilly.testingscala

import org.specs2.Specification

class ArtistAcceptanceSpec extends Specification { def is =
 "An artist should have a middle name at construc-
tion" ^
 """An artist should be able to be constructed with a Option[String] mid-
dle name and
 get it back calling 'middleName'""" ! makeAnArtistWithMiddle-
Name ^
 """An artist should be able to have a full name made of the first and
last name
 given a first and last name at construction time""" ! testFullNameWith-
FirstAndLast ^
 """An artist should be able to have a full name made of the first, middle
and last name
 given a first, middle, and last name at construction time""" ! test-
FullNameWithFirstMiddleAndLast ^

 p^
 "An artist should have an
alias" ^
 """method called withAlias(String) that returns a copy of Artist with an
alias""" ! testAlias

 //Code removed for brevity

 def testAlias = {pending}
}

Here, ̂ p is used to visually separate one “paragraph” from another, displaying the testing
categories with a clear break. Separating testing categories using ^p is not optimal, as
we’ll see later, but for now fits the purpose. The end result in the output will also show
the separation.

48. Waiting for source changes... (press enter to interrupt)
[info] Compiling 1 Scala source to /home/danno/testing_scala_book.git/testings-
cala/target/scala-2.9.2/test-classes...
[info] An artist should have a middle name at construction
[info] + An artist should be able to be constructed with a Option[String] mid-
dle name and
[info] get it back calling 'middleName'
[info] + An artist should be able to have a full name made of the first and

70 | Chapter 4: Specs2

last name
[info] given a first and last name at construction time
[info] + An artist should be able to have a full name made of the first, middle
and last name
[info] given a first, middle, and last name at construction time
[info]
[info] An artist should have an alias
[info] * method called withAlias(String) that returns a copy of Artist with an
alias PENDING
[info]
[info] Total for specification ArtistAcceptanceSpec
[info] Finished in 266 ms
[info] 4 examples, 0 failure, 0 error, 1 pending (+1)
[info] Passed: : Total 4, Failed 0, Errors 0, Passed 3, Skipped 1
[success] Total time: 5 s, completed Dec 30, 2011 3:36:28 PM

Again, remember that ^p decrements the next indentation by 1. If the line is indented
5 levels and is followed by ^p, the next line will be at indentation level 4. To go back to
0, use the end^ tag instead.

class ArtistAcceptanceSpec extends Specification { def is =
 "An artist should have a middle name at construc-
tion" ^
 """An artist should be able to be constructed with a Option[String] mid-
dle name and
 get it back calling 'middleName'""" ! makeAnArtistWithMiddle-
Name ^
 """An artist should be able to have a full name made of the first and
last name
 given a first and last name at construction time""" ! testFullNameWith-
FirstAndLast ^
 """An artist should be able to have a full name made of the first, middle
and last name
 given a first, middle, and last name at construction time""" ! test-
FullNameWithFirstMiddleAndLast ^

 end^
 "An artist should have an
alias" ^
 """method called withAlias(String) that returns a copy of Artist with an
alias""" ! testAlias

 def makeAnArtistWithMiddleName = {...}

 def testFullNameWithFirstAndLast = {...}

 def testFullNameWithFirstMiddleAndLast = {...}

 def testAlias = {pending}

Acceptance Specification | 71

Although end^ will end the paragraph, it will not add another line. You can get both by
using both an end^ and a ^p, but a combination endp^ marker also creates the desired
effect.

You can get even more control over indention through the bt^ or t^ tags. For the sake
of example, if the first part of the ArtistAcceptanceSpec was written with a three ^t
tags after the end of the initial string, the end result would indent the next line three
times.

 "An artist should have a middle name at construc-
tion" ^ t ^ t ^ t ^
 """An artist should be able to be constructed with a Option[String] mid-
dle name and
 get it back calling 'middleName'""" ! makeAnArtistWithMiddle-
Name ^

 //code omitted for brevity

The t method that does the work of indenting can also accept an Int (a Scala Int) that
indents the next line by the number indicated. Rewriting the short example above with
the Int parameter produces:

 "An artist should have a middle name at construc-
tion" ^ t(3) ^
 """An artist should be able to be constructed with a Option[String] mid-
dle name and
 get it back calling 'middleName'""" ! makeAnArtistWithMiddle-
Name ^

 //code omitted for brevity

In contrast, ^bt^ backtabs. To manipulate tabs for the subsequent line, the same rules
apply, only in reverse.

We’ll add what we just covered and create an implementation for aliasTest in
ArtistAcceptanceSpec.

package com.oreilly.testingscala

import org.specs2.Specification

class ArtistAcceptanceSpec extends Specification { def is =
 "An artist should have a middle name at construc-
tion" ^ t(3) ^
 """An artist should be able to be constructed with a Option[String] mid-
dle name and
 get it back calling 'middleName'""" ! makeAnArtistWithMiddle-
Name ^

 p^
 """An artist should be able to have a full name made of the first and

72 | Chapter 4: Specs2

last name
 given a first and last name at construction time""" ! testFullNameWith-
FirstAndLast ^
 """An artist should be able to have a full name made of the first, middle
and last name
 given a first, middle, and last name at construction time""" ! test-
FullNameWithFirstMiddleAndLast ^

 endp^
 "An artist should have an
alias" ^
 """method called withAlias(String) that returns a copy of Artist with an
alias""" ! testAlias

 def makeAnArtistWithMiddleName = {
 val vaughn = new Artist("Stevie", "Ray", "Vaughn")
 vaughn.middleName must be_==(Some("Ray"))
 }

 def testFullNameWithFirstAndLast = {
 val luther = new Artist("Luther", "Vandross")
 luther.fullName must be_==("Luther Vandross")
 }

 def testFullNameWithFirstMiddleAndLast = {
 val bonJovi = new Artist("Jon", "Bon", "Jovi")
 bonJovi.fullName must be_==("Jon Bon Jovi")
 }

 def testAlias = {
 val theEdge = new Artist("David", "Howell", "Evans").withAlias("The
Edge")
 theEdge.alias must be_==(Some("The Edge"))
 }
}

The result of the test-driven development will in turn cause changes in the Artist
production code—notably, the new withAlias method and a change in the main con‐
structor, as well as the call to that constructor from the auxiliary constructors.

package com.oreilly.testingscala

case class Artist(firstName: String, middleName: Option[String], lastName:
String, albums: List[Album], alias:Option[String]) extends Act {
 def this(firstName: String, lastName: String) = this (firstName, None, last-
Name, Nil, None)

 def this(firstName: String, middleName: String, lastName: String) = this
(firstName, Some(middleName), lastName, Nil, None)

 def getAlbums = albums

Acceptance Specification | 73

 def addAlbum(album: Album) = new Artist(firstName, middleName, lastName, al-
bum :: albums, alias)

 def fullName = middleName match {
 case Some(x) => firstName + " " + x + " " + lastName
 case _ => firstName + " " + lastName
 }

 def withAlias(alias:String) = new Artist(firstName, middleName, lastName, al-
bums, Some(alias))

Chaining Tests
Each test in specs can be chained to hand off calls and functions to another. This should
be no surprise, since the acceptance specification is merely a collection of objects of the
Result type, or Strings and methods that return a Result type. There is nothing par‐
ticularly magical about acceptance specifications.

Given/When/Then
In ScalaTest, GivenWhenThen structures were in the form of an Informer, an object
whose only job is to output any extra information to the end report of the test suite. In
Specs2, GivenWhenThen takes on a totally different role. Within the AcceptanceSpec,
GivenWhenThen is a Result fragment object that holds states—one possible state being
Given, another When, and the final one Then—and it passes that state on through to the
test. GWTs are built by inserting GWT “steps” between the textual descriptions and that
those steps keep the state of the current execution and are eventually translated to regular
Text, Step, and Example fragments. Each object is in charge of taking in some data—
either from the previous state or from a String specification—and creating another
object, then passing that object on like a baton in a relay race.

GivenWhenThen in Specs2, as in ScalaTest, is used to mentally reinforce the definition of
the test into distinct ideas. The examples in this section will be done in parts, due to a
somewhat steep learning curve. The first example shows the basic parts of the test
without the supporting objects it requires.

package com.oreilly.testingscala

import org.specs2.Specification

class GivenWhenThenAcceptanceSpec extends Specification { def is = {
 "Demonstrating a Given When Then block for a Specs2 Specification".title ^
 "Given the first name ${David} and the last ${Bowie} create an Artist" ^
setUpBowie ^
 "When we add the artist to an album called ${Hunky Dory} with the year
${1971}" ^ setUpHunkyDory ^
 "And when an the album is added to a jukebox" ^ addTheAlbumToAJukebox ^

74 | Chapter 4: Specs2

 "Then the jukebox should have one album whose name is ${Hunky Dory}" ^ re-
sult

 object setUpBowie
 object setUpAlbum
 object addTheAlbumToAJukebox
 object result
}

Let’s take the example a little bit at a time. The class declaration and the is method have
been covered already in the previous sections. The first string is the title of the test, and
is marked as such by the title method.

The second statement is the Given statement. The words David and Bowie, which are
encased in ${}, will be used in the setUpBowie object to create an Artist that will passed
down the test.

The next statement, setUpHunkyDory, will take the words Hunky Dory and 1971, which
are also encased in ${} and use them to create an Album that will be passed down the
test. The following statement will add an album to a JukeBox. A jukebox instance will
be created and passed down to the last link of the specification. This link will do the
final expectations and return a proper Result.

The example ends by defining objects that will parse the contents of ${} and spit out
the appropriate objects for the other specification links to take and return the results
needed by the next test in sequence.

The next example extends the Given, When, and Then parent classes with appropriate
type parameters. This should show how the analogy “passing the baton in a relay race”
is appropriate.

//Code removed for brevity
object setUpBowie extends Given[Artist]
object setUpHunkyDory extends When[Artist, Album]
object addTheAlbumToAJukebox extends When[Album, JukeBox]
object result extends Then[JukeBox]
//Code removed for brevity

Now, the Given, When, and Then rules are in place with their type parameters. The type
parameters are the key to understanding how to use GivenWhenThen constructs. First,
setUpBowie is used as the Given object. The type parameter is the return parameter,
and states that it should return an object of type Artist. Since the Given object returns
Artist, there must be either a When object or a Then object that accepts an Artist as its
first type parameter, and setUpHunkyDory will answer that call.

Acceptance Specification | 75

setUpHunkyDory is a When object that has two type parameters (as all When objects must).
In this case, the first is the type created by the previous link Given object, Artist. The
second is the type returned by this object, in this case an Album. In short, setUpHunky
Dory will take in an Artist and return an Album.

Next in the chain is a When[Album, Jukebox] object that will take in an Album, the one
being returned by setUpHunkyDory, and return an instance of a JukeBox. The final link
in the chain is result, which is an object that will take the last object created in this
relay race, the Jukebox created by addTheAlbumToAJukebox.

For the beginner, it might be a good idea to start out with the objects to see how they
work and use what is learned to sculpt the specifications accordingly.

 object setUpBowie extends Given[Artist] {
 def extract(text: String) = {
 val tokens = extract2(text)
 new Artist(tokens._1, tokens._2)
 }
 }

In setUpHunkyDory, the object extends When with parameter types Artist and Album.
This indicates that the previous step must return an Artist and that the setUpHunky
Dory object must return an Album. The extract method in the object is slightly different
because it takes two parameters. The first is the Artist that was returned from the Given
case, and the second is the text of the specification. Here extract2 is used to parse out
the values into a tuple with the values HunkyDory and 1971. Since an Album is the return
type (again, because it’s listed as the second type parameter of When), the last line of the
extract method will return a new Album using the information parsed and the Ar
tist object that was passed down.

 object setUpHunkyDory extends When[Artist, Album] {
 def extract(p: Artist, text: String) = {
 val tokens = extract2(text)
 new Album(tokens._1, tokens._2.toInt, p)
 }
 }

For addTheAlbumToAJukebox the object also extends a When with the type parameters
Album and Jukebox. In this implementation, extracting the text isn’t required since the
specification string doesn’t contain any required data. The only requirement is the Album
that was returned by the previous object, setUpHunkyDory. With that album, a new
JukeBox is instantiated and the album is added and returned for the next object to use.

 object addTheAlbumToAJukebox extends When[Album, JukeBox] {
 def extract(p: Album, text: String) = new JukeBox(Some(List(p)))
 }

76 | Chapter 4: Specs2

The final link is the result object, which extends the Then abstract class. The type
parameter is the type that is required from the previous object, addTheAlbumToAJuke
box, which of course is an Album type. The extract method is the same as it was from
the When class. The first parameter is the object passed down, and the second text pa‐
rameter is the String from its accompanying specification string. The difference be‐
tween extending When and extending then is that the return type in the Then class has
to be a Result type since that is the last element of the chain. In the following example,
the Result returned is the expectation that the albums in the jukebox total to 1.

 object result extends Then[JukeBox] {
 def extract(t: JukeBox, text: String) = t.albums.get must have size (1)
 }

The GivenWhenThen specification takes a little work to understand, but once the test
developer gets a thorough understanding of how the return types pass results down the
chain, the structure becomes self-explanatory, useful, and at times reuseable.

The end result for the previous GivenWhenThen example should return the following:

[info] Given the first name David and the last Bowie create an Artist
[info] When we add the artist to an album called Hunky Dory with the year 1971
[info] And when an the album is added to a jukebox
[info] + Then the jukebox should have one album whose name is Hunky Dory
[info]
[info] Total for specification Demonstrating a Given When Then block for a
Specs2 Specification
[info] Finished in 26 ms
[info] 1 example, 0 failure, 0 error
[info] Passed: : Total 1, Failed 0, Errors 0, Passed 1, Skipped 0
[success] Total time: 2 s, completed Jan 3, 2012 2:54:47 PM

Data Tables
Data tables are ASCII tables that contain sample values and the end result. Once the
table is established, a function test case is attached to the end to verify that all the values
provided match the criteria. In the following example, we’ll show a test that makes sure
the date of an album’s release matches the age correctly.

package com.oreilly.testingscala

import org.specs2.Specification
import org.specs2.matcher.DataTables

class AlbumAgeDataTableSpecification extends Specification with DataTables {def
is =
 "Trying out a table of values for testing purposes to determine the age of
albums".title ^
 """The first column is the album name, the second is a band name,
 and third is a year, and the fourth is the age from the year 2070""" !

Data Tables | 77

ageTable

 def ageTable =
 "Album Name" | "Band Name" | "Year" | "Age" |
 "Under the Iron Sea" !! "Keane" ! 2006 ! 64 |
 "Rio" !! "Duran Duran" ! 1982 ! 88 |
 "Soul Revolution" !! "Bob Marley & the Wailers" ! 1971 ! 99 |> {
 (a:String, b:String, c:Int, d:Int) ⇒ new Album(a, c, new Band(b)).age-
From(2070) must_== d
 }
}

The class definition is an acceptance specification with the inclusion of a DataTables
trait. The DataTable trait contains case classes and methods that makes the data table
magic happen. The example just shown has delineators,the same overall setup as we’ve
seen in the past: a def declaration, a title, a string specification, and a call to
some Result object or method that returns a Result. What is different, of course, is the
data table.

After the def ageTable = method declaration, the first line contains header information
for the test, delineated by a | pipe character. Each subsequent row of data takes different
delineators, either a !! or a ! to delineate each column. The exception is the last column
of each row, because the end of the row is marked with another | pipe character. A data
table can go indefinitely until the a row is terminated with |>, at which point the table
is going to be executed and returned with a Result.

Each column is sent into the function in the form of a Tuple. Since there are four columns
in our table, it will require a Tuple4 parameter that receives each row of data. The
function receives the album name as a string, the band name as a string, the year as an
Int, and the expected Age as an Int. For each row of data, the function will create an
Album, assign the name and year, and create a Band object from the second column. Then
it calls a method called ageFrom, which does not yet exist, that takes the current year
and returns the age of the album as an Int. Finally, an expectation checks whether the
age returned equals the fourth column of the data table, Age.

The use of the current year in the method is intentional. It’s a good idea not to use the
current year in actual production code because the year constantly changes. That means
that any test is likely to fail over time. The next year will likely kill all your unit tests.
Having consistent unit tests is not the only reason why the current year, or any temporal
information, should not be calculated in actual production code. The other good reason
is that it makes the code less reusable. If, for instance, there is a requirement to calculate
future statistics on code, it seems a lot of work to redo the guts of a class or object and
extract the current date just to do some forecasting. It’s nice to leave such hard depen‐
dencies out and plug in what is needed when it is needed.

The results of the test after changing production code are as follows.

78 | Chapter 4: Specs2

[info] Compiling 1 Scala source to /home/danno/testing_scala_book.git/testings-
cala/target/scala-2.9.2/test-classes...
[info] + The first column is the album name, the second is a band name,
[info] and third is a year, and the fourth is the age from the year 2070
[info]
[info] Total for specification Trying out a table of values for testing purpos-
es to determine the age of albums
[info] Finished in 108 ms
[info] 1 example, 0 failure, 0 error
[info] Passed: : Total 1, Failed 0, Errors 0, Passed 1, Skipped 0
[success] Total time: 2 s, completed Jan 3, 2012 2:51:46 PM

The changes to the production code include the addition of ageFrom.

package com.oreilly.testingscala

class Album(val title: String, val year: Int, val tracks: Option[List[Track]],
val acts: Act*) {

 require(acts.size > 0)

 def this(title: String, year: Int, acts: Act*) = this (title, year, None,
acts: _*)

 def ageFrom(now: Int) = now - year
}

Tagging
Specs2 also has a tagging feature that allows the developer to categorize tests. Catego‐
rization of tests can be used in both in a unit specification and an acceptance specifi‐
cation. Tests can be filtered in SBT or in the specification itself in case you wish to create
one specification that would run other specifications. The example below is an accept‐
ance specification that uses tags to denote a category for the test. The first specification
in the test is categorized with the strings "timeLength" and "threeTracks". The second
test is categorized also with the String "timeLength" and with "zeroTracks". In order
to make these work, you must import the trait org.specs2.specification.Tags and
add that trait to the specification. In the example below, with Tags is added to the
specification.

import org.specs2.Specification
import org.specs2.specification.Tags
import org.joda.time.Period

class Specs2TagAcceptanceSpecification extends Specification with Tags {
 def is =
 "The total time of an album is based on the sum of the tracks".title ^
 "When an album is given three tracks" ! testThreeTracks ^ tag("time-
Length", "threeTracks") ^
 "When an album is given zero tracks" ! testZeroTracks ^ tag("timeLength",

Tagging | 79

"zeroTracks")

 def testThreeTracks = {
 val beyonceFirstAlbum = new Album("Dangerously in Love", 2003,
 Some(List(
 new Track("Crazy In Love", "3:56"),
 new Track("Naughty Girl", "3:29"),
 new Track("Baby Paul", "4:05")
)), new Artist("Beyonce", "Knowles"))
 beyonceFirstAlbum.period must be_== (new Period(0, 10, 90, 0))
 }

 def testZeroTracks = {
 val frankZappaAlbum = new Album("We're only in it for the Money", 1968,
None, new Band("The Mothers of Invention"))
 frankZappaAlbum.period must be_== (Period.ZERO)
 }
}

To run the test using tags in SBT use test-only or ~test-only with the name of the
test followed by -- include, with the name of the tags that you wish to run delimited
with a comma. For example, to run only zeroTracks tests from the
Specs2TagAcceptanceSpecification, the following command line would work:

> test-only com.oreilly.testingscala.Specs2TagAcceptanceSpecification -- in-
clude zeroTracks
[info] + When an album is given zero tracks
[info]
[info] Total for specification The total time of an album is based on the sum
of the tracks
[info] Finished in 145 ms
[info] 1 example (+1), 0 failure, 0 error
[info] Passed: : Total 1, Failed 0, Errors 0, Passed 1, Skipped 0
[success] Total time: 1 s, completed Jan 4, 2012 2:57:31 PM

Again it is worth noting that --include can accept any number of tag keywords, and
every test that contains the tags specified will run. In the next example, we show that
we are including the tags zeroTracks, completeAlbums, classical, and short-tests
to the list of tests that we wish to include.

> test-only com.oreilly.testingscala.Specs2TagAcceptanceSpecification -- in-
clude zeroTracks completeAlbums classical short-tests
[info] + When an album is given zero tracks
[info]
[info] Total for specification The total time of an album is based on the sum
of the tracks
[info] Finished in 94 ms
[info] 1 example, 0 failure, 0 error
[info] Passed: : Total 1, Failed 0, Errors 0, Passed 1, Skipped 0
[success] Total time: 1 s, completed Jan 4, 2012 3:04:24 PM

80 | Chapter 4: Specs2

Fixtures
Fixtures, the ability to call a start method and a close method for a test class mostly
standard Scala programming features. Depending on what kind of test you are using,
there are different ways to create fixtures. Specs2 tends to take the idealistic stance that
most of what you need to do can be achieved using Scala. Let’s take a first example of
using a mutable list that is shared by two tests in a Specification.

class Specs2WithoutFixtures extends Specification { def is =
 "Add an album to a shared list" ! test1 ^
 "Remove an album to a shared list" ! test2

 lazy val lst = scala.collection.mutable.Buffer(
 new Album("Fly By Night", 1974, new Band("Rush")),
 new Album("19", 2008, new Artist("Adele", "Laurie", "Adkins").withA-
lias("Adele")))

 def test1 = {
 lst.append(new Album("Prokofiev and Rachmaninoff: Cello Sonatas", 1991, new
Artist("Yo", "Yo", "Ma")))
 lst must have size(3)
 }

 def test2 = lst.drop(1) must have size(1)
}

In the above example, test1 uses the shared list mutable lst and appends one album
by Yo Yo Ma to that list. After test1 is run since according to our spec “Add an album
to a shared list” starts first. “Remove an album to a shared list” starts next. Each test, as
you can tell, was written with the assumption that either the lst provided would be
unique to the test and not shared. If this test is run, then failure will occur because the
lst is shared across test1 and test2, and test2 fails because we were assuming that
the lst originally had two items.

> test-only com.oreilly.testingscala.Specs2WithoutFixtures
[info] Compiling 1 Scala source to /home/danno/testing_scala_book.svn/testings-
cala/target/scala-2.9.2/test-classes...
[info] + Add an album to a shared list
[error] x Remove an album to a shared list
[error] 'Album[19], Album[Prokofiev and Rachmaninoff: Cello Sonatas]' doesn't
have size 1 but size 2 (Specs2CaseClassContext.scala:13)
[info]
[info] Total for specification Specs2WithoutFixtures
[info] Finished in 143 ms
[info] 2 examples, 1 failure, 0 error

This is because in this specification we have a shared mutable state. How do we go about
creating a unique list for each test? Perhaps the easiest and most functional way is to
make the lst an immutable data structure which is the default.

Fixtures | 81

class Specs2WithoutFixturesButImmutable extends Specification { def is =
 "Add an album to a shared list" ! test1 ^
 "Remove an album to a shared list" ! test2

 lazy val lst = List(
 new Album("Fly By Night", 1974, new Band("Rush")),
 new Album("19", 2008, new Artist("Adele", "Laurie", "Adkins").withA-
lias("Adele")))

 def test1 = {
 val result = lst :+ new Album("Prokofiev and Rachmaninoff: Cello Sonatas",
1991, new Artist("Yo", "Yo", "Ma"))
 result must have size(3)
 }

 def test2 = lst.drop(1) must have size(1)
}

Another score for immutability. So shared state is often the least of your worries with
immutability. Let’s say that although there may be teams where you do have to manage
shared states across tests, or you require a method to initialize a database or a service,
having a setup and teardown method (using JUnit parlance) is needed. Given the shared
state example Specs2WithoutFixtures above, a set up method can be established using
a Scope trait in either a unit specification or an acceptance specification. In an accept‐
ance specification all that is required is a trait that extends Scope and extends that trait
in a case class that envelops all tests that require the scoped setup.

class Specs2WithScope extends Specification { def is =
 "Add an album to a shared list" ! AddItemTest().test ^
 "Remove an album to a shared list" ! RemoveItemTest().test

 trait ListMaker {
 lazy val lst = scala.collection.mutable.Buffer(
 new Album("Fly By Night", 1974, new Band("Rush")),
 new Album("19", 2008, new Artist("Adele", "Laurie", "Adkins").withA-
lias("Adele")))
 }

 case class AddItemTest() extends ListMaker {
 def test = {
 lst.append(new Album("Prokofiev and Rachmaninoff: Cello Sonatas", 1991,
new Artist("Yo", "Yo", "Ma")))
 lst must have size(3)
 }
 }

 case class RemoveItemTest() extends ListMaker {
 def test = lst.drop(1) must have size(1)
 }
}

82 | Chapter 4: Specs2

Each case class will have one or more test methods in it. Each case class AddItemTest()
and RemoveItemTest() extends from ListMaker, which is a trait. The reason a trait
works is that its state is unique to each class that extends it. Therefore AddItemTest()
and RemoveItemTest will each have its own list to test.

How do we achieve the same thing for a unit specification? Remember that a unit spec‐
ification is a specification like its sibling AcceptanceSpecification but with a different
form. Instead of calling methods from the specification, the tests are run within an in
clause. Below is the same test as the acceptence specifications that we have been using,
but restructured as a unit specification.

import org.specs2.mutable.Specification
import org.specs2.specification.Scope

class Specs2UnitSpecificationFixtures extends Specification {
 "Add an album to a shared list" in new ListMaker {
 lst.append(new Album("Prokofiev and Rachmaninoff: Cello Sonatas", 1991, new
Artist("Yo", "Yo", "Ma")))
 lst must have size (3)
 }
 "Remove an album to a shared list" in new ListMaker {
 lst.drop(1) must have size (1)
 }

 trait ListMaker extends Scope {
 lazy val lst = scala.collection.mutable.Buffer(
 new Album("Fly By Night", 1974, new Band("Rush")),
 new Album("19", 2008, new Artist("Adele", "Laurie", "Adkins").withA-
lias("Adele")))
 }
}

By now all the players should be familiar, except now each of the tests are inline with
the specification, and after the in clause we instantiate an anonymous trait that will
make available a unique lst of albums for each test. This is what we want. But to actually
make this work, each trait that must extend ‘org.specs2.specification.Scope` in order for
Specs2 to understand that the trait will return Result type, which is required by the
framework. Without extending the Scope trait, Specs2 will complain that it cannot im‐
plicitly convert a ListMaker into a org.specs2.execute.Result.

For teardown or cleanup methods, each specification has its own way of doing things.
In the unit specification, you continue to use the trait strategy but instead of using Scope
you use the org.specs2.mutable.After trait, which will give a method for you to
override—-appropriately called after. The after method will be called by Specs2 when
the test is completed, whether the test fails or succeeds. This next example uses the same
data as the previous example but uses the After trait instead of the Scope trait.

Fixtures | 83

class Specs2UnitSpecificationWithAfter extends Specification {
 "Add an album to a shared list" in new ListMaker {
 lst.append(new Album("Prokofiev and Rachmaninoff: Cello Sonatas", 1991, new
Artist("Yo", "Yo", "Ma")))
 lst must have size (3)
 def after {printf("Final tally: %d\n", lst.size)}
 }

 "Remove an album to a shared list" in new ListMaker {
 lst.drop(1) must have size (1)
 def after {printf("Final tally: %d\n", lst.size)}
 }

 trait ListMaker extends After {
 lazy val lst = scala.collection.mutable.Buffer(
 new Album("Fly By Night", 1974, new Band("Rush")),
 new Album("19", 2008, new Artist("Adele", "Laurie", "Adkins").withA-
lias("Adele")))
 }
}

Since After requires that we implement an after method that returns Any object, we
can define an after method in each anonymous instantiation of ListMaker for every
test that we run. In each of tests, the after method returns Unit, which is a type that
represents what void is in Java, C, and C+. This can be refactored though: since
the implementation of +after is the same across multiple tests we can move that
down to the ListMaker trait, where it will look cleaner and still run successfully.

class Specs2UnitSpecificationWithAfter extends Specification {
 "Add an album to a shared list" in new ListMaker {
 lst.append(new Album("Prokofiev and Rachmaninoff: Cello Sonatas", 1991, new
Artist("Yo", "Yo", "Ma")))
 lst must have size (3)
 }

 "Remove an album to a shared list" in new ListMaker {
 lst.drop(1) must have size (1)
 }

 trait ListMaker extends After {
 lazy val lst = scala.collection.mutable.Buffer(
 new Album("Fly By Night", 1974, new Band("Rush")),
 new Album("19", 2008, new Artist("Adele", "Laurie", "Adkins").withA-
lias("Adele")))
 def after {printf("Final tally: %d\n", lst.size)}
 }
}

Below are the results of the run. The final tallies are printed after the tallies are run. The
test reporting occurs after the tests have run.

84 | Chapter 4: Specs2

> test-only com.oreilly.testingscala.Specs2UnitSpecificationWithAfter
[info] Compiling 1 Scala source to /home/danno/testing_scala_book.svn/testings-
cala/target/scala-2.9.2/test-classes...
Final tally: 3
Final tally: 2
[info] + Add an album to a shared list
[info] + Remove an album to a shared list
[info]
[info] Total for specification Specs2UnitSpecificationWithAfter
[info] Finished in 147 ms
[info] 2 examples, 0 failure, 0 error
[info] Passed: : Total 2, Failed 0, Errors 0, Passed 2, Skipped 0
[success] Total time: 2 s, completed Jan 5, 2012 10:49:04 AM

There are multiple solutions for creating fixtures in Specs2. Specs2 has an Around trait
that can do the same as previous examples. What is different with the Around trait is
that there is one place where a programmer can create logic to be wrapped around the
test. You may find the trait is similar to either an JavaEE Interceptor or a servlet spec‐
ification Filter. The recipe for the Around trait is to first do setup, then call the test,
which is given as a function parameter, and when the function parameter returns, per‐
form any cleanup that is required.

The object below logs the start and stop of the test. It’s a simple fixture. The example
uses a simple println to output before and after messages when the test is run. Between
each of the outputs, the test is run by calling t, and the result is captured in a variable,
result. That reference is held until the end of the test, when it is returned.

object log extends org.specs2.specification.Around {
 def around[T <% Result](t: =>T):Result = {
 println("Start process")
 val result:T = t
 println("End process")
 result
 }
}

What can be very confusing is the [T <% Result]. This is Scala’s type bounds, if there
is a converter in the scope of this object that can convert any type T into a Result. That
means whatever the type T is, it either has to be a type that is of type Result or it is of
type of something that can be converted into a type Result. The log extends the
org.specs2.specification.Around trait which mandates that the method def
around be declared. The def around method accepts a function parameter of type
Unit=>T, which of course can be shortened to =>T. As a reminder, Unit is the equivalent
of a void in Java.

Fixtures | 85

Below we run the test using the log Around trait to do our println log of the test in an
acceptance specification. In the specification, we run not just e1 but log(e1). This will
wrap the log object around the test method so that when the test runs the around method
in the log will run.

class UsingTheAroundProcess extends Specification {
 def is =
 "this will log something before running" ! log(e1)

 lazy val lst = List(
 new Album("Storms of Life", 1986, new Artist("Randy", "Travis")),
 new Album("The Bad Touch", 1999, new Band("Bloodhound Gang")),
 new Album("Billie Holiday Sings", 1952, new Artist("Billie", "Holiday")))

 def e1 = {
 println("Running test")
 lst.drop(1) must have size (2)
 }
}

Running the above test, we find that everything falls into place. Start Process is in‐
voked first, Running Test is next, and finally End Process is displayed. The advantage
of using an Around trait is that this is now extremely reusable. The object can be used
in other test methods in other tests.

One of the disadvantages of using an Around trait is that you cannot get access to the
state of objects that have been declared inside of the trait. If you establish anything like
a service and database, or any object state, you cannot get access to it. If you need this
kind of functionality, the Outside trait is useful for declaring a stateful object that needs
to instantiated and set up before the test runs. Once the object is set, it can then be
delivered to the tester in a function parameter.

Please don’t use external services or databases in unit tests or test-driven
development. That is reserved for integration testing or functional
testing.

The next example uses the Outside trait to set up a Joda-Time DateTime object that
provides the current date and time to the test. The withCurrentDate object extends the
Outside trait with the parameterized type DateTime—the type that is the focus the trait.
Extending the trait requires the outside method to be declared, which should return
the object to be used inside the test. In our example, that is the current DateTime.

object withCurrentDate extends org.specs2.specification.Outside[DateTime] {
 def outside = new DateTime
}

86 | Chapter 4: Specs2

For good measure we will also include a withFakeDate object that is also used inside a
test, although this Outside trait will return a fixed date of January 2, 1980.

object withFakeDate extends org.specs2.specification.Outside[DateTime] {
 def outside = new DateMidnight(1980, 1, 2).toDateTime
}

Now we can use these objects inside a test, and much like the Around trait, we can use
the Outside trait nearly the same way, except that it will provide information before
running the test. In the next example, UsingDates is also an acceptance specification.
Instead of calling the test method testDate straight away, it is wrapped with the Out
side trait that provides the needed date. Each specification is given a different date but
calls one test method with each of those different dates.

class UsingDates extends Specification {def is =

 "this will use the real date" ! (withCurrentDate(x => testDate(x))) ^
 "this will use a fake date" ! (withFakeDate(x => testDate(x)))

 def testDate(x: DateTime) = (x.plusDays(20).isAfterNow)
}

This test will run for the top specification but not the bottom one, since the arithmetic
doesn’t add up.

[info] Compiling 1 Scala source to /home/danno/testing_scala_book.svn/testings-
cala/target/scala-2.9.2/test-classes...
[info] + this will use the real date
[error] x this will use a fake date
[error] the value is false (Specs2AcceptanceSpecificationFixtures.scala:145)
[info]
[info] Total for specification UsingDates
[info] Finished in 539 ms
[info] 2 examples, 1 failure, 0 error
[error] Failed: : Total 2, Failed 1, Errors 0, Passed 1, Skipped 0
[error] Failed tests:
[error] com.oreilly.testingscala.UsingDates
[error] {file:/home/danno/testing_scala_book.svn/testingscala/}Testing Scala/
test:test-only: Tests unsuccessful
[error] Total time: 3 s, completed Jan 6, 2012 2:49:55 PM

Finally, what if you wish to have the best of both Around and Outside? Of course there
is an AroundOutside that provides that specific solution. The following code is a log
WithFakeDateTime object that extends the AroundOutside[DateTime] trait. The trait
requires that the tester use both the outside and around methods. Based on the previous
examples, we can infer that outside will set up the object that will be used inside the
test, and the around method will be run around the test method using the same object.

object logWithFakeDateTime extends org.specs2.specification.AroundOutside[Date-
Time] {
 def outside = new DateMidnight(1980, 1, 2).toDateTime

Fixtures | 87

 def around[T <% Result](t: ⇒ T) = {
 println(outside + ": Start process")
 val result = t
 println(outside + ": End process")
 result
 }
}

Now we can make use of this trait inside the test both as an Around and an Outside.

class UsingTheAroundOutsideProcess extends Specification {
 def is =
 "this will log something before running" ! logWithFakeDateTime(dateTime ⇒
e1(dateTime))

 lazy val lst = List(
 new Album("Storms of Life", 1986, new Artist("Randy", "Travis")),
 new Album("The Bad Touch", 1999, new Band("Bloodhound Gang")),
 new Album("Billie Holiday Sings", 1952, new Artist("Billie", "Holiday")))

 def e1(dt: DateTime) = {
 println("Running test at " + dt)
 lst.drop(1) must have size (2)
 }
}

In the above example, logWithFakeDateTime is given the function that accepts the
DateTime object as a parameter that is created within the OutsideAround object. We use
that DateTime object inside the test method since we need it for our test. Remember
that this is also the Around trait, so whatever logic that we stated in the around method
will be run. The end result will show the full combination.

> test-only com.oreilly.testingscala.UsingTheAroundOutsideProcess
[info] Compiling 1 Scala source to /home/danno/testing_scala_book.svn/testings-
cala/target/scala-2.9.2/test-classes...
2012-01-06T15:08:42.147-06:00: Start process
Running test at 2012-01-06T15:08:42.265-06:00
2012-01-06T15:08:42.280-06:00: End process
[info] + this will log something before running
[info]
[info] Total for specification UsingTheAroundOutsideProcess
[info] Finished in 188 ms
[info] 1 example, 0 failure, 0 error
[info] Passed: : Total 1, Failed 0, Errors 0, Passed 1, Skipped 0
[success] Total time: 3 s, completed Jan 6, 2012 3:08:42 PM

Analyzing the end result, we find that the first item, 2012-01-06T15:08:42.147-06:00:
Start process came from the around method. The around method then ran the test
producing , followed by printing 2012-01-06T15:08:42.280-06:00: End process.
The test passed and we successfully established a fixture in Specs2.

88 | Chapter 4: Specs2

Specs2 flexes its muscle with the Scala language. Eric Torreborre, the testing framework’s
author, likes to be pushing the envelope and trying different things to enhance the
framework and create more and more functionality for the test-driven developer. This
book covers a lot of what Specs2 covers, but it doesn’t cover everything, especially since
it is constantly being developed.

Which testing to framework to use? This is up to you. But the real answer is why not
both? ScalaTest and Specs2 cover different things for different reasons. ScalaTest offers
various specs that are clear and easy to use, and that clarity comes from a well-engineered
and well-documented framework. You may find that you need to gradually get used to
Scala—especially testing in Scala—and you still enjoy JUnit- and TestNG-style tests. You
may also find that data tables in Specs2 come in very handy. If you wish to use ScalaMock
(covered later in this book), you will really love its integration with ScalaTest. Both
frameworks can run ScalaCheck (also covered later) very well too, and it’s recipes will
help you decide which framework is best for you. Competition always makes its par‐
ticipants better, and I expect that both these frameworks will have a lot to show in the
future.

Fixtures | 89

CHAPTER 5

Mocking

As we’ve discussed previously, one of the basic tenets of test-driven development is that
each test has to be isolated. This means that the test doesn’t connect to the Internet, a
database, or even the production file system. Typically, these foreign systems are rep‐
resented through some kind of stunt double to the production object. The following
definitions of stunt doubles come from Martin Fowler’s blog entry Mocks aren’t Stubs.
Dummy

An object that does nothing except fill in space. Any calls that it receives will neither
change anything nor record anything.

Stub
An object that can consume test behavior and generate some result. It is meant to
provide precreated answers for the test. Stubs can be used for recording and analysis
to determine the number of calls that are made. They typically require more work
than dummies, and an abundance of classes need to be created.

Fake
A fake object is a real object that overrides the more difficult stuff by providing a
shortcut.

Mock
An object that is given orders to carry out a prescribed set of commands when it is
called upon. This is analogous to the stand-in opponent during preparation for a
political debate. The opponent would likely be a campaign team member, but she
will have a set of answers already prepared to debate the candidate who needs to
train for the big event.

Dummy objects have been used extensively in this book. Consider what we did in cov‐
ering a Specs2 unit specification. In order to test out our Jukebox we created an Album

91

http://martinfowler.com/articles/mocksArentStubs.html

(that’s not the dummy); we also created some Track instances to store in the Album (not
dummies either). But in order to make the whole thing work we needed an Act, so we
added the band Above and Beyond. It wasn’t really necessary, except we wanted to put
something in the parameter so we could move along with our test.

src/test/java/com/oreilly/testingscala/JukeboxUnitSpec.scala.

class JukeboxUnitSpec extends Specification {
 "A Jukebox" should {
 """have a play method that returns a copy of the jukebox that selects
 the first song on the first album as the current track""" in {
 val groupTherapy = new Album("Group Therapy", 2011,
 Some(List(new Track("Filmic", "3:49"),
 new Track("Alchemy", "5:17"),
 new Track("Sun & Moon", "5:25"),
 new Track("You Got to Go", "5:34"))), new Band("Above and Beyond"))
 val jukebox = new JukeBox(Some(List(groupTherapy)))
 val jukeboxNext = jukebox.play
 jukeboxNext.currentTrack.get.name must be_==("Filmic")
 jukeboxNext.currentTrack.get.period must be_==(new Period(0, 3, 49, 0))
 }
 }
}

For a fake example, let’s create a trait called DAO which will persist any object to some
sort of datastore, whether it be a file system or a database. This trait will be used
throughout the chapter to highlight fakes, stubs, and mocks from different libraries
EasyMock, Mockito, and ScalaMock. Since DAO is a trait, it is intended to be mixed into
a class with a concrete implementation that is tied to a specific type of datastore. Possible
names could be MySQLDAO, Oracle10DAO, MongoDBDAO, etc. Using a trait in this manner
also promotes loose decoupling, since there is no strict shotgun marriage to any par‐
ticular datasource. The DAO trait has one method, persist, whose job is to accept an
input parameter is and persist it to a faked, stubbed, or mocked datastore.

src/test/scala/com/oreilly/testingscala/DAO.scala.

package com.oreilly.testingscala

trait DAO {
 def persist[T](t:T)
}

A fake object is a real object but is a substitute for the real thing. Fakes are typically some
sort of holder of a byte array or a map that will store any data that is persisted, reread,
or manipulated. Fakes can also be in-memory databases that store the data, like
HSQLDB or H2, which are full-fledged databases that can be datastores in memory.
Please consider, though, that for TDD purposes that may still too much work to set up
and defeats the purpose of unit test isolation required for test-driven development.

92 | Chapter 5: Mocking

http://http://hsqldb.org/
http://www.h2database.com/html/main.html

To make the DAO a fake we can either create a DAO object that has an underlying hash
table or use an in-memory database. To keep this example short, we will use a Map to
store all entries. For all intents, this fake object is actually a DAO, just not a very good
one for production purposes since it is just a simple store to handle all transactions. Its
raison d'être is to serve the test.

src/test/com/oreilly/testingscala/UsingFakeUnitSpec.scala.

package com.oreilly.testingscala

import org.specs2.mutable.Specification

class FakeDAO extends DAO {
 var map = Map[Long, Any]()
 var count = 0L

 def persist[T](t: T) {
 map = map + (count -> t)
 count = count + 1
 }

 def persistCount = map.size
}

class UsingFakeUnitSpec extends Specification {
 "When two albums are added to the fake DAO the albums should be stored" in {
 val dao = new DAOStub
 dao.persist(new Album("The Roaring Silence", 1976, new Band("Manfred Mann's
Earth Band")))
 dao.persist(new Album("Mechanical Animals", 1998, new Artist("Marilyn",
"Manson")))
 dao.persistCount must be_==(2)
 }
}

In the above DAO, the first class is the fake, and accepts any object to be persisted. The
extra method contains a persistCount method that would give us a current count of
objects stored. When persist is called, it is handled and mimics the database as we
intended. Inside of the fake is a Map object that handles all the entries. A count variable
keeps track of the ID count of all entries. It’s rough, simple, and not very sexy, but again,
it is just meant to serve the test—just as the punching bag is meant to serve the boxer
in training.

Next, a Stub object is just an object that has some sort of logic developed into the code
for assertion purposes. Sometimes it is easier to create a stub than to fuss with some sort
of fake or mocking framework, because you just need something with some canned
answers and you need it quick. The stub object can be as light or complex as you wish
to develop it. It would be recommended that if it gets too complicated, then it will be
time to change it out for a mock instead.

Mocking | 93

1. Many functional programmers shy away from throwing exceptions, opting instead to use a type like Ei
ther to establish whether something was successful or not. This example is meant for demonstration pur‐
poses.

For the stub, here is an example of a DAOStub and a Specs2 Unit Specification that tracks
as many times that a persist call is made. The test in the Specification uses the stub,
persists two albums and we then assert that the count is 2. This example of course is
painfully easy but shows the use of a Stub in testing situations.

src/test/scala/com/oreilly/testingscala/UsingStubUnitSpec.scala.

package com.oreilly.testingscala

import org.specs2.mutable.Specification

class DAOStub extends DAO {
 var count = 0

 def persist[T](t: T) {
 count = count + 1
 }

 def persistCount = count
}

class UsingStubUnitSpec extends Specification {

 "Create 2 albums that we will persist to a stub DAO" in {
 val dao = new DAOStub
 dao.persist(new Album("The Roaring Silence", 1976, new Band("Manfred Mann's
Earth Band")))
 dao.persist(new Album("Mechanical Animals", 1998, new Artist("Marilyn",
"Manson")))
 dao.persistCount must be_==(2)
 }
}

You can argue that the stub looks similar to the fake. Keep in mind that a fake is an actual
implementation of the trait or object you are creating a stunt double for, while a stub is
a double that can accept your request but will give you canned answers in return.

Earlier I mentioned that if a stub gets too complicated it would be best to move to a
mocking framework. The complication in this example would occur if we add more
methods to the DAO, or when the intent of each method becomes difficult with a large
permutation of scenarios. Let’s create another stub where after one persist, the next
persist throws some sort of exception. 1

src/test/com/oreilly/testingscala/UsingStubUnitSpec.scala.

94 | Chapter 5: Mocking

package com.oreilly.testingscala

import org.specs2.mutable.Specification

class DAOStubWithExceptionAfterTheFirstPersist extends DAO {
 var alreadyCalledOnce = false

 def persist[T](t: T) {
 if (alreadyCalledOnce) throw new RuntimeException("Unable to store")
 alreadyCalledOnce = true
 }
}

class UsingStubWithExceptionUnitSpec extends Specification {

 "Create 2 albums that we will persist to a stub DAO" in {
 val dao = new DAOStubWithExceptionAfterTheFirstPersist
 dao.persist(new Album("The Roaring Silence", 1976, new Band("Manfred Mann's
Earth Band")))
 dao.persist(new Album("Mechanical Animals", 1998, new Artist("Marilyn",
"Manson"))) must throwA[RuntimeException]
 }
}

But a question arises: how many different stub classes would we have to make for every
conceivable use case scenario? This is why mocking easily becomes the best solution.
Each of the different test doubles—fakes, dummies, and stubs—has benefits and draw‐
backs. Some criteria to consider include how long each will take, whether you have to
handle side effects, whether you are representing a large system, and whether you are
representing a system over a network. A rule of thumb is to use stubs and fakes in unit
tests if they can be created quickly and can be managed easily. If they do not, there is
good reason to put some investment in creating mocks.

EasyMock
EasyMock was the founding father of Java mocking and set the standard for mocking
in the JVM. Today it is still highly favored by many TDDers and works great with any
Java bytecode language, including Scala.

EasyMock, like other mocking frameworks, can be compared to a rehearsal. Imagine
someone who wants to enter a singles bar hoping to attract the right person. The single
man or lady may rehearse in the mirror some catchy lines or a flirtatious move. When
ready and satisfied with their results, they enter the club and hope they get some positive
interaction.

EasyMock works similar by creating the mock, rehearsing the mock with expected be‐
havior, rewinding the behavior back to the beginning, and sending the mock into the
test method to act out what was rehearsed. If there are expected results from the

EasyMock | 95

rehearsal, then one may verify that expected calls were actually made. Any unexpected
calls that were made notify the programmer that the method wasn’t expecting the call.
Let’s look at mocking in relation to a database, because that’s the resource one often has
to reproduce for a test.

To install EasyMock, add the easymock dependency to the build.sbt file. The following
shows just the dependencies in the file, excluding the rest of it.

//Code removed for brevity

libraryDependencies ++= Seq(
 "org.scalatest" % "scalatest_2.9.2" % "1.8" % "test" withSources() withJava-
doc(),
 "joda-time" % "joda-time" % "1.6.2" withSources() withJavadoc(),
 "junit" % "junit" % "4.10" withSources() withJavadoc(),
 "org.testng" % "testng" % "6.1.1" % "test" withSources() withJavadoc(),
 "org.specs2" %% "specs2" % "1.12.3" withSources() withJavadoc(),
 "org.easymock" % "easymock" % "3.1" withSources() withJavadoc())

//Code removed for brevity

For our mocks, we will also the DAO trait, as we have done already in this chapter. Here
it is again, so you don’t have to turn back.

package com.oreilly.testingscala

trait DAO {
 def persist[T](t: T)
}

EasyMock originally was used to mock only interfaces in Java (which have been replaced
by traits in Scala). Newer generations, including the latest EasyMock, can mock actual
concrete classes.

The following example tests a class named JukeboxStorageService, whose purpose is
to persist the contents of a JukeBox into any kind of datastore. The JukeboxStorage
Service requires the help of two DAOs, one that stores an Album and another that stores
an Act, which is the superclass of Band and Artist. The test case will start off simply so
as not to overwhelm you.

src/test/scala/com/oreilly/testingscala/JukeboxStorageServiceEasyMockSpec.scala.

package com.oreilly.testingscala

import org.scalatest.matchers.MustMatchers
import org.scalatest.Spec
import org.easymock.EasyMock._

class JukeboxStorageServiceEasyMockSpec extends Spec with MustMatchers {
 describe("A Jukebox Storage Service") {
 it("should use easy mock to mock out the DAO classes") {

96 | Chapter 5: Mocking

 val daoMock = createMock(classOf[DAO])
 }
 }
}

The example creates a mock of the DAO using the createMock method, which is a static
method of the EasyMock class. (Remember that EasyMock was written in Java, not Scala,
if by chance you’re wondering where the static came from.) The third import statement
uses a wildcard of the class to make any Java static methods or Scala object methods
available for use within the class. If you don’t want to import the method directly for
some reason, just import org.easymock.EasyMock, and write out the class with each
call: EasyMock.createMock instead of the lighter alternative used here, createMock.

These mocks will be injected into the JukeboxStorageService class, which will be a
subject under test that uses the DAO.

The next step is to set up any stubs or concrete models used in the test. The following
example creates some Bands and Artists to give to the JukeboxStorageService so it
can store that into our (mocked) datastore.

src/test/scala/com/oreilly/testingscala/JukeboxStorageServiceEasyMockSpec.scala.

package com.oreilly.testingscala

import org.scalatest.matchers.MustMatchers
import org.scalatest.Spec
import org.easymock.EasyMock._

class JukeboxStorageServiceEasyMockSpec extends FunSpec with MustMatchers {
 describe("A Jukebox Storage Service") {
 it("should use easy mock to mock out the DAO classes") {
 // previous code removed for brevity

 //set up actual values to be used.
 val theGratefulDead: Band = new Band("Grateful Dead")
 val wyntonMarsalis: Artist = new Artist("Wynton", "Marsalis")
 val psychedelicFurs: Band = new Band("Psychedelic Furs")
 val ericClapton: Artist = new Artist("Eric", "Clapton")

 val workingmansDead = new Album("Workingman's Dead", 1970, None, theGrate-
fulDead)
 val midnightToMidnight = new Album("Midnight to Midnight", 1987, None,
psychedelicFurs)
 val wyntonAndClapton = new Album("Wynton Marsalis and Eric Clapton play
the Blues", 2011, None,
 wyntonMarsalis, ericClapton)

 val jukeBox = new JukeBox(Some(List(workingmansDead, midnightToMidnight,

EasyMock | 97

wyntonAndClapton)))
 }
 }
}

The example creates two bands (Grateful Dead and Psychedelic Furs) and two artists
(jazz great Wynton Marsalis and guitar genius Eric Clapton). Next it creates some albums
from the four bands and artists to be used in a JukeBox. The last concrete class used in
the test is a jukeBox that contains all the Albums.

In the above example, since we’ve covered the ScalaTest FunSpec already in Chapter 3,
I’ll focus here on the use of the EasyMock elements. First, a little more detail on DAO.
Each DAO is a trait, and createMock instruments that trait to intercept all calls during
testing. createMock accepts the name of the class that it will be mocking. As a Scala
aside, classOf[DAO] in Scala is the same as AlbumDAO.class in Java: it merely retrieves
the class from the type.

For the next step, we need the actual JukeboxStorageService, which requires one DAO
parameter at the time of creation. This is where we will provide the DAO mock. In a real-
life system, an actual concrete implementation tied to an actual storage system would
be used. Since this is test-driven development and we need to be fast, the mocks will
take their place.

src/test/scala/com/oreilly/testingscala/JukeboxStorageServiceEasyMockSpec.scala.

package com.oreilly.testingscala

import org.scalatest.matchers.MustMatchers
import org.scalatest.Spec
import org.easymock.EasyMock._

class JukeboxStorageServiceEasyMockSpec extends FunSpec with MustMatchers {
 describe("A Jukebox Storage Service") {
 it("should use easy mock to mock out the DAO classes") {

 val daoMock = createMock(classOf[DAO])
 //Code omitted for brevity

 //create the subject under test
 val jukeboxStorageService = new JukeboxStorageService(daoMock)
 }
 }
}

Next comes the rehearsal. Each mock will be given “lines” that it needs to act out when
called upon by the test.

package com.oreilly.testingscala

import org.scalatest.matchers.MustMatchers

98 | Chapter 5: Mocking

import org.scalatest.Spec
import org.easymock.EasyMock._

class JukeboxStorageServiceEasyMockSpec extends Spec with MustMatchers {
 describe("A Jukebox Storage Service") {
 it("should use easy mock to mock out the DAO classes") {

 //previous lines omitted for brevity

 //set up expectations
 albumMock.persist(workingmansDead)
 albumMock.persist(midnightToMidnight)
 albumMock.persist(wyntonAndClapton)

 actMock.persist(theGratefulDead)
 actMock.persist(psychedelicFurs)
 actMock.persist(wyntonMarsalis)
 actMock.persist(ericClapton)
 }
 }
}

Each mock will need to be told what to expect. AlbumMock should expect that three
albums—Workingman’s Dead, Midnight To Midnight, and Wynton and Clapton—will be
the parameters of persist in the DAO of Album. In the mock for Act, persist is expected
to be called for two band—The Grateful Dead and Psychedelic Furs—and two artists—
Wynton Marsalis and Eric Clapton. These expectations don’t have to happen in order,
they merely have to take place for the test to succeed.

When we created the mock for the DAO using val daoMock = createMock(class
Of[DAO]), by default, EasyMock will only check that the expectations were run, but not
in any particular order, only that they were called. If ordering expectations is important
to you, create a mock with createStrictMock instead of createMock. This would in‐
struct EasyMock to expect your expectation in the order that you provide during re‐
hearsal in your test.

Now that each mock has rehearsed its part, it’s time to rewind the behavior by calling
replay, calling persist on the subject under test jukeboxStorageService, and veri‐
fying the results.

package com.oreilly.testingscala

import org.scalatest.matchers.MustMatchers
import org.scalatest.Spec
import org.easymock.EasyMock._

class JukeboxStorageServiceEasyMockSpec extends Spec with MustMatchers {
 describe("A Jukebox Storage Service") {
 it("should use easy mock to mock out the DAO classes") {
 //previous line omitted for brevity

EasyMock | 99

 //replay, more like rewind
 replay(daoMock)

 //make the call
 jukeboxStorageService.persist(jukeBox)

 //verify that the calls expected were made
 verify(daoMock)
 }
 }
}

replay rewinds all the mocks to set out to perform the prescribed actions we rehearsed.
jukeboxStorageService.persist is the actual call to the test, as it sends in a juke
Box concrete object. The last line verifies that the mocks acted out what was intended.
Running the test now will end in failure, so we can now work on satisfying the test. A
few minutes later, perhaps something like the following example would be what the
JukeboxStorageService class would like with the behavior that satisfies the test.

src/main/scala/com/oreilly/testingscala/JukeboxStorageService.scala.

package com.oreilly.testingscala

class JukeboxStorageService(dao:DAO) {
 def persist(jukeBox:JukeBox) {
 jukeBox.albums.getOrElse(Nil).foreach{
 album => dao.persist(album)
 album.acts.foreach(act => dao.persist(act))
 }
 }
}

The persist method, at least for this implementation, gets all the albums, if there are
any. getOrElse is a method on Option that returns the contents of Some—in this case a
list of albums—or generates an empty list Nil if there are no albums. The forEach
method, running on the return value of getOrElse, iterates through the list of albums.
album => dao.persist(album) takes each album from the albums List and calls
persist on the DAO. Finally, for every act associated with the album, each one will be
sent to dao for persistence.

Running the JukeboxStorageServiceEasyMockSpec will now succeed.

> test-only com.oreilly.testingscala.JukeboxStorageServiceEasyMockSpec
[info] Compiling 1 Scala source to /home/danno/testing_scala_book.svn/testings-
cala/target/scala-2.9.1/classes...
[info] JukeboxStorageServiceEasyMockSpec:
[info] A Jukebox Storage Service
[info] - should use easy mock to mock out the DAO classes
[info] Passed: : Total 1, Failed 0, Errors 0, Passed 1, Skipped 0
[success] Total time: 9 s, completed Jan 7, 2012 11:12:34 PM

100 | Chapter 5: Mocking

This introduction to EasyMock has not been specific to Scala, since this technology has
been used for years in Java. EasyMock does contain specific support for ScalaTest, which
offers easier ways to work EasyMock.

EasyMock with ScalaTest
ScalaTest offers an EasyMockSugar trait that turns replaying and verifying into behind-
the-scenes affairs, letting the test developer focus on the rehearsal and running the test.
The example we established in the previous section is rewritten here but putting into
place some of the sugar.

/src/test/scala/com/oreilly/testingscala/JukeboxStorageServiceEasyMockWithSugar‐
Spec.scala.

package com.oreilly.testingscala

import org.scalatest.Spec
import org.scalatest.matchers.MustMatchers
import org.scalatest.mock.EasyMockSugar
import org.easymock.EasyMock._

class JukeboxStorageServiceEasyMockWithSugarSpec extends Spec with MustMatchers
with EasyMockSugar {
 describe("A Jukebox Storage Service") {
 it("should use easy mock sugar in ScalaTest") {
 val daoMock = createMock(classOf[DAO])

 //set up actual values to be used.
 val theGratefulDead: Band = new Band("Grateful Dead")
 val wyntonMarsalis: Artist = new Artist("Wynton", "Marsalis")
 val psychedelicFurs: Band = new Band("Psychedelic Furs")
 val ericClapton: Artist = new Artist("Eric", "Clapton")

 val workingmansDead = new Album("Workingman's Dead", 1970, None, theGrate-
fulDead)
 val midnightToMidnight = new Album("Midnight to Midnight", 1987, None,
psychedelicFurs)
 val wyntonAndClapton = new Album("Wynton Marsalis and Eric Clapton play
the Blues", 2011, None,
 wyntonMarsalis, ericClapton)

 val jukeBox = new JukeBox(Some(List(workingmansDead, midnightToMidnight,
wyntonAndClapton)))

 //create the subject under test
 val jukeboxStorageService = new JukeboxStorageService(daoMock)

 expecting {
 daoMock.persist(workingmansDead)
 daoMock.persist(midnightToMidnight)
 daoMock.persist(wyntonAndClapton)

EasyMock | 101

 daoMock.persist(theGratefulDead)
 daoMock.persist(psychedelicFurs)
 daoMock.persist(wyntonMarsalis)
 daoMock.persist(ericClapton)
 }

 whenExecuting(daoMock) {
 jukeboxStorageService.persist(jukeBox)
 }
 }
 }
}

To compare this latest example with the plain ScalaTest/EasyMock example in the pre‐
vious section, replay and verify are gone. Their place is taken by some new methods
provided by the EasyMockSugar trait: expecting and whenExecuting.

expecting is a function block that just offers a visual categorization of what the mocks
expect to be passed, all in one tidy place. whenExecuting wraps the replaying and ver‐
ifications without extra effort.

As always, ScalaTest tries here to give its assertions and set up a fluid linguistic flow. The
syntactical sugar used for EasyMock is just another way of doing so. Chapter 6 covers
ScalaCheck, and even some more nice syntactic sugar to make testing even easier.

Mockito
Mockito is a later-generation testing framework used mostly in Java. One of the distinct
differences between Mockito and ScalaTest is that, in Mockito, mocks don’t have to be
replayed. Mockito was the first framework to have mocking for a concrete class, but
since then EasyMock has also included support for class testing. Mockito also offers
Hamcrest integration so that each parameter can have a wild card parameter as part of
the assertion.

To set up Mockito for use in SBT, merely include the latest Mockito version (1.9.0 at the
time of this writing) within the build.sbt file.

libraryDependencies ++= Seq("org.scalatest" %% "scalatest" % "1.8" % "test"
withSources() withJavadoc(),
 "joda-time" % "joda-time" % "1.6.2" withSources() withJavadoc(),
 "junit" % "junit" % "4.10" withSources() withJavadoc(),
 "org.testng" % "testng" % "6.1.1" % "test" withSources() withJavadoc(),
 "org.specs2" %% "specs2" % "1.12.3" % "test" withSources() withJavadoc(),
 "org.easymock" % "easymock" % "3.1" % "test" withSources() withJavadoc(),
 "org.mockito" % "mockito-core" % "1.9.0" % "test" withSources() withJavadoc())

102 | Chapter 5: Mocking

Mockito works well in ScalaTest and Specs2. In Specs2, since all testing must result in
something that needs to return a Result type, Mockito requires special tweaking to
work well. Luckily, Specs2 offers a host of sugar for Mockito, although ScalaTest does
not. This section will use Mockito both in its raw form and with Specs2 special sugars
and DSL to manage mocks better.

The process of using Mockito is nearly the same as using EasyMock. Set up the mocks,
rehearse the objects, run the test, and verify. There’s no replaying or rewinding the
mocks. The following example uses Mockito in a Specs2 acceptance specification.

src/test/scala/com/oreilly/testingscala/JukeboxStorageServiceMockitoAcceptanceS‐
pec.scala.

package com.oreilly.testingscala

import org.specs2.Specification
import org.mockito.Mockito._

class JukeboxStorageServiceMockitoAcceptanceSpec extends Specification {
 def is = {
 "You can use Mockito to perform Scala mocking" ! useMockitoToMockClasses
 }

 def useMockitoToMockClasses = {
 val daoMock = mock(classOf[DAO])

 //set up actual values to be used.
 val theGratefulDead: Band = new Band("Grateful Dead")
 val wyntonMarsalis: Artist = new Artist("Wynton", "Marsalis")
 val psychedelicFurs: Band = new Band("Psychedelic Furs")
 val ericClapton: Artist = new Artist("Eric", "Clapton")

 val workingmansDead = new Album("Workingman's Dead", 1970, None, theGrate-
fulDead)
 val midnightToMidnight = new Album("Midnight to Midnight", 1987, None, psy-
chedelicFurs)
 val wyntonAndClapton = new Album("Wynton Marsalis and Eric Clapton play the
Blues", 2011, None,
 wyntonMarsalis, ericClapton)

 val jukeBox = new JukeBox(Some(List(workingmansDead, midnightToMidnight,
wyntonAndClapton)))

 //create the subject under test
 val jukeboxStorageService = new JukeboxStorageService(daoMock)

 //no replay

 //make the call
 jukeboxStorageService.persist(jukeBox)

Mockito | 103

 //verify that the calls expected were made
 verify(daoMock).persist(theGratefulDead)
 verify(daoMock).persist(workingmansDead)
 success
 }
}

Instead of createMock, Mockito uses a mock method to generate the mocks. The sample
uses a number of concrete methods available for tests. Again, there is no replay involved.
The verification syntax is also very different. The verify method just accepts the mock,
at which point another method can be called to verify the behavior. In other words, the
last lines of the acceptance specification shown here are of the form verify(mock).meth
od(params), where method is the method that is expected to be called and the parameters
given are the parameters that were expected to be delivered. If any verification fails, an
exception is thrown. For example, one feature of testing frameworks, including Easy‐
Mock, is that the developer can specify how many times a particular method can be
called with a given parameter. The developer is free to explicitly state that a method
should never be called, or that a method should be called 10 times.

In Mockito, you can specify the number of times a method should be called with a
VerificationMode in the verify method. If, for example, a verification should fail, the
last verify statement can be amended to state:

verify(albumMock, never()).persist(workingmansDead)

Doing so will cause an exception and a test failure—not the nice kind where it shows
up in a report but with a visually abhorrent stack trace.

[info] Compiling 1 Scala source to /home/danno/testing_scala_book.git/testings-
cala/target/scala-2.9.0-1/test-classes...
[error] x You can use Mockito to perform Scala mocking
[error]
[error] dAO.persist(
[error] com.oreilly.testingscala.Album@202d0e83
[error]);
[error] Never wanted here:
[error] -> at com.oreilly.testingscala.JukeboxStorageServiceMockitoAcceptanceS-
pec.useMockitoToMockClasses(JukeboxStorageServiceMockitoAcceptanceSpec.scala:38)
[error] But invoked here:
[error] -> at com.oreilly.testingscala.JukeboxStorageService$$anonfun$persist
$2.apply(JukeboxStorageService.scala:7)
[error] (JukeboxStorageServiceMockitoAcceptanceSpec.scala:8)
[info]
[info] Total for specification JukeboxStorageServiceMockitoAcceptanceSpec
[info] Finished in 192 ms
[info] 1 example, 1 failure (+1), 0 error
[error] Failed: : Total 1, Failed 1, Errors 0, Passed 0, Skipped 0
[error] Failed tests:

104 | Chapter 5: Mocking

2. The recipe for the mojito beverage, which Mockito is loosely named after, requires a good amount of superfine
sugar.

[error] com.oreilly.testingscala.JukeboxStorageServiceMockitoAcceptanceSpec
[error] {file:/home/danno/testing_scala_book.git/testingscala/}default-cef86a/
test:test-only: Tests unsuccessful
[error] Total time: 2 s, completed Jan 6, 2012 2:24:06 PM

Mockito with Specs2
Specs2 comes with its own Mockito sugar 2 to create the necessary Result, and it includes
a few language enhancements along the way. The next example revises the acceptance
spec shown in the previous section, adding some Specs2 goodness.

package com.oreilly.testingscala

import org.specs2.Specification
import org.specs2.mock.Mockito

class JukeboxStorageServiceMockitoSugarAcceptanceSpec extends Specification
with Mockito {
 def is = {
 "You can use Mockito to perform Scala mocking" ! useMockitoToMockClasses
 }

 def useMockitoToMockClasses = {
 val daoMock = mock[DAO] as "album mock"

 //set up actual values to be used.
 val theGratefulDead: Band = new Band("Grateful Dead")
 val wyntonMarsalis: Artist = new Artist("Wynton", "Marsalis")
 val psychedelicFurs: Band = new Band("Psychedelic Furs")
 val ericClapton: Artist = new Artist("Eric", "Clapton")

 val workingmansDead = new Album("Workingman's Dead", 1970, None, theGrate-
fulDead)
 val midnightToMidnight = new Album("Midnight to Midnight", 1987, None, psy-
chedelicFurs)
 val wyntonAndClapton = new Album("Wynton Marsalis and Eric Clapton play the
Blues", 2011, None,
 wyntonMarsalis, ericClapton)

 val jukeBox = new JukeBox(Some(List(workingmansDead, midnightToMidnight,
wyntonAndClapton)))

 //create the subject under test
 val jukeboxStorageService = new JukeboxStorageService(daoMock)

 //no replay

Mockito | 105

 //make the call
 jukeboxStorageService.persist(jukeBox)

 //verify that the calls expected were made
 there was one (daoMock).persist(theGratefulDead)
 there was one (daoMock).persist(workingmansDead)
 }
}

The example mixes in the Mockito trait, which provides a different syntax that returns
the Result type expected from a Specs2 test. The information in this test is not much
different from a regular Mockito-based test, except for the matchers in the last two lines.
The matchers use Specs2 language to verify the mock. there was one signifies that
there was one call to the method persist with the object reference theGratefulDead
on the mock actMock. Much like the other mocking frameworks, any mock can be
specified with the number of times it should be called, either on the rehearsal or on the
verification. Here we expect that one persist call is made for theGratefulDead and
one for their album workingmansDead.

Using the Specs2 Mockito language, the developer can get fairly fancy with how to
describe the number of times a particular mock is expected to be called. Some other
Specs2 phrases include there was two, and, for those who favor good grammar, there
were two. there were three, there were atLeastOne, there were atLeastTwo,
there were atMostOne, there were atMostTwo, etc.

Order verification
To specify an order to operations using the Specs2 Mockito language, we set up chaining
using a then method. For instance, we could rewrite the specification from the previous
section to specify that an order is required, as follows:

there was one (actMock).persist(theGratefulDead) then one (albumMock).per-
sist(workingmansDead)

ScalaMock
ScalaMock is a mocking framework that is all Scala, and meant for Scala only. Its purpose
as a mocking framework is to get into some of the hardest testing spots in Scala, such
as functions, singleton objects, companion objects, static methods, final objects, and
final methods. ScalaMock can also mock traits and concrete classes like the other mock‐
ing frameworks.

106 | Chapter 5: Mocking

ScalaMock was originally called Borachio but has taken on a new name. The original
Borachio framework supported only traits and functions, but of late supports a wide
range of Scala construct, and is ever-growing. ScalaMock works only with SBT, since it
uses an SBT compiler plug-in. This is essential to create an action called generate-
mocks that is used to create bytecode of the mocks in order to use them.

Using ScalaMock with SBT calls for a bit more setup than most frameworks we’ve seen.
You have to delete the build.sbt file in favor of a Scala-based build file. SBT works with
two types of build files. One is the .sbt file we’ve seen, a user-friendly format where you
can set up dependencies, names, versions and the like. But in order to do something a
little more complicated, you instead need a .scala build file.

After deleting build.sbt, create project/project/Build.scala and project/TestingScala.scala.
The first file will define the compiler plug-in used to generate the mocks, while the
second will be the actual build file. Insert the following into /project/project/Build.scala:

project/project/Build.scala.

import sbt._

object PluginDef extends Build {
 override lazy val projects = Seq(root)
 lazy val root = Project("plugins", file(".")) dependsOn(scalamockPlugin)
 lazy val scalamockPlugin = uri("git://github.com/paulbutcher/scalamock-sbt-
plugin")
}

In SBT, these calls register the plug-in to be used within SBT and which projects to attach
to. This Plugin definition will attach to the root project and retrieve the plug-in from
a Git repository.

The new project file, project/TestingScala.scala, is the replacement to build.sbt. This file
identifies some of the usual suspects. But whereas our original build.sbt was based on
keys and values, this file is pure Scala code and looks like the following.

import sbt._
import Keys._
import ScalaMockPlugin._

object TestingScala extends Build {

 override lazy val settings = super.settings ++ Seq(
 organization := "com.oreilly.testingscala",
 version := "1.0",
 scalaVersion := "2.9.2",

 resolvers += ScalaToolsSnapshots,
 resolvers ++= Seq("snapshots" at "http://oss.sonatype.org/content/reposito-
ries/snapshots",
 "releases" at "http://oss.sonatype.org/content/reposito-

ScalaMock | 107

ries/releases"),
 libraryDependencies ++= Seq("org.scalatest" %% "scalatest" % "1.8" % "test"
withSources() withJavadoc(),
 "joda-time" % "joda-time" % "1.6.2" withSources() withJavadoc(),
 "junit" % "junit" % "4.10" withSources() withJavadoc(),
 "org.testng" % "testng" % "6.1.1" % "test" withSources() withJavadoc(),
 "org.specs2" %% "specs2" % "1.12.3" % "test" withSources() withJavadoc(),
 "org.easymock" % "easymock" % "3.1" % "test" withSources() withJavadoc(),
 "org.mockito" % "mockito-core" % "1.9.0" % "test" withSources() withJava-
doc(),
 "org.scalamock" %% "scalamock-scalatest-support" % "2.3-SNAPSHOT")),
 autoCompilerPlugins := true,
 addCompilerPlugin("org.scalamock" %% "scalamock-compiler-plugin" % "2.3-
SNAPSHOT"),
 scalacOptions ++= Seq("-deprecation", "-unchecked")),

 lazy val myproject = Project("Testing Scala", file(".")) settings(generate-
MocksSettings: _*) configs(Mock)
}

The new build file contains the organization, version, and scalaVersion used for the
project. resolvers, as before, are the Maven-based repositories that contain the de‐
pendencies. ScalaToolsSnapshots just includes the snapshots repository. ScalaTools
Releases is already included implicitly. The OSS Sonatype repositories were needed for
Specs2. libraryDependencies, much like in the former build.sbt, contains all the de‐
pendencies, and there is a new dependency at the end of this Seq, ScalaMock.

Some new settings are included:
autoCompilerPlugins

Turns on the compiler plugin functionality.

addCompilerPlugin

Specifies which compiler plugin to use.

scalacOptions

Are not ScalaMock specific. They are merely compilation flags for the Scala
compiler.

The last line of the build file contains the project name, indicates where the the root of
the project is located, and adds the generateMockSettings and configuration re‐
quired to load the mocked classes into the test.

Behind the scenes, ScalaMock creates classes based on the signatures of the classes
specified by the developer that need mocking. This will be covered shortly.

To verify that the setup works, run reload and update in SBT, either on the shell com‐
mand line or in interactive mode.

108 | Chapter 5: Mocking

Mocking Traits
Mocking a trait is the most basic type of mocking, and ScalaMock, of course, supports
it. Given the previous mocking examples in the book, for Mockito and EasyMock, the
following example demonstrates the use of mocking using ScalaMock. Because Scala‐
Mock provides its own support for traits, no extra setup is required for this example,
but there will be extra setup for subsequent examples that mock other structures.

testingscala/src/test/scala/com/oreilly/testingscala/UsingScalaMockSample.scala.

package com.oreilly.testingscala

import org.scalatest.Spec
import org.scalatest.matchers.MustMatchers
import org.scalamock.scalatest.MockFactory
import org.scalamock.generated.GeneratedMockFactory

class UsingScalaMockSample extends Spec with MustMatchers with MockFactory {
 describe("ScalaMocks can create mocks of traits") {
 it("can create a mock for a trait") {
 val daoMock = mock[DAO]

 //set up actual values to be used.
 val theGratefulDead: Band = new Band("Grateful Dead")
 val wyntonMarsalis: Artist = new Artist("Wynton", "Marsalis")
 val psychedelicFurs: Band = new Band("Psychedelic Furs")
 val ericClapton: Artist = new Artist("Eric", "Clapton")

 val workingmansDead = new Album("Workingman's Dead", 1970, theGrateful-
Dead)
 val midnightToMidnight = new Album("Midnight to Midnight", 1987, psychede-
licFurs)
 val wyntonAndClapton = new Album("Wynton Marsalis and Eric Clapton play
the Blues", 2011, wyntonMarsalis, ericClapton)

 val jukeBox = new JukeBox(Some(List(workingmansDead, midnightToMidnight,
wyntonAndClapton)))

 //create the subject under test
 val jukeboxStorageService = new JukeboxStorageService(daoMock)

 daoMock.expects.persist(workingmansDead)
 daoMock.expects.persist(midnightToMidnight)
 daoMock.expects.persist(wyntonAndClapton)

 daoMock.expects.persist(theGratefulDead)
 daoMock.expects.persist(psychedelicFurs)
 daoMock.expects.persist(wyntonMarsalis)
 daoMock.expects.persist(ericClapton)

ScalaMock | 109

 jukeboxStorageService.persist(jukeBox)
 }
}

ScalaMock requires the type of the object that is to be mocked. In this example,
mock[DAO] generates a mock of the DAO class, which is the mocked type. The subsequent
lines, as before, are dummy objects for Bands, Artists, and Albums used to test the
DAO. Each dummy object is placed into the JukeBox object, which will be used inside
the jukeboxStorageService.

After creating the JukeboxStorageService, the expectations on the mock are created.
daoMock expects that persist is called for all three albums: Workingmans Dead, Mid‐
night to Midnight, and Wynton and Clapton. In the next set, expectations are made for
the two bands, the Grateful Dead and the Psychedelic Furs. Finally come expectations
for the artists, Wynton Marsalis and Eric Clapton.

To invoke the tests, a call to persist is made on the jukeboxStorageService object.
Again, the only difference is the setup. Testing for traits in ScalaMock is similar to
EasyMock and Mockito. But where ScalaMock will leave its competitors in the dust is
in its ability to test things such as functions, objects, companion objects, final classes,
and methods.

Mocking Classes
Like Mockito and EasyMock, ScalaMock can mock concrete classes. To use it, you must
run the generate-mocks compiler plug-in by calling generate-mocks in sbt before
running your test. generate-mocks generates instrumented classes in the target/scala-
version/mock-classes folder of the project. These classes will be substituted for the real
classes during the text. The command also installs a trait named org.scalamock.gen
erated.GeneratedMockFactory. The trait will be compiled when generated.

Therefore at the time of compilation, the developer will not see this trait as if it is some‐
thing concrete. For most developers working in IDEs, the trait would be highlighted in
some way, such as appearing red.

After the setup has been completed, the shell of the test should look like the following
example. When viewing the sample, notice that we include an import statement for
org.scalamock.generated.GeneratedMockFactory and extend it as a trait.

/src/test/scala/com/oreilly/testingscala/UsingScalaMockSample.scala.

package com.oreilly.testingscala

import org.scalatest.Spec
import org.scalatest.matchers.MustMatchers
import org.scalamock.scalatest.MockFactory
import org.scalamock.generated.GeneratedMockFactory

110 | Chapter 5: Mocking

class UsingScalaMockSample extends Spec with MustMatchers with MockFactory with
GeneratedMockFactory {
 //Put tests here.
}

To create a mock for a concrete class, a declaration must be made that the class is to be
mocked. In order to achieve that, a new class needs to be created with different catego‐
rization.

In the src folder of the project, create a folder named generate-mocks that is a sibling of
main and test. Within the generate-mocks folder, create a folder named scala. Within the
scala folder, which is now a folder on the classpath, a dummy class needs to be created.
The name of the class doesn’t matter. It is a placeholder for annotations that detail which
classes should be mocked and how they should be mocked. Figure 5-1 shows a sample
layout for the projects in this book.

Figure 5-1. Folder arrangement for the generate-mocks folder

In the following example, the placeholder class will be called GenerateMocks. To reem‐
phasize, this class that you create can be called whatever you would like. Above of the
dummy class will be annotations for all mocks, companion, and singleton mocks that
are required to test the class.

/src/generate-mocks/scala/GenerateMocks.scala.

import com.oreilly.testingscala._
import org.scalamock.annotation.{mock}

@mock[Artist]
@mock[Album]
@mock[Track]
class GenerateMocks

ScalaMock | 111

Once the annotations are in place on the dummy class, ScalaMock will use the annota‐
tions to create mock classes that will be used in place of the actual classes. The test for
our next example requires mocks for the Artist, Band, and Album classes.

/src/test/scala/com/oreilly/testingscala/UsingScalaMockSample.scala.

package com.oreilly.testingscala

import org.scalatest.Spec
import org.scalatest.matchers.MustMatchers
import org.scalamock.scalatest.MockFactory
import org.scalamock.generated.GeneratedMockFactory

class UsingScalaMockSample extends Spec with MustMatchers with MockFactory with
GeneratedMockFactory {

 describe("ScalaMocks can create mocks of various structures") {
 //Previous test omitted for brevity

 it("can also mock regular object, and along with other traits") {
 val daoMock = mock[DAO]
 //set up actual values to be used.
 val theGratefulDead: Band = mock[Band]
 val wyntonMarsalis: Artist = mock[Artist]
 val psychedelicFurs: Band = mock[Band]
 val ericClapton: Artist = mock[Artist]

 val workingmansDead = mock[Album]
 val midnightToMidnight = mock[Album]
 val wyntonAndClapton = mock[Album]

 val jukeBox = mock[JukeBox]

 //create the subject under test
 val jukeboxStorageService = new JukeboxStorageService(daoMock)

 inSequence {
 jukeBox.expects.albums returning (Some(List(workingmansDead, midnightTo-
Midnight, wyntonAndClapton)))

 daoMock.expects.persist(workingmansDead)
 workingmansDead.expects.acts returning (List(theGratefulDead))
 daoMock.expects.persist(theGratefulDead)

 daoMock.expects.persist(midnightToMidnight)
 midnightToMidnight.expects.acts returning (List(psychedelicFurs))
 daoMock.expects.persist(psychedelicFurs)

 daoMock.expects.persist(wyntonAndClapton)
 wyntonAndClapton.expects.acts returning (List(ericClapton, wyntonMarsa-
lis))

112 | Chapter 5: Mocking

 daoMock.expects.persist(ericClapton)
 daoMock.expects.persist(wyntonMarsalis)
 }

 jukeboxStorageService.persist(jukeBox)
 }
}

This example creates mocks out of the concrete classes Band, Artist, Album, JukeBox,
and DAO. The test class, jukeboxStorageService, lists its assertions in order using the
inSequence{..} block. If any of the calls are not made, or if they are made out of order,
an org.scalamock.ExpectationException will be thrown. As before, after all the as‐
sertions have been made, the method call or calls to the subject under test can be made.

The following sample shows an sbt testing session using ScalaMock. As I mentioned
before, you must call generate-mocks in sbt before the test.

> clean
[success] Total time: 0 s, completed Mar 15, 2012 8:47:45 PM
> generate-mocks
[info] Updating {file:/home/danno/testing_scala_book.svn/testingscala/}Testing
Scala...
[info] Resolving joda-time#joda-time;1.6.2 ...
[info] Resolving junit#junit;4.10 ...
....
[info] Resolving org.scalamock#scalamock-compiler-plugin_2.9.1;2.3-SNAPSHOT ...
[info] Resolving org.scala-lang#scala-compiler;2.9.1 ...
[info] Done updating.
[info] Compiling 13 Scala sources to /home/danno/testing_scala_book.svn/
testingscala/target/scala-2.9.1/classes...
[log generatemocks] Creating mock for: class Artist
[log generatemocks] Creating mock for: class Artist
....
[log generatemocks] Creating mock for: class Track
[log generatemocks] Creating mock for: class Band
[log parser] parsing Iterator.class
[success] Total time: 25 s, completed Mar 15, 2012 8:48:18 PM
> test:compile
[info] Compiling 19 Scala sources to /home/danno/testing_scala_book.svn/
testingscala/target/scala-2.9.1/mock-classes...
[info] Compiling 52 Scala sources to /home/danno/testing_scala_book.svn/
testingscala/target/scala-2.9.1/test-classes...
[success] Total time: 99 s, completed Mar 15, 2012 8:51:44 PM
> ~test-only com.oreilly.testingscala.UsingScalaMockSample
[info] UsingScalaMockSample:
[info] ScalaMocks can create mocks of various structures
[info] - can create a mock for a trait
[info] - can also mock regular object, and along with other traits
[info] Passed: : Total 2, Failed 0, Errors 0, Passed 2, Skipped 0
[success] Total time: 1 s, completed Mar 15, 2012 8:52:02 PM
1. Waiting for source changes... (press enter to interrupt)

ScalaMock | 113

It is worth getting into the habit of calling generate-mocks each time a change is made
to a class that is mocked, since the mock in current use doesn’t have the latest updates.
Although this is somewhat inelegant now, there should be a more streamlined process
in the future.

Mocking Singleton Objects
The strength of ScalaMock doesn’t stop there. It can also mock singleton objects. This
in itself is perhaps the best selling point for ScalaMock. In the Java space, mocking static
methods has often been a pain point for the test-driven developer. Such limitations
caused us to rethink our programming structure, and not be so dependent on the static
keyword, a blessing in disguise. Static methods are not used as heavily today, except for
constructs like static factory methods in frameworks like Spring. In Scala, there is no
static keyword, and therefore no static initializers, variables, or methods. In lieu of
static, Scala uses object. It can be used either as a factory or as a declared instance of
a class. A Java programmer coming to Scala can consider the object as a structure that
houses methods and variables that would have been static in Java.

The following example shows a singleton class for The Boss—BruceSpringsteenFac

tory. The factory is there to create objects or a list of Album objects that created Bruce
Springsteen. The artist method is used to create an Artist object representing Bruce.
The discography method creates a List of Album objects representing some of his earlier
works, and finally the jukebox method creates a JukeBox object of all of Bruce’s work.

/src/main/scala/com/oreilly/testingscala/BruceSpringsteenFactory.scala.

package com.oreilly.testingscala

object BruceSpringsteenFactory {
 private lazy val theBoss = {
 println("loaded the info");
 new Artist("Bruce", None, "Springsteen", Nil, Some("The Boss"))
 }

 def artist = discography.foldLeft(theBoss) {
 (boss, album) ⇒ boss.addAlbum(album)
 }

 def discography = List(
 new Album("Greetings from Ashbury Park, N.J.", 1973, None, theBoss),
 new Album("The Wild, The Innocent\n& the E Street Shuffle", 1973, None, the-
Boss),
 new Album("Born To Run", 1975, None, theBoss),
 new Album("Darkness on the Edge of Town", 1978, None, theBoss),
 new Album("The River", 1980, None, theBoss),
 new Album("Nebraska", 1982, None, theBoss),

114 | Chapter 5: Mocking

 new Album("Born in the USA", 1984, None, theBoss))

 def jukebox = new JukeBox(Some(discography))
}

What if this object is used within another object that happens to be the subject under
test? That would make BruceSpringsteenFactory a prime candidate to be mocked.
The next example is a test for a class named BruceSpringsteenStatistics, another
object that provides statistics for Bruce Springsteen given the information provided by
the singleton, BruceSpringsteenFactory.

/src/test/scala/com/oreilly/testingscala/UsingScalaMockSample.scala.

package com.oreilly.testingscala

import org.scalatest.Spec
import org.scalatest.matchers.MustMatchers
import org.scalamock.scalatest.MockFactory
import org.scalamock.generated.GeneratedMockFactory

class UsingScalaMockSample extends Spec with MustMatchers with MockFactory with
GeneratedMockFactory {
 describe("ScalaMocks can create mocks of various structures") {

 //Previous Tests omitted for brevity

 it("can mock a singleton object") {
 val bruceSpringsteenFactory = mockObject(BruceSpringsteenFactory)

 val albumMock1 = mock[Album]
 val albumMock2 = mock[Album]
 val albumMock3 = mock[Album]

 albumMock1.expects.year returning (1978)
 albumMock2.expects.year returning (1990)
 albumMock3.expects.year returning (1999)

 bruceSpringsteenFactory.expects.discography returning List(albumMock1, al-
bumMock2, albumMock3)

 BruceSpringsteenStatistics.numberOfAlbums must be (3)
 BruceSpringsteenStatistics.averageYear must be ((1978 + 1990 + 1999) / 3)
 }
 }
}

In this example, BruceSpringsteenFactory is the singleton object to be mocked.
BruceSpringsteenStatistics is another singleton, but is the subject under test. The

ScalaMock | 115

point of the test is to derive the statistics from BruceStringsteenStatistics using test-
driven development. mockObject is a method that creates a mock for the singleton. Note
that mockObject uses parentheses whereas mock uses brackets. mockObject accepts the
singleton as an argument in order to generate the mock.

The next lines create three mock Album objects and three expectations about those
mocks: that the first album will return the year 1978, that the second album will return
1990, and that the third will return 1999. Next, the bruceSpringsteenFactory has an
expectation that the discography method will be called and will return a list of the
Album mocks that have been established. Finally, the last two lines assert that the num
berOfAlbums and averageYear method will return the expected results.

Some additional setup is still required. The GeneratedMocks dummy class will need to
be notified that the BruceSpringsteenFactory needs to be mocked. The following code
snippet does this.

/src/generate-mocks/scala/GenerateMocks.scala.

import com.oreilly.testingscala._
import org.scalamock.annotation.{mockWithCompanion, mockObject, mock}

@mock[Artist]
@mock[Album]
@mock[Track]
@mock[DAO]
@mock[JukeBox]
@mockObject(BruceSpringsteenFactory)
class GenerateMocks

This example is different from the first one in this section in that it uses @mockObject
with the singleton as a parameter, instead of @mock, which takes a type parameter.

Now you should run clean, generate-mocks, and test:compile, and then test the class
to let a failure happen. Implementing the class and satisfying the test would now some‐
what look like the following example.

/src/main/scala/com/oreilly/testingscala/BruceSpringsteenStatistics.scala.

package com.oreilly.testingscala

object BruceSpringsteenStatistics {
 def numberOfAlbums = BruceSpringsteenFactory.discography.size
 def averageYear = BruceSpringsteenFactory.discography.map(_.year).sum / num-
berOfAlbums
}

This is a huge advancement in testing, and the setup required to test tough scenarios
like singletons is fairly minimal. For many testers, this is welcoming.

116 | Chapter 5: Mocking

Mocking Companion Objects
In Scala, an object with the same name as a class is called a companion object. The role
of a companion object is to offer factory methods for the accompanying class or trait
and extractors for pattern matching, as well as house shared variables between objects
created from the class. A companion object and its associated class also have access to
each other’s members’ variables.

For an example of testing a companion object with ScalaMock, we’ll give the DAO trait
some company: two classes that are implementations of the DAO trait, and a DAO com‐
panion object in charge of doling out the concrete implementations of the DAO.

/src/main/scala/com/oreilly/testingscala/DAO.scala.

package com.oreilly.testingscala

trait DAO {
 def persist[T](t:T)
}

object DAO {
 private class MySqlDAO extends DAO {def persist[T](t:T){}}
 private class DB2DAO extends DAO {def persist[T](t:T){}}

 def createMySqlDAO:DAO = new MySqlDAO
 def createDB2DAO:DAO = new DB2DAO
}

The DAO object has the same name as the trait, and is therefore a companion to the trait.
The companion object has two factory methods, one that will return a MySqlDAO object,
and another that will return a DB2DAO object. The following code mocks the companion
and hijacks createMySQLDAO and createDB2DAO to return the object that will be defined
by the test programmer. The subject under test for the example will be a class called
AlbumMultipleStorageService that uses the DAO companion object to obtain the data
access objects for two different kinds of databases, one for mySQL, and one for DB2.
AlbumMultipleStorageService then will use both of the DAOs to store the Artist, Peter
Murphy, and then use both DAOs to store the album, Cascade.

/src/test/scala/com/oreilly/testingscala/UsingScalaMockSample.scala.

package com.oreilly.testingscala

import org.scalatest.Spec
import org.scalatest.matchers.MustMatchers
import org.scalamock.scalatest.MockFactory
import org.scalamock.generated.GeneratedMockFactory

class UsingScalaMockSample extends Spec with MustMatchers with MockFactory with
GeneratedMockFactory {

ScalaMock | 117

 describe("ScalaMocks can create mocks of various structures") {

 //previous tests omitted for brevity

 it("can mock a companion object") {
 val daoMockCompanion = mockObject(DAO)

 val daoMockMySql = mock[DAO]
 val daoMockDB2 = mock[DAO]

 val peterMurphy: Artist = new Artist("Peter", "Murphy")

 val cascade = new Album("Cascade", 1995, peterMurphy)

 daoMockCompanion.expects.createMySqlDAO returning (daoMockMySql)
 daoMockCompanion.expects.createDB2DAO returning (daoMockDB2)

 inSequence {
 daoMockMySql.expects.persist(cascade)
 daoMockDB2.expects.persist(cascade)
 daoMockMySql.expects.persist(peterMurphy)
 daoMockDB2.expects.persist(peterMurphy)
 }

 val albumMultipleStorageService = new AlbumMultipleStorageService()
 albumMultipleStorageService.persist(cascade);
 }
 }
}

mockObject is called with the singleton companion object that needs to be mocked for
testing purposes. The DAO companion object will be used inside the AlbumMultipleS
torageService to retrieve the two DAOs. After mocking the companion object, a reg‐
ular trait mock is made for the mySQL DAO, and another for the DB2 DAO. Next, the
Artist, Peter Murphy, is created, as well as his album, Cascade, with a reference to the
artist object. This is followed by expectations of the companion object. The code inside
of the inSequence block consists of expectations made to the mySQL and DB2 DAO
mocks in the specified sequential order. Finally, the subject under test, AlbumMultipleS
torageService, is instantiated, and the persist method is called with the album,
Cascade.

A change must be made in the dummy class, GenerateMocks, to notify ScalaMock that
along with the DAO trait, its companion object will be mocked as well.

import com.oreilly.testingscala._
import org.scalamock.annotation.{mockWithCompanion, mockObject, mock}

@mock[Artist]
@mock[Album]
@mock[Track]

118 | Chapter 5: Mocking

@mock[Band]
@mock[JukeBox]
@mock[CompilationAlbum]
@mockWithCompanion[DAO]
@mockObject(BruceSpringsteenFactory)
class GenerateMocks

The significant change is that the annotation is no longer @mock[DAO] but @mockWith
Companion[DAO]. This lets ScalaMock know it must generate a mock with the intent that
not only will the trait or class be mocked, but its corresponding companion object as
well.

After calling generate-mocks in SBT, compiling the tests, running the tests, failing, and
successfully implementing the production code, the end result of the subject under test
will look somewhat like the following example.

package com.oreilly.testingscala

class AlbumMultipleStorageService {
 val mysqlDAO = DAO.createMySqlDAO
 val db2DAO = DAO.createDB2DAO

 def persist(album:Album) {
 mysqlDAO.persist(album)
 db2DAO.persist(album)

 album.acts.foreach{act => mysqlDAO.persist(act); db2DAO.persist(act)}
 }
}

Notice that the first two lines of AlbumMultipleStorageService are calls to the single‐
ton companion object to retrieve the specified DAOs. When the persist method is
called, it uses those DAOs to persist the albums and any acts associated with the album.

Making good examples for testing singleton objects was tough, mainly because making
a call to a singleton (or static) method within another method is something that I typ‐
ically stay away from—since it tightly couples two objects and makes one object com‐
pletely dependent on another. My preferred modus operandi for testing is to call sin‐
gleton methods outside the subject under test and inject the results.

The process of calling methods, then taking the result, and injecting them into the
subject, making it decoupled and easily testable, is called inversion of control.

In the Scala world, though, there are other different and interesting ways to wire objects
with one another. One such technique is the “cake pattern.” This pattern makes heavy
of use of layering Scala traits. Since the traits contain the components used to build
up the application, having the ability to mock singleton and companion objects may
come in handy.

ScalaMock | 119

Mocking Functions
An interesting facet of ScalaMock is the ability to mock functions.

This can be invaluable for functions that your test has to invoke but that do real-world
work you don’t want to do during a test: for instance, a function that communicates with
another system over a network or performs time-consuming calculations.

 val styxAlbum: Album = new Album("Styx Album", 1945, new Band("Styx"))
 val sarahMcLachlanAlbum: Album = new Album("Sarah McLachlan Album", 1997, new
Artist("Sarah", "McLachlan"))
 val billyJoelAlbum: Album = new Album("Billy Joel Album", 1977, new Ar-
tist("Billy", "Joel"))

 val albumFunction = mockFunction[Album, Int]
 albumFunction expects (styxAlbum) returning (5)
 albumFunction expects (sarahMcLachlanAlbum) returning (4)
 albumFunction expects (billyJoelAlbum) returning (5)

 ((styxAlbum :: sarahMcLachlanAlbum :: billyJoelAlbum :: Nil) map albumFunc-
tion) must be(5 :: 4 :: 5 :: Nil)

Some albums for Styx, Sarah McLachlan, and Billy Joel are assembled for this ex‐
ample. albumFunction is a mock function of type Function1[Album, Int], which takes
in an Album and returns an Int. This function in the example is meant to represent some
sort of call to a service, either local or remote, that will return the album’s rating. Mocking
a function merely needs a call of mockFunction with the types that are required, in this
case, Album and Int. After the declaration, expectations can then be created—in this
case, that passing an Album to the function will return an Int. When the function is now
plugged into a map method call, the list of albums on the left should be the list of ranks
that were provided by the expectations: 5, 4, 5.

Unlike singleton objects, classes, and companion classes, no annotations are required
on the GenerateMocks dummy class. So if you wish to use the regular build.sbt file as
opposed to a Scala build file and don’t require concrete, final, or object mocking, having
just a plain build.sbt file is perfectly fine, since mocking a function doesn’t require a call
to generate-mocks.

Mocking Finals
Finals have been another bane for test-driven programmers. One reason is that
abstracting a class is often a strategy for united testing, since you can override heavy
non-isolated processes for something light and testable. Another reason is that most
frameworks also extend classes as part of their trick to mock classes. Most test driven
developers use the adapter pattern to cover up the final classes to make them friendly
for testers.

120 | Chapter 5: Mocking

The amazing ScalaMock makes mocking final classes a snap. Just mock the final class
in question, add the class as an annotation to the Dummy class (in our example it is called
GenerateMocks.scala), and ScalaMock will do the rest. It’s the same process, with the
same results.

To prove that it works, suppose JukeBox was changed from a regular class to a final class,
by simply adding final. All the tests we have written using ScalaMock would continue
to pass. The following code snippet is a JukeBox that has been made into a final class.

/src/main/scala/com/oreilly/testingscala/JukeBox.scala.

package com.oreilly.testingscala

final class JukeBox private (val albums:Option[List[Album]], val current-
Track:Option[Track]) {
 def this(albums:Option[List[Album]]) = this(albums, None)
 def readyToPlay = albums.isDefined
 def play = new JukeBox(albums, Some(albums.get(0).tracks.get(0)))
}

Rerunning the previous test case that mocked JukeBox shows that Jukebox is actually
mocked.

class UsingScalaMockSample extends Spec with MustMatchers with MockFactory with
GeneratedMockFactory {
 describe("ScalaMocks can create mocks of various structures") {

 //Omitted previous tests for brevity

 it("can also mock regular object, and along with other traits") {
 val daoMock = mock[DAO]
 //set up actual values to be used.
 val theGratefulDead: Band = mock[Band]
 val wyntonMarsalis: Artist = mock[Artist]
 val psychedelicFurs: Band = mock[Band]
 val ericClapton: Artist = mock[Artist]

 val workingmansDead = mock[Album]
 val midnightToMidnight = mock[Album]
 val wyntonAndClapton = mock[Album]

 val jukeBox = mock[JukeBox]

 //create the subject under test
 val jukeboxStorageService = new JukeboxStorageService(daoMock)

 inSequence {

 jukeBox.expects.albums returning (Some(List(workingmansDead, midnightTo-
Midnight, wyntonAndClapton)))

 daoMock.expects.persist(workingmansDead)

ScalaMock | 121

 workingmansDead.expects.acts returning (List(theGratefulDead))
 daoMock.expects.persist(theGratefulDead)

 daoMock.expects.persist(midnightToMidnight)
 midnightToMidnight.expects.acts returning (List(psychedelicFurs))
 daoMock.expects.persist(psychedelicFurs)

 daoMock.expects.persist(wyntonAndClapton)
 wyntonAndClapton.expects.acts returning (List(ericClapton, wyntonMarsa-
lis))
 daoMock.expects.persist(ericClapton)
 daoMock.expects.persist(wyntonMarsalis)
 }

 jukeboxStorageService.persist(jukeBox)
 }

 //Omitted next tests for brevity
 }
}

Even though Jukebox is final, running the test will cause no detriment to this test
whatsoever.

[info] ScalaMocks can create mocks of various structures
[info] - can create a mock for a trait
[info] - can also mock regular object, and along with other traits
[info] - can mock a singleton object
[info] - can mock a companion object
[info] - can mock a function

The Jukebox has no reason to be a final class: the final keyword in this
example is for the purpose of demonstration.

122 | Chapter 5: Mocking

Creating stunt doubles is a test-driven development canon. Test-driven development
requires that only one class is the subject of the test, no other. All other classes and objects
will need to be replaced with either a fake, a dummy, a stub, or a mock. The popular Java
mocking frameworks work really well in Scala, and as seen, testing frameworks such as
ScalaTest and Specs2 have sugars that make a simple process even simpler by making
mocking look like an inherit part of its own package.

If the test-driven developer requires more power to mock objects like functions, Scala
object, and final classes, then ScalaMock is the mocking library to use.

Given what you have learned in this chapter, you may find yourself attracted to one
testing framework over another either based on the mocking syntax sugars or whether
it supports ScalaMock at this time, although I anticipate that both ScalaTest and Specs2
will support ScalaMock in the future.

ScalaMock | 123

CHAPTER 6

ScalaCheck

Scala Check is automated testing. To be more precise, it fully automates test generation
so that there is no need to create test data. We have already seen two ways to feed test
data into ScalaTest. TestNG covered the TestNG DataProvider that lets the end user
create test data and send it to the test method for processing. Specs2 has DataTable
functionality that allows the developer to create an ASCII-like table with test data that
is similarly thrown into the test line-by-line. ScalaCheck is fundamentally different from
these frameworks; it generates semirandom data within the parameters you request, so
you don’t have to take the time to come up with test data. Not only does it randomly
generate data, saving time, it also makes your code more robust, because a human tester
is not likely to think of the full range of values that the program can receive during real
use.

ScalaCheck is derived from the Haskell product QuickCheck, and is open source.

There are three main components to ScalaCheck. One is a Properties class that defines
tests and runs them through a test harness called Prop. Properties can be mixed and
matched with various groupings and combinations, as well as filtered to provide only
the data needed for the test.

ScalaCheck also provides a Gen object, which is a generator class that provides much of
the fake data and allows you to control the kind of data created. For instance, if you want
only positive integers, you can use Gen to eliminate negative integers and zero.

Finally, the Arbitrary class is used for custom types, which of course are useful because
your programs are made up of more than primitive types. This chapter will cover Prop
erty, Gen, Arbitrary, and a few other features.

ScalaCheck also is integrated with the two major Scala testing frameworks that have
their own special sugars: ScalaTest and Specs2. Each of these will be covered in this
chapter.

125

ScalaCheck requires only one dependency in the build.sbt file. ScalaCheck, like ScalaTest
and Specs2, also runs out of the box in SBT without any special configuration. It rec‐
ognizes any ScalaCheck properties and runs automatically. The following listing con‐
tains all the latest items required for build.sbt, with the last dependency being the
ScalaCheck library.

name := "Testing Scala"

version := "1.0"

scalaVersion := "2.9.0-1"

resolvers ++= Seq("snapshots" at "http://scala-tools.org/repo-snapshots",
 "releases" at "http://scala-tools.org/repo-releases")

libraryDependencies ++= Seq(
 "org.scalatest" %% "scalatest" % "1.8" % "test" withSources() withJavadoc(),
 "joda-time" % "joda-time" % "1.6.2" withSources() withJavadoc(),
 "junit" % "junit" % "4.10" withSources() withJavadoc(),
 "org.testng" % "testng" % "6.1.1" % "test" withSources() withJavadoc(),
 "org.specs2" %% "specs2" % "1.12.3" % "test" withSources() withJavadoc(),
 "org.easymock" % "easymock" % "3.1" % "test" withSources() withJavadoc(),
 "org.mockito" % "mockito-core" % "1.9.0" % "test" withSources() withJavadoc(),
 "org.scalacheck" %% "scalacheck" % "1.10.0" % "test" withSources() withJava-
doc(),
 "org.scalamock" %% "scalamock-scalatest-support" % "2.4")

After the requisite reload and update, ScalaCheck is ready to use.

Properties
The ScalaCheck test harness is the Prop, and the testing class is a collection of Proper
ties. To create a ScalaCheck test, create an object that extends Properties. The fol‐
lowing is a basic test object for a ScalaCheck test. The argument passed to the con‐
structor of the super class is the name that describes the test, Simple Math.

src/test/scala/com/oreilly/testingscala/BasicScalaCheckProperties.scala.

package com.oreilly.testingscala

import org.scalacheck.{Prop, Properties}

object BasicScalaCheckProperties extends Properties("Simple Math"){
 property("Sum is greater than its parts") = Prop.forAll {(x:Int, y:Int) => x
+y > x && x+y > y}
}

The title is sent to the superclass as a String parameter. A Properties test must be an
object (a Scala singleton) and not a class. Otherwise, the test will not run.

126 | Chapter 6: ScalaCheck

Each property takes a String to describe the purpose of the test. The example shown
tests whether the sum of two numbers is greater than the sum of each number by itself.
(Hint: it isn’t always.) The left side of the assignment statement is referred to as the
property specifier, while the right side is the actual Prop test. Prop.forAll takes, as its
parameter, a function whose arguments describe the data that the test developer wants
automatically generated for a test. In this example, the Prop will provide two integers,
and ScalaCheck will test the assertion that the sum is greater than the first created
number (x), then that it is greater than the second created number (y).

Running the test using either test or test-only in SBT renders the following output.

src/test/scala/com/oreilly/testingscala/BasicScalaCheckProperties.scala.

> ~test-only com.oreilly.testingscala.BasicScalaCheckProperties
[info] ! String.Sum is greater than its parts: Falsified after 0 passed tests.
[info] > ARG_0: 0
[info] > ARG_1: 0
[error] Failed: : Total 1, Failed 1, Errors 0, Passed 0, Skipped 0
[error] Failed tests:
[error] com.oreilly.testingscala.BasicScalaCheckProperties
[error] {file:/home/danno/testing_scala_book.git/testingscala/}default-cef86a/
test:test-only: Tests unsuccessful
[error] Total time: 0 s, completed Jan 11, 2012 10:26:08 PM
1. Waiting for source changes... (press enter to interrupt)

It didn’t take long for the test to fail, and ScalaCheck is nice enough to let us in on why
it failed to pass. In the output, the Property check failed when both arguments, ARG_0
and ARG_1, were zero.

Let’s change the test to something a bit more successful.

src/test/scala/com/oreilly/testingscala/BasicScalaCheckProperties.scala.

package com.oreilly.testingscala

import org.scalacheck.{Prop, Properties}

object BasicScalaCheckProperties extends Properties("Simple Math"){
 property("Sums are associative") = Prop.forAll {(x:Int, y:Int) => x+y == y+x}
}

Running the test now reports success. This success shows how thoroughly this method
was tested by reporting that Sums are associative passed 100 tests. This is very
worth repeating: 100 separate combinations of integers were tested, without the test
developer typing in any data table or data provider, often times, with data that the
developer did not consider. In the case of integers that can include a 0, MAX_VALUE, and
MIN_VALUE. For floating-point numbers, that can include NaN, Infinity, and -Infinity.

> ~test-only com.oreilly.testingscala.BasicScalaCheckProperties
[info] Compiling 1 Scala source to /home/danno/testing_scala_book.git/testings-

Properties | 127

cala/target/scala-2.9.0-1/test-classes...
[info] + Simple Math.Sums are associative: OK, passed 100 tests.
[info] Passed: : Total 1, Failed 0, Errors 0, Passed 1, Skipped 0
[success] Total time: 21 s, completed Jan 11, 2012 10:42:06 PM
1. Waiting for source changes... (press enter to interrupt)

Constraining Properties
The next few examples test some of the music-based code that was developed in earlier
chapters, to give our production code some good vetting. First, we’ll generate some first,
middle, and last names in the style that we tested in AcceptanceSpecification. We’ve
designed the string so that the middle name is optional, so the following definition of
the property contains two cases. ScalaCheck will generate some strings with a middle
name and some without.

/src/test/scala/com/oreilly/testingscala/ArtistScalaCheckProperties.scala

package com.oreilly.testingscala

import org.scalacheck.{Prop, Properties}

object ArtistScalaCheckProperties extends Properties("Testing Artists Thorough-
ly") {
 property("middleNames") =
 Prop.forAll {
 (firstName: String, middleName: Option[String], lastName: String) =>
 middleName match {
 case Some(x) =>
 val artist = new Artist(firstName, x, lastName)
 artist.fullName == firstName + " " + x + " " + lastName
 case _ =>
 val artist = new Artist(firstName, lastName)
 artist.fullName == firstName + " " + lastName
 }
 }
}

ScalaCheck is very thorough with string testing. In the property we just defined, some
of the values created are pretty random characters, not limited to those in the Latin
character code. A sample follows of a first name, middle name, and last name set created
by ScalaCheck.

(ฦ����琗�攖�쎁�뙋ʹ�ƹỳ섢�⁛˞���沔�험쮮뱆뇀叜칩��魯
姅 ᾘ懹컚�舶푫㈏��ᶑ�ই 댗溿��湹클뢵흰烐帘攒′敪�驹깶�滷��,Some(氷مي����衾銠ხ뻃�
趼嬓�벇돡�퓑昁��ᄧ偵馿嵢�떀�踱왾侊霳焗�铻뫮��잵詩��솖搾�챭튊擓勱�秤枴솸���Ṍ 黗墘侺
�﹛눏쇖��葻لجي �),�適趹뫊鶵鎺�햮쁿瀌仹喢輕�걑鱳멟廕爆령鲌˒둯�댁��뤶)

128 | Chapter 6: ScalaCheck

In fact, come to think of it, this doesn’t contain many Latin/English characters at all!
ScalaCheck does well at providing even the most esoteric data, which will add to the
confidence level of any test. In contrast, it is highly unlikely that a test developer would
even consider randomly chosen Unicode characters for a string, unless they require a
very internationalized application.

Of course, that’s a lot of weird data for most tests, and the data sometimes needs to be
constrained to give a more realistic test set. If you know that a test requires only alpha‐
numeric characters, only positive integers, etc, ScalaCheck makes it easy to customize
the data provided.

The next sample object uses additional Gen parameters to change the type of data given
to the test. Prop.forAll now takes three additional parameters that correspond to the
first name, middle name, and last name it will create. The first parameter requests that
the first element be an alphabetical string. The second allows either Some with an al‐
phabetical string or None for the second element. The third parameter, like the first,
chooses an alphabetical string. The println statement is included just to print a sample
of the data that ScalaCheck is creating, so you can verify that all the data consists of
ASCII letters. The rest of the code is the same as before.

src/test/scala/com/oreilly/testingscala/ArtistScalaCheckProperties.scala.

object ArtistScalaCheckProperties extends Properties("Testing Artists Thorough-
ly") {
 property("middleNames") =
 Prop.forAll (Gen.alphaStr, Gen.oneOf(Gen.alphaStr.sample, None), Gen.al-
phaStr) {
 (firstName: String, middleName: Option[String], lastName: String) =>
 println(firstName, middleName, lastName)
 middleName match {
 case Some(x) =>
 val artist = new Artist(firstName, x, lastName)
 artist.fullName == firstName + " " + x + " " + lastName
 case _ =>
 val artist = new Artist(firstName, lastName)
 artist.fullName == firstName + " " + lastName
 }
 }
}

A resulting data looks like the following, which is vastly different from some of the
varying global character sets. The first sample shown has a first and last name, with no
middle name. The second example is the same but with longer string length, and finally
comes a case with all three names: first, middle, and last.

Constraining Properties | 129

(tvzoTzJppo,None,gygoprpyzw)
(OzebmzjbbovreytrmsfwuwfbsmlvjkzutwcbbfspqJhrjqqwdaveArsel,None,gbuxlswkf-
hyeyplrtzKkasfklrzkjaktygrzucftfhlfeeuxlleoin)
(zfvtoVki,Some(ggohbctymlkjsrmmprcRigdiqmygtfDmsknwcoikzbhzrfwuoNgrNwjcj-
mohccznrbzldiRcmcGscambzaporrmnc),noodpvKwusaRwzimZxujgqvknnlfgqVq)

The end result of the test is pure success with 100 varying tests.

[info] + Testing Artists Thoroughly.middleNames: OK, passed 100 tests.
[info] Passed: : Total 1, Failed 0, Errors 0, Passed 1, Skipped 0
[success] Total time: 4 s, completed Jan 12, 2012 12:10:35 AM

A different way to constrain a test is by using a conditional property. Conditional prop‐
erties are essentially filters where you stipulate what is considered good data for the test.
In the next example, we may want to test numbers against particularly high or partic‐
ularly low values.

The following example limits the year an album was made to within the 20th and 21st
centuries. Our constraints would need a number from 1900 to maybe 3000, since we
may have already taken care of validating the year of an album’s creation. The year 3000
was created arbitrarily.

Using constraints in ScalaCheck requires only the use of a new ==> operator, an impli‐
cation operator that divides the filtering logic from the test itself.

src/test/scala/com/oreilly/testingscala/AlbumScalaCheckProperties.scala.

package com.oreilly.testingscala

import org.scalacheck.{Prop, Properties}
import org.scalacheck.Prop._

object AlbumScalaCheckProperties extends Properties("Album Creation") {
 property("album can be created using a year from 1900 to 3000") =
 Prop.forAll {
 (title: String, year: Int, firstName: String, lastName: String) =>
 (year > 1900 || year < 3000) ==> {
 val album = new Album(title, year, new Artist(firstName, lastName));
 album.year == year
 album.title == title
 }
 }
}

This example runs through a list of random string data, and a year that is constrained
between 1900 and 3000 is stipulated by the implication operator.

[info] Compiling 1 Scala source to /home/danno/testing_scala_book.git/testings-
cala/target/scala-2.9.0-1/test-classes...
[info] + Album Creation.album can be created using a year from 1900 to 3000:
OK, passed 100 tests.
[info] Passed: : Total 1, Failed 0, Errors 0, Passed 1, Skipped 0
[success] Total time: 4 s, completed Jan 12, 2012 12:47:03 AM

130 | Chapter 6: ScalaCheck

Grouping Properties
A Properties object can contain one or more property tests. Prop objects can also be
combined to craft a larger composed Prop. The following example employs fairly simple
tests and creates stringsOnly, which creates String objects and tests if the size of the
string is greater than 0. positiveNumbersOnly uses a positive number Gen to provide
positive numbers and a positiveNumbers2 generator to do the same thing. alway
sPass and wontPass are Props that generate tests that always pass and always fail. Each
Prop is assigned to a variable, and each variable is then combined with &&, ||, and == to
determine if the tests pass or not.

src/test/scala/com/oreilly/testingscala/ArtistScalaCheckProperties.

package com.oreilly.testingscala

import org.scalacheck.{Gen, Prop, Properties}
import org.scalacheck.Prop._

object CombiningGenScalaCheckProperties extends Properties("Combining Proper-
ties") {
 val stringsOnly = Prop.forAll(Gen.alphaStr) {
 x: String => (x != "") ==> x.size >= 0
 }
 val positiveNumbersOnly = Prop.forAll(Gen.posNum[Int]) {
 x: Int => x >= 0
 }
 val positiveNumbers2Only = Prop.forAll(Gen.posNum[Int]) {
 x: Int => x > 0
 }

 val alwaysPass = Prop.forAll {
 x: Int => true
 }

 val wontPass = Prop.forAll((x: Int, y: Int) => x + y > 0)

 property("And") = stringsOnly && positiveNumbersOnly
 property("Or") = stringsOnly || wontPass
}

When run, property("And") passed, since stringsOnly and positiveNumbersOnly
passed. property("Or") passed, since stringsOnly passed and wontPass didn’t. Of
course, since we are using an or operator with the || short circuit operator becomes a
successful test.

The ArtistScalaCheckProperties object in the previous section contained three Gen
objects. Here are some more Gen methods that give you a wide range of options.

Grouping Properties | 131

Gen.value merely returns the value that it contains. For instance, suppose that a test
should succeed when handed a String of Orinoco Flow. This can be useful when you
wish to generate a fixed value as part of a larger random data sample. The following
overly simple test implements this.

src/test/scala/com/oreilly/testingscala/VariousGenCheckProperties.scala.

Prop.forAll(Gen.value("Orinoco Flow")) { _ == "Orinoco Flow"}

Gen.chooses provides a value in a range between two items, inclusively. In the following
example, a number is chosen randomly between 1 and 52, so that the value can be used
in a test. What gets selected in Gen.choose has to make sense.

src/test/scala/com/oreilly/testingscala/VariousGenCheckProperties.scala.

Prop.forAll(Gen.choose(1, 52)) {
 card => card < 53 && card > 0
}

Gen.choose with two Strings would not work out of the box, since there is there is no
set of rules established on how to create words—say, between Foo and Grok. That is not
to say it is impossible. If you want to use your operating system’s dictionary (e.g. /usr/
share/dict in Linux, contains an American-English dictionary), you can plug that into
ScalaCheck to create random English words to test your code. We will see later some
options you can use to customize your test harness to make that possible.

Gen.chooses requires values that have some sort of beginning and end. For a String
we can use ScalaCheck’s Choose implicit object to customize the behavior.

Gen.oneOf wraps other Gen objects and randomly selects one for each data set generated.
The following small example can generate either a number from 0 to 3 or the string
Aretha Franklin.

src/test/scala/com/oreilly/testingscala/VariousGenCheckProperties.scala.

Prop.forAll(Gen.oneOf(Gen.choose(-2, 3), Gen.value("Aretha Franklin"))) {
 _ match {
 case y: Int => (0 to 3).contains(y)
 case z: String => z == "Aretha Franklin"
 }
}

Gen.listOfN generates a list of the size provided in its first parameter, containing ran‐
dom values. This is perfect for randomly generated strings that must all be the same
size. The following example creates a swath of random lists containing numbers from
20 to 60, but each list will have only four elements.

src/test/scala/com/oreilly/testingscala/VariousGenCheckProperties.scala.

132 | Chapter 6: ScalaCheck

Prop.forAll(Gen.listOfN(4, Gen.choose(20, 60))) {
 x => (x.size == 4) && (x.sum < 240)
}

Gen.listOf create a random lists with random sizes, giving production code a great
workout if it involves List. The following example creates varying-sized lists with num‐
bers ranging from 20 to 60.

src/test/scala/com/oreilly/testingscala/VariousGenCheckProperties.scala.

Prop.forAll(Gen.listOf(Gen.choose(20, 60))) {
 x =>
 if (x.size > 0) x(0) > 19 && x(0) < 61
 else true
}

The previous test is fairly benign, since it doesn’t quite test anything and is just shown
to illustrate the listOf method. If the list provided by ScalaCheck contains more than
one element, we just make sure the first element is within the range, otherwise true.

Prop has a nifty method called classify that can be used in such cases to show the
distribution of the test data. classify takes a Boolean value and a label that will be
displayed in the test output when the generated data matches the Boolean value. Re‐
writing the previous example as a classified test makes it a bit more useful.

src/test/scala/com/oreilly/testingscala/VariousGenCheckProperties.scala.

Prop.forAll(Gen.listOf(Gen.choose(20, 60))) {
 x =>
 classify((x.size >= 0) && (x.size < 50), "0 to 50") {
 classify((x.size >= 50) && (x.size < 100), "50 - 100") {
 classify((x.size >= 100), "100 or more") {
 true
 }
 }
 }
}

The report will break down the test into categories used to decipher the test data. This
can give you an idea of the distribution of values used in the test. The previous example
used three classify methods to break the output data down by length of list. Sample
output follows. It turns out that this test run didn’t generate any lists containing more
than 100 elements.

[info] + Various Gen Properties.Gen.ListOf (Random) and classified: OK, passed
100 tests.
[info] > Collected test data:
[info] 84% 0 to 50
[info] 16% 50 - 100

Grouping Properties | 133

The previous list methods can create empty lists, which is important in many tests. But
Gen.listOf1 creates a randomly generated list with at least one element.

src/test/scala/com/oreilly/testingscala/VariousGenCheckProperties.scala.

Prop.forAll(Gen.listOf1(Gen.choose(20, 60))) {
 _.size > 0
}

The assertion in the test proves that each list generated contains more than zero ele‐
ments.

Gen supports other containers besides lists. In the next example, instead of a List,
Gen.containerOf is used to create randomly sized Sets. The Gen.containerOf method
takes a collection-type parameter to specify what type of container is needed for the
test. All the listOf methods defer internally to containerOf for their construction.

src/test/scala/com/oreilly/testingscala/VariousGenCheckProperties.scala.

Prop.forAll(Gen.containerOf[Set, Int](Gen.choose(1, 5))) {
 x => true
}

Prop.forAll(Gen.containerOf1[Set, Int](Gen.choose(1, 5))) {
 _.size > 0
}

Prop.forAll(Gen.containerOfN[Set, Int](4, Gen.choose(1, 5))) {
 x => (x.size <= 4) && (x.sum < 240)
}

The last of the examples specifies a Set of Int with another Gen constricting the values
used between 1 and 5, inclusive. The sample asserts that the size is less than or equal to
4.

containerOfN specifies the size of each container generated, and containerOf1 specifies
a container that has at least one element.

Container methods can be tricky because some collections will not al‐
low duplicates. Since Set falls in that category, there is no certainty that
any set will actually be the size you specify; ScalaCheck may generate
duplicate elements that will quietly be merged in the Set.

You can also use a function as a generator through Gen.resultOf. It provides random
data of the types you specify as parameters to the function, which will be used later
inside the test block for assertions. For instance, the following contrived example

134 | Chapter 6: ScalaCheck

contains a Gen.resultOf function that accepts an Int parameter and a String param‐
eter. The parameters are generated by ScalaCheck. resultOf in turn creates the
Map[Int, String] that is used inside the test block. In the test block, an assertion is
made that that the function parameter provided is indeed a test of Map[Int, String].

src/test/scala/com/oreilly/testingscala/VariousGenCheckProperties.scala.

Prop.forAll(Gen.resultOf((x: Int, y: String) => Map(x -> y))) {
 p => println(p); p.isInstanceOf[Map[_,_]]
}

The above test will create a range of testing data that looks like Map(1029697308 -> 鯁
垞펕돀)

If you want complete control over the distribution of the test data, ScalaCheck provides
a frequency generator so that the data given to the test block is of the right proportion.

src/test/scala/com/oreilly/testingscala/VariousGenCheckProperties.scala.

Prop.forAll(Gen.frequency(
 (3, Gen.value("Phoenix")),
 (2, Gen.value("LCD Soundsystem")),
 (5, Gen.value("JJ")))) { ... }

The previous example creates a test that distributes the data according to the weighted
calculation of the frequency. The first frequency method parameter, (3, Gen.val
ue("Phoenix")), gives a weight of 3 to the value "Phoenix“. (2, Gen.value("LCD
Soundsystem")) assigns a weight of 2 to the value "LCD Soundsystem“, while (9,
Gen.value("JJ")) assigns a weight of 9 to the value "JJ“. In other words, you want three
times as many values of 10 as you want values of 4. The weight is merely a suggestion,
and not an exact percentage of the resulting data sets. Next we will classify the frequen‐
cies, so we can see an example of the actual distribution of the data.

src/test/scala/com/oreilly/testingscala/VariousGenCheckProperties.scala.

Prop.forAll(Gen.frequency(
 (3, Gen.value("Phoenix")),
 (2, Gen.value("LCD Soundsystem")),
 (5, Gen.value("JJ")))) {

 x =>
 classify(x == "Phoenix", "Phoenix") {
 classify(x == "LCD Soundsystem", "LCD Soundsystem") {
 classify(x == "JJ", "JJ") {
 true
 }
 }
 }

Running the sample provides the following test output. As you can see, we’ve come close
to the percentages requested, but we didn’t hit them on the nose.

Grouping Properties | 135

[info] 47% JJ
[info] 34% Phoenix
[info] 19% LCD Soundsystem

ScalaCheck has various options that can be used either at the command prompt or in
SBT to change the way ScalaCheck behaves. Table 6-1 shows some of these options.

Table 6-1. Options for ScalaCheck
Parameter Abbreviation Description

-maxSize -x Maximum size of the data generated

-maxDiscardedTests -d Number of tests that can be discarded
before ScalaCheck stops testing a property

-verbosity -v Verbosity level

-workers -w Number of threads to execute in parallel
for testing

-

minSuccessfulTests

-s Number of tests that must succeed in order
to pass a property

-minSize -n Minimum data generation size

The actual number of data sets is specified by -maxSize and -minSize. -minSize defaults
to zero (so ScalaCheck could theoretically tell you everything ran fine without testing
any data sets at all) while -maxSize defaults to 100. Although these values are set on the
command line, you can access them within the test through the Gen.sized generator.

src/test/scala/com/oreilly/testingscala/VariousGenCheckProperties.scala.

Prop.forAll(Gen.sized(x => Gen.listOfN(x, Gen.value("*")))) {
 x => println(x.size + " " + x); true
}

This test will use the maxSize and minSize variable information as part of generating
the data. This example creates a list of asterisks with a size; if this were run as is without
maxSize and minSize, there would be mess in the console showing a whole lot of stars!
If it were run with some minSize and a maxSize value of something small, like 4 or 5,
then it would show some short lists with a maximum size of 5 and a minimum of 4.
Confused? If so, run the command in SBT:

~test-only com.oreilly.testingscala.VariousGenCheckProperties -- -minSize 3 -
maxSize 5

The result is you will get 100 tests. You will always get 100 tests. But the kind of tests
that you will get will be one of the following combinations:

3 List(*, *, *)
4 List(*, *, *, *)
5 List(*, *, *, *, *)

136 | Chapter 6: ScalaCheck

Of course, if you run some of these examples, you’ll notice that they still generate 100
samples. At the time of writing for this book, there is nothing that can be done about
that. There will always be a sample of 100, and the developer would have to bear with
it until a new version comes around, when perhaps that number can be constrained as
we choose.

Custom Generators
The default generators can only go so far until you need a generator that creates custom
objects based on your requirements. For instance, out of the box, ScalaCheck does not
have a Map generator. But you’ll constantly find it necessary for creating custom Map
data. Custom generators in ScalaCheck are typically done in a for-loop (but of course
can also be done through flatMap, map, and filter if so desired).

The following example creates a Map with a single key and its corresponding value. The
value uses Gen.alphaStr to generate a string with only alphabetical characters, and the
key is created using Gen.choose with a value from 3 to 300.

val gen = for {
 x <- Gen.choose(3, 300)
 y <- Gen.alphaStr
} yield Map(x -> y)

Prop.forAll(gen) {...}

For those unfamiliar with Scala for-loops, and even for some who are, I should explain
that a tremendous amount of functional trickery is going on. This for-loop creates a
variable x with a randomly generated value of 3 to 300, and a variable y containing the
alphabetical string. At the end of each iteration, the variables are combined into a Map
and placed into the Gen.

Many readers will probably be thinking: why isn’t it returning a
List[Gen[Map[Int,String]]]? In Scala, for-loops always resort to flatMap, map, and
filter to do their calculations and do so based on the initial expression of the for-loop
(in the previous example, Gen.choose(3,300)). So the example’s for-loop will convert
to the following code snippet.

Gen.choose(3, 300).flatMap(x => Gen.alphaStr.map(y => Map(x -> y)))

Of course, the flatMap interpretation is a bit more complex, but it shows what is going
on. The for-loop is likely easier to read and makes it easier to decipher what the end
result type will be. If it is still perplexing, consult the documentation for flatMap on any
Scala collection. The end result type of a flat map is the same collection and parame‐
terized type. What that means is that if you call a flatMap operation on List, a Set, or
(as in our case) a Gen, you will get in return the same type. So in the above flatMap
operation, a Gen is returned.

Grouping Properties | 137

Each for-loop construction can also be compounded to offer more complex generations.
Take the following example, which uses a few generators to create Map[Int, String]
with more than one element.

val entries = for {
 y <- Gen.alphaStr
 x <- Gen.choose(3, 300)
} yield (x -> y)

val maps = for {
 x <- Gen.listOfN(4, entries)
} yield (Map(x: _*))

Prop.forAll(maps) {...}

The first entries variable, which is a Prop, is nearly the same as the previous example
except that it returns a tuple containing the String and the Int.

For those who don’t know or don’t remember, (x -> y) is another way
to create a Tuple (a Tuple2 to be exact) in Scala.

The second variable, maps, uses another for-loop to create a list of entries of length 4.
The entries come from the entries variable. maps yields a Gen that will create a Map of
String and Int, the same as before except this time with multiple key-value pairs be‐
cause we’ve passed _* as x.

Now, armed with all this ScalaCheck knowledge, there is a way to nicely use for-loops
to create custom objects. How about an Album? In the following example, one for-loop
is used to create one Album object with an alphabetical string name, a year between 1900
and 2012, and an alphabetical string for a band name. That Gen[Album] is then fed into
another Gen, Gen.listOf, which will in turn create a list of these albums. The test block,
which creates an albums variable, creates a generated list of distinct albums of varying
size, and a JukeBox with some albums. The final assertion is simple but obvious: the size
of the albums inserted in the jukeBox should be the same size when called indirectly
from the jukeBox itself.

val albums = for {
 a <- Gen.alphaStr
 b <- Gen.choose(1900, 2012)
 c <- Gen.alphaStr
} yield (new Album(a, b, new Band(c)))

val listOfAlbums = Gen.listOf(albums)
Prop.forAll(listOfAlbums) {

138 | Chapter 6: ScalaCheck

 albums =>
 val jukebox = new JukeBox(Some(albums))
 jukebox.albums.get.size == albums.size
}

Arbitrary
Generators, as seen, can do quite a bit, but once a developer has settled on a particular
generator it would be nice not to need to declare or specify the generator every time you
want to use it. Arbitrary uses Scala’s implicit variables and methods so these values
can always be available without any added programming.

For example, say that in the company that makes Album objects and JukeBox objects, a
Gen[Album] has already been established and is located in some object named
com.oreilly.testingscala.AlbumGen. Using Arbitrary, AlbumGen only needs to im‐
port com.oreilly.testingscala.AlbumGen._ to make use of the new Gen. Once that
is done, the test-driven developer merely has to create a Prop.forAll with no Gen
programming, and test randomly distinct data whenever necessary. The following ex‐
ample shows how it is done.

property("Arbitrary Creating Objects") = {
 implicit val album: Arbitrary[Album] = Arbitrary {
 for {
 a <- Gen.alphaStr
 b <- Gen.choose(1900, 2012)
 c <- Gen.alphaStr
 } yield (new Album(a, b, new Band(c)))
 }

 Prop.forAll {album: Album => album.ageFrom(2012) == (2012 - album.year)}
}

The variable album is implicit, which means that it is available in scope for anything
that requires that type of signature. Since the variable album is an Arbitrary[Album],
if any Prop.forAll requires an Album it will automatically pull from the implicit
declaration without any extra work. The benefit gained is shown in the Prop.forAll
statement at the end of the example. The test block requires an album variable, and no
Gen had to be specified.

Labeling
Tests in ScalaCheck can have labels appended to each assertion. The benefit is that
ScalaCheck can reference the actual assertion by its label. Consider the following ex‐
ample without a label.

Arbitrary | 139

Prop.forAll {
 (x:Int, y:Int) => (x > 0 && y > 0) ==> {
 (x + y) != 0 && (x+y) > 0 && (x+y) < (x+y)
 }
}

The test block in the last line of code contains three very different assertions. The last
assertion, (x+y) < (x+y), will fail. As it stands, there is no way of knowing which
assertion is the one that failed. Running the example will render the test as a failure and
say which arguments have failed, but not state which assertion actually failed.

[info] ! Various Gen Properties.Compound assertions without labels: Falsified
after 0 passed tests.
[info] > ARG_0: 6
[info] > ARG_1: 1

ARG_0 specifies that x is 6, and ARG_1 specifies that y is 1. That’s all ScalaCheck provides
without the use of labels. For better reporting, apply a ScalaCheck label to each of the
assertions and give it a name.

Prop.forAll {
 (x: Int, y: Int) => (x > 0 && y > 0) ==> {
 ((x + y) != 0) :| "(x+y) equals (y+x)" &&
 ((x+y) > 0) :| "(x+y) > 0" &&
 ((x+y) < (x+y)) :| "(x+y) < (x+y)"
 }
}

Now there is some clarity as to which of the assertions has failed.

[info] ! Various Gen Properties.Compound assertions with labels: Falsified af-
ter 0 passed tests.
[info] > Labels of failing property:
[info] (x+y) < (x+y)
[info] > ARG_0: 48
[info] > ARG_1: 1

Here’s a bit more about the use of the label tags. The : will always associate with the
assertion, and the | will always associate with the label. && is irrelevant to the label, since,
as previously seen, it is used to join each of the Boolean assertions. If you want to have
the label come first instead of the assertion, use |:. Which to use is up to you.

Prop.forAll {
 (x: Int, y: Int) => (x > 0 && y > 0) ==> {
 ("(x+y) equals (y+x)" |: ((x + y) != 0)) &&
 ("(x+y) > 0" |: ((x+y) > 0)) &&
 ("(x+y) < (x+y)" |: ((x+y) < (x+y)))
 }
}

Note that in this example, parentheses are required around the combination of assertion
and label.

140 | Chapter 6: ScalaCheck

If you need evidence of which values were actually used, or, if you need to make any
intermediate calculations to answer the question “How did we get to this point?”, assign
the intermediate calculation to a variable. Returning to the previous simple example,
suppose you wish to inquire what (x+y) equals before running the test. The test can be
refactored to give a label to the intermediate result so you can trace where the problem
in the test occurred.

Prop.forAll {
 (x: Int, y: Int) => ((x > 0) && (y > 0)) ==> {
 val result = x + y //intermediate result
 ("result = " + result) |: all(
 ("(x+y) equals (y+x)" |: (result != 0)) &&
 ("(x+y) > 0" |: (result > 0)) &&
 ("(x+y) < (x+y)" |: (result < result))
)
 }
}

This is essentially the same test, with two generated values constrained so they are both
positive. But this time a result is calculated as an extra variable, result. This lets you
track down the intermediate result when investigating a failed test. A string printing
result is attached to a series of other labeled assertions using the |: all (..) construct.
Given this method, result can displayed along with each test.

[info] ! Various Gen Properties.Compound assertion labelling with evidence: Fal-
sified after 0 passed tests.
[info] > Labels of failing property:
[info] (x+y) < (x+y)
[info] result = 27
[info] > ARG_0: 26
[info] > ARG_1: 1

ScalaCheck is an indispensable tool. Using it, we no longer need to come up with data
for classes. Mocks and ScalaTest are all we need to quickly generate tests and keep mov‐
ing. Next we’ll look at ScalaCheck in use with ScalaTest, and explore some of the en‐
hancements made to accompany ScalaCheck.

ScalaCheck with ScalaTest
ScalaTest offers some sugar to make ScalaCheck code a bit more fluent and readable.
Using any one of ScalaTest’s Specs, extend the GeneratorDrivenPropertyChecks trait
to integrate ScalaCheck testing.

package com.oreilly.testingscala

import org.scalatest.matchers.ShouldMatchers
import org.scalatest.Spec
import org.scalatest.prop.GeneratorDrivenPropertyChecks
import org.scalacheck.Gen

ScalaCheck with ScalaTest | 141

class ScalaTestWithScalaCheck extends Spec with ShouldMatchers with Generator-
DrivenPropertyChecks {
}

The following example shows a basic ScalaCheck test used inside of ScalaTest.

class ScalaTestWithScalaCheck extends Spec with ShouldMatchers with Generator-
DrivenPropertyChecks {
 describe("We can use test data from Scala check") {
 it("runs the same but with different constructs") {
 forAll {
 (a: Int, b: Int) =>
 (a + b) should be(b + a)
 }
 }
 }

There isn’t much difference between this ScalaTest code and a plain ScalaCheck test.
The forAll method in this example is a ScalaTest method, not a ScalaCheck method,
but as far as usability, it remains nearly the same. What is different is how ScalaTest deals
with constraining some of these properties.

class ScalaTestWithScalaCheck extends Spec with ShouldMatchers with Generator-
DrivenPropertyChecks {
 describe("We can use test data from Scala check") {
 it("runs constraints but differently") {
 forAll {
 (a: Int, b: Int) =>
 whenever(b > 14) {(a + b) should be(b + a)}
 }
 }
 }

In this example, forAll is used like a ScalaCheck conditional property. This time,
though, the term whenever replaces the ==> overloaded operator. This test will run for
all integers except when b is greater than 14.

ScalaTest cleans up a lot of the funky operators when it deals with failure labels. Previ‐
ously, labels used either |: or :| operators to label each assertion, so a test could report
which of them had failed. ScalaTest offers an alternative that eliminates the need to write
explicit labels. Instead, ScalaTest relies on its built-in reporting. First, as a refresher, here
is the test that was used in ScalaCheck with labels.

Prop.forAll {
 (x: Int, y: Int) => (x > 0 && y > 0) ==> {
 ((x + y) != 0) :| "(x+y) equals (y+x)" &&
 ((x+y) > 0) :| "(x+y) > 0" &&
 ((x+y) < (x+y)) :| "(x+y) < (x+y)"
 }
}

142 | Chapter 6: ScalaCheck

ScalaTest uses its own reporting mechanism instead of labels. The only thing required
is to use either a MustMatcher or a ShouldMatcher with a compound and or or operator.

forAll {
 (x: Int, y: Int) =>
 whenever (x > 0 && y > 0) {
 (x + y) should (not be (0) and ((be > 0) and (be < (x+y))))
 }
}

As seen in the following result, ScalaTest provides more-than-adequate information to
dissect the issues with the test. The message line includes a clause for each of the checks
separated in the code by and operators.

[info] - no need for test labels *** FAILED ***
[info] TestFailedException was thrown during property evaluation.
[info] Message: 2 was not equal to 0, but 2 was greater than 0, but 2 was not
less than 2
[info] Location: (ScalaTestWithScalaCheck.scala:30)
[info] Occurred when passed generated values (
[info] arg0 = 1,
[info] arg1 = 1 // 29 shrinks
[info])

ScalaTest has another nice feature: labeling properties. In the previous output, arg0 and
arg1 describe which values violated the test. ScalaTest with ScalaCheck gives the de‐
veloper the ability to rewrite the test with variable labels. The following example extends
the previous example to show this.

forAll ("x", "y") {
 (x: Int, y: Int) =>
 whenever (x > 0 && y > 0) {
 (x + y) should (not be (0) and ((be > 0) and (be < (x+y))))
 }
}

forAll uses two variables called x and y, and the names provide a nice way to display
the output of the test, giving the developer a better chance at finding issues. Compare
the following output with the output of the previous example. Instead of arg_0 it shows
the name of the variable, x, and instead of arg_1 it shows y. Glorious!

[info] TestFailedException was thrown during property evaluation.
[info] Message: 9 was not equal to 0, but 9 was greater than 0, but 9 was not
less than 9
[info] Location: (ScalaTestWithScalaCheck.scala:39)
[info] Occurred when passed generated values (
[info] x = 8, // 39 shrinks
[info] y = 1 // 29 shrinks
[info])

ScalaCheck with ScalaTest | 143

Shrinks in ScalaCheck and in this example are minimizations of the values that fail the
test. Why? Because it is easier to determine that a test failed with 8 and 1 than with
10,321 and 948. You can create your own minimization strategies in ScalaCheck if you
wish. Due to constraints on the size of this book, it will not be covered.

Generators
Plugging in a generator in ScalaTest is much like a ScalaCheck property, except that
names can also be associated with the Gen. First, here is an example of a Gen used for a
test.

forAll(Gen.choose(10, 20), Gen.choose(30, 40)) {
 (a: Int, b: Int) =>
 (a + b) should equal((a + b)) // Should fail
}

This has nothing particularly new; it looks very similar to a ScalaCheck property. But
ScalaTest lets you assign a name to a Gen, which is valuable for determining errors in
the output of a test.

forAll((Gen.choose(10, 20), "a"), (Gen.choose(30, 40), "b")) {
 (a: Int, b: Int) =>
 (a + b) should equal(a + b + 1)
}

If, for whatever reason, the test did not pass, the error will use the name associated with
the generator and display the offending parameters.

[info] - runs with labels and generators *** FAILED ***
[info] TestFailedException was thrown during property evaluation.
[info] Message: 44 was not equal to 45
[info] Location: (ScalaTestWithScalaCheck.scala:62)
[info] Occurred when passed generated values (
[info] a = 15, // 1 shrink
[info] b = 29 // 1 shrink
[info])

Obviously, ScalaTest with ScalaCheck support allows for Arbitrary objects to be used
in a test.

import com.oreilly.testingscala.AlbumGen._
forAll {(a:Album, b:Album) =>
 a.title should not be (b.title + "ddd")
}

Earlier we created an AlbumGen object that contains all implicit Arbitrary bindings.
Importing AlbumGen automatically provides Album objects to the test. ScalaTest can use
the AlbumGen the same way.

144 | Chapter 6: ScalaCheck

ScalaTest’s implementation of ScalaCheck makes test code friendlier, with a whenever
clause replacing ==> and—perhaps the best feature—letting you label the variables for
a test. Specs2 has a different approach, but also includes ScalaCheck support, which will
be covered in the next section.

ScalaCheck with Specs2
Specs2 allows ScalaCheck to live within its specifications, and offers some slight mod‐
ifications to work with properties. First let’s look at a specification.

package com.oreilly.testingscala

import org.specs2.ScalaCheck
import org.specs2.mutable.Specification
import org.scalacheck.Prop._
import com.oreilly.testingscala.AlbumGen._
import org.scalacheck.{Arbitrary, Gen, Prop}

class Specs2WithScalaCheck extends Specification with ScalaCheck {

 "Using Specs2 With ScalaCheck".title ^
 "Can be used with the check method" ! usePlainCheck

 def usePlainCheck = check((x: Int, y: Int) => {
 (x + y) must be_==(y + x)
 })

This is the shell required for using ScalaCheck within Specs2. Most information about
the specification has already been covered in Specs2. The only difference is that the
ScalaCheck trait is included to use some of the sugars that ease testing.

The code shows a simple test named usePlainCheck, called from the specification. It
also uses a Specs2 method called check instead of Prop.forAll to run the very simple
test. As with ScalaTest, in Specs2 it is preferred for the assertion to use the Specs2 matcher
syntax. The use of check is not mandatory, and Prop.forAll can also be used, which is
the preferred way to include generators in a test.

Constraints in Specs2 use the ==> operator, just as in a plain ScalaCheck property.

package com.oreilly.testingscala

import org.specs2.ScalaCheck
import org.specs2.mutable.Specification
import org.scalacheck.Prop._
import com.oreilly.testingscala.AlbumGen._
import org.scalacheck.{Arbitrary, Gen, Prop}

class Specs2WithScalaCheck extends Specification with ScalaCheck {

 "Using Specs2 With ScalaCheck".title ^

ScalaCheck with Specs2 | 145

 "Can be used with the check method" ! usePlainCheck
 "Can be used with constraints" ! useCheckWithConstraints

 def useCheckWithConstraints = check {
 (x: Int, y: Int) => ((x > 0) && (y > 10)) ==> {
 (x + y) must be_==(y + x)
 }
 }
}

There is nothing different in this example, except that it uses check instead of a
Prop.forAll.

When using generators, on the other hand, stick to forAll instead of check. The reason
is that forAll supports Gen parameters, whereas check does not.

package com.oreilly.testingscala

import org.specs2.ScalaCheck
import org.specs2.mutable.Specification
import org.scalacheck.Prop._
import com.oreilly.testingscala.AlbumGen._
import org.scalacheck.{Arbitrary, Gen, Prop}

class Specs2WithScalaCheck extends Specification with ScalaCheck {

 "Using Specs2 With ScalaCheck".title ^
 "Can be used with the check method" ! usePlainCheck
 "Can be used with constraints" ! useCheckWithConstraints
 "Can be used with generators" ! useGenerators

 //This is a workaround
 implicit val foo3: (Unit => Prop) = (x: Unit) => Prop(Prop.Result(Prop.True))

 //Code removed for brevity

 def useGenerators = forAll(Gen.containerOfN[Set, Int](4, Gen.choose(20, 60)))
{
 x => x.size must be_<= (4) and (x.sum must be_< (240))
 }
}

Arbitrary can be used in Specs2 in much the same way as in a ScalaCheck property.

package com.oreilly.testingscala

import org.specs2.ScalaCheck
import org.specs2.mutable.Specification
import org.scalacheck.Prop._
import com.oreilly.testingscala.AlbumGen._
import org.scalacheck.{Arbitrary, Gen, Prop}

class Specs2WithScalaCheck extends Specification with ScalaCheck {

146 | Chapter 6: ScalaCheck

 "Using Specs2 With ScalaCheck".title ^
 "Can be used with the check method" ! usePlainCheck
 "Can be used with constraints" ! useCheckWithConstraints
 "Can be used with generators" ! useGenerators
 "Can be used with Arbitrary in the same way" ! useArbitrary

 //Code omitted for brevity
 def useArbitrary = check((album: Album) => album.ageFrom(2012) must
be_==(2012 - album.year))
}

The Arbitrary[Album], as before, is an imported method from the AlbumGen object, so
there is no need for a Gen object in the test. This example uses the Specs2 check method;
the Arbitrary[Album] will take care of the rest.

Specs2 has an alternate way to use an Arbitrary object in a test. The alternative way is
to use the Arbitrary object in place of forAll or check. This makes the Arbitrary
object the test method itself. Consider the following example.

package com.oreilly.testingscala

import org.specs2.ScalaCheck
import org.specs2.mutable.Specification
import org.scalacheck.Prop._
import com.oreilly.testingscala.AlbumGen._
import org.scalacheck.{Arbitrary, Gen, Prop}

class Specs2WithScalaCheck extends Specification with ScalaCheck {

 "Using Specs2 With ScalaCheck".title ^
 "Can be used with the check method" ! usePlainCheck
 "Can be used with constraints" ! useCheckWithConstraints
 "Can be used with generators" ! useGenerators
 "Can be used with Arbitrary in the same way" ! useArbitrary
 "Can be used with Arbitrary in a clever way" ! useAnArbitraryInACleverWay

 val mapIntString = Arbitrary {
 for {
 x <- Gen.choose(3, 300)
 y <- Gen.alphaStr
 } yield Map(x -> y)
 }

 //previous code removed for brevity
 def useAnArbitraryInACleverWay = mapIntString {
 (x: Map[Int, String]) => x.size must be_==(1)
 }
}

ScalaCheck with Specs2 | 147

This example creates an Arbitrary object of type Map[Int, String] and does not bind
implicitly in the scope. This can provide some benefit, because there is no need to com‐
mit an implicit object to scope, and you can use Arbitrary freely by creating a variable
and using it in a test method. In other words, one Arbitrary of a particular type can be
used for one method, and another Arbitrary of the same type but a different imple‐
mentation can be used for a subsequent method.

Specs2’s and ScalaTest’s use of ScalaCheck makes testing and creating fake data a breeze,
possibly cutting down the time required to create the data. Whether you choose Specs2
or ScalaTest is based on your preference. Overall, Scala’s testing frameworks make testing
Scala and Java a pleasure. May we never make up fake data again by letting ScalaCheck
construct all that we need.

148 | Chapter 6: ScalaCheck

About the Author
Daniel Hinojosa has been a self-employed developer, teacher, and speaker for private
business, education, and government since 1999. He is passionate about languages,
frameworks, and programming education. Daniel is a Pomodoro Technique practi‐
tioner and is cofounder of the Albuquerque Java Users Group in Albuquerque, New
Mexico.

Colophon
The cover image is Bailey’s Shrew (Crocidura baileyi) from Meyers Kleines Lexicon. The
cover font is Adobe ITC Garamond. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Audience
	Organization of This Book
	About the Book
	Test-Driven Development
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Acknowledgments

	Chapter 1. Setup
	Setup in Mac OS X, Mac OS X Lion, and Linux
	Setup in Windows
	Using SBT
	SBT Folder Organization
	The Build File
	About Our Examples
	Creating Our Examples Using TDD, ScalaTest, and SBT

	Chapter 2. Structure and Configuration of Simple Build Tool (SBT)
	Directories in SBT
	The Importance of Good Infrastructure
	Triggered Executions

	What If I Need an Extra Repository?
	Format of Dependencies Line
	Updating Changes from the Build File
	Bringing Some Sources and Documentation

	Running SBT
	From the Shell
	Interactive Mode

	Basic Tasks
	Using the Scala Interpreter

	Knowing Your History
	Conclusion

	Chapter 3. ScalaTest
	Setting up ScalaTest in SBT
	Matchers
	Types of Matchers
	MustMatchers

	Exception Handling
	Informers
	GivenWhenThen
	Pending Tests
	Ignoring Tests
	Tagging
	Running Tags From the Command Prompt
	Running Tags in SBT

	Specifications
	FunSpec
	WordSpec
	FeatureSpec
	FreeSpec
	FlatSpec
	JUnitSuite
	TestNGSuite

	Fixtures
	Anonymous Objects
	Fixture Traits
	OneInstancePerTest
	Before and After

	Chapter 4. Specs2
	Setting Up Specs2 in SBT
	Unit Specification
	Matchers
	Simple Matchers
	String Matchers
	Relational Operator Matchers
	Floating-Point Matchers
	Reference Matchers
	Iterable Matchers
	Seq and Traversable Matchers
	Map Matchers
	XML Matchers
	Partial Function Matchers
	Other Matchers

	Acceptance Specification
	Chaining Tests
	Given/When/Then

	Data Tables
	Tagging
	Fixtures

	Chapter 5. Mocking
	EasyMock
	EasyMock with ScalaTest

	Mockito
	Mockito with Specs2

	ScalaMock
	Mocking Traits
	Mocking Classes
	Mocking Singleton Objects
	Mocking Companion Objects
	Mocking Functions
	Mocking Finals

	Chapter 6. ScalaCheck
	Properties
	Constraining Properties
	Grouping Properties
	Custom Generators

	Arbitrary
	Labeling
	ScalaCheck with ScalaTest
	Generators

	ScalaCheck with Specs2

	About the Author

