
www.allitebooks.com

http://www.allitebooks.org

Welcome to Swift

2www.allitebooks.com

http://www.allitebooks.org

About Swift

Swift is a new programming language for iOS and OS X apps that builds on the best of
C and Objective-C, without the constraints of C compatibility. Swift adopts safe
programming patterns and adds modern features to make programming easier, more
flexible, and more fun. Swift’s clean slate, backed by the mature and much-loved
Cocoa and Cocoa Touch frameworks, is an opportunity to reimagine how software
development works.

Swift has been years in the making. Apple laid the foundation for Swift by advancing
our existing compiler, debugger, and framework infrastructure. We simplified memory
management with Automatic Reference Counting (ARC). Our framework stack, built on
the solid base of Foundation and Cocoa, has been modernized and standardized
throughout. Objective-C itself has evolved to support blocks, collection literals, and
modules, enabling framework adoption of modern language technologies without
disruption. Thanks to this groundwork, we can now introduce a new language for the
future of Apple software development.

Swift feels familiar to Objective-C developers. It adopts the readability of Objective-C’s
named parameters and the power of Objective-C’s dynamic object model. It provides
seamless access to existing Cocoa frameworks and mix-and-match interoperability
with Objective-C code. Building from this common ground, Swift introduces many new
features and unifies the procedural and object-oriented portions of the language.

Swift is friendly to new programmers. It is the first industrial-quality systems
programming language that is as expressive and enjoyable as a scripting language. It
supports playgrounds, an innovative feature that allows programmers to experiment
with Swift code and see the results immediately, without the overhead of building and
running an app.

Swift combines the best in modern language thinking with wisdom from the wider
Apple engineering culture. The compiler is optimized for performance, and the
language is optimized for development, without compromising on either. It’s designed
to scale from “hello, world” to an entire operating system. All this makes Swift a sound
future investment for developers and for Apple.

Swift is a fantastic way to write iOS and OS X apps, and will continue to evolve with
new features and capabilities. Our goals for Swift are ambitious. We can’t wait to see
what you create with it.

3www.allitebooks.com

http://www.allitebooks.org

A Swift Tour

Tradition suggests that the first program in a new language should print the words
“Hello, world” on the screen. In Swift, this can be done in a single line:

println("Hello, world")

If you have written code in C or Objective-C, this syntax looks familiar to you—in Swift,
this line of code is a complete program. You don’t need to import a separate library for
functionality like input/output or string handling. Code written at global scope is used
as the entry point for the program, so you don’t need a main function. You also don’t
need to write semicolons at the end of every statement.

This tour gives you enough information to start writing code in Swift by showing you
how to accomplish a variety of programming tasks. Don’t worry if you don’t understand
something—everything introduced in this tour is explained in detail in the rest of this
book.

NO T E

For the best experience, open this chapter as a playground in Xcode. Playgrounds allow you to edit the
code listings and see the result immediately.

Simple Values

Use let to make a constant and var to make a variable. The value of a constant
doesn’t need to be known at compile time, but you must assign it a value exactly
once. This means you can use constants to name a value that you determine once but
use in many places.

var myVariable = 42

myVariable = 50

let myConstant = 42

4www.allitebooks.com

http://www.allitebooks.org

A constant or variable must have the same type as the value you want to assign to it.
However, you don’t always have to write the type explicitly. Providing a value when
you create a constant or variable lets the compiler infer its type. In the example
above, the compiler infers that myVariable is an integer because its initial value is a
integer.

If the initial value doesn’t provide enough information (or if there is no initial value),
specify the type by writing it after the variable, separated by a colon.

let implicitInteger = 70

let implicitDouble = 70.0

let explicitDouble: Double = 70

EXPERI M ENT

Create a constant with an explicit type of Float and a value of 4.

Values are never implicitly converted to another type. If you need to convert a value
to a different type, explicitly make an instance of the desired type.

let label = "The width is "

let width = 94

let widthLabel = label + String(width)

EXPERI M ENT

Try removing the conversion to String from the last line. What error do you get?

There’s an even simpler way to include values in strings: Write the value in
parentheses, and write a backslash (\) before the parentheses. For example:

let apples = 3

let oranges = 5

let appleSummary = "I have \(apples) apples."

5www.allitebooks.com

http://www.allitebooks.org

let fruitSummary = "I have \(apples + oranges) pieces of fruit."

EXPERI M ENT

Use \() to include a floating-point calculation in a string and to include someone’s name in a greeting.

Create arrays and dictionaries using brackets ([]), and access their elements by
writing the index or key in brackets.

var shoppingList = ["catfish", "water", "tulips", "blue paint"]

shoppingList[1] = "bottle of water"

var occupations = [

 "Malcolm": "Captain",

 "Kaylee": "Mechanic",

]

occupations["Jayne"] = "Public Relations"

To create an empty array or dictionary, use the initializer syntax.

let emptyArray = String[]()

let emptyDictionary = Dictionary<String, Float>()

If type information can be inferred, you can write an empty array as [] and an empty
dictionary as [:]—for example, when you set a new value for a variable or pass an
argument to a function.

shoppingList = [] // Went shopping and bought everything.

Control Flow

Use if and switch to make conditionals, and use for-in, for, while, and do-while to
make loops. Parentheses around the condition or loop variable are optional. Braces

6www.allitebooks.com

http://www.allitebooks.org

around the body are required.

let individualScores = [75, 43, 103, 87, 12]

var teamScore = 0

for score in individualScores {

 if score > 50 {

 teamScore += 3

 } else {

 teamScore += 1

 }

}

teamScore

In an if statement, the conditional must be a Boolean expression—this means that
code such as if score { ... } is an error, not an implicit comparison to zero.

You can use if and let together to work with values that might be missing. These
values are represented as optionals. An optional value either contains a value or
contains nil to indicate that the value is missing. Write a question mark (?) after the
type of a value to mark the value as optional.

var optionalString: String? = "Hello"

optionalString == nil

var optionalName: String? = "John Appleseed"

var greeting = "Hello!"

if let name = optionalName {

 greeting = "Hello, \(name)"

}

EXPERI M ENT

Change optionalName to nil. What greeting do you get? Add an else clause that sets a different

7www.allitebooks.com

http://www.allitebooks.org

greeting if optionalName is nil.

If the optional value is nil, the conditional is false and the code in braces is skipped.
Otherwise, the optional value is unwrapped and assigned to the constant after let,
which makes the unwrapped value available inside the block of code.

Switches support any kind of data and a wide variety of comparison operations—they
aren’t limited to integers and tests for equality.

let vegetable = "red pepper"

switch vegetable {

case "celery":

 let vegetableComment = "Add some raisins and make ants on a log."

case "cucumber", "watercress":

 let vegetableComment = "That would make a good tea sandwich."

case let x where x.hasSuffix("pepper"):

 let vegetableComment = "Is it a spicy \(x)?"

default:

 let vegetableComment = "Everything tastes good in soup."

}

EXPERI M ENT

Try removing the default case. What error do you get?

After executing the code inside the switch case that matched, the program exits from
the switch statement. Execution doesn’t continue to the next case, so there is no need
to explicitly break out of the switch at the end of each case’s code.

You use for-in to iterate over items in a dictionary by providing a pair of names to use
for each key-value pair.

let interestingNumbers = [

 "Prime": [2, 3, 5, 7, 11, 13],

8www.allitebooks.com

http://www.allitebooks.org

 "Fibonacci": [1, 1, 2, 3, 5, 8],

 "Square": [1, 4, 9, 16, 25],

]

var largest = 0

for (kind, numbers) in interestingNumbers {

 for number in numbers {

 if number > largest {

 largest = number

 }

 }

}

largest

EXPERI M ENT

Add another variable to keep track of which kind of number was the largest, as well as what that largest
number was.

Use while to repeat a block of code until a condition changes. The condition of a loop
can be at the end instead, ensuring that the loop is run at least once.

var n = 2

while n < 100 {

 n = n * 2

}

n

var m = 2

do {

 m = m * 2

9www.allitebooks.com

http://www.allitebooks.org

} while m < 100

m

You can keep an index in a loop—either by using .. to make a range of indexes or by
writing an explicit initialization, condition, and increment. These two loops do the
same thing:

var firstForLoop = 0

for i in 0..3 {

 firstForLoop += i

}

firstForLoop

var secondForLoop = 0

for var i = 0; i < 3; ++i {

 secondForLoop += 1

}

secondForLoop

Use .. to make a range that omits its upper value, and use ... to make a range that
includes both values.

Functions and Closures

Use func to declare a function. Call a function by following its name with a list of
arguments in parentheses. Use -> to separate the parameter names and types from
the function’s return type.

func greet(name: String, day: String) -> String {

 return "Hello \(name), today is \(day)."

}

greet("Bob", "Tuesday")

10www.allitebooks.com

http://www.allitebooks.org

EXPERI M ENT

Remove the day parameter. Add a parameter to include today’s lunch special in the greeting.

Use a tuple to return multiple values from a function.

func getGasPrices() -> (Double, Double, Double) {

 return (3.59, 3.69, 3.79)

}

getGasPrices()

Functions can also take a variable number of arguments, collecting them into an array.

func sumOf(numbers: Int...) -> Int {

 var sum = 0

 for number in numbers {

 sum += number

 }

 return sum

}

sumOf()

sumOf(42, 597, 12)

EXPERI M ENT

Write a function that calculates the average of its arguments.

Functions can be nested. Nested functions have access to variables that were declared
in the outer function. You can use nested functions to organize the code in a function
that is long or complex.

func returnFifteen() -> Int {

11

 var y = 10

 func add() {

 y += 5

 }

 add()

 return y

}

returnFifteen()

Functions are a first-class type. This means that a function can return another function
as its value.

func makeIncrementer() -> (Int -> Int) {

 func addOne(number: Int) -> Int {

 return 1 + number

 }

 return addOne

}

var increment = makeIncrementer()

increment(7)

A function can take another function as one of its arguments.

func hasAnyMatches(list: Int[], condition: Int -> Bool) -> Bool {

 for item in list {

 if condition(item) {

 return true

 }

 }

 return false

12

}

func lessThanTen(number: Int) -> Bool {

 return number < 10

}

var numbers = [20, 19, 7, 12]

hasAnyMatches(numbers, lessThanTen)

Functions are actually a special case of closures. You can write a closure without a
name by surrounding code with braces ({}). Use in to separate the arguments and
return type from the body.

numbers.map({

 (number: Int) -> Int in

 let result = 3 * number

 return result

 })

EXPERI M ENT

Rewrite the closure to return zero for all odd numbers.

You have several options for writing closures more concisely. When a closure’s type is
already known, such as the callback for a delegate, you can omit the type of its
parameters, its return type, or both. Single statement closures implicitly return the
value of their only statement.

numbers.map({ number in 3 * number })

You can refer to parameters by number instead of by name—this approach is
especially useful in very short closures. A closure passed as the last argument to a
function can appear immediately after the parentheses.

sort([1, 5, 3, 12, 2]) { $0 > $1 }

13

Objects and Classes

Use class followed by the class’s name to create a class. A property declaration in a
class is written the same way as a constant or variable declaration, except that it is in
the context of a class. Likewise, method and function declarations are written the
same way.

class Shape {

 var numberOfSides = 0

 func simpleDescription() -> String {

 return "A shape with \(numberOfSides) sides."

 }

}

EXPERI M ENT

Add a constant property with let, and add another method that takes an argument.

Create an instance of a class by putting parentheses after the class name. Use dot
syntax to access the properties and methods of the instance.

var shape = Shape()

shape.numberOfSides = 7

var shapeDescription = shape.simpleDescription()

This version of the Shape class is missing something important: an initializer to set up
the class when an instance is created. Use init to create one.

class NamedShape {

 var numberOfSides: Int = 0

 var name: String

14

 init(name: String) {

 self.name = name

 }

 func simpleDescription() -> String {

 return "A shape with \(numberOfSides) sides."

 }

}

Notice how self is used to distinguish the name property from the name argument to the
initializer. The arguments to the initializer are passed like a function call when you
create an instance of the class. Every property needs a value assigned—either in its
declaration (as with numberOfSides) or in the initializer (as with name).

Use deinit to create a deinitializer if you need to perform some cleanup before the
object is deallocated.

Subclasses include their superclass name after their class name, separated by a colon.
There is no requirement for classes to subclass any standard root class, so you can
include or omit a superclass as needed.

Methods on a subclass that override the superclass’s implementation are marked with
override—overriding a method by accident, without override, is detected by the
compiler as an error. The compiler also detects methods with override that don’t
actually override any method in the superclass.

class Square: NamedShape {

 var sideLength: Double

 init(sideLength: Double, name: String) {

 self.sideLength = sideLength

 super.init(name: name)

 numberOfSides = 4

 }

15

 func area() -> Double {

 return sideLength * sideLength

 }

 override func simpleDescription() -> String {

 return "A square with sides of length \(sideLength)."

 }

}

let test = Square(sideLength: 5.2, name: "my test square")

test.area()

test.simpleDescription()

EXPERI M ENT

Make another subclass of NamedShape called Circle that takes a radius and a name as arguments to
its initializer. Implement an area and a describe method on the Circle class.

In addition to simple properties that are stored, properties can have a getter and a
setter.

class EquilateralTriangle: NamedShape {

 var sideLength: Double = 0.0

 init(sideLength: Double, name: String) {

 self.sideLength = sideLength

 super.init(name: name)

 numberOfSides = 3

 }

16

 var perimeter: Double {

 get {

 return 3.0 * sideLength

 }

 set {

 sideLength = newValue / 3.0

 }

 }

 override func simpleDescription() -> String {

 return "An equilateral triagle with sides of length \(sideLength)."

 }

}

var triangle = EquilateralTriangle(sideLength: 3.1, name: "a triangle")

triangle.perimeter

triangle.perimeter = 9.9

triangle.sideLength

In the setter for perimeter, the new value has the implicit name newValue. You can
provide an explicit name in parentheses after set.

Notice that the initializer for the EquilateralTriangle class has three different steps:

1. Setting the value of properties that the subclass declares.
2. Calling the superclass’s initializer.
3. Changing the value of properties defined by the superclass. Any additional setup

work that uses methods, getters, or setters can also be done at this point.

If you don’t need to compute the property but still need to provide code that is run
before and after setting a new value, use willSet and didSet. For example, the class
below ensures that the side length of its triangle is always the same as the side length
of its square.

17

class TriangleAndSquare {

 var triangle: EquilateralTriangle {

 willSet {

 square.sideLength = newValue.sideLength

 }

 }

 var square: Square {

 willSet {

 triangle.sideLength = newValue.sideLength

 }

 }

 init(size: Double, name: String) {

 square = Square(sideLength: size, name: name)

 triangle = EquilateralTriangle(sideLength: size, name: name)

 }

}

var triangleAndSquare = TriangleAndSquare(size: 10, name: "another test shape")

triangleAndSquare.square.sideLength

triangleAndSquare.triangle.sideLength

triangleAndSquare.square = Square(sideLength: 50, name: "larger square")

triangleAndSquare.triangle.sideLength

Methods on classes have one important difference from functions. Parameter names in
functions are used only within the function, but parameters names in methods are also
used when you call the method (except for the first parameter). By default, a method
has the same name for its parameters when you call it and within the method itself.
You can specify a second name, which is used inside the method.

class Counter {

 var count: Int = 0

18

 func incrementBy(amount: Int, numberOfTimes times: Int) {

 count += amount * times

 }

}

var counter = Counter()

counter.incrementBy(2, numberOfTimes: 7)

When working with optional values, you can write ? before operations like methods,
properties, and subscripting. If the value before the ? is nil, everything after the ? is
ignored and the value of the whole expression is nil. Otherwise, the optional value is
unwrapped, and everything after the ? acts on the unwrapped value. In both cases,
the value of the whole expression is an optional value.

let optionalSquare: Square? = Square(sideLength: 2.5, name: "optional square")

let sideLength = optionalSquare?.sideLength

Enumerations and Structures

Use enum to create an enumeration. Like classes and all other named types,
enumerations can have methods associated with them.

enum Rank: Int {

 case Ace = 1

 case Two, Three, Four, Five, Six, Seven, Eight, Nine, Ten

 case Jack, Queen, King

 func simpleDescription() -> String {

 switch self {

 case .Ace:

 return "ace"

 case .Jack:

 return "jack"

19

 case .Queen:

 return "queen"

 case .King:

 return "king"

 default:

 return String(self.toRaw())

 }

 }

}

let ace = Rank.Ace

let aceRawValue = ace.toRaw()

EXPERI M ENT

Write a function that compares two Rank values by comparing their raw values.

In the example above, the raw value type of the enumeration is Int, so you only have
to specify the first raw value. The rest of the raw values are assigned in order. You can
also use strings or floating-point numbers as the raw type of an enumeration.

Use the toRaw and fromRaw functions to convert between the raw value and the
enumeration value.

if let convertedRank = Rank.fromRaw(3) {

 let threeDescription = convertedRank.simpleDescription()

}

The member values of an enumeration are actual values, not just another way of
writing their raw values. In fact, in cases where there isn’t a meaningful raw value,
you don’t have to provide one.

enum Suit {

 case Spades, Hearts, Diamonds, Clubs

20www.allitebooks.com

http://www.allitebooks.org

 func simpleDescription() -> String {

 switch self {

 case .Spades:

 return "spades"

 case .Hearts:

 return "hearts"

 case .Diamonds:

 return "diamonds"

 case .Clubs:

 return "clubs"

 }

 }

}

let hearts = Suit.Hearts

let heartsDescription = hearts.simpleDescription()

EXPERI M ENT

Add a color method to Suit that returns “black” for spades and clubs, and returns “red” for hearts and
diamonds.

Notice the two ways that the Hearts member of the enumeration is referred to above:
When assigning a value to the hearts constant, the enumeration member Suit.Hearts
is referred to by its full name because the constant doesn’t have an explicit type
specified. Inside the switch, the enumeration is referred to by the abbreviated form
.Hearts because the value of self is already known to be a suit. You can use the
abbreviated form anytime the value’s type is already known.

Use struct to create a structure. Structures support many of the same behaviors as
classes, including methods and initializers. One of the most important differences
between structures and classes is that structures are always copied when they are
passed around in your code, but classes are passed by reference.

21

struct Card {

 var rank: Rank

 var suit: Suit

 func simpleDescription() -> String {

 return "The \(rank.simpleDescription()) of \(suit.simpleDescription())"

 }

}

let threeOfSpades = Card(rank: .Three, suit: .Spades)

let threeOfSpadesDescription = threeOfSpades.simpleDescription()

EXPERI M ENT

Add a method to Card that creates a full deck of cards, with one card of each combination of rank and
suit.

An instance of an enumeration member can have values associated with the instance.
Instances of the same enumeration member can have different values associated with
them. You provide the associated values when you create the instance. Associated
values and raw values are different: The raw value of an enumeration member is the
same for all of its instances, and you provide the raw value when you define the
enumeration.

For example, consider the case of requesting the sunrise and sunset time from a
server. The server either responds with the information or it responds with some error
information.

enum ServerResponse {

 case Result(String, String)

 case Error(String)

}

let success = ServerResponse.Result("6:00 am", "8:09 pm")

let failure = ServerResponse.Error("Out of cheese.")

22

switch success {

case let .Result(sunrise, sunset):

 let serverResponse = "Sunrise is at \(sunrise) and sunset is at \(sunset)."

case let .Error(error):

 let serverResponse = "Failure... \(error)"

}

EXPERI M ENT

Add a third case to ServerResponse and to the switch.

Notice how the sunrise and sunset times are extracted from the ServerResponse value
as part of matching the value against the switch cases.

Protocols and Extensions

Use protocol to declare a protocol.

protocol ExampleProtocol {

 var simpleDescription: String { get }

 mutating func adjust()

}

Classes, enumerations, and structs can all adopt protocols.

class SimpleClass: ExampleProtocol {

 var simpleDescription: String = "A very simple class."

 var anotherProperty: Int = 69105

 func adjust() {

 simpleDescription += " Now 100% adjusted."

23

 }

}

var a = SimpleClass()

a.adjust()

let aDescription = a.simpleDescription

struct SimpleStructure: ExampleProtocol {

 var simpleDescription: String = "A simple structure"

 mutating func adjust() {

 simpleDescription += " (adjusted)"

 }

}

var b = SimpleStructure()

b.adjust()

let bDescription = b.simpleDescription

EXPERI M ENT

Write an enumeration that conforms to this protocol.

Notice the use of the mutating keyword in the declaration of SimpleStructure to mark a
method that modifies the structure. The declaration of SimpleClass doesn’t need any of
its methods marked as mutating because methods on a class can always modify the
class.

Use extension to add functionality to an existing type, such as new methods and
computed properties. You can use an extension to add protocol conformance to a type
that is declared elsewhere, or even to a type that you imported from a library or
framework.

extension Int: ExampleProtocol {

 var simpleDescription: String {

24

 return "The number \(self)"

 }

 mutating func adjust() {

 self += 42

 }

}

7.simpleDescription

EXPERI M ENT

Write an extension for the Double type that adds an absoluteValue property.

You can use a protocol name just like any other named type—for example, to create a
collection of objects that have different types but that all conform to a single protocol.
When you work with values whose type is a protocol type, methods outside the
protocol definition are not available.

let protocolValue: ExampleProtocol = a

protocolValue.simpleDescription

// protocolValue.anotherProperty // Uncomment to see the error

Even though the variable protocolValue has a runtime type of SimpleClass, the compiler
treats it as the given type of ExampleProtocol. This means that you can’t accidentally
access methods or properties that the class implements in addition to its protocol
conformance.

Generics

Write a name inside angle brackets to make a generic function or type.

func repeat<ItemType>(item: ItemType, times: Int) -> ItemType[] {

 var result = ItemType[]()

25

 for i in 0..times {

 result += item

 }

 return result

}

repeat("knock", 4)

You can make generic forms of functions and methods, as well as classes,
enumerations, and structures.

// Reimplement the Swift standard library's optional type

enum OptionalValue<T> {

 case None

 case Some(T)

}

var possibleInteger: OptionalValue<Int> = .None

possibleInteger = .Some(100)

Use where after the type name to specify a list of requirements—for example, to
require the type to implement a protocol, to require two types to be the same, or to
require a class to have a particular superclass.

func anyCommonElements <T, U where T: Sequence, U: Sequence,

T.GeneratorType.Element: Equatable, T.GeneratorType.Element ==

U.GeneratorType.Element> (lhs: T, rhs: U) -> Bool {

 for lhsItem in lhs {

 for rhsItem in rhs {

 if lhsItem == rhsItem {

 return true

 }

 }

26

 }

 return false

}

anyCommonElements([1, 2, 3], [3])

EXPERI M ENT

Modify the anyCommonElements function to make a function that returns an array of the elements that
any two sequences have in common.

In the simple cases, you can omit where and simply write the protocol or class name
after a colon. Writing <T: Equatable> is the same as writing <T where T: Equatable>.

27

Language Guide

28

The Basics

Swift is a new programming language for iOS and OS X app development.
Nonetheless, many parts of Swift will be familiar from your experience of developing in
C and Objective-C.

Swift provides its own versions of all fundamental C and Objective-C types, including
Int for integers; Double and Float for floating-point values; Bool for Boolean values; and
String for textual data. Swift also provides powerful versions of the two primary
collection types, Array and Dictionary, as described in Collection Types.

Like C, Swift uses variables to store and refer to values by an identifying name. Swift
also makes extensive use of variables whose values cannot be changed. These are
known as constants, and are much more powerful than constants in C. Constants are
used throughout Swift to make code safer and clearer in intent when you work with
values that do not need to change.

In addition to familiar types, Swift introduces advanced types not found in Objective-C.
These include tuples, which enable you to create and pass around groupings of values.
Tuples can return multiple values from a function as a single compound value.

Swift also introduces optional types, which handle the absence of a value. Optionals
say either “there is a value, and it equals x” or “there isn’t a value at all”. Optionals
are similar to using nil with pointers in Objective-C, but they work for any type, not
just classes. Optionals are safer and more expressive than nil pointers in Objective-C
and are at the heart of many of Swift’s most powerful features.

Optionals are an example of the fact that Swift is a type safe language. Swift helps
you to be clear about the types of values your code can work with. If part of your code
expects a String, type safety prevents you from passing it an Int by mistake. This
enables you to catch and fix errors as early as possible in the development process.

Constants and Variables

Constants and variables associate a name (such as maximumNumberOfLoginAttempts or
welcomeMessage) with a value of a particular type (such as the number 10 or the string
"Hello"). The value of a constant cannot be changed once it is set, whereas a variable
can be set to a different value in the future.

29

Declaring Constants and Variables

Constants and variables must be declared before they are used. You declare constants
with the let keyword and variables with the var keyword. Here’s an example of how
constants and variables can be used to track the number of login attempts a user has
made:

let maximumNumberOfLoginAttempts = 10

var currentLoginAttempt = 0

This code can be read as:

“Declare a new constant called maximumNumberOfLoginAttempts, and give it a value of 10.
Then, declare a new variable called currentLoginAttempt, and give it an initial value of
0.”

In this example, the maximum number of allowed login attempts is declared as a
constant, because the maximum value never changes. The current login attempt
counter is declared as a variable, because this value must be incremented after each
failed login attempt.

You can declare multiple constants or multiple variables on a single line, separated by
commas:

var x = 0.0, y = 0.0, z = 0.0

NO T E

If a stored value in your code is not going to change, always declare it as a constant with the let
keyword. Use variables only for storing values that need to be able to change.

Type Annotations

You can provide a type annotation when you declare a constant or variable, to be
clear about the kind of values the constant or variable can store. Write a type
annotation by placing a colon after the constant or variable name, followed by a

30www.allitebooks.com

http://www.allitebooks.org

space, followed by the name of the type to use.

This example provides a type annotation for a variable called welcomeMessage, to
indicate that the variable can store String values:

var welcomeMessage: String

The colon in the declaration means “…of type…,” so the code above can be read as:

“Declare a variable called welcomeMessage that is of type String.”

The phrase “of type String” means “can store any String value.” Think of it as meaning
“the type of thing” (or “the kind of thing”) that can be stored.

The welcomeMessage variable can now be set to any string value without error:

welcomeMessage = "Hello"

NO T E

It is rare that you need to write type annotations in practice. If you provide an initial value for a constant
or variable at the point that it is defined, Swift can almost always infer the type to be used for that
constant or variable, as described in Type Safety and Type Inference. In the welcomeMessage example
above, no initial value is provided, and so the type of the welcomeMessage variable is specified with a
type annotation rather than being inferred from an initial value.

Naming Constants and Variables

You can use almost any character you like for constant and variable names, including
Unicode characters:

let π = 3.14159

let 你好 = "你好世界"

let �� = "dogcow"

Constant and variable names cannot contain mathematical symbols, arrows, private-
use (or invalid) Unicode code points, or line- and box-drawing characters. Nor can they
begin with a number, although numbers may be included elsewhere within the name.

31

Once you’ve declared a constant or variable of a certain type, you can’t redeclare it
again with the same name, or change it to store values of a different type. Nor can
you change a constant into a variable or a variable into a constant.

NO T E

If you need to give a constant or variable the same name as a reserved Swift keyword, you can do so by
surrounding the keyword with back ticks (`) when using it as a name. However, you should avoid using
keywords as names unless you have absolutely no choice.

You can change the value of an existing variable to another value of a compatible
type. In this example, the value of friendlyWelcome is changed from "Hello!" to
"Bonjour!":

var friendlyWelcome = "Hello!"

friendlyWelcome = "Bonjour!"

// friendlyWelcome is now "Bonjour!"

Unlike a variable, the value of a constant cannot be changed once it is set. Attempting
to do so is reported as an error when your code is compiled:

let languageName = "Swift"

languageName = "Swift++"

// this is a compile-time error - languageName cannot be changed

Printing Constants and Variables

You can print the current value of a constant or variable with the println function:

println(friendlyWelcome)

// prints "Bonjour!"

println is a global function that prints a value, followed by a line break, to an
appropriate output. If you are working in Xcode, for example, println prints its output
in Xcode’s “console” pane. (A second function, print, performs the same task without

32

appending a line break to the end of the value to be printed.)

The println function prints any String value you pass to it:

println("This is a string")

// prints "This is a string"

The println function can print more complex logging messages, in a similar manner to
Cocoa’s NSLog function. These messages can include the current values of constants
and variables.

Swift uses string interpolation to include the name of a constant or variable as a
placeholder in a longer string, and to prompt Swift to replace it with the current value
of that constant or variable. Wrap the name in parentheses and escape it with a
backslash before the opening parenthesis:

println("The current value of friendlyWelcome is \(friendlyWelcome)")

// prints "The current value of friendlyWelcome is Bonjour!"

NO T E

All options you can use with string interpolation are described in String Interpolation.

Comments

Use comments to include non-executable text in your code, as a note or reminder to
yourself. Comments are ignored by the Swift compiler when your code is compiled.

Comments in Swift are very similar to comments in C. Single-line comments begin with
two forward-slashes (//):

// this is a comment

You can also write multiline comments, which start with a forward-slash followed by
an asterisk (/*) and end with an asterisk followed by a forward-slash (*/):

/* this is also a comment,

33

but written over multiple lines */

Unlike multiline comments in C, multiline comments in Swift can be nested inside
other multiline comments. You write nested comments by starting a multiline
comment block and then starting a second multiline comment within the first block.
The second block is then closed, followed by the first block:

/* this is the start of the first multiline comment

/* this is the second, nested multiline comment */

this is the end of the first multiline comment */

Nested multiline comments enable you to comment out large blocks of code quickly
and easily, even if the code already contains multiline comments.

Semicolons

Unlike many other languages, Swift does not require you to write a semicolon (;) after
each statement in your code, although you can do so if you wish. Semicolons are
required, however, if you want to write multiple separate statements on a single line:

let cat = "�"; println(cat)

// prints "�"

Integers

Integers are whole numbers with no fractional component, such as 42 and -23.
Integers are either signed (positive, zero, or negative) or unsigned (positive or zero).

Swift provides signed and unsigned integers in 8, 16, 32, and 64 bit forms. These
integers follow a naming convention similar to C, in that an 8-bit unsigned integer is of
type UInt8, and a 32-bit signed integer is of type Int32. Like all types in Swift, these
integer types have capitalized names.

Integer Bounds

34

You can access the minimum and maximum values of each integer type with its min
and max properties:

let minValue = UInt8.min // minValue is equal to 0, and is of type UInt8

let maxValue = UInt8.max // maxValue is equal to 255, and is of type UInt8

The values of these properties are of the appropriate-sized number type (such as UInt8
in the example above) and can therefore be used in expressions alongside other
values of the same type.

Int

In most cases, you don’t need to pick a specific size of integer to use in your code.
Swift provides an additional integer type, Int, which has the same size as the current
platform’s native word size:

Unless you need to work with a specific size of integer, always use Int for integer
values in your code. This aids code consistency and interoperability. Even on 32-bit
platforms, Int can store any value between -2,147,483,648 and 2,147,483,647, and is
large enough for many integer ranges.

UInt

Swift also provides an unsigned integer type, UInt, which has the same size as the
current platform’s native word size:

NO T E

Use UInt only when you specifically need an unsigned integer type with the same size as the platform’s

On a 32-bit platform, Int is the same size as Int32.
On a 64-bit platform, Int is the same size as Int64.

On a 32-bit platform, UInt is the same size as UInt32.
On a 64-bit platform, UInt is the same size as UInt64.

35

native word size. If this is not the case, Int is preferred, even when the values to be stored are known to
be non-negative. A consistent use of Int for integer values aids code interoperability, avoids the need to
convert between different number types, and matches integer type inference, as described in Type Safety
and Type Inference.

Floating-Point Numbers

Floating-point numbers are numbers with a fractional component, such as 3.14159, 0.1,
and -273.15.

Floating-point types can represent a much wider range of values than integer types,
and can store numbers that are much larger or smaller than can be stored in an Int.
Swift provides two signed floating-point number types:

NO T E

Double has a precision of at least 15 decimal digits, whereas the precision of Float can be as little as 6
decimal digits. The appropriate floating-point type to use depends on the nature and range of values you
need to work with in your code.

Type Safety and Type Inference

Swift is a type safe language. A type safe language encourages you to be clear about
the types of values your code can work with. If part of your code expects a String, you
can’t pass it an Int by mistake.

Because Swift is type safe, it performs type checks when compiling your code and flags
any mismatched types as errors. This enables you to catch and fix errors as early as
possible in the development process.

Type-checking helps you avoid errors when you’re working with different types of

Double represents a 64-bit floating-point number. Use it when floating-point
values must be very large or particularly precise.
Float represents a 32-bit floating-point number. Use it when floating-point
values do not require 64-bit precision.

36

values. However, this doesn’t mean that you have to specify the type of every
constant and variable that you declare. If you don’t specify the type of value you need,
Swift uses type inference to work out the appropriate type. Type inference enables a
compiler to deduce the type of a particular expression automatically when it compiles
your code, simply by examining the values you provide.

Because of type inference, Swift requires far fewer type declarations than languages
such as C or Objective-C. Constants and variables are still explicitly typed, but much of
the work of specifying their type is done for you.

Type inference is particularly useful when you declare a constant or variable with an
initial value. This is often done by assigning a literal value (or literal) to the constant
or variable at the point that you declare it. (A literal value is a value that appears
directly in your source code, such as 42 and 3.14159 in the examples below.)

For example, if you assign a literal value of 42 to a new constant without saying what
type it is, Swift infers that you want the constant to be an Int, because you have
initialized it with a number that looks like an integer:

let meaningOfLife = 42

// meaningOfLife is inferred to be of type Int

Likewise, if you don’t specify a type for a floating-point literal, Swift infers that you
want to create a Double:

let pi = 3.14159

// pi is inferred to be of type Double

Swift always chooses Double (rather than Float) when inferring the type of floating-
point numbers.

If you combine integer and floating-point literals in an expression, a type of Double will
be inferred from the context:

let anotherPi = 3 + 0.14159

// anotherPi is also inferred to be of type Double

The literal value of 3 has no explicit type in and of itself, and so an appropriate output
type of Double is inferred from the presence of a floating-point literal as part of the
addition.

37

Numeric Literals

Integer literals can be written as:

All of these integer literals have a decimal value of 17:

let decimalInteger = 17

let binaryInteger = 0b10001 // 17 in binary notation

let octalInteger = 0o21 // 17 in octal notation

let hexadecimalInteger = 0x11 // 17 in hexadecimal notation

Floating-point literals can be decimal (with no prefix), or hexadecimal (with a 0x
prefix). They must always have a number (or hexadecimal number) on both sides of
the decimal point. They can also have an optional exponent, indicated by an
uppercase or lowercase e for decimal floats, or an uppercase or lowercase p for
hexadecimal floats.

For decimal numbers with an exponent of exp, the base number is multiplied by 10exp:

For hexadecimal numbers with an exponent of exp, the base number is multiplied by
2exp:

All of these floating-point literals have a decimal value of 12.1875:

A decimal number, with no prefix
A binary number, with a 0b prefix
An octal number, with a 0o prefix
A hexadecimal number, with a 0x prefix

1.25e2 means 1.25 × 102, or 125.0.

1.25e-2 means 1.25 × 10-2, or 0.0125.

0xFp2 means 15 × 22, or 60.0.

0xFp-2 means 15 × 2-2, or 3.75.

38

let decimalDouble = 12.1875

let exponentDouble = 1.21875e1

let hexadecimalDouble = 0xC.3p0

Numeric literals can contain extra formatting to make them easier to read. Both
integers and floats can be padded with extra zeroes and can contain underscores to
help with readability. Neither type of formatting affects the underlying value of the
literal:

let paddedDouble = 000123.456

let oneMillion = 1_000_000

let justOverOneMillion = 1_000_000.000_000_1

Numeric Type Conversion

Use the Int type for all general-purpose integer constants and variables in your code,
even if they are known to be non-negative. Using the default integer type in everyday
situations means that integer constants and variables are immediately interoperable in
your code and will match the inferred type for integer literal values.

Use other integer types only when they are are specifically needed for the task at
hand, because of explicitly-sized data from an external source, or for performance,
memory usage, or other necessary optimization. Using explicitly-sized types in these
situations helps to catch any accidental value overflows and implicitly documents the
nature of the data being used.

Integer Conversion

The range of numbers that can be stored in an integer constant or variable is different
for each numeric type. An Int8 constant or variable can store numbers between -128
and 127, whereas a UInt8 constant or variable can store numbers between 0 and 255. A
number that will not fit into a constant or variable of a sized integer type is reported
as an error when your code is compiled:

let cannotBeNegative: UInt8 = -1

39

// UInt8 cannot store negative numbers, and so this will report an error

let tooBig: Int8 = Int8.max + 1

// Int8 cannot store a number larger than its maximum value,

// and so this will also report an error

Because each numeric type can store a different range of values, you must opt in to
numeric type conversion on a case-by-case basis. This opt-in approach prevents
hidden conversion errors and helps make type conversion intentions explicit in your
code.

To convert one specific number type to another, you initialize a new number of the
desired type with the existing value. In the example below, the constant twoThousand is
of type UInt16, whereas the constant one is of type UInt8. They cannot be added
together directly, because they are not of the same type. Instead, this example calls
UInt16(one) to create a new UInt16 initialized with the value of one, and uses this value
in place of the original:

let twoThousand: UInt16 = 2_000

let one: UInt8 = 1

let twoThousandAndOne = twoThousand + UInt16(one)

Because both sides of the addition are now of type UInt16, the addition is allowed. The
output constant (twoThousandAndOne) is inferred to be of type UInt16, because it is the
sum of two UInt16 values.

SomeType(ofInitialValue) is the default way to call the initializer of a Swift type and
pass in an initial value. Behind the scenes, UInt16 has an initializer that accepts a UInt8
value, and so this initializer is used to make a new UInt16 from an existing UInt8. You
can’t pass in any type here, however—it has to be a type for which UInt16 provides an
initializer. Extending existing types to provide initializers that accept new types
(including your own type definitions) is covered in Extensions.

Integer and Floating-Point Conversion

Conversions between integer and floating-point numeric types must be made explicit:

let three = 3

40www.allitebooks.com

http://www.allitebooks.org

let pointOneFourOneFiveNine = 0.14159

let pi = Double(three) + pointOneFourOneFiveNine

// pi equals 3.14159, and is inferred to be of type Double

Here, the value of the constant three is used to create a new value of type Double, so
that both sides of the addition are of the same type. Without this conversion in place,
the addition would not be allowed.

The reverse is also true for floating-point to integer conversion, in that an integer type
can be initialized with a Double or Float value:

let integerPi = Int(pi)

// integerPi equals 3, and is inferred to be of type Int

Floating-point values are always truncated when used to initialize a new integer value
in this way. This means that 4.75 becomes 4, and -3.9 becomes -3.

NO T E

The rules for combining numeric constants and variables are different from the rules for numeric literals.
The literal value 3 can be added directly to the literal value 0.14159, because number literals do not have
an explicit type in and of themselves. Their type is inferred only at the point that they are evaluated by
the compiler.

Type Aliases

Type aliases define an alternative name for an existing type. You define type aliases
with the typealias keyword.

Type aliases are useful when you want to refer to an existing type by a name that is
contextually more appropriate, such as when working with data of a specific size from
an external source:

typealias AudioSample = UInt16

Once you define a type alias, you can use the alias anywhere you might use the
original name:

41

var maxAmplitudeFound = AudioSample.min

// maxAmplitudeFound is now 0

Here, AudioSample is defined as an alias for UInt16. Because it is an alias, the call to
AudioSample.min actually calls UInt16.min, which provides an initial value of 0 for the
maxAmplitudeFound variable.

Booleans

Swift has a basic Boolean type, called Bool. Boolean values are referred to as logical,
because they can only ever be true or false. Swift provides two Boolean constant
values, true and false:

let orangesAreOrange = true

let turnipsAreDelicious = false

The types of orangesAreOrange and turnipsAreDelicious have been inferred as Bool from
the fact that they were initialized with Boolean literal values. As with Int and Double
above, you don’t need to declare constants or variables as Bool if you set them to true
or false as soon as you create them. Type inference helps make Swift code more
concise and readable when it initializes constants or variables with other values whose
type is already known.

Boolean values are particularly useful when you work with conditional statements such
as the if statement:

if turnipsAreDelicious {

 println("Mmm, tasty turnips!")

} else {

 println("Eww, turnips are horrible.")

}

// prints "Eww, turnips are horrible."

Conditional statements such as the if statement are covered in more detail in Control
Flow.

42

Swift’s type safety prevents non-Boolean values from being be substituted for Bool.
The following example reports a compile-time error:

let i = 1

if i {

 // this example will not compile, and will report an error

}

However, the alternative example below is valid:

let i = 1

if i == 1 {

 // this example will compile successfully

}

The result of the i == 1 comparison is of type Bool, and so this second example passes
the type-check. Comparisons like i == 1 are discussed in Basic Operators.

As with other examples of type safety in Swift, this approach avoids accidental errors
and ensures that the intention of a particular section of code is always clear.

Tuples

Tuples group multiple values into a single compound value. The values within a tuple
can be of any type and do not have to be of the same type as each other.

In this example, (404, "Not Found") is a tuple that describes an HTTP status code. An
HTTP status code is a special value returned by a web server whenever you request a
web page. A status code of 404 Not Found is returned if you request a webpage that
doesn’t exist.

let http404Error = (404, "Not Found")

// http404Error is of type (Int, String), and equals (404, "Not Found")

The (404, "Not Found") tuple groups together an Int and a String to give the HTTP
status code two separate values: a number and a human-readable description. It can

43

be described as “a tuple of type (Int, String)”.

You can create tuples from any permutation of types, and they can contain as many
different types as you like. There’s nothing stopping you from having a tuple of type
(Int, Int, Int), or (String, Bool), or indeed any other permutation you require.

You can decompose a tuple’s contents into separate constants or variables, which you
then access as usual:

let (statusCode, statusMessage) = http404Error

println("The status code is \(statusCode)")

// prints "The status code is 404"

println("The status message is \(statusMessage)")

// prints "The status message is Not Found"

If you only need some of the tuple’s values, ignore parts of the tuple with an
underscore (_) when you decompose the tuple:

let (justTheStatusCode, _) = http404Error

println("The status code is \(justTheStatusCode)")

// prints "The status code is 404"

Alternatively, access the individual element values in a tuple using index numbers
starting at zero:

println("The status code is \(http404Error.0)")

// prints "The status code is 404"

println("The status message is \(http404Error.1)")

// prints "The status message is Not Found"

You can name the individual elements in a tuple when the tuple is defined:

let http200Status = (statusCode: 200, description: "OK")

If you name the elements in a tuple, you can use the element names to access the
values of those elements:

44

println("The status code is \(http200Status.statusCode)")

// prints "The status code is 200"

println("The status message is \(http200Status.description)")

// prints "The status message is OK"

Tuples are particularly useful as the return values of functions. A function that tries to
retrieve a web page might return the (Int, String) tuple type to describe the success
or failure of the page retrieval. By returning a tuple with two distinct values, each of a
different type, the function provides more useful information about its outcome than if
it could only return a single value of a single type. For more information, see Functions
with Multiple Return Values.

NO T E

Tuples are useful for temporary groups of related values. They are not suited to the creation of complex
data structures. If your data structure is likely to persist beyond a temporary scope, model it as a class or
structure, rather than as a tuple. For more information, see Classes and Structures.

Optionals

You use optionals in situations where a value may be absent. An optional says:

or

NO T E

The concept of optionals doesn’t exist in C or Objective-C. The nearest thing in Objective-C is the ability to
return nil from a method that would otherwise return an object, with nil meaning “the absence of a
valid object.” However, this only works for objects—it doesn’t work for structs, basic C types, or
enumeration values. For these types, Objective-C methods typically return a special value (such as
NSNotFound) to indicate the absence of a value. This approach assumes that the method’s caller knows
there is a special value to test against and remembers to check for it. Swift’s optionals let you indicate the

There is a value, and it equals x

There isn’t a value at all

45

absence of a value for any type at all, without the need for special constants.

Here’s an example. Swift’s String type has a method called toInt, which tries to
convert a String value into an Int value. However, not every string can be converted
into an integer. The string "123" can be converted into the numeric value 123, but the
string "hello, world" does not have an obvious numeric value to convert to.

The example below uses the toInt method to try to convert a String into an Int:

let possibleNumber = "123"

let convertedNumber = possibleNumber.toInt()

// convertedNumber is inferred to be of type "Int?", or "optional Int"

Because the toInt method might fail, it returns an optional Int, rather than an Int. An
optional Int is written as Int?, not Int. The question mark indicates that the value it
contains is optional, meaning that it might contain some Int value, or it might contain
no value at all. (It can’t contain anything else, such as a Bool value or a String value.
It’s either an Int, or it’s nothing at all.)

If Statements and Forced Unwrapping

You can use an if statement to find out whether an optional contains a value. If an
optional does have a value, it evaluates to true; if it has no value at all, it evaluates to
false.

Once you’re sure that the optional does contain a value, you can access its underlying
value by adding an exclamation mark (!) to the end of the optional’s name. The
exclamation mark effectively says, “I know that this optional definitely has a value;
please use it.” This is known as forced unwrapping of the optional’s value:

if convertedNumber {

 println("\(possibleNumber) has an integer value of \(convertedNumber!)")

} else {

 println("\(possibleNumber) could not be converted to an integer")

}

46

// prints "123 has an integer value of 123"

For more on the if statement, see Control Flow.

NO T E

Trying to use ! to access a non-existent optional value triggers a runtime error. Always make sure that an
optional contains a non-nil value before using ! to force-unwrap its value.

Optional Binding

You use optional binding to find out whether an optional contains a value, and if so, to
make that value available as a temporary constant or variable. Optional binding can
be used with if and while statements to check for a value inside an optional, and to
extract that value into a constant or variable, as part of a single action. if and while
statements are described in more detail in Control Flow.

Write optional bindings for the if statement as follows:

if let constantName = someOptional {

 statements

}

You can rewrite the possibleNumber example from above to use optional binding rather
than forced unwrapping:

if let actualNumber = possibleNumber.toInt() {

 println("\(possibleNumber) has an integer value of \(actualNumber)")

} else {

 println("\(possibleNumber) could not be converted to an integer")

}

// prints "123 has an integer value of 123"

This can be read as:

47

“If the optional Int returned by possibleNumber.toInt contains a value, set a new
constant called actualNumber to the value contained in the optional.”

If the conversion is successful, the actualNumber constant becomes available for use
within the first branch of the if statement. It has already been initialized with the
value contained within the optional, and so there is no need to use the ! suffix to
access its value. In this example, actualNumber is simply used to print the result of the
conversion.

You can use both constants and variables with optional binding. If you wanted to
manipulate the value of actualNumber within the first branch of the if statement, you
could write if var actualNumber instead, and the value contained within the optional
would be made available as a variable rather than a constant.

nil

You set an optional variable to a valueless state by assigning it the special value nil:

var serverResponseCode: Int? = 404

// serverResponseCode contains an actual Int value of 404

serverResponseCode = nil

// serverResponseCode now contains no value

NO T E

nil cannot be used with non-optional constants and variables. If a constant or variable in your code
needs to be able to cope with the absence of a value under certain conditions, always declare it as an
optional value of the appropriate type.

If you define an optional constant or variable without providing a default value, the
constant or variable is automatically set to nil for you:

var surveyAnswer: String?

// surveyAnswer is automatically set to nil

NO T E

48

NO T E

Swift’s nil is not the same as nil in Objective-C. In Objective-C, nil is a pointer to a non-existent
object. In Swift, nil is not a pointer—it is the absence of a value of a certain type. Optionals of any type
can be set to nil, not just object types.

Implicitly Unwrapped Optionals

As described above, optionals indicate that a constant or variable is allowed to have
“no value”. Optionals can be checked with an if statement to see if a value exists, and
can be conditionally unwrapped with optional binding to access the optional’s value if
it does exist.

Sometimes it is clear from a program’s structure that an optional will always have a
value, after that value is first set. In these cases, it is useful to remove the need to
check and unwrap the optional’s value every time it is accessed, because it can be
safely assumed to have a value all of the time.

These kinds of optionals are defined as implicitly unwrapped optionals. You write an
implicitly unwrapped optional by placing an exclamation mark (String!) rather than a
question mark (String?) after the type that you want to make optional.

Implicitly unwrapped optionals are useful when an optional’s value is confirmed to
exist immediately after the optional is first defined and can definitely be assumed to
exist at every point thereafter. The primary use of implicitly unwrapped optionals in
Swift is during class initialization, as described in Unowned References and Implicitly
Unwrapped Optional Properties.

An implicitly unwrapped optional is a normal optional behind the scenes, but can also
be used like a nonoptional value, without the need to unwrap the optional value each
time it is accessed. The following example shows the difference in behavior between
an optional String and an implicitly unwrapped optional String:

let possibleString: String? = "An optional string."

println(possibleString!) // requires an exclamation mark to access its value

// prints "An optional string."

let assumedString: String! = "An implicitly unwrapped optional string."

println(assumedString) // no exclamation mark is needed to access its value

49

// prints "An implicitly unwrapped optional string."

You can think of an implicitly unwrapped optional as giving permission for the optional
to be unwrapped automatically whenever it is used. Rather than placing an
exclamation mark after the optional’s name each time you use it, you place an
exclamation mark after the optional’s type when you declare it.

NO T E

If you try to access an implicitly unwrapped optional when it does not contain a value, you will trigger a
runtime error. The result is exactly the same as if you place an exclamation mark after a normal optional
that does not contain a value.

You can still treat an implicitly unwrapped optional like a normal optional, to check if it
contains a value:

if assumedString {

 println(assumedString)

}

// prints "An implicitly unwrapped optional string."

You can also use an implicitly unwrapped optional with optional binding, to check and
unwrap its value in a single statement:

if let definiteString = assumedString {

 println(definiteString)

}

// prints "An implicitly unwrapped optional string."

NO T E

Implicitly unwrapped optionals should not be used when there is a possibility of a variable becoming nil at
a later point. Always use a normal optional type if you need to check for a nil value during the lifetime of
a variable.

50www.allitebooks.com

http://www.allitebooks.org

Assertions

Optionals enable you to check for values that may or may not exist, and to write code
that copes gracefully with the absence of a value. In some cases, however, it is simply
not possible for your code to continue execution if a value does not exist, or if a
provided value does not satisfy certain conditions. In these situations, you can trigger
an assertion in your code to end code execution and to provide an opportunity to
debug the cause of the absent or invalid value.

Debugging with Assertions

An assertion is a runtime check that a logical condition definitely evaluates to true.
Literally put, an assertion “asserts” that a condition is true. You use an assertion to
make sure that an essential condition is satisfied before executing any further code. If
the condition evaluates to true, code execution continues as usual; if the condition
evaluates to false, code execution ends, and your app is terminated.

If your code triggers an assertion while running in a debug environment, such as when
you build and run an app in Xcode, you can see exactly where the invalid state
occurred and query the state of your app at the time that the assertion was triggered.
An assertion also lets you provide a suitable debug message as to the nature of the
assert.

You write an assertion by calling the global assert function. You pass the assert
function an expression that evaluates to true or false and a message that should be
displayed if the result of the condition is false:

let age = -3

assert(age >= 0, "A person's age cannot be less than zero")

// this causes the assertion to trigger, because age is not >= 0

In this example, code execution will continue only if age >= 0 evaluates to true, that is,
if the value of age is non-negative. If the value of age is negative, as in the code above,
then age >= 0 evaluates to false, and the assertion is triggered, terminating the
application.

Assertion messages cannot use string interpolation. The assertion message can be

51

omitted if desired, as in the following example:

assert(age >= 0)

When to Use Assertions

Use an assertion whenever a condition has the potential to be false, but must
definitely be true in order for your code to continue execution. Suitable scenarios for
an assertion check include:

See also Subscripts and Functions.

NO T E

Assertions cause your app to terminate and are not a substitute for designing your code in such a way
that invalid conditions are unlikely to arise. Nonetheless, in situations where invalid conditions are possible,
an assertion is an effective way to ensure that such conditions are highlighted and noticed during
development, before your app is published.

An integer subscript index is passed to a custom subscript implementation, but
the subscript index value could be too low or too high.
A value is passed to a function, but an invalid value means that the function
cannot fulfill its task.
An optional value is currently nil, but a non-nil value is essential for
subsequent code to execute successfully.

52

Basic Operators

An operator is a special symbol or phrase that you use to check, change, or combine
values. For example, the addition operator (+) adds two numbers together (as in let i
= 1 + 2). More complex examples include the logical AND operator && (as in if
enteredDoorCode && passedRetinaScan) and the increment operator ++i, which is a
shortcut to increase the value of i by 1.

Swift supports most standard C operators and improves several capabilities to
eliminate common coding errors. The assignment operator (=) does not return a value,
to prevent it from being mistakenly used when the equal to operator (==) is intended.
Arithmetic operators (+, -, *, /, % and so forth) detect and disallow value overflow, to
avoid unexpected results when working with numbers that become larger or smaller
than the allowed value range of the type that stores them. You can opt in to value
overflow behavior by using Swift’s overflow operators, as described in Overflow
Operators.

Unlike C, Swift lets you perform remainder (%) calculations on floating-point numbers.
Swift also provides two range operators (a..b and a...b) not found in C, as a shortcut
for expressing a range of values.

This chapter describes the common operators in Swift. Advanced Operators covers
Swift’s advanced operators, and describes how to define your own custom operators
and implement the standard operators for your own custom types.

Terminology

Operators are unary, binary, or ternary:

Unary operators operate on a single target (such as -a). Unary prefix operators
appear immediately before their target (such as !b), and unary postfix
operators appear immediately after their target (such as i++).
Binary operators operate on two targets (such as 2 + 3) and are infix because
they appear in between their two targets.
Ternary operators operate on three targets. Like C, Swift has only one ternary
operator, the ternary conditional operator (a ? b : c).

53

The values that operators affect are operands. In the expression 1 + 2, the + symbol is
a binary operator and its two operands are the values 1 and 2.

Assignment Operator

The assignment operator (a = b) initializes or updates the value of a with the value of
b:

let b = 10

var a = 5

a = b

// a is now equal to 10

If the right side of the assignment is a tuple with multiple values, its elements can be
decomposed into multiple constants or variables at once:

let (x, y) = (1, 2)

// x is equal to 1, and y is equal to 2

Unlike the assignment operator in C and Objective-C, the assignment operator in Swift
does not itself return a value. The following statement is not valid:

if x = y {

 // this is not valid, because x = y does not return a value

}

This feature prevents the assignment operator (=) from being used by accident when
the equal to operator (==) is actually intended. By making if x = y invalid, Swift helps
you to avoid these kinds of errors in your code.

Arithmetic Operators

Swift supports the four standard arithmetic operators for all number types:

54

1 + 2 // equals 3

5 - 3 // equals 2

2 * 3 // equals 6

10.0 / 2.5 // equals 4.0

Unlike the arithmetic operators in C and Objective-C, the Swift arithmetic operators do
not allow values to overflow by default. You can opt in to value overflow behavior by
using Swift’s overflow operators (such as a &+ b). See Overflow Operators.

The addition operator is also supported for String concatenation:

"hello, " + "world" // equals "hello, world"

Two Character values, or one Character value and one String value, can be added
together to make a new String value:

let dog: Character = "�"

let cow: Character = "�"

let dogCow = dog + cow

// dogCow is equal to "��"

See also Concatenating Strings and Characters.

Remainder Operator

The remainder operator (a % b) works out how many multiples of b will fit inside a and
returns the value that is left over (known as the remainder).

NO T E

Addition (+)
Subtraction (-)
Multiplication (*)
Division (/)

55

The remainder operator (%) is also known as a modulo operator in other languages. However, its behavior
in Swift for negative numbers means that it is, strictly speaking, a remainder rather than a modulo
operation.

Here’s how the remainder operator works. To calculate 9 % 4, you first work out how
many 4s will fit inside 9:

You can fit two 4s inside 9, and the remainder is 1 (shown in orange).

In Swift, this would be written as:

9 % 4 // equals 1

To determine the answer for a % b, the % operator calculates the following equation
and returns remainder as its output:

a = (b × some multiplier) + remainder

where some multiplier is the largest number of multiples of b that will fit inside a.

Inserting 9 and 4 into this equation yields:

9 = (4 × 2) + 1

The same method is applied when calculating the remainder for a negative value of a:

-9 % 4 // equals -1

Inserting -9 and 4 into the equation yields:

-9 = (4 × -2) + -1

giving a remainder value of -1.

The sign of b is ignored for negative values of b. This means that a % b and a % -b
always give the same answer.

Floating-Point Remainder Calculations

56

Unlike the remainder operator in C and Objective-C, Swift’s remainder operator can
also operate on floating-point numbers:

8 % 2.5 // equals 0.5

In this example, 8 divided by 2.5 equals 3, with a remainder of 0.5, so the remainder
operator returns a Double value of 0.5.

Increment and Decrement Operators

Like C, Swift provides an increment operator (++) and a decrement operator (--) as a
shortcut to increase or decrease the value of a numeric variable by 1. You can use
these operators with variables of any integer or floating-point type.

var i = 0

++i // i now equals 1

Each time you call ++i, the value of i is increased by 1. Essentially, ++i is shorthand for
saying i = i + 1. Likewise, --i can be used as shorthand for i = i - 1.

The ++ and -- symbols can be used as prefix operators or as postfix operators. ++i and
i++ are both valid ways to increase the value of i by 1. Similarly, --i and i-- are both
valid ways to decrease the value of i by 1.

Note that these operators modify i and also return a value. If you only want to
increment or decrement the value stored in i, you can ignore the returned value.
However, if you do use the returned value, it will be different based on whether you
used the prefix or postfix version of the operator, according to the following rules:

If the operator is written before the variable, it increments the variable before
returning its value.
If the operator is written after the variable, it increments the variable after
returning its value.

57

For example:

var a = 0

let b = ++a

// a and b are now both equal to 1

let c = a++

// a is now equal to 2, but c has been set to the pre-increment value of 1

In the example above, let b = ++a increments a before returning its value. This is why
both a and b are equal to to the new value of 1.

However, let c = a++ increments a after returning its value. This means that c gets the
old value of 1, and a is then updated to equal 2.

Unless you need the specific behavior of i++, it is recommended that you use ++i and -
-i in all cases, because they have the typical expected behavior of modifying i and
returning the result.

Unary Minus Operator

The sign of a numeric value can be toggled using a prefixed -, known as the unary
minus operator:

let three = 3

let minusThree = -three // minusThree equals -3

let plusThree = -minusThree // plusThree equals 3, or "minus minus three"

The unary minus operator (-) is prepended directly before the value it operates on,
without any white space.

Unary Plus Operator

The unary plus operator (+) simply returns the value it operates on, without any
change:

58

let minusSix = -6

let alsoMinusSix = +minusSix // alsoMinusSix equals -6

Although the unary plus operator doesn’t actually do anything, you can use it to
provide symmetry in your code for positive numbers when also using the unary minus
operator for negative numbers.

Compound Assignment Operators

Like C, Swift provides compound assignment operators that combine assignment (=)
with another operation. One example is the addition assignment operator (+=):

var a = 1

a += 2

// a is now equal to 3

The expression a += 2 is shorthand for a = a + 2. Effectively, the addition and the
assignment are combined into one operator that performs both tasks at the same
time.

NO T E

The compound assignment operators do not return a value. You cannot write let b = a += 2, for
example. This behavior is different from the increment and decrement operators mentioned above.

A complete list of compound assignment operators can be found in Expressions.

Comparison Operators

Swift supports all standard C comparison operators:

Equal to (a == b)
Not equal to (a != b)
Greater than (a > b)

59

NO T E

Swift also provides two identity operators (=== and !==), which you use to test whether two object
references both refer to the same object instance. For more information, see Classes and Structures.

Each of the comparison operators returns a Bool value to indicate whether or not the
statement is true:

1 == 1 // true, because 1 is equal to 1

2 != 1 // true, because 2 is not equal to 1

2 > 1 // true, because 2 is greater than 1

1 < 2 // true, because 1 is less than 2

1 >= 1 // true, because 1 is greater than or equal to 1

2 <= 1 // false, because 2 is not less than or equal to 1

Comparison operators are often used in conditional statements, such as the if
statement:

let name = "world"

if name == "world" {

 println("hello, world")

} else {

 println("I'm sorry \(name), but I don't recognize you")

}

// prints "hello, world", because name is indeed equal to "world"

For more on the if statement, see Control Flow.

Less than (a < b)
Greater than or equal to (a >= b)
Less than or equal to (a <= b)

60www.allitebooks.com

http://www.allitebooks.org

Ternary Conditional Operator

The ternary conditional operator is a special operator with three parts, which takes the
form question ? answer1 : answer2. It is a shortcut for evaluating one of two
expressions based on whether question is true or false. If question is true, it evaluates
answer1 and returns its value; otherwise, it evaluates answer2 and returns its value.

The ternary conditional operator is shorthand for the code below:

if question {

 answer1

} else {

 answer2

}

Here’s an example, which calculates the pixel height for a table row. The row height
should be 50 pixels taller than the content height if the row has a header, and 20
pixels taller if the row doesn’t have a header:

let contentHeight = 40

let hasHeader = true

let rowHeight = contentHeight + (hasHeader ? 50 : 20)

// rowHeight is equal to 90

The preceding example is shorthand for the code below:

let contentHeight = 40

let hasHeader = true

var rowHeight = contentHeight

if hasHeader {

 rowHeight = rowHeight + 50

} else {

 rowHeight = rowHeight + 20

}

61

// rowHeight is equal to 90

The first example’s use of the ternary conditional operator means that rowHeight can
be set to the correct value on a single line of code. This is more concise than the
second example, and removes the need for rowHeight to be a variable, because its
value does not need to be modified within an if statement.

The ternary conditional operator provides an efficient shorthand for deciding which of
two expressions to consider. Use the ternary conditional operator with care, however.
Its conciseness can lead to hard-to-read code if overused. Avoid combining multiple
instances of the ternary conditional operator into one compound statement.

Range Operators

Swift includes two range operators, which are shortcuts for expressing a range of
values.

Closed Range Operator

The closed range operator (a...b) defines a range that runs from a to b, and includes
the values a and b.

The closed range operator is useful when iterating over a range in which you want all
of the values to be used, such as with a for-in loop:

for index in 1...5 {

 println("\(index) times 5 is \(index * 5)")

}

// 1 times 5 is 5

// 2 times 5 is 10

// 3 times 5 is 15

// 4 times 5 is 20

// 5 times 5 is 25

For more on for-in loops, see Control Flow.

62

Half-Closed Range Operator

The half-closed range operator (a..b) defines a range that runs from a to b, but does
not include b. It is said to be half-closed because it contains its first value, but not its
final value.

Half-closed ranges are particularly useful when you work with zero-based lists such as
arrays, where it is useful to count up to (but not including) the length of the list:

let names = ["Anna", "Alex", "Brian", "Jack"]

let count = names.count

for i in 0..count {

 println("Person \(i + 1) is called \(names[i])")

}

// Person 1 is called Anna

// Person 2 is called Alex

// Person 3 is called Brian

// Person 4 is called Jack

Note that the array contains four items, but 0..count only counts as far as 3 (the index
of the last item in the array), because it is a half-closed range. For more on arrays, see
Arrays.

Logical Operators

Logical operators modify or combine the Boolean logic values true and false. Swift
supports the three standard logical operators found in C-based languages:

Logical NOT (!a)
Logical AND (a && b)
Logical OR (a || b)

63

Logical NOT Operator

The logical NOT operator (!a) inverts a Boolean value so that true becomes false, and
false becomes true.

The logical NOT operator is a prefix operator, and appears immediately before the
value it operates on, without any white space. It can be read as “not a”, as seen in the
following example:

let allowedEntry = false

if !allowedEntry {

 println("ACCESS DENIED")

}

// prints "ACCESS DENIED"

The phrase if !allowedEntry can be read as “if not allowed entry.” The subsequent line
is only executed if “not allowed entry” is true; that is, if allowedEntry is false.

As in this example, careful choice of Boolean constant and variable names can help to
keep code readable and concise, while avoiding double negatives or confusing logic
statements.

Logical AND Operator

The logical AND operator (a && b) creates logical expressions where both values must
be true for the overall expression to also be true.

If either value is false, the overall expression will also be false. In fact, if the first
value is false, the second value won’t even be evaluated, because it can’t possibly
make the overall expression equate to true. This is known as short-circuit evaluation.

This example considers two Bool values and only allows access if both values are true:

let enteredDoorCode = true

let passedRetinaScan = false

if enteredDoorCode && passedRetinaScan {

64

 println("Welcome!")

} else {

 println("ACCESS DENIED")

}

// prints "ACCESS DENIED"

Logical OR Operator

The logical OR operator (a || b) is an infix operator made from two adjacent pipe
characters. You use it to create logical expressions in which only one of the two values
has to be true for the overall expression to be true.

Like the Logical AND operator above, the Logical OR operator uses short-circuit
evaluation to consider its expressions. If the left side of a Logical OR expression is
true, the right side is not evaluated, because it cannot change the outcome of the
overall expression.

In the example below, the first Bool value (hasDoorKey) is false, but the second value
(knowsOverridePassword) is true. Because one value is true, the overall expression also
evaluates to true, and access is allowed:

let hasDoorKey = false

let knowsOverridePassword = true

if hasDoorKey || knowsOverridePassword {

 println("Welcome!")

} else {

 println("ACCESS DENIED")

}

// prints "Welcome!"

Combining Logical Operators

65

You can combine multiple logical operators to create longer compound expressions:

if enteredDoorCode && passedRetinaScan || hasDoorKey || knowsOverridePassword {

 println("Welcome!")

} else {

 println("ACCESS DENIED")

}

// prints "Welcome!"

This example uses multiple && and || operators to create a longer compound
expression. However, the && and || operators still operate on only two values, so this
is actually three smaller expressions chained together. It can be read as:

If we’ve entered the correct door code and passed the retina scan; or if we have a
valid door key; or if we know the emergency override password, then allow access.

Based on the values of enteredDoorCode, passedRetinaScan, and hasDoorKey, the first two
mini-expressions are false. However, the emergency override password is known, so
the overall compound expression still evaluates to true.

Explicit Parentheses

It is sometimes useful to include parentheses when they are not strictly needed, to
make the intention of a complex expression easier to read. In the door access
example above, it is useful to add parentheses around the first part of the compound
expression to make its intent explicit:

if (enteredDoorCode && passedRetinaScan) || hasDoorKey || knowsOverridePassword {

 println("Welcome!")

} else {

 println("ACCESS DENIED")

}

// prints "Welcome!"

The parentheses make it clear that the first two values are considered as part of a

66

separate possible state in the overall logic. The output of the compound expression
doesn’t change, but the overall intention is clearer to the reader. Readability is always
preferred over brevity; use parentheses where they help to make your intentions clear.

67

Strings and Characters

A string is an ordered collection of characters, such as "hello, world" or "albatross".
Swift strings are represented by the String type, which in turn represents a collection
of values of Character type.

Swift’s String and Character types provide a fast, Unicode-compliant way to work with
text in your code. The syntax for string creation and manipulation is lightweight and
readable, with a similar syntax to C strings. String concatenation is as simple as
adding together two strings with the + operator, and string mutability is managed by
choosing between a constant or a variable, just like any other value in Swift.

Despite this simplicity of syntax, Swift’s String type is a fast, modern string
implementation. Every string is composed of encoding-independent Unicode
characters, and provides support for accessing those characters in various Unicode
representations.

Strings can also be used to insert constants, variables, literals, and expressions into
longer strings, in a process known as string interpolation. This makes it easy to create
custom string values for display, storage, and printing.

NO T E

Swift’s String type is bridged seamlessly to Foundation’s NSString class. If you are working with the
Foundation framework in Cocoa or Cocoa Touch, the entire NSString API is available to call on any
String value you create, in addition to the String features described in this chapter. You can also use
a String value with any API that requires an NSString instance.

For more information about using String with Foundation and Cocoa, see Using Swift with Cocoa and
Objective-C.

String Literals

You can include predefined String values within your code as string literals. A string
literal is a fixed sequence of textual characters surrounded by a pair of double quotes
("").

A string literal can be used to provide an initial value for a constant or variable:

68

let someString = "Some string literal value"

Note that Swift infers a type of String for the someString constant, because it is
initialized with a string literal value.

String literals can include the following special characters:

The code below shows an example of each kind of special character. The wiseWords
constant contains two escaped double quote characters. The dollarSign, blackHeart,
and sparklingHeart constants demonstrate the three different Unicode scalar character
formats:

let wiseWords = "\"Imagination is more important than knowledge\" - Einstein"

// "Imagination is more important than knowledge" - Einstein

let dollarSign = "\x24" // $, Unicode scalar U+0024

let blackHeart = "\u2665" // ♥, Unicode scalar U+2665

let sparklingHeart = "\U0001F496" // �, Unicode scalar U+1F496

Initializing an Empty String

To create an empty String value as the starting point for building a longer string,
either assign an empty string literal to a variable, or initialize a new String instance
with initializer syntax:

var emptyString = "" // empty string literal

var anotherEmptyString = String() // initializer syntax

The escaped special characters \0 (null character), \\ (backslash), \t
(horizontal tab), \n (line feed), \r (carriage return), \" (double quote) and \'
(single quote)
Single-byte Unicode scalars, written as \xnn, where nn is two hexadecimal digits
Two-byte Unicode scalars, written as \unnnn, where nnnn is four hexadecimal
digits
Four-byte Unicode scalars, written as \Unnnnnnnn, where nnnnnnnn is eight
hexadecimal digits

69

// these two strings are both empty, and are equivalent to each other

You can find out whether a String value is empty by checking its Boolean isEmpty
property:

if emptyString.isEmpty {

 println("Nothing to see here")

}

// prints "Nothing to see here"

String Mutability

You indicate whether a particular String can be modified (or mutated) by assigning it
to a variable (in which case it can be modified), or to a constant (in which case it
cannot be modified):

var variableString = "Horse"

variableString += " and carriage"

// variableString is now "Horse and carriage"

let constantString = "Highlander"

constantString += " and another Highlander"

// this reports a compile-time error - a constant string cannot be modified

NO T E

This approach is different from string mutation in Objective-C and Cocoa, where you choose between two
classes (NSString and NSMutableString) to indicate whether a string can be mutated.

Strings Are Value Types

70www.allitebooks.com

http://www.allitebooks.org

Swift’s String type is a value type. If you create a new String value, that String value
is copied when it is passed to a function or method, or when it is assigned to a
constant or variable. In each case, a new copy of the existing String value is created,
and the new copy is passed or assigned, not the original version. Value types are
described in Structures and Enumerations Are Value Types.

NO T E

This behavior differs from that of NSString in Cocoa. When you create an NSString instance in Cocoa,
and pass it to a function or method or assign it to a variable, you are always passing or assigning a
reference to the same single NSString. No copying of the string takes place, unless you specifically
request it.

Swift’s copy-by-default String behavior ensures that when a function or method passes
you a String value, it is clear that you own that exact String value, regardless of
where it came from. You can be confident that the string you are passed will not be
modified unless you modify it yourself.

Behind the scenes, Swift’s compiler optimizes string usage so that actual copying takes
place only when absolutely necessary. This means you always get great performance
when working with strings as value types.

Working with Characters

Swift’s String type represents a collection of Character values in a specified order. Each
Character value represents a single Unicode character. You can access the individual
Character values in a string by iterating over that string with a for-in loop:

for character in "Dog!�" {

 println(character)

}

// D

// o

// g

// !

71

// �

The for-in loop is described in For Loops.

Alternatively, create a stand-alone Character constant or variable from a single-
character string literal by providing a Character type annotation:

let yenSign: Character = "¥"

Counting Characters

To retrieve a count of the characters in a string, call the global countElements function
and pass in a string as the function’s sole parameter:

let unusualMenagerie = "Koala �, Snail �, Penguin �, Dromedary �"

println("unusualMenagerie has \(countElements(unusualMenagerie)) characters")

// prints "unusualMenagerie has 40 characters"

NO T E

Different Unicode characters and different representations of the same Unicode character can require
different amounts of memory to store. Because of this, characters in Swift do not each take up the same
amount of memory within a string’s representation. As a result, the length of a string cannot be calculated
without iterating through the string to consider each of its characters in turn. If you are working with
particularly long string values, be aware that the countElements function must iterate over the
characters within a string in order to calculate an accurate character count for that string.

Note also that the character count returned by countElements is not always the same as the length
property of an NSString that contains the same characters. The length of an NSString is based on
the number of 16-bit code units within the string’s UTF-16 representation and not the number of Unicode
characters within the string. To reflect this fact, the length property from NSString is called
utf16count when it is accessed on a Swift String value.

Concatenating Strings and Characters

String and Character values can be added together (or concatenated) with the addition
operator (+) to create a new String value:

72

let string1 = "hello"

let string2 = " there"

let character1: Character = "!"

let character2: Character = "?"

let stringPlusCharacter = string1 + character1 // equals "hello!"

let stringPlusString = string1 + string2 // equals "hello there"

let characterPlusString = character1 + string1 // equals "!hello"

let characterPlusCharacter = character1 + character2 // equals "!?"

You can also append a String or Character value to an existing String variable with the
addition assignment operator (+=):

var instruction = "look over"

instruction += string2

// instruction now equals "look over there"

var welcome = "good morning"

welcome += character1

// welcome now equals "good morning!"

NO T E

You can’t append a String or Character to an existing Character variable, because a Character
value must contain a single character only.

String Interpolation

String interpolation is a way to construct a new String value from a mix of constants,
variables, literals, and expressions by including their values inside a string literal. Each

73

item that you insert into the string literal is wrapped in a pair of parentheses, prefixed
by a backslash:

let multiplier = 3

let message = "\(multiplier) times 2.5 is \(Double(multiplier) * 2.5)"

// message is "3 times 2.5 is 7.5"

In the example above, the value of multiplier is inserted into a string literal as \
(multiplier). This placeholder is replaced with the actual value of multiplier when the
string interpolation is evaluated to create an actual string.

The value of multiplier is also part of a larger expression later in the string. This
expression calculates the value of Double(multiplier) * 2.5 and inserts the result (7.5)
into the string. In this case, the expression is written as \(Double(multiplier) * 2.5)
when it is included inside the string literal.

NO T E

The expressions you write inside parentheses within an interpolated string cannot contain an unescaped
double quote (") or backslash (\), and cannot contain a carriage return or line feed.

Comparing Strings

Swift provides three ways to compare String values: string equality, prefix equality,
and suffix equality.

String Equality

Two String values are considered equal if they contain exactly the same characters in
the same order:

let quotation = "We're a lot alike, you and I."

let sameQuotation = "We're a lot alike, you and I."

if quotation == sameQuotation {

74

 println("These two strings are considered equal")

}

// prints "These two strings are considered equal"

Prefix and Suffix Equality

To check whether a string has a particular string prefix or suffix, call the string’s
hasPrefix and hasSuffix methods, both of which take a single argument of type String
and return a Boolean value. Both methods perform a character-by-character
comparison between the base string and the prefix or suffix string.

The examples below consider an array of strings representing the scene locations from
the first two acts of Shakespeare’s Romeo and Juliet:

let romeoAndJuliet = [

 "Act 1 Scene 1: Verona, A public place",

 "Act 1 Scene 2: Capulet's mansion",

 "Act 1 Scene 3: A room in Capulet's mansion",

 "Act 1 Scene 4: A street outside Capulet's mansion",

 "Act 1 Scene 5: The Great Hall in Capulet's mansion",

 "Act 2 Scene 1: Outside Capulet's mansion",

 "Act 2 Scene 2: Capulet's orchard",

 "Act 2 Scene 3: Outside Friar Lawrence's cell",

 "Act 2 Scene 4: A street in Verona",

 "Act 2 Scene 5: Capulet's mansion",

 "Act 2 Scene 6: Friar Lawrence's cell"

]

You can use the hasPrefix method with the romeoAndJuliet array to count the number
of scenes in Act 1 of the play:

var act1SceneCount = 0

75

for scene in romeoAndJuliet {

 if scene.hasPrefix("Act 1 ") {

 ++act1SceneCount

 }

}

println("There are \(act1SceneCount) scenes in Act 1")

// prints "There are 5 scenes in Act 1"

Similarly, use the hasSuffix method to count the number of scenes that take place in
or around Capulet’s mansion and Friar Lawrence’s cell:

var mansionCount = 0

var cellCount = 0

for scene in romeoAndJuliet {

 if scene.hasSuffix("Capulet's mansion") {

 ++mansionCount

 } else if scene.hasSuffix("Friar Lawrence's cell") {

 ++cellCount

 }

}

println("\(mansionCount) mansion scenes; \(cellCount) cell scenes")

// prints "6 mansion scenes; 2 cell scenes"

Uppercase and Lowercase Strings

You can access an uppercase or lowercase version of a string with its uppercaseString
and lowercaseString properties:

let normal = "Could you help me, please?"

let shouty = normal.uppercaseString

76

// shouty is equal to "COULD YOU HELP ME, PLEASE?"

let whispered = normal.lowercaseString

// whispered is equal to "could you help me, please?"

Unicode

Unicode is an international standard for encoding and representing text. It enables you
to represent almost any character from any language in a standardized form, and to
read and write those characters to and from an external source such as a text file or
web page.

Swift’s String and Character types are fully Unicode-compliant. They support a number
of different Unicode encodings, as described below.

Unicode Terminology

Every character in Unicode can be represented by one or more unicode scalars. A
unicode scalar is a unique 21-bit number (and name) for a character or modifier, such
as U+0061 for LOWERCASE LATIN LETTER A ("a"), or U+1F425 for FRONT-FACING BABY CHICK
("�").

When a Unicode string is written to a text file or some other storage, these unicode
scalars are encoded in one of several Unicode-defined formats. Each format encodes
the string in small chunks known as code units. These include the UTF-8 format (which
encodes a string as 8-bit code units) and the UTF-16 format (which encodes a string as
16-bit code units).

Unicode Representations of Strings

Swift provides several different ways to access Unicode representations of strings.

You can iterate over the string with a for-in statement, to access its individual
Character values as Unicode characters. This process is described in Working with
Characters.

Alternatively, access a String value in one of three other Unicode-compliant

77

representations:

Each example below shows a different representation of the following string, which is
made up of the characters D, o, g, !, and the � character (DOG FACE, or Unicode
scalar U+1F436):

let dogString = "Dog!�"

UTF-8

You can access a UTF-8 representation of a String by iterating over its utf8 property.
This property is of type UTF8View, which is a collection of unsigned 8-bit (UInt8) values,
one for each byte in the string’s UTF-8 representation:

for codeUnit in dogString.utf8 {

 print("\(codeUnit) ")

}

print("\n")

// 68 111 103 33 240 159 144 182

In the example above, the first four decimal codeUnit values (68, 111, 103, 33) represent
the characters D, o, g, and !, whose UTF-8 representation is the same as their ASCII
representation. The last four codeUnit values (240, 159, 144, 182) are a four-byte UTF-8
representation of the DOG FACE character.

UTF-16

You can access a UTF-16 representation of a String by iterating over its utf16 property.
This property is of type UTF16View, which is a collection of unsigned 16-bit (UInt16)

A collection of UTF-8 code units (accessed with the string’s utf8 property)
A collection of UTF-16 code units (accessed with the string’s utf16 property)
A collection of 21-bit Unicode scalar values (accessed with the string’s
unicodeScalars property)

78

values, one for each 16-bit code unit in the string’s UTF-16 representation:

for codeUnit in dogString.utf16 {

 print("\(codeUnit) ")

}

print("\n")

// 68 111 103 33 55357 56374

Again, the first four codeUnit values (68, 111, 103, 33) represent the characters D, o, g,
and !, whose UTF-16 code units have the same values as in the string’s UTF-8
representation.

The fifth and sixth codeUnit values (55357 and 56374) are a UTF-16 surrogate pair
representation of the DOG FACE character. These values are a lead surrogate value of
U+D83D (decimal value 55357) and a trail surrogate value of U+DC36 (decimal value
56374).

Unicode Scalars

You can access a Unicode scalar representation of a String value by iterating over its
unicodeScalars property. This property is of type UnicodeScalarView, which is a collection
of values of type UnicodeScalar. A Unicode scalar is any 21-bit Unicode code point that
is not a lead surrogate or trail surrogate code point.

Each UnicodeScalar has a value property that returns the scalar’s 21-bit value,
represented within a UInt32 value:

for scalar in dogString.unicodeScalars {

 print("\(scalar.value) ")

}

print("\n")

// 68 111 103 33 128054

The value properties for the first four UnicodeScalar values (68, 111, 103, 33) once again
represent the characters D, o, g, and !. The value property of the fifth and final
UnicodeScalar, 128054, is a decimal equivalent of the hexadecimal value 1F436, which is

79

equivalent to the Unicode scalar U+1F436 for the DOG FACE character.

As an alternative to querying their value properties, each UnicodeScalar value can also
be used to construct a new String value, such as with string interpolation:

for scalar in dogString.unicodeScalars {

 println("\(scalar) ")

}

// D

// o

// g

// !

// �

80

Collection Types

Swift provides two collection types, known as arrays and dictionaries, for storing
collections of values. Arrays store ordered lists of values of the same type. Dictionaries
store unordered collections of values of the same type, which can be referenced and
looked up through a unique identifier (also known as a key).

Arrays and dictionaries in Swift are always clear about the types of values and keys
that they can store. This means that you cannot insert a value of the wrong type into
an array or dictionary by mistake. It also means you can be confident about the types
of values you will retrieve from an array or dictionary. Swift’s use of explicitly typed
collections ensures that your code is always clear about the types of values it can work
with and enables you to catch any type mismatches early in your code’s development.

NO T E

Swift’s Array type exhibits different behavior to other types when assigned to a constant or variable, or
when passed to a function or method. For more information, see Mutability of Collections and Assignment
and Copy Behavior for Collection Types.

Arrays

An array stores multiple values of the same type in an ordered list. The same value
can appear in an array multiple times at different positions.

Swift arrays are specific about the kinds of values they can store. They differ from
Objective-C’s NSArray and NSMutableArray classes, which can store any kind of object
and do not provide any information about the nature of the objects they return. In
Swift, the type of values that a particular array can store is always made clear, either
through an explicit type annotation, or through type inference, and does not have to
be a class type. If you create an array of Int values, for example, you can’t insert any
value other than Int values into that array. Swift arrays are type safe, and are always
clear about what they may contain.

81

Array Type Shorthand Syntax

The type of a Swift array is written in full as Array<SomeType>, where SomeType is the
type that the array is allowed to store. You can also write the type of an array in
shorthand form as SomeType[]. Although the two forms are functionally identical, the
shorthand form is preferred, and is used throughout this guide when referring to the
type of an array.

Array Literals

You can initialize an array with an array literal, which is a shorthand way to write one
or more values as an array collection. An array literal is written as a list of values,
separated by commas, surrounded by a pair of square brackets:

[value 1 , value 2 , value 3]

The example below creates an array called shoppingList to store String values:

var shoppingList: String[] = ["Eggs", "Milk"]

// shoppingList has been initialized with two initial items

The shoppingList variable is declared as “an array of String values”, written as
String[]. Because this particular array has specified a value type of String, it is only
allowed to store String values. Here, the shoppingList array is initialized with two
String values ("Eggs" and "Milk"), written within an array literal.

NO T E

The shoppingList array is declared as a variable (with the var introducer) and not a constant (with the
let introducer) because more items are added to the shopping list in the examples below.

In this case, the array literal contains two String values and nothing else. This
matches the type of the shoppingList variable’s declaration (an array that can only
contain String values), and so the assignment of the array literal is permitted as a way
to initialize shoppingList with two initial items.

Thanks to Swift’s type inference, you don’t have to write the type of the array if you’re

82

initializing it with an array literal containing values of the same type. The initialization
of shoppingList could have been written in a shorter form instead:

var shoppingList = ["Eggs", "Milk"]

Because all values in the array literal are of the same type, Swift can infer that
String[] is the correct type to use for the shoppingList variable.

Accessing and Modifying an Array

You access and modify an array through its methods and properties, or by using
subscript syntax.

To find out the number of items in an array, check its read-only count property:

println("The shopping list contains \(shoppingList.count) items.")

// prints "The shopping list contains 2 items."

Use the Boolean isEmpty property as a shortcut for checking whether the count property
is equal to 0:

if shoppingList.isEmpty {

 println("The shopping list is empty.")

} else {

 println("The shopping list is not empty.")

}

// prints "The shopping list is not empty."

You can add a new item to the end of an array by calling the array’s append method:

shoppingList.append("Flour")

// shoppingList now contains 3 items, and someone is making pancakes

Alternatively, add a new item to the end of an array with the addition assignment
operator (+=):

83

shoppingList += "Baking Powder"

// shoppingList now contains 4 items

You can also append an array of compatible items with the addition assignment
operator (+=):

shoppingList += ["Chocolate Spread", "Cheese", "Butter"]

// shoppingList now contains 7 items

Retrieve a value from the array by using subscript syntax, passing the index of the
value you want to retrieve within square brackets immediately after the name of the
array:

var firstItem = shoppingList[0]

// firstItem is equal to "Eggs"

Note that the first item in the array has an index of 0, not 1. Arrays in Swift are always
zero-indexed.

You can use subscript syntax to change an existing value at a given index:

shoppingList[0] = "Six eggs"

// the first item in the list is now equal to "Six eggs" rather than "Eggs"

You can also use subscript syntax to change a range of values at once, even if the
replacement set of values has a different length than the range you are replacing. The
following example replaces "Chocolate Spread", "Cheese", and "Butter" with "Bananas"
and "Apples":

shoppingList[4...6] = ["Bananas", "Apples"]

// shoppingList now contains 6 items

NO T E

You can’t use subscript syntax to append a new item to the end of an array. If you try to use subscript
syntax to retrieve or set a value for an index that is outside of an array’s existing bounds, you will trigger a
runtime error. However, you can check that an index is valid before using it, by comparing it to the array’s
count property. Except when count is 0 (meaning the array is empty), the largest valid index in an

84

array will always be count - 1, because arrays are indexed from zero.

To insert an item into the array at a specified index, call the array’s insert(atIndex:)
method:

shoppingList.insert("Maple Syrup", atIndex: 0)

// shoppingList now contains 7 items

// "Maple Syrup" is now the first item in the list

This call to the insert method inserts a new item with a value of "Maple Syrup" at the
very beginning of the shopping list, indicated by an index of 0.

Similarly, you remove an item from the array with the removeAtIndex method. This
method removes the item at the specified index and returns the removed item
(although you can ignore the returned value if you do not need it):

let mapleSyrup = shoppingList.removeAtIndex(0)

// the item that was at index 0 has just been removed

// shoppingList now contains 6 items, and no Maple Syrup

// the mapleSyrup constant is now equal to the removed "Maple Syrup" string

Any gaps in an array are closed when an item is removed, and so the value at index 0
is once again equal to "Six eggs":

firstItem = shoppingList[0]

// firstItem is now equal to "Six eggs"

If you want to remove the final item from an array, use the removeLast method rather
than the removeAtIndex method to avoid the need to query the array’s count property.
Like the removeAtIndex method, removeLast returns the removed item:

let apples = shoppingList.removeLast()

// the last item in the array has just been removed

// shoppingList now contains 5 items, and no cheese

// the apples constant is now equal to the removed "Apples" string

85

Iterating Over an Array

You can iterate over the entire set of values in an array with the for-in loop:

for item in shoppingList {

 println(item)

}

// Six eggs

// Milk

// Flour

// Baking Powder

// Bananas

If you need the integer index of each item as well as its value, use the global enumerate
function to iterate over the array instead. The enumerate function returns a tuple for
each item in the array composed of the index and the value for that item. You can
decompose the tuple into temporary constants or variables as part of the iteration:

for (index, value) in enumerate(shoppingList) {

 println("Item \(index + 1): \(value)")

}

// Item 1: Six eggs

// Item 2: Milk

// Item 3: Flour

// Item 4: Baking Powder

// Item 5: Bananas

For more about the for-in loop, see For Loops.

Creating and Initializing an Array

86

You can create an empty array of a certain type (without setting any initial values)
using initializer syntax:

var someInts = Int[]()

println("someInts is of type Int[] with \(someInts.count) items.")

// prints "someInts is of type Int[] with 0 items."

Note that the type of the someInts variable is inferred to be Int[], because it is set to
the output of an Int[] initializer.

Alternatively, if the context already provides type information, such as a function
argument or an already-typed variable or constant, you can create an empty array
with an empty array literal, which is written as [] (an empty pair of square brackets):

someInts.append(3)

// someInts now contains 1 value of type Int

someInts = []

// someInts is now an empty array, but is still of type Int[]

Swift’s Array type also provides an initializer for creating an array of a certain size with
all of its values set to a provided default value. You pass this initializer the number of
items to be added to the new array (called count) and a default value of the
appropriate type (called repeatedValue):

var threeDoubles = Double[](count: 3, repeatedValue: 0.0)

// threeDoubles is of type Double[], and equals [0.0, 0.0, 0.0]

Thanks to type inference, you don’t need to specify the type to be stored in the array
when using this initializer, because it can be inferred from the default value:

var anotherThreeDoubles = Array(count: 3, repeatedValue: 2.5)

// anotherThreeDoubles is inferred as Double[], and equals [2.5, 2.5, 2.5]

Finally, you can create a new array by adding together two existing arrays of
compatible type with the addition operator (+). The new array’s type is inferred from
the type of the two arrays you add together:

87

var sixDoubles = threeDoubles + anotherThreeDoubles

// sixDoubles is inferred as Double[], and equals [0.0, 0.0, 0.0, 2.5, 2.5, 2.5]

Dictionaries

A dictionary is a container that stores multiple values of the same type. Each value is
associated with a unique key, which acts as an identifier for that value within the
dictionary. Unlike items in an array, items in a dictionary do not have a specified order.
You use a dictionary when you need to look up values based on their identifier, in
much the same way that a real-world dictionary is used to look up the definition for a
particular word.

Swift dictionaries are specific about the types of keys and values they can store. They
differ from Objective-C’s NSDictionary and NSMutableDictionary classes, which can use
any kind of object as their keys and values and do not provide any information about
the nature of these objects. In Swift, the type of keys and values that a particular
dictionary can store is always made clear, either through an explicit type annotation or
through type inference.

Swift’s dictionary type is written as Dictionary<KeyType, ValueType>, where KeyType is
the type of value that can be used as a dictionary key, and ValueType is the type of
value that the dictionary stores for those keys.

The only restriction is that KeyType must be hashable—that is, it must provide a way to
make itself uniquely representable. All of Swift’s basic types (such as String, Int,
Double, and Bool) are hashable by default, and all of these types can be used as the
keys of a dictionary. Enumeration member values without associated values (as
described in Enumerations) are also hashable by default.

Dictionary Literals

You can initialize a dictionary with with a dictionary literal, which has a similar syntax
to the array literal seen earlier. A dictionary literal is a shorthand way to write one or
more key-value pairs as a Dictionary collection.

A key-value pair is a combination of a key and a value. In a dictionary literal, the key
and value in each key-value pair are separated by a colon. The key-value pairs are
written as a list, separated by commas, surrounded by a pair of square brackets:

88

[key 1 : value 1 , key 2 : value 2 , key 3 : value 3]

The example below creates a dictionary to store the names of international airports.
In this dictionary, the keys are three-letter International Air Transport Association
codes, and the values are airport names:

var airports: Dictionary<String, String> = ["TYO": "Tokyo", "DUB": "Dublin"]

The airports dictionary is declared as having a type of Dictionary<String, String>,
which means “a Dictionary whose keys are of type String, and whose values are also
of type String”.

NO T E

The airports dictionary is declared as a variable (with the var introducer), and not a constant (with the
let introducer), because more airports will be added to the dictionary in the examples below.

The airports dictionary is initialized with a dictionary literal containing two key-value
pairs. The first pair has a key of "TYO" and a value of "Tokyo". The second pair has a
key of "DUB" and a value of "Dublin".

This dictionary literal contains two String: String pairs. This matches the type of the
airports variable declaration (a dictionary with only String keys, and only String
values) and so the assignment of the dictionary literal is permitted as a way to
initialize the airports dictionary with two initial items.

As with arrays, you don’t have to write the type of the dictionary if you’re initializing it
with a dictionary literal whose keys and values have consistent types. The initialization
of airports could have been be written in a shorter form instead:

var airports = ["TYO": "Tokyo", "DUB": "Dublin"]

Because all keys in the literal are of the same type as each other, and likewise all
values are of the same type as each other, Swift can infer that Dictionary<String,
String> is the correct type to use for the airports dictionary.

Accessing and Modifying a Dictionary

89

You access and modify a dictionary through its methods and properties, or by using
subscript syntax. As with an array, you can find out the number of items in a
Dictionary by checking its read-only count property:

println("The dictionary of airports contains \(airports.count) items.")

// prints "The dictionary of airports contains 2 items."

You can add a new item to a dictionary with subscript syntax. Use a new key of the
appropriate type as the subscript index, and assign a new value of the appropriate
type:

airports["LHR"] = "London"

// the airports dictionary now contains 3 items

You can also use subscript syntax to change the value associated with a particular
key:

airports["LHR"] = "London Heathrow"

// the value for "LHR" has been changed to "London Heathrow"

As an alternative to subscripting, use a dictionary’s updateValue(forKey:) method to set
or update the value for a particular key. Like the subscript examples above, the
updateValue(forKey:) method sets a value for a key if none exists, or updates the value
if that key already exists. Unlike a subscript, however, the updateValue(forKey:)
method returns the old value after performing an update. This enables you to check
whether or not an update took place.

The updateValue(forKey:) method returns an optional value of the dictionary’s value
type. For a dictionary that stores String values, for example, the method returns a
value of type String?, or “optional String”. This optional value contains the old value
for that key if one existed before the update, or nil if no value existed:

if let oldValue = airports.updateValue("Dublin International", forKey: "DUB") {

 println("The old value for DUB was \(oldValue).")

}

// prints "The old value for DUB was Dublin."

You can also use subscript syntax to retrieve a value from the dictionary for a

90

particular key. Because it is possible to request a key for which no value exists, a
dictionary’s subscript returns an optional value of the dictionary’s value type. If the
dictionary contains a value for the requested key, the subscript returns an optional
value containing the existing value for that key. Otherwise, the subscript returns nil:

if let airportName = airports["DUB"] {

 println("The name of the airport is \(airportName).")

} else {

 println("That airport is not in the airports dictionary.")

}

// prints "The name of the airport is Dublin International."

You can use subscript syntax to remove a key-value pair from a dictionary by assigning
a value of nil for that key:

airports["APL"] = "Apple International"

// "Apple International" is not the real airport for APL, so delete it

airports["APL"] = nil

// APL has now been removed from the dictionary

Alternatively, remove a key-value pair from a dictionary with the removeValueForKey
method. This method removes the key-value pair if it exists and returns the removed
value, or returns nil if no value existed:

if let removedValue = airports.removeValueForKey("DUB") {

 println("The removed airport's name is \(removedValue).")

} else {

 println("The airports dictionary does not contain a value for DUB.")

}

// prints "The removed airport's name is Dublin International."

Iterating Over a Dictionary

91

You can iterate over the key-value pairs in a dictionary with a for-in loop. Each item in
the dictionary is returned as a (key, value) tuple, and you can decompose the tuple’s
members into temporary constants or variables as part of the iteration:

for (airportCode, airportName) in airports {

 println("\(airportCode): \(airportName)")

}

// TYO: Tokyo

// LHR: London Heathrow

For more about the for-in loop, see For Loops.

You can also retrieve an iteratable collection of a dictionary’s keys or values by
accessing its keys and values properties:

for airportCode in airports.keys {

 println("Airport code: \(airportCode)")

}

// Airport code: TYO

// Airport code: LHR

for airportName in airports.values {

 println("Airport name: \(airportName)")

}

// Airport name: Tokyo

// Airport name: London Heathrow

If you need to use a dictionary’s keys or values with an API that takes an Array
instance, initialize a new array with the keys or values property:

let airportCodes = Array(airports.keys)

// airportCodes is ["TYO", "LHR"]

92

let airportNames = Array(airports.values)

// airportNames is ["Tokyo", "London Heathrow"]

NO T E

Swift’s Dictionary type is an unordered collection. The order in which keys, values, and key-value pairs
are retrieved when iterating over a dictionary is not specified.

Creating an Empty Dictionary

As with arrays, you can create an empty Dictionary of a certain type by using initializer
syntax:

var namesOfIntegers = Dictionary<Int, String>()

// namesOfIntegers is an empty Dictionary<Int, String>

This example creates an empty dictionary of type Int, String to store human-readable
names of integer values. Its keys are of type Int, and its values are of type String.

If the context already provides type information, create an empty dictionary with an
empty dictionary literal, which is written as [:] (a colon inside a pair of square
brackets):

namesOfIntegers[16] = "sixteen"

// namesOfIntegers now contains 1 key-value pair

namesOfIntegers = [:]

// namesOfIntegers is once again an empty dictionary of type Int, String

NO T E

Behind the scenes, Swift’s array and dictionary types are implemented as generic collections. For more on
generic types and collections, see Generics.

93

Mutability of Collections

Arrays and dictionaries store multiple values together in a single collection. If you
create an array or a dictionary and assign it to a variable, the collection that is created
will be mutable. This means that you can change (or mutate) the size of the collection
after it is created by adding more items to the collection, or by removing existing
items from the ones it already contains. Conversely, if you assign an array or a
dictionary to a constant, that array or dictionary is immutable, and its size cannot be
changed.

For dictionaries, immutability also means that you cannot replace the value for an
existing key in the dictionary. An immutable dictionary’s contents cannot be changed
once they are set.

Immutability has a slightly different meaning for arrays, however. You are still not
allowed to perform any action that has the potential to change the size of an
immutable array, but you are allowed to set a new value for an existing index in the
array. This enables Swift’s Array type to provide optimal performance for array
operations when the size of an array is fixed.

The mutability behavior of Swift’s Array type also affects how array instances are
assigned and modified. For more information, see Assignment and Copy Behavior for
Collection Types.

NO T E

It is good practice to create immutable collections in all cases where the collection’s size does not need to
change. Doing so enables the Swift compiler to optimize the performance of the collections you create.

94

Control Flow

Swift provides all the familiar control flow constructs of C-like languages. These
include for and while loops to perform a task multiple times; if and switch statements
to execute different branches of code based on certain conditions; and statements
such as break and continue to transfer the flow of execution to another point in your
code.

In addition to the traditional for-condition-increment loop found in C, Swift adds a
for-in loop that makes it easy to iterate over arrays, dictionaries, ranges, strings, and
other sequences.

Swift’s switch statement is also considerably more powerful than its counterpart in C.
The cases of a switch statement do not “fall through” to the next case in Swift,
avoiding common C errors caused by missing break statements. Cases can match many
different types of pattern, including range matches, tuples, and casts to a specific
type. Matched values in a switch case can be bound to temporary constants or
variables for use within the case’s body, and complex matching conditions can be
expressed with a where clause for each case.

For Loops

A for loop performs a set of statements a certain number of times. Swift provides two
kinds of for loop:

For-In

You use the for-in loop to iterate over collections of items, such as ranges of numbers,
items in an array, or characters in a string.

for-in performs a set of statements for each item in a range, sequence,
collection, or progression.
for-condition-increment performs a set of statements until a specific condition is
met, typically by incrementing a counter each time the loop ends.

95

This example prints the first few entries in the five-times-table:

for index in 1...5 {

 println("\(index) times 5 is \(index * 5)")

}

// 1 times 5 is 5

// 2 times 5 is 10

// 3 times 5 is 15

// 4 times 5 is 20

// 5 times 5 is 25

The collection of items being iterated is a closed range of numbers from 1 to 5
inclusive, as indicated by the use of the closed range operator (...). The value of index
is set to the first number in the range (1), and the statements inside the loop are
executed. In this case, the loop contains only one statement, which prints an entry
from the five-times-table for the current value of index. After the statement is
executed, the value of index is updated to contain the second value in the range (2),
and the println function is called again. This process continues until the end of the
range is reached.

In the example above, index is a constant whose value is automatically set at the start
of each iteration of the loop. As such, it does not have to be declared before it is used.
It is implicitly declared simply by its inclusion in the loop declaration, without the need
for a let declaration keyword.

NO T E

The index constant exists only within the scope of the loop. If you want to check the value of index
after the loop completes, or if you want to work with its value as a variable rather than a constant, you
must declare it yourself before its use in the loop.

If you don’t need each value from the range, you can ignore the values by using an
underscore in place of a variable name:

let base = 3

let power = 10

96

var answer = 1

for _ in 1...power {

 answer *= base

}

println("\(base) to the power of \(power) is \(answer)")

// prints "3 to the power of 10 is 59049"

This example calculates the value of one number to the power of another (in this case,
3 to the power of 10). It multiplies a starting value of 1 (that is, 3 to the power of 0) by
3, ten times, using a half-closed loop that starts with 0 and ends with 9. This
calculation doesn’t need to know the individual counter values each time through the
loop—it simply needs to execute the loop the correct number of times. The underscore
character _ (used in place of a loop variable) causes the individual values to be
ignored and does not provide access to the current value during each iteration of the
loop.

Use the for-in loop with an array to iterate over its items:

let names = ["Anna", "Alex", "Brian", "Jack"]

for name in names {

 println("Hello, \(name)!")

}

// Hello, Anna!

// Hello, Alex!

// Hello, Brian!

// Hello, Jack!

You can also iterate over a dictionary to access its key-value pairs. Each item in the
dictionary is returned as a (key, value) tuple when the dictionary is iterated, and you
can decompose the (key, value) tuple’s members as explicitly named constants for use
within in the body of the for-in loop. Here, the dictionary’s keys are decomposed into
a constant called animalName, and the dictionary’s values are decomposed into a
constant called legCount:

let numberOfLegs = ["spider": 8, "ant": 6, "cat": 4]

97

for (animalName, legCount) in numberOfLegs {

 println("\(animalName)s have \(legCount) legs")

}

// spiders have 8 legs

// ants have 6 legs

// cats have 4 legs

Items in a Dictionary may not necessarily be iterated in the same order as they were
inserted. The contents of a Dictionary are inherently unordered, and iterating over
them does not guarantee the order in which they will be retrieved. For more on arrays
and dictionaries, see Collection Types.)

In addition to arrays and dictionaries, you can also use the for-in loop to iterate over
the Character values in a string:

for character in "Hello" {

 println(character)

}

// H

// e

// l

// l

// o

For-Condition-Increment

In addition to for-in loops, Swift supports traditional C-style for loops with a condition
and an incrementer:

for var index = 0; index < 3; ++index {

 println("index is \(index)")

}

98

// index is 0

// index is 1

// index is 2

Here’s the general form of this loop format:

for initialization ; condition ; increment {

 statements

}

Semicolons separate the three parts of the loop’s definition, as in C. However, unlike
C, Swift doesn’t need parentheses around the entire “initialization; condition;
increment” block.

The loop is executed as follows:

1. When the loop is first entered, the initialization expression is evaluated once, to
set up any constants or variables that are needed for the loop.

2. The condition expression is evaluated. If it evaluates to false, the loop ends, and
code execution continues after the for loop’s closing brace (}). If the expression
evaluates to true, code execution continues by executing the statements inside
the braces.

3. After all statements are executed, the increment expression is evaluated. It might
increase or decrease the value of a counter, or set one of the initialized variables
to a new value based on the outcome of the statements. After the increment
expression has been evaluated, execution returns to step 2, and the condition
expression is evaluated again.

The loop format and execution process described above is shorthand for (and
equivalent to) the outline below:

initialization

while condition {

 statements

 increment

}

99

Constants and variables declared within the initialization expression (such as var index
= 0) are only valid within the scope of the for loop itself. To retrieve the final value of
index after the loop ends, you must declare index before the loop’s scope begins:

var index: Int

for index = 0; index < 3; ++index {

 println("index is \(index)")

}

// index is 0

// index is 1

// index is 2

println("The loop statements were executed \(index) times")

// prints "The loop statements were executed 3 times"

Note that the final value of index after this loop is completed is 3, not 2. The last time
the increment statement ++index is called, it sets index to 3, which causes index < 3 to
equate to false, ending the loop.

While Loops

A while loop performs a set of statements until a condition becomes false. These kinds
of loops are best used when the number of iterations is not known before the first
iteration begins. Swift provides two kinds of while loop:

While

A while loop starts by evaluating a single condition. If the condition is true, a set of
statements is repeated until the condition becomes false.

while evaluates its condition at the start of each pass through the loop.
do-while evaluates its condition at the end of each pass through the loop.

100

Here’s the general form of a while loop:

while condition {

 statements

}

This example plays a simple game of Snakes and Ladders (also known as Chutes and
Ladders):

The rules of the game are as follows:

The game board is represented by an array of Int values. Its size is based on a
constant called finalSquare, which is used to initialize the array and also to check for a
win condition later in the example. The board is initialized with 26 zero Int values, not
25 (one each at indices 0 through 25 inclusive):

let finalSquare = 25

var board = Int[](count: finalSquare + 1, repeatedValue: 0)

The board has 25 squares, and the aim is to land on or beyond square 25.
Each turn, you roll a six-sided dice and move by that number of squares,
following the horizontal path indicated by the dotted arrow above.
If your turn ends at the bottom of a ladder, you move up that ladder.
If your turn ends at the head of a snake, you move down that snake.

101

Some squares are then set to have more specific values for the snakes and ladders.
Squares with a ladder base have a positive number to move you up the board,
whereas squares with a snake head have a negative number to move you back down
the board:

board[03] = +08; board[06] = +11; board[09] = +09; board[10] = +02

board[14] = -10; board[19] = -11; board[22] = -02; board[24] = -08

Square 3 contains the bottom of a ladder that moves you up to square 11. To
represent this, board[03] is equal to +08, which is equivalent to an integer value of 8
(the difference between 3 and 11). The unary plus operator (+i) balances with the
unary minus operator (-i), and numbers lower than 10 are padded with zeros so that
all board definitions align. (Neither stylistic tweak is strictly necessary, but they lead to
neater code.)

The player’s starting square is “square zero”, which is just off the bottom left corner of
the board. The first dice roll always moves the player on to the board:

var square = 0

var diceRoll = 0

while square < finalSquare {

 // roll the dice

 if ++diceRoll == 7 { diceRoll = 1 }

 // move by the rolled amount

 square += diceRoll

 if square < board.count {

 // if we're still on the board, move up or down for a snake or a ladder

 square += board[square]

 }

}

println("Game over!")

This example uses a very simple approach to dice rolling. Instead of a random number
generator, it starts with a diceRoll value of 0. Each time through the while loop,
diceRoll is incremented with the prefix increment operator (++i), and is then checked

102

to see if it has become too large. The return value of ++diceRoll is equal to the value
of diceRoll after it is incremented. Whenever this return value equals 7, the dice roll
has become too large, and is reset to a value of 1. This gives a sequence of diceRoll
values that is always 1, 2, 3, 4, 5, 6, 1, 2 and so on.

After rolling the dice, the player moves forward by diceRoll squares. It’s possible that
the dice roll may have moved the player beyond square 25, in which case the game is
over. To cope with this scenario, the code checks that square is less than the board
array’s count property before adding the value stored in board[square] onto the current
square value to move the player up or down any ladders or snakes.

Had this check not been performed, board[square] might try to access a value outside
the bounds of the board array, which would trigger an error. If square is now equal to
26, the code would try to check the value of board[26], which is larger than the size of
the array.

The current while loop execution then ends, and the loop’s condition is checked to see
if the loop should be executed again. If the player has moved on or beyond square
number 25, the loop’s condition evaluates to false, and the game ends.

A while loop is appropriate in this case because the length of the game is not clear at
the start of the while loop. Instead, the loop is executed until a particular condition is
satisfied.

Do-While

The other variation of the while loop, known as the do-while loop, performs a single
pass through the loop block first, before considering the loop’s condition. It then
continues to repeat the loop until the condition is false.

Here’s the general form of a do-while loop:

do {

 statements

} while condition

Here’s the Snakes and Ladders example again, written as a do-while loop rather than a
while loop. The values of finalSquare, board, square, and diceRoll are initialized in
exactly the same way as with a while loop:

103

let finalSquare = 25

var board = Int[](count: finalSquare + 1, repeatedValue: 0)

board[03] = +08; board[06] = +11; board[09] = +09; board[10] = +02

board[14] = -10; board[19] = -11; board[22] = -02; board[24] = -08

var square = 0

var diceRoll = 0

In this version of the game, the first action in the loop is to check for a ladder or a
snake. No ladder on the board takes the player straight to square 25, and so it is not
possible to win the game by moving up a ladder. Therefore, it is safe to check for a
snake or a ladder as the first action in the loop.

At the start of the game, the player is on “square zero”. board[0] always equals 0, and
has no effect:

do {

 // move up or down for a snake or ladder

 square += board[square]

 // roll the dice

 if ++diceRoll == 7 { diceRoll = 1 }

 // move by the rolled amount

 square += diceRoll

} while square < finalSquare

println("Game over!")

After the code checks for snakes and ladders, the dice is rolled, and the player is
moved forward by diceRoll squares. The current loop execution then ends.

The loop’s condition (while square < finalSquare) is the same as before, but this time it
is not evaluated until the end of the first run through the loop. The structure of the
do-while loop is better suited to this game than the while loop in the previous example.
In the do-while loop above, square += board[square] is always executed immediately
after the loop’s while condition confirms that square is still on the board. This behavior
removes the need for the array bounds check seen in the earlier version of the game.

104

Conditional Statements

It is often useful to execute different pieces of code based on certain conditions. You
might want to run an extra piece of code when an error occurs, or to display a
message when a value becomes too high or too low. To do this, you make parts of
your code conditional.

Swift provides two ways to add conditional branches to your code, known as the if
statement and the switch statement. Typically, you use the if statement to evaluate
simple conditions with only a few possible outcomes. The switch statement is better
suited to more complex conditions with multiple possible permutations, and is useful in
situations where pattern-matching can help select an appropriate code branch to
execute.

If

In its simplest form, the if statement has a single if condition. It executes a set of
statements only if that condition is true:

var temperatureInFahrenheit = 30

if temperatureInFahrenheit <= 32 {

 println("It's very cold. Consider wearing a scarf.")

}

// prints "It's very cold. Consider wearing a scarf."

The preceding example checks whether the temperature is less than or equal to 32
degrees Fahrenheit (the freezing point of water). If it is, a message is printed.
Otherwise, no message is printed, and code execution continues after the if
statement’s closing brace.

The if statement can provide an alternative set of statements, known as an else
clause, for when the if condition is false. These statements are indicated by the else
keyword:

temperatureInFahrenheit = 40

105

if temperatureInFahrenheit <= 32 {

 println("It's very cold. Consider wearing a scarf.")

} else {

 println("It's not that cold. Wear a t-shirt.")

}

// prints "It's not that cold. Wear a t-shirt."

One of these two branches is always executed. Because the temperature has
increased to 40 degrees Fahrenheit, it is no longer cold enough to advise wearing a
scarf, and so the else branch is triggered instead.

You can chain multiple if statements together, to consider additional clauses:

temperatureInFahrenheit = 90

if temperatureInFahrenheit <= 32 {

 println("It's very cold. Consider wearing a scarf.")

} else if temperatureInFahrenheit >= 86 {

 println("It's really warm. Don't forget to wear sunscreen.")

} else {

 println("It's not that cold. Wear a t-shirt.")

}

// prints "It's really warm. Don't forget to wear sunscreen."

Here, an additional if statement is added to respond to particularly warm
temperatures. The final else clause remains, and prints a response for any
temperatures that are neither too warm nor too cold.

The final else clause is optional, however, and can be excluded if the set of conditions
does not need to be complete:

temperatureInFahrenheit = 72

if temperatureInFahrenheit <= 32 {

 println("It's very cold. Consider wearing a scarf.")

106

} else if temperatureInFahrenheit >= 86 {

 println("It's really warm. Don't forget to wear sunscreen.")

}

In this example, the temperature is neither too cold nor too warm to trigger the if or
else if conditions, and so no message is printed.

Switch

A switch statement considers a value and compares it against several possible
matching patterns. It then executes an appropriate block of code, based on the first
pattern that matches successfully. A switch statement provides an alternative to the if
statement for responding to multiple potential states.

In its simplest form, a switch statement compares a value against one or more values
of the same type:

switch some value to consider {

case value 1 :

 respond to value 1

case value 2 ,

value 3 :

 respond to value 2 or 3

default:

 otherwise, do something else

}

Every switch statement consists of multiple possible cases, each of which begins with
the case keyword. In addition to comparing against specific values, Swift provides
several ways for each case to specify more complex matching patterns. These options
are described later in this section.

The body of each switch case is a separate branch of code execution, in a similar
manner to the branches of an if statement. The switch statement determines which

107

branch should be selected. This is known as switching on the value that is being
considered.

Every switch statement must be exhaustive. That is, every possible value of the type
being considered must be matched by one of the switch cases. If it is not appropriate
to provide a switch case for every possible value, you can define a default catch-all
case to cover any values that are not addressed explicitly. This catch-all case is
indicated by the keyword default, and must always appear last.

This example uses a switch statement to consider a single lowercase character called
someCharacter:

let someCharacter: Character = "e"

switch someCharacter {

case "a", "e", "i", "o", "u":

 println("\(someCharacter) is a vowel")

case "b", "c", "d", "f", "g", "h", "j", "k", "l", "m",

"n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z":

 println("\(someCharacter) is a consonant")

default:

 println("\(someCharacter) is not a vowel or a consonant")

}

// prints "e is a vowel"

The switch statement’s first case matches all five lowercase vowels in the English
language. Similarly, its second case matches all lowercase English consonants.

It is not practical to write all other possible characters as part of a switch case, and so
this switch statement provides a default case to match all other characters that are
not vowels or consonants. This provision ensures that the switch statement is
exhaustive.

No Implicit Fallthrough

In contrast with switch statements in C and Objective-C, switch statements in Swift do

108

not fall through the bottom of each case and into the next one by default. Instead, the
entire switch statement finishes its execution as soon as the first matching switch case
is completed, without requiring an explicit break statement. This makes the switch
statement safer and easier to use than in C, and avoids executing more than one
switch case by mistake.

NO T E

You can still break out of a matched switch case before that case has completed its execution if you
need to. See Break in a Switch Statement for details.

The body of each case must contain at least one executable statement. It is not valid
to write the following code, because the first case is empty:

let anotherCharacter: Character = "a"

switch anotherCharacter {

case "a":

case "A":

 println("The letter A")

default:

 println("Not the letter A")

}

// this will report a compile-time error

Unlike a switch statement in C, this switch statement does not match both "a" and "A".
Rather, it reports a compile-time error that case "a": does not contain any executable
statements. This approach avoids accidental fallthrough from one case to another, and
makes for safer code that is clearer in its intent.

Multiple matches for a single switch case can be separated by commas, and can be
written over multiple lines if the list is long:

switch some value to consider {

case value 1 ,

value 2 :

109

 statements

}

NO T E

To opt in to fallthrough behavior for a particular switch case, use the fallthrough keyword, as
described in Fallthrough.

Range Matching

Values in switch cases can be checked for their inclusion in a range. This example uses
number ranges to provide a natural-language count for numbers of any size:

let count = 3_000_000_000_000

let countedThings = "stars in the Milky Way"

var naturalCount: String

switch count {

case 0:

 naturalCount = "no"

case 1...3:

 naturalCount = "a few"

case 4...9:

 naturalCount = "several"

case 10...99:

 naturalCount = "tens of"

case 100...999:

 naturalCount = "hundreds of"

case 1000...999_999:

 naturalCount = "thousands of"

110

default:

 naturalCount = "millions and millions of"

}

println("There are \(naturalCount) \(countedThings).")

// prints "There are millions and millions of stars in the Milky Way."

Tuples

You can use tuples to test multiple values in the same switch statement. Each element
of the tuple can be tested against a different value or range of values. Alternatively,
use the underscore (_) identifier to match any possible value.

The example below takes an (x, y) point, expressed as a simple tuple of type (Int,
Int), and categorizes it on the graph that follows the example:

let somePoint = (1, 1)

switch somePoint {

case (0, 0):

 println("(0, 0) is at the origin")

case (_, 0):

 println("(\(somePoint.0), 0) is on the x-axis")

case (0, _):

 println("(0, \(somePoint.1)) is on the y-axis")

case (-2...2, -2...2):

 println("(\(somePoint.0), \(somePoint.1)) is inside the box")

default:

 println("(\(somePoint.0), \(somePoint.1)) is outside of the box")

}

// prints "(1, 1) is inside the box"

111

The switch statement determines if the point is at the origin (0, 0); on the red x-axis;
on the orange y-axis; inside the blue 4-by-4 box centered on the origin; or outside of
the box.

Unlike C, Swift allows multiple switch cases to consider the same value or values. In
fact, the point (0, 0) could match all four of the cases in this example. However, if
multiple matches are possible, the first matching case is always used. The point (0, 0)
would match case (0, 0) first, and so all other matching cases would be ignored.

Value Bindings

A switch case can bind the value or values it matches to temporary constants or
variables, for use in the body of the case. This is known as value binding, because the
values are “bound” to temporary constants or variables within the case’s body.

The example below takes an (x, y) point, expressed as a tuple of type (Int, Int) and
categorizes it on the graph that follows:

let anotherPoint = (2, 0)

switch anotherPoint {

case (let x, 0):

 println("on the x-axis with an x value of \(x)")

case (0, let y):

 println("on the y-axis with a y value of \(y)")

112

case let (x, y):

 println("somewhere else at (\(x), \(y))")

}

// prints "on the x-axis with an x value of 2"

The switch statement determines if the point is on the red x-axis, on the orange y-
axis, or elsewhere, on neither axis.

The three switch cases declare placeholder constants x and y, which temporarily take
on one or both tuple values from anotherPoint. The first case, case (let x, 0), matches
any point with a y value of 0 and assigns the point’s x value to the temporary constant
x. Similarly, the second case, case (0, let y), matches any point with an x value of 0
and assigns the point’s y value to the temporary constant y.

Once the temporary constants are declared, they can be used within the case’s code
block. Here, they are used as shorthand for printing the values with the println
function.

Note that this switch statement does not have a default case. The final case, case let
(x, y), declares a tuple of two placeholder constants that can match any value. As a
result, it matches all possible remaining values, and a default case is not needed to
make the switch statement exhaustive.

In the example above, x and y are declared as constants with the let keyword,
because there is no need to modify their values within the body of the case. However,
they could have been declared as variables instead, with the var keyword. If this had
been done, a temporary variable would have been created and initialized with the

113

appropriate value. Any changes to that variable would only have an effect within the
body of the case.

Where

A switch case can use a where clause to check for additional conditions.

The example below categorizes an (x, y) point on the following graph:

let yetAnotherPoint = (1, -1)

switch yetAnotherPoint {

case let (x, y) where x == y:

 println("(\(x), \(y)) is on the line x == y")

case let (x, y) where x == -y:

 println("(\(x), \(y)) is on the line x == -y")

case let (x, y):

 println("(\(x), \(y)) is just some arbitrary point")

}

// prints "(1, -1) is on the line x == -y"

The switch statement determines if the point is on the green diagonal line where x ==
y, on the purple diagonal line where x == -y, or neither.

114

The three switch cases declare placeholder constants x and y, which temporarily take
on the two tuple values from point. These constants are used as part of a where clause,
to create a dynamic filter. The switch case matches the current value of point only if
the where clause’s condition evaluates to true for that value.

As in the previous example, the final case matches all possible remaining values, and
so a default case is not needed to make the switch statement exhaustive.

Control Transfer Statements

Control transfer statements change the order in which your code is executed, by
transferring control from one piece of code to another. Swift has four control transfer
statements:

The control, break and fallthrough statements are described below. The return
statement is described in Functions.

Continue

The continue statement tells a loop to stop what it is doing and start again at the
beginning of the next iteration through the loop. It says “I am done with the current
loop iteration” without leaving the loop altogether.

NO T E

In a for-condition-increment loop, the incrementer is still evaluated after calling the continue
statement. The loop itself continues to work as usual; only the code within the loop’s body is skipped.

The following example removes all vowels and spaces from a lowercase string to
create a cryptic puzzle phrase:

continue

break

fallthrough

return

115

let puzzleInput = "great minds think alike"

var puzzleOutput = ""

for character in puzzleInput {

 switch character {

 case "a", "e", "i", "o", "u", " ":

 continue

 default:

 puzzleOutput += character

 }

}

println(puzzleOutput)

// prints "grtmndsthnklk"

The code above calls the continue keyword whenever it matches a vowel or a space,
causing the current iteration of the loop to end immediately and to jump straight to
the start of the next iteration. This behavior enables the switch block to match (and
ignore) only the vowel and space characters, rather than requiring the block to match
every character that should get printed.

Break

The break statement ends execution of an entire control flow statement immediately.
The break statement can be used inside a switch statement or loop statement when
you want to terminate the execution of the switch or loop statement earlier than
would otherwise be the case.

Break in a Loop Statement

When used inside a loop statement, break ends the loop’s execution immediately, and
transfers control to the first line of code after the loop’s closing brace (}). No further
code from the current iteration of the loop is executed, and no further iterations of the
loop are started.

116

Break in a Switch Statement

When used inside a switch statement, break causes the switch statement to end its
execution immediately, and to transfer control to the first line of code after the switch
statement’s closing brace (}).

This behavior can be used to match and ignore one or more cases in a switch
statement. Because Swift’s switch statement is exhaustive and does not allow empty
cases, it is sometimes necessary to deliberately match and ignore a case in order to
make your intentions explicit. You do this by writing the break statement as the entire
body of the case you want to ignore. When that case is matched by the switch
statement, the break statement inside the case ends the switch statement’s execution
immediately.

NO T E

A switch case that only contains a comment is reported as a compile-time error. Comments are not
statements and do not cause a switch case to be ignored. Always use a break statement to ignore a
switch case.

The following example switches on a Character value and determines whether it
represents a number symbol in one of four languages. Multiple values are covered in a
single switch case for brevity:

let numberSymbol: Character = "三" // Simplified Chinese for the number 3

var possibleIntegerValue: Int?

switch numberSymbol {

case "1", "١", "一", "๑":

 possibleIntegerValue = 1

case "2", "٢", "二", "๒":

 possibleIntegerValue = 2

case "3", "٣", "三", "๓":

 possibleIntegerValue = 3

case "4", "٤", "四", "๔":

117

 possibleIntegerValue = 4

default:

 break

}

if let integerValue = possibleIntegerValue {

 println("The integer value of \(numberSymbol) is \(integerValue).")

} else {

 println("An integer value could not be found for \(numberSymbol).")

}

// prints "The integer value of 三 is 3."

This example checks numberSymbol to determine whether it is a Latin, Arabic, Chinese,
or Thai symbol for the numbers 1 to 4. If a match is found, one of the switch
statement’s cases sets an optional Int? variable called possibleIntegerValue to an
appropriate integer value.

After the switch statement completes its execution, the example uses optional binding
to determine whether a value was found. The possibleIntegerValue variable has an
implicit initial value of nil by virtue of being an optional type, and so the optional
binding will succeed only if possibleIntegerValue was set to an actual value by one of
the switch statement’s first four cases.

It is not practical to list every possible Character value in the example above, so a
default case provides a catchall for any characters that are not matched. This default
case does not need to perform any action, and so it is written with a single break
statement as its body. As soon as the default statement is matched, the break
statement ends the switch statement’s execution, and code execution continues from
the if let statement.

Fallthrough

Switch statements in Swift do not fall through the bottom of each case and into the
next one. Instead, the entire switch statement completes its execution as soon as the
first matching case is completed. By contrast, C requires you to insert an explicit break
statement at the end of every switch case to prevent fallthrough. Avoiding default

118

fallthrough means that Swift switch statements are much more concise and predictable
than their counterparts in C, and thus they avoid executing multiple switch cases by
mistake.

If you really need C-style fallthrough behavior, you can opt in to this behavior on a
case-by-case basis with the fallthrough keyword. The example below uses fallthrough
to create a textual description of a number:

let integerToDescribe = 5

var description = "The number \(integerToDescribe) is"

switch integerToDescribe {

case 2, 3, 5, 7, 11, 13, 17, 19:

 description += " a prime number, and also"

 fallthrough

default:

 description += " an integer."

}

println(description)

// prints "The number 5 is a prime number, and also an integer."

This example declares a new String variable called description and assigns it an initial
value. The function then considers the value of integerToDescribe using a switch
statement. If the value of integerToDescribe is one of the prime numbers in the list, the
function appends text to the end of description, to note that the number is prime. It
then uses the fallthrough keyword to “fall into” the default case as well. The default
case adds some extra text to the end of the description, and the switch statement is
complete.

If the value of integerToDescribe is not in the list of known prime numbers, it is not
matched by the first switch case at all. There are no other specific cases, and so
integerToDescribe is matched by the catchall default case.

After the switch statement has finished executing, the number’s description is printed
using the println function. In this example, the number 5 is correctly identified as a
prime number.

119

NO T E

The fallthrough keyword does not check the case conditions for the switch case that it causes
execution to fall into. The fallthrough keyword simply causes code execution to move directly to the
statements inside the next case (or default case) block, as in C’s standard switch statement
behavior.

Labeled Statements

You can nest loops and switch statements inside other loops and switch statements in
Swift to create complex control flow structures. However, loops and switch statements
can both use the break statement to end their execution prematurely. Therefore, it is
sometimes useful to be explicit about which loop or switch statement you want a break
statement to terminate. Similarly, if you have multiple nested loops, it can be useful to
be explicit about which loop the continue statement should affect.

To achieve these aims, you can mark a loop statement or switch statement with a
statement label, and use this label with the break statement or continue statement to
end or continue the execution of the labeled statement.

A labeled statement is indicated by placing a label on the same line as the statement’s
introducer keyword, followed by a colon. Here’s an example of this syntax for a while
loop, although the principle is the same for all loops and switch statements:

label name : while condition {

 statements

}

The following example uses the break and continue statements with a labeled while
loop for an adapted version of the Snakes and Ladders game that you saw earlier in
this chapter. This time around, the game has an extra rule:

If a particular dice roll would take you beyond square 25, you must roll again until you
roll the exact number needed to land on square 25.

To win, you must land exactly on square 25.

120

The game board is the same as before:

The values of finalSquare, board, square, and diceRoll are initialized in the same way as
before:

let finalSquare = 25

var board = Int[](count: finalSquare + 1, repeatedValue: 0)

board[03] = +08; board[06] = +11; board[09] = +09; board[10] = +02

board[14] = -10; board[19] = -11; board[22] = -02; board[24] = -08

var square = 0

var diceRoll = 0

This version of the game uses a while loop and a switch statement to implement the
game’s logic. The while loop has a statement label called gameLoop, to indicate that it is
the main game loop for the Snakes and Ladders game.

The while loop’s condition is while square != finalSquare, to reflect that you must land
exactly on square 25:

gameLoop: while square != finalSquare {

 if ++diceRoll == 7 { diceRoll = 1 }

 switch square + diceRoll {

 case finalSquare:

121

 // diceRoll will move us to the final square, so the game is over

 break gameLoop

 case let newSquare where newSquare > finalSquare:

 // diceRoll will move us beyond the final square, so roll again

 continue gameLoop

 default:

 // this is a valid move, so find out its effect

 square += diceRoll

 square += board[square]

 }

}

println("Game over!")

The dice is rolled at the start of each loop. Rather than moving the player
immediately, a switch statement is used to consider the result of the move, and to
work out if the move is allowed:

NO T E

If the break statement above did not use the gameLoop label, it would break out of the switch
statement, not the while statement. Using the gameLoop label makes it clear which control statement
should be terminated.

Note also that it is not strictly necessary to use the gameLoop label when calling continue gameLoop

If the dice roll will move the player onto the final square, the game is over. The
break gameLoop statement transfers control to the first line of code outside of
the while loop, which ends the game.
If the dice roll will move the player beyond the final square, the move is
invalid, and the player needs to roll again. The continue gameLoop statement
ends the current while loop iteration and begins the next iteration of the loop.
In all other cases, the dice roll is a valid move. The player moves forward by
diceRoll squares, and the game logic checks for any snakes and ladders. The
loop then ends, and control returns to the while condition to decide whether
another turn is required.

122

to jump to the next iteration of the loop. There is only one loop in the game, and so there is no ambiguity
as to which loop the continue statement will affect. However, there is no harm in using the gameLoop
label with the continue statement. Doing so is consistent with the label’s use alongside the break
statement, and helps make the game’s logic clearer to read and understand.

123

Functions

Functions are self-contained chunks of code that perform a specific task. You give a
function a name that identifies what it does, and this name is used to “call” the
function to perform its task when needed.

Swift’s unified function syntax is flexible enough to express anything from a simple C-
style function with no parameter names to a complex Objective-C-style method with
local and external parameter names for each parameter. Parameters can provide
default values to simplify function calls and can be passed as in-out parameters, which
modify a passed variable once the function has completed its execution.

Every function in Swift has a type, consisting of the function’s parameter types and
return type. You can use this type like any other type in Swift, which makes it easy to
pass functions as parameters to other functions, and to return functions from
functions. Functions can also be written within other functions to encapsulate useful
functionality within a nested function scope.

Defining and Calling Functions

When you define a function, you can optionally define one or more named, typed
values that the function takes as input (known as parameters), and/or a type of value
that the function will pass back as output when it is done (known as its return type).

Every function has a function name, which describes the task that the function
performs. To use a function, you “call” that function with its name and pass it input
values (known as arguments) that match the types of the function’s parameters. A
function’s arguments must always be provided in the same order as the function’s
parameter list.

The function in the example below is called greetingForPerson, because that’s what it
does—it takes a person’s name as input and returns a greeting for that person. To
accomplish this, you define one input parameter—a String value called personName—
and a return type of String, which will contain a greeting for that person:

func sayHello(personName: String) -> String {

 let greeting = "Hello, " + personName + "!"

124

 return greeting

}

All of this information is rolled up into the function’s definition, which is prefixed with
the func keyword. You indicate the function’s return type with the return arrow -> (a
hyphen followed by a right angle bracket), which is followed by the name of the type
to return.

The definition describes what the function does, what it expects to receive, and what
it returns when it is done. The definition makes it easy for the function to be called
elsewhere in your code in a clear and unambiguous way:

println(sayHello("Anna"))

// prints "Hello, Anna!"

println(sayHello("Brian"))

// prints "Hello, Brian!"

You call the sayHello function by passing it a String argument value in parentheses,
such as sayHello("Anna"). Because the function returns a String value, sayHello can be
wrapped in a call to the println function to print that string and see its return value, as
shown above.

The body of the sayHello function starts by defining a new String constant called
greeting and setting it to a simple greeting message for personName. This greeting is
then passed back out of the function using the return keyword. As soon as return
greeting is called, the function finishes its execution and returns the current value of
greeting.

You can call the sayHello function multiple times with different input values. The
example above shows what happens if it is called with an input value of "Anna", and an
input value of "Brian". The function returns a tailored greeting in each case.

To simplify the body of this function, combine the message creation and the return
statement into one line:

func sayHelloAgain(personName: String) -> String {

 return "Hello again, " + personName + "!"

}

125

println(sayHelloAgain("Anna"))

// prints "Hello again, Anna!"

Function Parameters and Return Values

Function parameters and return values are extremely flexible in Swift. You can define
anything from a simple utility function with a single unnamed parameter to a complex
function with expressive parameter names and different parameter options.

Multiple Input Parameters

Functions can have multiple input parameters, which are written within the function’s
parentheses, separated by commas.

This function takes a start and an end index for a half-open range, and works out how
many elements the range contains:

func halfOpenRangeLength(start: Int, end: Int) -> Int {

 return end - start

}

println(halfOpenRangeLength(1, 10))

// prints "9"

Functions Without Parameters

Functions are not required to define input parameters. Here’s a function with no input
parameters, which always returns the same String message whenever it is called:

func sayHelloWorld() -> String {

 return "hello, world"

}

println(sayHelloWorld())

126

// prints "hello, world"

The function definition still needs parentheses after the function’s name, even though
it does not take any parameters. The function name is also followed by an empty pair
of parentheses when the function is called.

Functions Without Return Values

Functions are not required to define a return type. Here’s a version of the sayHello
function, called waveGoodbye, which prints its own String value rather than returning it:

func sayGoodbye(personName: String) {

 println("Goodbye, \(personName)!")

}

sayGoodbye("Dave")

// prints "Goodbye, Dave!"

Because it does not need to return a value, the function’s definition does not include
the return arrow (->) or a return type.

NO T E

Strictly speaking, the sayGoodbye function does still return a value, even though no return value is
defined. Functions without a defined return type return a special value of type Void. This is simply an
empty tuple, in effect a tuple with zero elements, which can be written as ().

The return value of a function can be ignored when it is called:

func printAndCount(stringToPrint: String) -> Int {

 println(stringToPrint)

 return countElements(stringToPrint)

}

func printWithoutCounting(stringToPrint: String) {

127

 printAndCount(stringToPrint)

}

printAndCount("hello, world")

// prints "hello, world" and returns a value of 12

printWithoutCounting("hello, world")

// prints "hello, world" but does not return a value

The first function, printAndCount, prints a string, and then returns its character count as
an Int. The second function, printWithoutCounting, calls the first function, but ignores
its return value. When the second function is called, the message is still printed by the
first function, but the returned value is not used.

NO T E

Return values can be ignored, but a function that says it will return a value must always do so. A function
with a defined return type cannot allow control to fall out of the bottom of the function without returning a
value, and attempting to do so will result in a compile-time error.

Functions with Multiple Return Values

You can use a tuple type as the return type for a function to return multiple values as
part of one compound return value.

The example below defines a function called count, which counts the number of
vowels, consonants, and other characters in a string, based on the standard set of
vowels and consonants used in American English:

func count(string: String) -> (vowels: Int, consonants: Int, others: Int) {

 var vowels = 0, consonants = 0, others = 0

 for character in string {

 switch String(character).lowercaseString {

 case "a", "e", "i", "o", "u":

 ++vowels

128

 case "b", "c", "d", "f", "g", "h", "j", "k", "l", "m",

 "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z":

 ++consonants

 default:

 ++others

 }

 }

 return (vowels, consonants, others)

}

You can use this count function to count the characters in an arbitrary string, and to
retrieve the counted totals as a tuple of three named Int values:

let total = count("some arbitrary string!")

println("\(total.vowels) vowels and \(total.consonants) consonants")

// prints "6 vowels and 13 consonants"

Note that the tuple’s members do not need to be named at the point that the tuple is
returned from the function, because their names are already specified as part of the
function’s return type.

Function Parameter Names

All of the above functions define parameter names for their parameters:

func someFunction(parameterName: Int) {

 // function body goes here, and can use parameterName

 // to refer to the argument value for that parameter

}

However, these parameter names are only used within the body of the function itself,
and cannot be used when calling the function. These kinds of parameter names are

129

known as local parameter names, because they are only available for use within the
function’s body.

External Parameter Names

Sometimes it’s useful to name each parameter when you call a function, to indicate
the purpose of each argument you pass to the function.

If you want users of your function to provide parameter names when they call your
function, define an external parameter name for each parameter, in addition to the
local parameter name. You write an external parameter name before the local
parameter name it supports, separated by a space:

func someFunction(externalParameterName localParameterName: Int) {

 // function body goes here, and can use localParameterName

 // to refer to the argument value for that parameter

}

NO T E

If you provide an external parameter name for a parameter, that external name must always be used
when calling the function.

As an example, consider the following function, which joins two strings by inserting a
third “joiner” string between them:

func join(s1: String, s2: String, joiner: String) -> String {

 return s1 + joiner + s2

}

When you call this function, the purpose of the three strings that you pass to the
function is unclear:

join("hello", "world", ", ")

// returns "hello, world"

130

To make the purpose of these String values clearer, define external parameter names
for each join function parameter:

func join(string s1: String, toString s2: String, withJoiner joiner: String)

 -> String {

 return s1 + joiner + s2

}

In this version of the join function, the first parameter has an external name of string
and a local name of s1; the second parameter has an external name of toString and a
local name of s2; and the third parameter has an external name of withJoiner and a
local name of joiner.

You can now use these external parameter names to call the function in a clear and
unambiguous way:

join(string: "hello", toString: "world", withJoiner: ", ")

// returns "hello, world"

The use of external parameter names enables this second version of the join function
to be called in an expressive, sentence-like manner by users of the function, while still
providing a function body that is readable and clear in intent.

NO T E

Consider using external parameter names whenever the purpose of a function’s arguments would be
unclear to someone reading your code for the first time. You do not need to specify external parameter
names if the purpose of each parameter is clear and unambiguous when the function is called.

Shorthand External Parameter Names

If you want to provide an external parameter name for a function parameter, and the
local parameter name is already an appropriate name to use, you do not need to write
the same name twice for that parameter. Instead, write the name once, and prefix the
name with a hash symbol (#). This tells Swift to use that name as both the local
parameter name and the external parameter name.

131

This example defines a function called containsCharacter, which defines external
parameter names for both of its parameters by placing a hash symbol before their
local parameter names:

func containsCharacter(#string: String, #characterToFind: Character) -> Bool {

 for character in string {

 if character == characterToFind {

 return true

 }

 }

 return false

}

This function’s choice of parameter names makes for a clear, readable function body,
while also enabling the function to be called without ambiguity:

let containsAVee = containsCharacter(string: "aardvark", characterToFind: "v")

// containsAVee equals true, because "aardvark" contains a "v"

Default Parameter Values

You can define a default value for any parameter as part of a function’s definition. If a
default value is defined, you can omit that parameter when calling the function.

NO T E

Place parameters with default values at the end of a function’s parameter list. This ensures that all calls to
the function use the same order for their non-default arguments, and makes it clear that the same
function is being called in each case.

Here’s a version of the join function from earlier, which provides a default value for its
joiner parameter:

func join(string s1: String, toString s2: String,

132

 withJoiner joiner: String = " ") -> String {

 return s1 + joiner + s2

}

If a string value for joiner is provided when the join function is called, that string
value is used to join the two strings together, as before:

join(string: "hello", toString: "world", withJoiner: "-")

// returns "hello-world"

However, if no value of joiner is provided when the function is called, the default
value of a single space (" ") is used instead:

join(string: "hello", toString: "world")

// returns "hello world"

External Names for Parameters with Default Values

In most cases, it is useful to provide (and therefore require) an external name for any
parameter with a default value. This ensures that the argument for that parameter is
clear in purpose if a value is provided when the function is called.

To make this process easier, Swift provides an automatic external name for any
defaulted parameter you define, if you do not provide an external name yourself. The
automatic external name is the same as the local name, as if you had written a hash
symbol before the local name in your code.

Here’s a version of the join function from earlier, which does not provide external
names for any of its parameters, but still provides a default value for its joiner
parameter:

func join(s1: String, s2: String, joiner: String = " ") -> String {

 return s1 + joiner + s2

}

In this case, Swift automatically provides an external parameter name of joiner for the

133

defaulted parameter. The external name must therefore be provided when calling the
function, making the parameter’s purpose clear and unambiguous:

join("hello", "world", joiner: "-")

// returns "hello-world"

NO T E

You can opt out of this behavior by writing an underscore (_) instead of an explicit external name when
you define the parameter. However, external names for defaulted parameters are always preferred where
appropriate.

Variadic Parameters

A variadic parameter accepts zero or more values of a specified type. You use a
variadic parameter to specify that the parameter can be passed a varying number of
input values when the function is called. Write variadic parameters by inserting three
period characters (...) after the parameter’s type name.

The values passed to a variadic parameter are made available within the function’s
body as an array of the appropriate type. For example, a variadic parameter with a
name of numbers and a type of Double... is made available within the function’s body as
a constant array called numbers of type Double[].

The example below calculates the arithmetic mean (also known as the average) for a
list of numbers of any length:

func arithmeticMean(numbers: Double...) -> Double {

 var total: Double = 0

 for number in numbers {

 total += number

 }

 return total / Double(numbers.count)

}

arithmeticMean(1, 2, 3, 4, 5)

134

// returns 3.0, which is the arithmetic mean of these five numbers

arithmeticMean(3, 8, 19)

// returns 10.0, which is the arithmetic mean of these three numbers

NO T E

A function may have at most one variadic parameter, and it must always appear last in the parameter list,
to avoid ambiguity when calling the function with multiple parameters.

If your function has one or more parameters with a default value, and also has a variadic parameter,
place the variadic parameter after all the defaulted parameters at the very end of the list.

Constant and Variable Parameters

Function parameters are constants by default. Trying to change the value of a function
parameter from within the body of that function results in a compile-time error. This
means that you can’t change the value of a parameter by mistake.

However, sometimes it is useful for a function to have a variable copy of a parameter’s
value to work with. You can avoid defining a new variable yourself within the function
by specifying one or more parameters as variable parameters instead. Variable
parameters are available as variables rather than as constants, and give a new
modifiable copy of the parameter’s value for your function to work with.

Define variable parameters by prefixing the parameter name with the keyword var:

func alignRight(var string: String, count: Int, pad: Character) -> String {

 let amountToPad = count - countElements(string)

 for _ in 1...amountToPad {

 string = pad + string

 }

 return string

}

let originalString = "hello"

135

let paddedString = alignRight(originalString, 10, "-")

// paddedString is equal to "-----hello"

// originalString is still equal to "hello"

This example defines a new function called alignRight, which aligns an input string to
the right edge of a longer output string. Any space on the left is filled with a specified
padding character. In this example, the string "hello" is converted to the string "-----
hello".

The alignRight function defines the input parameter string to be a variable parameter.
This means that string is now available as a local variable, initialized with the passed-
in string value, and can be manipulated within the body of the function.

The function starts by working out how many characters need to be added to the left
of string in order to right-align it within the overall string. This value is stored in a
local constant called amountToPad. The function then adds amountToPad copies of the pad
character to the left of the existing string and returns the result. It uses the string
variable parameter for all its string manipulation.

NO T E

The changes you make to a variable parameter do not persist beyond the end of each call to the function,
and are not visible outside the function’s body. The variable parameter only exists for the lifetime of that
function call.

In-Out Parameters

Variable parameters, as described above, can only be changed within the function
itself. If you want a function to modify a parameter’s value, and you want those
changes to persist after the function call has ended, define that parameter as an in-out
parameter instead.

You write an in-out parameter by placing the inout keyword at the start of its
parameter definition. An in-out parameter has a value that is passed in to the function,
is modified by the function, and is passed back out of the function to replace the
original value.

You can only pass a variable as the argument for an in-out parameter. You cannot

136

pass a constant or a literal value as the argument, because constants and literals
cannot be modified. You place an ampersand (&) directly before a variable’s name
when you pass it as an argument to an inout parameter, to indicate that it can be
modified by the function.

NO T E

In-out parameters cannot have default values, and variadic parameters cannot be marked as inout. If
you mark a parameter as inout, it cannot also be marked as var or let.

Here’s an example of a function called swapTwoInts, which has two in-out integer
parameters called a and b:

func swapTwoInts(inout a: Int, inout b: Int) {

 let temporaryA = a

 a = b

 b = temporaryA

}

The swapTwoInts function simply swaps the value of b into a, and the value of a into b.
The function performs this swap by storing the value of a in a temporary constant
called temporaryA, assigning the value of b to a, and then assigning temporaryA to b.

You can call the swapTwoInts function with two variables of type Int to swap their
values. Note that the names of someInt and anotherInt are prefixed with an ampersand
when they are passed to the swapTwoInts function:

var someInt = 3

var anotherInt = 107

swapTwoInts(&someInt, &anotherInt)

println("someInt is now \(someInt), and anotherInt is now \(anotherInt)")

// prints "someInt is now 107, and anotherInt is now 3"

The example above shows that the original values of someInt and anotherInt are
modified by the swapTwoInts function, even though they were originally defined outside
of the function.

137

NO T E

In-out parameters are not the same as returning a value from a function. The swapTwoInts example
above does not define a return type or return a value, but it still modifies the values of someInt and
anotherInt. In-out parameters are an alternative way for a function to have an effect outside of the
scope of its function body.

Function Types

Every function has a specific function type, made up of the parameter types and the
return type of the function.

For example:

func addTwoInts(a: Int, b: Int) -> Int {

 return a + b

}

func multiplyTwoInts(a: Int, b: Int) -> Int {

 return a * b

}

This example defines two simple mathematical functions called addTwoInts and
multiplyTwoInts. These functions each take two Int values, and return an Int value,
which is the result of performing an appropriate mathematical operation.

The type of both of these functions is (Int, Int) -> Int. This can be read as:

“A function type that has two parameters, both of type Int, and that returns a value of
type Int.”

Here’s another example, for a function with no parameters or return value:

func printHelloWorld() {

 println("hello, world")

}

138

The type of this function is () -> (), or “a function that has no parameters, and returns
Void.” Functions that don’t specify a return value always return Void, which is
equivalent to an empty tuple in Swift, shown as ().

Using Function Types

You use function types just like any other types in Swift. For example, you can define a
constant or variable to be of a function type and assign an appropriate function to that
variable:

var mathFunction: (Int, Int) -> Int = addTwoInts

This can be read as:

“Define a variable called mathFunction, which has a type of ‘a function that takes two
Int values, and returns an Int value.’ Set this new variable to refer to the function
called addTwoInts.”

The addTwoInts function has the same type as the mathFunction variable, and so this
assignment is allowed by Swift’s type-checker.

You can now call the assigned function with the name mathFunction:

println("Result: \(mathFunction(2, 3))")

// prints "Result: 5"

A different function with the same matching type can be assigned to the same
variable, in the same way as for non-function types:

mathFunction = multiplyTwoInts

println("Result: \(mathFunction(2, 3))")

// prints "Result: 6"

As with any other type, you can leave it to Swift to infer the function type when you
assign a function to a constant or variable:

let anotherMathFunction = addTwoInts

// anotherMathFunction is inferred to be of type (Int, Int) -> Int

139

Function Types as Parameter Types

You can use a function type such as (Int, Int) -> Int as a parameter type for another
function. This enables you to leave some aspects of a function’s implementation for
the function’s caller to provide when the function is called.

Here’s an example to print the results of the math functions from above:

func printMathResult(mathFunction: (Int, Int) -> Int, a: Int, b: Int) {

 println("Result: \(mathFunction(a, b))")

}

printMathResult(addTwoInts, 3, 5)

// prints "Result: 8"

This example defines a function called printMathResult, which has three parameters.
The first parameter is called mathFunction, and is of type (Int, Int) -> Int. You can
pass any function of that type as the argument for this first parameter. The second
and third parameters are called a and b, and are both of type Int. These are used as
the two input values for the provided math function.

When printMathResult is called, it is passed the addTwoInts function, and the integer
values 3 and 5. It calls the provided function with the values 3 and 5, and prints the
result of 8.

The role of printMathResult is to print the result of a call to a math function of an
appropriate type. It doesn’t matter what that function’s implementation actually does
—it matters only that the function is of the correct type. This enables printMathResult
to hand off some of its functionality to the caller of the function in a type-safe way.

Function Types as Return Types

You can use a function type as the return type of another function. You do this by
writing a complete function type immediately after the return arrow (->) of the
returning function.

The next example defines two simple functions called stepForward and stepBackward.
The stepForward function returns a value one more than its input value, and the

140

stepBackward function returns a value one less than its input value. Both functions have
a type of (Int) -> Int:

func stepForward(input: Int) -> Int {

 return input + 1

}

func stepBackward(input: Int) -> Int {

 return input - 1

}

Here’s a function called chooseStepFunction, whose return type is “a function of type
(Int) -> Int”. chooseStepFunction returns the stepForward function or the stepBackward
function based on a Boolean parameter called backwards:

func chooseStepFunction(backwards: Bool) -> (Int) -> Int {

 return backwards ? stepBackward : stepForward

}

You can now use chooseStepFunction to obtain a function that will step in one direction
or the other:

var currentValue = 3

let moveNearerToZero = chooseStepFunction(currentValue > 0)

// moveNearerToZero now refers to the stepBackward() function

The preceding example works out whether a positive or negative step is needed to
move a variable called currentValue progressively closer to zero. currentValue has an
initial value of 3, which means that currentValue > 0 returns true, causing
chooseStepFunction to return the stepBackward function. A reference to the returned
function is stored in a constant called moveNearerToZero.

Now that moveNearerToZero refers to the correct function, it can be used to count to
zero:

println("Counting to zero:")

// Counting to zero:

141

while currentValue != 0 {

 println("\(currentValue)... ")

 currentValue = moveNearerToZero(currentValue)

}

println("zero!")

// 3...

// 2...

// 1...

// zero!

Nested Functions

All of the functions you have encountered so far in this chapter have been examples of
global functions, which are defined at a global scope. You can also define functions
inside the bodies of other functions, known as nested functions.

Nested functions are hidden from the outside world by default, but can still be called
and used by their enclosing function. An enclosing function can also return one of its
nested functions to allow the nested function to be used in another scope.

You can rewrite the chooseStepFunction example above to use and return nested
functions:

func chooseStepFunction(backwards: Bool) -> (Int) -> Int {

 func stepForward(input: Int) -> Int { return input + 1 }

 func stepBackward(input: Int) -> Int { return input - 1 }

 return backwards ? stepBackward : stepForward

}

var currentValue = -4

let moveNearerToZero = chooseStepFunction(currentValue > 0)

// moveNearerToZero now refers to the nested stepForward() function

while currentValue != 0 {

142

 println("\(currentValue)... ")

 currentValue = moveNearerToZero(currentValue)

}

println("zero!")

// -4...

// -3...

// -2...

// -1...

// zero!

143

Closures

Closures are self-contained blocks of functionality that can be passed around and used
in your code. Closures in Swift are similar to blocks in C and Objective-C and to
lambdas in other programming languages.

Closures can capture and store references to any constants and variables from the
context in which they are defined. This is known as closing over those constants and
variables, hence the name “closures”. Swift handles all of the memory management of
capturing for you.

NO T E

Don’t worry if you are not familiar with the concept of “capturing”. It is explained in detail below in
Capturing Values.

Global and nested functions, as introduced in Functions, are actually special cases of
closures. Closures take one of three forms:

Swift’s closure expressions have a clean, clear style, with optimizations that encourage
brief, clutter-free syntax in common scenarios. These optimizations include:

Global functions are closures that have a name and do not capture any values.
Nested functions are closures that have a name and can capture values from
their enclosing function.
Closure expressions are unnamed closures written in a lightweight syntax that
can capture values from their surrounding context.

Inferring parameter and return value types from context
Implicit returns from single-expression closures
Shorthand argument names
Trailing closure syntax

144

Closure Expressions

Nested functions, as introduced in Nested Functions, are a convenient means of
naming and defining self-contained blocks of code as part of a larger function.
However, it is sometimes useful to write shorter versions of function-like constructs
without a full declaration and name. This is particularly true when you work with
functions that take other functions as one or more of their arguments.

Closure expressions are a way to write inline closures in a brief, focused syntax.
Closure expressions provide several syntax optimizations for writing closures in their
simplest form without loss of clarity or intent. The closure expression examples below
illustrate these optimizations by refining a single example of the sort function over
several iterations, each of which expresses the same functionality in a more succinct
way.

The Sort Function

Swift’s standard library provides a function called sort, which sorts an array of values
of a known type, based on the output of a sorting closure that you provide. Once it
completes the sorting process, the sort function returns a new array of the same type
and size as the old one, with its elements in the correct sorted order.

The closure expression examples below use the sort function to sort an array of String
values in reverse alphabetical order. Here’s the initial array to be sorted:

let names = ["Chris", "Alex", "Ewa", "Barry", "Daniella"]

The sort function takes two arguments:

This example is sorting an array of String values, and so the sorting closure needs to
be a function of type (String, String) -> Bool.

An array of values of a known type.
A closure that takes two arguments of the same type as the array’s contents,
and returns a Bool value to say whether the first value should appear before or
after the second value once the values are sorted. The sorting closure needs to
return true if the first value should appear before the second value, and false
otherwise.

145

One way to provide the sorting closure is to write a normal function of the correct
type, and to pass it in as the sort function’s second parameter:

func backwards(s1: String, s2: String) -> Bool {

 return s1 > s2

}

var reversed = sort(names, backwards)

// reversed is equal to ["Ewa", "Daniella", "Chris", "Barry", "Alex"]

If the first string (s1) is greater than the second string (s2), the backwards function will
return true, indicating that s1 should appear before s2 in the sorted array. For
characters in strings, “greater than” means “appears later in the alphabet than”. This
means that the letter "B" is “greater than” the letter "A", and the string "Tom" is greater
than the string "Tim". This gives a reverse alphabetical sort, with "Barry" being placed
before "Alex", and so on.

However, this is a rather long-winded way to write what is essentially a single-
expression function (a > b). In this example, it would be preferable to write the sorting
closure inline, using closure expression syntax.

Closure Expression Syntax

Closure expression syntax has the following general form:

{ (parameters) -> return type in

 statements

}

Closure expression syntax can use constant parameters, variable parameters, and
inout parameters. Default values cannot be provided. Variadic parameters can be used
if you name the variadic parameter and place it last in the parameter list. Tuples can
also be used as parameter types and return types.

The example below shows a closure expression version of the backwards function from
earlier:

reversed = sort(names, { (s1: String, s2: String) -> Bool in

146

 return s1 > s2

 })

Note that the declaration of parameters and return type for this inline closure is
identical to the declaration from the backwards function. In both cases, it is written as
(s1: String, s2: String) -> Bool. However, for the inline closure expression, the
parameters and return type are written inside the curly braces, not outside of them.

The start of the closure’s body is introduced by the in keyword. This keyword indicates
that the definition of the closure’s parameters and return type has finished, and the
body of the closure is about to begin.

Because the body of the closure is so short, it can even be written on a single line:

reversed = sort(names, { (s1: String, s2: String) -> Bool in return s1 > s2 })

This illustrates that the overall call to the sort function has remained the same. A pair
of parentheses still wrap the entire set of arguments for the function. However, one of
those arguments is now an inline closure.

Inferring Type From Context

Because the sorting closure is passed as an argument to a function, Swift can infer the
types of its parameters and the type of the value it returns from the type of the sort
function’s second parameter. This parameter is expecting a function of type (String,
String) -> Bool. This means that the String, String, and Bool types do not need to be
written as part of the closure expression’s definition. Because all of the types can be
inferred, the return arrow (->) and the parentheses around the names of the
parameters can also be omitted:

reversed = sort(names, { s1, s2 in return s1 > s2 })

It is always possible to infer parameter types and return type when passing a closure
to a function as an inline closure expression. As a result, you rarely need to write an
inline closure in its fullest form.

Nonetheless, you can make the types explicit if you wish, and doing so is encouraged
if it avoids ambiguity for readers of your code. In the case of the sort function, the
purpose of the closure is clear from the fact that sorting is taking place, and it is safe

147

for a reader to assume that the closure is likely to be working with String values,
because it is assisting with the sorting of an array of strings.

Implicit Returns from Single-Expression Closures

Single-expression closures can implicitly return the result of their single expression by
omitting the return keyword from their declaration, as in this version of the previous
example:

reversed = sort(names, { s1, s2 in s1 > s2 })

Here, the function type of the sort function’s second argument makes it clear that a
Bool value must be returned by the closure. Because the closure’s body contains a
single expression (s1 > s2) that returns a Bool value, there is no ambiguity, and the
return keyword can be omitted.

Shorthand Argument Names

Swift automatically provides shorthand argument names to inline closures, which can
be used to refer to the values of the closure’s arguments by the names $0, $1, $2, and
so on.

If you use these shorthand argument names within your closure expression, you can
omit the closure’s argument list from its definition, and the number and type of the
shorthand argument names will be inferred from the expected function type. The in
keyword can also be omitted, because the closure expression is made up entirely of its
body:

reversed = sort(names, { $0 > $1 })

Here, $0 and $1 refer to the closure’s first and second String arguments.

Operator Functions

There’s actually an even shorter way to write the closure expression above. Swift’s
String type defines its string-specific implementation of the greater-than operator (>)

148

as a function that has two parameters of type String, and returns a value of type Bool.
This exactly matches the function type needed for the sort function’s second
parameter. Therefore, you can simply pass in the greater-than operator, and Swift will
infer that you want to use its string-specific implementation:

reversed = sort(names, >)

For more about operator functions, see Operator Functions.

Trailing Closures

If you need to pass a closure expression to a function as the function’s final argument
and the closure expression is long, it can be useful to write it as a trailing closure
instead. A trailing closure is a closure expression that is written outside of (and after)
the parentheses of the function call it supports:

func someFunctionThatTakesAClosure(closure: () -> ()) {

 // function body goes here

}

// here's how you call this function without using a trailing closure:

someFunctionThatTakesAClosure({

 // closure's body goes here

 })

// here's how you call this function with a trailing closure instead:

someFunctionThatTakesAClosure() {

 // trailing closure's body goes here

}

149

NO T E

If a closure expression is provided as the function’s only argument and you provide that expression as a
trailing closure, you do not need to write a pair of parentheses () after the function’s name when you call
the function.

The string-sorting closure from the Closure Expression Syntax section above can be
written outside of the sort function’s parentheses as a trailing closure:

reversed = sort(names) { $0 > $1 }

Trailing closures are most useful when the closure is sufficiently long that it is not
possible to write it inline on a single line. As an example, Swift’s Array type has a map
method which takes a closure expression as its single argument. The closure is called
once for each item in the array, and returns an alternative mapped value (possibly of
some other type) for that item. The nature of the mapping and the type of the
returned value is left up to the closure to specify.

After applying the provided closure to each array element, the map method returns a
new array containing all of the new mapped values, in the same order as their
corresponding values in the original array.

Here’s how you can use the map method with a trailing closure to convert an array of
Int values into an array of String values. The array [16, 58, 510] is used to create the
new array ["OneSix", "FiveEight", "FiveOneZero"]:

let digitNames = [

 0: "Zero", 1: "One", 2: "Two", 3: "Three", 4: "Four",

 5: "Five", 6: "Six", 7: "Seven", 8: "Eight", 9: "Nine"

]

let numbers = [16, 58, 510]

The code above creates a dictionary of mappings between the integer digits and
English-language versions of their names. It also defines an array of integers, ready to
be converted into strings.

You can now use the numbers array to create an array of String values, by passing a
closure expression to the array’s map method as a trailing closure. Note that the call to
numbers.map does not need to include any parentheses after map, because the map

150

method has only one parameter, and that parameter is provided as a trailing closure:

let strings = numbers.map {

 (var number) -> String in

 var output = ""

 while number > 0 {

 output = digitNames[number % 10]! + output

 number /= 10

 }

 return output

}

// strings is inferred to be of type String[]

// its value is ["OneSix", "FiveEight", "FiveOneZero"]

The map function calls the closure expression once for each item in the array. You do
not need to specify the type of the closure’s input parameter, number, because the type
can be inferred from the values in the array to be mapped.

In this example, the closure’s number parameter is defined as a variable parameter, as
described in Constant and Variable Parameters, so that the parameter’s value can be
modified within the closure body, rather than declaring a new local variable and
assigning the passed number value to it. The closure expression also specifies a return
type of String, to indicate the type that will be stored in the mapped output array.

The closure expression builds a string called output each time it is called. It calculates
the last digit of number by using the remainder operator (number % 10), and uses this
digit to look up an appropriate string in the digitNames dictionary.

NO T E

The call to the digitNames dictionary’s subscript is followed by an exclamation mark (!), because
dictionary subscripts return an optional value to indicate that the dictionary lookup can fail if the key does
not exist. In the example above, it is guaranteed that number % 10 will always be a valid subscript key
for the digitNames dictionary, and so an exclamation mark is used to force-unwrap the String value
stored in the subscript’s optional return value.

151

The string retrieved from the digitNames dictionary is added to the front of output,
effectively building a string version of the number in reverse. (The expression number %
10 gives a value of 6 for 16, 8 for 58, and 0 for 510.)

The number variable is then divided by 10. Because it is an integer, it is rounded down
during the division, so 16 becomes 1, 58 becomes 5, and 510 becomes 51.

The process is repeated until number /= 10 is equal to 0, at which point the output string
is returned by the closure, and is added to the output array by the map function.

The use of trailing closure syntax in the example above neatly encapsulates the
closure’s functionality immediately after the function that closure supports, without
needing to wrap the entire closure within the map function’s outer parentheses.

Capturing Values

A closure can capture constants and variables from the surrounding context in which it
is defined. The closure can then refer to and modify the values of those constants and
variables from within its body, even if the original scope that defined the constants
and variables no longer exists.

The simplest form of a closure in Swift is a nested function, written within the body of
another function. A nested function can capture any of its outer function’s arguments
and can also capture any constants and variables defined within the outer function.

Here’s an example of a function called makeIncrementor, which contains a nested
function called incrementor. The nested incrementor function captures two values,
runningTotal and amount, from its surrounding context. After capturing these values,
incrementor is returned by makeIncrementor as a closure that increments runningTotal by
amount each time it is called.

func makeIncrementor(forIncrement amount: Int) -> () -> Int {

 var runningTotal = 0

 func incrementor() -> Int {

 runningTotal += amount

 return runningTotal

 }

 return incrementor

152

}

The return type of makeIncrementor is () -> Int. This means that it returns a function,
rather than a simple value. The function it returns has no parameters, and returns an
Int value each time it is called. To learn how functions can return other functions, see
Function Types as Return Types.

The makeIncrementor function defines an integer variable called runningTotal, to store
the current running total of the incrementor that will be returned. This variable is
initialized with a value of 0.

The makeIncrementor function has a single Int parameter with an external name of
forIncrement, and a local name of amount. The argument value passed to this
parameter specifies how much runningTotal should be incremented by each time the
returned incrementor function is called.

makeIncrementor defines a nested function called incrementor, which performs the actual
incrementing. This function simply adds amount to runningTotal, and returns the result.

When considered in isolation, the nested incrementor function might seem unusual:

func incrementor() -> Int {

 runningTotal += amount

 return runningTotal

}

The incrementor function doesn’t have any parameters, and yet it refers to runningTotal
and amount from within its function body. It does this by capturing the existing values
of runningTotal and amount from its surrounding function and using them within its own
function body.

Because it does not modify amount, incrementor actually captures and stores a copy of
the value stored in amount. This value is stored along with the new incrementor
function.

However, because it modifies the runningTotal variable each time it is called,
incrementor captures a reference to the current runningTotal variable, and not just a
copy of its initial value. Capturing a reference ensures sure that runningTotal does not
disappear when the call to makeIncrementor ends, and ensures that runningTotal will
continue to be available the next time that the incrementor function is called.

153

NO T E

Swift determines what should be captured by reference and what should be copied by value. You don’t
need to annotate amount or runningTotal to say that they can be used within the nested
incrementor function. Swift also handles all memory management involved in disposing of
runningTotal when it is no longer needed by the incrementor function.

Here’s an example of makeIncrementor in action:

let incrementByTen = makeIncrementor(forIncrement: 10)

This example sets a constant called incrementByTen to refer to an incrementor function
that adds 10 to its runningTotal variable each time it is called. Calling the function
multiple times shows this behavior in action:

incrementByTen()

// returns a value of 10

incrementByTen()

// returns a value of 20

incrementByTen()

// returns a value of 30

If you create another incrementor, it will have its own stored reference to a new,
separate runningTotal variable. In the example below, incrementBySeven captures a
reference to a new runningTotal variable, and this variable is unconnected to the one
captured by incrementByTen:

let incrementBySeven = makeIncrementor(forIncrement: 7)

incrementBySeven()

// returns a value of 7

incrementByTen()

// returns a value of 40

NO T E

154

If you assign a closure to a property of a class instance, and the closure captures that instance by
referring to the instance or its members, you will create a strong reference cycle between the closure and
the instance. Swift uses capture lists to break these strong reference cycles. For more information, see
Strong Reference Cycles for Closures.

Closures Are Reference Types

In the example above, incrementBySeven and incrementByTen are constants, but the
closures these constants refer to are still able to increment the runningTotal variables
that they have captured. This is because functions and closures are reference types.

Whenever you assign a function or a closure to a constant or a variable, you are
actually setting that constant or variable to be a reference to the function or closure.
In the example above, it is the choice of closure that incrementByTen refers to that is
constant, and not the contents of the closure itself.

This also means that if you assign a closure to two different constants or variables,
both of those constants or variables will refer to the same closure:

let alsoIncrementByTen = incrementByTen

alsoIncrementByTen()

// returns a value of 50

155

Enumerations

An enumeration defines a common type for a group of related values and enables you
to work with those values in a type-safe way within your code.

If you are familiar with C, you will know that C enumerations assign related names to
a set of integer values. Enumerations in Swift are much more flexible, and do not have
to provide a value for each member of the enumeration. If a value (known as a “raw”
value) is provided for each enumeration member, the value can be a string, a
character, or a value of any integer or floating-point type.

Alternatively, enumeration members can specify associated values of any type to be
stored along with each different member value, much as unions or variants do in other
languages. You can define a common set of related members as part of one
enumeration, each of which has a different set of values of appropriate types
associated with it.

Enumerations in Swift are first-class types in their own right. They adopt many
features traditionally supported only by classes, such as computed properties to
provide additional information about the enumeration’s current value, and instance
methods to provide functionality related to the values the enumeration represents.
Enumerations can also define initializers to provide an initial member value; can be
extended to expand their functionality beyond their original implementation; and can
conform to protocols to provide standard functionality.

For more on these capabilities, see Properties, Methods, Initialization, Extensions, and
Protocols.

Enumeration Syntax

You introduce enumerations with the enum keyword and place their entire definition
within a pair of braces:

enum SomeEnumeration {

 // enumeration definition goes here

}

156

Here’s an example for the four main points of a compass:

enum CompassPoint {

 case North

 case South

 case East

 case West

}

The values defined in an enumeration (such as North, South, East, and West) are the
member values (or members) of that enumeration. The case keyword indicates that a
new line of member values is about to be defined.

NO T E

Unlike C and Objective-C, Swift enumeration members are not assigned a default integer value when they
are created. In the CompassPoints example above, North, South, East and West do not implicitly
equal 0, 1, 2 and 3. Instead, the different enumeration members are fully-fledged values in their own
right, with an explicitly-defined type of CompassPoint.

Multiple member values can appear on a single line, separated by commas:

enum Planet {

 case Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune

}

Each enumeration definition defines a brand new type. Like other types in Swift, their
names (such as CompassPoint and Planet) should start with a capital letter. Give
enumeration types singular rather than plural names, so that they read as self-
evident:

var directionToHead = CompassPoint.West

The type of directionToHead is inferred when it is initialized with one of the possible
values of CompassPoint. Once directionToHead is declared as a CompassPoint, you can set
it to a different CompassPoint value using a shorter dot syntax:

157

directionToHead = .East

The type of directionToHead is already known, and so you can drop the type when
setting its value. This makes for highly readable code when working with explicitly-
typed enumeration values.

Matching Enumeration Values with a Switch Statement

You can match individual enumeration values with a switch statement:

directionToHead = .South

switch directionToHead {

case .North:

 println("Lots of planets have a north")

case .South:

 println("Watch out for penguins")

case .East:

 println("Where the sun rises")

case .West:

 println("Where the skies are blue")

}

// prints "Watch out for penguins"

You can read this code as:

“Consider the value of directionToHead. In the case where it equals .North, print "Lots
of planets have a north". In the case where it equals .South, print "Watch out for
penguins".”

…and so on.

As described in Control Flow, a switch statement must be exhaustive when considering
an enumeration’s members. If the case for .West is omitted, this code does not
compile, because it does not consider the complete list of CompassPoint members.

158

Requiring exhaustiveness ensures that enumeration members are not accidentally
omitted.

When it is not appropriate to provide a case for every enumeration member, you can
provide a default case to cover any members that are not addressed explicitly:

let somePlanet = Planet.Earth

switch somePlanet {

case .Earth:

 println("Mostly harmless")

default:

 println("Not a safe place for humans")

}

// prints "Mostly harmless"

Associated Values

The examples in the previous section show how the members of an enumeration are a
defined (and typed) value in their own right. You can set a constant or variable to
Planet.Earth, and check for this value later. However, it is sometimes useful to be able
to store associated values of other types alongside these member values. This enables
you to store additional custom information along with the member value, and permits
this information to vary each time you use that member in your code.

You can define Swift enumerations to store associated values of any given type, and
the value types can be different for each member of the enumeration if needed.
Enumerations similar to these are known as discriminated unions, tagged unions, or
variants in other programming languages.

For example, suppose an inventory tracking system needs to track products by two
different types of barcode. Some products are labeled with 1D barcodes in UPC-A
format, which uses the numbers 0 to 9. Each barcode has a “number system” digit,
followed by ten “identifier” digits. These are followed by a “check” digit to verify that
the code has been scanned correctly:

159

Other products are labeled with 2D barcodes in QR code format, which can use any
ISO 8859-1 character and can encode a string up to 2,953 characters long:

It would be convenient for an inventory tracking system to be able to store UPC-A
barcodes as a tuple of three integers, and QR code barcodes as a string of any length.

In Swift, an enumeration to define product barcodes of either type might look like this:

enum Barcode {

 case UPCA(Int, Int, Int)

 case QRCode(String)

}

This can be read as:

“Define an enumeration type called Barcode, which can take either a value of UPCA with
an associated value of type (Int, Int, Int), or a value of QRCode with an associated
value of type String.”

This definition does not provide any actual Int or String values—it just defines the
type of associated values that Barcode constants and variables can store when they are
equal to Barcode.UPCA or Barcode.QRCode.

New barcodes can then be created using either type:

var productBarcode = Barcode.UPCA(8, 85909_51226, 3)

160

This example creates a new variable called productBarcode and assigns it a value of
Barcode.UPCA with an associated tuple value of (8, 8590951226, 3). The provided
“identifier” value has an underscore within its integer literal—85909_51226—to make it
easier to read as a barcode.

The same product can be assigned a different type of barcode:

productBarcode = .QRCode("ABCDEFGHIJKLMNOP")

At this point, the original Barcode.UPCA and its integer values are replaced by the new
Barcode.QRCode and its string value. Constants and variables of type Barcode can store
either a .UPCA or a .QRCode (together with their associated values), but they can only
store one of them at any given time.

The different barcode types can be checked using a switch statement, as before. This
time, however, the associated values can be extracted as part of the switch
statement. You extract each associated value as a constant (with the let prefix) or a
variable (with the var prefix) for use within the switch case’s body:

switch productBarcode {

case .UPCA(let numberSystem, let identifier, let check):

 println("UPC-A with value of \(numberSystem), \(identifier), \(check).")

case .QRCode(let productCode):

 println("QR code with value of \(productCode).")

}

// prints "QR code with value of ABCDEFGHIJKLMNOP."

If all of the associated values for a enumeration member are extracted as constants,
or if all are extracted as variables, you can place a single var or let annotation before
the member name, for brevity:

switch productBarcode {

case let .UPCA(numberSystem, identifier, check):

 println("UPC-A with value of \(numberSystem), \(identifier), \(check).")

case let .QRCode(productCode):

 println("QR code with value of \(productCode).")

161

}

// prints "QR code with value of ABCDEFGHIJKLMNOP."

Raw Values

The barcode example in Associated Values shows how members of an enumeration
can declare that they store associated values of different types. As an alternative to
associated values, enumeration members can come prepopulated with default values
(called raw values), which are all of the same type.

Here’s an example that stores raw ASCII values alongside named enumeration
members:

enum ASCIIControlCharacter: Character {

 case Tab = "\t"

 case LineFeed = "\n"

 case CarriageReturn = "\r"

}

Here, the raw values for an enumeration called ASCIIControlCharacter are defined to be
of type Character, and are set to some of the more common ASCII control characters.
Character values are described in Strings and Characters.

Note that raw values are not the same as associated values. Raw values are set to
prepopulated values when you first define the enumeration in your code, like the three
ASCII codes above. The raw value for a particular enumeration member is always the
same. Associated values are set when you create a new constant or variable based on
one of the enumeration’s members, and can be different each time you do so.

Raw values can be strings, characters, or any of the integer or floating-point number
types. Each raw value must be unique within its enumeration declaration. When
integers are used for raw values, they auto-increment if no value is specified for some
of the enumeration members.

The enumeration below is a refinement of the earlier Planet enumeration, with raw
integer values to represent each planet’s order from the sun:

enum Planet: Int {

162

 case Mercury = 1, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune

}

Auto-incrementation means that Planet.Venus has a raw value of 2, and so on.

Access the raw value of an enumeration member with its toRaw method:

let earthsOrder = Planet.Earth.toRaw()

// earthsOrder is 3

Use an enumeration’s fromRaw method to try to find an enumeration member with a
particular raw value. This example identifies Uranus from its raw value of 7:

let possiblePlanet = Planet.fromRaw(7)

// possiblePlanet is of type Planet? and equals Planet.Uranus

Not all possible Int values will find a matching planet, however. Because of this, the
fromRaw method returns an optional enumeration member. In the example above,
possiblePlanet is of type Planet?, or “optional Planet.”

If you try to find a Planet with a position of 9, the optional Planet value returned by
fromRaw will be nil:

let positionToFind = 9

if let somePlanet = Planet.fromRaw(positionToFind) {

 switch somePlanet {

 case .Earth:

 println("Mostly harmless")

 default:

 println("Not a safe place for humans")

 }

} else {

 println("There isn't a planet at position \(positionToFind)")

}

163

// prints "There isn't a planet at position 9"

This example uses optional binding to try to access a planet with a raw value of 9. The
statement if let somePlanet = Planet.fromRaw(9) retrieves an optional Planet, and sets
somePlanet to the contents of that optional Planet if it can be retrieved. In this case, it
is not possible to retrieve a planet with a position of 9, and so the else branch is
executed instead.

164

Classes and Structures

Classes and structures are general-purpose, flexible constructs that become the
building blocks of your program’s code. You define properties and methods to add
functionality to your classes and structures by using exactly the same syntax as for
constants, variables, and functions.

Unlike other programming languages, Swift does not require you to create separate
interface and implementation files for custom classes and structures. In Swift, you
define a class or a structure in a single file, and the external interface to that class or
structure is automatically made available for other code to use.

NO T E

An instance of a class is traditionally known as an object. However, Swift classes and structures are much
closer in functionality than in other languages, and much of this chapter describes functionality that can
apply to instances of either a class or a structure type. Because of this, the more general term instance is
used.

Comparing Classes and Structures

Classes and structures in Swift have many things in common. Both can:

For more information, see Properties, Methods, Subscripts, Initialization, Extensions,
and Protocols.

Classes have additional capabilities that structures do not:

Define properties to store values
Define methods to provide functionality
Define subscripts to provide access to their values using subscript syntax
Define initializers to set up their initial state
Be extended to expand their functionality beyond a default implementation
Conform to protocols to provide standard functionality of a certain kind

165

For more information, see Inheritance, Type Casting, Initialization, and Automatic
Reference Counting.

NO T E

Structures are always copied when they are passed around in your code, and do not use reference
counting.

Definition Syntax

Classes and structures have a similar definition syntax. You introduce classes with the
class keyword and structures with the struct keyword. Both place their entire
definition within a pair of braces:

class SomeClass {

 // class definition goes here

}

struct SomeStructure {

 // structure definition goes here

}

NO T E

Whenever you define a new class or structure, you effectively define a brand new Swift type. Give types
UpperCamelCase names (such as SomeClass and SomeStructure here) to match the capitalization
of standard Swift types (such as String, Int, and Bool). Conversely, always give properties and
methods lowerCamelCase names (such as frameRate and incrementCount) to differentiate them

Inheritance enables one class to inherit the characteristics of another.
Type casting enables you to check and interpret the type of a class instance at
runtime.
Deinitializers enable an instance of a class to free up any resources it has
assigned.
Reference counting allows more than one reference to a class instance.

166

from type names.

Here’s an example of a structure definition and a class definition:

struct Resolution {

 var width = 0

 var height = 0

}

class VideoMode {

 var resolution = Resolution()

 var interlaced = false

 var frameRate = 0.0

 var name: String?

}

The example above defines a new structure called Resolution, to describe a pixel-
based display resolution. This structure has two stored properties called width and
height. Stored properties are constants or variables that are bundled up and stored as
part of the class or structure. These two properties are inferred to be of type Int by
setting them to an initial integer value of 0.

The example above also defines a new class called VideoMode, to describe a specific
video mode for video display. This class has four variable stored properties. The first,
resolution, is initialized with a new Resolution structure instance, which infers a
property type of Resolution. For the other three properties, new VideoMode instances
will be initialized with an interlaced setting of false (meaning “non-interlaced video”),
a playback frame rate of 0.0, and an optional String value called name. The name
property is automatically given a default value of nil, or “no name value”, because it is
of an optional type.

Class and Structure Instances

The Resolution structure definition and the VideoMode class definition only describe what
a Resolution or VideoMode will look like. They themselves do not describe a specific

167

resolution or video mode. To do that, you need to create an instance of the structure
or class.

The syntax for creating instances is very similar for both structures and classes:

let someResolution = Resolution()

let someVideoMode = VideoMode()

Structures and classes both use initializer syntax for new instances. The simplest form
of initializer syntax uses the type name of the class or structure followed by empty
parentheses, such as Resolution() or VideoMode(). This creates a new instance of the
class or structure, with any properties initialized to their default values. Class and
structure initialization is described in more detail in Initialization.

Accessing Properties

You can access the properties of an instance using dot syntax. In dot syntax, you write
the property name immediately after the instance name, separated by a period (.),
without any spaces:

println("The width of someResolution is \(someResolution.width)")

// prints "The width of someResolution is 0"

In this example, someResolution.width refers to the width property of someResolution,
and returns its default initial value of 0.

You can drill down into sub-properties, such as the width property in the resolution
property of a VideoMode:

println("The width of someVideoMode is \(someVideoMode.resolution.width)")

// prints "The width of someVideoMode is 0"

You can also use dot syntax to assign a new value to a variable property:

someVideoMode.resolution.width = 1280

println("The width of someVideoMode is now \(someVideoMode.resolution.width)")

// prints "The width of someVideoMode is now 1280"

168

NO T E

Unlike Objective-C, Swift enables you to set sub-properties of a structure property directly. In the last
example above, the width property of the resolution property of someVideoMode is set directly,
without your needing to set the entire resolution property to a new value.

Memberwise Initializers for Structure Types

All structures have an automatically-generated memberwise initializer, which you can
use to initialize the member properties of new structure instances. Initial values for
the properties of the new instance can be passed to the memberwise initializer by
name:

let vga = Resolution(width: 640, height: 480)

Unlike structures, class instances do not receive a default memberwise initializer.
Initializers are described in more detail in Initialization.

Structures and Enumerations Are Value Types

A value type is a type that is copied when it is assigned to a variable or constant, or
when it is passed to a function.

You’ve actually been using value types extensively throughout the previous chapters.
In fact, all of the basic types in Swift—integers, floating-point numbers, Booleans,
strings, arrays and dictionaries—are value types, and are implemented as structures
behind the scenes.

All structures and enumerations are value types in Swift. This means that any
structure and enumeration instances you create—and any value types they have as
properties—are always copied when they are passed around in your code.

Consider this example, which uses the Resolution structure from the previous example:

let hd = Resolution(width: 1920, height: 1080)

var cinema = hd

169

This example declares a constant called hd and sets it to a Resolution instance
initialized with the width and height of full HD video (1920 pixels wide by 1080 pixels
high).

It then declares a variable called cinema and sets it to the current value of hd. Because
Resolution is a structure, a copy of the existing instance is made, and this new copy is
assigned to cinema. Even though hd and cinema now have the same width and height,
they are two completely different instances behind the scenes.

Next, the width property of cinema is amended to be the width of the slightly-wider 2K
standard used for digital cinema projection (2048 pixels wide and 1080 pixels high):

cinema.width = 2048

Checking the width property of cinema shows that it has indeed changed to be 2048:

println("cinema is now \(cinema.width) pixels wide")

// prints "cinema is now 2048 pixels wide"

However, the width property of the original hd instance still has the old value of 1920:

println("hd is still \(hd.width) pixels wide")

// prints "hd is still 1920 pixels wide"

When cinema was given the current value of hd, the values stored in hd were copied
into the new cinema instance. The end result is two completely separate instances,
which just happened to contain the same numeric values. Because they are separate
instances, setting the width of cinema to 2048 doesn’t affect the width stored in hd.

The same behavior applies to enumerations:

enum CompassPoint {

 case North, South, East, West

}

var currentDirection = CompassPoint.West

let rememberedDirection = currentDirection

currentDirection = .East

170

if rememberedDirection == .West {

 println("The remembered direction is still .West")

}

// prints "The remembered direction is still .West"

When rememberedDirection is assigned the value of currentDirection, it is actually set to
a copy of that value. Changing the value of currentDirection thereafter does not affect
the copy of the original value that was stored in rememberedDirection.

Classes Are Reference Types

Unlike value types, reference types are not copied when they are assigned to a
variable or constant, or when they are passed to a function. Rather than a copy, a
reference to the same existing instance is used instead.

Here’s an example, using the VideoMode class defined above:

let tenEighty = VideoMode()

tenEighty.resolution = hd

tenEighty.interlaced = true

tenEighty.name = "1080i"

tenEighty.frameRate = 25.0

This example declares a new constant called tenEighty and sets it to refer to a new
instance of the VideoMode class. The video mode is assigned a copy of the HD
resolution of 1920 by 1080 from before. It is set to be interlaced, and is given a name of
"1080i". Finally, it is set to a frame rate of 25.0 frames per second.

Next, tenEighty is assigned to a new constant, called alsoTenEighty, and the frame rate
of alsoTenEighty is modified:

let alsoTenEighty = tenEighty

alsoTenEighty.frameRate = 30.0

Because classes are reference types, tenEighty and alsoTenEighty actually both refer to

171

the same VideoMode instance. Effectively, they are just two different names for the
same single instance.

Checking the frameRate property of tenEighty shows that it correctly reports the new
frame rate of 30.0 from the underlying VideoMode instance:

println("The frameRate property of tenEighty is now \(tenEighty.frameRate)")

// prints "The frameRate property of tenEighty is now 30.0"

Note that tenEighty and alsoTenEighty are declared as constants, rather than variables.
However, you can still change tenEighty.frameRate and alsoTenEighty.frameRate because
the values of the tenEighty and alsoTenEighty constants themselves do not actually
change. tenEighty and alsoTenEighty themselves do not “store” the VideoMode instance—
instead, they both refer to a VideoMode instance behind the scenes. It is the frameRate
property of the underlying VideoMode that is changed, not the values of the constant
references to that VideoMode.

Identity Operators

Because classes are reference types, it is possible for multiple constants and variables
to refer to the same single instance of a class behind the scenes. (The same is not
true for structures and enumerations, because they are value types and are always
copied when they are assigned to a constant or variable, or passed to a function.)

It can sometimes be useful to find out if two constants or variables refer to exactly the
same instance of a class. To enable this, Swift provides two identity operators:

Use these operators to check whether two constants or variables refer to the same
single instance:

if tenEighty === alsoTenEighty {

 println("tenEighty and alsoTenEighty refer to the same Resolution instance.")

}

// prints "tenEighty and alsoTenEighty refer to the same Resolution instance."

Identical to (===)
Not identical to (!==)

172

Note that “identical to” (represented by three equals signs, or ===) does not mean the
same thing as “equal to” (represented by two equals signs, or ==):

When you define your own custom classes and structures, it is your responsibility to
decide what qualifies as two instances being “equal”. The process of defining your own
implementations of the “equal to” and “not equal to” operators is described in
Equivalence Operators.

Pointers

If you have experience with C, C++, or Objective-C, you may know that these
languages use pointers to refer to addresses in memory. A Swift constant or variable
that refers to an instance of some reference type is similar to a pointer in C, but is not
a direct pointer to an address in memory, and does not require you to write an
asterisk (*) to indicate that you are creating a reference. Instead, these references are
defined like any other constant or variable in Swift.

Choosing Between Classes and Structures

You can use both classes and structures to define custom data types to use as the
building blocks of your program’s code.

However, structure instances are always passed by value, and class instances are
always passed by reference. This means that they are suited to different kinds of
tasks. As you consider the data constructs and functionality that you need for a
project, decide whether each data construct should be defined as a class or as a
structure.

As a general guideline, consider creating a structure when one or more of these
conditions apply:

“Identical to” means that two constants or variables of class type refer to
exactly the same class instance.
“Equal to” means that two instances are considered “equal” or “equivalent” in
value, for some appropriate meaning of “equal”, as defined by the type’s
designer.

173

Examples of good candidates for structures include:

In all other cases, define a class, and create instances of that class to be managed and
passed by reference. In practice, this means that most custom data constructs should
be classes, not structures.

Assignment and Copy Behavior for Collection Types

Swift’s Array and Dictionary types are implemented as structures. However, arrays
have slightly different copying behavior from dictionaries and other structures when
they are assigned to a constant or variable, and when they are passed to a function or
method.

The behavior described for Array and Dictionary below is different again from the
behavior of NSArray and NSDictionary in Foundation, which are implemented as classes,
not structures. NSArray and NSDictionary instances are always assigned and passed
around as a reference to an existing instance, rather than as a copy.

NO T E

The descriptions below refer to the “copying” of arrays, dictionaries, strings, and other values. Where

The structure’s primary purpose is to encapsulate a few relatively simple data
values.
It is reasonable to expect that the encapsulated values will be copied rather
than referenced when you assign or pass around an instance of that structure.
Any properties stored by the structure are themselves value types, which would
also be expected to be copied rather than referenced.
The structure does not need to inherit properties or behavior from another
existing type.

The size of a geometric shape, perhaps encapsulating a width property and a
height property, both of type Double.
A way to refer to ranges within a series, perhaps encapsulating a start
property and a length property, both of type Int.
A point in a 3D coordinate system, perhaps encapsulating x, y and z properties,
each of type Double.

174

copying is mentioned, the behavior you see in your code will always be as if a copy took place. However,
Swift only performs an actual copy behind the scenes when it is absolutely necessary to do so. Swift
manages all value copying to ensure optimal performance, and you should not avoid assignment to try to
preempt this optimization.

Assignment and Copy Behavior for Dictionaries

Whenever you assign a Dictionary instance to a constant or variable, or pass a
Dictionary instance as an argument to a function or method call, the dictionary is
copied at the point that the assignment or call takes place. This process is described in
Structures and Enumerations Are Value Types.

If the keys and/or values stored in the Dictionary instance are value types (structures
or enumerations), they too are copied when the assignment or call takes place.
Conversely, if the keys and/or values are reference types (classes or functions), the
references are copied, but not the class instances or functions that they refer to. This
copy behavior for a dictionary’s keys and values is the same as the copy behavior for a
structure’s stored properties when the structure is copied.

The example below defines a dictionary called ages, which stores the names and ages
of four people. The ages dictionary is then assigned to a new variable called copiedAges
and is copied when this assignment takes place. After the assignment, ages and
copiedAges are two separate dictionaries.

var ages = ["Peter": 23, "Wei": 35, "Anish": 65, "Katya": 19]

var copiedAges = ages

The keys for this dictionary are of type String, and the values are of type Int. Both
types are value types in Swift, and so the keys and values are also copied when the
dictionary copy takes place.

You can prove that the ages dictionary has been copied by changing an age value in
one of the dictionaries and checking the corresponding value in the other. If you set
the value for "Peter" in the copiedAges dictionary to 24, the ages dictionary still returns
the old value of 23 from before the copy took place:

copiedAges["Peter"] = 24

println(ages["Peter"])

175

// prints "23"

Assignment and Copy Behavior for Arrays

The assignment and copy behavior for Swift’s Array type is more complex than for its
Dictionary type. Array provides C-like performance when you work with an array’s
contents and copies an array’s contents only when copying is necessary.

If you assign an Array instance to a constant or variable, or pass an Array instance as
an argument to a function or method call, the contents of the array are not copied at
the point that the assignment or call takes place. Instead, both arrays share the same
sequence of element values. When you modify an element value through one array,
the result is observable through the other.

For arrays, copying only takes place when you perform an action that has the potential
to modify the length of the array. This includes appending, inserting, or removing
items, or using a ranged subscript to replace a range of items in the array. If and when
array copying does take place, the copy behavior for an array’s contents is the same
as for a dictionary’s keys and values, as described in Assignment and Copy Behavior
for Dictionaries.

The example below assigns a new array of Int values to a variable called a. This array
is also assigned to two further variables called b and c:

var a = [1, 2, 3]

var b = a

var c = a

You can retrieve the first value in the array with subscript syntax on either a, b, or c:

println(a[0])

// 1

println(b[0])

// 1

println(c[0])

// 1

176

If you set an item in the array to a new value with subscript syntax, all three of a, b,
and c will return the new value. Note that the array is not copied when you set a new
value with subscript syntax, because setting a single value with subscript syntax does
not have the potential to change the array’s length:

a[0] = 42

println(a[0])

// 42

println(b[0])

// 42

println(c[0])

// 42

However, if you append a new item to a, you do modify the array’s length. This
prompts Swift to create a new copy of the array at the point that you append the new
value. Henceforth, a is a separate, independent copy of the array.

If you change a value in a after the copy is made, a will return a different value from b
and c, which both still reference the original array contents from before the copy took
place:

a.append(4)

a[0] = 777

println(a[0])

// 777

println(b[0])

// 42

println(c[0])

// 42

Ensuring That an Array Is Unique

It can be useful to ensure that you have a unique copy of an array before performing

177

an action on that array’s contents, or before passing that array to a function or
method. You ensure the uniqueness of an array reference by calling the unshare
method on a variable of array type. (The unshare method cannot be called on a
constant array.)

If multiple variables currently refer to the same array, and you call the unshare method
on one of those variables, the array is copied, so that the variable has its own
independent copy of the array. However, no copying takes place if the variable is
already the only reference to the array.

At the end of the previous example, b and c both reference the same array. Call the
unshare method on b to make it become a unique copy:

b.unshare()

If you change the first value in b after calling the unshare method, all three arrays will
now report a different value:

b[0] = -105

println(a[0])

// 777

println(b[0])

// -105

println(c[0])

// 42

Checking Whether Two Arrays Share the Same Elements

Check whether two arrays or subarrays share the same storage and elements by
comparing them with the identity operators (=== and !==).

The example below uses the “identical to” operator (===) to check whether b and c still
share the same array elements:

if b === c {

 println("b and c still share the same array elements.")

178

} else {

 println("b and c now refer to two independent sets of array elements.")

}

// prints "b and c now refer to two independent sets of array elements."

Alternatively, use the identity operators to check whether two subarrays share the
same elements. The example below compares two identical subarrays from b and
confirms that they refer to the same elements:

if b[0...1] === b[0...1] {

 println("These two subarrays share the same elements.")

} else {

 println("These two subarrays do not share the same elements.")

}

// prints "These two subarrays share the same elements."

Forcing a Copy of an Array

Force an explicit copy of an array by calling the array’s copy method. This method
performs a shallow copy of the array and returns a new array containing the copied
items.

The example below defines an array called names, which stores the names of seven
people. A new variable called copiedNames is set to the result of calling the copy method
on the names array:

var names = ["Mohsen", "Hilary", "Justyn", "Amy", "Rich", "Graham", "Vic"]

var copiedNames = names.copy()

You can prove that the names array has been copied by changing an item in one of the
arrays and checking the corresponding item in the other. If you set the first item in the
copiedNames array to "Mo" rather than "Mohsen", the names array still returns the old value
of "Mohsen" from before the copy took place:

179

copiedNames[0] = "Mo"

println(names[0])

// prints "Mohsen"

NO T E

If you simply need to be sure that your reference to an array’s contents is the only reference in
existence, call the unshare method, not the copy method. The unshare method does not make a
copy of the array unless it is necessary to do so. The copy method always copies the array, even if it is
already unshared.

180

Properties

Properties associate values with a particular class, structure, or enumeration. Stored
properties store constant and variable values as part of an instance, whereas
computed properties calculate (rather than store) a value. Computed properties are
provided by classes, structures, and enumerations. Stored properties are provided only
by classes and structures.

Stored and computed properties are usually associated with instances of a particular
type. However, properties can also be associated with the type itself. Such properties
are known as type properties.

In addition, you can define property observers to monitor changes in a property’s
value, which you can respond to with custom actions. Property observers can be added
to stored properties you define yourself, and also to properties that a subclass inherits
from its superclass.

Stored Properties

In its simplest form, a stored property is a constant or variable that is stored as part of
an instance of a particular class or structure. Stored properties can be either variable
stored properties (introduced by the var keyword) or constant stored properties
(introduced by the let keyword).

You can provide a default value for a stored property as part of its definition, as
described in Default Property Values. You can also set and modify the initial value for
a stored property during initialization. This is true even for constant stored properties,
as described in Modifying Constant Properties During Initialization.

The example below defines a structure called FixedLengthRange, which describes a
range of integers whose range length cannot be changed once it is created:

struct FixedLengthRange {

 var firstValue: Int

 let length: Int

}

181

var rangeOfThreeItems = FixedLengthRange(firstValue: 0, length: 3)

// the range represents integer values 0, 1, and 2

rangeOfThreeItems.firstValue = 6

// the range now represents integer values 6, 7, and 8

Instances of FixedLengthRange have a variable stored property called firstValue and a
constant stored property called length. In the example above, length is initialized when
the new range is created and cannot be changed thereafter, because it is a constant
property.

Stored Properties of Constant Structure Instances

If you create an instance of a structure and assign that instance to a constant, you
cannot modify the instance’s properties, even if they were declared as variable
properties:

let rangeOfFourItems = FixedLengthRange(firstValue: 0, length: 4)

// this range represents integer values 0, 1, 2, and 3

rangeOfFourItems.firstValue = 6

// this will report an error, even thought firstValue is a variable property

Because rangeOfFourItems is declared as a constant (with the let keyword), it is not
possible to change its firstValue property, even though firstValue is a variable
property.

This behavior is due to structures being value types. When an instance of a value type
is marked as a constant, so are all of its properties.

The same is not true for classes, which are reference types. If you assign an instance
of a reference type to a constant, you can still change that instance’s variable
properties.

Lazy Stored Properties

A lazy stored property is a property whose initial value is not calculated until the first

182

time it is used. You indicate a lazy stored property by writing the @lazy attribute before
its declaration.

NO T E

You must always declare a lazy property as a variable (with the var keyword), because its initial value
may not be retrieved until after instance initialization completes. Constant properties must always have a
value before initialization completes, and therefore cannot be declared as lazy.

Lazy properties are useful when the initial value for a property is dependent on outside
factors whose values are not known until after an instance’s initialization is complete.
Lazy properties are also useful when the initial value for a property requires complex
or computationally expensive setup that should not be performed unless or until it is
needed.

The example below uses a lazy stored property to avoid unnecessary initialization of a
complex class. This example defines two classes called DataImporter and DataManager,
neither of which is shown in full:

class DataImporter {

 /*

 DataImporter is a class to import data from an external file.

 The class is assumed to take a non-trivial amount of time to initialize.

 */

 var fileName = "data.txt"

 // the DataImporter class would provide data importing functionality here

}

class DataManager {

 @lazy var importer = DataImporter()

 var data = String[]()

 // the DataManager class would provide data management functionality here

}

183

let manager = DataManager()

manager.data += "Some data"

manager.data += "Some more data"

// the DataImporter instance for the importer property has not yet been created

The DataManager class has a stored property called data, which is initialized with a new,
empty array of String values. Although the rest of its functionality is not shown, the
purpose of this DataManager class is to manage and provide access to this array of
String data.

Part of the functionality of the DataManager class is the ability to import data from a file.
This functionality is provided by the DataImporter class, which is assumed to take a
non-trivial amount of time to initialize. This might be because a DataImporter instance
needs to open a file and read its contents into memory when the DataImporter instance
is initialized.

It is possible for a DataManager instance to manage its data without ever importing data
from a file, so there is no need to create a new DataImporter instance when the
DataManager itself is created. Instead, it makes more sense to create the DataImporter
instance if and when it is first used.

Because it is marked with the @lazy attribute, the DataImporter instance for the importer
property is only created when the importer property is first accessed, such as when its
fileName property is queried:

println(manager.importer.fileName)

// the DataImporter instance for the importer property has now been created

// prints "data.txt"

Stored Properties and Instance Variables

If you have experience with Objective-C, you may know that it provides two ways to
store values and references as part of a class instance. In addition to properties, you
can use instance variables as a backing store for the values stored in a property.

Swift unifies these concepts into a single property declaration. A Swift property does
not have a corresponding instance variable, and the backing store for a property is not

184

accessed directly. This approach avoids confusion about how the value is accessed in
different contexts and simplifies the property’s declaration into a single, definitive
statement. All information about the property—including its name, type, and memory
management characteristics—is defined in a single location as part of the type’s
definition.

Computed Properties

In addition to stored properties, classes, structures, and enumerations can define
computed properties, which do not actually store a value. Instead, they provide a
getter and an optional setter to retrieve and set other properties and values indirectly.

struct Point {

 var x = 0.0, y = 0.0

}

struct Size {

 var width = 0.0, height = 0.0

}

struct Rect {

 var origin = Point()

 var size = Size()

 var center: Point {

 get {

 let centerX = origin.x + (size.width / 2)

 let centerY = origin.y + (size.height / 2)

 return Point(x: centerX, y: centerY)

 }

 set(newCenter) {

 origin.x = newCenter.x - (size.width / 2)

 origin.y = newCenter.y - (size.height / 2)

 }

185

 }

}

var square = Rect(origin: Point(x: 0.0, y: 0.0),

 size: Size(width: 10.0, height: 10.0))

let initialSquareCenter = square.center

square.center = Point(x: 15.0, y: 15.0)

println("square.origin is now at (\(square.origin.x), \(square.origin.y))")

// prints "square.origin is now at (10.0, 10.0)"

This example defines three structures for working with geometric shapes:

The Rect structure also provides a computed property called center. The current center
position of a Rect can always be determined from its origin and size, and so you don’t
need to store the center point as an explicit Point value. Instead, Rect defines a
custom getter and setter for a computed variable called center, to enable you to work
with the rectangle’s center as if it were a real stored property.

The preceding example creates a new Rect variable called square. The square variable
is initialized with an origin point of (0, 0), and a width and height of 10. This square is
represented by the blue square in the diagram below.

The square variable’s center property is then accessed through dot syntax
(square.center), which causes the getter for center to be called, to retrieve the current
property value. Rather than returning an existing value, the getter actually calculates
and returns a new Point to represent the center of the square. As can be seen above,
the getter correctly returns a center point of (5, 5).

The center property is then set to a new value of (15, 15), which moves the square up
and to the right, to the new position shown by the orange square in the diagram
below. Setting the center property calls the setter for center, which modifies the x and
y values of the stored origin property, and moves the square to its new position.

Point encapsulates an (x, y) coordinate.
Size encapsulates a width and a height.
Rect defines a rectangle by an origin point and a size.

186

Shorthand Setter Declaration

If a computed property’s setter does not define a name for the new value to be set, a
default name of newValue is used. Here’s an alternative version of the Rect structure,
which takes advantage of this shorthand notation:

struct AlternativeRect {

 var origin = Point()

 var size = Size()

 var center: Point {

 get {

 let centerX = origin.x + (size.width / 2)

 let centerY = origin.y + (size.height / 2)

 return Point(x: centerX, y: centerY)

 }

 set {

 origin.x = newValue.x - (size.width / 2)

187

 origin.y = newValue.y - (size.height / 2)

 }

 }

}

Read-Only Computed Properties

A computed property with a getter but no setter is known as a read-only computed
property. A read-only computed property always returns a value, and can be accessed
through dot syntax, but cannot be set to a different value.

NO T E

You must declare computed properties—including read-only computed properties—as variable properties
with the var keyword, because their value is not fixed. The let keyword is only used for constant
properties, to indicate that their values cannot be changed once they are set as part of instance
initialization.

You can simplify the declaration of a read-only computed property by removing the get
keyword and its braces:

struct Cuboid {

 var width = 0.0, height = 0.0, depth = 0.0

 var volume: Double {

 return width * height * depth

 }

}

let fourByFiveByTwo = Cuboid(width: 4.0, height: 5.0, depth: 2.0)

println("the volume of fourByFiveByTwo is \(fourByFiveByTwo.volume)")

// prints "the volume of fourByFiveByTwo is 40.0"

This example defines a new structure called Cuboid, which represents a 3D rectangular

188

box with width, height, and depth properties. This structure also has a read-only
computed property called volume, which calculates and returns the current volume of
the cuboid. It doesn’t make sense for volume to be settable, because it would be
ambiguous as to which values of width, height, and depth should be used for a
particular volume value. Nonetheless, it is useful for a Cuboid to provide a read-only
computed property to enable external users to discover its current calculated volume.

Property Observers

Property observers observe and respond to changes in a property’s value. Property
observers are called every time a property’s value is set, even if the new value is the
same as the property’s current value.

You can add property observers to any stored properties you define, apart from lazy
stored properties. You can also add property observers to any inherited property
(whether stored or computed) by overriding the property within a subclass. Property
overriding is described in Overriding.

NO T E

You don’t need to define property observers for non-overridden computed properties, because you can
observe and respond to changes to their value from directly within the computed property’s setter.

You have the option to define either or both of these observers on a property:

If you implement a willSet observer, it is passed the new property value as a constant
parameter. You can specify a name for this parameter as part of your willSet
implementation. If you choose not to write the parameter name and parentheses
within your implementation, the parameter will still be made available with a default
parameter name of newValue.

Similarly, if you implement a didSet observer, it will be passed a constant parameter
containing the old property value. You can name the parameter if you wish, or use the
default parameter name of oldValue.

willSet is called just before the value is stored.
didSet is called immediately after the new value is stored.

189

NO T E

willSet and didSet observers are not called when a property is first initialized. They are only called
when the property’s value is set outside of an initialization context.

Here’s an example of willSet and didSet in action. The example below defines a new
class called StepCounter, which tracks the total number of steps that a person takes
while walking. This class might be used with input data from a pedometer or other
step counter to keep track of a person’s exercise during their daily routine.

class StepCounter {

 var totalSteps: Int = 0 {

 willSet(newTotalSteps) {

 println("About to set totalSteps to \(newTotalSteps)")

 }

 didSet {

 if totalSteps > oldValue {

 println("Added \(totalSteps - oldValue) steps")

 }

 }

 }

}

let stepCounter = StepCounter()

stepCounter.totalSteps = 200

// About to set totalSteps to 200

// Added 200 steps

stepCounter.totalSteps = 360

// About to set totalSteps to 360

// Added 160 steps

stepCounter.totalSteps = 896

190

// About to set totalSteps to 896

// Added 536 steps

The StepCounter class declares a totalSteps property of type Int. This is a stored
property with willSet and didSet observers.

The willSet and didSet observers for totalSteps are called whenever the property is
assigned a new value. This is true even if the new value is the same as the current
value.

This example’s willSet observer uses a custom parameter name of newTotalSteps for
the upcoming new value. In this example, it simply prints out the value that is about
to be set.

The didSet observer is called after the value of totalSteps is updated. It compares the
new value of totalSteps against the old value. If the total number of steps has
increased, a message is printed to indicate how many new steps have been taken.
The didSet observer does not provide a custom parameter name for the old value, and
the default name of oldValue is used instead.

NO T E

If you assign a value to a property within its own didSet observer, the new value that you assign will
replace the one that was just set.

Global and Local Variables

The capabilities described above for computing and observing properties are also
available to global variables and local variables. Global variables are variables that are
defined outside of any function, method, closure, or type context. Local variables are
variables that are defined within a function, method, or closure context.

The global and local variables you have encountered in previous chapters have all
been stored variables. Stored variables, like stored properties, provide storage for a
value of a certain type and allow that value to be set and retrieved.

However, you can also define computed variables and define observers for stored
variables, in either a global or local scope. Computed variables calculate rather than
store a value, and are written in the same way as computed properties.

191

NO T E

Global constants and variables are always computed lazily, in a similar manner to Lazy Stored Properties.
Unlike lazy stored properties, global constants and variables do not need to be marked with the @lazy
attribute.

Local constants and variables are never computed lazily.

Type Properties

Instance properties are properties that belong to an instance of a particular type.
Every time you create a new instance of that type, it has its own set of property
values, separate from any other instance.

You can also define properties that belong to the type itself, not to any one instance of
that type. There will only ever be one copy of these properties, no matter how many
instances of that type you create. These kinds of properties are called type properties.

Type properties are useful for defining values that are universal to all instances of a
particular type, such as a constant property that all instances can use (like a static
constant in C), or a variable property that stores a value that is global to all instances
of that type (like a static variable in C).

For value types (that is, structures and enumerations), you can define stored and
computed type properties. For classes, you can define computed type properties only.

Stored type properties for value types can be variables or constants. Computed type
properties are always declared as variable properties, in the same way as computed
instance properties.

NO T E

Unlike stored instance properties, you must always give stored type properties a default value. This is
because the type itself does not have an initializer that can assign a value to a stored type property at
initialization time.

Type Property Syntax

192

In C and Objective-C, you define static constants and variables associated with a type
as global static variables. In Swift, however, type properties are written as part of the
type’s definition, within the type’s outer curly braces, and each type property is
explicitly scoped to the type it supports.

You define type properties for value types with the static keyword, and type
properties for class types with the class keyword. The example below shows the
syntax for stored and computed type properties:

struct SomeStructure {

 static var storedTypeProperty = "Some value."

 static var computedTypeProperty: Int {

 // return an Int value here

 }

}

enum SomeEnumeration {

 static var storedTypeProperty = "Some value."

 static var computedTypeProperty: Int {

 // return an Int value here

 }

}

class SomeClass {

 class var computedTypeProperty: Int {

 // return an Int value here

 }

}

NO T E

The computed type property examples above are for read-only computed type properties, but you can
also define read-write computed type properties with the same syntax as for computed instance
properties.

193

Querying and Setting Type Properties

Type properties are queried and set with dot syntax, just like instance properties.
However, type properties are queried and set on the type, not on an instance of that
type. For example:

println(SomeClass.computedTypeProperty)

// prints "42"

println(SomeStructure.storedTypeProperty)

// prints "Some value."

SomeStructure.storedTypeProperty = "Another value."

println(SomeStructure.storedTypeProperty)

// prints "Another value."

The examples that follow use two stored type properties as part of a structure that
models an audio level meter for a number of audio channels. Each channel has an
integer audio level between 0 and 10 inclusive.

The figure below illustrates how two of these audio channels can be combined to
model a stereo audio level meter. When a channel’s audio level is 0, none of the lights
for that channel are lit. When the audio level is 10, all of the lights for that channel are
lit. In this figure, the left channel has a current level of 9, and the right channel has a
current level of 7:

194

The audio channels described above are represented by instances of the AudioChannel
structure:

struct AudioChannel {

 static let thresholdLevel = 10

 static var maxInputLevelForAllChannels = 0

 var currentLevel: Int = 0 {

 didSet {

 if currentLevel > AudioChannel.thresholdLevel {

 // cap the new audio level to the threshold level

 currentLevel = AudioChannel.thresholdLevel

 }

 if currentLevel > AudioChannel.maxInputLevelForAllChannels {

 // store this as the new overall maximum input level

 AudioChannel.maxInputLevelForAllChannels = currentLevel

 }

 }

 }

195

}

The AudioChannel structure defines two stored type properties to support its
functionality. The first, thresholdLevel, defines the maximum threshold value an audio
level can take. This is a constant value of 10 for all AudioChannel instances. If an audio
signal comes in with a higher value than 10, it will be capped to this threshold value
(as described below).

The second type property is a variable stored property called
maxInputLevelForAllChannels. This keeps track of the maximum input value that has
been received by any AudioChannel instance. It starts with an initial value of 0.

The AudioChannel structure also defines a stored instance property called currentLevel,
which represents the channel’s current audio level on a scale of 0 to 10.

The currentLevel property has a didSet property observer to check the value of
currentLevel whenever it is set. This observer performs two checks:

NO T E

In the first of these two checks, the didSet observer sets currentLevel to a different value. This
does not, however, cause the observer to be called again.

You can use the AudioChannel structure to create two new audio channels called
leftChannel and rightChannel, to represent the audio levels of a stereo sound system:

var leftChannel = AudioChannel()

var rightChannel = AudioChannel()

If you set the currentLevel of the left channel to 7, you can see that the
maxInputLevelForAllChannels type property is updated to equal 7:

leftChannel.currentLevel = 7

If the new value of currentLevel is greater than the allowed thresholdLevel, the
property observer caps currentLevel to thresholdLevel.
If the new value of currentLevel (after any capping) is higher than any value
previously received by any AudioChannel instance, the property observer stores
the new currentLevel value in the maxInputLevelForAllChannels static property.

196

println(leftChannel.currentLevel)

// prints "7"

println(AudioChannel.maxInputLevelForAllChannels)

// prints "7"

If you try to set the currentLevel of the right channel to 11, you can see that the right
channel’s currentLevel property is capped to the maximum value of 10, and the
maxInputLevelForAllChannels type property is updated to equal 10:

rightChannel.currentLevel = 11

println(rightChannel.currentLevel)

// prints "10"

println(AudioChannel.maxInputLevelForAllChannels)

// prints "10"

197

Methods

Methods are functions that are associated with a particular type. Classes, structures,
and enumerations can all define instance methods, which encapsulate specific tasks
and functionality for working with an instance of a given type. Classes, structures, and
enumerations can also define type methods, which are associated with the type itself.
Type methods are similar to class methods in Objective-C.

The fact that structures and enumerations can define methods in Swift is a major
difference from C and Objective-C. In Objective-C, classes are the only types that can
define methods. In Swift, you can choose whether to define a class, structure, or
enumeration, and still have the flexibility to define methods on the type you create.

Instance Methods

Instance methods are functions that belong to instances of a particular class,
structure, or enumeration. They support the functionality of those instances, either by
providing ways to access and modify instance properties, or by providing functionality
related to the instance’s purpose. Instance methods have exactly the same syntax as
functions, as described in Functions.

You write an instance method within the opening and closing braces of the type it
belongs to. An instance method has implicit access to all other instance methods and
properties of that type. An instance method can be called only on a specific instance of
the type it belongs to. It cannot be called in isolation without an existing instance.

Here’s an example that defines a simple Counter class, which can be used to count the
number of times an action occurs:

class Counter {

 var count = 0

 func increment() {

 count++

 }

 func incrementBy(amount: Int) {

198

 count += amount

 }

 func reset() {

 count = 0

 }

}

The Counter class defines three instance methods:

The Counter class also declares a variable property, count, to keep track of the current
counter value.

You call instance methods with the same dot syntax as properties:

let counter = Counter()

// the initial counter value is 0

counter.increment()

// the counter's value is now 1

counter.incrementBy(5)

// the counter's value is now 6

counter.reset()

// the counter's value is now 0

Local and External Parameter Names for Methods

Function parameters can have both a local name (for use within the function’s body)
and an external name (for use when calling the function), as described in External

increment increments the counter by 1.
incrementBy(amount: Int) increments the counter by an specified integer
amount.
reset resets the counter to zero.

199

Parameter Names. The same is true for method parameters, because methods are just
functions that are associated with a type. However, the default behavior of local
names and external names is different for functions and methods.

Methods in Swift are very similar to their counterparts in Objective-C. As in Objective-
C, the name of a method in Swift typically refers to the method’s first parameter using
a preposition such as with, for, or by, as seen in the incrementBy method from the
preceding Counter class example. The use of a preposition enables the method to be
read as a sentence when it is called. Swift makes this established method naming
convention easy to write by using a different default approach for method parameters
than it uses for function parameters.

Specifically, Swift gives the first parameter name in a method a local parameter name
by default, and gives the second and subsequent parameter names both local and
external parameter names by default. This convention matches the typical naming and
calling convention you will be familiar with from writing Objective-C methods, and
makes for expressive method calls without the need to qualify your parameter names.

Consider this alternative version of the Counter class, which defines a more complex
form of the incrementBy method:

class Counter {

 var count: Int = 0

 func incrementBy(amount: Int, numberOfTimes: Int) {

 count += amount * numberOfTimes

 }

}

This incrementBy method has two parameters—amount and numberOfTimes. By default,
Swift treats amount as a local name only, but treats numberOfTimes as both a local and an
external name. You call the method as follows:

let counter = Counter()

counter.incrementBy(5, numberOfTimes: 3)

// counter value is now 15

You don’t need to define an external parameter name for the first argument value,
because its purpose is clear from the function name incrementBy. The second

200

argument, however, is qualified by an external parameter name to make its purpose
clear when the method is called.

This default behavior effectively treats the method as if you had written a hash symbol
(#) before the numberOfTimes parameter:

func incrementBy(amount: Int, #numberOfTimes: Int) {

 count += amount * numberOfTimes

}

The default behavior described above mean that method definitions in Swift are
written with the same grammatical style as Objective-C, and are called in a natural,
expressive way.

Modifying External Parameter Name Behavior for Methods

Sometimes it’s useful to provide an external parameter name for a method’s first
parameter, even though this is not the default behavior. You can either add an explicit
external name yourself, or you can prefix the first parameter’s name with a hash
symbol to use the local name as an external name too.

Conversely, if you do not want to provide an external name for the second or
subsequent parameter of a method, override the default behavior by using an
underscore character (_) as an explicit external parameter name for that parameter.

The self Property

Every instance of a type has an implicit property called self, which is exactly
equivalent to the instance itself. You use this implicit self property to refer to the
current instance within its own instance methods.

The increment method in the example above could have been written like this:

func increment() {

 self.count++

}

201

In practice, you don’t need to write self in your code very often. If you don’t explicitly
write self, Swift assumes that you are referring to a property or method of the current
instance whenever you use a known property or method name within a method. This
assumption is demonstrated by the use of count (rather than self.count) inside the
three instance methods for Counter.

The main exception to this rule occurs when a parameter name for an instance
method has the same name as a property of that instance. In this situation, the
parameter name takes precedence, and it becomes necessary to refer to the property
in a more qualified way. You use the implicit self property to distinguish between the
parameter name and the property name.

Here, self disambiguates between a method parameter called x and an instance
property that is also called x:

struct Point {

 var x = 0.0, y = 0.0

 func isToTheRightOfX(x: Double) -> Bool {

 return self.x > x

 }

}

let somePoint = Point(x: 4.0, y: 5.0)

if somePoint.isToTheRightOfX(1.0) {

 println("This point is to the right of the line where x == 1.0")

}

// prints "This point is to the right of the line where x == 1.0"

Without the self prefix, Swift would assume that both uses of x referred to the method
parameter called x.

Modifying Value Types from Within Instance Methods

Structures and enumerations are value types. By default, the properties of a value
type cannot be modified from within its instance methods.

202

However, if you need to modify the properties of your structure or enumeration within
a particular method, you can opt in to mutating behavior for that method. The method
can then mutate (that is, change) its properties from within the method, and any
changes that it makes are written back to the original structure when the method
ends. The method can also assign a completely new instance to its implicit self
property, and this new instance will replace the existing one when the method ends.

You can opt in to this behavior by placing the mutating keyword before the func
keyword for that method:

struct Point {

 var x = 0.0, y = 0.0

 mutating func moveByX(deltaX: Double, y deltaY: Double) {

 x += deltaX

 y += deltaY

 }

}

var somePoint = Point(x: 1.0, y: 1.0)

somePoint.moveByX(2.0, y: 3.0)

println("The point is now at (\(somePoint.x), \(somePoint.y))")

// prints "The point is now at (3.0, 4.0)"

The Point structure above defines a mutating moveByX method, which moves a Point
instance by a certain amount. Instead of returning a new point, this method actually
modifies the point on which it is called. The mutating keyword is added to its definition
to enable it to modify its properties.

Note that you cannot call a mutating method on a constant of structure type, because
its properties cannot be changed, even if they are variable properties, as described in
Stored Properties of Constant Structure Instances:

let fixedPoint = Point(x: 3.0, y: 3.0)

fixedPoint.moveByX(2.0, y: 3.0)

// this will report an error

203

Assigning to self Within a Mutating Method

Mutating methods can assign an entirely new instance to the implicit self property.
The Point example shown above could have been written in the following way instead:

struct Point {

 var x = 0.0, y = 0.0

 mutating func moveByX(deltaX: Double, y deltaY: Double) {

 self = Point(x: x + deltaX, y: y + deltaY)

 }

}

This version of the mutating moveByX method creates a brand new structure whose x
and y values are set to the target location. The end result of calling this alternative
version of the method will be exactly the same as for calling the earlier version.

Mutating methods for enumerations can set the implicit self parameter to be a
different member from the same enumeration:

enum TriStateSwitch {

 case Off, Low, High

 mutating func next() {

 switch self {

 case Off:

 self = Low

 case Low:

 self = High

 case High:

 self = Off

 }

 }

}

204

var ovenLight = TriStateSwitch.Low

ovenLight.next()

// ovenLight is now equal to .High

ovenLight.next()

// ovenLight is now equal to .Off

This example defines an enumeration for a three-state switch. The switch cycles
between three different power states (Off, Low and High) every time its next method is
called.

Type Methods

Instance methods, as described above, are methods that are called on an instance of
a particular type. You can also define methods that are called on the type itself. These
kinds of methods are called type methods. You indicate type methods for classes by
writing the keyword class before the method’s func keyword, and type methods for
structures and enumerations by writing the keyword static before the method’s func
keyword.

NO T E

In Objective-C, you can define type-level methods only for Objective-C classes. In Swift, you can define
type-level methods for all classes, structures, and enumerations. Each type method is explicitly scoped to
the type it supports.

Type methods are called with dot syntax, like instance methods. However, you call
type methods on the type, not on an instance of that type. Here’s how you call a type
method on a class called SomeClass:

class SomeClass {

 class func someTypeMethod() {

 // type method implementation goes here

 }

}

205

SomeClass.someTypeMethod()

Within the body of a type method, the implicit self property refers to the type itself,
rather than an instance of that type. For structures and enumerations, this means that
you can use self to disambiguate between static properties and static method
parameters, just as you do for instance properties and instance method parameters.

More generally, any unqualified method and property names that you use within the
body of a type method will refer to other type-level methods and properties. A type
method can call another type method with the other method’s name, without needing
to prefix it with the type name. Similarly, type methods on structures and
enumerations can access static properties by using the static property’s name without
a type name prefix.

The example below defines a structure called LevelTracker, which tracks a player’s
progress through the different levels or stages of a game. It is a single-player game,
but can store information for multiple players on a single device.

All of the game’s levels (apart from level one) are locked when the game is first
played. Every time a player finishes a level, that level is unlocked for all players on the
device. The LevelTracker structure uses static properties and methods to keep track of
which levels of the game have been unlocked. It also tracks the current level for an
individual player.

struct LevelTracker {

 static var highestUnlockedLevel = 1

 static func unlockLevel(level: Int) {

 if level > highestUnlockedLevel { highestUnlockedLevel = level }

 }

 static func levelIsUnlocked(level: Int) -> Bool {

 return level <= highestUnlockedLevel

 }

 var currentLevel = 1

 mutating func advanceToLevel(level: Int) -> Bool {

 if LevelTracker.levelIsUnlocked(level) {

 currentLevel = level

206

 return true

 } else {

 return false

 }

 }

}

The LevelTracker structure keeps track of the highest level that any player has
unlocked. This value is stored in a static property called highestUnlockedLevel.

LevelTracker also defines two type functions to work with the highestUnlockedLevel
property. The first is a type function called unlockLevel, which updates the value of
highestUnlockedLevel whenever a new level is unlocked. The second is a convenience
type function called levelIsUnlocked, which returns true if a particular level number is
already unlocked. (Note that these type methods can access the highestUnlockedLevel
static property without your needing to write it as LevelTracker.highestUnlockedLevel.)

In addition to its static property and type methods, LevelTracker tracks an individual
player’s progress through the game. It uses an instance property called currentLevel to
track the level that a player is currently playing.

To help manage the currentLevel property, LevelTracker defines an instance method
called advanceToLevel. Before updating currentLevel, this method checks whether the
requested new level is already unlocked. The advanceToLevel method returns a Boolean
value to indicate whether or not it was actually able to set currentLevel.

The LevelTracker structure is used with the Player class, shown below, to track and
update the progress of an individual player:

class Player {

 var tracker = LevelTracker()

 let playerName: String

 func completedLevel(level: Int) {

 LevelTracker.unlockLevel(level + 1)

 tracker.advanceToLevel(level + 1)

 }

207

 init(name: String) {

 playerName = name

 }

}

The Player class creates a new instance of LevelTracker to track that player’s progress.
It also provides a method called completedLevel, which is called whenever a player
completes a particular level. This method unlocks the next level for all players and
updates the player’s progress to move them to the next level. (The Boolean return
value of advanceToLevel is ignored, because the level is known to have been unlocked
by the call to LevelTracker.unlockLevel on the previous line.)

You can create a instance of the Player class for a new player, and see what happens
when the player completes level one:

var player = Player(name: "Argyrios")

player.completedLevel(1)

println("highest unlocked level is now \(LevelTracker.highestUnlockedLevel)")

// prints "highest unlocked level is now 2"

If you create a second player, whom you try to move to a level that is not yet
unlocked by any player in the game, the attempt to set the player’s current level fails:

player = Player(name: "Beto")

if player.tracker.advanceToLevel(6) {

 println("player is now on level 6")

} else {

 println("level 6 has not yet been unlocked")

}

// prints "level 6 has not yet been unlocked"

208

Subscripts

Classes, structures, and enumerations can define subscripts, which are shortcuts for
accessing the member elements of a collection, list, or sequence. You use subscripts
to set and retrieve values by index without needing separate methods for setting and
retrieval. For example, you access elements in an Array instance as someArray[index]
and elements in a Dictionary instance as someDictionary[key].

You can define multiple subscripts for a single type, and the appropriate subscript
overload to use is selected based on the type of index value you pass to the subscript.
Subscripts are not limited to a single dimension, and you can define subscripts with
multiple input parameters to suit your custom type’s needs.

Subscript Syntax

Subscripts enable you to query instances of a type by writing one or more values in
square brackets after the instance name. Their syntax is similar to both instance
method syntax and computed property syntax. You write subscript definitions with the
subscript keyword, and specify one or more input parameters and a return type, in the
same way as instance methods. Unlike instance methods, subscripts can be read-write
or read-only. This behavior is communicated by a getter and setter in the same way as
for computed properties:

subscript(index: Int) -> Int {

 get {

 // return an appropriate subscript value here

 }

 set(newValue) {

 // perform a suitable setting action here

 }

}

The type of newValue is the same as the return value of the subscript. As with

209

computed properties, you can choose not to specify the setter’s (newValue) parameter.
A default parameter called newValue is provided to your setter if you do not provide one
yourself.

As with read-only computed properties, you can drop the get keyword for read-only
subscripts:

subscript(index: Int) -> Int {

 // return an appropriate subscript value here

}

Here’s an example of a read-only subscript implementation, which defines a TimesTable
structure to represent an n-times-table of integers:

struct TimesTable {

 let multiplier: Int

 subscript(index: Int) -> Int {

 return multiplier * index

 }

}

let threeTimesTable = TimesTable(multiplier: 3)

println("six times three is \(threeTimesTable[6])")

// prints "six times three is 18"

In this example, a new instance of TimesTable is created to represent the three-times-
table. This is indicated by passing a value of 3 to the structure’s initializer as the
value to use for the instance’s multiplier parameter.

You can query the threeTimesTable instance by calling its subscript, as shown in the call
to threeTimesTable[6]. This requests the sixth entry in the three-times-table, which
returns a value of 18, or 3 times 6.

NO T E

An n-times-table is based on a fixed mathematical rule. It is not appropriate to set
threeTimesTable[someIndex] to a new value, and so the subscript for TimesTable is defined as a

210

read-only subscript.

Subscript Usage

The exact meaning of “subscript” depends on the context in which it is used.
Subscripts are typically used as a shortcut for accessing the member elements in a
collection, list, or sequence. You are free to implement subscripts in the most
appropriate way for your particular class or structure’s functionality.

For example, Swift’s Dictionary type implements a subscript to set and retrieve the
values stored in a Dictionary instance. You can set a value in a dictionary by providing
a key of the dictionary’s key type within subscript braces, and assigning a value of the
dictionary’s value type to the subscript:

var numberOfLegs = ["spider": 8, "ant": 6, "cat": 4]

numberOfLegs["bird"] = 2

The example above defines a variable called numberOfLegs and initializes it with a
dictionary literal containing three key-value pairs. The type of the numberOfLegs
dictionary is inferred to be Dictionary<String, Int>. After creating the dictionary, this
example uses subscript assignment to add a String key of "bird" and an Int value of 2
to the dictionary.

For more information about Dictionary subscripting, see Accessing and Modifying a
Dictionary.

NO T E

Swift’s Dictionary type implements its key-value subscripting as a subscript that takes and receives an
optional type. For the numberOfLegs dictionary above, the key-value subscript takes and returns a value
of type Int?, or “optional int”. The Dictionary type uses an optional subscript type to model the fact
that not every key will have a value, and to give a way to delete a value for a key by assigning a nil
value for that key.

Subscript Options

211

Subscripts can take any number of input parameters, and these input parameters can
be of any type. Subscripts can also return any type. Subscripts can use variable
parameters and variadic parameters, but cannot use in-out parameters or provide
default parameter values.

A class or structure can provide as many subscript implementations as it needs, and
the appropriate subscript to be used will be inferred based on the types of the value or
values that are contained within the subscript braces at the point that the subscript is
used. This definition of multiple subscripts is known as subscript overloading.

While it is most common for a subscript to take a single parameter, you can also
define a subscript with multiple parameters if it is appropriate for your type. The
following example defines a Matrix structure, which represents a two-dimensional
matrix of Double values. The Matrix structure’s subscript takes two integer parameters:

struct Matrix {

 let rows: Int, columns: Int

 var grid: Double[]

 init(rows: Int, columns: Int) {

 self.rows = rows

 self.columns = columns

 grid = Array(count: rows * columns, repeatedValue: 0.0)

 }

 func indexIsValidForRow(row: Int, column: Int) -> Bool {

 return row >= 0 && row < rows && column >= 0 && column < columns

 }

 subscript(row: Int, column: Int) -> Double {

 get {

 assert(indexIsValidForRow(row, column: column), "Index out of range")

 return grid[(row * columns) + column]

 }

 set {

 assert(indexIsValidForRow(row, column: column), "Index out of range")

212

 grid[(row * columns) + column] = newValue

 }

 }

}

Matrix provides an initializer that takes two parameters called rows and columns, and
creates an array that is large enough to store rows * columns values of type Double.
Each position in the matrix is given an initial value of 0.0. To achieve this, the array’s
size, and an initial cell value of 0.0, are passed to an array initializer that creates and
initializes a new array of the correct size. This initializer is described in more detail in
Creating and Initializing an Array.

You can construct a new Matrix instance by passing an appropriate row and column
count to its initializer:

var matrix = Matrix(rows: 2, columns: 2)

The preceding example creates a new Matrix instance with two rows and two columns.
The grid array for this Matrix instance is effectively a flattened version of the matrix,
as read from top left to bottom right:

Values in the matrix can be set by passing row and column values into the subscript,
separated by a comma:

matrix[0, 1] = 1.5

matrix[1, 0] = 3.2

These two statements call the subscript’s setter to set a value of 1.5 in the top right
position of the matrix (where row is 0 and column is 1), and 3.2 in the bottom left
position (where row is 1 and column is 0):

213

The Matrix subscript’s getter and setter both contain an assertion to check that the
subscript’s row and column values are valid. To assist with these assertions, Matrix
includes a convenience method called indexIsValid, which checks whether the
requested row or column is outside the bounds of the matrix:

func indexIsValidForRow(row: Int, column: Int) -> Bool {

 return row >= 0 && row < rows && column >= 0 && column < columns

}

An assertion is triggered if you try to access a subscript that is outside of the matrix
bounds:

let someValue = matrix[2, 2]

// this triggers an assert, because [2, 2] is outside of the matrix bounds

214

Inheritance

A class can inherit methods, properties, and other characteristics from another class.
When one class inherits from another, the inheriting class is known as a subclass, and
the class it inherits from is known as its superclass. Inheritance is a fundamental
behavior that differentiates classes from other types in Swift.

Classes in Swift can call and access methods, properties, and subscripts belonging to
their superclass and can provide their own overriding versions of those methods,
properties, and subscripts to refine or modify their behavior. Swift helps to ensure your
overrides are correct by checking that the override definition has a matching
superclass definition.

Classes can also add property observers to inherited properties in order to be notified
when the value of a property changes. Property observers can be added to any
property, regardless of whether it was originally defined as a stored or computed
property.

Defining a Base Class

Any class that does not inherit from another class is known as a base class.

NO T E

Swift classes do not inherit from a universal base class. Classes you define without specifying a superclass
automatically become base classes for you to build upon.

The example below defines a base class called Vehicle. This base class declares two
properties (numberOfWheels and maxPassengers) that are universal to all vehicles. These
properties are used by a method called description, which returns a String description
of the vehicle’s characteristics:

class Vehicle {

 var numberOfWheels: Int

 var maxPassengers: Int

215

 func description() -> String {

 return "\(numberOfWheels) wheels; up to \(maxPassengers) passengers"

 }

 init() {

 numberOfWheels = 0

 maxPassengers = 1

 }

}

The Vehicle class also defines an initializer to set up its properties. Initializers are
described in detail in Initialization, but a brief introduction is required here in order to
illustrate how inherited properties can be modified by subclasses.

You use initializers to create a new instance of a type. Although initializers are not
methods, they are written in a very similar syntax to instance methods. An initializer
prepares a new instance for use, and ensures that all properties of the instance have
valid initial values.

In its simplest form, an initializer is like an instance method with no parameters,
written using the init keyword:

init() {

 // perform some initialization here

}

To create a new instance of Vehicle, call this initializer with initializer syntax, written
as TypeName followed by empty parentheses:

let someVehicle = Vehicle()

The initializer for Vehicle sets some initial property values (numberOfWheels = 0 and
maxPassengers = 1) for an arbitrary vehicle.

The Vehicle class defines common characteristics for an arbitrary vehicle, but is not
much use in itself. To make it more useful, you need to refine it to describe more
specific kinds of vehicle.

216

Subclassing

Subclassing is the act of basing a new class on an existing class. The subclass inherits
characteristics from the existing class, which you can refine. You can also add new
characteristics to the subclass.

To indicate that a class has a superclass, write the superclass name after the original
class name, separated by a colon:

class SomeClass: SomeSuperclass {

 // class definition goes here

}

The next example defines a second, more specific vehicle called Bicycle. This new
class is based on the existing capabilities of Vehicle. You indicate this by placing the
name of the class the subclass builds upon (Vehicle) after its own name (Bicycle),
separated by a colon.

This can be read as:

“Define a new class called Bicycle, which inherits the characteristics of Vehicle”:

class Bicycle: Vehicle {

 init() {

 super.init()

 numberOfWheels = 2

 }

}

Bicycle is a subclass of Vehicle, and Vehicle is the superclass of Bicycle. The new
Bicycle class automatically gains all characteristics of Vehicle, such as its maxPassengers
and numberOfWheels properties. You can tailor those characteristics and add new ones
to better match the requirements of the Bicycle class.

The Bicycle class also defines an initializer to set up its tailored characteristics. The
initializer for Bicycle calls super.init(), the initializer for the Bicycle class’s superclass,
Vehicle, and ensures that all of the inherited properties are initialized by Vehicle before

217

Bicycle tries to modify them.

NO T E

Unlike Objective-C, initializers are not inherited by default in Swift. For more information, see Initializer
Inheritance and Overriding.

The default value of maxPassengers provided by Vehicle is already correct for a bicycle,
and so it is not changed within the initializer for Bicycle. The original value of
numberOfWheels is not correct, however, and is replaced with a new value of 2.

As well as inheriting the properties of Vehicle, Bicycle also inherits its methods. If you
create an instance of Bicycle, you can call its inherited description method to see how
its properties have been updated:

let bicycle = Bicycle()

println("Bicycle: \(bicycle.description())")

// Bicycle: 2 wheels; up to 1 passengers

Subclasses can themselves be subclassed:

class Tandem: Bicycle {

 init() {

 super.init()

 maxPassengers = 2

 }

}

This example creates a subclass of Bicycle for a two-seater bicycle known as a
“tandem”. Tandem inherits the two properties from Bicycle, which in turn inherits these
properties from Vehicle. Tandem doesn’t change the number of wheels—it’s still a
bicycle, after all—but it does update maxPassengers to have the correct value for a
tandem.

NO T E

218

Subclasses are only allowed to modify variable properties of superclasses during initialization. You can’t
modify inherited constant properties of subclasses.

Creating an instance of Tandem and printing its description shows how its properties
have been updated:

let tandem = Tandem()

println("Tandem: \(tandem.description())")

// Tandem: 2 wheels; up to 2 passengers

Note that the description method is also inherited by Tandem. Instance methods of a
class are inherited by any and all subclasses of that class.

Overriding

A subclass can provide its own custom implementation of an instance method, class
method, instance property, or subscript that it would otherwise inherit from a
superclass. This is known as overriding.

To override a characteristic that would otherwise be inherited, you prefix your
overriding definition with the override keyword. Doing so clarifies that you intend to
provide an override and have not provided a matching definition by mistake.
Overriding by accident can cause unexpected behavior, and any overrides without the
override keyword are diagnosed as an error when your code is compiled.

The override keyword also prompts the Swift compiler to check that your overriding
class’s superclass (or one of its parents) has a declaration that matches the one you
provided for the override. This check ensures that your overriding definition is correct.

Accessing Superclass Methods, Properties, and Subscripts

When you provide a method, property, or subscript override for a subclass, it is
sometimes useful to use the existing superclass implementation as part of your
override. For example, you can refine the behavior of that existing implementation or
store a modified value in an existing inherited variable.

Where this is appropriate, you access the superclass version of a method, property, or

219

subscript by using the super prefix:

Overriding Methods

You can override an inherited instance or class method to provide a tailored or
alternative implementation of the method within your subclass.

The following example defines a new subclass of Vehicle called Car, which overrides
the description method it inherits from Vehicle:

class Car: Vehicle {

 var speed: Double = 0.0

 init() {

 super.init()

 maxPassengers = 5

 numberOfWheels = 4

 }

 override func description() -> String {

 return super.description() + "; "

 + "traveling at \(speed) mph"

 }

}

An overridden method named someMethod can call the superclass version of
someMethod by calling super.someMethod() within the overriding method
implementation.
An overridden property called someProperty can access the superclass version of
someProperty as super.someProperty within the overriding getter or setter
implementation.
An overridden subscript for someIndex can access the superclass version of the
same subscript as super[someIndex] from within the overriding subscript
implementation.

220

Car declares a new stored Double property called speed. This property defaults to 0.0,
meaning “zero miles per hour”. Car also has a custom initializer, which sets the
maximum number of passengers to 5, and the default number of wheels to 4.

Car overrides its inherited description method by providing a method with the same
declaration as the description method from Vehicle. The overriding method definition
is prefixed with the override keyword.

Rather than providing a completely custom implementation of description, the
overriding method actually starts by calling super.description to retrieve the
description provided by Vehicle. It then appends some additional information about
the car’s current speed.

If you create a new instance of Car, and print the output of its description method, you
can see that the description has indeed changed:

let car = Car()

println("Car: \(car.description())")

// Car: 4 wheels; up to 5 passengers; traveling at 0.0 mph

Overriding Properties

You can override an inherited instance or class property to provide your own custom
getter and setter for that property, or to add property observers to enable the
overriding property to observe when the underlying property value changes.

Overriding Property Getters and Setters

You can provide a custom getter (and setter, if appropriate) to override any inherited
property, regardless of whether the inherited property is implemented as a stored or
computed property at its source. The stored or computed nature of an inherited
property is not known by a subclass—it only knows that the inherited property has a
certain name and type. You must always state both the name and the type of the
property you are overriding, to enable the compiler to check that your override
matches a superclass property with the same name and type.

You can present an inherited read-only property as a read-write property by providing
both a getter and a setter in your subclass property override. You cannot, however,

221

present an inherited read-write property as a read-only property.

NO T E

If you provide a setter as part of a property override, you must also provide a getter for that override. If
you don’t want to modify the inherited property’s value within the overriding getter, you can simply pass
through the inherited value by returning super.someProperty from the getter, as in the
SpeedLimitedCar example below.

The following example defines a new class called SpeedLimitedCar, which is a subclass
of Car. The SpeedLimitedCar class represents a car that has been fitted with a speed-
limiting device, which prevents the car from traveling faster than 40mph. You
implement this limitation by overriding the inherited speed property:

class SpeedLimitedCar: Car {

 override var speed: Double {

 get {

 return super.speed

 }

 set {

 super.speed = min(newValue, 40.0)

 }

 }

}

Whenever you set the speed property of a SpeedLimitedCar instance, the property’s
setter implementation checks the new value and limits it to 40mph. It does this by
setting the underlying speed property of its superclass to be the smaller of newValue and
40.0. The smaller of these two values is determined by passing them to the min
function, which is a global function provided by the Swift standard library. The min
function takes two or more values and returns the smallest one of those values.

If you try to set the speed property of a SpeedLimitedCar instance to more than 40mph,
and then print the output of its description method, you see that the speed has been
limited:

222

let limitedCar = SpeedLimitedCar()

limitedCar.speed = 60.0

println("SpeedLimitedCar: \(limitedCar.description())")

// SpeedLimitedCar: 4 wheels; up to 5 passengers; traveling at 40.0 mph

Overriding Property Observers

You can use property overriding to add property observers to an inherited property.
This enables you to be notified when the value of the inherited property changes,
regardless of how that property was originally implemented. For more information on
property observers, see Property Observers.

NO T E

You cannot add property observers to inherited constant stored properties or inherited read-only computed
properties. The value of these properties cannot be set, and so it is not appropriate to provide a willSet
or didSet implementation as part of an override.

Note also that you cannot provide both an overriding setter and an overriding property observer. If you
want to observe changes to a property’s value, and you are already providing a custom setter for that
property, you can simply observe any value changes from within the custom setter.

The following example defines a new class called AutomaticCar, which is a subclass of
Car. The AutomaticCar class represents a car with an automatic gearbox, which
automatically selects an appropriate gear to use based on the current speed.
AutomaticCar also provides a custom description method to print the current gear.

class AutomaticCar: Car {

 var gear = 1

 override var speed: Double {

 didSet {

 gear = Int(speed / 10.0) + 1

 }

 }

223

 override func description() -> String {

 return super.description() + " in gear \(gear)"

 }

}

Whenever you set the speed property of an AutomaticCar instance, the property’s didSet
observer automatically sets the gear property to an appropriate choice of gear for the
new speed. Specifically, the property observer chooses a gear which is the new speed
value divided by 10, rounded down to the nearest integer, plus 1. A speed of 10.0
produces a gear of 1, and a speed of 35.0 produces a gear of 4:

let automatic = AutomaticCar()

automatic.speed = 35.0

println("AutomaticCar: \(automatic.description())")

// AutomaticCar: 4 wheels; up to 5 passengers; traveling at 35.0 mph in gear 4

Preventing Overrides

You can prevent a method, property, or subscript from being overridden by marking it
as final. Do this by writing the @final attribute before its introducer keyword (such as
@final var, @final func, @final class func, and @final subscript).

Any attempts to override a final method, property, or subscript in a subclass are
reported as a compile-time error. Methods, properties or subscripts that you add to a
class in an extension can also be marked as final within the extension’s definition.

You can mark an entire class as final by writing the @final attribute before the class
keyword in its class definition (@final class). Any attempts to subclass a final class will
be reported as a compile-time error.

224

Initialization

Initialization is the process of preparing an instance of a class, structure, or
enumeration for use. This process involves setting an initial value for each stored
property on that instance and performing any other setup or initialization that is
required before the new instance is ready to for use.

You implement this initialization process by defining initializers, which are like special
methods that can be called to create a new instance of a particular type. Unlike
Objective-C initializers, Swift initializers do not return a value. Their primary role is to
ensure that new instances of a type are correctly initialized before they are used for
the first time.

Instances of class types can also implement a deinitializer, which performs any custom
cleanup just before an instance of that class is deallocated. For more information
about deinitializers, see Deinitialization.

Setting Initial Values for Stored Properties

Classes and structures must set all of their stored properties to an appropriate initial
value by the time an instance of that class or structure is created. Stored properties
cannot be left in an indeterminate state.

You can set an initial value for a stored property within an initializer, or by assigning a
default property value as part of the property’s definition. These actions are described
in the following sections.

NO T E

When you assign a default value to a stored property, or set its initial value within an initializer, the value of
that property is set directly, without calling any property observers.

Initializers

Initializers are called to create a new instance of a particular type. In its simplest form,

225

an initializer is like an instance method with no parameters, written using the init
keyword.

The example below defines a new structure called Fahrenheit to store temperatures
expressed in the Fahrenheit scale. The Fahrenheit structure has one stored property,
temperature, which is of type Double:

struct Fahrenheit {

 var temperature: Double

 init() {

 temperature = 32.0

 }

}

var f = Fahrenheit()

println("The default temperature is \(f.temperature)° Fahrenheit")

// prints "The default temperature is 32.0° Fahrenheit"

The structure defines a single initializer, init, with no parameters, which initializes the
stored temperature with a value of 32.0 (the freezing point of water when expressed in
the Fahrenheit scale).

Default Property Values

You can set the initial value of a stored property from within an initializer, as shown
above. Alternatively, specify a default property value as part of the property’s
declaration. You specify a default property value by assigning an initial value to the
property when it is defined.

NO T E

If a property always takes the same initial value, provide a default value rather than setting a value within
an initializer. The end result is the same, but the default value ties the property’s initialization more closely
to its declaration. It makes for shorter, clearer initializers and enables you to infer the type of the property
from its default value. The default value also makes it easier for you to take advantage of default
initializers and initializer inheritance, as described later in this chapter.

226

You can write the Fahrenheit structure from above in a simpler form by providing a
default value for its temperature property at the point that the property is declared:

struct Fahrenheit {

 var temperature = 32.0

}

Customizing Initialization

You can customize the initialization process with input parameters and optional
property types, or by modifying constant properties during initialization, as described
in the following sections.

Initialization Parameters

You can provide initialization parameters as part of an initializer’s definition, to define
the types and names of values that customize the initialization process. Initialization
parameters have the same capabilities and syntax as function and method
parameters.

The following example defines a structure called Celsius, which stores temperatures
expressed in the Celsius scale. The Celsius structure implements two custom
initializers called init(fromFahrenheit:) and init(fromKelvin:), which initialize a new
instance of the structure with a value from a different temperature scale:

struct Celsius {

 var temperatureInCelsius: Double = 0.0

 init(fromFahrenheit fahrenheit: Double) {

 temperatureInCelsius = (fahrenheit - 32.0) / 1.8

 }

 init(fromKelvin kelvin: Double) {

 temperatureInCelsius = kelvin - 273.15

 }

227

}

let boilingPointOfWater = Celsius(fromFahrenheit: 212.0)

// boilingPointOfWater.temperatureInCelsius is 100.0

let freezingPointOfWater = Celsius(fromKelvin: 273.15)

// freezingPointOfWater.temperatureInCelsius is 0.0

The first initializer has a single initialization parameter with an external name of
fromFahrenheit and a local name of fahrenheit. The second initializer has a single
initialization parameter with an external name of fromKelvin and a local name of
kelvin. Both initializers convert their single argument into a value in the Celsius scale
and store this value in a property called temperatureInCelsius.

Local and External Parameter Names

As with function and method parameters, initialization parameters can have both a
local name for use within the initializer’s body and an external name for use when
calling the initializer.

However, initializers do not have an identifying function name before their
parentheses in the way that functions and methods do. Therefore, the names and
types of an initializer’s parameters play a particularly important role in identifying
which initializer should be called. Because of this, Swift provides an automatic external
name for every parameter in an initializer if you don’t provide an external name
yourself. This automatic external name is the same as the local name, as if you had
written a hash symbol before every initialization parameter.

NO T E

If you do not want to provide an external name for a parameter in an initializer, provide an underscore (_)
as an explicit external name for that parameter to override the default behavior described above.

The following example defines a structure called Color, with three constant properties
called red, green, and blue. These properties store a value between 0.0 and 1.0 to
indicate the amount of red, green, and blue in the color.

Color provides an initializer with three appropriately named parameters of type Double:

228

struct Color {

 let red = 0.0, green = 0.0, blue = 0.0

 init(red: Double, green: Double, blue: Double) {

 self.red = red

 self.green = green

 self.blue = blue

 }

}

Whenever you create a new Color instance, you call its initializer using external names
for each of the three color components:

let magenta = Color(red: 1.0, green: 0.0, blue: 1.0)

Note that it is not possible to call this initializer without using the external names.
External names must always be used in an intializer if they are defined, and omitting
them is a compile-time error:

let veryGreen = Color(0.0, 1.0, 0.0)

// this reports a compile-time error - external names are required

Optional Property Types

If your custom type has a stored property that is logically allowed to have “no value”—
perhaps because its value cannot be set during initialization, or because it is allowed
to have “no value” at some later point—declare the property with an optional type.
Properties of optional type are automatically initialized with a value of nil, indicating
that the property is deliberately intended to have “no value yet” during initialization.

The following example defines a class called SurveyQuestion, with an optional String
property called response:

class SurveyQuestion {

 var text: String

229

 var response: String?

 init(text: String) {

 self.text = text

 }

 func ask() {

 println(text)

 }

}

let cheeseQuestion = SurveyQuestion(text: "Do you like cheese?")

cheeseQuestion.ask()

// prints "Do you like cheese?"

cheeseQuestion.response = "Yes, I do like cheese."

The response to a survey question cannot be known until it is asked, and so the
response property is declared with a type of String?, or “optional String”. It is
automatically assigned a default value of nil, meaning “no string yet”, when a new
instance of SurveyQuestion is initialized.

Modifying Constant Properties During Initialization

You can modify the value of a constant property at any point during initialization, as
long as it is set to a definite value by the time initialization finishes.

NO T E

For class instances, a constant property can only be modified during initialization by the class that
introduces it. It cannot be modified by a subclass.

You can revise the SurveyQuestion example from above to use a constant property
rather than a variable property for the text property of the question, to indicate that
the question does not change once an instance of SurveyQuestion is created. Even
though the text property is now a constant, it can still be set within the class’s

230

initializer:

class SurveyQuestion {

 let text: String

 var response: String?

 init(text: String) {

 self.text = text

 }

 func ask() {

 println(text)

 }

}

let beetsQuestion = SurveyQuestion(text: "How about beets?")

beetsQuestion.ask()

// prints "How about beets?"

beetsQuestion.response = "I also like beets. (But not with cheese.)"

Default Initializers

Swift provides a default initializer for any structure or base class that provides default
values for all of its properties and does not provide at least one initializer itself. The
default initializer simply creates a new instance with all of its properties set to their
default values.

This example defines a class called ShoppingListItem, which encapsulates the name,
quantity, and purchase state of an item in a shopping list:

class ShoppingListItem {

 var name: String?

 var quantity = 1

 var purchased = false

231

}

var item = ShoppingListItem()

Because all properties of the ShoppingListItem class have default values, and because it
is a base class with no superclass, ShoppingListItem automatically gains a default
initializer implementation that creates a new instance with all of its properties set to
their default values. (The name property is an optional String property, and so it
automatically receives a default value of nil, even though this value is not written in
the code.) The example above uses the default initializer for the ShoppingListItem class
to create a new instance of the class with initializer syntax, written as
ShoppingListItem(), and assigns this new instance to a variable called item.

Memberwise Initializers for Structure Types

In addition to the default initializers mentioned above, structure types automatically
receive a memberwise initializer if they provide default values for all of their stored
properties and do not define any of their own custom initializers.

The memberwise initializer is a shorthand way to initialize the member properties of
new structure instances. Initial values for the properties of the new instance can be
passed to the memberwise initializer by name.

The example below defines a structure called Size with two properties called width and
height. Both properties are inferred to be of type Double by assigning a default value of
0.0.

Because both stored properties have a default value, the Size structure automatically
receives an init(width:height:) memberwise initializer, which you can use to initialize
a new Size instance:

struct Size {

 var width = 0.0, height = 0.0

}

let twoByTwo = Size(width: 2.0, height: 2.0)

Initializer Delegation for Value Types

232

Initializers can call other initializers to perform part of an instance’s initialization. This
process, known as initializer delegation, avoids duplicating code across multiple
initializers.

The rules for how initializer delegation works, and for what forms of delegation are
allowed, are different for value types and class types. Value types (structures and
enumerations) do not support inheritance, and so their initializer delegation process is
relatively simple, because they can only delegate to another initializer that they
provide themselves. Classes, however, can inherit from other classes, as described in
Inheritance. This means that classes have additional responsibilities for ensuring that
all stored properties they inherit are assigned a suitable value during initialization.
These responsibilities are described in Class Inheritance and Initialization below.

For value types, you use self.init to refer to other initializers from the same value
type when writing your own custom initializers. You can only call self.init from within
an initializer.

Note that if you define a custom initializer for a value type, you will no longer have
access to the default initializer (or the memberwise structure initializer, if it is a
structure) for that type. This constraint prevents a situation in which you provide a
more complex initializer that performs additional essential setup is circumvented by
someone accidentally using one of the automatic initializers instead.

NO T E

If you want your custom value type to be initializable with the default initializer and memberwise initializer,
and also with your own custom initializers, write your custom initializers in an extension rather than as part
of the value type’s original implementation. For more information, see Extensions.

The following example defines a custom Rect structure to represent a geometric
rectangle. The example requires two supporting structures called Size and Point, both
of which provide default values of 0.0 for all of their properties:

struct Size {

 var width = 0.0, height = 0.0

}

struct Point {

 var x = 0.0, y = 0.0

}

233

You can initialize the Rect structure below in one of three ways—by using its default
zero-initialized origin and size property values, by providing a specific origin point and
size, or by providing a specific center point and size. These initialization options are
represented by three custom initializers that are part of the Rect structure’s definition:

struct Rect {

 var origin = Point()

 var size = Size()

 init() {}

 init(origin: Point, size: Size) {

 self.origin = origin

 self.size = size

 }

 init(center: Point, size: Size) {

 let originX = center.x - (size.width / 2)

 let originY = center.y - (size.height / 2)

 self.init(origin: Point(x: originX, y: originY), size: size)

 }

}

The first Rect initializer, init(), is functionally the same as the default initializer that
the structure would have received if it did not have its own custom initializers. This
initializer has an empty body, represented by an empty pair of curly braces {}, and
does not perfom any initialization. Calling this initializer returns a Rect instance whose
origin and size properties are both initialized with the default values of Point(x: 0.0,
y: 0.0) and Size(width: 0.0, height: 0.0) from their property definitions:

let basicRect = Rect()

// basicRect's origin is (0.0, 0.0) and its size is (0.0, 0.0)

The second Rect initializer, init(origin:size:), is functionally the same as the
memberwise initializer that the structure would have received if it did not have its own
custom initializers. This initializer simply assigns the origin and size argument values

234

to the appropriate stored properties:

let originRect = Rect(origin: Point(x: 2.0, y: 2.0),

 size: Size(width: 5.0, height: 5.0))

// originRect's origin is (2.0, 2.0) and its size is (5.0, 5.0)

The third Rect initializer, init(center:size:), is slightly more complex. It starts by
calculating an appropriate origin point based on a center point and a size value. It
then calls (or delegates) to the init(origin:size:) initializer, which stores the new
origin and size values in the appropriate properties:

let centerRect = Rect(center: Point(x: 4.0, y: 4.0),

 size: Size(width: 3.0, height: 3.0))

// centerRect's origin is (2.5, 2.5) and its size is (3.0, 3.0)

The init(center:size:) initializer could have assigned the new values of origin and
size to the appropriate properties itself. However, it is more convenient (and clearer in
intent) for the init(center:size:) initializer to take advantage of an existing initializer
that already provides exactly that functionality.

NO T E

For an alternative way to write this example without defining the init() and init(origin:size:)
initializers yourself, see Extensions.

Class Inheritance and Initialization

All of a class’s stored properties—including any properties the class inherits from its
superclass—must be assigned an initial value during initialization.

Swift defines two kinds of initializers for class types to help ensure all stored properties
receive an initial value. These are known as designated initializers and convenience
initializers.

235

Designated Initializers and Convenience Initializers

Designated initializers are the primary initializers for a class. A designated initializer
fully initializes all properties introduced by that class and calls an appropriate
superclass initializer to continue the initialization process up the superclass chain.

Classes tend to have very few designated initializers, and it is quite common for a
class to have only one. Designated initializers are “funnel” points through which
initialization takes place, and through which the initialization process continues up the
superclass chain.

Every class must have at least one designated initializer. In some cases, this
requirement is satisfied by inheriting one or more designated initializers from a
superclass, as described in Automatic Initializer Inheritance below.

Convenience initializers are secondary, supporting initializers for a class. You can
define a convenience initializer to call a designated initializer from the same class as
the convenience initializer with some of the designated initializer’s parameters set to
default values. You can also define a convenience initializer to create an instance of
that class for a specific use case or input value type.

You do not have to provide convenience initializers if your class does not require them.
Create convenience initializers whenever a shortcut to a common initialization pattern
will save time or make initialization of the class clearer in intent.

Initializer Chaining

To simplify the relationships between designated and convenience initializers, Swift
applies the following three rules for delegation calls between initializers:

Designated initializers must call a designated initializer from their immediate
superclass.

Convenience initializers must call another initializer available in the same class.

Convenience initializers must ultimately end up calling a designated initializer.

A simple way to remember this is:

Rule 1

Rule 2

Rule 3

236

These rules are illustrated in the figure below:

Here, the superclass has a single designated initializer and two convenience
initializers. One convenience initializer calls another convenience initializer, which in
turn calls the single designated initializer. This satisfies rules 2 and 3 from above. The
superclass does not itself have a further superclass, and so rule 1 does not apply.

The subclass in this figure has two designated initializers and one convenience
initializer. The convenience initializer must call one of the two designated initializers,
because it can only call another initializer from the same class. This satisfies rules 2
and 3 from above. Both designated initializers must call the single designated
initializer from the superclass, to satisfy rule 1 from above.

NO T E

These rules don’t affect how users of your classes create instances of each class. Any initializer in the
diagram above can be used to create a fully-initialized instance of the class they belong to. The rules only
affect how you write the class’s implementation.

The figure below shows a more complex class hierarchy for four classes. It illustrates
how the designated initializers in this hierarchy act as “funnel” points for class
initialization, simplifying the interrelationships among classes in the chain:

Designated initializers must always delegate up.
Convenience initializers must always delegate across.

237

Two-Phase Initialization

Class initialization in Swift is a two-phase process. In the first phase, each stored
property is assigned an initial value by the class that introduced it. Once the initial
state for every stored property has been determined, the second phase begins, and
each class is given the opportunity to customize its stored properties further before the
new instance is considered ready for use.

The use of a two-phase initialization process makes initialization safe, while still giving
complete flexibility to each class in a class hierarchy. Two-phase initialization prevents
property values from being accessed before they are initialized, and prevents property
values from being set to a different value by another initializer unexpectedly.

NO T E

Swift’s two-phase initialization process is similar to initialization in Objective-C. The main difference is that
during phase 1, Objective-C assigns zero or null values (such as 0 or nil) to every property. Swift’s
initialization flow is more flexible in that it lets you set custom initial values, and can cope with types for
which 0 or nil is not a valid default value.

238

Swift’s compiler performs four helpful safety-checks to make sure that two-phase
initialization is completed without error:

A designated initializer must ensure that all of the properties introduced by its
class are initialized before it delegates up to a superclass initializer.

As mentioned above, the memory for an object is only considered fully initialized once
the initial state of all of its stored properties is known. In order for this rule to be
satisfied, a designated initializer must make sure that all its own properties are
initialized before it hands off up the chain.

A designated initializer must delegate up to a superclass initializer before
assigning a value to an inherited property. If it doesn’t, the new value the
designated initializer assigns will be overwritten by the superclass as part of its
own initialization.

A convenience initializer must delegate to another initializer before assigning a
value to any property (including properties defined by the same class). If it
doesn’t, the new value the convenience initializer assigns will be overwritten by
its own class’s designated initializer.

An initializer cannot call any instance methods, read the values of any instance
properties, or refer to self as a value until after the first phase of initialization is
complete.

The class instance is not fully valid until the first phase ends. Properties can only be
accessed, and methods can only be called, once the class instance is known to be valid
at the end of the first phase.

Here’s how two-phase initialization plays out, based on the four safety checks above:

Phase 1

Safety check 1

Safety check 2

Safety check 3

Safety check 4

A designated or convenience initializer is called on a class.
Memory for a new instance of that class is allocated. The memory is not yet
initialized.
A designated initializer for that class confirms that all stored properties
introduced by that class have a value. The memory for these stored properties

239

Phase 2

Here’s how phase 1 looks for an initialization call for a hypothetical subclass and
superclass:

In this example, initialization begins with a call to a convenience initializer on the
subclass. This convenience initializer cannot yet modify any properties. It delegates
across to a designated initializer from the same class.

The designated initializer makes sure that all of the subclass’s properties have a value,
as per safety check 1. It then calls a designated initializer on its superclass to continue
the initialization up the chain.

The superclass’s designated initializer makes sure that all of the superclass properties

is now initialized.
The designated initializer hands off to a superclass initializer to perform the
same task for its own stored properties.
This continues up the class inheritance chain until the top of the chain is
reached.
Once the top of the chain is reached, and the final class in the chain has
ensured that all of its stored properties have a value, the instance’s memory is
considered to be fully initialized, and phase 1 is complete.

Working back down from the top of the chain, each designated initializer in the
chain has the option to customize the instance further. Initializers are now able
to access self and can modify its properties, call its instance methods, and so
on.
Finally, any convenience initializers in the chain have the option to customize
the instance and to work with self.

240

have a value. There are no further superclasses to initialize, and so no further
delegation is needed.

As soon as all properties of the superclass have an initial value, its memory is
considered fully initialized, and Phase 1 is complete.

Here’s how phase 2 looks for the same initialization call:

The superclass’s designated initializer now has an opportunity to customize the
instance further (although it does not have to).

Once the superclass’s designated initializer is finished, the subclass’s designated
initializer can perform additional customization (although again, it does not have to).

Finally, once the subclass’s designated initializer is finished, the convenience initializer
that was originally called can perform additional customization.

Initializer Inheritance and Overriding

Unlike subclasses in Objective-C, Swift subclasses do not not inherit their superclass
initializers by default. Swift’s approach prevents a situation in which a simple initializer
from a superclass is automatically inherited by a more specialized subclass and is used
to create a new instance of the subclass that is not fully or correctly initialized.

If you want your custom subclass to present one or more of the same initializers as its
superclass—perhaps to perform some customization during initialization—you can
provide an overriding implementation of the same initializer within your custom
subclass.

If the initializer you are overriding is a designated initializer, you can override its
implementation in your subclass and call the superclass version of the initializer from
within your overriding version.

241

If the initializer you are overriding is a convenience initializer, your override must call
another designated initializer from its own subclass, as per the rules described above
in Initializer Chaining.

NO T E

Unlike methods, properties, and subscripts, you do not need to write the override keyword when
overriding an initializer.

Automatic Initializer Inheritance

As mentioned above, subclasses do not not inherit their superclass initializers by
default. However, superclass initializers are automatically inherited if certain
conditions are met. In practice, this means that you do not need to write initializer
overrides in many common scenarios, and can inherit your superclass initializers with
minimal effort whenever it is safe to do so.

Assuming that you provide default values for any new properties you introduce in a
subclass, the following two rules apply:

If your subclass doesn’t define any designated initializers, it automatically inherits
all of its superclass designated initializers.

If your subclass provides an implementation of all of its superclass designated
initializers—either by inheriting them as per rule 1, or by providing a custom
implementation as part of its definition—then it automatically inherits all of the
superclass convenience initializers.

These rules apply even if your subclass adds further convenience initializers.

NO T E

A subclass can implement a superclass designated initializer as a subclass convenience initializer as part of
satisfying rule 2.

Rule 1

Rule 2

242

Syntax for Designated and Convenience Initializers

Designated initializers for classes are written in the same way as simple initializers for
value types:

init(parameters) {

 statements

}

Convenience initializers are written in the same style, but with the convenience
keyword placed before the init keyword, separated by a space:

convenience init(parameters) {

 statements

}

Designated and Convenience Initializers in Action

The following example shows designated initializers, convenience initializers, and
automatic initializer inheritance in action. This example defines a hierarchy of three
classes called Food, RecipeIngredient, and ShoppingListItem, and demonstrates how
their initializers interact.

The base class in the hierarchy is called Food, which is a simple class to encapsulate
the name of a foodstuff. The Food class introduces a single String property called name
and provides two initializers for creating Food instances:

class Food {

 var name: String

 init(name: String) {

 self.name = name

 }

 convenience init() {

 self.init(name: "[Unnamed]")

243

 }

}

The figure below shows the initializer chain for the Food class:

Classes do not have a default memberwise initializer, and so the Food class provides a
designated initializer that takes a single argument called name. This initializer can be
used to create a new Food instance with a specific name:

let namedMeat = Food(name: "Bacon")

// namedMeat's name is "Bacon"

The init(name: String) initializer from the Food class is provided as a designated
initializer, because it ensures that all stored properties of a new Food instance are fully
initialized. The Food class does not have a superclass, and so the init(name: String)
initializer does not need to call super.init() to complete its initialization.

The Food class also provides a convenience initializer, init(), with no arguments. The
init() initializer provides a default placeholder name for a new food by delegating
across to the Food class’s init(name: String) with a name value of [Unnamed]:

let mysteryMeat = Food()

// mysteryMeat's name is "[Unnamed]"

The second class in the hierarchy is a subclass of Food called RecipeIngredient. The
RecipeIngredient class models an ingredient in a cooking recipe. It introduces an Int
property called quantity (in addition to the name property it inherits from Food) and
defines two initializers for creating RecipeIngredient instances:

class RecipeIngredient: Food {

 var quantity: Int

244

 init(name: String, quantity: Int) {

 self.quantity = quantity

 super.init(name: name)

 }

 convenience init(name: String) {

 self.init(name: name, quantity: 1)

 }

}

The figure below shows the initializer chain for the RecipeIngredient class:

The RecipeIngredient class has a single designated initializer, init(name: String,
quantity: Int), which can be used to populate all of the properties of a new
RecipeIngredient instance. This initializer starts by assigning the passed quantity
argument to the quantity property, which is the only new property introduced by
RecipeIngredient. After doing so, the initializer delegates up to the init(name: String)
initializer of the Food class. This process satisfies safety check 1 from Two-Phase
Initialization above.

RecipeIngredient also defines a convenience initializer, init(name: String), which is
used to create a RecipeIngredient instance by name alone. This convenience initializer
assumes a quantity of 1 for any RecipeIngredient instance that is created without an
explicit quantity. The definition of this convenience initializer makes RecipeIngredient
instances quicker and more convenient to create, and avoids code duplication when

245

creating several single-quantity RecipeIngredient instances. This convenience initializer
simply delegates across to the class’s designated initializer.

Note that the init(name: String) convenience initializer provided by RecipeIngredient
takes the same parameters as the init(name: String) designated initializer from Food.
Even though RecipeIngredient provides this initializer as a convenience initializer,
RecipeIngredient has nonetheless provided an implementation of all of its superclass’s
designated initializers. Therefore, RecipeIngredient automatically inherits all of its
superclass’s convenience initializers too.

In this example, the superclass for RecipeIngredient is Food, which has a single
convenience initializer called init(). This initializer is therefore inherited by
RecipeIngredient. The inherited version of init() functions in exactly the same way as
the Food version, except that it delegates to the RecipeIngredient version of init(name:
String) rather than the Food version.

All three of these initializers can be used to create new RecipeIngredient instances:

let oneMysteryItem = RecipeIngredient()

let oneBacon = RecipeIngredient(name: "Bacon")

let sixEggs = RecipeIngredient(name: "Eggs", quantity: 6)

The third and final class in the hierarchy is a subclass of RecipeIngredient called
ShoppingListItem. The ShoppingListItem class models a recipe ingredient as it appears in
a shopping list.

Every item in the shopping list starts out as “unpurchased”. To represent this fact,
ShoppingListItem introduces a Boolean property called purchased, with a default value of
false. ShoppingListItem also adds a computed description property, which provides a
textual description of a ShoppingListItem instance:

class ShoppingListItem: RecipeIngredient {

 var purchased = false

 var description: String {

 var output = "\(quantity) x \(name.lowercaseString)"

 output += purchased ? " ✔" : " ✘"

 return output

 }

246

}

NO T E

ShoppingListItem does not define an initializer to provide an initial value for purchased, because
items in a shopping list (as modeled here) always start out unpurchased.

Because it provides a default value for all of the properties it introduces and does not
define any initializers itself, ShoppingListItem automatically inherits all of the
designated and convenience initializers from its superclass.

The figure below shows the overall initializer chain for all three classes:

You can use all three of the inherited initializers to create a new ShoppingListItem
instance:

var breakfastList = [

 ShoppingListItem(),

 ShoppingListItem(name: "Bacon"),

247

 ShoppingListItem(name: "Eggs", quantity: 6),

]

breakfastList[0].name = "Orange juice"

breakfastList[0].purchased = true

for item in breakfastList {

 println(item.description)

}

// 1 x orange juice ✔

// 1 x bacon ✘

// 6 x eggs ✘

Here, a new array called breakfastList is created from an array literal containing three
new ShoppingListItem instances. The type of the array is inferred to be
ShoppingListItem[]. After the array is created, the name of the ShoppingListItem at the
start of the array is changed from "[Unnamed]" to "Orange juice" and it is marked as
having been purchased. Printing the description of each item in the array shows that
their default states have been set as expected.

Setting a Default Property Value with a Closure or Function

If a stored property’s default value requires some customization or setup, you can use
a closure or global function to provide a customized default value for that property.
Whenever a new instance of the type that the property belongs to is initialized, the
closure or function is called, and its return value is assigned as the property’s default
value.

These kinds of closures or functions typically create a temporary value of the same
type as the property, tailor that value to represent the desired initial state, and then
return that temporary value to be used as the property’s default value.

Here’s a skeleton outline of how a closure can be used to provide a default property
value:

class SomeClass {

 let someProperty: SomeType = {

248

 // create a default value for someProperty inside this closure

 // someValue must be of the same type as SomeType

 return someValue

 }()

}

Note that the closure’s end curly brace is followed by an empty pair of parentheses.
This tells Swift to execute the closure immediately. If you omit these parentheses, you
are trying to assign the closure itself to the property, and not the return value of the
closure.

NO T E

If you use a closure to initialize a property, remember that the rest of the instance has not yet been
initialized at the point that the closure is executed. This means that you cannot access any other property
values from within your closure, even if those properties have default values. You also cannot use the
implicit self property, or call any of the instance’s methods.

The example below defines a structure called Checkerboard, which models a board for
the game of Checkers (also known as Draughts):

The game of Checkers is played on a ten-by-ten board, with alternating black and
white squares. To represent this game board, the Checkerboard structure has a single
property called boardColors, which is an array of 100 Bool values. A value of true in the
array represents a black square and a value of false represents a white square. The

249

first item in the array represents the top left square on the board and the last item in
the array represents the bottom right square on the board.

The boardColors array is initialized with a closure to set up its color values:

struct Checkerboard {

 let boardColors: Bool[] = {

 var temporaryBoard = Bool[]()

 var isBlack = false

 for i in 1...10 {

 for j in 1...10 {

 temporaryBoard.append(isBlack)

 isBlack = !isBlack

 }

 isBlack = !isBlack

 }

 return temporaryBoard

 }()

 func squareIsBlackAtRow(row: Int, column: Int) -> Bool {

 return boardColors[(row * 10) + column]

 }

}

Whenever a new Checkerboard instance is created, the closure is executed, and the
default value of boardColors is calculated and returned. The closure in the example
above calculates and sets the appropriate color for each square on the board in a
temporary array called temporaryBoard, and returns this temporary array as the
closure’s return value once its setup is complete. The returned array value is stored in
boardColors and can be queried with the squareIsBlackAtRow utility function:

let board = Checkerboard()

println(board.squareIsBlackAtRow(0, column: 1))

250

// prints "true"

println(board.squareIsBlackAtRow(9, column: 9))

// prints "false"

251

Deinitialization

A deinitializer is called immediately before a class instance is deallocated. You write
deinitializers with the deinit keyword, similar to how intializers are written with the
init keyword. Deinitializers are only available on class types.

How Deinitialization Works

Swift automatically deallocates your instances when they are no longer needed, to
free up resources. Swift handles the memory management of instances through
automatic reference counting (ARC), as described in Automatic Reference Counting.
Typically you don’t need to perform manual clean-up when your instances are
deallocated. However, when you are working with your own resources, you might
need to perform some additional clean-up yourself. For example, if you create a
custom class to open a file and write some data to it, you might need to close the file
before the class instance is deallocated.

Class definitions can have at most one deinitializer per class. The deinitializer does not
take any parameters and is written without parentheses:

deinit {

 // perform the deinitialization

}

Deinitializers are called automatically, just before instance deallocation takes place.
You are not allowed to call a deinitializer yourself. Superclass deinitializers are
inherited by their subclasses, and the superclass deinitializer is called automatically at
the end of a subclass deinitializer implementation. Superclass deinitializers are always
called, even if a subclass does not provide its own deinitializer.

Because an instance is not deallocated until after its deinitializer is called, a
deinitializer can access all properties of the instance it is called on and can modify its
behavior based on those properties (such as looking up the name of a file that needs
to be closed).

252

Deinitializers in Action

Here’s an example of a deinitializer in action. This example defines two new types,
Bank and Player, for a simple game. The Bank structure manages a made-up currency,
which can never have more than 10,000 coins in circulation. There can only ever be
one Bank in the game, and so the Bank is implemented as a structure with static
properties and methods to store and manage its current state:

struct Bank {

 static var coinsInBank = 10_000

 static func vendCoins(var numberOfCoinsToVend: Int) -> Int {

 numberOfCoinsToVend = min(numberOfCoinsToVend, coinsInBank)

 coinsInBank -= numberOfCoinsToVend

 return numberOfCoinsToVend

 }

 static func receiveCoins(coins: Int) {

 coinsInBank += coins

 }

}

Bank keeps track of the current number of coins it holds with its coinsInBank property. It
also offers two methods—vendCoins and receiveCoins—to handle the distribution and
collection of coins.

vendCoins checks that there are enough coins in the bank before distributing them. If
there are not enough coins, Bank returns a smaller number than the number that was
requested (and returns zero if no coins are left in the bank). vendCoins declares
numberOfCoinsToVend as a variable parameter, so that the number can be modified
within the method’s body without the need to declare a new variable. It returns an
integer value to indicate the actual number of coins that were provided.

The receiveCoins method simply adds the received number of coins back into the
bank’s coin store.

The Player class describes a player in the game. Each player has a certain number of
coins stored in their purse at any time. This is represented by the player’s coinsInPurse
property:

253

class Player {

 var coinsInPurse: Int

 init(coins: Int) {

 coinsInPurse = Bank.vendCoins(coins)

 }

 func winCoins(coins: Int) {

 coinsInPurse += Bank.vendCoins(coins)

 }

 deinit {

 Bank.receiveCoins(coinsInPurse)

 }

}

Each Player instance is initialized with a starting allowance of a specified number of
coins from the bank during initialization, although a Player instance may receive fewer
than that number if not enough coins are available.

The Player class defines a winCoins method, which retrieves a certain number of coins
from the bank and adds them to the player’s purse. The Player class also implements a
deinitializer, which is called just before a Player instance is deallocated. Here, the
deinitializer simply returns all of the player’s coins to the bank:

var playerOne: Player? = Player(coins: 100)

println("A new player has joined the game with \(playerOne!.coinsInPurse) coins")

// prints "A new player has joined the game with 100 coins"

println("There are now \(Bank.coinsInBank) coins left in the bank")

// prints "There are now 9900 coins left in the bank"

A new Player instance is created, with a request for 100 coins if they are available.
This Player instance is stored in an optional Player variable called playerOne. An
optional variable is used here, because players can leave the game at any point. The
optional lets you track whether there is currently a player in the game.

Because playerOne is an optional, it is qualified with an exclamation mark (!) when its

254

coinsInPurse property is accessed to print its default number of coins, and whenever its
winCoins method is called:

playerOne!.winCoins(2_000)

println("PlayerOne won 2000 coins & now has \(playerOne!.coinsInPurse) coins")

// prints "PlayerOne won 2000 coins & now has 2100 coins"

println("The bank now only has \(Bank.coinsInBank) coins left")

// prints "The bank now only has 7900 coins left"

Here, the player has won 2,000 coins. The player’s purse now contains 2,100 coins,
and the bank has only 7,900 coins left.

playerOne = nil

println("PlayerOne has left the game")

// prints "PlayerOne has left the game"

println("The bank now has \(Bank.coinsInBank) coins")

// prints "The bank now has 10000 coins"

The player has now left the game. This is indicated by setting the optional playerOne
variable to nil, meaning “no Player instance.” At the point that this happens, the
playerOne variable’s reference to the Player instance is broken. No other properties or
variables are still referring to the Player instance, and so it is deallocated in order to
free up its memory. Just before this happens, its deinitializer is called automatically,
and its coins are returned to the bank.

255

Automatic Reference Counting

Swift uses Automatic Reference Counting (ARC) to track and manage your app’s
memory usage. In most cases, this means that memory management “just works” in
Swift, and you do not need to think about memory management yourself. ARC
automatically frees up the memory used by class instances when those instances are
no longer needed.

However, in a few cases ARC requires more information about the relationships
between parts of your code in order to manage memory for you. This chapter
describes those situations and shows how you enable ARC to manage all of your app’s
memory.

NO T E

Reference counting only applies to instances of classes. Structures and enumerations are value types, not
reference types, and are not stored and passed by reference.

How ARC Works

Every time you create a new instance of a class, ARC allocates a chunk of memory to
store information about that instance. This memory holds information about the type
of the instance, together with the values of any stored properties associated with that
instance.

Additionally, when an instance is no longer needed, ARC frees up the memory used by
that instance so that the memory can be used for other purposes instead. This ensures
that class instances do not take up space in memory when they are no longer needed.

However, if ARC were to deallocate an instance that was still in use, it would no longer
be possible to access that instance’s properties, or call that instance’s methods.
Indeed, if you tried to access the instance, your app would most likely crash.

To make sure that instances don’t disappear while they are still needed, ARC tracks
how many properties, constants, and variables are currently referring to each class
instance. ARC will not deallocate an instance as long as at least one active reference
to that instance still exists.

256

To make this possible, whenever you assign a class instance to a property, constant,
or variable, that property, constant, or variable makes a strong reference to the
instance. The reference is called a “strong“ reference because it keeps a firm hold on
that instance, and does not allow it to be deallocated for as long as that strong
reference remains.

ARC in Action

Here’s an example of how Automatic Reference Counting works. This example starts
with a simple class called Person, which defines a stored constant property called name:

class Person {

 let name: String

 init(name: String) {

 self.name = name

 println("\(name) is being initialized")

 }

 deinit {

 println("\(name) is being deinitialized")

 }

}

The Person class has an initializer that sets the instance’s name property and prints a
message to indicate that initialization is underway. The Person class also has a
deinitializer that prints a message when an instance of the class is deallocated.

The next code snippet defines three variables of type Person?, which are used to set up
multiple references to a new Person instance in subsequent code snippets. Because
these variables are of an optional type (Person?, not Person), they are automatically
initialized with a value of nil, and do not currently reference a Person instance.

var reference1: Person?

var reference2: Person?

var reference3: Person?

257

You can now create a new Person instance and assign it to one of these three
variables:

reference1 = Person(name: "John Appleseed")

// prints "John Appleseed is being initialized"

Note that the message "John Appleseed is being initialized" is printed at the point
that you call the Person class’s initializer. This confirms that initialization has taken
place.

Because the new Person instance has been assigned to the reference1 variable, there is
now a strong reference from reference1 to the new Person instance. Because there is at
least one strong reference, ARC makes sure that this Person is kept in memory and is
not deallocated.

If you assign the same Person instance to two more variables, two more strong
references to that instance are established:

reference2 = reference1

reference3 = reference1

There are now three strong references to this single Person instance.

If you break two of these strong references (including the original reference) by
assigning nil to two of the variables, a single strong reference remains, and the Person
instance is not deallocated:

reference1 = nil

reference2 = nil

ARC does not deallocate the Person instance until the third and final strong reference is
broken, at which point it is clear that you are no longer using the Person instance:

reference3 = nil

// prints "John Appleseed is being deinitialized"

Strong Reference Cycles Between Class Instances

258

In the examples above, ARC is able to track the number of references to the new
Person instance you create and to deallocate that Person instance when it is no longer
needed.

However, it is possible to write code in which an instance of a class never gets to a
point where it has zero strong references. This can happen if two class instances hold
a strong reference to each other, such that each instance keeps the other alive. This is
known as a strong reference cycle.

You resolve strong reference cycles by defining some of the relationships between
classes as weak or unowned references instead of as strong references. This process is
described in Resolving Strong Reference Cycles Between Class Instances. However,
before you learn how to resolve a strong reference cycle, it is useful to understand
how such a cycle is caused.

Here’s an example of how a strong reference cycle can be created by accident. This
example defines two classes called Person and Apartment, which model a block of
apartments and its residents:

class Person {

 let name: String

 init(name: String) { self.name = name }

 var apartment: Apartment?

 deinit { println("\(name) is being deinitialized") }

}

class Apartment {

 let number: Int

 init(number: Int) { self.number = number }

 var tenant: Person?

 deinit { println("Apartment #\(number) is being deinitialized") }

}

Every Person instance has a name property of type String and an optional apartment
property that is initially nil. The apartment property is optional, because a person may
not always have an apartment.

259

Similarly, every Apartment instance has a number property of type Int and has an
optional tenant property that is initially nil. The tenant property is optional because an
apartment may not always have a tenant.

Both of these classes also define a deinitializer, which prints the fact that an instance
of that class is being deinitialized. This enables you to see whether instances of Person
and Apartment are being deallocated as expected.

This next code snippet defines two variables of optional type called john and number73,
which will be set to a specific Apartment and Person instance below. Both of these
variables have an initial value of nil, by virtue of being optional:

var john: Person?

var number73: Apartment?

You can now create a specific Person instance and Apartment instance and assign these
new instances to the john and number73 variables:

john = Person(name: "John Appleseed")

number73 = Apartment(number: 73)

Here’s how the strong references look after creating and assigning these two
instances. The john variable now has a strong reference to the new Person instance,
and the number73 variable has a strong reference to the new Apartment instance:

You can now link the two instances together so that the person has an apartment, and
the apartment has a tenant. Note that an exclamation mark (!) is used to unwrap and
access the instances stored inside the john and number73 optional variables, so that the
properties of those instances can be set:

john!.apartment = number73

260

number73!.tenant = john

Here’s how the strong references look after you link the two instances together:

Unfortunately, linking these two instances creates a strong reference cycle between
them. The Person instance now has a strong reference to the Apartment instance, and
the Apartment instance has a strong reference to the Person instance. Therefore, when
you break the strong references held by the john and number73 variables, the reference
counts do not drop to zero, and the instances are not deallocated by ARC:

john = nil

number73 = nil

Note that neither deinitializer was called when you set these two variables to nil. The
strong reference cycle prevents the Person and Apartment instances from ever being
deallocated, causing a memory leak in your app.

Here’s how the strong references look after you set the john and number73 variables to
nil:

The strong references between the Person instance and the Apartment instance remain

261

and cannot be broken.

Resolving Strong Reference Cycles Between Class Instances

Swift provides two ways to resolve strong reference cycles when you work with
properties of class type: weak references and unowned references.

Weak and unowned references enable one instance in a reference cycle to refer to the
other instance without keeping a strong hold on it. The instances can then refer to
each other without creating a strong reference cycle.

Use a weak reference whenever it is valid for that reference to become nil at some
point during its lifetime. Conversely, use an unowned reference when you know that
the reference will never be nil once it has been set during initialization.

Weak References

A weak reference is a reference that does not keep a strong hold on the instance it
refers to, and so does not stop ARC from disposing of the referenced instance. This
behavior prevents the reference from becoming part of a strong reference cycle. You
indicate a weak reference by placing the weak keyword before a property or variable
declaration.

Use a weak reference to avoid reference cycles whenever it is possible for that
reference to have “no value” at some point in its life. If the reference will always have
a value, use an unowned reference instead, as described in Unowned References. In
the Apartment example above, it is appropriate for an apartment to be able to have “no
tenant” at some point in its lifetime, and so a weak reference is an appropriate way to
break the reference cycle in this case.

NO T E

Weak references must be declared as variables, to indicate that their value can change at runtime. A weak
reference cannot be declared as a constant.

Because weak references are allowed to have “no value”, you must declare every
weak reference as having an optional type. Optional types are the preferred way to
represent the possibility for “no value” in Swift.

262

Because a weak reference does not keep a strong hold on the instance it refers to, it is
possible for that instance to be deallocated while the weak reference is still referring
to it. Therefore, ARC automatically sets a weak reference to nil when the instance
that it refers to is deallocated. You can check for the existence of a value in the weak
reference, just like any other optional value, and you will never end up with a
reference to an invalid instance that no longer exists.

The example below is identical to the Person and Apartment example from above, with
one important difference. This time around, the Apartment type’s tenant property is
declared as a weak reference:

class Person {

 let name: String

 init(name: String) { self.name = name }

 var apartment: Apartment?

 deinit { println("\(name) is being deinitialized") }

}

class Apartment {

 let number: Int

 init(number: Int) { self.number = number }

 weak var tenant: Person?

 deinit { println("Apartment #\(number) is being deinitialized") }

}

The strong references from the two variables (john and number73) and the links
between the two instances are created as before:

var john: Person?

var number73: Apartment?

john = Person(name: "John Appleseed")

number73 = Apartment(number: 73)

263

john!.apartment = number73

number73!.tenant = john

Here’s how the references look now that you’ve linked the two instances together:

The Person instance still has a strong reference to the Apartment instance, but the
Apartment instance now has a weak reference to the Person instance. This means that
when you break the strong reference held by the john variables, there are no more
strong references to the Person instance:

Because there are no more strong references to the Person instance, it is deallocated:

john = nil

// prints "John Appleseed is being deinitialized"

The only remaining strong reference to the Apartment instance is from the number73
variable. If you break that strong reference, there are no more strong references to
the Apartment instance:

264

Because there are no more strong references to the Apartment instance, it too is
deallocated:

number73 = nil

// prints "Apartment #73 is being deinitialized"

The final two code snippets above show that the deinitializers for the Person instance
and Apartment instance print their “deinitialized” messages after the john and number73
variables are set to nil. This proves that the reference cycle has been broken.

Unowned References

Like weak references, an unowned reference does not keep a strong hold on the
instance it refers to. Unlike a weak reference, however, an unowned reference is
assumed to always have a value. Because of this, an unowned reference is always
defined as a non-optional type. You indicate an unowned reference by placing the
unowned keyword before a property or variable declaration.

Because an unowned reference is non-optional, you don’t need to unwrap the
unowned reference each time it is used. An unowned reference can always be
accessed directly. However, ARC cannot set the reference to nil when the instance it
refers to is deallocated, because variables of a non-optional type cannot be set to nil.

NO T E

If you try to access an unowned reference after the instance that it references is deallocated, you will
trigger a runtime error. Use unowned references only when you are sure that the reference will always
refer to an instance.

Note also that Swift guarantees your app will crash if you try to access an unowned reference after the
instance it references is deallocated. You will never encounter unexpected behavior in this situation. Your

265

app will always crash reliably, although you should, of course, prevent it from doing so.

The following example defines two classes, Customer and CreditCard, which model a
bank customer and a possible credit card for that customer. These two classes each
store an instance of the other class as a property. This relationship has the potential
to create a strong reference cycle.

The relationship between Customer and CreditCard is slightly different from the
relationship between Apartment and Person seen in the weak reference example above.
In this data model, a customer may or may not have a credit card, but a credit card
will always be associated with a customer. To represent this, the Customer class has an
optional card property, but the CreditCard class has a non-optional customer property.

Furthermore, a new CreditCard instance can only be created by passing a number value
and a customer instance to a custom CreditCard initializer. This ensures that a
CreditCard instance always has a customer instance associated with it when the
CreditCard instance is created.

Because a credit card will always have a customer, you define its customer property as
an unowned reference, to avoid a strong reference cycle:

class Customer {

 let name: String

 var card: CreditCard?

 init(name: String) {

 self.name = name

 }

 deinit { println("\(name) is being deinitialized") }

}

class CreditCard {

 let number: Int

 unowned let customer: Customer

 init(number: Int, customer: Customer) {

 self.number = number

266

 self.customer = customer

 }

 deinit { println("Card #\(number) is being deinitialized") }

}

This next code snippet defines an optional Customer variable called john, which will be
used to store a reference to a specific customer. This variable has an initial value of
nil, by virtue of being optional:

var john: Customer?

You can now create a Customer instance, and use it to initialize and assign a new
CreditCard instance as that customer’s card property:

john = Customer(name: "John Appleseed")

john!.card = CreditCard(number: 1234_5678_9012_3456, customer: john!)

Here’s how the references look, now that you’ve linked the two instances:

The Customer instance now has a strong reference to the CreditCard instance, and the
CreditCard instance has an unowned reference to the Customer instance.

Because of the unowned customer reference, when you break the strong reference held
by the john variable, there are no more strong references to the Customer instance:

267

Because there are no more strong references to the Customer instance, it is
deallocated. After this happens, there are no more strong references to the CreditCard
instance, and it too is deallocated:

john = nil

// prints "John Appleseed is being deinitialized"

// prints "Card #1234567890123456 is being deinitialized"

The final code snippet above shows that the deinitializers for the Customer instance and
CreditCard instance both print their “deinitialized” messages after the john variable is
set to nil.

Unowned References and Implicitly Unwrapped Optional
Properties

The examples for weak and unowned references above cover two of the more
common scenarios in which it is necessary to break a strong reference cycle.

The Person and Apartment example shows a situation where two properties, both of
which are allowed to be nil, have the potential to cause a strong reference cycle. This
scenario is best resolved with a weak reference.

The Customer and CreditCard example shows a situation where one property that is
allowed to be nil and another property that cannot be nil have the potential to cause
a strong reference cycle. This scenario is best resolved with an unowned reference.

However, there is a third scenario, in which both properties should always have a
value, and neither property should ever be nil once initialization is complete. In this
scenario, it is useful to combine an unowned property on one class with an implicitly
unwrapped optional property on the other class.

268

This enables both properties to be accessed directly (without optional unwrapping)
once initialization is complete, while still avoiding a reference cycle. This section
shows you how to set up such a relationship.

The example below defines two classes, Country and City, each of which stores an
instance of the other class as a property. In this data model, every country must
always have a capital city, and every city must always belong to a country. To
represent this, the Country class has a capitalCity property, and the City class has a
country property:

class Country {

 let name: String

 let capitalCity: City!

 init(name: String, capitalName: String) {

 self.name = name

 self.capitalCity = City(name: capitalName, country: self)

 }

}

class City {

 let name: String

 unowned let country: Country

 init(name: String, country: Country) {

 self.name = name

 self.country = country

 }

}

To set up the interdependency between the two classes, the initializer for City takes a
Country instance, and stores this instance in its country property.

The initializer for City is called from within the initializer for Country. However, the
initializer for Country cannot pass self to the City initializer until a new Country instance
is fully initialized, as described in Two-Phase Initialization.

269

To cope with this requirement, you declare the capitalCity property of Country as an
implicitly unwrapped optional property, indicated by the exclamation mark at the end
of its type annotation (City!). This means that the capitalCity property has a default
value of nil, like any other optional, but can be accessed without the need to unwrap
its value as described in Implicitly Unwrapped Optionals.

Because capitalCity has a default nil value, a new Country instance is considered fully
initialized as soon as the Country instance sets its name property within its initializer.
This means that the Country initializer can start to reference and pass around the
implicit self property as soon as the name property is set. The Country initializer can
therefore pass self as one of the parameters for the City initializer when the Country
initializer is setting its own capitalCity property.

All of this means that you can create the Country and City instances in a single
statement, without creating a strong reference cycle, and the capitalCity property can
be accessed directly, without needing to use an exclamation mark to unwrap its
optional value:

var country = Country(name: "Canada", capitalName: "Ottawa")

println("\(country.name)'s capital city is called \(country.capitalCity.name)")

// prints "Canada's capital city is called Ottawa"

In the example above, the use of an implicitly unwrapped optional means that all of
the two-phase class initializer requirements are satisfied. The capitalCity property can
be used and accessed like a non-optional value once initialization is complete, while
still avoiding a strong reference cycle.

Strong Reference Cycles for Closures

You saw above how a strong reference cycle can be created when two class instance
properties hold a strong reference to each other. You also saw how to use weak and
unowned references to break these strong reference cycles.

A strong reference cycle can also occur if you assign a closure to a property of a class
instance, and the body of that closure captures the instance. This capture might occur
because the closure’s body accesses a property of the instance, such as
self.someProperty, or because the closure calls a method on the instance, such as
self.someMethod(). In either case, these accesses cause the closure to “capture” self,
creating a strong reference cycle.

270

This strong reference cycle occurs because closures, like classes, are reference types.
When you assign a closure to a property, you are assigning a reference to that closure.
In essence, it’s the same problem as above—two strong references are keeping each
other alive. However, rather than two class instances, this time it’s a class instance
and a closure that are keeping each other alive.

Swift provides an elegant solution to this problem, known as a closure capture list.
However, before you learn how to break a strong reference cycle with a closure
capture list, it is useful to understand how such a cycle can be caused.

The example below shows how you can create a strong reference cycle when using a
closure that references self. This example defines a class called HTMLElement, which
provides a simple model for an individual element within an HTML document:

class HTMLElement {

 let name: String

 let text: String?

 @lazy var asHTML: () -> String = {

 if let text = self.text {

 return "<\(self.name)>\(text)</\(self.name)>"

 } else {

 return "<\(self.name) />"

 }

 }

 init(name: String, text: String? = nil) {

 self.name = name

 self.text = text

 }

 deinit {

271

 println("\(name) is being deinitialized")

 }

}

The HTMLElement class defines a name property, which indicates the name of the
element, such as "p" for a paragraph element, or "br" for a line break element.
HTMLElement also defines an optional text property, which you can set to a string that
represents the text to be rendered within that HTML element.

In addition to these two simple properties, the HTMLElement class defines a lazy
property called asHTML. This property references a closure that combines name and text
into an HTML string fragment. The asHTML property is of type () -> String, or “a
function that takes no parameters, and returns a String value”.

By default, the asHTML property is assigned a closure that returns a string
representation of an HTML tag. This tag contains the optional text value if it exists, or
no text content if text does not exist. For a paragraph element, the closure would
return "<p>some text</p>" or "<p />", depending on whether the text property equals
"some text" or nil.

The asHTML property is named and used somewhat like an instance method. However,
because asHTML is a closure property rather than an instance method, you can replace
the default value of the asHTML property with a custom closure, if you want to change
the HTML rendering for a particular HTML element.

NO T E

The asHTML property is declared as a lazy property, because it is only needed if and when the element
actually needs to be rendered as a string value for some HTML output target. The fact that asHTML is a
lazy property means that you can refer to self within the default closure, because the lazy property will
not be accessed until after initialization has been completed and self is known to exist.

The HTMLElement class provides a single initializer, which takes a name argument and (if
desired) a text argument to initialize a new element. The class also defines a
deinitializer, which prints a message to show when an HTMLElement instance is
deallocated.

Here’s how you use the HTMLElement class to create and print a new instance:

272

var paragraph: HTMLElement? = HTMLElement(name: "p", text: "hello, world")

println(paragraph!.asHTML())

// prints "<p>hello, world</p>"

NO T E

The paragraph variable above is defined as an optional HTMLElement, so that it can be set to nil
below to demonstrate the presence of a strong reference cycle.

Unfortunately, the HTMLElement class, as written above, creates a strong reference cycle
between an HTMLElement instance and the closure used for its default asHTML value.
Here’s how the cycle looks:

The instance’s asHTML property holds a strong reference to its closure. However,
because the closure refers to self within its body (as a way to reference self.name and
self.text), the closure captures self, which means that it holds a strong reference back
to the HTMLElement instance. A strong reference cycle is created between the two. (For
more information about capturing values in a closure, see Capturing Values.)

NO T E

Even though the closure refers to self multiple times, it only captures one strong reference to the
HTMLElement instance.

If you set the paragraph variable to nil and break its strong reference to the
HTMLElement instance, neither the HTMLElement instance nor its closure are deallocated,
because of the strong reference cycle:

273

paragraph = nil

Note that the message in the HTMLElement deinitializer is not printed, which shows that
the HTMLElement instance is not deallocated.

Resolving Strong Reference Cycles for Closures

You resolve a strong reference cycle between a closure and a class instance by
defining a capture list as part of the closure’s definition. A capture list defines the rules
to use when capturing one or more reference types within the closure’s body. As with
strong reference cycles between two class instances, you declare each captured
reference to be a weak or unowned reference rather than a strong reference. The
appropriate choice of weak or unowned depends on the relationships between the
different parts of your code.

NO T E

Swift requires you to write self.someProperty or self.someMethod (rather than just
someProperty or someMethod) whenever you refer to a member of self within a closure. This helps
you remember that it’s possible to capture self by accident.

Defining a Capture List

Each item in a capture list is a pairing of the weak or unowned keyword with a reference
to a class instance (such as self or someInstance). These pairings are written within a
pair of square braces, separated by commas.

Place the capture list before a closure’s parameter list and return type if they are
provided:

@lazy var someClosure: (Int, String) -> String = {

 [unowned self] (index: Int, stringToProcess: String) -> String in

 // closure body goes here

}

274

If a closure does not specify a parameter list or return type because they can be
inferred from context, place the capture list at the very start of the closure, followed
by the in keyword:

@lazy var someClosure: () -> String = {

 [unowned self] in

 // closure body goes here

}

Weak and Unowned References

Define a capture in a closure as an unowned reference when the closure and the
instance it captures will always refer to each other, and will always be deallocated at
the same time.

Conversely, define a capture as a weak reference when the captured reference may
become nil at some point in the future. Weak references are always of an optional
type, and automatically become nil when the instance they reference is deallocated.
This enables you to check for their existence within the closure’s body.

NO T E

If the captured reference will never become nil, it should always be captured as an unowned reference,
rather than a weak reference.

An unowned reference is the appropriate capture method to use to resolve the strong
reference cycle in the HTMLElement example from earlier. Here’s how you write the
HTMLElement class to avoid the cycle:

class HTMLElement {

 let name: String

 let text: String?

275

 @lazy var asHTML: () -> String = {

 [unowned self] in

 if let text = self.text {

 return "<\(self.name)>\(text)</\(self.name)>"

 } else {

 return "<\(self.name) />"

 }

 }

 init(name: String, text: String? = nil) {

 self.name = name

 self.text = text

 }

 deinit {

 println("\(name) is being deinitialized")

 }

}

This implementation of HTMLElement is identical to the previous implementation, apart
from the addition of a capture list within the asHTML closure. In this case, the capture
list is [unowned self], which means “capture self as an unowned reference rather than
a strong reference”.

You can create and print an HTMLElement instance as before:

var paragraph: HTMLElement? = HTMLElement(name: "p", text: "hello, world")

println(paragraph!.asHTML())

// prints "<p>hello, world</p>"

276

Here’s how the references look with the capture list in place:

This time, the capture of self by the closure is an unowned reference, and does not
keep a strong hold on the HTMLElement instance it has captured. If you set the strong
reference from the paragraph variable to nil, the HTMLElement instance is deallocated, as
can be seen from the printing of its deinitializer message in the example below:

paragraph = nil

// prints "p is being deinitialized"

277

Optional Chaining

Optional chaining is a process for querying and calling properties, methods, and
subscripts on an optional that might currently be nil. If the optional contains a value,
the property, method, or subscript call succeeds; if the optional is nil, the property,
method, or subscript call returns nil. Multiple queries can be chained together, and the
entire chain fails gracefully if any link in the chain is nil.

NO T E

Optional chaining in Swift is similar to messaging nil in Objective-C, but in a way that works for any type,
and that can be checked for success or failure.

Optional Chaining as an Alternative to Forced Unwrapping

You specify optional chaining by placing a question mark (?) after the optional value
on which you wish to call a property, method or subscript if the optional is non-nil.
This is very similar to placing an exclamation mark (!) after an optional value to force
the unwrapping of its value. The main difference is that optional chaining fails
gracefully when the optional is nil, whereas forced unwrapping triggers a runtime
error when the optional is nil.

To reflect the fact that optional chaining can be called on a nil value, the result of an
optional chaining call is always an optional value, even if the property, method, or
subscript you are querying returns a non-optional value. You can use this optional
return value to check whether the optional chaining call was successful (the returned
optional contains a value), or did not succeed due to a nil value in the chain (the
returned optional value is nil).

Specifically, the result of an optional chaining call is of the same type as the expected
return value, but wrapped in an optional. A property that normally returns an Int will
return an Int? when accessed through optional chaining.

The next several code snippets demonstrate how optional chaining differs from forced
unwrapping and enables you to check for success.

278

First, two classes called Person and Residence are defined:

class Person {

 var residence: Residence?

}

class Residence {

 var numberOfRooms = 1

}

Residence instances have a single Int property called numberOfRooms, with a default
value of 1. Person instances have an optional residence property of type Residence?.

If you create a new Person instance, its residence property is default initialized to nil,
by virtue of being optional. In the code below, john has a residence property value of
nil:

let john = Person()

If you try to access the numberOfRooms property of this person’s residence, by placing an
exclamation mark after residence to force the unwrapping of its value, you trigger a
runtime error, because there is no residence value to unwrap:

let roomCount = john.residence!.numberOfRooms

// this triggers a runtime error

The code above succeeds when john.residence has a non-nil value and will set
roomCount to an Int value containing the appropriate number of rooms. However, this
code always triggers a runtime error when residence is nil, as illustrated above.

Optional chaining provides an alternative way to access the value of numberOfRooms. To
use optional chaining, use a question mark in place of the exclamation mark:

if let roomCount = john.residence?.numberOfRooms {

 println("John's residence has \(roomCount) room(s).")

} else {

279

 println("Unable to retrieve the number of rooms.")

}

// prints "Unable to retrieve the number of rooms."

This tells Swift to “chain” on the optional residence property and to retrieve the value
of numberOfRooms if residence exists.

Because the attempt to access numberOfRooms has the potential to fail, the optional
chaining attempt returns a value of type Int?, or “optional Int”. When residence is nil,
as in the example above, this optional Int will also be nil, to reflect the fact that it
was not possible to access numberOfRooms.

Note that this is true even though numberOfRooms is a non-optional Int. The fact that it
is queried through an optional chain means that the call to numberOfRooms will always
return an Int? instead of an Int.

You can assign a Residence instance to john.residence, so that it no longer has a nil
value:

john.residence = Residence()

john.residence now contains an actual Residence instance, rather than nil. If you try to
access numberOfRooms with the same optional chaining as before, it will now return an
Int? that contains the default numberOfRooms value of 1:

if let roomCount = john.residence?.numberOfRooms {

 println("John's residence has \(roomCount) room(s).")

} else {

 println("Unable to retrieve the number of rooms.")

}

// prints "John's residence has 1 room(s)."

Defining Model Classes for Optional Chaining

You can use optional chaining with calls to properties, methods, and subscripts that
are more than one level deep. This enables you to drill down into subproperties within

280

complex models of interrelated types, and to check whether it is possible to access
properties, methods, and subscripts on those subproperties.

The code snippets below define four model classes for use in several subsequent
examples, including examples of multilevel optional chaining. These classes expand
upon the Person and Residence model from above by adding a Room and Address class,
with associated properties, methods, and subscripts.

The Person class is defined in the same way as before:

class Person {

 var residence: Residence?

}

The Residence class is more complex than before. This time, the Residence class defines
a variable property called rooms, which is initialized with an empty array of type Room[]:

class Residence {

 var rooms = Room[]()

 var numberOfRooms: Int {

 return rooms.count

 }

 subscript(i: Int) -> Room {

 return rooms[i]

 }

 func printNumberOfRooms() {

 println("The number of rooms is \(numberOfRooms)")

 }

 var address: Address?

}

Because this version of Residence stores an array of Room instances, its numberOfRooms
property is implemented as a computed property, not a stored property. The
computed numberOfRooms property simply returns the value of the count property from

281

the rooms array.

As a shortcut to accessing its rooms array, this version of Residence provides a read-only
subscript, which starts by asserting that the index passed to the subscript is valid. If
the index is valid, the subscript returns the room at the requested index in the rooms
array.

This version of Residence also provides a method called printNumberOfRooms, which
simply prints the number of rooms in the residence.

Finally, Residence defines an optional property called address, with a type of Address?.
The Address class type for this property is defined below.

The Room class used for the rooms array is a simple class with one property called name,
and an initializer to set that property to a suitable room name:

class Room {

 let name: String

 init(name: String) { self.name = name }

}

The final class in this model is called Address. This class has three optional properties
of type String?. The first two properties, buildingName and buildingNumber, are
alternative ways to identify a particular building as part of an address. The third
property, street, is used to name the street for that address:

class Address {

 var buildingName: String?

 var buildingNumber: String?

 var street: String?

 func buildingIdentifier() -> String? {

 if buildingName {

 return buildingName

 } else if buildingNumber {

 return buildingNumber

 } else {

282

 return nil

 }

 }

}

The Address class also provides a method called buildingIdentifier, which has a return
type of String?. This method checks the buildingName and buildingNumber properties and
returns buildingName if it has a value, or buildingNumber if it has a value, or nil if neither
property has a value.

Calling Properties Through Optional Chaining

As demonstrated in Optional Chaining as an Alternative to Forced Unwrapping, you can
use optional chaining to access a property on an optional value, and to check if that
property access is successful. You cannot, however, set a property’s value through
optional chaining.

Use the classes defined above to create a new Person instance, and try to access its
numberOfRooms property as before:

let john = Person()

if let roomCount = john.residence?.numberOfRooms {

 println("John's residence has \(roomCount) room(s).")

} else {

 println("Unable to retrieve the number of rooms.")

}

// prints "Unable to retrieve the number of rooms."

Because john.residence is nil, this optional chaining call fails in the same way as
before, without error.

Calling Methods Through Optional Chaining

283

You can use optional chaining to call a method on an optional value, and to check
whether that method call is successful. You can do this even if that method does not
define a return value.

The printNumberOfRooms method on the Residence class prints the current value of
numberOfRooms. Here’s how the method looks:

func printNumberOfRooms() {

 println("The number of rooms is \(numberOfRooms)")

}

This method does not specify a return type. However, functions and methods with no
return type have an implicit return type of Void, as described in Functions Without
Return Values.

If you call this method on an optional value with optional chaining, the method’s
return type will be Void?, not Void, because return values are always of an optional
type when called through optional chaining. This enables you to use an if statement
to check whether it was possible to call the printNumberOfRooms method, even though
the method does not itself define a return value. The implicit return value from the
printNumberOfRooms will be equal to Void if the method was called succesfully through
optional chaining, or nil if was not:

if john.residence?.printNumberOfRooms() {

 println("It was possible to print the number of rooms.")

} else {

 println("It was not possible to print the number of rooms.")

}

// prints "It was not possible to print the number of rooms."

Calling Subscripts Through Optional Chaining

You can use optional chaining to try to retrieve a value from a subscript on an optional
value, and to check whether that subscript call is successful. You cannot, however, set
a subscript through optional chaining.

284

NO T E

When you access a subscript on an optional value through optional chaining, you place the question mark
before the subscript’s braces, not after. The optional chaining question mark always follows immediately
after the part of the expression that is optional.

The example below tries to retrieve the name of the first room in the rooms array of
the john.residence property using the subscript defined on the Residence class. Because
john.residence is currently nil, the subscript call fails:

if let firstRoomName = john.residence?[0].name {

 println("The first room name is \(firstRoomName).")

} else {

 println("Unable to retrieve the first room name.")

}

// prints "Unable to retrieve the first room name."

The optional chaining question mark in this subscript call is placed immediately after
john.residence, before the subscript brackets, because john.residence is the optional
value on which optional chaining is being attempted.

If you create and assign an actual Residence instance to john.residence, with one or
more Room instances in its rooms array, you can use the Residence subscript to access
the actual items in the rooms array through optional chaining:

let johnsHouse = Residence()

johnsHouse.rooms += Room(name: "Living Room")

johnsHouse.rooms += Room(name: "Kitchen")

john.residence = johnsHouse

if let firstRoomName = john.residence?[0].name {

 println("The first room name is \(firstRoomName).")

} else {

 println("Unable to retrieve the first room name.")

285

}

// prints "The first room name is Living Room."

Linking Multiple Levels of Chaining

You can link together multiple levels of optional chaining to drill down to properties,
methods, and subscripts deeper within a model. However, multiple levels of optional
chaining do not add more levels of optionality to the returned value.

To put it another way:

Therefore:

The example below tries to access the street property of the address property of the
residence property of john. There are two levels of optional chaining in use here, to
chain through the residence and address properties, both of which are of optional type:

if let johnsStreet = john.residence?.address?.street {

 println("John's street name is \(johnsStreet).")

} else {

 println("Unable to retrieve the address.")

}

// prints "Unable to retrieve the address."

If the type you are trying to retrieve is not optional, it will become optional
because of the optional chaining.
If the type you are trying to retrieve is already optional, it will not become
more optional because of the chaining.

If you try to retrieve an Int value through optional chaining, an Int? is always
returned, no matter how many levels of chaining are used.
Similarly, if you try to retrieve an Int? value through optional chaining, an Int?
is always returned, no matter how many levels of chaining are used.

286

The value of john.residence currently contains a valid Residence instance. However, the
value of john.residence.address is currently nil. Because of this, the call to
john.residence?.address?.street fails.

Note that in the example above, you are trying to retrieve the value of the street
property. The type of this property is String?. The return value of
john.residence?.address?.street is therefore also String?, even though two levels of
optional chaining are applied in addition to the underlying optional type of the
property.

If you set an actual Address instance as the value for john.street.address, and set an
an actual value for the address’s street property, you can access the value of property
through the multi-level optional chaining:

let johnsAddress = Address()

johnsAddress.buildingName = "The Larches"

johnsAddress.street = "Laurel Street"

john.residence!.address = johnsAddress

if let johnsStreet = john.residence?.address?.street {

 println("John's street name is \(johnsStreet).")

} else {

 println("Unable to retrieve the address.")

}

// prints "John's street name is Laurel Street."

Note the use of an exclamation mark during the assignment of an address instance to
john.residence.address. The john.residence property has an optional type, and so you
need to unwrap its actual value with an exclamation mark before accessing the
residence’s address property.

Chaining on Methods With Optional Return Values

The previous example shows how to retrieve the value of a property of optional type
through optional chaining. You can also use optional chaining to call a method that

287

returns a value of optional type, and to chain on that method’s return value if needed.

The example below calls the Address class’s buildingIdentifier method through
optional chaining. This method returns a value of type String?. As described above,
the ultimate return type of this method call after optional chaining is also String?:

if let buildingIdentifier = john.residence?.address?.buildingIdentifier() {

 println("John's building identifier is \(buildingIdentifier).")

}

// prints "John's building identifier is The Larches."

If you want to perform further optional chaining on this method’s return value, place
the optional chaining question mark after the method’s parentheses:

if let upper = john.residence?.address?.buildingIdentifier()?.uppercaseString {

 println("John's uppercase building identifier is \(upper).")

}

// prints "John's uppercase building identifier is THE LARCHES."

NO T E

In the example above, you place the optional chaining question mark after the parentheses, because the
optional value you are chaining on is the buildingIdentifier method’s return value, and not the
buildingIdentifier method itself.

288

Type Casting

Type casting is a way to check the type of an instance, and/or to treat that instance as
if it is a different superclass or subclass from somewhere else in its own class
hierarchy.

Type casting in Swift is implemented with the is and as operators. These two
operators provide a simple and expressive way to check the type of a value or cast a
value to a different type.

You can also use type casting to check whether a type conforms to a protocol, as
described in Checking for Protocol Conformance.

Defining a Class Hierarchy for Type Casting

You can use type casting with a hierarchy of classes and subclasses to check the type
of a particular class instance and to cast that instance to another class within the
same hierarchy. The three code snippets below define a hierarchy of classes and an
array containing instances of those classes, for use in an example of type casting.

The first snippet defines a new base class called MediaItem. This class provides basic
functionality for any kind of item that appears in a digital media library. Specifically, it
declares a name property of type String, and an init name initializer. (It is assumed that
all media items, including all movies and songs, will have a name.)

class MediaItem {

 var name: String

 init(name: String) {

 self.name = name

 }

}

The next snippet defines two subclasses of MediaItem. The first subclass, Movie,
encapsulates additional information about a movie or film. It adds a director property
on top of the base MediaItem class, with a corresponding initializer. The second

289

subclass, Song, adds an artist property and initializer on top of the base class:

class Movie: MediaItem {

 var director: String

 init(name: String, director: String) {

 self.director = director

 super.init(name: name)

 }

}

class Song: MediaItem {

 var artist: String

 init(name: String, artist: String) {

 self.artist = artist

 super.init(name: name)

 }

}

The final snippet creates a constant array called library, which contains two Movie
instances and three Song instances. The type of the library array is inferred by
initializing it with the contents of an array literal. Swift’s type checker is able to deduce
that Movie and Song have a common superclass of MediaItem, and so it infers a type of
MediaItem[] for the library array:

let library = [

 Movie(name: "Casablanca", director: "Michael Curtiz"),

 Song(name: "Blue Suede Shoes", artist: "Elvis Presley"),

 Movie(name: "Citizen Kane", director: "Orson Welles"),

 Song(name: "The One And Only", artist: "Chesney Hawkes"),

 Song(name: "Never Gonna Give You Up", artist: "Rick Astley")

]

290

// the type of "library" is inferred to be MediaItem[]

The items stored in library are still Movie and Song instances behind the scenes.
However, if you iterate over the contents of this array, the items you receive back are
typed as MediaItem, and not as Movie or Song. In order to work with them as their native
type, you need to check their type, or downcast them to a different type, as described
below.

Checking Type

Use the type check operator (is) to check whether an instance is of a certain subclass
type. The type check operator returns true if the instance is of that subclass type and
false if it is not.

The example below defines two variables, movieCount and songCount, which count the
number of Movie and Song instances in the library array:

var movieCount = 0

var songCount = 0

for item in library {

 if item is Movie {

 ++movieCount

 } else if item is Song {

 ++songCount

 }

}

println("Media library contains \(movieCount) movies and \(songCount) songs")

// prints "Media library contains 2 movies and 3 songs"

This example iterates through all items in the library array. On each pass, the for-in
loop sets the item constant to the next MediaItem in the array.

291

item is Movie returns true if the current MediaItem is a Movie instance and false if it is
not. Similarly, item is Song checks whether the item is a Song instance. At the end of
the for-in loop, the values of movieCount and songCount contain a count of how many
MediaItem instances were found of each type.

Downcasting

A constant or variable of a certain class type may actually refer to an instance of a
subclass behind the scenes. Where you believe this is the case, you can try to
downcast to the subclass type with the type cast operator (as).

Because downcasting can fail, the type cast operator comes in two different forms.
The optional form, as?, returns an optional value of the type you are trying to
downcast to. The forced form, as, attempts the downcast and force-unwraps the result
as a single compound action.

Use the optional form of the type cast operator (as?) when you are not sure if the
downcast will succeed. This form of the operator will always return an optional value,
and the value will be nil if the downcast was not possible. This enables you to check
for a successful downcast.

Use the forced form of the type cast operator (as) only when you are sure that the
downcast will always succeed. This form of the operator will trigger a runtime error if
you try to downcast to an incorrect class type.

The example below iterates over each MediaItem in library, and prints an appropriate
description for each item. To do this, it needs to access each item as a true Movie or
Song, and not just as a MediaItem. This is necessary in order for it to be able to access
the director or artist property of a Movie or Song for use in the description.

In this example, each item in the array might be a Movie, or it might be a Song. You
don’t know in advance which actual class to use for each item, and so it is appropriate
to use the optional form of the type cast operator (as?) to check the downcast each
time through the loop:

for item in library {

 if let movie = item as? Movie {

 println("Movie: '\(movie.name)', dir. \(movie.director)")

 } else if let song = item as? Song {

292

 println("Song: '\(song.name)', by \(song.artist)")

 }

}

// Movie: 'Casablanca', dir. Michael Curtiz

// Song: 'Blue Suede Shoes', by Elvis Presley

// Movie: 'Citizen Kane', dir. Orson Welles

// Song: 'The One And Only', by Chesney Hawkes

// Song: 'Never Gonna Give You Up', by Rick Astley

The example starts by trying to downcast the current item as a Movie. Because item is a
MediaItem instance, it’s possible that it might be a Movie; equally, it’s also possible that
it might a Song, or even just a base MediaItem. Because of this uncertainty, the as? form
of the type cast operator returns an optional value when attempting to downcast to a
subclass type. The result of item as Movie is of type Movie?, or “optional Movie”.

Downcasting to Movie fails when applied to the two Song instances in the library array.
To cope with this, the example above uses optional binding to check whether the
optional Movie actually contains a value (that is, to find out whether the downcast
succeeded.) This optional binding is written “if let movie = item as? Movie”, which can
be read as:

“Try to access item as a Movie. If this is successful, set a new temporary constant called
movie to the value stored in the returned optional Movie.”

If the downcasting succeeds, the properties of movie are then used to print a
description for that Movie instance, including the name of its director. A similar
principle is used to check for Song instances, and to print an appropriate description
(including artist name) whenever a Song is found in the library.

NO T E

Casting does not actually modify the instance or change its values. The underlying instance remains the
same; it is simply treated and accessed as an instance of the type to which it has been cast.

293

Type Casting for Any and AnyObject

Swift provides two special type aliases for working with non-specific types:

NO T E

Use Any and AnyObject only when you explicitly need the behavior and capabilities they provide. It is
always better to be specific about the types you expect to work with in your code.

AnyObject

When working with Cocoa APIs, it is common to receive an array with a type of
AnyObject[], or “an array of values of any object type”. This is because Objective-C
does not have explicitly typed arrays. However, you can often be confident about the
type of objects contained in such an array just from the information you know about
the API that provided the array.

In these situations, you can use the forced version of the type cast operator (as) to
downcast each item in the array to a more specific class type than AnyObject, without
the need for optional unwrapping.

The example below defines an array of type AnyObject[] and populates this array with
three instances of the Movie class:

let someObjects: AnyObject[] = [

 Movie(name: "2001: A Space Odyssey", director: "Stanley Kubrick"),

 Movie(name: "Moon", director: "Duncan Jones"),

 Movie(name: "Alien", director: "Ridley Scott")

]

Because this array is known to contain only Movie instances, you can downcast and
unwrap directly to a non-optional Movie with the forced version of the type cast

AnyObject can represent an instance of any class type.
Any can represent an instance of any type at all, apart from function types.

294

operator (as):

for object in someObjects {

 let movie = object as Movie

 println("Movie: '\(movie.name)', dir. \(movie.director)")

}

// Movie: '2001: A Space Odyssey', dir. Stanley Kubrick

// Movie: 'Moon', dir. Duncan Jones

// Movie: 'Alien', dir. Ridley Scott

For an even shorter form of this loop, downcast the someObjects array to a type of
Movie[] instead of downcasting each item:

for movie in someObjects as Movie[] {

 println("Movie: '\(movie.name)', dir. \(movie.director)")

}

// Movie: '2001: A Space Odyssey', dir. Stanley Kubrick

// Movie: 'Moon', dir. Duncan Jones

// Movie: 'Alien', dir. Ridley Scott

Any

Here’s an example of using Any to work with a mix of different types, including non-
class types. The example creates an array called things, which can store values of type
Any:

var things = Any[]()

things.append(0)

things.append(0.0)

things.append(42)

295

things.append(3.14159)

things.append("hello")

things.append((3.0, 5.0))

things.append(Movie(name: "Ghostbusters", director: "Ivan Reitman"))

The things array contains two Int values, two Double values, a String value, a tuple of
type (Double, Double), and the movie “Ghostbusters”, directed by Ivan Reitman.

You can use the is and as operators in a switch statement’s cases to discover the
specific type of a constant or variable that is known only to be of type Any or AnyObject.
The example below iterates over the items in the things array and queries the type of
each item with a switch statement. Several of the switch statement’s cases bind their
matched value to a constant of the specified type to enable its value to be printed:

for thing in things {

 switch thing {

 case 0 as Int:

 println("zero as an Int")

 case 0 as Double:

 println("zero as a Double")

 case let someInt as Int:

 println("an integer value of \(someInt)")

 case let someDouble as Double where someDouble > 0:

 println("a positive double value of \(someDouble)")

 case is Double:

 println("some other double value that I don't want to print")

 case let someString as String:

 println("a string value of \"\(someString)\"")

 case let (x, y) as (Double, Double):

 println("an (x, y) point at \(x), \(y)")

 case let movie as Movie:

296

 println("a movie called '\(movie.name)', dir. \(movie.director)")

 default:

 println("something else")

 }

}

// zero as an Int

// zero as a Double

// an integer value of 42

// a positive double value of 3.14159

// a string value of "hello"

// an (x, y) point at 3.0, 5.0

// a movie called 'Ghostbusters', dir. Ivan Reitman

NO T E

The cases of a switch statement use the forced version of the type cast operator (as, not as?) to
check and cast to a specific type. This check is always safe within the context of a switch case
statement.

297

Nested Types

Enumerations are often created to support a specific class or structure’s functionality.
Similarly, it can be convenient to define utility classes and structures purely for use
within the context of a more complex type. To accomplish this, Swift enables you to
define nested types, whereby you nest supporting enumerations, classes, and
structures within the definition of the type they support.

To nest a type within another type, write its definition within the outer braces of the
type it supports. Types can be nested to as many levels as are required.

Nested Types in Action

The example below defines a structure called BlackjackCard, which models a playing
card as used in the game of Blackjack. The BlackJack structure contains two nested
enumeration types called Suit and Rank.

In Blackjack, the Ace cards have a value of either one or eleven. This feature is
represented by a structure called Values, which is nested within the Rank enumeration:

struct BlackjackCard {

 // nested Suit enumeration

 enum Suit: Character {

 case Spades = "♠", Hearts = "♡", Diamonds = "♢", Clubs = "♣"

 }

 // nested Rank enumeration

 enum Rank: Int {

 case Two = 2, Three, Four, Five, Six, Seven, Eight, Nine, Ten

 case Jack, Queen, King, Ace

 struct Values {

298

 let first: Int, second: Int?

 }

 var values: Values {

 switch self {

 case .Ace:

 return Values(first: 1, second: 11)

 case .Jack, .Queen, .King:

 return Values(first: 10, second: nil)

 default:

 return Values(first: self.toRaw(), second: nil)

 }

 }

 }

 // BlackjackCard properties and methods

 let rank: Rank, suit: Suit

 var description: String {

 var output = "suit is \(suit.toRaw()),"

 output += " value is \(rank.values.first)"

 if let second = rank.values.second {

 output += " or \(second)"

 }

 return output

 }

}

The Suit enumeration describes the four common playing card suits, together with a
raw Character value to represent their symbol.

299

The Rank enumeration describes the thirteen possible playing card ranks, together with
a raw Int value to represent their face value. (This raw Int value is not used for the
Jack, Queen, King, and Ace cards.)

As mentioned above, the Rank enumeration defines a further nested structure of its
own, called Values. This structure encapsulates the fact that most cards have one
value, but the Ace card has two values. The Values structure defines two properties to
represent this:

Rank also defines a computed property, values, which returns an instance of the Values
structure. This computed property considers the rank of the card and initializes a new
Values instance with appropriate values based on its rank. It uses special values for
Jack, Queen, King, and Ace. For the numeric cards, it uses the rank’s raw Int value.

The BlackjackCard structure itself has two properties—rank and suit. It also defines a
computed property called description, which uses the values stored in rank and suit to
build a description of the name and value of the card. The description property uses
optional binding to check whether there is a second value to display, and if so, inserts
additional description detail for that second value.

Because BlackjackCard is a structure with no custom initializers, it has an implicit
memberwise initializer, as described in Memberwise Initializers for Structure Types.
You can use this initializer to initialize a new constant called theAceOfSpades:

let theAceOfSpades = BlackjackCard(rank: .Ace, suit: .Spades)

println("theAceOfSpades: \(theAceOfSpades.description)")

// prints "theAceOfSpades: suit is ♠, value is 1 or 11"

Even though Rank and Suit are nested within BlackjackCard, their type can be inferred
from context, and so the initialization of this instance is able to refer to the
enumeration members by their member names (.Ace and .Spades) alone. In the
example above, the description property correctly reports that the Ace of Spades has a
value of 1 or 11.

Referring to Nested Types

first, of type Int
second, of type Int?, or “optional Int”

300

To use a nested type outside of its definition context, prefix its name with the name of
the type it is nested within:

let heartsSymbol = BlackjackCard.Suit.Hearts.toRaw()

// heartsSymbol is "♡"

For the example above, this enables the names of Suit, Rank, and Values to be kept
deliberately short, because their names are naturally qualified by the context in which
they are defined.

301

Extensions

Extensions add new functionality to an existing class, structure, or enumeration type.
This includes the ability to extend types for which you do not have access to the
original source code (known as retroactive modeling). Extensions are similar to
categories in Objective-C. (Unlike Objective-C categories, Swift extensions do not have
names.)

Extensions in Swift can:

NO T E

If you define an extension to add new functionality to an existing type, the new functionality will be
available on all existing instances of that type, even if they were created before the extension was defined.

Extension Syntax

Declare extensions with the extension keyword:

extension SomeType {

 // new functionality to add to SomeType goes here

}

An extension can extend an existing type to make it adopt one or more protocols.
Where this is the case, the protocol names are written in exactly the same way as for
a class or structure:

Add computed properties and computed static properties
Define instance methods and type methods
Provide new initializers
Define subscripts
Define and use new nested types
Make an existing type conform to a protocol

302

extension SomeType: SomeProtocol, AnotherProtocol {

 // implementation of protocol requirements goes here

}

Adding protocol conformance in this way is described in Adding Protocol Conformance
with an Extension.

Computed Properties

Extensions can add computed instance properties and computed type properties to
existing types. This example adds five computed instance properties to Swift’s built-in
Double type, to provide basic support for working with distance units:

extension Double {

 var km: Double { return self * 1_000.0 }

 var m: Double { return self }

 var cm: Double { return self / 100.0 }

 var mm: Double { return self / 1_000.0 }

 var ft: Double { return self / 3.28084 }

}

let oneInch = 25.4.mm

println("One inch is \(oneInch) meters")

// prints "One inch is 0.0254 meters"

let threeFeet = 3.ft

println("Three feet is \(threeFeet) meters")

// prints "Three feet is 0.914399970739201 meters"

These computed properties express that a Double value should be considered as a
certain unit of length. Although they are implemented as computed properties, the
names of these properties can be appended to a floating-point literal value with dot
syntax, as a way to use that literal value to perform distance conversions.

303

In this example, a Double value of 1.0 is considered to represent “one meter”. This is
why the m computed property returns self—the expression 1.m is considered to
calculate a Double value of 1.0.

Other units require some conversion to be expressed as a value measured in meters.
One kilometer is the same as 1,000 meters, so the km computed property multiplies
the value by 1_000.00 to convert into a number expressed in meters. Similarly, there
are 3.28024 feet in a meter, and so the ft computed property divides the underlying
Double value by 3.28024, to convert it from feet to meters.

These properties are read-only computed properties, and so they are expressed
without the get keyword, for brevity. Their return value is of type Double, and can be
used within mathematical calculations wherever a Double is accepted:

let aMarathon = 42.km + 195.m

println("A marathon is \(aMarathon) meters long")

// prints "A marathon is 42195.0 meters long"

NO T E

Extensions can add new computed properties, but they cannot add stored properties, or add property
observers to existing properties.

Initializers

Extensions can add new initializers to existing types. This enables you to extend other
types to accept your own custom types as initializer parameters, or to provide
additional initialization options that were not included as part of the type’s original
implementation.

Extensions can add new convenience initializers to a class, but they cannot add new
designated initializers or deinitializers to a class. Designated initializers and
deinitializers must always be provided by the original class implementation.

NO T E

If you use an extension to add an initializer to a value type that provides default values for all of its stored

304

properties and does not define any custom initializers, you can call the default initializer and memberwise
initializer for that value type from within your extension’s initializer.

This would not be the case if you had written the initializer as part of the value type’s original
implementation, as described in Initializer Delegation for Value Types.

The example below defines a custom Rect structure to represent a geometric
rectangle. The example also defines two supporting structures called Size and Point,
both of which provide default values of 0.0 for all of their properties:

struct Size {

 var width = 0.0, height = 0.0

}

struct Point {

 var x = 0.0, y = 0.0

}

struct Rect {

 var origin = Point()

 var size = Size()

}

Because the Rect structure provides default values for all of its properties, it receives a
default initializer and a memberwise initializer automatically, as described in Default
Initializers. These initializers can be used to create new Rect instances:

let defaultRect = Rect()

let memberwiseRect = Rect(origin: Point(x: 2.0, y: 2.0),

 size: Size(width: 5.0, height: 5.0))

You can extend the Rect structure to provide an additional initializer that takes a
specific center point and size:

extension Rect {

 init(center: Point, size: Size) {

 let originX = center.x - (size.width / 2)

305

 let originY = center.y - (size.height / 2)

 self.init(origin: Point(x: originX, y: originY), size: size)

 }

}

This new initializer starts by calculating an appropriate origin point based on the
provided center point and size value. The initializer then calls the structure’s automatic
memberwise initializer init(origin:size:), which stores the new origin and size values
in the appropriate properties:

let centerRect = Rect(center: Point(x: 4.0, y: 4.0),

 size: Size(width: 3.0, height: 3.0))

// centerRect's origin is (2.5, 2.5) and its size is (3.0, 3.0)

NO T E

If you provide a new initializer with an extension, you are still responsible for making sure that each
instance is fully initialized once the initializer completes.

Methods

Extensions can add new instance methods and type methods to existing types. The
following example adds a new instance method called repetitions to the Int type:

extension Int {

 func repetitions(task: () -> ()) {

 for i in 0..self {

 task()

 }

 }

}

306

The repetitions method takes a single argument of type () -> (), which indicates a
function that has no parameters and does not return a value.

After defining this extension, you can call the repetitions method on any integer
number to perform a task that many number of times:

3.repetitions({

 println("Hello!")

 })

// Hello!

// Hello!

// Hello!

Use trailing closure syntax to make the call more succinct:

3.repetitions {

 println("Goodbye!")

}

// Goodbye!

// Goodbye!

// Goodbye!

Mutating Instance Methods

Instance methods added with an extension can also modify (or mutate) the instance
itself. Structure and enumeration methods that modify self or its properties must mark
the instance method as mutating, just like mutating methods from an original
implementation.

The example below adds a new mutating method called square to Swift’s Int type,
which squares the original value:

extension Int {

 mutating func square() {

307

 self = self * self

 }

}

var someInt = 3

someInt.square()

// someInt is now 9

Subscripts

Extensions can add new subscripts to an existing type. This example adds an integer
subscript to Swift’s built-in Int type. This subscript [n] returns the decimal digit n
places in from the right of the number:

…and so on:

extension Int {

 subscript(digitIndex: Int) -> Int {

 var decimalBase = 1

 for _ in 1...digitIndex {

 decimalBase *= 10

 }

 return (self / decimalBase) % 10

 }

}

746381295[0]

// returns 5

746381295[1]

123456789[0] returns 9
123456789[1] returns 8

308

// returns 9

746381295[2]

// returns 2

746381295[8]

// returns 7

If the Int value does not have enough digits for the requested index, the subscript
implementation returns 0, as if the number had been padded with zeroes to the left:

746381295[9]

// returns 0, as if you had requested:

0746381295[9]

Nested Types

Extensions can add new nested types to existing classes, structures and enumerations:

extension Character {

 enum Kind {

 case Vowel, Consonant, Other

 }

 var kind: Kind {

 switch String(self).lowercaseString {

 case "a", "e", "i", "o", "u":

 return .Vowel

 case "b", "c", "d", "f", "g", "h", "j", "k", "l", "m",

 "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z":

 return .Consonant

 default:

 return .Other

309

 }

 }

}

This example adds a new nested enumeration to Character. This enumeration, called
Kind, expresses the kind of letter that a particular character represents. Specifically, it
expresses whether the character is a vowel or a consonant in a standard Latin script
(without taking into account accents or regional variations), or whether it is another
kind of character.

This example also adds a new computed instance property to Character, called kind,
which returns the appropriate Kind enumeration member for that character.

The nested enumeration can now be used with Character values:

func printLetterKinds(word: String) {

 println("'\(word)' is made up of the following kinds of letters:")

 for character in word {

 switch character.kind {

 case .Vowel:

 print("vowel ")

 case .Consonant:

 print("consonant ")

 case .Other:

 print("other ")

 }

 }

 print("\n")

}

printLetterKinds("Hello")

// 'Hello' is made up of the following kinds of letters:

// consonant vowel consonant consonant vowel

310

This function, printLetterKinds, takes an input String value and iterates over its
characters. For each character, it considers the kind computed property for that
character, and prints an appropriate description of that kind. The printLetterKinds
function can then be called to print the kinds of letters in an entire word, as shown
here for the word "Hello".

NO T E

character.kind is already known to be of type Character.Kind. Because of this, all of the
Character.Kind member values can be written in shorthand form inside the switch statement, such
as .Vowel rather than Character.Kind.Vowel.

311

Protocols

A protocol defines a blueprint of methods, properties, and other requirements that suit
a particular task or piece of functionality. The protocol doesn’t actually provide an
implementation for any of these requirements—it only describes what an
implementation will look like. The protocol can then be adopted by a class, structure,
or enumeration to provide an actual implementation of those requirements. Any type
that satisfies the requirements of a protocol is said to conform to that protocol.

Protocols can require that conforming types have specific instance properties, instance
methods, type methods, operators, and subscripts.

Protocol Syntax

You define protocols in a very similar way to classes, structures, and enumerations:

protocol SomeProtocol {

 // protocol definition goes here

}

Custom types state that they adopt a particular protocol by placing the protocol’s
name after the type’s name, separated by a colon, as part of their definition. Multiple
protocols can be listed, and are separated by commas:

struct SomeStructure: FirstProtocol, AnotherProtocol {

 // structure definition goes here

}

If a class has a superclass, list the superclass name before any protocols it adopts,
followed by a comma:

class SomeClass: SomeSuperclass, FirstProtocol, AnotherProtocol {

 // class definition goes here

}

312

Property Requirements

A protocol can require any conforming type to provide an instance property or type
property with a particular name and type. The protocol doesn’t specify whether the
property should be a stored property or a computed property—it only specifies the
required property name and type. The protocol also specifies whether each property
must be gettable or gettable and settable.

If a protocol requires a property to be gettable and settable, that property
requirement cannot be fulfilled by a constant stored property or a read-only computed
property. If the protocol only requires a property to be gettable, the requirement can
be satisfied by any kind of property, and it is valid for it also to be settable if this is
useful for your own code.

Property requirements are always declared as variable properties, prefixed with the
var keyword. Gettable and settable properties are indicated by writing { get set }
after their type declaration, and gettable properties are indicated by writing { get }.

protocol SomeProtocol {

 var mustBeSettable: Int { get set }

 var doesNotNeedToBeSettable: Int { get }

}

Always prefix type property requirements with the class keyword when you define
them in a protocol. This is true even though type property requirements are prefixed
with the static keyword when implemented by a structure or enumeration:

protocol AnotherProtocol {

 class var someTypeProperty: Int { get set }

}

Here’s an example of a protocol with a single instance property requirement:

protocol FullyNamed {

 var fullName: String { get }

313

}

The FullyNamed protocol defines any kind of thing that has a fully-qualified name. It
doesn’t specify what kind of thing it must be—it only specifies that the thing must be
able to provide a full name for itself. It specifies this requirement by stating that any
FullyNamed type must have a gettable instance property called fullName, which is of
type String.

Here’s an example of a simple structure that adopts and conforms to the FullyNamed
protocol:

struct Person: FullyNamed {

 var fullName: String

}

let john = Person(fullName: "John Appleseed")

// john.fullName is "John Appleseed"

This example defines a structure called Person, which represents a specific named
person. It states that it adopts the FullyNamed protocol as part of the first line of its
definition.

Each instance of Person has a single stored property called fullName, which is of type
String. This matches the single requirement of the FullyNamed protocol, and means that
Person has correctly conformed to the protocol. (Swift reports an error at compile-time
if a protocol requirement is not fulfilled.)

Here’s a more complex class, which also adopts and conforms to the FullyNamed
protocol:

class Starship: FullyNamed {

 var prefix: String?

 var name: String

 init(name: String, prefix: String? = nil) {

 self.name = name

 self.prefix = prefix

 }

314

 var fullName: String {

 return (prefix ? prefix! + " " : "") + name

 }

}

var ncc1701 = Starship(name: "Enterprise", prefix: "USS")

// ncc1701.fullName is "USS Enterprise"

This class implements the fullName property requirement as a computed read-only
property for a starship. Each Starship class instance stores a mandatory name and an
optional prefix. The fullName property uses the prefix value if it exists, and prepends it
to the beginning of name to create a full name for the starship.

Method Requirements

Protocols can require specific instance methods and type methods to be implemented
by conforming types. These methods are written as part of the protocol’s definition in
exactly the same way as for normal instance and type methods, but without curly
braces or a method body. Variadic parameters are allowed, subject to the same rules
as for normal methods.

NO T E

Protocols use the same syntax as normal methods, but are not allowed to specify default values for
method parameters.

As with type property requirements, you always prefix type method requirements with
the class keyword when they are defined in a protocol. This is true even though type
method requirements are prefixed with the static keyword when implemented by a
structure or enumeration:

protocol SomeProtocol {

 class func someTypeMethod()

}

315

The following example defines a protocol with a single instance method requirement:

protocol RandomNumberGenerator {

 func random() -> Double

}

This protocol, RandomNumberGenerator, requires any conforming type to have an instance
method called random, which returns a Double value whenever it is called. (Although it is
not specified as part of the protocol, it is assumed that this value will be a number
between 0.0 and 1.0 inclusive.)

The RandomNumberGenerator protocol does not make any assumptions about how each
random number will be generated—it simply requires the generator to provide a
standard way to generate a new random number.

Here’s an implementation of a class that adopts and conforms to the
RandomNumberGenerator protocol. This class implements a pseudorandom number
generator algorithm known as a linear congruential generator:

class LinearCongruentialGenerator: RandomNumberGenerator {

 var lastRandom = 42.0

 let m = 139968.0

 let a = 3877.0

 let c = 29573.0

 func random() -> Double {

 lastRandom = ((lastRandom * a + c) % m)

 return lastRandom / m

 }

}

let generator = LinearCongruentialGenerator()

println("Here's a random number: \(generator.random())")

// prints "Here's a random number: 0.37464991998171"

println("And another one: \(generator.random())")

// prints "And another one: 0.729023776863283"

316

Mutating Method Requirements

It is sometimes necessary for a method to modify (or mutate) the instance it belongs
to. For instance methods on value types (that is, structures and enumerations) you
place the mutating keyword before a method’s func keyword to indicate that the
method is allowed to modify the instance it belongs to and/or any properties of that
instance. This process is described in Modifying Value Types from Within Instance
Methods.

If you define a protocol instance method requirement that is intended to mutate
instances of any type that adopts the protocol, mark the method with the mutating
keyword as part of the protocol’s definition. This enables structures and enumerations
to adopt the protocol and satisfy that method requirement.

NO T E

If you mark a protocol instance method requirement as mutating, you do not need to write the
mutating keyword when writing an implementation of that method for a class. The mutating keyword
is only used by structures and enumerations.

The example below defines a protocol called Togglable, which defines a single instance
method requirement called toggle. As its name suggests, the toggle method is
intended to toggle or invert the state of any conforming type, typically by modifying a
property of that type.

The toggle method is marked with the mutating keyword as part of the Togglable
protocol definition, to indicate that the method is expected to mutate the state of a
conforming instance when it is called:

protocol Togglable {

 mutating func toggle()

}

If you implement the Togglable protocol for a structure or enumeration, that structure
or enumeration can conform to the protocol by providing an implementation of the
toggle method that is also marked as mutating.

317

The example below defines an enumeration called OnOffSwitch. This enumeration
toggles between two states, indicated by the enumeration cases On and Off. The
enumeration’s toggle implementation is marked as mutating, to match the Togglable
protocol’s requirements:

enum OnOffSwitch: Togglable {

 case Off, On

 mutating func toggle() {

 switch self {

 case Off:

 self = On

 case On:

 self = Off

 }

 }

}

var lightSwitch = OnOffSwitch.Off

lightSwitch.toggle()

// lightSwitch is now equal to .On

Protocols as Types

Protocols do not actually implement any functionality themselves. Nonetheless, any
protocol you create will become a fully-fledged type for use in your code.

Because it is a type, you can use a protocol in many places where other types are
allowed, including:

As a parameter type or return type in a function, method, or initializer
As the type of a constant, variable, or property
As the type of items in an array, dictionary, or other container

318

NO T E

Because protocols are types, begin their names with a capital letter (such as FullyNamed and
RandomNumberGenerator) to match the names of other types in Swift (such as Int, String, and
Double).

Here’s an example of a protocol used as a type:

class Dice {

 let sides: Int

 let generator: RandomNumberGenerator

 init(sides: Int, generator: RandomNumberGenerator) {

 self.sides = sides

 self.generator = generator

 }

 func roll() -> Int {

 return Int(generator.random() * Double(sides)) + 1

 }

}

This example defines a new class called Dice, which represents an n-sided dice for use
in a board game. Dice instances have an integer property called sides, which
represents how many sides they have, and a property called generator, which provides
a random number generator from which to create dice roll values.

The generator property is of type RandomNumberGenerator. Therefore, you can set it to an
instance of any type that adopts the RandomNumberGenerator protocol. Nothing else is
required of the instance you assign to this property, except that the instance must
adopt the RandomNumberGenerator protocol.

Dice also has an initializer, to set up its initial state. This initializer has a parameter
called generator, which is also of type RandomNumberGenerator. You can pass a value of
any conforming type in to this parameter when initializing a new Dice instance.

Dice provides one instance method, roll, which returns an integer value between 1
and the number of sides on the dice. This method calls the generator’s random method

319

to create a new random number between 0.0 and 1.0, and uses this random number
to create a dice roll value within the correct range. Because generator is known to
adopt RandomNumberGenerator, it is guaranteed to have a random method to call.

Here’s how the Dice class can be used to create a six-sided dice with a
LinearCongruentialGenerator instance as its random number generator:

var d6 = Dice(sides: 6, generator: LinearCongruentialGenerator())

for _ in 1...5 {

 println("Random dice roll is \(d6.roll())")

}

// Random dice roll is 3

// Random dice roll is 5

// Random dice roll is 4

// Random dice roll is 5

// Random dice roll is 4

Delegation

Delegation is a design pattern that enables a class or structure to hand off (or
delegate) some of its responsibilities to an instance of another type. This design
pattern is implemented by defining a protocol that encapsulates the delegated
responsibilities, such that a conforming type (known as a delegate) is guaranteed to
provide the functionality that has been delegated. Delegation can be used to respond
to a particular action, or to retrieve data from an external source without needing to
know the underlying type of that source.

The example below defines two protocols for use with dice-based board games:

protocol DiceGame {

 var dice: Dice { get }

 func play()

}

protocol DiceGameDelegate {

320

 func gameDidStart(game: DiceGame)

 func game(game: DiceGame, didStartNewTurnWithDiceRoll diceRoll: Int)

 func gameDidEnd(game: DiceGame)

}

The DiceGame protocol is a protocol that can be adopted by any game that involves
dice. The DiceGameDelegate protocol can be adopted by any type to track the progress
of a DiceGame.

Here’s a version of the Snakes and Ladders game originally introduced in Control Flow.
This version is adapted to use a Dice instance for its dice-rolls; to adopt the DiceGame
protocol; and to notify a DiceGameDelegate about its progress:

class SnakesAndLadders: DiceGame {

 let finalSquare = 25

 let dice = Dice(sides: 6, generator: LinearCongruentialGenerator())

 var square = 0

 var board: Int[]

 init() {

 board = Int[](count: finalSquare + 1, repeatedValue: 0)

 board[03] = +08; board[06] = +11; board[09] = +09; board[10] = +02

 board[14] = -10; board[19] = -11; board[22] = -02; board[24] = -08

 }

 var delegate: DiceGameDelegate?

 func play() {

 square = 0

 delegate?.gameDidStart(self)

 gameLoop: while square != finalSquare {

 let diceRoll = dice.roll()

 delegate?.game(self, didStartNewTurnWithDiceRoll: diceRoll)

 switch square + diceRoll {

321

 case finalSquare:

 break gameLoop

 case let newSquare where newSquare > finalSquare:

 continue gameLoop

 default:

 square += diceRoll

 square += board[square]

 }

 }

 delegate?.gameDidEnd(self)

 }

}

For a description of the Snakes and Ladders gameplay, see the Break section of the
Control Flow chapter.

This version of the game is wrapped up as a class called SnakesAndLadders, which
adopts the DiceGame protocol. It provides a gettable dice property and a play method in
order to conform to the protocol. (The dice property is declared as a constant property
because it does not need to change after initialization, and the protocol only requires
that it is gettable.)

The Snakes and Ladders game board setup takes place within the class’s init()
initializer. All game logic is moved into the protocol’s play method, which uses the
protocol’s required dice property to provide its dice roll values.

Note that the delegate property is defined as an optional DiceGameDelegate, because a
delegate isn’t required in order to play the game. Because it is of an optional type, the
delegate property is automatically set to an initial value of nil. Thereafter, the game
instantiator has the option to set the property to a suitable delegate.

DiceGameDelegate provides three methods for tracking the progress of a game. These
three methods have been incorporated into the game logic within the play method
above, and are called when a new game starts, a new turn begins, or the game ends.

Because the delegate property is an optional DiceGameDelegate, the play method uses
optional chaining each time it calls a method on the delegate. If the delegate property

322

is nil, these delegate calls fail gracefully and without error. If the delegate property is
non-nil, the delegate methods are called, and are passed the SnakesAndLadders instance
as a parameter.

This next example shows a class called DiceGameTracker, which adopts the
DiceGameDelegate protocol:

class DiceGameTracker: DiceGameDelegate {

 var numberOfTurns = 0

 func gameDidStart(game: DiceGame) {

 numberOfTurns = 0

 if game is SnakesAndLadders {

 println("Started a new game of Snakes and Ladders")

 }

 println("The game is using a \(game.dice.sides)-sided dice")

 }

 func game(game: DiceGame, didStartNewTurnWithDiceRoll diceRoll: Int) {

 ++numberOfTurns

 println("Rolled a \(diceRoll)")

 }

 func gameDidEnd(game: DiceGame) {

 println("The game lasted for \(numberOfTurns) turns")

 }

}

DiceGameTracker implements all three methods required by DiceGameDelegate. It uses
these methods to keep track of the number of turns a game has taken. It resets a
numberOfTurns property to zero when the game starts; increments it each time a new
turn begins; and prints out the total number of turns once the game has ended.

The implementation of gameDidStart shown above uses the game parameter to print
some introductory information about the game that is about to be played. The game
parameter has a type of DiceGame, not SnakesAndLadders, and so gameDidStart can access

323

and use only methods and properties that are implemented as part of the DiceGame
protocol. However, the method is still able to use type casting to query the type of the
underlying instance. In this example, it checks whether game is actually an instance of
SnakesAndLadders behind the scenes, and prints an appropriate message if so.

gameDidStart also accesses the dice property of the passed game parameter. Because
game is known to conform to the DiceGame protocol, it is guaranteed to have a dice
property, and so the gameDidStart method is able to access and print the dice’s sides
property, regardless of what kind of game is being played.

Here’s how DiceGameTracker looks in action:

let tracker = DiceGameTracker()

let game = SnakesAndLadders()

game.delegate = tracker

game.play()

// Started a new game of Snakes and Ladders

// The game is using a 6-sided dice

// Rolled a 3

// Rolled a 5

// Rolled a 4

// Rolled a 5

// The game lasted for 4 turns

Adding Protocol Conformance with an Extension

You can extend an existing type to adopt and conform to a new protocol, even if you
do not have access to the source code for the existing type. Extensions can add new
properties, methods, and subscripts to an existing type, and are therefore able to add
any requirements that a protocol may demand. For more about extensions, see
Extensions.

NO T E

324

Existing instances of a type automatically adopt and conform to a protocol when that conformance is
added to the instance’s type in an extension.

For example, this protocol, called TextRepresentable, can be implemented by any type
that has a way to be represented as text. This might be a description of itself, or a
text version of its current state:

protocol TextRepresentable {

 func asText() -> String

}

The Dice class from earlier can be extended to adopt and conform to
TextRepresentable:

extension Dice: TextRepresentable {

 func asText() -> String {

 return "A \(sides)-sided dice"

 }

}

This extension adopts the new protocol in exactly the same way as if Dice had
provided it in its original implementation. The protocol name is provided after the type
name, separated by a colon, and an implementation of all requirements of the
protocol is provided within the extension’s curly braces.

Any Dice instance can now be treated as TextRepresentable:

let d12 = Dice(sides: 12, generator: LinearCongruentialGenerator())

println(d12.asText())

// prints "A 12-sided dice"

Similarly, the SnakesAndLadders game class can be extended to adopt and conform to
the TextRepresentable protocol:

extension SnakesAndLadders: TextRepresentable {

 func asText() -> String {

325

 return "A game of Snakes and Ladders with \(finalSquare) squares"

 }

}

println(game.asText())

// prints "A game of Snakes and Ladders with 25 squares"

Declaring Protocol Adoption with an Extension

If a type already conforms to all of the requirements of a protocol, but has not yet
stated that it adopts that protocol, you can make it adopt the protocol with an empty
extension:

struct Hamster {

 var name: String

 func asText() -> String {

 return "A hamster named \(name)"

 }

}

extension Hamster: TextRepresentable {}

Instances of Hamster can now be used wherever TextRepresentable is the required type:

let simonTheHamster = Hamster(name: "Simon")

let somethingTextRepresentable: TextRepresentable = simonTheHamster

println(somethingTextRepresentable.asText())

// prints "A hamster named Simon"

NO T E

Types do not automatically adopt a protocol just by satisfying its requirements. They must always
explicitly declare their adoption of the protocol.

326

Collections of Protocol Types

A protocol can be used as the type to be stored in a collection such as an array or a
dictionary, as mentioned in Protocols as Types. This example creates an array of
TextRepresentable things:

let things: TextRepresentable[] = [game, d12, simonTheHamster]

It is now possible to iterate over the items in the array, and print each item’s textual
representation:

for thing in things {

 println(thing.asText())

}

// A game of Snakes and Ladders with 25 squares

// A 12-sided dice

// A hamster named Simon

Note that the thing constant is of type TextRepresentable. It is not of type Dice, or
DiceGame, or Hamster, even if the actual instance behind the scenes is of one of those
types. Nonetheless, because it is of type TextRepresentable, and anything that is
TextRepresentable is known to have an asText method, it is safe to call thing.asText
each time through the loop.

Protocol Inheritance

A protocol can inherit one or more other protocols and can add further requirements
on top of the requirements it inherits. The syntax for protocol inheritance is similar to
the syntax for class inheritance, but with the option to list multiple inherited protocols,
separated by commas:

protocol InheritingProtocol: SomeProtocol, AnotherProtocol {

 // protocol definition goes here

}

327

Here’s an example of a protocol that inherits the TextRepresentable protocol from
above:

protocol PrettyTextRepresentable: TextRepresentable {

 func asPrettyText() -> String

}

This example defines a new protocol, PrettyTextRepresentable, which inherits from
TextRepresentable. Anything that adopts PrettyTextRepresentable must satisfy all of the
requirements enforced by TextRepresentable, plus the additional requirements enforced
by PrettyTextRepresentable. In this example, PrettyTextRepresentable adds a single
requirement to provide an instance method called asPrettyText that returns a String.

The SnakesAndLadders class can be extended to adopt and conform to
PrettyTextRepresentable:

extension SnakesAndLadders: PrettyTextRepresentable {

 func asPrettyText() -> String {

 var output = asText() + ":\n"

 for index in 1...finalSquare {

 switch board[index] {

 case let ladder where ladder > 0:

 output += "▲ "

 case let snake where snake < 0:

 output += "▼ "

 default:

 output += "○ "

 }

 }

 return output

 }

}

328

This extension states that it adopts the PrettyTextRepresentable protocol and provides
an implementation of the asPrettyText method for the SnakesAndLadders type. Anything
that is PrettyTextRepresentable must also be TextRepresentable, and so the asPrettyText
implementation starts by calling the asText method from the TextRepresentable protocol
to begin an output string. It appends a colon and a line break, and uses this as the
start of its pretty text representation. It then iterates through the array of board
squares, and appends an emoji representation for each square:

The method implementation can now be used to print a pretty text description of any
SnakesAndLadders instance:

println(game.asPrettyText())

// A game of Snakes and Ladders with 25 squares:

// ○ ○ ▲ ○ ○ ▲ ○ ○ ▲ ▲ ○ ○ ○ ▼ ○ ○ ○ ○ ▼ ○ ○ ▼ ○ ▼ ○

Protocol Composition

It can be useful to require a type to conform to multiple protocols at once. You can
combine multiple protocols into a single requirement with a protocol composition.
Protocol compositions have the form protocol<SomeProtocol, AnotherProtocol>. You can
list as many protocols within the pair of angle brackets (<>) as you need, separated by
commas.

Here’s an example that combines two protocols called Named and Aged into a single
protocol composition requirement on a function parameter:

protocol Named {

 var name: String { get }

}

If the square’s value is greater than 0, it is the base of a ladder, and is
represented by ▲.
If the square’s value is less than 0, it is the head of a snake, and is represented
by ▼.
Otherwise, the square’s value is 0, and it is a “free” square, represented by ○.

329

protocol Aged {

 var age: Int { get }

}

struct Person: Named, Aged {

 var name: String

 var age: Int

}

func wishHappyBirthday(celebrator: protocol<Named, Aged>) {

 println("Happy birthday \(celebrator.name) - you're \(celebrator.age)!")

}

let birthdayPerson = Person(name: "Malcolm", age: 21)

wishHappyBirthday(birthdayPerson)

// prints "Happy birthday Malcolm - you're 21!"

This example defines a protocol called Named, with a single requirement for a gettable
String property called name. It also defines a protocol called Aged, with a single
requirement for a gettable Int property called age. Both of these protocols are adopted
by a structure called Person.

The example also defines a function called wishHappyBirthday, which takes a single
parameter called celebrator. The type of this parameter is protocol<Named, Aged>, which
means “any type that conforms to both the Named and Aged protocols.” It doesn’t matter
what specific type is passed to the function, as long as it conforms to both of the
required protocols.

The example then creates a new Person instance called birthdayPerson and passes this
new instance to the wishHappyBirthday function. Because Person conforms to both
protocols, this is a valid call, and the wishHappyBirthday function is able to print its
birthday greeting.

NO T E

Protocol compositions do not define a new, permanent protocol type. Rather, they define a temporary
local protocol that has the combined requirements of all protocols in the composition.

330

Checking for Protocol Conformance

You can use the is and as operators described in Type Casting to check for protocol
conformance, and to cast to a specific protocol. Checking for and casting to a protocol
follows exactly the same syntax as checking for and casting to a type:

This example defines a protocol called HasArea, with a single property requirement of a
gettable Double property called area:

@objc protocol HasArea {

 var area: Double { get }

}

NO T E

You can check for protocol conformance only if your protocol is marked with the @objc attribute, as seen
for the HasArea protocol above. This attribute indicates that the protocol should be exposed to Objective-
C code and is described in Using Swift with Cocoa and Objective-C. Even if you are not interoperating with
Objective-C, you need to mark your protocols with the @objc attribute if you want to be able to check for
protocol conformance.

Note also that @objc protocols can be adopted only by classes, and not by structures or enumerations. If
you mark your protocol as @objc in order to check for conformance, you will be able to apply that
protocol only to class types.

Here are two classes, Circle and Country, both of which conform to the HasArea
protocol:

class Circle: HasArea {

The is operator returns true if an instance conforms to a protocol and returns
false if it does not.
The as? version of the downcast operator returns an optional value of the
protocol’s type, and this value is nil if the instance does not conform to that
protocol.
The as version of the downcast operator forces the downcast to the protocol
type and triggers a runtime error if the downcast does not succeed.

331

 let pi = 3.1415927

 var radius: Double

 var area: Double { return pi * radius * radius }

 init(radius: Double) { self.radius = radius }

}

class Country: HasArea {

 var area: Double

 init(area: Double) { self.area = area }

}

The Circle class implements the area property requirement as a computed property,
based on a stored radius property. The Country class implements the area requirement
directly as a stored property. Both classes correctly conform to the HasArea protocol.

Here’s a class called Animal, which does not conform to the HasArea protocol:

class Animal {

 var legs: Int

 init(legs: Int) { self.legs = legs }

}

The Circle, Country and Animal classes do not have a shared base class. Nonetheless,
they are all classes, and so instances of all three types can be used to initialize an
array that stores values of type AnyObject:

let objects: AnyObject[] = [

 Circle(radius: 2.0),

 Country(area: 243_610),

 Animal(legs: 4)

]

The objects array is initialized with an array literal containing a Circle instance with a
radius of 2 units; a Country instance initialized with the surface area of the United

332

Kingdom in square kilometers; and an Animal instance with four legs.

The objects array can now be iterated, and each object in the array can be checked to
see if it conforms to the HasArea protocol:

for object in objects {

 if let objectWithArea = object as? HasArea {

 println("Area is \(objectWithArea.area)")

 } else {

 println("Something that doesn't have an area")

 }

}

// Area is 12.5663708

// Area is 243610.0

// Something that doesn't have an area

Whenever an object in the array conforms to the HasArea protocol, the optional value
returned by the as? operator is unwrapped with optional binding into a constant called
objectWithArea. The objectWithArea constant is known to be of type HasArea, and so its
area property can be accessed and printed in a type-safe way.

Note that the underlying objects are not changed by the casting process. They
continue to be a Circle, a Country and an Animal. However, at the point that they are
stored in the objectWithArea constant, they are only known to be of type HasArea, and
so only their area property can be accessed.

Optional Protocol Requirements

You can define optional requirements for protocols, These requirements do not have
to be implemented by types that conform to the protocol. Optional requirements are
prefixed by the @optional keyword as part of the protocol’s definition.

An optional protocol requirement can be called with optional chaining, to account for
the possibility that the requirement was not implemented by a type that conforms to
the protocol. For information on optional chaining, see Optional Chaining.

333

You check for an implementation of an optional requirement by writing a question
mark after the name of the requirement when it is called, such as someOptionalMethod?
(someArgument). Optional property requirements, and optional method requirements
that return a value, will always return an optional value of the appropriate type when
they are accessed or called, to reflect the fact that the optional requirement may not
have been implemented.

NO T E

Optional protocol requirements can only be specified if your protocol is marked with the @objc attribute.
Even if you are not interoperating with Objective-C, you need to mark your protocols with the @objc
attribute if you want to specify optional requirements.

Note also that @objc protocols can be adopted only by classes, and not by structures or enumerations. If
you mark your protocol as @objc in order to specify optional requirements, you will only be able to apply
that protocol to class types.

The following example defines an integer-counting class called Counter, which uses an
external data source to provide its increment amount. This data source is defined by
the CounterDataSource protocol, which has two optional requirements:

@objc protocol CounterDataSource {

 @optional func incrementForCount(count: Int) -> Int

 @optional var fixedIncrement: Int { get }

}

The CounterDataSource protocol defines an optional method requirement called
incrementForCount and an optional property requirement called fixedIncrement. These
requirements define two different ways for data sources to provide an appropriate
increment amount for a Counter instance.

NO T E

Strictly speaking, you can write a custom class that conforms to CounterDataSource without
implementing either protocol requirement. They are both optional, after all. Although technically allowed,
this wouldn’t make for a very good data source.

The Counter class, defined below, has an optional dataSource property of type

334

CounterDataSource?:

@objc class Counter {

 var count = 0

 var dataSource: CounterDataSource?

 func increment() {

 if let amount = dataSource?.incrementForCount?(count) {

 count += amount

 } else if let amount = dataSource?.fixedIncrement? {

 count += amount

 }

 }

}

The Counter class stores its current value in a variable property called count. The
Counter class also defines a method called increment, which increments the count
property every time the method is called.

The increment method first tries to retrieve an increment amount by looking for an
implementation of the incrementForCount method on its data source. The increment
method uses optional chaining to try to call incrementForCount, and passes the current
count value as the method’s single argument.

Note two levels of optional chaining at play here. Firstly, it is possible that dataSource
may be nil, and so dataSource has a question mark after its name to indicate that
incrementForCount should only be called if dataSource is non-nil. Secondly, even if
dataSource does exist, there is no guarantee that it implements incrementForCount,
because it is an optional requirement. This is why incrementForCount is also written
with a question mark after its name.

Because the call to incrementForCount can fail for either of these two reasons, the call
returns an optional Int value. This is true even though incrementForCount is defined as
returning a non-optional Int value in the definition of CounterDataSource.

After calling incrementForCount, the optional Int that it returns is unwrapped into a
constant called amount, using optional binding. If the optional Int does contain a value
—that is, if the delegate and method both exist, and the method returned a value—

335

the unwrapped amount is added onto the stored count property, and incrementation is
complete.

If it is not possible to retrieve a value from the incrementForCount method—either
because dataSource is nil, or because the data source does not implement
incrementForCount—then the increment method tries to retrieve a value from the data
source’s fixedIncrement property instead. The fixedIncrement property is also an
optional requirement, and so its name is also written using optional chaining with a
question mark on the end, to indicate that the attempt to access the property’s value
can fail. As before, the returned value is an optional Int value, even though
fixedIncrement is defined as a non-optional Int property as part of the
CounterDataSource protocol definition.

Here’s a simple CounterDataSource implementation where the data source returns a
constant value of 3 every time it is queried. It does this by implementing the optional
fixedIncrement property requirement:

class ThreeSource: CounterDataSource {

 let fixedIncrement = 3

}

You can use an instance of ThreeSource as the data source for a new Counter instance:

var counter = Counter()

counter.dataSource = ThreeSource()

for _ in 1...4 {

 counter.increment()

 println(counter.count)

}

// 3

// 6

// 9

// 12

The code above creates a new Counter instance; sets its data source to be a new
ThreeSource instance; and calls the counter’s increment method four times. As expected,

336

the counter’s count property increases by three each time increment is called.

Here’s a more complex data source called TowardsZeroSource, which makes a Counter
instance count up or down towards zero from its current count value:

class TowardsZeroSource: CounterDataSource {

 func incrementForCount(count: Int) -> Int {

 if count == 0 {

 return 0

 } else if count < 0 {

 return 1

 } else {

 return -1

 }

 }

}

The TowardsZeroSource class implements the optional incrementForCount method from
the CounterDataSource protocol and uses the count argument value to work out which
direction to count in. If count is already zero, the method returns 0 to indicate that no
further counting should take place.

You can use an instance of TowardsZeroSource with the existing Counter instance to
count from -4 to zero. Once the counter reaches zero, no more counting takes place:

counter.count = -4

counter.dataSource = TowardsZeroSource()

for _ in 1...5 {

 counter.increment()

 println(counter.count)

}

// -3

// -2

337

// -1

// 0

// 0

338

Generics

Generic code enables you to write flexible, reusable functions and types that can work
with any type, subject to requirements that you define. You can write code that avoids
duplication and expresses its intent in a clear, abstracted manner.

Generics are one of the most powerful features of Swift, and much of the Swift
standard library is built with generic code. In fact, you’ve been using generics
throughout this Language Guide, even if you didn’t realize it. For example, Swift’s Array
and Dictionary types are both generic collections. You can create an array that holds
Int values, or an array that holds String values, or indeed an array for any other type
that can be created in Swift. Similarly, you can create a dictionary to store values of
any specified type, and there are no limitations on what that type can be.

The Problem That Generics Solve

Here’s a standard, non-generic function called swapTwoInts, which swaps two Int
values:

func swapTwoInts(inout a: Int, inout b: Int) {

 let temporaryA = a

 a = b

 b = temporaryA

}

This function makes use of in-out parameters to swap the values of a and b, as
described in In-Out Parameters.

The swapTwoInts function swaps the original value of b into a, and the original value of a
into b. You can call this function to swap the values in two Int variables:

var someInt = 3

var anotherInt = 107

swapTwoInts(&someInt, &anotherInt)

339

println("someInt is now \(someInt), and anotherInt is now \(anotherInt)")

// prints "someInt is now 107, and anotherInt is now 3"

The swapTwoInts function is useful, but it can only be used with Int values. If you want
to swap two String values, or two Double values, you have to write more functions,
such as the swapTwoStrings and swapTwoDoubles functions shown below:

func swapTwoStrings(inout a: String, inout b: String) {

 let temporaryA = a

 a = b

 b = temporaryA

}

func swapTwoDoubles(inout a: Double, inout b: Double) {

 let temporaryA = a

 a = b

 b = temporaryA

}

You may have noticed that the bodies of the swapTwoInts, swapTwoStrings, and
swapTwoDoubles functions are identical. The only difference is the type of the values that
they accept (Int, String, and Double).

It would be much more useful, and considerably more flexible, to write a single
function that could swap two values of any type. This is the kind of problem that
generic code can solve. (A generic version of these functions is defined below.)

NO T E

In all three functions, it is important that the types of a and b are defined to be the same as each other.
If a and b were not of the same type, it would not be possible to swap their values. Swift is a type-safe
language, and does not allow (for example) a variable of type String and a variable of type Double to
swap values with each other. Attempting to do so would be reported as a compile-time error.

340

Generic Functions

Generic functions can work with any type. Here’s a generic version of the swapTwoInts
function from above, called swapTwoValues:

func swapTwoValues<T>(inout a: T, inout b: T) {

 let temporaryA = a

 a = b

 b = temporaryA

}

The body of the swapTwoValues function is identical to the body of the swapTwoInts
function. However, the first line of swapTwoValues is slightly different from swapTwoInts.
Here’s how the first lines compare:

func swapTwoInts(inout a: Int, inout b: Int)

func swapTwoValues<T>(inout a: T, inout b: T)

The generic version of the function uses a placeholder type name (called T, in this
case) instead of an actual type name (such as Int, String, or Double). The placeholder
type name doesn’t say anything about what T must be, but it does say that both a and
b must be of the same type T, whatever T represents. The actual type to use in place
of T will be determined each time the swapTwoValues function is called.

The other difference is that the generic function’s name (swapTwoValues) is followed by
the placeholder type name (T) inside angle brackets (<T>). The brackets tell Swift that
T is a placeholder type name within the swapTwoValues function definition. Because T is
a placeholder, Swift does not look for an actual type called T.

The swapTwoValues function can now be called in the same way as swapTwoInts, except
that it can be passed two values of any type, as long as both of those values are of
the same type as each other. Each time swapTwoValues is called, the type to use for T is
inferred from the types of values passed to the function.

In the two examples below, T is inferred to be Int and String respectively:

var someInt = 3

var anotherInt = 107

341

swapTwoValues(&someInt, &anotherInt)

// someInt is now 107, and anotherInt is now 3

var someString = "hello"

var anotherString = "world"

swapTwoValues(&someString, &anotherString)

// someString is now "world", and anotherString is now "hello"

NO T E

The swapTwoValues function defined above is inspired by a generic function called swap, which is part of
the Swift standard library, and is automatically made available for you to use in your apps. If you need the
behavior of the swapTwoValues function in your own code, you can use Swift’s existing swap function
rather than providing your own implementation.

Type Parameters

In the swapTwoValues example above, the placeholder type T is an example of a type
parameter. Type parameters specify and name a placeholder type, and are written
immediately after the function’s name, between a pair of matching angle brackets
(such as <T>).

Once specified, a type parameter can be used to define the type of a function’s
parameters (such as the a and b parameters of the swapTwoValues function); or as the
function’s return type; or as a type annotation within the body of the function. In each
case, the placeholder type represented by the type parameter is replaced with an
actual type whenever the function is called. (In the swapTwoValues example above, T
was replaced with Int the first time the function was called, and was replaced with
String the second time it was called.)

You can provide more than one type parameter by writing multiple type parameter
names within the angle brackets, separated by commas.

Naming Type Parameters

342

In simple cases where a generic function or generic type needs to refer to a single
placeholder type (such as the swapTwoValues generic function above, or a generic
collection that stores a single type, such as Array), it is traditional to use the single-
character name T for the type parameter. However, you are can use any valid
identifier as the type parameter name.

If you are defining more complex generic functions, or generic types with multiple
parameters, it can be useful to provide more descriptive type parameter names. For
example, Swift’s Dictionary type has two type parameters—one for its keys and one
for its values. If you were writing Dictionary yourself, you might name these two type
parameters KeyType and ValueType to remind you of their purpose as you use them
within your generic code.

NO T E

Always give type parameters UpperCamelCase names (such as T and KeyType) to indicate that they
are a placeholder for a type, not a value.

Generic Types

In addition to generic functions, Swift enables you to define your own generic types.
These are custom classes, structures, and enumerations that can work with any type,
in a similar way to Array and Dictionary.

This section shows you how to write a generic collection type called Stack. A stack is
an ordered set of values, similar to an array, but with a more restricted set of
operations than Swift’s Array type. An array allows new items to be inserted and
removed at any location in the array. A stack, however, allows new items to be
appended only to the end of the collection (known as pushing a new value on to the
stack). Similarly, a stack allows items to be removed only from the end of the
collection (known as popping a value off the stack).

NO T E

The concept of a stack is used by the UINavigationController class to model the view controllers in
its navigation hierarchy. You call the UINavigationController class
pushViewController:animated: method to add (or push) a view controller on to the navigation
stack, and its popViewControllerAnimated: method to remove (or pop) a view controller from the
navigation stack. A stack is a useful collection model whenever you need a strict “last in, first out”

343

approach to managing a collection.

The illustration below shows the push / pop behavior for a stack:

1. There are currently three values on the stack.
2. A fourth value is “pushed” on to the top of the stack.
3. The stack now holds four values, with the most recent one at the top.
4. The top item in the stack is removed, or “popped”.
5. After popping a value, the stack once again holds three values.

Here’s how to write a non-generic version of a stack, in this case for a stack of Int
values:

struct IntStack {

 var items = Int[]()

 mutating func push(item: Int) {

 items.append(item)

 }

 mutating func pop() -> Int {

 return items.removeLast()

 }

}

344

This structure uses an Array property called items to store the values in the stack. Stack
provides two methods, push and pop, to push and pop values on and off the stack.
These methods are marked as mutating, because they need to modify (or mutate) the
structure’s items array.

The IntStack type shown above can only be used with Int values, however. It would
be much more useful to define a generic Stack class, that can manage a stack of any
type of value.

Here’s a generic version of the same code:

struct Stack<T> {

 var items = T[]()

 mutating func push(item: T) {

 items.append(item)

 }

 mutating func pop() -> T {

 return items.removeLast()

 }

}

Note how the generic version of Stack is essentially the same as the non-generic
version, but with a placeholder type parameter called T instead of an actual type of
Int. This type parameter is written within a pair of angle brackets (<T>) immediately
after the structure’s name.

T defines a placeholder name for “some type T” to be provided later on. This future
type can be referred to as “T” anywhere within the structure’s definition. In this case, T
is used as a placeholder in three places:

To create a property called items, which is initialized with an empty array of
values of type T
To specify that the push method has a single parameter called item, which must
be of type T
To specify that the value returned by the pop method will be a value of type T

345

You create instances of Stack in a similar way to Array and Dictionary, by writing the
actual type to be used for this specific stack within angle brackets after the type name
when creating a new instance with initializer syntax:

var stackOfStrings = Stack<String>()

stackOfStrings.push("uno")

stackOfStrings.push("dos")

stackOfStrings.push("tres")

stackOfStrings.push("cuatro")

// the stack now contains 4 strings

Here’s how stackOfStrings looks after pushing these four values on to the stack:

Popping a value from the stack returns and removes the top value, "cuatro":

let fromTheTop = stackOfStrings.pop()

// fromTheTop is equal to "cuatro", and the stack now contains 3 strings

Here’s how the stack looks after popping its top value:

346

Because it is a generic type, Stack can be used to create a stack of any valid type in
Swift, in a similar manner to Array and Dictionary.

Type Constraints

The swapTwoValues function and the Stack type can work with any type. However, it is
sometimes useful to enforce certain type constraints on the types that can be used
with generic functions and generic types. Type constraints specify that a type
parameter must inherit from a specific class, or conform to a particular protocol or
protocol composition.

For example, Swift’s Dictionary type places a limitation on the types that can be used
as keys for a dictionary. As described in Dictionaries, the type of a dictionary’s keys
must be hashable. That is, it must provide a way to make itself uniquely
representable. Dictionary needs its keys to be hashable so that it can check whether it
already contains a value for a particular key. Without this requirement, Dictionary
could not tell whether it should insert or replace a value for a particular key, nor would
it be able to find a value for a given key that is already in the dictionary.

This requirement is enforced by a type constraint on the key type for Dictionary, which
specifies that the key type must conform to the Hashable protocol, a special protocol
defined in the Swift standard library. All of Swift’s basic types (such as String, Int,
Double, and Bool) are hashable by default.

You can define your own type constraints when creating custom generic types, and
these constraints provide much of the power of generic programming. Abstract
concepts like Hashable characterize types in terms of their conceptual characteristics,
rather than their explicit type.

347

Type Constraint Syntax

You write type constraints by placing a single class or protocol constraint after a type
parameter’s name, separated by a colon, as part of the type parameter list. The basic
syntax for type constraints on a generic function is shown below (although the syntax
is the same for generic types):

func someFunction<T: SomeClass, U: SomeProtocol>(someT: T, someU: U) {

 // function body goes here

}

The hypothetical function above has two type parameters. The first type parameter, T,
has a type constraint that requires T to be a subclass of SomeClass. The second type
parameter, U, has a type constraint that requires U to conform to the protocol
SomeProtocol.

Type Constraints in Action

Here’s a non-generic function called findStringIndex, which is given a String value to
find and an array of String values within which to find it. The findStringIndex function
returns an optional Int value, which will be the index of the first matching string in the
array if it is found, or nil if the string cannot be found:

func findStringIndex(array: String[], valueToFind: String) -> Int? {

 for (index, value) in enumerate(array) {

 if value == valueToFind {

 return index

 }

 }

 return nil

}

The findStringIndex function can be used to find a string value in an array of strings:

348

let strings = ["cat", "dog", "llama", "parakeet", "terrapin"]

if let foundIndex = findStringIndex(strings, "llama") {

 println("The index of llama is \(foundIndex)")

}

// prints "The index of llama is 2"

The principle of finding the index of a value in an array isn’t useful only for strings,
however. You can write the same functionality as a generic function called findIndex,
by replacing any mention of strings with values of some type T instead.

Here’s how you might expect a generic version of findStringIndex, called findIndex, to
be written. Note that the return type of this function is still Int?, because the function
returns an optional index number, not an optional value from the array. Be warned,
though—this function does not compile, for reasons explained after the example:

func findIndex<T>(array: T[], valueToFind: T) -> Int? {

 for (index, value) in enumerate(array) {

 if value == valueToFind {

 return index

 }

 }

 return nil

}

This function does not compile as written above. The problem lies with the equality
check, “if value == valueToFind”. Not every type in Swift can be compared with the
equal to operator (==). If you create your own class or structure to represent a
complex data model, for example, then the meaning of “equal to” for that class or
structure is not something that Swift can guess for you. Because of this, it is not
possible to guarantee that this code will work for every possible type T, and an
appropriate error is reported when you try to compile the code.

All is not lost, however. The Swift standard library defines a protocol called Equatable,
which requires any conforming type to implement the equal to operator (==) and the
not equal to operator (!=) to compare any two values of that type. All of Swift’s
standard types automatically support the Equatable protocol.

349

Any type that is Equatable can be used safely with the findIndex function, because it is
guaranteed to support the equal to operator. To express this fact, you write a type
constraint of Equatable as part of the type parameter’s definition when you define the
function:

func findIndex<T: Equatable>(array: T[], valueToFind: T) -> Int? {

 for (index, value) in enumerate(array) {

 if value == valueToFind {

 return index

 }

 }

 return nil

}

The single type parameter for findIndex is written as T: Equatable, which means “any
type T that conforms to the Equatable protocol.”

The findIndex function now compiles successfully and can be used with any type that is
Equatable, such as Double or String:

let doubleIndex = findIndex([3.14159, 0.1, 0.25], 9.3)

// doubleIndex is an optional Int with no value, because 9.3 is not in the array

let stringIndex = findIndex(["Mike", "Malcolm", "Andrea"], "Andrea")

// stringIndex is an optional Int containing a value of 2

Associated Types

When defining a protocol, it is sometimes useful to declare one or more associated
types as part of the protocol’s definition. An associated type gives a placeholder name
(or alias) to a type that is used as part of the protocol. The actual type to use for that
associated type is not specified until the protocol is adopted. Associated types are
specified with the typealias keyword.

350

Associated Types in Action

Here’s an example of a protocol called Container, which declares an associated type
called ItemType:

protocol Container {

 typealias ItemType

 mutating func append(item: ItemType)

 var count: Int { get }

 subscript(i: Int) -> ItemType { get }

}

The Container protocol defines three required capabilities that any container must
provide:

This protocol doesn’t specify how the items in the container should be stored or what
type they are allowed to be. The protocol only specifies the three bits of functionality
that any type must provide in order to be considered a Container. A conforming type
can provide additional functionality, as long as it satisfies these three requirements.

Any type that conforms to the Container protocol must be able to specify the type of
values it stores. Specifically, it must ensure that only items of the right type are added
to the container, and it must be clear about the type of the items returned by its
subscript.

To define these requirements, the Container protocol needs a way to refer to the type
of the elements that a container will hold, without knowing what that type is for a
specific container. The Container protocol needs to specify that any value passed to the
append method must have the same type as the container’s element type, and that the
value returned by the container’s subscript will be of the same type as the container’s
element type.

It must be possible to add a new item to the container with an append method.
It must be possible to access a count of the items in the container through a
count property that returns an Int value.
It must be possible to retrieve each item in the container with a subscript that
takes an Int index value.

351

To achieve this, the Container protocol declares an associated type called ItemType,
written as typealias ItemType. The protocol does not define what ItemType is an alias
for—that information is left for any conforming type to provide. Nonetheless, the
ItemType alias provides a way to refer to the type of the items in a Container, and to
define a type for use with the append method and subscript, to ensure that the
expected behavior of any Container is enforced.

Here’s a version of the non-generic IntStack type from earlier, adapted to conform to
the Container protocol:

struct IntStack: Container {

 // original IntStack implementation

 var items = Int[]()

 mutating func push(item: Int) {

 items.append(item)

 }

 mutating func pop() -> Int {

 return items.removeLast()

 }

 // conformance to the Container protocol

 typealias ItemType = Int

 mutating func append(item: Int) {

 self.push(item)

 }

 var count: Int {

 return items.count

 }

 subscript(i: Int) -> Int {

 return items[i]

 }

}

352

The IntStack type implements all three of the Container protocol’s requirements, and in
each case wraps part of the IntStack type’s existing functionality to satisfy these
requirements.

Moreover, IntStack specifies that for this implementation of Container, the appropriate
ItemType to use is a type of Int. The definition of typealias ItemType = Int turns the
abstract type of ItemType into a concrete type of Int for this implementation of the
Container protocol.

Thanks to Swift’s type inference, you don’t actually need to declare a concrete ItemType
of Int as part of the definition of IntStack. Because IntStack conforms to all of the
requirements of the Container protocol, Swift can infer the appropriate ItemType to use,
simply by looking at the type of the append method’s item parameter and the return
type of the subscript. Indeed, if you delete the typealias ItemType = Int line from the
code above, everything still works, because it is clear what type should be used for
ItemType.

You can also make the generic Stack type conform to the Container protocol:

struct Stack<T>: Container {

 // original Stack<T> implementation

 var items = T[]()

 mutating func push(item: T) {

 items.append(item)

 }

 mutating func pop() -> T {

 return items.removeLast()

 }

 // conformance to the Container protocol

 mutating func append(item: T) {

 self.push(item)

 }

 var count: Int {

 return items.count

353

 }

 subscript(i: Int) -> T {

 return items[i]

 }

}

This time, the placeholder type parameter T is used as the type of the append method’s
item parameter and the return type of the subscript. Swift can therefore infer that T is
the appropriate type to use as the ItemType for this particular container.

Extending an Existing Type to Specify an Associated Type

You can extend an existing type to add conformance to a protocol, as described in
Adding Protocol Conformance with an Extension. This includes a protocol with an
associated type.

Swift’s Array type already provides an append method, a count property, and a subscript
with an Int index to retrieve its elements. These three capabilities match the
requirements of the Container protocol. This means that you can extend Array to
conform to the Container protocol simply by declaring that Array adopts the protocol.
You do this with an empty extension, as described in Declaring Protocol Adoption with
an Extension:

extension Array: Container {}

Array’s existing append method and subscript enable Swift to infer the appropriate type
to use for ItemType, just as for the generic Stack type above. After defining this
extension, you can use any Array as a Container.

Where Clauses

Type constraints, as described in Type Constraints, enable you to define requirements
on the type parameters associated with a generic function or type.

It can also be useful to define requirements for associated types. You do this by
defining where clauses as part of a type parameter list. A where clause enables you to

354

require that an associated type conforms to a certain protocol, and/or that certain type
parameters and associated types be the same. You write a where clause by placing
the where keyword immediately after the list of type parameters, followed by one or
more constraints for associated types, and/or one or more equality relationships
between types and associated types.

The example below defines a generic function called allItemsMatch, which checks to
see if two Container instances contain the same items in the same order. The function
returns a Boolean value of true if all items match and a value of false if they do not.

The two containers to be checked do not have to be the same type of container
(although they can be), but they do have to hold the same type of items. This
requirement is expressed through a combination of type constraints and where
clauses:

func allItemsMatch<

 C1: Container, C2: Container

 where C1.ItemType == C2.ItemType, C1.ItemType: Equatable>

 (someContainer: C1, anotherContainer: C2) -> Bool {

 // check that both containers contain the same number of items

 if someContainer.count != anotherContainer.count {

 return false

 }

 // check each pair of items to see if they are equivalent

 for i in 0..someContainer.count {

 if someContainer[i] != anotherContainer[i] {

 return false

 }

 }

 // all items match, so return true

355

 return true

}

This function takes two arguments called someContainer and anotherContainer. The
someContainer argument is of type C1, and the anotherContainer argument is of type C2.
Both C1 and C2 are placeholder type parameters for two container types to be
determined when the function is called.

The function’s type parameter list places the following requirements on the two type
parameters:

The third and fourth requirements are defined as part of a where clause, and are
written after the where keyword as part of the function’s type parameter list.

These requirements mean:

The third and fourth requirements combine to mean that the items in anotherContainer
can also be checked with the != operator, because they are exactly the same type as
the items in someContainer.

These requirements enable the allItemsMatch function to compare the two containers,
even if they are of a different container type.

The allItemsMatch function starts by checking that both containers contain the same

C1 must conform to the Container protocol (written as C1: Container).
C2 must also conform to the Container protocol (written as C2: Container).
The ItemType for C1 must be the same as the ItemType for C2 (written as
C1.ItemType == C2.ItemType).
The ItemType for C1 must conform to the Equatable protocol (written as
C1.ItemType: Equatable).

someContainer is a container of type C1.
anotherContainer is a container of type C2.
someContainer and anotherContainer contain the same type of items.
The items in someContainer can be checked with the not equal operator (!=) to
see if they are different from each other.

356

number of items. If they contain a different number of items, there is no way that they
can match, and the function returns false.

After making this check, the function iterates over all of the items in someContainer with
a for-in loop and the half-closed range operator (..). For each item, the function
checks whether the item from someContainer is not equal to the corresponding item in
anotherContainer. If the two items are not equal, then the two containers do not
match, and the function returns false.

If the loop finishes without finding a mismatch, the two containers match, and the
function returns true.

Here’s how the allItemsMatch function looks in action:

var stackOfStrings = Stack<String>()

stackOfStrings.push("uno")

stackOfStrings.push("dos")

stackOfStrings.push("tres")

var arrayOfStrings = ["uno", "dos", "tres"]

if allItemsMatch(stackOfStrings, arrayOfStrings) {

 println("All items match.")

} else {

 println("Not all items match.")

}

// prints "All items match."

The example above creates a Stack instance to store String values, and pushes three
strings onto the stack. The example also creates an Array instance initialized with an
array literal containing the same three strings as the stack. Even though the stack and
the array are of a different type, they both conform to the Container protocol, and both
contain the same type of values. You can therefore call the allItemsMatch function with
these two containers as its arguments. In the example above, the allItemsMatch
function correctly reports that all of the items in the two containers match.

357

Advanced Operators

In addition to the operators described in Basic Operators, Swift provides several
advanced operators that perform more complex value manipulation. These include all
of the bitwise and bit shifting operators you will be familiar with from C and Objective-
C.

Unlike arithmetic operators in C, arithmetic operators in Swift do not overflow by
default. Overflow behavior is trapped and reported as an error. To opt in to overflow
behavior, use Swift’s second set of arithmetic operators that overflow by default, such
as the overflow addition operator (&+). All of these overflow operators begin with an
ampersand (&).

When you define your own structures, classes, and enumerations, it can be useful to
provide your own implementations of the standard Swift operators for these custom
types. Swift makes it easy to provide tailored implementations of these operators and
to determine exactly what their behavior should be for each type you create.

You’re not just limited to the predefined operators. Swift gives you the freedom to
define your own custom infix, prefix, postfix, and assignment operators, with custom
precedence and associativity values. These operators can be used and adopted in your
code just like any of the predefined operators, and you can even extend existing types
to support the custom operators you define.

Bitwise Operators

Bitwise operators enable you to manipulate the individual raw data bits within a data
structure. They are often used in low-level programming, such as graphics
programming and device driver creation. Bitwise operators can also be useful when
you work with raw data from external sources, such as encoding and decoding data for
communication over a custom protocol.

Swift supports all of the bitwise operators found in C, as described below.

Bitwise NOT Operator

358

The bitwise NOT operator (~) inverts all bits in a number:

The bitwise NOT operator is a prefix operator, and appears immediately before the
value it operates on, without any white space:

let initialBits: UInt8 = 0b00001111

let invertedBits = ~initialBits // equals 11110000

UInt8 integers have eight bits and can store any value between 0 and 255. This
example initializes a UInt8 integer with the binary value 00001111, which has its first
four bits set to 0, and its second four bits set to 1. This is equivalent to a decimal value
of 15.

The bitwise NOT operator is then used to create a new constant called invertedBits,
which is equal to initialBits, but with all of the bits inverted. Zeroes become ones,
and ones become zeroes. The value of invertedBits is 11110000, which is equal to an
unsigned decimal value of 240.

Bitwise AND Operator

The bitwise AND operator (&) combines the bits of two numbers. It returns a new
number whose bits are set to 1 only if the bits were equal to 1 in both input numbers:

359

In the example below, the values of firstSixBits and lastSixBits both have four
middle bits equal to 1. The bitwise AND operator combines them to make the number
00111100, which is equal to an unsigned decimal value of 60:

let firstSixBits: UInt8 = 0b11111100

let lastSixBits: UInt8 = 0b00111111

let middleFourBits = firstSixBits & lastSixBits // equals 00111100

Bitwise OR Operator

The bitwise OR operator (|) compares the bits of two numbers. The operator returns a
new number whose bits are set to 1 if the bits are equal to 1 in either input number:

In the example below, the values of someBits and moreBits have different bits set to 1.
The bitwise OR operator combines them to make the number 11111110, which equals
an unsigned decimal of 254:

let someBits: UInt8 = 0b10110010

let moreBits: UInt8 = 0b01011110

let combinedbits = someBits | moreBits // equals 11111110

Bitwise XOR Operator

The bitwise XOR operator, or “exclusive OR operator” (^), compares the bits of two
numbers. The operator returns a new number whose bits are set to 1 where the input

360

bits are different and are set to 0 where the input bits are the same:

In the example below, the values of firstBits and otherBits each have a bit set to 1 in
a location that the other does not. The bitwise XOR operator sets both of these bits to
1 in its output value. All of the other bits in firstBits and otherBits match and are set
to 0 in the output value:

let firstBits: UInt8 = 0b00010100

let otherBits: UInt8 = 0b00000101

let outputBits = firstBits ^ otherBits // equals 00010001

Bitwise Left and Right Shift Operators

The bitwise left shift operator (<<) and bitwise right shift operator (>>) move all bits in
a number to the left or the right by a certain number of places, according to the rules
defined below.

Bitwise left and right shifts have the effect of multiplying or dividing an integer number
by a factor of two. Shifting an integer’s bits to the left by one position doubles its
value, whereas shifting it to the right by one position halves its value.

Shifting Behavior for Unsigned Integers

The bit-shifting behavior for unsigned integers is as follows:

1. Existing bits are moved to the left or right by the requested number of places.
2. Any bits that are moved beyond the bounds of the integer’s storage are discarded.

361

3. Zeroes are inserted in the spaces left behind after the original bits are moved to
the left or right.

This approach is known as a logical shift.

The illustration below shows the results of 11111111 << 1 (which is 11111111 shifted to
the left by 1 place), and 11111111 >> 1 (which is 11111111 shifted to the right by 1
place). Blue numbers are shifted, gray numbers are discarded, and orange zeroes are
inserted:

Here’s how bit shifting looks in Swift code:

let shiftBits: UInt8 = 4 // 00000100 in binary

shiftBits << 1 // 00001000

shiftBits << 2 // 00010000

shiftBits << 5 // 10000000

shiftBits << 6 // 00000000

shiftBits >> 2 // 00000001

You can use bit shifting to encode and decode values within other data types:

let pink: UInt32 = 0xCC6699

let redComponent = (pink & 0xFF0000) >> 16 // redComponent is 0xCC, or 204

let greenComponent = (pink & 0x00FF00) >> 8 // greenComponent is 0x66, or 102

let blueComponent = pink & 0x0000FF // blueComponent is 0x99, or 153

This example uses a UInt32 constant called pink to store a Cascading Style Sheets
color value for the color pink. The CSS color value #CC6699 is written as 0xCC6699 in
Swift’s hexadecimal number representation. This color is then decomposed into its red
(CC), green (66), and blue (99) components by the bitwise AND operator (&) and the
bitwise right shift operator (>>).

362

The red component is obtained by performing a bitwise AND between the numbers
0xCC6699 and 0xFF0000. The zeroes in 0xFF0000 effectively “mask” the second and third
bytes of 0xCC6699, causing the 6699 to be ignored and leaving 0xCC0000 as the result.

This number is then shifted 16 places to the right (>> 16). Each pair of characters in a
hexadecimal number uses 8 bits, so a move 16 places to the right will convert 0xCC0000
into 0x0000CC. This is the same as 0xCC, which has a decimal value of 204.

Similarly, the green component is obtained by performing a bitwise AND between the
numbers 0xCC6699 and 0x00FF00, which gives an output value of 0x006600. This output
value is then shifted eight places to the right, giving a a value of 0x66, which has a
decimal value of 102.

Finally, the blue component is obtained by performing a bitwise AND between the
numbers 0xCC6699 and 0x0000FF, which gives an output value of 0x000099. There’s no
need to shift this to the right, as 0x000099 already equals 0x99, which has a decimal
value of 153.

Shifting Behavior for Signed Integers

The shifting behavior is more complex for signed integers than for unsigned integers,
because of the way signed integers are represented in binary. (The examples below
are based on 8-bit signed integers for simplicity, but the same principles apply for
signed integers of any size.)

Signed integers use their first bit (known as the sign bit) to indicate whether the
integer is positive or negative. A sign bit of 0 means positive, and a sign bit of 1 means
negative.

The remaining bits (known as the value bits) store the actual value. Positive numbers
are stored in exactly the same way as for unsigned integers, counting upwards from 0.
Here’s how the bits inside an Int8 look for the number 4:

The sign bit is 0 (meaning “positive”), and the seven value bits are just the number 4,
written in binary notation.

363

Negative numbers, however, are stored differently. They are stored by subtracting
their absolute value from 2 to the power of n, where n is the number of value bits. An
eight-bit number has seven value bits, so this means 2 to the power of 7, or 128.

Here’s how the bits inside an Int8 look for the number -4:

This time, the sign bit is 1 (meaning “negative”), and the seven value bits have a
binary value of 124 (which is 128 - 4):

The encoding for negative numbers is known as a two’s complement representation. It
may seem an unusual way to represent negative numbers, but it has several
advantages.

First, you can add -1 to -4, simply by performing a standard binary addition of all eight
bits (including the sign bit), and discarding anything that doesn’t fit in the eight bits
once you’re done:

Second, the two’s complement representation also lets you shift the bits of negative
numbers to the left and right like positive numbers, and still end up doubling them for
every shift you make to the left, or halving them for every shift you make to the right.
To achieve this, an extra rule is used when signed integers are shifted to the right:

364

This action ensures that signed integers have the same sign after they are shifted to
the right, and is known as an arithmetic shift.

Because of the special way that positive and negative numbers are stored, shifting
either of them to the right moves them closer to zero. Keeping the sign bit the same
during this shift means that negative integers remain negative as their value moves
closer to zero.

Overflow Operators

If you try to insert a number into an integer constant or variable that cannot hold that
value, by default Swift reports an error rather than allowing an invalid value to be
created. This behavior gives extra safety when you work with numbers that are too
large or too small.

For example, the Int16 integer type can hold any signed integer number between -
32768 and 32767. Trying to set a UInt16 constant or variable to a number outside of this
range causes an error:

var potentialOverflow = Int16.max

// potentialOverflow equals 32767, which is the largest value an Int16 can hold

potentialOverflow += 1

// this causes an error

Providing error handling when values get too large or too small gives you much more
flexibility when coding for boundary value conditions.

However, when you specifically want an overflow condition to truncate the number of

When you shift signed integers to the right, apply the same rules as for
unsigned integers, but fill any empty bits on the left with the sign bit, rather
than with a zero.

365

available bits, you can opt in to this behavior rather than triggering an error. Swift
provides five arithmetic overflow operators that opt in to the overflow behavior for
integer calculations. These operators all begin with an ampersand (&):

Value Overflow

Here’s an example of what happens when an unsigned value is allowed to overflow,
using the overflow addition operator (&+):

var willOverflow = UInt8.max

// willOverflow equals 255, which is the largest value a UInt8 can hold

willOverflow = willOverflow &+ 1

// willOverflow is now equal to 0

The variable willOverflow is initialized with the largest value a UInt8 can hold (255, or
11111111 in binary). It is then incremented by 1 using the overflow addition operator
(&+). This pushes its binary representation just over the size that a UInt8 can hold,
causing it to overflow beyond its bounds, as shown in the diagram below. The value
that remains within the bounds of the UInt8 after the overflow addition is 00000000, or
zero:

Overflow addition (&+)
Overflow subtraction (&-)
Overflow multiplication (&*)
Overflow division (&/)
Overflow remainder (&%)

366

Value Underflow

Numbers can also become too small to fit in their type’s maximum bounds. Here’s an
example.

The smallest value that a UInt8 can hold is 0 (which is 00000000 in eight-bit binary
form). If you subtract 1 from 00000000 using the overflow subtraction operator, the
number will overflow back round to 11111111, or 255 in decimal:

Here’s how that looks in Swift code:

var willUnderflow = UInt8.min

// willUnderflow equals 0, which is the smallest value a UInt8 can hold

willUnderflow = willUnderflow &- 1

// willUnderflow is now equal to 255

A similar underflow occurs for signed integers. All subtraction for signed integers is
performed as straight binary subtraction, with the sign bit included as part of the
numbers being subtracted, as described in Bitwise Left and Right Shift Operators. The
smallest number that an Int8 can hold is -128, which is 10000000 in binary. Subtracting 1
from this binary number with the overflow operator gives a binary value of 01111111,
which toggles the sign bit and gives positive 127, the largest positive value that an Int8
can hold:

367

Here’s the same thing in Swift code:

var signedUnderflow = Int8.min

// signedUnderflow equals -128, which is the smallest value an Int8 can hold

signedUnderflow = signedUnderflow &- 1

// signedUnderflow is now equal to 127

The end result of the overflow and underflow behavior described above is that for both
signed and unsigned integers, overflow always wraps around from the largest valid
integer value back to the smallest, and underflow always wraps around from the
smallest value to the largest.

Division by Zero

Dividing a number by zero (i / 0), or trying to calculate remainder by zero (i % 0),
causes an error:

let x = 1

let y = x / 0

However, the overflow versions of these operators (&/ and &%) return a value of zero if
you divide by zero:

let x = 1

let y = x &/ 0

// y is equal to 0

368

Precedence and Associativity

Operator precedence gives some operators higher priority than others; these operators
are calculated first.

Operator associativity defines how operators of the same precedence are grouped
together (or associated)—either grouped from the left, or grouped from the right.
Think of it as meaning “they associate with the expression to their left,” or “they
associate with the expression to their right.”

It is important to consider each operator’s precedence and associativity when working
out the order in which a compound expression will be calculated. Here’s an example.
Why does the following expression equal 4?

2 + 3 * 4 % 5

// this equals 4

Taken strictly from left to right, you might expect this to read as follows:

However, the actual answer is 4, not 0. Higher-precedence operators are evaluated
before lower-precedence ones. In Swift, as in C, the multiplication operator (*) and the
remainder operator (%) have a higher precedence than the addition operator (+). As a
result, they are both evaluated before the addition is considered.

However, multiplication and remainder have the same precedence as each other. To
work out the exact evaluation order to use, you also need to consider their
associativity. Multiplication and remainder both associate with the expression to their
left. Think of this as adding implicit parentheses around these parts of the expression,
starting from their left:

2 + ((3 * 4) % 5)

(3 * 4) is 12, so this is equivalent to:

2 plus 3 equals 5;
5 times 4 equals 20;
20 remainder 5 equals 0

369

2 + (12 % 5)

(12 % 5) is 2, so this is equivalent to:

2 + 2

This calculation yields the final answer of 4.

For a complete list of Swift operator precedences and associativity rules, see
Expressions.

NO T E

Swift’s operator precedences and associativity rules are simpler and more predictable than those found in C
and Objective-C. However, this means that they are not the same as in C-based languages. Be careful to
ensure that operator interactions still behave in the way you intend when porting existing code to Swift.

Operator Functions

Classes and structures can provide their own implementations of existing operators.
This is known as overloading the existing operators.

The example below shows how to implement the arithmetic addition operator (+) for a
custom structure. The arithmetic addition operator is a binary operator because it
operates on two targets and is said to be infix because it appears in between those
two targets.

The example defines a Vector2D structure for a two-dimensional position vector (x, y),
followed by a definition of an operator function to add together instances of the
Vector2D structure:

struct Vector2D {

 var x = 0.0, y = 0.0

}

@infix func + (left: Vector2D, right: Vector2D) -> Vector2D {

 return Vector2D(x: left.x + right.x, y: left.y + right.y)

370

}

The operator function is defined as a global function called +, which takes two input
parameters of type Vector2D and returns a single output value, also of type Vector2D.
You implement an infix operator by writing the @infix attribute before the func
keyword when declaring the operator function.

In this implementation, the input parameters are named left and right to represent
the Vector2D instances that will be on the left side and right side of the + operator. The
function returns a new Vector2D instance, whose x and y properties are initialized with
the sum of the x and y properties from the two Vector2D instances that are added
together.

The function is defined globally, rather than as a method on the Vector2D structure, so
that it can be used as an infix operator between existing Vector2D instances:

let vector = Vector2D(x: 3.0, y: 1.0)

let anotherVector = Vector2D(x: 2.0, y: 4.0)

let combinedVector = vector + anotherVector

// combinedVector is a Vector2D instance with values of (5.0, 5.0)

This example adds together the vectors (3.0, 1.0) and (2.0, 4.0) to make the vector
(5.0, 5.0), as illustrated below.

371

Prefix and Postfix Operators

The example shown above demonstrates a custom implementation of a binary infix
operator. Classes and structures can also provide implementations of the standard
unary operators. Unary operators operate on a single target. They are prefix if they
precede their target (such as -a) and postfix operators if they follow their target (such
as i++).

You implement a prefix or postfix unary operator by writing the @prefix or @postfix
attribute before the func keyword when declaring the operator function:

@prefix func - (vector: Vector2D) -> Vector2D {

 return Vector2D(x: -vector.x, y: -vector.y)

}

The example above implements the unary minus operator (-a) for Vector2D instances.
The unary minus operator is a prefix operator, and so this function has to be qualified
with the @prefix attribute.

For simple numeric values, the unary minus operator converts positive numbers into
their negative equivalent and vice versa. The corresponding implementation for

372

Vector2D instances performs this operation on both the x and y properties:

let positive = Vector2D(x: 3.0, y: 4.0)

let negative = -positive

// negative is a Vector2D instance with values of (-3.0, -4.0)

let alsoPositive = -negative

// alsoPositive is a Vector2D instance with values of (3.0, 4.0)

Compound Assignment Operators

Compound assignment operators combine assignment (=) with another operation. For
example, the addition assignment operator (+=) combines addition and assignment
into a single operation. Operator functions that implement compound assignment must
be qualified with the @assignment attribute. You must also mark a compound
assignment operator’s left input parameter as inout, because the parameter’s value
will be modified directly from within the operator function.

The example below implements an addition assignment operator function for Vector2D
instances:

@assignment func += (inout left: Vector2D, right: Vector2D) {

 left = left + right

}

Because an addition operator was defined earlier, you don’t need to reimplement the
addition process here. Instead, the addition assignment operator function takes
advantage of the existing addition operator function, and uses it to set the left value
to be the left value plus the right value:

var original = Vector2D(x: 1.0, y: 2.0)

let vectorToAdd = Vector2D(x: 3.0, y: 4.0)

original += vectorToAdd

// original now has values of (4.0, 6.0)

373

You can combine the @assignment attribute with either the @prefix or @postfix attribute,
as in this implementation of the prefix increment operator (++a) for Vector2D instances:

@prefix @assignment func ++ (inout vector: Vector2D) -> Vector2D {

 vector += Vector2D(x: 1.0, y: 1.0)

 return vector

}

The prefix increment operator function above takes advantage of the addition
assignment operator defined earlier. It adds a Vector2D with x and y values of 1.0 to
the Vector2D on which it is called, and returns the result:

var toIncrement = Vector2D(x: 3.0, y: 4.0)

let afterIncrement = ++toIncrement

// toIncrement now has values of (4.0, 5.0)

// afterIncrement also has values of (4.0, 5.0)

NO T E

It is not possible to overload the default assignment operator (=). Only the compound assignment
operators can be overloaded. Similarly, the ternary conditional operator (a ? b : c) cannot be
overloaded.

Equivalence Operators

Custom classes and structures do not receive a default implementation of the
equivalence operators, known as the “equal to” operator (==) and “not equal to”
operator (!=). It is not possible for Swift to guess what would qualify as “equal” for
your own custom types, because the meaning of “equal” depends on the roles that
those types play in your code.

To use the equivalence operators to check for equivalence of your own custom type,
provide an implementation of the operators in the same way as for other infix
operators:

374

@infix func == (left: Vector2D, right: Vector2D) -> Bool {

 return (left.x == right.x) && (left.y == right.y)

}

@infix func != (left: Vector2D, right: Vector2D) -> Bool {

 return !(left == right)

}

The above example implements an “equal to” operator (==) to check if two Vector2D
instances have equivalent values. In the context of Vector2D, it makes sense to
consider “equal” as meaning “both instances have the same x values and y values”,
and so this is the logic used by the operator implementation. The example also
implements the “not equal to” operator (!=), which simply returns the inverse of the
result of the “equal to” operator.

You can now use these operators to check whether two Vector2D instances are
equivalent:

let twoThree = Vector2D(x: 2.0, y: 3.0)

let anotherTwoThree = Vector2D(x: 2.0, y: 3.0)

if twoThree == anotherTwoThree {

 println("These two vectors are equivalent.")

}

// prints "These two vectors are equivalent."

Custom Operators

You can declare and implement your own custom operators in addition to the standard
operators provided by Swift. Custom operators can be defined only with the characters
/ = - + * % < > ! & | ^ . ~.

New operators are declared at a global level using the operator keyword, and can be
declared as prefix, infix or postfix:

operator prefix +++ {}

375

The example above defines a new prefix operator called +++. This operator does not
have an existing meaning in Swift, and so it is given its own custom meaning below in
the specific context of working with Vector2D instances. For the purposes of this
example, +++ is treated as a new “prefix doubling incrementer” operator. It doubles
the x and y values of a Vector2D instance, by adding the vector to itself with the
addition assignment operator defined earlier:

@prefix @assignment func +++ (inout vector: Vector2D) -> Vector2D {

 vector += vector

 return vector

}

This implementation of +++ is very similar to the implementation of ++ for Vector2D,
except that this operator function adds the vector to itself, rather than adding
Vector2D(1.0, 1.0):

var toBeDoubled = Vector2D(x: 1.0, y: 4.0)

let afterDoubling = +++toBeDoubled

// toBeDoubled now has values of (2.0, 8.0)

// afterDoubling also has values of (2.0, 8.0)

Precedence and Associativity for Custom Infix Operators

Custom infix operators can also specify a precedence and an associativity. See
Precedence and Associativity for an explanation of how these two characteristics affect
an infix operator’s interaction with other infix operators.

The possible values for associativity are left, right, and none. Left-associative
operators associate to the left if written next to other left-associative operators of the
same precedence. Similarly, right-associative operators associate to the right if written
next to other right-associative operators of the same precedence. Non-associative
operators cannot be written next to other operators with the same precedence.

The associativity value defaults to none if it is not specified. The precedence value
defaults to 100 if it is not specified.

The following example defines a new custom infix operator called +-, with left

376

associativity and a precedence of 140:

operator infix +- { associativity left precedence 140 }

func +- (left: Vector2D, right: Vector2D) -> Vector2D {

 return Vector2D(x: left.x + right.x, y: left.y - right.y)

}

let firstVector = Vector2D(x: 1.0, y: 2.0)

let secondVector = Vector2D(x: 3.0, y: 4.0)

let plusMinusVector = firstVector +- secondVector

// plusMinusVector is a Vector2D instance with values of (4.0, -2.0)

This operator adds together the x values of two vectors, and subtracts the y value of
the second vector from the first. Because it is in essence an “additive” operator, it has
been given the same associativity and precedence values (left and 140) as default
additive infix operators such as + and -. For a complete list of the default Swift
operator precedence and associativity settings, see Expressions.

377

Language Reference

378

About the Language Reference

This part of the book describes the formal grammar of the Swift programming
language. The grammar described here is intended to help you understand the
language in more detail, rather than to allow you to directly implement a parser or
compiler.

The Swift language is relatively small, because many common types, functions, and
operators that appear virtually everywhere in Swift code are actually defined in the
Swift standard library. Although these types, functions, and operators are not part of
the Swift language itself, they are used extensively in the discussions and code
examples in this part of the book.

How to Read the Grammar

The notation used to describe the formal grammar of the Swift programming language
follows a few conventions:

As an example, the grammar of a getter-setter block is defined as follows:

G RA MMA R O F A G E T T E R-S E T T E R B L O CK

An arrow (→) is used to mark grammar productions and can be read as “can
consist of.“
Syntactic categories are indicated by italic text and appear on both sides of a
grammar production rule.
Literal words and punctuation are indicated by boldface constant width text and
appear only on the right-hand side of a grammar production rule.
Alternative grammar productions are separated by vertical bars (|). When
alternative productions are too long to read easily, they are broken into
multiple grammar production rules on new lines.
In a few cases, regular font text is used to describe the right-hand side of a
grammar production rule.
Optional syntactic categories and literals are marked by a trailing subscript,
opt.

379

​ getter-setter-block → { getter-clause setter-clause opt } { setter-clause getter-
clause }

This definition indicates that a getter-setter block can consist of a getter clause
followed by an optional setter clause, enclosed in braces, or a setter clause followed
by a getter clause, enclosed in braces. The grammar production above is equivalent to
the following two productions, where the alternatives are spelled out explicitly:

G RA MMA R O F A G E T T E R S E T T E R B L O CK

​ getter-setter-block → { getter-clause setter-clause opt }

​ getter-setter-block → { setter-clause getter-clause }

380

Lexical Structure

The lexical structure of Swift describes what sequence of characters form valid tokens
of the language. These valid tokens form the lowest-level building blocks of the
language and are used to describe the rest of the language in subsequent chapters.

In most cases, tokens are generated from the characters of a Swift source file by
considering the longest possible substring from the input text, within the constraints of
the grammar that are specified below. This behavior is referred to as longest match or
maximal munch.

Whitespace and Comments

Whitespace has two uses: to separate tokens in the source file and to help determine
whether an operator is a prefix or postfix (see Operators), but is otherwise ignored.
The following characters are considered whitespace: space (U+0020), line feed
(U+000A), carriage return (U+000D), horizontal tab (U+0009), vertical tab (U+000B),
form feed (U+000C) and null (U+0000).

Comments are treated as whitespace by the compiler. Single line comments begin
with // and continue until the end of the line. Multiline comments begin with /* and
end with */. Nesting is allowed, but the comment markers must be balanced.

Identifiers

Identifiers begin with an upper case or lower case letter A through Z, an underscore
(_), a noncombining alphanumeric Unicode character in the Basic Multilingual Plane, or
a character outside the Basic Multilingual Plan that isn’t in a Private Use Area. After
the first character, digits and combining Unicode characters are also allowed.

To use a reserved word as an identifier, put a backtick (`) before and after it. For
example, class is not a valid identifier, but `class` is valid. The backticks are not
considered part of the identifier; `x` and x have the same meaning.

Inside a closure with no explicit parameter names, the parameters are implicitly
named $0, $1, $2, and so on. These names are valid identifiers within the scope of the

381

closure.

G RA MMA R O F A N IDE N T IF IE R

​ identifier → identifier-head identifier-charactersopt

​ identifier → ` identifier-head identifier-charactersopt `

​ identifier → implicit-parameter-name
​ identifier-list → identifier identifier , identifier-list

​ identifier-head → Upper- or lowercase letter A through Z
​ identifier-head → U+00A8, U+00AA, U+00AD, U+00AF, U+00B2–U+00B5, or

U+00B7–U+00BA
​ identifier-head → U+00BC–U+00BE, U+00C0–U+00D6, U+00D8–U+00F6, or

U+00F8–U+00FF
​ identifier-head → U+0100–U+02FF, U+0370–U+167F, U+1681–U+180D, or

U+180F–U+1DBF
​ identifier-head → U+1E00–U+1FFF
​ identifier-head → U+200B–U+200D, U+202A–U+202E, U+203F–U+2040, U+2054,

or U+2060–U+206F
​ identifier-head → U+2070–U+20CF, U+2100–U+218F, U+2460–U+24FF, or

U+2776–U+2793
​ identifier-head → U+2C00–U+2DFF or U+2E80–U+2FFF
​ identifier-head → U+3004–U+3007, U+3021–U+302F, U+3031–U+303F, or

U+3040–U+D7FF
​ identifier-head → U+F900–U+FD3D, U+FD40–U+FDCF, U+FDF0–U+FE1F, or

U+FE30–U+FE44
​ identifier-head → U+FE47–U+FFFD
​ identifier-head → U+10000–U+1FFFD, U+20000–U+2FFFD, U+30000–U+3FFFD,

or U+40000–U+4FFFD
​ identifier-head → U+50000–U+5FFFD, U+60000–U+6FFFD, U+70000–U+7FFFD,

or U+80000–U+8FFFD
​ identifier-head → U+90000–U+9FFFD, U+A0000–U+AFFFD, U+B0000–U+BFFFD,

or U+C0000–U+CFFFD
​ identifier-head → U+D0000–U+DFFFD or U+E0000–U+EFFFD

​ identifier-character → Digit 0 through 9
​ identifier-character → U+0300–U+036F, U+1DC0–U+1DFF, U+20D0–U+20FF, or

U+FE20–U+FE2F
​ identifier-character → identifier-head
​ identifier-characters → identifier-character identifier-charactersopt

382

​ implicit-parameter-name → $ decimal-digits

Keywords

The following keywords are reserved and may not be used as identifiers, unless
they’re escaped with backticks, as described above in Identifiers.

Literals

A literal is the source code representation of a value of an integer, floating-point
number, or string type. The following are examples of literals:

42 // Integer literal

3.14159 // Floating-point literal

"Hello, world!" // String literal

G RA MMA R O F A L IT E RA L

​ literal → integer-literal floating-point-literal string-literal

Keywords used in declarations: class, deinit, enum, extension, func, import, init,
let, protocol, static, struct, subscript, typealias, and var.
Keywords used in statements: break, case, continue, default, do, else,
fallthrough, if, in, for, return, switch, where, and while.
Keywords used in expressions and types: as, dynamicType, is, new, super, self,
Self, Type, __COLUMN__, __FILE__, __FUNCTION__, and __LINE__.

Keywords reserved in particular contexts: associativity, didSet, get, infix,
inout, left, mutating, none, nonmutating, operator, override, postfix, precedence,
prefix, right, set, unowned, unowned(safe), unowned(unsafe), weak and willSet.
Outside the context in which they appear in the grammar, they can be used as
identifiers.

383

Integer Literals

Integer literals represent integer values of unspecified precision. By default, integer
literals are expressed in decimal; you can specify an alternate base using a prefix.
Binary literals begin with 0b, octal literals begin with 0o, and hexadecimal literals begin
with 0x.

Decimal literals contain the digits 0 through 9. Binary literals contain 0 and 1, octal
literals contain 0 through 7, and hexadecimal literals contain 0 through 9 as well as A
through F in upper- or lowercase.

Negative integers literals are expressed by prepending a minus sign (-) to an integer
literal, as in -42.

Underscores (_) are allowed between digits for readability, but are ignored and
therefore don’t affect the value of the literal. Integer literals can begin with leading
zeros (0), but are likewise ignored and don’t affect the base or value of the literal.

Unless otherwise specified, the default type of an integer literal is the Swift standard
library type Int. The Swift standard library also defines types for various sizes of
signed and unsigned integers, as described in Integers.

G RA MMA R O F A N IN T E G E R L IT E RA L

​ integer-literal → binary-literal
​ integer-literal → octal-literal
​ integer-literal → decimal-literal
​ integer-literal → hexadecimal-literal

​ binary-literal → 0b binary-digit binary-literal-charactersopt

​ binary-digit → Digit 0 or 1
​ binary-literal-character → binary-digit _
​ binary-literal-characters → binary-literal-character binary-literal-charactersopt

​ octal-literal → 0o octal-digit octal-literal-charactersopt

​ octal-digit → Digit 0 through 7
​ octal-literal-character → octal-digit _
​ octal-literal-characters → octal-literal-character octal-literal-charactersopt

​ decimal-literal → decimal-digit decimal-literal-charactersopt

​ decimal-digit → Digit 0 through 9
​ decimal-digits → decimal-digit decimal-digitsopt

384

​ decimal-literal-character → decimal-digit _
​ decimal-literal-characters → decimal-literal-character decimal-literal-charactersopt

​ hexadecimal-literal → 0x hexadecimal-digit hexadecimal-literal-charactersopt

​ hexadecimal-digit → Digit 0 through 9, a through f, or A through F
​ hexadecimal-literal-character → hexadecimal-digit _
​ hexadecimal-literal-characters → hexadecimal-literal-character hexadecimal-

literal-charactersopt

Floating-Point Literals

Floating-point literals represent floating-point values of unspecified precision.

By default, floating-point literals are expressed in decimal (with no prefix), but they
can also be expressed in hexadecimal (with a 0x prefix).

Decimal floating-point literals consist of a sequence of decimal digits followed by
either a decimal fraction, a decimal exponent, or both. The decimal fraction consists of
a decimal point (.) followed by a sequence of decimal digits. The exponent consists of
an upper- or lowercase e prefix followed by sequence of decimal digits that indicates
what power of 10 the value preceding the e is multiplied by. For example, 1.25e2
represents 1.25 � 102, which evaluates to 125.0. Similarly, 1.25e-2 represents 1.25 �
10-2, which evaluates to 0.0125.

Hexadecimal floating-point literals consist of a 0x prefix, followed by an optional
hexadecimal fraction, followed by a hexadecimal exponent. The hexadecimal fraction
consists of a decimal point followed by a sequence of hexadecimal digits. The
exponent consists of an upper- or lowercase p prefix followed by sequence of decimal
digits that indicates what power of 2 the value preceding the p is multiplied by. For
example, 0xFp2 represents 15 � 22, which evaluates to 60. Similarly, 0xFp-2 represents
15 � 2-2, which evaluates to 3.75.

Unlike with integer literals, negative floating-point numbers are expressed by applying
the unary minus operator (-) to a floating-point literal, as in -42.0. The result is an
expression, not a floating-point integer literal.

Underscores (_) are allowed between digits for readability, but are ignored and
therefore don’t affect the value of the literal. Floating-point literals can begin with
leading zeros (0), but are likewise ignored and don’t affect the base or value of the
literal.

385

Unless otherwise specified, the default type of a floating-point literal is the Swift
standard library type Double, which represents a 64-bit floating-point number. The
Swift standard library also defines a Float type, which represents a 32-bit floating-
point number.

G RA MMA R O F A F L O AT IN G -P O IN T L IT E RA L

​ floating-point-literal → decimal-literal decimal-fractionopt decimal-exponentopt

​ floating-point-literal → hexadecimal-literal hexadecimal-fractionopt hexadecimal-
exponent

​ decimal-fraction → . decimal-literal
​ decimal-exponent → floating-point-e signopt decimal-literal

​ hexadecimal-fraction → . hexadecimal-literalopt

​ hexadecimal-exponent → floating-point-p signopt hexadecimal-literal

​ floating-point-e → e E
​ floating-point-p → p P
​ sign → + -

String Literals

A string literal is a sequence of characters surrounded by double quotes, with the
following form:

" characters "

String literals cannot contain an unescaped double quote ("), an unescaped backslash
(\), a carriage return, or a line feed.

Special characters can be included in string literals using the following escape
sequences:

Null Character (\0)
Backslash (\\)
Horizontal Tab (\t)
Line Feed (\n)

386

Characters can also be expressed by \x followed by two hexadecimal digits, \u
followed by four hexadecimal digits, or \U followed by eight hexadecimal digits. The
digits in these escape sequences identify a Unicode codepoint.

The value of an expression can be inserted into a string literal by placing the
expression in parentheses after a backslash (\). The interpolated expression must not
contain an unescaped double quote ("), an unescaped backslash (\), a carriage return,
or a line feed. The expression must evaluate to a value of a type that the String class
has an initializer for.

For example, all the following string literals have the same value:

"1 2 3"

"1 2 \(3)"

"1 2 \(1 + 2)"

var x = 3; "1 2 \(x)"

The default type of a string literal is String. The characters that make up a string are
of type Character. For more information about the String and Character types, see
Strings and Characters.

G RA MMA R O F A S T RIN G L IT E RA L

​ string-literal → " quoted-text "

​ quoted-text → quoted-text-item quoted-textopt

​ quoted-text-item → escaped-character
​ quoted-text-item → \(expression)

​ quoted-text-item → Any Unicode extended grapheme cluster except " , \ ,
U+000A, or U+000D

​ escaped-character → \0 \\ \t \n \r \" \'
​ escaped-character → \x hexadecimal-digit hexadecimal-digit
​ escaped-character → \u hexadecimal-digit hexadecimal-digit hexadecimal-

digit hexadecimal-digit

Carriage Return (\r)
Double Quote (\")
Single Quote (\')

387

​ escaped-character → \U hexadecimal-digit hexadecimal-digit hexadecimal-
digit hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-
digit hexadecimal-digit

Operators

The Swift standard library defines a number of operators for your use, many of which
are discussed in Basic Operators and Advanced Operators. The present section
describes which characters can be used as operators.

Operators are made up of one or more of the following characters: /, =, -, +, !, *, %, <,
>, &, |, ^, ~, and .. That said, the tokens =, ->, //, /*, */, ., and the unary prefix
operator & are reserved. These tokens can’t be overloaded, nor can they be used to
define custom operators.

The whitespace around an operator is used to determine whether an operator is used
as a prefix operator, a postfix operator, or a binary operator. This behavior is
summarized in the following rules:

For the purposes of these rules, the characters (, [, and { before an operator, the
characters),], and } after an operator, and the characters ,, ;, and : are also
considered whitespace.

There is one caveat to the rules above. If the ! or ? operator has no whitespace on the

If an operator has whitespace around both sides or around neither side, it is
treated as a binary operator. As an example, the + operator in a+b and a + b is
treated as a binary operator.
If an operator has whitespace on the left side only, it is treated as a prefix
unary operator. As an example, the ++ operator in a ++b is treated as a prefix
unary operator.
If an operator has whitespace on the right side only, it is treated as a postfix
unary operator. As an example, the ++ operator in a++ b is treated as a postfix
unary operator.
If an operator has no whitespace on the left but is followed immediately by a
dot (.), it is treated as a postfix unary operator. As an example, the ++
operator in a++.b is treated as a postfix unary operator (a++ . b rather than a
++ .b).

388

left, it is treated as a postfix operator, regardless of whether it has whitespace on the
right. To use the ? operator as syntactic sugar for the Optional type, it must not have
whitespace on the left. To use it in the conditional (? :) operator, it must have
whitespace around both sides.

In certain constructs, operators with a leading < or > may be split into two or more
tokens. The remainder is treated the same way and may be split again. As a result,
there is no need to use whitespace to disambiguate between the closing > characters
in constructs like Dictionary<String, Array<Int>>. In this example, the closing >
characters are not treated as a single token that may then be misinterpreted as a bit
shift >> operator.

To learn how to define new, custom operators, see Custom Operators and Operator
Declaration. To learn how to overload existing operators, see Operator Functions.

G RA MMA R O F O P E RAT O RS

​ operator → operator-character operatoropt

​ operator-character → / = - + ! * % < > & | ^ ~ .

​ binary-operator → operator
​ prefix-operator → operator
​ postfix-operator → operator

389

Types

In Swift, there are two kinds of types: named types and compound types. A named
type is a type that can be given a particular name when it is defined. Named types
include classes, structures, enumerations, and protocols. For example, instances of a
user-defined class named MyClass have the type MyClass. In addition to user-defined
named types, the Swift standard library defines many commonly used named types,
including those that represent arrays, dictionaries, and optional values.

Data types that are normally considered basic or primitive in other languages—such as
types that represent numbers, characters, and strings—are actually named types,
defined and implemented in the Swift standard library using structures. Because they
are named types, you can extend their behavior to suit the needs of your program,
using an extension declaration, discussed in Extensions and Extension Declaration.

A compound type is a type without a name, defined in the Swift language itself. There
are two compound types: function types and tuple types. A compound type may
contain named types and other compound types. For instance, the tuple type (Int,
(Int, Int)) contains two elements: The first is the named type Int, and the second is
another compound type (Int, Int).

This chapter discusses the types defined in the Swift language itself and describes the
type inference behavior of Swift.

G RA MMA R O F A T Y P E

​ type → array-type function-type type-identifier tuple-type optional-type
implicitly-unwrapped-optional-type protocol-composition-type metatype-type

Type Annotation

A type annotation explicitly specifies the type of a variable or expression. Type
annotations begin with a colon (:) and end with a type, as the following examples
show:

let someTuple: (Double, Double) = (3.14159, 2.71828)

func someFunction(a: Int) { /* ... */ }

390

In the first example, the expression someTuple is specified to have the tuple type
(Double, Double). In the second example, the parameter a to the function someFunction
is specified to have the type Int.

Type annotations can contain an optional list of type attributes before the type.

G RA MMA R O F A T Y P E A N N O T AT IO N

​ type-annotation → : attributesopt type

Type Identifier

A type identifier refers to either a named type or a type alias of a named or compound
type.

Most of the time, a type identifier directly refers to a named type with the same name
as the identifier. For example, Int is a type identifier that directly refers to the named
type Int, and the type identifier Dictionary<String, Int> directly refers to the named
type Dictionary<String, Int>.

There are two cases in which a type identifier does not refer to a type with the same
name. In the first case, a type identifier refers to a type alias of a named or compound
type. For instance, in the example below, the use of Point in the type annotation refers
to the tuple type (Int, Int).

typealias Point = (Int, Int)

let origin: Point = (0, 0)

In the second case, a type identifier uses dot (.) syntax to refer to named types
declared in other modules or nested within other types. For example, the type
identifier in the following code references the named type MyType that is declared in
the ExampleModule module.

var someValue: ExampleModule.MyType

G RA MMA R O F A T Y P E IDE N T IF IE R

​ type-identifier → type-name generic-argument-clause opt type-name generic-
argument-clause opt . type-identifier

​ type-name → identifier

391

Tuple Type

A tuple type is a comma-separated list of zero or more types, enclosed in parentheses.

You can use a tuple type as the return type of a function to enable the function to
return a single tuple containing multiple values. You can also name the elements of a
tuple type and use those names to refer to the values of the individual elements. An
element name consists of an identifier followed immediately by a colon (:). For an
example that demonstrates both of these features, see Functions with Multiple Return
Values.

Void is a typealias for the the empty tuple type, (). If there is only one element inside
the parentheses, the type is simply the type of that element. For example, the type of
(Int) is Int, not (Int). As a result, you can label a tuple element only when the tuple
type has two or more elements.

G RA MMA R O F A T U P L E T Y P E

​ tuple-type → (tuple-type-bodyopt)

​ tuple-type-body → tuple-type-element-list ... opt

​ tuple-type-element-list → tuple-type-element tuple-type-element , tuple-type-
element-list

​ tuple-type-element → attributesopt inout opt type inout opt element-name type-
annotation

​ element-name → identifier

Function Type

A function type represents the type of a function, method, or closure and consists of a
parameter and return type separated by an arrow (->):

parameter type -> return type

Because the parameter type and the return type can be a tuple type, function types
support functions and methods that take multiple paramaters and return multiple
values.

You can apply the auto_closure attribute to a function type that has a parameter type

392

of () and that returns the type of an expression (see Type Attributes). An autoclosure
function captures an implicit closure over the specified expression, instead of the
expression itself. The following example uses the auto_closure attribute in defining a
very simple assert function:

func simpleAssert(condition: @auto_closure () -> Bool, message: String) {

 if !condition() {

 println(message)

 }

}

let testNumber = 5

simpleAssert(testNumber % 2 == 0, "testNumber isn't an even number.")

// prints "testNumber isn't an even number."

A function type can have a variadic parameter as the last parameter in its parameter
type. Syntactically, a variadic parameter consists of a base type name followed
immediately by three dots (...), as in Int.... A variadic parameter is treated as an
array that contains elements of the base type name. For instance, the variadic
parameter Int... is treated as Int[]. For an example that uses a variadic parameter,
see Variadic Parameters.

To specify an in-out parameter, prefix the parameter type with the inout keyword. You
can’t mark a variadic parameter or a return type with the inout keyword. In-out
parameters are discussed in In-Out Parameters.

The type of a curried function is equivalent to a nested function type. For example, the
type of the curried function addTwoNumbers()() below is Int -> Int -> Int:

func addTwoNumbers(a: Int)(b: Int) -> Int {

 return a + b

}

addTwoNumbers(4)(5) // Returns 9

The function types of a curried function are grouped from right to left. For instance,
the function type Int -> Int -> Int is understood as Int -> (Int -> Int)—that is, a
function that takes an Int and returns another function that takes and return an Int.

393

For example, you can rewrite the curried function addTwoNumbers()() as the following
nested function:

func addTwoNumbers(a: Int) -> (Int -> Int) {

 func addTheSecondNumber(b: Int) -> Int {

 return a + b

 }

 return addTheSecondNumber

}

addTwoNumbers(4)(5) // Returns 9

G RA MMA R O F A FU N CT IO N T Y P E

​ function-type → type -> type

Array Type

The Swift language uses square brackets ([]) immediately after the name of a type as
syntactic sugar for the named type Array<T>, which is defined in the Swift standard
library. In other words, the following two declarations are equivalent:

let someArray: String[] = ["Alex", "Brian", "Dave"]

let someArray: Array<String> = ["Alex", "Brian", "Dave"]

In both cases, the constant someArray is declared as an array of strings. The elements
of an array can be accessed using square brackets as well: someArray[0] refers to the
element at index 0, "Alex".

As the above example also shows, you can use square brackets to create an array
using an array literal. Empty array literals are written using an empty pair of square
brackets and can be used to create an empty array of a specified type.

var emptyArray: Double[] = []

You can create multidimensional arrays by chaining multiple sets of square brackets to
the name of the base type of the elements. For example, you can create a three-

394

dimensional array of integers using three sets of square brackets:

var array3D: Int[][][] = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]

When accessing the elements in a multidimensional array, the left-most subscript
index refers to the element at that index in the outermost array. The next subscript
index to the right refers to the element at that index in the array that’s nested one
level in. And so on. This means that in the example above, array3D[0] refers to [[1,
2], [3, 4]], array3D[0][1] refers to [3, 4], and array3D[0][1][1] refers to the value 4.

For a detailed discussion of the Swift standard library Array type, see Arrays.

G RA MMA R O F A N A RRAY T Y P E

​ array-type → type [] array-type []

Optional Type

The Swift language defines the postfix ? as syntactic sugar for the named type
Optional<T>, which is defined in the Swift standard library. In other words, the following
two declarations are equivalent:

var optionalInteger: Int?

var optionalInteger: Optional<Int>

In both cases, the variable optionalInteger is declared to have the type of an optional
integer. Note that no whitespace may appear between the type and the ?.

The type Optional<T> is an enumeration with two cases, None and Some(T), which are
used to represent values that may or may not be present. Any type can be explicitly
declared to be (or implicitly converted to) an optional type. When declaring an
optional type, be sure to use parentheses to properly scope the ? operator. As an
example, to declare an optional array of integers, write the type annotation as
(Int[])?; writing Int[]? produces an error.

If you don’t provide an initial value when you declare an optional variable or property,
its value automatically defaults to nil.

Optionals conform to the LogicValue protocol and therefore may occur in a Boolean
context. In that context, if an instance of an optional type T? contains any value of

395

type T (that is, it’s value is Optional.Some(T)), the optional type evaluates to true.
Otherwise, it evaluates to false.

If an instance of an optional type contains a value, you can access that value using the
postfix operator !, as shown below:

optionalInteger = 42

optionalInteger! // 42

Using the ! operator to unwrap an optional that has a value of nil results in a runtime
error.

You can also use optional chaining and optional binding to conditionally perform an
operation on an optional expression. If the value is nil, no operation is performed and
therefore no runtime error is produced.

For more information and to see examples that show how to use optional types, see
Optionals.

G RA MMA R O F A N O P T IO N A L T Y P E

​ optional-type → type ?

Implicitly Unwrapped Optional Type

The Swift language defines the postfix ! as syntactic sugar for the named type
ImplicitlyUnwrappedOptional<T>, which is defined in the Swift standard library. In other
words, the following two declarations are equivalent:

var implicitlyUnwrappedString: String!

var implicitlyUnwrappedString: ImplicitlyUnwrappedOptional<String>

In both cases, the variable implicitlyUnwrappedString is declared to have the type of an
implicitly unwrapped optional string. Note that no whitespace may appear between
the type and the !.

You can use implicitly unwrapped optionals in all the same places in your code that
you can use optionals. For instance, you can assign values of implicitly unwrapped
optionals to variables, constants, and properties of optionals, and vice versa.

396

As with optionals, if you don’t provide an initial value when you declare an implicitly
unwrapped optional variable or property, it’s value automatically defaults to nil.

Because the value of an implicitly unwrapped optional is automatically unwrapped
when you use it, there’s no need to use the ! operator to unwrap it. That said, if you
try to use an implicitly unwrapped optional that has a value of nil, you’ll get a runtime
error.

Use optional chaining to conditionally perform an operation on an implicitly unwrapped
optional expression. If the value is nil, no operation is performed and therefore no
runtime error is produced.

For more information about implicitly unwrapped optional types, see Implicitly
Unwrapped Optionals.

G RA MMA R O F A N IMP L IC IT LY U N W RA P P E D O P T IO N A L T Y P E

​ implicitly-unwrapped-optional-type → type !

Protocol Composition Type

A protocol composition type describes a type that conforms to each protocol in a list of
specified protocols. Protocol composition types may be used in type annotations and in
generic parameters.

Protocol composition types have the following form:

protocol< Protocol 1 , Protocol 2 >

A protocol composition type allows you to specify a value whose type conforms to the
requirements of multiple protocols without having to explicitly define a new, named
protocol that inherits from each protocol you want the type to conform to. For
example, specifying a protocol composition type protocol<ProtocolA, ProtocolB,
ProtocolC> is effectively the same as defining a new protocol ProtocolD that inherits
from ProtocolA, ProtocolB, and ProtocolC, but without having to introduce a new name.

Each item in a protocol composition list must be either the name of protocol or a type
alias of a protocol composition type. If the list is empty, it specifies the empty protocol
composition type, which every type conforms to.

G RA MMA R O F A P RO T O CO L CO MP O S IT IO N T Y P E

397

​ protocol-composition-type → protocol < protocol-identifier-listopt >

​ protocol-identifier-list → protocol-identifier protocol-identifier , protocol-
identifier-list

​ protocol-identifier → type-identifier

Metatype Type

A metatype type refers to the type of any type, including class types, structure types,
enumeration types, and protocol types.

The metatype of a class, structure, or enumeration type is the name of that type
followed by .Type. The metatype of a protocol type—not the concrete type that
conforms to the protocol at runtime—is the name of that protocol followed by
.Protocol. For example, the metatype of the class type SomeClass is SomeClass.Type and
the metatype of the protocol SomeProtocol is SomeProtocol.Protocol.

You can use the postfix self expression to access a type as a value. For example,
SomeClass.self returns SomeClass itself, not an instance of SomeClass. And
SomeProtocol.self returns SomeProtocol itself, not an instance of a type that conforms to
SomeProtocol at runtime. You can use a dynamicType expression with an instance of a
type to access that instance’s runtime type as a value, as the following example
shows:

class SomeBaseClass {

 class func printClassName() {

 println("SomeBaseClass")

 }

}

class SomeSubClass: SomeBaseClass {

 override class func printClassName() {

 println("SomeSubClass")

 }

}

let someInstance: SomeBaseClass = SomeSubClass()

398

// someInstance is of type SomeBaseClass at compile time, but

// someInstance is of type SomeSubClass at runtime

someInstance.dynamicType.printClassName()

// prints "SomeSubClass"

G RA MMA R O F A ME T AT Y P E T Y P E

​ metatype-type → type . Type type . Protocol

Type Inheritance Clause

A type inheritance clause is used to specify which class a named type inherits from and
which protocols a named type conforms to. A type inheritance clause begins with a
colon (:), followed by a comma-separated list of type identifiers.

Class types may inherit from a single superclass and conform to any number of
protocols. When defining a class, the name of the superclass must appear first in the
list of type identifiers, followed by any number of protocols the class must conform to.
If the class does not inherit from another class, the list may begin with a protocol
instead. For an extended discussion and several examples of class inheritance, see
Inheritance.

Other named types may only inherit from or conform to a list of protocols. Protocol
types may inherit from any number of other protocols. When a protocol type inherits
from other protocols, the set of requirements from those other protocols are
aggregated together, and any type that inherits from the current protocol must
conform to all of those requirements.

A type inheritance clause in an enumeration definition may be either a list of
protocols, or in the case of an enumeration that assigns raw values to its cases, a
single, named type that specifies the type of those raw values. For an example of an
enumeration definition that uses a type inheritance clause to specify the type of its
raw values, see Raw Values.

G RA MMA R O F A T Y P E IN H E RIT A N CE CL A U S E

​ type-inheritance-clause → : type-inheritance-list
​ type-inheritance-list → type-identifier type-identifier , type-inheritance-list

399

Type Inference

Swift uses type inference extensively, allowing you to omit the type or part of the type
of many variables and expressions in your code. For example, instead of writing var x:
Int = 0, you can omit the type completely and simply write var x = 0—the compiler
correctly infers that x names a value of type Int. Similarly, you can omit part of a type
when the full type can be inferred from context. For instance, if you write let dict:
Dictionary = ["A": 1], the compiler infers that dict has the type Dictionary<String,
Int>.

In both of the examples above, the type information is passed up from the leaves of
the expression tree to its root. That is, the type of x in var x: Int = 0 is inferred by
first checking the type of 0 and then passing this type information up to the root (the
variable x).

In Swift, type information can also flow in the opposite direction—from the root down
to the leaves. In the following example, for instance, the explicit type annotation (:
Float) on the constant eFloat causes the numeric literal 2.71828 to have type Float
instead of type Double.

let e = 2.71828 // The type of e is inferred to be Double.

let eFloat: Float = 2.71828 // The type of eFloat is Float.

Type inference in Swift operates at the level of a single expression or statement. This
means that all of the information needed to infer an omitted type or part of a type in
an expression must be accessible from type-checking the expression or one of its
subexpressions.

400

Expressions

In Swift, there are four kinds of expressions: prefix expressions, binary expressions,
primary expressions, and postfix expressions. Evaluating an expression returns a
value, causes a side effect, or both.

Prefix and binary expressions let you apply operators to smaller expressions. Primary
expressions are conceptually the simplest kind of expression, and they provide a way
to access values. Postfix expressions, like prefix and binary expressions, let you build
up more complex expressions using postfixes such as function calls and member
access. Each kind of expression is described in detail in the sections below.

G RA MMA R O F A N E X P RE S S IO N

​ expression → prefix-expression binary-expressionsopt

​ expression-list → expression expression , expression-list

Prefix Expressions

Prefix expressions combine an optional prefix operator with an expression. Prefix
operators take one argument, the expression that follows them.

The Swift standard library provides the following prefix operators:

For information about the behavior of these operators, see Basic Operators and
Advanced Operators.

In addition to the standard library operators listed above, you use & immediately
before the name of a variable that’s being passed as an in-out argument to a function

++ Increment
-- Decrement
! Logical NOT
~ Bitwise NOT
+ Unary plus
- Unary minus

401

call expression. For more information and to see an example, see In-Out Parameters.

G RA MMA R O F A P RE F IX E X P RE S S IO N

​ prefix-expression → prefix-operatoropt postfix-expression
​ prefix-expression → in-out-expression
​ in-out-expression → & identifier

Binary Expressions

Binary expressions combine an infix binary operator with the expression that it takes
as its left-hand and right-hand arguments. It has the following form:

left-hand argument operator right-hand argument

The Swift standard library provides the following binary operators:

Exponentiative (No associativity, precedence level 160)

<< Bitwise left shift
>> Bitwise right shift

Multiplicative (Left associative, precedence level 150)

* Multiply
/ Divide
% Remainder
&* Multiply, ignoring overflow
&/ Divide, ignoring overflow
&% Remainder, ignoring overflow
& Bitwise AND

Additive (Left associative, precedence level 140)

+ Add

402

- Subtract
&+ Add with overflow
&- Subtract with overflow
| Bitwise OR
^ Bitwise XOR

Range (No associativity, precedence level 135)

.. Half-closed range

... Closed range

Cast (No associativity, precedence level 132)

is Type check
as Type cast

Comparative (No associativity, precedence level 130)

< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
== Equal
!= Not equal
=== Identical
!== Not identical
~= Pattern match

Conjunctive (Left associative, precedence level 120)

&& Logical AND

Disjunctive (Left associative, precedence level 110)

403

For information about the behavior of these operators, see Basic Operators and
Advanced Operators.

NO T E

At parse time, an expression made up of binary operators is represented as a flat list. This list is
transformed into a tree by applying operator precedence For example, the expression 2 + 3 * 5 is
initially understood as a flat list of five items, 2, +, `` 3``, *, and 5. This process transforms it into the
tree (2 + (3 * 5)).

G RA MMA R O F A B IN A RY E X P RE S S IO N

|| Logical OR

Ternary Conditional (Right associative, precedence level 100)

?: Ternary conditional

Assignment (Right associative, precedence level 90)

= Assign
*= Multiply and assign
/= Divide and assign
%= Remainder and assign
+= Add and assign
-= Subtract and assign
<<= Left bit shift and assign
>>= Right bit shift and assign
&= Bitwise AND and assign
^= Bitwise XOR and assign
|= Bitwise OR and assign
&&= Logical AND and assign
||= Logical OR and assign

404

​ binary-expression → binary-operator prefix-expression
​ binary-expression → assignment-operator prefix-expression
​ binary-expression → conditional-operator prefix-expression
​ binary-expression → type-casting-operator
​ binary-expressions → binary-expression binary-expressionsopt

Assignment Operator

The assigment operator sets a new value for a given expression. It has the following
form:

expression = value

The value of the expression is set to the value obtained by evaluating the value. If the
expression is a tuple, the value must be a tuple with the same number of elements.
(Nested tuples are allowed.) Assignment is performed from each part of the value to
the corresponding part of the expression. For example:

(a, _, (b, c)) = ("test", 9.45, (12, 3))

// a is "test", b is 12, c is 3, and 9.45 is ignored

The assignment operator does not return any value.

G RA MMA R O F A N A S S IG N ME N T O P E RAT O R

​ assignment-operator → =

Ternary Conditional Operator

The ternary conditional operator evaluates to one of two given values based on the
value of a condition. It has the following form:

condition ? expression used if true : expression used if false

If the condition evaluates to true, the conditional operator evaluates the first
expression and returns its value. Otherwise, it evaluates the second expression and
returns its value. The unused expression is not evaluated.

405

For an example that uses the ternary conditional operator, see Ternary Conditional
Operator.

G RA MMA R O F A CO N D IT IO N A L O P E RAT O R

​ conditional-operator → ? expression :

Type-Casting Operators

There are two type-casting operators, the as operator and the is operator. They have
the following form:

expression as type

expression as? type

expression is type

The as operator performs a cast of the expression to the specified type. It behaves as
follows:

class SomeSuperType {}

class SomeType: SomeSuperType {}

class SomeChildType: SomeType {}

let s = SomeType()

If conversion to the specified type is guaranteed to succeed, the value of the
expression is returned as an instance of the specified type. An example is
casting from a subclass to a superclass.
If conversion to the specified type is guaranteed to fail, a compile-time error is
raised.
Otherwise, if it’s not known at compile time whether the conversion will
succeed, the type of the cast expresion is an optional of the specified type. At
runtime, if the cast succeeds, the value of expression is wrapped in an optional
and returned; otherwise, the value returned is nil. An example is casting from
a superclass to a subclass.

406

let x = s as SomeSuperType // known to succeed; type is SomeSuperType

let y = s as Int // known to fail; compile-time error

let z = s as SomeChildType // might fail at runtime; type is SomeChildType?

Specifying a type with as provides the same information to the compiler as a type
annotation, as shown in the following example:

let y1 = x as SomeType // Type information from 'as'

let y2: SomeType = x // Type information from an annotation

The is operator checks at runtime to see whether the expression is of the specified
type. If so, it returns true; otherwise, it returns false.

The check must not be known to be true or false at compile time. The following are
invalid:

"hello" is String

"hello" is Int

For more information about type casting and to see more examples that use the type-
casting operators, see Type Casting.

G RA MMA R O F A T Y P E -CA S T IN G O P E RAT O R

​ type-casting-operator → is type as ? opt type

Primary Expressions

Primary expressions are the most basic kind of expression. They can be used as
expressions on their own, and they can be combined with other tokens to make prefix
expressions, binary expressions, and postfix expressions.

G RA MMA R O F A P RIMA RY E X P RE S S IO N

​ primary-expression → identifier generic-argument-clause opt

​ primary-expression → literal-expression
​ primary-expression → self-expression
​ primary-expression → superclass-expression

407

​ primary-expression → closure-expression
​ primary-expression → parenthesized-expression
​ primary-expression → implicit-member-expression
​ primary-expression → wildcard-expression

Literal Expression

A literal expression consists of either an ordinary literal (such as a string or a number),
an array or dictionary literal, or one of the following special literals:

Literal Type Value

__FILE__ String The name of the file in which it appears.

__LINE__ Int The line number on which it appears.

__COLUMN__ Int The column number in which it begins.

__FUNCTION__ String The name of the declaration in which it appears.

Inside a function, the value of __FUNCTION__ is the name of that function, inside a
method it is the name of that method, inside a property getter or setter it is the name
of that property, inside special members like init or subscript it is the name of that
keyword, and at the top level of a file it is the name of the current module.

An array literal is an ordered collection of values. It has the following form:

[value 1 , value 2 , ...]

The last expression in the array can be followed by an optional comma. An empty
array literal is written as an empty pair of brackets ([]). The value of an array literal
has type T[], where T is the type of the expressions inside it. If there are expressions
of multiple types, T is their closest common supertype.

A dictionary literal is an unordered collection of key-value pairs. It has the following
form:

[key 1 : value 1 , key 2 : value 2 , ...]

408

The last expression in the dictionary can be followed by an optional comma. An empty
dictionary literal is written as a colon inside a pair of brackets ([:]) to distinguish it
from an empty array literal. The value of a dictionary literal has type
Dictionary<KeyType, ValueType>, where KeyType is the type of its key expressions and
ValueType is the type of its value expressions. If there are expressions of multiple
types, KeyType and ValueType are the closest common supertype for their respective
values.

G RA MMA R O F A L IT E RA L E X P RE S S IO N

​ literal-expression → literal
​ literal-expression → array-literal dictionary-literal
​ literal-expression → __FILE__ __LINE__ __COLUMN__ __FUNCTION__

​ array-literal → [array-literal-itemsopt]

​ array-literal-items → array-literal-item , opt array-literal-item , array-literal-items
​ array-literal-item → expression

​ dictionary-literal → [dictionary-literal-items] [:]

​ dictionary-literal-items → dictionary-literal-item , opt dictionary-literal-
item , dictionary-literal-items

​ dictionary-literal-item → expression : expression

Self Expression

The self expression is an explicit reference to the current type or instance of the type
in which it occurs. It has the following forms:

self

self. member name

self[subscript index]

self(initializer arguments)

self.init(initializer arguments)

In an initializer, subscript, or instance method, self refers to the current instance of
the type in which it occurs. In a static or class method, self refers to the current type
in which it occurs.

409

The self expression is used to specify scope when accessing members, providing
disambiguation when there is another variable of the same name in scope, such as a
function parameter. For example:

class SomeClass {

 var greeting: String

 init(greeting: String) {

 self.greeting = greeting

 }

}

In a mutating method of value type, you can assign a new instance of that value type
to self. For example:

struct Point {

 var x = 0.0, y = 0.0

 mutating func moveByX(deltaX: Double, y deltaY: Double) {

 self = Point(x: x + deltaX, y: y + deltaY)

 }

}

G RA MMA R O F A S E L F E X P RE S S IO N

​ self-expression → self
​ self-expression → self . identifier
​ self-expression → self [expression]

​ self-expression → self . init

Superclass Expression

A superclass expression lets a class interact with its superclass. It has one of the
following forms:

super. member name

410

super[subscript index]

super.init(initializer arguments)

The first form is used to access a member of the superclass. The second form is used
to access the superclass’s subscript implementation. The third form is used to access
an initializer of the superclass.

Subclasses can use a superclass expression in their implementation of members,
subscripting, and initializers to make use of the implementation in their superclass.

G RA MMA R O F A S U P E RCL A S S E X P RE S S IO N

​ superclass-expression → superclass-method-expression superclass-subscript-
expression superclass-initializer-expression

​ superclass-method-expression → super . identifier
​ superclass-subscript-expression → super [expression]

​ superclass-initializer-expression → super . init

Closure Expression

A closure expression creates a closure, also known as a lambda or an anonymous
function in other programming languages. Like function declarations, closures contain
statements which they execute, and they capture values from their enclosing scope. It
has the following form:

{ (parameters) -> return type in

 statements

}

The parameters have the same form as the parameters in a function declaration, as
described in Function Declaration.

There are several special forms that allow closures to be written more concisely:

A closure can omit the types of its parameters, its return type, or both. If you
omit the parameter names and both types, omit the in keyword before the
statements. If the omitted types can’t be inferred, a compile-time error is

411

The following closure expressions are equivalent:

myFunction {

 (x: Int, y: Int) -> Int in

 return x + y

}

myFunction {

 (x, y) in

 return x + y

}

myFunction { return $0 + $1 }

myFunction { $0 + $1 }

For information about passing a closure as an argument to a function, see Function
Call Expression.

A closure expression can explicitly specify the values that it captures from the
surrounding scope using a capture list. A capture list is written as a comma separated
list surrounded by square brackets, before the list of parameters. If you use a capture
list, you must also use the in keyword, even if you omit the parameter names,
parameter types, and return type.

Each entry in the capture list can be marked as weak or unowned to capture a weak or
unowned reference to the value.

raised.
A closure may omit names for its parameters. Its parameters are then implicitly
named $ followed by their position: $0, $1, $2, and so on.
A closure that consists of only a single expression is understood to return the
value of that expression. The contents of this expression is also considered
when performing type inference on the surrounding expression.

412

myFunction { print(self.title) } // strong capture

myFunction { [weak self] in print(self!.title) } // weak capture

myFunction { [unowned self] in print(self.title) } // unowned capture

You can also bind arbitrary expression to named values in the capture list. The
expression is evaluated when the closure is formed, and captured with the specified
strength. For example:

// Weak capture of "self.parent" as "parent"

myFunction { [weak parent = self.parent] in print(parent!.title) }

For more information and examples of closure expressions, see Closure Expressions.

G RA MMA R O F A CL O S U RE E X P RE S S IO N

​ closure-expression → { closure-signature opt statements }

​ closure-signature → parameter-clause function-resultopt in

​ closure-signature → identifier-list function-resultopt in

​ closure-signature → capture-list parameter-clause function-resultopt in

​ closure-signature → capture-list identifier-list function-resultopt in

​ closure-signature → capture-list in

​ capture-list → [capture-specifier expression]

​ capture-specifier → weak unowned unowned(safe) unowned(unsafe)

Implicit Member Expression

An implicit member expression is an abbreviated way to access a member of a type,
such as an enumeration case or a class method, in a context where type inference can
determine the implied type. It has the following form:

. member name

For example:

var x = MyEnumeration.SomeValue

413

x = .AnotherValue

G RA MMA R O F A IMP L IC IT ME MB E R E X P RE S S IO N

​ implicit-member-expression → . identifier

Parenthesized Expression

A parenthesized expression consists of a comma-separated list of expressions
surrounded by parentheses. Each expression can have an optional identifier before it,
separated by a colon (:). It has the following form:

(identifier 1 : expression 1 , identifier 2 : expression 2 , ...)

Use parenthesized expressions to create tuples and to pass arguments to a function
call. If there is only one value inside the parenthesized expression, the type of the
parenthesized expression is the type of that value. For example, the type of the
parenthesized expression (1) is Int, not (Int).

G RA MMA R O F A P A RE N T H E S IZ E D E X P RE S S IO N

​ parenthesized-expression → (expression-element-listopt)

​ expression-element-list → expression-element expression-element , expression-
element-list

​ expression-element → expression identifier : expression

Wildcard Expression

A wildcard expression is used to explicitly ignore a value during an assignment. For
example, in the following assignment 10 is assigned to x and 20 is ignored:

(x, _) = (10, 20)

// x is 10, 20 is ignored

G RA MMA R O F A W IL DCA RD E X P RE S S IO N

​ wildcard-expression → _

414

Postfix Expressions

Postfix expressions are formed by applying a postfix operator or other postfix syntax to
an expression. Syntactically, every primary expression is also a postfix expression.

The Swift standard library provides the following postfix operators:

For information about the behavior of these operators, see Basic Operators and
Advanced Operators.

G RA MMA R O F A P O S T F IX E X P RE S S IO N

​ postfix-expression → primary-expression
​ postfix-expression → postfix-expression postfix-operator
​ postfix-expression → function-call-expression
​ postfix-expression → initializer-expression
​ postfix-expression → explicit-member-expression
​ postfix-expression → postfix-self-expression
​ postfix-expression → dynamic-type-expression
​ postfix-expression → subscript-expression
​ postfix-expression → forced-value-expression
​ postfix-expression → optional-chaining-expression

Function Call Expression

A function call expression consists of a function name followed by a comma-separated
list of the function’s arguments in parentheses. Function call expressions have the
following form:

function name (argument value 1 , argument value 2)

The function name can be any expression whose value is of a function type.

If the function definition includes names for its parameters, the function call must

++ Increment
-- Decrement

415

include names before its argument values separated by a colon (:). This kind of
function call expression has the following form:

function name (argument name 1 : argument value 1 , argument name 2 :

argument value 2)

A function call expression can include a trailing closure in the form of a closure
expression immediately after the closing parenthesis. The trailing closure is
understood as an argument to the function, added after the last parenthesized
argument. The following function calls are equivalent:

// someFunction takes an integer and a closure as its arguments

someFunction(x, {$0 == 13})

someFunction(x) {$0 == 13}

If the trailing closure is the function’s only argument, the parentheses can be omitted.

// someFunction takes a closure as its only argument

myData.someMethod() {$0 == 13}

myData.someMethod {$0 == 13}

G RA MMA R O F A FU N CT IO N CA L L E X P RE S S IO N

​ function-call-expression → postfix-expression parenthesized-expression
​ function-call-expression → postfix-expression parenthesized-expressionopt trailing-

closure
​ trailing-closure → closure-expression

Initializer Expression

An initializer expression provides access to a type’s initializer. It has the following
form:

expression .init(initializer arguments)

You use the initializer expression in a function call expression to initialize a new

416

instance of a type. Unlike functions, an initializer can’t be used as a value. For
example:

var x = SomeClass.someClassFunction // ok

var y = SomeClass.init // error

You also use an initializer expression to delegate to the initializer of a superclass.

class SomeSubClass: SomeSuperClass {

 init() {

 // subclass initialization goes here

 super.init()

 }

}

G RA MMA R O F A N IN IT IA L IZ E R E X P RE S S IO N

​ initializer-expression → postfix-expression . init

Explicit Member Expression

A explicit member expression allows access to the members of a named type, a tuple,
or a module. It consists of a period (.) between the item and the identifier of its
member.

expression . member name

The members of a named type are named as part of the type’s declaration or
extension. For example:

class SomeClass {

 var someProperty = 42

}

let c = SomeClass()

417

let y = c.someProperty // Member access

The members of a tuple are implicitly named using integers in the order they appear,
starting from zero. For example:

var t = (10, 20, 30)

t.0 = t.1

// Now t is (20, 20, 30)

The members of a module access the top-level declarations of that module.

G RA MMA R O F A N E X P L IC IT ME MB E R E X P RE S S IO N

​ explicit-member-expression → postfix-expression . decimal-digit
​ explicit-member-expression → postfix-expression . identifier generic-argument-

clause opt

Postfix Self Expression

A postfix self expression consists of an expression or the name of a type, immediately
followed by .self. It has the following forms:

expression .self

type .self

The first form evaluates to the value of the expression. For example, x.self evaluates
to x.

The second form evaluates to the value of the type. Use this form to access a type as
a value. For example, because SomeClass.self evaluates to the SomeClass type itself,
you can pass it to a function or method that accepts a type-level argument.

G RA MMA R O F A S E L F E X P RE S S IO N

​ postfix-self-expression → postfix-expression . self

418

Dynamic Type Expression

A dynamicType expression consists of an expression, immediately followed by
.dynamicType. It has the following form:

expression .dynamicType

The expression can’t be the name of a type. The entire dynamicType expression
evaluates to the value of the runtime type of the expression, as the following example
shows:

class SomeBaseClass {

 class func printClassName() {

 println("SomeBaseClass")

 }

}

class SomeSubClass: SomeBaseClass {

 override class func printClassName() {

 println("SomeSubClass")

 }

}

let someInstance: SomeBaseClass = SomeSubClass()

// someInstance is of type SomeBaseClass at compile time, but

// someInstance is of type SomeSubClass at runtime

someInstance.dynamicType.printClassName()

// prints "SomeSubClass"

G RA MMA R O F A DY N A MIC T Y P E E X P RE S S IO N

​ dynamic-type-expression → postfix-expression . dynamicType

Subscript Expression

419

A subscript expression provides subscript access using the getter and setter of the
corresponding subscript declaration. It has the following form:

expression [index expressions]

To evaluate the value of a subscript expression, the subscript getter for the
expression’s type is called with the index expressions passed as the subscript
parameters. To set its value, the subscript setter is called in the same way.

For information about subscript declarations, see Protocol Subscript Declaration.

G RA MMA R O F A S U B S CRIP T E X P RE S S IO N

​ subscript-expression → postfix-expression [expression-list]

Forced-Value Expression

A forced-value expression unwraps an optional value that you are certain is not nil. It
has the following form:

expression !

If the value of the expression is not nil, the optional value is unwrapped and returned
with the corresponding nonoptional type. Otherwise, a runtime error is raised.

G RA MMA R O F A FO RCE D -V A L U E E X P RE S S IO N

​ forced-value-expression → postfix-expression !

Optional-Chaining Expression

An optional-chaining expression provides a simplified syntax for using optional values
in postfix expressions. It has the following form:

expression ?

On its own, the postfix ? operator simply returns the value of its argument as an
optional.

420

Postfix expressions that contain an optional-chaining expression are evaluated in a
special way. If the optional-chaining expression is nil, all of the other operations in
the postfix expression are ignored and the entire postfix expression evaluates to nil. If
the optional-chaining expression is not nil, the value of the optional-chaining
expression is unwrapped and used to evaluate the rest of the postfix expression. In
either case, the value of the postfix expression is still of an optional type.

If a postfix expression that contains an optional-chaining expression is nested inside
other postfix expressions, only the outermost expression returns an optional type. In
the example below, when c is not nil, its value is unwrapped and used to evaluate
both .property and .performAction(), and the entire expression
c?.property.performAction() has a value of an optional type.

var c: SomeClass?

var result: Bool? = c?.property.performAction()

The following example shows the behavior of the example above without using
optional chaining.

if let unwrappedC = c {

 result = unwrappedC.property.performAction()

}

G RA MMA R O F A N O P T IO N A L-CH A IN IN G E X P RE S S IO N

​ optional-chaining-expression → postfix-expression ?

421

Statements

In Swift, there are two kinds of statements: simple statements and control flow
statements. Simple statements are the most common and consist of either an
expression or a declaration. Control flow statements are used to control the flow of
execution in a program. There are three types of control flow statements in Swift: loop
statements, branch statements, and control transfer statements.

Loop statements allow a block of code to be executed repeatedly, branch statements
allow a certain block of code to be executed only when certain conditions are met, and
control transfer statements provide a way to alter the order in which code is executed.
Each type of control flow statement is described in detail below.

A semicolon (;) can optionally appear after any statement and is used to separate
multiple statements if they appear on the same line.

G RA MMA R O F A S T AT E ME N T

​ statement → expression ; opt

​ statement → declaration ; opt

​ statement → loop-statement ; opt

​ statement → branch-statement ; opt

​ statement → labeled-statement
​ statement → control-transfer-statement ; opt

​ statements → statement statementsopt

Loop Statements

Loop statements allow a block of code to be executed repeatedly, depending on the
conditions specified in the loop. Swift has four loop statements: a for statement, a
for-in statement, a while statement, and a do-while statement.

Control flow in a loop statement can be changed by a break statement and a continue
statement and is discussed in Break Statement and Continue Statement below.

G RA MMA R O F A L O O P S T AT E ME N T

422

​ loop-statement → for-statement
​ loop-statement → for-in-statement
​ loop-statement → while-statement
​ loop-statement → do-while-statement

For Statement

A for statement allows a block of code to be executed repeatedly while incrementing a
counter, as long as a condition remains true.

A for statement has the following form:

for initialization ; condition ; increment {

 statements

}

The semicolons between the initialization, condition, and increment are required. The
braces around the statements in the body of the loop are also required.

A for statement is executed as follows:

1. The initialization is evaluated only once. It is typically used to declare and
initialize any variables that are needed for the remainder of the loop.

2. The condition expression is evaluated.
If true, the program executes the statements, and execution continues to step 3.
If false, the program does not execute the statements or the increment
expression, and the program is finished executing the for statement.

3. The increment expression is evaluated, and execution returns to step 2.

Variables defined within the initialization are valid only within the scope of the for
statement itself.

The value of the condition expression must have a type that conforms to the
LogicValue protocol.

G RA MMA R O F A FO R S T AT E ME N T

​ for-statement → for for-initopt ; expressionopt ; expressionopt code-block

423

​ for-statement → for (for-initopt ; expressionopt ; expressionopt) code-block

​ for-init → variable-declaration expression-list

For-In Statement

A for-in statement allows a block of code to be executed once for each item in a
collection (or any type) that conforms to the Sequence protocol.

A for-in statement has the following form:

for item in collection {

 statements

}

The generate method is called on the collection expression to obtain a value of a
generator type—that is, a type that conforms to the Generator protocol. The program
begins executing a loop by calling the next method on the stream. If the value
returned is not None, it is assigned to the item pattern, the program executes the
statements, and then continues execution at the beginning of the loop. Otherwise, the
program does not perform assignment or execute the statements, and it is finished
executing the for-in statement.

G RA MMA R O F A FO R- IN S T AT E ME N T

​ for-in-statement → for pattern in expression code-block

While Statement

A while statement allows a block of code to be executed repeatedly, as long as a
condition remains true.

A while statement has the following form:

while condition {

 statements

424

}

A while statement is executed as follows:

1. The condition is evaluated.
If true, execution continues to step 2. If false, the program is finished executing
the while statement.

2. The program executes the statements, and execution returns to step 1.

Because the value of the condition is evaluated before the statements are executed,
the statements in a while statement can be executed zero or more times.

The value of the condition must have a type that conforms to the LogicValue protocol.
The condition can also be an optional binding declaration, as discussed in Optional
Binding.

G RA MMA R O F A W H IL E S T AT E ME N T

​ while-statement → while while-condition code-block
​ while-condition → expression declaration

Do-While Statement

A do-while statement allows a block of code to be executed one or more times, as long
as a condition remains true.

A do-while statement has the following form:

do {

 statements

} while condition

A do-while statement is executed as follows:

1. The program executes the statements, and execution continues to step 2.
2. The condition is evaluated.

If true, execution returns to step 1. If false, the program is finished executing the
do-while statement.

425

Because the value of the condition is evaluated after the statements are executed, the
statements in a do-while statement are executed at least once.

The value of the condition must have a type that conforms to the LogicValue protocol.
The condition can also be an optional binding declaration, as discussed in Optional
Binding.

G RA MMA R O F A DO -W H IL E S T AT E ME N T

​ do-while-statement → do code-block while while-condition

Branch Statements

Branch statements allow the program to execute certain parts of code depending on
the value of one or more conditions. The values of the conditions specified in a branch
statement control how the program branches and, therefore, what block of code is
executed. Swift has two branch statements: an if statement and a switch statement.

Control flow in a switch statement can be changed by a break statement and is
discussed in Break Statement below.

G RA MMA R O F A B RA N CH S T AT E ME N T

​ branch-statement → if-statement
​ branch-statement → switch-statement

If Statement

An if statement is used for executing code based on the evaluation of one or more
conditions.

There are two basic forms of an if statement. In each form, the opening and closing
braces are required.

The first form allows code to be executed only when a condition is true and has the
following form:

if condition {

 statements

426

}

The second form of an if statement provides an additional else clause (introduced by
the else keyword) and is used for executing one part of code when the condition is
true and another part code when the same condition is false. When a single else
clause is present, an if statement has the following form:

if condition {

 statements to execute if condition is true

} else {

 statements to execute if condition is false

}

The else clause of an if statement can contain another if statement to test more than
one condition. An if statement chained together in this way has the following form:

if condition 1 {

 statements to execute if condition 1 is true

} else if condition 2 {

 statements to execute if condition 2 is true

} else {

 statements to execute if both conditions are false

}

The value of any condition in an if statement must have a type that conforms to the
LogicValue protocol. The condition can also be an optional binding declaration, as
discussed in Optional Binding.

G RA MMA R O F A N IF S T AT E ME N T

​ if-statement → if if-condition code-block else-clause opt

​ if-condition → expression declaration
​ else-clause → else code-block else if-statement

427

Switch Statement

A switch statement allows certain blocks of code to be executed depending on the
value of a control expression.

A switch statement has the following form:

switch control expression {

case pattern 1 :

 statements

case pattern 2 where condition :

 statements

case pattern 3 where condition ,

pattern 4 where condition :

 statements

default:

 statements

}

The control expression of the switch statement is evaluated and then compared with
the patterns specified in each case. If a match is found, the program executes the
statements listed within the scope of that case. The scope of each case can’t be
empty. As a result, you must include at least one statement following the colon (:) of
each case label. Use a single break statement if you don’t intend to execute any code
in the body of a matched case.

The values of expressions your code can branch on is very flexible. For instance, in
addition to the values of scalar types, such as integers and characters, your code can
branch on the values of any type, including floating-point numbers, strings, tuples,
instances of custom classes, and optionals. The value of the control expression can
even be matched to the value of a case in an enumeration and checked for inclusion in
a specified range of values. For examples of how to use these various types of values
in switch statements, see Switch in the Control Flow chapter.

A switch case can optionally contain a guard expression after each pattern. A guard
expression is introduced by the keyword where followed by an expression, and is used

428

to provide an additional condition before a pattern in a case is considered matched to
the control expression. If a guard expression is present, the statements within the
relevant case are executed only if the value of the control expression matches one of
the patterns of the case and the guard expression evaluates to true. For instance, a
control expression matches the case in the example below only if it is a tuple that
contains two elements of the same value, such as (1, 1).

case let (x, y) where x == y:

As the above example shows, patterns in a case can also bind constants using the
keyword let (they can also bind variables using the keyword var). These constants (or
variables) can then be referenced in a corresponding guard expression and throughout
the rest of the code within the scope of the case. That said, if the case contains
multiple patterns that match the control expression, none of those patterns can
contain constant or variable bindings.

A switch statement can also include a default case, introduced by the keyword default.
The code within a default case is executed only if no other cases match the control
expression. A switch statement can include only one default case, which must appear
at the end of the switch statement.

Although the actual execution order of pattern-matching operations, and in particular
the evaluation order of patterns in cases, is unspecified, pattern matching in a switch
statement behaves as if the evaluation is performed in source order—that is, the order
in which they appear in source code. As a result, if multiple cases contain patterns that
evaluate to the same value, and thus can match the value of the control expression,
the program executes only the code within the first matching case in source order.

Switch Statements Must Be Exhaustive

In Swift, every possible value of the control expression’s type must match the value of
at least one pattern of a case. When this simply isn’t feasible (for instance, when the
control expression’s type is Int), you can include a default case to satisfy the
requirement.

Execution Does Not Fall Through Cases Implicitly

After the code within a matched case has finished executing, the program exits from

429

the switch statement. Program execution does not continue or “fall through” to the
next case or default case. That said, if you want execution to continue from one case
to the next, explicitly include a fallthrough statement, which simply consists of the
keyword fallthrough, in the case from which you want execution to continue. For more
information about the fallthrough statement, see Fallthrough Statement below.

G RA MMA R O F A S W IT CH S T AT E ME N T

​ switch-statement → switch expression { switch-casesopt }

​ switch-cases → switch-case switch-casesopt

​ switch-case → case-label statements default-label statements
​ switch-case → case-label ; default-label ;

​ case-label → case case-item-list :

​ case-item-list → pattern guard-clause opt pattern guard-clause opt , case-item-list
​ default-label → default :

​ guard-clause → where guard-expression
​ guard-expression → expression

Labeled Statement

You can prefix a loop statement or a switch statement with a statement label, which
consists of the name of the label followed immediately by a colon (:). Use statement
labels with break and continue statements to be explicit about how you want to change
control flow in a loop statement or a switch statement, as discussed in Break
Statement and Continue Statement below.

The scope of a labeled statement is the entire statement following the statement
label. You can nest labeled statements, but the name of each statement label must be
unique.

For more information and to see examples of how to use statement labels, see
Labeled Statements in the Control Flow chapter.

G RA MMA R O F A L A B E L E D S T AT E ME N T

​ labeled-statement → statement-label loop-statement statement-label switch-
statement

​ statement-label → label-name :

430

​ label-name → identifier

Control Transfer Statements

Control transfer statements can change the order in which code in your program is
executed by unconditionally transferring program control from one piece of code to
another. Swift has four control transfer statements: a break statement, a continue
statement, a fallthrough statement, and a return statement.

G RA MMA R O F A CO N T RO L T RA N S FE R S T AT E ME N T

​ control-transfer-statement → break-statement
​ control-transfer-statement → continue-statement
​ control-transfer-statement → fallthrough-statement
​ control-transfer-statement → return-statement

Break Statement

A break statement ends program execution of a loop or a switch statement. A break
statement can consist of only the keyword break, or it can consist of the keyword break
followed by the name of a statement label, as shown below.

break

break label name

When a break statement is followed by the name of a statement label, it ends program
execution of the loop or switch statement named by that label.

When a break statement is not followed by the name of a statement label, it ends
program execution of the switch statement or the innermost enclosing loop statement
in which it occurs.

In both cases, program control is then transferred to the first line of code following the
enclosing loop or switch statement, if any.

For examples of how to use a break statement, see Break and Labeled Statements in
the Control Flow chapter.

431

G RA MMA R O F A B RE A K S T AT E ME N T

​ break-statement → break label-name opt

Continue Statement

A continue statement ends program execution of the current iteration of a loop
statement but does not stop execution of the loop statement. A continue statement
can consist of only the keyword continue, or it can consist of the keyword continue
followed by the name of a statement label, as shown below.

continue

continue label name

When a continue statement is followed by the name of a statement label, it ends
program execution of the current iteration of the loop statement named by that label.

When a continue statement is not followed by the name of a statement label, it ends
program execution of the current iteration of the innermost enclosing loop statement
in which it occurs.

In both cases, program control is then transferred to the condition of the enclosing
loop statement.

In a for statement, the increment expression is still evaluated after the continue
statement is executed, because the increment expression is evaluated after the
execution of the loop’s body.

For examples of how to use a continue statement, see Continue and Labeled
Statements in the Control Flow chapter.

G RA MMA R O F A CO N T IN U E S T AT E ME N T

​ continue-statement → continue label-name opt

Fallthrough Statement

A fallthrough statement consists of the fallthrough keyword and occurs only in a case
block of a switch statement. A fallthrough statement causes program execution to

432

continue from one case in a switch statement to the next case. Program execution
continues to the next case even if the patterns of the case label do not match the
value of the switch statement’s control expression.

A fallthrough statement can appear anywhere inside a switch statement, not just as
the last statement of a case block, but it can’t be used in the final case block. It also
cannot transfer control into a case block whose pattern contains value binding
patterns.

For an example of how to use a fallthrough statement in a switch statement, see
Control Transfer Statements in the Control Flow chapter.

G RA MMA R O F A FA L LT H RO U G H S T AT E ME N T

​ fallthrough-statement → fallthrough

Return Statement

A return statement occurs only in the body of a function or method definition and
causes program execution to return to the calling function or method. Program
execution continues at the point immediately following the function or method call.

A return statement can consist of only the keyword return, or it can consist of the
keyword return followed by an expression, as shown below.

return

return expression

When a return statement is followed by an expression, the value of the expression is
returned to the calling function or method. If the value of the expression does not
match the value of the return type declared in the function or method declaration, the
expression’s value is converted to the return type before it is returned to the calling
function or method.

When a return statement is not followed by an expression, it can be used only to
return from a function or method that does not return a value (that is, when the return
type of the function or method is Void or ()).

G RA MMA R O F A RE T U RN S T AT E ME N T

​ return-statement → return expressionopt

433

434

Declarations

A declaration introduces a new name or construct into your program. For example, you
use declarations to introduce functions and methods, variables and constants, and to
define new, named enumeration, structure, class, and protocol types. You can also use
a declaration to extend the the behavior of an existing named type and to import
symbols into your program that are declared elsewhere.

In Swift, most declarations are also definitions in the sense that they are implemented
or initialized at the same time they are declared. That said, because protocols don’t
implement their members, most protocol members are declarations only. For
convenience and because the distinction isn’t that important in Swift, the term
declaration covers both declarations and definitions.

G RA MMA R O F A DE CL A RAT IO N

​ declaration → import-declaration
​ declaration → constant-declaration
​ declaration → variable-declaration
​ declaration → typealias-declaration
​ declaration → function-declaration
​ declaration → enum-declaration
​ declaration → struct-declaration
​ declaration → class-declaration
​ declaration → protocol-declaration
​ declaration → initializer-declaration
​ declaration → deinitializer-declaration
​ declaration → extension-declaration
​ declaration → subscript-declaration
​ declaration → operator-declaration
​ declarations → declaration declarationsopt

​ declaration-specifiers → declaration-specifier declaration-specifiersopt

​ declaration-specifier → class mutating nonmutating override static unowned
unowned(safe) unowned(unsafe) weak

435

Module Scope

The module scope defines the code that’s visible to other code in Swift source files
that are part of the same module. The top-level code in a Swift source file consists of
zero or more statements, declarations, and expressions. Variables, constants, and
other named declarations that are declared at the top-level of a source file are visible
to code in every source file that is part of the same module.

G RA MMA R O F A T O P -L E V E L DE CL A RAT IO N

​ top-level-declaration → statementsopt

Code Blocks

A code block is used by a variety of declarations and control structures to group
statements together. It has the following form:

{

 statements

}

The statements inside a code block include declarations, expressions, and other kinds
of statements and are executed in order of their appearance in source code.

G RA MMA R O F A CO DE B L O CK

​ code-block → { statementsopt }

Import Declaration

An import declaration lets you access symbols that are declared outside the current
file. The basic form imports the entire module; it consists of the import keyword
followed by a module name:

import module

Providing more detail limits which symbols are imported—you can specify a specific

436

submodule or a specific declaration within a module or submodule. When this detailed
form is used, only the imported symbol (and not the module that declares it) is made
available in the current scope.

import import kind module . symbol name

import module . submodule

G RA MMA R O F A N IMP O RT DE CL A RAT IO N

​ import-declaration → attributesopt import import-kindopt import-path

​ import-kind → typealias struct class enum protocol var func
​ import-path → import-path-identifier import-path-identifier . import-path
​ import-path-identifier → identifier operator

Constant Declaration

A constant declaration introduces a constant named value into your program. Constant
declarations are declared using the keyword let and have the following form:

let constant name : type = expression

A constant declaration defines an immutable binding between the constant name and
the value of the initializer expression; after the value of a constant is set, it cannot be
changed. That said, if a constant is initialized with a class object, the object itself can
change, but the binding between the constant name and the object it refers to can’t.

When a constant is declared at global scope, it must be initialized with a value. When
a constant declaration occurs in the context of a class or structure declaration, it is
considered a constant property. Constant declarations are not computed properties
and therefore do not have getters or setters.

If the constant name of a constant declaration is a tuple pattern, the name of each
item in the tuple is bound to the corresponding value in the initializer expression.

let (firstNumber, secondNumber) = (10, 42)

In this example, firstNumber is a named constant for the value 10, and secondNumber is a
named constant for the value 42. Both constants can now be used independently:

437

println("The first number is \(firstNumber).")

// prints "The first number is 10."

println("The second number is \(secondNumber).")

// prints "The second number is 42."

The type annotation (: type) is optional in a constant declaration when the type of the
constant name can be inferred, as described in Type Inference.

To declare a static constant property, mark the declaration with the static keyword.
Static properties are discussed in Type Properties.

For more information about constants and for guidance about when to use them, see
Constants and Variables and Stored Properties.

G RA MMA R O F A CO N S T A N T DE CL A RAT IO N

​ constant-declaration → attributesopt declaration-specifiersopt let pattern-
initializer-list

​ pattern-initializer-list → pattern-initializer pattern-initializer , pattern-initializer-
list

​ pattern-initializer → pattern initializeropt

​ initializer → = expression

Variable Declaration

A variable declaration introduces a variable named value into your program and is
declared using the keyword var.

Variable declarations have several forms that declare different kinds of named,
mutable values, including stored and computed variables and properties, stored
variable and property observers, and static variable properties. The appropriate form
to use depends on the scope at which the variable is declared and the kind of variable
you intend to declare.

NO T E

You can also declare properties in the context of a protocol declaration, as described in Protocol Property
Declaration.

438

You can override a property in a subclass by prefixing the subclass’s property
declaration with the override keyword, as described in Overriding.

Stored Variables and Stored Variable Properties

The following form declares a stored variable or stored variable property:

var variable name : type = expression

You define this form of a variable declaration at global scope, the local scope of a
function, or in the context of a class or structure declaration. When a variable
declaration of this form is declared at global scope or the local scope of a function, it is
referred to as a stored variable. When it is declared in the context of a class or
structure declaration, it is referred to as a stored variable property.

The initializer expression can’t be present in a protocol declaration, but in all other
contexts, the initializer expression is optional. That said, if no initializer expression is
present, the variable declaration must include an explicit type annotation (: type).

As with constant declarations, if the variable name is a tuple pattern, the name of
each item in the tuple is bound to the corresponding value in the initializer expression.

As their names suggest, the value of a stored variable or a stored variable property is
stored in memory.

Computed Variables and Computed Properties

The following form declares a computed variable or computed property:

var variable name : type {

get {

 statements

}

set(setter name) {

439

 statements

}

}

You define this form of a variable declaration at global scope, the local scope of a
function, or in the context of a class, structure, enumeration, or extension declaration.
When a variable declaration of this form is declared at global scope or the local scope
of a function, it is referred to as a computed variable. When it is declared in the
context of a class, structure, or extension declaration, it is referred to as a computed
property.

The getter is used to read the value, and the setter is used to write the value. The
setter clause is optional, and when only a getter is needed, you can omit both clauses
and simply return the requested value directly, as described in Read-Only Computed
Properties. But if you provide a setter clause, you must also provide a getter clause.

The setter name and enclosing parentheses is optional. If you provide a setter name,
it is used as the name of the parameter to the setter. If you do not provide a setter
name, the default parameter name to the setter is newValue, as described in Shorthand
Setter Declaration.

Unlike stored named values and stored variable properties, the value of a computed
named value or a computed property is not stored in memory.

For more information and to see examples of computed properties, see Computed
Properties.

Stored Variable Observers and Property Observers

You can also declare a stored variable or property with willSet and didSet observers. A
stored variable or property declared with observers has the following form:

var variable name : type = expression {

willSet(setter name) {

 statements

}

didSet(setter name {

440

 statements

}

}

You define this form of a variable declaration at global scope, the local scope of a
function, or in the context of a class or structure declaration. When a variable
declaration of this form is declared at global scope or the local scope of a function, the
observers are referred to as stored variable observers. When it is declared in the
context of a class or structure declaration, the observers are referred to as property
observers.

You can add property observers to any stored property. You can also add property
observers to any inherited property (whether stored or computed) by overriding the
property within a subclass, as described in Overriding Property Observers.

The initializer expression is optional in the context of a class or structure declaration,
but required elsewhere. The type annotation is required in all variable declarations
that include observers, regardless of the context in which they are declared.

The willSet and didSet observers provide a way to observe (and to respond
appropriately) when the value of a variable or property is being set. The observers are
not called when the variable or property is first initialized. Instead, they are called only
when the value is set outside of an initialization context.

A willSet observer is called just before the value of the variable or property is set. The
new value is passed to the willSet observer as a constant, and therefore it can’t be
changed in the implementation of the willSet clause. The didSet observer is called
immediately after the new value is set. In contrast to the willSet observer, the old
value of the variable or property is passed to the didSet observer in case you still need
access to it. That said, if you assign a value to a variable or property within its own
didSet observer clause, that new value that you assign will replace the one that was
just set and passed to the willSet observer.

The setter name and enclosing parentheses in the willSet and didSet clauses are
optional. If you provide setter names, they are used as the parameter names to the
willSet and didSet observers. If you do not provide setter names, the default
parameter name to the willSet observer is newValue and the default parameter name
to the didSet observer is oldValue.

The didSet clause is optional when you provide a willSet clause. Likewise, the willSet
clause is optional when you provide a didSet clause.

441

For more information and to see an example of how to use property observers, see
Property Observers.

Class and Static Variable Properties

To declare a class computed property, mark the declaration with the class keyword.
To declare a static variable property, mark the declaration with the static keyword.
Class and static properties are discussed in Type Properties.

G RA MMA R O F A V A RIA B L E DE CL A RAT IO N

​ variable-declaration → variable-declaration-head pattern-initializer-list
​ variable-declaration → variable-declaration-head variable-name type-

annotation code-block
​ variable-declaration → variable-declaration-head variable-name type-

annotation getter-setter-block
​ variable-declaration → variable-declaration-head variable-name type-

annotation getter-setter-keyword-block
​ variable-declaration → variable-declaration-head variable-name type-

annotation initializeropt willSet-didSet-block

​ variable-declaration-head → attributesopt declaration-specifiersopt var

​ variable-name → identifier

​ getter-setter-block → { getter-clause setter-clause opt }

​ getter-setter-block → { setter-clause getter-clause }

​ getter-clause → attributesopt get code-block
​ setter-clause → attributesopt set setter-name opt code-block
​ setter-name → (identifier)

​ getter-setter-keyword-block → { getter-keyword-clause setter-keyword-
clause opt }

​ getter-setter-keyword-block → { setter-keyword-clause getter-keyword-clause }

​ getter-keyword-clause → attributesopt get

​ setter-keyword-clause → attributesopt set

​ willSet-didSet-block → { willSet-clause didSet-clause opt }

​ willSet-didSet-block → { didSet-clause willSet-clause }

442

​ willSet-clause → attributesopt willSet setter-name opt code-block
​ didSet-clause → attributesopt didSet setter-name opt code-block

Type Alias Declaration

A type alias declaration introduces a named alias of an existing type into your
program. Type alias declarations begin with the keyword typealias and have the
following form:

typealias name = existing type

After a type alias is declared, the aliased name can be used instead of the existing
type everywhere in your program. The existing type can be a named type or a
compound type. Type aliases do not create new types; they simply allow a name to
refer to an existing type.

See also Protocol Associated Type Declaration.

G RA MMA R O F A T Y P E A L IA S DE CL A RAT IO N

​ typealias-declaration → typealias-head typealias-assignment
​ typealias-head → typealias typealias-name
​ typealias-name → identifier
​ typealias-assignment → = type

Function Declaration

A :newTerm`function declaration` introduces a function or method into your program.
A function declared in the context of class, structure, enumeration, or protocol is
referred to as a method. Function declarations are declared using the keyword func
and have the following form:

func function name (parameters) -> return type {

 statements

}

443

If the function has a return type of Void, the return type can be omitted as follows:

func function name (parameters) {

 statements

}

The type of each parameter must be included—it can’t be inferred. By default, the
parameters to a function are constants. Write var in front of a parameter’s name to
make it a variable, scoping any changes made to the variable just to the function
body, or write inout to make those changes also apply to the argument that was
passed in the caller’s scope. For a discussion of in-out parameters, see In-Out
Parameters.

Functions can return multiple values using a tuple type as the return type of the
function.

A function definition can appear inside another function declaration. This kind of
function is known as a nested function. For a discussion of nested functions, see
Nested Functions.

Parameter Names

Function parameters are a comma separated list where each parameter has one of
several forms. The order of arguments in a function call must match the order of
parameters in the function’s declaration. The simplest entry in a parameter list has the
following form:

parameter name : parameter type

For function parameters, the parameter name is used within the function body, but is
not used when calling the function. For method parameters, the parameter name is
used as within the function body, and is also used as a label for the argument when
calling the method. The name of a method’s first parameter is used only within the
function body, like the parameter of a function. For example:

func f(x: Int, y: String) -> String {

 return y + String(x)

}

444

f(7, "hello") // x and y have no name

class C {

 func f(x: Int, y: String) -> String {

 return y + String(x)

 }

}

let c = C()

c.f(7, y: "hello") // x has no name, y has a name

You can override the default behavior for how parameter names are used with one of
the following forms:

external parameter name local parameter name : parameter type

parameter name : parameter type

_ local parameter name : parameter type

A second name before the local parameter name gives the parameter an external
name, which can be different than the local parameter name. The external parameter
name must be used when the function is called. The corresponding argument must
have the external name in function or method calls.

A hash symbol (#) before a parameter name indicates that the name should be used
as both an external and a local parameter name. It has the same meaning as writing
the local parameter name twice. The corresponding argument must have this name in
function or method calls.

An underscore (_) before a local parameter name gives that parameter no name to be
used in function calls. The corresponding argument must have no name in function or
method calls.

Special Kinds of Parameters

Parameters can be ignored, take a variable number of values, and provide default
values using the following forms:

445

_ : <#parameter type#.

parameter name : parameter type ...

parameter name : parameter type = default argument value

A parameter named with an underscore (_) is explicitly ignored an can’t be accessed
within the body of the function.

A parameter with a base type name followed immediately by three dots (...) is
understood as a variadic parameter. A function can have at most one variadic
parameter, which must be its last parameter. A variadic parameter is treated as an
array that contains elements of the base type name. For instance, the variadic
parameter Int... is treated as Int[]. For an example that uses a variadic parameter,
see Variadic Parameters.

A parameter with an equals sign (=) and an expression after its type is understood to
have a default value of the given expression. If the parameter is omitted when calling
the function, the default value is used instead. If the parameter is not omitted, it must
have its name in the function call. For example, f() and f(x: 7) are both valid calls to
a function with a single default parameter named x, but f(7) is invalid because it
provides a value without a name.

Special Kinds of Methods

Methods on an enumeration or a structure that modify self must be marked with the
mutating keyword at the start of the function declaration.

Methods that override a superclass method must be marked with the override keyword
at the start of the function declaration. It is an error to override a method without the
override keyword or to use the override keyword on a method that doesn’t override a
superclass method.

Methods associated with a type rather than an instance of a type must be marked with
the static attribute for enumerations and structures or the class attribute for classes.

Curried Functions and Methods

Curried functions and methods have the following form:

446

func function name (parameters)(parameters) -> return type {

 statements

}

A function declared this way is understood as a function whose return type is another
function. For example, the following two declarations are equivalent:

func addTwoNumbers(a: Int)(b: Int) -> Int {

 return a + b

}

func addTwoNumbers(a: Int) -> (Int -> Int) {

 func addTheSecondNumber(b: Int) -> Int {

 return a + b

 }

 return addTheSecondNumber

}

addTwoNumbers(4)(5) // Returns 9

Multiple levels of currying are allowed.

G RA MMA R O F A FU N CT IO N DE CL A RAT IO N

​ function-declaration → function-head function-name generic-parameter-
clause opt function-signature function-body

​ function-head → attributesopt declaration-specifiersopt func

​ function-name → identifier operator

​ function-signature → parameter-clauses function-resultopt

​ function-result → -> attributesopt type
​ function-body → code-block

​ parameter-clauses → parameter-clause parameter-clausesopt

​ parameter-clause → () (parameter-list ... opt)

​ parameter-list → parameter parameter , parameter-list

447

​ parameter → inout opt let opt # opt parameter-name local-parameter-name opt type-
annotation default-argument-clause opt

​ parameter → inout opt var # opt parameter-name local-parameter-name opt type-
annotation default-argument-clause opt

​ parameter → attributesopt type
​ parameter-name → identifier _
​ local-parameter-name → identifier _
​ default-argument-clause → = expression

Enumeration Declaration

An enumeration declaration introduces a named enumeration type into your program.

Enumeration declarations have two basic forms and are declared using the keyword
enum. The body of an enumeration declared using either form contains zero or more
values—called enumeration cases—and any number of declarations, including
computed properties, instance methods, static methods, initializers, type aliases, and
even other enumeration, structure, and class declarations. Enumeration declarations
can’t contain destructor or protocol declarations.

Unlike classes and structures, enumeration types do not have an implicitly provided
default initializer; all initializers must be declared explicitly. Initializers can delegate to
other initializers in the enumeration, but the initialization process is complete only
after an initializer assigns one of the enumeration cases to self.

Like structures but unlike classes, enumerations are value types; instances of an
enumeration are copied when assigned to variables or constants, or when passed as
arguments to a function call. For information about value types, see Structures and
Enumerations Are Value Types.

You can extend the behavior of an enumeration type with an extension declaration, as
discussed in Extension Declaration.

Enumerations with Cases of Any Type

The following form declares an enumeration type that contains enumeration cases of
any type:

448

enum enumeration name {

 case enumeration case 1

 case enumeration case 2 (associated value types)

}

Enumerations declared in this form are sometimes called discriminated unions in other
programming languages.

In this form, each case block consists of the keyword case followed by one or more
enumeration cases, separated by commas. The name of each case must be unique.
Each case can also specify that it stores values of a given type. These types are
specified in the associated value types tuple, immediately following the name of the
case. For more information and to see examples of cases with associated value types,
see Associated Values.

Enumerations with Raw Cases Values

The following form declares an enumeration type that contains enumeration cases of
the same basic type:

enum enumeration name : raw value type {

 case enumeration case 1 = raw value 1

 case enumeration case 2 = raw value 2

}

In this form, each case block consists of the keyword case, followed by one or more
enumeration cases, separated by commas. Unlike the cases in the first form, each
case has an underlying value, called a raw value, of the same basic type. The type of
these values is specified in the raw value type and must represent a literal integer,
floating-point number, character, or string.

Each case must have a unique name and be assigned a unique raw value. If the raw
value type is specified as Int and you don’t assign a value to the cases explicitly, they
are implicitly assigned the values 0, 1, 2, and so on. Each unassigned case of type Int
is implicitly assigned a raw value that is automatically incremented from the raw value
of the previous case.

449

enum ExampleEnum: Int {

 case A, B, C = 5, D

}

In the above example, the value of ExampleEnum.A is 0 and the value of ExampleEnum.B is
1. And because the value of ExampleEnum.C is explicitly set to 5, the value of
ExampleEnum.D is automatically incremented from 5 and is therefore 6.

The raw value of an enumeration case can be accessed by calling its toRaw method, as
in ExampleEnum.B.toRaw(). You can also use a raw value to find a corresponding case, if
there is one, by calling the fromRaw method, which returns an optional case. For more
information and to see examples of cases with raw value types, see Raw Values.

Accessing Enumeration Cases

To reference the case of an enumeration type, use dot (.) syntax, as in
EnumerationType.EnumerationCase. When the enumeration type can be inferred from
context, you can omit it (the dot is still required), as described in Enumeration Syntax
and Implicit Member Expression.

To check the values of enumeration cases, use a switch statement, as shown in
Matching Enumeration Values with a Switch Statement. The enumeration type is
pattern-matched against the enumeration case patterns in the case blocks of the
switch statement, as described in Enumeration Case Pattern.

G RA MMA R O F A N E N U ME RAT IO N DE CL A RAT IO N

​ enum-declaration → attributesopt union-style-enum attributesopt raw-value-style-
enum

​ union-style-enum → enum-name generic-parameter-clause opt { union-style-enum-
membersopt }

​ union-style-enum-members → union-style-enum-member union-style-enum-
membersopt

​ union-style-enum-member → declaration union-style-enum-case-clause
​ union-style-enum-case-clause → attributesopt case union-style-enum-case-list
​ union-style-enum-case-list → union-style-enum-case union-style-enum-

case , union-style-enum-case-list

450

​ union-style-enum-case → enum-case-name tuple-type opt

​ enum-name → identifier
​ enum-case-name → identifier

​ raw-value-style-enum → enum-name generic-parameter-clause opt : type-
identifier { raw-value-style-enum-membersopt }

​ raw-value-style-enum-members → raw-value-style-enum-member raw-value-
style-enum-membersopt

​ raw-value-style-enum-member → declaration raw-value-style-enum-case-clause
​ raw-value-style-enum-case-clause → attributesopt case raw-value-style-enum-

case-list
​ raw-value-style-enum-case-list → raw-value-style-enum-case raw-value-style-

enum-case , raw-value-style-enum-case-list
​ raw-value-style-enum-case → enum-case-name raw-value-assignmentopt

​ raw-value-assignment → = literal

Structure Declaration

A structure declaration introduces a named structure type into your program. Structure
declarations are declared using the keyword struct and have the following form:

struct structure name : adopted protocols {

 declarations

}

The body of a structure contains zero or more declarations. These declarations can
include both stored and computed properties, static properties, instance methods,
static methods, initializers, type aliases, and even other structure, class, and
enumeration declarations. Structure declarations can’t contain destructor or protocol
declarations. For a discussion and several examples of structures that include various
kinds of declarations, see Classes and Structures.

Structure types can adopt any number of protocols, but can’t inherit from classes,
enumerations, or other structures.

There are three ways create an instance of a previously declared structure:

451

The process of initializing a structure’s declared properties is described in Initialization.

Properties of a structure instance can be accessed using dot (.) syntax, as described in
Accessing Properties.

Structures are value types; instances of a structure are copied when assigned to
variables or constants, or when passed as arguments to a function call. For information
about value types, see Structures and Enumerations Are Value Types.

You can extend the behavior of a structure type with an extension declaration, as
discussed in Extension Declaration.

G RA MMA R O F A S T RU CT U RE DE CL A RAT IO N

​ struct-declaration → attributesopt struct struct-name generic-parameter-
clause opt type-inheritance-clause opt struct-body

​ struct-name → identifier
​ struct-body → { declarationsopt }

Class Declaration

A class declaration introduces a named class type into your program. Class
declarations are declared using the keyword class and have the following form:

class class name : superclass , adopted protocols {

 declarations

}

The body of a class contains zero or more declarations. These declarations can include
both stored and computed properties, instance methods, class methods, initializers, a

Call one of the initializers declared within the structure, as described in
Initializers.
If no initializers are declared, call the structure’s memberwise initializer, as
described in Memberwise Initializers for Structure Types.
If no initializers are declared, and all properties of the structure declaration
were given initial values, call the structure’s default initializer, as described in
Default Initializers.

452

single destructor method, type aliases, and even other class, structure, and
enumeration declarations. Class declarations can’t contain protocol declarations. For a
discussion and several examples of classes that include various kinds of declarations,
see Classes and Structures.

A class type can inherit from only one parent class, its superclass, but can adopt any
number of protocols. The superclass appears first in the type-inheritance-clause,
followed by any adopted protocols.

As discussed in Initializer Declaration, classes can have designated and convenience
initializers. When you declare either kind of initializer, you can require any subclass to
override it by marking the initializer with the required attribute. The designated
initializer of a class must initialize all of the class’s declared properties and it must do
so before calling any of its superclass’s designated initializers.

A class can override properties, methods, and initializers of its superclass. Overridden
methods and properties must be marked with the override keyword.

Although properties and methods declared in the superclass are inherited by the
current class, designated initializers declared in the superclass are not. That said, if
the current class overrides all of the superclass’s designated initializers, it inherits the
superclass’s convenience initializers. Swift classes do not inherit from a universal base
class.

There are two ways create an instance of a previously declared class:

Access properties of a class instance with dot (.) syntax, as described in Accessing
Properties.

Classes are reference types; instances of a class are referred to, rather than copied,
when assigned to variables or constants, or when passed as arguments to a function
call. For information about reference types, see Structures and Enumerations Are
Value Types.

You can extend the behavior of a class type with an extension declaration, as
discussed in Extension Declaration.

G RA MMA R O F A CL A S S DE CL A RAT IO N

Call one of the initializers declared within the class, as described in Initializers.
If no initializers are declared, and all properties of the class declaration were
given initial values, call the class’s default initializer, as described in Default
Initializers.

453

​ class-declaration → attributesopt class class-name generic-parameter-
clause opt type-inheritance-clause opt class-body

​ class-name → identifier
​ class-body → { declarationsopt }

Protocol Declaration

A protocol declaration introduces a named protocol type into your program. Protocol
declarations are declared using the keyword protocol and have the following form:

protocol protocol name : inherited protocols {

 protocol member declarations

}

The body of a protocol contains zero or more protocol member declarations, which
describe the conformance requirements that any type adopting the protocol must
fulfill. In particular, a protocol can declare that conforming types must implement
certain properties, methods, initializers, and subscripts. Protocols can also declare
special kinds of type aliases, called associated types, that can specify relationships
among the various declarations of the protocol. The protocol member declarations are
discussed in detail below.

Protocol types can inherit from any number of other protocols. When a protocol type
inherits from other protocols, the set of requirements from those other protocols are
aggregated, and any type that inherits from the current protocol must conform to all
those requirements. For an example of how to use protocol inheritance, see Protocol
Inheritance.

NO T E

You can also aggregate the conformance requirements of multiple protocols using protocol composition
types, as described in Protocol Composition Type and Protocol Composition.

You can add protocol conformance to a previously declared type by adopting the
protocol in an extension declaration of that type. In the extension, you must
implement all of the adopted protocol’s requirements. If the type already implements
all of the requirements, you can leave the body of the extension declaration empty.

454

By default, types that conform to a protocol must implement all properties, methods,
and subscripts declared in the protocol. That said, you can mark these protocol
member declarations with the optional attribute to specify that their implementation
by a conforming type is optional. The optional attribute can be applied only to
protocols that are marked with the objc attribute. As a result, only class types can
adopt and conform to a protocol that contains optional member requirements. For
more information about how to use the optional attribute and for guidance about how
to access optional protocol members—for example, when you’re not sure whether a
conforming type implements them—see Optional Protocol Requirements.

To restrict the adoption of a protocol to class types only, mark the entire protocol
declaration with the class_protocol attribute. Any protocol that inherits from a protocol
marked with the class_protocol attribute can likewise be adopted only by a class type.

NO T E

If a protocol is already marked with the objc attribute, the class_protocol attribute is implicitly applied
to that protocol; there’s no need to mark the protocol with the class_protocol attribute explicitly.

Protocols are named types, and thus they can appear in all the same places in your
code as other named types, as discussed in Protocols as Types. However, you can’t
construct an instance of a protocol, because protocols do not actually provide the
implementations for the requirements they specify.

You can use protocols to declare which methods a delegate of a class or structure
should implement, as described in Delegation.

G RA MMA R O F A P RO T O CO L DE CL A RAT IO N

​ protocol-declaration → attributesopt protocol protocol-name type-inheritance-
clause opt protocol-body

​ protocol-name → identifier
​ protocol-body → { protocol-member-declarationsopt }

​ protocol-member-declaration → protocol-property-declaration
​ protocol-member-declaration → protocol-method-declaration
​ protocol-member-declaration → protocol-initializer-declaration
​ protocol-member-declaration → protocol-subscript-declaration
​ protocol-member-declaration → protocol-associated-type-declaration
​ protocol-member-declarations → protocol-member-declaration protocol-member-

455

declarationsopt

Protocol Property Declaration

Protocols declare that conforming types must implement a property by including a
protocol property declaration in the body of the protocol declaration. Protocol property
declarations have a special form of a variable declaration:

var property name : type { get set }

As with other protocol member declarations, these property declarations declare only
the getter and setter requirements for types that conform to the protocol. As a result,
you don’t implement the getter or setter directly in the protocol in which it is declared.

The getter and setter requirements can be satisfied by a conforming type in a variety
of ways. If a property declaration includes both the get and set keywords, a
conforming type can implement it with a stored variable property or a computed
property that is both readable and writeable (that is, one that implements both a
getter and a setter). However, that property declaration can’t be implemented as a
constant property or a read-only computed property. If a property declaration includes
only the get keyword, it can be implemented as any kind of property. For examples of
conforming types that implement the property requirements of a protocol, see
Property Requirements.

See also Variable Declaration.

G RA MMA R O F A P RO T O CO L P RO P E RT Y DE CL A RAT IO N

​ protocol-property-declaration → variable-declaration-head variable-name type-
annotation getter-setter-keyword-block

Protocol Method Declaration

Protocols declare that conforming types must implement a method by including a
protocol method declaration in the body of the protocol declaration. Protocol method
declarations have the same form as function declarations, with two exceptions: They
don’t include a function body, and you can’t provide any default parameter values as
part of the function declaration. For examples of conforming types that implement the
method requirements of a protocol, see Method Requirements.

456

To declare a class or static method requirement in a protocol declaration, mark the
method declaration with the class keyword. Classes that implement this method also
declare the method with the class keyword. Structures that implement it must declare
the method with the static keyword instead. If you’re implementing the method in an
extension, use the class keyword if you’re extending a class and the static keyword if
you’re extending a structure.

See also Function Declaration.

G RA MMA R O F A P RO T O CO L ME T H O D DE CL A RAT IO N

​ protocol-method-declaration → function-head function-name generic-parameter-
clause opt function-signature

Protocol Initializer Declaration

Protocols declare that conforming types must implement an initializer by including a
protocol initializer declaration in the body of the protocol declaration. Protocol
initializer declarations have the same form as initializer declarations, except they don’t
include the initializer’s body.

See also Initializer Declaration.

G RA MMA R O F A P RO T O CO L IN IT IA L IZ E R DE CL A RAT IO N

​ protocol-initializer-declaration → initializer-head generic-parameter-
clause opt parameter-clause

Protocol Subscript Declaration

Protocols declare that conforming types must implement a subscript by including a
protocol subscript declaration in the body of the protocol declaration. Protocol property
declarations have a special form of a subscript declaration:

subscript (parameters) -> return type { get set }

Subscript declarations only declare the minimum getter and setter implementation
requirements for types that conform to the protocol. If the subscript declaration
includes both the get and set keywords, a conforming type must implement both a

457

getter and a setter clause. If the subscript declaration includes only the get keyword, a
conforming type must implement at least a getter clause and optionally can
implement a setter clause.

See also Subscript Declaration.

G RA MMA R O F A P RO T O CO L S U B S CRIP T DE CL A RAT IO N

​ protocol-subscript-declaration → subscript-head subscript-result getter-setter-
keyword-block

Protocol Associated Type Declaration

Protocols declare associated types using the keyword typealias. An associated type
provides an alias for a type that is used as part of a protocol’s declaration. Accosiated
types are similiar to type paramters in generic parameter clauses, but they’re
associated with Self in the protocol in which they’re declared. In that context, Self
refers to the eventual type that conforms to the protocol. For more information and
examples, see Associated Types.

See also Type Alias Declaration.

G RA MMA R O F A P RO T O CO L A S S O C IAT E D T Y P E DE CL A RAT IO N

​ protocol-associated-type-declaration → typealias-head type-inheritance-
clause opt typealias-assignmentopt

Initializer Declaration

An initializer declaration introduces an initializer for a class, structure, or enumeration
into your program. Initializer declarations are declared using the keyword init and
have two basic forms.

Structure, enumeration, and class types can have any number of initializers, but the
rules and associated behavior for class initializers are different. Unlike structures and
enumerations, classes have two kinds of initializers: designated initializers and
convenience initializers, as described in Initialization.

The following form declares initializers for structures, enumerations, and designated
initializers of classes:

458

init(parameters) {

 statements

}

A designated initializer of a class initializes all of the class’s properties directly. It can’t
call any other initializers of the same class, and if the class has a superclass, it must
call one of the superclass’s designated initializers. If the class inherits any properties
from its superclass, one of the superclass’s designated initializers must be called
before any of these properties can be set or modified in the current class.

Designated initializers can be declared in the context of a class declaration only and
therefore can’t be added to a class using an extension declaration.

Initializers in structures and enumerations can call other declared initializers to
delegate part or all of the initialization process.

To declare convenience initializers for a class, prefix the initializer declaration with the
context-sensitive keyword convenience.

convenience init(parameters) {

 statements

}

Convenience initializers can delegate the initialization process to another convenience
initializer or to one of the class’s designated initializers. That said, the initialization
processes must end with a call to a designated initializer that ultimately initializes the
class’s properties. Convenience initializers can’t call a superclass’s initializers.

You can mark designated and convenience initializers with the required attribute to
require that every subclass implement the initializer. Because designated initializers
are not inherited by subclasses, they must be implemented directly. Required
convenience initializers can be either implemented explicitly or inherited when the
subclass directly implements all of the superclass’s designated initializers (or overrides
the designated initializers with convenience initializers). Unlike methods, properties,
and subscripts, you don’t need to mark overridden initializers with the override
keyword.

To see examples of initializers in various type declarations, see Initialization.

G RA MMA R O F A N IN IT IA L IZ E R DE CL A RAT IO N

459

​ initializer-declaration → initializer-head generic-parameter-clause opt parameter-
clause initializer-body

​ initializer-head → attributesopt convenience opt init

​ initializer-body → code-block

Deinitializer Declaration

A deinitializer declaration declares a deinitializer for a class type. Deinitializers take no
parameters and have the following form:

deinit {

 statements

}

A deinitializer is called automatically when there are no longer any references to a
class object, just before the class object is deallocated. A deinitializer can be declared
only in the body of a class declaration—but not in an extension of a class—and each
class can have at most one.

A subclass inherits its superclass’s deinitializer, which is implicitly called just before the
subclass object is deallocated. The subclass object is not deallocated until all
deinitializers in its inheritance chain have finished executing.

Deinitializers are not called directly.

For an example of how to use a deinitializer in a class declaration, see Deinitialization.

G RA MMA R O F A DE IN IT IA L IZ E R DE CL A RAT IO N

​ deinitializer-declaration → attributesopt deinit code-block

Extension Declaration

An extension declaration allows you to extend the behavior of existing class, structure,
and enumeration types. Extension declarations begin with the keyword extension and
have the following form:

460

extension type : adopted protocols {

 declarations

}

The body of an extension declaration contains zero or more declarations. These
declarations can include computed properties, computed static properties, instance
methods, static and class methods, initializers, subscript declarations, and even class,
structure, and enumeration declarations. Extension declarations can’t contain
destructor or protocol declarations, store properties, property observers, or other
extension declarations. For a discussion and several examples of extensions that
include various kinds of declarations, see Extensions.

Extension declarations can add protocol conformance to an existing class, structure,
and enumeration type in the adopted protocols. Extension declarations can’t add class
inheritance to an existing class, and therefore the type-inheritance-clause in an
extension declaration contains only a list of protocols.

Properties, methods, and initializers of an existing type can’t be overridden in an
extension of that type.

Extension declarations can contain initializer declarations. That said, if the type you’re
extending is defined in another module, an initializer declaration must delegate to an
initializer already defined in that module to ensure members of that type are properly
initialized.

G RA MMA R O F A N E X T E N S IO N DE CL A RAT IO N

​ extension-declaration → extension type-identifier type-inheritance-
clause opt extension-body

​ extension-body → { declarationsopt }

Subscript Declaration

A subscript declaration allows you to add subscripting support for objects of a
particular type and are typically used to provide a convenient syntax for accessing the
elements in a collection, list, or sequence. Subscript declarations are declared using
the keyword subscript and have the following form:

subscript (parameters) -> return type {

461

 get {

 statements

 }

 set(setter name) {

 statements

 }

}

Subscript declarations can appear only in the context of a class, structure,
enumeration, extension, or protocol declaration.

The parameters specify one or more indexes used to access elements of the
corresponding type in a subscript expression (for example, the i in the expression
object[i]). Although the indexes used to access the elements can be of any type, each
parameter must include a type annotation to specify the type of each index. The
return type specifies the type of the element being accessed.

As with computed properties, subscript declarations support reading and writing the
value of the accessed elements. The getter is used to read the value, and the setter is
used to write the value. The setter clause is optional, and when only a getter is
needed, you can omit both clauses and simply return the requested value directly.
That said, if you provide a setter clause, you must also provide a getter clause.

The setter name and enclosing parentheses are optional. If you provide a setter name,
it is used as the name of the parameter to the setter. If you do not provide a setter
name, the default parameter name to the setter is value. That type of the setter name
must be the same as the return type.

You can overload a subscript declaration in the type in which it is declared, as long as
the parameters or the return type differ from the one you’re overloading. You can also
override a subscript declaration inherited from a superclass. When you do so, you must
mark the overridden subscript declaration with the override keyword.

You can also declare subscripts in the context of a protocol declaration, as described in
Protocol Subscript Declaration.

For more information about subscripting and to see examples of subscript declarations,
see Subscripts.

G RA MMA R O F A S U B S CRIP T DE CL A RAT IO N

462

​ subscript-declaration → subscript-head subscript-result code-block
​ subscript-declaration → subscript-head subscript-result getter-setter-block
​ subscript-declaration → subscript-head subscript-result getter-setter-keyword-

block
​ subscript-head → attributesopt subscript parameter-clause
​ subscript-result → -> attributesopt type

Operator Declaration

An operator declaration introduces a new infix, prefix, or postfix operator into your
program and is declared using the contextual keyword operator.

You can declare operators of three different fixities: infix, prefix, and postfix. The fixity
of an operator specifies the relative position of an operator to its operands.

There are three basic forms of an operator declaration, one for each fixity. The fixity of
the operator is specified by including the contextual keyword infix, prefix, or postfix
between operator and the name of the operator. In each form, the name of the
operator can contain only the operator characters defined in Operators.

The following form declares a new infix operator:

operator infix operator name {

 precedence precedence level

 associativity associativity

}

An infix operator is a binary operator that is written between its two operands, such as
the familiar addition operator (+) in the expression 1 + 2.

Infix operators can optionally specify a precedence, associativity, or both.

The precedence of an operator specifies how tightly an operator binds to its operands
in the absence of grouping parentheses. You specify the precedence of an operator by
writing the contextual keyword precedence followed by the precedence level. The
precedence level can be any whole number (decimal integer) from 0 to 255; unlike
decimal integer literals, it can’t contain any underscore characters. Although the
precedence level is a specific number, it is significant only relative to another operator.

463

That is, when two operators compete with each other for their operands, such as in
the expression 2 + 3 * 5, the operator with the higher precedence level binds more
tightly to its operands.

The associativity of an operator specifies how a sequence of operators with the same
precedence level are grouped together in the absence of grouping parentheses. You
specify the associativity of an operator by writing the contextual keyword associativity
followed by the associativity, which is one of the contextual keywords left, right, or
none. Operators that are left-associative group left-to-right. For example, the
subtraction operator (-) is left-associative, and therefore the expression 4 - 5 - 6 is
grouped as (4 - 5) - 6 and evaluates to -7. Operators that are right-associative group
right-to-left, and operators that are specified with an associativity of none don’t
associate at all. Nonassociative operators of the same precedence level can’t appear
adjacent to each to other. For example, 1 < 2 < 3 is not a valid expression.

Infix operators that are declared without specifying a precedence or associativity are
initialized with a precedence level of 100 and an associativity of none.

The following form declares a new prefix operator:

operator prefix operator name {}

A prefix operator is a unary operator that is written immediately before its operand,
such as the prefix increment operator (++) is in the expression ++i.

Prefix operators declarations don’t specify a precedence level. Prefix operators are
nonassociative.

The following form declares a new postfix operator:

operator postfix operator name {}

A postfix operator is a unary operator that is written immediately after its operand,
such as the postfix increment operator (++) is in the expression i++.

As with prefix operators, postfix operator declarations don’t specify a precedence level.
Postfix operators are nonassociative.

After declaring a new operator, you implement it by declaring a function that has the
same name as the operator. To see an example of how to create and implement a
new operator, see Custom Operators.

G RA MMA R O F A N O P E RAT O R DE CL A RAT IO N

464

​ operator-declaration → prefix-operator-declaration postfix-operator-declaration
infix-operator-declaration

​ prefix-operator-declaration → operator prefix operator { }

​ postfix-operator-declaration → operator postfix operator { }

​ infix-operator-declaration → operator infix operator { infix-operator-
attributesopt }

​ infix-operator-attributes → precedence-clause opt associativity-clause opt

​ precedence-clause → precedence precedence-level
​ precedence-level → Digit 0 through 255
​ associativity-clause → associativity associativity
​ associativity → left right none

465

Attributes

Attributes provide more information about a declaration or type. There are two kinds
of attributes in Swift, those that apply to declarations and those that apply to types.
For instance, the required attribute—when applied to a designated or convenience
initializer declaration of a class—indicates that every subclass must implement that
initializer. And the noreturn attribute—when applied to a function or method type—
indicates that the function or method doesn’t return to its caller.

You specify an attribute by writing the @ symbol followed by the attribute’s name and
any arguments that the attribute accepts:

@ attribute name

@ attribute name (attribute arguments)

Some declaration attributes accept arguments that specify more information about the
attribute and how it applies to a particular declaration. These attribute arguments are
enclosed in parentheses, and their format is defined by the attribute they belong to.

Declaration Attributes

You can apply a declaration attribute to declarations only. However, you can also
apply the noreturn attribute to a function or method type.

Apply this attribute to functions that overload a compound assignment operator.
Functions that overload a compound assignment operator must mark their initial
input parameter as inout. For an example of how to use the assignment attribute,
see Compound Assignment Operators.

Apply this attribute to a protocol to indicate that the protocol can be adopted by
class types only.

If you apply the objc attribute to a protocol, the class_protocol attribute is
implicitly applied to that protocol; there’s no need to mark the protocol with the
class_protocol attribute explicitly.

assignment

class_protocol

466

Apply this attribute to an import declaration to export the imported module,
submodule, or declaration from the current module. If another module imports the
current module, that other module can access the items exported by the current
module.

Apply this attribute to a class or to a property, method, or subscript member of a
class. It’s applied to a class to indicate that the class can’t be subclassed. It’s
applied to a property, method, or subscript of a class to indicate that that class
member can’t be overridden in any subclass.

Apply this attribute to a stored variable property of a class or structure to indicate
that the property’s initial value is calculated and stored at most once, when the
property is first accessed. For an example of how to use the lazy attribute, see
Lazy Stored Properties.

Apply this attribute to a function or method declaration to indicate that the
corresponding type of that function or method, T, is @noreturn T. You can mark a
function or method type with this attribute to indicate that the function or method
doesn’t return to its caller.

You can override a function or method that is not marked with the noreturn
attribute with a function or method that is. That said, you can’t override a function
or method that is marked with the noreturn attribute with a function or method
that is not. Similar rules apply when you implement a protocol method in a
conforming type.

Apply this attribute to a stored variable property of a class. This attribute causes
the property’s setter to be synthesized with a copy of the property’s value—
returned by the copyWithZone method—instead of the value of the property itself.
The type of the property must conform to the NSCopying protocol.

The NSCopying attribute behaves in a way similar to the Objective-C copy property
attribute.

Apply this attribute to a stored variable property of a class that inherits from
NSManagedObject to indicate that the storage and implementation of the property
are provided dynamically by Core Data at runtime based on the associated entity
description.

exported

final

lazy

noreturn

NSCopying

NSManaged

467

Apply this attribute to any declaration that can be represented in Objective-C—for
example, non-nested classes, protocols, properties and methods (including getters
and setters) of classes and protocols, initializers, deinitializers, and subscripts.
The objc attribute tells the compiler that a declaration is available to use in
Objective-C code.

If you apply the objc attribute to a class or protocol, it’s implicitly applied to the
members of that class or protocol. The compiler also implicitly adds the objc
attribute to a class that inherits from another class marked with the objc attribute.
Protocols marked with the objc attribute can’t inherit from protocols that aren’t.

The objc attribute optionally accepts a single attribute argument, which consists
of an identifier. Use this attribute when you want to expose a different name to
Objective-C for the entity the objc attribute applies to. You can use this argument
to name classes, protocols, methods, getters, setters, and initializers. The
example below exposes the getter for the enabled property of the ExampleClass to
Objective-C code as isEnabled rather than just as the name of the property itself.

@objc

class ExampleClass {

 var enabled: Bool {

 @objc(isEnabled) get {

 // Return the appropriate value

 }

 }

}

Apply this attribute to a protocol’s property, method, or subscript members to
indicate that a conforming type isn’t required to implement those members.

You can apply the optional attribute only to protocols that are marked with the
objc attribute. As a result, only class types can adopt and conform to a protocol
that contains optional member requirements. For more information about how to
use the optional attribute and for guidance about how to access optional protocol
members—for example, when you’re not sure whether a conforming type
implements them—see Optional Protocol Requirements.

objc

optional

468

Apply this attribute to a designated or convenience initializer of a class to indicate
that every subclass must implement that initializer.

Required designated initializers must be implemented explicitly. Required
convenience initializers can be either implemented explicitly or inherited when the
subclass directly implements all of the superclass’s designated initializers (or
when the subclass overrides the designated initializers with convenience
initializers).

Declaration Attributes Used by Interface Builder

Interface Builder attributes are declaration attributes used by Interface Builder to
synchronize with Xcode. Swift provides the following Interface Builder attributes:
IBAction, IBDesignable, IBInspectable, and IBOutlet. These attributes are conceptually
the same as their Objective-C counterparts.

You apply the IBOutlet and IBInspectable attributes to property declarations of a class.
You apply the IBAction attribute to method declarations of a class and the IBDesignable
attribute to class declarations.

Type Attributes

You can apply type attributes to types only. However, you can also apply the noreturn
attribute to a function or method declaration.

This attribute is used to delay the evaluation of an expression by automatically
wrapping that expression in a closure with no arguments. Apply this attribute to a
function or method type that takes no arguments and that returns the type of the
expression. For an example of how to use the auto_closure attribute, see Function
Type.

Apply this attribute to the type of a function or method to indicate that the
function or method doesn’t return to its caller. You can also mark a function or
method declaration with this attribute to indicate that the corresponding type of
that function or method, T, is @noreturn T.

G RA MMA R O F A N AT T RIB U T E

required

auto_closure

noreturn

469

​ attribute → @ attribute-name attribute-argument-clause opt

​ attribute-name → identifier
​ attribute-argument-clause → (balanced-tokensopt)

​ attributes → attribute attributesopt

​ balanced-tokens → balanced-token balanced-tokensopt

​ balanced-token → (balanced-tokensopt)

​ balanced-token → [balanced-tokensopt]

​ balanced-token → { balanced-tokensopt }

​ balanced-token → Any identifier, keyword, literal, or operator
​ balanced-token → Any punctuation except (,) , [,] , { , or }

470

Patterns

A pattern represents the structure of a single value or a composite value. For example,
the structure of a tuple (1, 2) is a comma-separated list of two elements. Because
patterns represent the structure of a value rather than any one particular value, you
can match them with a variety of values. For instance, the pattern (x, y) matches the
tuple (1, 2) and any other two-element tuple. In addition matching a pattern with a
value, you can extract part or all of a composite value and bind each part to a
constant or variable name.

In Swift, patterns occur in variable and constant declarations (on their left-hand side),
in for-in statements, and in switch statements (in their case labels). Although any
pattern can occur in the case labels of a switch statement, in the other contexts, only
wildcard patterns, identifier patterns, and patterns containing those two patterns can
occur.

You can specify a type annotation for a wildcard pattern, an identifier pattern, and a
tuple pattern to constraint the pattern to match only values of a certain type.

G RA MMA R O F A P AT T E RN

​ pattern → wildcard-pattern type-annotationopt

​ pattern → identifier-pattern type-annotationopt

​ pattern → value-binding-pattern
​ pattern → tuple-pattern type-annotationopt

​ pattern → enum-case-pattern
​ pattern → type-casting-pattern
​ pattern → expression-pattern

Wildcard Pattern

A wildcard pattern matches and ignores any value and consists of an underscore (_).
Use a wildcard pattern when you don’t care about the values being matched against.
For example, the following code iterates through the closed range 1..3, ignoring the
current value of the range on each iteration of the loop:

for _ in 1...3 {

471

 // Do something three times.

}

G RA MMA R O F A W IL DCA RD P AT T E RN

​ wildcard-pattern → _

Identifier Pattern

An identifier pattern matches any value and binds the matched value to a variable or
constant name. For example, in the following constant declaration, someValue is an
identifier pattern that matches the value 42 of type Int:

let someValue = 42

When the match succeeds, the value 42 is bound (assigned) to the constant name
someValue.

When the pattern on the left-hand side of a variable or constant declaration is an
identifier pattern, the identifier pattern is implicitly a subpattern of a value-binding
pattern.

G RA MMA R O F A N IDE N T IF IE R P AT T E RN

​ identifier-pattern → identifier

Value-Binding Pattern

A value-binding pattern binds matched values to variable or constant names. Value-
binding patterns that bind a matched value to the name of a constant begin with the
keyword let; those that bind to the name of variable begin with the keyword var.

Identifiers patterns within a value-binding pattern bind new named variables or
constants to their matching values. For example, you can decompose the elements of
a tuple and bind the value of each element to a corresponding identifier pattern.

let point = (3, 2)

switch point {

472

 // Bind x and y to the elements of point.

case let (x, y):

 println("The point is at (\(x), \(y)).")

}

// prints "The point is at (3, 2)."

In the example above, let distributes to each identifier pattern in the tuple pattern (x,
y). Because of this behavior, the switch cases case let (x, y): and case (let x, let
y): match the same values.

G RA MMA R O F A V A L U E -B IN D IN G P AT T E RN

​ value-binding-pattern → var pattern let pattern

Tuple Pattern

A tuple pattern is a comma-separated list of zero or more patterns, enclosed in
parentheses. Tuple patterns match values of corresponding tuple types.

You can constrain a tuple pattern to match certain kinds of tuple types by using type
annotations. For example, the tuple pattern (x, y): (Int, Int) in the constant
declaration let (x, y): (Int, Int) = (1, 2) matches only tuple types in which both
elements are of type Int. To constrain only some elements of a tuple pattern, provide
type annotations directly to those individual elements. For example, the tuple pattern
in let (x: String, y) matches any two-element tuple type, as long as the first element
is of type String.

When a tuple pattern is used as the pattern in a for-in statement or in a variable or
constant declaration, it can contain only wildcard patterns, identifier patterns, or other
tuple patterns that contain those. For example, the following code isn’t valid because
the element 0 in the tuple pattern (x, 0) is an expression pattern:

let points = [(0, 0), (1, 0), (1, 1), (2, 0), (2, 1)]

// This code isn't valid.

for (x, 0) in points {

 /* ... */

473

}

The parentheses around a tuple pattern that contains a single element have no effect.
The pattern matches values of that single element’s type. For example, the following
are equivalent:

let a = 2 // a: Int = 2

let (a) = 2 // a: Int = 2

let (a): Int = 2 // a: Int = 2

G RA MMA R O F A T U P L E P AT T E RN

​ tuple-pattern → (tuple-pattern-element-listopt)

​ tuple-pattern-element-list → tuple-pattern-element tuple-pattern-
element , tuple-pattern-element-list

​ tuple-pattern-element → pattern

Enumeration Case Pattern

An enumeration case pattern matches a case of an existing enumeration type.
Enumeration case patterns appear only in switch statement case labels.

If the enumeration case you’re trying to match has any associated values, the
corresponding enumeration case pattern must specify a tuple pattern that contains
one element for each associated value. For an example that uses a switch statement
to match enumeration cases containing associated values, see Associated Values.

G RA MMA R O F A N E N U ME RAT IO N CA S E P AT T E RN

​ enum-case-pattern → type-identifieropt . enum-case-name tuple-patternopt

Type-Casting Patterns

There are two type-casting patterns, the is pattern and the as pattern. Both type-
casting patterns appear only in switch statement case labels. The is and as patterns
have the following form:

474

is type

pattern as type

The is pattern matches a value if the type of that value at runtime is the same as the
type specified in the right-hand side of the is pattern—or a subclass of that type. The
is pattern behaves like the is operator in that they both perform a type cast but
discard the returned type.

The as pattern matches a value if the type of that value at runtime is the same as the
type specified in the right-hand side of the as pattern—or a subclass of that type. If the
match succeeds, the type of the matched value is cast to the pattern specified in the
left-hand side of the as pattern.

For an example that uses a switch statement to match values with is and as patterns,
see Type Casting for Any and AnyObject.

G RA MMA R O F A T Y P E CA S T IN G P AT T E RN

​ type-casting-pattern → is-pattern as-pattern
​ is-pattern → is type
​ as-pattern → pattern as type

Expression Pattern

An expression pattern represents the value of an expression. Expression patterns
appear only in switch statement case labels.

The expression represented by the expression pattern is compared with the value of
an input expression using the Swift standard library ~= operator. The matches
succeeds if the ~= operator returns true. By default, the ~= operator compares two
values of the same type using the == operator. It can also match an integer value with
a range of integers in an Range object, as the following example shows:

let point = (1, 2)

switch point {

case (0, 0):

 println("(0, 0) is at the origin.")

475

case (-2...2, -2...2):

 println("(\(point.0), \(point.1)) is near the origin.")

default:

 println("The point is at (\(point.0), \(point.1)).")

}

// prints "(1, 2) is near the origin."

You can overload the ~= operator to provide custom expression matching behavior. For
example, you can rewrite the above example to compare the point expression with a
string representations of points.

// Overload the ~= operator to match a string with an integer

func ~=(pattern: String, value: Int) -> Bool {

 return pattern == "\(value)"

}

switch point {

case ("0", "0"):

 println("(0, 0) is at the origin.")

case ("-2...2", "-2...2"):

 println("(\(point.0), \(point.1)) is near the origin.")

default:

 println("The point is at (\(point.0), \(point.1)).")

}

// prints "(1, 2) is near the origin."

G RA MMA R O F A N E X P RE S S IO N P AT T E RN

​ expression-pattern → expression

476

Generic Parameters and Arguments

This chapter describes parameters and arguments for generic types, functions, and
initializers. When you declare a generic type, function, or initializer, you specify the
type parameters that the generic type, function, or initializer can work with. These
type parameters act as placeholders that are replaced by actual concrete type
arguments when an instance of a generic type is created or a generic function or
initializer is called.

For an overview of generics in Swift, see Generics.

Generic Parameter Clause

A generic parameter clause specifies the type parameters of a generic type or
function, along with any associated constraints and requirements on those
parameters. A generic parameter clause is enclosed in angle brackets (<>) and has
one of the following forms:

< generic parameter list >

< generic parameter list where requirements >

The generic parameter list is a comma-separated list of generic parameters, each of
which has the following form:

type parameter : constraint

A generic parameter consists of a type parameter followed by an optional constraint. A
type parameter is simply the name of a placeholder type (for instance, T, U, V, KeyType,
ValueType, and so on). You have access to the type parameters (and any of their
associated types) in the rest of the type, function, or initializer declaration, including in
the signature of the function or initializer.

The constraint specifies that a type parameter inherits from a specific class or
conforms to a protocol or protocol composition. For instance, in the generic function
below, the generic parameter T: Comparable indicates that any type argument
substituted for the type parameter T must conform to the Comparable protocol.

477

func simpleMin<T: Comparable>(x: T, y: T) -> T {

 if x < y {

 return y

 }

 return x

}

Because Int and Double, for example, both conform to the Comparable protocol, this
function accepts arguments of either type. In contrast with generic types, you don’t
specify a generic argument clause when you use a generic function or initializer. The
type arguments are instead inferred from the type of the arguments passed to the
function or initializer.

simpleMin(17, 42) // T is inferred to be Int

simpleMin(3.14159, 2.71828) // T is inferred to be Double

Where Clauses

You can specify additional requirements on type parameters and their associated
types by including a where clause after the generic parameter list. A where clause
consists of the keyword where, followed by a comma-separated list of one or more
requirements.

The requirements in a where clause specify that a type parameter inherits from a class
or conforms to a protocol or protocol composition. Although the where clause provides
syntactic sugar for expressing simple constraints on type parameters (for instance, T:
Comparable is equivalent to T where T: Comparable and so on), you can use it to provide
more complex constraints on type parameters and their associated types. For instance,
you can express the constraints that a generic type T inherits from a class C and
conforms to a protocol P as <T where T: C, T: P>.

As mentioned above, you can constrain the associated types of type parameters to
conform to protocols. For example, the generic parameter clause <T: Generator where
T.Element: Equatable> specifies that T conforms to the Generator protocol and the
associated type of T, T.Element, conforms to the Equatable protocol (T has the
associated type Element because Generator declares Element and T conforms to

478

Generator).

You can also specify the requirement that two types be identical, using the ==
operator. For example, the generic parameter clause <T: Generator, U: Generator where
T.Element == U.Element> expresses the constraints that T and U conform to the Generator
protocol and that their associated types must be identical.

Any type argument substituted for a type parameter must meet all the constraints and
requirements placed on the type parameter.

You can overload a generic function or initializer by providing different constraints,
requirements, or both on the type parameters in the generic parameter clause. When
you call an overloaded generic function or initializer, the compiler uses these
constraints to resolve which overloaded function or initializer to invoke.

You can subclass a generic class, but the subclass must also be a generic class.

G RA MMA R O F A G E N E RIC P A RA ME T E R CL A U S E

​ generic-parameter-clause → < generic-parameter-list requirement-clause opt >

​ generic-parameter-list → generic-parameter generic-parameter , generic-
parameter-list

​ generic-parameter → type-name
​ generic-parameter → type-name : type-identifier
​ generic-parameter → type-name : protocol-composition-type

​ requirement-clause → where requirement-list
​ requirement-list → requirement requirement , requirement-list
​ requirement → conformance-requirement same-type-requirement

​ conformance-requirement → type-identifier : type-identifier
​ conformance-requirement → type-identifier : protocol-composition-type
​ same-type-requirement → type-identifier == type-identifier

Generic Argument Clause

A generic argument clause specifies the type arguments of a generic type. A generic
argument clause is enclosed in angle brackets (<>) and has the following form:

< generic argument list >

479

The generic argument list is a comma-separated list of type arguments. A type
argument is the name of an actual concrete type that replaces a corresponding type
parameter in the generic parameter clause of a generic type. The result is a
specialized version of that generic type. As an example, the Swift standard library
defines a generic dictionary type as:

struct Dictionary<KeyType: Hashable, ValueType>: Collection,

DictionaryLiteralConvertible {

 /* ... */

}

The specialized version of the generic Dictionary type, Dictionary<String, Int> is
formed by replacing the generic parameters KeyType: Hashable and ValueType with the
concrete type arguments String and Int. Each type argument must satisfy all the
constraints of the generic parameter it replaces, including any additional requirements
specified in a where clause. In the example above, the KeyType type parameter is
constrained to conform to the Hashable protocol and therefore String must also
conform to the Hashable protocol.

You can also replace a type parameter with a type argument that is itself a specialized
version of a generic type (provided it satisfies the appropriate constraints and
requirements). For example, you can replace the type parameter T in Array<T> with a
specialized version of an array, Array<Int>, to form an array whose elements are
themselves arrays of integers.

let arrayOfArrays: Array<Array<Int>> = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

As mentioned in Generic Parameter Clause, you don’t use a generic argument clause
to specify the type arguments of a generic function or initializer.

G RA MMA R O F A G E N E RIC A RG U ME N T CL A U S E

​ generic-argument-clause → < generic-argument-list >

​ generic-argument-list → generic-argument generic-argument , generic-
argument-list

​ generic-argument → type

480

Summary of the Grammar

Statements

G RA MMA R O F A S T AT E ME N T

​ statement → expression ; opt

​ statement → declaration ; opt

​ statement → loop-statement ; opt

​ statement → branch-statement ; opt

​ statement → labeled-statement
​ statement → control-transfer-statement ; opt

​ statements → statement statementsopt

G RA MMA R O F A L O O P S T AT E ME N T

​ loop-statement → for-statement
​ loop-statement → for-in-statement
​ loop-statement → while-statement
​ loop-statement → do-while-statement

G RA MMA R O F A FO R S T AT E ME N T

​ for-statement → for for-initopt ; expressionopt ; expressionopt code-block
​ for-statement → for (for-initopt ; expressionopt ; expressionopt) code-block

​ for-init → variable-declaration expression-list

G RA MMA R O F A FO R- IN S T AT E ME N T

​ for-in-statement → for pattern in expression code-block

G RA MMA R O F A W H IL E S T AT E ME N T

​ while-statement → while while-condition code-block
​ while-condition → expression declaration

G RA MMA R O F A DO -W H IL E S T AT E ME N T

481

​ do-while-statement → do code-block while while-condition

G RA MMA R O F A B RA N CH S T AT E ME N T

​ branch-statement → if-statement
​ branch-statement → switch-statement

G RA MMA R O F A N IF S T AT E ME N T

​ if-statement → if if-condition code-block else-clause opt

​ if-condition → expression declaration
​ else-clause → else code-block else if-statement

G RA MMA R O F A S W IT CH S T AT E ME N T

​ switch-statement → switch expression { switch-casesopt }

​ switch-cases → switch-case switch-casesopt

​ switch-case → case-label statements default-label statements
​ switch-case → case-label ; default-label ;

​ case-label → case case-item-list :

​ case-item-list → pattern guard-clause opt pattern guard-clause opt , case-item-list
​ default-label → default :

​ guard-clause → where guard-expression
​ guard-expression → expression

G RA MMA R O F A L A B E L E D S T AT E ME N T

​ labeled-statement → statement-label loop-statement statement-label switch-
statement

​ statement-label → label-name :

​ label-name → identifier

G RA MMA R O F A CO N T RO L T RA N S FE R S T AT E ME N T

​ control-transfer-statement → break-statement
​ control-transfer-statement → continue-statement
​ control-transfer-statement → fallthrough-statement
​ control-transfer-statement → return-statement

G RA MMA R O F A B RE A K S T AT E ME N T

482

​ break-statement → break label-name opt

G RA MMA R O F A CO N T IN U E S T AT E ME N T

​ continue-statement → continue label-name opt

G RA MMA R O F A FA L LT H RO U G H S T AT E ME N T

​ fallthrough-statement → fallthrough

G RA MMA R O F A RE T U RN S T AT E ME N T

​ return-statement → return expressionopt

Generic Parameters and Arguments

G RA MMA R O F A G E N E RIC P A RA ME T E R CL A U S E

​ generic-parameter-clause → < generic-parameter-list requirement-clause opt >

​ generic-parameter-list → generic-parameter generic-parameter , generic-
parameter-list

​ generic-parameter → type-name
​ generic-parameter → type-name : type-identifier
​ generic-parameter → type-name : protocol-composition-type

​ requirement-clause → where requirement-list
​ requirement-list → requirement requirement , requirement-list
​ requirement → conformance-requirement same-type-requirement

​ conformance-requirement → type-identifier : type-identifier
​ conformance-requirement → type-identifier : protocol-composition-type
​ same-type-requirement → type-identifier == type-identifier

G RA MMA R O F A G E N E RIC A RG U ME N T CL A U S E

​ generic-argument-clause → < generic-argument-list >

​ generic-argument-list → generic-argument generic-argument , generic-
argument-list

​ generic-argument → type

483

Declarations

G RA MMA R O F A DE CL A RAT IO N

​ declaration → import-declaration
​ declaration → constant-declaration
​ declaration → variable-declaration
​ declaration → typealias-declaration
​ declaration → function-declaration
​ declaration → enum-declaration
​ declaration → struct-declaration
​ declaration → class-declaration
​ declaration → protocol-declaration
​ declaration → initializer-declaration
​ declaration → deinitializer-declaration
​ declaration → extension-declaration
​ declaration → subscript-declaration
​ declaration → operator-declaration
​ declarations → declaration declarationsopt

​ declaration-specifiers → declaration-specifier declaration-specifiersopt

​ declaration-specifier → class mutating nonmutating override static unowned
unowned(safe) unowned(unsafe) weak

G RA MMA R O F A T O P -L E V E L DE CL A RAT IO N

​ top-level-declaration → statementsopt

G RA MMA R O F A CO DE B L O CK

​ code-block → { statementsopt }

G RA MMA R O F A N IMP O RT DE CL A RAT IO N

​ import-declaration → attributesopt import import-kindopt import-path

​ import-kind → typealias struct class enum protocol var func
​ import-path → import-path-identifier import-path-identifier . import-path
​ import-path-identifier → identifier operator

484

G RA MMA R O F A CO N S T A N T DE CL A RAT IO N

​ constant-declaration → attributesopt declaration-specifiersopt let pattern-
initializer-list

​ pattern-initializer-list → pattern-initializer pattern-initializer , pattern-initializer-
list

​ pattern-initializer → pattern initializeropt

​ initializer → = expression

G RA MMA R O F A V A RIA B L E DE CL A RAT IO N

​ variable-declaration → variable-declaration-head pattern-initializer-list
​ variable-declaration → variable-declaration-head variable-name type-

annotation code-block
​ variable-declaration → variable-declaration-head variable-name type-

annotation getter-setter-block
​ variable-declaration → variable-declaration-head variable-name type-

annotation getter-setter-keyword-block
​ variable-declaration → variable-declaration-head variable-name type-

annotation initializeropt willSet-didSet-block

​ variable-declaration-head → attributesopt declaration-specifiersopt var

​ variable-name → identifier

​ getter-setter-block → { getter-clause setter-clause opt }

​ getter-setter-block → { setter-clause getter-clause }

​ getter-clause → attributesopt get code-block
​ setter-clause → attributesopt set setter-name opt code-block
​ setter-name → (identifier)

​ getter-setter-keyword-block → { getter-keyword-clause setter-keyword-
clause opt }

​ getter-setter-keyword-block → { setter-keyword-clause getter-keyword-clause }

​ getter-keyword-clause → attributesopt get

​ setter-keyword-clause → attributesopt set

​ willSet-didSet-block → { willSet-clause didSet-clause opt }

​ willSet-didSet-block → { didSet-clause willSet-clause }

​ willSet-clause → attributesopt willSet setter-name opt code-block

485

​ didSet-clause → attributesopt didSet setter-name opt code-block

G RA MMA R O F A T Y P E A L IA S DE CL A RAT IO N

​ typealias-declaration → typealias-head typealias-assignment
​ typealias-head → typealias typealias-name
​ typealias-name → identifier
​ typealias-assignment → = type

G RA MMA R O F A FU N CT IO N DE CL A RAT IO N

​ function-declaration → function-head function-name generic-parameter-
clause opt function-signature function-body

​ function-head → attributesopt declaration-specifiersopt func

​ function-name → identifier operator

​ function-signature → parameter-clauses function-resultopt

​ function-result → -> attributesopt type
​ function-body → code-block

​ parameter-clauses → parameter-clause parameter-clausesopt

​ parameter-clause → () (parameter-list ... opt)

​ parameter-list → parameter parameter , parameter-list
​ parameter → inout opt let opt # opt parameter-name local-parameter-name opt type-

annotation default-argument-clause opt

​ parameter → inout opt var # opt parameter-name local-parameter-name opt type-
annotation default-argument-clause opt

​ parameter → attributesopt type
​ parameter-name → identifier _
​ local-parameter-name → identifier _
​ default-argument-clause → = expression

G RA MMA R O F A N E N U ME RAT IO N DE CL A RAT IO N

​ enum-declaration → attributesopt union-style-enum attributesopt raw-value-style-
enum

​ union-style-enum → enum-name generic-parameter-clause opt { union-style-enum-
membersopt }

486

​ union-style-enum-members → union-style-enum-member union-style-enum-
membersopt

​ union-style-enum-member → declaration union-style-enum-case-clause
​ union-style-enum-case-clause → attributesopt case union-style-enum-case-list
​ union-style-enum-case-list → union-style-enum-case union-style-enum-

case , union-style-enum-case-list
​ union-style-enum-case → enum-case-name tuple-type opt

​ enum-name → identifier
​ enum-case-name → identifier

​ raw-value-style-enum → enum-name generic-parameter-clause opt : type-
identifier { raw-value-style-enum-membersopt }

​ raw-value-style-enum-members → raw-value-style-enum-member raw-value-
style-enum-membersopt

​ raw-value-style-enum-member → declaration raw-value-style-enum-case-clause
​ raw-value-style-enum-case-clause → attributesopt case raw-value-style-enum-

case-list
​ raw-value-style-enum-case-list → raw-value-style-enum-case raw-value-style-

enum-case , raw-value-style-enum-case-list
​ raw-value-style-enum-case → enum-case-name raw-value-assignmentopt

​ raw-value-assignment → = literal

G RA MMA R O F A S T RU CT U RE DE CL A RAT IO N

​ struct-declaration → attributesopt struct struct-name generic-parameter-
clause opt type-inheritance-clause opt struct-body

​ struct-name → identifier
​ struct-body → { declarationsopt }

G RA MMA R O F A CL A S S DE CL A RAT IO N

​ class-declaration → attributesopt class class-name generic-parameter-
clause opt type-inheritance-clause opt class-body

​ class-name → identifier
​ class-body → { declarationsopt }

G RA MMA R O F A P RO T O CO L DE CL A RAT IO N

​ protocol-declaration → attributesopt protocol protocol-name type-inheritance-

487

clause opt protocol-body
​ protocol-name → identifier
​ protocol-body → { protocol-member-declarationsopt }

​ protocol-member-declaration → protocol-property-declaration
​ protocol-member-declaration → protocol-method-declaration
​ protocol-member-declaration → protocol-initializer-declaration
​ protocol-member-declaration → protocol-subscript-declaration
​ protocol-member-declaration → protocol-associated-type-declaration
​ protocol-member-declarations → protocol-member-declaration protocol-member-

declarationsopt

G RA MMA R O F A P RO T O CO L P RO P E RT Y DE CL A RAT IO N

​ protocol-property-declaration → variable-declaration-head variable-name type-
annotation getter-setter-keyword-block

G RA MMA R O F A P RO T O CO L ME T H O D DE CL A RAT IO N

​ protocol-method-declaration → function-head function-name generic-parameter-
clause opt function-signature

G RA MMA R O F A P RO T O CO L IN IT IA L IZ E R DE CL A RAT IO N

​ protocol-initializer-declaration → initializer-head generic-parameter-
clause opt parameter-clause

G RA MMA R O F A P RO T O CO L S U B S CRIP T DE CL A RAT IO N

​ protocol-subscript-declaration → subscript-head subscript-result getter-setter-
keyword-block

G RA MMA R O F A P RO T O CO L A S S O C IAT E D T Y P E DE CL A RAT IO N

​ protocol-associated-type-declaration → typealias-head type-inheritance-
clause opt typealias-assignmentopt

G RA MMA R O F A N IN IT IA L IZ E R DE CL A RAT IO N

​ initializer-declaration → initializer-head generic-parameter-clause opt parameter-
clause initializer-body

​ initializer-head → attributesopt convenience opt init

​ initializer-body → code-block

488

G RA MMA R O F A DE IN IT IA L IZ E R DE CL A RAT IO N

​ deinitializer-declaration → attributesopt deinit code-block

G RA MMA R O F A N E X T E N S IO N DE CL A RAT IO N

​ extension-declaration → extension type-identifier type-inheritance-
clause opt extension-body

​ extension-body → { declarationsopt }

G RA MMA R O F A S U B S CRIP T DE CL A RAT IO N

​ subscript-declaration → subscript-head subscript-result code-block
​ subscript-declaration → subscript-head subscript-result getter-setter-block
​ subscript-declaration → subscript-head subscript-result getter-setter-keyword-

block
​ subscript-head → attributesopt subscript parameter-clause
​ subscript-result → -> attributesopt type

G RA MMA R O F A N O P E RAT O R DE CL A RAT IO N

​ operator-declaration → prefix-operator-declaration postfix-operator-declaration
infix-operator-declaration

​ prefix-operator-declaration → operator prefix operator { }

​ postfix-operator-declaration → operator postfix operator { }

​ infix-operator-declaration → operator infix operator { infix-operator-
attributesopt }

​ infix-operator-attributes → precedence-clause opt associativity-clause opt

​ precedence-clause → precedence precedence-level
​ precedence-level → Digit 0 through 255
​ associativity-clause → associativity associativity
​ associativity → left right none

Patterns

G RA MMA R O F A P AT T E RN

​ pattern → wildcard-pattern type-annotationopt

489

​ pattern → identifier-pattern type-annotationopt

​ pattern → value-binding-pattern
​ pattern → tuple-pattern type-annotationopt

​ pattern → enum-case-pattern
​ pattern → type-casting-pattern
​ pattern → expression-pattern

G RA MMA R O F A W IL DCA RD P AT T E RN

​ wildcard-pattern → _

G RA MMA R O F A N IDE N T IF IE R P AT T E RN

​ identifier-pattern → identifier

G RA MMA R O F A V A L U E -B IN D IN G P AT T E RN

​ value-binding-pattern → var pattern let pattern

G RA MMA R O F A T U P L E P AT T E RN

​ tuple-pattern → (tuple-pattern-element-listopt)

​ tuple-pattern-element-list → tuple-pattern-element tuple-pattern-
element , tuple-pattern-element-list

​ tuple-pattern-element → pattern

G RA MMA R O F A N E N U ME RAT IO N CA S E P AT T E RN

​ enum-case-pattern → type-identifieropt . enum-case-name tuple-patternopt

G RA MMA R O F A T Y P E CA S T IN G P AT T E RN

​ type-casting-pattern → is-pattern as-pattern
​ is-pattern → is type
​ as-pattern → pattern as type

G RA MMA R O F A N E X P RE S S IO N P AT T E RN

​ expression-pattern → expression

Attributes

490

G RA MMA R O F A N AT T RIB U T E

​ attribute → @ attribute-name attribute-argument-clause opt

​ attribute-name → identifier
​ attribute-argument-clause → (balanced-tokensopt)

​ attributes → attribute attributesopt

​ balanced-tokens → balanced-token balanced-tokensopt

​ balanced-token → (balanced-tokensopt)

​ balanced-token → [balanced-tokensopt]

​ balanced-token → { balanced-tokensopt }

​ balanced-token → Any identifier, keyword, literal, or operator
​ balanced-token → Any punctuation except (,) , [,] , { , or }

Expressions

G RA MMA R O F A N E X P RE S S IO N

​ expression → prefix-expression binary-expressionsopt

​ expression-list → expression expression , expression-list

G RA MMA R O F A P RE F IX E X P RE S S IO N

​ prefix-expression → prefix-operatoropt postfix-expression
​ prefix-expression → in-out-expression
​ in-out-expression → & identifier

G RA MMA R O F A B IN A RY E X P RE S S IO N

​ binary-expression → binary-operator prefix-expression
​ binary-expression → assignment-operator prefix-expression
​ binary-expression → conditional-operator prefix-expression
​ binary-expression → type-casting-operator
​ binary-expressions → binary-expression binary-expressionsopt

G RA MMA R O F A N A S S IG N ME N T O P E RAT O R

​ assignment-operator → =

G RA MMA R O F A CO N D IT IO N A L O P E RAT O R

491

​ conditional-operator → ? expression :

G RA MMA R O F A T Y P E -CA S T IN G O P E RAT O R

​ type-casting-operator → is type as ? opt type

G RA MMA R O F A P RIMA RY E X P RE S S IO N

​ primary-expression → identifier generic-argument-clause opt

​ primary-expression → literal-expression
​ primary-expression → self-expression
​ primary-expression → superclass-expression
​ primary-expression → closure-expression
​ primary-expression → parenthesized-expression
​ primary-expression → implicit-member-expression
​ primary-expression → wildcard-expression

G RA MMA R O F A L IT E RA L E X P RE S S IO N

​ literal-expression → literal
​ literal-expression → array-literal dictionary-literal
​ literal-expression → __FILE__ __LINE__ __COLUMN__ __FUNCTION__

​ array-literal → [array-literal-itemsopt]

​ array-literal-items → array-literal-item , opt array-literal-item , array-literal-items
​ array-literal-item → expression

​ dictionary-literal → [dictionary-literal-items] [:]

​ dictionary-literal-items → dictionary-literal-item , opt dictionary-literal-
item , dictionary-literal-items

​ dictionary-literal-item → expression : expression

G RA MMA R O F A S E L F E X P RE S S IO N

​ self-expression → self
​ self-expression → self . identifier
​ self-expression → self [expression]

​ self-expression → self . init

G RA MMA R O F A S U P E RCL A S S E X P RE S S IO N

​ superclass-expression → superclass-method-expression superclass-subscript-

492

expression superclass-initializer-expression

​ superclass-method-expression → super . identifier
​ superclass-subscript-expression → super [expression]

​ superclass-initializer-expression → super . init

G RA MMA R O F A CL O S U RE E X P RE S S IO N

​ closure-expression → { closure-signature opt statements }

​ closure-signature → parameter-clause function-resultopt in

​ closure-signature → identifier-list function-resultopt in

​ closure-signature → capture-list parameter-clause function-resultopt in

​ closure-signature → capture-list identifier-list function-resultopt in

​ closure-signature → capture-list in

​ capture-list → [capture-specifier expression]

​ capture-specifier → weak unowned unowned(safe) unowned(unsafe)

G RA MMA R O F A IMP L IC IT ME MB E R E X P RE S S IO N

​ implicit-member-expression → . identifier

G RA MMA R O F A P A RE N T H E S IZ E D E X P RE S S IO N

​ parenthesized-expression → (expression-element-listopt)

​ expression-element-list → expression-element expression-element , expression-
element-list

​ expression-element → expression identifier : expression

G RA MMA R O F A W IL DCA RD E X P RE S S IO N

​ wildcard-expression → _

G RA MMA R O F A P O S T F IX E X P RE S S IO N

​ postfix-expression → primary-expression
​ postfix-expression → postfix-expression postfix-operator
​ postfix-expression → function-call-expression
​ postfix-expression → initializer-expression
​ postfix-expression → explicit-member-expression
​ postfix-expression → postfix-self-expression

493

​ postfix-expression → dynamic-type-expression
​ postfix-expression → subscript-expression
​ postfix-expression → forced-value-expression
​ postfix-expression → optional-chaining-expression

G RA MMA R O F A FU N CT IO N CA L L E X P RE S S IO N

​ function-call-expression → postfix-expression parenthesized-expression
​ function-call-expression → postfix-expression parenthesized-expressionopt trailing-

closure
​ trailing-closure → closure-expression

G RA MMA R O F A N IN IT IA L IZ E R E X P RE S S IO N

​ initializer-expression → postfix-expression . init

G RA MMA R O F A N E X P L IC IT ME MB E R E X P RE S S IO N

​ explicit-member-expression → postfix-expression . decimal-digit
​ explicit-member-expression → postfix-expression . identifier generic-argument-

clause opt

G RA MMA R O F A S E L F E X P RE S S IO N

​ postfix-self-expression → postfix-expression . self

G RA MMA R O F A DY N A MIC T Y P E E X P RE S S IO N

​ dynamic-type-expression → postfix-expression . dynamicType

G RA MMA R O F A S U B S CRIP T E X P RE S S IO N

​ subscript-expression → postfix-expression [expression-list]

G RA MMA R O F A FO RCE D -V A L U E E X P RE S S IO N

​ forced-value-expression → postfix-expression !

G RA MMA R O F A N O P T IO N A L-CH A IN IN G E X P RE S S IO N

​ optional-chaining-expression → postfix-expression ?

494

Lexical Structure

G RA MMA R O F A N IDE N T IF IE R

​ identifier → identifier-head identifier-charactersopt

​ identifier → ` identifier-head identifier-charactersopt `

​ identifier → implicit-parameter-name
​ identifier-list → identifier identifier , identifier-list

​ identifier-head → Upper- or lowercase letter A through Z
​ identifier-head → U+00A8, U+00AA, U+00AD, U+00AF, U+00B2–U+00B5, or

U+00B7–U+00BA
​ identifier-head → U+00BC–U+00BE, U+00C0–U+00D6, U+00D8–U+00F6, or

U+00F8–U+00FF
​ identifier-head → U+0100–U+02FF, U+0370–U+167F, U+1681–U+180D, or

U+180F–U+1DBF
​ identifier-head → U+1E00–U+1FFF
​ identifier-head → U+200B–U+200D, U+202A–U+202E, U+203F–U+2040, U+2054,

or U+2060–U+206F
​ identifier-head → U+2070–U+20CF, U+2100–U+218F, U+2460–U+24FF, or

U+2776–U+2793
​ identifier-head → U+2C00–U+2DFF or U+2E80–U+2FFF
​ identifier-head → U+3004–U+3007, U+3021–U+302F, U+3031–U+303F, or

U+3040–U+D7FF
​ identifier-head → U+F900–U+FD3D, U+FD40–U+FDCF, U+FDF0–U+FE1F, or

U+FE30–U+FE44
​ identifier-head → U+FE47–U+FFFD
​ identifier-head → U+10000–U+1FFFD, U+20000–U+2FFFD, U+30000–U+3FFFD,

or U+40000–U+4FFFD
​ identifier-head → U+50000–U+5FFFD, U+60000–U+6FFFD, U+70000–U+7FFFD,

or U+80000–U+8FFFD
​ identifier-head → U+90000–U+9FFFD, U+A0000–U+AFFFD, U+B0000–U+BFFFD,

or U+C0000–U+CFFFD
​ identifier-head → U+D0000–U+DFFFD or U+E0000–U+EFFFD

​ identifier-character → Digit 0 through 9
​ identifier-character → U+0300–U+036F, U+1DC0–U+1DFF, U+20D0–U+20FF, or

U+FE20–U+FE2F
​ identifier-character → identifier-head

495

​ identifier-characters → identifier-character identifier-charactersopt

​ implicit-parameter-name → $ decimal-digits

G RA MMA R O F A L IT E RA L

​ literal → integer-literal floating-point-literal string-literal

G RA MMA R O F A N IN T E G E R L IT E RA L

​ integer-literal → binary-literal
​ integer-literal → octal-literal
​ integer-literal → decimal-literal
​ integer-literal → hexadecimal-literal

​ binary-literal → 0b binary-digit binary-literal-charactersopt

​ binary-digit → Digit 0 or 1
​ binary-literal-character → binary-digit _
​ binary-literal-characters → binary-literal-character binary-literal-charactersopt

​ octal-literal → 0o octal-digit octal-literal-charactersopt

​ octal-digit → Digit 0 through 7
​ octal-literal-character → octal-digit _
​ octal-literal-characters → octal-literal-character octal-literal-charactersopt

​ decimal-literal → decimal-digit decimal-literal-charactersopt

​ decimal-digit → Digit 0 through 9
​ decimal-digits → decimal-digit decimal-digitsopt

​ decimal-literal-character → decimal-digit _
​ decimal-literal-characters → decimal-literal-character decimal-literal-charactersopt

​ hexadecimal-literal → 0x hexadecimal-digit hexadecimal-literal-charactersopt

​ hexadecimal-digit → Digit 0 through 9, a through f, or A through F
​ hexadecimal-literal-character → hexadecimal-digit _
​ hexadecimal-literal-characters → hexadecimal-literal-character hexadecimal-

literal-charactersopt

G RA MMA R O F A F L O AT IN G -P O IN T L IT E RA L

​ floating-point-literal → decimal-literal decimal-fractionopt decimal-exponentopt

​ floating-point-literal → hexadecimal-literal hexadecimal-fractionopt hexadecimal-

496

exponent

​ decimal-fraction → . decimal-literal
​ decimal-exponent → floating-point-e signopt decimal-literal

​ hexadecimal-fraction → . hexadecimal-literalopt

​ hexadecimal-exponent → floating-point-p signopt hexadecimal-literal

​ floating-point-e → e E
​ floating-point-p → p P
​ sign → + -

G RA MMA R O F A S T RIN G L IT E RA L

​ string-literal → " quoted-text "

​ quoted-text → quoted-text-item quoted-textopt

​ quoted-text-item → escaped-character
​ quoted-text-item → \(expression)

​ quoted-text-item → Any Unicode extended grapheme cluster except " , \ ,
U+000A, or U+000D

​ escaped-character → \0 \\ \t \n \r \" \'
​ escaped-character → \x hexadecimal-digit hexadecimal-digit
​ escaped-character → \u hexadecimal-digit hexadecimal-digit hexadecimal-

digit hexadecimal-digit
​ escaped-character → \U hexadecimal-digit hexadecimal-digit hexadecimal-

digit hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-
digit hexadecimal-digit

G RA MMA R O F O P E RAT O RS

​ operator → operator-character operatoropt

​ operator-character → / = - + ! * % < > & | ^ ~ .

​ binary-operator → operator
​ prefix-operator → operator
​ postfix-operator → operator

Types

497

G RA MMA R O F A T Y P E

​ type → array-type function-type type-identifier tuple-type optional-type
implicitly-unwrapped-optional-type protocol-composition-type metatype-type

G RA MMA R O F A T Y P E A N N O T AT IO N

​ type-annotation → : attributesopt type

G RA MMA R O F A T Y P E IDE N T IF IE R

​ type-identifier → type-name generic-argument-clause opt type-name generic-
argument-clause opt . type-identifier

​ type-name → identifier

G RA MMA R O F A T U P L E T Y P E

​ tuple-type → (tuple-type-bodyopt)

​ tuple-type-body → tuple-type-element-list ... opt

​ tuple-type-element-list → tuple-type-element tuple-type-element , tuple-type-
element-list

​ tuple-type-element → attributesopt inout opt type inout opt element-name type-
annotation

​ element-name → identifier

G RA MMA R O F A FU N CT IO N T Y P E

​ function-type → type -> type

G RA MMA R O F A N A RRAY T Y P E

​ array-type → type [] array-type []

G RA MMA R O F A N O P T IO N A L T Y P E

​ optional-type → type ?

G RA MMA R O F A N IMP L IC IT LY U N W RA P P E D O P T IO N A L T Y P E

​ implicitly-unwrapped-optional-type → type !

G RA MMA R O F A P RO T O CO L CO MP O S IT IO N T Y P E

​ protocol-composition-type → protocol < protocol-identifier-listopt >

498

​ protocol-identifier-list → protocol-identifier protocol-identifier , protocol-
identifier-list

​ protocol-identifier → type-identifier

G RA MMA R O F A ME T AT Y P E T Y P E

​ metatype-type → type . Type type . Protocol

G RA MMA R O F A T Y P E IN H E RIT A N CE CL A U S E

​ type-inheritance-clause → : type-inheritance-list
​ type-inheritance-list → type-identifier type-identifier , type-inheritance-list

499

Copyright and Notices

I M PO RTANT

This is a preliminary document for an API or technology in development. Apple is supplying this information
to help you plan for the adoption of the technologies and programming interfaces described herein for use
on Apple-branded products. This information is subject to change, and software implemented according to
this document should be tested with final operating system software and final documentation. Newer
versions of this document may be provided with future seeds of the API or technology.

Apple Inc.
Copyright © 2014 Apple Inc.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, mechanical, electronic, photocopying,
recording, or otherwise, without prior written permission of Apple Inc., with the
following exceptions: Any person is hereby authorized to store documentation on a
single computer or device for personal use only and to print copies of documentation
for personal use provided that the documentation contains Apple’s copyright notice.

No licenses, express or implied, are granted with respect to any of the technology
described in this document. Apple retains all intellectual property rights associated
with the technology described in this document. This document is intended to assist
application developers to develop applications only for Apple-branded products.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, Cocoa, Cocoa Touch, Logic, Numbers, Objective-C, OS
X, Shake, and Xcode are trademarks of Apple Inc., registered in the U.S. and other
countries.

Retina is a trademark of Apple Inc.

Times is a registered trademark of Heidelberger Druckmaschinen AG, available from
Linotype Library GmbH.

IOS is a trademark or registered trademark of Cisco in the U.S. and other countries
and is used under license.

500

Even though Apple has reviewed this document, APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT, ERROR OR
INACCURACY IN THIS DOCUMENT, even if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF
ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer, agent, or
employee is authorized to make any modification, extension, or addition to this
warranty.

Some jurisdictions do not allow the exclusion or limitation of implied warranties or
liability for incidental or consequential damages, so the above limitation or exclusion
may not apply to you.

501

	Welcome to Swif
	About swift
	A Swift Tour
	Simple Values
	Control Flow
	Functions and Closures
	Objects and Classes
	Enumerations and Structures
	Protocols and Extensions
	Generics

	Language Guide
	The Basics
	Constants and Variables
	Declaring Constants and Variables
	Type Annotations
	Naming Constants and Variables
	Printing Constants and Variables
	Comments
	Semicolons
	Integers
	Integer Bounds
	Int
	UInt
	Floating-Point Numbers
	Type Safety and Type Inference
	Numeric Literals
	Numeric Type Conversion
	Integer Conversion
	Integer and Floating-Point Conversion
	Type Aliases
	Booleans
	Tuples
	Optionals
	If Statements and Forced Unwrapping
	Optional Binding
	nil
	Implicitly Unwrapped Optionals
	Assertions
	Debugging with Assertions
	When to Use Assertions

	Basic Operators
	Terminology
	Assignment Operator
	Arithmetic Operators
	Remainder Operator
	Floating-Point Remainder Calculations
	Increment and Decrement Operators
	Unary Minus Operator
	Unary Plus Operator
	Compound Assignment Operators
	Comparison Operators
	Ternary Conditional Operator
	Range Operators
	Closed Range Operator
	Half-Closed Range Operator
	Logical Operators
	Logical NOT Operator
	Logical AND Operator
	Logical OR Operator
	Combining Logical Operators
	Explicit Parentheses

	Strings and Characters
	String Literals
	Initializing an Empty String
	String Mutability
	Strings Are Value Types
	Working with Characters
	Counting Characters
	Concatenating Strings and Characters
	String Interpolation
	Comparing Strings
	String Equality
	Prefix and Suffix Equality
	Uppercase and Lowercase Strings
	Unicode
	Unicode Terminology
	Unicode Representations of Strings
	UTF-8
	UTF-16
	Unicode Scalars

	Collection Types
	Arrays
	Array Type Shorthand Syntax
	Array Literals
	Accessing and Modifying an Array
	Iterating Over an Array
	Creating and Initializing an Array
	Dictionaries
	Dictionary Literals
	Accessing and Modifying a Dictionary
	Iterating Over a Dictionary
	Creating an Empty Dictionary
	Mutability of Collections

	Control Flow
	For Loops
	For-In
	For-Condition-Increment
	While Loops
	While
	Do-While
	Conditional Statements
	If
	Switch
	No Implicit Fallthrough
	Range Matching
	Tuples
	Value Bindings
	Where
	Control Transfer Statements
	Continue
	Break
	Break in a Loop Statement
	Break in a Switch Statement
	Fallthrough
	Labeled Statements

	Functions
	Defining and Calling Functions
	Function Parameters and Return Values
	Multiple Input Parameters
	Functions Without Parameters
	Functions Without Return Values
	Functions with Multiple Return Values
	Function Parameter Names
	External Parameter Names
	Shorthand External Parameter Names
	Default Parameter Values
	External Names for Parameters with Default Values
	Variadic Parameters
	Constant and Variable Parameters
	In-Out Parameters
	Function Types
	Using Function Types
	Function Types as Parameter Types
	Function Types as Return Types
	Nested Functions

	Closures
	Closure Expressions
	The Sort Function
	Closure Expression Syntax
	Inferring Type From Context
	Implicit Returns from Single-Expression Closures
	Shorthand Argument Names
	Operator Functions
	Trailing Closures
	Capturing Values
	Closures Are Reference Types

	Enumerations
	Enumeration Syntax
	Matching Enumeration Values with a Switch Statement
	Associated Values
	Raw Values

	Classes and Structures
	Comparing Classes and Structures
	Definition Syntax
	Class and Structure Instances
	Accessing Properties
	Memberwise Initializers for Structure Types
	Structures and Enumerations Are Value Types
	Classes Are Reference Types
	Identity Operators
	Pointers
	Choosing Between Classes and Structures
	Assignment and Copy Behavior for Collection Types
	Assignment and Copy Behavior for Dictionaries
	Assignment and Copy Behavior for Arrays
	Ensuring That an Array Is Unique
	Checking Whether Two Arrays Share the Same Elements
	Forcing a Copy of an Array

	Properties
	Stored Properties
	Stored Properties of Constant Structure Instances
	Lazy Stored Properties
	Stored Properties and Instance Variables
	Computed Properties
	Shorthand Setter Declaration
	Read-Only Computed Properties
	Property Observers
	Global and Local Variables
	Type Properties
	Type Property Syntax
	Querying and Setting Type Properties

	Methods
	Instance Methods
	Local and External Parameter Names for Methods
	Modifying External Parameter Name Behavior for Methods
	The self Property
	Modifying Value Types from Within Instance Methods
	Assigning to self Within a Mutating Method
	Type Methods

	Subscripts
	Subscript Syntax
	Subscript Usage
	Subscript Options

	Inheritance
	Defining a Base Class
	Subclassing
	Overriding
	Accessing Superclass Methods, Properties, and Subscripts
	Overriding Methods
	Overriding Properties
	Overriding Property Getters and Setters
	Overriding Property Observers
	Preventing Overrides

	Initialization
	Setting Initial Values for Stored Properties
	Initializers
	Default Property Values
	Customizing Initialization
	Initialization Parameters
	Local and External Parameter Names
	Optional Property Types
	Modifying Constant Properties During Initialization
	Default Initializers
	Memberwise Initializers for Structure Types
	Initializer Delegation for Value Types
	Class Inheritance and Initialization
	Designated Initializers and Convenience Initializers
	Initializer Chaining
	Two-Phase Initialization
	Initializer Inheritance and Overriding
	Automatic Initializer Inheritance
	Syntax for Designated and Convenience Initializers
	Designated and Convenience Initializers in Action
	Setting a Default Property Value with a Closure or Function

	Deinitialization
	How Deinitialization Works
	Deinitializers in Action

	Automatic Reference Counting
	How ARC Works
	ARC in Action
	Strong Reference Cycles Between Class Instances
	Resolving Strong Reference Cycles Between Class Instances
	Weak References
	Unowned References
	Unowned References and Implicitly Unwrapped Optional Properties
	Strong Reference Cycles for Closures
	Resolving Strong Reference Cycles for Closures
	Defining a Capture List
	Weak and Unowned References

	Optional Chaining
	Optional Chaining as an Alternative to Forced Unwrapping
	Defining Model Classes for Optional Chaining
	Calling Properties Through Optional Chaining
	Calling Methods Through Optional Chaining
	Calling Subscripts Through Optional Chaining
	Linking Multiple Levels of Chaining
	Chaining on Methods With Optional Return Values

	Type Casting
	Defining a Class Hierarchy for Type Casting
	Checking Type
	Downcasting
	Type Casting for Any and AnyObject
	AnyObject
	Any

	Nested Types
	Nested Types in Action
	Referring to Nested Types

	Extensions
	Extension Syntax
	Computed Properties
	Initializers
	Methods
	Mutating Instance Methods
	Subscripts
	Nested Types

	Protocols
	Protocol Syntax
	Property Requirements
	Method Requirements
	Mutating Method Requirements
	Protocols as Types
	Delegation
	Adding Protocol Conformance with an Extension
	Declaring Protocol Adoption with an Extension
	Collections of Protocol Types
	Protocol Inheritance
	Protocol Composition
	Checking for Protocol Conformance
	Optional Protocol Requirements

	Generics
	The Problem That Generics Solve
	Generic Functions
	Type Parameters
	Naming Type Parameters
	Generic Types
	Type Constraints
	Type Constraint Syntax
	Type Constraints in Action
	Associated Types
	Associated Types in Action
	Extending an Existing Type to Specify an Associated Type
	Where Clauses

	Advanced Operators
	Bitwise Operators
	Bitwise NOT Operator
	Bitwise AND Operator
	Bitwise OR Operator
	Bitwise XOR Operator
	Bitwise Left and Right Shift Operators
	Shifting Behavior for Unsigned Integers
	Shifting Behavior for Signed Integers
	Overflow Operators
	Value Overflow
	Value Underflow
	Division by Zero
	Precedence and Associativity
	Operator Functions
	Prefix and Postfix Operators
	Compound Assignment Operators
	Equivalence Operators
	Custom Operators
	Precedence and Associativity for Custom Infix Operators

	Language Reference
	About the Language Reference
	How to Read the Grammar

	Lexical Structure
	Whitespace and Comments
	Identifiers
	Keywords
	Literals
	Integer Literals
	Floating-Point Literals
	String Literals
	Operators

	Types
	Type Annotation
	Type Identifier
	Tuple Type
	Function Type
	Array Type
	Optional Type
	Implicitly Unwrapped Optional Type
	Protocol Composition Type
	Metatype Type
	Type Inheritance Clause
	Type Inference

	Expressions
	Prefix Expressions
	Binary Expressions
	Assignment Operator
	Ternary Conditional Operator
	Type-Casting Operators
	Primary Expressions
	Literal Expression
	Self Expression
	Superclass Expression
	Closure Expression
	Implicit Member Expression
	Parenthesized Expression
	Wildcard Expression
	Postfix Expressions
	Function Call Expression
	Initializer Expression
	Explicit Member Expression
	Postfix Self Expression
	Dynamic Type Expression
	Subscript Expression
	Forced-Value Expression
	Optional-Chaining Expression

	Statements
	Loop Statements
	For Statement
	For-In Statement
	While Statement
	Do-While Statement
	Branch Statements
	If Statement
	Switch Statement
	Switch Statements Must Be Exhaustive
	Execution Does Not Fall Through Cases Implicitly
	Labeled Statement
	Control Transfer Statements
	Break Statement
	Continue Statement
	Fallthrough Statement
	Return Statement

	Declarations
	Module Scope
	Code Blocks
	Import Declaration
	Constant Declaration
	Variable Declaration
	Stored Variables and Stored Variable Properties
	Computed Variables and Computed Properties
	Stored Variable Observers and Property Observers
	Class and Static Variable Properties
	Type Alias Declaration
	Function Declaration
	Parameter Names
	Special Kinds of Parameters
	Special Kinds of Methods
	Curried Functions and Methods
	Enumeration Declaration
	Enumerations with Cases of Any Type
	Enumerations with Raw Cases Values
	Accessing Enumeration Cases
	Structure Declaration
	Class Declaration
	Protocol Declaration
	Protocol Property Declaration
	Protocol Method Declaration
	Protocol Initializer Declaration
	Protocol Subscript Declaration
	Protocol Associated Type Declaration
	Initializer Declaration
	Deinitializer Declaration
	Extension Declaration
	Subscript Declaration
	Operator Declaration

	Attributes
	Declaration Attributes
	Declaration Attributes Used by Interface Builder
	Type Attributes

	Patterns
	Wildcard Pattern
	Identifier Pattern
	Value-Binding Pattern
	Tuple Pattern
	Enumeration Case Pattern
	Type-Casting Patterns
	Expression Pattern

	Generic Parameters and Arguments
	Generic Parameter Clause
	Where Clauses
	Generic Argument Clause

	Summary of the Grammar
	Statements
	Generic Parameters and Arguments
	Declarations
	Patterns
	Attributes
	Expressions
	Lexical Structure
	Types

	Copyright and Notices

