
Varanasi
Belida

Shelve in
Programming Languages/Java

User level:
Intermediate

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Spring REST
Spring REST is a practical guide for designing and developing RESTful APIs using
the Spring Framework. This book walks you through the process of designing and
building a REST application while taking a deep dive into design principles and
best practices for versioning, security, documentation, error handling, paging, and
sorting.

This book provides a brief introduction to REST, HTTP, and web infrastructure.
You will learn about several Spring projects such as Spring Boot, Spring MVC,
Spring Data JPA, and Spring Security and the role they play in simplifying REST
application development. You will learn how to build clients that consume REST
services. Finally, you will learn how to use the Spring MVC test framework to unit
test and integration test your REST API.

After reading this book, you will come away with all the skills to build
sophisticated REST applications using Spring technologies.

You’ll learn:

• How to build REST applications with Spring technologies
• How to identify REST resources and design their representations
• How to version REST services
• How to document REST services using Swagger
• How to handle errors and communicate meaningful messages
• How to secure REST services using Basic Auth and OAuth 2.0
• How to handle large data sets using pagination
• How to build REST clients using RestTemplate
• How to test REST services using the Spring MVC test framework

9 781484 208243

54999
ISBN 978-1-4842-0824-3

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors �� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

 ■Chapter 1: Introduction to REST �� 1

 ■Chapter 2: Spring Web MVC Primer ��� 15

 ■Chapter 3: RESTful Spring ��� 31

 ■Chapter 4: Beginning QuickPoll Application �� 47

 ■Chapter 5: Error Handling �� 73

 ■Chapter 6: Documenting REST Services �� 91

 ■Chapter 7: Versioning, Paging, and Sor ting ��� 105

 ■Chapter 8: Security �� 121

 ■Chapter 9: Clients and Testing ��� 147

 ■Chapter 10: HATEOAS ��� 165

 ■Appendix A: Installing cURL on Windows �� 175

Index ��� 179

www.allitebooks.com

http://www.allitebooks.org

xix

Introduction

Spring REST serves as a practical guide for designing and developing RESTful APIs using the popular Spring
Framework. This book begins with a brief introduction to REST, HTTP, and Web infrastructure. It then
provides detailed coverage of several Spring portfolio projects such as Spring Boot, Spring MVC, Spring Data
JPA, and Spring Security. The book walks through the process of designing and building a REST application
while taking a deeper look into design principles and best practices for versioning, security, documentation,
error handling, paging, and sorting. It also discusses techniques for building clients that consume REST
services. Finally, it covers Spring MVC test frameworks for creating unit and integration tests for REST API.

After reading the book, you will have learned:

•	 About REST fundamentals and Web infrastructure

•	 About Spring technologies such as Spring Boot and Spring Data JPA

•	 How to build REST applications with Spring technologies

•	 How to identify REST resources and design their representations

•	 Design principles for versioning REST services

•	 How to document REST services using Swagger

•	 Strategies for handling errors and communicating meaningful messages

•	 Techniques for handling large datasets using pagination

•	 Securing REST services using “Basic Auth” and “OAuth 2.0”

•	 How to build REST clients using RestTemplate

•	 How to test REST services using the Spring MVC Test framework

How Is This Book Structured?
Chapter 1 starts with an overview of REST. We cover REST fundamentals and abstractions such as resources
and representations. We then discuss Web infrastructure such as URIs, HTTP methods, and HTTP response
codes. We also cover Richardson’s Maturity Model,which provides a classification of REST services.

Chapter 2 provides detailed coverage of Spring WebMVC. We begin with a gentle introduction to the
Spring Framework and cover its two important concepts—Dependency Injection and Aspect Oriented
Programming. Then we take a deeper look at the different components that make up Spring Web MVC.

Chapter 3 introduces Spring Boot, a Spring project that simplifies the bootstrapping of Spring
applications. We then use Spring Boot to build a Hello World REST application. Finally, we look at some
tools that can be used to access REST applications.

Chapter 4 discusses the beginnings of a RESTful application named QuickPoll. We analyze the
requirements and design resources and their representations. Using Spring MVC components, we
implement a set of RESTful services.

www.allitebooks.com

http://www.allitebooks.org

xx

■ IntroduCtIon

Chapter 5 covers error handling in REST services. Well-designed, meaningful error responses play
an important role in the adoption of REST services. We design a custom error response for QuickPoll and
implement the design. We also add validation capabilities to the inputs provided by users. Finally, we look at
techniques for externalizing the error messages to property files.

Chapter 6 begins with an overview of the Swagger specification and its associated tools/frameworks. We
then implement Swagger in QuickPoll to generate interactive documentation. We also customize Swagger
and Swagger UI to meet our application requirements.

Chapter 7 covers the different strategies for versioning a REST API. We then look at implementing
versioning in QuickPoll using the URI versioning approach. We also review the different approaches for
dealing with large datasets using pagination and sorting.

Chapter 8 begins with a discussion of different strategies for securing REST services. We provide
a detailed treatment of OAuth 2 and review its different components. We then use the Spring Security
framework to implement Basic Authentication and OAuth 2 in the QuickPoll application.

Chapter 9 covers building REST clients and testing REST APIs. We use Spring’s RestTemplate features to
build a REST client that works with different versions of the QuickPoll API. We then take a deeper look into
the Spring MVC Test framework and examine its core classes. Finally, we write unit and integration tests to
test the REST API.

Chapter 10 discusses the HATEOAS constraint that allows developers build flexible and loosely coupled
REST services. It also covers the HAL hypermedia format. We then modify the QuickPoll application such
that the Poll representations are generated following HATEOAS principles.

Appendix A provides step-by-step instructions for downloading and installing cURL on a Windows
machine. Chapter 8 makes use of cURL for testing REST services.

Target Audience
Spring REST is intended for enterprise and Web developers using Java and Spring who want to build
REST applications. The book requires a basic knowledge of Java, Spring, and the Web but no prior exposure
to REST.

Downloading the Source Code
The source code for the examples in this book can be downloaded from www.apress.com. Detailed
information regarding the source code with examples for this book can be downloaded from
www.apress.com/9781484208243. The source code is also available on GitHub at
https://github.com/bava/springrest-book.

The downloaded source code contains a number of folders named ChapterX, in whichX represents the
corresponding chapter number. Each ChapterX folder contains two subfolders: a starter folder and a final
folder. The starter folder houses a QuickPoll project that you can use as a basis to follow along the solution
described in the corresponding chapter. Even though each chapter builds on the previous one, the starter
project allows you to skip around the book. For example, if you are interested in learning about security,
you can simply load the QuickPoll application under the Chapter8\starter folder and follow the
solution described in Chapter 8. As the name suggests, the final folder contains the expected end state for
that chapter.

www.allitebooks.com

https://www.apress.com
https://www.apress.com/9781484208243
https://github.com/bava/springrest-book
http://www.allitebooks.org

xxi

■ IntroduCtIon

Chapters 1 and 2 don’t have any associated code. Therefore, the corresponding ChapterX folders for
those chapters contain empty starter and final folders. In Chapter 3, we build a Hello World application,
so Chapter 3’s starter and final folders contain the hello-rest application. Starting from Chapter 4, the
starter and final folders contain QuickPoll project source code.

Contacting the Authors
We always welcome feedback from our readers. If you have any questions or suggestions regarding the
contents of this book, you can contact the authors at Balaji@inflinx.com or Sudha@inflinx.com.

www.allitebooks.com

http://Balaji@inflinx.com%20or%20Sudha@inflinx.com
http://www.allitebooks.org

1

1https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

Chapter 1

Introduction to REST

In this chapter, we will learn:

•	 REST fundamentals

•	 REST resources and their representations

•	 HTTP methods and status codes

•	 Richardson’s maturity model

Today, the Web has become an integral part of our lives—checking statuses on Facebook to ordering
products online to communicating via email. The success and ubiquity of the Web has resulted in
organizations applying the Web’s architectural principles to building distributed applications. In this
chapter, we will take a deep dive into REST, an architectural style that formalizes these principles.

What is REST?
REST stands for REpresentational State Transfer and is an architectural style for designing distributed
network applications. Roy Fielding coined the term REST in his PhD dissertation1 and proposed the
following six constraints or principles as its basis:

•	 Client-Server—Concerns should be separated between clients and servers. This
enables client and server components to evolve independently and in turn allows
the system to scale.

•	 Stateless—The communication between client and server should be stateless. The
server need not remember the state of the client. Instead, clients must include all of
the necessary information in the request so that server can understand and process it.

•	 Layered System—Multiple hierarchical layers such as gateways, firewalls, and proxies
can exist between client and server. Layers can be added, modified, reordered, or
removed transparently to improve scalability.

•	 Cache—Responses from the server must be declared as cacheable or noncacheable.
This would allow the client or its intermediary components to cache responses and
reuse them for later requests. This reduces the load on the server and helps improve
the performance.

www.allitebooks.com

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon to reSt

2

•	 Uniform Interface— All interactions between client, server, and intermediary
components are based on the uniformity of their interfaces. This simplifies
the overall architecture as components can evolve independently as long as
they implement the agreed-on contract. The uniform interface constraint is
further broken down into four subconstraints—resource identification, resource
representations, self-descriptive messages, and hypermedia as the engine of
application state or HATEOAS. We will examine some of these guiding principles in
the later sections of this chapter.

•	 Code on demand—Clients can extend their functionality by downloading and
executing code on demand. Examples include JavaScript scripts, Java applets,
Silverlight, and so on. This is an optional constraint.

Applications that adhere to these constraints are considered to be RESTful. As you might have noticed,
these constraints don’t dictate the actual technology to be used for developing applications. Instead,
adherence to these guidelines and best practices would make an application scalable, visible, portable,
reliable, and able to perform better. In theory, it is possible for a RESTful application to be built using any
networking infrastructure or transport protocol. In practice, RESTful applications leverage features and
capabilities of the Web and use HTTP as the transport protocol.

The Uniform Interface constraint is a key feature that distinguishes REST applications from other
network-based applications. Uniform Interface in a REST application is achieved through abstractions such
as resources, representations, URIs, and HTTP methods. In the next sections, we will look at these important
REST abstractions.

Understanding Resources
“The key abstraction of information in REST is a resource."

—Roy Fielding

Fundamental to REST is the concept of resource. A resource is anything that can be accessed or
manipulated. Examples of resources include “videos,” “blog entries,” “user profiles,” “images,” and even
tangible things such as persons or devices. Resources are typically related to other resources. For example,
in an ecommerce application, a customer can place an order for any number of products. In this scenario,
the product resources are related to the corresponding order resource. It is also possible for a resource to be
grouped into collections. Using the same ecommerce example, “orders” is a collection of individual “order”
resources.

Identifying Resources
Before we can interact and use a resource, we must be able to identify it. The Web provides the Uniform
Resource Identifier, or URI, for uniquely identifying resources. The syntax of a URI is:

scheme:scheme-specific-part

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon to reSt

3

The scheme and the scheme-specific-part are separated using a semicolon. Examples of a scheme
include http or ftp or mailto and are used to define the semantics and interpretation of the rest of the URI.
Take the example of the URI—http://www.apress.com/9781484208427. The http portion of the example is
the scheme; it indicates that a HTTP scheme should be used for interpreting the rest of the URI. The HTTP
scheme, defined as part of RFC 7230,2 indicates that the resource identified by our example URI is located on
a machine with host name apress.com.

Table 1-1 shows examples of URIs and the different resources they represent.

Even though a URI uniquely identifies a resource, it is possible for a resource to have more than one URI.
For example, Facebook can be accessed using URIs https://www.facebook.com and https://www.fb.com.
The term URI aliases is used to refer to such URIs that identify the same resources. URI aliases provide
flexibility and added convenience such as having to type fewer characters to get to the resource.

URI Templates
When working with REST and a REST API, there will be times where you need to represent the structure
of a URI rather than the URI itself. For example, in a blog application, the URI http://blog.example.
com/2014/posts would retrieve all the blog posts created in the year 2014. Similarly, the URIs http://blog.
example.com/2013/posts, http://blog.example.com/2012/posts, and so forth would return blog posts
corresponding to the years 2013, 2012, and so on. In this scenario, it would be convenient for a consuming
client to know the URI structure http://blog.example.com/year/posts that describes the range of URIs
rather than individual URIs.

URI templates, defined in RFC 6570 (http://tools.ietf.org/html/rfc6570), provide a standardized
mechanism for describing URI structure. The standardized URI template for this scenario could be:

http://blog.example.com/{year}/posts

The curly braces {} indicate that the year portion of the template is a variable, often referred to as a path
variable. Consuming clients can take this URI template as input, substitute the year variable with the right
value, and retrieve the corresponding year’s blog posts. On the server side, URL templates allow the server
code to parse and retrieve the values of the variables or selected portions of URI easily.

Table 1-1. URI and resource description

URI Resource Description

http://blog.example.com/posts Represents a collection of blog post resources

http://blog.example.com/posts/1 Represents a blog post resource with identifier “1”; such resources
are called singleton resources

http://blog.example.com/
posts/1/comments

Represents a collection of comments associated with the blog
entry identified by “1”; collections such as these that reside under a
resource are referred to as subcollections

http://blog.example.com/
posts/1/comments/245

Represents the comment resource identified by “245”

2http://tools.ietf.org/html/rfc7230.

www.allitebooks.com

http://www.apress.com/9781484208427
https://www.facebook.com/
https://www.fb.com/
http://tools.ietf.org/html/rfc6570
http://tools.ietf.org/html/rfc7230
http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon to reSt

4

Representation
RESTful resources are abstract entities. The data and metadata that make a RESTful resource needs to be
serialized into a representation before it gets sent to a client. This representation can be viewed as a snapshot
of a resource’s state at a given point in time. Consider a database table in an ecommerce application that
stores information about all the available products. When an online shopper uses their browser to buy a
product and requests its details, the application would provide the product details as a Web page in HTML.
Now, when a developer writing a native mobile application requests product details, the ecommerce
application might return those details in XML or JSON format. In both scenarios, the clients didn’t
interact with the actual resource—the database record-holding product details. Instead, they dealt with its
representation.

 ■ Note reSt components interact with a resource by transferring its representations back and forth. they
never directly interact with the resource.

As noted in this product example, the same resource can have several representations. These
representations can range from text-based HTML, XML, and JSON formats to binary formats such as PDFs,
JPEGs, and MP4s. It is possible for the client to request a particular representation and this process is termed
as content negotiation. Here are the two possible content negotiation strategies:

•	 Postfixing the URI with the desired representation—In this strategy, a client
requesting product details in JSON format would use the URI http://www.example.
com/products/143.json. A different client might use the URI http://www.example.
com/products/143.xml to get product details in XML format.

•	 Using the Accept header—Clients can populate the HTTP Accept header with
the desired representation and send it along with the request. The application
handling the resource would use the Accept header value to serialize the requested
representation. The RFC 26163 provides a detailed set of rules for specifying one or
more formats and their priorities.

 ■ Note JSon has become the de facto standard for reSt services. all of the examples in this book use
JSon as the data format for requests and responses.

HTTP Methods
The “Uniform Interface” constraint restricts the interactions between client and server through a handful of
standardized operations or verbs. On the Web, the HTTP standard4 provides eight HTTP methods that allow
clients to interact and manipulate resources. Some of the commonly used methods are GET, POST, PUT, and
DELETE. Before we delve deep in to HTTP methods, let’s review their two important characteristics—safety
and idempotency.

3http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1.
4https://www.ietf.org/rfc/rfc2616.txt.

www.allitebooks.com

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1
https://www.ietf.org/rfc/rfc2616.txt
http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon to reSt

5

 ■ Note the http specification uses the term method to denote http actions such as Get, put, and poSt.
however, the term http verb is also used interchangeably.

Safety
A HTTP method is said to be safe if it doesn’t cause any changes to the server state. Consider methods such
as GET or HEAD, which are used to retrieve information/resources from the server. These requests are
typically implemented as read-only operations without causing any changes to the server’s state and, hence,
considered safe.

Safe methods are used to retrieve resources. However, safety doesn’t mean that the method must return
the same value every time. For example, a GET request to retrieve Google stock might result in a different
value for each call. But as long as it didn’t alter any state, it is still considered safe.

In real-world implementations, there may still be side effects with a safe operation. Consider the
implementation in which each request for stock prices gets logged in a database. From a purist perspective
we are changing the state of the entire system. However, from a practical standpoint, because these side
effects were the sole responsibility of the server implementation, the operation is still considered to be safe.

Idempotency
An operation is considered to be idempotent if it produces the same server state whether we apply it once
or any number of times. HTTP methods such as GET, HEAD (which are also safe), PUT, and DELETE are
considered to be idempotent, guaranteeing that clients can repeat a request and expect the same effect as
making the request once. The second and subsequent requests leave the resource state in exactly the same
state as the first request did.

Consider the scenario in which you are deleting an order in an ecommerce application. On successful
completion of the request, the order no longer exists on the server. Hence, any future requests to delete that
order would still result in the same server state. By contrast, consider the scenario in which you are creating
an order using a POST request. On successful completion of the request, a new order gets created. If you
were to re“POST” the same request, the server simply honors the request and creates a new order. Because a
repeated POST request can result in unforeseen side effects, POST is not considered to be idempotent.

GET
The GET method is used to retrieve a resource’s representation. For example, a GET on the URI http://
blog.example.com/posts/1 returns the representation of the blog post identified by 1. By contrast, a GET on
the URI http://blog.example.com/posts retrieves a collection of blog posts. Because GET requests don’t
modify server state, they are considered to be safe and idempotent.

A hypothetical GET request to http://blog.example.com/posts/1 and the corresponding response are
shown here.

GET /posts/1 HTTP/1.1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.5
Connection: keep-alive
Host: blog.example.com

Chapter 1 ■ IntroduCtIon to reSt

6

Content-Type: text/html; charset=UTF-8
Date: Sat, 10 Jan 2015 20:16:58 GMT
Server: Apache
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>First Post</title>
 </head>
 <body>
 <h3>Hello World!!</h3>
 </body>
</html>

In addition to the representation, the response to GET requests includes metadata associated with the
resource. This metadata is represented as a sequence of key value pairs called HTTP headers. Content-Type
and Server are examples of the headers that you see in this response. Because the GET method is safe,
responses to GET requests can be cached.

The simplicity of the GET method is often abused and it is used to perform operations such as deleting
or updating a resource’s representation. Such usage violates standard HTTP semantics and is highly
discouraged.

HEAD
On occasions, a client would like to check if a particular resource exists and doesn’t really care about the
actual representation. In another scenario, the client would like to know if a newer version of the resource is
available before it downloads it. In both cases, a GET request could be “heavyweight” in terms of bandwidth
and resources. Instead, a HEAD method is more appropriate.

The HEAD method allows a client to only retrieve the metadata associated with a resource. No resource
representation gets sent to the client. This metadata represented as HTTP headers will be identical to
the information sent in response to a GET request. The client uses this metadata to determine resource
accessibility and recent modifications. Here is a hypothetical HEAD request and the response.

HEAD /posts/1 HTTP/1.1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.5
Connection: keep-alive
Host: blog.example.com

Connection: Keep-Alive
Content-Type: text/html; charset=UTF-8
Date: Sat, 10 Jan 2015 20:16:58 GMT
Server: Apache

Like GET, the HEAD method is also safe and idempotent and responses can be cached on the client.

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml

Chapter 1 ■ IntroduCtIon to reSt

7

DELETE
The DELETE method, as the name suggests, requests a resource to be deleted. On receiving the request, a
server deletes the resource. For resources that might take a long time to delete, the server typically sends a
confirmation that it has received the request and will work on it. Depending on the service implementation,
the resource may or may not be physically deleted.

On successful deletion, future GET requests on that resource would yield a “Resource Not Found” error
via HTTP status code 404. We will be covering status codes in just a minute.

In this example, the client requests a post identified by 1 to be deleted. On completion, the server could
return a status code 200 (OK) or 204 (No Content), indicating that the request was successfully processed.

Delete /posts/1 HTTP/1.1
Content-Length: 0
Content-Type: application/json
Host: blog.example.com

Similarly, in this example, all comments associated with post #2 get deleted.

Delete /posts/2/comments HTTP/1.1
Content-Length: 0
Content-Type: application/json
Host: blog.example.com

Because DELETE method modifies the state of the system, it is not considered to be safe. However, the
DELETE method is considered idempotent; subsequent DELETE requests would still leave the resource and
the system in the same state.

PUT
The PUT method allows a client to modify a resource state. A client modifies the state of a resource and
sends the updated representation to the server using a PUT method. On receiving the request, the server
replaces the resource’s state with the new state.

In this example, we are sending a PUT request to update a post identified by 1. The request contains
an updated blog post’s body along with all of the other fields that make up the blog post. The server,
on successful processing, would return a status code 200, indicating that the request was processed
successfully.

PUT /posts/1 HTTP/1.1

Accept: */*
Content-Type: application/json
Content-Length: 65
Host: blog.example.com

BODY

{"title": "First Post","body": "Updated Hello World!!"}

Chapter 1 ■ IntroduCtIon to reSt

8

Consider the case in which we just wanted to update the blog post title. The HTTP semantics dictate
that as part of the PUT request we send the full resource representation, which includes the updated title as
well as other attributes such as blog post body and so on that didn’t change. However, this approach would
require that the client has the complete resource representation, which might not be possible if the resource
is very big or has a lot of relationships. Additionally, this would require higher bandwidth for data transfers.
So, for practical reasons, it is acceptable to design your API that tends to accept partial representations as
part of a PUT request.

 ■ Note to support partial updates, a new method called patCh has been added as part of rFC 5789
(http://www.ietf.org/rfc/rfc5789.txt). We will be looking at the patCh method later in this chapter.

Clients can also use PUT method to create a new resource. However, it will only be possible when the
client knows the URI of the new resource. In a blogging application, for example, a client can upload an
image associated with a blog post. In that scenario, the client decides the URL for the image as shown in this
example:

PUT http://blog.example.com/posts/1/images/author.jpg

PUT is not a safe operation, as it changes the system state. However, it is considered idempotent, as
putting the same resource once or more than once would produce the same result.

POST
The POST method is used to create resources. Typically, it is used to create resources under subcollections—
resource collections that exist under a parent resource. For example, the POST method can be used to create
a new blog entry in a blogging application. Here, “posts” is a subcollection of blog post resources that reside
under a blog parent resource.

POST /posts HTTP/1.1

Accept: */*
Content-Type: application/json
Content-Length: 63
Host: blog.example.com

BODY

{"title": "Second Post","body": "Another Blog Post."}

Content-Type: application/json
Location: posts/12345
Server: Apache

Unlike PUT, a POST request doesn’t need to know the URI of the resource. The server is responsible
for assigning an ID to the resource and deciding the URI where the resource is going to reside. In the
previous example, the blogging application will process the POST request and create a new resource under
http://blog.example.com/posts/12345, where “12345” is the server generated id. The Location header in
the response contains the URL of the newly created resource.

http://www.ietf.org/rfc/rfc5789.txt

Chapter 1 ■ IntroduCtIon to reSt

9

The POST method is very flexible and is often used when no other HTTP method seems appropriate.
Consider the scenario in which you would like to generate a thumbnail for a JPEG or PNG image. Here we
ask the server to perform an action on the image binary data that we are submitting. HTTP methods such as
GET and PUT don’t really fit here, as we are dealing with an RPC-style operation. Such scenarios are handled
using the POST method.

 ■ Note the term “controller resource” has been used to describe executable resources that take inputs,
perform some action, and return outputs. although these types of resources don’t fit the true reSt resource
definition, they are very convenient to expose complex operations.

The POST method is not considered safe, as it changes system state. Also, multiple POST invocations
would result in multiple resources being generated, making it nonidempotent.

PATCH
As we discussed earlier, the HTTP specification requires the client to send the entire resource representation
as part of a PUT request. The PATCH method proposed as part of RFC 5789 (http://tools.ietf.org/html/
rfc5789) is used to perform partial resource updates. It is neither safe nor idempotent. Here is an example
that uses PATCH method to update a blog post title.

PATCH /posts/1 HTTP/1.1

Accept: */*
Content-Type: application/json
Content-Length: 59
Host: blog.example.com

BODY

{"replace": "title","value": "New Awesome title"}

The request body contains a description of changes that need to be performed on the resource. In the
example, the request body uses the "replace" command to indicate that the value of the "title" field
needs to be replaced.

There is no standardized format for describing the changes to the server as part of a PATCH request.
A different implementation might use the following format to describe the same change:

{"change" : "name", "from" : "Post Title", "to" : "New Awesome Title"}

Currently, there is a work in progress (http://tools.ietf.org/html/draft-ietf-appsawg-json-
patch) for defining a PATCH format for JSON. This lack of standard has resulted in implementations that
describe change sets in a simpler format, as shown here:

{"name" : "New Awesome Title"}

http://tools.ietf.org/html/rfc5789
http://tools.ietf.org/html/rfc5789
http://tools.ietf.org/html/draft-ietf-appsawg-json-patch
http://tools.ietf.org/html/draft-ietf-appsawg-json-patch

Chapter 1 ■ IntroduCtIon to reSt

10

CrUD aND http VerBS

data-driven applications typically use the term Crud to indicate four basic persistence functions—
Create, read, update, and delete. Some developers building reSt applications have mistakenly
associated the four popular http verbs Get, poSt, put, and deLete with Crud semantics. the typical
association often seen is:

Create -> POST
Update -> PUT
Read -> GET
Delete -> DELETE

these correlations are true for read and delete operations. however, it is not as straightforward for
Create/update and poSt/put. as you have seen earlier in this chapter, put can be used to create a
resource as long as idempotency constraint is met. In the same way it was never considered non-reStful
if poSt is used for update (http://roy.gbiv.com/untangled/2009/it-is-okay-to-use-post). It is
also possible for a client to use patCh for updating a resource.

therefore, it is important for apI designers to use the right verbs for a given operation than simply using
a 1-1 mapping with Crud.

HTTP Status Codes
The HTTP Status codes allow a server to communicate the results of processing a client’s request. These
status codes are grouped into the following categories:

•	 Informational Codes—Status codes indicating that the server has received the
request but hasn’t completed processing it. These intermediate response codes are
in the 100 series.

•	 Success Codes—Status codes indicating that the request has been successfully
received and processed. These codes are in the 200 series.

•	 Redirection Codes—Status codes indicating that the request has been processed, but
the client must perform an additional action to complete the request. These actions
typically involve redirecting to a different location to get the resource. These codes
are in the 300 series.

•	 Client Error Codes—Status codes indicating that there was an error or a problem
with client’s request. These codes are in the 400 series.

•	 Server Error Codes—Status codes indicating that there was an error on the server
while processing the client’s request. These codes are in the 500 series.

The HTTP Status codes play an important role in REST API design as meaningful codes help
communicate the right status, enabling the client to react appropriately. Table 1-2 shows some of the
important status codes into which you typically run.

http://roy.gbiv.com/untangled/2009/it-is-okay-to-use-post

Chapter 1 ■ IntroduCtIon to reSt

11

Richardson’s Maturity Model
The Richardson’s Maturity Model (RMM), developed by Leonard Richardson, classifies REST-based Web
services on how well they adhere to REST principles. Figure 1-1 shows the four levels of this classification.

Table 1-2. HTTP status codes and their descriptions

Status Code Description

100 (Continue) Indicates that the server has received the first part of the request and the rest
of the request should be sent.

200 (OK) Indicates that all went well with the request.

201 (Created) Indicates that request was completed and a new resource got created.

202 (Accepted) Indicates that request has been accepted but is still being processed.

204 (No Content) Indicates that the server has completed the request and has no entity body to
send to the client.

301 (Moved Permanently) Indicates that the requested resource has been moved to a new location and
a new URI needs to be used to access the resource.

400 (Bad Request) Indicates that the request is malformed and the server is not able to
understand the request.

401 (Unauthorized) Indicates that the client needs to authenticate before accessing the resource.
If the request already contains client’s credentials, then a 401 indicates
invalid credentials (e.g., bad password).

403 (Forbidden) Indicates that the server understood the request but is refusing to fulfill it.
This could be because the resource is being accessed from a blacklisted IP
address or outside the approved time window.

404 (Not Found) Indicates that the resource at the requested URI doesn’t exist.

406 (Not Acceptable) Indicates that the server is capable of processing the request; however, the
generated response may not be acceptable to the client. This happens when
the client becomes too picky with its accept headers.

500 (Internal Server Error) Indicates that there was an error on the server while processing the request
and that the request can’t be completed.

503 (Service Unavailable) Indicates that the request can’t be completed, as the server is overloaded or
going through scheduled maintenance.

Chapter 1 ■ IntroduCtIon to reSt

12

RMM can be valuable in understanding the different styles of Web service, their designs, benefits, and
tradeoffs.

Level Zero
This is the most rudimentary maturity level for a service. Services in this level use HTTP as the transport
mechanism and perform remote procedure calls on a single URI. Typically, POST or GET HTTP methods are
employed for service calls. SOAP- and XML-RPC-based Web services fall under this level.

Level One
The next level adheres to the REST principles more closely and introduces multiple URIs, one per resource.
Complex functionality of a large service endpoint is broken down into multiple resources. However, services
in this layer use one HTTP verb, typically POST, to perform all of the operations.

Level Two
Services in this level leverage HTTP protocol and make the right use of HTTP verbs and status codes
available in the protocol. Web services implementing CRUD operations are good examples of Level 2
services.

Level Three
This is the most mature level for a service and is built around the notion of Hypermedia as the Engine of
Application State, or HATEOAS. Services in this level allow discoverability by providing responses that
contain links to other related resources and controls that tell the client what to do next.

2 - HTTP Verbs

1 - Resources

0 - RMI/XML-RPC

3 - HATEOAS

Figure 1-1. RMM levels

Chapter 1 ■ IntroduCtIon to reSt

13

Building a RESTful API
Designing and implementing a beautiful RESTful API is no less than an art. It takes time, effort, and several
iterations. A well-designed RESTful API allows your end users to consume the API easily and makes its
adoption easier. At a high level, here are the steps involved in building a RESTful API:

 1. Identify Resources—Central to REST are resources. We start modeling different
resources that are of interest to our consumers. Often, these resources can be the
application’s domain or entities. However, a one-to-one mapping is not always
required.

 2. Identify Endpoints—The next step is to design URIs that map resources to
endpoints. In Chapter 4, we will look at best practices for designing and naming
endpoints.

 3. Identify Actions—Identify the HTTP methods that can be used to perform
operations on the resources.

 4. Identify Responses—Identify the supported resource representation for the
request and response along with the right status codes to be returned.

In the rest of the book, we will look at best practices for designing a RESTful API and implementing it
using Spring technologies.

Summary
REST has become the de facto standard for building services today. In this chapter, we covered the
fundamentals of REST and abstractions such as resources, representations, URIs, and HTTP methods that
make up REST’s Uniform Interface. We also looked at RMM, which provides a classification of REST services.

In the next chapter, we will take a deep dive into Spring and its related technologies that simplify REST
service development.

http://dx.doi.org/10.1007/9781484208243_4

15

Chapter 2

Spring Web MVC Primer

In this chapter, we will discuss:

•	 Spring and its features

•	 The Model View Controller Pattern

•	 Spring Web MVC and its components

The Java ecosystem is filled with frameworks such as Jersey and RestEasy, which allow you to develop
REST applications. Spring Web MVC is one such popular web framework that simplifies Web and REST
application development. We begin this chapter with an overview of the Spring framework and take a deep
dive into Spring Web MVC and its components.

 ■ Note This book doesn’t give a comprehensive overview of Spring and Spring Web MVC. Refer to Pro Spring
and Pro Spring MVC and WebFlow (both published by Apress) for detailed treatment of these concepts.

Spring Overview
The Spring Framework has become the de facto standard for building Java/Java EE–based enterprise
applications. Originally written by Rod Johnson in 2002, the Spring Framework is one of the suite of projects
owned and maintained by Pivotal Software Inc. (http://spring.io). Among many other things, the
Spring Framework provides a dependency injection model1 that reduces plumbing code for application
development, supports aspect oriented programming (AOP) for implementing crosscutting concerns, and
makes it easy to integrate with other frameworks and technologies. The Spring Framework is made up of
different modules that offer services such as data access, instrumentation, messaging, testing, and Web
integration. The different Spring Framework modules and their groupings are shown in Figure 2-1.

1http://martinfowler.com/articles/injection.html.

www.allitebooks.com

http://spring.io/
http://martinfowler.com/articles/injection.html
http://www.allitebooks.org

ChApTeR 2 ■ SpRing Web MVC pRiMeR

16

As a developer, you are not forced to use everything that the Spring Framework has to offer. The
modularity of the Spring Framework allows you to pick and choose the modules based on your application
needs. In this book, we will be focusing on the Web module for developing REST services. Additionally, we
will be using a few other Spring portfolio projects such as Spring Data, Spring Security, and Spring Boot.
These projects are built on top of the infrastructure provided by the Spring Framework modules and are
intended to simplify data access, authentication/authorization, and Spring application creation.

Developing Spring-based applications requires a thorough understanding of two core concepts—
Dependency Injection and Aspect Oriented Programming.

Dependency Injection
At the heart of the Spring Framework lies Dependency Injection (DI). As the name suggests, Dependency
Injection allows dependencies to be injected into components that need them. This relieves those
components from having to create or locate their dependencies, allowing them to be loosely coupled.

To better understand DI, consider the scenario of purchasing a product in an online retail store.
Completing a purchase is typically implemented using a component such as an OrderService. The
OrderService itself would interact with an OrderRepository that would create order details in a database
and a NotificationComponent that would send out the order confirmation to the customer. In a traditional
implementation, the OrderService creates (typically in its constructor) instances of OrderRepository and
NotificationComponent and uses them. Even though there is nothing wrong with this approach, it can lead
to hard-to-maintain, hard-to-test, and highly coupled code.

WEB Layer

WEB WEB Socket

ServletPortlet

ORM

Data & Integration

JDBC

JMS Transactions

AOP Instrumentation

Spring Core

Core Beans Context Expression

Test

Figure 2-1. Spring Framework modules

ChApTeR 2 ■ SpRing Web MVC pRiMeR

17

DI, by contrast, allows us to take a different approach when dealing with dependencies. With DI,
you let an external process such as Spring create dependencies, manage dependencies, and inject those
dependencies into the objects that need them. So, with DI, Spring would create the OrderRepository and
NotificationComponent and then hand over those dependencies to the OrderService. This decouples
OrderService from having to deal with OrderRepository/NotificationComponent creation, making it easier
to test. It allows each component to evolve independently, making development and maintenance easier.
Also, it makes it easier to swap these dependencies with different implementations or use these components
in a different context.

Aspect Oriented Programming
Aspect Oriented Programming (AOP) is a programming model that implements crosscutting logic or
concerns. Logging, transactions, metrics, and security are some examples of concerns that span (crosscut)
different parts of an application. These concerns don't deal with business logic and are often duplicated
across the application. AOP provides a standardized mechanism called an aspect for encapsulating such
concerns in a single location. The aspects are then weaved into other objects so that the crosscutting logic is
automatically applied across the entire application.

Spring provides a pure Java-based AOP implementation through its Spring AOP module. Spring AOP
does not require any special compilation nor changes to the class loader hierarchy. Instead, Spring AOP
uses proxies for weaving aspects into Spring beans at runtime. Figure 2-2 provides a representation of this
behavior. When a method on the target bean gets called, the proxy intercepts the call. It then applies the
aspect logic and invokes the target bean method.

Caller

AOP Proxy

Aspect Logic Target Bean

Figure 2-2. Spring AOP Proxy

Spring provides two-proxy implementations—JDK dynamic proxy and CGLIB proxy. If the target bean
implements an interface, Spring will use JDK dynamic proxy to create the AOP proxy. If the class doesn't
implement an interface, Spring uses CGLIB to create a proxy.

Spring Web MVC Overview
Spring Web MVC, part of the Spring Framework’s Web module, is a popular technology for building
Web-based applications. It is based on the model-view-controller architecture and provides a rich set of
annotations and components. Over the years, the framework has evolved; it currently provides a rich set of
configuration annotations and features such as flexible view resolution and powerful data binding.

ChApTeR 2 ■ SpRing Web MVC pRiMeR

18

Model View Controller Pattern
The Model View Controller, or MVC, is an architectural pattern for building decoupled Web applications.
This pattern decomposes the UI layer into the following three components:

Model—The model represents data or state. In a Web-based banking application,
information representing accounts, transactions, and statements are examples of
the model.

View—Provides a visual representation of the model. This is what the user
interacts with by providing inputs and viewing the output. In our banking
application, Web pages showing accounts and transactions are examples of
views.

Controller—The controller is responsible for handling user actions such as
button clicks. It then interacts with services or repositories to prepare the model
and hands the prepared model over to an appropriate view.

Each component has specific responsibility. The interaction between them is shown in Figure 2-3.
The interaction begins with the Controller preparing the model and selecting an appropriate view to be
rendered. The View uses the data from the model for rendering. Further interactions with the View are sent
to the Controller, which starts the process all over again.

Model

View Controller

Create/Update

User Interaction

Selects

Query/Get State

Figure 2-3. Model View Controller interaction

Spring Web MVC Architecture
Spring’s Web MVC implementation revolves around the DispatcherServlet—an implementation of the
FrontController Pattern2 that acts as an entry point for handling requests. Spring Web MVC’s architecture is
shown in Figure 2-4.

2http://www.oracle.com/technetwork/java/frontcontroller-135648.html.

http://www.oracle.com/technetwork/java/frontcontroller-135648.html

ChApTeR 2 ■ SpRing Web MVC pRiMeR

19

The different components in Figure 2-4 and their interactions include:

 1. The interaction begins with the DispatcherServlet receiving the request from the
client.

 2. DispatcherServlet queries one or more HandlerMapping to figure out a Handler
that can service the request. A Handler is a generic way of addressing a Controller
and other HTTP-based endpoints that Spring Web MVC supports.

 3. The HandlerMapping component uses the request path to determine the right
Handler and passes it to the DispatcherServlet. The HandlerMapping also
determines a list of Interceptors that need to get executed before (Pre-) and after
(Post-) Handler execution.

 4. The DispatcherServlet then executes the Pre-Process Interceptors if any are
appropriate and passes the control to the Handler.

 5. The Handler interacts with any Service(s) needed and prepares the model.

 6. The Handler also determines the name of the view that needs to get rendered in
the output and sends it to DispatcherServlet. The Post-Process Interceptors then
get executed.

 7. This is followed by the DispatcherServlet passing the logical View name to a
ViewResolver, which determines and passes the actual View implementation.

 8. The DispatcherServlet then passes the control and model to the View, which
generates response. This ViewResolver and View abstraction allows the
DispatcherServlet to be decoupled from a particular View implementation.

 9. The DispatcherServlet returns the generated response over to the client.

Dispatcher
Servlet

1. Request

Handler Mapping

View Resolver

Handler

Interceptor

Interceptor

View

Service

2. Request

4. Request
5. Invoke

7. View Name

10. Response

6. Model/View

8. View

9. Model

3. Handler Name

11. Response

Figure 2-4. Spring Web MVC's architecture

ChApTeR 2 ■ SpRing Web MVC pRiMeR

20

Spring Web MVC Components
In the previous section, you were introduced to Spring Web MVC components such as HandlerMapping
and ViewResolver. In this section, we will take a deeper look at those as well as additional Spring Web MVC
components.

 ■ Note in this book we will be using Java Configuration for creating Spring beans. Contrary to XML-based
configuration, Java configuration provides compile time safety, flexibility, and added power/control.

Controller
Controllers in Spring Web MVC are declared using the stereotype org.springframework.stereotype.
Controller. A stereotype in Spring designates roles or responsibilities of a class or an interface. Listing 2-1
shows a basic controller.

Listing 2-1. HomeController implementation

@Controller
public class HomeController {
 @RequestMapping("/home.html")
 public String showHomePage() {
 return "home";
 }
}

The @Controller annotation designates the HomeController class as a MVC controller. The
@RequestMapping annotation maps Web requests to handler classes and handler methods. In this case, the
@RequestMapping indicates that when a request for home.html is made, the showHomePage method should
get executed. The showHomePage method has a tiny implementation and simply returns the logical view
name home. This controller did not prepare any model in this example.

Model
Spring provides the org.springframework.ui.Model interface that serves as holder for model attributes.
Listing 2-2 shows the Model interface with the available methods. As the names suggest, the addAttribute
and addAttributes methods can be used to add attributes to the model object.

Listing 2-2. Model interface

public interface Model {

 Model addAttribute(String attributeName, Object attributeValue);

 Model addAttribute(Object attributeValue);

 Model addAllAttributes(Collection<?> attributeValues);

 Model addAllAttributes(Map<String, ?> attributes);

ChApTeR 2 ■ SpRing Web MVC pRiMeR

21

 Model mergeAttributes(Map<String, ?> attributes);

 boolean containsAttribute(String attributeName);

 Map<String, Object> asMap();
}

The easiest way for a controller to work with a model object is by declaring it as a method parameter.
Listing 2-3 shows the showHomePage method with the Model parameter. In the method implementation, we
are adding the currentDate attribute to the model object.

Listing 2-3. showHomePage with Model attribute

@RequestMapping("/home.html")
public String showHomePage(Model model) {
 model.addAttribute("currentDate", new Date());
 return "home";
}

The Spring Framework strives to decouple our applications from the framework’s classes. So, a popular
approach for working with model objects is to use a java.util.Map instance as shown in Listing 2-4. Spring
would use the passed in Map parameter instance to enrich the model that gets exposed to the view.

Listing 2-4. showHomePage with Map attribute

@RequestMapping("/home.html")
public String showHomePage(Map model) {
 model.put("currentDate", new Date());
 return "home";
}

View
Spring Web MVC supports a variety of view technologies such as JSP, Velocity, Freemarker, and XSLT.
Spring Web MVC uses the org.springframework.web.servlet.View interface to accomplish this. The View
interface has two methods, as shown in Listing 2-5.

Listing 2-5. View Interface API

public interface View
{
 String getContentType();

 void render(Map<String, ?> model, HttpServletRequest request, HttpServletResponse
response) throws Exception;
}

Concrete implementations of the View interface are responsible for rendering the response.
This is accomplished by overriding the render method. The getContentType method returns the
generated view's content type. Table 2-1 shows important View implementations that Spring Web MVC
provides out of the box. You will notice that all of these implementations reside inside the
org.springframework.web.servlet.view package.

ChApTeR 2 ■ SpRing Web MVC pRiMeR

22

Listing 2-6 shows the reimplementation of the HomeController that we looked at earlier. Here we are
creating an instance of JstlView and setting the JSP page that we need to be rendered.

Listing 2-6. HomeController View implementation

@Controller
public class HomeController {
 @RequestMapping("/home.html")
 public View showHomePage() {
 JstlView view = new JstlView();
 view.setUrl("/WEB-INF/pages/home.jsp");
 return view;
 }
}

Controller implementations typically don't deal with view instances. Instead, they return logical
view names, as shown in Listing 2-1, and let view resolvers determine and create view instances. This
decouples the controllers from tying to a specific view implementation and makes it easy to swap view
implementations. Also, the controllers no longer need to know intricacies such as the location of the views.

@RequestParam
The @RequestParam annotation is used to bind Servlet request parameters to handler/controller method
parameters. The request parameter values are automatically converted to the specified method parameter
type using type conversion. Listing 2-7 shows two usages of @RequestParam. In the first usage, Spring looks
for a request parameter named query and maps its value to the method parameter query. In the second
usage, Spring looks for a request parameter named page, converts its value to an integer, and maps it to the
pageNumber method parameter.

Table 2-1. Spring Web MVC View Implementations

Class Name Description

org.springframework.web.servlet.view.json.
MappingJackson2JsonView

View implementation that encodes
model attributes and returns JSON.

org.springframework.web.servlet.view.xslt.XsltView View implementation that performs
XSLT transformation and returns the
response.

org.springframework.web.servlet.view.
InternalResourceView

View implementation that delegates
the request to a JSP page inside the web
application.

org.springframework.web.servlet.view.tiles2.TilesView View implementation that uses Apache
Tiles configuration for Tile definition
and rendering.

org.springframework.web.servlet.view.JstlView Specialized implementation of
InternalResourceView that supports
JSP pages using JSTL.

org.springframework.web.servlet.view.RedirectView View implementation that redirects to a
different (absolute or relative) URL.

ChApTeR 2 ■ SpRing Web MVC pRiMeR

23

Listing 2-7. RequestParam Usage

@RequestMapping("/search.html")
public String search(@RequestParam String query, @RequestParam("page") int pageNumber) {
 model.put("currentDate", new Date());
 return "home";
}

When a method parameter is annotated using @RequestParam, the specified request
parameter must be available in the client request. If the parameter is missing, Spring will throw a
MissingServletRequestParameterException exception. One way to address this is to set the required
attribute to false, as shown in Listing 2-8. The other option is to use the defaultValue attribute to specify a
default value.

Listing 2-8. Making a request parameter not required

@RequestMapping("/search.html")
public String search(@RequestParam String query, @RequestParam(value="page", required=false)
int pageNumber) {
 model.put("currentDate", new Date());
 return "home";
}

@RequestMapping
As we learned in the “Controller” section, the @RequestMapping annotation is used to map a Web request to
a handler class or handler method. @RequestMapping provides several attributes that can be used to narrow
down these mappings. Table 2-2 shows the different elements along with their descriptions.

Table 2-2. RequestMapping Elements

Element Name Description

Method Restricts a mapping to a specific HTTP method such as GET, POST, HEAD,
OPTIONS, PUT, PATCH, DELETE, TRACE

Produces Narrows mapping to media type that is produced by the method

Consumes Narrows mapping to media type that the method consumes

Headers Narrows mapping to the headers that should be present

name Allows you to assign a name to the mapping

params Restricts a mapping to the supplied parameter name and value

The default HTTP method mapped by @RequestMapping is GET. This behavior can be changed using
the method element shown in Listing 2-9. Spring invokes the saveUser method only when a POST operation
is performed. A GET request on saveUser will result in an exception thrown. Spring provides a handy
RequestMethod enumeration with the list of HTTP methods available.

ChApTeR 2 ■ SpRing Web MVC pRiMeR

24

Listing 2-9. POST method example

@RequestMapping(value="/saveuser.html", method=RequestMethod.POST)
public String saveUser(@RequestParam String username, @RequestParam String password) {
 // Save User logic
 return "success";
}

The produces element indicates the media type, such as JSON or XML or HTML, produced by the
mapped method. The produces element can take a single media type or multiple media types as its value.
Listing 2-10 shows the search method with the produces element added. The MediaType.TEXT_HTML value
indicates that when a GET request is performed on search.html, the method returns an HTML response.

Listing 2-10. Produces element example

@RequestMapping(value="/search.html", method=RequestMethod.GET, produces="MediaType.
TEXT_HTML")
public String search(@RequestParam String query, @RequestParam(value="page", required=false)
int pageNumber) {
 model.put("currentDate", new Date());
 return "home";
}

It is possible for the client to perform a GET request on /search.html but send an Accept header with
value application/JSON. In that scenario, Spring will not invoke the search method. Instead, it will return
a 404 error. The produces element provides a convenient way to restrict mappings to content types that the
controller can serve. In the same fashion, the consumes element is used to indicate the media type that the
annotated method consumes.

aCCept aND CONteNt-tYpe heaDer

As discussed in Chapter 1, ReST resources can have multiple representations. ReST clients typically use
the Accept and Content-Type headers to work with these representations.

ReST clients use the Accept header to indicate the representations that they accept. The hTTp
specification allows a client to send a prioritized list of different media types that it will accept as
responses. On receiving the request, the server will send the representation with the highest priority. To
understand this, consider the default Accept header for Firefox browser:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

The q parameter, also known as relative quality parameter, indicates the degree of preference and has
values ranging from 0 to 1. From the string, we can infer that the hTML and XhTML will have a priority
of 1 because they don't have an associated q value. The XML media type has priority 0.9 and the rest
of the representations have a priority of 0.8. On receiving this request, the server would try to send a
hTML/XhTML representation because it has the highest priority.

in a similar fashion, ReST clients use the Content-type header to indicate the media type of the
request being sent to the server. This allows the server to properly interpret the request and parse the
contents correctly. if the server is unable to parse the content, it will send a 415 Unsupported Media
Type error status code.

http://dx.doi.org/10.1007/9781484208243_1

ChApTeR 2 ■ SpRing Web MVC pRiMeR

25

Spring Web MVC allows flexible signatures for methods annotated with @RequestMapping. This includes
variable method parameters and method return types. Table 2-3 lists the important arguments allowed. For
a detailed list of allowed arguments, refer to Spring's Javadocs at http://docs.spring.io/spring/docs/
current/javadoc-api/org/springframework/web/bind/annotation/RequestMapping.html.

Table 2-3. Method arguments and descriptions

Method Argument Description

HttpServletRequest/HttpServletResponse HTTP Servlet request and response objects. Allows raw
access to client’s data, such as request parameters and
headers.

HttpSession Instance representing a user’s HTTP session.

Command Object A POJO or model object that Spring populates/binds
with the user submitted data. The command object can
be annotated with @ModelAttribute.

BindingResult Instance representing a command object’s validation
and binding. This parameter must immediately precede
the command object.

HttpEntity<?> Instance representing a HTTP request. Each HttpEntity
is composed of request body and a set of headers.

Principal A java.security.Principal instance that represents
the authenticated user.

Table 2-4. Return types and descriptions

Return Type Description

String Represents the logical view name. Registered view resolvers are employed to
resolve the physical view and a response is generated.

View Instance representing a view. In this case, no view resolution is performed and
the view object is responsible for generating the response. Examples include
JstlView, VelocityView, RedirectView, and so on.

HttpEntity<?> Instance representing a HTTP response. Each HttpEntity is composed of
response body and a set of headers.

HttpHeaders Instance capturing the headers to be returned. Response will have an empty
body.

Pojo Java object that is considered to be a model attribute. A specialized
RequestToViewNameTranslator is used to determine the appropriate logical
view name.

The different return types supported in methods annotated with @RequestMapping are shown in
Table 2-4.

www.allitebooks.com

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestMapping.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestMapping.html
http://www.allitebooks.org

ChApTeR 2 ■ SpRing Web MVC pRiMeR

26

Path Variables
The @RequestMapping annotation supports dynamic URIs via URI templates. As discussed in Chapter 1,
URI templates are URIs with placeholders or variables. The @PathVariable annotation allows you to access
and use these placeholders via method parameters. Listing 2-11 gives an example of @PathVariable. In
this scenario, the getUser method is designed to serve user information associated with the path variable
{username}. The client would perform a GET on the URL /users/jdoe to retrieve user information
associated with username jdoe.

Listing 2-11. PathVariable example

@RequestMapping("/users/{username}")
public User getUser(@PathVariable("username") String username) {
 User user = null;
 // Code to construct user object using username
 return user;
}

View Resolver
As discussed in the previous sections, a Spring Web MVC controller can return an
org.springframework.web.servlet.View instance or a logical view name. When a logical view
name is returned, a ViewResolver is employed to resolve the view to a View implementation. If this
process fails for some reason, a javax.servlet.ServletException is thrown. The ViewResolver interface
has a single method and is shown in Listing 2-12.

Listing 2-12. ViewResolver Interface

public interface ViewResolver
{
 View resolveViewName(String viewName, Locale locale) throws Exception;
}

Table 2-5 lists some of the ViewResolver implementations provided by Spring Web MVC.

http://dx.doi.org/10.1007/9781484208243_1

ChApTeR 2 ■ SpRing Web MVC pRiMeR

27

As you might have noticed, the different view resolvers in Table 2-5 mimic the different types of views
we looked at earlier. Listing 2-13 shows the code required for creating an InternalViewResolver.

Listing 2-13. InternalViewResolver example

@Bean
public ViewResolver viewResolver() {
 InternalResourceViewResolver viewResolver = new InternalResourceViewResolver();
 viewResolver.setPrefix("/WEB-INF/jsp/");
 viewResolver.setSuffix(".jsp");
 return viewResolver;
}

Exception Handler
Exceptions are part of any application and Spring provides the HandlerExceptionResolver
mechanism for handling those unexpected exceptions. The HandlerExceptionResolver abstraction
is similar to the ViewResolver and is used to resolve exceptions to error views. Listing 2-14 shows the
HandlerExceptionResolver API.

Listing 2-14. HandlerExceptionResolver API

public interface HandlerExceptionResolver {
ModelAndView resolveException(HttpServletRequest request, HttpServletResponse response,
Object handler, Exception ex);
}

Spring provides several out-of-the-box implementations of HandlerExceptionResolver, as
shown in Table 2-6.

Table 2-5. ViewResolver implementations and descriptions

Return Type Description

BeanNameViewResolver ViewResolver implementation that looks for a bean with an id
that matches the logical view name in the ApplicationContext.
If it doesn't find the bean in the ApplicationContext, a null is
returned.

InternalResourceViewResolver ViewResolver that looks for an internal resource that has the
logical view name. The location of the internal resource is
typically computed by prefixing and suffixing the logical name
with path and extension information.

ContentNegotiatingViewResolver ViewResolver that delegates the view resolution to other
view resolvers. The choice of the view resolver is based on the
requested media type, which itself is determined using an
Accept header or file extension or URL parameter.

TilesViewResolver ViewResolver that looks for a template in the Tiles
configuration that matches the logical view name.

ChApTeR 2 ■ SpRing Web MVC pRiMeR

28

The SimpleMappingExceptionResolver has been around for a really long time. Spring 3 introduced
a new way of handling exceptions using the @ExceptionHandler strategy. This provides a mechanism for
handling errors in REST-based services where there is really no view to show but, rather, return data.
Listing 2-15 shows a controller with an exception handler. Any methods that now throw a SQLException in
the HomeController will get handled in the handleSQLException method. The handleSQLException simply
creates a ResponseEntity instance and returns it. However, additional operations such as logging, returning
additional diagnostic data, and so on can be performed.

Listing 2-15. ExceptionHandler example

@Controller
public class HomeController {
 @ExceptionHandler(SQLException.class)
 public ResponseEntity handleSQLException() {
ResponseEntity responseEntity = new ResponseEntity(HttpStatus.INTERNAL_SERVER_ERROR);
 return responseEntity;
 }

@RequestMapping("/stream")
 public void streamMovie(HttpServletResponse response) throws SQLException {

 }
}

The @ExceptionHandler annotated methods can only handle exceptions that occur in the controller or
its subclasses. So, if we need to handle SQL exceptions in other controllers, then we need to copy and paste
the handleSQLException method in all of those controllers. This approach can pose severe limitations, as
exception handling is truly a crosscutting concern and should be centralized.

To address this, Spring provides the @ControllerAdvice annotation. Methods in classes
annotated with @ControllerAdvice get applied to all the @RequestMapping methods. Listing 2-16
shows the GlobalExceptionHandler with the handleSQLException method. As you can see, the
GlobalExceptionHandler extends Spring's ResponseEntityExceptionHandler, which converts default
Spring Web MVC exceptions to a ResponseEntity with HTTP status codes.

Table 2-6. HandlerExceptionResolver implementations and descriptions

Resolver Implementation Description

org.springframework.web.servlet.handler.
SimpleMappingExceptionResolver

Exception resolver implementation that maps
exception class names to view names.

org.springframework.web.servlet.mvc.support.
DefaultHandlerExceptionResolver

Exception resolver implementation that translates
standard Spring exceptions to HTTP status codes.

org.springframework.web.servlet.mvc.
annotation.ResponseStatusExceptionResolver

Custom exceptions in Spring applications can be
annotated with @ResponseStatus, which takes
a HTTP status code as its value. This exception
resolver translates the exceptions to its mapped
HTTP status codes.

org.springframework.web.servlet.mvc.method.
annotation.ExceptionHandlerExceptionResolver

Exception resolver implementation that resolves
exceptions using annotated @ExceptionHandler
methods.

ChApTeR 2 ■ SpRing Web MVC pRiMeR

29

Listing 2-16. GlobalExceptionHandler example

@ControllerAdvice
public class GlobalExceptionHandler extends ResponseEntityExceptionHandler {

 @ExceptionHandler(SQLException.class)
 public ResponseEntity handleSQLException() {
ResponseEntity responseEntity = new ResponseEntity(HttpStatus.INTERNAL_SERVER_ERROR);
 return responseEntity;
 }
}

Interceptors
Spring Web MVC provides the notion of interceptors to implement concerns that crosscut across different
handlers. Consider the scenario in which you want to prevent unauthenticated access to a set of controllers.
An interceptor allows you to centralize this access logic without you having to copy and paste the code in every
controller. As the name suggests, interceptors intercept a request; they do so at the following three points:

•	 Before the controller gets executed. This allows the interceptor to decide if it needs to
continue the execution chain or return with an exception or custom response.

•	 After the controller gets executed but before the response is sent out. This allows the
interceptor to provide any additional model objects to the view.

•	 After the response is sent out allowing any resource cleanup.

 ■ Note Spring Web MVC interceptors are similar to hTTp servlet filters. both can be used to intercept a
request and execute common concerns. however, there are a few differences between them that are worth
noting. Filters have the capability to wrap or even swap the HttpServletRequest and HttpServletResponse
objects. interceptors can’t decorate or swap those objects. interceptors are Spring-managed beans, and we
can easily inject other spring beans in them. Filters are container-managed instances; they don't provide a
straightforward mechanism for injecting Spring-managed beans.

Spring Web MVC provides the HandlerInterceptor interface for implementing interceptors.
Listing 2-17 gives the HandlerInterceptor interface. As you can see, the three methods correspond to the
three interceptor features that we just discussed.

Listing 2-17. HandlerInterceptor API

public interface HandlerInterceptor{
 void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object
handler, Exception ex);
 void postHandle(HttpServletRequest request, HttpServletResponse response, Object
handler, ModelAndView modelAndView);
 boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object
handler);
}

ChApTeR 2 ■ SpRing Web MVC pRiMeR

30

Listing 2-18 gives a simple interceptor implementation. As you can see, the SimpleInterceptor class
extends HandlerInterceptorAdapter. The HandlerInterceptorAdapter is a convenient abstract class that
implements the HandlerInterceptor interface and provides default implementations of its methods.

Listing 2-18. Spring Web MVC Interceptor example

public class SimpleInterceptor extends HandlerInterceptorAdapter {
 private static final Logger logger = Logger.getLogger(SimpleInterceptor.class);

 public boolean preHandle(HttpServletRequest request, HttpServletResponse response,

Object handler) throws Exception {
 logger.info("Inside the prehandle");

 return false;
 }
}

Interceptors can be registered in a Spring Web application using the InterceptorRegistry
strategy. When using Java Configuration, this is typically achieved by creating a configuration class that
extends WebMvcConfigurerAdapter. Spring Web MVC’s WebMvcConfigurerAdapter class provides the
addInterceptors method that can be used to access the InterceptorRegistry. Listing 2-19 shows the
code registering two interceptors: LocalInterceptor that comes out of the box with Spring and our
SimpleInterceptor.

Listing 2-19. Example registering interceptors

@Configuration
@EnableWebMvc
@ComponentScan(basePackages = { "com.apress.springrest.web" })
public class WebConfig extends WebMvcConfigurerAdapter {

 @Override
 public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(new LocaleChangeInterceptor());
 registry.addInterceptor(new SimpleInterceptor()).addPathPatterns("/auth/**");
 }
}

When an interceptor is added to the interceptor registry, the interceptor gets applied to all of the
handler mappings. So, the LocaleChangeInterceptor in Listing 2-19 gets applied to all the handler
mappings. However, it is also possible to restrict the interceptor to certain URLs. This is demonstrated in
Listing 2-19 using the addPathPatterns method. Here we are indicating that the SimpleInterceptor should
be applied to only the URLs that are under the auth path.

Summary
In this chapter, we have looked at the basics of the Spring Framework and different components of a
Spring Web MVC. In the next chapter, we will bring things together and look at building our first RESTful
application using Spring Boot.

31

Chapter 3

RESTful Spring

In this chapter, we will discuss:

•	 The basics of Spring Boot

•	 Building a Hello World REST application

•	 Tools for accessing REST applications

One of the Spring Framework’s goals is to reduce plumbing code so that developers can focus their
efforts on implementing core business logic. However, as the Spring Framework evolved and added several
subprojects to its portfolio, developers ended up spending a considerable amount of time setting up
projects, finding project dependencies, and writing boiler plate code and configuration.

Spring Boot, a Spring portfolio project aims at simplifying Spring application bootstrapping by
providing a set of starter project templates. These would pull all the proper dependencies that are needed
based on project capabilities. For example, if you enable JPA capability, it automatically includes all the
dependent JPA, Hibernate, and Spring JAR files.

Spring Boot also takes an opinionated approach and provides default configuration that simplifies
application development quite a bit. For example, if Spring Boot finds JPA and MySQL JARs in the classpath,
it would automatically configure a JPA Persistence Unit. It also enables creation of standalone Spring
applications with embedded Jetty/Tomcat servers, making them easy to deploy on any machine with
just Java installed. Additionally, it provides production-ready features such as metrics and health checks.
Throughout this book, we will be exploring and learning these and additional features of Spring Boot.

 ■ Note Spring Roo is another Spring portfolio project that attempts to provide rapid Spring application
development. It provides a command-line tool that enables easy project bootstrapping and generates code for
components such as JPA entities, Web controllers, test scripts, and necessary configuration. Although there
was a lot of initial interest in the project, Spring Roo never really became mainstream. AspectJ Code generation
and a steep learning curve coupled with its attempt to take over your project are some reasons for lack of
its adoption. Spring Boot, by contrast, takes a different approach; it focuses on jump starting the project and
providing clever, sensible, default configuration. It doesn’t generate any code and can easily be removed.

ChAPteR 3 ■ ReStful SPRIng

32

Generating a Spring Boot Project
It is possible to create a Spring Boot project from scratch. However, Spring Boot provides the following
options to generate a new project:

•	 Use Spring Boot’s starter website (http://start.spring.io)

•	 Use the Spring Tool Suite (STS) IDE

•	 Use the Boot command line interface (CLI)

We will explore all three alternatives in this chapter. However, for the rest of the book we will be opting
for the Boot CLI to generate new projects. Before we start with project generation, it is important that Java is
installed on your machine. Spring Boot requires that you have Java SDK 1.6 or higher installed. In this book
we will be using Java 1.7.

Installing a Build Tool
Spring Boot supports the two most popular build systems: Maven and Gradle. In this book we will be using
Maven as our build tool. Spring Boot requires Maven version 3.2 or higher. The steps to download and
configure Maven on your Windows machine are given here. Similar instructions for Mac and other operating
systems can be found on Maven’s download page (http://maven.apache.com/download.cgi):

 1. Download the latest Maven binary from http://maven.apache.org/download.cgi.
At the time of writing this book, the current version of Maven was 3.2.5. For
Windows, download the apache-maven-3.2.5-bin.zip file.

 2. Unzip the contents of the zip file under C:\tools\maven.

 3. Add an Environment variable M2_HOME with value C:\tools\maven\apache-
maven-3.2.5-bin\apache-maven-3.2.5. This tells Maven and other tools where
Maven is installed. Also make sure that the JAVA_HOME variable is pointing to the
installed JDK.

 4. Append the value %M2_HOME%\bin to the Path environment variable. This allows
you to run Maven commands from the command line.

 5. Open a new command line and type the following:

mvn - v

You should see an output similar to Figure 3-1, indicating that Maven was successfully installed.

Figure 3-1. Maven installation verification

http://start.spring.io/
http://maven.apache.com/download.cgi
http://maven.apache.org/download.cgi

ChAPteR 3 ■ ReStful SPRIng

33

 ■ Note to learn more about Maven, refer to Introducing Maven, published by Apress
(http://www.apress.com/9781484208427).

Generating a Project using start.spring.io
Spring Boot hosts an Initializr application at http://start.spring.io. The Initializr provides a Web
interface that allows you to enter project information, pick the capabilities needed for your project, and
voilà—it generates the project as a zip file. Follow these steps to generate our Hello World REST application:

 1. Launch the http://start.spring.io website in your browser and enter the
information shown in Figure 3-2.

Figure 3-2. start.spring.io website

http://www.apress.com/9781484208427
http://start.spring.io/
http://start.spring.io/

ChAPteR 3 ■ ReStful SPRIng

34

 2. Under Project dependencies ➤ Web, select the option “Web” and indicate
that you would like Spring Boot to include Web project infrastructure and
dependencies.

 3. Then hit the “Generate Project” button. This will begin the hello-rest.zip file
download.

On completion of the download, extract the contents of the zip file. You will see the hello-rest folder
generated. Figure 3-3 shows the contents of the generated folder.

A quick look at the hello-rest contents shows that we have a standard Maven-based Java project
layout. We have the src\main\java folder, which houses Java source code; src\main\resources, which
contains property files; static content, such as HTML\CSS\JS files; and the src\test\java folder, which
contains the test cases. On running a Maven build, this project generates a JAR artifact. Now, this might be
little confusing for the first-timer who is used to WAR artifacts for deploying Web applications. By default,
Spring Boot creates standalone applications in which everything gets packaged into a JAR file. These
applications will have embedded servlet containers such as Tomcat and are executed using a good old
main() method.

 ■ Note Spring Boot also allows you to work with WAR artifacts that can be deployed to external Web and
application containers.

Figure 3-3. hello-rest application contents

ChAPteR 3 ■ ReStful SPRIng

35

Listing 3-1 gives the contents of the hello-rest application’s pom.xml file.

Listing 3-1. hello-rest pom.xml file contents

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/

maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.apress</groupId>
 <artifactId>hello-rest</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>
 <name>Hello World REST</name>
 <description>Hello World REST Application Using Spring Boot</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.2.1.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <start-class>com.apress.hellorest.HelloWorldRestApplication</start-class>
 <java.version>1.7</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
</project>

www.allitebooks.com

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd
http://maven.apache.org/xsd/maven-4.0.0.xsd
http://www.allitebooks.org

ChAPteR 3 ■ ReStful SPRIng

36

The groupId, artifactId, and version elements in the pom.xml file correspond to Maven’s standard
GAV coordinates describing our project. The parent tag indicates that we will be inheriting from the spring-
boot-starter-parent POM. This ensures that our project inherits Spring Boot’s default dependencies
and versions. The dependencies element lists two POM file dependencies: spring-boot-starter-web and
spring-boot-starter-test. Spring Boot uses the term starter POMs to describe such POM files.

These starter POMs are used to pull other dependencies and don’t actually contain any code of their
own. For example, the spring-boot-starter-web pulls Spring MVC dependencies, Tomcat-embedded
container dependencies, and a Jackson dependency for JSON processing. These starter modules play an
important role in providing needed dependencies and simplifying the application’s POM file to just a few
lines. Table 3-1 lists some of the commonly used starter modules.

Finally, the spring-boot-maven-plugin contains goals for packaging the application as an executable
JAR/WAR and running it.

The HelloWorldRestApplication.java class serves as the main class for our application and contains
the main() method. Listing 3-2 shows the contents of the HelloWorldRestApplication.java class.
The @SpringBootApplication annotation is a convenient annotation and is equivalent to declaring the
following three annotations:

•	 @Configuration—Marks the annotated class as containing one or more Spring bean
declarations. Spring processes these classes to create bean definitions and instances.

•	 @ComponentScan—This class tells Spring to scan and look for classes annotated with
@Configuration, @Service, @Repository, and so on. By default, Spring scans all the
classes in the package where the @ComponentScan annotated class resides.

•	 @EnableAutoConfiguration—Enables Spring Boot’s auto-configuration behavior.
Based on the dependencies and configuration found in the classpath, Spring Boot
intelligently guesses and creates bean configurations.

Table 3-1. Spring Boot Starter Modules

Starter POM Dependency Use

spring-boot-starter Starter that brings in core dependencies necessary for functions such
as auto-configuration support and logging

spring-boot- starter-aop Starter that brings in support for aspect-oriented programming and
AspectJ

spring-boot-starter-test Starter that brings in dependencies such as JUnit, Mockito, and
spring-test necessary for testing

spring-boot-starter-web Starter that brings in MVC dependencies (spring-webmvc) and
embedded servlet container support

spring-boot-starter-data-jpa Starter that adds Java Persistence API support by bringing in spring-
data-jpa, spring-orm and Hibernate dependencies

spring-boot-starter-data-rest Starter that brings in spring-data-rest-webmvc to expose
repositories as REST API

spring-boot-starter-hateoas Starter that brings in spring-hateoas dependencies for HATEOAS
REST services

spring-boot-starter-jdbc Starter for supporting JDBC databases

ChAPteR 3 ■ ReStful SPRIng

37

Typical Spring Boot applications always use these three annotations. In addition to providing a nice
alternative in those scenarios, the @SpringBootApplication annotation correctly denotes the class’s intent.

Listing 3-2. HelloWorldRestApplication contents

package com.apress.hellorest;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class HelloWorldRestApplication {

 public static void main(String[] args) {
 SpringApplication.run(HelloWorldRestApplication.class, args);
 }
}

The main() method simply delegates the application bootstrapping to SpringApplication’s run()
method. run() takes a HelloWorldRestApplication.class as its argument and instructs Spring to read
annotation metadata from HelloWorldRestApplication and populate ApplicationContext from it.

Now that we have looked at the generated project, let’s create a REST endpoint that simply returns
“Hello REST”. Ideally, we would create this endpoint in a separate controller Java class. However, to keep
things simple, we will create the endpoint in HelloWorldRestApplication, as shown in Listing 3-3. We start
by adding the @RestController, indicating that HelloWorldRestApplication has possible REST endpoints.
We then create the helloGreeting() method, which simply returns the greeting “Hello REST”. Finally, we
use the RequestMapping annotation to map Web requests for “/greet” path to helloGreeting() handler
method.

Listing 3-3. Hello REST Endpoint

package com.apress.hellorest;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.bind.annotation.RequestMapping;

@SpringBootApplication
@RestController
public class HelloWorldRestApplication {

 public static void main(String[] args) {
 SpringApplication.run(HelloWorldRestApplication.class, args);
 }

 @RequestMapping("/greet")
 public String helloGreeting() {
 return "Hello REST";
 }

}

ChAPteR 3 ■ ReStful SPRIng

38

The next step is to launch and run our application. To do this, open a command line, navigate to the
hello-rest folder, and run the following command:

mvn spring-boot:run

You will see Maven downloading the necessary plugins and dependencies, and then it will launch the
application, as shown here:

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v1.2.1.RELEASE)

2015-01-25 22:13:19.094 INFO 1468 --- [lication.main()]
ationConfigEmbeddedWebApplicationContext : Refreshing org.springframework.boot.context.
embedded.AnnotationConfigEmbeddedWebApplicationContext@36dbb0f7: startup date [Sun Jan 25
22:13:19 MST 2015]; root of context hierarchy
2015-01-25 22:13:20.315 INFO 1468 --- [lication.main()] s.b.c.e.t.TomcatEmbeddedServletCont
ainer : Tomcat initialized with port(s): 8080 (http)
2015-01-25 22:13:20.672 INFO 1468 --- [lication.main()] o.apache.catalina.core.
StandardService : Starting service Tomcat
2015-01-25 22:13:20.673 INFO 1468 --- [lication.main()] org.apache.catalina.core.
StandardEngine : Starting Servlet Engine: Apache Tomcat/8.0.15
2015-01-25 22:13:20.753 INFO 1468 --- [ost-startStop-1] o.a.c.c.C.[Tomcat].[localhost].[/]
: Initializing Spring embedded WebApplicationContext
2015-01-25 22:13:20.754 INFO 1468 --- [ost-startStop-1] o.s.web.context.ContextLoader
: Root WebApplicationContext: initialization completed in 1660 ms
2015-01-25 22:13:21.895 INFO 1468 --- [lication.main()] c.a.hellorest.
HelloWorldRestApplication : Started HelloWorldRestApplication in 3.081 seconds
(JVM running for 11.783)

To test our running application, launch a browser and navigate to http://localhost:8080/greet.
Notice that Spring Boot launches the application as the ROOT context and not the hello-world context.
You should see a screen similar to that in Figure 3-4.

Figure 3-4. Hello REST greeting

ChAPteR 3 ■ ReStful SPRIng

39

SprING INItIaLIZr

the Spring Initializr application hosted at http://start.spring.io itself is built using Spring Boot.
You can find the source code of this application on github at https://github.com/spring-io/
initializr. It is also possible for you to build and host your own instances of the Initializr application.

In addition to providing a Web interface, the Initializr provides a httP endpoint that provides similar
project generation capability. In fact, Spring Boot’s ClI and IDes such as StS use this httP endpoint
behind the scenes for generating projects.

the httP endpoint can also be invoked from the command line using curl. for example, the following
command would generate the hello-rest project zip file using curl. the –d options are used to provide
data that gets passed as request parameters:

curl https://start.spring.io/starter.zip -d style=web -d name=hello-rest

Generating a Project using STS
Spring Tool Suite or STS is a free Eclipse-based development environment that provides great tooling
support for developing Spring-based applications. You can download and install the latest version of STS
from Pivotal’s website at: https://spring.io/tools/sts/all. At the time of writing this book, the current
version of STS was 3.6.3.

STS provides a user interface similar to Initializr’s web interface for generating Boot starter projects.
Here are the steps for generating a Spring Boot project:

 1. Launch STS if you haven’t already done so. Go to File ➤ New and click on Spring
Starter Project, as shown in Figure 3-5.

Figure 3-5. STS Spring starter project

http://start.spring.io/
https://github.com/spring-io/initializr
https://github.com/spring-io/initializr
https://start.spring.io/starter.zip
https://spring.io/tools/sts/all

ChAPteR 3 ■ ReStful SPRIng

40

 2. In following screen, enter the information as shown in Figure 3-6. In addition to
entering Maven’s GAV information, select the Web starter option. Hit Next.

Figure 3-6. Starter project options

ChAPteR 3 ■ ReStful SPRIng

41

 3. On the following screen, change the location where you would like to store
the project. The “Full Url” area shows the HTTP REST endpoint along with the
options that you selected (see Figure 3-7).

Figure 3-7. Starter project location

ChAPteR 3 ■ ReStful SPRIng

42

 4. Hit the Finish button and you will see the new project created in STS. The
contents of the project are similar to the project that we created earlier
(see Figure 3-8).

STS’s starter project wizard provides a convenient way to generate new Spring Boot projects. The newly
created project automatically gets imported into the IDE and is immediately available for development.

Figure 3-8. STS Spring starter project resources

ChAPteR 3 ■ ReStful SPRIng

43

Generating a Project Using the CLI
Spring Boot provides a command line interface (CLI) for generating projects, prototyping, and running
Groovy scripts. Before we can start using the CLI, we need to install it. Here are the steps for installing the
Boot CLI on a Windows machine:

 1. Download the latest version of the CLI ZIP distribution from Spring’s website at
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli.
At the time of writing this book, the current version of CLI was 1.2.1. This version
can be downloaded directly from http://repo.spring.io/release/org/
springframework/boot/spring-boot-cli/1.2.1.RELEASE/spring-boot-
cli-1.2.1.RELEASE-bin.zip.

 2. Extract the zip file and place its contents (folders such as bin and lib) under
C:\tools\springbootcli, as shown in Figure 3-9.

 3. Add a new environment variable SPRING_HOME with value c:\tools\
springbootcli.

 4. Edit the Path environment variable and add the %SPRING_HOME%/bin value to
its end.

 5. Open a new command line and verify the installation running the following
command:

spring --version

Figure 3-9. Spring Boot CLI contents

http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.2.1.RELEASE/spring-boot-cli-1.2.1.RELEASE-bin.zip
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.2.1.RELEASE/spring-boot-cli-1.2.1.RELEASE-bin.zip
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.2.1.RELEASE/spring-boot-cli-1.2.1.RELEASE-bin.zip

ChAPteR 3 ■ ReStful SPRIng

44

You should see an output similar to that shown in Figure 3-10.

Now that we have the Boot CLI installed, generating a new project simply involves running the
following command at the command line:

spring init --dependencies web rest-cli

The command creates a new rest-cli project with Web capability. The output of running the
command is shown in Listing 3-4.

Listing 3-4. Boot CLI Output

C:\test>spring init --dependencies web rest-cli
Using service at https://start.spring.io
Project extracted to 'C:\test\rest-cli'

Accessing REST Applications
There are several free and commercial tools that allow you to access and experiment with REST
API/applications. In this section we will look at some of the popular tools that allow you to quickly test a
request and inspect the response.

Postman
Postman is a Chrome browser extension for making HTTP requests. It offers a plethora of features that
makes it easy to develop, test, and document a REST API. A Chrome app version of Postman is also available
that provides additional features such as bulk uploading that are not available in the browser extension.

Postman can be downloaded and installed from the Chrome Web Store. To install Postman, simply
launch the Chrome browser and navigate to https://chrome.google.com/webstore/detail/postman-
rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm. You might be asked to log in to your Google Chrome
account and confirm using the “New app” installation dialog. On completion of the installation, you should
be able to locate and launch Postman using the “Apps icon” in the Bookmarks bar or by typing
chrome://apps/shortcut. Figure 3-10 shows Postman launched in the Chrome browser.

Postman provides a clean intuitive user interface for composing an HTTP request, sending it to a server,
and viewing the HTTP response. It also automatically saves the requests, which are readily available for
future runs. Figure 3-11 shows a HTTP GET request made to our Greet service and its response. You can also
see the request saved in the History section of the left sidebar.

Figure 3-10. Spring Boot CLI installation

https://start.spring.io/
https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm
https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm

ChAPteR 3 ■ ReStful SPRIng

45

Postman makes it easy to logically group related API calls into collections, as shown in Figure 3-12.
It is possible to have subcollections of requests under a collection.

RESTClient
RESTClient is a Firefox extension for accessing REST APIs and applications. Unlike Postman, RESTClient
doesn’t have a lot of bells and whistles, but it provides basic functionality to quickly test a REST API. To
install RESTClient, launch the Firefox browser and navigate to the URL https://addons.mozilla.org/en-
US/firefox/addon/restclient/. Then click the “+ Add to Firefox” button and in the following
“Software Installation” dialog click the “Install Now” button.

On completion of the installation, you can launch RESTClient using the RESTClient icon on the top
right corner of the browser. Figure 3-13 shows the RESTClient application with a request to our Greet service
and the corresponding response.

Figure 3-11. Postman browser extension

Figure 3-12. Postman collections

www.allitebooks.com

https://addons.mozilla.org/en-US/firefox/addon/restclient/
https://addons.mozilla.org/en-US/firefox/addon/restclient/
http://www.allitebooks.org

ChAPteR 3 ■ ReStful SPRIng

46

Summary
Spring Boot provides an opinionated approach to building Spring-based applications. In this chapter, we
looked at Spring Boot’s features and used it to build a Hello World REST application. We also looked at the
Postman and RESTClient tools for testing and exploring the REST API.

In the next chapter, we will begin work on a more complex REST application and discuss the process of
identifying and designing resources.

Figure 3-13. RESTClient

47

Chapter 4

Beginning QuickPoll Application

In this chapter we will discuss:

•	 Analyzing the requirements for QuickPoll

•	 Identifying QuickPoll resources

•	 Designing representations

•	 Implementing QuickPoll

Up to this point, we have looked at the fundamentals of REST and reviewed our technology choice of
implementation—Spring MVC. Now it’s time to develop a more complex application. In this chapter, we
will introduce you to the beginnings of an application that we will be working on throughout this book. We
will call it QuickPoll. We will go through the process of analyzing the requirements, identifying resources,
designing their representation, and, finally, provide an implementation to a subset of features. In upcoming
chapters, we will continue our design and implementation by adding new features, documentation, security,
and versioning.

Introducing QuickPoll
Polls have become a popular option for soliciting views and opinions from the community on many websites
these days. There are a couple of variations between online polls, but a poll typically has a question and a list
of answers, as shown in Figure 4-1.

Figure 4-1. Web poll example

Chapter 4 ■ Beginning QuiCkpoll appliCation

48

Participants vote and communicate their opinion by selecting one or more responses. Many polls also
allow participants to view the poll results, as shown in Figure 4-2.

Imagine being part of QuickPoll Inc., a budding Software as a Service, or SaaS, provider that allows
users to create, manipulate, and vote on polls. We plan to launch our services to a small audience, but we
intend to become a global enterprise. In addition to the Web, QuickPoll would also like to target native iOS
and Android platforms. To achieve these lofty goals, we have chosen to implement our application using
REST principles and Web technologies.

We begin the development process by analyzing and understanding requirements. Our QuickPoll
application has the following requirements:

•	 Users interact with QuickPoll services to create new polls

•	 Each poll contains a set of options that are provided during poll creation

•	 Options inside a poll can be updated at a later point

•	 To keep things simple, QuickPoll restricts voting on a single option

•	 Participants can cast any number of votes

•	 Results of a poll can be viewed by anyone

We have started with a simple set of requirements for QuickPoll. As with any other application, these
requirements will evolve and change. We will address those changes in upcoming chapters.

Designing QuickPoll
As discussed in Chapter 1, designing a RESTful application typically involves the following steps:

 1. Resource Identification

 2. Resource Representation

 3. Endpoint Identification

 4. Verb/Action Identification

Figure 4-2. Web poll results

http://dx.doi.org/10.1007/9781484208243_1

Chapter 4 ■ Beginning QuiCkpoll appliCation

49

Resource Identification
We begin the resource identification process by analyzing requirements and extracting nouns. At a high
level, the QuickPoll application has users that create and interact with polls. From the previous statement,
you can identify User and Poll as nouns and classify them as resources. Similarly, users can vote on polls and
view the voting results, making Vote another resource. This resource modeling process is similar to database
modeling in that it is used to identify entities or object-oriented design that identifies domain objects.

It is important to remember that all nouns identified need not be exposed as resources. For example,
a poll contains several options, making Option another candidate for resource. Making Poll Option a
resource would require a client to make two GET requests. The first request will obtain a Poll representation;
the second request will obtain an associated Options representation. However, this approach makes the
API chatty and might overload servers. An alternative approach is to include the options inside a Poll
representation, thereby hiding Option as a resource. This would make Poll a coarse-grained resource, but
clients would get poll-related data in one call. Additionally, the second approach can enforce business rules
such as requiring at least two options for a poll to be created.

This noun approach allows us to identify collection resources. Now, consider the scenario in which you
want to retrieve all of the votes for a given poll. To handle this, you need a “votes” collection resource. You
can perform a GET request and obtain the entire collection. Similarly, we need a “polls” collection resource,
which allows us to query groups of polls and create new ones.

Finally, we need to address the scenario in which we count all of the votes for a poll and return the
computed results to the client. This involves looping through all the votes for a poll, grouping those votes
based on options, and then counting them. Such processing operations are typically implemented using a
“controller” resource, which we introduced in Chapter 1. In this case, we model a ComputeResult resource,
which performs this counting operation. Table 4-1 shows the identified resources and their collection
resource counterparts.

Resource Representation
The next step in the REST API design process is defining resource representations and representation
formats. REST APIs typically support multiple formats such as HTML, JSON, and XML. The choice of the
format largely depends on the API audience. For example, a REST service that is internal to the company
might only support JSON format, whereas a public REST API might speak XML and JSON formats. In this
chapter and in the rest of the book, JSON will be the preferred format for our operations.

Table 4-1. Resources for QuickPoll application

Resource Description

User Singleton User Resource

Users Collection User Resource

Poll Singleton Poll Resource

Polls Collection Poll Resource

Vote Singleton Vote Resource

Votes Collection Vote Resource

ComputeResult Count Processing Resource

http://dx.doi.org/10.1007/9781484208243_1

Chapter 4 ■ Beginning QuiCkpoll appliCation

50

JSON FOrMat

the JavaScript object notation, or JSon, is a lightweight format for exchanging information. information
in JSon is organized around two structures: objects and arrays.

a JSon object is a collection of name/value pairs. each name/value pair consists of a field name in
double quotes followed by a colon (:), followed by a field value. JSon supports several types of values
such as Boolean (true or false), number (int or float), String, null, arrays, and object. examples of
name/value pairs include:

"country" : "US"
"age" : 31
 "isRequired" : true
"email" : null

JSon objects are surrounded by curly braces ({}), and each name/value pair is separated using a
comma (,). here is an example of a person JSon object:

{ "firstName": "John", "lastName": "Doe", "age" : 26, "active" : true }

the other JSon structure, an array, is an ordered collection of values. each array is surrounded by
square brackets ([]), with values separated by a comma. here is an example of an array of locations:

["Salt Lake City", "New York", "Las Vegas", "Dallas"]

JSon arrays can also contain objects as their values:

[
 { "firstName": "Jojn", "lastName": "Doe", "age": 26, "active": true },
 { "firstName": "Jane", "lastName": "Doe", "age": 22, "active": true },
 { "firstName": "Jonnie", "lastName": "Doe", "age": 30, "active": false }
]

Resources are made up of set of attributes that can be identified using process similar to Object
Oriented design. A Poll resource, for example, has a question attribute, containing a Poll question, and an
id attribute, which uniquely identifies the Poll. It also contains a set of options; each option is made up of a
value and an id. Listing 4-1 shows a representation of a Poll with sample data.

Listing 4-1. Poll representation

{
 "id": 2,
 "question": "How will win SuperBowl this year?",
 "options": [{"id": 45, "value": "New England Patriots"}, {"id": 49,

"value": "Seattle Seahawks"}, {"id": 51, "value": "Green Bay Packers"},
{"id": 54, "value": "Denver Broncos"}]

}

Chapter 4 ■ Beginning QuiCkpoll appliCation

51

 ■ Note We are intentionally excluding a user from poll representation in this chapter. in Chapter 8, we will
discuss user representation along with its associations to poll and Vote resources.

The representation of a Poll collection resource contains a collection of individual polls. Listing 4-2
gives the representation of a Polls collection resource with dummy data.

Listing 4-2. List of Polls representation

[
 {
 "id": 5,
 "question": "q1",
 "options": [{"id": 6, "value": "X"}, {"id": 9, "value": "Y"},

{"id": 10, "value": "Z"}]
 },
 {
 "id": 2,
 "question": "q10",
 "options": [{"id": 15, "value": "Yes"}, {"id": 16, "value": "No"}]
 }

]

The Vote resource contains the option for which the vote was cast and a unique identifier. Listing 4-3
shows the Vote resource representation with dummy data.

Listing 4-3. Vote representation

{
 "id": 245,
 "option": {"id": 45, "value": "New England Patriots"}
}

Listing 4-4 gives the Votes collection resource representation with dummy data.

Listing 4-4. List of Votes representation

[
 {
 "id": 245,
 "option": {"id": 5, "value": "X"}
 },
 {
 "id": 110,
 "option": {"id": 7, "value": "Y"}
 },

http://dx.doi.org/10.1007/9781484208243_8

Chapter 4 ■ Beginning QuiCkpoll appliCation

52

The ComputeResult resource representation should include the total number of votes and Poll options
along with the vote count associated with each option. Listing 4-5 shows this representation with sample
data. We use the totalVotes attribute to hold the cast votes and the results attribute to hold the option id and
the associated votes.

Listing 4-5. ComputeResult representation

{
 totalVotes: 100,
 "results" : [
 { "id" : 1, "count" : 10 },
 { "id" : 2, "count" : 8 },
 { "id" : 3, "count" : 6 },
 { "id" : 4, "count" : 4 }
]
}

Now that we have defined our resource representation, we will move on to identifying endpoints for
those resources.

Endpoint Identification
REST resources are identified using URI endpoints. Well-designed REST APIs should have endpoints that
are understandable, intuitive, and easy to use. Remember that we build REST APIs for our consumers to use.
Hence, the names and the hierarchy that we choose for our endpoints should be unambiguous to consumers.

We design the endpoints for our service using best practices and conventions widely used in the
industry. The first convention is to use a base URI for our REST service. The base URI provides an
entry point for accessing the REST API. Public REST API providers typically use a subdomain such as
http://api.domain.com or http://dev.domain.com as their base URI. Popular examples include GitHub’s
https://api.github.com and Twitter’s https://api.twitter.com. By creating a separate subdomain,
you prevent any possible name collisions with webpages. It also allows you to enforce security policies that
are different from the regular website. To keep things simple, we will be using http://localhost:8080 as
our base URI in this book.

The second convention is to name resource endpoints using plural nouns. In our QuickPoll application,
this would result in an endpoint http://localhost:8080/polls for accessing the Poll collection resource.
Individual Poll resources will be accessed using a URI such as http://localhost:8080/polls/1234 and
http://localhost:8080/polls/3456. We can generalize access to individual Poll resources using the URI
template http://localhost:8080/polls/{pollId}. Similarly, the endpoints http://localhost:8080/
users and http://localhost:8080/users/{userId} are used for accessing collection and individual User
resources.

The third convention advises using a URI hierarchy to represent resources that are related to each other.
In our QuickPoll application, each Vote resource is related to a Poll resource. Because we typically cast
votes for a Poll, a hierarchical endpoint http://localhost:8080/polls/{pollId}/votes is recommended
for obtaining or manipulating all the votes associated with a given Poll. In the same way, the endpoint
http://localhost:8080/polls/{pollId}/votes/{voteId} would return an individual vote that was cast
for the Poll.

http://api.domain.com/
http://dev.domain.com/
https://api.github.com/
https://api.twitter.com/

Chapter 4 ■ Beginning QuiCkpoll appliCation

53

Finally, the endpoint http://localhost:8080/computeresult can be used to access the ComputeResult
resource. For this resource to function properly and count the votes, a poll id is required. Because the
ComputeResult works with Vote, Poll, and Option resources, we can’t use the third approach for designing a
URI that is hierarchal in nature. For use cases like these that require data to perform computation, the fourth
convention recommends using a query parameter. For example, a client can invoke the endpoint
http://localhost:8080/computeresult?pollId=1234 to count all of the votes for the Poll with id 1234.
Query parameters are an excellent vehicle for providing additional information to a resource.

In this section, we have identified the endpoints for the resources in our QuickPoll application. The next
step is to identify the actions that are allowed on these resources, along with the expected responses.

Action Identification
HTTP Verbs allow clients to interact and access resources using their endpoints. In our QuickPoll
application, the clients must be able to perform one or more CRUD operations on resources such as Poll
and Vote. Analyzing the use cases from the “Introducing QuickPoll” section, Table 4-2 shows the operations
allowed on Poll/Polls collection resources along with the success and error responses. Notice that on the Poll
collection resource we allow GET and POST operations but deny PUT and Delete operations. A POST on the
collection resource allows the client to create new polls. Similarly, we allow GET, PUT, and Delete operations
on a given Poll resource but deny POST operation. The service returns a 404 status code for any GET, PUT,
and DELETE operation on a Poll resource that doesn’t exist. Similarly, any server errors would result in a
status code of 500 sent to the client.

Table 4-2. Allowed operations on a Poll resource

HTTP
Method

Resource
Endpoint

Input Success Response Error Response Description

GET /polls Body: Empty Status: 200
Body: Poll List

Status: 500 Retrieves all
available polls

POST /polls Body: New
Poll data

Status: 201
Body: Newly created
poll id

Status: 500 Creates a new
poll

PUT /polls N/A N/A Status: 400 Forbidden action

Delete /polls N/A N/A Status: 400 Forbidden action

GET /polls/{pollId} Body: Empty Status: 200
Body: Poll data

Status: 404 or 500 Retrieves an
existing poll

POST /polls/{pollId} N/A N/A Status: 400 Forbidden

PUT /polls/{pollId} Body: Poll
data with
updates

Status: 200
Body: Empty

Status: 404 or 500 Updates an
existing poll

Delete /polls/{pollId} Body: Empty Status: 200 Status: 404 or 500 Deletes an
existing poll

Chapter 4 ■ Beginning QuiCkpoll appliCation

54

Finally, Table 4-4 shows the operations allowed on the ComputeResult resource.

Table 4-3. Allowed operations on Vote resource

HTTP
Method

Resource
Endpoint

Input Success
Response

Error Response Description

GET /polls/{pollId}/
votes

Body: Empty Status: 200
Body: Votes List

Status: 500 Retrieves all available
votes for a given poll

POST /polls/{pollId}/
votes

Body: New
Vote

Status: 201
Body: Newly
created vote id

Status: 500 Creates a new vote

PUT /polls/{pollId}/
votes

N/A N/A Status: 400 Forbidden action

Delete /polls/{pollId}/
votes

N/A N/A Status: 400 Forbidden action

GET /polls/{pollId}/
votes/{voteId}

Body: Empty Status: 200
Body: Vote data

Status: 404 or 500 Retrieves an existing
vote

POST /polls/{pollId}/
votes/{voteId}

N/A N/A Status: 400 Forbidden

PUT /polls/{pollId}/
votes/{voteId}

N/A N/A Status: 400 Forbidden as a casted
vote can’t be updated
according to our
requirements

Delete /polls/{pollId}/
votes/{voteId}

N/A N/A Status: 400 Forbidden as a casted
vote can’t be deleted
according to our
requirements

Table 4-4. Allowed operations on ComputeResult resource

HTTP
Method

Resource
Endpoint

Input Success Response Error Response Description

GET /computeresult Body: Empty
Param: pollId

Status: 200
Body: Vote count

Status: 500 Returns the vote count
for the given poll

In the same fashion, Table 4-3 shows the operations allowed on Vote/Votes collection resources.

This concludes the design for the QuickPoll REST service. Before we start our implementation, we will
review QuickPoll’s high-level architecture.

Chapter 4 ■ Beginning QuiCkpoll appliCation

55

QuickPoll Architecture
The QuickPoll application will be made of a Web or REST API layer and a Repository layer with a domain
layer crosscutting those two, as depicted in Figure 4-3. A layered approach provides a clear separation
of concerns, making applications easy to build and maintain. Each layer interacts with the layer below
using a well-defined contract. As long as the contract is maintained, it is possible to swap out underlying
implementations without any impact to the overall system.

The Web API layer is responsible for receiving client requests, validating user input, interacting with a
service or a repository layer, and generating a response. Using HTTP protocol, resource representations are
exchanged between clients and the Web API layer. This layer contains Controllers/Handlers and is typically
very lightweight as it delegates most of the work to layers beneath it.

The domain layer is considered to be the “heart” of an application. Domain objects in this layer contain
business rules and business data. These objects are modeled after the nouns in the system. For example,
a Poll object in our QuickPoll application would be considered a domain object.

The repository or data access layer is responsible for interacting with a datastore such as a database or
LDAP or a legacy system. It typically provides CRUD operations for storing and retrieving objects from/to a
datastore.

 ■ Note observant readers will notice that the Quickpoll architecture is missing a service layer. Service
layer typically sits between the api/presentation layer and repository layer. it contains coarse-grained api
with methods that fulfill one or more use cases. it is also responsible for managing transactions and other
crosscutting concerns such as security.

Because we are not dealing with any complex use cases for Quickpoll application in this book, we will not be
introducing service layers into our architecture.

Figure 4-3. QuickPoll architecture

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Beginning QuiCkpoll appliCation

56

Implementing QuickPoll
We begin QuickPoll implementation by generating a Spring Boot project using STS. Follow the steps
discussed in the “Generating Project using STS” section of Chapter 3, and create a project named quick-poll.
Figure 4-4 gives the configuration information used during project generation. Notice that we have selected
the “JPA” and “Web” options.

Alternatively, you can import the QuickPoll project into your STS IDE from the downloaded source
code for this book. The downloaded source code contains a number of folders named ChapterX, in which
X represents the corresponding chapter number. Each ChapterX folder further contains two subfolders: a
starter folder and a final folder. The starter folder houses a QuickPoll project that you can use to follow
along with the solution described in this chapter.

Figure 4-4. QuickPoll project configuration

http://dx.doi.org/10.1007/9781484208243_3

Chapter 4 ■ Beginning QuiCkpoll appliCation

57

Even though each chapter builds on the previous chapter’s work, the starter project allows you to skip
around in the book. For example, if you are interested in learning about security, you can simply load the
QuickPoll application under the Chapter8\starter folder and follow the solution as described in Chapter 8.

As the name suggests, the final folder contains the completed solution/code for each chapter. To
minimize code in the chapter text, I have omitted getters/setters methods, imports and package declarations
in some of the code listings. Please refer to the QuickPoll code under the final folder for complete code
listings.

By default, Spring Boot applications run on port 8080. So, if you intend to run two versions of QuickPoll,
simply use the command line option -Dserver.port:

mvn spring-boot:run -Dserver.port=8181

 ■ Note Java persistence api, or Jpa, is a standards-based api for accessing, storing, and managing data
between Java objects and relational database. like JDBC, Jpa is a purely a specification and many commercial
and open source products such as hibernate and toplink provide Jpa implementations. a formal overview of
Jpa is beyond the scope of this book. please refer to pro Jpa 2 (http://www.apress.com/9781430219569/) to
learn more.

Domain Implementation
The domain objects typically act as a backbone for any application. So, the next step in our implementation
process is to create domain objects. Figure 4-5 shows a UML Class diagram representing the three domain
objects in our QuickPoll application and their relationships.

Inside the quick-poll project, create a com.apress.domain subpackage under the /src/main/java
folder and create Java classes corresponding to the domain objects that we identified. Listing 4-6 gives the
implementation of the Option class. As you can see, the Option class has two fields: id, to hold the identity,
and value, corresponding to the option value. Additionally, you will see that we have annotated this
class with JPA annotations such as @Entity and @Id. This allows instances of the Option class to be easily
persisted and retrieved using JPA technology.

Figure 4-5. QuickPoll domain objects

http://dx.doi.org/10.1007/9781484208243_8
http://dx.doi.org/10.1007/9781484208243_8
http://www.apress.com/9781430219569/

Chapter 4 ■ Beginning QuiCkpoll appliCation

58

Listing 4-6. Option class

package com.apress.domain;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;

@Entity
public class Option {

 @Id
 @GeneratedValue
 @Column(name="OPTION_ID")
 private Long id;

 @Column(name="OPTION_VALUE")
 private String value;

 // Getters and Setters omitted for brevity
}

Next, we create a Poll class, as shown in Listing 4-7, along with corresponding JPA annotations. The
Poll class has a question field to store the poll question. The @OneToMany annotation, as the name suggests,
indicates that a Poll instance can contain zero or more Option instances. The CascadeType.All indicates
that any database operations such as persist, remove, or merge on a Poll instance needs to be propagated
to all related Option instances. For example, when a Poll instance gets deleted, all of the related Option
instances will be deleted from the database.

Listing 4-7. Poll class

package com.apress.domain;

import java.util.Set;
import javax.persistence.CascadeType;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.OneToMany;
import javax.persistence.OrderBy ;

@Entity
public class Poll {

 @Id
 @GeneratedValue
 @Column(name="POLL_ID")
 private Long id;

Chapter 4 ■ Beginning QuiCkpoll appliCation

59

 @Column(name="QUESTION")
 private String question;

 @OneToMany(cascade=CascadeType.ALL)
 @JoinColumn(name="POLL_ID")
 @OrderBy
 private Set<Option> options;

 // Getters and Setters omitted for brevity
}

Finally, we create the Vote class, as shown in Listing 4-8. The @ManyToOne annotation indicates that an
Option instance can have zero or more Vote instances associated with it.

Listing 4-8. Poll class

package com.apress.domain;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.ManyToOne;

@Entity
public class Vote {

 @Id
 @GeneratedValue
 @Column(name="VOTE_ID")
 private Long id;

 @ManyToOne
 @JoinColumn(name="OPTION_ID")
 private Option option;

 // Getters and Setters omitted for brevity
}

Repository Implementation
Repositories, or Data Access Objects (DAO), provide an abstraction for interacting with datastores.
Repositories traditionally include an interface that provides a set of finder methods such as findById,
findAll for retrieving data, and methods to persist and delete data. Repositories also include a class that
implements this interface using datastore-specific technologies. For example, a repository dealing with a
database uses technology such as JDBC or JPA, and a repository dealing with LDAP would use JNDI. It is also
customary to have one Repository per domain object.

Chapter 4 ■ Beginning QuiCkpoll appliCation

60

Although this has been a popular approach, there is a lot of boilerplate code that gets duplicated in each
repository implementation. Developers attempt to abstract common functionality into a generic interface
and generic implementation (http://www.ibm.com/developerworks/library/j-genericdao/). However,
they are still required to create a pair of repository interfaces and classes for each domain object. Often these
interfaces and classes are empty and just result in more maintenance.

The Spring Data project aims at addressing this problem by completely eliminating the need to write
any repository implementations. With Spring Data, all you need is a repository interface to automatically
generate its implementation at runtime. The only requirement is that application repository interfaces
should extend one of the many available Spring Data marker interfaces. Because we will be persisting
our QuickPoll domain objects into a relational database using JPA, we will be using Spring Data JPA
subproject’s org.springframework.data.repository.CrudRepository marker interface. As you can see
from Listing 4-9, the CrudRepository interface takes the type of domain object that it manipulates and the
type of domain object’s identifier field as its generic parameters T and ID.

Listing 4-9. CrudRepository API

public interface CrudRepository<T, ID extends Serializable> extends Repository<T, ID> {

 // Create and Update Methods
 <S extends T> S save(S entity);
 <S extends T> Iterable<S> save(Iterable<S> entities);

 // Finder Methods
 T findOne(ID id);
 Iterable<T> findAll();
 Iterable<T> findAll(Iterable<ID> ids);

 // Delete Methods
 void delete(ID id);
 void delete(T entity);
 void delete(Iterable<? extends T> entities);
 void deleteAll();

 // Utility Methods
 long count();
 boolean exists(ID id);
}

We begin our repository implementation by creating a com.apress.repository package under the
src\main\java folder. Then, we create an OptionRepository interface as shown in Listing 4-10. As discussed
earlier, the OptionRepository extends Spring Data’s CrudRepository and thereby inherits all of its CRUD
methods. Because the OptionRepository works with the Option domain object, it passes Option and Long as
generic parameter values.

Listing 4-10. OptionRepository interface

package com.apress.repository;

import org.springframework.data.repository.CrudRepository;
import com.apress.domain.Option;

public interface OptionRepository extends CrudRepository<Option, Long> {

}

http://www.ibm.com/developerworks/library/j-genericdao/

Chapter 4 ■ Beginning QuiCkpoll appliCation

61

Taking the same approach, we then create PollRepository and VoteRepository interfaces, as shown in
Listings 4-11 and 4-12.

Listing 4-11. PollRepository interface

public interface PollRepository extends CrudRepository<Poll, Long> {

}

Listing 4-12. OptionRepository interface

public interface VoteRepository extends CrudRepository<Vote, Long> {

}

Embedded Database
In the previous section, we created repositories, but we need a relational database for persisting data.
The relational database market is full of options ranging from commercial databases such as Oracle, SQL
Server to open source databases such as MySQL, and PostgreSQL. To speed up our QuickPoll application
development, we will be using HSQLDB, a popular in-memory database. In-memory, aka embedded,
databases don’t require any additional installations and can simply run as a JVM process. Their quick
startup and shutdown capabilities make them ideal candidates for prototyping and integration testing. At
the same time, they don’t usually provide a persistent storage and the application needs to seed the database
every time it bootstraps.

Spring Boot provides excellent support for HSQLDB-, H2-, and Derby-embedded databases. The only
requirement is to include a build dependency in the pom.xml file. Spring Boot takes care of starting the
database during deployment and stopping it during application shutdown. There is no need to provide any
database connection URLs or username and password. Listing 4-13 shows the dependency information that
needs to be added to QuickPoll’s pom.xml file.

Listing 4-13. HSQLDB POM.XML dependency

<dependency>
 <groupId>org.hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <scope>runtime</scope>
</dependency>

API Implementation
In this section, we will create Spring MVC controllers and implement our REST API endpoints. We begin by
creating the com.apress.controller package under src\main\java to house all of the controllers.

PollController Implementation
The PollController provides all of the necessary endpoints to access and manipulate the Poll and Polls
resources. Listing 4-14 shows a barebones PollController class.

Chapter 4 ■ Beginning QuiCkpoll appliCation

62

Listing 4-14. PollController class

package com.apress.controller;

import javax.inject.Inject;
import org.springframework.web.bind.annotation.RestController;
import com.apress.repository.PollRepository;

@RestController
public class PollController {

 @Inject
 private PollRepository pollRepository;

}

The PollController class is annotated with an @RestController annotation. The @RestController is
a convenient yet meaningful annotation and has the same effect as adding both @Controller and
@ResponseBody annotations. Because we need to read and store Poll instances, we use the @Inject
annotation to inject an instance of PollRepository into our controller. The javax.inject.Inject
annotation introduced as part of Java EE 6 provides a standard mechanism for declaring dependencies. We
use this annotation in favor of Spring’s proprietary @Autowired annotation to be more compliant. In order to
use the @Inject annotation, we need to add the dependency shown in Listing 4-15 to the pom.xml file.

Listing 4-15. Inject dependency in POM file

<dependency>
 <groupId>javax.inject</groupId>
 <artifactId>javax.inject</artifactId>
 <version>1</version>
</dependency>

A GET request on the /polls endpoint provides a collection of all of the polls available in the QuickPolls
application. Listing 4-16 shows the necessary code for implementing this functionality. The @RequestMapping
annotation declares the URI and the allowed HTTP method. The getAllPolls method used ResponseEntity
as its return type, indicating that the return value is the complete HTTP response. ResponseEntity gives
you full control over the HTTP response, including the response body and response headers. The method
implementation begins with reading all of the polls using the PollRepository. We then create an instance of
ResponseEntity and pass in Poll data and the HttpStatus.OK status value. The Poll data becomes part of
the response body and OK (code 200) becomes the response status code.

Listing 4-16. GET verb implementation for /polls

@RequestMapping(value="/polls", method=RequestMethod.GET)
public ResponseEntity<Iterable<Poll>> getAllPolls() {
 Iterable<Poll> allPolls = pollRepository.findAll();
 return new ResponseEntity<>(pollRepository.findAll(), HttpStatus.OK);
}

Let’s quickly test our implementation by running the QuickPoll application. In a command line,
navigate to the quick-poll project directory and run the following command:

mvn spring-boot:run

Chapter 4 ■ Beginning QuiCkpoll appliCation

63

Launch the Postman app in your Chrome browser and enter the URL http://localhost:8080/polls,
as shown in Figure 4-6, and hit Send. Because we don’t have any polls created yet, this command would
result in an empty collection.

Figure 4-6. Get All Polls request

 ■ Note the downloaded source code contains an exported postman collection with requests that can be used
to run tests in this chapter. Simply import this collection into your postman application and start using it.

The next stop for us is to implement capability to add new polls to the PollController. We accomplish
this by implementing the POST verb functionality, as shown in Listing 4-17. The createPoll method takes a
parameter of the type Poll. The @RequestBody annotation tells Spring that the entire request body needs to be
converted to an instance of Poll. Spring uses the incoming Content-Type header to identify a proper message
converter and delegates the actual conversion to it. Spring Boot comes with message converters that support
JSON and XML resource representations. Inside the method, we simply delegate the Poll persistence to
PollRepository’s save method. We then create a new ResponseEntity with status CREATED (201) and return it.

Listing 4-17. Implementation to create new poll

@RequestMapping(value="/polls", method=RequestMethod.POST)
public ResponseEntity<?> createPoll(@RequestBody Poll poll) {

 poll = pollRepository.save(poll);
 return new ResponseEntity<>(null, HttpStatus.CREATED);
}

Although this implementation fulfills the request, the client has no way of knowing the URI of the newly
created Poll. For example, if the client wants to share the newly created Poll to a social networking site, the
current implementation will not suffice. A best practice is to convey the URI to the newly created resource
using the Location HTTP header. Building the URI would require us to inspect the HttpServletRequest
object to obtain information such as Root URI and context. Spring makes the URI generation process easy
via its ServletUriComponentsBuilder utility class:

URI newPollUri = ServletUriComponentsBuilder
 .fromCurrentRequest()
 .path("/{id}")
 .buildAndExpand(poll.getId())
 .toUri();

Chapter 4 ■ Beginning QuiCkpoll appliCation

64

The fromCurrentRequest method prepares the builder by copying information such as host,
schema, port, and so on from the HttpServletRequest. The path method appends the passed-in path
parameter to the existing path in the builder. In the case of the createPoll method, this would result in
http://localhost:8080/polls/{id}. The buildAndExpand method would build an UriComponents instance
and replaces any path variables ({id} in our case) with passed-in value. Finally, we invoke the toUri method
on the UriComponents class to generate the final URI. The complete implementation of the createPoll
method is shown in Listing 4-18.

Listing 4-18. Complete implementation of Create Poll

@RequestMapping(value="/polls", method=RequestMethod.POST)
public ResponseEntity<?> createPoll(@RequestBody Poll poll) {

 poll = pollRepository.save(poll);

 // Set the location header for the newly created resource
 HttpHeaders responseHeaders = new HttpHeaders();
 URI newPollUri = ServletUriComponentsBuilder
 .fromCurrentRequest()
 .path("/{id}")
 .buildAndExpand(poll.getId())
 .toUri();
 responseHeaders.setLocation(newPollUri);

 return new ResponseEntity<>(null, responseHeaders, HttpStatus.CREATED);
}

To test our newly added functionality, start the QuickPoll application. If you have the application
already running, you need to terminate the process and restart it. Enter the information in Postman as
shown in Figure 4-7 and hit Send. Make sure that you have added the Content-Type header with value
application/json. The JSON used in the body is shown here:

{
 "question": "Who will win SuperBowl this year?",
 "options": [
 {"value": "New England Patriots"},
 {"value": "Seattle Seahawks"},
 {"value": "Green Bay Packers"},
 {"value": "Denver Broncos"}]
}

Chapter 4 ■ Beginning QuiCkpoll appliCation

65

On completion of the request, you will see a Status 201 Created message and headers:

Content-Length ® 0
Date ® Mon, 23 Feb 2015 00:05:11 GMT
Location ® http://localhost:8080/polls/1
Server ® Apache-Coyote/1.1

Now let’s turn our attention to accessing an individual poll. Listing 4-19 gives the necessary code. The
value attribute in the RequestMapping takes a URI template /polls/{pollId}. The placeholder {pollId}
along with the @PathVarible annotation allows Spring to examine the request URI path and extract the
pollId parameter value. Inside the method, we use the PollRepository’s findOne finder method to read the
poll and pass it as part of a ResponseEntity.

Listing 4-19. Retreiving an individual poll

@RequestMapping(value="/polls/{pollId}", method=RequestMethod.GET)
public ResponseEntity<?> getPoll(@PathVariable Long pollId) {
 Poll p = pollRepository.findOne(pollId);
 return new ResponseEntity<> (p, HttpStatus.OK);
}

Figure 4-7. Create Poll Postman example

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Beginning QuiCkpoll appliCation

66

In the same fashion, we implement the functionality to update and delete a Poll, as shown in
Listing 4-20.

Listing 4-20. Update and delete a poll

@RequestMapping(value="/polls/{pollId}", method=RequestMethod.PUT)
public ResponseEntity<?> updatePoll(@RequestBody Poll poll, @PathVariable Long pollId) {
 // Save the entity
 Poll p = pollRepository.save(poll);
 return new ResponseEntity<>(HttpStatus.OK);
}

@RequestMapping(value="/polls/{pollId}", method=RequestMethod.DELETE)
public ResponseEntity<?> deletePoll(@PathVariable Long pollId) {
 pollRepository.delete(pollId);
 return new ResponseEntity<>(HttpStatus.OK);
}

Once you have this code added to the PollController, restart the QuickPoll application and execute
the Postman request as shown in Figure 4-7 to create a new poll. Then input the information in Figure 4-8
to create a new Postman request and update the poll. Notice that the PUT request contains the entire Poll
representation along with IDs.

Figure 4-8. Update poll

This concludes the implementation of the PostController.

Chapter 4 ■ Beginning QuiCkpoll appliCation

67

VoteController Implementation
Following the principles used to create PollController, we implement the VoteController class. Listing 4-21
gives the code for the VoteController class along with the functionality to create a vote. The VoteController
uses an injected instance of VoteRepository to perform CRUD operations on Vote instances.

Listing 4-21. VoteController implementation

@RestController
public class VoteController {
 @Inject
 private VoteRepository voteRepository;

 @RequestMapping(value="/polls/{pollId}/votes", method=RequestMethod.POST)
 public ResponseEntity<?> createVote(@PathVariable Long pollId, @RequestBody Vote

vote) {
 vote = voteRepository.save(vote);

 // Set the headers for the newly created resource
 HttpHeaders responseHeaders = new HttpHeaders();
 responseHeaders.setLocation(ServletUriComponentsBuilder.

fromCurrentRequest().path("/{id}").buildAndExpand(vote.getId()).toUri());

 return new ResponseEntity<>(null, responseHeaders, HttpStatus.CREATED);
 }
}

To test the voting capabilities, POST a new Vote to the /polls/1/votes endpoint with an option in the
request body, as shown in Figure 4-9. On successful request execution, you will see a Location response
header with value http://localhost:8080/polls/1/votes/1.

Chapter 4 ■ Beginning QuiCkpoll appliCation

68

Next, we look at implementing the capability to retrieve all votes for a given poll. The findAll method
in the VoteRepository returns all votes in the database. Because this would not meet our needs, we need to
add this functionality to the VoteRepository as shown in Listing 4-22.

Listing 4-22. Modified VoteRepository Implementation

import org.springframework.data.jpa.repository.Query;

public interface VoteRepository extends CrudRepository<Vote, Long> {

 @Query(value="select v.* from Option o, Vote v where o.POLL_ID = ?1 and

v.OPTION_ID = o.OPTION_ID", nativeQuery = true)
 public Iterable<Vote> findByPoll(Long pollId);
}

Figure 4-9. Cast a new vote

Chapter 4 ■ Beginning QuiCkpoll appliCation

69

The custom finder method findVotesByPoll takes the ID of the Poll as its parameter. The @Query
annotation on this method takes a native SQL query along with the nativeQuery flag set to true. At runtime,
Spring Data JPA replaces the ?1 placeholder with the passed-in pollId parameter value. Next, we implement
the /polls/{pollId}/votes endpoint in the VoteController, as shown in Listing 4-23.

Listing 4-23. GET All Votes Implementation

@RequestMapping(value="/polls/{pollId}/votes", method=RequestMethod.GET)
public Iterable<Vote> getAllVotes(@PathVariable Long pollId) {
 return voteRepository. findByPoll(pollId);
}

ComputeResultController Implementation
The final piece remaining for us is the implementation of the ComputeResult resource. Because we don’t
have any domain objects that can directly help generate this resource representation, we implement two
Data Transfer Objects or DTOs—OptionCount and VoteResult. The OptionCount DTO contains the ID of the
option and a count of votes casted for that option. The VoteResult DTO contains the total votes cast and a
collection of OptionCount instances. These two DTOs are created under the com.apress.dto package, and
their implementation is given in Listing 4-24.

Listing 4-24. DTOs for ComputeResult resources

package com.apress.dto;
public class OptionCount {
 private Long optionId;
 private int count;
 // Getters and Setters omitted for brevity
}

package com.apress.dto;
import java.util.Collection;

public class VoteResult {
 private int totalVotes;
 private Collection<OptionCount> results;
 // Getters and Setters omitted for brevity
}

Following the principles used in creating the PollController and VoteController, we create a new
ComputeResultController class, as shown in Listing 4-25. We inject an instance of VoteRepository into the
controller, which is used to retrieve votes for a given poll. The computeResult method takes pollId as its
parameter. The @RequestParam annotation instructs Spring to retrieve the pollId value from a HTTP query
parameter. The computed results are sent to the client using a newly created instance of ResponseEntity.

Chapter 4 ■ Beginning QuiCkpoll appliCation

70

Listing 4-25. ComputeResultController implementation

package com.apress.controller;

@RestController
public class ComputeResultController {

 @Inject
 private VoteRepository voteRepository;

 @RequestMapping(value="/computeresult", method=RequestMethod.GET)
 public ResponseEntity<?> computeResult(@RequestParam Long pollId) {
 VoteResult voteResult = new VoteResult();
 Iterable<Vote> allVotes = voteRepository.findByPoll(pollId);
 // Algorithm to count votes

 return new ResponseEntity<VoteResult>(voteResult, HttpStatus.OK);
 }
}

There are several ways to count votes associated with each option. This code provides one such option:

int totalVotes = 0;
Map<Long, OptionCount> tempMap = new HashMap<Long, OptionCount>();
for(Vote v : allVotes) {
 totalVotes ++;
 // Get the OptionCount corresponding to this Option
 OptionCount optionCount = tempMap.get(v.getOption().getId());
 if(optionCount == null) {
 optionCount = new OptionCount();
 optionCount.setOptionId(v.getOption().getId());
 tempMap.put(v.getOption().getId(), optionCount);
 }
 optionCount.setCount(optionCount.getCount()+1);
}
voteResult.setTotalVotes(totalVotes);
voteResult.setResults(tempMap.values());

This concludes the ComputeResult controller implementation. Start/restart the QuickPoll application.
Using the earlier Postman requests, create a poll and cast votes on its options. Then create a new Postman
request as shown in Figure 4-10 and submit it to test our /computeresult endpoint.

Chapter 4 ■ Beginning QuiCkpoll appliCation

71

On successful completion, you will see an output similar to this:

{
 "totalVotes": 7,
 "results": [
 {
 "optionId": 1,
 "count": 4
 },
 {
 "optionId": 2,
 "count": 3
 }
]
}

Summary
In this chapter, we looked at creating RESTful services for the QuickPoll application. Most of our examples in
this chapter assumed a “happy path” in which everything goes as planned. However, this rarely happens in
the real world. In the next chapter we will look at handling errors, validating input data, and communicating
meaningful error messages.

Figure 4-10. ComputeResult Endpoint test

73

Chapter 5

Error Handling

In this chapter we will discuss:

•	 Handling errors in a REST API

•	 Designing meaningful error responses

•	 Validating API inputs

•	 Externalizing error messages

Error handling is one of the most important yet somewhat overlooked topics for programmers.
Although we develop software with good intent, things do go wrong and we must be prepared to handle
and communicate those errors gracefully. The communication aspect is especially important to developers
consuming a REST API. Well-designed error responses allow consuming developers to understand the
issues and help them to use the API correctly. Additionally, good error handling allows API developers to log
information that can aid in debugging issues on their end.

QuickPoll Error Handling
In our QuickPoll application, consider the scenario in which a user tries to retrieve a poll that doesn’t exist.
Figure 5-1 shows the Postman request for a nonexistent poll with id 100.

Figure 5-1. Requesting a nonexistent poll

On receiving the request, the PollController in our QuickPoll application uses PollRepository to
retrieve the poll. Because a poll with id 100 doesn’t exist, PollRepository’s findOne method returns a null
and the PollController sends an empty body to the client, as shown in Figure 5-2.

Chapter 5 ■ error handling

74

 ■ Note in this chapter, we will continue working on the Quickpoll application that we built in the previous
chapter. the code is also available under the Chapter5\starter folder of the downloaded source code. the
completed solution is available under the Chapter5\final folder. as we have omitted getter/setter methods
and imports in some of the listings in this chapter, please refer to the code under the final folder for complete
listings. the Chapter5 folder also contains an exported postman collection containing reSt api requests
associated with this chapter.

This current implementation is deceptive, as the client receives a status code 200. Instead, a status
code 404 should be returned, indicating that the requested resource doesn’t exist. To achieve this correct
behavior, we will validate the poll id in the com.apress.controller.PollController’s getPoll method and,
for nonexistent polls, throw a com.apress.exception.ResourceNotFoundException exception.
Listing 5-1 shows the modified getPoll implementation.

Listing 5-1. getPoll implementation

@RequestMapping(value="/polls/{pollId}", method=RequestMethod.GET)
public ResponseEntity<?> getPoll(@PathVariable Long pollId) {
 Poll p = pollRepository.findOne(pollId);
 if(p == null) {
 throw new ResourceNotFoundException("Poll with id " + pollId + " not found");
 }
 return new ResponseEntity<> (p, HttpStatus.OK);
}

The ResourceNotFoundException is a custom exception and its implementation is shown in
Listing 5-2. Notice that an @ResponseStatus annotation is declared at the class level. The annotation
instructs Spring MVC that an HttpStatus NOT_FOUND (404 code) should be used in the response when a
ResourceNotFoundException is thrown.

Figure 5-2. Response to a nonexistent poll

http://dx.doi.org/10.1007/9781484208243_5
http://dx.doi.org/10.1007/9781484208243_5
http://dx.doi.org/10.1007/9781484208243_5

Chapter 5 ■ error handling

75

Listing 5-2. ResourceNotFoundException implementation

package com.apress.exception;

import org.springframework.http.HttpStatus;
import org.springframework.web.bind.annotation.ResponseStatus;

@ResponseStatus(HttpStatus.NOT_FOUND)
public class ResourceNotFoundException extends RuntimeException {

 private static final long serialVersionUID = 1L;

 public ResourceNotFoundException() {}

 public ResourceNotFoundException(String message) {
 super(message);
 }

 public ResourceNotFoundException(String message, Throwable cause) {
 super(message, cause);
 }
}

With these modifications in place, start the QuickPoll application and run the Postman request for poll
with ID 100. The PollController returns the right status code as shown in Figure 5-3.

Figure 5-3. New response for a nonexistent poll

Chapter 5 ■ error handling

76

In addition to GET, other HTTP methods such as PUT, DELETE, and PATCH act on existing Poll
resources. Hence, we need to perform the same poll ID validation in the corresponding methods so that we
return the right status code to the client. Listing 5-3 shows the poll id verification logic encapsulated into
a PollController’s verifyPoll method along with the modified getPoll, updatePoll, and deletePoll
methods.

Listing 5-3. Updated PollController

protected void verifyPoll(Long pollId) throws ResourceNotFoundException {
 Poll poll = pollRepository.findOne(pollId);
 if(poll == null) {
 throw new ResourceNotFoundException("Poll with id " + pollId + " not found");
 }
}

@RequestMapping(value="/polls/{pollId}", method=RequestMethod.GET)
public ResponseEntity<?> getPoll(@PathVariable Long pollId) {
 verifyPoll(pollId);
 Poll p = pollRepository.findOne(pollId);
 return new ResponseEntity<> (p, HttpStatus.OK);
}

@RequestMapping(value="/polls/{pollId}", method=RequestMethod.PUT)
public ResponseEntity<?> updatePoll(@RequestBody Poll poll, @PathVariable Long pollId) {
 verifyPoll(pollId);
 pollRepository.save(poll);
 return new ResponseEntity<>(HttpStatus.OK);
}

@RequestMapping(value="/polls/{pollId}", method=RequestMethod.DELETE)
public ResponseEntity<?> deletePoll(@PathVariable Long pollId) {
 verifyPoll(pollId);
 pollRepository.delete(pollId);
 return new ResponseEntity<>(HttpStatus.OK);
}

Error Responses
HTTP status codes play an important role in REST APIs. API developers should strive to return the right
codes indicating the request status. Additionally, it is good practice to provide helpful, fine-grained details
regarding the error in the response body. These details will enable API consumers to troubleshoot issues
easily and help them to recover. As you can see in Figure 5-3, Spring Boot follows this practice and includes
the following details in error response bodies:

•	 timestamp—The time in milliseconds when the error happened

•	 status—HTTP status code associated with the error; this is partly redundant as it is
same as the response status code

•	 error—The description associated with the status code

Chapter 5 ■ error handling

77

•	 exception—The fully qualified path to the exception class resulting in this error

•	 message—The message providing more details about the error

•	 path—The URI that resulted in the exception

These details are generated by the Spring Boot framework. This feature is not available out of the box
in non–Boot Spring MVC applications. In this section, we will implement a similar error response for a
QuickPoll application using generic Spring MVC components so that it works in both Boot and non-Boot
environments. Before we dive into this implementation, let’s look at the error response details of two popular
applications: GitHub and Twilio. Figure 5-4 shows GitHub’s error response details for a request containing
invalid inputs. The message attribute gives a plain description of the error and the errors attribute lists the
fields with invalid inputs. In this example, the client’s request is missing the Issue resource’s title field.

Twilio provides an API that allows developers programmatically make phone calls, send texts, and
receive texts. Figure 5-5 shows the error response for a POST call that is missing a “To” phone number.
The status and message fields are similar to fields in Spring Boot’s response. The code field contains a
numeric code that can be used to find more information about the exception. The more_info field contains
the URL for error code documentation. On receiving this error, a Twilio API consumer can navigate to
https://www.twilio.com/docs/errors/21201 and get more information to troubleshoot the error.

Figure 5-4. GitHub error response

Figure 5-5. Twilio error response

https://www.twilio.com/docs/errors/21201

Chapter 5 ■ error handling

78

It is clear that there is not a standard response format for errors. It is up to the API and framework
implementers to decide on the details to be sent to the client. However, attempts to standardize the
response format have begun and an IETF specification known as Problem Details for HTTP APIs
(http://tools.ietf.org/html/draft-nottingham-http-problem-06) is gaining traction. Inspired by
the “Problem Details for HTTP APIs” specification, Listing 5-4 shows the error response format that we will
be implementing in our QuickPoll application.

Listing 5-4. QuickPoll Error Response Format

{
 "title" : "",
 "status" : "",
 "detail" : ",
 "timestamp" : "",
 "developerMessage: "",
 "errors": {}
}

Here is a brief description of the fields in the QuickPoll error response:

•	 title—The title field provides a brief title for the error condition. For example,
errors resulting as a result of input validation will have the title “Validation Failure”.
Similarly, an “Internal Server Error” will be used for internal server errors.

•	 status—The status field contains the HTTP status code for the current request.
Even though it is redundant to include status code in the response body, it allows API
clients to look for all the information that it needs to troubleshoot in one place.

•	 detail—The detail field contains a short description of the error. The information
in this field is typically human-readable and can be presented to an end user.

•	 timestamp—The time in milliseconds when the error occurred.

•	 developerMessage—The developerMessage contains information such as exception
class name or stack trace that is relevant to developers.

•	 errors—The errors field is used to report field validation errors.

Now that we have our error response defined, we are ready to modify QuickPoll application. We
begin by creating a Java representation of the response details, as shown in Listing 5-5. As you can see, the
ErrorDetail class is missing the errors field. We will be adding that functionality in the upcoming section.

Listing 5-5. Error response details representation

package com.apress.dto.error;

public class ErrorDetail {

 private String title;
 private int status;
 private String detail;
 private long timeStamp;
 private String developerMessage;

 // Getters and Setters ommited for brevity
}

http://tools.ietf.org/html/draft-nottingham-http-problem-06

Chapter 5 ■ error handling

79

Error handling is a crosscutting concern. We need an application-wide strategy that handles all of the
errors in the same way and writes the associated details to the response body. As we discussed in Chapter 2,
classes annotated with @ControllerAdvice can be used to implement such crosscutting concerns. Listing 5-6
shows the RestExceptionHandler class with an aptly named handleResourceNotFoundException method.
Thanks to the @ExceptionHandler annotation, any time a ResourceNotFoundException is thrown by a
controller, Spring MVC would invoke the RestExceptionHandler’s handleResourceNotFoundException
method. Inside this method, we create an instance of ErrorDetail and populate it with error information.

Listing 5-6. RestExceptionHandler implementation

package com.apress.handler;

import java.util.Date;
import javax.servlet.http.HttpServletRequest;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.ControllerAdvice;
import org.springframework.web.bind.annotation.ExceptionHandler;
import com.apress.dto.error.ErrorDetail;
import com.apress.exception.ResourceNotFoundException;

@ControllerAdvice
public class RestExceptionHandler {

 @ExceptionHandler(ResourceNotFoundException.class)
 public ResponseEntity<?> handleResourceNotFoundException(ResourceNotFoundException

rnfe, HttpServletRequest request) {

 ErrorDetail errorDetail = new ErrorDetail();
 errorDetail.setTimeStamp(new Date().getTime());
 errorDetail.setStatus(HttpStatus.NOT_FOUND.value());
 errorDetail.setTitle("Resource Not Found");
 errorDetail.setDetail(rnfe.getMessage());
 errorDetail.setDeveloperMessage(rnfe.getClass().getName());

 return new ResponseEntity<>(errorDetail, null, HttpStatus.NOT_FOUND);
 }

}

To verify that our newly created handler works as expected, restart the QuickPoll application and
submit a Postman request to a nonexistent poll with id 100. You should see an error response as shown in
Figure 5-6.

http://dx.doi.org/10.1007/9781484208243_2

Chapter 5 ■ error handling

80

Input Field Validation
As a famous proverb goes, “Garbage in Garbage Out”; input field validation should be another area of
emphasis in every application. Consider the scenario in which a client requests a new poll to be created but
doesn’t include the poll question in the request. Figure 5-7 shows a Postman request with a missing question
and the corresponding response. Make sure that you set the Content-Type header to “application/json”
before firing the Postman request. From the response, you can see that the poll still gets created. Creating a
poll with a missing question can result in data inconsistencies and other bugs.

Figure 5-7. Creating a poll with a missing question

Figure 5-6. ResourceNotFoundException error response

Chapter 5 ■ error handling

81

Spring MVC provides two options for validating user input. In the first option, we create a validator
that implements the org.springframework.validation.Validator interface. Then we inject this validator
into a controller and invoke validator’s validate method manually to perform validation. The second option
is to use the JSR 303 validation, an API intended to simplify field validation in any layer of the application.
Considering the simplicity and the declarative nature of the framework, we will be using JSR 303 validation
framework in this book.

The JSR 303 and JSR 349 define specifications for the Bean Validation API (version 1.0 and 1.1, respectively).
They provide a metadata model for JavaBean validation via a set of standardized validation constraints. Using
this API, you annotate domain object properties with validation constraints such as @NotNull and @Email.
Implementing frameworks enforce these constraints at runtime. In this book, we will be using Hibernate
Validator, a popular JSR 303/349 implementation framework. Table 5-1 shows some of the out-of-the-box
validation constraints available with Bean Validation API. Additionally, it is possible to define your own
custom constraints.

Table 5-1. Bean Validation API constraints

Constraint Description

NotNull Annotated field must not have null value

Null Annotated field must be null

Max Annotated field value must be an integer value lower than or equal to the number specified
in the annotation

Min Annotated field value must be an integer value greater than or equal to the number
specified in the annotation

Past Annotated field must be a date in the past

Future Annotated field must be a date in the future

Size Annotated field must match the min and max boundaries specified in the annotation.
For a field that is a Collection, the size of the Collection is matched against boundaries.
For a String field, the length of the string is verified against boundaries

Pattern Annotated field must match the regular expression specified in the annotation

To add validation capabilities to QuickPoll, we start by annotating the Poll class as shown in
Listing 5-7. Because we want to make sure that each Poll has a question, we annotated the question field
with an @NonEmpty annotation. The org.hibernate.validator.constraints.NonEmpty annotation is not
part of JSR 303/349 API. Instead, it is part of Hibernate Validator; it ensures that the input string is not null
and its length is greater than zero. Also, to make the experience of taking a poll simpler, we will restrict each
poll to contain no fewer than two and no more than six options.

Listing 5-7. Poll class annotated with JSR 303 annotations

@Entity
public class Poll {

 @Id
 @GeneratedValue
 @Column(name="POLL_ID")
 private Long id;

Chapter 5 ■ error handling

82

 @Column(name="QUESTION")
 @NotEmpty
 private String question;

 @OneToMany(cascade=CascadeType.ALL)
 @JoinColumn(name="POLL_ID")
 @OrderBy
 @Size(min=2, max = 6)
 private Set<Option> options;

 // Getters and Setters removed for brevity
}

We now move our attention to the com.apress.controller.PollController and add an @Valid
annotation to the createPoll method’s Poll parameter, as shown in Listing 5-8. The @Valid annotation
instructs Spring to perform data validation after binding the user-submitted data. Spring delegates the actual
validation to a registered Validator. With Spring Boot adding JSR 303/JSR 349 and Hibernate validator jars to
the class path, the JSR 303/JSR 349 is enabled automatically and will be used to perform the validation.

Listing 5-8. PollController annotated with @Valid annotations

@RequestMapping(value="/polls", method=RequestMethod.POST)
public ResponseEntity<?> createPoll(@Valid @RequestBody Poll poll) {
 poll = pollRepository.save(poll);

 // Set the location header for the newly created resource
 HttpHeaders responseHeaders = new HttpHeaders();
 URI newPollUri = ServletUriComponentsBuilder
 .fromCurrentRequest()
 .path("/{id}").buildAndExpand(poll.getId()).toUri();
 responseHeaders.setLocation(newPollUri);

 return new ResponseEntity<>(null, responseHeaders, HttpStatus.CREATED);
}

On repeating the Postman request with a missing question as we did in Figure 5-7, you will see
the operation fail with an error code 400, as shown in Figure 5-8. From the error response, notice that
Spring MVC completed validating the input. On not finding the required question field, it threw a
MethodArgumentNotValidException exception.

Figure 5-8. Missing question resulting in error

Chapter 5 ■ error handling

83

Even though Spring Boot’s error message is helpful, to be consistent with our QuickPoll error response
that we designed in Listing 5-4, we will modify the RestExceptionHandler so that we can intercept a
MethodArgumentNotValidException exception and return an appropriate ErrorDetail instance. While we
were designing the QuickPoll error response, we came up with an errors field that can hold our validation
errors. It is possible for a field to have one or more validation errors associated with it. For example, a missing
question field in our Poll example would result in a “Field may not be null” validation error. In the same way,
an empty email address could result in “Field may not be null” and “Field is not a well formed email” validation
errors. Keeping these validation constraints in mind, Listing 5-9 shows a complete error response with the
validation error examples. The errors object contains an unordered collection of key-value error instances.
The error key represents the name of the resource feed that has validation errors. The error value is an array
representing the validation error details. From Listing 5-9, we can see that field1 contains one validation
error and field2 is associated with two validation errors. Each validation error itself is made up of code that
represents the violated constraint and a message containing a human-readable error representation.

Listing 5-9. Validation error format

{
 "title" : "",
 "status" : "",
 "detail" : ",
 "timestamp" : "",
 "path" : "",
 "developerMessage: "",
 "errors": {

 "field1" : [{
 "code" : "NotNull",
 message" : "Field1 may not be null"
 }],
 "field2" : [{
 "code" : "NotNull",
 "message" : "Field2 may not be null"
 },
 {
 "code" : "Email",
 "message" : "Field2 is not a well formed email"
 }]
 }
}

To represent the newly added validation error feature in the Java code, we created a new com.apress.dto.
error.ValidationError class. Listing 5-10 shows the ValidationError class and updated ErrorDetail class.
In order to generate the error response format shown in in Listing 5-9, the errors field in ErrorDetail class is
defined as a Map that accepts String instances as keys and List of ValidationError instances as values.

Chapter 5 ■ error handling

84

Listing 5-10. ValidationError and updated ErrorDetail classes

package com.apress.dto.error;

public class ValidationError {

 private String code;
 private String message;

 // Getters and Setters removed for brevity
}

public class ErrorDetail {

 private String title;
 private int status;
 private String detail;
 private long timeStamp;
 private String path;
 private String developerMessage;
 private Map<String, List<ValidationError>> errors = new HashMap<String,

List<ValidationError>>();

 // Getters and setters removed for brevity
}

The next step is to modify the RestExceptionHandler by adding a method that intercepts and processes
the MethodArgumentNotValidException exception. Listing 5-11 shows the handleValidationError method
implementation in RestExceptionHandler. We begin the method implementation by creating an instance of
ErrorDetail and populating it. Then we use the passed-in exception parameter to obtain all the field errors
and loop through the list. We created an instance of ValidationError for each field error and populated it
with code and message information.

Listing 5-11. handleValidationError implementation

@ControllerAdvice
public class RestExceptionHandler {

 @ExceptionHandler(MethodArgumentNotValidException.class)
 public ResponseEntity<?> handleValidationError(MethodArgumentNotValidException

manve, HttpServletRequest request) {

 ErrorDetail errorDetail = new ErrorDetail();
 // Populate errorDetail instance
 errorDetail.setTimeStamp(new Date().getTime());
 errorDetail.setStatus(HttpStatus.BAD_REQUEST.value());
 String requestPath = (String) request.getAttribute("javax.servlet.error.

request_uri");
 if(requestPath == null) {
 requestPath = request.getRequestURI();
 }

Chapter 5 ■ error handling

85

 errorDetail.setTitle("Validation Failed");
 errorDetail.setDetail("Input validation failed");
 errorDetail.setDeveloperMessage(manve.getClass().getName());

 // Create ValidationError instances
 List<FieldError> fieldErrors = manve.getBindingResult().getFieldErrors();
 for(FieldError fe : fieldErrors) {
 List<ValidationError> validationErrorList = errorDetail.getErrors().

get(fe.getField());
 if(validationErrorList == null) {
 validationErrorList = new ArrayList<ValidationError>();
 errorDetail.getErrors().put(fe.getField(),

validationErrorList);
 }
 ValidationError validationError = new ValidationError();
 validationError.setCode(fe.getCode());
 validationError.setMessage(fe.getDefaultMessage());
 validationErrorList.add(validationError);
 }

 return new ResponseEntity<>(errorDetail, null, HttpStatus. BAD_REQUEST);
 }

 /** handleResourceNotFoundException method removed **/

}

With this implementation in place, restart the QuickPoll application and submit a Poll with missing
question. This will result in a status code of 400 with our custom error response, as shown in Figure 5-9.

Chapter 5 ■ error handling

86

Externalizing Error Messages
We have made quite a bit of progress with our input validation and provided the client with descriptive error
messages that can help them troubleshoot and recover from those errors. However, the actual validation
error message may not be very descriptive and API developers might want to change it. It would be even
better if they were able to pull this message from an external properties file. The property file approach not
only simplifies Java code but also makes it easy to swap the messages without making code changes. It also
sets the stage for future internationalization/localization needs. To achieve this, create a messages.properties
file under the src\main\resources folder and add the following two messages:

NotEmpty.poll.question=Question is a required field
Size.poll.options=Options must be greater than {2} and less than {1}

Figure 5-9. Validation error reponse

Chapter 5 ■ error handling

87

As you can see, we are following the convention - <<Constraint_Name>>.model_name.field_Name for
each key of the message. The model_name represents name of the Spring MVC’s model object to which user
submitted data is being bound. The name is typically provided using the @ModelAttribute annotation.
In the scenarios in which this annotation is missing, the model name is derived using the parameter’s
nonqualified class name. The PollController’s createPoll method takes a com.apress.domain.Poll
instance as its model object. Hence, in this case, the model name will be derived as poll. If a controller were
to take an instance of com.apress.domain.SomeObject as its parameter, the derived model name will be
someObject. It is important to remember that Spring will not use the name of the method parameter as the
model name.

The next step is to read the properties from the file and use them during the ValidationError instance
creation. We do that by injecting an instance of MessageSource into the RestExceptionHandler class.
Spring’s MessageSource provides an abstraction to easily resolve messages. Listing 5-12 shows the modified
source code for handleValidationError. Notice that we are using MessageResource's getMessage method
to retrieve messages.

Listing 5-12. Reading messages from properties file

@ControllerAdvice
public class RestExceptionHandler {

 @Inject
 private MessageSource messageSource;

 @ExceptionHandler(MethodArgumentNotValidException.class)
 @ResponseStatus(HttpStatus.BAD_REQUEST)
 public @ResponseBody ErrorDetail handleValidationError(MethodArgumentNotValidException

manve, HttpServletRequest request) {

 ErrorDetail errorDetail = new ErrorDetail();
 // Populate errorDetail instance
 errorDetail.setTimeStamp(new Date().getTime());
 errorDetail.setStatus(HttpStatus.BAD_REQUEST.value());
 String requestPath = (String) request.getAttribute("javax.servlet.error.

request_uri");
 if(requestPath == null) {
 requestPath = request.getRequestURI();
 }
 errorDetail.setTitle("Validation Failed");
 errorDetail.setDetail("Input validation failed");
 errorDetail.setDeveloperMessage(manve.getClass().getName());

 // Create ValidationError instances
 List<FieldError> fieldErrors = manve.getBindingResult().getFieldErrors();
 for(FieldError fe : fieldErrors) {

 List<ValidationError> validationErrorList = errorDetail.getErrors().

get(fe.getField());
 if(validationErrorList == null) {
 validationErrorList = new ArrayList<ValidationError>();
 errorDetail.getErrors().put(fe.getField(),

validationErrorList);
 }

Chapter 5 ■ error handling

88

 ValidationError validationError = new ValidationError();
 validationError.setCode(fe.getCode());
 validationError.setMessage(messageSource.getMessage(fe, null));
 validationErrorList.add(validationError);
 }

 return errorDetail;
 }
}

Restarting the QuickPoll application and submitting a poll with a missing question would result in the
new validation error message as shown in Figure 5-10.

Figure 5-10. New validation error message

Chapter 5 ■ error handling

89

Improving RestExceptionHandler
By default, Spring MVC handles error scenarios such as not being able to read a malformed request or not
finding a required request parameter by throwing a set of standard exceptions. However, Spring MVC doesn’t
write these standard exception details to the response body. To keep things consistent for our QuickPoll clients,
it is important that Spring MVC standard exceptions are also handled in the same way and that we return the
same error response format. A straightforward approach is to create a handler method for each exception
in our RestExceptionHandler. A simpler approach is to have RestExceptionHandler class extend Spring’s
ResponseEntityExceptionHandler. The ResponseEntityExceptionHandler class contains a set of protected
methods that handle standard exception and return a ResponseEntity instance containing error details.

Extending the ResponseEntityExceptionHandler class allows us to override the protected
method associated with the exception and return an ErrorDetail instance. Listing 5-13 shows a
modified RestExceptionHandler that overrides handleHttpMessageNotReadable method. The method
implementation follows the same pattern that we used before—create and populate an instance of
ErrorDetail. Because the ResponseEntityExceptionHandler already comes with a handler method for
MethodArgumentNotValidException, we have moved the handleValidationError method code to an
overridden handleMethodArgumentNotValid method.

Listing 5-13. RestExceptionHandler handling malformed messages

@ControllerAdvice
public class RestExceptionHandler extends ResponseEntityExceptionHandler {

 @Override
 protected ResponseEntity<Object> handleHttpMessageNotReadable(
 HttpMessageNotReadableException ex, HttpHeaders headers,
 HttpStatus status, WebRequest request) {

 ErrorDetail errorDetail = new ErrorDetail();
 errorDetail.setTimeStamp(new Date().getTime());
 errorDetail.setStatus(status.value());
 errorDetail.setTitle("Message Not Readable");
 errorDetail.setDetail(ex.getMessage());
 errorDetail.setDeveloperMessage(ex.getClass().getName());

 return handleExceptionInternal(ex, errorDetail, headers, status, request);
 }
 @Override
 public ResponseEntity<Object> handleMethodArgumentNotValid(MethodArgumentNot

ValidException manve, HttpHeaders headers, HttpStatus status, WebRequest request) {

 // implementation removed for brevity

 return handleExceptionInternal(manve, errorDetail, headers, status, request);
 }
}

Let’s quickly verify our implementation by submitting a nonreadable message (such as removing a ’,’
from the JSON request body) using Postman. You should see a response as shown in Figure 5-11.

Chapter 5 ■ error handling

90

Summary
In this chapter, we designed and implemented an error response format for Spring MVC–based REST
applications. We also looked at validating user input and returning error messages that are meaningful
to API consumers. In the next chapter, we will look at strategies for documenting REST services using the
Swagger framework.

Figure 5-11. Not Readable message error

91

Chapter 6

Documenting REST Services

In this chapter we will discuss:

•	 The basics of Swagger

•	 Using Swagger for API documentation

•	 Customizing Swagger

Documentation is an important aspect of any project. This is especially true for enterprise and open
source projects, where many people collaborate to build the project. In this chapter, we will look at Swagger,
a tool that simplifies REST API documentation.

Documenting a REST API for consumers to use and interact with is a difficult task because there are no
real established standards. Organizations have historically relied on manually edited documents to expose
REST contracts to clients. With SOAP-based Web services, a WSDL serves as a contract for the client and
provides a detailed description of the operations and associated request/response payloads. The WADL,
or Web Application Description Language, specification tried to fill this gap in the REST Web services
world, but it didn’t get a lot of adoption. In recent years, there has been a growth in the number of metadata
standards such as Swagger, Apiary, and iODocs for describing REST services. Most of them grew out of the
need to document APIs, thereby expanding an API’s adoption.

Swagger
Swagger (http://swagger.io) is a specification and a framework for creating interactive REST API
documentation. It enables documentation to be in sync with any changes made to REST services. It also
provides a set of tools and SDK generators for generating API client code. Swagger was originally developed
by Wordnik in early 2010 and is currently backed by SmartBear software.

Swagger is a language-agnostic specification with implementations available for a variety of
languages such as Java, Scala, and PHP. A full description of the 1.2 specification can be found at
https://github.com/swagger-api/swagger-spec/blob/master/versions/1.2.md. The specification is
made up of two file types—a resource listing file and a set of API declaration files that describe the REST API
and the available operations.

The resource listing file referred to by the name “api-docs” is the root document for describing the API.
It contains general information about the API such as the API version, title, description, and license. As the
name suggests, the resource listing file also contains all of the API resources available in the application.
Listing 6-1 shows a sample resource listing file for a hypothetical REST API. Notice that Swagger uses JSON as
its description language. From the apis array in Listing 6-1, you can see that the resource listing file has two
API resources declared, namely, products and orders. The URIs /default/products and /default/orders

http://swagger.io/
https://github.com/swagger-api/swagger-spec/blob/master/versions/1.2.md

Chapter 6 ■ DoCumenting reSt ServiCeS

92

allow you to access the resource’s API declaration file. Swagger allows grouping of its resources; by default,
all resources are grouped under the default group and, hence, the “/default” in the URI. The info object
contains the contact and licensing information associated with the API.

Listing 6-1. Sample resource file

{
 "apiVersion": "1.0",
 "swaggerVersion": "1.2"
 "apis": [
 {
 "description": "Endpoint for Product management",
 "path": "/default/products"
 },
 {
 "description": "Endpoint for Order management",
 "path": "/default/orders"
 }
],
 "authorizations": { },
 "info" : {
 "contact": "contact@test.com",
 "description": "Api for an ecommerce application",
 "license": "Apache 2.0",
 "licenseUrl": "http://www.apache.org/licenses/LICENSE-2.0.html",
 "termsOfServiceUrl": "Api terms of service",
 "title": "ECommerce App"
 }
}

An API declaration file describes a resource along with the API operations and request/response
representations. Listing 6-2 shows a sample API declaration file for the products resource and will be served
at the URI /default/products. The basePath field provides the root URI serving the API. The resourcePath
specifies the resource path relative to the basePath. In this case, we are specifying that the product’s REST
API is accessible at http://server:port/products. The apis field contains API objects that describe an API
operation. Listing 6-2 describes one API operation called createProduct and its associated HTTP method,
the media type of the messages consumed/produced and API responses. The models field contains any
model objects associated with the resource. Listing 6-2 shows a product model object associated with a
product resource.

http://www.apache.org/licenses/LICENSE-2.0.html
http://server:port/products

Chapter 6 ■ DoCumenting reSt ServiCeS

93

Listing 6-2. Sample products API declaration file at /default/products

{
 "apiVersion": "1.0",
 "swaggerVersion": "1.2"
 "basePath": "/",
 "resourcePath": "/products",
 "apis": [
 {
 "description": "createProduct",
 "operations": [
 {
 "method": "POST",
 "produces": ["application/json"],
 "consumes": ["application/json"],
 "parameters": [{ "allowMultiple": false}],
 "responseMessages": [
 {
 "code": 200,
 "message": null,
 "responseModel": "object"
 }
]
 }
],
 "path": "/products"
 }
],
 "models": {
 "Product": {
 "description": "",
 "id": "Product",
 "properties": { }
 }
 }
}

 ■ Note in our hypothetical example, Swagger expects the api declaration file for the products resource to
reside at the "/default/products" uri. this should not be confused with the actual reSt api location for
accessing the products resource. in this example, the declaration file indicates that the products resource is
accessible at http://server:port/products uri.

http://server:port/products

Chapter 6 ■ DoCumenting reSt ServiCeS

94

Integrating Swagger
Integrating Swagger involves creating the “api-docs” resource listing file and a set of API declaration files
describing API’s resources. Instead of handcoding these files, there are several Swagger and community-
owned projects that integrate with existing source code and automatically generate these files. Swagger-
springmvc is one such framework that simplifies Swagger integration with Spring MVC based projects.
We begin the Swagger integration with QuickPoll application by adding the swagger-springmvc Maven
dependency shown in Listing 6-3 in the pom.xml file.

 ■ Note We continue our tradition of building on the work we did on the Quickpoll application in previous
chapters. You can also use the starter project available at Chapter6\starter folder of the downloaded source
code. the completed solution is available under the Chapter6\final folder.

Listing 6-3. Swagger-springmvc dependency

<dependency>
 <groupId>com.mangofactory</groupId>
 <artifactId>swagger-springmvc</artifactId>
 <version>1.0.2</version>
</dependency>

The next step is to enable swagger-springmvc. This is done by adding the @EnableSwagger annotation
to the QuickPollApplication class as shown in Listing 6-4.

Listing 6-4. Enable swagger-springmvc

package com.apress;
import com.mangofactory.swagger.plugin.EnableSwagger;

@SpringBootApplication
@EnableSwagger
public class QuickPollApplication {
 public static void main(String[] args) {
 SpringApplication.run(QuickPollApplication.class, args);
 }
}

With this minimal configuration in place, run the QuickPoll application and launch the URI
http://localhost:8080/api-docs. You should see the resource listing file as shown in Figure 6-1. Navigate
to the URI http://localhost:8080/api-docs/default/poll-controller to view the poll resource’s API
declaration.

http://dx.doi.org/10.1007/9781484208243_6
http://dx.doi.org/10.1007/9781484208243_6

Chapter 6 ■ DoCumenting reSt ServiCeS

95

Swagger UI
The resource listing and API declaration files act as a valuable resource for understanding a REST API.
Swagger UI is a subproject of Swagger that takes these files and automatically generates pleasant, intuitive
interface for interacting with API. Using this interface, both technical and nontechnical folks can test REST
services by submitting requests and see how those services respond. The Swagger UI is built using HTML,
CSS, and JavaScript, and doesn’t have any other external dependencies. It can be hosted in any server
environment or can even run from your local machine.

Figure 6-1. QuickPoll resource listing file

Chapter 6 ■ DoCumenting reSt ServiCeS

96

To integrate Swagger UI in our QuickPoll application, we download the stable version of Swagger
UI from the project’s GitHub site at: https://github.com/swagger-api/swagger-ui. In this book we
are using version 2.0.24, available at https://github.com/swagger-api/swagger-ui/tree/v2.0.24.
Clone or download the repo on to your local machine. Move the contents of the dist folder that is in the
cloned/downloaded code to a newly created swagger-ui folder under the quick-poll project’s src\main\
resources\static folder. The QuickPoll project, in the chapter6\final folder, has the fully configured
swagger-ui assets available for you to use without having to download them from GitHub. Out of the
box, Spring Boot will automatically serve any static content residing under the static folder. Hence, no
configuration changes are required on the Spring Boot end. However, by default, the Swagger UI comes with
a hardcoded reference to a Swagger Petstore service. To make the Swagger UI use our QuickPoll service,
open the index.html file and modify the url variable to point to http://localhost:8080/api-docs, as
shown in Listing 6-5.

Listing 6-5. Modified index.html file

 $(function () {
 window.swaggerUi = new SwaggerUi({
 url: "http://localhost:8080/api-docs",
 dom_id: "swagger-ui-container",
 // code removed for brevity
}

With these modifications, we are ready to launch Swagger UI. Run the quick-poll application and
navigate to the URL http://localhost:8080/swagger-ui/index.html. You should see QuickPoll Swagger
UI, as shown in Figure 6-2.

Using the UI, you should be able to perform operations such as creating polls and read all polls.

Figure 6-2. QuickPoll Swagger UI

https://github.com/swagger-api/swagger-ui
https://github.com/swagger-api/swagger-ui/tree/v2.0.24
http://dx.doi.org/10.1007/9781484208243_6

Chapter 6 ■ DoCumenting reSt ServiCeS

97

Customizing Swagger
In the previous sections, you have seen that with minimal configuration we were able to create interactive
documentation using Swagger. Additionally, this documentation would automatically update itself when we
make changes to our services. However, you will notice that out of the box, the title, and the API descriptions
are not very intuitive. Also, the URLs such as “Terms of Service,” “Contact the Developer,” and so on don’t
work. As you explore the UI, the Response classes such as Poll and Vote are not visible in the Swagger UI and
the user has to end up guessing what the return type for the operations are going to be.

Swagger Springmvc provides a convenient builder named SwaggerSpringMvcPlugin for customizing
and configuring Swagger. The SwaggerSpringMvcPlugin provides convenient methods and sensible
defaults, but itself uses the SpringSwaggerConfig class to perform the actual configuration. We begin our
Swagger customization by creating a SwaggerConfig class under the com.apress package in our QuickPoll
application. Populate the newly created class with the contents of Listing 6-6.

Listing 6-6. Custom Swagger implementation

package com.apress;

import javax.inject.Inject;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import com.mangofactory.swagger.configuration.SpringSwaggerConfig;
import com.mangofactory.swagger.models.dto.ApiInfo;
import com.mangofactory.swagger.models.dto.builder.ApiInfoBuilder;
import com.mangofactory.swagger.plugin.EnableSwagger;
import com.mangofactory.swagger.plugin.SwaggerSpringMvcPlugin;

@Configuration
@EnableSwagger
public class SwaggerConfig {

 @Inject
 private SpringSwaggerConfig springSwaggerConfig;

 @Bean
 public SwaggerSpringMvcPlugin configureSwagger() {
 SwaggerSpringMvcPlugin swaggerSpringMvcPlugin = new
SwaggerSpringMvcPlugin(this.springSwaggerConfig);

 ApiInfo apiInfo = new ApiInfoBuilder()
 .title("QuickPoll REST API")
 .description("QuickPoll Api for creating and managing
 polls")
 .termsOfServiceUrl("http://example.com/terms-of-service")
 .contact("info@example.com")
 .license("MIT License")
 .licenseUrl("http://opensource.org/licenses/MIT")
 .build();

 swaggerSpringMvcPlugin.apiInfo(apiInfo)
 .apiVersion("1.0");

 return swaggerSpringMvcPlugin;
 }
}

http://opensource.org/licenses/MIT

Chapter 6 ■ DoCumenting reSt ServiCeS

98

The SwaggerConfig class is annotated with @Configuration indicating that it contains one
or more Spring Bean configurations. We also moved the @EnableSwagger annotation from the
QuickPollApplication class to SwaggerConfig in order to centralize all Swagger-related configuration in
one location. Because the SwaggerSpringMvcPlugin relies on the framework’s SpringSwaggerConfig, we
inject an instance of SpringSwaggerConfig for later use. The SpringSwaggerConfig is a Spring-managed
bean that gets instantiated during Spring’s component scanning in JAR files.

The configureSwagger method contains the meat of our Swagger configuration. The method is
annotated with @Bean, indicating to Spring that the return value is a Spring bean and needs to be registered
within a BeanFactory. The Swagger Springmvc framework picks up this bean and customizes Swagger.
We begin the method implementation by creating an instance of SwaggerSpringMvcPlugin. Then, using
the ApiInfoBuilder, we create an ApiInfo object containing the title, description, contact, and license
information associated with the QuickPoll application. Finally, we pass the created apiInfo and apiVersion
information to the SwaggerSpringMvcPlugin instance and return it.

 ■ Note it is possible to have multiple methods producing SwaggerSpringMvcPlugin beans. each
SwaggerSpringMvcPlugin would result in a separate resource listing. this is useful in situations in which you
have the same Spring mvC application that serves more than one api or multiple versions of the same api.

With the new SwaggerConfig class added, run the QuickPoll application and navigate to
http://localhost:8080/swagger-ui/index.html. You will see the changes reflected in our UI as shown in
Figure 6-3.

From Figure 6-3, you will notice that in addition to the three QuickPoll REST endpoints, there is a Spring
Boot’s “/error” endpoint. Because this endpoint really doesn’t serve any purpose, let’s hide it from our API
documentation. To accomplish this, we will use the SwaggerSpringMvcPlugin class’s handy includePattern
method. The includePattern method allows us to specify which request mappings should be included
in the resource listing. Listing 6-7 shows the updated portion of the SwaggerConfig’s configureSwagger
method. The includePattern method by default takes regular expressions and, in our case, we explicitly
listed all three endpoints we would like to include.

Figure 6-3. Updated QuickPoll Swagger UI

Chapter 6 ■ DoCumenting reSt ServiCeS

99

Listing 6-7. configureSwagger method with includePatterns

swaggerSpringMvcPlugin
 .apiInfo(apiInfo)
 .apiVersion("1.0")
 .includePatterns("/polls/*.*", "/votes/*.*", "/computeresult/*.*");

Rerun the QuickPoll application and you will see the Spring Boot’s error controller no longer appearing
in the documentation.

Configuring Controllers
Swagger Core provides a set of annotations that makes it easy to customize controller documentation. In this
section we will customize the PollController, but the same principles apply to other REST controllers. The
downloaded code in Chapter6\final has the complete customization of all controllers.

We begin by annotating the PollContoller with the @Api annotation as shown in Listing 6-8. The @
Api annotation marks a class as a Swagger resource. Swagger scans classes annotated with @Api to read
metadata required for generating resource listing and API declaration files. Here we are indicating that the
documentation associated with the PollController will be hosted at /polls. Remember that out of the box,
Swagger used the Class name and generated URI poll-controller (http://localhost:8080/swagger-ui/
index.html#!/poll-controller) to host the documentation. With our change, the PollController Swagger
documentation is accessible at http://localhost:8080/swagger-ui/index.html#!/polls. Using the
@Api annotation, we have also provided the description associated with our Poll API.

Listing 6-8. @Api annotation in action

import com.wordnik.swagger.annotations.Api;

@RestController
@Api(value = "polls", description = "Poll API")
public class PollController {
 // Implementation removed for brevity
}

Run the QuickPoll application and, on navigating to Swagger UI at http://localhost:8080/swagger-
ui/index.html, you will notice the updated URI path and description as shown in Figure 6-4.

Now we will move on to the API operation customization using the @ApiOperation annotation. This
annotation allows us to customize the operation information such as name, description, and response.
Listing 6-9 shows the @ApiOperation applied to the createPoll, getPoll, and getAllPolls methods.
We use the value attribute to provide a brief description of the operation. Swagger recommends limiting
this field to 120 characters. The notes field can be used to provide more descriptive information about the
operation.

Figure 6-4. Updated poll endpoint

http://dx.doi.org/10.1007/9781484208243_6

Chapter 6 ■ DoCumenting reSt ServiCeS

100

Listing 6-9. @ApiOperation annotated methods

import com.wordnik.swagger.annotations.ApiOperation;

@RequestMapping(value="/polls", method=RequestMethod.POST)
@ApiOperation(value = "Creates a new Poll", notes="The newly created poll Id will be sent in
the location response header", response = Void.class)
public ResponseEntity<Void> createPoll(@Valid @RequestBody Poll poll) {

}

@RequestMapping(value="/polls/{pollId}", method=RequestMethod.GET)
@ApiOperation(value = "Retrieves a Poll associated with the pollId", response=Poll.class)
public ResponseEntity<?> getPoll(@PathVariable Long pollId) {

}

@RequestMapping(value="/polls", method=RequestMethod.GET)
@ApiOperation(value = "Retrieves all the polls", response=Poll.class,
responseContainer="List")
public ResponseEntity<Iterable<Poll>> getAllPolls() {

}

The createPoll method on successful completion sends an empty body and a status code 201 to the
client. However, because we are returning a ResponseEntity, Swagger is not able to figure out the right
response model. We fix this using ApiOperation’s response attribute and setting it to a Void.class. We also
changed the method return type from ResponseEntity<?> to ResponseEntity<Void> to make our intent
more clear.

The getPoll method returns a poll associated with the passed in pollId parameter. Hence, we set the
ApiOperation’s response attribute to Poll.class. Because the getAllPolls method returns a collection of
Poll instances, we have used the responseContainer attribute and set its value to List.

With these annotations added, rerun and launch QuickPoll application’s Swagger UI to verify that the
descriptions, response model, and notes sections are changed. For example, click the “polls” link next to
“Poll API” to expand the PollController’s operations. Then click the “/polls/{pollId}” link next to GET to see
the response model associated with getPoll method. Figure 6-5 shows this updated response model.

Chapter 6 ■ DoCumenting reSt ServiCeS

101

Figure 6-5. GetPoll method's updated model

The @ApiOperation we used earlier allows us to specify an operation’s default return type. As we have
seen throughout the book, a well-defined API uses additional status codes and Swagger provides the
@ApiResponse annotation to configure the codes and associated response body. Listing 6-10 shows the
createPoll method annotated with @ApiResponse for status code 201 and 500. Swagger requires us to place
all the @ApiResponse annotations inside a wrapper @ApiResponse annotation. With the status code 201, we
have added notes indicating how to retrieve the newly created poll ID. With the status code 500, we have
indicated that the response body will contain an ErrorDetail instance.

Listing 6-10. @ApiResponse annotations

import com.wordnik.swagger.annotations.ApiResponse;
import com.wordnik.swagger.annotations.ApiResponses;

@RequestMapping(value="/polls", method=RequestMethod.POST)
 @ApiOperation(value = "Creates a new Poll", notes="The newly created poll Id will be
sent in the location response header", response = Void.class)
 @ApiResponses(value = {@ApiResponse(code=201, message="Poll Created Successfully",
response=Void.class),
 @ApiResponse(code=500, message="Error creating Poll",
response=ErrorDetail.class) })
 public ResponseEntity<Void> createPoll(@Valid @RequestBody Poll poll) {
 // Content removed for brevity
}

Chapter 6 ■ DoCumenting reSt ServiCeS

102

Run the QuickPoll application and navigate to Swagger UI. Click the “polls” link next to “Poll API” to
expand the PollController’s operations. Then click the “/polls” link next to POST to see the updated notes
and ErrorDetail model schema. Figure 6-6 shows the expected output.

A quick glance at Figure 6-6 shows that we have more response messages than configured. This is
because Swagger out of the box adds a set of default response messages for each HTTP method. This
behavior can be disabled using the useDefaultResponseMessages method in the SwaggerSpringMvcPlugin
class as shown in Listing 6-11.

Listing 6-11. Ignore default reponse messages

public class SwaggerConfig {
 @Inject
 private SpringSwaggerConfig springSwaggerConfig;

 @Bean
 public SwaggerSpringMvcPlugin configureSwagger() {
 // Content removed

 swaggerSpringMvcPlugin.useDefaultResponseMessages(false);
 return swaggerSpringMvcPlugin;
 }
}

Run the QuickPoll application and repeat these steps to view the response messages associated with
the POST operation on “/polls” URI. As shown in Figure 6-7, the default response messages are no longer
displayed.

Figure 6-6. Modified response messages

Chapter 6 ■ DoCumenting reSt ServiCeS

103

In addition to the configuration options we looked at, Swagger provides the following annotations to
configure model objects:

•	 @ApiModel—Annotation that allows changing the name of the model or providing a
description to the associated model

•	 @ApiModelProperty—Annotation that can be used to provide property description,
list of allowed values and to indicate if it is required or not

Configuring UI
Because we are bundling the Swagger UI HTML/CSS/JS assets with the application, any needed look and
feel changes can be performed by directly editing those files. In this section, we will change the name in the
header from Swagger to QuickPoll. We will also change the URL to which the header text points and remove
the “Toolbox” and “Settings” icon next to the text. To do this, open the index.html file under src\main\
resources\static\swagger-ui and replace the swagger-ui-wrap div contents with the contents seen in
Listing 6-12.

Listing 6-12. Modified swagger-ui-wrap contents

QuickPoll
 <form id='api_selector'>
 <div class='input'><input placeholder="http://example.com/api" id="input_baseUrl"
name="baseUrl" type="text"/></div>
 <div class='input'><input placeholder="api_key" id="input_apiKey" name="apiKey"
type="text"/></div>
 <div class='input'>Explore</div>
 </form>

Restart the QuickPoll application and navigate to Swagger UI in your browser. The UI should reflect our
changes and should resemble Figure 6-8.

Figure 6-7. Updated response messages

Chapter 6 ■ DoCumenting reSt ServiCeS

104

Summary
Documentation plays an important role in understanding and consuming a REST API. In this chapter,
we reviewed the basics of Swagger and integrated it with a QuickPoll application to generate interactive
documentation. We also looked at customizing Swagger to meet our application-specific needs.

In the next chapter, we will look at techniques for versioning REST API and implementing paging and
sorting capabilities.

Figure 6-8. Updated Swagger UI

105

Chapter 7

Versioning, Paging, and Sor ting

In this chapter we will discuss:

•	 Strategies for versioning REST services

•	 Adding pagination capabilities

•	 Adding sorting capabilities

We all are familiar with the famous proverb “the only thing constant in life is change.” This applies to
software development. In this chapter we will look at versioning our API as a way to handle such changes.
Additionally, dealing with large datasets can be problematic especially when mobile clients are involved.
Large datasets can also result in server overload and performance issues. To handle this, we will employ
paging and sorting techniques and send data in manageable chunks.

Versioning
As user requirements and technology change, no matter how planned our design, we will end up changing
our code. This will involve making changes to REST resources by adding, updating, and sometimes removing
attributes. Although the crux of the API—read, create, update, and remove one or more resources—remains
the same, this could result in such drastic changes to the representation that it may break any existing
consumers. Similarly, changes to functionality such as securing our services and requiring authentication or
authorization can break existing consumers. Such major changes typically call for new versions of the API.

In this chapter, we will be adding paging and sorting functionality to our QuickPoll API. As you will see
in later sections, this change will result in changes to the representations returned for some of the GET HTTP
methods. Before we version our QuickPoll API to handle paging and sorting, let’s look at some approaches
for versioning.

Versioning Approaches
There are four popular approaches to versioning a REST API:

•	 URI versioning

•	 URI parameter versioning

•	 Accept header versioning

•	 Custom header versioning

None of these approaches are silver bullets and each has its fair share of advantages and disadvantages.
In this section we will look at these approaches along with some real-world public APIs that use them.

Chapter 7 ■ Versioning, paging, and sor ting

106

URI Versioning
In this approach, version information becomes part of the URI. For example, http://api.example.org/v1/users
and http://api.example.org/v2/users represent two different versions of an application API. Here we
use v notation to denote versioning and the numbers 1 and 2 following the v indicate the first and second
API versions.

URI versioning has been one of the most commonly used approaches and is used by major public APIs
such as Twitter, LinkedIn, Yahoo, and SalesForce. Here are some examples:

•	 LinkedIn: https://api.linkedin.com/v1/people/~

•	 Yahoo: https://social.yahooapis.com/v1/user/12345/profile

•	 SalesForce: http://na1.salesforce.com/services/data/v26.0

•	 Twitter: https://api.twitter.com/1.1/statuses/user_timeline.json

•	 Twilio: https://api.twilio.com/2010-04-01/Accounts/{AccountSid}/Calls

As you can see, LinkedIn, Yahoo, and SalesForce use the v notation. In addition to a major version,
SalesForce uses a minor version as part of its URI version. Twilio, by contrast, takes a unique approach and
uses a timestamp in the URI to differentiate its versions.

Making a version part of the URI is very appealing as the version information is right in the URI. It also
simplifies API development and testing. Folks can easily browse and use different versions of REST services
via a Web browser. On the contrary, this might make client’s life difficult. For example, consider a client
storing references to user resources in its database. On switching to a new version, these references get
outdated and the client has to do a mass database update to upgrade references to new version.

URI Parameter Versioning
This is similar to the URI versioning that we just looked at except that the version information is specified
as a URI request parameter. For example, the URI http://api.example.org/users?v=2 uses the version
parameter v to represent the second version of the API. The version parameter is typically optional and a
default version of the API will continue working for requests without version parameter. Most often, the
default version is the latest version of the API.

Although as not popular as other versioning strategies, a few major public APIs such as Netf lix have
used this strategy. The URI parameter versioning shares the same disadvantages of URI versioning. Another
disadvantage is that some proxies don’t cache resources with a URI parameter, resulting in additional
network traffic.

Accept Header Versioning
This versioning approach uses the Accept header to communicate version information. Because the header
contains version information, there will be only one URI for multiple versions of API.

Up to this point, we have used standard media types such as "application/json" as part of the Accept
header to indicate the type of content the client expects. To pass additional version information, we need a
custom media type. The following convention is popular when creating a custom media type:

vnd.product_name.version+ suffix

The vnd is the starting point of the custom media type and indicates vendor. The product or producer
name is the name of the product and distinguishes this media type from other custom product media types.
The version part is represented using strings such as v1 or v2 or v3. Finally, the suffix is used to specify the

https://api.linkedin.com/v1/people/~
https://social.yahooapis.com/v1/user/12345/profile
http://na1.salesforce.com/services/data/v26.0
https://api.twitter.com/1.1/statuses/user_timeline.json
https://api.twilio.com/2010-04-01/2010-04-01/Accounts/%7bAccountSid%7d/Calls

Chapter 7 ■ Versioning, paging, and sor ting

107

structure of the media type. For example, the +json suffix indicates a structure that follows the guidelines
established for media type "application/json". RFC 6389 (https://tools.ietf.org/html/rfc6839) gives
a full list of standardized prefixes such as +xml, +json, and +zip. Using this approach, a client, for example,
can send an application/vnd.quickpoll.v2+json accept header to request the second version of the API.

The Accept header versioning approach is becoming more and more popular as it allows fine-grained
versioning of individual resources without impacting the entire API. This approach can make browser
testing harder as we have to carefully craft the Accept header. GitHub is a popular public API that uses this
Accept header strategy. For requests that don’t contain any Accept header, GitHub uses the latest version
of the API to fulfill the request.

Custom Header Versioning
The custom header versioning approach is similar to the Accept header versioning approach except that,
instead of the Accept header, a custom header is used. Microsoft Azure takes this approach and uses the
custom header x-ms-version. For example, to get the latest version of Azure at the time of writing this book,
your request needs to include a custom header:

x-ms-version: 2014-02-14

This approach shares the same pros and cons as that of the Accept header approach. Because the
HTTP specification provides a standard way of accomplishing this via the Accept header, the custom header
approach hasn’t been widely adopted.

Deprecating an API
As you release new versions of an API, maintaining older versions becomes cumbersome and can result in
maintenance nightmares. The number of versions to maintain and their longevity depends on the API user
base, but it is strongly recommended to maintain at least one older version.

API versions that will no longer be maintained need to be deprecated and eventually retired. It is
important to remember that deprecation is intended to communicate that the API is still available but will
cease to exist in future. API users should be given plenty of notice about deprecation so that they can migrate
to newer versions.

QuickPoll Versioning
In this book, we will be using the URI versioning approach to version the QuickPoll REST API.

Implementing and maintaining different versions of an API can be difficult, as it generally complicates
code. We want to make sure that changes in one version of code don’t impact other versions of the code. To
improve maintainability, we want to make sure that we avoid code duplication as much as possible. Here are
two approaches for organizing code to support multiple API versions:

•	 Complete code replication—In this approach, you replicate the entire code base and
maintain parallel code paths for each version. Popular API builder Apigility takes
this approach and clones the entire code base for each new version. This approach
makes it easy to make code changes that wouldn’t impact other versions. It also
makes it easy to switch backend datastores. This would also allow each version to
become a separate deployable artifact. Although this approach provides a lot of
flexibility, we will be duplicating the entire code base.

https://tools.ietf.org/html/rfc6839

Chapter 7 ■ Versioning, paging, and sor ting

108

•	 Version specific code replication—In this approach, we only replicate the code that is
specific to each version. Each version can have its own set of controllers and request/
response DTO objects but will reuse most of the common service and backend
layers. For smaller applications, this approach can work well as version-specific code
can simply be separated into different packages. Care must be taken when making
changes to the reused code, as it might have impact on multiple versions.

Spring MVC makes it easy to version a QuickPoll application using the URI versioning approach.
Considering that versioning plays a crucial role in managing changes, it is important that we version as early
as possible in the development cycle. Hence, we will assign a version v1 to all of the QuickPoll services that
we have developed so far. To support multiple versions, we will follow the second approach and create a
separate set of controllers.

 ■ Note in this chapter we will continue building on the work that we did on the Quickpoll application in previous
chapters. alternatively, a starter project inside the Chapter7\starter folder of the downloaded source code is
available for you to use. the completed solution is available under the Chapter7\final folder. please refer to this
solution for complete listings containing getters/setters and additional imports. the downloaded Chapter7 folder
also contains an exported postman collection containing rest api requests associated with this chapter.

We begin the versioning process by creating two packages com.apress.v1.controller and
com.apress.v2.controller. Move all of the controllers from the com.apress.controller package to the
com.apress.v1.controller. To each controller in the new v1 package, add a class level @RequestMapping
("/v1/") annotation. Because we will have multiple versions of controllers, we need to give unique
component names to individual controllers. We will follow the convention of appending version number to
the unqualified class name to derive our component name. Using this convention, the v1 PollController
will have a component name pollControllerV1.

Listing 7-1 shows the portion of the PollController class with these modifications. Notice that
the component name is provided as a value to the @RestController annotation. Similarly, assign the
component name voteControllerV1 to the v1 VoteController and computeResultControllerV1 to the v1
ComputeResultController.

Listing 7-1. Version one of the poll controller

package com.apress.v1.controller;

import org.springframework.web.bind.annotation.RequestMapping;

@RestController("pollControllerV1")
@RequestMapping("/v1/")
@Api(value = "polls", description = "Poll API")
public class PollController {

}

 ■ Note even though the behavior and code of VoteController and ComputeResultControler don’t change
across versions, we are copying the code to keep things simple. in real-world scenarios, refactor code into
reusable modules or use inheritance to avoid code duplication.

http://dx.doi.org/10.1007/9781484208243_7
http://dx.doi.org/10.1007/9781484208243_7
http://dx.doi.org/10.1007/9781484208243_7

Chapter 7 ■ Versioning, paging, and sor ting

109

With the class level @RequestMapping annotation in place, all of the URIs in the v1 PollController
become relative to "/v1/". Restart the QuickPoll application and, using Postman, verify that you can create a
new Poll at the new http://localhost:8080/v1/polls endpoint.

To create the second version of the API, copy all of the controllers from the v1 package to the v2
package. Change the class-level RequestMapping value from "/v1/" to "/v2/" and the component name
suffix from "V1" to "V2". Listing 7-2 shows the modified portions of the V2 version of the PollController.
Because the v2 PollController is a copy of the v1 PollController, we have omitted the PollController
class implementation from Listing 7-2.

Listing 7-2. Version two of the poll controller

@RestController("pollControllerV2")
@RequestMapping("/v2/")
@Api(value = "polls", description = "Poll API")
public class PollController {
 // Code copied from the v1 Poll Controller
}

Once you have completed modifications for the three controllers, restart the QuickPoll application and,
using Postman, verify that you can create a new poll using the http://localhost:8080/v2/polls endpoint.
Similarly, verify that you can access the VoteController and ComputeResultController endpoints by
accessing the http://localhost:8080/v2/votes and http://localhost:8080/v2/computeresult endpoints.

Swagger config
The versioning changes that we made require changes to our Swagger configuration so that we can use
the UI to test and interact with both REST API versions. Listing 7-3 shows the refactored com.apress.
SwaggerConfig class. As discussed in the previous chapter, a com.mangofactory.swagger.plugin.
SwaggerSpringMvcPlugin instance represents a Swagger group. Hence, the refactored SwaggerConfig class
contains two methods, each returning a SwaggerSpringMvcPlugin instance representing an API group. Also,
notice that we have extracted API information to its own method and used it to configure both instances of
SwaggerSpringMvcPlugin.

Listing 7-3. Refactored SwaggerConfig class

package com.apress;
import javax.inject.Inject;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import com.mangofactory.swagger.configuration.SpringSwaggerConfig;
import com.mangofactory.swagger.models.dto.ApiInfo;
import com.mangofactory.swagger.models.dto.builder.ApiInfoBuilder;
import com.mangofactory.swagger.plugin.EnableSwagger;
import com.mangofactory.swagger.plugin.SwaggerSpringMvcPlugin;

@Configuration
@EnableSwagger
public class SwaggerConfig {

http://localhost:8080/v1/polls
http://localhost:8080/v2/votes

Chapter 7 ■ Versioning, paging, and sor ting

110

 @Inject
 private SpringSwaggerConfig springSwaggerConfig;

 private ApiInfo getApiInfo() {
 ApiInfo apiInfo = new ApiInfoBuilder()
 .title("QuickPoll REST API")
 .description("QuickPoll Api for creating and managing

polls")
 .termsOfServiceUrl("http://example.com/terms-of-service")
 .contact("info@example.com")
 .license("MIT License")
 .licenseUrl("http://opensource.org/licenses/MIT")
 .build();
 return apiInfo;
 }

 @Bean
 public SwaggerSpringMvcPlugin v1APIConfiguration() {
 SwaggerSpringMvcPlugin swaggerSpringMvcPlugin = new

SwaggerSpringMvcPlugin(this.springSwaggerConfig);
 swaggerSpringMvcPlugin
 .apiInfo(getApiInfo()).apiVersion("1.0")
 .includePatterns("/v1/*.*").swaggerGroup("v1");
 swaggerSpringMvcPlugin.useDefaultResponseMessages(false);
 return swaggerSpringMvcPlugin;
 }

 @Bean
 public SwaggerSpringMvcPlugin v2APIConfiguration(){
 SwaggerSpringMvcPlugin swaggerSpringMvcPlugin = new

SwaggerSpringMvcPlugin(this.springSwaggerConfig);
 swaggerSpringMvcPlugin
 .apiInfo(getApiInfo()).apiVersion("2.0")
 .includePatterns("/v2/*.*").swaggerGroup("v2");
 swaggerSpringMvcPlugin.useDefaultResponseMessages(false);
 return swaggerSpringMvcPlugin;
 }
}

With this newly refactored SwaggerConfig, restart the QuickPoll application and launch Swagger UI in
a Web browser at http://localhost:8080/swagger-ui/index.html. After the UI has launched, append the
request parameter ?group=v2 to the http://localhost:8080/api-docs/ URI in the Swagger UI’s input
box and hit Explore. You should see and interact with the v2 version of the API as shown in Figure 7-1.

http://example.com/terms-of-service
http://opensource.org/licenses/MIT

Chapter 7 ■ Versioning, paging, and sor ting

111

This concludes the configuration needed to version our QuickPoll application and sets the stage for
adding pagination and sorting support in the final two sections of this chapter.

Pagination
REST APIs are consumed by a variety of clients ranging from desktop applications to Web to mobile devices.
Hence, while designing a REST API capable of returning vast datasets, it is important to limit the amount of
data returned for bandwidth and performance reasons. The bandwidth concerns become more important
in the case of mobile clients consuming the API. Limiting the data can vastly improve the server’s ability to
retrieve data faster from a datastore and the client’s ability to process the data and render the UI. By splitting
the data into discrete pages or paging data, REST services allow clients to scroll through and access the
entire dataset in manageable chunks.

Before we starting implementing pagination in our QuickPoll application, let’s look at four different
pagination styles: page number pagination, limit offset pagination, cursor-based pagination, and time-based
pagination.

Page Number Pagination
In this pagination style, the clients specify a page number containing the data they need. For example, a client
wanting all the blog posts in page 3 of our hypothetical blog service, can use the following GET method:

http://blog.example.com/posts?page=3

The REST service in this scenario would respond with a set of posts. The number of posts returned
depends on the default page size set in the service. It is possible for the client to override the default page
size by passing in a page-size parameter:

http://blog.example.com/posts?page=3&size=20

Figure 7-1. Swagger UI for QuickPoll 2.0 version

Chapter 7 ■ Versioning, paging, and sor ting

112

GitHub’s REST services use this pagination style. By default, the page size is set to 30 but can be
overridden using the per_page parameter:

https://api.github.com/user/repos?page=2&per_page=100

Limit Offset Pagination
In this pagination style, the clients uses two parameters: a limit and an offset to retrieve the data that they
need. The limit parameter indicates the maximum number of elements to return and the offset parameter
indicates the starting point for the return data. For example, to retrieve 10 blog posts starting from the item
number 31, a client can use the following request:

http://blog.example.com/posts?limit=10&offset=30

Cursor-Based Pagination
In this pagination style, the clients make use of a pointer or a cursor to navigate through the data set.
A cursor is a service-generated random character string that acts as a marker for an item in the data set.
To understand this style, consider a client making the following request to get blog posts:

http://blog.example.com/posts

On receiving the request, the service would send data similar to this:

{
 "data" : [
 ... Blog data
],
 "cursors" : {
 "prev" : null,
 "next" : "123asdf456iamcur"
 }
}

This response contains a set of blogs representing a subset of the total dataset. The cursors that are part
of the response contains a prev field that can be used to retrieve the previous subset of the data. However,
because this is the initial subset, the prev field value is empty. The client can use the cursor value in the next
field to get the next subset of the data using the following request:

http://api.example.com/posts?cursor=123asdf456iamcur

On receiving this request, the service would send the data along with the prev and next cursor fields.
This pagination style is used by applications such as Twitter and Facebook that deal with real-time datasets
(tweets and posts) where data changes frequently. The generated cursors typically don’t live forever and
should be used for short-term pagination purposes only.

https://api.github.com/user/repos?page=2&per_page=100

Chapter 7 ■ Versioning, paging, and sor ting

113

Time-Based Pagination
In this style of pagination, the client specifies a timeframe to retrieve the data in which they are interested.
Facebook supports this pagination style and requires time specified as a Unix timestamp. These are two
Facebook example requests:

https://graph.facebook.com/me/feed?limit=25&until=1364587774
https://graph.facebook.com/me/feed?limit=25&since=1364849754

Both examples use the limit parameter to indicate the maximum number of items to be returned.
The until parameter specifies the end of the time range, whereas the since parameter specifies the beginning
of the time range.

Pagination Data
All the pagination styles in the previous sections return only a subset of the data. So, in addition to supplying
the requested data, it becomes important for the service to communicate pagination-specific information
such as total number of records or total number of pages or current page number and page size. The
following example shows a response body with pagination information:

{
 "data": [
 ... Blog Data
],
 "totalPages": 9,
 "currentPageNumber": 2,
 "pageSize": 10,
 "totalRecords": 90
}

Clients can use the pagination information to assess the current state as well as construct URLs to obtain
the next or previous datasets. The other technique services employ is to include the pagination information
in a special Link header. The Link header is defined as part of RFC 5988(http://tools.ietf.org/html/
rfc5988). It typically contains a set of ready-made links to scroll forward and backward. GitHub uses this
approach; here is an example of a Link header value:

Link: <https://api.github.com/user/repos?page=3&per_page=100>; rel="next", <https://api.
github.com/user/repos?page=50&per_page=100>; rel="last"

QuickPoll Pagination
To support large poll datasets in a QuickPoll application, we will be implementing the page number
pagination style and will include the paging information in the response body.

We begin the implementation by configuring our QuickPoll application to load dummy poll data into
its database during the bootstrapping process. This would enable us to test our polling and sorting code.
To achieve this, copy the import.sql file from the downloaded chapter code into src\main\resources folder.
The import.sql file contains DML statements for creating test polls. Hibernate out of the box loads the
import.sql file found under the classpath and executes all of the SQL statements in it. Restart the
QuickPoll application and navigate to http://localhost:8080/v2/polls in Postman; it should list all of
the loaded test polls.

https://graph.facebook.com/me/feed?limit=25&until=1364587774
https://graph.facebook.com/me/feed?limit=25&since=1364849754
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc5988
https://api.github.com/user/repos?page=3&per_page=100
https://api.github.com/user/repos?page=50&per_page=100
https://api.github.com/user/repos?page=50&per_page=100

Chapter 7 ■ Versioning, paging, and sor ting

114

Spring Data JPA and Spring MVC provides out of the box support for the page number pagination style,
making our QuickPoll paging implementation easy. Central to paging (and sorting) functionality in Spring Data JPA
is the org.springframework.data.repository.PagingAndSortingRepository interface shown in Listing 7-4.

Listing 7-4. Spring Data JPA’s paging and sorting repository

public interface PagingAndSortingRepository<T, ID extends Serializable> extends
CrudRepository<T, ID> {
 Page<T> findAll(Pageable pageable);
 Iterable<T> findAll(Sort sort);
}

The PagingAndSortingRepository interface extends the CrudRepository interface that we have
been using so far in the QuickPoll application. Additionally, it adds two finder methods that return entities
matching the paging and sorting criteria provided. The findAll method responsible for paging takes a
Pageable instance to read information such as page size and page number. Additionally, it also takes sorting
information, which we will zoom in on in a later section in this chapter. This findAll method returns a Page
instance that contains the data subset and the following information:

•	 Total Elements—Total elements in the result set

•	 Number of Elements—Number of elements in the returned subset

•	 Size—The maximum number of elements in each page

•	 Total Pages—Total number of pages in the result set

•	 Number—Returns the current page number

•	 Last—Flag indicating if it is the last data subset

•	 First—Flag indicating if it is the first data subset

•	 Sort—Returns parameters used for sorting, if any

The next step in implementing paging in QuickPoll is to make our PollRepository extend
PagingAndSortingRepository instead of current CrudRepository. Listing 7-5 shows the new
PollRepository implementation. Because the PagingAndSortingRepository extends the CrudRepository,
all of the functionality needed for the first version of our API remains intact.

Listing 7-5. PollRepository implementation

package com.apress.repository;

import org.springframework.data.repository.PagingAndSortingRepository;
import com.apress.domain.Poll;
public interface PollRepository extends PagingAndSortingRepository<Poll, Long> {

}

Changing the repository to use PagingAndSortingRepository concludes our backend implementation
needed for paging. We now move on to refactoring the V2 PollController so that it uses the new paging
finder method. Listing 7-6 shows the refactored getAllPolls method of the V2 com.apress.v2.controller.
PollController. Notice that we have added the Pageable parameter to the getAllPolls method. On
receiving a GET request on "/polls", Spring MVC inspects the request parameters, constructs a Pageable
instance, and passes it to the getAllPolls method. Typically, the passed-in instance is of the type
PageRequest. The Pageable parameter is then passed to the new finder method and the paged data is
retuned as part of the response.

Chapter 7 ■ Versioning, paging, and sor ting

115

Listing 7-6. getAllPolls method with paging functionality

import org.springframework.data.domain.Page;
import org.springframework.data.domain.Pageable;

@RequestMapping(value="/polls", method=RequestMethod.GET)
@ApiOperation(value = "Retrieves all the polls", response=Poll.class,
responseContainer="List")
public ResponseEntity<Page<Poll>> getAllPolls(Pageable pageable) {
 Page<Poll> allPolls = pollRepository.findAll(pageable);
 return new ResponseEntity<>(allPolls, HttpStatus.OK);
}

This concludes the QuickPoll pagination implementation. Restart the QuickPoll application and
submit a GET request to http://localhost:8080/v2/polls?page=0&size=2 using Postman. The response
should contain two poll instances with paging-related metadata. Figure 7-2 shows the request as well as the
metadata portion of the response.

Figure 7-2. Paged results along with paging metadata

 ■ Note spring data Jpa uses a zero-index-based paging approach. hence, the first page number starts with
0 and not 1.

Chapter 7 ■ Versioning, paging, and sor ting

116

Changing Default Page Size
Spring MVC uses an org.springframework.data.web.PageableHandlerMethodArgumentResolver to
extract paging information from the request parameters and injecting Pageable instances into Controller
methods. Out of the box, the PageableHandlerMethodArgumentResolver class sets the default page size
to 20. Hence, if you perform a GET request on http://localhost:8080/v2/polls, the response would
include 20 polls. Although 20 is a good default page size, there might be occasions when you might want
to change it globally in your application. To do this, you need to create and register a new instance of
PageableHandlerMethodArgumentResolver with the settings of your choice.

Spring Boot applications requiring changes to default MVC behavior need to create classes of
type org.springframework.web.servlet.config.annotation.WebMvcConfigurerAdapter and use its
callback methods for customization. Listing 7-7 shows the newly created QuickPollMvcConfigAdapter
class in the com.apress package with the configuration to set the default page size to 5. Here we
are using the WebMvcConfigurerAdapter's addArgumentResolvers callback method. We begin the
method implementation by creating an instance of PageableHandlerMethodArgumentResolver. The
setFallbackPageable method, as the name suggests, is used by Spring MVC when no paging information is
found in the request parameters. We create a PageRequest instance with 5 as the default page size and pass
it to the setFallbackPageable method. We then register our PageableHandlerMethodArgumentResolver
instance with Spring using the passed-in argumentResolvers parameter.

Listing 7-7. Code to change default page size to 5

package com.apress;

import java.util.List;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.domain.PageRequest;
import org.springframework.data.web.PageableHandlerMethodArgumentResolver;
import org.springframework.web.method.support.HandlerMethodArgumentResolver;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurerAdapter;

@Configuration
public class QuickPollMvcConfigAdapter extends WebMvcConfigurerAdapter {

 @Override
 public void addArgumentResolvers(List<HandlerMethodArgumentResolver>

argumentResolvers) {
 PageableHandlerMethodArgumentResolver phmar = new

PageableHandlerMethodArgumentResolver();
 // Set the default size to 5
 phmar.setFallbackPageable(new PageRequest(0, 5));
 argumentResolvers.add(phmar);
 super.addArgumentResolvers(argumentResolvers);
 }
}

Restart the QuickPoll application and perform a GET request on http://localhost:8080/v2/polls
using Postman. You will notice that the response now includes only five polls. The associated paging
metadata is shown in Listing 7-8.

Chapter 7 ■ Versioning, paging, and sor ting

117

Listing 7-8. Paging metadata for default page size 5

{
 Ommited Poll Data

 "totalPages": 4,
 "totalElements": 20,
 "last": false,
 "size": 5,
 "number": 0,
 "sort": null,
 "numberOfElements": 5,
 "first": true
}

Sor ting
Sorting allows REST clients to determine the order in which items in a dataset are arranged. REST services
supporting sorting allow clients to submit parameters with properties to be used for sorting. For example, a
client can submit the following request to sort blog posts based on their created date and title:

http://blog.example.com/posts?sort=createdDate,title

Sort Ascending or Sort Descending
The REST services can also allow the clients specify one of the two sort directions: ascending or descending.
Because there is no set standard around this, the following examples showcase popular ways for specifying
sort direction:

http://blog.example.com/posts?sortByDesc=createdDate&sortByAsc=title
http://blog.example.com/posts?sort=createdDate,desc&sort=title,asc
http://blog.example.com/posts?sort=-createdDate,title

In all of these examples, we are retrieving blog posts in the descending order of their created date.
Posts with the same created date are then sorted based on their titles.

•	 In the first approach the sort parameter clearly specifies if the direction should be
ascending or descending.

•	 In the second approach, we have used the same parameter name for both directions.
However, the parameter value spells out the sort direction.

•	 The last approach uses the “-” notation to indicate that any property prefixed with a
“-” should be sorted on a descending direction. Properties that are not prefixed with
a “-” will be sorted in the ascending direction.

Chapter 7 ■ Versioning, paging, and sor ting

118

QuickPoll Sorting
Considering that sorting is typically used in conjunction with paging, Spring Data JPA’s
PagingAndSortingRepository and Pageable implementations are designed to handle and service sorting
requests from the ground up. Hence, we don’t require any explicit implementation for sorting.

To test sorting functionality, submit a GET request to http://localhost:8080/v2/polls/?sort=question
using Postman. You should see the response with Polls sorted in ascending order of their question text along
with sort metadata. Figure 7-3 shows the Postman request along with the sort metadata.

Figure 7-3. Sort metadata

To sort on multiple fields with different sort directions, Spring MVC requires you to follow the second
approach discussed in the previous section. The following request sorts on ascending question value and
descending id value:

http://localhost:8080/v2/polls/?sort=question,asc&sort=id,desc

Chapter 7 ■ Versioning, paging, and sor ting

119

Summary
In this chapter we reviewed the different strategies for versioning REST API. We then implemented
versioning in QuickPoll using the URL versioning approach. We also reviewed the different approaches
for dealing with large datasets using pagination and sorting techniques. Finally, we used Spring Data’s
out-of-the-box functionality to implement page number pagination style. In the next chapter, we will review
strategies for securing REST services.

121

Chapter 8

Security

In this chapter we will discuss:

•	 Strategies for securing REST services

•	 OAuth 2.0

•	 Basics of the Spring Security framework

•	 Implementing QuickPoll Security

Traditional Web applications requiring security typically use username/passwords for identification
purposes. REST services pose interesting security problems as they can be consumed by a variety of clients
such as browsers and mobile devices. They can also be consumed by other services and this machine-to-
machine communication might not have any human interaction. It is also not uncommon for clients to
consume REST services on behalf of a user. In this chapter, we will explore the different authentication/
authorization approaches that can be used while working with REST services. Then we will look at using
some of these approaches to secure our QuickPoll application.

Securing REST Services
We begin with a survey of six popular approaches that are used for securing REST services:

•	 Session-based security

•	 HTTP Basic Authentication

•	 Digest Authentication

•	 Certificate based security

•	 XAuth

•	 OAuth

Session-based Security
The session-based security model relies on a server side session to hold on to a user’s identity across
requests. In a typical Web application, when a user tries to access a protected resource, they are presented
with a login page. On successful authentication, the server stores the logged-in user’s information in a HTTP
session. On subsequent requests, the session is queried to retrieve the user’s information and is used to
perform authorization checks. If the user doesn’t have the proper authorization, their request will be denied.
Figure 8-1 is a pictorial representation of this approach.

Chapter 8 ■ SeCurity

122

Frameworks such as Spring Security provide all the necessary plumbing to develop applications using
this security model. This approach is very appealing to developers that are adding REST services to existing
Spring Web applications. The REST services will retrieve the user identity from the session to perform
authorization checks and serve resources accordingly. However, this approach violates the statelessness
REST constraint. Also, because the server holds the client’s state, this approach is not scalable. Ideally, the
client should hold the state and server should be stateless.

HTTP Basic Authentication
Using a Login form to capture a username and password is possible when there is human interaction
involved. However, this might not be possible when we have services talking to other services. HTTP Basic
authentication provides a mechanism that allows clients to send authentication information using both
interactive and noninteractive fashions.

In this approach, when a client makes a request to a protected resource, the server sends a 401
“Unauthorized” response code and a “WWW-Authenticate” header. The “Basic” portion of the header
indicates that we will be using Basic authentication and the “realm” portion indicates a protected space on
the server:

GET /protected_resource
401 Unauthorized
WWW-Authenticate: Basic realm="Example Realm"

Figure 8-1. Session-based security flow

Chapter 8 ■ SeCurity

123

On receiving the response, the client concatenates a username and password with a semicolon and
Base64 encodes the concatenated string. It then sends that information over to the server using a standard
Authorization header:

GET /protected_resource
Authorization: Basic bHxpY26U5lkjfdk

The server decodes the submitted information and validates the submitted credentials. On successful
verification, the server completes the request. The entire flow is shown in Figure 8-2.

Because the client includes the authentication information in each request, the server becomes stateless.
It is important to remember that the client is simply encoding the information and not encrypting it. Hence,
on non-SSL/TLS connections, it is possible to conduct a man-in-the-middle attack and steal the password.

Digest Authentication
The Digest Authentication approach is similar to the Basic authentication model discussed earlier except
that the user credentials are sent encrypted. The client submits a request for a protected resource and the
server responds with a 401 “Unauthorized” response code and a WWW-Authenticate header. Here is an
example of a server response:.

GET /protected_resource
401 Unauthorized
WWW-Authenticate: Digest realm="Example Realm", nonce="P35kl89sdfghERT10Asdfnbvc",
qop="auth"

Notice that the WWW-Authenticate specifies the Digest authentication scheme along with a server
generated nonce and a qop. A nonce is an arbitrary token used for cryptographic purposes. The qop, or
“quality of protection,” directive can contain two values—"auth" or "auth-int":

•	 A qop value "auth" indicates that the digest is used for authentication purposes

•	 A value "auth-int" indicates that digest will be used for authentication and
request integrity

Figure 8-2. HTTP Basic authentication flow

Chapter 8 ■ SeCurity

124

On receiving the request, if the qop value is set to "auth," the client generates a digest using this
formula:

hash_value_1 = MD5(username:realm:password)
has_value_2 = MD5(request_method:request_uri)
digest = MD5(hash_value_1:nonce:hash_value_2)

If the qop value is set to "auth-int," the client computes the digest by including the request body:

hash_value_1 = MD5(username:realm:password)
has_value_2 = MD5(request_method:request_uri:MD5(request_body))
digest = MD5(hash_value_1:nonce:hash_value_2)

By default, the MD5 algorithm is used to compute the hash values. The digest is included in the
Authorization header and is sent to the server. On receiving the request, the server computes the digest and
verifies the user’s identity. On successful verification, the server completes the request. A complete flow of
this method is shown in Figure 8-3.

The Digest authentication approach is more secure than the Basic authentication, as the password
is never sent in clear text. However, on non-SSL/TLS communications, it is still possible for snoopers to
retrieve the digest and replay the request. One way to address this problem is to limit server-generated
nonces to one-time use only. Also, because the server has to generate the digest for verification, it needs
to have access to the plain text version of the password. Hence, it can’t employ more secure one-way
encryptions algorithms such as bcrypt and can become more vulnerable to server side attacks.

Certificate-Based Security
The Certificate-based security model relies on certificates to verify a party’s identity. In a SSL/TLS-based
communication, a client such as a browser often verifies the server’s identity using certificates to ensure that
the server is what it claims to be. This model can be extended to perform mutual authentication where a
server can request a client certificate as part of an SSL/TLS handshake and verify a client’s identity.

Figure 8-3. Digest authentication flow

Chapter 8 ■ SeCurity

125

In this approach, on receiving a request for a protected resource, the server presents its certificate to the
client. The client ensures that a trusted Certificate Authority (CA) issued the server’s certificate and sends
its certificate over to the server. The server verifies the client’s certificate and on successful verification will
grant access to the protected resource. This flow is shown in Figure 8-4.

The Certificate-based security model eliminates the need to send over a shared secret, making it more
secure over username/password models. However, deployments and maintenance of certificates can be
expensive and typically are used for large systems.

XAuth
As REST APIs became popular, the number of third-party applications that use those APIs also grew
significantly. These applications need a username and password in order to interact with REST services and
perform actions on behalf of users. This poses a huge security problem as third-party applications now have
access to usernames and passwords. A security breach in the third-party application can compromise user
information. Also, if the user changes his credentials, he needs to remember to go and update all of these
third-party applications. Finally, this mechanism doesn’t allow the user to revoke his authorization to the
third-party application. The only option for revoking in this case would be to change his password.

The XAuth and OAuth schemes provide a mechanism to access protected resources on a user’s behalf
without needing to store passwords. In this approach, a client application would request a username
and password from the user typically by using a login form. The client would then send the username
and password to the server. The server receives the user’s credentials and validates them. On successful
validation, a token is returned to the client. The client discards the username and password information
and stores the token locally. When accessing a user’s protected resource, the client would include the token
in the request. This is typically accomplished using a custom HTTP header such as X-Auth-Token. The
longevity of the token is dependent on the implementing service. The token can remain until the server
revokes it or the token can expire in a designated period of time. This flow is shown in Figure 8-5.

Figure 8-4. Certificate-based security flow

Chapter 8 ■ SeCurity

126

Applications such as Twitter allow third-party applications to access their REST API using an XAuth
scheme. However, even with XAuth, a third-party application needs to capture a username and password,
leaving the possibility of misuse. Considering the simplicity involved in XAuth, it might be a good candidate
when the same organization develops the client as well as the REST API.

OAuth 2.0
The Open Authorization or OAuth is a framework for accessing protected resources on behalf of a user
without storing a password. The OAuth protocol was first introduced in 2007 and was superseded by
OAuth 2.0, which was introduced in 2010. In this book, we will be reviewing OAuth 2.0.

OAuth 2.0 defines the following four roles:

•	 Resource Owner—A resource owner is the user that wants to give access to portions
of their account or resources. For example, a resource owner could be a Twitter or a
Facebook user.

•	 Client—A client is an application that wants access to a user’s resources. This could
be a third-party app such as Klout (https://klout.com/) that wants to access a
user’s Twitter account.

•	 Authorization Server—An authorization server verifies the user’s identity and grants
the client a token to access the user’s resources.

•	 Resource Server—A resource server hosts protected user resources. For example, this
would be Twitter API to access tweets and timelines, and so on.

The interactions between these four roles discussed are depicted in Figure 8-6. OAuth 2.0 requires these
interactions to be conducted on SSL.

Figure 8-5. XAuth security flow

https://klout.com/

Chapter 8 ■ SeCurity

127

Before a client can participate in the “OAuth dance” shown in Figure 8-6, it must register itself with
the Authorization Server. For most public APIs such as Facebook and Twitter, this involves filling out an
application form and providing information about the client such as application name, base domain, and
website. On successful registration, the client will receive a Client ID and a Client secret. The Client ID is
used to uniquely identify the Client and is available publicly. These client credentials play an important part
in the OAuth interactions, which we will discuss in just a minute.

The OAuth interaction begins with the user expressing interest in using the “Client,” a third-party
application. The client requests authorization to access protected resources on the user’s behalf and
redirects the user/resource owner to the Authorization server. An example URI that the client can redirect
the user to is shown here:

https://oauth2.example.com/authorize?client_id=CLIENT_ID&response_type=auth_code&call_
back=CALL_BACK_URI&scope=read,tweet

The usage of HTTPS is mandatory for any production OAuth 2.0 interactions and, hence, the URI begins
with https. The CLIENT_ID is used to provide the client’s identity to the authorization server. The scope
parameter provides a comma separated set of scopes/roles that the client needs.

On receiving the request, the authorization server would present the user with an authentication
challenge typically via a login form. The user provides his username and password. On successful
verification of the user credentials, the authorization server redirects the user to the client application using
the CALL_BACK_URI parameter. The authorization server also appends an authorization code to the
CALL_BACK_URI parameter value. Here is an example URL that an authorization server might generate:

https://mycoolclient.com/code_callback?auth_code=6F99A74F2D066A267D6D838F88

The client then uses the authorization code to request an Access Token from the authorization server.
To achieve this, a client would typically perform a HTTP POST on a URI like this:

https://oauth2.example.com/access_token?client_id=CLIENT_ID&client_secret=CLIENT_SECRET&
auth_code=6F99A74F2D066A267D6D838F88

Figure 8-6. OAuth 2.0 security flow

https://mycoolclient.com/code_callback?auth_code=6F99A74F2D066A267D6D838F88

Chapter 8 ■ SeCurity

128

As you can see, the client provides its credentials as part of the request. The authorization server verifies
the client’s identity and authorization code. On successful verification, it returns an access token. Here is an
example response in JSON format:

{"access_token"="f292c6912e7710c8"}

On receiving the access token, the client will request a protected resource from the resource server
passing in the access token it obtained. The resource server validates the access token and serves the
protected resource.

OAuth Client Profiles
One of the strengths of OAuth 2.0 is its support for variety of client profiles such as “Web application,”
“Native application,” and “User Agent/Browser application.” The authorization code flow discussed
earlier (often referred to as authorization grant type) is applicable to “Web application” clients that have
a Web-based user interface and a server side backend. This allows the client to store the authorization
code in a secure backend and reuse it for future interactions. Other client profiles have their own flows that
determine the interaction between the four OAuth 2.0 players.

A pure JavaScript-based application or a native application can’t store authorization codes securely.
Hence, for such clients, the callback from the authorization server doesn’t include an authorization code.
Instead, an implicit grant type approach is taken and an access token is directly handed over to the client,
which is then used for requesting protected resources. Applications falling under this client profile will not
have a client secret and are simply identified using the client ID.

OAuth 2.0 also supports an authorization flow, referred to as password grant type, that is similar
to XAuth discussed in the previous section. In this flow, the user supplies his credentials to the client
application directly. He is never redirected to the authorization server. The client passes these credentials to
the authorization server and receives an access token for requesting protected resources.

OAuth 1.0 introduced several implementation complexities especially around the cryptographic
requirements for signing requests with client credentials. OAuth 2.0 simplified this by eliminating signatures
and requiring HTTPS for all interactions. However, because many of OAuth 2’s features are optional, the
specification has resulted in noninteroperable implementations.

Refresh Tokens versus Access Tokens
The lifetime of access tokens can be limited and clients should be prepared for the possibility of a token no
longer working. To prevent the need for the resource owner to repeatedly authenticate, the OAuth 2.0
specification has provided a notion of refresh tokens. An authorization server can optionally issue a refresh
token when it generates an access token. The client stores this refresh token, and when an access token expires,
it contacts the authorization server for a fresh set of access token as well as refresh token. Specification allows
generation of refresh tokens for authorization and password grant type flows. Considering the lack of security
with the “implicit grant type,” refresh tokens are prohibited for such client profiles.

Spring Security Overview
To implement security in the QuickPoll application we will be using another popular Spring subproject,
namely, Spring Security. Before we move forward with the implementation, let’s understand Spring Security
and the different components that make up the framework.

Chapter 8 ■ SeCurity

129

Spring Security, formerly known as Acegi Security, is a framework for securing Java-based applications.
It provides an out-of-the-box integration to a variety of authentication systems such as LDAP, Kerberos,
OpenID, OAuth, and so on. With minimal configuration, it can be easily extended to work with any custom
authentication and authorization systems. The framework also implements security best practices and has
inbuilt features to protect against attacks such as CSRF, or Cross Site Request Forgery, and session fixation,
and so on.

Spring Security provides a consistent security model that can be used to secure Web URLs and Java
methods. The high-level steps involved during the Spring Security Authentication/Authorization process
along with components involved are listed here:

 1. The process begins with a user requesting a protected resource on a
Spring-secured Web application.

 2. The request goes through a series of Spring Security filters referred to
as a “filter chain” that identify an org.springframework.security.
web.AuthenticationEntryPoint to service the request. The
AuthenticationEntryPoint will respond to the client with a request to
authentication. This is done, for example, by sending a login page to the user.

 3. On receiving authentication information from the user such as a username/
password, a org.springframework.security.core.Authentication object
is created. The Authentication interface is shown in Listing 8-1 and its
implementations plays a dual role in Spring Security. They represent a token for
an authentication request or a fully authenticated principal after authentication
is successfully completed. The isAuthenticated method can be used to
determine the current role played by an Authentication instance. In case of
a username/password authentication, the getPrincipal method returns the
username and the getCredentials returns the password. The getUserDetails
method contains additional information such as IP address, and so on.

Listing 8-1. Authentication API

public interface Authentication extends Principal, Serializable {

 Object getPrincipal();
 Object getCredentials();
 Object getDetails();
 Collection<? extends GrantedAuthority> getAuthorities();
 boolean isAuthenticated();
 void setAuthenticated(boolean isAuthenticated) throws

IllegalArgumentException;
}

 4. As a next step, the authentication request token is presented to an
org.springframework.security.authentication.AuthenticationManager.
The AuthenticationManger as shown in Listing 8-2, contains an authenticate
method that takes an authentication request token and returns a fully populated
Authentication instance. Spring provides an out-of-the-box implementation of
AuthenticationManger called ProviderManager.

Chapter 8 ■ SeCurity

130

Listing 8-2. AuthenticationManager API

public interface AuthenticationManager {

 Authentication authenticate(Authentication authentication)

throws AuthenticationException;

}

 5. In order to perform an authentication, the ProviderManager needs to compare
the submitted user information with a backend user store such as LDAP or
database. ProviderManager delegates this responsibility to a series of
org.springframework.security.authentication.AuthenticationProvider.
These AuthenticationProviders use an org.springframework.security.core.
userdetails.UserDetailsService to retrieve user information from backend
stores. Listing 8-3 shows the UserDetailsService API.

Listing 8-3. UserDetailsService API

public interface UserDetailsService {

 UserDetails loadUserByUsername(String username)

throws UsernameNotFoundException;
}

Implementations of UserDetailsService such as JdbcDaoImpl and LdapUserDetailService will
use the passed-in username to retrieve user information. These implementations will also create a set of
GrantedAuthority instances that represent roles/authorities the user has in the system.

 6. The AuthenticationProvider compares the submitted credentials with
the information in the backend system and on successful verification the
org.springframework.security.core.userdetails.UserDetails object is
used to build a fully populated Authentication instance.

 7. The Authentication instance is then put into an org.springframework.
security.core.context.SecurityContextHolder. The SecurityContextHolder
as the name suggests simply associates the logged-in user’s context with the
current thread of execution so that it is readily available across user requests or
operations. In a Web-based application, the logged-in user’s context is typically
stored in the user’s HTTP session.

 8. Spring Security then performs an authorization check using an
org.springframework.security.access.intercept.AbstractSecurity
Interceptor and its implementations org.springframework.security.web.
access.intercept.FilterSecurityInterceptor and org.springframework.
security.access.intercept.aopalliance.MethodSecurityInterceptor.
The FilterSecurityInterceptor is used for URL-based authorization and
MethodSecurityInterceptor is used for method invocation authorization.

 9. The AbstractSecurityInterceptor relies on security configuration and a set of
org.springframework.security.access.AccessDecisionManagers to decide
if the user is authorized or not. On successful authorization, the user is given
access to the protected resource.

Chapter 8 ■ SeCurity

131

 ■ Note to keep things simple, i have purposefully omitted some Spring Security classes in these steps. For
a complete review of Spring Security and the authentication/authorization steps, please refer to Pro Spring
Security (apress, 2013).

Now that you have a basic understanding of Spring Security’s authentication/authorization flow as well
as some of its components, let’s look at integrating Spring Security into our QuickPoll application.

Securing QuickPoll
We will implement security in the QuickPoll application to meet the following two requirements:

•	 Registered users can create and access polls. This allows us to keep track of accounts,
usage, and so on

•	 Polls can be deleted only by users with Admin privileges

 ■ Note in this chapter, we will continue building on the work that we did on the Quickpoll application in
previous chapters. alternatively, a starter project is available for you to use inside the Chapter8\starter folder
of the downloaded source code. in this chapter, we will secure Quickpoll using Basic authentication. then we
will add Oauth 2.0 support to Quickpoll. hence, the Chapter8\final folder contains two folders: quick-poll-
ch8-final-basic-auth and quick-poll-ch8-final. the quick-poll-ch8-final-basic-auth contains the
solution with Basic authentication added to Quickpoll. the quick-poll-ch8-final contains the completed
solution with both Basic authentication and Oauth 2.0 added. We understand that not all projects need
Oauth 2.0 support. hence, splitting the final solution into two projects allows you to examine and use features/
code that you need. please refer to the solutions under the final folder for complete listings containing getters/
setters and additional imports. the downloaded Chapter8 folder also contains an exported postman collection
containing reSt api requests associated with this chapter.

By requiring user authentication, we will be drastically changing the behavior of the QuickPoll
application. To allow existing users continue using our QuickPoll application, we will create a new version
3 of our API to implement these changes. To accomplish this, create a new com.apress.v3.controller
package under src\main\java and copy controllers from the com.apress.v2.controller package. For the
newly copied controllers, change the RequestMappings from “/v2/” to “/v3/” and change the controller
name prefixes from v2 to v3 to reflect version 3 of the API. We start the implementation by adding the Spring
Security starter dependency shown in Listing 8-4 to QuickPoll project’s pom.xml file. This would bring in all
Spring Security–related JAR files into the project.

Listing 8-4. Spring Starter POM

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

http://dx.doi.org/10.1007/9781484208243_8
http://dx.doi.org/10.1007/9781484208243_8
http://dx.doi.org/10.1007/9781484208243_8

Chapter 8 ■ SeCurity

132

On seeing Spring Security in the classpath, Spring Boot adds default security configuration that secures
all of the HTTP endpoints with a HTTP Basic authentication. Start the QuickPoll application and submit
a GET request to http://localhost:8080/v3/polls using Postman. Postman displays an authentication
window prompting you to enter a username and password, as shown in Figure 8-7.

Spring Boot’s default security configuration comes with a single user with username user. Spring Boot
generates a random password for the user and prints it at INFO log level during application startup. In your
console/log file you should see an entry like this one:

Using default security password: 554cc6c2-67e1-4f1e-8c5b-096609e2d0b1

Enter the username and password found in your console into the Postmaster login window and hit
Log In. Spring Security will validate the entered credentials and allow the request to be completed.

cURL
Up to this point, we have been using Postman for testing our QuickPoll application. In this chapter, we will
be using a command line tool named cURL in conjunction with Postman. cURL is a popular open-source
tool used for interacting with servers and transferring data with URL syntax. It comes installed in most
operating system distributions. If cURL is not available on your system, follow the instructions at
http://curl.haxx.se/download.html to download and install cURL on your machine. Refer to Appendix A
for instructions on installing cURL on a Windows machine.

To test our QuickPoll Basic authentication using cURL, run the following command at command line:

curl -vu user:554cc6c2-67e1-4f1e-8c5b-096609e2d0b1 http://localhost:8080/v3/polls

In this command, the –v option requests cURL to run in the debug mode (verbose). The –u option
allows us to specify the username and password needed for basic authentication. A full list of cURL options
is available at http://curl.haxx.se/docs/manual.html.

Figure 8-7. Basic authentication window in Postman

http://curl.haxx.se/download.html
http://curl.haxx.se/docs/manual.html

Chapter 8 ■ SeCurity

133

User Infrastructure Setup
Although Spring Boot has simplified Spring Security integration significantly, we would like to customize
security behavior so that it uses application users instead of Spring Boot’s generic user. We also would
like to apply the security to the v3 PollController, leaving other endpoints to be accessed anonymously.
Before we look at customizing Spring Security, let’s set up the infrastructure needed for creating/updating
QuickPoll application users.

We start by creating a User domain object as shown in Listing 8-5 to represents a QuickPoll user. The
User class contains attributes such as username, password, firstname, and lastname. It also contains
a Boolean flag to indicate if the user has administrative privileges. As a security best practice, we have
annotated the password field with @JsonIgnore. Therefore, the password field will not be included in a
user’s representation, thereby preventing clients from accessing the password value. Because “User” is a
keyword in databases such as Oracle, we have used the @Table annotation to give the name “Users” to table
corresponding to this User entity.

Listing 8-5. User class

package com.apress.domain;

import javax.persistence.Table;
import org.hibernate.annotations.Type;
import com.fasterxml.jackson.annotation.JsonIgnore;
import org.hibernate.annotations.Type;
import org.hibernate.validator.constraints.NotEmpty;

@Entity
@Table(name="USERS")
public class User {

 @Id
 @GeneratedValue
 @Column(name="USER_ID")
 private Long id;

 @Column(name="USERNAME")
 @NotEmpty
 private String username;

 @Column(name="PASSWORD")
 @NotEmpty
 @JsonIgnore
 private String password;

 @Column(name="FIRST_NAME")
 @NotEmpty
 private String firstName;

 @Column(name="LAST_NAME")
 @NotEmpty
 private String lastName;

Chapter 8 ■ SeCurity

134

 @Column(name="ADMIN", columnDefinition="char(3)")
 @Type(type="yes_no")
 @NotEmpty
 private boolean admin;

 // Getters and Setters ommited for brevity
}

We will be storing the QuickPoll users in a database and hence will require a UserRepository to
perform CRUD actions on the User entity. Listing 8-6 shows the UserRepository interface created under
com.apress.repository package. In addition to the finder methods provided by the CrudRepository, the
UserRepository contains a custom finder method named findByUsername. Spring Data JPA would provide
a runtime implementation so that the findByUsername method retrieves a user associated with the passed in
username parameter.

Listing 8-6. UserRepository interface

package com.apress.repository;

import org.springframework.data.repository.CrudRepository;
import com.apress.domain.User;

public interface UserRepository extends CrudRepository<User, Long> {
 public User findByUsername(String username);
}

Applications such as QuickPoll typically have an interface that allows new users to register. To keep
things simple for the purposes of this book, we have generated some test users shown in Listing 8-7. Copy
these SQL statements to the end of import.sql file under the QuickPoll project’s src\main\resources folder.
When the application gets bootstrapped, Hibernate will load these test users into the “Users” table and make
them available for the application’s use.

Listing 8-7. Test user data

insert into users (user_id, username, password, first_name, last_name, admin) values
(1, 'mickey', '$2a$10$kSqU.ek5pDRMMK21tHJlceS1xOc9Kna4F0DD2ZwQH/LAzH0ML0p6.', 'Mickey',
'Mouse', 'no');
insert into users (user_id, username, password, first_name, last_name, admin) values
(2, 'minnie', '$2a$10$MnHcLn.XdLx.iMntXsmdgeO1B4wAW1E5GOy/VrLUmr4aAzabXnGFq', 'Minnie',
'Mouse', 'no');
insert into users (user_id, username, password, first_name, last_name, admin) values
(3, 'donald', '$2a$10$0UCBI04PCXiK0pF/9kI7.uAXiHNQeeHdkv9NhA1/xgmRpfd4qxRMG', 'Donald',
'Duck', 'no');
insert into users (user_id, username, password, first_name, last_name, admin) values
(4, 'daisy', '$2a$10$aNoR88g5b5TzSKb7mQ1nQOkyEwfHVQOxHY0HX7irI8qWINvLDWRyS', 'Daisy',
'Duck', 'no');
insert into users (user_id, username, password, first_name, last_name, admin) values
(5, 'clarabelle', '$2a$10$cuTJd2ayEwXfsPdoF5/hde6gzsPx/gEiv8LZsjPN9VPoN5XVR8cKW',
'Clarabelle', 'Cow', 'no');
insert into users (user_id, username, password, first_name, last_name, admin) values
(6, 'admin', '$2a$10$JQOfG5Tqnf97SbGcKsalz.XpDQbXi1APOf2SHPVW27bWNioi9nI8y', 'Super',
'Admin', 'yes');

Chapter 8 ■ SeCurity

135

Notice that the password for the generated test users is not in plain text. Following good security
practices, I have encrypted the password values using the BCrypt (http://en.wikipedia.org/wiki/Bcrypt)
adaptive hashing function. Table 8-1 shows these test users and their plain text version of passwords.

UserDetailsService Implementation
In the Spring Security introduction section, we learned that a UserDetailsService is typically used to
retrieve user information, which gets compared with user-submitted credentials during the authentication
process. Listing 8-8 shows a UserDetailsService implementation for our QuickPoll application.

Listing 8-8. UserDetailsService implementation for QuickPoll

package com.apress.security;

import javax.inject.Inject;
import org.springframework.security.core.GrantedAuthority;
import org.springframework.security.core.authority.AuthorityUtils;
import org.springframework.security.core.userdetails.UserDetails;
import org.springframework.security.core.userdetails.UserDetailsService;
import org.springframework.security.core.userdetails.UsernameNotFoundException;
import org.springframework.stereotype.Component;
import com.apress.domain.User;
import com.apress.repository.UserRepository;

@Component
public class QuickPollUserDetailsService implements UserDetailsService {

 @Inject
 private UserRepository userRepository;

 @Override
 public UserDetails loadUserByUsername(String username) throws

UsernameNotFoundException {

 User user = userRepository.findByUsername(username);

 if(user == null) {
 throw new UsernameNotFoundException(String.format("User with the

username %s doesn't exist", username));
 }

Table 8-1. Test user information

Username Password Is Admin

Mickey Cheese No

Minnie red01 No

Donald Quack No

Daisy quack2 No

Clarabelle Moo No

Admin Admin Yes

http://en.wikipedia.org/wiki/Bcrypt

Chapter 8 ■ SeCurity

136

 // Create a granted authority based on user's role.
 // Can't pass null authorities to user. Hence initialize with an

empty arraylist
 List<GrantedAuthority> authorities = new ArrayList<>();
 if(user.isAdmin()) {
 authorities = AuthorityUtils.createAuthorityList("ROLE_ADMIN");
 }

 // Create a UserDetails object from the data
 UserDetails userDetails = new org.springframework.security.core.userdetails.

User(user.getUsername(), user.getPassword(), authorities);

 return userDetails;
 }
}

The QuickPollUserDetailsService class makes use of UserRepository to retrieve User
information from the database. It then checks if the retrieved user has administrative rights and
constructs an admin GrantedAuthority, namely, ROLE_ADMIN. The Spring Security infrastructure
expects the loadUserByUsername method to return an instance of type UserDetails. Hence, the
QuickPollUserDetailsService class creates the o.s.s.c.u.User instance and populates it with the
data retrieved from the database. The o.s.s.c.u.User is a concrete implementation of the UserDetails
interface. If the QuickPollUserDetailsService can’t find a user in the database for the passed-in username,
it will throw a UsernameNotFoundException exception.

Customizing Spring Security
Customizing Spring Security’s default behavior involves creating a configuration class that is annotated
with @EnableWebSecurity. This configuration class typically extends the org.springframework.security.
config.annotation.web.configuration.WebSecurityConfigurer class that provides helper methods to
simplify our security configuration. Listing 8-9 shows the SecurityConfig class that will contain security
related configuration for QuickPoll application.

Listing 8-9. Security configuration for QuickPoll

package com.apress;

import javax.inject.Inject;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation.authentication.builders.
AuthenticationManagerBuilder;
import org.springframework.security.config.annotation.web.configuration.EnableWebSecurity;
import org.springframework.security.config.annotation.web.configuration.
WebSecurityConfigurerAdapter;
import org.springframework.security.core.userdetails.UserDetailsService;
import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;

Chapter 8 ■ SeCurity

137

@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

 @Inject
 private UserDetailsService userDetailsService;

 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws Exception {
 auth.userDetailsService(userDetailsService)
 .passwordEncoder(new BCryptPasswordEncoder());
 }
}

The SecurityConfig class declares a userDetailsService property, which gets injected with a
QuickPollUserDetailsService instance at runtime. It also overrides a super class’s configure method that
takes an AuthenticationManagerBuilder as parameter. The AuthenticationManagerBuilder is a helper
class implementing the Builder pattern that provides an easy way of assembling an AuthenticationManager.
In our method implementation we use the AuthenticationManagerBuilder to add the UserDetailsService
instance. Because we have encrypted the passwords stored in the database using BCrypt algorithm, we provide
an instance of BCryptPasswordEncoder. The authentication manager framework will use the password encoder
to compare the plain string provided by the user with the encrypted hash stored in the database.

With this configuration in place, restart the QuickPoll application and run the following command at
the command line:

curl -u mickey:cheese http://localhost:8080/v2/polls

If you run the command without the –u option and the username/password data, you will receive a 403
error from the server as shown here:

{"timestamp":1429998300969,"status":401,"error":"Unauthorized","message":"Full
authentication is required to access this resource","path":"/v2/polls"}

Securing URI
The SecurityConfig class introduced in the previous section gets us one step closer by configuring HTTP
Basic authentication to use QuickPoll users. This configuration, however, protects all endpoints and requires
authentication to access resources. To implement our requirement to just secure v3 Poll API, we will override
another WebSecurityConfigurer’s config method. Listing 8-10 shows the config method implementation
that needs to be added to the SecurtyConfig class.

Listing 8-10. New config method in SecurityConfig

import org.springframework.security.config.annotation.web.builders.HttpSecurity;
import org.springframework.security.config.http.SessionCreationPolicy;

@Override
protected void configure(HttpSecurity http) throws Exception {

 http
 .sessionManagement()
 .sessionCreationPolicy(SessionCreationPolicy.STATELESS)
 .and()

Chapter 8 ■ SeCurity

138

 .authorizeRequests()
 .antMatchers("/v1/**", "/v2/**", "/swagger-ui/**", "/api-docs/**").permitAll()
 .antMatchers("/v3/polls/ **").authenticated()
 .and()
 .httpBasic()
 .realmName("Quick Poll")
 .and()
 .csrf()
 .disable();
}

The HttpSecurity parameter passed into the config method in Listing 8-10 allows us to specify the
URI that should be secured or unsecured. We begin the method implementation by requesting Spring
Security to not create a HTTP session and not store logged in user’s SecurityContext in the session. This
is achieved using the SessionCreationPolicy.STATELESS creation policy. We then use antMatchers to
provide Ant style URI expressions that we don’t want Spring Security protecting. Using the permitAll
method we are specifying that the API versions one/two and Swagger UI should be available anonymously.
The next antMatchers along with authenticated method specifies that Spring Security should only allow
authenticated users to access V3 Polls API. Finally, we enable HTTP Basic authentication and set the realm
name to “Quick Poll”. Restart QuickPoll application and you should be prompted for authentication only on
the /v3/polls resources.

 ■ Note Cross-site request forgery, or CSrF (http://en.wikipedia.org/wiki/Cross-site_request_
forgery), is a type of security vulnerability whereby a malicious website forces the end user to execute
unwanted commands on a different website in which they are currently authenticated. Spring Security by
default enables CSrF protection and highly recommends using it for requests submitted by a user via a
browser. For services that are used by nonbrowser clients, the CSrF can be disabled. By implementing custom
RequestMatchers, it is possible to disable CSrF only for certain urLs or http methods.

to keep things simple and manageable for this book, we have disabled CSrF protection.

The last security requirement that we have is to ensure that only users with administrative privileges
can delete a poll. To implement this authorization requirement, we will apply Spring Security’s method level
security on the deletePoll method. Spring’s method level security can be enabled using the aptly named org.
springframework.security.config.annotation.method.configuration. EnableGlobalMethodSecurity
annotation. Listing 8-11 shows the annotation added to the SecurityConfig class.

Listing 8-11. EnableGlobalMethodSecurity annotation added

package com.apress;
import org.springframework.security.config.annotation.method.configuration.
EnableGlobalMethodSecurity;

@Configuration
@EnableWebSecurity
@EnableGlobalMethodSecurity(prePostEnabled = true)
public class SecurityConfig extends WebSecurityConfigurerAdapter {
 // Content removed for brevity
}

http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery

Chapter 8 ■ SeCurity

139

Spring Security supports a rich set of class and method level authorization annotations along with
standards-based JSR 250 annotation security. The prePostEnabled flag in EnableGlobalMethodSecurity
requests Spring Security to enable annotations that perform pre- and postmethod invocation authorization
checks. The next step is to annotate the v3 PollController’s deletePoll method with @PreAuthorize
annotation as showing in Listing 8-12.

Listing 8-12. PreAuthorize annotation added

import org.springframework.security.access.prepost.PreAuthorize;

@PreAuthorize("hasAuthority('ROLE_ADMIN')")
public ResponseEntity<Void> deletePoll(@PathVariable Long pollId) {
 // Code removed for brevity
}

The @PreAuthorize annotation decides if the deletePoll method can be invoked or not. Spring
Security makes this decision by evaluating the Spring-EL expression passed in as the annotation’s value.
In this case, the hasAuthority checks if the logged-in user has the “ROLE_ADMIN” authority. Restart the
application and perform a DELETE on the endpoint http://localhost:8080/v3/polls/12 using Postman.
When prompted for credentials, enter the username mickey and the password cheese, and hit Log In.
Figure 8-8 shows the request and associated inputs.

Since the user mickey doesn’t have administrative rights, you will see an unauthorized response from
the service, as shown in Figure 8-9.

Figure 8-8. Deleting poll with unauthorized users

Chapter 8 ■ SeCurity

140

Now let’s retry this request using an admin user with administrative rights. In Postman, click the Basic
Auth tab and enter the credentials admin/admin and hit “Refresh headers” as shown in Figure 8-10.
On submitting the request, you should see the Poll resource with ID 12 deleted.

To delete a Poll using cURL run the command below:

curl -i -u admin:admin -X DELETE http://localhost:3/v3/polls/13

The above command deletes a Poll resource with ID 13. The –i option request curl to output the
response headers. The –X option allows us to specify the HTTP method name. In our case, we specified the
DELETE HTTP method. The output of this result is shown in Listing 8-13.

Figure 8-10. Basic Auth Admin credentials in Postman

Figure 8-9. Unauthorized delete response

Chapter 8 ■ SeCurity

141

Listing 8-13. Output of CURL Delete

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY
Content-Length: 0
Date: Sat, 25 Apr 2015 21:50:35 GMT

QuickPoll OAuth 2.0 Provider Implementation
Consider the scenario in which QuickPoll wants to venture into the mobile app world with their iOS app.
To facilitate that, we will be implementing OAuth so that the mobile client can perform operations on behalf
of the logged in user without storing and sending his/her credentials for each request. Because QuickPoll
developers will be developing the iOS application, we will be implementing OAuth’s password grant type, as
it provides the best user experience that doesn’t involve redirects and navigations to other pages.

Spring Security provides an OAuth module that simplifies OAuth 1 and OAuth 2 integration. We begin
OAuth implementation in QuickPoll by adding the Spring Security OAuth 2 dependency to project’s pom.xml
file, as shown in Listing 8-14.

Listing 8-14. Spring Security OAuth 2 Dependency

<dependency>
 <groupId>org.springframework.security.oauth</groupId>
 <artifactId>spring-security-oauth2</artifactId>
 <version>2.0.7.RELEASE</version>
</dependency>

We want to ensure that adding OAuth to QuickPoll shouldn’t break other clients currently using Basic
Authentication (or any future authentication mechanism implementations such as Form-based login).
To achieve this, we will add another request mapping to the PollController class as shown in Listing 8-15.
The new mapping /oauth2/v3 allows us to access the same PollController resources via an additional set
of URIs such as /oauth2/v3/polls and /outh2/v3/polls/12. It will also allow us to apply additional OAuth
security to these PollController resources.

Listing 8-15. PollController with multiple mapping

@RestController("pollControllerV3")
@RequestMapping({"/v3/", "/oauth2/v3/"})
@Api(value = "polls", description = "Poll API")
public class PollController {
 // Code removed for brevity
}

Implementing OAuth 2 requires us to implement two components—an authorization server and a
resource server. In a production scenario, these components reside on their own servers for scalability
and performance reasons. These components would share a backend database to add/retrieve access
tokens. However, to keep things simple, we will implement both authentication server and resource server
components in the QuickPoll application with an in-memory token store.

Chapter 8 ■ SeCurity

142

As discussed in the previous sections, an OAuth 2 authorization server is responsible for managing
client details, verifying a resource owner’s authorization, and generating tokens such as authorization code,
access, and refresh tokens. To verify a resource owner’s credentials, the authorization server needs access to
an AuthenticationManager that can validate user-submitted credentials against the user datastore. As you
will recall from Listing 8-9, we have already configured an AuthenticationManager in the SecurityConfig
class to perform this validation. We just need to expose it as a bean so that our authorization server can
use it. Listing 8-16 shows the modified SecurityConfig class with the new AuthenticationManager bean
declared.

Listing 8-16. Updated SecurityConfig

@Configuration
@EnableWebMvcSecurity
@EnableGlobalMethodSecurity(prePostEnabled = true)
public class SecurityConfig extends WebSecurityConfigurerAdapter {

 // Other code omitted for brevity

 @Override
 @Bean
 protected AuthenticationManager authenticationManager() throws Exception {
 return super.authenticationManager();
 }
}

Spring Security provides an @EnableAuthorizationServer annotation and org.springframework.
security.oauth2.config.annotation.web.configuration.AuthorizationServerConfigurerAdapter for
implementing AuthorizationServer. The @EnableAuthorizationServer annotation enables the different
endpoints needed to interact with an authorization server. Table 8-2 shows the different endpoints that get
enabled. The AuthorizationServerConfigurerAdapter can be used to configure the client properties, grant
types supported, and security configuration for endpoints.

The authorization server for QuickPoll application is shown in Listing 8-17. In the implementation,
we add the injected AuthenticationManager instance to the configuration. This addition of
AuthenticationManager instance enables the password type grant that we intend to use for the iOS client.

Table 8-2. Authorization server endpoints

Endpoint Description

/oauth/token Endpoint used for generating access tokens

/oauth/check_token Endpoint a resource server uses to decode access tokens generated by
authorization server

/oauth/confirm_access Endpoint a resource user posts for grant approval

/oauth/error Endpoint responsible for rendering errors in the authorization server

/oauth/authorize Endpoint used for generating authorization codes; by default, the
authorization server doesn’t secure this endpoint

Chapter 8 ■ SeCurity

143

Listing 8-17. QuickPoll authorization server

package com.apress;

import javax.inject.Inject;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.authentication.AuthenticationManager;
import org.springframework.security.oauth2.config.annotation.configurers.
ClientDetailsServiceConfigurer;
import org.springframework.security.oauth2.config.annotation.web.configuration.
AuthorizationServerConfigurerAdapter;
import org.springframework.security.oauth2.config.annotation.web.configuration.
EnableAuthorizationServer;
import org.springframework.security.oauth2.config.annotation.web.configurers.
AuthorizationServerEndpointsConfigurer;

@Configuration
@EnableAuthorizationServer
public class OAuth2AuthorizationServerConfig extends AuthorizationServerConfigurerAdapter {

 @Inject
 private AuthenticationManager authenticationManager;

 @Override
 public void configure(AuthorizationServerEndpointsConfigurer endpoints)

throws Exception {
 endpoints.authenticationManager(this.authenticationManager);
 }

 @Override
 public void configure(ClientDetailsServiceConfigurer clients) throws Exception {
 clients
 .inMemory()
 .withClient("quickpolliOSClient")
 .secret("top_secret")
 .authorizedGrantTypes("password")
 .scopes("read", "write")
 .resourceIds("QuickPoll_Resources");
 }
}

In the second configure method; we use the ClientDetailsServiceConfigurer parameter to add
the details of our iOS client. Clients typically would use a registration form and follow an established
approval process for getting added to the authorization server. Here we have skipped that process and are
storing our client details in memory to keep our implementation manageable. The client details include the
quickpolliOSClient client ID and a client secret top_secret. Using the authorizedGrantTypes method,
we specify that the client is authorized to use the password grant type when communicating with the
authorization server.

We also specify two scopes: read and write. Scopes are arbitrary strings that represent the permissions
that a client is allowed to perform on an API. For example, LinkedIn uses the scopes r_emailaddress,
w_messages, and r_fullprofile to represent actions such as read email address (r_ prefix) or write
messages (w_ prefix). It is possible to design the scopes to be as granular as possible and restrict access to

Chapter 8 ■ SeCurity

144

the API. In our application, we just declared two generic read and write scopes. Finally, we provide the
QuickPoll_Resources resource id. Resource id is an arbitrary string that represent a set of resources that
a client can request access. This concludes the authorization server component implementation. Spring
Security’s sensible defaults will create an in-memory token store for this authorization server to use.

We now move on to implementing the resource server component. Following the
authorization server convention, Spring Security provides the @EnableResourceServer
annotation and ResourceServerConfigurerAdapter class that simplify the resource server
implementation. The EnableResourceServer annotation enables a Spring Security filter named
OAuth2AuthenticationProcessingFilter that authenticates requests using a passed in OAuth2 token.
The ResourceServerConfigurerAdapter provides methods that can be used to access rules to secure
resources using HttpSecurity class. Listing 8-18 shows the resource implementation for our QuickPoll
application.

Listing 8-18. QuickPoll resource server

package com.apress;

import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation.web.builders.HttpSecurity;
import org.springframework.security.oauth2.config.annotation.web.configuration.
EnableResourceServer;
import org.springframework.security.oauth2.config.annotation.web.configuration.
ResourceServerConfigurerAdapter;
import org.springframework.security.oauth2.config.annotation.web.configurers.
ResourceServerSecurityConfigurer;

@Configuration
@EnableResourceServer
public class OAuth2ResourceServerConfig extends ResourceServerConfigurerAdapter {

 @Override
 public void configure(ResourceServerSecurityConfigurer resources) {
 resources.resourceId("QuickPoll_Resources");
 }

 @Override
 public void configure(HttpSecurity http) throws Exception {
 http
 .requestMatchers().antMatchers("/oauth2/v3/polls/**")
 .and()
 .authorizeRequests().antMatchers("/oauth2/v3/polls/**").authenticated();
 }

}

In the OAuth2ResourceServerConfig implementation, we use the ResourceServerSecurityConfigurer
class to create a resource id with the name QuickPoll_Resources. The name of this resource id must match
the name that we used in the authorization server. In the second config method we use the passed-in
HttpSecurity instance to secure the /oauth2/v3/polls/ URI and only allow authenticated users to access
v3 Poll resources.

This concludes the configuration required to set up the authorization and resource servers.

Chapter 8 ■ SeCurity

145

Testing QuickPoll OAuth 2.0 Implementation
Spring Security OAuth 2 module automatically secures the /oauth/token endpoint using HTTP Basic
authentication on client’s credentials. Because our QuickPoll iOS client is already registered with the
authorization server, we can generate a token for the user mickey by running the following curl command:

curl -u quickpolliOSClient:top_secret -X POST http://localhost:8080/oauth/token -H "Accept:
application/json" -d "username=mickey&password=cheese&grant_type=password"

The command creates a POST request to the /oauth/token endpoint and passes the client credentials
for HTTP Basic authentication. The POST request payload contains the resources user’s username and
password and the requested grant type. On receiving the request, the authorization server will generate the
following response with an access token:

{"access_token":"77ed953e-b3b6-4ea1-820e-2e9acc702293","token_type":"bearer",
"expires_in":42874,"scope":"read write"}

From this response, you will notice that the returned token type is set to bearer. The RFC-6750 specifies
the usage of bearer tokens to access resources in an OAuth 2.0 environment. As the name suggests, a bearer
token allows the possessing party to access the protected resource. Thus, if the bearer token is compromised,
it is possible for a third party to access the resource. The expires_in value indicates the token’s lifetime in
seconds.

Once the client receives the access token, it can present it to a resource server using the Authorization
HTTP header via the following format:

Authorization: Bearer [Access Token]

The following cURL command requests the /oauth2/v3/polls resource using the token that we
obtained in the previous step:

curl http://localhost:8080/oauth2/v3/polls -H "Authorization: Bearer 77ed953e-b3b6-4ea1-
820e-2e9acc702293"

 ■ Note the generated Oauth 2 access tokens differ from one machine to another and also expire after
certain time. Make sure that you generate an access token and use it to retrieve the poll resource instead of
copying this token.

Spring Security uses the submitted token to retrieve the user from the backend database and creates
authorities based on the roles stored in the database. Hence, submitting a request to delete a POST by the
user mickey’s token would result in an access denied error, as shown here:

curl -X DELETE http://localhost:8080/oauth2/v3/polls/11 -H "Authorization:
Bearer 77ed953e-b3b6-4ea1-820e-2e9acc702293"
{"error":"access_denied","error_description":"Access is denied"}

Now, let’s generate a token for the admin user by running the cURL command:

curl -u quickpolliOSClient:top_secret -X POST http://localhost:8080/oauth/token -H
"Accept: application/json" -d "username=admin&password=admin&grant_type=password"

Chapter 8 ■ SeCurity

146

On receiving the response, copy the returned access token and submit the following cURL command to
delete the Poll with id 11:

curl -X DELETE http://localhost:8080/oauth2/v3/polls/11 -H "Authorization: Bearer 946e1f71-
21c3-4923-bf96-3b0f8cea708a"

You will notice that the command ran successfully and the poll was deleted. Finally, to ensure that the
Basic authentication is working, run the following cURL command to retrieve polls:

curl -u mickey:cheese http://localhost:8080/v3/polls

In this section, we have looked at implementing a OAuth 2 password grant type using Spring Security.
This implementation can be easily extended to include other grant types or plug in a persistent token store.

Summary
Security is an important aspect of any enterprise application. In this chapter, we reviewed strategies for
securing REST services. We also took a deeper look into OAuth 2 and reviewed its different components.
We then used Spring Security to implement Basic Authentication and OAuth 2 in our QuickPoll application.
In the next chapter, we will use Spring’s RestTemplate to build REST clients. We will also use the Spring MVC
Test framework to perform unit and integration testing on REST controllers.

147

Chapter 9

Clients and Testing

In this chapter we will discuss:

•	 Building clients using RestTemplate

•	 Spring Test framework basics

•	 Unit testing MVC controllers

•	 Integration testing MVC controllers

We have looked at building REST services using Spring. In this chapter we will look at building clients
that consume these REST services. We will also examine the Spring Test framework that can be used to
perform unit and end-to-end testing of REST services.

QuickPoll Java Client
Consuming REST services involves building a JSON or XML request payload, transmitting the payload
via HTTP/HTTPS, and consuming the returned JSON response. This flexibility opens doors to numerous
options for building REST clients in Java (or, as a matter of fact, any technology). A straightforward approach
for building a Java REST client is to use core JDK libraries. Listing 9-1 shows an example of a client reading a
Poll using the QuickPoll REST API.

Listing 9-1. Reading a poll using Java URLClass

public void readPoll() {
 HttpURLConnection connection = null;
 BufferedReader reader = null;
 try {
 URL restAPIUrl = new URL("http://localhost:8080/v1/polls/1");
 connection = (HttpURLConnection) restAPIUrl.openConnection();
 connection.setRequestMethod("GET");

 // Read the response
 reader = new BufferedReader(new InputStreamReader(connection.

getInputStream()));
 StringBuilder jsonData = new StringBuilder();
 String line;
 while ((line = reader.readLine()) != null) {
 jsonData.append(line);
 }

Chapter 9 ■ Clients and testing

148

 System.out.println(jsonData.toString());
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 finally {
 // Clean up
 IOUtils.closeQuietly(reader);
 if(connection != null)
 connection.disconnect();
 }
}

Although there is nothing wrong with the approach in Listing 9-1, there is a lot of boilerplate code that
needs to be written to perform a simple REST operation. The readPoll method would grow even bigger if we
were to include the code to parse the JSON response. Spring abstracts this boilerplate code into templates
and utility classes and makes it easy to consume REST services.

RestTemplate
Central to Spring’s support for building REST clients is the org.springframework.web.client.
RestTemplate. The RestTemplate takes care of the necessary plumbing needed to communicate with REST
services and automatically marshals/unmarshals HTTP request and response bodies. The RestTemplate
like Spring’s other popular helper classes such as JdbcTemplate and JmsTemplate, is based on the Template
Method design pattern.1

The RestTemplate and associated utility classes are part of the spring-web.jar file. If you are building
a standalone REST client using RestTemplate, you need to add the spring-web dependency, shown in
Listing 9-2, to your pom.xml file.

Listing 9-2. spring-web.jar dependency

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>
 <version>4.1.4.RELEASE</version>
</dependency>

RestTemplate provides convenient methods to perform API requests using six commonly used HTTP
methods. In the next sections, we will look at some of these functions along with a generic yet powerful
exchange method to build QuickPoll clients.

 ■ Note in this chapter we will continue building on the work that we did on the Quickpoll application in
previous chapters. alternatively, a starter project inside the Chapter9\starter folder of the downloaded source
code is available for you to use. the completed solution is available under the Chapter9\final folder. please
refer to this solution for complete listings containing getters/setters and additional imports.

1http://en.wikipedia.org/wiki/Template_method_pattern.

http://dx.doi.org/10.1007/9781484208243_9
http://dx.doi.org/10.1007/9781484208243_9
http://en.wikipedia.org/wiki/Template_method_pattern

Chapter 9 ■ Clients and testing

149

Getting Polls
RestTemplate provides a getForObject method to retrieve representations using the GET HTTP method.
Listing 9-3 shows the three f lavors of the getForObject method.

Listing 9-3. getForObject method flavors

public <T> T getForObject(String url, Class<T> responseType, Object... urlVariables) throws
RestClientException {}
public <T> T getForObject(String url, Class<T> responseType, Map<String,?> urlVariables)
throws RestClientException
public <T> T getForObject(URI url, Class<T> responseType) throws RestClientException

The first two methods accept a URI template string, a return value type, and URI variables that can
be used to expand the URI template. The third flavor accepts a fully formed URI and return value type.
RestTemplate encodes the passed-in URI templates and, hence, if the URI is already encoded you must use
the third method flavor. Otherwise, it will result in double encoding of the URI, causing malformed URI errors.

The Listing 9-4 shows the QuickPollClient class and the usage of getForObject method to retrieve
a Poll for a given poll id. The QuickPollClient is placed under the com.apress.client package of our
QuickPoll application and is interacting with the first version of our QuickPoll API. In the upcoming sections,
we will create clients that interact with second and third versions of the API. RestTemplate is threadsafe
and, hence, we created a class-level RestTemplate instance to be used by all client methods. Because we
have specified the Poll.class as the second parameter, RestTemplate uses HTTP message converters and
automatically converts the HTTP response content into a Poll instance.

Listing 9-4. QuickPollClient and getForObject usage

package com.apress.client;

import org.springframework.web.client.RestTemplate;
import com.apress.domain.Poll;

public class QuickPollClient {

 private static final String QUICK_POLL_URI_V1 = "http://localhost:8080/v1/polls";
 private RestTemplate restTemplate = new RestTemplate();

 public Poll getPollById(Long pollId) {
 return restTemplate.getForObject(QUICK_POLL_URI_V1 + "/{pollId}", Poll.

class, pollId);
 }
}

This listing demonstrates the power of RestTemplate. It took about a dozen lines in Listing 9-1, but we
were able to accomplish that and more with a couple of lines using RestTemplate. The getPollById method
can be tested with a simple main method in QuickPollClient class:

public static void main(String[] args) {
 QuickPollClient client = new QuickPollClient();
 Poll poll = client.getPollById(1L);
 System.out.println(poll);
}

Chapter 9 ■ Clients and testing

150

 ■ Note ensure that you have the Quickpoll application up and running before you run the main method.

Retrieving a Poll collection resource is a little trickier as providing List<Poll>.class as a return value
type to the getForObject would result in compilation error. One approach is to simply specify that we are
expecting a collection:

List allPolls = restTemplate.getForObject(QUICK_POLL_URI_V1, List.class);

However, because RestTemplate can’t automatically guess the Java class type of the elements, it would
deserialize each JSON object in the returned collection into a LinkedHashMap. Hence, the call returns all of
our Polls as a collection of type List<LinkedHashMap>.

To address this issue, Spring provides a org.springframework.core.ParameterizedTypeReference
abstract class that can capture and retain generic type information at runtime. So, to specify the fact that we
are expecting a list of Poll instances, we create a subclass of ParameterizedTypeReference:

ParameterizedTypeReference<List<Poll>> responseType = new ParameterizedTypeReference<List<P
oll>>() {};

RestTemplate HTTP specific methods such as getForObject don’t take a ParameterizedTypeReference
as their parameter. As shown in Listing 9-5, we need to use RestTemplate’s exchange method in conjunction
with ParameterizedTypeReference. The exchange method infers the return type information from the
passed-in responseType parameter and returns a ResponseEntity instance. Invoking the getBody method
on ResponseEntity gives us the Poll collection.

Listing 9-5. Get All Polls using RestTemplate

import org.springframework.core.ParameterizedTypeReference;
import org.springframework.http.ResponseEntity;
import org.springframework.http.HttpMethod;

public List<Poll> getAllPolls() {
 ParameterizedTypeReference<List<Poll>> responseType = new ParameterizedTypeReference

<List<Poll>>() {};
 ResponseEntity<List<Poll>> responseEntity = restTemplate.exchange(QUICK_POLL_URI_V1,

HttpMethod.GET, null, responseType);
 List<Poll> allPolls = responseEntity.getBody();

 return allPolls;
}

We can also accomplish similar behavior with getForObject by requesting RestTemplate to return an
array of Poll instances:

Poll[] allPolls = restTemplate.getForObject(QUICK_POLL_URI_V1, Poll[].class);

Creating a Poll
RestTemplate provides two methods—postForLocation and postForObject to perform HTTP POST
operations on a resource. Listing 9-6 gives the API for the two methods.

Chapter 9 ■ Clients and testing

151

Listing 9-6. RestTemplate’s POST support

public URI postForLocation(String url, Object request, Object... urlVariables) throws
RestClientException
public <T> T postForObject(String url, Object request, Class<T> responseType, Object...
uriVariables) throws RestClientException

The postForLocation method performs a HTTP POST on the given URI and returns the value of the
Location header. As we have seen in our QuickPoll POST implementations, the Location header contains the
URI of the newly created resource. The postForObject works similar to postForLocation but converts a response
into a representation. The responseType parameter indicates the type of representation to be expected.

Listing 9-7 shows the QuickPollClient’s createPoll method that creates a new Poll using the
postForLocation method.

Listing 9-7. Create a poll using postForLocation

public URI createPoll(Poll poll) {
 return restTemplate.postForLocation(QUICK_POLL_URI_V1, poll);
}

Update the QuickPollClient’s main method with this code to test the createPoll method:

public static void main(String[] args) {
 QuickPollClient client = new QuickPollClient();

 Poll newPoll = new Poll();
 newPoll.setQuestion("What is your favourate color?");
 Set<Option> options = new HashSet<>();
 newPoll.setOptions(options);

 Option option1 = new Option(); option1.setValue("Red"); options.add(option1);
 Option option2 = new Option(); option2.setValue("Blue");options.add(option2);

 URI pollLocation = client.createPoll(newPoll);
 System.out.println("Newly Created Poll Location " + pollLocation);
}

PUT Method
The RestTemplate provides the aptly named put method to support the PUT HTTP method. Listing 9-8
shows QuickPollClient’s updatePoll method that updates a poll instance. Notice that the put method
doesn’t return any response and communicates failures by throwing RestClientException or its subclasses.

Listing 9-8. Update a poll using put

public void updatePoll(Poll poll) {
 restTemplate.put(QUICK_POLL_URI_V1 + "/{pollId}", poll, poll.getId());
}

Chapter 9 ■ Clients and testing

152

DELETE Method
The RestTemplate provides three overloaded delete methods to support DELETE HTTP operations.
The delete methods follows semantics similar to PUT and doesn’t return a value. They communicate
any exceptions via RestClientException or its subclasses. Listing 9-9 shows the deletePoll method
implementation in QuickPollClient class.

Listing 9-9. Delete a poll

public void deletePoll(Long pollId) {
 restTemplate.delete(QUICK_POLL_URI_V1 + "/{pollId}", pollId);
}

Handling Pagination
In version two of our QuickPoll API, we introduced paging. So, the clients upgrading to version two need to
reimplement the getAllPolls method. All other client methods will remain unchanged.

To reimplement the getAllPolls, our first instinct would be to simply pass the org.springframework.
data.domain.PageImpl as the parameterized type reference:

ParameterizedTypeReference<PageImpl<Poll>> responseType = new ParameterizedTypeReference<Pa
geImpl<Poll>>() {};
ResponseEntity<PageImpl<Poll>> responseEntity = restTemplate.exchange(QUICK_POLL_URI_2,
HttpMethod.GET, null, responseType);
PageImpl<Poll> allPolls = responseEntity.getBody();

The PageImpl is a concrete implementation of the org.springframework.data.domain.Page interface
and can hold all of the paging and sorting information returned by the QuickPoll REST API. The only
problem with this approach is that PageImpl doesn’t have a default constructor and Spring’s HTTP message
converter would fail with the following exception:

Could not read JSON: No suitable constructor found for type [simple type, class org.
springframework.data.domain.PageImpl<com.apress.domain.Poll>]: can not instantiate from JSON
object (need to add/enable type information?)

To handle pagination and successfully map JSON to an object, we will create a Java class that mimics
PageImpl class but also has a default constructor, as shown in Listing 9-10.

Listing 9-10. PageWrapper class

package com.apress.client;

import java.util.List;
import org.springframework.data.domain.Sort;

public class PageWrapper<T> {
 private List<T> content;

 private Boolean last;
 private Boolean first;
 private Integer totalPages;
 private Integer totalElements;
 private Integer size;
 private Integer number;

Chapter 9 ■ Clients and testing

153

 private Integer numberOfElements;
 private Sort sort;

 // Getters and Setters removed for brevity
}

 ■ Note there are occasions when you need to generate Java types from JsOn. this is especially true for apis
that don’t provide a Java client library. the online tool www.jsonschema2pojo.org provides a convenient way to
generate Java pOJOs from JsOn schema or JsOn data.

The PageWrapper class can hold the returned content and has attributes to hold the paging information.
Listing 9-11 shows the QuickPollClientV2 class that makes use of PageWrapper to interact with second
version of API. Notice that the getAllPolls method now takes two parameters: page and size. The page
parameter determines the requested page number and size parameter determines the number of elements
to be included in the page. This implementation can be further enhanced to accept sort parameters and
provide sorting functionality.

Listing 9-11. QuickPoll Client for version two

package com.apress.client;
import org.springframework.core.ParameterizedTypeReference;
import org.springframework.http.HttpMethod;
import org.springframework.http.ResponseEntity;
import org.springframework.web.client.RestTemplate;
import org.springframework.web.util.UriComponentsBuilder;
import com.apress.domain.Poll;

public class QuickPollClientV2 {
 private static final String QUICK_POLL_URI_2 = "http://localhost:8080/v2/polls";
 private RestTemplate restTemplate = new RestTemplate();

 public PageWrapper<Poll> getAllPolls(int page, int size) {
 ParameterizedTypeReference<PageWrapper<Poll>> responseType = new

ParameterizedTypeReference<PageWrapper<Poll>>() {};
 UriComponentsBuilder builder = UriComponentsBuilder
 .fromHttpUrl(QUICK_POLL_URI_2)
 .queryParam("page", page)
 .queryParam("size", size);

 ResponseEntity<PageWrapper<Poll>> responseEntity = restTemplate.exchange

(builder.build().toUri(), HttpMethod.GET, null, responseType);
 return responseEntity.getBody();
 }
}

www.jsonschema2pojo.org

Chapter 9 ■ Clients and testing

154

Handling Basic Authentication
Up to this point we have created clients for the first and second version of QuickPoll API. In Chapter 8, we
secured the third version of the API and any communication with that version requires Basic Authentication.
For example, running a delete method on URI http://localhost:8080/v3/polls/3 without any
authentication would result in an HttpClientErrorException with a 401 status code.

To successfully interact with our QuickPoll v3 API, we need to programmatically base 64 encode a user’s
credentials and construct an authorization request header. Listing 9-12 shows such implementation: we
concatenate the passed-in username and password. We then base 64 encode it and create an authorization
header by prefixing Basic to the encoded value.

Listing 9-12. Authentication header implementation

import org.apache.tomcat.util.codec.binary.Base64;
import org.springframework.http.HttpHeaders;

private HttpHeaders getAuthenticationHeader(String username, String password) {
 String credentials = username + ":" + password;
 byte[] base64CredentialData = Base64.encodeBase64(credentials.getBytes());

 HttpHeaders headers = new HttpHeaders();
 headers.set("Authorization", "Basic " + new String(base64CredentialData));
 return headers;
}

The RestTemplate’s exchange method can be used to perform a HTTP operation and takes in an
authorization header. Listing 9-13 shows the QuickPollClientV3BasicAuth class with deletePoll method
implementation using Basic Authentication.

Listing 9-13. QuickPoll Client with Basic Auth

package com.apress.client;

import org.springframework.http.HttpHeaders;
import org.springframework.http.HttpMethod;
import org.springframework.web.client.RestTemplate;
import org.springframework.http.HttpEntity;

public class QuickPollClientV3BasicAuth {
 private static final String QUICK_POLL_URI_V3 = "http://localhost:8080/v3/polls";
 private RestTemplate restTemplate = new RestTemplate();

 public void deletePoll(Long pollId) {
 HttpHeaders authenticationHeaders = getAuthenticationHeader("admin",

"admin");
 restTemplate.exchange(QUICK_POLL_URI_V3 + "/{pollId}",
 HttpMethod.DELETE, new HttpEntity<Void>(authenticationHeaders), Void.class,

pollId);
 }
}

http://dx.doi.org/10.1007/9781484208243_8

Chapter 9 ■ Clients and testing

155

 ■ Note in this approach, we have manually set the authentication header to each request. another approach
is to implement a custom ClientHttpRequestInterceptor that intercepts each outgoing request and
automatically appends the header to it.

Handling OAuth 2
Spring provides a specialized version of RestTemplate named OAuth2RestTemplate that simplifies
consumption of OAuth2 protected services. The OAuth2RestTemplate requires an instance of
OAuth2ProtectedResourceDetails that contains details of a protected resource such as client id, client
secret, and token URI. Because the QuickPoll API uses a “Password” grant type, we will be constructing the
OAuth2RestTemplate using a ResourceOwnerPasswordResourceDetails instance, as shown in Listing 9-14.

Listing 9-14. OAuth2 RestTemplate creation

import org.springframework.security.oauth2.client.OAuth2RestTemplate;
import org.springframework.security.oauth2.client.token.grant.password.
ResourceOwnerPasswordResourceDetails;
private OAuth2RestTemplate restTemplate() {
 ResourceOwnerPasswordResourceDetails resourceDetails = new

ResourceOwnerPasswordResourceDetails();
 resourceDetails.setGrantType("password");
 resourceDetails.setAccessTokenUri("http://localhost:8080/oauth/token");
 resourceDetails.setClientId("quickpolliOSClient");
 resourceDetails.setClientSecret("top_secret");

 // Set scopes
 List<String> scopes = new ArrayList<>();
 scopes.add("read"); scopes.add("write");
 resourceDetails.setScope(scopes);

 // Resource Owner details
 resourceDetails.setUsername("mickey");
 resourceDetails.setPassword("cheese");

 return new OAuth2RestTemplate(resourceDetails);
}

We begin the restTemplate method implementation by creating an instance of
ResourceOwnerPasswordResourceDetails. We set the grant type to “password” and provide it with client,
scope, and resource owner details. As you will recollect from Chapter 8, this is the same information that we
provided as part of our cURL requests.

The OAuth2RestTemplate uses the ResourceOwnerPasswordResourceDetails information to acquire
or renew an access token. The template by default caches this token in a DefaultOAuth2ClientContext
instance. When a REST API call is performed using the OAuth2RestTemplate, the template would generate
an authorization header using the access token and automatically adds it to the outgoing request. Because
this all happens behind the scenes, clients can simply use the template’s methods without worrying
about OAuth details. Listing 9-15 shows the QuickPollClientV3OAuth class with getPollById method
implementation. As you can see, we are using the restTemplate method to obtain OAuth2Template instance.
Also, notice that we are interacting with the API exposed at /oauth2/v3 URI.

http://dx.doi.org/10.1007/9781484208243_8

Chapter 9 ■ Clients and testing

156

Listing 9-15. QuickPoll client with OAuth2

package com.apress.client;

import org.springframework.security.oauth2.client.OAuth2RestTemplate;
import org.springframework.security.oauth2.client.token.grant.password.
ResourceOwnerPasswordResourceDetails;
import com.apress.domain.Poll;

public class QuickPollClientV3OAuth {
 private static final String QUICK_POLL_URI_V3 = "http://localhost:8080/oauth2/v3/

polls";

 public Poll getPollById(Long pollId) {
 OAuth2RestTemplate restTemplate = restTemplate();
 return restTemplate.getForObject(QUICK_POLL_URI_V3 + "/{pollId}", Poll.

class, pollId);
 }
}

Testing REST Services
Testing is an important aspect of every software development process. Testing comes in different flavors
and in this chapter we will focus on unit and integration testing. Unit testing verifies that individual, isolated
units of code are working as expected. It is the most common type of testing that developers typically
perform. Integration testing typically follows unit testing and focuses on the interaction between previously
tested units.

The Java ecosystem is filled with frameworks that ease unit and integration testing. JUnit and TestNG
have become the de facto standard test frameworks and provide foundation/integration to most other
testing frameworks. Although Spring supports both frameworks, we will be using JUnit in this book, as it is
familiar to most readers.

Spring Test
The Spring framework provides the spring-test module that allows you to integrate Spring into tests. The
module provides a rich set of annotations, utility classes, and mock objects for environment JNDI, Servlet,
and Portlet API. The framework also provides capabilities to cache application context across test executions
to improve performance. Using this infrastructure, you can easily inject Spring beans and test fixtures
into tests. To use the spring-test module in a non–Spring Boot project, you need to include the Maven
dependency as shown in Listing 9-16.

Listing 9-16. spring-test dependency

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-test</artifactId>
 <version>4.1.6.RELEASE</version>
 <scope>test</scope>
</dependency>

Chapter 9 ■ Clients and testing

157

Spring Boot provides a starter POM named spring-boot-starter-test that automatically adds the
spring-test module to a Boot application. Additionally, the starter POM brings in JUnit, Mockito, and
Hamcrest libraries:

•	 Mockito is a popular mocking framework for Java. It provides a simple and easy to
use API to create and configure mocks. More details about Mockito can be found at
http://mockito.org/.

•	 Hamcrest is a framework that provides a powerful vocabulary for creating
matchers. To put it simply, a matcher allows you to match an object against a set of
expectations. Matchers improve the way that we write assertions by making them
more human-readable. They also generate meaningful failure messages when
assertions are not met during testing. You can learn more about Hamcrest at
http://hamcrest.org/.

To understand the spring-test module, let’s examine a typical test case. Listing 9-17 shows a sample
test built using JUnit and spring-test infrastructure.

Listing 9-17. Sample JUnit Test

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = QuickPollApplication.class)
@WebAppConfiguration
public class ExampleTest {
 @Before
 public void setup() { }

 @Test
 public void testSomeThing() {}

 @After
 public void teardown() { }
}

Our example test contains three methods—setup, testSomeThing, and teardown each annotated with a
JUnit annotation. The @Test annotation denotes the testSomeThing as a JUnit test method. This method will
contain code that ensures that our production code works as expected. The @Before annotation instructs
JUnit to run the setup method prior to any test method execution. Methods annotated with @Before can
be used for setting up test fixtures and test data. Similarly, the @After annotation instructs JUnit to run the
teardown method after any test method execution. Methods annotated with @After are typically used to tear
down test fixtures and perform cleanup operations.

JUnit uses the notion of test runner to perform test execution. By default, JUnit uses the
BlockJUnit4ClassRunner test runner to execute test methods and associated life cycle (@Before or @After etc.)
 methods. The @RunWith annotation allows you to alter this behavior. In our example, using the @RunWith
annotation, we are instructing JUnit to use the SpringJUnit4ClassRunner class to run the test cases.

The SpringJUnit4ClassRunner adds Spring integration by performing activities such as loading
application context, injecting autowired dependencies, and running specified test execution listeners. For
Spring to load and configure an application context, it needs the locations of the XML context files or the
names of the Java configuration classes. We typically use the @ContextConfiguration annotation to provide
this information to the SpringJUnit4ClassRunner class.

http://mockito.org/
http://hamcrest.org/

Chapter 9 ■ Clients and testing

158

In our example, however, we use the SpringApplicationConfiguration, a specialized version
of the standard ContextConfiguration that provides additional Spring Boot features. Finally, the
@WebAppConfiguration annotation instructs Spring to create the Web version of the application context,
namely, WebApplicationContext.

Unit Testing REST Controllers
Spring’s dependency injection makes unit testing easier. Dependencies can be easily mocked or simulated
with predefined behavior, thereby allowing us to zoom in and test code in isolation. Traditionally, unit
testing Spring MVC controllers followed this paradigm. For example, Listing 9-18 shows the code unit testing
PollController’s getAllPolls method.

Listing 9-18. Unit testing PollController with mocks

import static org.junit.Assert.assertEquals;
import static org.mockito.Mockito.when;
import static org.mockito.Mockito.times;
import static org.mockito.Mockito.verify;
import java.util.ArrayList;
import com.google.common.collect.Lists;
import org.junit.Before;
import org.junit.Test;
import org.mockito.Mock;
import org.mockito.MockitoAnnotations;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.test.util.ReflectionTestUtils;

public class PollControllerTestMock {
 @Mock
 private PollRepository pollRepository;

 @Before
 public void setUp() throws Exception {
 MockitoAnnotations.initMocks(this);
 }

 @Test
 public void testGetAllPolls() {
 PollController pollController = new PollController();
 ReflectionTestUtils.setField(pollController, "pollRepository",

pollRepository);

 when(pollRepository.findAll()).thenReturn(new ArrayList<Poll>());
 ResponseEntity<Iterable<Poll>> allPollsEntity = pollController.

getAllPolls();
 verify(pollRepository, times(1)).findAll();
 assertEquals(HttpStatus.OK, allPollsEntity.getStatusCode());
 assertEquals(0, Lists.newArrayList(allPollsEntity.getBody()).size());
 }
}

Chapter 9 ■ Clients and testing

159

The PollControllerTestMock implementation uses the Mockito’s @Mock annotation to mock
PollController’s only dependency: PollRepository. For Mockito to properly initialize the annotated
pollRepository property, we either need to run the test using the MockitoJUnitRunner test runner or
invoke the initMocks method in the MockitoAnnotations. In our test, we choose the latter approach and
call the initMocks in the @Before method.

In the testGetAllPolls method, we create an instance of PollController and inject the mock
PollRepository using Spring’s ReflectionTestUtils utility class. Then we use Mockito’s when and
thenReturn methods to set the PollRepository mock’s behavior. Here are we indicating that when the
PollRepository’s findAll() method is invoked, an empty collection should be returned. Finally, we invoke
the getAllPolls method and verify findAll() method’s invocation and assert controller’s return value.

In this strategy, we treat the PollController as a POJO, and hence don’t test the controller’s request
mappings, validations, data bindings, and any associated exception handlers. Starting from version 3.2,
spring-test module includes a Spring MVC Test framework that allows us to test a controller as a controller.
This test framework will load the DispatcherServlet and associated Web components such as controllers
and view resolvers into test context. It then uses the DispatcherServlet to process all the requests and
generates responses as if it is running in a Web container without actually starting up a Web server.
This allows us to perform a more thorough testing of Spring MVC applications.

Spring MVC Test framework Basics
To gain a better understanding of the Spring MVC Test framework, we explore its four important classes:
MockMvc, MockMvcRequestBuilders, MockMvcResultMatchers, and MockMvcBuilders. As evident from the
class names, the Spring MVC Test framework makes heavy use of Builder Pattern.2

Central to the test framework is the org.springframework.test.web.servlet.MockMvc class, which
can be used to perform HTTP requests. It contains only one method named perform and has the following
API signature:

public ResultActions perform(RequestBuilder requestBuilder) throws java.lang.Exception

The RequestBuilder parameter provides an abstraction to create the request (GET, POST, etc.) to be
executed. To simplify request construction, the framework provides an org.springframework.test.web.
servlet.request.MockHttpServletRequestBuilder implementation and a set of helper static methods in
the org.springframework.test.web.servlet.request.MockMvcRequestBuilders class. Listing 9-19 gives
an example of a POST HTTP request constructed using the previously mentioned classes.

Listing 9-19. POST HTTP request

post("/test_uri")
 .param("admin", "false")
 .accept(MediaType.APPLICATION_JSON)
 .content("{JSON_DATA}");

The post method is part of the MockMvcRequestBuilders class and is used to create a POST request.
The MockMvcRequestBuilders also provides additional methods such as get, delete, and put to create
corresponding HTTP requests. The param method is part of the MockHttpServletRequestBuilder class and is
used to add a parameter to the request. The MockHttpServletRequestBuilder provides additional methods
such as accept, content, cookie, and header to add data and metadata to the request being constructed.

The perform method returns an org.springframework.test.web.servlet.ResultActions instance
that can be used to apply assertions/expectations on the executed response. Listing 9-20 shows three
assertions applied to the response of a sample POST request using ResultActions’s andExpect method.

2http://en.wikipedia.org/wiki/Builder_pattern.

http://en.wikipedia.org/wiki/Builder_pattern

Chapter 9 ■ Clients and testing

160

The status is a static method in org.springframework.test.web.servlet.result.
MockMvcResultMatchers that allows you to apply assertions on response status. Its isOk method asserts
that the status code is 200 (HTTPStatus.OK). Similarly, the content method in MockMvcResultMatchers
provides methods to assert response body. Here we are asserting that the response content type is of type
“application/json” and matches an expected string “JSON_DATA”.

Listing 9-20. ResultActions

mockMvc.perform(post("/test_uri"))
 .andExpect(status().isOk())
 .andExpect(content().contentType(MediaType.APPLICATION_JSON))
 .andExpect(content().string("{JSON_DATA}"));

So far we have looked at using MockMvc to perform requests and assert the response. Before we can use
MockMvc, we need to initialize it. The MockMvcBuilders class provides the following two methods to build a
MockMvc instance:

•	 webAppContextSetup—Builds a MockMvc instance using a fully initialized
WebApplicationContext. The entire Spring configuration associated with the context is
loaded before MockMvc instance is created. This technique is used for end-to-end testing.

•	 standaloneSetup—Builds a MockMvc without loading any Spring configuration. Only
the basic MVC infrastructure is loaded for testing controllers. This technique is used
for unit testing.

Unit Testing Using Spring MVC Test Framework
Now that we have reviewed the Spring MVC Test framework, let’s look at using it to test REST controllers. The
PollControllerTest class in Listing 9-21 demonstrates testing the getPolls method. To the
@ContextConfiguration annotation we pass in a MockServletContext class instructing Spring to set up an
empty WebApplicationContext. An empty WebApplicationContext allows us to instantiate and initialize
the one controller that we want to test without loading up the entire application context. It also allows us to
mock the dependencies that the controller requires.

Listing 9-21. Unit testing with Spring MVC test

package com.apress.unit;

import static org.mockito.Mockito.when;
import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.content;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;
import static org.springframework.test.web.servlet.setup.MockMvcBuilders.standaloneSetup;
import org.mockito.InjectMocks;
import org.mockito.Mock;
import org.mockito.MockitoAnnotations;
import org.springframework.boot.test.SpringApplicationConfiguration;
import org.springframework.mock.web.MockServletContext;
import org.springframework.test.web.servlet.MockMvc;

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = QuickPollApplication.class)
@ContextConfiguration(classes = MockServletContext.class)
@WebAppConfiguration

Chapter 9 ■ Clients and testing

161

public class PollControllerTest {

 @InjectMocks
 PollController pollController;

 @Mock
 private PollRepository pollRepository;

 private MockMvc mockMvc;

 @Before
 public void setUp() throws Exception {
 MockitoAnnotations.initMocks(this);
 mockMvc = standaloneSetup(pollController).build();
 }

 @Test
 public void testGetAllPolls() throws Exception {
 when(pollRepository.findAll()).thenReturn(new ArrayList<Poll>());
 mockMvc.perform(get("/v1/polls"))
 .andExpect(status().isOk())
 .andExpect(content().string("[]"));
 }
}

In this case, we want to test version one of our PollController API. So we declare a pollController
property and annotate it with @InjectMocks. During runtime, Mockito sees the @InjectMocks annotation
and will create an instance of the import com.apress.v1.controller.PollController.PollController.
It then injects it with any mocks declared in the PollControllerTest class using constructor/field or setter
injection. The only mock we have in the class is the PollRepository.

In the @Before annotated method, we use the MockMvcBuilders’s standaloneSetup() method to
register the pollController instance. The standaloneSetup() automatically creates the minimum
infrastructure required by the DispatcherServlet to serve requests associated with the registered
controllers. The MockMvc instance built by standaloneSetup is stored in a class-level variable and made
available to tests.

In the testGetAllPolls method, we use Mockito to program the PollRepository mock’s behavior.
Then we perform a GET request on the /v1/polls URI and use the status and content assertions to ensure
that an empty JSON array is returned. This is the biggest difference from the version that we saw in
Listing 9-18. There we were testing the result of a Java method invocation. Here we are testing the HTTP
response that the API generates.

Integration Testing REST Controllers
In the previous section, we looked at unit testing a controller and its associated configuration. However, this
testing is limited to a Web layer. There are times when we want to test all of the layers of an application from
controllers to the persistent store. In the past, writing such tests required launching the application in an
embedded Tomcat or Jetty server and use a framework such as HtmlUnit or RestTemplate to trigger HTTP
requests. Depending on an external servlet container can be cumbersome and often slows down testing.

The Spring MVC Test framework provides a lightweight, out of the container alternative for
integration testing MVC applications. In this approach, the entire Spring application context along with
the DispatcherServlet and associated MVC infrastructure gets loaded. A mocked MVC container is made

Chapter 9 ■ Clients and testing

162

available to receive and execute HTTP requests. We interact with real controllers and these controllers
work with real collaborators. To speed up integration testing complex services are sometimes mocked.
Additionally, the context is usually configured such that the DAO/repository layer interacts with an
in-memory database.

This approach is similar to the approach we used for unit testing controllers, except for these three
differences:

•	 The entire Spring context gets loaded as opposed to an empty context in the unit
testing case

•	 All REST endpoints are available as opposed to the ones configured via
standaloneSetup

•	 Tests are performed using real collaborators against in-memory database as opposed
to mocking dependency’s behavior

An integration test for the PollController’s getAllPolls method is shown in Listing 9-22.
The PollControllerIT class is similar to the PollControllerTest that we looked at earlier. A fully
configured instance of WebApplicationContext is injected into the test. In the @Before method we
use this WebApplicationContext instance to build a MockMvc instance using MockMvcBuilders’s
webAppContextSetup.

Listing 9-22. Integration testing with Spring MVC Test

package com.apress.it;

import static org.hamcrest.Matchers.hasSize;
import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.jsonPath;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;
import static org.springframework.test.web.servlet.setup.MockMvcBuilders.webAppContextSetup;
import org.springframework.boot.test.SpringApplicationConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import org.springframework.test.context.web.WebAppConfiguration;
import org.springframework.test.web.servlet.MockMvc;
import org.springframework.web.context.WebApplicationContext;
import com.apress.QuickPollApplication;

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = QuickPollApplication.class)
@WebAppConfiguration
public class PollControllerIT {

 @Inject
 private WebApplicationContext webApplicationContext;

 private MockMvc mockMvc;

 @Before
 public void setup() {
 mockMvc = webAppContextSetup(webApplicationContext).build();
 }

Chapter 9 ■ Clients and testing

163

 @Test
 public void testGetAllPolls() throws Exception {
 mockMvc.perform(get("/v1/polls"))
 .andExpect(status().isOk())
 .andExpect(jsonPath("$", hasSize(20)));
 }
}

The testGetAllPolls method implementation uses the MockMvc instance to perform a GET request on
the /v1/polls endpoint. We use two assertions to ensure that the result is what we expect:

•	 The isOK assertion ensures that we get a status code 200.

•	 The jsonPath method allows us to write assertions against response body using
JsonPath expression. The JsonPath (http://goessner.net/articles/JsonPath/)
provides a convenient way to extract parts of a JSON document. To put it simply,
JsonPath is to JSON is what XPath is to XML.

In our test case, we use the Hamcrest’s hasSize matcher to assert that the retuned JSON contains 20
polls. The import.sql script used to populate the in-memory database contains 20 poll entries. Hence, our
assertion uses the magic number 20 for comparison.

Summary
Spring provides powerful template and utility classes that simplify REST client development. In this chapter,
we reviewed RestTemplate and used it to perform client operations such as GET, POST, PUT, and DELETE
on resources. We also reviewed the Spring MVC Test framework and its core classes. Finally, we used the test
framework to simplify unit and integration test creation.

http://goessner.net/articles/JsonPath/

165

Chapter 10

HATEOAS

In this chapter we will discuss

•	 HATEOAS

•	 JSON hypermedia types

•	 QuickPoll HATEOAS implementation

Consider any interaction with an e-commerce website such as Amazon.com. You typically begin
your interaction by visiting the site’s home page. The home page might contain text, images, and videos
describing different products and promotions. The page also contains hyperlinks that allow you to navigate
from one page to another allowing you to read product details, reviews, and add products to shopping
carts. These hyperlinks along with other controls such as buttons and input fields also guide you through
workflows such as checking out an order.

Each Web page in the workflow presents you with controls to go to the next step or go back to a previous
step or even completely exit the workflow. This is a very powerful feature of the Web—you as a consumer
use links to navigate through resources finding what you need without having to remember all of their
corresponding URIs. You just needed to know the initial URI: http://www.amazon.com. If Amazon were to go
through a rebranding exercise and change its URIs for products or add new steps in its checkout workflow,
you will still be able to discover and perform all the operations.

In this chapter we will review HATEOAS, a constraint that allows us to build resilient REST services that
function like a website.

HATEOAS
The Hypermedia As The Engine Of Application State, or HATEOAS, is a key constraint of REST architecture.
The term “hypermedia” refers to any content that contains links to other forms of media such as images,
movies, and text. As you have experienced, the Web is a classic example of hypermedia. The idea behind
HATEOAS is simple—a response would include links to other resources. Clients would use these links to
interact with the server and these interactions could result in possible state changes.

Similar to a human’s interaction with a website, a REST client hits an initial API URI and uses the server-
provided links to dynamically discover available actions and access the resources it needs. The client need
not have prior knowledge of the service or the different steps involved in a workflow. Additionally, the clients
no longer have to hard code the URI structures for different resources. This allows the server to make URI
changes as the API evolves without breaking the clients.

http://www.amazon.com/

Chapter 10 ■ hateOaS

166

To better understand HATEOAS, consider REST API for a hypothetical blog application. An example
request to retrieve a blog post resource with identifier 1 and the associated response in JSON format is
shown here:

GET /posts/1 HTTP/1.1
Connection: keep-alive
Host: blog.example.com

{
 "id" : 1,
 "body" : "My first blog post",
 "postdate" : "2015-05-30T21:41:12.650Z"
}

As we would expect, the generated response from the server contains the data associated with the blog
post resource. When a HATEOAS constraint is applied to this REST service, the generated response has links
embedded in it. Listing 10-1 shows an example response with links.

Listing 10-1. Blog post with links

{
 "id" : 1,
 "body" : "My first blog post",
 "postdate" : "2015-05-30T21:41:12.650Z",
 "links" : [
 {
 "rel" : "self",
 "href" : http://blog.example.com/posts/1,
 "method" : "GET"
 }
]
}

In this response, each link in the links array contains three parts:

 1. href—Contains the URI that you can use to retrieve a resource or change the
state of the application

 2. rel—Describes the relationship that the href link has with the current resource

 3. method—Indicates the HTTP method required to interact with the URI

From the link’s href value, you can see that this is a self-referencing link. The rel element can contain
arbitrary string values, and in this case it has a value “self” to indicate this self-relationship. As discussed
in Chapter 1, a resource can be identified by multiple URIs. In those situations, a self-link can be helpful
to highlight the preferred canonical URI. In scenarios in which partial resource representations are
returned (as part of a collection, for example), including a self-link would allow a client to retrieve a full
representation of the resource.

We can expand the blog post response to include other relationships. For example, each blog post has
an author, the user that created the post. Each blog post also contains a set of related comments and tags.
Listing 10-2 shows an example of a blog post representation with these additional link relationships.

http://dx.doi.org/10.1007/9781484208243_1

Chapter 10 ■ hateOaS

167

Listing 10-2. Blog post with additional relationships

{
 "id" : 1,
 "body" : "My first blog post",
 "postdate" : "2015-05-30T21:41:12.650Z",
 "self" : "http://blog.example.com/posts/1",
 "author" : "http://blog.example.com/profile/12345",
 "comments" : "http://blog.example.com/posts/1/comments",
 "tags" : "http://blog.example.com/posts/1/tags"
}

The resource representation in Listing 10-2 takes a different approach and doesn’t use a links array.
Instead, links to related resources are represented as JSON object properties. For example, the property with
key author links the blog post with its creator. Similarly, the properties with keys comments and tags link the
post with related comments and tags collection resources.

We used two different approaches for embedding HATEOAS links in a representation to highlight a
lack of standardized linking within a JSON document. In both scenarios, the consuming clients can use
the rel value to identify and navigate to the related resources. As long as the rel value doesn’t change, the
server can release new versions of the URI without breaking the client. It also makes it easy for consuming
developers to explore the API without relying on heavy documentation.

hateOaS DeBate

the reSt apI for the Quickpoll application that we worked on so far doesn’t follow the hateOaS
principles. the same applies to many public/open-source reSt apIs being consumed today. In 2008,
roy Fielding expressed frustration in his blog (http://roy.gbiv.com/untangled/2008/rest-apis-
must-be-hypertext-driven) at such apIs being called reStful but that are not hypermedia-driven:

“What needs to be done to make the REST architectural style clear on the notion that
hypertext is a constraint? In other words, if the engine of application state (and hence the
API) is not being driven by hypertext, then it cannot be RESTful and cannot be a REST API.
Period. Is there some broken manual somewhere that needs to be fixed?”

Seven years later, the debate around hypermedia’s role and what is considered reStful still continues.
the blogosphere is filled with mixed opinions and people taking passionate stances on both sides. the
so-called hypermedia sceptics feel that hypermedia is too academic and feel that adding extra links
would bloat the payload, and adds unnecessary complexity to support clients that really don’t exist.

Kin Lane provides a good summary of the hypermedia debate in his blog post (http://apievangelist.
com/2014/08/05/the-hypermedia-api-debate-sorry-reasonable-just-does-not-sell/).

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://apievangelist.com/2014/08/05/the-hypermedia-api-debate-sorry-reasonable-just-does-not-sell/
http://apievangelist.com/2014/08/05/the-hypermedia-api-debate-sorry-reasonable-just-does-not-sell/

Chapter 10 ■ hateOaS

168

JSON Hypermedia Types
To put it simply, a hypermedia type is a media type that contains well-defined semantics for linking
resources. The HTML media type is a popular example of a hypermedia type. The JSON media type however
doesn’t provide native hyperlinking semantics and therefore is not considered to be a hypermedia type. This
has resulted in a variety of custom implementations for embedding links in a JSON document. We have seen
two approaches in the previous section.

 ■ Note reSt services that produce XML responses often use an atom/atompub
(http://en.wikipedia.org/wiki/Atom_(standard)) format for structuring hateOaS links.

JSON Hypermedia Types
To address this issue and provide hyperlinking semantics within JSON documents, several JSON hypermedia
types have been created:

•	 HAL—http://stateless.co/hal_specification.html

•	 JSON-LD—http://json-ld.org

•	 Collection+JSON—http://amundsen.com/media-types/collection/

•	 JSON API—http://jsonapi.org/

•	 Siren—https://github.com/kevinswiber/siren

HAL is one of the most popular hypermedia types and is supported by the Spring Framework. In the
next section, we will cover the basics of HAL.

HAL
The Hypertext Application Language, or HAL, is a lean hypermedia type created by Mike Kelly in 2011. This
specification supports both XML (application/hal+xml) and JSON (application/hal+json) formats.

The HAL media type defines a resource as a container of state, a collection of links, and a set of
embedded resources. Figure 10-1 shows the HAL resource structure.

http://en.wikipedia.org/wiki/Atom_(standard
http://stateless.co/hal_specification.html
http://json-ld.org/
http://amundsen.com/media-types/collection/
http://jsonapi.org/
https://github.com/kevinswiber/siren

Chapter 10 ■ hateOaS

169

The resource state is expressed using JSON properties or key/value pairs. Listing 10-3 shows the state of
a blog post resource.

Listing 10-3. Blog post resource state in HAL

{
 "id" : 1,
 "body" : "My first blog post",
 "postdate" : "2015-05-30T21:41:12.650Z"
}

The specification uses a reserved _links property to provide linking capabilities. The _links property
is a JSON object that contains all of the links. Each link inside _links is keyed by their link relation with
the value containing the URI and a set of optional properties. Listing 10-4 shows the blog post resource
augmented with the _links property. Notice the usage of an additional property total count inside the
comments link value.

Listing 10-4. Blog post resource with links in HAL

{
 "id" : 1,
 "body" : "My first blog post",
 "postdate" : "2015-05-30T21:41:12.650Z",
 "_links" : {
 "self": { "href": "http://blog.example.com/posts/1" },
 "comments": { "href": "http://blog.example.com/posts/1/comments",

"totalcount" : 20 },
 "tags": { "href": "http://blog.example.com/posts/1/tags" }
 }
}

Figure 10-1. HAL resource structure

Chapter 10 ■ hateOaS

170

There are situations in which it is more efficient to embed a resource than link to it. This would prevent
the client from taking an extra round trip, allowing it to access the embedded resource directly. HAL uses a
reserved _embedded property to embed resources. Each embedded resource is keyed by their link relation
to the value containing the resource object. Listing 10-5 shows the blog post resource with an embedded
author resource.

Listing 10-5. Blog post resource with embedded resource in HAL

{
 "id" : 1,
 "body" : "My first blog post",
 "postdate" : "2015-05-30T21:41:12.650Z",
 "_links" : {
 "self": { "href": "http://blog.example.com/posts/1" },
 "comments": { "href": "http://blog.example.com/posts/1/comments",

"totalcount" : 20 },
 "tags": { "href": "http://blog.example.com/posts/1/tags" }
 },
 "_embedded" : {
 "author" : {
 "_links" : {
 "self": { "href": "http://blog.example.com/profile/12345" }
 },
 "id" : 12345,
 "name" : "John Doe",
 "displayName" : "JDoe"
 }
 }
}

HATEOAS in QuickPoll
The Spring Framework provides a Spring HATEOAS library that simplifies the creation of REST
representations adhering to HATEOAS principles. Spring HATEOAS provides an API for creating links and
assembling representations. In this section, we will use Spring HATEOAS to enrich the poll representation
with the following three links:

•	 Self-referencing link

•	 Link to the votes collection resource

•	 Link to the ComputeResult resource

 ■ Note the Quickpoll project that we are using in this chapter is available in the Chapter10\starter folder
of the downloaded source code. to follow the instructions in this section, import the starter project into your IDe.
the completed solution is available in the Chapter10\final folder. please refer to that solution for complete
code listings.

http://dx.doi.org/10.1007/9781484208243_10
http://dx.doi.org/10.1007/9781484208243_10

Chapter 10 ■ hateOaS

171

We begin the Spring HATEOAS integration by adding the Maven dependency shown in Listing 10-6 to
the QuickPoll project’s pom.xml file.

Listing 10-6. Spring HATEOAS dependency

<dependency>
 <groupId>org.springframework.hateoas</groupId>
 <artifactId>spring-hateoas</artifactId>
 <version>0.17.0.RELEASE</version>
</dependency>

The next step is to modify the Poll Java class such that the generated representation has associated
link information. To simplify embedding of hypermedia links, Spring HATEOAS provides an org.
springframework.hateoas.ResourceSupport class that resource classes can extend. The ResourceSupport
class contains several overloaded methods for adding and removing links. It also contains a getId method
that returns the URI associated with the resource. The getId implementation adheres to the REST principle:
the ID of a resource is its URI.

Listing 10-7 shows the modified Poll class extending ResourceSupport. If you remember, the Poll class
already contains a getId method that returns the primary key associated with the corresponding database
record. To accommodate the getId method introduced by the ResourceSupport base class, we refactored
the getId and setId Poll class methods to getPollId and setPollId.

Listing 10-7. Modified poll class

package com.apress.domain;

import org.springframework.hateoas.ResourceSupport;

@Entity
public class Poll extends ResourceSupport {

 @Id
 @GeneratedValue
 @Column(name="POLL_ID")
 private Long id;

 @Column(name="QUESTION")
 private String question;

 @OneToMany(cascade=CascadeType.ALL)
 @JoinColumn(name="POLL_ID")
 @OrderBy
 private Set<Option> options;

 public Long getPollId() {
 return id;
 }
 public void setPollId(Long id) {
 this.id = id;
 }
 // Other Getters and Setter removed
}

Chapter 10 ■ hateOaS

172

In Chapter 4, we implemented PollController’s createPoll method so that it constructed a URI of
the newly created Poll resource using the getId method. The getId to getPollId refactoring just described
requires us to update the createPoll method. Listing 10-8 shows the modified createPoll method using
the getPollId method.

Listing 10-8. Modified createPoll() method

@RequestMapping(value="/polls", method=RequestMethod.POST)
public ResponseEntity<?> createPoll(@RequestBody Poll poll) {
 poll = pollRepository.save(poll);

 // Set the location header for the newly created resource
 HttpHeaders responseHeaders = new HttpHeaders();
 URI newPollUri = ServletUriComponentsBuilder.fromCurrentRequest().path("/{id}").buil

dAndExpand(poll.getPollId()).toUri();
 responseHeaders.setLocation(newPollUri);

 return new ResponseEntity<>(null, responseHeaders, HttpStatus.CREATED);
}

 ■ Note We modified our domain Poll class and had it extend the ResourceSupport class. an alternative
to this approach is to create a new PollResource class to hold the Poll’s representation and have it extend
the ResourceSupport class. With this approach, the Poll Java class remains untouched. however, we need to
modify the PollController so that it copies the representation from each Poll to a PollResource and returns
the PollResource instances.

The final step in the Spring HATEOAS integration is to modify PollController endpoints so that we can
build links and inject them into responses. Listing 10-9 shows the modified portions of the PollController.

Listing 10-9. PollController modifications

package com.apress.controller;

import static org.springframework.hateoas.mvc.ControllerLinkBuilder.linkTo;
import static org.springframework.hateoas.mvc.ControllerLinkBuilder.methodOn;

@RestController
public class PollController {
 @RequestMapping(value="/polls", method=RequestMethod.GET)
 public ResponseEntity<Iterable<Poll>> getAllPolls() {
 Iterable<Poll> allPolls = pollRepository.findAll();
 for(Poll p : allPolls) {
 updatePollResourceWithLinks(p);
 }
 return new ResponseEntity<>(allPolls, HttpStatus.OK);
 }

http://dx.doi.org/10.1007/9781484208243_4

Chapter 10 ■ hateOaS

173

 @RequestMapping(value="/polls/{pollId}", method=RequestMethod.GET)
 public ResponseEntity<?> getPoll(@PathVariable Long pollId) {
 Poll p = pollRepository.findOne(pollId);
 updatePollResourceWithLinks(p);
 return new ResponseEntity<> (p, HttpStatus.OK);
 }

 private void updatePollResourceWithLinks(Poll poll) {
 poll.add(linkTo(methodOn(PollController.class).getAllPolls()).slash(poll.

getPollId()).withSelfRel());
 poll.add(linkTo(methodOn(VoteController.class).getAllVotes(poll.getPollId())).

withRel("votes"));
 poll.add(linkTo(methodOn(ComputeResultController.class).computeResult(poll.

getPollId())).withRel("compute-result"));
 }
}

Because links need to be generated and injected in multiple places, we created a
updatePollResourceWithLinks method to hold the common code. Spring HATEOAS provides a
convenient ControllerLinkBuilder class that can build links pointing to Spring MVC controllers. The
updatePollResourceWithLinks method implementation uses the linkTo, methodOn and slash utility
methods. These methods are part of the Spring HATEOAS ControllerLinkBuilder class and can generate
links pointing to Spring MVC controllers. The generated links are absolute URIs to resources. This relieves
developers from having to look up server information such as protocol, hostname, port number, and so on,
duplicating URI path strings (/polls) all over the place. To better understand these methods, let’s dissect
this code:

linkTo(
 methodOn(PollController.class).getAllPolls()
)
 .slash(poll.getPollId())
 .withSelfRel()

The linkTo method can take a Spring MVC controller class or one of its methods as an argument. It
then inspects the class or method for the @RequestMapping annotation and retrieves the path value to build
the link. The methodOn method creates a dynamic proxy of the passed in PollController class. When the
getAllPolls method is invoked on the dynamic proxy, its @RequestMapping information is inspected and
the value "/polls" is extracted. For methods such as getAllVotes that expect a parameter, we can pass in a
null. However, if the parameter is used to build the URI, then a real value should be passed in.

The slash method, as the name suggests, appends the Poll’s ID as a subresource to the current URI.
Finally, the withSelfRel method instructs that the generated link should have a rel with value “self”. Under
the hood, the ControllerLinkBuilder class uses the ServletUriComponentsBuilder to obtain basic URI
information such as hostname and builds the final URI. Hence, for a poll with ID 1, this code will generate
the URI: http://localhost:8080/polls/1.

With these changes in place, run the QuickPoll application and, using Postman, perform a GET request
on the http://localhost:8080/polls URI. You will see that the generated response includes three links for
each poll. Figure 10-2 shows the Postman request and partial response.

Chapter 10 ■ hateOaS

174

Summary
In this chapter, we reviewed the HATEOAS constraint that enables developers to build flexible and loosely
coupled APIs. We scratched the surface and used Spring HATEOAS to create QuickPoll REST representations
that adhere to HATEOAS principles.

This brings us to the end of our journey. Throughout this book, you have learned the key features of
REST and Spring technologies that simplify REST development. With this knowledge, you should be ready to
start developing your own RESTful services. Happy coding!

Figure 10-2. Postman response with links

175

Appendix A

Installing cURL on Windows

The cURL command-line tool comes installed in most operating system distributions. The Mac OS Terminal
has out-of-the-box support for cURL. However, you need to set up cURL on a Windows machine. Here are
the steps required:

 1. The easiest way to install cURL on Windows is to use cURL’s Download Wizard.
To access the wizard, go to the http://curl.haxx.se/dlwiz/ in your favorite browser.

 2. On the following page, click the “curl executable” link.

 3. On the “Select Operating System” page, select Win 64.

 4. On the “Select for What Flavor” pages, choose the “Generic” package and hit Select.

 5. On the “Select which Win64 Version” select “Any” and hit Select.

http://curl.haxx.se/dlwiz/

Appendix A ■ instAlling cURl on WindoWs

176

 6. On the “Select for What CPU” page, select x86_64 and hit Select.

 7. On the following page, click the “Download” button. You will be redirected to
http://www.confusedbycode.com/curl/.

 8. Once the website loads, perform the verification for "I'm not a robot" and then
download the “With Administrator Privileges (free)” 64-bit version of the MSI file.

 9. Once the MSI file is downloaded, launch the MSI installer and follow the
instructions for installation.

 10. Once the installation is complete, the cURL executable will be added to your classpath
and is ready for use. To test the installation, open a command line and type:

curl http://google.com

http://www.confusedbycode.com/curl/
http://google.com/

Appendix A ■ instAlling cURl on WindoWs

177

You will see the output similar to this image, indicating that the cURL command-line tool is
successfully installed.

179

��������� A, B
Accept header versioning approach, 107
Acegi Security, 129
API

ComputeResultController, 69
PollController, 66

@Autowired annotation, 62
createPoll method, 64
declaration file, 92
Get All Polls request, 63
JSON, 64
Poll and Polls resources, 61
POM file, 62
@RequestBody annotation, 63
@RequestMapping annotation, 62
ResponseEntity, 62
@RestController annotation, 62
ServletUriComponentsBuilder

utility class, 63
update and delete, 66

VoteController, 67
api-docs, 91
Aspect oriented programming (AOP), 15, 17
authorizedGrantTypes method, 143
@Autowired annotation, 62

��������� C
Cache, 1
Certificate-based security model, 124
Code on demand, 2
Command line interface (CLI), 43
Complete code replication, 107
ComputeResult resource representation, 52
ConfigureSwagger method, 98
Controller, 18, 20
createPoll method, 64
Cross-site request forgery (CSRF), 138
cURL, 132
cURL installation, Windows, 175
curly braces {}, 3

Cursor-based pagination, 112
Custom header versioning approach, 107

��������� D
Data Access Objects (DAO)

approach, 60
CrudRepository API, 60
finder methods, 59
OptionRepository interface, 60–61
PollRepository interface, 61

Data Transfer Objects (DTOs), 69
DELETE method, 7
Dependency Injection (DI), 16
Digest Authentication approach, 123
DispatcherServlet, 19
Documentation, 91. See also Swagger

��������� E
Error, 76
Exception, 77

��������� F
findOne finder method, 65
fromCurrentRequest method, 64

��������� G
GET, 53
getContentType method, 21
GET method, 5–6, 24
GET request, 49
GlobalExceptionHandler, 29

��������� H
Hamcrest, 157
Handler, 19
HandlerExceptionResolver, 27
HandlerMapping component, 19

Index

■ index

180

Hypermedia As The Engine Of Application
State (HATEOAS)

blog post with links, 166
comments and tags, 167
description, 165
QuickPoll application, 167, 170

Maven dependency, 171
modified createPoll method, 172
modified Poll class, 171
PollControllert modifications, 172
Postman response with links, 173
slash method, 173
updatePollResourceWithLinks

method, 173
Hypertext Application Language (HAL), 168
HEAD method, 6
HTTP Basic authentication, 122
HTTP method

DELETE method, 7
GET method, 5–6
HEAD method, 6
idempotency, 5
PATCH method, 9
POST method, 8
PUT method, 7
safety, 5
status codes, 10

HTTP status codes, 76
ErrorDetail class, 78
GitHub and Twilio, 77
QuickPoll Error Response Format, 78
ResourceNotFoundException error

response, 80
RestExceptionHandler, 79

��������� I
Idempotency, 5
Implicit grant type approach, 128
Interceptors, 29
InternalViewResolver, 27

��������� J, K
JSON hypermedia types, 168
JSON objects, 50

��������� L
Layered system, 1
Limit offset pagination, 112
Location header, 8

��������� M
Message, 77
MethodArgumentNotValidException, 83
Mockito, 157
@ModelAttribute annotation, 87
Model interface, 18, 20

��������� N
@NonEmpty annotation, 81

��������� O
OAuth 2.0

authorization server, 126
CALL_BACK_URI parameter, 127
client, 126
client profiles, 128
HTTPS usage, 127
QuickPoll application

authorization server, 141–142
Authorization server endpoints, 142
PollController, mapping, 141
read and write scopes, 143
resource server, 141
Spring Security OAuth 2 dependency, 141
testing, 145
updated security config, 142

refresh vs. access tokens, 128
registration, 127
resource owner, 126
resource server, 126
verification, 128

OAuth2AuthenticationProcessingFilter, 144
OAuth2RestTemplate, 155
Open Authorization (OAuth), 126

��������� P
Page number pagination, 111
Pagination

changing page size, 116
cursor-based pagination, 112
limit offset pagination, 112
Link header, 113
page number pagination, 111
QuickPoll application, 113
time-based pagination, 113

Password grant type approach, 128
PATCH method, 9
Path, 77

■ Index

181

PathVariable, 26
POST, 53
POST method, 8, 24
PUT method, 7

��������� Q
QuickPoll application, 47–48

API (see API)
architecture, 55
DAO (see Data Access Objects (DAO))
design process

action identification, 53
endpoint identification, 52
resource identification, 49
resource representation, 49

domain layer, 55
domain objects, 57

Option class, 58
Poll class, 58
Vote class, 59

embedded database, 61
HSQLDB POM.XML dependency, 61
JPA and Web options, 56
JPA technology, 57
project configuration, 56
repository/data access layer, 55
requirements, 48
starter folder, 56
Web API layer, 55

QuickPoll Error Handling
externalizing error messages, 86
getPoll implementation, 74
input field validation

box validation constraints, 81
ErrorDetail class, 84
error key, 83
error value, 83
Garbage in Garbage Out, 80
JSR 303 annotations, 81
JSR 303 validation, 81
MethodArgumentNotValidException, 82
org.springframework.validation.Validator

interface, 81
RestExceptionHandler, 84, 86
@Valid annotations, 82

nonexistent poll, 73
PollController, 74
ResourceNotFoundException, 75
RestExceptionHandler, 89
verifyPoll method, 76

QuickPoll Java Client, 147
QuickPoll resource listing file, 94
QuickPoll sorting, 118

��������� R
REpresentational State

Transfer (REST)
building, RESTful API, 13
cache, 1
Client-Server, 1
code on demand, 2
content negotiation, 4
HTTP method

DELETE method, 7
GET method, 5–6
HEAD method, 6
idempotency, 5
PATCH method, 9
POST method, 8
PUT method, 7
safety, 5
status codes, 10

identifying resources, 2
layered system, 1
RMM, 11
snapshot, 4
stateless, 1
uniform interface, 2
URI templates, 3

replace command, 9
Repositories. See Data Access

Objects (DAO)
@RequestBody annotation, 63
@RequestMapping annotation, 62

elements, 23
Firefox browser, 24
GET method, 24
method arguments and

descriptions, 25
POST method, 24
return types and descriptions, 25

@RequestParam
annotation, 22–23, 69

Resource listing file, 91
ResourceServerConfigurerAdapter, 144
REST API applications

Postman, 44
RESTClient, 45

REST API documentation, 91.
See also Swagger

@RestController annotation, 62
RestExceptionHandler, 84, 89
RestTemplate, 148

Basic Authentication, 154
DELETE HTTP operations, 152
GET HTTP method, 149
handle pagination, 152

■ index

182

HTTP POST operations, 150
integration testing, 161

Spring MVC test, 162
testGetAllPolls method, 163

OAuth2RestTemplate, 155
PUT HTTP method, 151
Spring test, 156
unit testing

findAll() method, 159
MockMvcBuilders class, 160
param method, 159
perform method, 159
PollController with mocks, 158
POST HTTP request, 159
Spring MVC test, 159
Spring MVC Test framework, 160

Richardson’s Maturity Model (RMM), 11

��������� S
Security, 121

certificate-based, 124
Digest Authentication, 123
HTTP basic authentication, 122
QuickPoll application

cURL, 132
OAuth 2.0, 141
requirements, 131
security configuration, 136
Spring Boot, 132
URI, 137
UserDetailsService implementation, 135
user infrastructure setup, 133

session-based, 121
spring, 128
XAuth, 125

Session-based security model, 121
showHomePage method, 20
SimpleMappingExceptionResolver, 28
Sort ascending or descending, 117
Sorting

ascending/descending, 117
QuickPoll sorting, 118

Spring Boot, 32
CLI, 43
description, 31
Hello World REST application

annotations, 36
code implementation, 35
contents, 34
helloGreeting() method, 37
JAR file, 34

main() method, 34
plugins and dependencies, 38
ROOT context, 38
start.spring.io website, 33

Maven, build tool, 32
opinionated approach, 31
Spring Initializr application, 39
starter modules, 36
STS, 39

Spring framework
AOP, 17
definition, 15
DI, 16
modules, 16

Spring Security“ r ”spring, 128
Spring Tool Suite (STS), 39
Spring Web MVC, 17

architecture, 18
components

controller, 18, 20
HandlerExceptionResolver, 27
interceptors, 29
model interface, 18, 20
PathVariable, 26
@RequestMapping annotation

(see @RequestMapping annotation)
@RequestParam annotation, 22–23
view, 18, 21
ViewResolver Interface, 26

Stateless, 1
Swagger

API declaration file, 92
configuration, 103
customization

ApiInfoBuilder, 98
configureSwagger method, 98
includePattern method, 98
PollController, 99
Springmvc, 97

history, 91
integration, 94
JSON, 91
resource listing file, 91
specification, 91
UI, 95
versioning, 109

Swagger-springmvc Maven dependency, 94
SwaggerSpringMvcPlugin, 97
Swagger UI, 95

configuration, 103
GitHub site, 96
QuickPoll Swagger UI, 96
url modifications, 96

RestTemplate (cont.)

■ Index

183

��������� T
Template Method design pattern, 148
Time-based pagination, 113
Timestamp, 76

��������� U
Uniform Interface, 2
URI parameter versioning, 106

��������� V
@Valid annotation, 82
verifyPoll method, 76
Versioning

Accept header, 106
API users, 107

custom header, 107
QuickPoll REST API, 107
Swagger configuration, 109
URI parameter

versioning, 106
Version specific code

replication, 108
View, 18, 21
ViewResolver Interface, 26

��������� W
Web Application Description Language

(WADL), 91

��������� X, Y, Z
XAuth, 125

Spring REST

Balaji Varanasi

Sudha Belida

Spring REST

Copyright © 2015 by Balaji Varanasi and Sudha Belida

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0824-3

ISBN-13 (electronic): 978-1-4842-0823-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Deepak Vohra
Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Mark Powers
Copy Editor: Laura Lawrie
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers
at www.apress.com/9781484208243. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484208243
www.apress.com/source-code/

To Our Family

vii

Contents

About the Authors �� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

 ■Chapter 1: Introduction to REST �� 1

What is REST? �� 1

Understanding Resources �� 2

Identifying Resources ��� 2

URI Templates ��� 3

Representation ��� 4

HTTP Methods �� 4

Safety ��� 5

Idempotency ��� 5

GET ��� 5

HEAD ��� 6

DELETE ��� 7

PUT ��� 7

POST ��� 8

PATCH ��� 9

HTTP Status Codes ��� 10

Richardson’s Maturity Model �� 11

Level Zero ��� 12

Level One �� 12

viii

■ Contents

Level Two �� 12

Level Three ��� 12

Building a RESTful API �� 13

Summary �� 13

 ■Chapter 2: Spring Web MVC Primer ��� 15

Spring Overview ��� 15

Dependency Injection ��� 16

Aspect Oriented Programming ��� 17

Spring Web MVC Overview ��� 17

Model View Controller Pattern �� 18

Spring Web MVC Architecture ��� 18

Spring Web MVC Components �� 20

Summary �� 30

 ■Chapter 3: RESTful Spring ��� 31

Generating a Spring Boot Project ��� 32

Installing a Build Tool �� 32

Generating a Project using start�spring�io �� 33

Generating a Project using STS �� 39

Generating a Project Using the CLI ��� 43

Accessing REST Applications ��� 44

Postman �� 44

RESTClient �� 45

Summary �� 46

 ■Chapter 4: Beginning QuickPoll Application �� 47

Introducing QuickPoll ��� 47

Designing QuickPoll ��� 48

Resource Identification ��� 49

Resource Representation ��� 49

Endpoint Identification �� 52

Action Identification �� 53

ix

■ Contents

QuickPoll Architecture �� 55

Implementing QuickPoll ��� 56

Domain Implementation ��� 57

Repository Implementation��� 59

Embedded Database ��� 61

API Implementation �� 61

Summary �� 71

 ■Chapter 5: Error Handling �� 73

QuickPoll Error Handling �� 73

Error Responses ��� 76

Input Field Validation �� 80

Externalizing Error Messages ��� 86

Improving RestExceptionHandler ��� 89

Summary �� 90

 ■Chapter 6: Documenting REST Services �� 91

Swagger ��� 91

Integrating Swagger ��� 94

Swagger UI ��� 95

Customizing Swagger �� 97

Configuring Controllers �� 99

Configuring UI ��� 103

Summary �� 104

 ■Chapter 7: Versioning, Paging, and Sor ting ��� 105

Versioning �� 105

Versioning Approaches ��� 105

Deprecating an API ��� 107

QuickPoll Versioning ��� 107

Swagger config��� 109

x

■ Contents

Pagination �� 111

Page Number Pagination �� 111

Limit Offset Pagination ��� 112

Cursor-Based Pagination �� 112

Time-Based Pagination��� 113

Pagination Data �� 113

QuickPoll Pagination ��� 113

Changing Default Page Size ��� 116

Sor ting ��� 117

Sort Ascending or Sort Descending �� 117

QuickPoll Sorting �� 118

Summary �� 119

 ■Chapter 8: Security �� 121

Securing REST Services ��� 121

Session-based Security �� 121

HTTP Basic Authentication �� 122

Digest Authentication ��� 123

Certificate-Based Security �� 124

XAuth �� 125

OAuth 2�0 �� 126

Spring Security Overview ��� 128

Securing QuickPoll ��� 131

cURL ��� 132

User Infrastructure Setup ��� 133

UserDetailsService Implementation ��� 135

Customizing Spring Security �� 136

Securing URI ��� 137

QuickPoll OAuth 2�0 Provider Implementation �� 141

Testing QuickPoll OAuth 2�0 Implementation �� 145

Summary �� 146

xi

■ Contents

 ■Chapter 9: Clients and Testing ��� 147

QuickPoll Java Client �� 147

RestTemplate �� 148

Getting Polls ��� 149

Creating a Poll �� 150

PUT Method �� 151

DELETE Method �� 152

Handling Pagination�� 152

Handling Basic Authentication �� 154

Handling OAuth 2 �� 155

Testing REST Services �� 156

Spring Test �� 156

Unit Testing REST Controllers ��� 158

Integration Testing REST Controllers �� 161

Summary �� 163

 ■Chapter 10: HATEOAS ��� 165

HATEOAS �� 165

JSON Hypermedia Types �� 168

JSON Hypermedia Types ��� 168

HAL ��� 168

HATEOAS in QuickPoll ��� 170

Summary �� 174

 ■Appendix A: Installing cURL on Windows �� 175

Index ��� 179

xiii

About the Authors

Balaji Varanasi is a software development manager, author, speaker, and
technology entrepreneur. He has over 14 years’ experience designing
and developing high-performance, scalable Java and .NET mobile
applications. He has worked in the areas of security, Web accessibility,
search, and enterprise portals. He has a Master’s degree in computer
science from Utah State University and serves as adjunct faculty at the
University of Phoenix, teaching programming and information system
courses. He has authored Apress’s Practical Spring LDAP and has
coauthored Introducing Maven.

Sudha Belida is a senior software engineer and technology enthusiast.
She has more than seven years’ experience working with Java and JEE
technologies and frameworks such as Spring, Hibernate, Struts, and
AngularJS. Her interests lie in entrepreneurship and agile methodologies
for software design and development. She has a Master’s degree in
computational science from the University of Utah. She has coauthored
Apress’s Introducing Maven book.

xv

About the Technical Reviewer

Deepak Vohra is a consultant and a principal member of the
NuBean.com software company. Deepak is a Sun-certified Java
programmer and Web component developer. He has worked in the fields
of XML, Java programming, and Java EE for over five years. Deepak is the
coauthor of Pro XML Development with Java Technology (Apress, 2006).
Deepak is also the author of the JDBC 4.0 and Oracle JDeveloper for J2EE
Development, Processing XML Documents with Oracle JDeveloper 11g,
EJB 3.0 Database Persistence with Oracle Fusion Middleware 11g, and
Java EE Development in Eclipse IDE (Packt Publishing). He also served
as the technical reviewer on Web Logic: The Definitive Guide
(O’Reilly Media, 2004) and Ruby Programming for the Absolute
Beginner (Cengage Learning PTR, 2007).

xvii

Acknowledgments

This book would not have been possible without the support of several people, and we would like to take this
opportunity to sincerely thank them.

Thanks to the amazing folks at Apress; without you, this book would not have seen the light of day.
Thanks to Mark Powers for being patient and keeping us focused. Thanks to Matthew Moodie and Laura
Lawrie for their suggestions in making this book better. Thanks to Steve Anglin for his constant support and
the rest of the Apress team involved in this project.

Huge thanks to our technical reviewer Deepak Vohra for his efforts and attention to detail. His valuable
feedback has led to many improvements in the book.

Finally, we would like to thank our friends and family for their constant support and encouragement.

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to REST
	 What is REST?
	 Understanding Resources
	 Identifying Resources
	 URI Templates

	 Representation
	 HTTP Methods
	 Safety
	 Idempotency
	 GET
	 HEAD
	 DELETE
	 PUT
	 POST
	 PATCH

	 HTTP Status Codes
	 Richardson’s Maturity Model
	 Level Zero
	 Level One
	 Level Two
	 Level Three

	 Building a RESTful API
	 Summary

	Chapter 2: Spring Web MVC Primer
	 Spring Overview
	 Dependency Injection
	 Aspect Oriented Programming

	 Spring Web MVC Overview
	 Model View Controller Pattern
	 Spring Web MVC Architecture
	 Spring Web MVC Components
	Controller
	 Model
	 View
	@RequestParam
	@ RequestMapping
	Path Variables
	View Resolver
	 Exception Handler
	 Interceptors

	 Summary

	Chapter 3: RESTful Spring
	 Generating a Spring Boot Project
	 Installing a Build Tool
	 Generating a Project using start.spring.io
	 Generating a Project using STS
	 Generating a Project Using the CLI

	 Accessing REST Applications
	 Postman
	 RESTClient

	 Summary

	Chapter 4: Beginning QuickPoll Application
	 Introducing QuickPoll
	 Designing QuickPoll
	 Resource Identification
	 Resource Representation
	 Endpoint Identification
	 Action Identification

	 QuickPoll Architecture
	 Implementing QuickPoll
	 Domain Implementation
	 Repository Implementation
	 Embedded Database
	 API Implementation
	PollController Implementation
	 VoteController Implementation
	 ComputeResultController Implementation

	 Summary

	Chapter 5: Error Handling
	 QuickPoll Error Handling
	 Error Responses
	 Input Field Validation
	 Externalizing Error Messages
	 Improving RestExceptionHandler
	 Summary

	Chapter 6: Documenting REST Services
	 Swagger
	 Integrating Swagger
	 Swagger UI
	 Customizing Swagger
	 Configuring Controllers
	 Configuring UI
	 Summary

	Chapter 7: Versioning, Paging, and Sor ting
	 Versioning
	 Versioning Approaches
	URI Versioning
	 URI Parameter Versioning
	Accept Header Versioning
	Custom Header Versioning

	 Deprecating an API
	 QuickPoll Versioning
	 Swagger config

	 Pagination
	 Page Number Pagination
	 Limit Offset Pagination
	 Cursor-Based Pagination
	 Time-Based Pagination
	 Pagination Data
	 QuickPoll Pagination
	 Changing Default Page Size

	 Sor ting
	 Sort Ascending or Sort Descending
	 QuickPoll Sorting

	 Summary

	Chapter 8: Security
	 Securing REST Services
	 Session-based Security
	 HTTP Basic Authentication
	 Digest Authentication
	 Certificate-Based Security
	 XAuth
	 OAuth 2.0
	 OAuth Client Profiles
	Refresh Tokens versus Access Tokens

	 Spring Security Overview
	Note
	 Securing QuickPoll
	 cURL
	 User Infrastructure Setup
	 UserDetailsService Implementation
	 Customizing Spring Security
	 Securing URI
	 QuickPoll OAuth 2.0 Provider Implementation
	 Testing QuickPoll OAuth 2.0 Implementation
	Note

	 Summary

	Chapter 9: Clients and Testing
	 QuickPoll Java Client
	 RestTemplate
	 Getting Polls
	 Creating a Poll
	 PUT Method
	 DELETE Method
	 Handling Pagination
	 Handling Basic Authentication
	 Handling OAuth 2

	 Testing REST Services
	 Spring Test
	 Unit Testing REST Controllers
	Spring MVC Test framework Basics
	 Unit Testing Using Spring MVC Test Framework

	 Integration Testing REST Controllers

	 Summary

	Chapter 10: HATEOAS
	 HATEOAS
	 JSON Hypermedia Types
	 JSON Hypermedia Types
	 HAL

	 HATEOAS in QuickPoll
	 Summary

	Appendix A: Installing cURL on Windows
	Index

