
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

SoapUI	Cookbook

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

SoapUI	Cookbook

Credits

About	the	Author

Acknowledgments

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	Subscribe?

Free	Access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Sections

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Testing	and	Developing	Web	Service	Stubs	With	SoapUI

Introduction

What	you’ll	learn

www.allitebooks.com

http://www.allitebooks.org

What	you’ll	need

Generating	a	WSDL-first	web	service	using	SoapUI	tool	integration

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Developing	a	SOAP	web	service	test-first

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Updating	a	SOAP	project	using	a	WSDL

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Updating	SOAP	projects	using	WSDL	refactoring	(Pro)

Getting	ready

How	to	do	it…

There’s	more…

Generating	and	developing	a	RESTful	web	service	stub	test-first

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Code-first	REST	services

See	also

Generating	SoapUI	tests	with	REST	discovery	(Pro)

Getting	ready

www.allitebooks.com

http://www.allitebooks.org

How	to	do	it…

How	it	works…

There’s	more…

See	also

2.	Data-driven	Testing	and	Using	External	Datasources

Introduction

What	you’ll	learn

What	you’ll	need

Creating	and	checking	data	with	the	JDBC	Request	TestStep

Getting	ready

How	to	do	it…

How	it	works…

See	also

Parameterizing	SQL	queries	with	the	JDBC	Request	TestStep

How	to	do	it…

How	it	works…

There’s	more…

See	also

Setting	properties	from	an	external	file

Getting	ready

How	to	do	it…

How	it	work…

See	also

Importing	CSV	file	data	into	an	in-memory	H2	database	with	Groovy

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Looping	over	CSV	file	data	and	driving	tests	with	Groovy

Getting	ready

www.allitebooks.com

http://www.allitebooks.org

How	to	do	it…

How	it	works…

There’s	more…

See	also

Querying	MongoDB	with	Groovy

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Publishing,	browsing,	and	consuming	ActiveMQ	JMS	messages	via	the	REST	API

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

3.	Developing	and	Deploying	Dynamic	REST	and	SOAP	Mocks

Introduction

What	you’ll	learn

What	you’ll	need

Selecting	mock	responses	using	Groovy

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Developing	dynamic	database-driven	SOAP	mocks

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

www.allitebooks.com

http://www.allitebooks.org

See	also

Developing	dynamic	database-driven	REST	mocks

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Building	mock	responses	dynamically

How	to	do	it…

How	it	works…

There’s	more…

Deploying	mocks	as	WAR	files

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

4.	Web	Service	Test	Scenarios

Introduction

What	you’ll	learn

What	you’ll	need

Testing	WSDL	and	response	WS-I	compliance

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Testing	SOAP	response	schema	compliance

Getting	ready

How	to	do	it…

How	it	works…

www.allitebooks.com

http://www.allitebooks.org

There’s	more…

See	also

Testing	REST	response	XML	schema	compliance

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Testing	response	compliance	using	JSON	schemas

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Need	XML	schema	validation?

See	also

Testing	and	mocking	SOAP	(MTOM+XOP)	attachments

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Testing	HATEOAS	links

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Testing	polling	style	asynchronous	REST	services

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Testing	asynchronous	SOAP	service	callbacks

www.allitebooks.com

http://www.allitebooks.org

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Testing	for	e-mails	with	Groovy

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Testing	files	with	Groovy

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

5.	Automation	and	Scripting

Introduction

What	you’ll	learn

What	you’ll	need

Running	mocks	from	the	command	line

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Running	tests	from	the	command	line

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

www.allitebooks.com

http://www.allitebooks.org

Providing	environment-specific	properties

How	to	do	it…

How	it	works…

See	also

Generating	mock	WAR	files	from	the	command	line

Getting	ready

How	to	do	it…

How	it	works…

Running	mocks	and	tests	using	Maven

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Running	mocks	and	tests	using	Java	and	JUnit

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Running	mocks	and	tests	using	Groovy	scripts

Getting	ready

How	to	do	it…

How	it	works…

See	also

Running	mocks	and	tests	using	Gradle

Getting	ready…

How	to	do	it…

How	it	works…

There’s	more…

See	also

6.	Reporting

Introduction

What	you’ll	learn

Generating	reports	from	test	runners

Getting	ready

How	to	do	it…

Standard	reports

Summary	reports

JUnit	Reports

AlertSite	Reports

How	it	works…

There’s	more…

Pro	test	runner	options

Publishing	JUnit	reports	using	Jenkins

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Exporting	custom	reports	using	Groovy

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Analyzing	test,	HTTP,	and	mock	coverage	(Pro)

Getting	Ready

How	to	do	it…

How	it	works…

Contract	coverage

Assertion	coverage

There’s	more…

HTTP	coverage	reporting

Mock	coverage	reporting

REST	coverage	reporting

See	also

7.	Testing	Secured	Web	Services

Introduction

What	you’ll	learn

Testing	basic	HTTP-authenticated	RESTful	web	services

Getting	ready

How	to	do	it…

Smoke	test

Tomcat	HTTP	Basic	authentication	setup

SoapUI	HTTP	Basic	authentication	testing

How	it	works…

There’s	more…

See	also

Testing	HTTP	Digest-authenticated	RESTful	web	services

Getting	ready

How	to	do	it…

Tomcat	HTTP	Digest	authentication	setup

SoapUI	HTTP	Digest	authentication

How	it	works…

There’s	more…

See	also

Testing	HTTP	form-authenticated	RESTful	web	services

Getting	ready

How	to	do	it…

Setting	up	Tomcat	form	authentication

Adding	the	login	pages	to	helloworld-webapp

Testing	with	SoapUI

How	it	works…

Creating	and	using	X.509	certificates	to	test	web	services	over	HTTPS

Getting	ready

How	to	do	it…

Enabling	HTTPS	in	Tomcat

Testing	the	service	over	HTTPS

How	it	works…

There’s	more…

See	also

Testing	client	certificate	authenticated	web	services

Getting	ready

How	to	do	it…

Client	certificate	creation	and	keystore	setup

Tomcat	configuration

Enabling	client	certificate	authentication	in	SoapUI

How	it	works…

There’s	more…

Securing	mock	services	using	X.509	certificates

Getting	ready

How	to	do	it…

How	it	works…

Testing	WS-Security	UsernameToken,	Timestamp,	and	TransportBinding

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Scanning	web	service	security	vulnerabilities

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

8.	Testing	AWS	and	OAuth	2	Secured	Cloud	Services

Introduction

What	you’ll	learn

What	you’ll	need

Testing	Dropbox	using	a	pregenerated	OAuth	2	Access	Token

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Testing	Dropbox	using	OAuth	2	Authorization	Code	Grant	flow

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Testing	Dropbox	using	OAuth	2	Implicit	Grant	flow

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Testing	the	Gmail	API	using	OAuth2

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Automating	OAuth	2	authentication	and	consent

Getting	ready

How	to	do	it…

How	it	works…

Testing	AWS	services	using	Access	Key	authentication

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

9.	Data-driven	Load	Testing	With	Custom	Datasources

Introduction

What	you’ll	learn

What	you’ll	need

Load	testing	data-driven	TestCases	concurrently	with	separate	Groovy	datasources

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Load	testing	data-driven	TestCases	concurrently	with	a	shared	Groovy	datasource

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Load	testing	data-driven	TestCases	concurrently	with	a	shared	distributed	datasource

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Running	load	tests	using	Maven,	command	line,	Java,	Groovy,	and	Gradle	scripts

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

10.	Using	Plugins

Introduction

What	you’ll	learn

Using	old-style	(open	source)	plugins

Why	are	they	called	old-style?

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Sending	e-mails	with	the	Email	TestStep	plugin

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Using	plugins	via	the	plugin	manager	(Pro)

How	to	do	it…

How	it	works…

See	also

Using	the	Groovy	Console	plugin	to	create	and	run	a	new	TestStep

Getting	ready

How	to	do	it…

How	it	works…

See	also

Packaging	old-style	plugins	when	running	tests	with	Maven

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

11.	Taking	SoapUI	Further

Introduction

What	you’ll	learn

Building,	packaging,	and	running	SoapUI	from	the	source	code

Getting	ready

How	to	do	it…

There’s	more…

See	also

Importing,	building,	running,	and	debugging	SoapUI	in	Eclipse

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Developing	a	Groovy	plugin	with	custom	Action	using	Gradle

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Logging	from	extensions	and	scripts

Getting	ready

How	to	do	it…

How	it	works…

See	also

Prompting	for	user	input	with	the	UISupport	class

Getting	ready

How	to	do	it…

How	it	works…

See	also

Creating	a	custom	RequestFilter	(Listener)	plugin

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	custom	TestStep	(Factory)	plugin	to	check	whether	a	file	exists

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Index

www.allitebooks.com

http://www.allitebooks.org

SoapUI	Cookbook

SoapUI	Cookbook
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2015

Production	reference:	1190215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-421-9

www.packtpub.com

http://www.packtpub.com

Credits
Author

Rupert	Anderson

Reviewers

Wilkołek	Damian

Shalabh	Dixit

Mykola	Makhin

Ambesh	Thakur

Commissioning	Editor

Kartikey	Pandey

Acquisition	Editor

Richard	Brookes-Bland

Content	Development	Editor

Adrian	Raposo

Technical	Editor

Tanvi	Bhatt

Copy	Editors

Puja	Lalwani

Nithya	P.

Alfida	Paiva

Project	Coordinator

Sanchita	Mandal

Proofreaders

Paul	Hindle

Clyde	Jenkins

Elinor	Perry-Smith

Indexer

Mariammal	Chettiyar

Graphics

Abhinash	Sahu

Production	Coordinator

Melwyn	D’sa

Cover	Work

Melwyn	D’sa

About	the	Author
Rupert	Anderson	holds	an	M.Maths	(Hons)	degree,	and	contributed	his	dissertation	in
the	field	of	computational	fluid	dynamics.	He	works	as	a	freelance	architect,	software
engineer,	and	integrator	with	over	17	years	of	software	development	experience.	He	has
designed,	developed,	or	tested	RESTful	and	SOAP	APIs	during	large	and	successful	Agile
projects.	He	also	specializes	in	designing	and	developing	Java	e-commerce	solutions	using
ATG,	Hybris,	and	Spring	technologies.	He	is	an	open	source	enthusiast	and	aims	to
contribute	more	when	he	finds	the	time,	energy,	and	drive	after	the	demands	of	family	life
are	finished	for	the	day!

If	you	would	like	to	know	more	about	him	and	what	he	is	up	to,	take	a	look	at
uk.linkedin.com/in/rupertanderson/.

http://uk.linkedin.com/in/rupertanderson/

Acknowledgments
Sincere	and	special	thanks	to	the	following	people:

The	editors	Richard	Brookes-Bland,	Adrian	Raposo,	and	Tanvi	Bhatt.	Richard	for	getting
me	started,	making	me	feel	positive	about	the	book,	and	showing	me	the	way	forward.
Adrian	for	his	corrections,	helping	me	develop	my	writing	skills,	giving	me
encouragement	when	I	needed	it,	and	staying	the	distance.	Lastly,	to	Tanvi	for	all	her	hard
work	knocking	my	draft	chapters	into	shape	and	her	great	attention	to	detail	when	editing
technical	content.

The	reviewers	Ambesh,	Mykola,	and	Damian	and	others,for	all	your	helpful	comments
and	constructive	criticism.	Thanks	for	all	your	efforts;	it	was	a	major	help	and	I	am	very
grateful	for	it.

My	girlfriend,	Nicola,	for	being	there	to	balance	my	life	and	helping	me	make	the	head
space	to	write	this	book	by	doing	such	a	great	job	of	looking	after	our	two	lovely	kids!	I’d
better	thank	the	kids	too,	Cole	and	Maisy,	for	giving	me	natural	breaks	in	my	work	with
their	chirpy	but	adorable	ways!

My	friend	and	colleague	Ben	Wilcock,	for	introducing	me	to	Packt	Publishing,
encouraging	me	to	write	this	book,	and	all	those	pub	lunches	where	I	got	to	offload	all	my
ideas	to	someone	passionate	about	modern	integration	techniques	and	API	testing!

The	SoapUI	Creators,	particularly	Ole	Lensmar,	whom	I	have	never	met	but	have	great
respect	for.	Without	your	skill,	passion,	and	drive	to	make	SoapUI	so	open	and	extensible,
this	book	would	have	been	far	less	fun	to	write!

www.allitebooks.com

http://www.allitebooks.org

About	the	Reviewers
Wilkołek	Damian	gained	all	the	experience	while	being	a	freelancer.	After	graduation,	he
started	to	work	on	a	polish	eHealth	project.	He	is	enthusiastic	about	new	technologies	and
adrenaline.

He	has	also	previously	worked	on	a	book	about	Spring	framework	by	Packt	Publishing.

I’d	like	to	thank	my	dear	love	for	providing	me	with	beer	and	good	words!

Shalabh	Dixit	(https://www.linkedin.com/profile/view?id=23517594)	is	a	full	stack
quality	assurance	engineer	living	in	Hyderabad,	India.	He	is	currently	associated	with	the
world’s	third	largest	software	testing	company,	Cigniti	Technologies	Ltd,	and	has	the
designation	of	a	Project	Lead.

He	has	significant	and	diversified	experience	in	various	types	of	automation	and
performance	testing	tools,	such	as	UFT,	LoadRunner,	SoapUI,	and	so	on.

He	started	his	career	as	a	test	engineer	at	NIIT	Technologies	to	explore	new	technologies,
and	then	moved	to	HCL	Technologies	as	a	senior	test	engineer.

He	is	passionate	about	technology	and	start-ups,	and	enjoys	exploring	new	tools.

Apart	from	the	professional	pursuits,	he	is	a	team	person	and	likes	to	help	others.	He	also
loves	to	spend	time	with	friends	and	family.

I	dedicate	all	the	success	in	my	career	so	far	to	my	parents	and	my	wife,	Pallavi,	and	also
thank	them	for	their	support.

Mykola	Makhin	is	a	Java	programmer	hailing	from	Lviv,	Ukraine.	A	graduate	of	Lviv
Polytechnic	University,	Mykola	is	a	Java-	and	JVM-based	languages	enthusiast,	and	has
almost	a	decade	of	experience	in	the	field	of	Java	EE	solutions	development.

Ambesh	Thakur	(https://www.linkedin.com/in/ambeshthakur)	is	a	full	stack	quality
assurance	engineer	living	in	New	Delhi,	India.	He	is	currently	associated	with	one	of	the
most	successful	e-commerce	companies	in	India,	Snapdeal.com,	as	a	quality	assurance
engineer	(individual	contributor).

He	has	significant	experience	in	providing	end-to-end	solutions	to	a	few	start-ups.	He
started	his	career	as	a	test	engineer	at	Cropin	Technologies	(an	Agro	ERP	start-up),	and	to
explore	new	technologies,	moved	to	Xenon	(an	automotive	start-up)	as	a	quality	assurance
lead.

He	is	passionate	about	technology	and	start-ups,	and	enjoys	exploring	new	tools	and
technology.

Apart	from	the	professional	pursuits,	he	is	a	team	person	and	likes	to	help	others.	He	also
loves	to	spend	time	with	friends	and	family.

I	would	like	to	thank	Packt	Publishing	for	providing	me	with	such	a	great	opportunity.

https://www.linkedin.com/profile/view?id=23517594
https://www.linkedin.com/in/ambeshthakur

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	Access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
This	cookbook	aims	to	complement	the	online	SoapUI	documentation	and	the	wealth	of
excellent	blogs	out	there.	To	do	this,	this	book	tries	to	put	you	in	control	of	SoapUI	by
building	your	skills	and	understanding,	so	that	if	a	solution	isn’t	there	already,	you	have
what	it	takes	to	add	it.	To	support	this	journey	are	70	recipes,	which	are	often	in	the	form
of	hands-on	worked	examples,	to	build	SoapUI	framework	knowledge,	scripting	skills,
integration	of	open	source	libraries,	and	understanding	of	the	technologies	at	play.	In
general,	this	book	is	not	a	beginner’s	guide,	and	tries	not	to	repeat	commonly	available
material	or	basic	topics.	Having	said	that,	if	you	are	new	to	SoapUI,	but	have	basic	Java
skills	and	web	service	knowledge,	then	you	shouldn’t	have	too	much	trouble	using	this
book.

Another	aim	of	this	book	is	to	demonstrate	SoapUI’s	API	testing	flexibility.	To	support
this,	RESTful	web	services	and	related	technologies	are	given	plenty	of	coverage.	Also,
with	the	plugin	framework	and	scripting	skills	that	you’ll	gain,	there’s	no	reason	why
SoapUI	can’t	test	most	things!

As	a	cookbook,	the	way	you	read	it	is	somewhat	up	to	you	and	how	experienced	you	are.
The	recipe	format	potentially	allows	experienced	users	to	dip	in	and	out	of	chapters,
although	some	recipes	are	made	easier	by	having	completed	others,	which	is	normally
indicated	in	their	introduction	or	the	Getting	ready	section.	If	you	are	new	to	SoapUI,	then
going	through	chapters	1	to	4	in	order,	may	help	give	you	a	good	foundation	before
skipping	to	more	specialized	topics.

What	this	book	covers
Chapter	1,	Testing	and	Developing	Web	Service	Stubs	With	SoapUI,	provides	a	view	on
how	to	support	early	application	development.	The	main	theme	here	is	how	SoapUI	can	be
used	to	generate,	develop,	and	test	basic	RESTful	and	SOAP	web	service	stubs	using
Apache	CXF.	Discovering,	updating,	and	refactoring	tests	are	also	covered	here.	Apart
from	the	pro-only	WSDL	refactoring	and	REST	discovery	recipe,	this	chapter	is	fairly
basic	in	terms	of	SoapUI	testing	concepts.	Although	some	readers	may	prefer	not	to	start
with	this	chapter,	for	example,	if	they	already	have	basic	SoapUI	skills	or	no	interest	in
developing	Java	web	service	stubs.

Chapter	2,	Data-driven	Testing	and	Using	External	Datasources,	introduces	the	theme	of
data-driven	testing	and	Groovy	scripting	as	a	key	enabler.	This	chapter	also	introduces	the
building	blocks	of	SoapUI	properties,	simple	database	handling,	file	handling,	and	how	to
use	open	source	libraries	in	Groovy	TestSteps.	This	chapter	is	fairly	fundamental	going
forward,	especially	if	you	do	not	already	know	these	concepts.

Chapter	3,	Developing	and	Deploying	Dynamic	REST	and	SOAP	Mocks,	builds	directly	on
the	Groovy	scripting	and	database	and	property	handling	from	the	previous	chapter	to
show	how	to	develop	dynamic	mock	services.	We	also	see	how	to	deploy	the	mocks	as
WAR	files	to	potentially	support	early	application	development.	Mock	services	will	be
used	to	support	recipe	samples	across	several	chapters.

Chapter	4,	Web	Service	Test	Scenarios,	uses	the	fundamentals	of	the	first	three	chapters	to
demonstrate	how	SoapUI	can	be	used	to	solve	some	more	high-level,	scenario-based
REST	and	SOAP	web	service	testing	problems.	This	is	probably	the	most	balanced
chapter	in	terms	of	general	SoapUI	testing,	as	the	subsequent	chapters	are	more
specialized.

Chapter	5,	Automation	and	Scripting,	is	all	about	how	SoapUI	tests	and	mocks	can	be	run
from	scripts	with	a	view	to	continuous	integration.	Examples	include	command-line,
Maven,	Java,	JUnit,	Groovy,	and	Gradle	scripts.	Scripting	of	security	and	load	tests	will	be
looked	at	in	chapters	7	and	9	respectively.

Chapter	6,	Reporting,	looks	at	the	reporting	features	that	are	available	to	the	scripts	of	the
previous	chapter,	custom	reporting	with	Groovy,	and	how	Jenkins	or	similar	CI	tools	can
run	the	scripts	and	publish	test	results	as	JUnit	style	reports.	Pro	version	only	coverage
reporting	is	also	explored.

Chapter	7,	Testing	Secured	Web	Services,	is	all	about	using	SoapUI	to	test	APIs	that
feature	HTTP	Basic,	Digest	and	Form,	transport	layer	security	(TLS),	client	certificate,
and	WSS	security.	A	core	learning	is	the	X.509	certificate	creation	and	handling	within
SoapUI.	The	security-scanning	functionality	of	SoapUI	is	also	explored.

Chapter	8,	Testing	AWS	and	OAuth	2	Secured	Cloud	Services,	mainly	explores	how	OAuth
2	code	and	implicit	grant	flows	work	and	how	SoapUI	supports	them.	Amazon	AWS
Access	Key	Authentication	is	also	explained	and	demonstrated	using	Groovy.	All
examples	use	popular	cloud	service	providers	such	as	Dropbox,	Google,	Gmail,	and	AWS,

www.allitebooks.com

http://www.allitebooks.org

and	involve	RESTful	web	services.

Chapter	9,	Data-driven	Load	Testing	With	Custom	Datasources,	discusses	how	to
understand	and	deal	with	datasource	concurrency	issues	when	running	multithreaded	data-
driven	load	tests.	Distributed	datasources	and	scripting	of	load	tests	are	also	covered.

Chapter	10,	Using	Plugins,	focuses	on	using,	rather	than	developing,	some	of	the	example
plugins	that	are	currently	available	for	SoapUI.	The	basics	of	how	plugins	work	is	also
briefly	covered,	as	well	as	how	to	provide	them	in	scripts	such	as	Gradle	and	Maven,
where	a	SoapUI	installation	is	not	normally	present.	While	this	chapter	is	near	the	end,	it’s
actually	quite	easy	to	do,	even	though	the	understanding	of	how	plugins	work	might	seem
more	advanced.

Chapter	11,	Taking	SoapUI	Further,	is	mostly	about	using	SoapUI	from	its	source	code
and	how	to	develop	SoapUI	extensions	and	plugins	using	Groovy	and	Gradle.	Even
though	developing	extensions	is	advanced	and	beyond	many	people’s	needs,	the	examples
should	be	quite	doable,	especially	if	you’ve	read	the	other	chapters.	Also,	building	SoapUI
from	scratch	is	not	hard	at	all	and	can	be	very	useful,	even	in	some	of	the	earlier	chapters.

What	you	need	for	this	book
The	main	software	requirements	for	all	or	most	recipes	are	as	follows:

SoapUI	Open	Source	Version:	Version	5.0	was	used	for	this	book.	You	can	use	the
latest	version	for	example,	which	is	built	from	the	source	code.

The	secondary	but	important	software	requirements	for	several	recipes	are	as	follows:

SoapUI	Pro	Version:	For	the	4	pro	only	recipes	and	pro	functionality	tips	recipes
marked	with	(pro),	version	5.1.1	was	used.	SoapUI	NG	Pro	should	also	work,	but	it
has	not	been	officially	tested.
Java	JDK	1.6+:	Version	1.7	was	used	for	the	recipes.
IDE	(Optional):	Eclipse,	IntelliJ	IDEA,	or	NetBeans
Apache	CXF:	Version	3+	was	used
Apache	Tomcat:	Version	7	was	used	or	you	can	use	the	latest	version
Apache	Maven:	Version	3+	was	used
Gradle:	A	Gradle	wrapper	was	used	in	all	examples,	which	indicates	that	Gradle
installation	is	unnecessary	but	can	be	done	(version	2.2	was	used).
Browsers:	Any	browser	should	work;	the	main	testing	was	done	using	either	Google
Chrome	or	Mozilla	Firefox.

During	many	recipes,	there	will	be	a	need	to	download	and	use	various	open	source
libraries	and	dependencies,	so	download	and	version	advice	will	be	provided	there.

Who	this	book	is	for
This	book	is	aimed	at	developers	and	technical	testers,	who	are	looking	for	a	quick	way	to
take	their	SoapUI	skills	and	understanding	to	the	next	level.	It	is	not	designed	as	a	SoapUI
beginner’s	guide;	rather,	it	can	be	used	more	to	complement	existing	basic	material	found
in	the	online	help.	However,	if	you	are	new	to	SoapUI	but	have	basic	Java	skills	and	a
reasonable	grasp	of	RESTful	and/or	SOAP-based	web	service	technologies,	then	you
should	have	no	problem	making	use	of	this	book.	If	you	are	not	interested	in	coding	small
amounts	of	Java	and	Groovy,	or	understanding	more	about	the	underlying	technologies,
then	you	may	still	find	this	book	useful,	but	might	not	get	the	most	out	of	it.

In	terms	of	SoapUI	version,	this	book	favors	solutions	for	the	open	source	version,	but	is
largely	just	as	applicable	to	the	current	pro	version	and	contains	a	few	pro	only	recipes.
The	Ready	API!	SoapUI	NG	Pro	version	is	not	directly	covered,	but	much	of	the	content
should	still	be	relevant.

Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting	ready,	How	to
do	it,	How	it	works,	There’s	more,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	we	use	these	sections	as	follows:

Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe,	and	describes	how	to	set	up	any
software	or	any	preliminary	settings	required	for	the	recipe.

How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.

How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the	previous
section.

www.allitebooks.com

http://www.allitebooks.org

There’s	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make	the	reader
more	knowledgeable	about	the	recipe.

See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	SoapUI	Projects,	TestSuites,	TestCases,	TestSteps,	Assertions,	paths
to	samples	are	shown	as	follows:	“The	Properties	TestStep	is	parameterized	to	take	its
file	name	from	a	project	level	property	called	propertiesFile.”

A	block	of	code	is	set	as	follows:

import	groovy.sql.Sql
import	org.h2.Driver

com.eviware.soapui.support.GroovyUtils.registerJdbcDriver("org.h2.Driver")

def	db	=	Sql.newInstance("jdbc:h2:mem:test",	"org.h2.Driver")

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

//Change	this	to	the	location	of	your	CSV	file.
def	fileName	=	"/temp/invoices_with_headers.csv"

db.execute("create	table	if	not	exists	invoices	as	select	*	from	
csvread('$fileName')")

Any	command-line	input	or	output	is	written	as	follows:

#	maven	clean	build

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Lets	get	started!	Open
SoapUI	and	create	a	new	REST	project.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

www.allitebooks.com

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
http://www.allitebooks.org

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Testing	and	Developing	Web
Service	Stubs	With	SoapUI
In	this	chapter,	we	will	cover	the	following	topics:

Generating	a	WSDL-first	web	service	using	SoapUI	tool	integration
Developing	a	SOAP	web	service	test-first
Updating	a	SOAP	project	using	a	WSDL
Updating	SOAP	projects	using	WSDL	refactoring	(Pro)
Generating	and	developing	a	RESTful	web	service	stub	test-first
Generating	SoapUI	tests	with	REST	discovery	(Pro)

Introduction
Web	service	stubs	(and	mocks—see	Chapter	3,	Developing	and	Deploying	Dynamic	REST
and	SOAP	Mocks)	are	often	developed	in	the	early	stages	of	a	project,	to	quickly	provide
limited	functionality	to	the	client	application	while	the	full	web	services	are	implemented.
This	chapter	shows	how	SoapUI	can	help	you	quickly	test	and	develop	simple	Java	REST
and	SOAP	web	service	stubs	and	generate	tests	by	recording	interactions	with	existing
web	services.	The	web	service	stub	implementations	that	you’ll	develop	will	only	involve
a	few	lines	of	Java	code	and	can	be	run	as	Java	executables.	Apart	from	providing	a	quick
warm	up	on	basic	SoapUI	testing,	the	service	interfaces	and	implementation	examples	will
be	reused	as	the	basis	for	more	advanced	topics	later	in	this	book.

What	you’ll	learn
You	will	learn	the	following	topics:

How	SoapUI	can	help	you	test,	update,	refactor,	and	develop	a	simple	stub	SOAP
web	service	using	its	WSDL
How	SoapUI	can	help	you	test	and	develop	a	simple	stub	REST	web	service
How	SoapUI’s	discovery	features	can	help	you	generate	tests
To	use	Apache	CXF	to	generate,	implement	and	run	basic	JAX-RS	and	JAX-WS	web
service	stubs

What	you’ll	need
You	will	need	the	following	software:

A	Java	JDK:	To	compile	and	run	the	code	samples	(version	1.6	or	above)
Apache	CXF:	Apache	CXF	is	used	to	build,	and	sometimes	run,	all	the	REST	and
SOAP	web	services	in	this	chapter
An	IDE	(optional):	Using	an	IDE	such	as	Eclipse	should	make	exploring,	compiling,
and	running	the	example	code	easier

Note
New	to	SoapUI?

While	this	chapter	demonstrates	how	to	set	up	basic	SoapUI	REST	and	SOAP	projects,
tests,	and	assertions,	it	doesn’t	cover	the	typical	‘getting	started’	installation,	setup,	and
overview	of	SoapUI.	So	if	you	are	completely	new	to	SoapUI,	it	might	also	be	worth
taking	a	look	at	the	online	SoapUI	docs,	for	example,	Getting	started	at
http://www.soapui.org/.

http://www.soapui.org/

Generating	a	WSDL-first	web	service
using	SoapUI	tool	integration
This	recipe	shows	how	to	configure	SoapUI	(Apache	CXF)	tool	integration	to	generate	a
runnable	Java	web	service	with	an	empty	implementation	using	its	WSDL.	This	could	be
useful	if	you	need	a	quick	menu-driven	way	to	create	a	SOAP	web	service	that	can	be
implemented	and	deployed	separately	to	SoapUI.

Getting	ready
The	WSDL	that	we	are	going	to	use	defines	a	simple	invoice	service.	It	has	only	one
operation	to	retrieve	a	basic	invoice	document	using	its	invoice	number:

Operation:	getInvoice
Request:	invoiceNo	:	string
Response:	InvoiceDocument	(invoiceNo	:	string,	company	:	string,	amount
:	string)
Location:	http://localhost:9001/ws/invoice/v1

The	WSDL	can	be	found	at	soap/invoicev1/wsdl/invoice_v1.wsdl	in	this	chapter’s
sample	code.

We’ll	need	the	Apache	CXF	web	service	framework	to	generate	the	web	service	stub
using	SoapUI	tooling.	Download	the	latest	version	from
http://cxf.apache.org/download.html	(I	have	used	version	3.01).

Tip
Apache	CXF	Version

Despite	the	tool	menu	stating	version	2.x,	you	can	go	for	the	latest	version,	which,	at	the
time	of	writing,	is	3.01	(requires	JDK	1.7+).	Otherwise,	choose	version	2.7.x	for	JDK	1.6+
support,	or	version	2.6.x	for	JDK	1.5	support.

To	build	and	run	the	service	Java	code,	the	minimum	you	will	need	is	a	suitable	JDK.	I
have	used	JDK	1.7.0_25.	Optionally,	you	may	also	want	to	use	an	IDE	like	Eclipse	to
make	easy	the	work	of	exploring,	building,	and	running	the	generated	web	service	code.

Tip
Other	SoapUI	Tools

While	you	are	free	to	choose	any	alternate	framework	supported	by	SoapUI	tools	(see
http://www.soapui.org/SOAP-and-WSDL/code-generation.html),	note	that	although	the
principles	will	stay	the	same,	the	command	details	and	the	resulting	generated	web	service
artifacts	will	of	course	vary.

www.allitebooks.com

http://cxf.apache.org/download.html
http://www.soapui.org/SOAP-and-WSDL/code-generation.html
http://www.allitebooks.org

How	to	do	it…
First,	we	need	to	configure	SoapUI	to	be	able	to	generate	and	build	the	invoice	web
service.	Then,	we	can	run	it	as	a	standard	Java	executable.	Perform	the	following	steps:

1.	 In	SoapUI,	go	to	Tools	|	Apache	CXF,	and	when	the	Apache	CXF	Stubs	window
appears,	click	on	the	Tools	button	to	bring	up	the	SoapUI	Preferences	window.
Here,	browse	to	the	location	where	you	downloaded	Apache	CXF,	select	the	bin
directory,	and	then	click	on	OK:

2.	 Next,	we	need	to	configure	the	generation	options	under	the	Basic	tab.	The	main
points	are:

WSDL	location:	For	example,	<chapter1
samples>/soap/invoicev1/wsdl/invoice_v1.wsdl.
Output	directory:	This	is	where	the	generated	source	code	will	end	up;	for
example;	<chapter1	samples>/soap/invoicev1/src/main/java.
Package	Structure:	This	is	for	the	generated	source	code;	for	example,
ws.invoice.v1.
Artifact	Options:	Only	tick	Server	and	Implementation.	However,	the	client
and	Ant	build	file	options	are	also	available.	We	will	be	using	SoapUI	as	our
client	and	won’t	require	Ant.

3.	 To	automatically	compile	our	generated	service	code,	under	the	Advanced	tab,	do	the
following:

Tick	Compile.
Supply	a	Class	Folder	value	for	the	resulting	Java	class	files,	for	example,
<chapter1	samples>/soap/invoicev1/target/classes.
Tick	Validate	WSDL	(optional)	under	the	advanced	tab	to	check	the	structure
and	get	basic	WS-I	compliance	checks	on	your	WSDL.	Note	that	the
invoice_v1.wsdl	should	not	produce	any	output	with	this	option.
Leave	all	other	fields	and	checkboxes	unchanged.

4.	 Under	the	Custom	Args	tab,	enter	–wsdlLocation	invoice_v1.wsdl	in	Tool	Args.
This	tells	the	web	service	code	where	to	look	for	the	WSDL	file	at	runtime.	Setting
the	value	like	this	means	that	invoice_v1.wsdl	is	expected	to	be	the	root	of	the
classes	directory.	More	on	this	in	the	next	section.

5.	 Now,	we	are	ready	to	click	on	Generate!	If	all	goes	well,	you	should	see	an	output
similar	to	the	following:

You	should	also	see	the	following	generated	Java	source	files	in	your	output	folder,
for	example:

<chapter1	samples>/soap/invoicev1/src/main/java/ws/invoice/v1/

InvoiceDocumentType.java
InvoicePortType_InvoicePort_Server.java	
ObjectFactory.java	InvoicePortImpl.java	
InvoiceRefType.java	package-info.java	
InvoicePortType.java	InvoiceServiceV1.java

The	corresponding	class	files	in	your	class	folder,	for	example:

<chapter1	samples>/soap/invoicev1/target/classes/ws/invoice/v1/

Note
Mac/Linux	Issue

I	suspect	that	there	is	a	minor	SoapUI	bug	here.	If	you	get	an	error	like	sh:
./wsdl2java.sh:	No	such	file	or	directory,	then	an	easy	fix	is	to	open	a	shell
in	<Apache	CXF	Home>/bin/	and	copy	wsdl2java	to	wsdl2java.sh;	for	example,	cp
wsdl2java	wsdl2java.sh.

6.	 Before	we	run	the	server,	we	need	to	copy	invoice_v1.wsdl	into	the	classes	folder
location,	for	example,	into	<chapter1	samples>/soap/invoicev1/target/classes.
Otherwise,	when	the	server	is	run,	you	will	see	an	error	like	[failed	to	localize]
cannot.load.wsdl(invoice_v1.wsdl).

7.	 Finally,	we	are	ready	to	start	the	server:

cd	<chapter1	samples>/soap/invoicev1/target/classes
java	ws.invoice.v1.InvoicePortType_InvoicePort_Server
Starting	Server
Server	ready…

To	confirm	whether	it’s	actually	working,	open	a	browser	and	go	to
http://localhost:9001/ws/invoice/v1?wsdl,	and	you	should	see	the
(invoice_v1.wsdl)	WSDL	displayed.	Our	generated	server	is	up	and	running.

How	it	works…
All	that	SoapUI	is	actually	doing	is	building	command-line	parameters	for	the	various	web
service	frameworks	to	do	the	generation.	In	this	example,	those	happy	with	the	command
line	could	just	run	<Apache	CXF	Home>/bin/wsdl2java	directly.

Note
Apache	CXF	wsdl2java	script

For	more	info	on	the	wsdl2java	options,	see	http://cxf.apache.org/docs/wsdl-to-java.html.

Let’s	take	a	quick	look	at	the	generated	source	files.	The	main	points	are	as	follows:

Running	the	wsdl2java	option	generates	Java	standard	JAX-WS	web	service	code
with	types	and	methods	derived	from	the	WSDL.
The	Java	JDK	ships	with	an	implementation	of	JAX-WS:

There’s	no	need	for	any	additional	compile	or	runtime	libraries,	for	example,
Apache	CXF	libs.
No	servlet	container	is	required	to	publish	the	web	service,	for	example,	Tomcat
or	Jetty.	If	you	look	in	InvoicePortType_InvoicePort_Server.java,	you	can
see	that	the	service	is	published	using	JDK’s	default	HTTP	server	provided	by
the	javax.xml.ws.Endpoint	class.	The	static	Endpoint.publish(…)	binds	our
generated	service	implementation	(InvoicePortImpl.java)	to	the	endpoint
address	so	that	invoice	requests	are	handled	by	our	getInvoice(…)	method.

The	service	is	very	portable;	that	is,	only	a	Java	JRE	is	needed	to	run	it.
The	WSDL	file	is	required	at	runtime.	The	wsdlLocation	parameter	supplied	in	step
4	sets	an	attribute	of	the	@javax.jws.WebService	annotation	in	the	class
InvoicePortImpl.java.
The	server	endpoint	and	timeout	(the	default	value	is	5	minutes)	are	easy	to	change.
Edit	InvoicePortType_InvoicePort_Server.java:

Endpoint:	String	address	=	"http://localhost:9001/ws/invoice/v1";
Timeout:	Thread.sleep(5	*	60	*	1000);
Requires	recompile

http://cxf.apache.org/docs/wsdl-to-java.html

There’s	more…
If	the	generated	web	service	stub	is	to	be	used	as	the	basis	for	on-going	service
development,	then	managing	the	generation,	build,	and	deploy	cycle	externally	to	SoapUI
using	a	build	framework	such	as	Ant,	Maven,	or	Gradle	will	probably	be	a	better	option.
To	help	with	this,	Apache	CXF	has	a	good	Maven	plugin	to	provide	similar	code
generation;	refer	to	http://cxf.apache.org/docs/maven-cxf-codegen-plugin-wsdl-to-
java.html.

For	those	who	want	a	quick	and	high-level	way	to	generate	a	working	web	service	for
testing	purposes,	I	would	expect	SoapUI’s	excellent	mocking	features	to	be	a	more
convenient	option	than	code	generation	in	many	cases	(See	Chapter	3,	Developing	and
Deploying	Dynamic	REST	and	SOAP	Mocks).

The	SOAP	web	service	stub	journey	will	be	continued	in	the	next	recipe	when	we	add
simple	SoapUI	tests	and	a	basic	implementation	to	pass	them.

http://cxf.apache.org/docs/maven-cxf-codegen-plugin-wsdl-to-java.html

See	also
To	access	the	Java	1.6	JAX-WS	tutorial,	go	to
http://docs.oracle.com/javaee/6/tutorial/doc/bnayl.html

http://docs.oracle.com/javaee/6/tutorial/doc/bnayl.html

Developing	a	SOAP	web	service	test-first
SoapUI	is	often	used	to	retrofit	tests	around	web	services	that	are	already	at	least	partially
developed.	To	follow	a	test-first	or	test-driven	development	(TDD)	approach	requires
that	we	first	set	up	failing	tests	and	then	provide	a	service	implementation	in	order	to	pass
them.	In	this	recipe,	we’ll	see	how	SoapUI	can	be	used	to	facilitate	test-first	development
for	the	invoice	web	service	generated	in	the	previous	recipe.

Getting	ready
We’ll	need	the	WSDL	from	the	previous	recipe	to	set	up	our	SoapUI	project	(<chapter1
samples>/soap/invoicev1/wsdl/invoice_v1.wsdl).

The	Java	code	for	the	completed	web	service	implementation	can	be	found	at	<chapter1
samples>/soap/invoicev1_impl.

The	project	can	be	found	at	<chapter1	samples>/invoice-soap-v1-soapui-
project.xml.

Tip
Eclipse	setup

Optionally,	it	is	very	easy	to	set	up	an	Eclipse	project	to	make	light	work	of	the	test,	edit,
compile,	and	run	cycle.	First,	import	the	sample	code	and	then	run	the	service	as	a
standard	Java	application.

How	to	do	it…
Firstly,	we’ll	set	up	a	couple	of	simple	failing	tests	to	assert	what	we	expect	back	from	the
getInvoice	operation	and	then	provide	basic	implementation	to	pass	them.	Next,	we’ll
update	the	invoice	WSDL	definition	to	provide	an	additional	createInvoice	operation,
write	new	failing	tests,	and	finally	provide	basic	code	to	pass	those.	Perform	the	following
steps:

1.	 To	create	the	SoapUI	project	and	generate	the	initial	PortBinding,	Test	Suite,
TestCase,	and	Test	Request	TestStep,	right-click	on	your	Workspace	and	select
New	SOAP	Project.	In	the	window,	enter/select	the	following	and	click	on	OK:

Project	Name:	InvoiceService
Initial	WSDL:	chapter1	samples>/soap/invoicev1/wsdl/invoice_v1.wsdl
Leave	Create	Requests	ticked	and	also	tick	Create	TestSuite

2.	 In	the	Generate	TestSuite	window,	select	the	following	options	and	click	on	OK:

Leave	Style	as	One	TestCase	for	Each	Operation
Change	Request	Content	to	Use	existing	Requests	in	Interface

3.	 Accept	the	suggested	TestSuite	name	as	InvoicePortBinding	TestSuite	in	the
pop	up	and	click	on	OK.	All	expected	SoapUI	test	artifacts	should	now	be	generated
in	your	project.

4.	 Now,	we	can	write	a	simple	failing	test	to	assert	what	we	expect	a	successful
getInvoice	request	to	return.	Under	the	first	TestStep	option,	double-click	on
getInvoice	and	you	should	see	the	SOAP	request:

<soapenv:Envelope	
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"	
xmlns:inv="http://soapui.cookbook.samples/schema/invoice">
			<soapenv:Header/>
			<soapenv:Body>
						<inv:getInvoice>
									<inv:invoiceNo>?</inv:invoiceNo>
						</inv:getInvoice>
			</soapenv:Body>
</soapenv:Envelope>

5.	 Change	the	invoiceNo	(?)	value	to	something	more	memorable,	for	example,	12345.
6.	 Now,	start	the	stub	invoice	service	generated	in	the	previous	recipe	and	submit	the

request	by	clicking	on	the	green	arrow.	You	should	see	a	stubbed	response,	like	the
one	shown	in	the	following	code:

<S:Envelope	xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
			<S:Body>
						<InvoiceDocument	
xmlns="http://soapui.cookbook.samples/schema/invoice">
									<invoiceNo>12345</invoiceNo>
									<company/>
									<amount>0.0</amount>
						</InvoiceDocument>

			</S:Body>
</S:Envelope>

7.	 Next,	let’s	create	some	SoapUI	Assertions	to	specify	the	invoice	property	values	we
expect	to	see:

invoiceNo	=	12345
company	=	Test	Company
amount	=	100.0

Since	we’re	dealing	with	SOAP	XML,	let’s	add	3	XPath	Assertions	to	check	these	values
in	the	response.	SoapUI	Pro	users	will	find	this	easy,	thanks	to	the	convenient	XPath
builder.	Open	source	users	can	either	be	‘hardcore’	and	write	them	from	scratch	or	just
copy	the	details	provided.

Tip
XPath	Help

Even	the	Pro	version’s	XPath	builder	is	of	less	use	when	you	cannot	directly	retrieve	a
response	XML	to	build	from,	that	is,	when	there	is	no	service	at	all!	As	a	workaround,	you
can	get	SoapUI	to	generate	a	sample	response	XML	by	going	to	Add	Step	|	SOAP	Mock
Response	TestStep	from	the	TestCase,	and	then	copy	the	response	XML	into	a	helpful
XPath	tool	to	write	the	XPath	expression,	for	example,
http://www.freeformatter.com/xpath-tester.html.	Paid-for	tools	such	as	XML	Spy	will	also
help	a	lot	in	these	areas.	You	may	also	find
http://www.w3schools.com/XPath/xpath_syntax.asp	helpful.

So	let’s	add	3	XPath	Assertions.	Edit	the	REST	Request	TestStep,	under	the	Assertions
tab	and	right-click	on	Add	Assertion	and	add	a	new	XPath	Assertion	to	check	the
response’s	invoiceNo=12345,	company=Test	Company,	and	amount=100.0:

Response Assertion	name XPath	Expression

invoiceNo=12345 InvoiceNoShouldBe12345
declare	namespace
ns1='http://soapui.cookbook.samples/schema/invoice';

//ns1:InvoiceDocument[1]/ns1:invoiceNo[1]

company=Test
Company Invoice12345ShouldHaveCompanyNameOfTestCompany

declare	namespace
ns1='http://soapui.cookbook.samples/schema/invoice';

//ns1:InvoiceDocument[1]/ns1:company[1]

amount=100.0 Invoice12345ShouldHaveAmountOf100.0
declare	namespace
ns1='http://soapui.cookbook.samples/schema/invoice';

//ns1:InvoiceDocument[1]/ns1:amount[1]

Have	a	look	at	the	following	screenshot	for	better	clarity:

http://www.freeformatter.com/xpath-tester.html
http://www.w3schools.com/XPath/xpath_syntax.asp

Running	the	TestCase	should	now	fail	2	of	the	assertions.	Note	that
InvoiceNoShouldBe12345	will	work,	thanks	to	Apache	CXF	passing	through	the	request’s
invoiceNo	to	the	response	(see	InvoicePortImpl.java)!	It	is	still	worth	asserting	the
invoiceNo	value,	as	it	is	a	requirement.

Tip
Server	timed	out?

If	you	instead	see	a	connection	refused	error,	then	check	whether	your	server	hasn’t
exited	after	5	minutes.	It’s	easy	to	change	this	timeout	(see	the	previous	recipe).

Now,	we	can	add	a	very	basic	service	implementation	to	pass	this	test.	We	just	need	to
implement	the	getInvoice(…)	method	in	InvoicePortImpl.java.	The	simplest
implementation	option	is	to	just	edit	InvoicePortTypeImpl.java	and	hardcode	the
expected	values:

try	{
				java.lang.String	companyValue	=	"Test	Company";
				company.value	=	companyValue;
				java.lang.Double	amountValue	=	100.0d;
				amount.value	=	amountValue;
}	catch	(java.lang.Exception	ex)	{
				ex.printStackTrace();
				throw	new	RuntimeException(ex);
}

Tip
TDD

Strictly	speaking,	we	should	first	write	a	unit	test	before	implementing	the	method,	for
example,	using	JUnit.

Next,	recompile	this	and	restart	the	server:

cd	<chapter1	samples>/soap/invoicev1
javac	src/main/java/ws/invoice/v1/*.java	-d	target/classes/

And	start	it	again:

cd	<chapter1	samples>/soap/invoicev1/target/classes
java	ws.invoice.v1.InvoicePortType_InvoicePort_Server

Rerun	TestCase,	which	should	now	pass!

How	it	works…
This	recipe	builds	on	all	the	same	JAX-WS	web	service	code	explained	in	the	previous
recipe.	This	time,	we	add	a	very	simple	stub	implementation	to	return	the	minimum
necessary	to	pass	the	test.	For	those	who	haven’t	seen	JAX-WS	before,	the	use	of	the
javax.xml.ws.Holder	wrapper	object	means	that	we	don’t	have	to	explicitly	set	the
invoiceNo,	as	it	is	passed	through	the	request	(for	more	information,	see
http://tomee.apache.org/examples-trunk/webservice-holder/README.html).

http://tomee.apache.org/examples-trunk/webservice-holder/README.html

There’s	more…
As	mentioned	in	the	previous	recipe,	SoapUI	mocks	(see	Chapter	3,	Developing	and
Deploying	Dynamic	REST	and	SOAP	Mocks)	can	often	provide	a	convenient	and	often
quicker	alternative	if	all	you	need	is	a	disposable	test	version	of	your	web	service	with
basic	functionality.	Also,	if	you	want	your	web	service	stub	to	be	the	basis	for	ongoing
development,	then	you	may	want	to	consider	using	a	build	framework	like	Gradle	or
Maven	to	manage	the	build,	deploy,	and	test	cycle.	Chapter	5,	Automation	and	Scripting,
looks	at	different	ways	to	use	build	frameworks	and	scripts	to	run	SoapUI	tests	(and
mocks)	after	your	web	service	is	built	and	deployed.	If	your	stub	implementations	become
more	complicated,	you	may	also	want	unit	tests.

The	SOAP	web	service	stub	journey	continues	in	the	next	recipe	where	we	use	SoapUI	to
help	us	update	the	project,	tests,	and	services	to	add	a	createInvoice	operation.

See	also
For	more	information	on	Gradle,	go	to	https://www.gradle.org/
For	more	information	on	Maven,	go	to	http://maven.apache.org/
For	more	information	on	JUnit,	go	to	http://junit.org/

https://www.gradle.org/
http://maven.apache.org/
http://junit.org/

Updating	a	SOAP	project	using	a	WSDL
When	a	SOAP	project’s	WSDL	changes,	SoapUI	can	use	the	new	definition	to:

Update	the	port	binding
Add	new	operations	and	requests
Update	endpoints	in	requests

This	recipe	builds	on	the	previous	example	to	show	how	SoapUI	can	help	you	do	this
when	a	new	web	service	operation	is	added.	We	then	provide	a	basic	test-driven
implementation	to	support	the	new	operation.

Getting	ready
The	new	WSDL	defines	a	createInvoice	operation	and	can	be	found	in	<chapter	1
samples>/soap/invoicev2_impl/wsdl/Invoice_v2.wsdl.

To	save	time	coding	the	implementation,	you	can	take	either	the	full	service	code	or	just
the	Java	classes	you	need	from	<chapter	1	samples>/soap/invoicev2_impl.

The	SoapUI	project	for	this	recipe	can	be	found	at	<chapter	1	samples>/invoice-soap-
v2-soapui-project.xml.

How	to	do	it…
After	updating	our	SOAP	project	using	the	new	WSDL	and	SoapUI’s	Update	Definition
functionality,	we	need	to	add	a	new	failing	test	for	the	new	createInvoice	operation.
Next,	we	generate	an	empty	web	service	stub	using	the	new	WSDL	and	the	approach
shown	in	the	first	recipe.	Finally,	with	our	failing	test,	we	will	provide	a	basic
implementation	to	pass	the	test.

1.	 To	update	our	SoapUI	project	with	the	new	WSDL,	right-click	on
InvoicePortBinding	and	select	Update	Definition.	Enter	the	following	in	the
Update	Definition	window	and	click	on	OK:

Definition	URL:	This	is	<chapter1
samples>/soap/invoicev2_impl/wsdl/invoice_v2.wsdl.
Tick	Recreate	existing	request	with	the	new	schema.
Leave	the	rest	of	the	checkboxes	at	their	default	values.

2.	 Click	on	Yes	on	the	Update	Definition	with	new	endpoint	popup	(although	this
didn’t	actually	update	the	endpoint	for	me!).	This	should	result	in
InvoicePortBinding	now	showing	the	createInvoice	operation	and	request.

3.	 Next,	let’s	add	a	new	TestCase	option	for	createInvoice	called	TestCase	–	Create
Invoice.	Also,	change	the	order	so	that	TestCase	–	Create	Invoice	is	run	before
getInvoice	TestCase.

4.	 Add	a	new	TestStep	option	under	TestCase	–	Create	Invoice	called
createInvoice,	and	select	InvoicePortBinding	>	createInvoice	in	the	operation
popup	and	just	accept	default	value	in	the	Add	Request	To	TestCase	popup.

Tip
Check	Endpoints

Make	sure	both	TestSteps	are	now	pointing	to	the	new	endpoint
http://localhost:9002/ws/invoice/v2.	Update	Definition	only	seems	to	update
the	request	endpoints	under	the	port	binding.

5.	 Generate	a	new	empty	web	service	for	invoice_v2.wsdl	as	per	the	previous	recipe,
using	Tools	|	Apache	CXF:

WSDL	Location:	invoice_v2.wsdl.
Change	v1	to	v2	in	all	the	paths,	packages,	and	Custom	Args.
Copy	invoice_v2.wsdl	to	the	root	of	your	classes’	folder,	for	example,
<chapter1	samples>/soap/invoicev2/target/classes.

6.	 Start	the	generated	invoice	v2	server:

cd	<chapter1	samples>/soap/invoicev2/target/classes
java	ws.invoice.v2.InvoicePortType_InvoicePort_Server

7.	 If	you	now	run	the	tests:

The	createInvoice	TestStep	operation	will	succeed	since	it	doesn’t	have	any

Assertions.
The	getInvoice	TestStep	operation	will	fail	as	expected	because	our	previous
implementation	is	not	part	of	the	newly	generated	invoice	v2	service	code.

8.	 Next,	let’s	add	Assertion	to	test	the	createInvoice	operation.	Insert	the	same
invoice	values	as	we	did	in	the	getInvoice	TestStep	operation	into	the	request	of
the	createInvoice	TestStep	operation	and	add	XPath	Assertion	to	check	whether
the	acknowledgment	invoiceNo	is	12345:

Name:	AcknowledgementShouldContainInvoiceNo12345
XPath:
declare	namespace	ns1='http://soapui.cookbook.samples/schema/invoice';
//ns1:Acknowledgement[1]/ns1:invoiceNo[1]
Expected	Value:	12345

9.	 If	we	now	rerun	TestCase:

The	createInvoice	TestStep	operation	will	still	pass,	again	thanks	to	the
Apache	CXF-generated	code	passing	through	the	invoiceNo	from	the	request	to
the	response.
The	getInvoice	TestStep	operation	will	now	not	pass	as	expected.

10.	 Providing	a	simple	service	implementation	to	pass	the	tests	by	storing	invoice	details
between	requests	and	allowing	them	to	be	retrieved	involves	a	little	more	coding	than
in	the	previous	recipe.	So	to	stay	more	in	the	scope	of	SoapUI,	we	can	take	what	we
need	from	a	completed	example	service	implementation	in	this	chapter’s	samples.	If
you	have	generated	the	new	empty	web	service	stub	in	step	5,	then	all	that	you	will
need	to	take	are:

InvoicePortImpl.java:	This	provides	the	main	functionality.
Invoice.java:	This	is	a	JavaBean	to	store	invoice	details.

More	information	on	these	is	provided	in	the	next	section.

11.	 Next,	recompile	and	restart	the	server.
12.	 Rerun	the	tests,	and	both	should	now	pass!

How	it	works…
The	main	learning	of	this	recipe	is	how	to	use	the	Update	Definition	functionality,	and
what	it	does	and	doesn’t	update	for	you.	Like	in	the	previous	recipe,	we	have	only	used	a
very	basic	service	implementation	just	to	pass	the	tests.	The	main	points	of	the	service
implementation	are	as	follows:

When	SoapUI	makes	a	request	to	the	createInvoice	operation,	the
InvoicePortImpl.createInvoice	method	extracts	the	invoice	details	from	the
request	and	stores	them	(using	Invoice.java)	in	a	HashMap	keyed	on	invoiceNo.	The
invoiceNo	value	is	then	returned	in	the	acknowledgment	response.
When	SoapUI	makes	a	request	to	the	getInvoice	operation,	the
InvoicePortImpl.getInvoice	method	uses	the	invoiceNo	value	in	the	request	to
retrieve	the	invoice	details	from	the	HashMap	(held	in	Invoice.java)	and	return	them
in	the	response	to	SoapUI.

There’s	more…
Here,	we	have	developed	a	very	simple	non-persistent	dynamic	web	service	stub.	Chapter
3,	Developing	and	Deploying	Dynamic	REST	and	SOAP	Mocks,	also	shows	how	to	use	in-
memory	H2	databases	to	provide	a	non-persistent,	dynamic	REST	and	SOAP	mock
service	functionality.	If	you	would	like	to	persist	the	request	data,	then	Chapter	9,	Data-
driven	Load	Testing	With	Custom	Datasources,	uses	a	SOAP	service	stub	with	a	simple
H2	database	backend	to	persist	data.

For	Pro	version	users,	the	next	recipe	continues	the	SOAP	web	service	stub	journey	by
showing	how	SoapUI	WSDL	refactoring	can	help	manage	more	complicated	service
definition	updates.

Updating	SOAP	projects	using	WSDL
refactoring	(Pro)
Updating	a	SOAP	project’s	WSDL	will	often	lead	to	changes	to	test	endpoints,	requests,
responses,	and/or	operations.	In	a	simple	example	like	that	of	the	previous	recipe,	this	isn’t
a	big	deal.	For	more	complex	WSDL	changes	that	involve	more	tests,	SoapUI	Pro	has	a
nice	graphical	editor	that	manages	the	migration	step	by	step.

SoapUI	WSDL	refactoring	can	help	manage	the	following:

Adding,	removing,	or	renaming	operations
Adding,	removing,	or	renaming	request/response	fields
Resulting	XPath	(Assertion)	updates

Getting	ready
We’ll	work	on	the	<chapter1	samples>/invoice-soap-v2-soapui-project.xml	project
from	the	previous	recipe.	I	have	also	included	the	project	<chapter1	samples>/Invoice-
soap-v3-soapui-project.xml,	which	is	the	end	product	after	the	refactoring.

The	new	WSDL	can	be	found	at	<chapter1
samples>/soap/invoicev3/wsdl/invoice_v3.wsdl.

How	to	do	it…
To	illustrate	the	WSDL	refactoring	functionality,	we’ll	refactor	invoice_v2.wsdl	and	the
tests	from	the	previous	recipe	to	use	a	new	WSDL	invoice_v3.wsdl.	This	will	involve	the
following	changes:

The	getInvoice	operation	gets	renamed	to	retrieveInvoice
New	operations	such	as	updateInvoice	and	deleteInvoice	are	added
The	invoiceNo	field	is	renamed	to	id
A	new	field	dueDate	is	added	to	the	invoice	document
The	companyName	field	is	removed	in	favor	of	a	new	customerRef	field

These	changes	will	result	in	a	CRUD	style	interface,	with	some	basic	schema	changes:

1.	 Firstly,	open	the	project	(the	previous	recipe’s	project:	InvoiceSOAPv3)	and	right-
click	on	InvoiceServicePortBinding	and	select	RefactorDefinition.	Enter	the	path
to	the	new	WSDL	(invoice_v3.wsdl)	and	tick	the	options	to	create	new	requests	and
a	backup,	and	then	click	on	Next.

2.	 In	the	Transfer	Operations	window,	SoapUI	correctly	maps	createInvoice	and
leaves	getInvoice	in	red	to	indicate	that	it	has	no	mapping	in	the	new	WSDL.
Correct	this	by	clicking	and	dragging	getInvoice	on	top	of	retrieveInvoice	in	the
New	Schema	section,	to	end	up	with	a	result	as	shown	in	the	following	screenshot:

3.	 Click	on	Next	to	proceed	to	the	Refactor	Schema	window.	Correct	the	getInvoice
request	in	a	similar	way	as	shown	here:

4.	 Then,	click	on	the	red	createInvoice	operation.	Here,	map	invoiceNo	to	id,	but
company	cannot	be	mapped	(as	we	are	removing	it),	so	highlight	it	and	click	on
Discard.	Things	should	look	like	what	is	shown	in	the	following	screenshot;	when
ready,	click	on	Next:

5.	 On	the	Update	XPath	Expressions	window,	first	click	on	Filter	unchanged	paths
to	show	only	the	problems.	We	can’t	fix	the	XPath	relating	to	companyName,	so	just
fix	the	invoiceNo	XPath’s	Assertion	InvoiceNoShouldBe12345	by	copying	the	Old
XPath	value	into	the	New	Xpath	box	and	changing	invoiceNo	to	id	(as	shown	in
the	next	screenshot),	and	then	click	on	Finish:

6.	 Click	on	Yes	in	the	Update	Definition	pop	up	to	update	the	requests	with	the	new	v3
endpoint.	You	should	see	the	Update	of	interface	successful	message.	This	indicates
that	the	refactoring	is	complete!

On	inspection	of	the	refactored	SoapUI	project,	all	artifacts	appeared	to	be	in	order,	with
the	following	exceptions:

The	endpoints	in	the	TestSteps	need	to	be	manually	updated	to	the	v3	endpoint.
The	automatic	backup	failed	with	an	IOException	(on	MacOSX).	As	a	workaround,	I
recommend	that	you	manually	back	up	the	SoapUI	project	XML	file.
The	Assertion	Invoice12345ShouldHaveCompanyNameOfTestCompany	option	needs
to	be	deleted	manually.

Note
Passing	The	Tests

If	you	would	like	to	see	the	tests	pass	again,	you	can	generate	a	v3	invoice	service	as	per
the	previous	recipes.	Then,	add	a	minimal	implementation	to	satisfy	the	current	assertions.
I	have	included	a	very	basic	implementation	<chapter1
samples>/soap/invoicev3_impl,	which	can	just	be	run	in	the	same	way	as	the	first	three
recipes.

There’s	more…
The	refactoring	tool	obviously	doesn’t	write	the	missing	tests	for	the	updateInvoice	and
deleteInvoice	operations	or	create	Assertions	for	the	new	fields.	These	need	to	be
added	manually	to	return	to	an	acceptable	level	of	test	coverage.

In	terms	of	possible	uses	for	WSDL	refactoring,	three	typical	SOA	patterns	are:

Contract	Standardization	(see
http://soapatterns.org/design_patterns/contract_denormalization)
Decomposed	Capability	(see
http://soapatterns.org/design_patterns/decomposed_capability)
Service	Normalization	(see
http://soapatterns.org/design_patterns/service_normalization)

Variations	on	the	first	pattern	are	perhaps	the	most	common,	that	is,	refactoring	of	a	single
WSDL,	as	per	our	example.	This	is	also	the	only	pattern	that	can	be	covered	in	a	single
pass	of	the	WSDL	refactoring	feature.

http://soapatterns.org/design_patterns/contract_denormalization
http://soapatterns.org/design_patterns/decomposed_capability
http://soapatterns.org/design_patterns/service_normalization

Generating	and	developing	a	RESTful
web	service	stub	test-first
This	recipe	shows	how	to	generate	and	develop	a	simple	RESTful	web	service	stub	test-
first	using	TDD.	The	main	SoapUI	learning	will	be	how	to	test	a	simple	RESTful	web
service	defined	by	a	WADL	that	produces	JSON	responses.	Basic	JAX-RS	web	service
development	skills	using	Apache	CXF	can	also	be	learned	here.

Getting	ready
The	example	service	is	a	REST	version	of	the	SOAP	invoice	service	from	the	first	recipe.
The	service	is	defined	by	a	WADL	with	the	following	main	properties:

WADL:	invoice_v1.wadl
Service	endpoint:	http://localhost:9000/invoiceservice/v1
Resource:	GET	/invoice/{id}
Produces:	application/json

Apache	CXF	will	be	used	to	generate,	build,	and	run	the	stub	web	service.	See	the	Getting
ready	section	in	the	first	recipe	if	you	need	advice	on	how	to	download	Apache	CXF.

Tip
Eclipse	users

If	you	are	using	Eclipse,	you	can	set	up	Apache	CXF	as	a	runtime	library	that	is	by
navigating	to	Project	|	Add	Library	|	CXF	Runtime,	and	run	the	server	class	as	a	Java
application.

The	invoice-v1-soapui-project.xml	project	for	this	recipe	can	be	found	in	the	this
chapter’s	sample	code	files.

How	to	do	it…
First,	we’ll	create	a	REST	project	from	the	service’s	WADL,	and	add	a	TestStep	with
Assertions	to	check	whether	the	response’s	invoice	values	are	what	we	expect.	Then,
we’ll	generate	an	empty	runnable	REST	web	service	using	Apache	CXF,	and	finally	add	a
simple	implementation	to	pass	the	test.	Perform	the	following	steps:

1.	 Create	a	SoapUI	project	from	invoice_v1.wadl.	Go	to	File	Menu	|	New	REST
Project	|	Import	WADL,	browse	to	invoice_v1.wadl,	and	click	on	OK.	This	should
generate	a	project	with	a	sample	request	to	the	invoice	resource	that	takes	an	id	path
parameter,	that	is,	http://localhost:9000/invoiceservice/v1/invoice/{id}.

2.	 Next,	create	a	simple	TestSuite,	TestCase,	and	TestStep	operations	with
Assertion	to	specify	what	we	expect	back	from	a	successful	invoice	resource
request.	We	can	use	the	Generate	TestSuite	option	to	do	this:

1.	 Right-click	on	invoice_v1	Endpoint	and	select	Generate	TestSuite.
2.	 Change	the	style	to	Single	TestCase	with	one	Request	for	each	Method	and

click	on	OK.
3.	 Accept	the	suggested	name	as	invoice_v1	TestSuite.
4.	 The	project	should	then	contain	TestSuite	with	one	generated	TestStep

operation	for	invoice/{id}.

3.	 Now,	we’re	ready	to	add	some	Assertions	to	the	TestStep.	Say	we’re	expecting	a
JSON	representation	of	an	Invoice	document	that	will	look	like	the	following:

{"Invoice":	{
			"id":	12345,
"companyName":	"Test	Company",
"amount":	100
}}

4.	 Then,	if	you’ve	got	SoapUI	Pro,	we	can	use	3	JsonPath	Match	Assertions:

Name:	IdShouldBe12345
JsonPath:	$.Invoice.id
expectedValue:	12345

Name:	AmountShouldBe100
JsonPath:	$.Invoice.amount
Expected	Value:	100

Name:	CompanyNameShouldBeTestCompany
JsonPath:	$.Invoice.companyName
Expected	Value:	Test	Company

5.	 For	open	source	SoapUI,	we	can	add	3	Contains	Assertions:

Name:	ShouldContainText12345
Contains	Content:	12345

Name:	ShouldContainTextTestCompany
Contains	Content:	Test	Company

Name:	ShouldContainText100
Contains	Content:	100

6.	 In	both	versions	of	SoapUI	we	can	check	whether	the	HTTP	status	is	200	OK	by
adding	a	Valid	HTTP	Status	Codes	Assertion:

Name:	ShouldReturnHTTPStatus200
HTTP	Status	Code	=	200

Tip
Want	to	also	check	JSONSchema	Compliance?

See	the	Testing	REST	response	JSON	schema	compliance	recipe	of	Chapter	4,	Web
Service	Test	Scenarios,	for	how	to	do	it.

7.	 Now	that	our	tests	are	ready,	we’re	going	to	need	to	generate	the	actual	service.	We
can	do	this	using	Apache	CXF’s	wadl2java	script	to	generate	the	Java	service	types
and	empty	the	implementation	from	the	WADL.

Note
SoapUI’s	WADL2Java	menu	option	is	not	what	it	seems

Unfortunately,	in	the	current	version	(5.0)	of	SoapUI,	the	WADL2Java	functionality
(http://www.soapui.org/REST-Testing/rest-code-generation.html)	is	written	to	use
classic	wadl2java	(https://wadl.java.net/).	This	version	of	wadl2java	only	generates
the	client	code	from	the	WADL	and	not	the	service	code	like	we	need.

8.	 Of	course,	generating	web	service	code	directly	using	Apache	CXF	is	not	part	of
SoapUI.	I	have	included	these	steps	for	completeness	and	in	case	you	find	them
useful.	If	you	would	rather	skip	this	part,	I	have	included	the	generated	code	in
<chapter	1	samples>/rest/invoicev1_gen.	Otherwise,	you	can	generate	the	web
service	code	for	invoice_v1.wadl	by	running	wadl2java.	For	example:

cd	<apache-cxf-3.0.1	home>/	

./bin/wadl2java	-d	<chapter1	samples>/rest/invoicev1/src/main/java/	-p	
rest.invoice.v1	-impl	-interface	<chapter1	
samples>/rest/invoicev1/wadl/invoice_v1.wadl

Tip
Classpath	Issue	on	MacOSX/Linux

When	running	wadl2java	with	Apache	CXF	3.01,	if	you	see	this	error:	Could	not
find	or	load	main	class	org.apache.cxf.tools.wadlto.WADLToJava,	then
manually	setting	the	CLASSPATH	variable	with	export	CLASSPATH=apache-cxf-
3.0.1/lib/*	fixes	the	problem.

You	should	see	the	following	output:

Aug	18,	2014	8:57:07	PM	org.apache.cxf.common.jaxb.JAXBUtils	
logGeneratedClassNames

http://www.soapui.org/REST-Testing/rest-code-generation.html
https://wadl.java.net/

INFO:	Created	classes:	generated.Invoice,	generated.ObjectFactory

The	following	Java	source	files	generated	at	the	location	set	by	the	–d	parameter
and	–p	gives	the	package	structure:

rest/invoice/v1/InvoiceserviceV1Resource
rest/invoice/v1/InvoiceserviceV1ResourceImpl
rest/invoice/v1/Invoice
rest/invoice/v1/ObjectFactory
rest/invoice/v1/Service

9.	 Next,	we	need	to	compile	the	generated	service.	Note	that	Apache	CXF’s	libraries	are
required	on	the	classpath	(the-cp	parameter):

cd	<chapter1	samples>/rest/invoicev1/src/main/java/rest/invoice/v1/
javac	-cp	"<apache-cxf-3.0.1	home>/lib/*"	-d	<chapter1	
samples>/rest/invoicev1/target/classes/	*.java

10.	 Execute	the	following	command	to	run	the	server:

cd	<chapter1	samples>/rest/invoicev1/target/classes/
java	-cp	"<apache-cxf-3.0.1	home>/lib/*:."	rest.invoice.v1.Server
…
INFO	logging…
…
Server	ready…

11.	 Give	the	server	a	quick	test	by	browsing	to
http://localhost:9000/invoiceservice/v1?_wadl,	and	you	should	see	a	WADL
that	indicates	that	the	server	is	running.

12.	 Now,	it’s	time	to	run	TestCase	that	we	created	in	step	2:

Open	the	TestCase	and	edit	the	TestStep	created	in	step	2.
Add	an	invoice	ID	to	the	TestSteps's	request,	for	example,	12345.
Running	the	TestCase	should	result	in	all	the	TestStep's	Assertions	failing,
and	a	response	with	HTTP	status	204	no	content	under	the	Raw	tab.	This	is
expected	since	we	have	no	implementation	yet.

13.	 Now	that	we	have	a	failing	test,	we	are	ready	to	implement	the	invoice	resource:

First	implement	InvoiceserviceV1ResourceImpl.java	with	the	following
code:

package	rest.invoice.v1;

public	class	InvoiceserviceV1ResourceImpl	implements	
InvoiceserviceV1Resource	{

		public	Invoice	getInvoiceid(String	id)	{
				ObjectFactory	objectFactory	=	new	ObjectFactory();
				Invoice	invoice	=	objectFactory.createInvoice();
				if	(id	!=	null	&&	id.equals("12345"))	{
						invoice.setId("12345");
						invoice.setCompanyName("Test	Company");
						invoice.setAmount(100.0d);

				}
				return	invoice;
		}

}

Note
Skip	the	dev?

A	completed	version	of	the	code	can	be	found	at	<chapter1
samples>/rest/invoicev1_impl.

Next,	add	the	annotation	@XmlRootElement(name	=	"Invoice");	otherwise,
marshaling	from	the	JavaBean	to	the	response	JSON	doesn’t	work:

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name	=	"invoice",	propOrder	=	{
				"id",
				"companyName",
				"amount"
})
@XmlRootElement(name	=	"Invoice")
public	class	Invoice	{
…

Add	an	import	statement	for	the	annotation	to	the	top	of	Invoice.java:

import	javax.xml.bind.annotation.XmlRootElement;

Finally,	delete	the	package-info.java	class;	otherwise,	there	will	be	a
namespace	prefix	on	the	JSON	response.

14.	 Next,	recompile	and	restart	the	server	as	described	in	steps	9	and	10.	Then,	rerunning
the	TestCase	should	pass!

How	it	works…
Let’s	take	a	look	at	the	main	solution	points:

1.	 The	web	service	we	create	uses	the	JAX-RS	standard,	which	is	the	official	Java
standard	for	RESTful	web	services	(see	https://jax-rs-spec.java.net/).	One	key
difference	with	JAX-WS	seen	in	the	first	recipe	is	that	the	JDK	does	not	ship	with	a
JAX-RS	implementation;	only	the	JAX-RS	interfaces	and	annotations	are	supplied.
So,	we	instead	use	the	Apache	CXF	JAX-RS	implementation;	hence,	we	need	to
supply	the	Apache	CXF	libraries	at	compile	and	runtime.

2.	 Apache	CXF	generated	the	following	Java	classes	using	the	WADL	definition:

Invoice.java:	This	is	a	JavaBean	representation	of	the	invoice	XML	content.
This	class	has	binding	annotations	to	allow	the	Apache	CXF	JAX-RS
implementation	to	marshal	invoice	objects	to	XML	content	and	unmarshal	XML
content	to	invoice	objects:

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name	=	"invoice",	propOrder	=	{
				"id",
				"companyName",
				"amount"
})
@XmlRootElement(name	=	"Invoice")

Tip
To	understand	more	about	these	binding	annotations	the	technology	to	look	at	is
Java	Architecture	for	XML	Binding	(JAXB)—see	https://jaxb.java.net/tutorial/.

ObjectFactory.java:	This	class	can	optionally	be	used	to	create	instances	of
the	Invoice.java	class	by	calling	the	createInvoice()	factory	method.	There
is	also	a	factory	method	JAXBElement<Invoice>	createInvoice(Invoice
value)	to	create	JAXB	invoice	XML	bindings.	These	factory	methods	can	be
useful	to	separate	object	creation	code	from	your	service	methods	when	dealing
with	more	complicated	schema	examples,	but	they	are	not	especially	useful	in
our	case.
InvoiceserviceV1Resource.java:This	is	a	JAX-RS	annotated	Java	interface	to
represent	the	RESTful	invoice	service	and	its	resource.	In	this	example,	we	have
the	following	code:

@Path("/invoiceservice/v1/")
public	interface	InvoiceserviceV1Resource	{

				@GET
				@Produces("application/json")
				@Path("/invoice/{id}")
				Invoice	getInvoiceid(@PathParam("id")	String	id);
}

The	annotations	are	used	by	the	Apache	CXF	JAX-RS	implementation	to	map

https://jax-rs-spec.java.net/
https://jaxb.java.net/tutorial/

HTTP	requests	to	matching	Java	methods.	In	this	case,	implementations	of	this
interface	that	is	InvoiceserviceV1ResourceImpl	will	invoke	the
getInvoiceid(…)	method	passing	in	the	{id}	path	parameter	as	the	String	id
variable	if	there	is	a	HTTP	GET	request	to	the	resource
/invoiceservice/v1/invoice/{id}.	Other	annotated	service	methods	to
support	POST,	PUT	and	DELETE	requests	could	also	be	added	here	and	in	the
implementation.	See	<chapter	1
samples>/rest/invoice_crud/src/main/java/rest/invoice/crud/v1/InvoiceServiceCRUDV1Resource.java
for	an	example	like	this.
InvoiceserviceV1ResourceImpl.java:	This	is	the	implementation	of	the
preceding	interface	to	provide	the	Java	code	to	run	when	a	matching	request	is
made.	We	added	code	to	the	Invoice	getInvoiceId(String	id)	of	this	class
so	that	if	the	invoice	(id)	is	12345,	then	we	a	create	a	new	Invoice	object	using
the	ObjectFactory,	populate	it	with	the	expected	values,	and	return	it	in	the
response.	In	the	background,	Apache	CXF	is	able	to	marshal	this	into	JSON
content	before	dispatching	the	response	back	to	SoapUI.	Unlike	the	JAX-WS
example	in	the	first	recipe,	there	was	no	holder	object,	so	we	were	responsible
for	creating	the	Invoice	object	ourselves.
Service.java:	This	is	a	server	class	that	publishes	our	stub	service’s
implementation.	Like	in	the	first	recipe’s	JAX-WS	server	code,	the	endpoint	and
service	timeout	can	be	set	here.

There’s	more…
Apart	from	using	WADLs	to	create	SoapUI	projects	for	RESTful	web	services,	there	are
also	SoapUI	plugins	to	use	more	modern	alternatives	such	as	RAML(http://raml.org/)	and
Swagger	(http://swagger.io/)	definitions	as	well—see	Chapter	10,	Using	Plugins	for	more
information.

Code-first	REST	services
RESTful	web	services	will	often	be	developed	code-first	and	may	not	present	a	WADL	or
a	structured	definition	to	generate	your	SoapUI	project	and	tests	from.	In	these	cases,	you?
can	easily	build	your	REST	project	by	manually	entering	the	service’s	URI,	resources,
methods,	and	parameters	using	their	respective	menu	options,	see
http://www.soapui.org/getting-started/rest-testing.html.	Or	if	you’re	a	pro	version	user,
you	can	use	SoapUI	to	generate	your	project	and	tests	by	recording	your	requests	to	the
service’s	API	(see	the	next	recipe).	If	you’re	an	open	source	user,	then	you	can	also
generate	tests	in	a	similar	way	by	using	the	HTTP	Monitor	(See
http://www.soapui.org/HTTP-Recording/concept.html).

http://raml.org/
http://swagger.io/
http://www.soapui.org/getting-started/rest-testing.html
http://www.soapui.org/HTTP-Recording/concept.html

See	also
For	more	information	on	WADL,	go	to	https://wadl.java.net/
For	more	information	on	Apache	CXF	JAX-RS,	go	to	http://cxf.apache.org/docs/jax-
rs.html

https://wadl.java.net/
http://cxf.apache.org/docs/jax-rs.html

Generating	SoapUI	tests	with	REST
discovery	(Pro)
In	this	recipe,	we	take	a	look	at	how	to	generate	tests	for	RESTful	web	services	that
already	exist.	The	pro	version	of	SoapUI	has	the	REST	discovery	functionality	to	allow
interactions	with	a	RESTful	API	to	be	recorded	and	used	to	generate	tests.

Getting	ready
To	provide	an	example	of	a	RESTful	web	service,	I	have	extended	the	previous	recipe’s
invoice	service	to	have	full	CRUD	functionality.	The	interface	now	looks	like	this:

Resource:	http://localhost:9000/invoiceservice/v1/invoice	
Supported	Methods:
POST			invoice						-	Create	Invoice.	
GET				invoice/{id}	–	Get	(Read)	Invoice.
PUT				invoice/{id}	–	Update	Invoice.
DELETE	invoice/{id}	–	Delete	Invoice.

The	invoice	document	is	as	follows:

{"Invoice":	{
			"id":	12345,
"companyName":	"Test	Company",
"amount":	100
}}

The	service’s	implementation	is	very	basic.	The	create	(POST)	method	is	not	idempotent,
and	it	will	create	new	invoice	objects	on	each	successful	request	with	IDs	of	the	form
invN,	where	N	is	a	sequence	number	that	starts	from	0,	for	example,	inv0,	inv1,	and	so
on.	The	GET,	UPDATE,	and	DELETE	methods	will	all	return	HTTP	status	404	if	an	invoice
with	the	specified	ID	has	not	previously	been	created.	The	invoices	are	stored	in	a	Java
HashMap,	so	they	will	not	persist	when	the	server	is	restarted,	and	the	HashMap	is	empty	on
startup.

Note
Example	Service	Code

We	are	not	developing	a	service	in	this	recipe.	Use	the	prebuilt	service	from	<chapter1
samples>/rest/invoice_crud.

Start	the	service	in	the	same	manner	as	described	in	the	previous	recipe:

cd	<chapter1	samples>/chapter1/rest/invoice_crud/target/classes
java	-cp	"<apache-cxf-3.0.1	home>/lib/*:."	rest.invoice.crud.v1.Server

To	test	its	running,	open	a	browser	and	go	to
http://localhost:9000/invoiceservice/v1?_wadl,	and	you	should	see	a	WADL
displayed	with	methods	as	described	in	the	preceding	code.

Tip
Port	already	in	use

If	you	see	this	exception,	then	make	sure	that	no	other	servers	are	running	on	port	9000,
for	example,	the	servers	from	the	previous	recipes.

The	Mozilla	Firefox	browser	is	used	to	illustrate	this	recipe.	Please	download	this	if	you
don’t	already	have	it.	If	this	isn’t	possible,	other	options	will	be	described	later.

How	to	do	it…
Perform	the	following	steps:

Note
Internal	Browser	or	Proxy	Mode?

SoapUI	offers	two	options	to	discover	RESTful	web	services.	The	first	option	is	to	use	the
internal	browser	and	the	second	one	is	to	use	the	proxy	mode.	I	would	say	that	the	internal
browser	option	is	only	useful	if:

You	are	only	testing	GET	requests,	as	no	other	methods	are	possible.
You	are	discovering	services	via	web	pages	like	in	the	Swagger	example	in	the
SoapUI	online	help	(http://www.soapui.org/REST-Discovery/api-with-internal-
browser.html).
Or	you	need	to	test	using	HTTPS,	which,	at	the	time	of	writing,	the	proxy	cannot
support.

Otherwise,	once	set	up,	the	proxy	mode	is	a	far	more	versatile	option	for	testing	in	a	lot	of
API	scenarios	including	this	recipe.

1.	 To	start,	go	to	File	Menu	|	New	Project	and	select	options	the	Discover	REST	APIs
using	and	SoapUI	internal	proxy.	Click	on	OK,	and	you	should	see	the	default
details	of	the	SoapUI	proxy:

Discover	Using:	Proxy	HTTP
Recorded	Requests:	0
Port:	8081
Status:	Running
Host	(Internal	Clients):	localhost	

For	this	example,	we	are	only	concerned	with	the	details	for	internal	clients.	Using
an	external	client	involves	pretty	much	the	same	steps,	except	that	it	may	require
network	setup	that	is	beyond	the	scope	of	this	book.	The	host	(localhost)	and	the
port	(8081)	are	the	key	values	to	note.	These	will	be	used	by	whatever	REST	client
we	choose	to	use	to	do	the	actual	service	interactions.

Tip
REST	Clients

There	are	many	good	and	free	options	here.	IDEs	such	as	Eclipse	and	IntelliJ	have	a
good	REST	client	plugin.	Browser-based	REST	clients	are	also	very	good;	for
Chrome,	there	is	the	Postman	plugin,	and	for	Firefox,	the	RESTClient	add-on.	When
choosing	which	to	use,	consider	that	you	will	need	to	amend	the	proxy	settings,	at
least	temporarily,	in	order	to	route	requests	via	SoapUI’s	proxy.	You	could	also	go	for
a	command	line	option	and	use	something	like	cURL
(http://curl.haxx.se/docs/manpage.html).	Choose	whichever	option	is	most
convenient	for	you,	but	for	this	recipe	I	will	illustrate	the	use	of	Firefox’s
RESTClient	plugin.

http://www.soapui.org/REST-Discovery/api-with-internal-browser.html
http://curl.haxx.se/docs/manpage.html

2.	 Download	the	RESTClient	add-on	in	Firefox	by	going	to	Tools	Menu	|	Add-ons,
search	for	RESTClient,	and	click	on	Add	to	Firefox.	Restart	Firefox,	and
RESTClient	should	be	available	in	the	Tools	menu.	Click	on	the	client	to	open	it	in	a
new	Firefox	tab.

3.	 Next,	we	need	to	configure	Firefox’s	proxy	settings	to	point	to	SoapUI’s	proxy:

1.	 Open	Preferences	|	Advanced	|	Network.
2.	 Under	Connection,	next	to	Configure	how	Firefox	connects	to	the	Internet,

click	on	Settings.
3.	 Select	Manual	proxy	configuration	and	enter	the	SoapUI	proxy	details	as

shown	in	the	following	screenshot.
4.	 Click	on	OK.

4.	 Now,	we	are	ready	to	use	the	RESTClient	via	the	SoapUI	proxy.	As	a	first	test,
request	the	WADL	like	before,	by	selecting	a	method	of	GET,	adding	a	URL	of
http://localhost:9000/invoiceservice/v1?_wadl,	and	clicking	on	Send.	You
should	see	the	WADL	in	the	RESTClient	response	body	and	see	the	SoapUI	proxy
Recorded	Requests	incremented	to	1.

Tip
Nothing	happened?

Make	sure	the	service	is	still	running;	otherwise,	connection	refused	messages	will
occur.	The	server	exists	after	10	minutes,	which	is	easily	adjustable	in	the	source
code	for	the	Server	class.

Note	that	other	requests	via	the	Firefox	browser	will	also	increment	the	recorded
requests.	Any	unwanted	requests	can	be	filtered	out	later.

5.	 Before	we	try	posting	or	putting	any	invoice	data,	we	need	to	change	the	request’s
content	type	to	application/json;	otherwise,	status	415	Unsupported	Media	Type
messages	will	occur.	To	do	this:

1.	 Click	on	the	RESTClient’s	Headers	menu	and	select	Custom	Header.
2.	 In	the	Request	Header	pop	up,	enter	Name	as	Content-Type	and	Value	as

application/json,	and	then	click	on	OK.
3.	 You	should	see	Content-Type:	application/json	in	the	Headers	section	on

the	next	page.

6.	 Now,	let’s	do	some	actual	requests!	First,	let’s	create	an	invoice.	Set	the	following
values:

Method:	POST
URL:	http://localhost:9000/invoiceservice/v1/invoice
Body:

{"Invoice":	{
	"id":	12345,
"companyName":	"Test	Company",
"amount":	100
}}

You	should	see	the	Response	Header	status	code	200	OK	and	a	Response	Body	of:

{
		"Invoice":	{
				"id":	"inv0",
				"companyName":	"Test	Company",
				"amount":	100
		}
}

7.	 Next,	update	the	invoice:

Method:	PUT
URL:	http://localhost:9000/invoiceservice/v1/invoice/inv0
Body:

{"Invoice":	{
	"id":	12345,
"companyName":	"Real	Company",
"amount":	200
}}

You	should	see	the	Response	Header	status	code	200	OK	and	a	Response	Body	of:

{
		"Invoice":	{
				"id":	"inv0",
				"companyName":	"Real	Company",
				"amount":	200
		}
}

8.	 Next,	get	the	invoice,	method	GET,	and	URL
http://localhost:9000/invoiceservice/v1/invoice/inv0.	You	should	see	a
response	of	status	code	200	OK	and	the	same	body	as	earlier.

9.	 Now,	delete	the	invoice,	method	DELETE,	and	URL
http://localhost:9000/invoiceservice/v1/invoice/inv0.	You	should	see	a
response	of	200	OK	without	any	response	body.

10.	 Lastly,	try	to	get	that	invoice	again	and	you	should	see	a	response	of	status	code	404
Not	Found.

11.	 Now,	to	generate	the	SoapUI	test	artefacts,	perform	the	following	steps:

1.	 Go	back	to	SoapUI	and	click	on	Done.	The	window	should	change	and	present
you	with	a	tree	view	of	all	the	requests	you	submitted.

2.	 Next,	click	on	Generate	services	and	select	Services	+	TestSuite.	Then,	enter	a
name	for	the	TestSuite,	for	example,	TestSuite	Rest	Discovery.

3.	 Click	on	OK	to	create	TestCase.
4.	 A	Success	pop	up	should	be	displayed;	click	on	OK	to	close	discovery,	and	you

should	see	all	the	generated	requests,	TestSuite,	TestCase,	and	TestSteps	for
each	of	the	requests	in	a	new	project	called	Project	1.	Finished!

How	it	works…
SoapUI	sets	up	its	own	proxy	to	listen	to	all	HTTP	traffic	routed	through	it.	When	you
make	a	request	through	the	REST	client,	SoapUI	is	able	to	extract	the	details	and	build	up
a	list	of	sample	requests.	Then,	when	you	have	finished	recording,	SoapUI	uses	the	list	of
requests	to	generate	test	artifacts	in	the	same	way	it	would	if	the	requests	had	come	from
another	source,	for	example,	a	WADL.

There’s	more…
On	inspection	of	the	generated	REST	project,	we	can	see	that	the	REST	discovery	has
provided	a	useful	means	of	harvesting	sample	requests	from	a	readymade	service.	You	still
need	to	create	Assertions	and	perhaps	organize	the	generated	TestSteps.	The	REST
discovery	functionality	could	be	useful	when	it	comes	to	retrofitting	tests,	perhaps	around
a	service	that	has	been	developed	code-first,	as	in	the	above	example.	It	could	also	be
especially	useful	for	services	that	don’t	present	a	WADL	or	similar	definition	and
therefore	cannot	have	test	requests	generated	by	other	SoapUI	means.

See	also
For	more	information	on	HTTP	Monitor	SoapUI	Docs	(open	source),	go	to
http://www.soapui.org/HTTP-Recording/concept.html

http://www.soapui.org/HTTP-Recording/concept.html

Chapter	2.	Data-driven	Testing	and	Using
External	Datasources
In	this	chapter,	we	will	cover	the	following	topics:

Creating	and	checking	data	with	the	JDBC	Request	TestStep
Parameterizing	SQL	queries	with	the	JDBC	Request	TestStep
Setting	properties	from	an	external	file
Importing	CSV	file	data	into	an	in-memory	H2	database	with	Groovy
Looping	over	CSV	file	data	and	driving	tests	with	Groovy
Querying	MongoDB	with	Groovy
Publishing,	browsing,	and	consuming	ActiveMQ	JMS	messages	via	the	REST	API

Introduction
This	chapter	explores	how	to	access	and	use	common	types	of	external	data	that	you	are
likely	to	need	in	SoapUI	test	scenarios,	for	example,	files,	SQL	databases,	NoSQL
databases,	and	JMS.	While	there	isn’t	scope	to	cover	every	possible	type	or
implementation,	the	building	blocks	learned	here	can	be	adapted	to	different	situations	and
used	as	the	basis	for	later	recipes.

In	terms	of	data-driven	testing,	we’ll	see	how	to	support	the	pattern	shown	in	the
following	image:

In	terms	of	options	for	reading	the	test	data,	we’ll	look	only	at	those	for	the	open	source
version	of	SoapUI.	The	pro	version’s	data-driven	features,	for	example,	DataSource,
DataSink,	and	DataLoop	TestSteps	are	designed	to	be	straightforward	to	use	and	receive
adequate	coverage	in	the	online	help	(see	http://www.soapui.org/Data-Driven-
Testing/functional-tests.html),	whereas	achieving	similar	results	in	the	open	source	version
generally	requires	a	little	more	initial	setup,	creativity,	and	often	a	higher	level	on
technical	understanding	and/or	skills,	but	that’s	the	fun	part,	right?	A	key	enabler	is	the
Groovy	TestStep,	which	is	an	important	part	of	this	chapter	and	several	others.	Some
more	advanced	examples	of	testing	with	custom	Groovy	data	sources	can	be	found	in
Chapter	9,	Data-driven	Load	Testing	With	Custom	Datasources.

http://www.soapui.org/Data-Driven-Testing/functional-tests.html

What	you’ll	learn
You	will	learn	the	following	topics:

How	to	set	up	basic	and	parameterized	SQL	queries	using	the	JDBC	Request
TestStep
How	to	use	SoapUI	properties	for	configuration	and	reference	properties’	property
expansions
How	to	do	basic	data-driven	testing	in	SoapUI
How	to	use	Groovy	TestSteps	to	access	and	manipulate	custom	data	sources

What	you’ll	need
Basic	Groovy	or	Java	skills,	or	at	least	being	happy	to	try	a	bit	of	hands-on	scripting
would	be	useful.	If	you’ve	never	used	Groovy	before,	take	a	look	at
http://groovy.codehaus.org/Beginners+Tutorial.

http://groovy.codehaus.org/Beginners+Tutorial

Creating	and	checking	data	with	the
JDBC	Request	TestStep
If	you	need	a	quick	way	to	access	and	check	external	SQL-based	data,	the	JDBC	Request
TestStep	is	a	good	place	to	start.	The	pro	version	of	the	JDBC	Request	TestStep	adds	ease-
of-use	functionality,	which	is	useful	for	less	technical	users,	but	by	no	means	essential	if
you	have	a	reasonable	grasp	of	SQL	and	aren’t	afraid	to	enter	a	JDBC	connection	string
(URL).	We’ll	concentrate	on	using	the	open	source	version	here.

Getting	ready
As	the	example	for	this	recipe,	we’ll	access	a	MySQL	database,	but	any	JDBC	data	source
would	work,	although	the	SQL	syntax	may	vary.	To	use	the	JDBC	Request	TestStep,	the
main	things	we’ll	need	are:

The	database	or	access	to	it:	If	you	don’t	already	have	MySQL,	then	download	the
latest	version	from	http://dev.mysql.com/downloads/mysql/.	The	installation
instructions	for	each	platform	are	also	provided	there.
The	JDBC	driver:	Please	download	the	MySQL	connector	from
http://dev.mysql.com/downloads/connector/j/	if	you	don’t	already	have	it.	You	will
also	need	the	driver	class	name;	for	MySQL,	it	is	com.mysql.jdbc.Driver.
The	JDBC	connection	string	(URL):	JDBC	connection	strings	are	very	easy	to	find
on	Google,	if	you	don’t	have	yours	already.	The	simple	form	of	the	MySQL
connection	string’s	URL	is	jdbc:mysql://<hostname>:<port>/<db	name>?user=
<username>&password=<password>.

Tip
Pro	version	configuration

The	pro	version	of	SoapUI	simplifies	the	preceding	two	requirements.	You	still	need
to	obtain	and	add	the	JDBC	driver	yourself,	but	a	Configuration	section	is	provided
to	select	the	driver	class	and	build	the	connection	string	URL	using	parameters.	See
http://www.soapui.org/JDBC/testing-jdbc-databases.html	if	you	need	more	info.

Tip
Troubleshooting

If	you	experience	connection	issues,	don’t	forget	to	check	the	Request	Log	tab	next	to
Assertions	at	the	bottom	of	the	JDBC	Request	TestStep.	It	can	sometimes	provide	extra
debugging,	such	as	JDBC	errors.

The	project	for	this	recipe	can	be	found	at	<chapter	2	samples>/JDBCTestStep-soapui-
project.xml.

http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/connector/j/
http://www.soapui.org/JDBC/testing-jdbc-databases.html

How	to	do	it…
We’ll	start	by	creating	an	empty	project,	TestSuite	and	TestStep.	Then,	we’ll	add	the
MySQL	JDBC	driver	and	configure	the	JDBC	Request	TestStep	to	connect	to	the	MySQL
database.	Finally,	we’ll	create	a	MySQL	test	table,	enter	data	in	it,	and	use	the	JDBC
Request	TestStep	to	query	the	test	data	and	use	an	Assertion	to	check	its	values.
Perform	the	following	steps:

1.	 First	off,	we’re	going	to	need	a	SoapUI	project.	It	doesn’t	matter	what	type	of
project;	create	a	new	Generic	Project	with	TestSuite,	TestCase,	and	JDBC	Request
TestStep.

2.	 Assuming	you’ve	installed	MySQL,	add	the	MySQL	JDBC	connector	JAR,	that	is,
mysql-connector-java-5.1.17-bin.jar,	to	<SoapUI
installation>/java/app/bin/ext/,	and	restart	SoapUI.

Tip
SoapUI	Extensions

Libraries	added	to	<SoapUI	installation>/java/app/bin/ext	are	added	to
SoapUI’s	classpath.	You	will	need	to	restart	SoapUI	after	adding	a	library	JAR	before
it	will	be	accessible.

3.	 When	restarted,	open	the	JDBC	Request	TestStep	window	and	configure	the
following:

Driver	(class	name):	com.mysql.jdbc.Driver
Connection	String	(URL):	for	example,
jdbc:mysql://localhost:3306/test?user=root&password=rooty
Click	on	TestConnection,	and	you	should	see	a	pop	up	that	contains	The
Connection	Successfully	Tested

4.	 Now,	we	can	set	up	a	test	table	and	some	test	data.	The	pro	version	has	a	full
graphical	query	builder	to	help	build	queries—for	more	information	see
http://www.soapui.org/JDBC/testing-jdbc-databases.html.

Tip
MySQL	Workbench

A	free	and	very	good	graphical	editor	tool	is	MySQL	Workbench
(http://dev.mysql.com/downloads/workbench/).	Along	with	most	DB-related	tasks,
this	can	also	generate	queries	for	you.

For	the	open	source	version:

Open	a	connection	to	your	MySQL	database	using	your	preferred	means;	for
example,	if	using	the	MySQL	command	line:

./mysql	--user=root	--password=rooty	test	

Create	a	test	invoice	table	in	your	database,	for	example:

http://www.soapui.org/JDBC/testing-jdbc-databases.html
http://dev.mysql.com/downloads/workbench/

CREATE	TABLE	test.invoice	(
		id	int(11)	NOT	NULL,
		company	varchar(45)	DEFAULT	NULL,
		amount	double	DEFAULT	NULL,
		due_date	datetime	DEFAULT	NULL,
		PRIMARY	KEY	(id),
		UNIQUE	KEY	id_UNIQUE	(id)
)

Add	two	test	invoice	records:

INSERT	INTO	invoice	(id,company,amount,due_date)	VALUES	
(1,'comp1',100,'2014-09-30	00:00:00');
INSERT	INTO	invoice	(id,company,amount,due_date)	VALUES	
(2,'comp2',200,'2014-12-01	00:00:00');

Tip
The	JDBC	Request	TestStep	can	run	any	DDL	and	SQL	statements

Depending	on	the	privileges	of	the	DB	user	you	connect	as,	SoapUI’s	JDBC
Request	TestStep	can	also	create	data,	for	example,	insert,	delete,	update,	as
well	as	perform	DDL	statements	such	as	create,	drop	tables.	While	this	is
convenient	here	in	this	recipe,	it’s	not	normally	allowed,	nor	is	it	a	good	practice
in	a	professional	environment	to	connect	as	the	root	user.

5.	 Next,	we	can	add	a	simple	SQL	query	to	select	all	the	test	data	and	see	it	in	the	XML
view:

Enter	the	following	SQL	statement	in	the	SQL	Query	box:

select	*	from	invoice

Click	on	run	(the	green	arrow),	and	you	should	see	the	invoice	test	data:

<Results>
				<ResultSet	fetchSize="0">
								<Row	rowNumber="1">
												<INVOICE.ID>1</INVOICE.ID>
												<INVOICE.COMPANY>comp1</INVOICE.COMPANY>
												<INVOICE.AMOUNT>100</INVOICE.AMOUNT>
												<INVOICE.DUE_DATE>2014-09-30	
00:00:00.0</INVOICE.DUE_DATE>
								</Row>
								<Row	rowNumber="2">
												<INVOICE.ID>2</INVOICE.ID>
												<INVOICE.COMPANY>comp2</INVOICE.COMPANY>
												<INVOICE.AMOUNT>200</INVOICE.AMOUNT>
												<INVOICE.DUE_DATE>2014-12-01	
00:00:00.0</INVOICE.DUE_DATE>
								</Row>
				</ResultSet>
</Results>

6.	 Lastly,	we	can	check	the	query	results	using	Assertions.	Under	the	Assertions	tab,
add	a	new	XPath	Match	Assertion:

XPath:	//Results[1]/ResultSet[1]/Row[1]/INVOICE.COMPANY[1]
Expected	Results:	comp1

7.	 This	Assertion	should	pass,	assuming	the	first	result	has	COMPANY=comp1.

How	it	works…
The	JDBC	Request	TestStep	functionality	is	just	the	TestStep	equivalent	of	a	SQL
database	client.	Apart	from	being	used	in	TestCase	to	check	query	results	using
Assertions,	it’s	also	potentially	useful	for	test	data	set	up	and	teardown,	for	example,	for
test	data	in	a	web	service	or	mock	service	backend	database.

See	also
There	are	also	two	JDBC	Request	TestStep	specific	Assertion	types,	JDBC	Status
and	JDBC	Timeout	Assertions—for	more	information	see
http://www.soapui.org/JDBC/getting-started.html
The	next	recipe,	Parameterizing	SQL	queries	with	the	JDBC	Request	TestStep

http://www.soapui.org/JDBC/getting-started.html

Parameterizing	SQL	queries	with	the
JDBC	Request	TestStep
This	recipe	builds	directly	on	the	last	one	to	show	how	the	JDBC	Request	TestStep	can
be	used	to	execute	parameterized	SQL	queries	based	on	property	values	from	outside	the
TestStep.	This	can	be	useful,	as	it	allows	the	JDBC	Request	TestStep	to	query	and	check
data	based	on	properties	set	from	the	results	of	other	TestSteps,	for	example,	executing	a
query	using	an	ID	obtained	from	a	web	service	response.

How	to	do	it…
First,	we	add	a	new	parameter	with	a	fixed	value	to	the	JDBC	Request	TestStep	and	use
it	as	the	criteria	for	a	simple	select	query.	Then,	we	change	the	JDBC	Request	TestStep
parameter	to	take	its	value	from	the	value	of	a	TestCase	property.	Perform	the	following
steps:

1.	 Edit	the	JDBC	Request	TestStep	from	the	previous	recipe	and	add	a	new	parameter
called	invoiceIdParam	with	a	value	of	2.

2.	 Then,	modify	the	SQL	Query	value	to	add	a	where	clause	to	specify	that	the	invoice
id	field	must	be	equal	to	the	value	of	invoiceIdParam:

select	*	from	invoice	where	id=:invoiceIdParam

Note
Placeholder	syntax

Use	:	before	the	intended	parameter	name	in	the	query.

3.	 Running	the	query	should	now	return	only	the	invoice	number	as	2:

<Results>
				<ResultSet	fetchSize="0">
								<Row	rowNumber="1">
												<INVOICE.ID>2</INVOICE.ID>
												<INVOICE.COMPANY>comp2</INVOICE.COMPANY>
												<INVOICE.AMOUNT>200</INVOICE.AMOUNT>
												<INVOICE.DUE_DATE>2014-12-01	00:00:00.0</INVOICE.DUE_DATE>
								</Row>
				</ResultSet>
</Results>

4.	 So	it	works,	but	big	deal!	To	make	this	more	useful,	we	can	try	and	use	a	SoapUI
property	expansion	to	get	the	parameter	value	from	somewhere	outside	of	the	test
step.

Tip
Property	expansions

SoapUI	has	an	expression	language	in	order	to	reference	properties	across	many	of
the	objects	in	a	project.	For	more	info,	see	http://www.soapui.org/Scripting-
Properties/property-expansion.html.

As	an	example:

Add	an	invoiceNo	property	to	the	TestCase	that	contains	the	JDBC	Request
TestStep;	that	is,	double-click	on	the	TestCase,	click	on	the	Properties	tab,	and
add	a	new	property	with	name	as	invoiceNo	and	value	as	1.
Open	the	JDBC	Request	TestStep	and	edit	the	invoiceIdParam	property	value
to	contain:

${#TestCase#invoiceNo}

http://www.soapui.org/Scripting-Properties/property-expansion.html

Run	the	TestStep,	and	you	should	see	an	invoice	with	id=1!

How	it	works…
This	recipe	has	been	mostly	explained	as	we	did	it.	The	key	learnings	are	the	syntax	used
for	query	parameters	in	a	JDBC	Request	TestStep	and	the	property	expansion	expression
language.	Property	expansions	are	a	very	important	concept	in	SoapUI,	as	they	effectively
allow	data	to	be	passed	between	related	objects	like	TestSteps.	They	can	be	used	in	many
other	places	to	insert	property	values.	Common	examples	would	be	setting	the	value	of
variables	in	a	Groovy	script	or	setting	properties	in	a	web	service	request.

There’s	more…
Another	example	would	be	to	use	property	expansions	with	the	JDBC	Request	TestStep
to	insert	data	gathered	by	a	previous	step,	for	example,	to	store	test	results	in	a	database
for	an	external	reporting	tool	to	use	or	to	populate	a	mock	service’s	test	data.	To	insert	data
based	on	parameter	values,	you	could	use	a	query	like	the	following	one:

INSERT	INTO	test.invoice
(id,	company,	amount,	due_date)
VALUES
(:invoiceIdParam,	:invoiceCompanyParam,	:invoiceAmountParam,	
:invoiceDueDateParam);

Tip
Property	scopes

When	using	property	expansions,	it	can	be	important	to	consider	the	property’s	scope,
especially	if	you	update	them.	For	example,	a	project	or	a	globally	scoped	property	that	is
updated	by	multiple	TestCases	could	lead	to	concurrency	or	thread-safety	issues.	In
general,	try	to	keep	the	scope	as	narrow	as	possible	for	writeable	properties	and	as	broad
as	possible	for	read-only	properties.

See	also
For	more	information	on	property	transfers,	go	to	http://www.soapui.org/Functional-
Testing/property-transfers.html

http://www.soapui.org/Functional-Testing/property-transfers.html

Setting	properties	from	an	external	file
It	can	be	a	good	idea	to	maintain	your	properties	externally	to	your	SoapUI	project.	This
can	help	make	your	projects	more	flexible	when	switching	between	target	environments,
especially	when	running	SoapUI	from	scripts	(see	Chapter	5,	Automation	and	Scripting).
In	this	recipe,	we	will	see	how	to	do	this	using	the	Properties	TestStep.

Getting	ready
I	have	added	a	sample	properties	file	called	test-properties.txt,	which	contains	the
following	code:

environmentName=Dev	Test
invoiceEndpoint=http://localhost:9000
userName=test
password=password

There	is	a	completed	sample	project	called	PropertiesProject	in	the	Chapter	2	samples.

How	to	do	it…
First,	we	create	a	new	empty	project,	TestSuite	and	TestCase.	Then,	we	add	a	Property
TestStep	to	read	the	properties	from	the	test-properties.txt	file	using	a	project
property	to	store	the	file’s	path.	Finally,	we	write	a	Groovy	TestStep	to	use	property
expansions	to	access	the	loaded	property	values	from	the	Property	TestStep,	and	we
then	return	and	log	the	values.	Perform	the	following	steps:

1.	 Create	new	Generic	Project	with	empty	TestSuite	and	TestCase.
2.	 Create	a	property	on	the	project	called	propertiesFile	with	the	value	/soapui-

cookbook/chapter2/test-properties.txt.
3.	 Create	new	Property	TestStep.	You	only	need	to	populate	the	Load	From	box	with

${#Project#propertiesFile},	which	refers	to	the	previous	project’s	property.
4.	 Create	a	new	Groovy	TestStep,	which	contains	the	following	code:

def	propertiesFile	=	context.expand('${#Project#propertiesFile}')
def	environmentName	=	
context.expand('${LoadProperties#environmentName}')
def	invoiceEndpoint	=	
context.expand('${LoadProperties#invoiceEndpoint}')
def	userName	=	context.expand('${LoadProperties#userName}')
def	password	=	context.expand('${LoadProperties#password}')

return	"propertiesFile:	${propertiesFile}	environmentName:	
${environmentName}	invoiceEndpoint=${invoiceEndpoint}	
userName=${userName}	password=${password}"

5.	 Now,	run	the	TestCase,	and	you	should	see	the	property	data	from	the	file	in	the
TestCase	log!

How	it	work…
The	Properties	TestStep	is	parameterized	to	take	its	filename	from	a	project-level
property	called	propertiesFile.	This	is	done	for	easy	switching;	for	example,	you	can
have	several	properties	files,	one	for	each	test	environment.

The	Groovy	TestStep	is	just	there	for	demo	purposes	and	to	illustrate	the	use	of	property
expansions	to	access	the	properties	loaded	by	the	Property	TestStep.	This	step	can
easily	be	replaced	by	a	web	service	request	TestStep,	taking	the	endpoint	and	credentials
as	property	expansions.

The	main	learning	is	that	you	can	avoid	hardcoding	parameters,	and	to	do	this,	it’s
important	to	have	a	grasp	of	the	ways	to	use	properties	in	SoapUI.

See	also
To	learn	more	about	how	to	work	with	properties,	go	to
http://www.soapui.org/Functional-Testing/working-with-properties.html

http://www.soapui.org/Functional-Testing/working-with-properties.html

Importing	CSV	file	data	into	an	in-
memory	H2	database	with	Groovy
There	are	times	when	you	just	need	a	quick	database	loaded	with	test	data	and	don’t	want
to	persist,	set	up,	or	install	anything.	Well,	this	is	where	the	in-memory	mode	of	the	H2
database	engine	can	come	in	handy	(http://www.h2database.com/)!

http://www.h2database.com/

Getting	ready
Before	using	the	H2	database,	we	need	to	download	its	JAR	and	add	it	to	SoapUI’s
classpath.	You	can	get	the	latest	H2	JAR	from
http://mvnrepository.com/artifact/com.h2database/h2/	(I	took	version	1.4.181).	Then,	add
it	to	<SoapUI	Installation	Directory>/java/app/bin/ext/.

You’ll	also	need	some	headed	CSV	data.	Amazingly,	the	script	might	be	able	to	handle
any	valid	CSV	structure	(see	http://www.h2database.com/html/functions.html#csvread).
We’ll	use	a	simple	invoice	example	invoices_with_headers.csv	that	can	be	found	in	the
chapter	2	samples.

I	have	provided	a	completed	SoapUI	project	GroovyInMemoryDB-soapui-project.xml	in
the	Chapter2	samples.

http://mvnrepository.com/artifact/com.h2database/h2/
http://www.h2database.com/html/functions.html#csvread

How	to	do	it…
Assuming	you	have	a	project,	TestSuite	and	TestCase,	we’ll	add	a	Groovy	TestStep	to
register	the	H2	JDBC	driver,	load	the	CSV	test	data	into	a	new	table,	select	the	data	from
the	table,	and	log	the	results.	Perform	the	following	steps:

1.	 Create	a	Groovy	TestStep	and	add	the	following	code:

import	groovy.sql.Sql
import	org.h2.Driver

com.eviware.soapui.support.GroovyUtils.registerJdbcDriver("org.h2.Drive
r")

def	db	=	Sql.newInstance("jdbc:h2:mem:test",	"org.h2.Driver")

//Change	this	to	the	location	of	your	CSV	file.
def	fileName	=	"/temp/invoices_with_headers.csv"

db.execute("create	table	if	not	exists	invoices	as	select	*	from	
csvread('$fileName')")
	
db.eachRow("select	*	from	invoices"){invoice->
		log.info	invoice.toString()
}

Note
Before	running,	make	sure	that	the	fileName	variable	is	set	to	the	correct	path.

2.	 Running	the	Groovy	TestStep	should	show	the	CSV	data	output	to	the	log:

Thu	Aug	28	16:40:57	BST	2014:INFO:[ID:1,	COMPANY:comp1,	AMOUNT:100.0,	
DUE_DATE:2014-12-01	00:00:00]
Thu	Aug	28	16:40:57	BST	2014:INFO:[ID:2,	COMPANY:comp2,	AMOUNT:200.0,	
DUE_DATE:2014-12-01	00:00:00]
Thu	Aug	28	16:40:57	BST	2014:INFO:[ID:3,	COMPANY:comp3,	AMOUNT:300.0,	
DUE_DATE:2014-12-01	00:00:00]

That’s	it!

How	it	works…
One	of	the	key	requirements	for	working	with	JDBC	drivers	in	SoapUI	Groovy	TestStep
scripts	is	to	register	the	driver	using	the	GroovyUtils.registerJdbcDriver	method.	If
you	don’t	do	this,	you	get	a	no	suitable	driver	found	error	when	trying	to	get	a	new
database	connection	on	the	next	line.

The	groovy.sql.Sql	class	provides	a	very	convenient	wrapper	to	hide	all	the	usual	Java
JDBC	connectivity	code	and	connection	management.

Tip
Groovy	SQL

It’s	worth	taking	a	better	look	at	this	if	you	want	to	do	more	Groovy	scripting	with	JDBC
data	sources.	Apart	from	the	driver	details	and	SQL,	the	code	here	would	be	applicable	to
other	JDBC	databases	like	MySQL.	For	more	info,	see
http://groovy.codehaus.org/api/groovy/sql/Sql.html.

Apart	from	specifying	the	driver’s	class	name	as	org.h2.Driver,	the	connection	string
jdbc:h2:mem:test	specifies	that	we	want	our	H2	database	to	be	called	test	and	created
in	memory	(mem).

Note
The	in-memory	mode

One	thing	to	say	about	the	convenience	of	in-memory	mode	is	that	the	H2	database
instance	doesn’t	stop	running	after	your	Groovy	script	has	finished,	and	remains	available
until	SoapUI’s	JVM	is	closed	down.	This	is	why	I	put	the	if	not	exists	clause	in	the
create	table	statement.	Otherwise,	rerunning	the	script	will	cause	a	table	already
exists	error.

Next,	we	have	a	pretty	compact	and	dynamic	SQL	statement:

create	table	if	not	exists	invoices	as	select	*	from	csvread('$fileName')

This	not	only	creates	the	table	if	it	doesn’t	already	exist,	but	also	defines	its	structure
based	on	the	CSV	file	and	then	loads	it	with	the	data—Pow!

The	last	statement	is	fairly	standard	Groovy	just	to	select	all	the	invoice	records,	then
iterate	over	them,	and	print	each	one	to	the	log.

http://groovy.codehaus.org/api/groovy/sql/Sql.html

There’s	more…
The	preceding	example	is	very	compact	and	can	prove	to	be	useful	when	setting	up	test
data.	See	Chapter	3,	Developing	and	Deploying	Dynamic	REST	and	SOAP	Mocks	for	an
example.	If	you	need	to	tear	down	the	data,	you	can	either	delete	the	records	or	drop	the
table:

db.execute("delete	from	invoices")
db.execute("drop	table	invoices")

Tip
Parameterize	file	paths

To	improve	the	example,	rather	than	hardcoding	the	file	path,	it	would	be	a	better	practice
to	use	a	property:

def	fileName	=	testRunner.testCase.getPropertyValue("invoiceFileName")

That’s	assuming	the	invoiceFileName	property	was	set	on	TestCase.

See	also
The	SoapUI	online	help	has	a	useful	page	with	lots	of	Groovy	scripting	examples	at
http://www.soapui.org/Scripting-Properties/tips-a-tricks.html

http://www.soapui.org/Scripting-Properties/tips-a-tricks.html

Looping	over	CSV	file	data	and	driving
tests	with	Groovy
Whether	it	is	for	loading	test	data	or	writing	reports,	using	external	data	files	can	be	a	key
part	of	automated	testing.	Typically,	you	might	need	to	read	test	data	from	a	file	and	loop
over	some	test	steps	until	there	is	no	more	data.	In	this	recipe,	we	see	how	this	can	be
achieved	easily	using	several	reusable	Groovy	TestSteps.

Getting	ready
For	example,	let’s	say	we	have	a	small	CSV	file	of	invoice	data	that	we	want	to	use	to
drive	our	tests:

1,comp1,100.0,2014-12-01	00:00:00
2,comp2,200.0,2014-12-02	00:00:00
3,comp3,300.0,2014-12-03	00:00:00

You	can	find	this	data	in	<chapter2	samples>/invoice.csv.

We	will	read	each	line	and	extract	the	values	into	properties,	for	example,	to	do	something
useful,	for	example,	populating	a	web	service	request.

I	have	provided	a	completed	SoapUI	project	GroovyFiles-soapui-project.xml	in	the
Chapter2	samples.

How	to	do	it…
I’m	going	to	break	this	down	into	three	separate	Groovy	TestSteps:	one	to	read	the	test
data,	another	to	extract	it,	and	another	to	loop	until	all	rows	are	processed.	Perform	the
following	steps:

1.	 First,	create	Groovy	TestStep	called	LoadAllTestDataFromFile	and	add	the
following	code:

context["rows"]=[]

//Change	this	to	the	location	of	your	CSV	file.
File	testDataFile	=	new	File("/temp/invoices.csv")
testDataFile.eachLine	{content,	lineNumber	->	
			context["rows"]	<<	content
}

//Initialise	row	counter
context["currentRowIndex"]=0

return	"Loaded	${context["rows"].size()}	rows."

Note
Before	running	this	code,	make	sure	that	the	testDataFile	variable	is	set	to	the
correct	path.

There’s	no	need	to	run	this	just	yet.	This	step	loads	all	the	CSV	rows	into	List	and
initializes	a	row	counter	variable.

2.	 Next,	create	a	Groovy	TestStep	called	GetNextRowAndExractValues:

def	currentRowIndex	=	context["currentRowIndex"]

//Get	values	from	csv	row
def	rowItems	=	context["rows"][currentRowIndex].split(/,/)
def	invoiceId	=	rowItems[0]
def	invoiceCompany	=	rowItems[1]
def	invoiceAmount	=	rowItems[2]
def	invoiceDueDate	=	rowItems[3]	

//Increment	counter
context["currentRowIndex"]	=	currentRowIndex	+	1

return	"Row	#$currentRowIndex	processed."

3.	 In	this	step,	we	extract	all	the	fields	with	a	view	to	doing	something	useful	with	the
values	and	increment	the	row	counter.

4.	 Lastly,	create	a	Groovy	TestStep	called	LoopIfMoreRows,	and	add	the	following
code:

def	currentRowIndex	=	context["currentRowIndex"]

if	(currentRowIndex	<	context["rows"].size)	
testRunner.gotoStepByName("GetNextRowAndExractValues")

5.	 Now,	run	the	TestCase	that	contains	the	three	Groovy	TestSteps,	and	you	should
see	the	following:

Step	1	[LoadAllTestDataFromFile]	OK:	took	0	ms	
->	Script-result:	Loaded	3	rows.	
Step	2	[GetNextRowAndExractValues]	OK:	took	0	ms	
->	Script-result:	Row	#0	processed.	
Step	3	[LoopIfMoreRows]	OK:	took	0	ms	
Step	4	[GetNextRowAndExractValues]	OK:	took	0	ms	
->	Script-result:	Row	#1	processed.	
Step	5	[LoopIfMoreRows]	OK:	took	0	ms	
Step	6	[GetNextRowAndExractValues]	OK:	took	0	ms	
->	Script-result:	Row	#2	processed.	
Step	7	[LoopIfMoreRows]	OK:	took	0	ms	

This	example	doesn’t	actually	use	the	test	data,	but	this	would	be	an	easy	next	step	for	us.

Tip
Granular	Groovy	TestSteps

While	the	preceding	3	steps	could	be	replaced	with	a	single	Groovy	TestStep,	it	can	help
in	reuse	and	readability	if	the	steps	are	kept	separate	and	well	named.

How	it	works…
The	first	step	exploits	the	Groovy	File	class	to	read	in	the	invoices.csv	file.	The	Groovy
File	class	is	more	convenient	to	use	than	the	standard	Java	equivalent,	and	is	imported
automatically	by	Groovy.	The	eachLine	method	allows	us	to	append	(using	left	shift	<<)
each	full	line	from	the	CSV	file	to	a	rows	collection	that	is	stored	in	the	SoapUI	context.

Tip
SoapUI	(TestCase)	context	variable

This	holds	the	state	or	context	that	is	passed	between	TestSteps.	It	is	a	good	place	to
store	properties	that	are	required	by	subsequent	TestSteps.	Properties	added	to	the
context	object	are	lost	when	the	tests	finish.	In	basic	terms,	the	context	object	is	an
implementation	of	java.util.Map,	but	the	actual	implementation	of	the	context	object	is
dependent	on	how	you	are	running	the	TestStep:

WsdlTestRunContext	is	used	when	the	TestStep	is	run	as	part	of	a	TestCase.

MockTestRunContext	is	used	when	you	run	a	TestStep	individually.

SecurityTestRunContext	is	used	when	the	TestStep	is	run	as	part	of	a	security	scan—
see	the	Scanning	web	service	security	vulnerabilities	recipe	from	Chapter	7,	Testing
Secured	Web	Services.

There	is	also	a	mock	context	object	of	type	WsdlMockRunContext	–	see	Chapter	3,
Developing	and	Deploying	Dynamic	REST	and	SOAP	Mocks

We	also	add	currentRowIndex	to	the	context	object	to	keep	track	of	the	current	row	as
we	iterate	through	the	TestSteps	for	each	row.

The	GetNextRowAndExractValues	Groovy	TestStep	extracts	the	current	row	from	the
context	and	splits	the	row	string	by	a	comma	to	get	an	array	of	field	values.	Finally
currentRowIndex	is	then	incremented	and	the	text	Row	#$currentRowIndex	processed	is
returned	just	to	provide	some	debugging	output	in	the	TestCase	window.	It’s	inside	the
GetNextRowAndExractValues	Groovy	TestStep	that	we	could	use	the	invoice	CSV	values
(extracted	to	variables	invoiceId,	invoiceCompany,	invoiceAmount	and
invoiceDueDate)	to	test	something	or	alternatively	pass	them	to	another	TestStep,	for
example,	use	them	to	populate	a	web	service	request	(see	below	example).

Lastly,	the	LoopIfMoreRows	TestStep	checks	whether	there	are	any	rows	left,	and	if	so,
uses	the	tesRunner.gotoStepByName()	method	to	repeat	the
GetNextRowAndExtractValues	TestStep.

There’s	more…
Building	on	the	previous	example,	the	invoice	CSV	values	could	be	used	in	a	request	for	a
test	web	service	call.	To	do	that,	we	would	need	to	put	the	invoice	values	somewhere
where	we	can	accesses	them	from	a	subsequent	REST	Test	Request	TestStep	or	(SOAP)
Test	Request	TestStep.

The	context	object	is	a	good	place	to	set	and	get	TestStep	properties	and	can	be	used	to
pass	the	‘state’	between	TestSteps.

So,	if	we	inserted	the	previous	test	steps	around	the	last	chapter’s	invoice	CRUD	service’s
POST	REST	Test	Request	TestStep	like	the	one	shown	in	the	following	screenshot:

Then,	we	can	add	the	following	lines	of	Groovy	just	after	extracting	the	values	in
GetNextRowAndExtractValues:

//Create	these	context	properties	for	use	as	parameters	in	the	subsequent	
test	steps
context["invoiceCompany"]=invoiceCompany
context["invoiceAmount"]=invoiceAmount

Then,	we	can	access	these	context	properties	using	the	${property}	syntax	in	the	request
body	of	the	POST	REST	Test	Request	TestStep	to	create	an	invoice:

{"Invoice":	{
			"companyName":	"${invoiceCompany}",
			"amount":	"${invoiceAmount}"
}}

Tip
Context	property	scope

Unlike	other	SoapUI	object	properties	for	example	project	level	properties,	context	object
properties	do	not	require	a	#scope	qualifier	when	referenced	directly	using	the	Property
Expansion	syntax	as	in	the	above	example.	For	examples	of	how	to	reference	other	types
of	property	in	using	the	Property	Expansion	syntax	see	http://www.soapui.org/scripting–
properties/property-expansion.html.

Running	these	steps	will	then	call	the	invoice	CRUD	service’s	POST	method	for	each	row
of	CSV	invoice	data.	To	see	this	working,	start	the	service	implementation	(see	the
Generating	SoapUI	tests	with	REST	discovery	recipe	of	Chapter	1,	Testing	and	Developing
Web	Service	Stubs	With	SoapUI,	for	more	info)	and	take	a	look	at	Invoice-CRUD-
Project-soapui-project.xml	in	the	Chapter	2	samples.

If	you	need	to	work	with	JSON	or	XML	file	data,	then	take	a	look	at	the	Groovy	JSON

http://www.soapui.org/scripting---properties/property-expansion.html

and	XML	Slurpers	(see	the	following	links).	They	are	easy	to	use	and	should	take	care	of
your	parsing	needs.

See	also
Custom	Groovy	data	sources	used	in	Chapter	9,	Data-driven	Load	Testing	With
Custom	Datasources
For	more	information	on	Conditional	Goto	TestStep,	visit
http://www.soapui.org/Functional-Testing/conditional-goto.html
For	more	information	on	Groovy	JSON	Slurper,	go	to
http://groovy.codehaus.org/gapi/groovy/json/JsonSlurper.html
For	more	information	on	Groovy	XML	Slurper,	go	to
http://groovy.codehaus.org/Reading+XML+using+Groovy’s+XmlSlurper

http://www.soapui.org/Functional-Testing/conditional-goto.html
http://groovy.codehaus.org/gapi/groovy/json/JsonSlurper.html
http://groovy.codehaus.org/Reading+XML+using+Groovy's+XmlSlurper

Querying	MongoDB	with	Groovy
The	simplicity	and	scalability	of	document-based	or	NoSQL	databases	has	made	them
very	popular.	One	of	the	most	popular	NoSQL	databases	is	MongoDB
(http://www.mongodb.org/).	In	this	recipe,	we	learn	how	to	query	MongoDB	by	calling	its
API	using	a	Groovy	TestStep.

Tip
MongoDB	as	a	service	backend

Since	MongoDB	stores	data	as	documents	using	the	(Binary	JSON)	or	BSON	format,	it
can	be	convenient	for	use	as	a	service	or	a	mock	backend	when	JSON	data	is	required.

http://www.mongodb.org/

Getting	ready
If	you	don’t	already	have	MongoDB,	then	install	it	using	the	instructions	on	the	main
MongoDB	site	(http://docs.mongodb.org/manual/installation/).	I	am	assuming	that
MongoDb	will	be	running	on	the	usual	localhost	and	port	27017.	By	default,	no
authentication	is	required;	this	will	be	assumed	in	this	recipe.

To	access	MongoDB	from	Groovy,	you	can	use	the	MongoDB	Java	driver.	However,
Groovy	users	have	the	option	of	GMongo,	which	simplifies	the	API	nicely.

Note
GMongo

This	is	a	convenient	Groovy	wrapper	for	the	standard	MongoDB	driver.	Note	that	the
standard	driver	is	still	required.	See	https://github.com/poiati/gmongo.

Before	using	GMongo,	we	need	to	download	the	JAR	files,	and	add	them	to	SoapUI.	You
can	find	the	JAR	files	at	Maven	Central:

http://mvnrepository.com/artifact/org.mongodb/mongo-java-driver/

http://mvnrepository.com/artifact/com.gmongo/gmongo

This	recipe	uses	the	latest	versions	(driver	2.12.3	and	GMongo	1.3);	add	the	JAR	files	to
the	following	location:

<SoapUI	Installation>/java/app/bin/ext

The	completed	SoapUI	project	GroovyMongoDB-soapui-project.xml	can	be	found	in	the
Chapter2	samples.

http://docs.mongodb.org/manual/installation/
https://github.com/poiati/gmongo
http://mvnrepository.com/artifact/org.mongodb/mongo-java-driver/
http://mvnrepository.com/artifact/com.gmongo/gmongo

How	to	do	it…
Again,	we’ll	use	a	Groovy	TestStep	to	run	our	example	queries	using	the	GMongo	API.
First,	we’ll	create	some	test	documents	in	MongoDB.	Then,	we	will	insert	a	query,	update,
and	delete	examples.	Perform	the	following	steps:

1.	 First,	let’s	create	a	couple	of	MongoDB	documents	in	a	database	called	test.	Create
a	Groovy	TestStep	and	enter	the	following:

import	com.gmongo.GMongo

def	mongo	=	new	GMongo()
def	db	=	mongo.getDB('test')

db.invoices	<<	[id:	'inv1',	company:	'test	company1',	amount:	'100.00']
db.invoices	<<	[id:	'inv2',	company:	'test	company2',	amount:	'200.00']

Note
Running	the	preceding	script	should

Create	a	new	GMongo	instance	connected	to	the	local	MongoDB	install,
host=localhost	and	port=27017

Use	a	database	called	test	if	one	exists,	or	create	the	database

Insert	two	new	invoice	documents	into	a	new	or	existing	collection	called	invoices

2.	 Next,	we	will	see	how	to	query	the	invoice	documents.	There	are	many	ways	to	do
this:

Create	a	new	Groovy	TestStep	and	add	the	same	GMongo	database	connection
code	(db)	as	in	the	preceding	example.
Then,	try	the	following	statement:

//Get	a	single	invoice	object
log.info	db.invoices.findOne()

This	should	give	an	output	similar	to	the	following	code:

Thu	Aug	28	11:42:02	BST	2014:INFO:{	"_id"	:	{	"$oid"	:	
"53fefc8b036476c440b3da8c"}	,	"amount"	:	"100"	,	"company"	:	"test	
company1"	,	"id"	:	"inv1"}

3.	 Some	other	simple	query	examples	are	shown	in	the	following	code:

//Get	a	single	invoice	document	with	id=inv2
log.info	db.invoices.findOne(id:	'inv2')

//Get	a	single	invoice	document,	excluding	the	object	id	(_id)
db.invoices.findOne([:],[_id:	0])

//To	iterate	over	all	invoice	documents
db.invoices.find().each{invoice->		
		log.info	invoice
}

4.	 To	update	documents,	use	the	following	query:

//Update	invoice	object	with	id=inv2	setting	amount=500
db.invoices.update([id:	'inv2'],	[$set:	[amount:	'500']])

5.	 To	delete	documents,	use	the	following	query:

//Delete	invoice	ibject	with	id=inv1
db.invoices.remove([id:	'inv1'])

//Delete	ALL	invoices
db.invoices.remove([:])

How	it	works…
These	are	only	simple	and	limited	examples	of	what	is	possible.	The	GMongo	wrapper	has
provided	default	connectivity	details	and	allowed	us	to	focus	on	querying	mongo.	There
was	also	very	little	to	import	and	configure,	and	there	was	no	need	to	manage	the
connection	explicitly,	for	example,	close	it	after	use.	If	we	need	to	connect	to	a	different
server	and	port,	it’s	easy	to	do	this	using	the	constructor:

def	mongo	=	new	GMongo('localhost:27017')

Using	the	mongo	query	language	is	quite	fun,	but	powerful!	We	have	already	seen	how	it
will	create	a	new	database	and	collection	data	without	any	fuss	just	by	referring	to	them
using	queries.

Tip
GMongo	syntax	differences

MongoDB	syntax	vs	GMongo	syntax	-	When	looking	up	MongoDB	commands,	it’s
worth	being	mindful	of	the	Groovy	language	changes	that	GMongo	or	Groovy	needs	to
make	to	the	standard	MongoDB	equivalent	syntax.	For	example,	the	MongoDB	command
syntax	to	exclude	the	Mongo	object	(_id)	from	the	query	output	is
db.invoices.findOne({},{_id:	0}),	but	with	GMongo	you	would	need	to	write	this	as
db.invoices.findOne([:],[_id:	0]).	In	other	words,	the	MongoDB	syntax	uses	curly
brackets{},	where	GMongo	would	use	square	brackets	[].	Also,	the	MongoDB	uses
empty	curly	brackets	{}	to	represent	an	empty	Map,	whereas	GMongo	or	Groovy	requires
us	to	use	the	empty	Map	[:].syntax.

There’s	more…
To	practice	the	queries	and	understand	more	about	the	way	Mongo	stores	data,	it’s	worth
having	a	go	with	the	MongoDB	shell.	Open	a	shell/command	prompt	and	try	the	following
code:

cd	<mongo	installation	directory>
./bin/mongo					(should	connect	you	to	the	local	instance)
show	dbs					(should	contain	you	'test'	database)
use	test					(use	database	test	for	ongoing	queries)
show	collections			(should	contain	your	'invoices'	collection)
db.invoices.find()	(should	give	the	same	results	as	before)

For	more	info,	see	http://docs.mongodb.org/manual/reference/mongo-shell/.

Note
Authentication

If	you	need	authenticated	access	to	MongoDB,	consider	using	the	GMongo	client	class
com.gmongo.GMongoClient	to	get	your	connection	(see	https://github.com/poiati/gmongo
for	more	details).

If	you	have	a	lot	of	test	data	that	you	would	like	to	load	into	a	collection	separately	to
SoapUI,	then	take	a	look	at	the	Mongo	shell	command	mongoimport	in	the	installation	bin
directory.	See	http://docs.mongodb.org/manual/reference/program/mongoimport/	for	more
details.

http://docs.mongodb.org/manual/reference/mongo-shell/
https://github.com/poiati/gmongo
http://docs.mongodb.org/manual/reference/program/mongoimport/

See	also
For	more	information	on	Mongo	REST	interfaces,	go	to
http://docs.mongodb.org/ecosystem/tools/http-interfaces/

http://docs.mongodb.org/ecosystem/tools/http-interfaces/

Publishing,	browsing,	and	consuming
ActiveMQ	JMS	messages	via	the	REST
API
For	SOAP	over	JMS	SoapUI	uses	HermesJMS	to	provide	JMS	integration	to	test	multiple
broker	implementations.	While	HermesJMS	is	a	comprehensive	option,	it	needs	some
setup	and	may	not	be	necessary	in	all	test	scenarios.

Note
HermesJMS	issues

I	have	noticed	the	following	issues	with	HermesJMS:

Java	version:	This	doesn’t	seem	to	work	with	Java	1.7	(Swing	UI	class	load	issue),
at	least	not	on	MacOS	(1.7.0_25).	To	work	around	this	downgrade	from	JAVA_HOME	to
version	1.6	(1.6.0_65),	that	is,	export	JAVA_HOME=$(/usr/libexec/java_home	-v
1.6)	and	start	SoapUI	in	the	same	shell.
ActiveMQ	version:	Above	ActiveMQ	version	5.4.3,	Hermes	seems	to	have	a	class-
load	issue.	Others	have	logged	this	issue	with	HermesJMS.	As	a	possible
workaround,	using	Hermes	with	the	ActiveMQ	5.4.3	core	JAR	seems	successful
against	the	latest	ActiveMQ	version	5.10.

Often,	you	will	just	want	to	browse,	consume,	or	publish	test	messages	on	a	queue	or
topic.	This	is	where	ActiveMQ	provides	a	convenient	REST	API	that	can	be	used	directly
from	browsers,	code,	REST	clients,	and	of	course	SoapUI	tests.

Getting	ready
I	am	assuming	that	you’re	reasonably	familiar	with	the	JMS	concepts,	if	not	ActiveMQ
itself.	Here	are	some	very	brief	sample	setup	instructions:

Download	the	latest	ActiveMQ	from	http://activemq.apache.org/download.html	(this
recipe	used	version	5.10)	and	unzip	it	somewhere	convenient.

cd	<activemq	home>/bin
./activemq	console	(or	use	start	&	stop	to	run	in	headless	mode)

When	it	starts,	check	whether	it’s	fine	by	browsing	to	the	web	console	using	the	following
URL	and	credentials:	http://localhost:8161/admin/;	username/password:
admin/admin.

The	web	admin	console	should	display.

Note
ActiveMQ	setup

Obviously,	this	is	just	a	very	quick	default	ActiveMQ	setup.	See
http://activemq.apache.org/	for	more	detailed	setup	information.

Later	versions	of	ActiveMQ	(5.8	onwards)	present	a	useful	REST	API	(see
http://activemq.apache.org/rest.html).	As	you	might	expect	for	a	given	queue	or	topic
request,	POST	publishes	messages,	and	GET	(and	DELETE)	requests	consume	messages.
This	sounds	reasonable	enough,	but	from	a	purely	RESTful	and	HTTP	perspective,	using
GET	to	modify	data	like	this	is	not	correct,	that	is,	it	changes	the	state	of	the	queue	or
topic.	To	browse	messages,	there	is	an	admin	queueBrowse	URI.

For	this	recipe,	we’ll	interact	with	the	REST	API	using	SoapUI,	but	you	can	of	course	use
any	suitable	HTTP	client,	for	example,	browsers,	plugins,	curl,	wget,	and	so	on.

The	completed	project	ActiveMQRESTAPI-soapui-project.xml	can	be	found	in	the
Chapter	2	samples.

http://activemq.apache.org/download.html
http://activemq.apache.org/
http://activemq.apache.org/rest.html

How	to	do	it…
With	ActiveMQ	already	set	up	and	running,	we’ll	first	set	up	a	new	REST	project	to
interact	with	the	Active	MQ	REST	API.	Then,	we’ll	use	REST	POST	Request	to	create	or
publish	a	JMS	message.	After	that,	we’ll	use	the	ActiveMQ	Console	to	browse	the	queues
and	messages.	Finally,	we’ll	use	a	REST	GET	Request	to	consume	a	message.

1.	 Let’s	get	started!	Open	SoapUI	and	create	new	REST	project.

When	prompted	for	the	URI,	enter	this
http://localhost:8161/api/message/testqueue?
type=queue&clientId=soapui&requestTimeout=1000.
URI:	/api/message/<queue	or	topic	name>.
Parameters:	(case	sensitive).
clientId=<string>:	To	avoid	the	need	to	maintain	a	request	session,	we	can
use	the	clientId	parameter.	In	the	point-to-point	model,	JMS	states	that	you
can	only	have	one	consumer	per	queue	(see	http://activemq.apache.org/multiple-
consumers-on-a-queue.html).	This	equates	to	one	clientId	per	queue.
However,	any	number	of	producers	can	publish	messages	to	the	same	queue.
Type=queue	–	Can	also	be	topic.
readTimeout=1000	(milliseconds):	Can	be	advisable	to	limit	delays;	for
example,	attempt	to	consume	from	an	empty	queue	delays	the	response.
Click	on	OK.	This	should	create	a	project,	a	resource	called	Testqueue,	a	GET
method,	and	a	sample	request.
Rename	the	method	to	consume	message.
Right-click	on	the	Testqueue	resource	and	create	a	new	method	called	publish
message	with	the	method	of	POST.

2.	 The	ActiveMQ	REST	API	requires	HTTP	Basic	authentication,	unless	you	disable	it.
To	add	the	credentials	to	the	requests,	open	the	POST	request,	click	on	the	Auth	tab
at	the	bottom	left,	select	Add	New	Authorization,	and	select	Basic.	Enter	username
as	admin	and	password	as	admin.	Do	the	same	for	the	GET	request.	Not	doing	this
correctly	will	result	in	an	error	(HTTP	status	401	Unauthorized)	in	the	response.
Refer	to	the	Testing	basic	HTTP	authenticated	web	services	recipe	of	Chapter	7,
Testing	Secured	Web	Services,	for	setting	Basic	Auth.

3.	 Next,	we	need	to	add	a	message	to	the	POST	request	to	publish	to	testqueue.	The
JMS	API	defines	five	message	types	(Stream,	Map,	Text,	Object,	and	Bytes),	but
text	will	do	in	most	cases,	for	example,	XML/SOAP,	key-value	pairs,	and	JSON.
We’ll	receive	a	message	as	follows:

<Invoice>
<invoiceNo>12345</invoiceNo>
<company>Test	Company</company>
<amount>100</amount>
</Invoice>

4.	 Paste	this	invoice	XML	into	the	body	of	the	POST	request	and	select	Media	Type	as
text/xml.

http://activemq.apache.org/multiple-consumers-on-a-queue.html

5.	 Now,	click	on	the	green	arrow	to	submit,	and	you	should	get	a	raw	response,
something	like:

HTTP/1.1	200	OK
messageID:	ID:bear-software-macpro.home-51228-1409661873402-3:1:1:1:2
Content-Length:	12
Server:	Jetty(7.6.9.v20130131)

Message	sent

6.	 Queues	and	topics	are	created	on	the	fly,	so	let’s	take	a	look	at	the	ActiveMQ	Web
Console	and	see	how	it’s	looking.	In	the	console,	click	on	queues	or	go	to
http://localhost:8161/admin/queues.jsp,	and	you	should	see	the	details	of
testqueue,	for	example,	Number	Of	Pending	Messages=1	and	so	on.

7.	 To	browse	through	the	messages	on	the	queue	without	consuming	them,	click	on
testqueue,	and	you	should	see	your	message	with	the	id	from	the	POST	response	you
got.	Click	on	the	message	id	and	you	should	see	all	the	properties,	options,	and	the
message	body	you	posted.

8.	 Next,	try	consuming	the	message	using	your	GET	request,	and	you	should	see:

HTTP/1.1	200	OK
Cache-Control:	no-cache,	no-store,	must-revalidate
Pragma:	no-cache
Expires:	Thu,	01	Jan	1970	00:00:00	GMT
Content-Type:	application/xml;charset=ISO-8859-1
destination:	queue://testqueue
id:	ID:bear-software-macpro.home-57501-1409656609482-3:3:1:1:1
readTimeout:	1000
Transfer-Encoding:	chunked
Server:	Jetty(7.6.9.v20130131)

<Invoice>	<invoiceNo>12345</invoiceNo>	<company>Test	Company</company>	
<amount>100</amount>	<Invoice>

9.	 In	the	web	console,	you	can	also	verify	that	testqueue	is	now	empty.

How	it	works…
There	isn’t	a	lot	to	say	here	except	that	ActiveMQ	provides	a	REST	API	that	acts	as	a
proxy	to	the	message	broker,	decoupling	clients	from	the	actual	JMS	message	operations.
This	contrasts	to	using	HermesJMS,	which	is	a	Java	Swing	user	interface	with	Java
libraries	that	SoapUI	uses	to	publish	and	consume	JMS	messages.

There’s	more…
Moving	on	from	the	previous	example,	you	can	of	course	derive	TestSteps	and
Assertions	depending	on	what	kind	of	message	format	you	expect	to	receive.	In	our
example,	an	XPath	Assertions	would	do,	for	example,	to	test	the	company	name
returned	in	the	response:

XPath:	//Invoice[1]/company[1]
Expected:	Test	Company

Perhaps	an	assertion	to	check	the	HTTP	status	code	is	as	expected,	for	example,	200	for
success.

If	you	need	to	browse	messages	on	the	queue	directly,	there	are	services	for	this	too.	For
example,	to	get	a	list	of	all	messages	on	testqueue	go	to
http://localhost:8161/admin/queueBrowse/testqueue.

This	will	return	an	XML	list	of	the	message	IDs.

To	get	an	individual	message	go	to
http://localhost:8161/admin/queueBrowse/testqueue?msgId=<message	id>.

This	will	give	quite	verbose	data	on	the	message.	You	can	also	get	a	list	of	queues	with
http://localhost:8161/admin/xml/queues.jsp.

Apart	from	the	REST	API,	there	is	some	nice	looking	work	going	on	to	produce	a	Groovy
style	JMS	API	(see	http://groovy.codehaus.org/GroovyJMS).	Another	approach	is	to	use
the	ActiveMQConnectionFactory	class	directly;	lots	of	examples	of	this	can	be	found	at
http://www.programcreek.com/java-api-examples/index.php?
api=org.apache.activemq.ActiveMQConnectionFactory.

http://groovy.codehaus.org/GroovyJMS
http://www.programcreek.com/java-api-examples/index.php?api=org.apache.activemq.ActiveMQConnectionFactory

See	also
For	more	information	on	Groovy	JMS,	go	to
http://groovy.codehaus.org/GroovyJMS+-+v0.1+Docs+and+Example
For	more	information	on	SoapUI	JMS	docs,	go	to
http://www.soapui.org/JMS/getting-started.html
For	more	information	on	SoapUI	Groovy	JMS	example,	go	to
http://www.soapui.org/JMS/working-with-jms-messages.html

http://groovy.codehaus.org/GroovyJMS+-+v0.1+Docs+and+Example
http://www.soapui.org/JMS/getting-started.html
http://www.soapui.org/JMS/working-with-jms-messages.html

Chapter	3.	Developing	and	Deploying
Dynamic	REST	and	SOAP	Mocks
In	this	chapter,	we	will	cover	the	following	topics:

Selecting	mock	responses	using	Groovy
Developing	dynamic	database-driven	SOAP	mocks
Developing	dynamic	database-driven	REST	mocks
Building	mock	responses	dynamically
Building	and	deploying	mocks	as	WAR	files

Introduction
SoapUI	has	a	very	useful	and	easy-to-use	REST	and	SOAP	mock	service	functionality.
This	chapter	looks	to	build	on	standard	static	response	mocks	by	using	Groovy	scripting
and	database	backends	to	provide	dynamic	responses	that	can	also	store	and	retrieve
request	data.

In	terms	of	web	service	mocking	as	a	strategy,	the	SoapUI	online	docs	(see
http://www.soapui.org/soap-mocking/service-mocking-overview.html)	mention	the	pros
and	cons	of	using	mock	services	to	decouple	web	service	dependencies	during	application
development	and	testing	cycles.	As	a	counter	point	to	the	benefits	of	developing	against
mocks	early	on,	I	would	suggest	that	vertical	slicing	(see
http://en.wikipedia.org/wiki/Vertical_slice)	should	also	be	considered	as	an	alternative
strategy.

It	can	help	mitigate	some	of	the	risks	that	early	mocking	can	hide,	for	example,
complexity	in	the	form	of	data	access	and/or	network	connectivity	issues.	Also,	using
service	stubs	(see	Chapter	1,	Testing	and	Developing	Web	Service	Stubs	With	SoapUI)
could	be	a	better	choice	than	mocks	if	the	stub	services	will	eventually	be	developed	into
the	full	production	services.	Mocks	are	the	typical	choice	when	you	need	a	quick,
sometimes	throwaway,	means	of	simulating	a	web	service	dependency	that	will	not	be
deployed	outside	of	a	test	environment.	In	the	later	chapters,	we’ll	use	SoapUI	mocks	to
do	a	variety	of	tasks	including:

Handling	SOAP	callbacks	(see	Chapter	4,	Web	Service	Test	Scenarios)
Handling	SOAP	attachments	(see	Chapter	4,	Web	Service	Test	Scenarios)
Being	started	and	called	from	scripts	(see	Chapter	5,	Automation	and	Scripting)
Handling	secure	HTTPS	traffic	and	using	client	certificate	authentication	(see
Chapter	7,	Securing	Mock	Services	Using	X.509	Certificates)

At	the	time	of	writing,	SoapUI’s	SOAP	mock	functionality	is	more	mature	than	the	REST
equivalent	in	some	areas,	but	with	a	little	extra	effort	and	Groovy	scripting,	the	issues	can
easily	be	overcome.	The	online	help	docs	are	also	currently	far	better	for	SOAP	than	they
are	for	REST,	although	the	process	for	actually	setting	up	REST	mocks	is	very	similar.

http://www.soapui.org/soap-mocking/service-mocking-overview.html
http://en.wikipedia.org/wiki/Vertical_slice

What	you’ll	learn
You	will	learn	the	following	topics:

For	REST	and	SOAP	mocks:

How	to	query	request	properties	using	scripts
How	to	use	mock	variables	in	scripts
How	to	selectively	dispatch	responses
How	to	build	responses	dynamically

How	to	use	Groovy	SQL	to	store	and	retrieve	mock	request	data	from	an	H2	database
How	to	build	and	deploy	mock	WAR	files	and	how	they	work

What	you’ll	need
You	will	need	basic	Groovy	or	Java	Skills.	Like	the	last	chapter,	this	one	builds	on	your
Groovy	skills	to	make	mocks	dynamic.

Selecting	mock	responses	using	Groovy
Moving	on	from	basic	single	response	mocks,	it	is	often	necessary	to	provide	different
mock	responses	depending	on	the	request	data.	SoapUI	offers	some	simple	ways	to	do
this;	SOAP	mocks	offer	dispatch	types	of	RANDOM,	SEQUENCE,	XPATH,
QUERY_MATCH,	and	SCRIPT.	REST	mocks	currently	only	have	the	SEQUENCE
and	SCRIPT	dispatch	types.	However,	once	mastered,	SCRIPT	is,	by	far,	the	most	useful
and	flexible	dispatch	type.	For	details	on	the	other	dispatch	types,	see
http://www.soapui.org/Service-Mocking/simulating-complex-behaviour.html.

To	illustrate	the	use	of	the	SCRIPT	dispatch	type,	you’re	going	to	learn	how	content
negotiation	can	be	achieved	in	a	REST	mock.	Often,	RESTful	web	services	provide	what
is	called	content	negotiation	to	optionally	produce	either	JSON,	XML,	or	potentially	other
response	formats	depending	on	the	request	properties.	This	is	very	easy	to	do	with	SoapUI
REST	mocks.

http://www.soapui.org/Service-Mocking/simulating-complex-behaviour.html

Getting	ready
The	two	main	ways	to	do	content	negotiation	are	by	using	the	Accept	header	property	or
by	adding	a	.json	or	.xml	extension	to	the	resource,	for	example,	/invoice/1234.json.

The	SoapUI	project	for	this	recipe	is	called	RESTContentNegotiation-soapui-
project.xml	and	is	available	in	the	Chapter	3	samples.

How	to	do	it…
All	we	need	to	illustrate	the	two	approaches	is	a	REST	project	with	one	JSON
MockResponse	and	one	XML	MockResponse.	Then,	we	can	add	a	resource	level	Groovy
script	to	conditionally	select	the	appropriate	response	for	the	request.	Perform	the
following	steps:

1.	 Create	a	new	REST	project	based	on	the	http://localhost:8989/invoice/	URI
with	a	single	GET	method	and	a	sample	request.	Add	a	new	parameter	to	the	request
called	id	with	a	type	TEMPLATE.

2.	 Generate	a	REST	mock	for	the	service.	Open	the	GET/invoice/resource	and
add/edit	two	MockResponse	documents.	The	first	one	is	called	JSON	Response	with
Content	|	Media	Type	as	application/json	and	contains	the	following	code:

{"invoice":	{
					"id":	123,
		"companyName":	"Test	Company",
		"amount":	555
}}

The	second	one	is	called	XML	Response,	with	Content	|	Media	Type	as
application/xml	and	contains	the	following	code:

<invoice>
		<invoiceNo>123</invoiceNo>
				<company>Test	Company</company>
				<amount>555</amount>
</invoice>

3.	 Change	Dispatch:	from	SEQUENCE	to	SCRIPT,	and	select	the	default	response	to
be	JSON	Response.	Then,	add	the	following	script:

def	requestPath	=	mockRequest.getPath()
def	acceptHeader	=	mockRequest.getRequestHeaders().get("Accept")
log.info	"Path:	"+	requestPath
log.info	"Accept	Header:	"+acceptHeader

if(requestPath.endsWith(".json")	||	
acceptHeader?.contains("application/json"))
{
		log.info	"Matched	JSON"
						return	"JSON	Response"						
}
else	if	(requestPath.endsWith(".xml")	||	
acceptHeader?.contains("application/xml")	
				||	acceptHeader?.contains("text/xml"))
{
		log.info	"Matched	XML"
				return	"XML	Response"
}
log.info	"No	match	-	returning	default"

4.	 To	test	whether	the	content	negotiation	is	working	as	expected,	we	can	set	up	some

REST	Request	TestSteps.	All	we	need	to	do	is:

Test	a	variety	of	different	requests	types,	for	example:

/invoice/1234	(no	header)	->	Expect	JSON	Response
/invoice/1234	(application/xml)	->	Expect	XML	Response
/invoice/1234	(text/xml)	->	Expect	XML	Response
/invoice/1234	(text/plain)	->	Expect	(Default)	JSON	Response
/invoice/1234	(application/json)	–>	Expect	JSON	Response
/invoice/1234.json	->	Expect	JSON	Response
/invoice/1234.xml	->	Expect	XML	Response

Tip
Script	assertions

We	can	check	whether	the	Content-Type	response	header	is	as	expected,	by
using	a	Script	Assertion,	for	example,	if	we	expect	XML	use:

assert	messageExchange.response.contentType=="application/xml"

Or	if	we	expect	JSON	use:

assert	messageExchange.response.contentType=="application/json"

Here	are	the	results	of	the	sample	TestSteps:

How	it	works…
With	a	Groovy	script	added	to	the	/invoice/	action,	SoapUI	allows	us	to	override	the
chosen	response	using	the	return	value	of	the	script.	The	script	implementation	is	able	to
access	the	path	and	request	headers	from	the	mockRequest	object.	Then,	simple	decisions
are	made	on	which	response	to	dispatch.	This	implementation	of	content	negotiation	is	not
bomb-proof	or	tested	for	every	possible	request	type,	but	it	hopefully	shows	how	Groovy
script	in	mocks	can	be	used	to	select	responses	depending	on	the	request	content.

There’s	more…
This	conditional	response	selection	can	be	applied	to	many	different	scenarios.	One
common	application	is	to	simulate	happy	and	unhappy	paths.	For	example,	we	could	have
a	mock	HTTP	status	404	response	for	the	invoice	number	555.	To	do	this,	create	a	new
MockResponse	with	the	text/xml	media	type,	status	code	as	404	and	content	as	Invoice
555	not	found..	Then,	add	the	following	Groovy	to	the	script	just	before	the	other	if
statements:

if	(requestPath	==~	
/\/invoice\/555|\/invoice\/555.xml|\/invoice\/555.json/)	{
		log.info	"Matched	invoice	not	found."
		return	"Response	404"
}	

Tip
Regex	alternative

If	you’re	not	happy	using	regex’s,	then	testing	using	Groovy	string	methods,	for	example,
requestPath.endsWith("555")	for	each	ending	would	also	work.

Now,	if	you	request	/invoice/555,	/invoice/555.json	or	/invoice/555.xml,	you
should	see	the	404	response.	This	approach	also	works	well	when	you	need	to	simulate
SOAP	faults.

Building	on	selecting	static	responses,	the	next	three	recipes	show	various	ways	to	make
the	content	dynamic.

See	also
For	more	information	on	Content	Negotiation,	please	visit
http://en.wikipedia.org/wiki/Content_negotiation

http://en.wikipedia.org/wiki/Content_negotiation

Developing	dynamic	database-driven
SOAP	mocks
Moving	on	from	mocks	that	perhaps	return	optional	content	from	a	fixed	set	of	static
responses	or	use	simple	scripts	to	generate	responses,	there	are	database-driven	mocks	that
are	capable	of	storing	and	retrieving	data	from	requests	or	preloaded	test	data.

One	of	the	core	concerns	when	deciding	on	how	best	to	mock	a	service	is	minimizing	the
cost	of	its	implementation,	as	the	mock	normally	needs	to	be	available	quickly,	and	its
implementation	will	often	be	considered	a	throwaway.	This	recipe	shows	a	low-cost	way
to	enable	a	SoapUI	mock	to	use	a	light	in-memory	database	to	preload,	store,	and	retrieve
the	request	data.

Getting	ready
This	recipe	requires	the	H2	database	setup	to	be	covered	in	the	Importing	CSV	file	data
into	an	in-memory	H2	database	with	Groovy	recipe	of	Chapter	2,	Data-driven	Testing	and
Using	External	Datasources.	Please	follow	the	Getting	ready	section	and	review	the
recipe	for	further	information	on	using	the	H2	database	with	Groovy.	There	is	also	a
sample	invoice	test	data	file	called	invoices_with_headers.csv,	which	you	will	need
again	in	this	recipe.

The	worked	example	is	going	to	focus	on	a	SOAP	mock.	Obtain	its	WSDL	from	<chapter
1	samples>/soap/invoicev2_impl/wsdl/invoice_v2.wsdl.

The	SoapUI	project	for	this	recipe	is	called	SOAPMock-soapui-project.xml	and	is
available	in	the	Chapter	3	samples.

How	to	do	it…
Once	the	SoapUI	project	and	service	are	created,	we’ll	tackle	the	Groovy	scripting	in	three
main	parts.	The	first	script	will	set	up	the	H2	database,	create	an	invoices	table,	and	load
the	CSV	test	data	when	the	mock	starts.	The	second	part	will	extract	the	invoiceNo	value
from	the	request	and	use	it	to	query	invoice	records	in	the	invoices	table.	If	found,	the
matching	invoice	record	will	be	retrieved	and	used	to	populate	the	response.	Perform	the
following	steps:

1.	 Create	a	new	SOAP	project	using	WSDL	invoice_v2.wsdl.
2.	 Create	a	new	SOAP	Mock	for	invoicePortBinding.	Right-click	on	Generate	SOAP

Mock	Service.	Accept	defaults,	unless	you	already	have	something	running	on	the
suggested	port.

3.	 Test	the	mock	using	getInvoice	(Request	1).	First,	make	sure	that	the	mock	is
started;	then,	get	its	URL,	for	example,
http://localhost:8088/mockInvoicePortBinding,	update	Request	1	to	point	to
this	URL,	and	fire	the	request.	You	should	see	Response	1	from	the	getInvoice
mock	operation	(it	will	contain	?	values).

4.	 Next,	we’ll	set	up	the	H2	DB	and	load	it	with	the	CSV	test	data	on	start-up.	Open	the
mock	and	click	on	the	Start	Script	tab	and	add	the	following	Groovy	script:

import	groovy.sql.Sql
import	org.h2.Driver

com.eviware.soapui.support.GroovyUtils.registerJdbcDriver("org.h2.Drive
r")

def	db	=	Sql.newInstance("jdbc:h2:mem:test",	"org.h2.Driver")
//Make	sure	you	check	this	path	is	correct.
def	fileName	=	"/temp/invoices_with_headers.csv"

db.execute("create	table	if	not	exists	invoices	as	select	*	from	
csvread('$fileName')")

context["databaseConnection"]=db

We	won’t	run	this	now,	but	check	whether:

You	have	added	the	H2	database	driver	to	SoapUI’s	ext/	directory.
The	def	fileName	=	"/temp/invoices_with_headers.csv"	points	to	the
correct	location.
Optionally,	extract	this	file	path	to	a	property	(see	Chapter	2,	Data-driven
Testing	and	Using	External	Datasources,	if	you	need	any	help	with	this).

5.	 Then,	to	allow	the	test	data	to	be	queried	and	update	the	response	for	each	request,
edit	the	mocks’	getInvoice	action	and	add	the	following	Groovy	script:

def	db	=	context["databaseConnection"]
def	requestXMLHolder	=	new	
com.eviware.soapui.support.XmlHolder(mockRequest.requestContent)
requestXMLHolder.declareNamespace("inv","http://soapui.cookbook.samples

/schema/invoice")
def	
requestInvoiceNo=requestXMLHolder.getNodeValue("//inv:getInvoice[1]/inv
:invoiceNo[1]")

def	invoice	=	db.firstRow("select	*	from	invoices	where	id	=	
$requestInvoiceNo")

requestContext["responseInvoiceNo"]=invoice?.id
requestContext["responseCompany"]=invoice?.company
requestContext["responseAmount"]=invoice?.amount

6.	 Lastly,	amend	the	getInvoice	response	(Response	1)	to	include	the	queried
properties	from	the	context:

<soapenv:Envelope	
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"	
xmlns:inv="http://soapui.cookbook.samples/schema/invoice">
			<soapenv:Header/>
			<soapenv:Body>
						<inv:InvoiceDocument>
									<inv:invoiceNo>${responseInvoiceNo}</inv:invoiceNo>
									<inv:company>${responseCompany}</inv:company>
									<inv:amount>${responseAmount}</inv:amount>
						</inv:InvoiceDocument>
			</soapenv:Body>
</soapenv:Envelope>	

7.	 Now,	test	Request	1	again	with	the	invoiceNo	values	equal	to	1,	2,	and	3,	and	you
should	see	the	CSV’s	values	returned	in	the	response!

Tip
There’s	no	need	to	restart	the	mock	after	script	changes—Groovy	scripts	are
dynamic!

Stage	2	is	to	implement	the	createInvoice	operation	to	insert	invoice	values
extracted	from	the	request	into	the	invoices	table.

8.	 Edit	the	mock’s	createInvoice	action	and	add	the	following	script:

def	db	=	context["databaseConnection"]

def	requestXMLHolder	=	new	
com.eviware.soapui.support.XmlHolder(mockRequest.requestContent)
requestXMLHolder.declareNamespace("inv","http://soapui.cookbook.samples
/schema/invoice")
def	
requestInvoiceNo=requestXMLHolder.getNodeValue("//inv:createInvoice[1]/
inv:invoiceNo[1]")
def	
requestCompany=requestXMLHolder.getNodeValue("//inv:createInvoice[1]/in
v:company[1]")
def	
requestAmount=requestXMLHolder.getNodeValue("//inv:createInvoice[1]/inv:
amount[1]")

def	invoiceNo	=	db.execute("insert	into	invoices	values	
($requestInvoiceNo,$requestCompany,$requestAmount,	null)")
requestContext["responseInvoiceNo"]=requestInvoiceNo

9.	 Edit	the	createInvoice	response	(Response	1)	and	include	the	responseInvoiceNo
property	into	the	response,	that	is,	change	<inv:invoiceNo>?</inv:invoiceNo>	to
<inv:invoiceNo>${responseInvoiceNo}</inv:invoiceNo>.

10.	 Then,	to	test:

1.	 Edit	the	invoicePortBinding	createInvoice	request,	(Request	1),	replacing
the	?	values	with	test	values.

2.	 Correct	the	request	URL	to	point	to	the	mock,	as	per	step	3,	and	then	fire	the
request.

3.	 You	should	see	the	invoiceNo	value	that	you	entered	in	the	acknowledgment
response.

4.	 Finally,	test	whether	you	can	use	getInvoice	to	retrieve	this	invoice	from	the
mock’s	DB,	by	repeating	step	7	using	your	test	invoiceNo.

5.	 You	should	see	an	invoice	response	that	contains	the	test	data	you	just	entered!

How	it	works…
When	you	start	the	mock	in	SoapUI,	an	embedded	(Jetty)	HTTP	server	is	used	to	publish
the	service	and	handle	requests.	SoapUI	then	manages	the	HTTP	request/response	cycle
and	makes	copies	of	the	key	objects;	for	example,	mockRequest	is	made	available	to	the
various	Groovy	script	hooks.	This	allows	us	to	change	the	response	content	to	anything	we
like.	Note	that	in	the	case	of	a	mock,	the	context	object	exists	while	the	mock	runs	and
not	just	for	the	request	cycle;	that	is,	the	context	object’s	properties	are	potentially	shared
between	all	mock	requests.

This	makes	it	an	appropriate	place	to	store	mock-wide	properties,	like	the	database
connection.	In	contrast,	the	requestContext	object	only	lasts	for	the	duration	of	each
request	cycle,	making	it	appropriate	to	store	properties	intended	to	be	request-specific,	for
example,	the	property	values	for	its	matching	response.

Tip
Property	scope	choices	and	thread	safety

When	working	with	properties,	always	consider	their	scope.	For	example,	in	many	cases,
you	could	get	away	with	storing	request-specific	properties	in	the	mock’s	context	object.
However,	in	the	event	of	simultaneous	mock	requests,	the	chances	of	concurrency	issues
increase,	for	example,	contention	regarding	the	response	value	properties	between
separate	requests!

Tip
Groovy	SQL	and	parameterized	queries

We	have	used	Groovy	SQL	to	build	our	parameterized	query	statements.	This	has	the
benefit	of	converting	our	queries	into	prepared	statements	behind	the	scenes.	This	also
means	that	all	field	parameters	are	automatically	escaped	to	avoid	issues,	for	example,
apostrophes	that	break	our	statements	and	so	on;	for	more	info,	see
http://groovy.codehaus.org/Tutorial+6+-+Groovy+SQL.

http://groovy.codehaus.org/Tutorial+6+-+Groovy+SQL

There’s	more…
The	mock	essentially	focuses	on	the	happy	path	to	load,	create,	and	retrieve	mock	invoice
data;	that	is,	there	is	no	validation	or	fault	handling.	For	example,	to	keep	things	brief,	we
have	just	used	the	Groovy	safe	navigation	operator	(see
http://groovy.codehaus.org/Operators#Operators-SafeNavigationOperator(?.))	to	prevent
NullPointerExceptions	and	return	an	empty	invoice	response	when	getInvoice	is	called
with	an	invoiceNo	that	is	not	found	in	the	database	(which	results	in	invoice==null).	A
more	complete	approach	would	be	to	return	a	SOAP	fault	response,	perhaps	using	the
technique	explained	in	the	first	recipe.	If	you	do	this,	it	will	be	a	good	practice	to	also
declare	the	SOAP	fault	for	the	getInvoice	operation	in	the	WSDL.

To	extend	the	mock,	you	might	want	to	provide	delete	and	update	operations.	You	could
use	the	following	statements	as	the	basis	for	that:

db.execute("delete	from	invoices	where	id=$requestInvoiceNo")
db.execute("update	invoices	set	id=$requestInvoiceNo,	
company=$requestCompany,	amount=$requestAmount	where	id=$requestInvoiceNo")

If	you	need	to	tear	down	the	test	data,	you	can	add	the	following:

db.execute("drop	table	invoices")

Go	to	the	mock’s	Stop	Script,	or	insert	this	statement	just	before	the	create	table
statement	in	the	getInvoice	mock	operation	script.

Tip
The	H2	in-memory	DB	survives	mock	restarts

If	you	don’t	drop	the	table	or	modify	the	database	rows	directly,	then	any	data	added	will
remain,	and	updates	to	the	CSV	file	will	not	be	reflected	even	if	you	restart	the	mock.
Restarting	SoapUI	will	refresh	the	table	data	from	the	CSV,	as	the	in-memory	H2	database
is	run	as	part	of	SoapUI’s	JVM.

http://groovy.codehaus.org/Operators#Operators-SafeNavigationOperator(?.)

See	also
For	more	choices	of	mock	data	sources,	see	Chapter	2,	Data-driven	Testing	and
Using	External	Datasources
Refer	to	SoapUI’s	online	documentation	at	http://www.soapui.org/Service-
Mocking/creating-dynamic-mockservices.html
Refer	to	the	next	recipe,	Developing	dynamic	database	driven	REST	mocks

http://www.soapui.org/Service-Mocking/creating-dynamic-mockservices.html

Developing	dynamic	database-driven
REST	mocks
This	recipe	covers	the	changes	required	to	make	the	H2	database	implementation	from	the
previous	recipe	work	with	a	RESTful	web	service	mock.	The	main	differences	will	be
when	working	with	the	request	and	response	data,	as	the	REST	version	will	use	JSON
invoice	content.

Getting	ready
All	H2	database-related	setup	from	the	previous	recipe	is	required,	as	is	the
invoices_with_headers.csv	test	data	file.

In	terms	of	the	example	RESTful	web	service	to	mock,	we’ll	use	the	invoice	CRUD
service	interface	from	Chapter	1,	Testing	and	Developing	Web	Service	Stubs	With	SoapUI.
The	generated	WADL	definition	for	the	service	can	be	found	at	<chapter	3
samples/invoice_crud_v1.wadl.

The	SoapUI	project	for	this	recipe	is	called	RESTMock-soapui-project.xml,	and	can	be
found	in	the	Chapter	3	samples.

How	to	do	it…
REST	mocks	are	very	similar	in	structure	to	SOAP	ones.	As	before,	we	first	need	a
SoapUI	project.	Then,	we’ll	create	a	REST	mock	and	add	code	that	is	very	similar	to	what
we	used	in	the	previous	recipe.	Perform	the	following	steps:

1.	 To	create	the	REST	project,	we	are	going	to	use	invoice_crud_v1.wadl.	Go	to	New
REST	Project	and	then	click	on	Import	WADL.	This	should	create	the	project,	an
endpoint	called	invoice_crud_v1,	and	a	resource	/invoice	with	four	methods	POST,
GET,	PUT,	and	DELETE.

2.	 Next,	generate	the	REST	mock.	Right-click	on	the	endpoint	and	select	Generate
New	REST	Mock	Service.	You	should	see	a	mock	service	with	five	actions:

Tip
Mocking	a	WADL	request

If	you	want	to	mock	WADL	requests	to	return	invoice_crud_v1.wadl,	use	a	URI
such	as	/invoiceservice/v1/application.wadl	instead	of	/invoiceservice/v1/?
_wadl,	as	the	?	seems	to	confuse	the	SoapUI	mock,	and	the	request	never	gets
matched	properly.

3.	 First,	let’s	mock	the	GET	request.	Double-click	on	the
/invoiceservice/v1/invoice/	action,	change	Dispatch	from	SEQUENCE	to
SCRIPT,	and	set	Default	Response	as	Response	1.	Then,	to	add	MockResponse,
double-click	on	Response	1,	change	the	Content	|	Media	Type	value	to
application/json,	and	paste	the	following	JSON	code	into	the	Editor	box:

{"invoice":	{
	"id":	12345,
	"companyName":	"Test	Company",
	"amount":	100
}}

4.	 To	test	whether	this	works,	start	the	mock	and	make	a	GET	request	(Request	1)	to
/invoiceservice/v1/invoice/	with	any	ID	set	as	a	parameter,	and	you	should	see
the	JSON	you	just	entered	in	the	response	pane.

5.	 Next,	let’s	get	the	H2	database	scripts	hooked	up.	Add	the	same	Groovy	database
setup	script	from	step	4	of	the	previous	recipe	to	the	REST	mock’s	Start	Script	tab.
Then,	double-click	on	the	/invoiceservice/v1/invoice/	action	and	add	the
following	Groovy	script:

def	db	=	context["databaseConnection"]

def	invoiceNo	=	mockRequest.getPath().split("/")[-1]

def	invoice	=	db.firstRow("select	*	from	invoices	where	id	=	
$invoiceNo")

requestContext["responseInvoiceNo"]=invoice?.id
requestContext["responseCompany"]=invoice?.company
requestContext["responseAmount"]=invoice?.amount

6.	 Then,	edit	the	Response	1	content	to	include	the	queried	properties,	similar	to	what
we	did	in	the	previous	recipe:

{"invoice":	{
	"id":	${responseInvoiceNo},
		"companyName":	${responseCompany},
		"amount":	${responseAmount}
}}

7.	 Now,	we’re	ready	to	test	this	as	we	did	in	step	4	using	the	IDs	1,	2,	and	3	(matching
those	in	the	CSV	file);	this	should	return	the	matching	CSV’s	invoice	data	as	a	JSON
response!

8.	 For	the	second	part,	we	need	to	create	new	invoice	records	based	on	the	request
details	when	the	POST	requests	are	made	to	/invoiceservice/v1/invoice/.

Note
Bug	accessing	REST	mock	request	content	SoapUI	(fixed	version	5.1)

This	is	more	inconvenient	for	open	source	users,	because	at	the	time	of	writing,	the
latest	O/S	version	is	5.0,	but	pro	is	at	5.1.2.	Open	source	users	can	work	around	this
by	building	and	running	SoapUI	from	Git,	which	might	sound	a	bit	full-on,	but	is
actually	quite	straightforward—see	the	Building,	packaging,	and	running	SoapUI
from	the	source	code	recipe	from	Chapter	11,	Taking	SoapUI	Further.	There	are	other
advantages	to	building	from	source;	for	one,	the	current	SoapUI	version	is	5.2	(ahead
of	pro)	and	includes	many	fixes.

9.	 First,	double-click	on	the	mock	POST	method’s	/invoiceservice/v1/invoice/
action,	change	Dispatch	from	SEQUENCE	to	SCRIPT,	and	set	the	Default
Response	value	to	Response	1.	Then,	click	on	the	Script	tab	and	add	the	following
Groovy	script:

import	groovy.json.JsonSlurper

def	db	=	context["databaseConnection"]

def	slurper	=	new	JsonSlurper()
def	request	=	slurper.parseText(mockRequest.requestContent)

def	requestInvoiceId	=	request?.invoice?.id
def	requestCompanyName	=	request?.invoice?.companyName
def	requestAmount	=	request?.invoice?.amount

db.execute("insert	into	invoices	values	
($requestInvoiceId,$requestCompanyName,$requestAmount,	null)")

requestContext["responseId"]	=	requestInvoiceId
requestContext["responseCompany"]	=	requestCompanyName
requestContext["responseAmount"]	=	requestAmount

10.	 Then,	to	add	the	response,	double-click	on	Response	1,	change	the	Content	|	Media
Type	value	to	application/json,	and	paste	the	following	JSON	code	into	the	Editor
box:

{"invoice":	{
	"id":	${responseId},
	"companyName":	"${responseCompany}",
	"amount":	${responseAmount}
}}

11.	 Now,	we	are	ready	to	test	this:

1.	 Edit	invoice_crud_v1	|	invoice/	|	POST	|	Request	1	and	add	some	test	request
data:

{"invoice":	{
	"id":	7,
		"companyName":	"Test	Company	7",
		"amount":	555
}}

2.	 Then,	correct	the	URL	to	point	to	the	mock	and	then	fire	the	request.	You	should
see	the	preceding	document	in	the	response	pane.

3.	 Finally,	test	whether	you	can	retrieve	this	invoice	from	the	mock’s	DB	by
repeating	the	GET	request,	like	in	step	4,	using	your	id=7.	You	should	see	an
invoice	response	that	contains	the	test	data	you	just	entered!

How	it	works…
The	main	differences	to	the	previous	SOAP	mock	recipe	are	having	to	get	the	invoice	ID
from	the	URI	instead	of	the	request	XML	when	performing	a	GET	request:

def	invoiceNo	=	mockRequest.getPath().split("/")[-1]

This	is	achieved	with	quite	a	nice	Groovy	feature	that	allows	you	to	get	the	last	element	in
an	array	(split	by	/)	using	a	negative	index	of	-1,	which,	in	the	case	of
http://localhost:8090/invoiceservice/v1/invoice/1234,	is	the	invoice	ID.

The	other	main	difference	is	in	using	JSON	Slurper	to	extract	the	invoice	values	from	a
JSON	request	body	when	handling	a	POST	request	(for	more	info,	see
http://groovy.codehaus.org/gapi/groovy/json/JsonSlurper.html):

def	request	=	slurper.parseText(mockRequest.requestContent)
def	requestInvoiceId	=	request?.invoice?.id
…

Once	parsed,	we	have	convenient	object-level	access	to	the	request	properties.	Note	the
use	of	the	Groovy	safe	navigation	operator	to	prevent	NullPointerExceptions.

http://groovy.codehaus.org/gapi/groovy/json/JsonSlurper.html

There’s	more…
Again,	this	mock	implementation	is	very	happy	path,	with	no	real	checks	or	validation.	If
you	want	to	add	some	simple	error-handling	such	as	returning	an	HTTP	status	404	when	a
GET	request	is	made	for	an	invoice	ID	that	does	not	exist,	then	you	can	conditionally	return
a	different	mock	response;	for	example,	create	a	new	mock	response	on	the
/invoiceservice/v1/invoice/	action	(with	the	status	as	404	and	an	error	message),	and
after	performing	the	select	query	to	look	up	the	invoice	record,	add	the	following
statement:

if	(invoice==null)	return	"Response	404"

This	will	override	the	default	response	(Response	1)	in	case	no	invoice	record	exists	in	the
database	(see	the	sample	project	for	a	working	example).

See	also
XML	Slurper	is	an	alternative	to	XPath	when	working	with	XML:
http://groovy.codehaus.org/api/groovy/util/XmlSlurper.html.

http://groovy.codehaus.org/api/groovy/util/XmlSlurper.html

Building	mock	responses	dynamically
As	an	alternative	to	conditionally	selecting	fixed	structure	mock	responses,	it	is	also	very
doable,	but	usually	more	effort,	to	construct	responses	dynamically.	This	can	be	useful
when	you	want	to	vary	the	response	structure	in	a	way	that	would	be	tedious	to	hardcode.
One	example	of	this	would	be	a	mock	implementation	of	a	find/search	resource;	for
example,	/invoices?size=3	could	return	a	response	that	contains	a	collection	of	size
number	of	invoice	documents.	Then,	the	mockResponse	object,	available	in	the
MockResponse	level	script,	could	allow	us	to	shape	the	response	any	way	we	want	(see
MockResponse	at	http://www.soapui.org/apidocs/index.html).

http://www.soapui.org/apidocs/index.html

How	to	do	it…
To	achieve	the	earlier	mentioned	example,	we	can	use	Groovy’s	JSONBuilder	class	to
generate	the	collection	of	JSON	invoice	documents	based	on	the	size	parameter.	Then,
we’ll	set	this	on	the	mockResponse	object:

1.	 We	can	add	the	new	/invoices/size=2	resource	on	the	RESTContentNegotiation-
soapui-project.xml	project.

2.	 Then,	add	the	new	resource	as	Action	to	the	mock.
3.	 Next,	create	new	MockResponse	(named	Dynamic	Response)	for	/invoices	and	add

the	following	to	the	Dynamic	Response	script	tab:

def	queryString	=	mockRequest.getRequest().getQueryString()
int	size	=	queryString.split("=")[1].toInteger()
def	invoices	=	[]
size.times	{
					invoices	<<	["invoice":["id":"$it","company":"test	
$it","amount":"10$it"]]
}
def	invoicesMap=["invoices":invoices]	
				
def	builder	=	new	groovy.json.JsonBuilder(invoicesMap)

mockResponse.responseContent=builder.toPrettyString()
mockResponse.responseHttpStatus=200
def	headers	=	mockResponse.responseHeaders
headers["Content-Type"]=["application/json"]
mockResponse.responseHeaders=headers

4.	 Now,	we	can	give	it	a	test	by	requesting	/invoices?size=1,2,3,	and	you	should	see
a	response	that	contains	an	invoice’s	JSON	collection,	which	contains	the	size
number	of	JSON-generated	invoice	documents!

How	it	works…
First,	we	extract	the	size	parameter	from	the	query	string.

Tip
URIBuilder

If	you	need	to	do	more	work	with	URLs,	then	take	a	look	at
http://groovy.codehaus.org/modules/http-
builder/apidocs/groovyx/net/http/URIBuilder.html.

Then,	we	use	it	to	construct	a	nested	Map	structure	that	matches	exactly	with	the	JSON
collection	we	are	looking	to	generate.	Next,	we	convert	invoicesMap	to	the	JSON	format
using	JSONBuilder,	and	set	mockResponse.responseContent	to	the	resulting	content.

Finally,	we	set	the	HTTP	status	code	to	200	(success)	and	set	the	content	type	in	the	HTTP
header	to	application/json.	Note	that	the	response	headers	are	of	type
StringToStringsMap	or	Map<String,	List<String>>.

http://groovy.codehaus.org/modules/http-builder/apidocs/groovyx/net/http/URIBuilder.html

There’s	more…
Apart	from	the	JSON	content	generation	part,	the	key	thing	to	realize	here	is	that	we	can
set	the	mockResponse	object	to	anything	we	like	by	setting	a	few	properties!	For	example,
if	we	wanted	XML	invoice	content,	then	that’s	just	as	easy	using	MarkupBuilder—see
http://groovy.codehaus.org/api/groovy/xml/MarkupBuilder.html.

http://groovy.codehaus.org/api/groovy/xml/MarkupBuilder.html

Deploying	mocks	as	WAR	files
One	very	useful	feature	of	SoapUI	mocks	is	that	they	can	be	deployed	to	servlet	containers
like	Jetty	and	Tomcat	as	WAR	files.	This	greatly	increases	the	scope	of	SoapUI	mocks,	as
it	allows	them	to	be	deployed	independently	and	potentially	support	environments	that
don’t	have	access	to	the	real	services.

The	deploy	as	war	feature	is	available	for	both	REST	and	SOAP	mocks,	although	the
REST	version	is	less	mature	than	the	SOAP	version,	and,	at	the	time	of	writing,	has	a	few
issues.	One	issue	is	that	it	only	works	post	version	5.1,	which	makes	it	only	directly
available	to	pro	users	and	open	source	users	that	are	happy	to	build	SoapUI	from	the
source	(see	the	Building,	packaging,	and	running	SoapUI	from	the	source	code	recipe
from	Chapter	11,	Taking	SoapUI	Further).	Another	issue	is	that	a	REST	mock	WebUI
isn’t	available,	although	this	doesn’t	affect	the	actual	mock	functionality.	However,	don’t
let	this	put	you	off	as	the	issues	are	very	fixable;	we	just	don’t	have	the	time	to	do	it	right
now!

In	this	recipe,	we’ll	learn	how	to	deploy	the	SOAPMock-soapui-project.xml	sample
project	to	an	Apache	Tomcat	server	and	look	at	how	this	works.	If	you	would	rather	do	a
REST	example,	the	RESTMock-soapui-project.xml	or	RESTContentNegotiation-
soapui-project.xml	sample	projects	will	work	too.

Getting	ready
To	see	the	end	product	of	this	recipe,	you	will	need	Apache	Tomcat	or	another	servlet
container.	Here,	we	use	Tomcat	7.0.41;	if	you	need	help	choosing	a	version,	take	a	look	at
http://tomcat.apache.org/whichversion.html.

Installation	is	very	simple;	that	is,	unzip	it!	Also,	the	installation	only	requires	a
compatible	JDK.	Go	to	http://tomcat.apache.org/tomcat-8.0-doc/setup.html	for	installation
instructions	(change	the	8.0	to	7.0	in	the	link	for	the	7.x	version).

Note
SoapUI	mock	memory	issues

SoapUI	mocks	can	take	more	memory	than	you	might	expect.	I	needed	to	increase	my
MaxPermSize	by	creating	a	setEnv.sh	script	in	<tomcat	home>/bin/,	which	contains
export	JAVA_OPTS="-Dfile.encoding=UTF-8	-Xms128m	-Xmx1024m	-XX:PermSize=64m
-XX:MaxPermSize=256m".

If	you	need	any	help	with	this,	see	http://www.mkyong.com/tomcat/tomcat-
javalangoutofmemoryerror-permgen-space/.

http://tomcat.apache.org/whichversion.html
http://tomcat.apache.org/tomcat-8.0-doc/setup.html
http://www.mkyong.com/tomcat/tomcat-javalangoutofmemoryerror-permgen-space/

How	to	do	it…
The	process	for	deploying	a	mock	as	a	war	is	the	same	for	both	REST	and	SOAP	mocks.
Here,	we’re	going	to	generate	a	SOAP	mock	based	on	the	SOAPMock-soapui-project.xml
project.

Right-click	on	the	project	and	select	Deploy	As	War.	You	should	see	the	following	pop
up	with	options:

Tip
Pro	only	option

The	pro	version	has	an	Include	Script	Library	option	to	package	any	custom	Groovy
scripts	that	you	have	added	to	the	pro	script	library	feature.	For	more	on	the	pro	script
library	feature,	see	http://www.soapui.org/Scripting-Properties/scripting-and-the-script-
library.html.

The	Include	Global	Settings	option	is	important	if	you	have	set	any	mock-specific
preferences	like	SSL	and	any	global	properties.	See	Chapter	7,	Testing	Secured	Web
Services	for	more	information	on	mock	SSL	configuration.

The	Include	Actions	and	Include	Listeners	options	do	just	that.	See	Chapter	11,	Taking
SoapUI	Further	for	more	details	on	these	two	topics.

In	this	example,	it’s	important	to	tick	the	Include	jar	files	from	ext	folder	option,	as	our
project	requires	the	H2	database	driver	to	be	included	in	the	WAR	file.

The	WebUI	user	interface	can	be	quite	useful	to	monitor	and	debug	the	mock,	as	it	has	a
link	to	the	WSDL,	and	shows	request	and	Groovy	logs.	Not	ticking	the	WebUI	only
disables	it	and	doesn’t	reduce	the	size	of	the	WAR.

The	MockService	Endpoint	option	is	only	important	if	you	want	the	mock’s	WSDL	to
have	a	correct	address	location	attribute,	and	is	not	relevant	to	REST	mocks.	For	example,
leaving	it	empty	results	in:

http://www.soapui.org/Scripting-Properties/scripting-and-the-script-library.html

<soap:address	location="http://localhost:8088/mockInvoicePortBinding"/>

This	is	wrong	in	our	case,	since	our	Tomcat	port	is	8080	and	the	mock	WAR	name
(dbsoap)	is	required	in	the	URI;	that	is,	the	correct	address	is
http://localhost:8080/dbsoap/mockInvoicePortBinding?WSDL.

The	War	File	and	War	Directory	options	are	self-explanatory,	but	have	the	following
catch:

Note
Potential	Issue

If	you	want	the	packed	WAR	file	to	be	produced,	it’s	important	to	repeat	the	path	for	both
the	War	File	and	War	Directory	as	shown	in	the	preceding	screenshot!

1.	 Click	on	OK	to	generate	the	mock,	and	you	should	see	the	following	generated
artifacts	in	the	War	Directory	location:

dbsoap.war
header_logo.png
stylesheet.css
WEB-INF

The	last	three	files	are	just	the	exploded	WAR	contents.

2.	 With	Tomcat	running,	to	deploy	the	mock,	copy	the	dbsoap.war	file	into	your
<Tomcat	Home>/webapps	directory.	Then,	you	should	be	able	to:

Access	the	mock	WebUI	at	http://localhost:8080/dbsoap/
Access	the	WSDL	at
http://localhost:8080/dbsoap/mockInvoicePortBinding?WSDL
Call	getInvoice	and	createInvoice	operations	on	the	mock	by	firing	SoapUI
requests	at	http://localhost:8080/dbsoap/mockInvoicePortBinding

How	it	works…
The	Deploy	As	War	functionality	basically	bundles	up	at	least	the	SoapUI	project	file,
SoapUI	itself	(soapui-5.2.0-SNAPSHOT.jar),	and	all	third-party	libraries,	and	places
them	under	WEB-INF	in	the	WAR	file	and/or	the	WAR	folder.	If	you	take	a	look	in	WEB-
INF/lib,	you’ll	see	what	happened.	This	is	why	the	WAR	is	actually	quite	big,	at
approximately	47	MB!	Some	of	the	libraries	under	the	lib	folder	will	also	be	redundant	in
terms	of	a	mock’s	needs.

It	also	creates	a	web.xml	file	that	holds	all	the	options	you	selected	as	parameters	and
routes	requests	to	MockAsWarServlet	to	make	the	mock	available.

There’s	more…
The	same	WAR	generation	functionality	can	also	be	done	via	a	script	located	at	<SoapUI
Home>/bin/wargenerator.sh	(run	the	script	to	see	parameters).

The	script	ultimately	calls	the	same	class	as	the	UI	does,	that	is,
com.eviware.soapui.tools.MockAsWar.

Apart	from	deploying	mocks	as	WAR	files,	they	can	also	be	run	using	scripts:	<SoapUI
Home>/bin/mockservicerunner.sh.

For	several	examples	of	how	to	do	this,	take	a	look	at	Chapter	5,	Automation	and
Scripting.

See	also
SoapUI	online	documentation	at	http://www.soapui.org/Service-Mocking/deploying-
mock-services-as-war-files.html

http://www.soapui.org/Service-Mocking/deploying-mock-services-as-war-files.html

Chapter	4.	Web	Service	Test	Scenarios
In	this	chapter,	we	will	cover	the	following	topics:

Testing	WSDL	and	response	WS-I	compliance
Testing	SOAP	response	schema	compliance
Testing	REST	response	XML	schema	compliance
Testing	response	compliance	using	JSON	schemas
Testing	and	mocking	SOAP	(MTOM+XOP)	attachments
Testing	HATEOAS	links
Testing	polling	style	asynchronous	REST	services
Testing	asynchronous	SOAP	service	callbacks
Testing	for	e-mails	with	Groovy
Testing	files	with	Groovy

Introduction
This	chapter	provides	a	collection	of	scenario-based	recipes	to	test	RESTful	and	SOAP
web	services	with	SoapUI.	These	are,	by	no	means,	the	most	common	scenarios	or
themes;	instead,	we’ll	mostly	look	at	slightly	more	advanced	topics	that	will	hopefully
complement	basic	material	available	elsewhere.

What	you’ll	learn
You	will	learn	the	following	topics:

How	to	test	REST	responses	for	XML	and	JSON	schema	compliance
How	to	mock	and	test	SOAP	attachments
How	to	mock	and	test	HATEOAS	links
How	to	mock	and	test	RESTful	and	SOAP	asynchronous	services
How	to	use	Groovy	to	check	for	files	and	e-mails	using	IMAP

What	you’ll	need
You	will	need	the	following:

Basic	Groovy	skills:	The	Groovy	skills	learned	in	the	previous	two	chapters	will	be
put	to	good	use	here	too
SoapUI	mock	skills:	Mocking	is	used	extensively	in	the	sample	projects,	so	if	you
haven’t	covered	Chapter	3,	Developing	and	Deploying	Dynamic	REST	and	SOAP
Mocks,	you	may	find	it	useful	to	refer	to	it

Testing	WSDL	and	response	WS-I
compliance
We	will	not	talk	much	about	what	WS-I	compliance	is	or	what	its	guidelines	are;	instead,
we	will	be	giving	an	overview	of	how	to	check	it	using	SoapUI.	In	brief,	WS-I	standards
are	there	to	provide	guidelines	that	promote	interoperability	when	using	all	the	web
service	specifications,	such	as	WSDL,	SOAP,	and	UDDI.	Broadly	speaking,	failing	to
achieve	compliance	could	narrow	who	is	able	to	consume	your	service	(for	more
information,	see	http://www.ws-i.org/).

http://www.ws-i.org/

Getting	ready
As	an	example,	we	can	check	the	compliance	of	invoice_v2.wsdl	from	chapter	1.
Alternatively,	you	could	also	use	any	valid	(but	not	necessarily	compliant)	WSDL	of	your
choosing.

How	to	do	it…
We’ll	first	look	at	how	SoapUI	can	check	WSDL	WS-I	compliance.	Then,	we’ll	briefly
look	at	how	SoapUI	can	check	response	compliance	and	the	current	issues	in	doing	this.

1.	 First,	the	WS-I	tool	needs	to	be	configured	in	SoapUI.	Go	to	Preferences	|	WS-I
Settings:

I	would	suggest	that	you	tick	all	the	options	to	get	more	information.
There	is	a	bundled	version	of	the	WS-I	compliance	tool	in	<SoapUI
Install>/java/app/wsi-test-tools.	Optionally,	copy	this	folder	somewhere
else	and	set	the	Tool	Location	property	to	this	location.
Then,	select	Output	Folder.	It’s	not	a	big	deal	really,	but	if	you	want	the	links
to	the	various	Assertions	in	the	report	to	work,	then	the	<wsi-test-
tools>/common	directory	needs	to	be	two	directories	back	relative	to	the	report
file;	for	example,	creating	the	report	in	<wsi-test-tools>/output/reports
would	work.

2.	 Before	you	can	check	a	WSDL	using	SoapUI,	you’ll	need	to	create	a	SOAP	project
for	it.	So,	if	you	don’t	have	any	more	exciting	WSDLs	handy,	create	a	new	SOAP
project	using	invoice_v2.wsdl.

3.	 Then,	open	the	WSDL	service	window	(double-click	on	InvoicePortBinding)	and
open	the	WS-I	Compliance	tab.

4.	 Click	on	the	green	arrow	to	create	the	report;	then,	a	WSI	Analyser	window	should
appear	that	contains	the	runtime	output	from	the	tool.

5.	 Once	complete,	close	this	and	the	report	should	be	visible	in	the	WSDL	service
window!	At	the	bottom	of	the	window,	you	will	see	the	Report	(already	displayed)
and	Config	tabs.	The	Config	tab	shows	the	WS-I	tool	config	that	was	used	to	run	the
report.

6.	 To	check	response	compliance,	just	make	a	SOAP	request	and	right-click	on	the
response	XML	view	and	select	Check	WS-I	Compliance;	if	everything	goes	well,
you	will	see	a	report.	Unfortunately,	all	is	probably	not	well!	In	the	current	(5.x)
version	of	SoapUI,	you’ll	get	an	error	that	looks	similar	to	the	following:

Could	not	find	status	code	in	http	headers:	[[HTTP/1.1	200	OK]

At	the	time	of	writing,	this	has	been	reported	as	a	bug.	If	you	need	to,	it	is	still	possible	to
work	around	this	issue	by	manually	using	the	compliance	analyzer	and	correcting	the
issue.	I’ll	explain	how	in	the	next	section.

How	it	works…
As	you	can	see	from	the	tool	execution	console	log,	SoapUI	uses	your	preferences	to
construct	an	XML	config,	which	is	then	used	to	run	<wsi-test-
tools>/java/bin/analyzer.sh.	All	the	information	that	the	tool	needs	to	run	is	provided
in	the	XML	config.	You	can	obtain	the	XML	config	that	SoapUI	uses	by	copying	the
location	from	the	analyzer	command	invocation	log	entry,	for	example:

Analyzer.sh	-config	/var/folders/k2/khl7mq1n74zfclw1k8kkdpp40000gn/T/wsi-
analyzer-config4822832238659996042.xml	-assertionDescription	true

Then,	you	can	copy	the	XML	config	to	a	convenient	location	and	customize	it	if	required.
For	example,	to	fix	the	status	code	issue,	all	that	is	wrong	is	that	the	square	brackets	need
to	be	removed	from	[HTTP/1.1	200	OK]	in	the	response	XML	(the	file’s	path	is	under
logFile	in	the	config	XML).	Then,	if	you	rerun	the	analyzer	tool	against	the	corrected
response	log	XML,	the	report	should	be	generated	successfully.

Tip
Report	assertion	code

The	meaning	of	assertion	code,	for	example,	BP2123,	can	be	looked	up	in	the	document
links	at	http://ws-i.org/.	Make	sure	you	match	the	SOAP	version,	for	example,	1.2,	to	the
Basic	Profile	document	version.

http://ws-i.org/

There’s	more…
Apache	CXF	also	provides	a	wsdlvalidator	tool	to	check	WSDL	WS-I	compliance	(refer
to	the	next	link).	Online	compliance	checkers	also	exist,	although	some	have	issues	if
schemas	aren’t	defined	inline;	that	is,	as	part	of	the	WSDL,	rather	being	imported	or
included.

See	also
For	more	information	on	Apache	CXF	WSDL	Validator,	go	to
http://cxf.apache.org/docs/wsdlvalidator.html
To	know	more	about	an	online	WSDL	Validator,	refer	to	https://www.wsdl-
analyzer.com/
For	more	information	on	WS-I,	go	to
http://en.wikipedia.org/wiki/Web_Services_Interoperability

http://cxf.apache.org/docs/wsdlvalidator.html
https://www.wsdl-analyzer.com/
http://en.wikipedia.org/wiki/Web_Services_Interoperability

Testing	SOAP	response	schema
compliance
For	SOAP	responses,	the	schema	compliance	assertion	is	straightforward	to	use	and	can
be	very	useful.	It	works	by	validating	the	response	XML	against	the	schema	types	as
defined	or	imported	in	the	WSDL.	Depending	on	the	strictness	of	your	XSD,	this	allows
you	to	check	the	structure	and	content	with	one	assertion.	In	this	recipe,	we’ll	learn	how	to
test	the	schema	compliance	of	the	invoice	v2	service	introduced	in	Chapter	1,	Testing	and
Developing	Web	Service	Stubs	With	SoapUI.

Getting	ready
To	explore	a	SOAP	schema	compliance	example,	we’ll	need	an	initial	project	setup.	To
speed	things	up,	we’ll	use	a	ready-made	SOAP	project	based	on	the	invoice	v2	service.
The	project	can	be	found	in	the	chapter	4	samples:

WSDL:	invoice_v2.wsdl
SOAP	Project:	Invoice-v2-soapui-project.xml
SOAP	mock:	InvoicePortBinding	MockService	in	the	project	and	four	sample
responses	to	the	getInvoice	action.
Test	Setup:	A	TestSuite,	TestCase,	and	TestRequest	TestStep	for	getInvoice	that
calls	the	mock.

How	to	do	it…
1.	 The	mock	is	set	up	in	the	SEQUENCE	mode	to	cycle	through	four	sample

responses:

Response	OK:	This	indicates	a	valid	response.
Response	Element	Missing:	This	indicates	that	the	element	amount	is	missing.
Response	Wrong	Type:	This	indicates	that	the	type	is	set	to	OrderDocument.
Response	Wrong	Element	Order:	This	indicates	that	the	element	order	is
reversed.

2.	 To	see	the	responses,	start	the	mock	and	run	the	getInvoice	TestStep	five	times	or	so
to	cycle	through	all	of	the	mock’s	responses.

3.	 Next,	add	the	schema	compliance	assertion:	TestStep	Assertions	tab	|	right-click	on
Add	Assertion	|	Compliance,	Status	and	Standards	|	Schema	Compliance	and
click	on	OK	to	the	definition	popup	that	suggests	invoice_v2.wsdl.

Now,	if	you	run	the	getInvoice	TestStep	several	times,	you	will	notice	the	various	issues
being	reported	against	the	last	three	responses.

How	it	works…
As	you	probably	already	know,	SoapUI	is	able	to	capture	the	responses	and	validate	them
against	the	schema	definition	of	InvoiceDocumentType	contained	in	the	WSDL.	If	you
inspect	the	type	definition,	it	is	simple	as	type	definitions	go,	but	requires	all	the	elements
to	be	present	(the	minOccurs	attribute	defaults	to	1	if	not	specified);	also,	the	type	name
must	match	and	the	element	order	(xsd:sequence)	is	enforced.

There’s	more…
You	can	obviously	go	a	lot	further	with	schema	definition	than	this	example	shows,	for
example,	by	using	stricter	data	types	for	content	validation,	defining	your	own	types,	and
so	on.	If	you	would	like	to	know	more,	one	place	to	start	is
http://www.w3schools.com/schema/.

See	also

http://www.w3schools.com/schema/

For	more	information	on	SoapUI	Assertions,	go	to	http://www.soapui.org/Functional-
Testing/getting-started-with-assertions.html

http://www.soapui.org/Functional-Testing/getting-started-with-assertions.html

Testing	REST	response	XML	schema
compliance
The	REST	schema	validation	assertion	is	similar	in	usage	to	the	SOAP	version,	but	has	a
few	limitations.	Firstly,	it	is	driven	by	WADL	definition,	which	potentially	narrows	its
scope	since	not	all	RESTful	web	services	are	defined	by	or	even	provide	WADL
definitions.	As	the	WADL	standard	can	only	define	XML	messages,	not	JSON,	this
prevents	the	assertion	from	being	able	to	check	JSON	responses.	Lastly,	the	REST	schema
compliance	assertion	only	actually	validates	XML	responses	if	the	representation
‘element‘	attribute	is	present	and	correct	in	the	WADL,	which	is	not	always	the	case,	that
is,	correct	would	mean	like	in	the	following	example	assuming	there	is	a	schema	defined
with	a	type	named	invoice:

<method	name="GET">
		<request></request>
		<response>
				<representation	mediaType="application/xml"	element="tns:invoice"	/>
		</response>
</method>

Otherwise,	if	there	is	no	‘element‘	attribute	defined	or	even	if	there	is,	and	the	element	in
the	response	XML	doesn’t	match	exactly	(including	the	namespace),	then	the	assertion
always	passes	unless	the	response	is	empty!	Sounds	weird,	but	it’s	easier	to	explain	with
an	example.

Getting	ready
To	explore	the	REST	schema	compliance	assertion’s	usage	in	the	same	way	as	the
previous	recipe,	we’ll	use	a	ready-made	test	project,	mock,	and	TestStep.	Please	take	a
look	at	the	project	invoice-rest-xml-v1-soapui-project.xml	in	the	chapter	4	samples.

We’ll	also	use	a	WADL	called	invoice_xml_v1.wadl,	which	can	be	found	in	the	chapter
4	samples.	It	is	similar	to	the	previous	invoice	examples	in	chapter	1	samples.	It	defines
an	invoice	type:

<xs:element	name="invoice"	type="tns:InvoiceType"	/>
<xs:complexType	name="InvoiceType">
		<xs:sequence>
				<xs:element	name="id"	type="xs:string"	/>
				<xs:element	name="companyName"	type="xs:string"	/>
				<xs:element	name="amount"	type="xs:double"	/>
		</xs:sequence>
</xs:complexType>

The	invoice	type	is	then	used	in	the	representation	‘element‘	attribute,	as	explained	in
the	introduction.

How	to	do	it…
To	test	schema	compliance,	the	mock	is	set	up	in	the	SEQUENCE	mode	and	has	four
sample	responses	to	the	GET	/invoiceservice/v1/invoice/{id}	resource.	We’ll	then	run
the	TestStep	to	test	the	responses	and	analyze	the	results.	Perform	the	following	steps:

1.	 There	are	four	sample	responses	like	before:

Response	OK
Response	Missing	Amount	Element
Response	Wrong	Element	Order
Response	Wrong	Type,	But	Passes!:	This	incorrectly	uses	an	order	element
instead	of	an	invoice	one

2.	 First,	open	up	the	invoice_rest_xml_v1	project	and	start	the	mock	(REST
MockService).

3.	 Then,	you	can	use	the	GET	invoice	TestStep	to	fire	requests	at	the	mock	and	see	the
sample	responses.	The	schema	compliance	assertion	has	already	been	added,	so	you
should	also	see	validation	messages.	The	only	difference	with	the	REST	version	is
that	you	need	to	supply	a	WADL	instead	of	a	WSDL.

All	the	results	should	be	similar	to	the	previous	SOAP	example,	apart	from	the	last	one,
that	is,	how	could	that	pass?	We’ll	explain	why	in	the	next	section.

How	it	works…
One	key	difference	with	the	SOAP	Schema	Compliance	Assertion	is	the	Representations
tab	shown	under	the	response	in	the	REST	Request	TestStep:

In	short,	the	way	the	WadlValidator	class	(see	SoapUI	source	code)	is	written,	it	will	only
attempt	to	validate	the	response	if	the	representation’s	QName	is	equal	to	the	element’s
type	(including	namespace)	in	the	response	XML.	In	other	words,	if	the	response	XML’s
element	is	not	equal	to	the	representation’s	QName,	then	it	can	be	anything	(except
empty),	and	the	Assertion	will	pass!	Hence,	why	the	last	sample	response	with	the	wrong
type	passed.	Apart	from	this	issue,	the	validation	against	the	schema	works	as	expected.

There’s	more…
So	what	if	you’ve	got	a	REST	service,	without	a	WADL,	or	one	that	uses	JSON,	and
you’d	like	to	check	its	responses	against	a	schema?	Well,	as	usual,	there’s	always	a	DIY
(Groovy)	option,	as	covered	in	the	next	recipe!

Testing	response	compliance	using	JSON
schemas
Do	you	have	REST	responses	that	you’d	like	to	validate	against	a	JSON	schema?	This
recipe	shows	a	simple	way	to	do	this	using	a	Groovy	TestStep.

Getting	ready
First,	we’re	going	to	need	a	simple	test	project	with	a	mock	that	produces	some	sample
JSON	responses	for	us	to	validate.	A	ready-made	project	invoice-rest-json-schema-
soapui-project.xml	has	been	provided	to	do	this	in	the	chapter	4	samples.	It	contains	a
simple	REST	project	with	one	resource	GET	/invoice/{id},	a	mock	with	two	sample
responses,	and	a	test	case	with	REST	TestRequest	and	Groovy	TestSteps.	The	invoice
document	is	the	usual	example;	that	is:

{"invoice":	{
			"id":	12345,
			"companyName":	"Test	Company",
			"amount":	100
}}

We’ll	also	need	a	JSON	schema	to	validate	this,	invoice_schema.json	has	been	provided
in	the	chapter	4	samples:

{		
			"$schema":"http://json-schema.org/draft-03/schema",
			"required":true,
			"type":"object",
			"properties":{		
						"invoice":{		
									"required":true,
									"type":"object",
									"properties":{		
												"amount":{		
															"required":true,
															"type":"number"
												},
												"companyName":{		
															"required":true,
															"type":"string"
												},
												"id":{		
															"required":true,
															"type":"number"
												}
									}
						}
			}
}

For	the	actual	schema	validation	library,	we’ll	use	Francis	Galiegue’s	json-schema-
validator	project	from	GitHub	(see	https://github.com/fge/json-schema-validator).	The
easiest	way	to	use	this	within	SoapUI	is	with	the	“full”	JAR	version	json-schema-
validator-2.2.5-lib.jar.	You	can	get	this	from	https://bintray.com/fge/maven/json-
schema-validator/view.	This	library	needs	to	be	added	to	the	SoapUI	classpath	by	placing
it	in	<SoapUI	Install>/java/app/bin/ext	and	restarting.

https://github.com/fge/json-schema-validator
https://bintray.com/fge/maven/json-schema-validator/view

How	to	do	it…
After	the	REST	Test	Request	TestStep	is	called,	we	can	use	a	Groovy	TestStep	to:

Get	the	response	using	a	SoapUI	property	expansion
Load	the	invoice_schema.json	schema	from	a	file	(check	its	location)
Validate	the	invoice	response	against	the	schema	using	the	library
Fail	the	TestStep	if	the	invoice	response	doesn’t	pass	validation.

Here	is	the	Groovy	script:

import	com.fasterxml.jackson.databind.JsonNode
import	com.fasterxml.jackson.databind.ObjectMapper
import	com.github.fge.jsonschema.core.report.ProcessingReport
import	com.github.fge.jsonschema.main.JsonSchema
import	com.github.fge.jsonschema.main.JsonSchemaFactory

def	response	=	context.expand('${GET	invoice#Response}')

ObjectMapper	mapper	=	new	ObjectMapper()
JsonNode	invoiceJSON	=	mapper.readTree(response)
JsonNode	invoiceSchemaJSON	=	mapper.readTree(new	File("/soapui-
cookbook/chapter4/invoice_schema.json"))

JsonSchemaFactory	factory	=	JsonSchemaFactory.byDefault()
JsonSchema	invoiceSchema	=	factory.getJsonSchema(invoiceSchemaJSON)
if	(invoiceSchema.validInstance(invoiceJSON))	log.info("Response	
Validated!")	
else	{
		testRunner.fail(invoiceSchema.validate(invoiceJSON).toString())
}

Now,	if	you	run	the	TestCase,	it	should	alternate	between	passing	and	failing	as	the	mock
returns	Response	OK	or	Response	Amount	Property	Missing	responses.	The	second
response	gives	the	following	validation	failure:

TestCase	failed	
[com.github.fge.jsonschema.core.report.ListProcessingReport:	failure	---	
BEGIN	MESSAGES	---	error:	object	has	missing	required	properties	
(["amount"])	level:	"error"	schema:	
{"loadingURI":"#","pointer":"/properties/invoice"}	instance:	
{"pointer":"/invoice"}	domain:	"validation"	keyword:	"properties"	required:	
["amount","companyName","id"]	missing:	["amount"]	---	END	MESSAGES	---],	
time	taken	=	16	

How	it	works…
In	terms	of	the	functionality	provided	by	the	sample	JSON	schema	validation,	apart	from
checking	that	the	response	is	a	valid	JSON,	it	only	checks	whether	all	the	properties	are
present	and	correct.	You	can	obviously	go	further	than	this	(see	http://json-schema.org/	for
more	options).

With	this	approach,	all	validation	is	achieved	without	SoapUI	using	custom	code.	Also,
the	libraries	used	are	Java	based	rather	than	Groovy	ones,	so	there	is	a	fair	amount	of
imports	compared	to	other	scripts	seen	so	far.	It	is	also	necessary	to	use	the	Jackson	JSON
mapper	to	get	the	response	as	a	JsonNode	for	use	with	the	schema	validator.	Jackson	is	a
very	popular	JSON	parsing	and	generation	library	in	the	Java	world;	for	more	info,	see
https://github.com/FasterXML/Jackson.

Once	a	JsonSchema	object	is	obtained	from	the	factory,	the	two	key	methods	are
validateInstance,	which	returns	a	Boolean	result,	and	validate,	which	produces	the
JSON-based	report	shown	earlier.

This	solution	doesn’t	directly	handle	empty	responses	or	exceptions	due	to	invalid	JSON
structure,	but	these	would	be	very	easy	enhancements.

http://json-schema.org/
https://github.com/FasterXML/Jackson

There’s	more…
As	an	alternative	solution,	the	Groovy	schema	validator	script	could	also	be	used	inside	a
Script	Assertion.	For	example,	to	modify	the	above	script	to	get	the	response	JSON
content	in	a	Script	Assertion,	instead	of:
def	response	=	context.expand('${GET	invoice#Response}')

In	the	Script	Assertion	you	can	use:
def	response	=	messageExchange.response.contentAsString

If	you	need	help	generating	and	testing	JSON	schemas,	take	a	look	at	the	links	below,	as
there	are	some	good	online	tools.

Need	XML	schema	validation?
What	if	you’ve	got	a	REST	service	and	want	to	check	schema	compliance	for	XML
responses	and	don’t	have	a	WADL?	Well,	an	XML	schema	version	of	this	recipe	is
probably	about	as	easy	to	achieve.	Just	replace	the	JSON	schema	library	details	with	the
XML	equivalents.	The	Groovy	site	has	an	example	that	could	easily	be	adapted;	see
http://groovy.codehaus.org/Validating+XML+with+a+W3C+XML+Schema.

http://groovy.codehaus.org/Validating+XML+with+a+W3C+XML+Schema

See	also
For	more	information	on	the	Online	JSON	schema	generator,	go	to
http://www.jsonschema.net/
The	online	version	of	the	library	used	includes	a	JSON	instance	validator,	which	can
be	found	at	http://json-schema-validator.herokuapp.com/index.jsp

http://www.jsonschema.net/
http://json-schema-validator.herokuapp.com/index.jsp

Testing	and	mocking	SOAP
(MTOM+XOP)	attachments
In	this	recipe,	we’ll	look	at	how	to	mock	and	test	SOAP	attachments	using	SoapUI.
Without	going	into	too	many	details,	there	are	several	options	for	sending	binary
attachments	using	SOAP:

Inline	Attachment:	The	attachment	is	encoded	using	Base64	and	is	represented	as
XML	inside	the	SOAP	envelope.
SOAP	with	attachments	(SwA):	The	attachment	is	not	encoded,	and	is	represented
separately	to	the	SOAP	envelope	as	binary	data	using	a	mime	attachment.	The
attachment	is	then	referenced	from	the	SOAP	message	using	href,	for	example,
<attachment	href="cid:imgID"/>.
Message	Transmission	Optimization	Mechanism	(MTOM)	using	XML-binary
Optimized	Packaging	(XOP):	Like	SwA,	a	separate	mime	attachment	is	used	to
represent	the	binary	data,	but	XOP	allows	the	attachment	data	to	be	logically
included	within	the	SOAP	envelope	using	an	XOP	ref,	for	example,	<attachment>
<xop:Include	href="cid:imgID"
xmlns:xop="http://www.w3.org/2004/08/xop/include"/></attachment>.

This	summary	is	very	brief,	so	if	you	would	like	to	understand	more	about	the	specific
differences,	see	the	links	at	the	end	of	this	recipe.	In	short,	method	1	(inline)	is	the	least
efficient	because	the	Base64	encoding	can	increase	the	size	of	binary	data	quite
significantly.	Option	3	(MTOM)	improves	on	option	2	(SwA)	as	the	attachment	details	are
represented	using	an	XML	standard,	that	is,	XOP.	This	helps	to	overcome	some	of	the
usage	and	interoperability	issues	that	SwA	suffers	from	as	a	consequence	including	the
attachment	separately	to	the	SOAP	message	in	a	native,	often	binary	data	format—see
http://www.w3.org/TR/SOAP-attachments	for	more	info	on	SwA.

SoapUI	can	handle	all	three	options,	but	we’ll	concentrate	only	on	SOAP	attachments
using	MTOM	and	XOP	here.

http://www.w3.org/TR/SOAP-attachments

Getting	ready
As	an	example,	we’ll	enable	binary	invoice	file	attachments	on	the	invoice	v2	service
from	chapter	1	samples.	The	easiest	option	to	explore	SOAP	attachments	in	SoapUI	is	to
set	up	a	mock.	To	define	the	mock	service,	invoice_v2.wsdl	has	been	enhanced	to
support	an	attachment	by	including	a	file	element	in	InvoiceDocumentType.	The
resulting	WSDL	is	called	invoice_v2_1.wsdl.	This	WSDL	and	the	mock	service	can	be
found	in	the	project	Invoice-v2-1-Attachments-soapui-project.xml	in	the	chapter	4
samples.	Some	sample	PDF	attachments	(invoice1.pdf)	can	also	be	found	there,	but	you
can	use	any	PDF	you	like.

How	to	do	it…
First,	we’ll	mock	the	createInvoice	operation	to	accept	an	invoice	PDF	attachment	using
MTOM	and	XOP:

1.	 First,	create	a	new	SOAP	project	based	on	invoice_v2_1.wsdl,	and	generate	a	new
mock	service	based	on	the	service.	If	you	take	a	look	at	the	createInvoice	request,
you	should	see	that	SoapUI	has	understood	that	the	WSDL	requires	an	attachment
and	added	the	cid	(content	ID)	notation	to	the	request,	for	example,
<inv:file>cid:813654200109</inv:file>.	Let’s	change	this	to	something	more
meaningful,	like	a	filename,	for	example,
<inv:file>cid:invoice1.pdf</inv:file>.

2.	 Next,	open	the	Attachments	tab	and	upload	invoice1.pdf	(say	No	to	the	option	to
cache	if	you	want	updates	to	the	attachment	to	be	reflected	automatically).	Click	on
the	part	field	and	select	a	part	of	invoice1.pdf.

3.	 Optionally,	just	to	quickly	illustrate	inline	attachments	(option	1),	start	the	mock	and
fire	the	request	at	it.	Click	on	the	Raw	request	tab,	and	you	should	see	a	content	type
of	text/xml	and	the	attachment	inline	to	the	file	element	<inv:file>JVBERi0….	Note
that	the	data	has	been	truncated	due	to	the	size!

4.	 To	get	the	request	to	attach	the	file	using	MTOM	and	XOP,	in	the	Request
Properties,	set	Enable	MTOM	to	true	and	submit	the	request.	Now,	flip	open	the
Raw	request	tab,	and	you	should	see	a	content	type	of	multipart/related;
type="application/xop+xml";	the	file	element	that	contains	an	XOP	reference	to
the	attachment:

<inv:file><inc:Include	href="cid:invoice1.pdf"	
xmlns:inc="http://www.w3.org/2004/08/xop/include"/></inv:file>	

5.	 It	also	contains	binary	data	in	a	mime	section.	A	sample	response	should	also	be
returned.	The	Type	in	the	Attachments	tab	should	have	become	XOP.

For	the	second	part,	we’ll	mock	the	getInvoice	operation	to	return	the	same	attachment
and	a	valid	response	that	shows	the	XOP	attachment	reference:

1.	 Open	the	getInvoice	mock	response,	the	suggested	mock	response	SOAP	is	actually
wrong;	correct	the	file	element	to	contain	an	XOP	reference	as	follows:

<file><xop:Include	href="cid:invoicev1.pdf"	
xmlns:xop="http://www.w3.org/2004/08/xop/include"/></file>

2.	 Next,	set	Enable	MTOM	to	true	in	the	MockResponse	properties	and	add
invoice1.pdf	as	an	attachment	(say	No	to	cache).	Selecting	the	part	doesn’t	seem	to
work!	Luckily,	the	significant	thing	for	correctness	is	that	href	in	the	response
matches	the	ContentID	of	the	attachment,	although	SoapUI	won’t	pick	this	up	as	an
error	in	a	mock.	The	type	of	the	attachment	also	remains	unknown	in	the	mock.

3.	 Now,	point	the	getInvoice	TestStep	request	at	the	mock	and	set	its	Request
Properties	Enable	MTOM	to	true.	If	you	fire	the	request	and	take	a	look	at	the
Raw	response,	you’ll	see	that	it’s	not	what	we	expected;	that	is,	the	attachment	is	as	a

mime	(OK),	but	the	content-type	is	text/xml	and	not	application/xop+xml!	Also,
under	the	Attachments	tab,	the	Type	is	MIME	and	not	XOP!	To	correct	this,	it	is
necessary	to	set	Force	MTOM	to	true	in	MockResponse	Properties.	Do	this	and
resubmit	the	request,	and	everything	should	be	correct!

How	it	works…
If	you	take	a	look	at	invoice_v2_1.wsdl,	the	only	real	changes	are	in	the	schema	section:

<xsd:element	name="file"	type="xsd:base64Binary"	
xmime:expectedContentTypes="application/octet-stream"></xsd:element>

Here,	the	xmime	namespace	is	xmlns:xmime="http://www.w3.org/2005/05/xmlmime".

This	doesn’t	look	like	much,	but	indicates	that	the	field	will	contain	binary	data	using	an
XML-linked	mime	attachment	of	type	application/octet-stream.	SoapUI	recognizes
this	and	suggests	a	content	ID	(cid)	entry	for	the	attachment	in	the	sample	request.	When
the	request	is	submitted,	SoapUI	selects	an	attachment	with	a	matching	content	ID
(uploaded	in	the	Attachments	tab)	and	includes	the	binary	data	in	the	HTTP	request	using
a	mime	attachment	and	a	mutipart	format.

There	are	multiple	options	for	the	mime	content	types,	such	as	text/plain,	*/*,
image/gif.	If	you	generate	a	Java	web	service	implementation	from	this	WSDL,	for
example,	using	Apache	CXF’s	wsdl2java,	then	a	content	type	of	application/octet-
stream	gets	mapped	to	a	Java	class	javax.activation.DataHandler,	which	is	good	for
dealing	with	most	binary	data	attachments.	SoapUI	handles	all	this	behind	the	scenes
when	dealing	with	the	request.

There’s	more…
There’s	quite	a	lot	you	could	do	inside	the	mock	with	Groovy	scripting	if	you	wanted	to.
For	example,	you	could	extract	the	attachment	in	the	createInvoice	response;	check	its
properties	and	dump	it	on	the	file	with	the	following	script:

def	attachments	=	mockRequest.requestAttachments

def	attachmentName	=	attachments[0].name
log.info	"Name:	$attachmentName"
log.info	"URL:	${attachments[0].url}"
log.info	"Part:	${attachments[0].part}"
log.info	"Encoding:	${attachments[0].contentEncoding}"

def	attachmentInputStream	=	attachments[0].inputStream
def	file	=	new	File("/temp/$attachmentName")
file.append(attachmentInputStream)

Apart	from	mocking	SOAP	attachments,	if	you	are	new	to	them	as	a	technology,	then	you
should	probably	experiment	with	the	real	thing.	Apache	CXF	can	generate	for	you	a
working	skeleton	that	is	capable	of	handling	MTOM	with	XOP	attachments	by	using	the
approach	shown	in	Chapter	1,	Testing	and	Developing	Web	Service	Stubs	With	SoapUI.	If
you’re	interested,	a	working	sample	based	on	invoice_v2_1.wsdl	is	included	in	the	/soap
folder	of	the	chapter	4	samples.	Apart	from	having	to	flesh	out	the	getInvoice()	method
to	attach	a	file,	and	the	createInvoice()	method	to	print	out	some	attachment	properties
in	InvoicePortImpl,	the	only	other	thing	to	change	is	to	enable	MTOM	in
InvoicePortType_InvoicePort_Server:

Endpoint	ep	=	Endpoint.publish(address,	implementor);
Binding	binding	=	ep.getBinding();								
((SOAPBinding)binding).setMTOMEnabled(true);

To	build	and	run	this	example,	it’s	easy	to	import	the	code	into	Eclipse	(or	a	similar	IDE),
and	run	the	server	class	as	a	standard	Java	application	(which	requires	Apache	CXF’s
runtime	library).	Alternatively,	it	can	also	be	run	as	a	Java	executable	from	a	command
prompt;	refer	to	the	first	two	Chapter	1,	Testing	and	Developing	Web	Service	Stubs	With
SoapUI,	recipes	if	you	need	more	help	on	this.

See	also
For	more	information	on	testing	SoapUI	attachments,	refer	to
http://www.soapui.org/SOAP-and-WSDL/adding-headers-and-attachments.html
To	read	the	IBM	Knowledge	base	article	on	MTOM,	go	to	http://www-
01.ibm.com/support/knowledgecenter/SSAW57_6.1.0/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/cwbs_soapmtom.html?
cp=SSAW57_6.1.0%2F7-1-6-3-2-2-2
For	more	information	on	Apache	CXF	MTOM,	go	to
http://cxf.apache.org/docs/mtom.html

http://www.soapui.org/SOAP-and-WSDL/adding-headers-and-attachments.html
http://www-01.ibm.com/support/knowledgecenter/SSAW57_6.1.0/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/cwbs_soapmtom.html?cp=SSAW57_6.1.0%2F7-1-6-3-2-2-2
http://cxf.apache.org/docs/mtom.html

Testing	HATEOAS	links
In	very	simple	terms,	HATEOAS	links	are	used	to	help	make	a	RESTful	API
understandable	and	navigable	using	the	principles	of	Hypertext	alone	(see
http://en.wikipedia.org/wiki/HATEOAS	for	a	more	official	definition!).

At	the	time	of	writing,	the	structure	of	HATEOAS	links	has	no	official	standard.	For
XML,	the	Atom	(http://en.wikipedia.org/wiki/Atom_(standard))	structure	is	often	reused.
For	example,	here	is	a	quote	document	with	HATEOAS	links	to	itself	(use	of	a	self	link
is	common)	and	a	link	to	a	related	customer	resource:

<quote	xmlns:atom="http://www.w3.org/2005/Atom">
			<id>777</id>
			<amount>100</amount>
			<atom:link	rel="self"	href="http://localhost:8080/quote/777"/>
			<atom:link	rel="customer"	href="http://localhost:8080/customer/12345"/>
</quote>

For	JSON,	the	Atom	structure	is	sometimes	replicated:

{
				"quote":	{
								"id":	12345,
								"amount":	100,
								"links":	[
												{
																"rel":	"self",
																"href":	"http://localhost:8080/quote/777"
												},
												{
																"rel":	"customer",
																"href":	"http://localhost:8080/customer/12345"
												}
]
				}
}

As	an	alternative,	the	Hypertext	Application	Language	(HAL)	specification	is	also	popular
for	JSON	HATEOAS	links	(refer	to	http://stateless.co/hal_specification.html).

In	terms	of	testing,	it	can	be	necessary	to	check	the	existence	and	validity	of	HATEOAS
links.	That’s	what	this	recipe	explores.

http://en.wikipedia.org/wiki/HATEOAS
http://en.wikipedia.org/wiki/Atom_(standard)
http://stateless.co/hal_specification.html

Getting	ready
A	ready-made	project	HATEOAS-soapui-project.xml	to	demonstrate	HATEOAS	links	has
been	supplied	in	the	chapter	4	samples.	The	sample	project	contains	a	mock	with	the
/quote/	and	/customer/	resources.	Both	these	mocked	resources	use	the	content
negotiation	script	from	the	Selecting	mock	responses	using	Groovy	recipe	of	Chapter	3,
Developing	and	Deploying	Dynamic	REST	and	SOAP	Mocks,	to	return	either	XML	or
JSON,	depending	on	the	request	criteria,	which	is	the	Accept	header	in	this	case.	The
quote	documents	returned	are	those	from	this	recipe’s	introduction.

How	to	do	it…
To	see	how	to	test	HATEOAS	links,	we’ll	use	Assertions	to	verify	that	both	JSON	and
XML	exist	in	responses.	Then,	we’ll	see	how	to	check	whether	a	link	is	actually	valid,	that
is,	can	be	used	to	access	the	link’s	resource:

1.	 To	test	the	existence	of	HATEOAS	links,	we	can	use	XPath	Assertions	for	XML:

XPath:
declare	namespace	atom='http://www.w3.org/2005/Atom';
//quote[1]/atom:link[2]/@href
Expected	Result:
http://localhost:8080/customer/12345

2.	 For	JSON,	SoapUI	Pro	users	can	use	the	JSONPath	expression	assertion,	for	example:

JSONPath:
$.quote.links[1].href
Expected	Result:
http://localhost:8080/customer/12345

3.	 Open	source	SoapUI	users	can	use	a	Script	Assertion	with	JSONSlurper:

import	groovy.json.JsonSlurper

def	slurper	=	new	JsonSlurper()
def	response	=	slurper.parseText(messageExchange.responseContent)

def	customerLink	=	response?.quote?.links[1].href

assert	customerLink=="http://localhost:8080/customer/12345"

4.	 To	test	link	validity,	the	simplest	thing	to	do	is	to	check	whether	a	request	to	the
link’s	href	returns	the	HTTP	status	as	200	OK.	To	make	the	request,	it’s	more
convenient	to	use	a	standard	HTTP	Test	Request	TestStep	rather	than	the	REST	Test
Request,	because	it	gives	you	full	control	over	the	URL,	which	allows	the
HATEOAS	link	to	be	substituted	directly,	whereas	REST	Test	Request	TestStep	has
the	construct	of	a	resource	to	contend	with.

Before	we	substitute	the	link	href	URL,	we	first	need	to	extract	it	from	the	previous	quote
response.	To	do	this,	following	the	initial	request,	we’ll	add	a	Groovy	TestStep	to	extract
the	href	URL	and	add	it	as	a	property	to	context.	For	XML,	the	script	is	as	follows:

	def	customerLinkURL	=	context.expand('${Request	XML	
Quote#Response#declare	namespace	atom=\'http://www.w3.org/2005/Atom\';	
//quote[1]/atom:link[2]/@href}')
log.info	customerLinkURL

context["customer-xml-link-url"]=customerLinkURL	

For	JSON	(JSONPath	for	Pro	users	and	JSONSlurper	for	open	source),	the	script	is	as
follows:

import	groovy.json.JsonSlurper

//PRO	users	can	use	JSONPathto	get	the	href	directly..
//def	customerLinkURL	=	context.expand('${Request	JSON	
quote#Response#$.quote.links[1].href}')

def	quoteJSONResponse	=	context.expand('${Request	JSON	quote#Response}')

def	slurper	=	new	JsonSlurper()
def	response	=	slurper.parseText(quoteJSONResponse)

def	customerLinkURL	=	response?.quote?.links[1].href

log.info	customerLinkURL
context["customer-json-link-url"]=customerLinkURL

Then,	in	HTTP	Test	Request	TestStep,	we	can	just	substitute	the	context	link’s	URL
properties	directly	in	the	Request	URL	field,	for	example,	with	${customer-xml-link-
url}	or	${customer-json-link-url}.

To	see	this	in	action,	start	the	mock	and	run	HATEAOS	TestCase,	and	you	should	see	all	the
requests	made	and	Assertions	pass!

How	it	works…
The	HATEOAS	TestCase	is	just	a	linked	sequence	of	REST	requests	using	the	techniques
explained	earlier	to	transfer	the	link	URLs	between	steps:

In	terms	of	extracting	and	transferring	the	link	URLs	between	steps,	there	are	other
options.	The	approach	in	this	recipe	has	the	advantage	of	being	consistent	and	granular
across	JSON,	XML,	and	SoapUI	versions.	Some	might	prefer	to	skip	the	separate	Groovy
TestSteps	and	add	the	link	URLs	to	the	context	inside	the	Assertions.	Another	option	is
to	use	Property	Transfer	TestSteps,	but	only	the	Pro	version	can	use	JSONPath	in	these.

There’s	more…
Another	common	use	of	HATEOAS	links	is	to	provide	pagination	links	for	collection-
based	resources;	for	example,	say	you	have	a	REST	resource	/quotes/?criteria=..	to
find	quotes	using	a	search	criteria;	then,	links	are	often	used	to	help	navigate	the	results:

<links>
		<link	rel="self"	href="/quotes?page=3"/>
		<link	rel="first"	href="/quotes?page=1"/>
		<link	rel="prev"	href="/quotes?page=2"/>
		<link	rel="next"	href="/quotes?page=4"/>
		<link	rel="last"	href="/quotes?page=10"/>
</links>

With	this	usage,	there	are	potentially	more	test	requirements	to	consider.	For	example,	to
assert	that	the	prev	link	is	not	present	when	the	current	page	(indicated	by	the	self	link)	is
1	and	that	the	next	link	is	not	displayed	when	on	the	last	page.

Testing	polling	style	asynchronous	REST
services
When	using	RESTFul	web	services	to	orchestrate	a	long-running	asynchronous	process,	a
popular	approach	is	to	use	a	polling	style.	This	involves	an	initial	resource	call	to	start	the
process	and	then	another	resource	is	called	at	intervals	(polled)	to	obtain	status	updates
until	the	process	is	complete.	At	this	point,	a	final	resource	is	called	to	obtain	the	required
output.	There	are,	of	course,	variants	on	this	in	terms	of	calls	made	and	status	codes	used,
but	the	overall	pattern	remains	similar.

In	this	recipe,	we’ll	see	how	to	test	this	style	of	asynchronous	service	using	a	RESTFul
mock	quote	service	as	an	example.

Getting	ready
The	example	quote	service	has	the	following	resources	(produces	and	consumes	XML):

POST	/quote/task/:	This	creates	a	quote	task	(starts	the	process)
GET	/quote/{id}:	This	gets	a	quote	by	its	ID	(once	complete)
GET	/quote/task/{id}:	This	gets	the	task	status	updates	by	its	ID	(during
processing)

A	standard	RESTful	call	pattern	is	shown	in	the	following	diagram:

To	illustrate	the	testing	of	this	pattern,	a	ready-made	sample	SoapUI	project	Quote-REST-
Async-Polling-soapui-project.xml	will	be	used	and	can	be	found	in	the	chapter	4
samples.

How	to	do	it…
Here	is	a	walkthrough	of	the	QuotePollingTestCase	and	mock	interactions	from	the
sample	project:

1.	 When	the	mock	starts	up,	a	Map	to	store	quotes	is	created	in	the	mock’s	context	and
is	initialized	(see	the	mock	Start	Script):

context["quotes"]=[:]

2.	 The	TestCase	starts	with	a	POST	to	the	/quote/task/	resource.	On	receiving	the
POST,	the	mock	runs	the	following	resource-level	script:

import	groovy.time.TimeCategory

def	quoteNo="Q${new	Random().nextInt(1000000)}"
use	(TimeCategory)	{
		context["quotes"][quoteNo]=10.seconds.from.now
}

requestContext["quoteNo"]=quoteNo

Note
This	script

Creates	a	new	random	quote	number.
Adds	a	quote	entry	to	the	quotes	Map,	keyed	on	quote	number	with	a	value	that	is
the	quote	completion	time	(10.seconds.from.now).
Makes	the	quote	number	available	to	the	response	via	requestContext.

3.	 It	then	dispatches	the	response	(ReturnQuoteStatusLinkResponse):

<quote-task	xmlns:atom="http://www.w3.org/2005/Atom">
				<id>${quoteNo}</id>
				<status>PROCESSING</status>
				<atom:link	rel="self"	
href="http://localhost:8080/quote/task/${quoteNo}"/>
</quote-task>

4.	 The	TestCase	then	sends	a	GET	request	to	the	resource	/quote/task/{id}
(effectively,	the	HATEOAS	link	from	the	previous	response)	to	obtain	a	status	update
on	the	quote’s	progress.	On	receiving	the	request,	the	mock	runs	the	following
resource-level	script:

def	quoteNo	=	mockRequest.getPath().split("/")[-1]

def	quoteCompleteTime	=	context["quotes"][quoteNo]

if	(quoteCompleteTime==null)	return	"QuoteNotFoundResponse"

requestContext["quoteNo"]=quoteNo

def	nowTime=new	Date()
if	(nowTime>=quoteCompleteTime)	return	"CompleteStatusResponse"	

		else	return	"ProcessingStatusResponse"

Note
This	script

This	script	extracts	the	quote	number	from	the	URI.
This	script	gets	the	quote’s	completion	time	from	the	quote’s	Map.
If	the	Map	doesn’t	hold	an	entry	for	the	quote	number,	then	a	404	response	is
dispatched.
This	script	makes	the	quote	number	available	to	the	response	via	the
requestContext.
if	the	quote’s	completion	time	has	been	reached,	then	it	returns	a	response	with
the	status	as	COMPLETE	(CompleteStatusResponse);	otherwise,	this	returns	a
response	with	the	status	as	PROCESSING	(ProcessingStatusResponse).

ProcessingStatusResponse:

<quote-task	xmlns:atom="http://www.w3.org/2005/Atom">
				<id>${quoteNo}</id>
				<status>PROCESSING</status>
				<atom:link	rel="self"	
href="http://localhost:8080/quote/task/${quoteNo}"/>
</quote-task>

CompleteStatusResponse:

<quote-task	xmlns:atom="http://www.w3.org/2005/Atom">
				<id>${quoteNo}</id>
				<status>COMPLETE</status>
				<atom:link	rel="self"	
href="http://localhost:8080/quote/task/${quoteNo}"/>
				<atom:link	rel="quote"	
href="http://localhost:8080/quote/${quoteNo}"/>
</quote-task>

Note
SoapUI	Status	3XX	Issue:	Unfortunately,	SoapUI	throws	a	NullPointerException
when	it	receives	a	response	with	the	HTTP	status	303.	So	a	status	200	has	been	used
in	this	sample	instead.	Other	HTTP	clients	do	not	have	this	problem.

5.	 The	TestCase	receives	the	response,	delays	for	5	seconds,	and	then	decides	whether
to	loop	for	another	status	update	or	move	on	using	a	Conditional	Goto	TestStep	that
checks	for	the	previous	response’s	status:

//quote-task[1]/status[1]	=	'PROCESSING'

6.	 If	the	status	has	changed	to	COMPLETED,	then	a	GET	request	is	made	(effectively,	using
the	quote	HATEOAS	link	from	the	previous	response)	to	/quote/{id}	to	retrieve	the
completed	quote.	On	receiving	the	request,	the	mock	runs	the	following	resource-
level	script:

def	quoteNo	=	mockRequest.getPath().split("/")[-1]

def	quoteCompleteTime	=	context["quotes"][quoteNo]

if	(quoteCompleteTime==null)	return	"QuoteNotFoundResponse"

requestContext["quoteNo"]=quoteNo

Assuming	that	the	quote	exists	in	the	Map,	the	preceding	script	dispatches	the	following
quote	response	(QuoteResponse):

<quote	xmlns:atom="http://www.w3.org/2005/Atom">
				<id>${quoteNo}</id>
				<amount>100</amount>
				<atom:link	rel="self"	href="http://localhost:8080/quote/${quoteNo}"/>
</quote>

On	running	QuotePollingTestCase,	you	should	see	initial	POST	and	the	first	status	calls
happen	almost	immediately.	Then,	the	Conditional	Goto	TestStep	should	loop	a	couple
of	times	at	5-second	intervals	before	the	quote	is	finally	retrieved.

Have	a	look	at	the	following	screenshot:

How	it	works…
The	overall	pattern	of	testing	is	similar	to	those	already	used	in	other	recipes;	apart	from
the	Conditional	Goto	TestStep,	most	of	the	TestSteps	are	common	examples.	The	tests
themselves	don’t	try	to	test	any	actual	quote	content,	but	this	would	be	easy	to	add.

The	mock	only	has	a	very	basic	implementation	while	still	providing	some	dynamic
behavior.	To	enhance	it,	for	example,	to	handle	the	quote	content,	the	basic	Map	storage
can	be	replaced	by	a	database,	like	in	the	Developing	dynamic	database	driven	REST
mocks	recipe	of	Chapter	3,	Developing	and	Deploying	Dynamic	REST	and	SOAP	Mocks.

There’s	more…
There	are	variants	on	this	RESTful	polling	approach	in	terms	of	the	HTTP	method	of	the
calls	made	and	status	codes	used.	For	example,	on	the	initial	POST,	some	people	return	a
201	Created	or	use	an	initial	GET	request	to	start	the	process.	In	summary,	there	is	no	real
standard	way.	Most	should	be	testable	with	this	recipe’s	approach,	although	the	mocks
would	obviously	vary.

When	dealing	with	longer	processes,	it	can	be	useful	to	return	hints	as	to	when	to	next	poll
for	a	status	update.	Percentage-completion	messages	can	also	be	useful	in	the	status
responses.

Testing	asynchronous	SOAP	service
callbacks
When	dealing	with	time-consuming	requests,	the	use	of	an	asynchronous	message
exchange	pattern	(MEP)	can	be	a	good	option.	One	style	of	asynchronous	exchange,
sometimes	called	“decoupled	endpoint,”	involves	an	initial	one-way	request	(no	response)
from	the	client	to	start	a	long-running	process,	and	then,	on	completion,	the	service	makes
a	one-way	“callback”	to	the	client	that	contains	the	result.	The	WS-Addressing	policy’s
ReplyTo	and	MessageID	properties	are	often	used	to	allow	the	client	to	specify	the
callback	address	and	identify	related	messages	over	the	asynchronous	exchange.

To	demonstrate	how	SoapUI	can	test	and	mock	such	an	interaction,	this	recipe	covers	the
example	of	a	quote	service	that	provides	a	callback	that	contains	dummy	quote	details
after	a	quote	request	is	made	for	some	dummy	products.

Getting	ready
To	speed	things	up,	we’ll	walk	through	a	ready-made	project	and	describe	the	steps
involved.	The	project	Quote-SOAP-Async-soapui-project.xml	can	be	found	in	the
chapter	4	samples.	Here	are	some	of	its	details:

QuotePortBinding:	This	is	a	web	service	based	on	quote_v1.wsdl
requestQuote:	This	is	a	one-way	operation	to	request	a	quote	for	arbitrary	products
receiveQuote:	This	is	a	one-way	operation	to	receive	the	completed	quote’s	details

This	recipe	makes	use	of	SoapUI’s	WS-Addressing	features.	See	the	SoapUI	online	docs	at
http://www.soapui.org/SOAP-and-WSDL/using-ws-addressing.html	if	you	need	more
details.

http://www.soapui.org/SOAP-and-WSDL/using-ws-addressing.html

How	to	do	it…
Testing	an	asynchronous	SOAP	callback	is	relatively	easy	in	SoapUI,	thanks	to	the
MockRequest	TestStep,	which	waits	for	a	(callback)	request	before	proceeding.	The	more
complicated	part	of	the	solution	is	mocking	the	callback.

The	main	parts	of	the	solution	are:

Request	Setup:	This	involves	configuring	WS-Addressing	on	the	requestQuote
TestStep	request’s	properties.	Set	ReplyTo	to	the	address	of	the	MockResponse
TestStep,	that	is,	http://localhost:8089/receiveQuote.	Use	default	values	for
wsa:Action	and	wsa:To.	Add	a	messageId	property	to	the	TestCase	and	set	its	value
to	anything.	Then,	use	this	property	to	provide	the	value	for	wsa:MessageID,	that	is,
${#TestSuite#quoteMessageId}.	We	won’t	use	the	Generate	MessageID	this	time
as	it’s	a	bit	harder	to	access	later.	We	won’t	use	any	Assertions	either	as	we	aren’t
expecting	a	response	back.
Mock	Setup:	The	requestQuote	operation	is	mocked,	and	a	script	is	added	to	the
default	response:

import	com.eviware.soapui.support.types.StringToObjectMap
import	com.eviware.soapui.impl.wsdl.teststeps.WsdlTestRequestStep

def	requestXMLHolder	=	new	
com.eviware.soapui.support.XmlHolder(mockRequest.requestContent)
requestXMLHolder.declareNamespace("wsa","http://www.w3.org/2005/08/addr
essing")
def	
replyTo=requestXMLHolder.getNodeValue("//wsa:ReplyTo[1]/wsa:Address[1]"
)
def	
requestMessageId=requestXMLHolder.getNodeValue("//wsa:MessageID[1]")

def	map	=	new	StringToObjectMap()
map.put("messageID",	requestMessageId)
map.put("quoteId",	"12345")
map.put("amount",	"777")

def	testSuite	=	
context.mockService.project.getTestSuiteByName("TestSuite	-	Async	Call	
&	Callback")
def	callBackTestCase	=	testSuite.getTestCaseByName("Callback	TestCase")
def	callBackRequest	=	(WsdlTestRequestStep)	
callBackTestCase.getTestStepsOfType(WsdlTestRequestStep.class).get(0)
callBackRequest.testRequest.setEndpoint(replyTo)
callBackTestCase.run(map,	true)

Note
Key	script	points

Extracts	the	ReplyTo	and	MessageID	from	the	request
Adds	MessageID	plus	arbitrary	quote	values	to	a	map
The	callback	request’s	endpoint	is	set	to	the	ReplyTo	address

The	callback	TestCase	is	run	asynchronously,	passing	the	map	of	values

It’s	important	to	note	that	the	CallBack	TestCase	is	run	asynchronously.	This	is
because	we	want	the	CallBack	TestCase	to	run	in	its	own	process	after	the	(empty)
mock	response	is	dispatched.

Callback	TestCase	setup:	There’s	nothing	particularly	special	here.	The	purpose	of
this	TestCase	is	just	to	fire	the	callback	request	at	the	MockResponse	TestStep	as
orchestrated	by	the	previous	mock	script.	The	only	thing	to	note	is	that	the	values	put
into	the	map	by	the	mock	script	(messageID,	quoteID,	and	amount)	are	inserted	into
the	receiveQuote	request	using	property	expressions.	To	simulate	the	long-running
task,	we	have	also	added	a	5-second	Delay	TestStep	before	the	call	to
receiveQuote.
MockResponse	TestStep	Setup:	The	mock	response	is	set	up	for	the	receiveQuote
operation.	We	have	added	two	Assertions	here:	a	WS-Addressing	one	that	just
checks	the	presence	of	wsa:Action	and	wsa:To;	the	wsa:MessageID	check	seems	to
pass,	regardless	of	whether	it	is	present	or	not!	Just	checking	the	existence	of
was:MessageID	isn’t	particularly	useful	in	anyway,	so	we	have	added	an	XPath
assertion	to	check	whether	the	wsa:MessageID	in	the	callback	request	matches	with
the	original	one	from	the	TestSuite's	messageId	property.	We	have	also	added	a
timeout	to	fail	the	test	if	no	callback	is	made	within	10	seconds.

To	run	the	sample	project,	start	the	mock	service	and	run	the	Main	TestCase	to	watch	the
steps	occur!

Have	a	look	at	the	following	screenshot	for	better	clarity:

How	it	works…
In	terms	of	the	solution,	the	trickiest	bit	is	to	replicate	the	timing	that	is	required	to	make
the	mock	realistic.	The	following	diagram	shows	the	sequence	of	the	key	events:

The	following	is	the	explanation	of	numbered	steps	shown	in	the	preceding	diagram:

requestQuote	is	called	on	the	mock.
The	mock	invokes	the	callback	TestCase	asynchronously.
The	callback	TestCase	waits	for	5	seconds	(delay	step),	and	the	empty	mock
response	is	dispatched,	completing	the	initial	requestQuote	call	and	allowing	the
main	TestCase	to	continue.
The	MockResponse	TestStep	is	started.
After	5	seconds,	the	TestCase	callback	fires	the	receiveQuote	callback	to	complete
the	MockResponse	TestStep.

As	an	alternative	to	the	earlier	mentioned	steps,	some	approaches	start	the	MockResponse
TestStep	before	the	SOAP	TestStep,	and	call	the	Callback	TestCase	synchronously.
This	certainly	works	and	removes	any	need	for	the	simulated	delay	step,	but	it	could	be
considered	slightly	less	realistic	since	the	callback	would	be	made	before	the	initial
requestQuote	call	completes.	Of	course,	if	we	were	testing	a	real	asynchronous	service,
none	of	these	mock	steps	would	matter;	that	is,	there	would	be	no	need	for	the	steps	2
(mock)	or	step	3	(callback	TestStep).

Apart	from	this	recipe,	the	ability	to	invoke	a	TestCase	using	scripts	can	be	a	useful
building	block.	This	is	often	useful	when	you	either	need	to	spawn	a	concurrent	process	or
you	need	to	reuse	some	functionality	that	isn’t	easily	available,	for	example,	calling	a
service	from	the	Groovy	script.

This	recipe	also	illustrates	a	practical	use	of	the	WS-Addressing	policy.	This	is
documented	in	the	WSDL	using	the	following	endpoint	policy:

<wsp:Policy>
				<wsam:Addressing>
								<wsp:Policy>
												<wsam:AnonymousResponses/>
								</wsp:Policy>
				</wsam:Addressing>
</wsp:Policy>

Here,	the	standard	namespaces	are	xmlns:wsp="http://www.w3.org/ns/ws-policy"

and	xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata".

There’s	more…
A	slightly	more	involved	variation	on	this	asynchronous	MEP	is	to	provide	two-way
request	and	callbacks	steps;	that	is,	have	actual	responses	for	requestQuote	and
receiveQuote.	This	is	a	more	reliable	strategy	as	it	allows	for	acknowledgment	checks	at
both	calls.	The	example	here	can	easily	be	amended	to	follow	this	pattern,	perhaps	by
using	Assertions	to	verify	that	the	response	MessageID	is	correct	at	every	step.

See	also
For	more	information	on	SoapUI	Asynchronous	Doc,	go	to
http://www.soapui.org/SOAP-and-WSDL/testing-asynchronous-services.html
For	more	information	on	WS-Addressing,	go	to	http://en.wikipedia.org/wiki/WS-
Addressing

http://www.soapui.org/SOAP-and-WSDL/testing-asynchronous-services.html
http://en.wikipedia.org/wiki/WS-Addressing

Testing	for	e-mails	with	Groovy
Sometimes,	it	can	be	convenient	to	use	SoapUI	to	test	whether	an	e-mail	has	been
received,	for	example,	testing	for	an	order	confirmation	e-mail	after	calling	a	create	order
service.	In	this	recipe,	we	will	learn	how	to	check	whether	an	e-mail	has	been	received
using	Groovy	TestStep.	To	keep	things	simple,	we’ll	assume	that	the	e-mail	will	have
some	kind	of	a	unique	string	in	its	subject,	for	example,	an	order	ID.	The	example	will	use
Gmail,	but	other	e-mail	accounts	can	be	used	(the	connection	and	security	details	will
vary).

Getting	ready
If	you	haven’t	got	a	Gmail	account,	you	can	consider	signing	up	for	one,	or	possibly	use
another	account	if	you’d	prefer.

Note
Google	Gmail	strict	security

Google	has	strict	security	requirements	to	access	Gmail	from	what	it	calls	“less	secure
apps”	(those	not	using	OAuth	2	or	accessing	via	an	SSL	tunnel).	For	example,	by	running
the	script	in	this	recipe,	you	will	see	the	following	error	message:

javax.mail.AuthenticationFailedException:	[ALERT]	Please	log	in	via	your	
web	browser:	http://support.google.com/mail/accounts/bin/answer.py?
answer=78754	(Failure)	error	at	line:	47

Now,	I’m	not	suggesting	that	you	do	this	with	an	e-mail	account	that	contains	sensitive
information,	but	perhaps,	if	you	have	a	test	account,	you	can	easily	allow	less	secure	apps
(and	the	script	in	this	recipe)	to	access	the	account	at
https://www.google.com/settings/security/lesssecureapps.

Alternatively,	to	access	a	Gmail	account	using	(secure)	OAuth	2,	refer	to	Chapter	8,
Testing	AWS	and	OAuth	2	Secured	Cloud	Services.

The	sample	project	Invoice-check-for-email-soapui-project.xml	for	this	recipe	can
be	found	in	the	chapter	4	samples.

https://www.google.com/settings/security/lesssecureapps

How	to	do	it…
To	access	the	Gmail	(or	any	other)	account,	we’re	going	to	need	a	Groovy	TestStep.	The
following	Groovy	script	accesses	a	Gmail	account	and	searches	for	an	e-mail	with	a
subject	that	contains	the	text	in	orderId,	for	example,	o12345:

import	java.util.Properties
import	javax.mail.Folder
import	javax.mail.Session
import	javax.mail.Store
import	javax.mail.search.SubjectTerm

//Consider	moving	these	to	properties
def	host	=	"imap.gmail.com"
def	username	=	"<account>@gmail.com"
def	password	=	"<password>"
def	orderId	=	"o12345"

//Consider	moving	these	to	a	properties	file
Properties	props	=	new	Properties();
props.setProperty("mail.imap.host",	host)
props.setProperty("mail.imap.socketFactory.port","993")
props.setProperty("mail.imap.socketFactory.class","javax.net.ssl.SSLSocketF
actory")
props.setProperty("mail.imap.ssl.enable",	"true")
props.setProperty("mail.imap.auth","true")
props.setProperty("mail.imap.port","993")
			
Session	session	=	Session.getInstance(props)
Store	store	=	session.getStore("imap")
store.connect(host,	username,	password)

Folder	inbox	=	store.getFolder("inbox")
inbox.open(Folder.READ_ONLY)

log.info("Total	messages	in	inbox:	"	+	inbox.messageCount)

def	foundMessages	=	inbox.search(new	SubjectTerm(orderId));

if	(foundMessages.size==0)	
		testRunner.fail("No	order	email	found	for	order($orderId).")
		
foundMessages.each{
		log.info	"Found	matching	order	email(s):	${it.subject}"
}

inbox.close(true)
store.close()

Before	running	the	Groovy	TestStep,	we	first	need	to	set	valid	Gmail	account	details:

def	username	=	"<account>@gmail.com"
def	password	=	"<password>"
def	orderId	=	"o12345"

Then,	run	it.	If	an	e-mail	with	a	subject	that	contains	the	orderId	text	is	found	in	your
Gmail	inbox,	then	you	should	see	a	message	like	this:

Tue	Sep	30	14:23:13	BST	2014:INFO:Found	matching	order	email(s):	Order	
o12345	has	been	dispatched.	

Otherwise,	if	it	isn’t	found,	the	TestStep	will	fail	with	the	following	message:

Tue	Sep	30	14:23:05	BST	2014:ERROR:Failed	with	reason	[No	order	email	found	
for	order(o1234d5).]	

How	it	works…
The	script	uses	the	JavaMail	API	and	the	IMAP	e-mail	protocol	to	access	the	Gmail
account.	The	precise	details	of	these	topics	are	beyond	the	scope	of	this	recipe.	See	the
JavaMail	and	IMAP	links	at	the	end	of	this	recipe	for	more	detailed	information	on	them.

After	the	mail	properties	are	configured,	the	script	authenticates	using	the	provided
credentials	and	the	host,	and	it	then	gets	the	inbox	folder.	This	step	is	a	likely	point	of
failure	if	the	host,	username,	or	password	is	wrong	for	your	e-mail	account.

One	of	the	most	useful	options	in	the	script	is	the	use	of	a	SearchTerm	class,	in	this	case,
SubjectTerm.	There	are	many	SearchTerm	classes	to	choose	from;	for	more	information,
see	the	Search	Terms	link	at	the	end	of	the	recipe.

There’s	more…
Another	option	for	using	JavaMail	is	the	SMTP	protocol.	The	process	is	the	same,	but	the
properties	all	need	to	change	to	begin	with	mail.smtp,	and	the	port	changes	from	993	to
465.	You	can	also	use	TLS	security	instead	of	SSL.	This	also	requires	some	property
changes	and	ports	for	both	IMAP	and	SMTP	protocols.	Check	out	the	JavaMail
documentation	for	the	settings.

If	you	need	to	test	the	mail	content	or	other	properties,	this	can	be	done.	To	see	all	the
options,	take	a	look	at	javax.mail.Message	in	the	JavaMail	API	documentation	at
https://javamail.java.net/nonav/docs/api/.

https://javamail.java.net/nonav/docs/api/

See	also
For	more	information	on	JavaMail,	go	to
https://java.net/projects/javamail/pages/Home
For	more	information	on	IMAP,	go	to
http://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
For	more	information	on	Search	Terms,	go	to
http://docs.oracle.com/javaee/6/api/javax/mail/search/package-summary.html
Chapter	8,	Testing	AWS	and	OAuth	2	Secured	Cloud	Services

https://java.net/projects/javamail/pages/Home
http://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
http://docs.oracle.com/javaee/6/api/javax/mail/search/package-summary.html

Testing	files	with	Groovy
Sometimes,	we’ll	need	to	test	whether	a	web	service	has	created	a	file	or	certain	file
content,	for	example,	a	log	message.	This	recipe	looks	at	a	few	ways	to	test	file	existence
and	content	using	Groovy.	The	examples	are	fairly	simple,	but	hopefully	effective	enough
for	most	needs!

Getting	ready
I	have	provided	a	sample	project	FileTests	in	the	chapter	4	workspace.

How	to	do	it…
Let’s	start	with	checking	whether	a	file	exists	at	a	given	path:

def	fileName	=	"/temp/new_invoices.txt"
def	testFile	=	new	File(fileName)
if	(!testFile.exists())	testRunner.fail("File	$fileName	does	not	exist.")
		else	log.info	"File	$fileName	exists."

To	check	whether	a	file	contains	a	given	text	string,	use	the	following	code:

def	fileName	=	"/temp/catalina.2013-08-23.log"
def	searchString	=	"o12345"

def	testFile	=	new	File(fileName)
def	found	=	false
testFile.eachLine{line	->
		if	(line.contains(searchString))	{
				log.info	"Found	in	line:	$line"
				found	=	true
		}
}
if	(!found)	
		testRunner.fail("The	search	string	($searchString)	was	not	found	in	file	
($testFile).")

How	it	works…
There’s	not	much	to	say	about	the	first	example.	If	the	file	doesn’t	exist,	the	test	fails,	and
if	it	does	exist,	a	message	is	logged!

The	second	example	is	actually	quite	fast	and	easy	to	use.	The	specified	file	is	processed
line-by-line,	and	the	String	.contains	method	is	used	to	look	for	searchString.	If	the
string	is	found,	a	message	is	logged	and	the	search	continues.	If,	after	all	lines	are
processed,	and	searchString	is	not	found,	then	the	test	fails.

There’s	more…
In	the	file	content	search	example,	there	are	many	options	for	the	actual	test	condition	that
can	be	placed	inside	the	eachLine	closure.	You	can	consider	using	a	regex	for	more
precise	matching,	for	example:

If	(line=~searchString)	{…}	//Where	searchString	is	now	a	regex.

For	more	on	Groovy	regex,	go	to	http://groovy.codehaus.org/Regular+Expressions.

If	you	prefer	the	simplicity	of	the	string	operators,	such	as	.endsWith()	and
.startsWith(),	then	go	to	http://groovy.codehaus.org/JN1525-Strings.

If	you	need	to	parse	JSON	content,	consider	using	JSONSurpler,	as	shown	in	the	recipe
Dynamic	database	driven	REST	mocks	in	Chapter	3,	Developing	and	Deploying	Dynamic
REST	and	SOAP	Mocks.	To	parse	XML	content,	XML	Surper	is	really	good	too	(refer	to
http://groovy.codehaus.org/api/groovy/util/XmlSlurper.html).

To	access	(or	create)	PDF	files,	consider	the	iText	library	(http://itextpdf.com/).	If	you
search,	you	will	find	Groovy	examples	that	use	this	library.

If	you	need	to	work	with	Microsoft	Office	files,	take	a	look	at
http://groovy.codehaus.org/Groovy+for+the+Office	for	a	list	of	useful	links.

http://groovy.codehaus.org/Regular+Expressions
http://groovy.codehaus.org/JN1525-Strings
http://groovy.codehaus.org/api/groovy/util/XmlSlurper.html
http://itextpdf.com/
http://groovy.codehaus.org/Groovy+for+the+Office

See	also
The	Creating	a	custom	TestStep	(Factory)	plugin	to	check	whether	a	file	exists	recipe
of	Chapter	11,	Taking	SoapUI	Further

Chapter	5.	Automation	and	Scripting
In	this	chapter,	we	will	cover	the	following	topics:

Running	mocks	from	the	command	line
Running	tests	from	the	command	line
Providing	environment-specific	properties
Generating	mock	WAR	files	from	the	command	line
Running	mocks	and	tests	using	Maven
Running	tests	using	Java	and	JUnit
Running	mocks	and	tests	using	Groovy	scripts
Running	mocks	and	tests	using	Gradle

Introduction
This	chapter	covers	some	popular	ways	to	run	SoapUI	mocks	and	functional	tests	to
provide	the	scripting	building	blocks	for	continuous	integration	tools	such	as	Bamboo,
Hudson,	Jenkins,	and	TeamCity,	to	run	integration	tests.

In	all	approaches,	it’s	worth	understanding	that	the	same	SoapUI	framework	runner
classes	are	used:

The	AbstractSoapUIRunner	class	implements	the	CmdLineRunner	interface,	so	all
subclasses	can	be	run	using	the	command-line	runner	scripts.	Optionally,	you	may	find	it
helpful	if	you	take	a	look	at	the	SoapUI	source	code	for	these	classes,	which	can	be	found
at
https://github.com/SmartBear/soapui/tree/next/soapui/src/main/java/com/eviware/soapui/tools

Load	and	security	tests	can	also	be	scripted	similarly	to	functional	tests	and	mocks,	but
how	to	do	this	will	be	covered	in	later	chapters.	The	SoapUIToolRunner	class	(and	script)
are	not	covered	here,	as	most	people	would	probably	prefer	to	use	the	actual	tools	directly
as	part	of	their	build	scripts,	for	example,	using	the	Apache	CXF	Maven	plugin
(http://cxf.apache.org/docs/maven-cxf-codegen-plugin-wsdl-to-java.html).	If	you	do	find
yourself	wanting	to	use	the	SoapUIToolRunner	class,	then	the	main	options	are	the
command-line	toolrunner	script	(and	its	derived	approaches)	and	the	Maven	plugin.

https://github.com/SmartBear/soapui/tree/next/soapui/src/main/java/com/eviware/soapui/tools
http://cxf.apache.org/docs/maven-cxf-codegen-plugin-wsdl-to-java.html

What	you’ll	learn
You	will	learn	the	following	topics:

The	concept	of	SoapUI	runner	classes	and	how	they	can	be	used	directly	in	code	and
scripts	to	run	SoapUI	tests	and	mocks
How	SoapUI	mocks	can	be	generated	using	a	script
How	to	provide	local	SoapUI	library	dependencies	to	your	scripts
How	Maven,	Groovy	Grape,	and	Gradle	can	use	dependency	management	to	allow
your	scripts	to	run	without	a	local	SoapUI	installation

What	you’ll	need
You’ll	need	the	following:

Simple	scripting	skill,	such	as	running	shell	scripts	and	supplying	parameters
Basic	Java	and	Groovy	skills,	such	as	creating	classes	and	understanding	classpath
requirements

Running	mocks	from	the	command	line
SoapUI	mocks	can	easily	be	run	from	the	command	line	using	the	bundled	<SoapUI
Home>/java/app/bin/mockservicerunner.sh	script.	This	recipe	covers	running	both	a
REST	and	SOAP	mock	in	this	way.

Getting	ready
The	only	real	prerequisites	are	a	SoapUI	install	and	a	project	with	a	mock	that	you’d	like
to	run.	In	this	recipe,	we’ll	try	out	the	mocks	in	the	RESTMock-soapui-project.xml	and
SOAPMock-soapui-project.xml	projects	from	the	chapter	3	samples.

How	to	do	it…
If	you	run	mockservicerunner	without	any	parameters,	you	will	see	the	help	options,	as
shown	in	the	following	screenshot:

Note
Pro	version	reporting	options	are	-g,	-o,	and	-f.

The	only	parameter	that	is	actually	mandatory	is	<project	file>,	because	if	you	don’t
specify	a	mock	with	–m,	then	all	the	mocks	in	the	project	are	run.	See	Chapter	6,	Reporting
for	more	information	on	the	Pro	reporting	options.

To	run	the	SOAPDBMock	project,	the	following	is	the	simplest	command:

./bin/mockservicerunner.sh	/soapui-cookbook/chapter3/SOAPMock-soapui-
project.xml

And	for	the	RESTDBMock	project	the	simplest	command	is:

./bin/mockservicerunner.sh	/soapui-cookbook/chapter3/RESTMock-soapui-
project.xml

In	both	cases,	you	should	see	the	INFO	messages	(for	DBRESTMock	port	8090	and	path	/)
similar	to	the	ones	shown	in	the	following	code:

22:46:47,274	INFO		[SoapUIMockServiceRunner]	MockService	started	on	port	
8088	at	path	[/mockInvoicePortBinding]
22:46:47,280	INFO		[SoapUIMockServiceRunner]	Started	1	runner
Press	any	key	to	terminate…

Tip
Running	the	mock	on	a	new	server

If	you’ve	installed	SoapUI	on	a	new	server	to	host	the	mock,	then	remember	to	add	any
libraries	that	the	mock	requires	to	the	/java/app/bin/ext	directory.	These	dependencies
are	added	when	the	mock	script	starts	up:

16:18:59,756	INFO		[SoapUI]	Adding	[/work/soapui-cookbook/soap-ui-
51/soapui/soapui-installer/target/assemblies/SoapUI-5.2.0-SNAPSHOT-

dist/bin/ext/h2-1.4.181.jar]	to	extensions	classpath

The	need	to	run	on	a	different	URL	and/or	port	is	a	common	requirement.	The	–p	port
option	works	exactly	as	you’d	expect	it	to,	that	is,	–p	9001	will	start	the	mock	listening	on
this	port.	The	–a	URL	option	is	a	little	different	for	SOAP	and	REST.	For	SOAP,	it
replaces	the	whole	URI.	For	REST,	it	effectively	sets	the	context	before	the	resource	URI.
So,	in	the	case	of	the	DBRESTMock	mock,	starting	with	–a	/mock	would	mean	that	to	get
invoice	number	1,	you	would	now	need	to	call
http://localhost:8090/mock/invoiceservice/v1/invoice/1.

My	making	of	the	–b	parameter	is	that	it	doesn’t	work,	that	is,	the	mock	service	terminates
immediately	after	starting.	Yes,	the	script	hasn’t	blocked,	but	this	isn’t	useful	to	run	the
mock	in	sequence	with	tests.	On	Linux/MacOS,	to	run	the	mock	in	the	background,	all
that’s	needed	is	nohup,	for	example:

nohup	./bin/mockservicerunner.sh	<chapter	3	samples>/RESTMock-soapui-
project.xml	&
…
appending	output	to	nohup.out

Running	like	this	means	you’ll	need	to	stop	the	mock	by	terminating	its	process,	that	is,	by
using	kill	-9	<process	id>,	where	the	process	ID	can	be	obtained	by	running	ps	–ef	|
grep	SoapUI	for	example:

ps	-ef	|	grep	java
501		1352			0	10:04am	ttys002				0:07.47	/usr/bin/java	-Xms128m	-
…
cookbook/chapter3/RESTMock-soapui-project.xml
kill	-9	1352

Tip
Running	mocks	in	sequence	with	tests

The	non-command-line	options	to	run	mocks,	that	is,	Maven,	Java,	and	Groovy,	do	not
have	this	problem	with	blocking;	that	is,	a	script/class	can	start	the	mock	service	(in	the
background)	and	can	run	tests,	and	the	mock	terminates	when	the	main	script/class	ends.

How	it	works…
The	mockservicerunner	script	builds	up	the	Java	classpath	to	include	the	SoapUI	JAR
file	(for	example,	in	<SoapUI	Home>/java/app/bin/soapui-pro-5.1.1.jar)	and	all	the
required	libraries	(from	<SoapUI	Home>/java/app/lib)	and	then	calls	either	of	the
com.eviware.soapui.tools.SoapUIMockServiceRunner	class	or	the
com.eviware.soapui.SoapUIProMockServiceRunner	class	(for	the	Pro	version).

Without	going	into	too	much	detail,	this	class	validates	any	parameters	and	starts	a	new
instance	of	the	SoapUI	core	to	run	the	selected	mock(s).	While	the	same	runner	class	is
used	to	run	both	REST	and	SOAP	mocks,	the	actual	mock	implementations	are	of	course
different.

There’s	more…
Running	mocks	from	the	command-line	script	is	fine,	but	having	to	install	SoapUI	(or
packaging	all	the	libraries)	on	test	servers	in	order	to	run	the	mocks	may	not	always	be
desirable.	See	the	Generating	mock	WAR	files	from	the	command	line	recipe	if	you	would
rather	use	a	script	to	generate	your	mocks	as	independently	deployable	WAR	files
(although	they	will	actually	still	contain	SoapUI	libs!).	Alternatively,	take	a	look	at	either
the	Maven	or	Groovy	recipes	to	see	how	dependency	management	can	make	your	scripts
more	portable	by	enabling	them	to	download	all	the	SoapUI	libraries	when	and	where
needed.

Running	tests	from	the	command	line
SoapUI	tests	can	be	run	from	the	command	line	in	a	similar	way	to	mocks	using	the
<SoapUI	Home>/java/app/bin/testrunner.sh	script.	This	recipe	builds	on	the	previous
one,	in	that	it	shows	how	to	run	the	tests	in	the	SOAPMock-soapui-project.xml	project
against	it’s	mock.

Getting	ready
Like	before,	we	just	need	to	install	SoapUI	and	access	the	SOAPMock-soapui-project.xml
project	from	the	chapter	3	samples.

How	to	do	it…
If	you	run	testrunner	without	any	parameters,	you	should	see	the	help	options,	as	shown
in	the	following	screenshot:

Tip
Pro	version	options	are	E,	-F,	-g,	-o,	–R,	and	-l.

Like	with	the	mock	command-line	script,	the	only	mandatory	parameter	is	<soapui
project	file>,	which	makes	this	the	simplest	command	to	run	all	test	cases	in	a	project,
for	example:

./testrunner.sh	/soapui-cookbook/chapter3/SOAPMock-soapui-project.xml

To	run	this,	either	start	the	mock	in	a	separate	shell	using	the	command	line	(explained	in
the	previous	recipe),	or	just	open	SoapUI	and	start	the	mock	from	there.	You	should	see	an
output	that	indicates	that	the	GetInvoiceTestCase	has	been	run	and	that	the	assertions	are
valid:

12:23:49,086	INFO		[SoapUITestCaseRunner]	Assertion	
[Invoice1ShouldHaveCompanycomp1]	has	status	VALID
12:23:49,087	INFO		[SoapUITestCaseRunner]	Assertion	
[Invoice1ShouldHaveAmount100]	has	status	VALID
12:23:49,087	INFO		[SoapUITestCaseRunner]	Finished	running	SoapUI	testcase	

[GetInvoiceTestCase],	time	taken:	493ms,	status:	FINISHED

To	see	what	happens	when	there	is	an	assertion	failure,	in	SoapUI,	edit	the	request	for
getInvoice	TestStep	and	change	invoiceNo	from	1	to	2,	save	the	project,	and	rerun	it;
you	should	see	the	same	assertions	fail:

12:33:27,100	ERROR	[SoapUITestCaseRunner]	ASSERTION	FAILED	->	XPathContains	
comparison	failed	for	path	[declare	namespace	
inv='http://soapui.cookbook.samples/schema/invoice';
//inv:InvoiceDocument[1]/inv:company[1]],	expecting	[comp1],	actual	was	
[comp2]
12:33:27,100	INFO		[SoapUITestCaseRunner]	Assertion	
[Invoice1ShouldHaveAmount100]	has	status	FAILED
12:33:27,100	ERROR	[SoapUITestCaseRunner]	ASSERTION	FAILED	->	XPathContains	
comparison	failed	for	path	[declare	namespace	
inv='http://soapui.cookbook.samples/schema/invoice';
//inv:InvoiceDocument[1]/inv:amount[1]],	expecting	[100.0],	actual	was	
[23330.0]
12:33:27,100	ERROR	[SoapUITestCaseRunner]	getInvoice	failed,	exporting	to	
[/work/soapui-cookbook/soap-ui-51/soapui/soapui-
installer/target/assemblies/SoapUI-5.2.0-SNAPSHOT-
dist/bin/GetInvoiceTestSuite-GetInvoiceTestCase-getInvoice-0-FAILED.txt]
12:33:27,108	INFO		[SoapUITestCaseRunner]	Finished	running	SoapUI	testcase	
[GetInvoiceTestCase],	time	taken:	619ms,	status:	FAILED

This	will	be	followed	by	some	quite	verbose	request	and	response	details!

The	reporting	features	will	be	covered	in	the	next	chapter.

How	it	works…
Similar	to	the	mock	command-line	runner	in	the	previous	recipe,	the	testrunner	script
starts	a	headless	SoapUI	core	by	running	either	SoapUITestCaseRunner	(open	source)	or
SoapUIProTestCaseRunner	(pro).	Again,	the	SoapUI	JAR	and	all	the	required	Java
libraries	are	added	to	the	classpath	by	the	script	before	running.

There’s	more…
Use	of	the	command-line	test	runner	is	very	popular	due	to	its	simplicity	and	ease	of	use
from	scripts	(for	example,	shell	scripts	and	ant)	and	directly	via	build	tools;	for	example,
Jenkins.	Its	standard	usage	is	intended	to	be	via	a	SoapUI	install,	but	it	can	be	easily
amended.	Like	the	mock	script,	all	it	really	depends	on	are	the	SoapUI	JAR	and	libraries,
which	can	be	packaged	and	supplied	separately.

Providing	environment-specific	properties
A	common	requirement	when	running	SoapUI	tests	from	scripts	is	to	be	able	to	provide
different	hostnames,	ports,	and	file	paths	for	different	test	environments.	This	recipe
shows	some	easy	ways	to	do	this.

How	to	do	it…
We’ll	look	at	two	different	ways	to	set	the	endpoint	for	Test	Request	TestStep	in
SOAPMock-soapui-project.xml.	For	the	examples,	assume	that	there	is	a	mock	service
that	is	running	http://localhost:9001/mockInvoicePortBinding.	Perform	the
following	steps:

1.	 Perhaps,	the	simplest	way	is	to	use	the	–e	endpoint	parameter	to	override	the	Test
Request	TestSteps	endpoint,	for	example:

./testrunner.sh	-e	http://localhost:9001/mockInvoicePortBinding	
<chapter3	samples>/SOAPMock-soapui-project.xml

2.	 Another	more	flexible	way	is	to	set	the	endpoint	using	a	property,	for	example:

Add	a	project-level	property:

Use	a	property	expansion	to	set	the	TestSteps	endpoint:

Provide	the	value	for	the	property	using	–Pname=value:

./testrunner.sh	-
Pendpoint=http://localhost:9001/mockInvoicePortBinding	<chapter3	
samples>/SOAPMock-soapui-project.xml

How	it	works…
SoapUI	runners	can	be	passed	properties	(or	have	properties	set	in	later	recipes)	in	various
ways.	The	second	approach	mentioned	earlier	is	the	most	flexible	in	that	you	can	use	it	to
provide	any	type	of	property,	for	example,	file	paths	and	e-mail	addresses,	or	use	it	to	set
part	of	something	(a	hostname	or	port).	If	you	need	to	set	a	lot	of	properties,	then	take	a
look	at	the	first	link	in	the	See	also	section	of	this	recipe.

See	also
You	can	also	pass	in	entire	property	files;	see	http://www.soapui.org/Scripting-
Properties/working-with-properties.html
For	more	information	on	property	expansions,	see	Chapter	2,	Data-driven	Testing
and	Using	External	Datasources

http://www.soapui.org/Scripting-Properties/working-with-properties.html

Generating	mock	WAR	files	from	the
command	line
As	you	may	have	seen	from	the	Deploying	mocks	as	WAR	files	recipe	in	Chapter	3,
Developing	and	Deploying	Dynamic	REST	and	SOAP	Mocks,	SoapUI	has	the	useful
ability	to	package	mock	services	as	WAR	files	using	a	wizard.	As	part	of	your	build
process,	you	may	find	it	more	useful	to	generate	your	mock	service	WAR	file	directly
from	the	SoapUI	project	file	using	a	script.	Like	with	mocks	and	tests,	this	recipe	shows
how	to	use	the	<SoapUI	Home>/java/app/bin/wargenerator.sh	command-line	script	to
do	this.	You	can	then	use	a	variety	of	means,	for	example,	Shell,	Maven,	or	Gradle,	to
generate	and	deploy	the	mock	service	WAR	file	to	a	servlet	container	or	application	server
of	your	choice.

Getting	ready
Like	before,	we	just	need	to	install	SoapUI	and	access	the	SOAPMock-soapui-project.xml
project	from	the	chapter	3	samples.

You	may	find	it	helpful	to	refer	back	to	the	Deploying	mocks	as	WAR	files	recipe	from
Chapter	3,	Developing	and	Deploying	Dynamic	REST	and	SOAP	Mocks.	Note	that	the
wargenerator	script	only	uses	the	same	Java	classes	under	the	hood	as	the	SoapUI	war
generation	wizard	does,	so	any	version-specific	issues	(like	those	mentioned	about	REST
mock	WAR	generation	in	the	Chapter	3	recipe)	will	also	affect	the	script.

How	to	do	it…
If	you	run	wargenerator	without	any	parameters,	you	should	see	the	following	help:

Tip
The	Pro	version	extra	option	is	-c.

While	the	simplest	syntax	is	to	just	specify	the	<project	file>	parameter,	this	is	not	very
useful,	as	you	will	probably	at	least	want	to	specify	where	the	WAR	file	has	to	be
generated	(using	–d).	A	more	realistic	example	would	be	to	replicate	the	parameters	we
used	back	in	Chapter	3,	Developing	and	Deploying	Dynamic	REST	and	SOAP	Mocks,
when	generating	a	WAR	file	for	SOAPMock-soapui-project.xml:

./wargenerator.sh	-f	<chapter5	samples>/soap/dbsoap.war"	-d	"<chapter5	
samples>/soap/"	-w	true	-x	true	<chapter5	samples>/SOAPMock-soapui-
project.xml

If	you	run	this,	you	should	see	the	following	output:

14:54:49,299	INFO		[JarPackager]	Creating	archive	<chapter5	
samples>/soap/dbsoap.war]
...
14:54:50,255	INFO		[JarPackager]	Adding	WEB-INF/lib/h2-1.4.181.jar
...
14:54:52,776	INFO		[SoapUIMockAsWarGenerator]	WAR	Generation	complete

The	h2-1.4.181.jar	file	is	the	H2	driver	that	is	added	as	a	consequence	of	the	–w
parameter	to	include	external	libraries.

If	you	deploy	the	resulting	dbsoap.war	file	to	a	servlet	container	of	your	choice,	for
example,	the	webapps	folder	on	Apache	Tomcat	(see	the	Deploying	mocks	as	WAR	files
Chapter	3,	Developing	and	Deploying	Dynamic	REST	and	SOAP	Mocks	for	help	on
setting	up	and	using	Tomcat),	then	you	should	be	able	to	access	the	mock	service’s	web	UI
as	before.

How	it	works…
As	with	the	other	runners,	the	script	first	builds	up	the	Java	classpath	and	then	runs	either
SoapUIMockAsWarGenerator	(open	source)	or	SoapUIProMockAsWarGenerator	(pro).
SoapUIMockAsWarGenerator	then	calls	the	MockAsWar	class	in	the	same	way	as	described
in	the	Deploying	mocks	as	WAR	files	Chapter	3,	Developing	and	Deploying	Dynamic
REST	and	SOAP	Mocks.

Running	mocks	and	tests	using	Maven
I’m	sure	you	probably	already	know	that	Apache	Maven	is	an	immensely	popular	build
framework,	and	unsurprisingly,	also	a	popular	way	to	run	SoapUI	tests.	SoapUI	also
comes	with	a	ready-made	Maven	plugin.	In	this	recipe,	we’ll	use	the	bundled	SoapUI
Maven	plugin	to	run	the	mock	and	the	tests	in	the	chapter	3	sample’s	SOAPMock-soapui-
project.xml	project.

This	recipe	assumes	that	you	can	install	Maven	and	get	some	idea	about	how	it	works,
without	being	an	expert	in	it.	If	you	are	new	to	Maven	or	could	do	with	a	quick	refresh,	a
good	place	to	start	is	http://maven.apache.org/guides/getting-started/maven-in-five-
minutes.html.

http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html

Getting	ready
If	you	don’t	already	have	Maven	installed,	then	download	and	install	it	following	the
resources	provided	at	http://maven.apache.org/download.cgi	(Maven	version	3.2.1	is	used
here,	but	the	SoapUI	Maven	Plugin	should	support	any	Maven	3	version).

You’ll	need	SOAPMock-soapui-project.xml	from	the	chapter	3	samples.	The	Maven
scripts	developed	in	this	chapter	are	included	in	the	chapter	5	samples	under	the	folder
/maven/simple-test/.

http://maven.apache.org/download.cgi

How	to	do	it…
We	are	going	to	start	from	scratch;	that	is,	generate	a	new	Maven	project	,	add	the	SoapUI
plugin	configuration	to	rung	the	tests,	run	with	a	failing	test,	then	add	the	configuration	to
run	the	mock,	and	run	with	a	passing	test.

First,	we	are	going	to	use	Maven	to	create	a	starter	project	structure	using	the	quickstart
Maven	archetype.	To	do	this,	run	the	following	Maven	command:

mvn	archetype:generate	-DgroupId=soapui.cookbook.chapter5	-
DartifactId=simple-test	-DarchetypeArtifactId=maven-archetype-quickstart	-
DinteractiveMode=false

This	should	result	in	a	Maven	output	that	indicates	build	success,	similar	to	the	following
key	parts:

[INFO]	--
[INFO]	Using	following	parameters	for	creating	project	from	Old	(1.x)	
Archetype:	maven-archetype-quickstart:1.0
[INFO]	--
[INFO]	Parameter:	groupId,	Value:	soapui.cookbook.chapter5
[INFO]	Parameter:	packageName,	Value:	soapui.cookbook.chapter5
[INFO]	Parameter:	package,	Value:	soapui.cookbook.chapter5
[INFO]	Parameter:	artifactId,	Value:	simple-test
[INFO]	Parameter:	basedir,	Value:	/soapui-cookbook/chapter5/maven
[INFO]	Parameter:	version,	Value:	1.0-SNAPSHOT
[INFO]	project	created	from	Old	(1.x)	Archetype	in	dir:	/soapui-
cookbook/chapter5/maven/simple-test
[INFO]	--
[INFO]	BUILD	SUCCESS
[INFO]	--

And	the	below	directory	structure:

Simple-test/
		pom.xml
		src/
		main/java/soapui/cookbook/chapter5/App.java
				test/java/soapui/cookbook/chapter5/AppTest.java

The	key	part	for	us	is	the	pom.xml	file;	delete	the	sample	Java	class	and	test.

Maven	projects	should	have	everything	they	need	within	their	structure	(or	managed	as
external	dependencies).	The	SoapUI	project	file	will	be	required	by	the	plugin.	Following
the	Maven	directory	convention,	let’s	create	a	new	directory	simple-
test/src/test/resources,	and	copy	the	project	file	(<chapter3	samples>/SOAPMock-
soapui-project.xml)	there.

Now,	let’s	add	the	SoapUI	plugin	to	simple-test/pom.xml.	Open	the	pom.xml	file	in	a
text	editor	and	add	the	highlighted	code	as	shown	here:

<project	xmlns="http://maven.apache.org/POM/4.0.0"	
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	
http://maven.apache.org/maven-v4_0_0.xsd">

		<modelVersion>4.0.0</modelVersion>
		<groupId>soapui.cookbook.chapter5</groupId>
		<artifactId>simple-test</artifactId>
		<packaging>jar</packaging>
		<version>1.0-SNAPSHOT</version>
		<name>simple-test</name>
		<url>http://maven.apache.org</url>
		<dependencies>
				<dependency>
						<groupId>junit</groupId>
						<artifactId>junit</artifactId>
						<version>3.8.1</version>
						<scope>test</scope>
				</dependency>
		</dependencies>
		<pluginRepositories>
								<pluginRepository>
										<id>SmartBearPluginRepository</id>
													<url>http://www.soapui.org/repository/maven2/</url>
								</pluginRepository>
		</pluginRepositories>
				<build>
								<plugins>
												<plugin>
																<groupId>com.smartbear.soapui</groupId>
																<artifactId>soapui-maven-plugin</artifactId>
																<version>5.0.0</version>			
																<executions>
																				<execution>
																								<phase>test</phase>
																								<goals>
																												<goal>test</goal>
																								</goals>
									<configuration>																									
<projectFile>src/test/resources/SOAPMock-soapui-project.xml</projectFile>
																								</configuration>
																				</execution>
																</executions>
												</plugin>
								</plugins>
				</build>
</project>

Tip
Using	Pro?

Change	the	artifactId	value	to	<artifactId>soapui-pro-maven-plugin</artifactId>
and	check	http://www.soapui.org/repository/maven2/com/smartbear/soapui/soapui-pro-
maven-plugin/	for	available	versions.

Note
Things	to	note

The	configuration	is	very	basic;	it	will	try	to	run	all	tests	in	the	specified	project	file.

http://www.soapui.org/repository/maven2/com/smartbear/soapui/soapui-pro-maven-plugin/

Now,	we	run	the	test	with	the	following	command:

mvn	integration-test

After	some	amount	of	initial	downloading	(which	could	take	a	few	minutes),	you	should
see	it	fail	(Connection	Refused)!	Why?	Because	unless	you	started	the	project’s
MockService	somewhere	else	first,	the	test	cannot	call	the	endpoint—failing	test,	good!
Ok,	let’s	fix	this	up	by	adding	the	mock	goal	to	start	the	mock	before	running	the	test
goal.	Add	the	highlighted	goal	to	pom.xml	to	the	goals	element:

<goals>
		<goal>mock</goal>
		<goal>test</goal>
</goals>

This	should	start	the	project’s	mock	and	make	it	to	run	before	the	test	is	run.

If	you	try	running	it	again	now,	the	mock	will	attempt	to	start,	but	will	still	fail	(as	it	was
unable	to	resolve	class	org.h2.Driver	for	the	mock,	and	then	Connection	Refused	for
the	test)	because	it	is	not	able	to	find	org.h2.Driver;	SoapUI	tried	to	warn	us	about	this
when	starting:

16:28:15,343	WARN		[SoapUI]	Missing	folder	[/soapui-
cookbook/chapter5/simple-test/ext]	for	external	libraries

As	a	quick	fix,	we	could	just	copy	the	H2	driver	to	this	location,	but	this	wouldn’t	be
consistent	with	the	Maven	directory	convention.	Instead,	it	would	be	more	proper	to	copy
h2-1.4.181.jar	to	simple-test/src/test/resources	and	then	tell	SoapUI	to	look	there
for	the	driver	using	a	system	parameter	when	running,	that	is,	run	with:

mvn	integration-test	"-Dsoapui.ext.libraries=src/test/resources"

Now,	you	should	see	the	mock	start	up	with	the	H2	driver	added:

12:45:13,498	INFO		[SoapUI]	Adding	[/soapui-cookbook/chapter5/maven/simple-
test/src/test/resources/h2-1.4.181.jar]	to	extensions	classpath

Better.	But	wait	a	moment!	It’s	asking	us	to	select	the	option	Press	any	key	to
terminate…!

By	default,	the	mock	blocks	the	script’s	process	until	a	key	is	pressed	(similar	to	the
command	line	example	discussed	in	the	first	recipe).	This	is	ok	sometimes,	like	if	we	just
wanted	to	run	the	mock	on	its	own	or	are	happy	to	run	separate	scripts	for	mock	and	tests,
but	not	so	great	in	this	case.	Fortunately,	it’s	easy	enough	to	fix	by	adding
<noBlock>true</noBlock>	to	<configuration>…</configuration>,	which	allows	the
mock	to	run	for	the	duration	of	the	plugin	without	waiting	for	input.	Now,	if	you	run	the
script,	the	mock	should	start	successfully	and	continue,	and	the	test	should	run	and	pass!

If	you	wish	to	see	the	test	fail,	then	edit	the	project	in	simple-test/src/test/resources,
changing	invoiceNo	from	1	to	2	in	the	request	for	getInvoice	TestStep,	save	the	project,
and	rerun;	then,	you	should	see	the	same	assertions	fail	like	with	the	command-line
runner.

How	it	works…
Unlike	the	command-line	runner	scripts,	Maven	doesn’t	need	direct	access	to	the	SoapUI
installation.	Instead,	the	plugin	has	a	dependency	configured	in	it’s	pom	file	to	download
the	required	version	of	SoapUI	(5.0.0)	from	the	remote	SoapUI	Maven	repository,	as
shown	in	the	following	code	when	the	script	is	first	run:

Downloaded:	
http://www.soapui.org/repository/maven2/com/smartbear/soapui/soapui/5.0.0/s
oapui-5.0.0.jar	(11250	KB	at	225.6	KB/sec)

If	you	are	new	to	Maven,	it’s	worth	noting	that	once	downloaded,	the	dependency	pom	and
jar	files	are	cached	in	your	local	Maven	repository.	The	default	location	of	the	local
repository	is	${user.home}/.m2/repository/.

To	understand	more	about	how	the	SoapUI	Maven	plugin	works,	the	short	answer	is	that	it
ultimately	runs	the	same	SoapUIMockServiceRunner	and	SoapUITestCaseRunner	Java
classes	that	the	command-line	scripts	use	with	the	parameters	supplied	in	the	pom	file.	For
a	more	detailed	understanding,	Maven	plugins	use	mojo	(Maven	plain	Old	Java	Object)
classes	to	define	each	Maven	goal,	for	example,	mock	and	test.	If	you	wish	to	inspect	the
SoapUI	plugin	mojos,	then	take	a	look	at
https://github.com/SmartBear/soapui/tree/next/soapui-maven-
plugin/src/main/java/com/eviware/soapui/maven2.

https://github.com/SmartBear/soapui/tree/next/soapui-maven-plugin/src/main/java/com/eviware/soapui/maven2

There’s	more…
The	SoapUI	Maven	Plugin	also	has	goals	to	run	load	tests	(see	the	Running	load	tests
using	Maven,	command	line,	Java,	Groovy,	and	Gradle	scripts	recipe	in	Chapter	9,	Data-
driven	Load	Testing	With	Custom	Datasources),	security	tests,	and	tools.	For	more	details
on	the	configuration,	refer	to	the	online	SoapUI	documentation	at
http://www.soapui.org/Test-Automation/maven-2x.html.

The	options	for	reporting	will	be	covered	in	the	next	chapter.

Maven	is	an	excellent	choice	for	building,	deploying,	and	testing	web	services	and	any
other	code	with	or	without	SoapUI.	Third-party	SoapUI	Maven	plugins	are	also	available,
and	some	claim	to	solve	issues	reported	with	the	standard	one.	One	popular	alternative
plugin	can	be	found	at	https://github.com/redfish4ktc/maven-soapui-extension-plugin.

Of	course,	there’s	nothing	to	stop	you	writing	your	own	too!

http://www.soapui.org/Test-Automation/maven-2x.html
https://github.com/redfish4ktc/maven-soapui-extension-plugin

See	also
For	more	information,	go	to	the	official	Maven	site	at	http://maven.apache.org/
For	more	information	on	Maven	repositories,	go	to
http://maven.apache.org/guides/introduction/introduction-to-repositories.html
For	more	information	on	Maven	plugin	development,	go	to
http://maven.apache.org/plugin-developers/

http://maven.apache.org/
http://maven.apache.org/guides/introduction/introduction-to-repositories.html
http://maven.apache.org/plugin-developers/

Running	mocks	and	tests	using	Java	and
JUnit
Running	SoapUI	mocks	and	tests	from	Java	and	JUnit	is	relatively	easy	to	do,	as	we
essentially	run	the	same	Java	classes	that	the	command	line	and	Maven	plugins	use.	In	the
first	part	of	this	recipe,	we	will	look	at	running	the	SoapUIMockServiceRunner	and
SoapUITestCaseRunner	files	directly.	Then,	we	will	look	at	doing	the	same	via	a	JUnit
runner.

Getting	ready
In	both	cases,	we’ll	run	the	SOAPMock-soapui-project.xml	project	as	before.	All	the	code
is	contained	in	the	chapter	5	samples’	/java/	folder.

The	samples	are	easy	to	run	from	Eclipse	(or	a	similar	IDE)	and	also	from	the	command
line.	The	minimum	you	need	is	a	SoapUI	and	a	JDK	(this	recipe	uses	JDK	1.7.x).

Unless	you’re	using	an	IDE,	which	bundles	JUnit,	you	might	need	to	download	the	JUnit
library	(junit-4.11.jar	is	also	included	in	the	/java/	chapter	5	samples	folder).

How	to	do	it…
First,	let’s	look	at	how	to	start	the	mock	and	run	tests	against	it	using	Java.	Then,	we	can
run	the	same	code	using	JUnit.	The	code	to	run	a	mock	and	tests	for	a	project	is	as
follows:

import	com.eviware.soapui.tools.SoapUIMockServiceRunner;
import	com.eviware.soapui.tools.SoapUITestCaseRunner;

public	class	RunMockAndTest	{

		public	static	void	main(String[]	args)	throws	Exception	{

				SoapUIMockServiceRunner	mockRunner	=	new	SoapUIMockServiceRunner();
				mockRunner.setProjectFile(args[0]);
				mockRunner.run();

				System.out.println	("Mock	running…");

				SoapUITestCaseRunner	testRunner	=	new	SoapUITestCaseRunner();
				testRunner.setProjectFile(args[0]);
				testRunner.run();

				System.exit(0);
		}
}

The	code	is	fairly	basic,	and	there	is	no	Java	package.	Create	a	file	called
RunMockAndTest.java	at	a	convenient	location.

Before	we	compile	or	run	the	code,	to	make	the	commands	neater,	we	can	export	a
SOAPUI_HOME	environment	variable,	for	example:

export	SOAPUI_HOME=<SoapUI	Home>

Then,	to	compile	the	code,	we	need	all	the	SoapUI	JAR	and	libraries	in	the	classpath:

javac	-cp	"$SOAPUI_HOME/lib/*:$SOAPUI_HOME/bin/soapui-5.2.0-SNAPSHOT.jar"	
RunMockAndTest.java

Running	this	should	create	RunMockAndTest.class	in	the	current	directory.

To	run	the	compiled	class,	we	also	need	to	include	the	SoapUI	JAR,	libraries,	and	the	class
itself	in	the	classpath.	The	code	also	expects	the	SoapUI	project	file	to	be	supplied	as	a
runtime	parameter.	Also,	for	this	project,	we	need	to	provide	the	location	of	the	external
libraries	folder	that	contains	the	H2	DB	driver	for	the	mock:

java	-cp	"$SOAPUI_HOME/lib/*:$SOAPUI_HOME/bin/soapui-5.2.0-SNAPSHOT.jar:."	
-Dsoapui.ext.libraries=$SOAPUI_HOME/bin/ext	RunMockAndTest	/soapui-
cookbook/chapter3/SOAPMock-soapui-project.xml	

Running	this	command	should	show	the	same	kind	of	output	as	with	the	other	recipes,	that
is:

The	H2	driver	is	added	to	the	classpath

The	mock	starts
The	test	runs	and	passes
The	program	exits

If	you	would	like	to	check	how	the	test	fails,	you	can	edit	the	project	and	change	the
invoiceNo	value	in	the	test	request	from	1	to	2,	as	done	in	the	command-line	test	and
Maven	recipes.

Now,	let’s	move	on	to	JUnit.	The	basic	code	for	a	JUnit	4	test	is:

import	org.junit.Test;

public	class	TestMock	{
		@Test
		public	void	test()	{
		}
}	

To	this	skeleton	test,	we	can	insert	the	code	from	the	previous	example,	replacing	the
project	file	argument	(args[0])	with	a	hardcoded	project	file,	which	is	more	normal,	as	it
is	part	of	the	fixed	test	criteria.	We	can	also	remove	System.exit(0)	(JUnit	takes	care	of
ending	the	process),	and	add	the	imports	for	the	runners	and	a	throws	clause	to	take	care
of	any	runner	exceptions,	which	results	in	the	following	code:

import	org.junit.Test;
import	com.eviware.soapui.tools.SoapUIMockServiceRunner;
import	com.eviware.soapui.tools.SoapUITestCaseRunner;

public	class	TestRunMockAndTest	{

		@Test
		public	void	test()	throws	Exception	{
				String	project	=	"/soapui-cookbook/chapter3/SOAPMock-soapui-
project.xml";
				
				SoapUIMockServiceRunner	mockRunner	=	new	SoapUIMockServiceRunner();
				mockRunner.setProjectFile(project);
				mockRunner.run();

				System.out.println	("Mock	running…");

				SoapUITestCaseRunner	testRunner	=	new	SoapUITestCaseRunner();
				testRunner.setProjectFile(project);
				testRunner.run();
		}
}

To	compile	this,	we	need	to	include	the	JUnit	4	library:

javac	-cp	"$SOAPUI_HOME/lib/*:$SOAPUI_HOME/bin/soapui-5.2.0-
SNAPSHOT.jar:junit-4.11.jar"	TestRunMockAndTest.java

Then,	to	run	the	test,	in	addition	to	supplying	the	JUnit	library	(make	sure	this	is	in	the
same	folder	as	the	test	class,	or	adjust	the	following	path),	we	actually	need	to	run	the
JUnit	test	runner	org.junit.runner.JUnitCore:

java	-cp	"$SOAPUI_HOME/lib/*:$SOAPUI_HOME/bin/soapui-5.2.0-
SNAPSHOT.jar:junit-4.11.jar:."	-Dsoapui.ext.libraries=$SOAPUI_HOME/bin/ext	
org.junit.runner.JUnitCore	TestRunMockAndTest

After	running	this	command,	we	realize	that	the	only	real	differences	in	output	are	at	the
beginning	and	end:

JUnit	version	4.11
...
Time:	5.393

OK	(1	test)

Or	in	the	case	of	a	failing	test:

...
FAILURES!!!
Tests	run:	1,		Failures:	1

If	you	set	the	code	up	in	Eclipse	or	a	similar	IDE,	you	can	get	the	standard	JUnit	view:

How	it	works…
In	the	case	of	the	Java	class,	I	think	you	can	see	what	is	happening;	we	run
SoapUIMockServiceRunner	and	SoapUITestCaseRunner,	supplying	all	the	libraries	via	the
Java	classpath.	Then,	you	can	see	the	SoapUI	core,	mock,	and	test	starting	up	in	the
console	output.

In	terms	of	the	unit	test,	there	is	only	a	little	more	to	it	in	this	example.	Those	familiar
with	Java	unit	testing	will	notice	that	in	this	example,	no	Assert	statements	are	used,	and
that	test	failures	are	expressed	by	the	runner	that	is	throwing	the	exceptions,	making	them
Errors	in	Eclipse	rather	than	Failures.	A	simple	way	to	change	Errors	to	Failures	is	by
catching	the	exception	and	using	Assert.fail(),	for	example:

try	{
		testRunner.run();
}	catch	(Exception	e)	{
		Assert.fail();
}

You	can	also	run	individual	TestCases	in	each	JUnit	test,	which	makes	the	output	more
granular	and	clearer,	as	individual	failures	show	more	nicely	in	the	Eclipse	JUnit	view.

There’s	more…
It	might	be	worth	pointing	out	that	any	options	you	can	set	using	the	command	line	or
Maven	can	of	course	also	be	set	using	the	Java	approach.	Take	a	look	at	the	SoapUI
source	code	in	Git,	or	the	API	docs,	if	you	need	more	information.	For	more	info	on	the
SoapUI	source	code,	see	the	Building,	packaging,	and	running	SoapUI	from	source	code
recipe	in	Chapter	11,	Taking	SoapUI	Further.

While	we	have	focused	on	JUnit,	the	runner	code	will	clearly	work	in	any	java-based	test
framework,	for	example,	JBehave	or	Cucumber.	Build	frameworks	such	as	Maven	and
Gradle	can	of	course	also	run	the	tests	easily.

See	also
The	Publishing	JUnit	reports	using	Jenkins	recipe	in	Chapter	6,	Reporting
Junit	Official	Site:	http://junit.org/
SoapUI	JUnit	documentation:	http://www.soapui.org/Test-Automation/integrating-
with-junit.html

http://junit.org/
http://www.soapui.org/Test-Automation/integrating-with-junit.html

Running	mocks	and	tests	using	Groovy
scripts
As	you	might	imagine,	running	SoapUI	mocks	and	tests	in	Groovy	is	quite	similar	to
running	the	same	in	Java,	but	is	arguably	more	elegant	in	terms	of	syntax	and	usage,	and
can	also	leverage	Grape	(The	Groovy	Adaptable	Packaging	Engine	or	Groovy	Advanced
Packaging	Engine)	dependency	management	to	allow	scripts	to	download	their
dependencies	when	run—see	http://groovy.codehaus.org/Grape	for	more	info.	This	recipe
starts	with	a	simple	Groovy	equivalent	of	the	java	RunMockAndTest	class	from	the
previous	recipe	and	then	shows	how	Grape	can	be	used	to	supply	all	its	library
dependencies.	This	recipe	is	similar	in	concept	at	the	beginning,	and	probably	a	little
briefer	in	places	than	the	Java	and	JUnit	one.	So	if	you	are	starting	here	and	need	more
details,	then	it	might	be	helpful	to	refer	to	it.

http://groovy.codehaus.org/Grape

Getting	ready
If	you	don’t	already	have	it,	you	will	need	to	download	and	install	the	latest	version	of
Groovy;—if	you	need	help	with	this,	see	http://groovy.codehaus.org/Installing+Groovy
(this	recipe	uses	version	2.21).

If	you	need	any	help	running	Groovy,	see	http://groovy.codehaus.org/Running.

The	SOAPDBMock	is	used,	and	all	Groovy	code	can	be	found	in	the	chapter	5	samples
/groovy/	folder.

http://groovy.codehaus.org/Installing+Groovy
http://groovy.codehaus.org/Running

How	to	do	it…
First,	let’s	take	a	look	at	a	simple	Groovy	script	to	do	the	same	as	we	did	in	the	last	recipe.
You	can	find	this	script	in	the	chapter	5	samples	/groovy/runmockandtest.groovy:

import	com.eviware.soapui.tools.SoapUIMockServiceRunner
import	com.eviware.soapui.tools.SoapUITestCaseRunner

SoapUIMockServiceRunner	mockRunner	=	new	SoapUIMockServiceRunner()
mockRunner.projectFile	=	args[0]
mockRunner.run()

println	"Mock	running…"

SoapUITestCaseRunner	testRunner	=	new	SoapUITestCaseRunner()
testRunner.setProjectFile(args[0])
testRunner.run()

Before	running	the	script,	open	a	shell	and	set	SOAPUI_HOME=<SoapUI	Home>	to	help	make
the	actual	run	command	neater:

export	SOAPUI_HOME=<SoapUI	Home>

Then,	to	run	the	script,	as	with	Java,	we	need	to	supply	the	SoapUI	JAR	and	libraries	via
the	classpath	(-cp)	and	the	location	of	soapui.ext.libraries	(which	contains	the	H2	DB
Driver	for	the	mock),	and	finally,	we	need	to	pass	the	SoapUI	project	file	location	as	the
script’s	parameter	(args[0]):

groovy	-cp	"$SOAPUI_HOME/lib/*:$SOAPUI_HOME/bin/soapui-5.2.0-SNAPSHOT.jar"	
-Dsoapui.ext.libraries=$SOAPUI_HOME/bin/ext	runmockandtest.groovy	/soapui-
cook/chapter3/SOAPMock-soapui-project.xml

You	should	now	see	the	mock	start	and	the	test	pass,	just	like	in	the	previous	recipe,
except	that	there	is	no	need	to	compile!

Now,	that	was	a	bit	neater	than	the	java	example,	and	there	wasn’t	didn’t	any	need	to
compile	it;	next,	let’s	see	how	Grape	can	help	us	ditch	having	to	directly	supply	all	those
libraries.

Take	a	look	at	this	script	(/groovy/runmockandtest-grape.groovy):

@GrabResolver(name='soapui',	
root='http://www.soapui.org/repository/maven2')
@Grab(group='com.smartbear.soapui',	module='soapui',	version='5.1.2-m-
SNAPSHOT')
@GrabExclude('jtidy:jtidy')
@GrabExclude('gnu.cajo:cajo')
import	com.eviware.soapui.tools.SoapUIMockServiceRunner
import	com.eviware.soapui.tools.SoapUITestCaseRunner

SoapUIMockServiceRunner	mockRunner	=	new	SoapUIMockServiceRunner()
mockRunner.projectFile	=	args[0]
mockRunner.run()

println	"Mock	running…"

SoapUITestCaseRunner	testRunner	=	new	SoapUITestCaseRunner()
testRunner.setProjectFile(args[0])
testRunner.run()

I’ll	explain	about	the	Grape	annotations	in	the	next	section;	for	now,	let’s	just	run	it;	the
command	is	as	follows:

groovy	-cp	"$SOAPUI_HOME/bin/ext/*"	-Dgroovy.grape.report.downloads=true	
runmockandtest-grape.groovy	/soapui-cookbook/chapter3/SOAPMock-soapui-
project.xml

After	waiting	for	a	few	minutes	and	after	a	lot	of	dependency	downloading,	you	should
see	the	script	run	exactly	as	before;	luckily,	the	next	time	you	run	it,	there	will	be	no	real
delay,	as	the	bucket-load	of	dependencies	will	have	already	been	downloaded!

Two	final	things:	when	you’re	happy	with	the	Grape	stuff,	you	can	remove	-
Dgroovy.grape.report.downloads=true,	which	was	added	initially	to	provide	some
output	so	that	you	wouldn’t	assume	that	the	script	had	hung	and	quit!

The	last	thing	is	that	the	Groovy	class	loader	needs	the	external	libraries	(the	H2	DB
Driver	for	the	mock)	to	be	supplied	on	its	classpath	rather	than	allowing	SoapUI	to	add	it
(which	doesn’t	work).

How	it	works…
The	first	Groovy	example	is	hopefully	similar	enough	to	the	previous	recipe’s	Java
example	to	be	understandable	on	its	own	or	by	reviewing	the	previous	recipe.

Regarding	the	second	example,	the	obvious	difference	lies	in	all	those	@Grab*	annotations
at	the	beginning;	the	rest	is	unchanged.	The	@GrabResolver	annotation	is	used	to	supply
any	additional	Maven	repositories	(maven	central	is	included	by	default);	in	this	case,	we
specify	the	soapui	repository.	The	@Grab	annotation	is	used	to	get	the	SoapUI	distribution
and	all	related	libraries,	version	5.1.2	in	this	case.	Finally,	the	@GrabExclude	annotations
are	used	to	ignore	a	couple	of	broken	dependencies	that	the	Maven	Plugin	seems	to
ignore,	but	if	not	excluded,	it	breaks	the	Grape	(And	Gradle)	dependency	resolution!

Due	to	the	extent	of	the	SoapUI	dependency	tree,	this	is	a	relatively	complex	example	of
Grape	dependency	management.	In	many	other	scripts,	only	the	@Grab	annotation	is
required.	Hopefully,	these	simple	examples	show	a	little	more	of	the	power	of	Groovy
scripting	and	Grape	dependency	management.

See	also
The	Running	load	tests	using	Maven,	Command	Line,	Java,	Groovy,	and	Gradle
scripts	recipe	in	Chapter	9,	Data-driven	Load	Testing	With	Custom	Datasources

Running	mocks	and	tests	using	Gradle
Like	Maven,	the	Gradle	build	framework	harnesses	the	power	of	dependency	management
and	also	some	Maven	usage	conventions,	but	replaces	Maven’s	XML	syntax	with	a
lightweight	Groovy-based	syntax	or	Domain	Specific	Language	(DSL).	Gradle	is	newer
than	Maven,	and	its	use	with	SoapUI	is	less	evolved	in	that	there	is	no	official	SoapUI
plugin	yet.	Nevertheless,	the	appeal	of	Gradle’s	strengths	as	a	build	framework	and	its
growing	popularity	make	it	a	very	viable	option	to	script	SoapUI.

This	recipe	uses	Gradle	to	run	and	provide	dependencies	for	the	runmockandtest.groovy
script	from	the	previous	recipe,	which	runs	the	mock	and	test	from	the	DBSOAPMock	project
from	the	chapter	3	samples.

This	recipe	assumes	that	you	know	a	little	about	what	Gradle	is	and	are	comfortable	with
the	Groovy	or	Java	syntax	for	scripting,	but	you	certainly	don’t	need	to	be	a	Gradle	expert.
If	you’re	new	to	Gradle	or	need	a	refresher,	then	it	might	help	to	take	a	look	at
https://www.gradle.org/get-started	.

https://www.gradle.org/get-started

Getting	ready…
If	you	don’t	already	have	Gradle,	you	don’t	need	to	download	it,	as	we’ll	use	a	Gradle
wrapper	for	the	sample.	If	you’re	not	familiar	with	Gradle	wrappers,	it’s	a	wrapper	script
that	automatically	downloads	the	specified	version	of	Gradle	if	it	doesn’t	already	exist
locally.	If	you	look	in	the	chapter	5	samples	/gradle/,	you	should	see	the	following
directories	and	files:

gradlew:	The	*nix/MacOS	Gradle	wrapper.
gradlew.bat:	The	Microsoft	Windows	Gradle	wrapper.
gradle/wrapper/gradle-wrapper.jar:	The	Gradle	wrapper	lib.
gradle/wrapper/gradle-wrapper.properties:	The	Gradle	wrapper	configuration.
build.gradle:	The	Gradle	script	that	we	are	going	to	run	and	look	at.
src/main/groovy/runmockandtest.groovy:	The	Groovy	script	to	be	run.
ext:	The	folder	that	contains	the	H2	DB	Driver.
lib:	The	folder	that	contains	a	JAR	that	I	could	not	provide	using	dependency
management;	more	on	this	later.

The	first	four	files,	the	wrapper	files,	were	generated	by	running	the	Gradle	wrapper	task:

gradle	wrapper

To	use	the	wrapper	instead	of	the	gradle	<task>	command,	just	type	the	following:

./gradlew	<task>	

If	you	would	prefer	to	not	use	the	wrapper,	you	can	always	download	Gradle.	If	you	need
any	help	with	this,	follow	the	instructions	at
http://www.gradle.org/docs/current/userguide/installation.html.

http://www.gradle.org/docs/current/userguide/installation.html

How	to	do	it…
Basically,	we	need	a	Gradle	build	script	that	takes	care	of	getting	all	the	SoapUI-related
dependencies	required	to	compile	and	run	runmockandtest.groovy.	Then,	we	need	a	task
to	actually	run	the	script.	By	convention,	all	Gradle	build	scripts	are	called	build.gradle.

Let’s	take	a	look	at	the	sample	build.gradle:

apply	plugin:	'groovy'
task	wrapper(type:	Wrapper)	{
				gradleVersion	=	'2.1'
}
repositories	{
				mavenCentral()
				maven	{	url	"http://www.soapui.org/repository/maven2"	}
}
dependencies	{
		compile(group:	'com.smartbear.soapui',	name:	'soapui',	version:'5.1.2-m-
SNAPSHOT')	{
				exclude(module:	'jms')
				exclude(module:	'jtidy')
				exclude(module:	'cajo')
		}		
		compile	files('/soapui-cookbook/chapter5/gradle/lib/jms-1.1.jar')
}
task	runMockAndTest	(dependsOn:	'classes',	type:	JavaExec)	{
				main	=	'runmockandtest'
				args	=	['/soapui-cookbook/chapter3/SOAPMock-soapui-project.xml']
				classpath	=	sourceSets.main.runtimeClasspath
}

We’ll	talk	more	about	how	the	script	works	in	the	next	section;	for	now,	let’s	just	run	it
and	see	what	happens.	Go	to	the	directory	that	contains	the	sample	and	run:

./gradlew	runMockAndTest

The	first	thing	you	should	see	is	a	lot	of	downloading	as	Gradle	takes	care	of	all	the
dependencies.	When	all	the	dependencies	have	downloaded,	you	should	see	Gradle	run
through	its	tasks:

:compileJava	UP-TO-DATE
:compileGroovy
:processResources	UP-TO-DATE
:classes
:runScript

Then,	the	runmockandtest.groovy	script	starts	to	run,	and	you	should	see	the	same	output
as	before	when	the	mock	has	started	and	when	the	test	runs	and	passes.	Finally,	you
should	see	something	like	this:

BUILD	SUCCESSFUL

Total	time:	14.178	secs

How	it	works…
The	build.gradle	script	uses	the	Groovy	plugin	(plugin	apply	plugin:	'groovy'),
which,	by	convention,	compiles	Groovy	files	found	in	src/main/groovy,	that	is,
runmockandtest.groovy.	The	resulting	class	file	can	be	found	in	the	build	folder.

The	next	part	configures	the	wrapper	task.	While	this	is	important	for	specifying	wrapper
properties,	like	which	version	of	Gradle	the	wrapper	should	use,	it	plays	no	part	in	the
execution	of	the	runMockAndTest	task.

In	the	next	section,	we	will	specify	the	repositories,	that	is,	where	to	get	all	the
dependencies,	as	we	did	in	the	previous	recipe’s	Grape	example:

mavenCentral()
maven	{	url	"http://www.soapui.org/repository/maven2"	}

Tip
Grape	is	included	in	the	Maven	Central	repository	by	default.

The	next	section	configures	the	dependencies:

dependencies	{
		compile(group:	'com.smartbear.soapui',	name:	'soapui',	version:'5.1.2-m-
SNAPSHOT')	{
				exclude(module:	'jms')
				exclude(module:	'jtidy')
				exclude(module:	'cajo')
		}		
		compile	files('/soapui-cookbook/chapter5/gradle/lib/jms-1.1.jar')
}

There	are	a	few	problems	with	Gradle	and	SoapUI’s	dependency	tree	here,	hence	all	the
exclusions!	Grape	seems	to	be	able	to	resolve	them	a	bit	more	easily,	except	for	also
having	problems	with	jtidy	and	cajo.	The	main	problem	here	is	javax.jms:jms:1.1,
which,	despite	adding	its	specific	repository,	doesn’t	get	resolved!	If	it	is	not	present,
SoapUI	won’t	work.	So,	as	a	workaround,	the	dependency	is	included	from	a	local	folder,
that	is,	lib/jms-1.1.jar.	Note	that	we	can	include	all	the	dependencies	this	way	if	we
need	to,	but	then	they	won’t	be	downloaded	automatically.

Finally,	we	define	a	custom	task	runMockAndTest	of	type	JavaExec	to	run	the	compiled
runmockandtest.class,	passing	the	project	as	a	runtime	argument.	It’s	important	to	note
that	the	class	path,	including	all	the	gathered	dependencies,	is	also	supplied	to	the	script
using	classpath	=	sourceSets.main.runtimeClasspath.

There’s	more…
One	possible	addition	to	this	recipe’s	Gradle	script	would	be	to	develop	a	similar	logic
within	a	custom	Gradle	plugin.	While	this	functionality	would	be	fundamentally	similar,
there	would	be	potential	advantages	in	terms	of	a	neater	DSL-based	syntax	and	also	the
ability	to	share	the	plugin	with	others	more	easily.

See	also
For	more	information	on	Gradle	Wrapper,	refer	to
http://www.gradle.org/docs/current/userguide/gradle_wrapper.html
For	more	information	on	Gradle	Tasks,	refer	to
http://www.gradle.org/docs/current/userguide/more_about_tasks.html
For	more	information	on	Gradle	JavaExec	Task,	refer	to
http://www.gradle.org/docs/current/dsl/org.gradle.api.tasks.JavaExec.html
For	more	information	on	Gradle	Plugin	Development,	refer	to
http://www.gradle.org/docs/current/userguide/custom_plugins.html
The	Running	load	tests	using	Maven,	command	line,	Java,	Groovy,	and	Gradle
scripts	recipe	in	Chapter	9,	Data-driven	Load	Testing	With	Custom	Datasources

http://www.gradle.org/docs/current/userguide/gradle_wrapper.html
http://www.gradle.org/docs/current/userguide/more_about_tasks.html
http://www.gradle.org/docs/current/dsl/org.gradle.api.tasks.JavaExec.html
http://www.gradle.org/docs/current/userguide/custom_plugins.html

Chapter	6.	Reporting
In	this	chapter,	we	will	cover	the	following	topics:

Generating	reports	using	test	runners
Publishing	JUnit	reports	using	Jenkins
Exporting	custom	reports	using	Groovy
Analyzing	test,	HTTP,	and	mock	coverage	(pro)

Introduction
This	chapter	naturally	builds	on	the	automation	and	scripting	themes	covered	in	the
previous	chapter.	It	mostly	looks	at	how	to	generate,	export,	and	publish	report	data	in	the
context	of	continuous	integration.

The	pro-only	UI-based	report	builder	functionality	has	not	been	covered.	Refer	to	the
SoapUI	online	help	if	you	need	more	information	on	this:
http://www.soapui.org/Reporting/getting-started-with-reporting.html.

http://www.soapui.org/Reporting/getting-started-with-reporting.html

What	you’ll	learn
You	will	learn	the	following	topics:

How	to	use	and	understand	the	types	of	test	reports	that	SoapUI	can	generate	using
scripts
How	to	use	Jenkins	(or	other	popular	CI	tools)	to	orchestrate	tests	and	publish	JUnit
style	results	as	reports
How	to	create	custom	test	reports	by	using	Groovy	to	access	SoapUI	test	framework
objects
How	SoapUI	coverage	reporting	works	and	its	uses

Generating	reports	from	test	runners
As	you	might	have	seen	in	the	previous	chapter,	when	running	the	SoapUI	test	runner	by
whatever	means,	there	are	open	source	and	pro	options	to	generate	reports.	In	this	recipe,
we’ll	mainly	look	at	the	reporting	options	that	are	common	to	both	versions.

Getting	ready
This	recipe	uses	the	SOAPDBMock-Reporting-soapui-project.xml	project,	which	is	a
version	of	the	chapter	3	sample’s	SOAPMock-soapui-project.xml	project,	with	a	few
additional	tests	and	assertions	that	make	the	results	a	bit	more	interesting.	You	can	find
this	project	in	the	chapter	6	samples.

In	this	recipe,	we’ll	explore	the	reporting	options	in	the	Launch	TestRunner	UI	option
and	command-line	testrunner	script,	but	you	can	also	script	any	equivalent	TestRunner
means,	including	Java,	Maven,	or	Gradle.	See	the	previous	chapter	if	you	need	any	help.

How	to	do	it…
First,	let’s	take	a	look	at	the	array	of	reporting	options	that	are	available	to	us,	and	see	how
the	Launch	TestRunner	UI	feature	presents	them	(pro	version):

Note	that	all	the	pro	features	in	the	bottom	half	of	the	window	are	grayed	out	in	the	open
source	version.	For	more	information	about	the	pro	features,	refer	to	the	previous	section
and	the	Analyzing	test,	HTTP,	and	mock	coverage	(pro)	recipe.

The	top	portion	of	the	launcher	window	effectively	provides	a	less	extensive	equivalent	of
the	command	line’s	testrunner	script	options:

-r:	This	prints	a	small	(summary)	report
-j:	This	sets	the	output	to	include	(JUnit)	XML	reports
-a:	This	turns	on	the	exporting	of	(all)	results
-f:	This	sets	the	output	(root)	folder	to	export	results	to

The	following	options	are	not	in	Launch	TestRunner	UI:

-A:	This	turns	on	the	option	to	export	all	results	using	folders

instead	of	long	filenames

-M:	This	creates	a	Test	Run	Log	Report	in	an	XML	format

Ok,	let’s	work	through	the	options.	The	first	one	to	set	in	all	cases	is	usually	where	you
want	any	report	files	to	go	(-f).	So	set	this	and	run	either	the	Launch	TestRunner	or	the
command	line	(run	from	<SoapUI	Home>/java/app/bin):

./testrunner.sh	-f"./reports"	SOAPDBMock-Reporting-soapui-project.xml

Tip
With	the	Launch	Test	Runner	UI	feature,	you	need	to	save	any	changes	to	the	project

before	running	it.	The	reason	being	that	the	launcher	works	by	running	the	command
line’s	testrunner	script	(refer	to	the	previous	chapter)	that	references	the	project	file
rather	than	the	state	of	the	tests	in	the	UI’s	memory.

Standard	reports
If	there	are	no	failing	tests,	then	only	console	INFO	logging	is	shown,	and	no	file	is
produced.	However,	if	we	enable	GetInvoiceTestCaseFail	and	rerun,	then	you	will	see
lengthy	Messages,	Properties,	Request,	and	Response	logging	in	the	console	along	with
a	file	that	contains	the	same	failure	information:

./reports/GetInvoiceTestSuite-GetInvoiceTestCaseFail-getInvoice2-0-
FAILED.txt

To	get	the	similar	files	to	pass	tests,	pass	or	fail,	rerun	using	the	(-a)	command-line	option
or	the	Export	All	Launcher	option,	and	you	should	then	see	the	files:

GetInvoiceTestSuite-GetInvoiceTestCasePass-getInvoice1-0-OK.txt
GetInvoiceTestSuite-GetInvoiceTestCasePass-getInvoice3-0-OK.txt

If	we	add	the	command-line	only	option	(-A),	interestingly,	it	not	only	converts	the	long
filename	to	folders,	but	it	also	produces	the	report	files	that	are	related	to	the	passed	tests:

GetInvoiceTestSuite/
		GetInvoiceTestCaseFail/getInvoice2-0-FAILED.txt
		GetInvoiceTestCasePass/getInvoice1-0-OK.txt
											/getInvoice3-0-OK.txt

Summary	reports
The	(-r)	command	line	or	the	Print	Report	Launcher	option	provides	the	following	type
of	summary	log	data,	but	only	if	there	are	no	failures:

	SoapUI	5.0.0	TestCaseRunner	Summary

Time	Taken:	1643ms
Total	TestSuites:	1
Total	TestCases:	1	(0	failed)
Total	TestSteps:	2
Total	Request	Assertions:	4
Total	Failed	Assertions:	0
Total	Exported	Results:	0

JUnit	Reports
The	(-j)	command	line	or	the	Export	JUnit	Results	Launcher	option	is	probably	the
most	useful.	It	produces	a	standard	JUnit	format	report	file	that	can	be	processed	by	other
tools	such	as	Hudson	and	Jenkins	(see	the	next	recipe	for	more	information).	Here	is	a
partial	example	of	the	format	produced	(TEST-GetInvoiceTestSuite.xml):

<?xml	version="1.0"	encoding="UTF-8"?>
<testsuite	name="SOAPDBMock-Reporting.GetInvoiceTestSuite"	tests="2"	
failures="1"	errors="0"	time="0.88">
				<properties>
		...

				</properties>
				<testcase	name="GetInvoiceTestCasePass"	time="0.859"/>
				<testcase	name="GetInvoiceTestCaseFail"	time="0.021">
								<failure	type="Cancelling	due	to	failed	test	step"	
message="Cancelling	due	to	failed	test	step"><![CDATA[<h3>getInvoice2	
Failed</h3><pre>[Invoice2ShouldHaveAmount200]	XPathContains	comparison	
failed	for	path	[declare	namespace	
inv='http://soapui.cookbook.samples/schema/invoice';
//inv:InvoiceDocument[1]/inv:amount[1]],	expecting	[200.0],	actual	was	
[23330.0]
</pre><hr/>]]></failure>
				</testcase>
</testsuite>	

AlertSite	Reports
Lastly,	let’s	try	the	(-M)	command	line’s	only	option	that	produces	what	appears	to	be	an
AlertSite	(http://alertsite.com/)	report	in	the	file	test_case_run_log_report.xml.	There
is	no	real	documentation	on	this	option	to	confirm	its	usage,	only	what	can	be	seen	in	the
SoapUI	source	code,	but	the	file	seems	complete	enough!

http://alertsite.com/

How	it	works…
The	only	real	way	to	understand	how	the	reports	are	triggered	and	generated	is	to	take	a
look	at	the	source	code.	The	SoapUITestCaseRunner	orchestrates	all	the	reporting	formats
depending	on	the	options	supplied.	The	standard	reports	are	generated	by	the
afterStep(...)	method.	The	summary	report	comes	from	the	printReport(...)
method.	The	JUnit	and	AlertSite	reports	are	a	little	more	complicated	and	involve	delegate
classes	from	the	package	com.eviware.soapui.report,	take	a	look	at	the	SoapUI	source
code:

JUnitReport
JUnitReportCollector
JUnitSecurityReportCollector	(See	chapter	7	security)
TestCaseRunLogReport	(AlertSite	Report)

There’s	more…
The	classes	and	methods	in	the	previous	section	are	readily	extendable	if	you	have
sufficient	Java	skills	and	are	happy	to	build	SoapUI	from	the	source	code	(see	the
Building,	packaging,	and	running	SoapUI	from	the	source	code	recipe	from	Chapter	11,
Taking	SoapUI	Further).	So,	if	you	find	any	of	the	report	formats	lacking,	then	they	can
be	customized.	For	example,	you	can	find	an	interesting	blog	article	that	shows	how	to
improve	SoapUI’s	JUnit	reports	at	http://blog.infostretch.com/customizing-soapui-reports.

Extended	reporting	functionality	can	also	be	obtained	or	developed	via	a	SoapUI	plugin;
see	Chapter	10,	Using	Plugins	and	Chapter	11,	Taking	SoapUI	Further	for	help	on	both
options.

In	addition	to	customizing	the	framework	classes,	you	can	also	go	your	own	way	and
provide	additional	reporting	functionality	from	within	SoapUI	using	Groovy	scripting.
The	Exporting	custom	reports	using	Groovy	recipe	illustrates	a	simple	example	of	this.

Pro	test	runner	options
The	pro	version	of	SoapUI	comes	with	a	UI-based	reports	builder;	see	the	official
documentation	at	http://www.soapui.org/Reporting/getting-started-with-reporting.html	if
you	need	more	on	this.

In	terms	of	the	command	line’s	testrunner	script,	these	are	the	pro	reporting	options:

-F:	This	sets	the	required	report	format.	This	is	used	with	-R.	The	valid	options	are
PDF,	XLS,	HTML,	RTF,	CSV,	TXT,	and	XML	(comma-separated).
-o:	This	opens	the	generated	report(s)	in	a	browser.
-R:	This	generates	a	report.
-g:	This	sets	the	output	to	include	coverage	HTML	reports.

There	are	additional	report	formats	available	(-F)	and	the	ability	to	open	(HTML)	reports
in	your	browser	(-o).	The	rather	vague	description	of	the	(-R)	option	is	just	a	way	of
specifying	the	Report	Type	value	from	the	dropdown	shown	in	the	Launcher	screenshot:

-R"Data	Export",	-R"TestSuite	Report"	or	-R"JUnit-Style	HTML	Report"

http://blog.infostretch.com/customizing-soapui-reports
http://www.soapui.org/Reporting/getting-started-with-reporting.html

Publishing	JUnit	reports	using	Jenkins
As	part	of	continuous	integration,	it	can	be	useful	to	display	SoapUI	test	reports	following
the	build	and	integration	test	cycle.	This	recipe	shows	how	use	Jenkins	to	run	tests,
generate	a	report,	and	publish	the	report	under	the	Jenkins	Job’s	Test	Result	page.

Tip
Other	CI	tools	can	be	used	too

In	addition	to	Jenkins,	any	CI	tool,	for	example,	TeamCity	and	Bamboo,	capable	of
processing	JUnit	style	results	could	be	used	in	its	place.	Refer	to	the	links	at	the	end	of	the
recipe	for	some	options.

Getting	ready
To	follow	along	with	this	recipe,	you	will	need	to	download	and	run	Jenkins.	Go	to
https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins	if	you	need	more	help	with
this.	In	this	recipe,	we	can	just	download	Jenkins.war	and	run	it	from	the	command
prompt	with	the	following:

Java	–jar	Jenkins.war

Jenkins	may	take	a	minute	or	two	to	set	up,	and	it	should	then	be	accessible	from
http://localhost:8080/.

The	SOAPDBMock-Reporting-soapui-project.xml	project	from	the	chapter	6	samples
will	be	used	to	illustrate	this	recipe.	The	test	needs	the	mock	to	be	running	to	pass,	so
please	remember	to	start	the	mock	service	in	SoapUI	before	running	the	Jenkins	job.

https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins

How	to	do	it…
First,	we	need	to	create	a	new	Jenkins	job	with	a	Build	step	of	type	Execute	Shell	to	run
the	tests	and	generate	a	report	for	the	SOAPDBMock-Reporting-soapui-project.xml
project	using	the	testrunner	script,	and	then	add	a	Post-build	Action	of	type	Publish
JUnit	test	result	report.	We	can	then	run	the	job	and	check	out	the	published	test	report.
Perform	the	following	steps:

1.	 First,	let’s	create	the	Jenkins	job.	Go	to	the	Jenkins	dashboard	(it	is	by	default	at
http://localhost:8080/)	and	click	on	New	Item.	Enter	an	Item	name	for	the	job,
for	example,	RunSOAPDBTests,	and	select	a	project	type	of	Freestyle	project.

2.	 Next,	add	Build	step.	Ignore	all	the	other	options	and	click	on	Add	build	step	and
select	Execute	shell.	For	the	command,	the	key	things	to	remember	are:

Provide	the	location	of	the	testrunner	script,	for	example,	used	cd	to	<SoapUI
Home>/bin	or	alternatively	set	up	the	SOAPUI_HOME	environment	variable	with
the	same	path	instead.
Run	the	testrunner	script.
You	need	the	–j	option	to	get	the	report	in	the	JUnit	format.
The	–r	(summary)	and	–a	(all	results)	options	are	optional.
Set	the	report	output	folder	(-f)	to	Workspace	for	the	Jenkins	Job.
Provide	the	project	file.

3.	 For	example,	on	MacOS/Linux,	this	script	could	be	as	follows:

Tip
Adjust	the	paths	for	SoapUI’s	bin	folder	and	the	project	location,	and	Windows	users
will	need	to	use	testrunner.bat.

4.	 Next,	add	the	post-build	action	to	publish	the	report.	Click	on	Add	post-build
action	and	select	Publish	JUnit	test	result	report.	By	default,	this	action	will	look
in	the	workspace	folder	for	the	job	for	report	files,	so	just	enter	*.xml	in	the	Test
report	XMLs	field.	For	example:

5.	 Now,	save	the	job	configuration	and	run	it.	Click	on	Save	and	then	click	on	Build
Now.	You	should	see	the	build	appear	in	Build	History:

6.	 If	all	is	well,	the	job	will	complete	and	will	appear	as	a	blue	sphere	in	the	Build
History;	if	yes,	move	on	to	step	6.	Otherwise,	you’ll	see	a	red	sphere.	To	check	what
went	wrong,	click	on	the	dated	job	link	in	the	build	history,	and	take	a	look	in	the
Console	Output	window	to	look	for	more	details	on	the	problem.	Then,	go	back	to
the	Job’s	page	and	click	on	Configure	to	fix	any	issues	with	the	job	setup,	and	when
you	think	you’ve	fixed	the	problem,	try	to	build	again.

7.	 If	all	goes	well,	click	on	the	successful	job	link	in	the	Build	History	and	take	a	look
at	the	Test	Result	page.	You	should	be	able	to	see	something	like	this:

8.	 Optionally,	to	see	failure	details,	you	can	edit	SOAPDBMock-Reporting-soapui-
project.xml	in	SoapUI,	and	enable	GetInvoiceTestCaseFail	TestCase	and	rerun
the	Jenkins	job.	You	should	then	see	the	details	of	the	failed	tests	under	the	Test
Result	page:

How	it	works…
Jenkins	is	a	build	job	runner	and	scheduler	with	many	additional	features.	When	Jenkins
runs	our	configured	testrunner	command	line,	it	generates	a	report	file	in	the	<User
Home>/.jenkins/workspace/RunSOAPDBTests	folder.	Then,	when	the	build	step	(our
command)	has	finished,	the	out-of-the-box	post-build	action	looks	for	JUnit	format	XML
report	files	in	the	same	folder,	parses	them,	and	publishes	the	report	under	the	Job’s	Test
Result	page.

There’s	more…
Apart	from	the	out-of-the-box	JUnit	reporting	features	of	Jenkins,	there	are	many
excellent	plugins	that	have	been	written	to	provide	the	bolt-on	report	processing
functionality.	For	example,	the	XUnit	plugin	(https://wiki.jenkins-
ci.org/display/JENKINS/xUnit+Plugin)	is	able	to	transform	the	results	from	other	testing
frameworks	or	custom	reports	into	a	JUnit	format	using	XSL	style	sheets	before
publishing	the	results.

https://wiki.jenkins-ci.org/display/JENKINS/xUnit+Plugin

See	also
For	more	information	on	Jenkins	Plugins,	go	to	https://wiki.jenkins-
ci.org/display/JENKINS/Plugins
For	more	information	on	TeamCity	XML	(and	JUnit	style)	Reports,	go	to
https://confluence.jetbrains.com/display/TCD8/XML+Report+Processing
For	more	information	on	Bamboo	JUnit	Style	Reporting,	go	to
https://confluence.atlassian.com/display/BAMBOO/JUnit+parsing+in+Bamboo

https://wiki.jenkins-ci.org/display/JENKINS/Plugins
https://confluence.jetbrains.com/display/TCD8/XML+Report+Processing
https://confluence.atlassian.com/display/BAMBOO/JUnit+parsing+in+Bamboo

Exporting	custom	reports	using	Groovy
Another	option	to	create	reports	is	to	use	a	Groovy	TestStep.	Consider	these	situations:

You	need	to	include	extra	information	that	is	not	available	via	one	of	the	standard
reports,	for	example,	by	accessing	test	framework	objects	or	other	test	data.
You	would	like	to	produce	a	custom	report	format,	for	example,	HTML	or	PDF.
You	would	like	to	use	the	report	later	in	TestCase;	for	example,	use	the	Email
TestStep	(see	the	Sending	e-mails	with	the	Email	TestStep	plugin	recipe	of	Chapter
10,	Using	Plugins)	to	e-mail	the	results	somewhere.

In	this	recipe,	we’ll	see	how	to	extract	test	results	from	the	SoapUI	framework	classes	and
export	the	data	to	a	custom	XML	report	file	using	Groovy.

Getting	ready
The	SOAPDBMock-Reporting-soapui-project.xml	project	from	the	chapter	6	samples
will	be	used	to	illustrate	this	recipe.	You	can	find	the	Groovy	script	under	the	TearDown
Script	tab	on	GetInvoiceTestSuite	(the	file	creation	is	commented	out	to	save	you	from
any	path-related	issues	when	running	the	tests	in	the	previous	recipes).

How	to	do	it…
The	basic	approach	here	will	be	to	run	TestSuite	and	its	related	TestCase	and	TestStep.

Add	a	Groovy	script	to	do	the	following:

When	TestSuite	has	completed,	we	want	to	iterate	over	each	TestCase	object	from
the	runner	variable	of	TestSuite	and	report	its	status	and	the	status	of	each	related
TestStep	object.	If	TestStep	fails,	then	we	will	want	to	report	the	reason.
We	want	to	build	the	report	as	we	iterate	using	simple	Groovy	report	objects.
Finally,	when	we	have	built	all	the	report	objects,	we	want	to	serialize	them	to	XML
and	export	the	XML	to	a	file.

Since	we	want	to	run	our	Groovy	script	following	the	TestSuite	execution,	it	is
convenient	to	add	it	as	a	TearDown	script.	With	that,	add	the	following	Groovy	script	to
the	GetInvoiceTestSuite	TearDown	Script	tab:

import	groovy.transform.TupleConstructor
import	com.thoughtworks.xstream.XStream

@TupleConstructor
class	TestSuite	{
		String	name
		List<TestCase>	testCases
}

@TupleConstructor
class	TestCase	{
		String	name
		String	status
		List<TestStep>	testSteps
}

@TupleConstructor
class	TestStep	{
		String	name
		String	status
		List<Message>	messages
}

@TupleConstructor
class	Message	{
			String	text
}

def	xstream	=		new	XStream()
xstream.useAttributeFor(TestSuite,	"name")
xstream.useAttributeFor(TestCase,	"name")
xstream.useAttributeFor(TestCase,	"status")
xstream.useAttributeFor(TestStep,	"name")
xstream.useAttributeFor(TestStep,	"status")
xstream.aliasField('TestCases',	TestSuite,	'testCases')
xstream.aliasField('TestSteps',	TestCase,	'testSteps')
xstream.aliasField('Messages',	TestStep,	'messages')

def	testSuiteObj	=	new	TestSuite(testSuite.name,[])

for	(testCaseResult	in	runner.results)
{
		def	testCaseObj	=	new	TestCase(testCaseResult.testCase.name,	
testCaseResult.status.toString(),	[])
		
				for	(testStepResult	in	testCaseResult.getResults())
				{
						def	testStepObj	=	new	TestStep(testStepResult.testStep.name,	
testStepResult.status.toString(),	[])
						
						testStepResult.messages.each()	{	message	->	
								testStepObj.messages.add(new	Message(message))
						}
						testCaseObj.testSteps.add(testStepObj)
				}
		testSuiteObj.testCases.add(testCaseObj)
}

def	xmlTestSuite	=	xstream.toXML(testSuiteObj)
log.info	xmlTestSuite
new	File('/temp/custom-report.xml').write(xmlTestSuite)

Before	running	the	preceding	script,	check	whether	the	file	path	on	the	last	line	is	ok	for
you.	Also,	if	you	would	like	to	see	some	failure	details,	make	sure	that
GetInvoiceTestCaseFail	is	enabled.	When	ready,	run	GetInvoiceTestSuite,	and	you
should	see	an	XML	document	log	message	and	a	report	file	created	(/temp/custom-
report.xml):

<TestSuite	name="GetInvoiceTestSuite">
		<TestCases>
				<TestCase	name="GetInvoiceTestCasePass"	status="FINISHED">
						<TestSteps>
								<TestStep	name="getInvoice1"	status="OK">
										<Messages/>
								</TestStep>
								<TestStep	name="getInvoice3"	status="OK">
										<Messages/>
								</TestStep>
						</TestSteps>
				</TestCase>
				<TestCase	name="GetInvoiceTestCaseFail"	status="FAILED">
						<TestSteps>
								<TestStep	name="getInvoice2"	status="FAILED">
										<Messages>
												<Message>
														<text>[Invoice2ShouldHaveAmount200]	XPathContains	comparison	
failed	for	path	[declare	namespace	
inv='http://soapui.cookbook.samples/schema/invoice';
//inv:InvoiceDocument[1]/inv:amount[1]],	expecting	[200.0],	actual	was	
[23330.0]</text>
												</Message>
										</Messages>

								</TestStep>
						</TestSteps>
				</TestCase>
		</TestCases>
</TestSuite>

How	it	works…
The	first	part	of	the	script	imports	the	classes	we	need;	note	how	the	XStream	library
(discussed	shortly)	is	conveniently	included	in	<SoapUI	home>/lib	already,	so	there	is	no
need	to	add	it	manually	as	an	external	(/ext)	library.

Next,	we	set	up	some	standard	Groovy	domain	classes	to	represent	our	report	structure.

Tip
The	@TupleConstructor	annotation	is	used	to	allow	a	slightly	more	convenient	way	to
construct	the	report	domain	classes	(for	more	information,	see
http://groovy.codehaus.org/gapi/groovy/transform/TupleConstructor.html).

We	then	instantiate	an	XStream	object	to	allow	us	to	serialize	the	report	domain	classes
into	XML	later	on	(for	more	information	on	the	XStream	library,	see
http://xstream.codehaus.org/).	Next,	we	tell	XStream	to	use	attributes	instead	of	elements
to	represent	the	name	and	status.	Then,	to	tweak	the	case	of	testCases,	and	for	the
testSteps	and	messages	element	names	to	begin	with	upper	case	letters,	we	set	up	some
XStream	field	aliases.

Now,	let’s	move	on	to	the	key	part	of	extracting	the	test	results	and	building	the	report
objects.	At	the	TestSuite	level,	the	runner	variable	(an	implementation	of	the
TestSuiteRunner	interface)	provides	access	to	all	the	TestCaseRunner	objects	via	the
List<TestCaseRunner>	getResults()	method.	For	each	TestCaseRunner	object,	we	can
get	the	status	and	also	get	the	related	TestStep	objects	from	the	List<TestStepResult>
getResults()	method.	Each	TestStepResult	object	gives	us	the	status,	and	in	the	case	of
a	failure,	gives	us	the	reason	from	the	String[]	getMessages()	method.

Finally,	we	can	use	XStream	to	serialize	the	report	domain	objects	to	XML	and	write	the
XML	to	a	file!

http://groovy.codehaus.org/gapi/groovy/transform/TupleConstructor.html
http://xstream.codehaus.org/

There’s	more…
The	key	thing	to	realize	here	is	that	once	you	know	how	to	extract	the	results,	the	export
format	can	easily	be	whatever	you	need,	and	therefore,	the	options	for	consuming	the
report	become	completely	open.	Also,	this	approach	is	likely	to	be	easier	than	extending
the	SoapUI	reporting	framework	class	directly,	as	was	discussed	briefly	in	the	first	recipe.

Analyzing	test,	HTTP,	and	mock	coverage
(Pro)
SoapUI	pro	comes	with	the	coverage	reporting	functionality	for	test,	HTTP	traffic,	and
mocks.	In	all	cases,	the	coverage	is	calculated	relative	to	the	service’s	contract.	This	recipe
focuses	on	SOAP	test	coverage	reporting,	on	how	the	coverage	scoring	works,	and	how	to
improve	the	scores.	The	other	forms	of	coverage	reporting	are	discussed	but	not	explored
in	detail.

Getting	Ready
There	are	two	sample	projects	used	for	this	recipe.	The	first	is	the	SOAPDBMock-
Reporting-soapui-project.xml	project	that	is	used	for	the	initial	coverage	run,	and	the
SOAPDBMock-Coverage-soapui-project.xml	project,	which	is	a	copy	of	the	previous	one,
but	which	contains	all	changes	made	during	the	recipe	to	improve	the	coverage	scores.
Both	are	in	the	chapter	6	samples.

How	to	do	it…
Test	coverage	reporting	is	available	at	the	Project,	TestSuite,	and	TestCase	levels,	but
the	functionality	is	essentially	the	same,	just	with	different	scopes;	that	is,	project
coverage	reporting	considers	all	test	artifacts	in	the	project	whereas	TestCase	coverage
reporting	just	looks	at	the	TestSteps	of	the	particular	TestCase.	Here,	we’ll	focus	on
TestSuite	level	coverage	reporting.

To	start	with,	let’s	run	the	coverage	report	against	the	SOAPDBMock-Reporting	project	to
get	our	initial	view	of	coverage.	To	do	this,	open	the	GetInvoiceTestSuite,	click	on	the
Coverage	tab,	check	Enable	Coverage,	and	run	TestSuite	to	see	something	like	this:

The	report	view	contains	the	following	main	parts:

Project	Tree	View:	This	shows	all	the	elements	of	the	project	and	their	associated
scores.	The	scores	are	probably	best	understood	by	examining	the	tree	yourself,	but
basically,	the	scores	are	aggregated	at	the	artifact	level.	More	information	on	this	will
be	provided	shortly.
Contract	Coverage:	This	is	shown	as	the	left-hand	percentage	figure	and	as	the	light
green	part	of	the	colored	bar	next	to	each	item	in	the	project	view.	It	is	also	shown	as
light	green	in	the	Message	Coverage	tab.
Assertion	Coverage:	This	is	shown	as	the	right-hand	percentage	and	as	the	dark
green	part	of	the	colored	bar	next	to	each	item	in	the	project	view.	It	is	also	shown	as
dark	green	in	the	Message	Content	tab	and	as	dark	green	in	the	Assertion	Results
tab.
Message	Coverage	Tab:	This	takes	effect	when	you	click	on	the	Request,
Response,	or	Assertion	elements.	It	shows	a	close-up	view	of	contract	and	assertion

coverage,	as	shown	in	the	preceding	screenshot.
Message	Content	Tab:	This	works	a	bit	like	the	Message	Coverage	tab,	but	shows
less	information;	that	is,	just	the	message	content.
Assertion	Results	Tab:	This	works	at	the	TestSuite	level	and	below,	and	shows	the
Assertions	how	much	of	the	actual	message	content	they	cover.

You	can	also	tweak	the	coverage	scoring	to	exclude	elements	and	to	count	empty	values
and	question	mark	values	in	the	Coverage	Options	window.

How	it	works…
So,	how	do	the	scores	work	and	what	can	we	do	to	improve	them?	Well	really	it	just
comes	down	to	working	on	the	following	two	areas.

Contract	coverage
From	the	preceding	screenshot,	we	can	see	at	the	project	level	a	score	of	6/12	being	the
aggregate	or	sum	of	createInvoice	0/6	(no	contract	coverage)	and	getInvoice	6/6	(full
contract	coverage).	Why	out	of	6?	In	the	case	of	createInvoice,	this	is	the	sum	of
Request	(4)	and	Response	(2).	Why	4	and	2?	It	‘s	how	SoapUI	considers	the	elements	in
the	contract’s	(WSDL)	request	and	response.	So,	in	this	case,	the	createInvoice
operation’s	request	has	4	elements:	the	createInvoice,	invoiceNo,	company,	and	amount
elements.	The	response	only	has	two	elements,	the	getInvoice	and	invoiceNo	elements.
For	the	getInvoice	operation,	the	request	and	response	are	effectively	reversed;	hence,
the	numbers	are	Request	(2)	and	Response	(4)	respectively.

So,	the	contract	coverage	score	is	OK	for	the	getInvoice	operation,	but	completely
lacking	for	the	createInvoice	operation.	Well,	that’ll	be	because	the
GetInvoiceTestSuite	doesn’t	test	it!	An	easy	fix	is	to	just	create	a	new
CreateInvoiceTestCase	without	any	Assertions	and	rerun	the	coverage	report,	and	we
should	be	up	to	12/12	and	a	nice	light	green	bar	for	contract	coverage!

Assertion	coverage
Basically,	the	scores	for	Assertions	are	relative	to	the	same	contract	element	totals
discussed	previously,	that	is,	how	well	the	Assertions	cover	the	contract.	To	explain	this
in	more	detail,	let’s	consider	the	Response	assertion	coverage	for	the	getInvoice1
TestStep.	We	are	currently	scoring	50	percent	(as	shown	in	the	screenshot).	This	is
because	the	two	Assertions	for	this	TestStep	cover	only	the	company	and	amount
response	elements	(2/4	or	50	percent).	To	improve	this	score	to	100	percent,	the	easiest
way	is	to	add	XPath	Assertion	for	the	entire	InvoiceDocument	element,	that	is:

XPath	Expression:
declare	namespace	inv='http://soapui.cookbook.samples/schema/invoice';
//inv:InvoiceDocument[1]

Expected	Result:
<inv:InvoiceDocument	
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"	
xmlns:inv="http://soapui.cookbook.samples/schema/invoice">
		<inv:invoiceNo>1</inv:invoiceNo>
		<inv:company>comp1</inv:company>
		<inv:amount>100.0</inv:amount>
</inv:InvoiceDocument>

Do	this,	and	you	should	get	100	percent	assertion	coverage	for	this	TestStep!

Tip
Only	XPath	Assertions	are	considered	by	coverage	reporting.

At	the	time	of	writing,	one	slightly	annoying	quirk	of	the	assertion	coverage	scoring	seems
to	be	that	requests	are	also	considered.	Yet,	there	is	no	way	to	test	requests	with	a	standard
XPath	Assertion,	so	you	can	never	score	above	0	percent!

There’s	more…
As	mentioned	in	the	first	recipe	and	in	the	previous	chapter,	test	coverage	reports	can	also
be	generated	when	using	test	runners,	for	example,	via	the	command	line,	Maven,	Java,
Groovy,	and	others.	For	example,	the	command	line	testrunner	script	uses	the	–g	option:

./testrunner.sh	-sGetInvoiceTestSuite	-a	-f/soapui-
cookbook/chapter6/reports	-o	-g	-R"TestSuite	Report"	-FHTML	-EDefault	
/soapui-cookbook/chapter6/SOAPDBMock-Coverage-soapui-project.xml

This	runs	the	tests	in	the	GetInvoiceTestSuite	and	generates	an	HTML	coverage	report
in	the	folder	specified	by	the	–f	option,	and	opens	the	report	in	a	browser	(-o).

HTTP	coverage	reporting
HTTP	coverage	reporting	is	an	extension	to	the	HTTP	recording	functionality	that	can	be
used	to	produce	coverage	reports	in	terms	of	recorded	traffic	(requests	made)	versus	a
target	service’s	contract	elements.	If	you	start	to	launch	the	HTTP	monitor	(to	act	as	a
global	proxy),	it	automatically	configures	a	proxy	within	SoapUI	so	that	all	requests	made
are	proxied	through	the	monitor.	If	you	enable	coverage	reporting	and	start	making	test
requests,	you	should	see	coverage	scores	generated	for	the	service	and	its	operations	in	a
similar	way	to	what	is	seen	in	this	recipe.

Mock	coverage	reporting
Like	HTTP	coverage	reporting,	the	mock	version’s	scores	are	an	expression	of	web
service	operation	usage	versus	total	contract	elements;	for	example,	in	the	case	of	the
SOAPDBMock-Reporting	project,	if	we	only	call	the	mock’s	getInvoice	operation,	the
overall	score	will	be	6/12,	half	red	(the	createInvoice	operation	is	not	called),	and	half
light	green	(the	getInvoice	operation	was	called).

Like	a	test	runner,	the	mock	runner	can	also	generate	mock	coverage	reports.	For	example,
you	can	use	the	–g	and	–f	options	to	generate	HTML	coverage	reports,	and	–o	is	used	to
automatically	open	them	in	a	browser.

REST	coverage	reporting
How	coverage	reporting	interprets	the	contract	for	a	RESTful	web	service	when	scoring	is
naturally	different	from	that	of	a	SOAP	web	service;	for	example,	it	looks	at	the	coverage
of	methods,	parameters,	representations,	and	status	codes.	While	coverage	functionality
runs	fine	and	provides	scoring	for	a	RESTful	web	service,	it’s	not	clear	as	to	what	do	you
have	to	do	to	improve	the	assertion	coverage	scores	as	no	amount	of	added	Assertions
seems	to	make	any	difference!	Also,	there	is	no	coverage	reporting	for	REST	mocks.	My
impression	is	that	at	the	time	of	writing	(SoapUI	Pro	5.1.2),	the	functionality	isn’t
completely	finished.

See	also
For	more	information	on	SoapUI	Coverage	Docs,	go	to
http://www.soapui.org/Coverage/getting-started.html

http://www.soapui.org/Coverage/getting-started.html

Chapter	7.	Testing	Secured	Web	Services
In	this	chapter,	we	will	cover	the	following	topics:

Testing	basic	HTTP-authenticated	RESTful	web	services
Testing	HTTP	Digest-authenticated	RESTful	web	services
Testing	HTTP	form-authenticated	RESTful	web	services
Creating	and	using	X.509	certificates	to	test	web	services	over	HTTPS
Testing	client	certificate	authenticated	web	services
Securing	mock	services	using	X.509	certificates
Testing	WS-Security	UsernameToken,	Timestamp,	and	TransportBinding
Scanning	web	service	security	vulnerabilities

Introduction
The	topic	of	web	service	security	can	be	challenging	to	understand	and	test.	To	be	able	to
test	secured	web	services	effectively,	it	is	naturally	advisable	to	at	least	understand	the
basics	of	the	security	schemes	involved.	Building	on	this,	it	can	also	be	advantageous	to
understand	some	of	the	common	types	of	attacks	for	the	security	schemes	involved.	Since
we	cannot	cover	all	this	in	a	single	chapter,	we	will	try	to	understand	at	least	the	basics	of
the	schemes	involved,	so	that	we	can	better	understand	how	SoapUI	can	be	used	to	test
them.	Fortunately,	apart	from	any	security-related	complexity	or	setup	work,	the	recipes
here	can	actually	be	quite	simple	to	do!

In	the	next	chapter,	we	will	build	on	some	of	the	security	concepts	and	testing	skills
learned	here,	while	taking	an	in-depth	look	at	OAuth	2	and	AWS	Access	Key
authentication	in	order	to	test	cloud-based	services.

What	you’ll	learn
You	will	learn	the	following	topics:

How	HTTP-based	authentication	schemes	work	and	can	be	tested
How	X.509	certificate	schemes	work	in	basic	terms	and	can	be	tested
How	to	create	and	use	self-signed	X.509	certificates	and	Java	keystores	within
SoapUI	to	test	and	mock	secured	services
The	basics	of	WS-Security	schemes	and	how	they	can	be	tested	within	SoapUI
How	SoapUI’s	security	scanning	functionality	can	be	used	and	customized	to	check
for	security	vulnerabilities

Testing	basic	HTTP-authenticated
RESTful	web	services
A	good	place	to	start	with	security	testing	is	HTTP	Basic	authentication.	As	far	as
authentication	approaches	go,	it	is	very	simple	and	widely	used	for	both	RESTful	and
SOAP	web	services.	In	this	recipe,	we’ll	see	how	to	set	up	and	test	a	REST	resource	that
requires	HTTP	Basic	authentication.	If	you’ve	not	seen	HTTP	Basic	authentication	before,
you	can,	of	course,	read	up	on	it	first,	although	this	should	not	be	necessary	in	order	to
follow	this	recipe,	and	we	will	look	at	how	it	works	shortly.

Getting	ready
Most	of	the	actual	legwork	in	this	recipe	involves	setting	up	the	test	service.	You	can
always	skip	these	parts	and	use	any	other	available	web	service	that	requires	HTTP	Basic
authentication	instead,	if	you	prefer.

To	create	our	test	service,	we’re	going	to	deploy	the	helloworld-webapp	Jersey	sample
WAR	file	to	Apache	Tomcat,	and	also	configure	HTTP	Basic	authentication	via	Tomcat.	I
have	included	a	prebuilt	helloworld-webapp.war	and	jersey-samples-1.0.zip	files	in
the	chapter	7	samples.	If	you	want	to,	you	can	always	build	the	sample	yourself	using
Maven;	just	use	mvn	install	in	the	/helloworld-webapp	project	folder	and	then	find	the
WAR	file	in	the	target	folder.	See	the	Maven	recipe	in	Chapter	5,	Automation	and
Scripting,	if	you	need	any	more	info	on	how	to	use	Maven	or	the	online	Apache	Maven
docs	(http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html).

Tip
This	example	uses	Tomcat	to	provide	HTTP	Basic	authentication,	so	you	can	use	any
other	test	service	WAR	file	if	you	prefer!

The	other	thing	we’ll	need	to	do	is	install	Apache	Tomcat.	This	recipe	uses	version	7.0.41.
See	the	Building	and	deploying	mocks	as	WAR	files	recipe	in	Chapter	3,	Developing	and
Deploying	Dynamic	REST	and	SOAP	Mocks,	if	you	need	any	help	in	installing	Tomcat,	or
again,	you	can	refer	to	the	online	Apache	Tomcat	docs
(http://wiki.apache.org/tomcat/GettingStarted).

Lastly,	the	RESTDBMock-soapui-project.xml	project	that	includes	the
BasicHTTPAuthTestCase	for	this	recipe	can	be	found	in	the	chapter	7	samples.

http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
http://wiki.apache.org/tomcat/GettingStarted

How	to	do	it…
There	are	three	parts	to	this	recipe.	Firstly,	a	smoke	test	is	needed	to	make	sure
helloworld-webapp.war	is	deployed	and	working	on	your	Tomcat.	Next,	we	set	up	HTTP
Basic	authentication	in	Tomcat.	Lastly,	we	set	up	and	run	SoapUI	tests	to	verify	that	the
HTTP	Basic	authentication	is	working	as	expected.

Smoke	test
There	are	many	ways	to	do	this,	but	all	we	need	to	do	is	deploy	helloworld-webapp.war,
that	is,	copy	the	WAR	file	into	<Tomcat	Home>/conf/webapps	and	then	start	Tomcat:

cd	<Tomcat	Home>/bin
./catalina.sh	run

You	should	then	see	a	similar	console	output:

INFO:	Deploying	web	application	archive	/ApplicationServers/apache-tomcat-
7.0.41/webapps/helloworld-webapp.war
…
INFO:	Starting	ProtocolHandler	["http-bio-8080"]
Nov	10,	2014	3:32:59	PM	org.apache.coyote.AbstractProtocol	start
INFO:	Starting	ProtocolHandler	["ajp-bio-8009"]
Nov	10,	2014	3:32:59	PM	org.apache.catalina.startup.Catalina	start
INFO:	Server	startup	in	1667	ms

Finally,	browse	to	http://localhost:8080/helloworld-webapp/helloworld,	and	you
should	see	Hello	World.

Tomcat	HTTP	Basic	authentication	setup
First,	let’s	create	a	new	role	and	user	to	provide	the	credentials	for	the	authentication.	Edit
<Tomcat	Home>/conf/tomcat-users.xml	and	add	the	following	at	the	bottom:

<role	rolename="role_restuser"/>
<user	username="restuser"	password="password"	roles="role_restuser"/>

This	creates	a	user	called	restuser	with	the	password	as	password,	and	assigns	it	a	new
role	of	role_restuser.

We	can	then	use	the	new	user	and	role	to	set	up	what’s	called	security-constraint,
login-config,	and	security-role	in	Tomcat.	To	do	this,	add	the	following	XML	code	to
<Tomcat	Home>/conf/web.xml:

<security-constraint>
		<web-resource-collection>
				<web-resource-name>REST	HTTP	Basic	Auth</web-resource-name>
				<url-pattern>/helloworld</url-pattern>
		</web-resource-collection>
		<auth-constraint>
				<role-name>role_restuser</role-name>
		</auth-constraint>
</security-constraint>
<login-config>
		<auth-method>BASIC</auth-method>

</login-config>
<security-role>
		<role-name>role_restuser</role-name>
</security-role>

More	on	this	later,	but	the	highlighted	parts	indicate	that	to	access	the	configured	url-
pattern	(/helloworld),	you’ll	need	a	user	with	the	role	role_restuser	to	authenticate
using	HTTP	Basic	authentication.

Now,	restart	Tomcat	and	browse	to	http://localhost:8080/helloworld-
webapp/helloworld,	and	you	should	be	challenged	with	an	Authentication	required
pop-up	window.	Enter	the	configured	username	and	password,	and	you	can	proceed	to	the
resource;	enter	the	wrong	details	and	you	should	get	a	status	401	page.

SoapUI	HTTP	Basic	authentication	testing
Now,	we’ll	use	SoapUI	to	test	whether	the	HTTP	Basic	authentication	is	working	as
expected.	Perform	the	following	steps:

1.	 This	is	the	easy	part	really;	just	set	up	your	REST	or	HTTP	Test	Request	TestStep
option	to	call	http://localhost:8080/helloworld-webapp/helloworld.

2.	 Optionally,	call	the	resource	without	authentication	and	verify	that	a	status	code	401
(unauthorized)	is	returned.

3.	 To	make	an	authenticated	request,	click	on	the	Auth	tab,	select	Add	New
Authorization,	and	select	Basic.	You	should	then	see	the	following	fields	appear
where	you	can	enter	the	username	and	password	(ignore	the	other	fields	for	now):

4.	 Now,	make	a	request	to	the	resource,	and	you	should	see	the	Hello	World	message
and	status	200	OK!

The	effect	of	Authenticate	pre-emptively	isn’t	obvious	at	first.	If	you	select	this,	then	the
authentication	details	are	sent	without	waiting	for	the	status	401	challenge	(that	SoapUI
automatically	deals	with).	To	see	this,	compare	an	ordinary	authenticated	request	with	a
preemptive	one	in	the	HTTP	log.	You	should	see	a	status	401	response	followed	by	a
status	200	response	and	only	a	status	200	for	the	preemptive	request.

How	it	works…
Assuming	you’re	not	preemptively	supplying	the	authorization	details,	if	you	attempt	to
access	a	URI	protected	by	HTTP	Basic	authentication,	then	you	get	a	status	401
Authorization	Required	response,	which	contains	the	scheme	details	as	a	HTTP	header:

WWW-Authenticate:	Basic	realm="Authentication	required"

The	realm	name	is	configurable,	but	the	Basic	scheme	requires	the	authentication	details
to	be	supplied	as	an	Authorization	header;	in	the	previous	example,	the	subsequent
authenticated	request	supplies	the	following	header	in	the	HTTP	log:

Authorization:	Basic	cmVzdHVzZXI6cGFzc3dvcmQ=

Here,	the	cmVzdHVzZXI6cGFzc3dvcmQ=	hash	is	the	Base64	encoding	of	the	string
username:password.	If	you	want	to	see	for	yourself,	try	encoding	the	string	at
http://webnet77.com/cgi-bin/helpers/base-64.pl.

SoapUI	is	able	to	calculate	the	hash	code	from	the	credentials	you	entered	and	add	the
authorization	header	automatically	to	the	request	when	challenged	or	preemptively.

http://webnet77.com/cgi-bin/helpers/base-64.pl

There’s	more…
Tip
Authorization	header	is	required	for	every	request

This	isn’t	always	apparent	when	testing	with	browsers	because	they	tend	to	cache	the
details.	Even	in	SoapUI,	if	you	select	Delete	current	or	No	Authorization	under	the
Authorization	dropdown,	the	request	will	still	authenticate!

Also,	from	a	security	perspective,	you	might	already	be	aware	that	HTTP	Basic
authentication	is	relatively	weak	when	used	without	transport-level	encryption	for
example,	SSL/TLS.	For	example,	the	hash	code	offers	no	protection	to	the	credentials,	as
Base64	is	reversible	unlike	message	digest	algorithms	such	as	MD5.	Fortunately,
transport-level	encryption	is	easy	to	provide	and	test,	as	we	can	see	in	the	Testing	web
services	over	HTTPS	recipe	later	on.

See	also
For	more	information	on	Tomcat	security,	go	to	http://tomcat.apache.org/tomcat-7.0-
doc/realm-howto.html

http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html

Testing	HTTP	Digest-authenticated
RESTful	web	services
HTTP	Digest	authentication	is	a	step	up	from	Basic	authentication,	both	in	the	level	of	the
protection	it	offers	and	its	complexity.	Strangely,	it	is	apparently	available	in	SoapUI,
despite	not	being	obviously	stated	as	supported	in	either	the	documentation	or	via	the	user
interface!	This	recipe	builds	on	the	previous	one	to	show	how	to	set	up	and	test	an	HTTP
Digest-authenticated	RESTful	web	service	hosted	on	Tomcat.

As	HTTP	Digest	authentication	is	lengthier	to	explain	than	HTTP	Basic	authentication,	we
will	not	cover	its	implementation	in	detail.	So	if	you	would	like	to	understand	more,	then
perhaps	do	some	background	reading.	Wikipedia	is	a	good	place	to	start
(http://en.wikipedia.org/wiki/Digest_access_authentication).

http://en.wikipedia.org/wiki/Digest_access_authentication

Getting	ready
Similar	to	the	previous	recipe,	Tomcat	will	be	used	to	provide	the	HTTP	Digest
authentication,	and	the	helloworld-webapp	Jersey	sample	will	again	be	used	to	test
against.	So	follow	the	advice	mentioned	in	the	Getting	ready	section	if	you	want	more
details	on	how	to	set	up	Tomcat.	The	Tomcat	HTTP	Basic	authentication	configuration
will	also	be	reused	and	tweaked	in	this	recipe.

The	RESTDBMock-soapui-project.xml	project	that	includes	the	DigestHTTPAuthTestCase
for	this	recipe	can	be	found	in	the	chapter	7	samples.

How	to	do	it…
First,	we’ll	configure	Tomcat	to	use	Digest	authentication	rather	than	Basic	authentication,
and	then	we’ll	set	up	a	SoapUI	test	to	authenticate	a	request	to	helloworld-webapp.

Tomcat	HTTP	Digest	authentication	setup
We	only	need	to	edit	<login-config/>	and	restart	Tomcat	to	provide	Digest
authentication.	Perform	the	following	steps:

1.	 Edit	<Tomcat	Home>/conf/web.xml	and	make	the	following	change	in	<login-
config>:

<login-config>
				<auth-method>DIGEST</auth-method>
				<realm-name>digest	realm</realm-name>
</login-config>

2.	 Restart	Tomcat	and	browse	to	http://localhost:8080/helloworld-
webapp/helloworld,	and	you	should	see	a	similar	Authentication	Required
challenge.	However,	the	digest	realm	should	be	apparent;	for	example,	in	Firefox,	the
site	says	“digest	realm”.	Enter	the	same	username	and	password	as	before
(restuser/password),	and	you	should	be	authenticated	and	see	the	Hello	World
message	again.

SoapUI	HTTP	Digest	authentication
To	test	whether	the	digest	authentication	provided	by	Tomcat	is	working	as	expected,	we
first	create	a	REST	Test	Request	TestStep	and	make	an	unauthenticated	request	to	verify
that	we	are	challenged	to	supply	digest	authentication.	Then,	we	configure	the
authentication	to	allow	us	to	successfully	access	the	REST	resource.	Perform	the
following	steps:

1.	 Let’s	add	an	HTTP	or	REST	test	request	to	http://localhost:8080/helloworld-
webapp/helloworld.	Make	a	request,	and	you	should	get	a	challenge	response	with
the	status	401,	and	which	contains	the	digest	WWW-Authenticate	header:

WWW-Authenticate:	Digest	realm="digest	realm",	qop="auth",	
nonce="1415713971682:2ffba5083baf438b90d2986cc77ae793",	
opaque="C4DAF43F253C0AFA5F006908F5595C8F"

2.	 The	necessary	authentication	details	are	exactly	the	same	as	for	HTTP	Basic
authentication	in	the	previous	recipe;	that	is,	click	on	the	Auth	tab,	select	Add	New
Authorization,	and	select	Basic.	Then,	enter	the	username	and	password.

Tip
Make	sure	Authenticate	pre-emptively	is	not	used	with	digest	authentication.	There	is	no
way	to	preemptively	supply	the	necessary	details	without	the	initial	challenge	of	first
obtaining	the	server-generated	parts	needed	to	form	the	Authorization	header	(more	on

that	later).	Also,	it	will	attempt	to	use	the	Basic	scheme—in	short,	you’ll	get	a	status	401
response	even	though	your	credentials	may	be	valid.

Now,	with	the	authentication	details	added,	make	another	request,	and	you	should	get	a
successful	status	200	response	that	contains	the	text	Hello	World!

How	it	works…
We	won’t	look	at	all	of	what	HTTP	Digest	authentication	is	or	can	be,	but	we	can	try	to
explain	some	of	the	key	differences	with	the	HTTP	Basic	authentication	so	that	you	can
understand	enough	to	test	it.	Let’s	start	with	the	extra	parameters	that	appear	in	the
challenge	response’s	WWW-Authenticate	header:

Digest:	This	is	the	authentication	scheme
realm:	This	is	configurable	on	the	server,	for	example,	<realm-name/>	on	Tomcat
qop	(Quality	of	Protection):	This	indicates	the	required	digest	calculation
nonce:	A	(cryptographic)	nonce	is	a	server-generated	number,	and	is	generated	only
once
opaque:	This	is	harder	to	explain	quickly	(see	the	following	links	for	more),	but	is
not	part	of	the	digest	calculation,	and	should	be	returned	unchanged.

The	short	explanation	is	that	these	parameters	are	used	by	the	client,	SoapUI,	to	calculate
the	digest	for	the	subsequent	request’s	Authorization	header;	that	is,	in	the	HTTP	log	you
will	see:

Authorization:	Digest	username="restuser",	realm="digest	realm",	
nonce="1415716491557:de6af453ecd19abca5d55334e8146831",	uri="/helloworld-
webapp/helloworld",	response="2b9d6d028c50cdd5fca231dd0cbc2ffe",	qop=auth,	
nc=00000001,	cnonce="f494e7c6145efa8651123920df2b3a2d",	
opaque="C4DAF43F253C0AFA5F006908F5595C8F"

There	are	even	more	parameters	here!	The	extra	parameters	(nc,	cnonce,	and	change	to	the
nonce	value)	are	dependent	on	the	qop	approach.	They	are	all	present	to	help	prevent
various	types	of	attacks,	such	as	chosen-plaintext	attacks
(http://en.wikipedia.org/wiki/Chosen-plaintext_attack).	The	main	parameter	is	response.
This	is	the	result	of	calculating	an	MD5	message	digest	of	the	credentials	along	with
several	of	the	parameters	you	have	seen.	However,	it	is	unlike	Basic	authentication,	in	the
following	ways:

The	response	(digest)	value	is	calculated	using	the	parameters	from	the	challenge
response’s	WWW-Authenticate	header.	Make	the	initial	request	and	challenge
response	essential	before	you	can	authenticate.
Generally,	all	qop	approaches	use	MD5	as	the	message	Digest	algorithm,	which	is	a
one-way	hash;	that	is,	it	cannot	be	reversed	like	Base64.

Note
Want	to	know	more?	An	easier	first	read	is
http://en.wikipedia.org/wiki/Digest_access_authentication.	However,	if	you	need	to	really
understand	it,	take	a	look	at	the	actual	RFCs	for	qop="auth"	at
https://www.ietf.org/rfc/rfc2617.txt.

http://en.wikipedia.org/wiki/Chosen-plaintext_attack
http://en.wikipedia.org/wiki/Digest_access_authentication
https://www.ietf.org/rfc/rfc2617.txt

There’s	more…
The	digest	scheme	might	look	relatively	complicated,	but	it	is	quite	doable	using	a	Groovy
script	to	calculate	the	digest	and	other	parameters	(see	the	preceding	links	for	the
calculations).	From	a	testing	point	of	view,	you	can	obviously	go	a	lot	further	than	we	did.
For	example,	the	basic	idea	of	the	nonce	value	is	to	prevent	replay	attacks;	that	is,
someone	captures	the	authorization	request	and	attempts	to	reuse	it	to	gain	access	(this	can
be	done	with	Basic	authentication).	Since	the	nonce	value	should	be	guaranteed	to	be	used
once	only	by	the	server,	any	attempt	to	reuse	the	same	value	should	be	rejected.	This	could
be	tested	in	SoapUI	by	constructing	a	request	with	a	previously	used	Authorization
header.

While	Digest	authentication	is	stronger	than	Basic	authentication	on	its	own,	it	is	not	as
strong	as	public	key	(SSL/TLS	and	client	certificate)	type	approaches	that	are	explored
later	on.

On	an	advanced	and	somewhat	related	note,	Amazon	Web	Services	(AWS)	use	a	form	of
digest	(not	the	HTTP	digest)	to	help	secure	a	lot	of	their	RESTful	web	services.	For	more
information,	see	the	Testing	AWS	using	access	key	authentication	recipe	in	Chapter	8,
Testing	AWS	and	OAuth	2	Secured	Cloud	Services.

See	also
For	more	information	on	Nonce,	go	to
http://en.wikipedia.org/wiki/Cryptographic_nonce.

http://en.wikipedia.org/wiki/Cryptographic_nonce

Testing	HTTP	form-authenticated
RESTful	web	services
A	simple	but	widely	used	approach	to	authentication	is	to	use	a	login	form	to	prevent
access	unless	valid	credentials	are	entered.	After	successful	authentication,	HTTP	session
management	is	used	to	enable	the	authentication	of	subsequent	requests.	In	this	recipe,	we
will	see	how	SoapUI	can	access	a	form-authenticated	RESTful	web	service.

Getting	ready
Similar	to	the	previous	two	recipes,	Tomcat	will	be	used	to	provide	the	HTTP	form
authentication,	and	the	helloworld-webapp	Jersey	sample	will	again	be	used	to	test
against.	So	please	follow	the	Getting	ready	advice	there	if	you	need	more	details.	The
Tomcat	HTTP	Basic	or	Digest	authentication	configuration	can	also	be	reused	and
tweaked	in	this	recipe.

The	RESTDBMock-soapui-project.xml	project	that	includes	the	FormBasedAuthTestCase
test	case	for	this	recipe	can	be	found	in	the	chapter	7	samples.

How	to	do	it…
Like	in	the	previous	two	recipes,	this	section	is	split	into	three	parts	so	that	you	can	easily
skip	the	Tomcat	and	helloworld-webapp	parts	if	you	already	have	a	service	to	test.	The
first	part	shows	how	to	alter	the	previous	recipe’s	configuration	to	enable	form-based
login,	the	second	part	shows	how	to	add	the	login	pages	to	the	helloworld-webapp,	and
the	third	part	shows	how	to	test	the	form	authentication	with	SoapUI.

Setting	up	Tomcat	form	authentication
This	is	quite	easy.	Simply	edit	<Tomcat	Home>/conf/web.xml	(from	either	of	the	previous
recipes)	and	replace	the	<login-config/>	element	with	the	following	code:

<login-config>
		<auth-method>FORM</auth-method>
		<form-login-config>
				<form-login-page>/login.html</form-login-page>
				<form-error-page>/error.html</form-error-page>
		</form-login-config>
</login-config>

This	configures	Tomcat	to	use	form-based	authentication	and	redirects	unauthenticated
requests	from	<url-pattern>/helloworld</url-pattern>	to	/login.html.	If	there	is	a
problem	with	the	login,	that	is,	the	use	of	wrong	credentials,	then	the	client	will	be
redirected	to	/error.html.	We’ll	add	these	pages	to	helloworld-webapp	in	the	next
section.

Adding	the	login	pages	to	helloworld-webapp
To	enable	Tomcat	form	login,	the	login.html	and	error.html	pages	obviously	need	to	be
available.

Note
If	you	want	to	skip	this	part,	I	have	added	a	readymade	helloworld-webapp-form.war
form	to	the	chapter	7	samples.	The	pages	login.html	and	error.html	are	also	there.	So,
you	can	just	deploy	the	WAR	to	Tomcat	and	move	on	if	you	prefer.

There	are	two	quick	things	we	have	to	do:

1.	 Add	the	pages	to	the	root	of	the	webapp.
2.	 Change	the	/WEB-INF/web.xml	servlet	mapping	to	allow	access	to	the	pages;	that	is,

change	<url-pattern>/*</url-pattern>	to	<url-pattern>/helloworld</url-
pattern>.

3.	 The	“quick	n	dirty”	way	to	accomplish	this	is	by	simply	copying	the	pages	directly
into	the	exploded	WAR	file	in	the	<Tomcat	Home>/webapps/helloworld-webapp/
folder	and	edit	the	WEB-INF/web.xml	file	there.	This	will	work,	but	will	get
overwritten	if	you	need	to	redeploy	the	WAR	file.

4.	 A	more	appropriate	way	would	be	to	make	these	changes	under	the	source	/jersey-
samples-1.0/helloworld-webapp/src/main/webapp	folder	and	rebuild	the	WAR
file	with	mvn	clean	install.	Then,	redeploy	the	generated	WAR	file.

Whichever	route	you	take,	let’s	just	make	sure	it	works!	A	Tomcat	restart	is	necessary,	not
for	the	WAR	changes,	but	to	pick	up	the	previous	form’s	login	configuration.	Once	this	is
done,	go	to	http://localhost:8080/helloworld-webapp-form/helloworld,	and	you
should	be	redirected	to	the	login	page.	Enter	the	valid	login	details,	and	you	should	gain
access	to	the	helloworld	resource	and	see	the	text	Hello	World	displayed.	If	you	get	the
login	details	wrong,	you	should	be	redirected	to	the	error	page	(the	Login	failed	message
is	displayed).

Testing	with	SoapUI
You	might	think	that	testing	the	login	form	is	just	a	matter	of	sending	HTTP	POST	of	the
/login.html	form	fields,	that	is,	j_username	and	j_password,	directly	to	the
/helloworld	resource,	/login.html,	or	a	form	action	URI	that	is	j_security_check.
Well,	there’s	a	little	more	to	it	than	that.	As	Tomcat	will	redirect	any	/helloworld	request
to	/login.html,	and	/login.html	isn’t	a	servlet,	it	won’t	accept	the	directly	posted	form
values	anyway.	OK,	so	should	we	post	to	the	actual	Tomcat	servlet	(j_security_check)
used	in	the	form	action?	Unfortunately	no,	since	Tomcat	requires	that	the	client	be
redirected	from	the	resource	first!	If	you	try	this	or	even	try	to	log	in	manually	without
being	first	redirected,	you’ll	get	a	status	408	error	response.

So,	what	we’re	actually	looking	for	is	two	requests	as	part	of	the	same	HTTP	session:	one
GET	request	to	the	/helloworld	resource	that	will	get	redirected,	and	one	POST	request
with	the	username	and	password	to	j_security_check	to	actually	log	in.	Then,	you	can
make	any	additional	requests	as	part	of	the	same	session	without	having	to	log	in	again.
Fortunately,	this	is	easy	enough	to	achieve	at	the	TestCase	level	in	SoapUI.	Perform	the
following	steps:

1.	 First,	create	a	TestCase	and	check	Maintain	HTTP	session	in	the	TestCase	options:

2.	 Then,	create	an	initial	HTTP	Test	Request	TestStep	with	the	method	GET	to
http://localhost:8080/helloworld-webapp-form/helloworld.	Optionally,	add
assertions	to	verify	that	the	redirect	to	the	login	page	was	successful.

3.	 Finally,	create	another	HTTP	Test	Request	TestStep	with	the	method	POST	to
http://localhost:8080/helloworld-webapp-form/j_security_check,	adding
QUERY-style	parameters	for	the	form	fields:

4.	 Optionally,	you	can	check	Post	QueryString	if	you	prefer,	and	add	assertions	to
verify	that	the	redirect	to	the	/helloworld	resource	was	successful.

5.	 Optionally,	add	another	HTTP	Test	Request	to	the	/helloworld	resource	without
credentials	to	verify	that	you	can	now	access	the	resource	without	logging	in	as	part
of	the	TestCase	session.

6.	 Now,	run	the	TestCase	and	you	should	be	able	to	see	either	from	your	passing
assertions	and/or	by	inspection	of	the	HTTP	log	that	the	redirects	and	login	were
successful!

How	it	works…
Apart	from	what	has	already	been	explained	en	route,	the	key	evidence	of	how	it	is
working	is	apparent	from	the	HTTP	log	when	running	the	TestCase	and	how	the	login
POST	TestStep	will	fail	if	run	in	isolation.	Let’s	take	a	look	at	the	HTTP	log	for	the
TestCase;	the	truncated	details	are	shown	here:

GET	/helloworld-webapp-form/helloworld	HTTP/1.1
HTTP/1.1	200	OK
Set-Cookie:	JSESSIONID=884B481FBC14F736E64EA8B78774DA71;	Path=/helloworld-
webapp-form/;	HttpOnly
<login.html	HTML	content	in	response>
...
POST	/helloworld-webapp-form/j_security_check?
j_username=restuser&j_password=password	HTTP/1.1
Cookie:	JSESSIONID=884B481FBC14F736E64EA8B78774DA71…
HTTP/1.1	302	Found
Location:	http://localhost:8080/helloworld-webapp-form/helloworld…
GET	/helloworld-webapp-form/helloworld	HTTP/1.1
Cookie:	JSESSIONID=884B481FBC14F736E64EA8B78774DA71
HTTP/1.1	200	OK
Hello	World

Here	you	can	clearly	see	the	initial	TestStep	request	display	the	login	page.	Then,	the
second	TestStep's	POST	to	j_security_check	is	redirected	(status	302)	to	the
/helloworld	resource.

The	key	lesson	here	is	how	to	manage	requests	as	part	of	the	same	HTTP	session.	This
technique	should	be	applicable	to	many	HTTP	login	authentications	to	access	or	test	web
applications	as	well	as	services!

Creating	and	using	X.509	certificates	to
test	web	services	over	HTTPS
The	use	of	transport	layer	security	(HTTPS)	is	a	major	part	of	modern	web	security.	The
current	TLS	protocol,	often	referred	to	by	its	predecessor’s	name,	SSL,	uses	X.509
certificates	and,	therefore,	public	key	cryptography	to	keep	HTTP	traffic	private.	Many
other	security	schemes,	including	those	from	the	previous	three	recipes,	can	and	are	often
used	in	conjunction	with	transport	layer	security	(HTTPS).

In	this	recipe,	we’ll	focus	on	testing	a	RESTful	web	service	over	HTTPS	hosted	on
Tomcat.	There	is	nothing	really	to	do	in	SoapUI	to	enable	HTTPS	access,	but	from	a
testing	perspective,	you	may	still	find	it	necessary	to	understand	what’s	going	on	and	be
able	to	make	assertions	about	the	validity	of	the	certificate	details,	which	SoapUI	doesn’t
provide	out	of	the	box.

To	really	follow	what’s	involved	in	this	recipe,	some	knowledge	of	the	concepts	of	public
key	cryptography	and	how	Java	supports	them	(Java	Secure	Socket	Extension	JSSE)	is
necessary.	This	is	too	involved	to	fully	explain	here.	However,	the	actual	steps	are
probably	not	that	hard	to	perform	and	use	without	this	knowledge.

Getting	ready
Similar	to	the	previous	three	recipes,	Tomcat	will	be	used	to	provide	the	HTTPS	transport
layer	security,	and	the	helloworld-webapp	Jersey	sample	will	again	be	used	to	test
against.	So	follow	the	advice	mentioned	in	the	Getting	ready	section	if	you	want	more
details	on	how	to	set	up	Tomcat.	For	simplicity,	we	will	not	use	any	additional
authentication.	So	comment	out	or	delete	the	<security-constraint>,	<login-config>,
and	<security-role>	sections	from	<Tomcat	Home>/conf/web.xml,	or	instead,	just
provide	the	authentication	details	as	required.

The	RESTDBMock-soapui-project.xml	project	that	includes	TLSEncryptedTestCase	for
this	recipe	can	be	found	in	the	chapter	7	samples.

How	to	do	it…
Again,	this	section	is	split	into	two	parts,	so	you	can	skip	any	setup	you	don’t	require.	The
first	part	deals	with	enabling	HTTPS	transport	layer	security	in	Tomcat.	The	second	part
deals	with	the	actual	SoapUI	testing.

Enabling	HTTPS	in	Tomcat
Firstly,	we’re	going	to	need	private	and	public	keys	to	allow	the	server	(Tomcat)	to
provide	encrypted	HTTP	traffic	(HTTPS)	using	the	private	key,	and	the	client	(SoapUI)	to
decrypt	the	traffic	using	the	matching	public	key.	We	can	generate	these	using	the	JDK’s
keytool	using	the	following	shell	command:

Tip
$JAVA_HOME/bin	needs	to	be	on	the	PATH	for	the	keytool	to	work.

keytool	-genkeypair	-alias	serverkey	-keyalg	RSA	-keysize	2048	-dname	
"CN=localhost,OU=SoapUI	Cookbook,O=Chapter7,L=Town,S=County,C=UK"	-keypass	
password	-storepass	password	-keystore	server.jks

The	result	is	a	Java	keystore	(server.jks)	that	contains	the	key	pair.

Tip
Checking	the	keystore	contents

You	can	use	the	following	command:

keytool	-list	-v	-keystore	server.jks	-storepass	password

If	you	try	this	in	the	preceding	keystore,	it	is	not	obvious	that	there	are	two	keys	in	there.
The	public	key	is	stored	together	with	the	private	key	as	part	of	what’s	called	a	certificate
chain,	and	appears	as	a	single	entry	in	the	keystore.

Tip
Self-signed	certificates

The	certificates	that	we	have	created	are	what’s	known	as	self	signed.	In	this	case,	these
are	signed	by	us	rather	than	an	approved	Certificate	Authority	(CA)	such	as	Thawte	or
VerySign;	for	more	information,	see	http://en.wikipedia.org/wiki/Self-signed_certificate.

Next,	we	need	to	configure	Tomcat	to	use	this	keystore	to	provide	the	private	key	to
allow	secure	(encrypted)	HTTPS	traffic	over	port	8443.	To	do	this,	edit	<Tomcat
Home>/conf/server.xml	and	add	the	following	<Connector/>	element:

<Connector	port="8443"	protocol="HTTP/1.1"	SSLEnabled="true"
															maxThreads="150"	scheme="https"	secure="true"
															clientAuth="false"	sslProtocol="TLS"	
keystoreFile="/ApplicationServers/apache-tomcat-7.0.41/keystore/server.jks"
									keystorePass="password"	/>

Make	sure	you	set	the	keystoreFile	attribute	to	the	location	of	your	keystore.

http://en.wikipedia.org/wiki/Self-signed_certificate

Now,	restart	Tomcat,	and,	assuming	you	have	helloworld-webapp.war	deployed,	we	can
test	it	by	going	to	https://localhost:8443/helloworld-webapp-form/helloworld.

You	will,	most	likely,	see	a	browser-specific	certificate	trust/security	warning	message.
This	is	because	unlike	most	production	certificates	that	are	backed	by	a	recognized
certification	authority,	our	certificate	is	what’s	known	as	self-signed.	So	be	content	with
the	fact	that	it	was	indeed	you	who	provided	this	certificate	by	comparing	its	details	to
those	mentioned	earlier,	and	then	disregard	the	warning;	you	should	see	the	Hello	World
message	again.	Luckily,	SoapUI	is	completely	trusting	of	any	certificate	(as	will	be
explained	later).	So	let’s	get	on	with	the	testing!

Testing	the	service	over	HTTPS
So,	let’s	create	a	REST	Test	Request	TestStep	for	https://localhost:8443/helloworld-
webapp-form/helloworld	and	run	it.	Well,	it	should	just	work,	giving	you	the	usual	Hello
World	response	without	any	trust	issues,	along	with	our	certificate	details	in	the	SSL	Info
(1	certs)	tab!

Tip
SoapUI	will	trust	any	server	certificate

To	understand	why,	a	custom	SSLSocketFactory	(SoapUISSLSocketFactory)	has	been
written	to	override	the	checkServerTrusted	methods	to	do	nothing.	This	is	fine	and	labor-
saving	for	a	testing	tool,	but	not	fine	for	a	production	client	and	a	browser!	For	more
background	on	Java	Secure	Socket	Extension	(JSSE),	refer	to
https://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html.

Is	that	it?	Well,	going	a	bit	further,	it	can	be	useful	to	assert	that	a	service	is	actually	being
accessed	over	HTTPS	or	verify	details	about	the	server	certificate,	which	is	not	available
as	a	standard	Assertion.	To	do	this,	we	can	use	Script	Assertion.

We	can	make	Assertions	about	the	certificate	by	inspecting	SSLInfo	and	its	properties.

For	example,	we	can	assert	what	the	certificate	principle	is	and	who	is	it	from:

assert	
messageExchange.response.SSLInfo.peerPrincipal.name=="CN=localhost,OU=SoapU
I	Cookbook,O=Chapter7,L=Town,ST=County,C=UK"

You	can	also	check	what	cipher	suite	was	used:

assert	
messageExchange.response.SSLInfo.cipherSuite=="TLS_ECDHE_RSA_WITH_AES_128_C
BC_SHA"

Also,	you	can	check	whether	the	certificate	is	unverified:

assert	messageExchange.response.SSLInfo.isPeerUnverified()==false

This	could	be	serious;	for	more	information,	read	about	the	exception	at	the	root	cause,	at
https://docs.oracle.com/javase/7/docs/api/javax/net/ssl/SSLPeerUnverifiedException.html.

https://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://docs.oracle.com/javase/7/docs/api/javax/net/ssl/SSLPeerUnverifiedException.html

How	it	works…
The	main	part	of	how	it	works	is	related	to	public	key	cryptography	and	the	certificate
handling.	In	short,	when	SoapUI	accesses	the	resource	over	HTTPS,	the	server	(Tomcat)
encrypts	the	data	using	its	private	key.	To	be	able	to	decrypt	the	data,	SoapUI	needs	to
request	the	server’s	matching	public	key,	which	it	trusts,	regardless	of	its	properties,	for
reasons	explained	earlier.	Once	obtained,	SoapUI	is	able	to	use	the	public	key	to	decrypt
the	HTTPS	traffic	and	display	the	response	data	as	normal.	Since	HTTPS	is	a	transport
layer	security	technology,	you	can	only	see	the	encryption	in	action	by	intercepting	the
actual	network	traffic.

There’s	more…
Accessing	web	services	over	HTTPS	provides	protection	in	the	form	of	encrypted	traffic;
that	is,	people	should	find	it	very	hard	to	understand	the	HTTP	request	and	response	data
sent	over	the	network.	However,	it	provides	no	guarantee	to	the	service	of	who	the	client
is.	In	the	next	recipe,	we	will	build	on	these	concepts	to	provide	this	guarantee	of	identity
using	client	certificate	authentication.

See	also
For	more	information	on	JSSE,	refer	to:
https://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
For	more	information	on	Keytool,	refer	to:
https://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

https://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

Testing	client	certificate	authenticated
web	services
This	recipe	builds	on	the	concepts	of	the	previous	one	to	show	how	we	can	test	web
services	over	an	HTTPS	connection	that	also	requires	a	client	X.509	certificate	to	be
provided	as	a	guarantee	of	the	caller	identity.	The	actual	work	required	to	provide	the
client	certificate	in	SoapUI	is	very	short.	So	if	you	are	happy	enough	with	the	concepts,
certificates,	and	java	Keystore	handling,	then	you	can	just	skip	to	this	part.	The	entire
recipe	covers	creating	the	required	client	and	server	key	pairs	and	configuring	Tomcat	to
insist	that	SoapUI	provides	a	valid	client	certificate	before	allowing	access	to	a	simple
RESTful	resource.

Getting	ready
This	recipe	builds	directly	on	the	previous	one.	Everything	covered	and	done	there	will	be
needed	again	here,	that	is,	Tomcat,	the	helloworld-webapp	REST	sample,	the	SSL
Connector	configuration,	and	the	server.jks	keystore.	Of	course,	if	you	have	your	own
working	HTTPS	service	and	client	certificate	ready,	you	can	always	skip	straight	to	the
SoapUI	part.

The	RESTDBMock-soapui-project.xml	project	that	includes	the
ClientCertificateAuthTestCase	for	this	recipe	can	be	found	in	the	chapter	7	samples.
The	keystores	(client.jks	and	server.jks)	that	we	will	create	in	this	recipe	are	also
present.

How	to	do	it…
Again,	to	help	people	who	want	to	skip	the	setup,	this	section	is	split	into	three	parts.	The
first	explains	how	to	generate	the	required	key	pairs	(certificates)	and	the	Java	keystore
correctly.	The	second	part	is	Tomcat-specific	and	deals	with	configuring	Tomcat	to	require
the	client	certificate	before	allowing	HTTPS	access.	The	final	section	shows	how	to
enable	SoapUI	to	provide	the	client	certificate.

Client	certificate	creation	and	keystore	setup
This	time,	there	are	going	to	be	two	keystores	involved	in	the	certificate	handshake,	one
for	the	client	(SoapUI)	and	one	for	the	server	(Tomcat).	We	already	have	the	server’s	key
pair	generated	from	the	previous	recipe	in	the	server.jks	keystore.	So	we	only	need	to
create	the	client	key-pair	and	keystore	now:

keytool	-genkeypair	-alias	clientkey	-keyalg	RSA	-keysize	2048	-dname	
"CN=localhost,OU=SoapUI	Cookbook,O=Chapter7,L=Town,S=County,C=UK"	-keypass	
password	-storepass	password	-keystore	client.jks

In	order	to	allow	the	server	to	trust	the	client’s	private	key	when	it	asks	to	see	it,	we	also
need	to	copy	the	client’s	public	key	into	the	server’s	keystore:

keytool	-exportcert	-keystore	client.jks	-storepass	password	-file	client-
pk.cer	-alias	clientkey
keytool	-importcert	-keystore	server.jks	-storepass	password	-file	client-
pk.cer	-alias	clientcert	-noprompt

Note
If	you	don’t	do	this	and	try	to	use	the	client.jks	keystore	without	copying	the	client’s
public	key	into	server.jks,	you	will	see	an	error	like
javax.net.ssl.SSLHandshakeException:	Received	fatal	alert:
certificate_unknown.

Tomcat	configuration
To	configure	Tomcat	to	require	a	valid	client	certificate,	replace	the	previous	HTTPS
connector	details	with	the	following	in	<Tomcat	Home>/conf/server.xml:

<Connector	port="8443"	protocol="HTTP/1.1"	SSLEnabled="true"
															maxThreads="150"	scheme="https"	secure="true"
															clientAuth="true"	sslProtocol="TLS"	
															keystoreFile="/ApplicationServers/apache-tomcat-
7.0.41/keystore/server.jks"	keystoreType="JKS"	keystorePass="password"
															truststoreFile="/ApplicationServers/apache-tomcat-
7.0.41/keystore/server.jks"	truststoreType="JKS"	
truststorePass="password"/>

The	new	parts	are	highlighted	(clientAuth	and	the	trust	store	details).

Enabling	client	certificate	authentication	in	SoapUI
This	is	the	easy	part.	First,	let’s	check	whether	the	certificate	is	indeed	required	by	calling
the	service	without	it.	Create	a	REST	Test	Request	TestStep	and	set	the	endpoint	to

https://localhost:8443/helloworld-webapp/helloworld.

If	you	run	this,	you	should	see	the	error	javax.net.ssl.SSLHandshakeException:
Received	fatal	alert:	bad_certificate;	in	other	words,	there	is	no	certificate!	Let’s
provide	it.	Go	to	SoapUI	Preferences	|	SSL	Settings	and	enter	the	location	and	password
for	the	client.jks	keystore:

Tip
To	make	sure	you	have	entered	the	keystore	password	correctly,	you	can	verify	that	the
SoapUI	log	has	no	error:

Thu	Nov	13	12:54:57	GMT	2014:INFO:Updating	keyStore..
Thu	Nov	13	12:54:57	GMT	2014:INFO:Initializing	KeyStore

Now,	if	you	rerun	the	request,	you	should	see	the	Hello	World	response!

How	it	works…
The	actual	client	certificate	handshake	details	can	seem	quite	complicated.	A	good
diagram	that	shows	the	exchange	can	be	found	at
http://commons.wikimedia.org/wiki/File:Ssl_handshake_with_two_way_authentication_with_certificates.png

In	grossly	simplified	terms,	when	SoapUI	connects	to	the	server	over	HTTPS,	the	server
requests	that	the	client	sends	its	certificate	details	and	also	the	same	certificate	details
encrypted	with	the	client’s	private	key.	As	the	server	has	the	client’s	public	key	in	its	key
store,	it	is	able	to	decrypt	the	encrypted	certificate	and	compare	it	to	the	unencrypted	one
and	know	that	only	the	client	with	the	matching	private	key	could	have	sent	it.

Tip
Debugging	SSL

If	you	need	to	see	the	exact	details	of	the	exchange,	then	add	the	Java	option—
Djavax.net.debug=ssl:handshake	when	starting	Tomcat	and/or	SoapUI.	This	can	be
useful	when	debugging	certificate	issues.

In	the	preceding	Test	Request,	SoapUI	also	provides	details	of	the	local	(client)	and	peer
(server)	certificate	under	the	SSL	Info	(1	certs)	tab.	Note	that	it	says	(1	certs)	because	it
is	actually	one	certificate	chain	that	includes	the	certificates	involved.

Note
SoapUI	certificate	trust

Normally,	with	other	web	service	clients,	it	would	also	have	been	necessary	to	have
copied	the	server’s	public	key	into	the	client’s	(SoapUI’s)	keystore	in	order	to	allow	the
client	to	trust	the	server	before	it	even	sends	its	certificate’s	details.	In	the	case	of	SoapUI,
this	is	not	necessary	for	reasons	discussed	in	the	previous	recipe;	that	is,	it	doesn’t	check
certificate	trust!

http://commons.wikimedia.org/wiki/File:Ssl_handshake_with_two_way_authentication_with_certificates.png

There’s	more…
Like	before,	while	there	wasn’t	much	to	do	from	a	SoapUI	perspective,	we	could	also
perform	some	Script	Assertions	to	verify	the	client	certificate	details.	The	important
thing	is	to	understand	what’s	going	on	and	how	to	use	the	certificates	and	keystores.	Client
certificate	authentication	is	also	used	in	the	next	two	recipes.

Securing	mock	services	using	X.509
certificates
Mock	services	in	SoapUI	can	also	support	the	HTTPS	transport	layer	security,	including
the	client	certificate	authentication	seen	in	the	previous	recipe.	This	recipe	builds	on	the
previous	two,	showing	how	to	enable	the	HTTPS	transport	layer	security	and	client
certificate	authentication	with	SOAPDB	MockService	from	chapter	3.

The	actual	steps	should	be	pretty	easy	if	you	have	followed	the	previous	two	recipes	or	are
already	comfortable	using	X.509	certificates.

Getting	ready
We’ll	use	the	server.jks	and	client.jks	keystores	from	the	previous	recipe	and	their
passwords.

In	terms	of	securing	the	mock	service,	we’ll	use	a	modified	version	of	the	SOAPMock-
soapui-project.xml	project	from	the	chapter	3	sample	called	SOAPDBMock-Reporting-
soapui-project.xml	(SOAPDBMock-Security).	You	can	find	this	in	the	chapter	7
samples.

How	to	do	it…
The	sample	mock	service	is	already	setup	to	provide	mock	requests	over	HTTP	on	port
9001.	First,	we’ll	enable	HTTPS	traffic	to	the	mock	over	port	9002.	No	change	to	the
actual	mock	is	necessary.	We	can	do	this	via	SoapUI	Preferences	|	SSL	Settings,	adding
the	following	details:

Note	that	Mock	Key	Password	refers	to	the	–keypass	parameter	(a	private	key	password)
provided	to	the	keytool	that	also	has	a	value	of	password.

If	we	restart	the	mock	and	setup	a	new	Test	Request	TestStep	for
https://localhost:9002/mockInvoicePortBinding,	we	should	get	the	usual	invoice
document	response	along	with	the	details	of	the	server	(mock)	certificate	in	the	SSL	Info
(1	cert)	tab!

Next,	we’ll	enable	client	certificate	authentication	on	the	mock.	In	SoapUI	preferences,	set
the	location	of	server.jks	to	Mock	TrustStore	and	the	password	to	Mock	TrustStore
Password,	and	check	requires	client	authentication.	For	now,	don’t	set	the	KeyStore
and	KeyStore	password	properties,	and	let’s	do	a	little	negative	test	to	make	sure	the
client	certificate	is	indeed	required;	that	is,	run	the	previous	TestStep,	and	if	it’s	working,
you	should	get	an	error	message	of	Exception	in	request:
javax.net.ssl.SSLHandshakeException:	Received	fatal	alert:	bad_certificate.

Tip
If	you	don’t	get	SSLHandshakeException;	that	is,	there	is	no	client	certificate	check
happening,	then	you	might	need	to	restart	SoapUI	to	clear	its	cache—I	did!

Finally,	set	KeyStore	to	the	location	of	client.jks	and	KeyStore	password	to	password,
restart	the	mock,	and	rerun	the	TestRequest,	and	you	should	see	the	invoice	document

and	extra	certificate	details	under	the	SSL	Info	(1	cert)	tab!

How	it	works…
SoapUI	uses	the	Jetty	servlet	container,	and	just	as	Tomcat	used	in	the	previous	recipes,	it
also	uses	Java	keystores	to	provide	HTTPS	transport	layer	security	and	client	certificate
authentication.	All	we	really	did	was	repeat	the	previous	recipe	concepts	instead	of	using	a
SoapUI	mock!

Testing	WS-Security	UsernameToken,
Timestamp,	and	TransportBinding
WS-Security	is	able	to	support	equivalents	of	the	security	measures	that	we	have	seen	so
far	via	WS-SecurityPolicy.	In	this	recipe,	we	will	see	how	to	test	a	web	service	that
requires	client	certificate	authenticated	transport	layer	security	(TransportBinding),	a
username	and	password	(UsernameToken),	and	a	valid	timestamp	(Timestamp	element).
More	about	these	policies	will	be	covered	later.

Most	of	the	apparent	complexity	is	in	the	service	implementation	provided	by	an	Apache
CXF	sample.	You	should	not	have	to	deal	with	this	complexity	directly,	although	it	may
help	your	overall	understanding	if	you	do	take	a	look	at	the	code.	You	will	need	to	be
happy	with	certificate	handling	and	java	keystores	though,	so	please	refer	to	the	HTTPS
and	client	certificate	recipes	again	if	you	need	any	help	with	these	topics.

Getting	ready
The	web	service	under	test	is	the	ut_policy	Apache	CXF	(3.01)	ws_security	sample.

This	sample	is	included	in	the	Apache	CXF	3+	samples.	Download	Apache	CXF	if	you
have	not	already	done	so	in	Chapter	1,	Testing	and	Developing	Web	Service	Stubs	With
SoapUI.

You	will	also	need	Apache	Maven	to	run	the	sample.	Download	and	install	this	if	you
have	not	already	done	for	the	first	3	recipes.

You	should	find	the	ut_policy	sample	at	<Apache	CXF	Home>
/samples/ws_security/ut_policy.	To	give	it	a	smoke	test,	open	a	command	shell	and	go
to	this	folder.	To	build	it,	run	the	following	code:

mvn	install

To	start	the	server,	run	the	following	code:

mvn	–Pserver

Once	the	server	has	started	(the	Server	ready…	message	is	shown),	then	open	another
command	shell	to	the	same	ut_policy	folder,	and	run	the	client:

mvn	–Pclient

You	should	see	the	inbound	(request)	and	outbound	(response)	XML	output	as	the	client
calls	https://localhost:9001/SoapContext/SoapPort	and	the	message	in	the	server’s
shell	window:

Server	responded	with:	Hello	<Your	Username>

Tip
Server	timeout	annoying?

The	server	is	written	to	exit	after	5	minutes.	If	during	testing,	the	connection	refused
errors,	and	the	restarts	become	annoying,	you	can	easily	change	this	in
demo.wssec.server.Server	by	editing	Thread.sleep(5	*	60	*	1000);	to	something
larger	and	rebuilding	(mvn	clean	install).

Quite	a	lot	is	going	on	behind	the	scenes;	more	on	that	later,	but	the	client’s	role	in	this
sample	is	what	we	are	going	to	replicate	using	SoapUI.

The	WSSecurityUsernameTimestamp-soapui-project.xml	project	for	this	recipe	can	be
found	in	the	chapter	7	samples.

How	to	do	it…
Before	being	able	to	actually	call	the	service	and	provide	the	UsernameToken	and
Timestamp	WS-SecurityPolicy	elements,	we	first	need	to	satisfy	the	transport	layer’s
security	requirements,	that	is,	set	up	the	keystore.	Once	that’s	working,	and	we	start
getting	SOAP	responses,	we’ll	work	on	supplying	and	verifying	the	username	and
timestamp	requirements.

Before	doing	any	of	that,	let’s	create	a	new	SOAP	project	using	the	sample’s	WSDL.
You’ll	find	it	at	<Apache
CXF>/samples/ws_security/ut_policy/src/main/config/hello_world.wsdl.

Then,	open	or	create	TestRequest	for	the	greetMe	operation.	If	you	call	this	now	without
setting	up	the	keystore,	you’ll	see	a	java.net.SocketException:	Connection	reset
error.

No	problem;	that’s	because	we	haven’t	setup	the	sample’s	client	keystore
(src/main/config/clientKeystore.jks)	by	going	to	SoapUI	Preferences	|	SSL
Settings…	well	almost…	right	idea,	but	unfortunately,	there’s	an	issue	for	SoapUI	with
that	keystore!

Tip
In	SoapUI,	the	private	key	and	keystore	password	must	match

If	you	use	the	sample’s	clientKeystore.jks,	the	certificate	handshake	breaks	down	with
javax.net.ssl.SSLHandshakeException:	null	cert	chain.	This	is	because	SoapUI
cannot	recover	the	client	private	key	during	the	handshake	as	the	private	key	has	been
setup	with	a	password	(ckpass)	that	is	different	to	that	of	the	keystore	(cspass)—see
KeyREADME.txt.	Unlike	the	sample	(in	ClientConfig.xml	<sec:keyManagers
keyPassword="ckpass">),	SoapUI	has	no	way	of	providing	a	different	key	password;	that
is,	the	key	password	needs	to	be	the	same	as	the	keystore	password	provided.	SoapUI	also
tells	us	this	when	we	add	the	clientKeystore.jks	keystore,	that	is,	An	error	occurred
[Probably	bad	JKS-Key	password:	java.security.UnrecoverableKeyException:
Cannot	recover	key],	see	error	log	for	details.	This	problem	is	worth	being
aware	of	since	many	keystores	do	have	different	passwords	for	the	private	key.

Fortunately,	there	are	several	solutions.	We	could	swap	the	keystores	for	the	ones	we
created	in	the	earlier	recipes,	but	then,	we’d	have	to	reconfigure	ClientConfig.xml	and
ServerConfig.xml	to	match	their	details.	A	quick	solution	for	now	is	just	to	make	the	key
and	keystore	passwords	match;	that	is,	change	the	keystore	password	to	ckpass	using	the
following:

keytool	-storepasswd	-keystore	clientKeystore.jks

Now,	add	clientKeystore.jks	under	SoapUI	Preferences	|	SSL	Settings	with	the
password	ckpass,	and	you	should	see	no	errors	in	the	SoapUI	log.

Tip

Certificate	handshake	troubleshooting

If	you	find	yourself	having	problems	with	certificate	issues,	remember	that	you	can	get
verbose	debugging	on	the	actual	handshake	by	starting	the	java	client	and	server
application	with	the	-Djavax.net.debug=ssl:handshake	parameter.

OK,	now	try	another	request,	and	you	should	now	get	a	SOAP	fault:

<soap:Envelope	xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
			<soap:Body>
						<soap:Fault>
									<faultcode>soap:Server</faultcode>
									<faultstring>These	policy	alternatives	can	not	be	satisfied:	
{http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702}TransportBinding:	Received	Timestamp	does	not	match	
the	requirements
{http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702}IncludeTimestamp
{http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702}UsernameToken:	
The	received	token	does	not	match	the	token	inclusion	
requirement</faultstring>
						</soap:Fault>
			</soap:Body>
</soap:Envelope>

Good!	This	means	the	certificates	have	worked:	SLL	Info	(1	certs)	tab,	and	we	are	getting
to	the	UsernameToken	and	Timestamp	policy	requirements	since	the	service	is	reporting
that	they	are	missing.

To	provide	these,	we	need	to	add	a	new	Outgoing	WS-Security	Configuration	under	the
Project	window	|	WS-Security	Configurations	tab.	To	do	this	(I’ve	called	it
outgoing_config),	ignore	Default	Username/Alias,	Default	Password,	and	Actor,	but
tick	Must	Understand.	Then,	add	a	new	WSS	entry	of	type	Username	with	Username
(Alice)	and	Password	(ecilA),	tick	Add	Nonce	and	Add	Created,	and	select	Password
Type	(PasswordTest),	resulting	in	something	similar	to	what	is	shown	in	the	following
screenshot:

Next,	add	a	new	WSS	entry	of	type	Timestamp	with	Time	To	Live	as,	say,	10000	(10
seconds),	and	tick	Millisecond	Precision.

To	use	this	WSS	outgoing	config	with	the	Test	Request,	under	the	Auth	tab,	add	a	new
authorization	of	type	Basic	and	leave	all	other	options	blank,	apart	from	selecting
Outgoing	WSS	to	be	outgoing_config.

Tip
Newly	created	outgoing/incoming	WSS	not	appearing	in	the	dropdown?

I’ve	noticed	that	you	need	to	close	and	reopen	TestStep	to	get	them	to	appear!

Now,	repeat	the	request	and	you	should	see	the	following	code:

<soap:Envelope	xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
			<SOAP-ENV:Header	xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
						<wsse:Security	soap:mustUnderstand="1"	xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"	
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd">
									<wsu:Timestamp	wsu:Id="TS-1ed68392-20a1-4306-b9a6-5cd1a52c3add">
												<wsu:Created>2014-11-15T12:17:31.825Z</wsu:Created>
												<wsu:Expires>2014-11-15T12:22:31.825Z</wsu:Expires>
									</wsu:Timestamp>
						</wsse:Security>
			</SOAP-ENV:Header>
			<soap:Body>
						<greetMeResponse	
xmlns="http://apache.org/hello_world_soap_http/types">
									<responseType>Hello	?</responseType>
						</greetMeResponse>
			</soap:Body>
</soap:Envelope>

Success!

Finally,	let’s	add	a	WS-Security	Status	assertion	to	validate	the	WSS	headers	and
timestamp	in	the	response.	You	might	be	surprised	to	see	the	assertion	fail,	and	may	also
have	noticed	that	the	WSS	results	tab	under	the	response	is	still	grayed	out.	To	me,	this
seems	like	a	bug.	To	fix	this,	we	need	to	provide	an	incoming	WS-Security
Configuration	even	though	we	don’t	actually	need	decryption	or	signature	verification	in
this	case!	To	do	this,	go	to	the	Project	window	and	select	Incoming	WSS-Security
Configuration	and	add	a	new	one	(I	called	mine	incoming_config).	You	also	need	to
select	a	keystore	for	nothing	in	this	case	(otherwise,	if	you	use	incoming_config	empty,
there	is	a	code	that	throws	an	exception	An	error	occurred	[Missing	cryptos],	see
error	log	for	details).	Under	the	Keystore	tab,	add	the	clientKeystore.jks	by
entering	just	the	Password	(ckpass),	and	then,	you	can	select	this	keystore	in	the
incoming_config	Decrypt	Keystore	or	Signature	Keystore	dropdown.

Right!	Now,	set	WSS	Incoming	to	incoming_config	under	the	Auth	tab	and	fire	the
request.	You	should	at	last	see	the	WS-Security	Status	assertion	passing	and	the
Timestamp	token	being	validated	under	the	WSS	results	tab:

{id=TS-1c0b8117-0321-4bcd-bffc-fae02724bd77,	timestamp=2014-11-

15T12:41:53.772Z2014-11-15T12:46:53.772Z,	action=32,	token-element=
[wsu:Timestamp:	null],	validated-token=true}

That’s	it!

How	it	works…
We	won’t	go	too	deep	into	the	WS-SecurityPolicy	aspects	here.	Just	to	say	that	in	this
example,	the	WSDL	contains	the	policy	details	and	is	used	by	the	Apache	CXF	sample
service	to	configure	its	policy	requirements.

Tip
WSDL	or	code-first	policy	attachment

In	this	example,	the	WSDL	provided	the	WS-Policy	settings	to	configure	the	web	service
code	provide	the	security	measures.	This	can	also	be	done	code-first;	that	is,	the	WS-
Policy	is	configured	by	the	web	service	code,	and	no	policy	is	present	in	the	WSDL.
However,	the	code-first	style	can	still	be	tested	in	the	same	way	in	SoapUI.	Refer	to	the
WSS4J	link	if	you	would	like	more	technical	details	on	this.

The	TransportBinding	requirements	enforced	by	the	service’s	interpretation	of	WS-
SecurityPolicy	are	satisfied	in	the	usual	way	by	SoapUI.	The	other	requirements	of
UsernameToken	and	Timsestamp	are	provided	by	SoapUI,	which	constructs	the	WS-
SecurityPolicy	headers	from	the	WSS	Outgoing	configuration	and	attaches	them	when
the	request	is	dispatched.	The	service	is	then	able	to	check	the	headers	and	add	its	own	to
its	response	in	a	similar	way.	As	we	saw,	SoapUI	needs	a	WSS	Incoming	configuration	in
order	to	evaluate	the	response	WS-SecurityPolicy	headers	and	run	the	WS-Security
Status	Assertion	on	them.	The	java	WS-Security	libraries	used	by	both	SoapUI	and
Apache	CXF	are	those	of	WSS4J.	For	more	information	on	WSS4J,	see
http://ws.apache.org/wss4j/.

http://ws.apache.org/wss4j/

There’s	more…
In	terms	of	further	testing,	we	can	easily	check	whether	UsernameToken	is	being	validated
by	supplying	the	wrong	credentials	and	using	a	SOAP	fault	assertion.	The	Timestamp
token	is	designed	to	protect	against	replay	attacks,	that	is,	people	capturing	the	request
details	and	resending	them	to	gain	access.	To	test	the	timestamp,	if	you	capture	the	request
details	yourself	from	the	Raw	tab	(these	include	the	security	headers),	then	you	can	do	a
Test	Request	TestStep	to	replay	the	same	request	and	assert	the	resulting	SOAP	fault
from	the	server.	Just	make	sure	you	don’t	select	a	WSS	Outgoing	configuration;
otherwise,	it	will	overwrite	your	test	request	(expired)	timestamp	header	details	with	valid
ones!

Testing	of	the	UsernameToken	nonce	is	also	designed	to	protect	against	replay	attacks.
However,	the	service	needs	to	be	configured	to	keep	track	of	what	nonce	values	have	been
issued	already	so	that	reuse	attempts	can	be	detected.	This	can	be	done	using	the	WSS4J
configuration	in	the	sample.

This	is	a	relatively	gentle	introduction	to	the	world	of	WS-SecurityPolicy.	SoapUI	also
supports	testing	of	the	more	complicated	areas	of	XML	signature	and	encryption.
However,	in	recent	tests,	I	have	found	SoapUI’s	support	of	XML	signature	to	work
correctly	in	both	directions,	and	XML	encryption	to	work	outbound	but	with	issues
inbound,	that	is,	not	decrypting	responses	(a	null	response	is	received).

See	also
For	more	information	on	Apache	CXF	WS-Security,	go	to
http://cxf.apache.org/docs/ws-security.html
For	more	information	on	XML	Signature,	go	to
http://en.wikipedia.org/wiki/XML_Signature
For	more	information	on	XML	Encryption,	go	to
http://en.wikipedia.org/wiki/XML_Encryption
For	more	information	on	SoapUI	Docs,	go	to	http://www.soapui.org/SOAP-and-
WSDL/applying-ws-security.html

http://cxf.apache.org/docs/ws-security.html
http://en.wikipedia.org/wiki/XML_Signature
http://en.wikipedia.org/wiki/XML_Encryption
http://www.soapui.org/SOAP-and-WSDL/applying-ws-security.html

Scanning	web	service	security
vulnerabilities
Both	the	open	source	and	pro	versions	of	SoapUI	have	the	security	scanning	functionality
to	analyze	and	report	on	potential	security	flaws.	The	functionality	is	more	developed	and
easier	to	use,	and	has	reporting	options	in	pro,	but	basic	scanning	is	still	possible	in	the
open	source	version.	The	pro	version	will	be	used	in	this	recipe,	but	open	source	users
should	still	be	able	to	follow	most	steps.

In	terms	of	recipe	topics,	this	is	one	where	we’ll	only	really	see	a	tour	of	the	tools,	as	you
can	easily	devote	a	chapter	or	even	a	book	to	the	specifics	of	every	particular	security	risk,
how	to	detect	it,	and	how	to	protect	against	it.	Out-of-the-box	SoapUI	is	really	only
providing	a	nice	customizable	framework	with	some	common	security	tests	already
configured.	It	is	not	a	case	of	“The	scan’s	green.	All	good!,	well,	not	unless	you’re
confident	that	your	services	are	invulnerable.

So	what	are	we	going	to	actual	do?	In	this	recipe,	we	see	how	to	use	the	security	scanning
functionality	against	the	mock	in	the	SOAPDBMock-Reporting-soapui-project.xml
project.	This	way,	we	can	easily	change	the	mock	to	expose	a	known	vulnerability	and	see
how	it	shows	in	scans.

Tip
SoapUI	security	scanning

As	background	reading	to	this	recipe,	in	case	you	haven’t	seen	it,	the	online	SoapUI	help
on	Security	Testing	is	quite	good	(http://www.soapui.org/Security/getting-started.html).
This	might	provide	you	with	initial	information	on	the	various	types	of	scans	and
examples	of	service-implementation	risks.

http://www.soapui.org/Security/getting-started.html

Getting	ready
In	terms	of	setup,	the	only	thing	you	should	need	in	this	recipe	is	the	SOAPDBMock-
Reporting-soapui-project.xml	project,	and	the	SecurityScanInvoiceTestCase	can	be
found	in	the	chapter	7	samples.

Tip
Memory	usage

The	security	scanning	can	be	potentially	memory-hungry.	You	might	find	it	necessary	to
increase	your	-Xmx2024m	-XX:MaxPermSize=256m	JVM	args.	For	help	on	this,	see
http://www.soapui.org/Working-with-soapUI/improving-memory-usage.html.	You	can
also	check	SoapUI	memory	usage	under	the	memory	log	tab.

Since	the	mock	service	in	SOAPDBMock-Reporting-soapui-project.xml	uses	an	in-
memory	H2	DB,	all	the	scanning	creates	rather	a	lot	of	records,	and	thus,	results	in
memory	being	swallowed!	So	a	stop	script	has	been	added	to	the	mock	to	drop	the
invoices	table:

def	db	=	context["databaseConnection"]
db.execute("drop	table	invoices")	

This	can	be	used	to	clean	down	the	DB	between	scans	when	the	mock	is	restarted—so
remember	to	stop/start	the	mock	occasionally	if	you	have	any	memory	issues!

http://www.soapui.org/Working-with-soapUI/improving-memory-usage.html

How	to	do	it…
First,	we’ll	test	the	mock	getInvoice	operation	as	is.	Then,	we’ll	deliberately	compromise
its	implementation	from	a	security	perspective	to	see	what	the	scan	shows!

OK,	let’s	setup	a	new	security	test;	under	TestCase	(SecurityScanInvoiceTestCase),
right-click	on	the	Security	Tests	grouping	and	select	New	SecurityTest.	On	the	pro
version,	you’ll	have	three	options:

The	Automatic	option	creates	every	type	of	scan	configured	and	even	sets	up	parameters
and	assertions	for	you;	we’ll	come	back	to	this	as	it	can	swamp	you	with	data	at	first!	Full
Control	is	between	Automatic	and	Empty	Test,	giving	you	a	wizard	to	pick	and	choose
from	the	possible	scans.	Let’s	start	with	something	small	first;	select	Empty	Test.	This
should	display	the	Security	TestCase	runner	window	with	the	TestCase’s	TestSteps	added
(GetInvoiceNo20).

Next,	we’ll	add	a	SQL	injection	test.	Right-click	on	TestStep	and	select	Add
SecurityScan;	select	SQL	Injection	from	the	list;	and	you	should	get	the	SQL	injection
window.	Here,	add	the	invoiceNo	parameter:

Label:	invoiceNo
Name:	Request
XPath:

declare	namespace	inv='http://soapui.cookbook.samples/schema/invoice';
//inv:getInvoice[1]/inv:invoiceNo[1]

Also,	add	an	assertion	of	type	Security	|	Sensitive	Information	Exposure.

Then,	click	on	OK	and	run	the	scan.	You	should	get	a	nice	clean	No	Alerts,	green
Security	Log	and	TestCase	Log!

Now,	edit	the	mock’s	getInvoice	operation	Groovy	script	like	this;	that	is,	comment	out
the	ok	placeholder	query	and	uncomment	the	insecure	one:

//Ok	placeholder	usage
//def	invoice	=	db.firstRow("select	*	from	invoices	where	id	=	
$requestInvoiceNo")

//Insecure	placeholder	usage:
def	invoice	=	db.firstRow("select	*	from	invoices	where	id	=	
"+requestInvoiceNo)

Then,	rerun	the	scan;	you	should	see	a	bunch	of	issues	as	all	the	test	SQL	injection

attempts	now	work!

Going	back	to	the	Automatic	option,	create	another	security	TestCase	and	select	the
Automatic.	If	you	run	all	the	resulting	scans,	even	with	the	original	safer	mock	DB	select
statement,	it’s	total	carnage!	Every	scan	that	could	run	has	failed!	(the	Boundary	Scan
and	Malicious	Attachment	scan	are	not	applicable	for	this	service,	so	they	were	skipped.)
Although,	sifting	through	the	wreckage,	many	of	the	errors	are	related	to	the	underlying
web	service	(mock)	framework	code,	for	example,	XML	parsing	errors,	rather	than	the
Groovy	script.	Still,	this	blanket	scan	can	be	a	useful	first	sweep	especially	when
customized.

How	it	works…
The	security	scan	TestCase	can	be	thought	of	as	a	test	creation	wizard	and	data-driven	test
runner.	For	most	types	of	scans,	under	the	Advanced	tab,	you’ll	find	a	customizable	list	of
potentially	problematic	test	data	designs	to	cause	the	service	under	test	to	reveal	sensitive
information	about	its	implementation	through	exceptions	and	other	abnormal	responses.
The	security	assertions	are	also	configurable.	The	general	Sensitive	Information
Exposure	Assertion	can	have	its	data-check	properties	configured	under	SoapUI
Preferences	|	Global	Sensitive	Information	Tokens,	and	the	specialized	Cross	Site
Scripting	Detection	Assertion	can	also	be	customized	to	check	the	response	for	URLs
supplied	in	a	custom	Groovy	script.

In	general,	a	lot	of	the	scans	are	not	necessarily	looking	to	gain	unauthorized	access	or
damage	the	service;	rather,	it	is	to	expose	error	information	so	that	hackers	might	then	be
able	to	use	that	information	as	the	basis	for	attack.	While	the	service	might	still	be
regarded	as	secure	following	failed	scans,	this	type	of	information	might	provide	to	be	a
useful	feedback	for	the	developers	to	take	steps	to	conceal	anything	remotely	sensitive
during	exception	handling.

There’s	more…
You	can	also	create	your	own	Custom	Scans	using	Groovy,	generate	data	exports	and
reports,	and	run	the	security	scan	TestCase	using	the	securitytestrunner	script:

	./securitytestrunner.sh	SOAPDBMock-Reporting-soapui-project.xml

An	important	part	of	security	scanning	is	to	invest	in	your	knowledge	of	the	common
types	of	attacks	and	how	they	actually	work.	This	way,	you	should	be	able	to	make	the
best	of	customizing	the	SoapUI	scanning	framework	and	use	the	results	it	gives	you!

Chapter	8.	Testing	AWS	and	OAuth	2
Secured	Cloud	Services
In	this	chapter,	we	will	cover:

Testing	Dropbox	using	a	pregenerated	OAuth	2	Access	Token
Testing	Dropbox	using	OAuth	2	Authorization	Code	Grant	flow
Testing	Dropbox	using	OAuth	2	Implicit	Grant	flow
Testing	the	Gmail	API	using	OAuth2
Automating	OAuth	2	authentication	and	consent
Testing	AWS	services	using	Access	Key	authentication

Introduction
Building	on	some	of	the	concepts	and	skills	from	the	previous	chapter,	this	chapter
explores	how	to	test	some	popular	cloud-based	services	and	in	particular	how	to	deal	with
their	authentication	requirements	using	SoapUI.

There	is	an	obvious	emphasis	on	OAuth	2	due	to	its	popularity,	not	only	with	Cloud
Service	Providers	(CSPs),	but	also	with	web	services	in	general.	This	also	means	all	the
examples	are	REST-related.	This	is	again	in	part	due	to	the	popularity	and	the	particular
CSPs	in	the	recipes,	that	is,	Dropbox,	Google,	and	AWS.	While	not	covered	here,
Microsoft	Azure	also	uses	REST	for	its	APIs	and	signed	shared	key	authentication	that
could	be	handled	in	a	similar	way	to	the	AWS	recipe.

If	you	need	to	see	a	good	example	of	using	signed	SOAP	requests,	the	AWS	Product
Advertising	API
(http://docs.aws.amazon.com/AWSECommerceService/latest/DG/Welcome.html)	and
Mechanical	Turk	(http://aws.amazon.com/documentation/mturk/)	web	services	are	good
places	to	look.	SoapUI	has	good	WS-Security	functionality	to	sign	SOAP	requests,	as
covered	in	the	SoapUI	docs	(http://www.soapui.org/SOAP-and-WSDL/applying-ws-
security.html)	and	their	AWS	SOAP	example	(http://www.soapui.org/REST-
Testing/amazon-sample-project.html).

http://docs.aws.amazon.com/AWSECommerceService/latest/DG/Welcome.html
http://aws.amazon.com/documentation/mturk/
http://www.soapui.org/SOAP-and-WSDL/applying-ws-security.html
http://www.soapui.org/REST-Testing/amazon-sample-project.html

What	you’ll	learn
You	will	learn	the	following	topics:

The	basics	of	how	OAuth	2	code	and	implicit	flows	work
How	to	use	SoapUI	to	test	common	types	of	OAuth	2	secured	web	services
How	AWS	Request	Key	Authentication	works	and	uses	Groovy	to	calculate	a	signed
request

What	you’ll	need
Cloud	Service	Signup:	One	consequence	of	doing	cloud-based	recipes	is	the	need	to
register	with	various	CSPs.	While	this	might	seem	a	pain	if	you	don’t	actually	want	these
services	going	forward,	all	of	the	services	in	these	recipes	are	free	to	use	at	the	time	of
writing	and	you	may	have	some	of	them	already,	or	hopefully	find	them	useful	if	you
don’t!

Testing	Dropbox	using	a	pregenerated
OAuth	2	Access	Token
This	is	a	nice	easy	example	of	how	to	use	SoapUI’s	OAuth	2	support	to	access	Dropbox.
It’s	easier	because	we’ll	start	from	the	point	of	having	an	OAuth	2	Access	Token	already
generated	via	the	Dropbox	UI,	which	cuts	out	most	of	the	full	flows	seen	in	the	next	two
recipes.	The	example	shows	how	to	use	an	Access	Token	to	make	authenticated	calls	to
the	Dropbox	API,	and	test	whether	a	particular	file	is	present.

To	perform	the	steps	of	this	recipe,	you	will	either	need	to	have	a	Dropbox	account	or	sign
up	for	a	free	one.

Getting	ready
Before	we	get	going,	it	is	important	to	understand	what	parts	of	the	OAuth	2	process	are
going	to	happen	here.	If	we	consider	the	full	OAuth	2	Authorization	Code	Grant	flow
as	follows:

Then,	for	this	example,	we	are	only	going	to	use	SoapUI	to	make	the	API	request	using	a
pregenerated	Access	Token	(the	final	exchange	in	the	preceding	diagram).	The	Access
Token	will	be	generated	using	the	Dropbox	UI,	as	we’ll	see	in	a	minute.

Ok,	now	that’s	straight,	we’re	going	to	need	a	Dropbox	account	and	test	App	to	call	using
the	Dropbox	API.	If	you	don’t	already	have	a	Dropbox	account,	please	sign	up	to	a	free
account	at	www.dropbox.com.	Don’t	be	put	off	by	needing	to	trial	the	business	version
first,	you	can	easily	cancel	hassle-free,	and	retain	the	very	useable	basic	account.

Once	you	have	an	account,	we	need	to	create	a	Dropbox	App	to	allow	us	API	access.	To	do
this,	log	in	and	go	to	Developer	Home	|	Apps
(https://www.dropbox.com/developers/apps):

1.	 Click	on	Create	app,	then	the	following	options:

Select	Dropbox	API	app	as	the	app	type
Select	Files	and	datastores	for	the	data	type	that	your	app	needs	to	store
Say	No	to	the	option	to	limit	the	app	to	only	files	that	it	creates
Select	allow	access	to	All	file	types
Add	a	name	for	your	app,	for	example,	TestAppSoapUI

2.	 Next,	click	on	the	newly	created	app	and	in	the	OAuth	2	section	click	on	Generate
under	the	Generate	access	token	section,	as	shown	in	the	following	screenshot:

http://www.dropbox.com
https://www.dropbox.com/developers/apps

Tip
Access	Token	security

Just	a	reminder	that	the	Access	Token	should	be	kept	secret	to	avoid	unauthorized	access
to	your	Dropbox	account	via	the	REST	API.	You	will	see	that	all	API	calls	use	HTTPS	to
prevent	people	easily	reading	the	request	data	and	token	during	API	calls,	and	so	it’s	also
important	to	protect	the	token	at	source.	I’ll	leave	this	up	to	you	to	decide	how	important
this	really	is.	For	production	accounts,	you	could	consider	encrypting/password	protecting
the	SoapUI	project—see	http://www.soapui.org/Working-With-Projects/concept.html#1-8-
project-encryption.

As	the	Dropbox	info	tooltip	explains,	this	has	generated	you	an	Access	Token	without
having	to	go	through	any	of	the	OAuth	2	authentication	and	authorization	flow	shown	in
the	earlier	diagram.	The	token	is	tied	only	to	your	(account)	user;	other	app	users	cannot
use	pregenerated	Access	Tokens	and	they	would	need	to	follow	the	full	OAuth	2	flow
shown	in	the	three	next	recipes.

Right,	now	we	can	use	the	token	to	make	some	authenticated	Dropbox	API	calls!	I	have
included	the	recipe’s	SoapUI	project	DropboxOAuth2	in	the	chapter	8	samples.

http://www.soapui.org/Working-With-Projects/concept.html#1-8-project-encryption

How	to	do	it…
First,	we	create	a	REST	project	from	a	Dropbox	API	URL.	Then,	we	can	add	OAuth
authorization	details	and	run	some	test	API	requests.	Perform	the	following	steps:

1.	 Create	New	REST	project	from	the	Dropbox	Core	API	URL	of
https://api.dropbox.com/1/.

2.	 Add	New	Resource	of	/metadata/auto/.
3.	 Add	New	Parameter:

Name:	path
Value:	<Your	File>,	for	example,	you	can	use	the	file	Getting	Started.pdf
Style:	TEMPLATE
Level:	RESOURCE

4.	 Now	for	the	OAuth	2	Access	Token,	click	on	the	Auth	tab	and	then:

Add	New	Authorization
Type:	OAuth	2
Profile	name:	DropboxProfile

5.	 Then,	paste	the	Access	Token	value	as	follows:

6.	 Now,	if	you	run	this	request,	you	should	get	a	similar	JSON	response	to:

{
			"rev":	"12c39c52e",
			"thumb_exists":	false,
			"path":	"/Getting	Started.pdf",
			"is_dir":	false,
			"client_mtime":	"Tue,	28	Oct	2014	09:52:03	+0000",
			"icon":	"page_white_acrobat",
			"bytes":	249159,
			"modified":	"Tue,	28	Oct	2014	09:52:02	+0000",
			"size":	"243.3	KB",
			"root":	"dropbox",
			"mime_type":	"application/pdf",
			"revision":	1
}

That’s	it!	A	SoapUI	request	to	get	Dropbox	file	metadata	has	been	authenticated	using	an

https://api.dropbox.com/1/

OAuth	2	Access	Token.

How	it	works…
As	we	already	covered,	we	generated	an	Access	Token	enabling	us	to	make	authenticated
calls	to	the	Dropbox	API	using	SoapUI’s	OAuth	2	support.	If	we	hadn’t	supplied	the
DropboxProfile	when	making	a	request	to	the	Dropbox	API,	then	we	would	get	the
following	error	message—HTTP	Status	401	Unauthorized:

{"error":	"No	auth	method	found."}

Or,	if	the	Access	Token	supplied	was	invalid:

{"error":	"The	given	OAuth	2	access	token	doesn't	exist	or	has	expired."}

Tip
Revoke	Access	Token

If	you	become	concerned	that	the	security	of	the	Access	Token	has	been	compromised
and	you	want	to	revoke	it,	you	can	call	the
https://api.dropbox.com/1/disable_access_token	resource	using	the	same	OAuth	2	profile
(DropboxProfile),	that	is,	the	profile	containing	the	token	you	want	revoked.	This	will
mean	that	for	future	access	you	need	to	generate	another	Access	Token	via	the	dropbox
App	UI,	and	any	attempt	to	use	the	revoked	token	will	result	in	the	second	error	message.

https://api.dropbox.com/1/disable_access_token

There’s	more…
This	way	of	using	a	pregenerated	Access	Token	is	quick	and	easy,	but	can	only	be	used
where	the	provider	is	able	or	willing	to	allow	the	token	to	be	generated	directly.	In	the
next	three	recipes,	we	will	see	how	to	follow	the	full	authorization	flow	using	SoapUI,
which	is	the	more	common	way	of	using	OAuth	2	authenticated	APIs.

See	also
IETF	OAuth	2	Spec:	https://tools.ietf.org/html/rfc6749
Dropbox	API	Docs:	https://www.dropbox.com/developers/core

https://tools.ietf.org/html/rfc6749
https://www.dropbox.com/developers/core

Testing	Dropbox	using	OAuth	2
Authorization	Code	Grant	flow
In	this	recipe,	we	build	on	the	previous	one	by	learning	how	SoapUI	supports	the	full
OAuth	2	Authorization	Code	Grant	flow.	The	actual	example	used	is	going	to	be	the
same	Dropbox	one	from	the	previous	recipe.

Getting	ready
To	follow	along,	you’ll	ideally	have	completed	the	previous	recipe	or	at	least	have	a
Dropbox	account	with	an	App	setup	to	receive	REST	requests.

If	you	are	new	to	OAuth	2	or	need	a	refresher,	you	may	find	it	helpful	to	do	some
background	reading	on	the	OAuth’s	Authorization	Code	Grant	flow.	I	find	oauthlib	a
safe	choice	for	this:

http://oauthlib.readthedocs.org/en/latest/oauth2/grants/authcode.html

I	will	cover	how	things	work	in	the	context	of	Dropbox	and	SoapUI,	shortly.

The	SoapUI	project	DropboxOAuth2	for	this	recipe	is	included	in	the	chapter	8	samples.

http://oauthlib.readthedocs.org/en/latest/oauth2/grants/authcode.html

How	to	do	it…
For	now,	I’ll	assume	you	are	happy	to	do	the	steps	enabling	OAuth	2’s	Authorization
Code	Grant	flow	in	SoapUI	and	then	we’ll	discuss	how	they	work	in	more	detail	during
the	next	section.	Perform	the	following	steps:

1.	 First,	we	need	the	OAuth	2	Client	ID	and	Client	Secret	from	our	Dropbox	test	app.
If	you	go	to	the	same	page	where	you	previously	generated	the	Access	Token,	you
should	see	App	Key	and	App	Secret	properties:

2.	 Next,	we’ll	set	up	Redirect	URI.	Set	it	as	follows	on	the	same	Dropbox	admin	page
(leave	the	Allow	Implicit	Grant	option,	this	is	discussed	later):

3.	 Now,	let’s	configure	SoapUI	to	be	able	to	use	these	details	to	obtain	the	Access
Token	from	the	Dropbox.	Under	the	Auth	tab	for	REST	Test	Request,	click	on	the
Get	Token	link	to	bring	up	the	Get	Access	Token	from	the	authorization	server
window.	Fill	in	the	details	as	follows:

4.	 (Optional)	Now,	at	this	point	we	could	just	proceed	to	click	on	Get	Access	Token.	It
will	work,	but	you’ll	see	an	error	in	the	SoapUI	log	and	error	log	regarding
ERROR:An	error	occurred	[WRITER].	To	fix	this	and	provide	a	little	more	visibility
of	what	is	going	on,	we	need	to	set	up	a	quick	mock	to	listen	on	the	Redirect	URI
for	the	incoming	Access	Token.	Nothing	fancy,	just	a	REST	mock	with	the	following
details:

Host:	localhost
Port:	8089
Action:	/receivetoken
Response:	Edit	default	response	to	anything	you	like

5.	 Also	in	SoapUI	Preferences	|	HTTP	Settings,	click	on	Enable	Mock	HTTP	Log—
and	start	the	mock	to	quickly	test	Redirect	URL	in	a	browser.

6.	 OK,	now	click	on	Get	Access	Token	and:

See	a	pop-up	browser	window	with	Dropbox	asking	for	your	account,	username,
and	password.	Enter	these.
Then,	click	on	Allow	to	grant	SoapUI	permission	to	access	your	Dropbox
account.
Then,	the	browser	window	should	close	and	you	should	see	the	Access	Token	is
now	ready	for	use	in	the	Auth	tab	(as	per	step	5	in	the	previous	recipe).

7.	 Finally,	you	can	use	this	Access	Token	to	make	an	authenticated	request	to	the
Dropbox	API,	for	example,	fire	a	request	to
https://api.dropbox.com/1/metadata/auto/Getting	Started.pdf!

https://api.dropbox.com/1/metadata/auto/Getting%20Started.pdf

How	it	works…
OK,	this	might	seem	like	a	long	way	round	to	getting	the	same	result	as	in	the	previous
recipe,	but	this	is	the	more	complete	way	that	clients	and	tests	will	typically	use	OAuth	2.

To	understand	more	of	what’s	going	on	in	the	background,	refer	back	to	the	diagram	in	the
previous	recipe	and	we’ll	compare	how	the	general	steps	in	the	diagram	match	in	the
context	of	Dropbox	and	SoapUI.	Here	is	a	slightly	simplified	view	of	the	steps:

1.	 The	client	(SoapUI)	requests	an	Authorization	Code	using	the	Authorization
Server	(Dropbox’s/authorize	endpoint).

2.	 The	resource	owner’s	user	agent	(SoapUI’s	pop-up	browser	window)	is	redirected	to
the	Dropbox’s	Authorisation	Server	page	to:

Authenticate	the	resource	owner	you	using	your	Dropbox	credentials
Then,	ask	your	permission	for	the	client	(SoapUI)	to	access	your	Dropbox
account

3.	 If	this	is	OK,	then	a	temporary	authorization	code	is	returned	via	Redirect	URI.	If
you’ve	set	up	the	mock,	you	can	see	an	incoming	request	to	the	mock	in	the	jetty	log:

GET	/receivetoken?code=dYXswvqEQbYAAAAAAAAAJ65htHsH5iJph64Clx0eUfw

4.	 Using	Authorization	Code,	Redirect	URI,	Client	Identifier,	and	Client
Secret;	the	client	(SoapUI)	authenticates	and	requests	an	Access	Token	from	the
Authorization	Server	(using	Dropbox’s/token	endpoint).	The	POST	request	can	be
seen	in	HTTP	log:

POST	/1/oauth2/token
client_secret=b0ksu4do6518i4x&grant_type=authorization_code&redirect_ur
i=http%3A%2F%2Flocalhost%3A8089%2Freceivetoken&code=dYXswvqEQbYAAAAAAAA
AJ65htHsH5iJph64Clx0eUfw&client_id=v736ybsp08l8qsu

5.	 If	authentication	succeeds,	the	Authorization	Server	returns	the	Access	Token	to
the	client	(SoapUI)	via	Redirect	URI.	The	response	can	also	be	seen	in	the	HTTP
log:

{"access_token":	
"dYXswvqEQbYAAAAAAAAAKEprzMta_vwQiaBmaFtG4UGWS2ysDqbjybQ03olwo89X",	
"token_type":	"bearer",	"uid":	"352225807"}

Where	I	say	simplified	steps,	I	mean:

This	is	the	happy	path,	for	example,	no	authentication	failures/permission	declined
SoapUI	will	filter	the	requests	to	extract	the	OAuth	2	parameters	that	it	needs,
regardless	of	whether	the	mock	is	present
Not	all	the	requests	or	responses	made	by	SoapUI	can	be	seen,	for	example,	initial
authentication	request	to	/auth

There’s	more…
The	authorization	code	grant	flow	supports	the	concept	of	a	Refresh	Token.	SoapUI
stores	the	Refresh	Token	and	uses	it	to	obtain	a	new	Access	Token	when	it	expires.	The
Access	Token	expiry	time	can	be	configured	under	the	OAuth	2	Advanced	options
window,	accessed	by	clicking	on	Advanced	under	the	OAuth	2	profile	(Auth	tab).

There	are	other	grant	types	that	can	be	used	with	OAuth	2	and	custom	ones	can	also	be
created.	An	explanation	of	the	main	types	can	be	found	here:
http://oauthlib.readthedocs.org/en/latest/oauth2/grants/grants.html.

However,	the	only	other	OAuth	2	grant	type	that	SoapUI	supports	is	Implicit	Grant.
That’s	what’s	coming	up	in	the	next	recipe!

http://oauthlib.readthedocs.org/en/latest/oauth2/grants/grants.html

See	also
Oauthlib	site:	http://oauthlib.readthedocs.org/en/latest/oauth2/oauth2.html

http://oauthlib.readthedocs.org/en/latest/oauth2/oauth2.html

Testing	Dropbox	using	OAuth	2	Implicit
Grant	flow
In	this	recipe,	we	again	build	directly	on	the	previous	one	by	learning	how	SoapUI
supports	the	full	OAuth	2	Implicit	Grant	flow.	This	flow	is	slightly	less	complicated
than	the	Authorization	Code	Grant	flow,	less	secure	as	it	lacks	client	authentication,	and
is	normally	used	by	browser-based	clients.

The	example	used	is	exactly	the	same	Dropbox	one	featured	in	the	previous	two	recipes.
However,	the	steps	here	are	very	short	as	in	the	previous	recipe’s	setup,	and	the	concepts
will	be	reused.	Meaning	that	there	is	far	more	to	understand	here	than	to	do!

Getting	ready
The	SoapUI	project	DropboxOAuth2	for	this	recipe	is	included	in	the	chapter	8	samples.

How	to	do	it…
Given	the	previous	Dropbox	test	app	OAuth	2	config	and	DropboxProfile	under	the	Auth
tab,	all	we	need	to	do	is	to	use	the	Implicit	Grant	flow:

1.	 Under	the	REST	Test	Request	option’s	Auth	tab,	click	on	the	Get	Token	link	to
bring	up	the	Get	Access	Token	from	the	authorization	server	window.

2.	 Select	Implicit	Grant	from	the	OAuth	2	Flow	dropdown	and	you	should	be	left
with	the	following	details:

3.	 (Optionally)	Again,	you	can	just	hit	the	Get	Access	Token	and	ignore	the	error	in	the
SoapUI	log	and	error	log,	or	you	can	start	the	mock	described	in	step	4	of	the
previous	recipe	to	see	some	extra	output.

4.	 OK,	click	on	the	Get	Access	Token	and	you	should	get	the	SoapUI	browser	window
popup.	Enter	your	Dropbox	credentials	like	before	and	click	on	Allow	to	grant
SoapUI	permission	to	access	your	Dropbox	account.

Tip
SoapUI	Browser	Disabled?

Certain	distributions	of	SoapUI	seem	to	have	the	SoapUI	browser	(used	by	the	Oauth
2	functionality)	disabled	by	default.	To	enable	it:

Edit	<soapui	home>/java/app/bin/soapui.sh	(or	soapui.bat	on	Windows)

Add	JAVA_OPTS="$JAVA_OPTS	-Dsoapui.jxbrowser.disable=false"	where	all	the
other	JAVA_OPTS	are	added	and	restart	SoapUI

5.	 When	the	SoapUI	browser	window	popup	closes,	you	should	have	a	new	Access
Token	like	before.

6.	 Feel	free	to	use	it	to	make	an	authenticated	request	to	the	Dropbox	API,	for	example,
fire	a	request	to	https://api.dropbox.com/1/metadata/auto/Getting	Started.pdf.

https://api.dropbox.com/1/metadata/auto/Getting%20Started.pdf

How	it	works…
As	already	mentioned,	the	main	difference	with	the	Authorization	Code	Grant	is	that
the	Implicit	Grant	flow	makes	no	client	authentication	call.	The	only	authentication	and
authorization	is	via	the	Resource	Owner	(you	in	this	case!).	Hence,	there	is	no	Client
Secret	or	Access	Token	URI	required	in	step	2.

With	the	mock	running,	you	can	also	see	another	difference	in	that	the	incoming	HTTP
GET	request	to	/receivetoken?code=<Authorization	Code>	in	the	jetty	log	is	now:

GET	/receivetoken
Referrer:	https://www.dropbox.com/1/oauth2/authorize?
response_type=token&redirect_uri=http%3A%2F%2Flocalhost%3A8089%2Freceivetok
en&client_id=v736ybsp08l8qsu

Plus	some	encoded	characters	(I	can’t	paste	them	here)	just	below	the	request.	This
request	is	the	Authorization	Server	(Dropbox’s/authorize)	redirecting	the	Access
Token	directly	back	(via	Redirect	URI)	to	the	client	(SoapUI)	and	the	token	is	these
encoded	characters!	The	Access	Token	looks	like	this	because	it	has	been	sent	as	a	URL
hash	fragment	and	they	don’t	get	sent	as	part	of	the	HTTP	request.	Behind	the	scenes,
SoapUI	extracts	the	Access	Token	and	allows	us	to	use	it	directly.	To	see	how	this	last
part	differs	slightly	to	the	typical	browser	client’s	handling,	it’s	worth	taking	a	look	at
http://oauthlib.readthedocs.org/en/latest/oauth2/grants/implicit.html.

http://oauthlib.readthedocs.org/en/latest/oauth2/grants/implicit.html

There’s	more…
Apart	from	the	lack	of	client	authentication	with	the	Implicit	Grant	flow,	there	is	also
no	support	for	Refresh	Tokens.	Although	SoapUI	still	attempts	to	refresh	Implicit
Grant	acquired	Access	Token	anyway,	and	will	succeed	if	Client	Secret	and	Access
Token	URI	have	been	previously	entered!

Testing	the	Gmail	API	using	OAuth2
This	applies	what	we	have	learnt	about	OAuth	2	authentication	to	the	Google	Gmail	API,
and	in	doing	so	shows	how	to	use	scopes	to	grant	authorization.	It	also	indirectly	builds	on
the	Testing	for	e-mails	with	Groovy	recipe	Chapter	4,	Web	Service	Test	Scenarios,	by
providing	a	secure	way	of	authenticating	that	was	a	reported	Google	issue	when	using
IMAP	to	access	a	Gmail	account.

To	perform	the	steps	of	this	recipe,	you	will	need	a	Google	account	with	a	developer
console	and	a	Gmail	account.

Getting	ready
If	you	haven’t	already	got	a	Google	account	set	up,	please	register	for	one	at
https://accounts.google.com/Signup.	This	also	gets	you	a	Gmail	account.

You	will	also	need	access	to	the	Developers	console	to	create	new	projects,	enable	APIs,
and	create	OAuth	2	credentials.	For	all	information	about	Developer	accounts,	see
https://developers.google.com/console/help/new/.	It	should	be	completely	free	when	used
in	the	context	of	this	recipe,	that	is,	Gmail	API	access,	but	other	APIs	and	services	can
potentially	incur	usage-based	charges.

This	recipe’s	SoapUI	project	GoogleOAuth2	is	included	in	the	chapter	8	samples.

https://accounts.google.com/Signup
https://developers.google.com/console/help/new/

How	to	do	it…
First,	we’ll	create	a	new	project	in	the	Google	developer’s	console.	Then,	we’ll	create	a
new	Client	Id	for	the	project,	which	includes	all	OAuth	2	details.	After	this,	we’ll	enable
the	Gmail	API.	We’ll	then	be	ready	to	authenticate	and	search	for	a	particular	e-mail	using
SoapUI	as	follows:.

1.	 OK,	let’s	get	the	project	created.	Go	to	https://console.developers.google.com/project
and	click	on	Create	Project.	Enter	what	you	like	for	PROJECT	NAME	and
PROJECT	ID	or	just	accept	the	defaults,	you	can	always	delete	the	project	later.

2.	 Then,	to	create	the	Client	Id/OAuth2	details.	Under	<Your	Project>	APIs	&	Auth
|	Credentials,	under	OAuth	click	on	Create	new	Client	ID	and	in	the	Create	Client
ID	window	select/enter	the	following:

APPLICATION	TYPE:	Web	application
AUTHORIZED	JAVASCRIPT	ORIGINS:	https://localhost
AUTHORIZED	REDIRECT	URIS:	https://localhost/oauth2callback
Click	on	Create	Client	ID

3.	 This	should	generate	credentials	similar	to	the	following:

4.	 Lastly,	enable	the	Gmail	API.	Under	<Your	Project>	|	APIs	&	Auth	|	APIs	find
Gmail	API	and	change	the	STATUS	to	ON.

5.	 Now,	we	should	be	ready	to	access	the	API	from	SoapUI.	Create	New	REST	Project
from	the	URI	https://www.googleapis.com	and	add	a	New	Resource	option	as
/gmail/v1/<your	Gmail	address>/messages.	For	the	request	Parameters,	add:

Name:	q
Value:	subject:o12345

6.	 This	sets	up	a	test	REST	request	to	the	Gmail	API	to	search	for	an	e-mail	for	<your
Gmail	address,	for	example,	test.account@gmail.com>	with	the	subject

https://console.developers.google.com/project
https://www.googleapis.com

containing	o12345.
7.	 (Optionally)	Try	firing	the	request	and	you	should	get	a	status	401	Login	Required.

This	is	of	course	because	we	haven’t	provided	the	OAuth	2	profile,	on	to	that	next.
8.	 Next,	for	the	SoapUI	OAuth	2	Auth	tab	profile	to	authenticate	and	authorize	the

request	to	your	Gmail	account.	Create	a	new	OAuth	2	profile,	like	in	the	last	two
recipe’s,	containing	the	following	values	under	Get	Token:

OAuth	2	Flow:	Authorization	Code	Grant
Client	Identification:	816217843371-
u152n41nn1a0lr25a1ft3t2tdu0nf50a.apps.googleusercontent.com
Client	Secret:	gMAr8ud8pzEhemK-vRL9s4_E
Authorization	URI:	https://accounts.google.com/o/oauth2/auth
Access	Token	URI:	https://accounts.google.com/o/oauth2/token
Redirect	URI:	https://localhost:9001/oauth2callback
Scope:	https://www.googleapis.com/auth/gmail.readonly

9.	 Then,	click	on	Get	Access	Token	to:

Bring	up	the	SoapUI	browser	window
Provide	your	Google	account	credentials
Click	on	Accept	to	grant	SoapUI	permission	to	have	offline	access	to	your
Gmail	account
You	should	then	get	a	new	Access	Token

10.	 Assuming	you	haven’t	already	sent	yourself	an	e-mail	with	a	subject	containing
o12345,	then	firing	the	request	should	give	response	content	as	follows:

{"resultSizeEstimate":	0}

11.	 Finally,	send	yourself	an	e-mail	with	a	subject	containing	o12345,	or	change	the	q
search	parameter	to	match	an	e-mail	that	does	exist	in	your	inbox,	and	you	should	get
a	response	containing:

{
	"messages":	[
		{
			"id":	"148c67b1acb7eb0a",
			"threadId":	"148c67b1acb7eb0a"
		}
],
	"resultSizeEstimate":	1
}

How	it	works…
All	user/account-based	Google	APIs	use	OAuth	2	authentication	and	scopes	to	grant
authorization.	So	in	OAuth2	terms,	the	main	difference,	compared	to	the	previous	two
recipes	is	the	idea	of	scope.	Google	makes	good	use	of	scopes	to	grant	authorization
across	it’s	wealth	of	APIs.	Basically,	following	authentication	you	have	to	have	any	scopes
you	need	to	be	granted	before	using	any	related	API	calls.	For	example,	in	this	recipe	we
have	only	used	the	gmail.readonly	scope.	Therefore,	any	attempt	to	update	an	e-mail
rather	than	just	read	or	query	them	will	result	in	an	invalid	scope	error	response.

One	subtle	difference	in	this	OAuth	2	flow	that	you	may	have	noticed,	is	that	no	mock	is
required	to	stage	the	redirect	URL	https://localhost:9001/oauth2callback	and	even	if
you	provide	this,	it	will	not	be	called!	This	is	because	here	the	redirect	URL	is	HTTPS.	If
you	change	the	redirect	URL	to	HTTP	instead	(not	recommended	for	production),	then
you	will	see	similar	Jetty	requests	to	those	explained	in	the	Dropbox	recipes.

A	great	way	to	explore	the	Gmail	API,	its	scopes,	and	all	the	other	Google	APIs	is	to	have
a	go	with	their	excellent	OAuth	Playground	at
https://developers.google.com/oauthplayground/.

If	you	would	like	to	know	more	about	how	the	Gmail	API	searching	works,	then	take	a
look	at	https://support.google.com/mail/answer/7190?hl=en	for	a	full	explanation	of	the
query	syntax.

https://developers.google.com/oauthplayground/
https://support.google.com/mail/answer/7190?hl=en

There’s	more…
Another	way	to	access	Gmail	is	to	use	IMAP	or	SMTP	authentication	via	SASL
XOAUTH.	For	more	on	this,	see	https://developers.google.com/gmail/oauth_overview.

Apart	from	Gmail,	this	recipe’s	example	can	easily	be	configured	to	use	any	of	the	other
OAuth	2	authenticated	Google	APIs.	For	a	list	of	all	the	Google	APIs,	see
https://developers.google.com/apis-explorer/#p/.

https://developers.google.com/gmail/oauth_overview
https://developers.google.com/apis-explorer/#p/

See	also
Google	Web	Server	OAuth	2:
https://developers.google.com/accounts/docs/OAuth2WebServer

https://developers.google.com/accounts/docs/OAuth2WebServer

Automating	OAuth	2	authentication	and
consent
The	Get	Token	OAuth	2	functionality	in	SoapUI	has	the	ability	to	run	JavaScript	to
automatically	authenticate	and	grant	permissions	(consent)	during	the	browser-based
interaction	with	the	Authorization	Server.	Assuming	you’re	happy	to	provide	your
credentials	to	the	script,	this	could	be	useful	if	unattended	authentication	is	required	for
your	tests.	This	recipe	briefly	shows	how	to	do	this	for	the	previous	Gmail	example.

Getting	ready
This	recipe	assumes	you’ve	completed	the	previous	recipe.	In	any	case,	you	can	find	the
completed	SoapUI	project	GoogleOAuth2	in	the	chapter	8	samples.

How	to	do	it…
We	just	need	to	add	the	automation	JavaScript	to	input	credentials	and	submit	on	the	first
screen	(login	screen).	Then,	when	the	second	screen	(consent)	is	displayed,	click	on
Accept:

1.	 Under	the	Auth	tab,	open	the	Get	Token	window	and	click	on	Automation.	Then,
enter	the	following	scripts,	as	shown	in	the	screenshot:

2.	 Edit	your	Gmail	account	and	password	into	the	first	script.
3.	 Click	on	the	play	button	and	you	should	see	the	browser	window	open	first	with	the

Google	login	screen,	which	should	get	filled	out	and	submitted.	Then,	the	consent
screen	should	open	and	after	a	small	pause,	the	Accept	button	should	be	clicked.
That’s	it!

How	it	works…
SoapUI	has	the	ability	to	execute	scripts	using,	(javax.swing.JFrame)	embedded	browser.
It’s	really	just	a	case	of	providing	suitable	JavaScript	to	fill	in	the	username,	password,
and	click	buttons	on	our	behalf!

I	would	say	a	fair	amount	of	trial	and	error	is	involved	in	creating	the	scripts.	For	example,
here	it	is	necessary	to	cover	the	situation	when	you	are	already	authenticated	and	just	need
to	click	on	Accept	on	the	consent	screen.	That’s	why	the	if	statement	in	the	first	script	is
there,	to	check	whether	the	first	screen	is	actually	the	login	page	before	trying	to	supply
credentials.	Also,	the	setTimeout	is	necessary	to	wait	for	3	seconds	before	trying	to	click
on	the	Accept	button,	otherwise	it	tends	to	click	too	early!

Tip
Trouble	getting	element	Ids?

When	writing	the	automation,	you	may	find	it	useful	to	call	the	OAuth	2	screens	via	a
normal	browser	so	that	you	can	inspect	the	HTML	elements,	for	example,	using	firebug	or
similar	plugin.	You	can	call	the	/auth	endpoint	from	a	standard	browser	to	get	access	to
the	screens,	for	example,	https://accounts.google.com/o/oauth2/auth?scope	=
https://www.googleapis.com/auth/gmail.readonly&response_type=code&redirect_uri
=	https://localhost:9001/oauth2callback&client_id=<your	client	id>.

Testing	AWS	services	using	Access	Key
authentication
Amazon	Web	Services	(AWS)	offer	a	fantastic	range	of	established	cloud-based	services.
Being	one	of	the	most	mature	CSPs,	they	offer	various	ways	to	authenticate	and	access
their	web	services.	The	main	ways	being:

Access	Keys:	Used	to	sign	requests	for	REST,	Query	API,	and	AWS	SDK
X.509	Certificates:	Used	to	sign	SOAP	requests

However,	these	days	AWS	seem	to	be	consolidating	around	the	Access	Key	approach	and
are	deprecating	SOAP	usage	across	most	of	the	estate,	for	example,	SimpleDB	did	in
September	2011.	EC2	(Elastic	Compute	Cloud)	deprecated	SOAP	access	after	December
2014	(http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-soap-api.html).	In
this	recipe,	we	take	a	look	at	how	we	use	Access	keys	to	make	a	signed	REST	request	to
the	Identity	and	Access	Management	(IAM)	API	to	list	all	users.	While	this	isn’t	the	most
exciting	API	to	pick,	there	is	less	setup	involved	than	with,	for	example,	a	SimpleDB
query	and	the	same	approach	can	be	applied	to	most	of	the	other	APIs	anyway.

Unlike	OAuth	2,	there	is	no	direct	support	for	the	AWS	signature	process	in	SoapUI.	As	a
result,	there	is	a	reasonable	amount	of	Groovy	coding	to	be	done	in	this	recipe.	This	is	the
most	technical	part	of	making	AWS	REST	or	Query	API	requests	without	the	AWS	SDK,
which	takes	care	of	the	signature	process.	Unfortunately,	if	you	try	to	use	the	Java	AWS
SDK	from	within	SoapUI,	it	has	classpath	issues	around	some	required	library	versions
that	it	has	in	common	with	SoapUI.	On	the	plus	side,	calculating	the	signature	explicitly
with	Groovy	explains	a	lot	and	is	a	well-documented	approach!

You	will	need	an	AWS	account	to	perform	the	steps	in	this	recipe.	Fortunately,	at	time	of
writing	(and	for	quite	a	while)	Amazon	offer	a	12-month	free	tier	trial	usage	that	you	can
sign	up	to	at	http://aws.amazon.com/free/.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-soap-api.html
http://aws.amazon.com/free/

Getting	ready
The	first	thing	to	do	if	you	haven’t	got	an	AWS	account	already,	is	to	sign	up	to	the	free
trial	at	the	address	above.

It	is	good	practice	not	to	use	the	root	account	user	to	access	APIs.	So	unless	you’re	happy
to	risk	it,	it’s	easy	enough	to	create	a	test	user	via	the	IAM	console:

1.	 Under	Services	|	IAM	|	Users,	click	on	Create	New	Users:

Enter	a	user	name,	for	example,	testuser
Leave	Generate	an	access	key	for	each	user	checked.

2.	 When	you	click	on	Create,	you’ll	go	to	a	screen	where	you	are	given	the	opportunity
to	display	and/or	download	the	Access	Key.	Please	do	this	now.

3.	 Next,	we	need	to	give	the	new	user	some	privileges	to	allow	API	access:

Click	on	the	users	and	click	on	Attach	User	Policy
Then,	select	Read-Only	Access
On	the	next	page	(Set	Permissions)	you	will	see	a	generated	Policy	Document.
Click	on	Apply	Policy

4.	 This	should	have	generated	you	a	new	test	user	with	read-only	access	to	all	services.
Under	the	Access	Credentials	section,	you	should	also	see	the	Access	Key	you
downloaded	earlier,	but	no	secret	key.	Remember	to	come	back	to	this	page	if,	for
example,	you	need	any	write	permissions	or	want	to	change/revoke	the	Access	Key.
That’s	it,	we	should	be	good	to	go!

This	recipe’s	SoapUI	project	AWS-IAM-REST-QUERY	is	included	in	the	chapter	8	samples.
This	time,	it	should	save	a	lot	of	typing!

How	to	do	it…
There	are	various	ways	of	making	the	API	call	and	a	lot	of	potential	background
information	that	you	could	read	first.	However,	in	the	interests	of	making	progress,	let’s
just	pick	probably	the	simplest	way	(a	GET	request	with	authentication	details	in	the	Query
String),	and	look	more	at	how	it	works	later.

Right,	let’s	start	by	defining	exactly	what	we	want	to	do	here	and	then	explaining	how	we
can	do	it.	The	API	request	we	are	looking	to	create	is	going	to	be	something	like	this:

https://iam.amazonaws.com?Action=ListUsers
&Version=2010-05-08
&X-Amz-Algorithm=AWS4-HMAC-SHA256
&X-Amz-Credential=AKIAJLQ5UDKLRHLYLH6A%2F20141125%2Fus-east-
1%2Fiam%2Faws4_request
&X-Amz-Date=20141125T112613Z
&X-Amz-Expires=30
&X-Amz-SignedHeaders=host
&X-Amz-
Signature=320f3175dcea2dbe4eaee3da096634f71b4fdf810e8380a6e17c160a950b94dc

This	may	look	rather	complicated,	especially	at	first	glance!	But	apart	from	all	these
authentication	parameters,	we	just	need	to	make	a	HTTP	GET	request	to
https://iam.amazonaws.com?Action=ListUsers.

I	have	highlighted	the	parameters	that	need	to	be	dynamically	calculated.	This	can	be	done
using	a	Groovy	TestStep	before	passing	the	parameter	values	into	an	HTTP	Test	Request
TestStep	to	make	the	actual	API	request,	as	follows:

Note
Why	all	the	parameters?

Apart	from	the	version	parameter	that	indicates	what	API	version	to	call,	all	the	others
provide	a	signed	request	and	timestamp.	The	timestamp	is	important	to	protect	against
replay	attacks.	Signing	the	request	(with	our	secret	key)	proves	the	request	came	from	our
test	user,	and	makes	it	difficult	for	anyone	to	just	forge	the	timestamp!	Also,	the	request	is
made	over	HTTPS	to	protect	sensitive	account-based	information.

1.	 OK,	first	let’s	create	a	new	TestCase	and	add	a	HTTP	Test	Request	TestStep.
Fortunately,	if	we	take	the	above	request	and	paste	it	into	the	Endpoint	field	and
click	on	Extract	Params	then	SoapUI	nicely	builds	up	all	the	parameters	we	need.

2.	 Optionally,	run	this	now	and	you	should	get	a	status	403	forbidden
—SignatureDoesNotMatch.	This	is	because	the	signature’s	timestamp	is	older	than
15	minutes	and	is	seen	by	AWS	as	a	possible	replay	attack!

3.	 Now	for	the	Groovy	script	to	calculate	the	dynamic	parameters.	Create	a	new	Groovy
TestStep	before	the	HTTP	Test	Request	and	paste	in	the	following	code:

import	java.security.MessageDigest
import	javax.crypto.Mac
import	javax.crypto.spec.SecretKeySpec
import	java.net.URLEncoder

https://iam.amazonaws.com?Action=ListUsers

//You	could	easily	put	these	into	SoapUI	properties
def	method	=	'GET'
def	service	=	'iam'
def	host	=	'iam.amazonaws.com'
def	action	=	'ListUsers'
def	version	=	'2010-05-08'
def	region	=	'us-east-1'
def	endpoint	=	'https://iam.amazonaws.com'
def	access_key	=	'AKIAJLQ5UDKLRHLYLH6A'
def	secret_key	=	'm0zr0hvusTcVyMRz/kWgbPnJo5tavOudjYlP/y5c'

//Compute	HMAC	using	key	-	Taken	from	
http://docs.aws.amazon.com/general/latest/gr/signature-v4-
examples.html#signature-v4-common-coding-mistakes
static	byte[]	HmacSHA256(String	data,	byte[]	key)	throws	Exception		{
		String	algorithm="HmacSHA256"
		Mac	mac	=	Mac.getInstance(algorithm);
		mac.init(new	SecretKeySpec(key,	algorithm))
		return	mac.doFinal(data.getBytes("UTF8"))
}
//Compute	Signature	Key	-	Taken	from	
http://docs.aws.amazon.com/general/latest/gr/signature-v4-
examples.html#signature-v4-common-coding-mistakes
static	byte[]	getSignatureKey(String	key,	String	dateStamp,	String	
regionName,	String	serviceName)	throws	Exception		{
		byte[]	kSecret	=	("AWS4"	+	key).getBytes("UTF8")
		byte[]	kDate				=	HmacSHA256(dateStamp,	kSecret)
		byte[]	kRegion		=	HmacSHA256(regionName,	kDate)
		byte[]	kService	=	HmacSHA256(serviceName,	kRegion)
		byte[]	kSigning	=	HmacSHA256("aws4_request",	kService)
		return	kSigning
}
//Compute	the	SHA-256	Hash
static	byte[]	hash(String	text)	{
				MessageDigest	md	=	MessageDigest.getInstance("SHA-256")
				md.update(text.getBytes("UTF8"))
				return	md.digest()
}
//Taken	from	Java	AWS	SDK	-	Convert	byte	arrary	to	Hex	string
static	String	toHex(byte[]	data)	{
		StringBuilder	sb	=	new	StringBuilder(data.length	*	2)
		for	(int	i	=	0;	i	<	data.length;	i++)	{
				String	hex	=	Integer.toHexString(data[i])
				if	(hex.length()	==	1)	{
						//	Append	leading	zero.
						sb.append("0")
				}	else	if	(hex.length()	==	8)	{
						//	Remove	ff	prefix	from	negative	numbers.
						hex	=	hex.substring(6)
				}
				sb.append(hex)
		}
		return	sb.toString().toLowerCase(Locale.getDefault())
}

//Create	a	date	for	headers	and	the	credential	string
TimeZone.setDefault(TimeZone.getTimeZone('UTC'))
def	now	=	new	Date()
def	amz_date	=	now.format("yyyyMMdd'T'HHmmss'Z'")
def	datestamp	=	now.format("yyyyMMdd")

//	*************	TASK	1:	CREATE	A	CANONICAL	REQUEST	*************
//	http://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-
request.html

//	Because	almost	all	information	is	being	passed	in	the	query	string,	
the	order	of	these	steps	is	slightly	different	than	the	examples	that	
use	an	authorization	header.

//	Step	1:	Define	the	verb	(GET,	POST,	etc.)--already	done.
//	Step	2:	Create	canonical	URI--the	part	of	the	URI	from	domain	to	
querystring	(use	'/'	if	no	path)
def	canonical_uri	=	'/'

//	Step	3:	Create	the	canonical	headers	and	signed	headers.	Header	
names	and	values	must	be	trimmed	and	in	lowercase,	and	sorted	in	ASCII	
order.	Note	trailing	\n	in	canonical_headers.	Signed_headers	is	the	
list	of	headers	that	are	being	included	as	part	of	the	signing	process.	
For	requests	that	use	query	strings,	only	"host"	is	included	in	the	
signed	headers.
def	canonical_headers	=	'host:'	+	host	+	'\n'
def	signed_headers	=	'host'

//	Match	the	algorithm	to	the	hashing	algorithm	you	use,	either	SHA-1	
or	SHA-256	(recommended)
def	algorithm	=	'AWS4-HMAC-SHA256'
def	credential_scope	=	datestamp	+	'/'	+	region	+	'/'	+	service	+	'/'	+	
'aws4_request'

//	Step	4:	Create	the	canonical	query	string.	In	this	example,	request	
parameters	are	in	the	query	string.	Query	string	values	must	be	URL-
encoded	(space=%20).	The	parameters	must	be	sorted	by	name.
def	canonical_querystring	=	'Action='+action+'&Version='+version
canonical_querystring	+=	'&X-Amz-Algorithm=AWS4-HMAC-SHA256'
canonical_querystring	+=	'&X-Amz-Credential='	+	
URLEncoder.encode(access_key	+	'/'	+	credential_scope,	"UTF-8")
canonical_querystring	+=	'&X-Amz-Date='	+	amz_date
canonical_querystring	+=	'&X-Amz-Expires=30'
canonical_querystring	+=	'&X-Amz-SignedHeaders='	+	signed_headers

log.info	"Canonical	Querystring:	"+canonical_querystring

//	Step	5:	Create	payload	hash.	For	GET	requests,	the	payload	is	an	
empty	string	("").
def	payload_hash	=	toHex(hash(''))
log.info	"Payload	Hash="+payload_hash

//	Step	6:	Combine	elements	to	create	create	canonical	request
def	canonical_request	=	method	+	'\n'	+	canonical_uri	+	'\n'	+	
canonical_querystring	+	'\n'	+	canonical_headers	+	'\n'	+	
signed_headers	+	'\n'	+	payload_hash

//	*************	TASK	2:	CREATE	THE	STRING	TO	SIGN*************
def	string_to_sign	=	algorithm	+	'\n'	+		amz_date	+	'\n'	+		
credential_scope	+	'\n'	+		toHex(hash(canonical_request))
log.info	"String	To	Sign:	"+string_to_sign

//	*************	TASK	3:	CALCULATE	THE	SIGNATURE	*************
//	Create	the	signing	key
def	signing_key	=	getSignatureKey(secret_key,	datestamp,	region,	
service)
log.info	"Signing	Key:	"+signing_key
//	Sign	the	string_to_sign	using	the	signing_key
def	signature	=	toHex(HmacSHA256(string_to_sign,	signing_key))
log.info	"Signature:	"+signature

//	*************	TASK	4:	ADD	SIGNING	INFORMATION	TO	THE	REQUEST	

//	The	auth	information	can	be	either	in	a	query	string
//	value	or	in	a	header	named	Authorization.	This	code	shows	how	to	put	
everything	into	a	query	string.
canonical_querystring	+=	'&X-Amz-Signature='	+	signature
def	request_url	=	endpoint	+	"?"	+	canonical_querystring

//Use	CURL	for	testing:
log.info	"curl	-GET	'"+request_url+"'"

//Add	dynamic	parameter	values	to	the	context
context["credential"]=access_key	+	'/'	+	credential_scope
context["timestamp"]=amz_date
context["signature"]=signature

4.	 The	only	parts	of	this	script	that	should	need	to	change	for	you	are	the	values	of
access_key	and	secret_key	(parameter	section	near	the	top).	Replace	their	values
with	the	values	you	downloaded	when	you	created	your	test	user.

Tip
Quick	test

This	script	should	run	on	independently	and	produce	quite	a	lot	of	logging.	For
testing	purposes,	it	also	produces	a	curl	(http://curl.haxx.se/)	statement	to	make	the
actual	request.	Assuming	you	have	curl	installed	(if	not,	just	paste	the	URL	into	a
browser),	paste	the	resulting	statement	into	a	shell	window	and	if	it	works,	that	is,
you	get	a	status	200	response	and	output	like	in	step	6	described	next,	then	you
should	be	in	good	shape!

5.	 Lastly,	we	just	need	to	use	the	dynamic	parameters	that	are	added	to	the	context	at
the	end	of	the	script	(credential,	timestamp,	and	signature)	and	insert	them	into
the	matching	HTTP	Test	Request	parameters,	as	shown	in	the	following	screenshot:

http://curl.haxx.se/

6.	 Now,	run	the	TestCase	and	if	all’s	well,	you	should	get	a	response	like	this:

<ListUsersResponse	xmlns="https://iam.amazonaws.com/doc/2010-05-08/">
			<ListUsersResult>
						<Users>
<member>
												<UserId>AIDAIYV6F67LECWY2KWS2</UserId>
												<Path>/</Path>
												<UserName>testuser1</UserName>
												<Arn>arn:aws:iam::515462158215:user/testuser1</Arn>
												<CreateDate>2014-11-25T11:03:15Z</CreateDate>
									</member>
						</Users>
						<IsTruncated>false</IsTruncated>
			</ListUsersResult>
			<ResponseMetadata>
						<RequestId>1654d980-74a6-11e4-86fc-714775cab52b</RequestId>
			</ResponseMetadata>
</ListUsersResponse>

How	it	works…
We	won’t	cover	every	aspect	of	this	process	in	detail,	but	we	can	give	an	overview	and
explain	where	to	get	other	information	you	might	need	to	dig	deeper.	The	most
complicated	part	is	obviously	the	script:

It’s	based	on	an	excellent	Python	example,	see
http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-
examples.html#sig-v4-examples-get-query-string
It	also	uses	the	java	signing	key	example	from
http://docs.aws.amazon.com/general/latest/gr/signature-v4-examples.html#signature-
v4-examples-java
It	requires	no	external	libraries,	unlike	the	AWS	SDK.
It	could	be	made	more	Groovy-like	and	refined,	for	example,	it	could	create
properties	for	all	the	parameters,	but	I	wanted	to	leave	it	relatively	raw	and	close	to
the	original	examples	to	hopefully	help	people	understand	the	translation.
For	more	information	on	all	aspects	of	signing	requests,	see
http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html

The	main	steps	in	the	script	are	as	follows:

1.	 First,	we	define	the	request	variables.	These	variables	could	easily	be	replaced	by
SoapUI	properties	to	make	the	script	more	configurable.

2.	 Next,	we	define	helper	methods	HmacSHA256	and	getSignatureKey	that	are	used	to
calculate	the	HMAC	signature.	Apart	from	the	Amazon	docs,	for	more	information
on	the	Java	MAC	class	and	an	interesting	comparison	of	Basic,	Digest,	and	HMAC
authentication,	see	the	links	described	next.

3.	 Two	more	helper	methods	hash	and	toHex	are	then	defined.	The	first	is	used	to
compute	SHA-256	Hash	(see	links)	of	the	canonical	request	URL.	The	second	method
is	used	to	convert	the	resulting	Byte	Array	to	Hex	String	so	that	it	can	be
concatenated	as	part	of	the	String	we	need	to	sign.

4.	 Next,	we	calculated	the	timestamps	and	the	canonical	request	querystring,	which	is
a	major	part	of	the	approach	and	the	String	must	be	built	exactly	like	this,	otherwise
the	request	will	be	rejected.

5.	 Finally,	we	build	the	String	to	sign	(includes	all	aspects	of	the	request)	and	compute
the	HMAC	signature	of	this	String	to	be	used	to	authenticate	the	request.

Tip
Since	the	whole	request	(including	the	timestamp)	is	signed,	any	attempt	to	modify
the	request	after	dispatch	will	mean	that	the	signature	will	be	invalid	and	the	request
will	be	rejected.	The	AWS	API	ensures	this,	because	when	it	receives	the	request,	it
recalculates	the	request’s	signature	using	the	same	approach	and	compares	it	to	the
signature	String	in	the	request.

The	script	actually	has	to	do	more	than	we	need,	that	is,	it	builds	the	entire	request,	not
just	the	dynamic	parameters	we	need	to	pass.	So	the	script	could	also	be	written	to	fire	the

http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html#sig-v4-examples-get-query-string
http://docs.aws.amazon.com/general/latest/gr/signature-v4-examples.html#signature-v4-examples-java
http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html

request	itself	if	required.	However,	it	is	convenient	to	use	the	HTTP	Test	Request
TestStep	instead	so	that	we	can	use	Assertions	to	test	the	response.	It	would	also	be	easy
to	parameterize	the	entire	request	including	the	endpoint,	using	the	values	from	the	script
if	required.

There’s	more…
The	script	can	easily	be	adapted	to	make	requests	against	the	other	AWS	APIs,	for
example,	we	could	check	database	content	in	SimpleDB	or	DynamicDB	after	calling	a	cloud-
based	web	service	to	update	it.	Also,	besides	using	a	GET	request	with	the	authentication
information	in	the	Query	String,	you	can	also	do	a	GET	with	the	authentication
information	in	the	HTTP	Header	and	also	a	POST	request	–	see	the	other	Python	examples
at	http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html.

http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html

See	also
Other	AWS	Services:	http://aws.amazon.com/documentation/
Java	MAC:	https://docs.oracle.com/javase/7/docs/api/javax/crypto/Mac.html
SHA-256:	http://en.wikipedia.org/wiki/SHA-2
Good	comparison	of	Basic,	Digest,	and	HMAC	Authentication:
http://www.javacodegeeks.com/2012/10/what-is-hmac-authentication-and-why-
is.html

http://aws.amazon.com/documentation/
https://docs.oracle.com/javase/7/docs/api/javax/crypto/Mac.html
http://en.wikipedia.org/wiki/SHA-2
http://www.javacodegeeks.com/2012/10/what-is-hmac-authentication-and-why-is.html

Chapter	9.	Data-driven	Load	Testing	With
Custom	Datasources
In	this	chapter,	we	will	cover:

Load	testing	data-driven	TestCases	concurrently	with	separate	Groovy	datasources
Load	testing	data-driven	TestCases	concurrently	with	a	shared	Groovy	datasource
Load	testing	data-driven	TestCases	concurrently	with	a	shared	distributed	datasource
Running	load	tests	using	Maven,	command	line,	Java,	Groovy,	and	Gradle	scripts

Introduction
This	chapter	aims	to	build	on	basic	load	testing	topics	in	the	open	source	version	of
SoapUI.	The	main	themes	explored	here	are	data-driven	load	testing,	understanding
concurrency	issues	when	sharing	a	datasource	between	multiple	threads,	and	running	load
tests	from	scripts.

This	chapter	focuses	on	the	open	source	version	of	SoapUI.	The	related	pro	features	of
Datasource	TestSteps	and	reporting	are	not	covered	here;	for	more	on	these	topics
please	see	the	SoapUI	online	help	at	http://www.soapui.org/Data-Driven-
Testing/loadtests.html	and	http://www.soapui.org/Load-Testing/exporting-data-and-
statistics.html.

As	you	are	probably	aware,	SoapUI	has	a	related	product,	LoadUI,	which	takes	load
testing	to	another	level.	Unfortunately,	as	of	July	2014	it	is	no	longer	open	source,	but	its
documentation	is	quite	good	and	may	give	you	ideas	on	how	to	solve	load	testing
problems	beyond	those	that	SoapUI	can	manage	out-of-the-box.	Visit
http://www.loadui.org/	for	more	information.

http://www.soapui.org/Data-Driven-Testing/loadtests.html
http://www.soapui.org/Load-Testing/exporting-data-and-statistics.html
http://www.loadui.org/

What	you’ll	learn
You	will	learn	how	to:

Understand	load	test	concurrency	(thread-safety)	issues	around	separate	and	shared
test	datasources,	some	of	their	signs,	and	how	to	deal	with	them
Design	and	create	thread-safe	separate,	shared,	and	distributed	datasources	in	the
open	source	version	of	SoapUI
Run	load	tests	on	multiple	instances	of	SoapUI	simultaneously,	that	is,	basic
distributed	load	testing
Script	load	tests;	Maven	scripting	has	been	covered	in	detail,	but	Java,	JUnit,	Groovy,
and	Gradle	approaches	have	also	been	explained

What	you’ll	need
You	will	need	the	following:

Basic	SoapUI	load	testing	skills:	If	you	don’t	have	these,	the	online	SoapUI	Load
Testing	pages	are	quite	good.	Take	a	look	at	all	pages,	for	example,
http://www.soapui.org/Getting-Started/load-testing.html	and	you	should	be	good	to
go!
Knowledge	of	chapters	1,	2,	and	5:	If	you	haven’t	done	these	chapters,	no	problem;
but	concepts,	skills,	and	example	codes	have	been	built	on	in	some	cases.	Chapter	6,
Reporting,	could	also	be	useful	in	terms	of	creating	custom	load	test	reports	and
using	Jenkins	to	run	a	load	test;	this	has	not	been	covered	here	directly.

http://www.soapui.org/Getting-Started/load-testing.html

Load	testing	data-driven	TestCases
concurrently	with	separate	Groovy
datasources
This	recipe	is	partly	a	warm-up	on	simple	threaded	load	testing,	but	also	lays	the
groundwork	for	better	understanding	how	a	data	driven	test	case	behaves	when	tested
concurrently,	that	is,	by	using	multiple	threads.	The	example	test	case	builds	on	Chapter	2,
Data-driven	Testing	and	Using	External	Datasources,	Groovy	data	driven	recipes.	This	is
what	it	does	when	called:

The	service	under	test	is	a	partially	implemented	version	of	invoicev3	from	chapter	1
samples.	So	that	we	can	study	the	results	of	our	load	testing,	the	createInvoice	operation
has	been	implemented	to	write	invoice	request	data	to	an	H2	database,	which	we	can
query	afterwards.

Getting	ready
The	example,	invoicev3	web	service	WSDL	(/invoicev3/wsdl/Invoice_v3.wsdl),	and
source	code	can	be	found	in	the	chapter	9	samples.	The	service	requires	a	Java	JDK	and
was	generated	using	Apache	CXF	following	the	techniques	mentioned	in	Chapter	1,
Testing	and	Developing	Web	Service	Stubs	With	SoapUI.	It’s	easy	to	build	and	run	from
the	command	line,	although	using	an	IDE	like	Eclipse	is	probably	a	better	option	if	you
want	to	tweak,	build,	and	run	it	often.	Here	are	the	key	details:

Endpoint:	http://localhost:9003/ws/invoice/v3?wsdl
To	run:

cd	<chapter	9	samples>/invoicev3/target/classes
java	-cp	../../src/lib/h2-1.4.181.jar:.	
ws.invoice.v3.InvoicePortType_InvoicePort_Server

To	build:

cd	<chapter	9	samples>/invoicev3/
Javac	-cp	src/lib/h2-1.4.181.jar	src/main/java/ws/invoice/v3/*.java	-d	
target/classes

Ok,	so	let’s	start	it	up.	Open	a	shell/command	prompt,	change	directory	to	<chapter	9
samples>/invoicev3/target/classes	and	run	the	preceding	Java	command:

Starting	InvoiceV3	Server

You	can	access	the	database	remotely	now,	using	the	URL,
http://localhost:9081/./invoicev3-testdb	(user:	'',	password:	'').	This	is	the
output:

invoices	table	created…
Server	ready,	will	close	automatically	in	30	minutes…

As	a	quick	test:

1.	 Open	a	browser	and	test	the	WSDL	using	the	above	endpoint	details.
2.	 In	another	browser	tab	test	the	H2	Web	Client:

Go	to	http://localhost:9081/;	the	Login	page	should	be	displayed
Generic	H2	(Server)
JDBC	URL:	jdbc:h2:	http://localhost:9081/../../invoicev3-testdb
Username	and	Password:	leave	empty
Enter	the	details	and	click	on	Test	Connection;	you	should	see:

Then	click	Connect	and	enter	the	client.	Click	the	INVOICES	table	on	the	left	and
a	SELECT	statement	will	be	generated	for	you	in	the	editor	window.	Click	on
Run	and	you	should	see	no	rows	returned,	as	follows:

OK,	now	we	should	be	ready	to	call	the	service	and	create	some	invoice	data!	If	you	need
to	change	the	service	or	H2	database	settings,	here	are	some	pointers:

Classpath	dependency:	Requires	only	the	H2	database	driver	(src/lib/h2-
1.4.181.jar)	on	the	classpath	when	running	and	building
Edit	service	class	InvoicePortType_InvoicePort_Server	for:

Service	Endpoint:	Default	as	earlier
Service	Timeout:	The	service	exists	after	30	minutes

Edit	service	port	implementation	InvoicePortImpl	for:

Database	File	Location:	Default	(./invoicev3-testdb)
Database	Web	Client	Protocol/Host/Port:	Default	(http://localhost:9081/)

This	recipe’s	SoapUI	project,	InvoiceV3LoadTest,	and
SeperateGroovyDatasourceTestCase	TestCase	can	also	be	found	in	the	chapter	9
samples.

How	to	do	it…
After	setting	up	a	new	SOAP	Project,	TestSuite,	and	TestCase,	we’ll	add	TestSteps	to
make	TestCase	work	like	the	one	in	the	preceding	diagram.	Then	we’ll	set	up	a	new	Load
Test	with	5	threads	and	a	limit	of	500	Total	Runs.	Next,	we’ll	run	the	Load	Test	and	check
the	invoice	records	in	the	H2	database.	Finally	we’ll	run	the	Load	Test	with	5	threads	and
a	limit	of	100	Runs	per	Thread	and	see	if	there	are	any	differences.	Perform	the	following
steps:

1.	 Set	up	a	New	SOAP	Project	using	the	InvoiceV3	WSDL;	create	a	new	TestSuite
and	new	TestCase.

2.	 Next,	add	a	Groovy	TestStep	to	get	the	next	row	of	test	data,	add	the	values	to	the
context,	and	increment/reset	the	TestCase’s	rowCounter	property:

def	rowCount	=	
Integer.parseInt(context.expand('${#TestCase#rowCounter}'))

//Get	test	data	rows	from	load	test	context
assert	context.LoadTestContext!=null,"No	Test	Data	-	This	TestCase	must	
be	run	from	the	load	test."
def	testDataRows	=	context.LoadTestContext["testDataRows"]

//Get	next	row	of	csv	test	data	and	split	it	into	values
def	rowItems	=	testDataRows[rowCount].split(/,/)

//Add	the	values	to	TestCase	context	for	use	in	requests
context["invoiceId"]=rowItems[0]
context["customerRef"]=rowItems[1]+"-
(ThreadIndex="+context["ThreadIndex"]+"	RunCount:	
"+context["RunCount"]+")"
context["amount"]=rowItems[2]
def	date=Date.parse("dd/MM/yyyy",rowItems[3]);
context["dueDate"]=date.format("yyyy-MM-dd'Z'")	//parse	to	xsd:date	
format

//Pre	increment	rowCount	and	check	if	rowcount	is	>	last	row,	if	so	
reset	it.
if	(++rowCount==testDataRows.size())	rowCount=0

//Update	roCounter	property	on	TestCase
testRunner.testCase.setPropertyValue("rowCounter",	
String.valueOf(rowCount))

3.	 Now,	add	a	new	Test	Request	TestStep	to	call	the	createInvoice	operation.	Edit	the
request	and	insert	references	to	the	test	data	values	stored	in	the	context,	as	shown	in
the	following	screenshot:

4.	 On	TestCase,	create	a	new	property	called	rowCounter=0	to	keep	track	of	its	row
position	in	the	test	data	when	being	run	by	a	Load	Test	thread.

5.	 Next,	create	a	new	Load	Test	option	for	TestCase	with	the	following	parameters:

Threads:	5
Strategy:	Simple
TestDelay	=	0	and	Random	=	0
Limit:	50	(Total	Runs)

6.	 Under	the	load	test’s	Setup	Script	tab,	we	need	to	load	the	test	data	from	the	CSV
file	and	store	it	in	Load	Test	context	so	that	TestCases	can	access	the	rows	they
need.	Open	the	Setup	Script	tab	and	add:

log.info	"Load	test	setup	script:"
log.info	"Loading	test	file	data	into	load	test	context…"	

context["testDataRows"]=[]

File	testDataFile	=	new	File("/temp/invoices.csv")
testDataFile.eachLine	{content	->	
context["testDataRows"]	<<	content
}

Tip
Groovy	<<	(left	shift)	operator

If	you	haven’t	seen	it	before,	Groovy	Collections	overload	the	.leftShift	operator
(<<)	to	append	objects	to	a	collection.	For	example,	the	line	above	could	also	be
written	as	context["testDataRows"].add(content)—See
http://groovy.codehaus.org/Operator+Overloading,
http://groovy.codehaus.org/groovy-jdk/java/util/Collection.html.

Note
Test	data	file	location

Please	remember	to	change	the	path	to	match	the	file	location	on	your	system.

7.	 Now,	if	the	invoicev3	service	isn’t	already	running,	start	it	up	and	run	the	Load
Test!	Let’s	take	a	look	at	the	results:

Go	into	the	H2	web	client

http://groovy.codehaus.org/Operator+Overloading
http://groovy.codehaus.org/groovy-jdk/java/util/Collection.html

Take	a	quick	look	at	the	invoice	data;	for	example,	SELECT	*	FROM	INVOICES—
50	invoice	records	should	have	been	created
To	consolidate	the	data,	run	SELECT	INVOICENO,COUNT(*)	FROM	INVOICES
GROUP	BY	INVOICENO.	;	you	should	see	something	like	this:

Note
Observations

Strangely,	the	distribution	of	invoice	totals	isn’t	completely	regular;	there	are
slightly	more	low	number	invoices	(1s	and	2s)	than	high	number	ones	(9s	and
10s).
If	you	inspect	the	individual	invoice	rows	over	different	run	limits,	it	seems	that
certain	threads	are	busier	than	others!	The	threads	with	lower	ThreadIndex
(shown	in	the	CustomerRef	field)	seem	to	finish	first,	and	start	again	at	the
beginning	of	the	test	data.

Note
Conclusion:	When	using	a	limit	type	of	Total	Runs	(with	more	than	1	thread	and
separate	datasources),	the	test	data	usage	pattern	and	number	of	TestCase	executions
by	each	particular	thread	cannot	be	guaranteed.	This	may	or	may	not	be	an	issue	for
your	tests,	but	is	worth	being	aware	of.

8.	 Of	course,	one	way	to	control	this	is	to	change	the	limit	type	to	Runs	per	Thread,
that	is:

Set	Limit:	50	(Runs	per	Thread)
Clear	down	the	previous	data	by	running	query,	TRUNCATE	TABLE	INVOICES
Rerun	the	load	test	and	requery	the	data	to	see	an	even	distribution	of	the
invoice	numbers	in	the	database,	which	appears	as	follows:

How	it	works…
Apart	from	the	effects	of	the	different	limits	on	the	way	the	threads	behave,	the	main	thing
to	be	aware	of	is	the	way	the	threads	actually	run	TestCase,	and	how	different	types	of
properties	can	be	used	in	a	thread-safe	way:

Note
The	key	points	are

The	shared	testDataRows	property	is	updated	only	once	by	the	load	test	setup	script,
before	the	Load	Test	runs.
Each	thread	creates	a	clone	of	TestCase	and	has	separate	state	from	other	threads;	the
rowCounter	property	can	be	safely	updated	from	within	its	TestCase.
The	Load	Test’s	context	(contains	testDataRows)	is	shared	and	can	be	safely	read,
but	not	updated,	by	the	scripts	in	a	different	thread’s	TestCases.
The	initial	state	of	TestCase	is	unchanged	after	Load	Test;	the	rowCounter	property
that	we	added	is	still	=	0	after	the	test.	This	means	that	all	updates	during	the	test
were	made	against	a	separate	cloned	property	for	each	thread.	The	cloned	TestCase
instances	die	after	the	load	test.

There’s	more…
Of	course,	there	will	be	times	when	you	want	to	share	the	test	data	between	threaded
TestCases	in	a	load	test	rather	than	separate	usages	of	it.	The	main	thing	to	be	careful
about	is	allowing	separate	threads	to	update	shared	properties,	otherwise	you	risk
unpredictable	results.	As	an	experiment	you	could	change	TestCase's	Groovy	TestStep
to	use	a	rowCounter	held	in	LoadTest's	context,	which	is	shared	between	threads.	I	have
added	the	lines	to	do	this	into	the	setup	script	and	Groovy	TestStep	(commented	out).

Basically,	in	setup	script	you	add:

//Not	thread	safe:
context["rowCounter"]=0

And	in	the	Groovy	TestStep,	use	this	property	instead	of	the	TestCase	property	by
replacing:

//def	rowCount	=	
Integer.parseInt(context.expand('${#TestCase#rowCounter}'))

With:

//Non	thread	safe	example	(dont	use	unless	experimenting)
def	rowCount	=	context.LoadTestContext["rowCounter"]

And	update	it	instead	of	the	TestCase	version	by	adding:

//Non	thread	safe	example	(dont	use	unless	experimenting)
context.LoadTestContext["rowCounter"]=rowCount

Now	if	you	run	the	load	test	even	over	a	small	number	of	runs	with	more	than	one	thread,
you	can	expect	irregular	results;	for	example:

Threads:	5
Test	Delay:	Value	is	0	(adding	any	kind	of	delay	will	mean	there’s	less	chance	of
threads	clashing!)
Limit:	20	Runs	per	Thread	(should	give	even	numbers	like	before)
Try	it,	and	oh	boy!	Different	results	every	time!	For	example:

Well,	the	count	is	100	as	expected,	but	rowCounter	gets	thrown	all	over	the	place	as
different	threads	try	to	read	and	increment	it	at	the	same	time!	Bigger	run	counts	and
thread	numbers	will	naturally	aggravate	this	situation.

If	you’d	rather	not	have	this	kind	of	unpredictable	behavior,	then	the	next	two	recipes
explain	how	datasources	can	be	shared	reliably	between	multi-threaded	TestCases.

See	also
Java	Concurrency:
http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

Load	testing	data-driven	TestCases
concurrently	with	a	shared	Groovy
datasource
This	recipe	builds	on	the	first	one	to	show	a	simple	way	to	use	the	same	test	data	shared
between	TestCases	run	by	multiple	threads.	We	might	want	to	do	this	in	case	we	want
each	row	of	the	test	data	to	be	used	only	once.	For	example,	it	isn’t	always	great	to	have
multiple	invoices	created	with	the	same	details,	as	it	creates	duplicate	invoice	test	data.
The	service	under	test	is	the	same	invoice	v3	service	as	in	the	previous	recipe.

Getting	ready
This	recipe	can	be	done	as	part	of	the	same	project	that	was	used	in	the	last	recipe.	So	if
you	haven’t	already	done	the	first	recipe,	you	can	find	its	completed	Project	and
TestSuite	from	the	chapter	9	samples.	You	may	also	want	to	look	over	the	last	recipe’s
Getting	ready	section	to	see	how	to	use	the	invoice	v3	test	service,	and	also	the	H2
database.	This	recipe’s	SoapUI	project	InvoiceV3LoadTest	and
SharedGroovyDatasourceTestCase	can	also	be	found	in	the	chapter	9	samples.

How	to	do	it…
The	main	problem	with	sharing	a	data	source	between	multiple	threads	is	providing
thread-safe	access	to	any	properties	that	can	be	updated	concurrently.	So,	what	needs	to
change	from	the	first	recipe?	Well,	this	time	we	need	a	simple	mechanism	whereby:

Each	thread’s	TestCase	gets	a	different	row	of	test	data	from	the	other	thread’s
TestCases,	that	is,	the	ability	to	ensure	each	row	of	test	data	is	used	only	once	in	the
Load	Test	(assuming	we	don’t	loop	back	to	the	beginning	of	the	test	data)
TestCases	have	access	to	a	shared	rowCounter	property	to	indicate	the	next	row	of
test	data	to	use
No	other	thread’s	TestCase	should	read	or	increment	the	rowCounter	property	when
a	TestCase	gets	the	next	rowCounter	value	and	increments	it

Well,	we	could	store	the	shared	rowCounter	property	in	the	LoadTest	context	that	is
shared	between	all	threaded	TestCase	clones;	all	the	TestCase	clones	could	access	the
counter,	but	wouldn’t	that	be	risky	if	multiple	threads	update	the	same	property
simultaneously?	Yes,	it	could	be	chaos	as	load	intensity	increases!	That’s	why	we	need	a
way	to	synchronize	access	to	the	rowCounter	property.	More	on	that	soon.

Given	that	we’ve	got	a	thread-safe	shared	rowCounter	property	to	iterate	through	the	rows
of	test	data,	all	we’d	need	to	do	is	get	the	next	row	of	test	data	and	use	it	to	call	the
createInvoice	operation	on	the	invoice	v3	web	service,	like	last	time.

Let’s	do	it!	Perform	the	following	steps:

1.	 First,	let’s	add	that	synchronized	rowCounter	property	mechanism	to	the	LoadTest’s
context	in	the	Setup	script	tab.	The	first	part	of	the	script	to	load	the	test	data	file
will	be	the	same	as	before;	the	new	part	is	shown	highlighted	in	the	following	code.
Open	the	Setup	Script	tab	and	add:

log.info	"Load	test	setup	script:"
log.info	"Loading	test	file	data	into	load	test	context…"	

context["testDataRows"]=[]

File	testDataFile	=	new	File("/temp/invoices.csv")
testDataFile.eachLine	{content,	lineNumber	->	
			context["testDataRows"]	<<	content
}

class	RowCounter{
		int	testDataSize	=	0
		int	rowCounter	=	-1

		RowCounter(int	testDataSize){
				this.testDataSize=testDataSize
		}
		
		def	synchronized	getNext(){
				if	(++rowCounter==testDataSize)	rowCounter=0
				return	rowCounter

		}
}

context["rowCounter"]=new	RowCounter(context["testDataRows"].size())

2.	 Next,	use	the	shared	rowCounter	to	retrieve	the	next	row	of	test	data	from	the
LoadTest	context.	This	script	is	more	or	less	the	same	as	before;	the	new	part	is
highlighted.	In	TestCase	add	the	following	code	to	the	Groovy	TestStep:

//Access	shared	rowCounter	property
def	rowCount	=	context.LoadTestContext["rowCounter"].next

//Get	test	data	rows	from	load	test	context
assert	context.LoadTestContext!=null,"No	Test	Data	-	This	TestCase	must	
be	run	from	the	load	test."
def	testDataRows	=	context.LoadTestContext["testDataRows"]

//Get	next	row	of	csv	test	data	and	split	it	into	values
def	rowItems	=	testDataRows[rowCount].split(/,/)

//Add	the	values	to	TestCase	context	for	use	in	requests
context["invoiceId"]=rowItems[0]
context["customerRef"]=rowItems[1]+"-
(ThreadIndex="+context["ThreadIndex"]+"	RunCount:	
"+context["RunCount"]+")"
context["amount"]=rowItems[2]
def	date=Date.parse("dd/MM/yyyy",rowItems[3]);
context["dueDate"]=date.format("yyyy-MM-dd'Z'")	//parse	to	xsd:date	
format

3.	 The	Test	Request	TestStep	to	call	createInvoice	using	the	test	data	values	from	the
context	is	exactly	as	before	(see	step	3).

4.	 Now	to	give	it	a	spin!	Start	up	the	invoice	v3	service	and	let’s	configure	the	load	test
to	something	reasonably	full-on	from	a	concurrency	perspective;	that	is,	lots	of
threads	with	no	delay	between	tests	over	a	fairly	large	run.	Set	the	load	test	to	the
following	values:

Threads:	100
Strategy:	Simple
TestDelay:	Value	is	0	and	Random	value	is	0	(no	delay	is	more	demanding!)
Limit:	10000	(Total	Runs)

Note
What	we	are	expecting

Of	course,	you	may	have	more	or	less	computing	power	at	your	disposal.	Feel	free	to
choose	different	values.	The	main	thing	is	to	test	the	results	of	heavy	concurrent
access	to	produce	the	invoice	records	we	expect,	that	is,	no	errors,	no	lost	threads,	no
missing	requests,	even	numbers	of	invoices	for	each	invoice	number	in	the	file.	If
you	crank	it	up	too	high,	you	may	start	to	stress	the	service	out	resulting	in	socket
timeouts,	missing	responses,	or	failed	assertions.	This	is	okay	as	long	as	the	test
performs	as	expected—the	service	is	just	an	example.

5.	 Now,	run	the	test	and	this	is	what	we	should	expect	to	see:

6.	 All	cnt	values	should	be	10000,	that	is,	no	lost	threads.	Note	that	there	could	be
legitimate	errors	due	to	service	stress;	for	example,	failed	assertions	due	to
missing/slow	responses:

7.	 And	nice	even	numbers	of	test	invoices	created	in	the	services	database!

How	it	works…
This	time	the	setup	is	as	follows:

The	key	things	to	understand	are:

1.	 The	rowCounter	itself	is	stored	as	a	local	variable	of	the	class,	RowCounter:

It	is	initialized	only	upon	setup	before	the	test.
Is	never	updated	directly	by	test	cases	during	the	test.

2.	 To	get	the	next	rowCounter	value,	threaded	TestCase	clones	must	get	access	via	the
synchronized	method,	getNext().

3.	 Synchronized	methods	lock	access	to	the	method	until	the	current	thread	has	finished
processing	it,	that	is,	only	one	thread	at	a	time	can	access	getNext().	Therefore,	the
local	variable,	rowCounter,	is	never	updated	concurrently;	threads	must	wait.

Tip
Synchronization	should	be	used	carefully

There	is,	of	course,	potential	for	thread	blocking	around	synchronized	methods	leading	to
bottlenecks.	So	it	can	be	a	good	idea	not	to	overuse	them.	Luckily,	the	RowCounter	class	is
very	simple	and	getNext()	should	be	very	quick	to	execute.	Generally,	bottlenecks	would
be	more	likely	around	more	time-consuming	synchronized	methods.

There’s	more…
Tip
Setting	Test	Delay	=	0	is	much	more	intensive!

Having	a	delay	between	tests	can	sometimes	actually	hide	thread	concurrency	issues	in
unsafe	code,	that	is,	it	can	reduce	the	likelihood	of	more	than	one	threaded	TestCase	clone
hitting	any	shared	resource	simultaneously.

The	functionality	in	this	recipe	can	also	be	achieved	using	the	pro	version	of	SoapUI’s
Datasource	TestStep	in	shared	mode.	If	you’re	interested	and	you	have	SoapUI	pro,	I
have	recreated	this	recipe	using	Datasource	TestStep	(see	TestSuite-Shared	Pro
Datasource).	Interestingly,	I	found	that	it	gave	much	slower	response	averages	than	the
open	source	version	in	this	recipe!	However,	some	may	prefer	the	way	it	hides	the
complexity	of	what’s	actually	going	on.

See	also
Brief	Thread-Safety	example:	http://www.programcreek.com/2014/02/how-to-make-
a-method-thread-safe-in-java/
Java	Synchronization:
https://docs.oracle.com/javase/tutorial/essential/concurrency/sync.html

http://www.programcreek.com/2014/02/how-to-make-a-method-thread-safe-in-java/
https://docs.oracle.com/javase/tutorial/essential/concurrency/sync.html

Load	testing	data-driven	TestCases
concurrently	with	a	shared	distributed
datasource
This	recipe	builds	on	the	last	two	recipes	to	provide	a	distributed	web	service	based	shared
data	source	that	is	both	reliable	under	load	and	being	service	based,	can	also	be	shared
across	load	tests	running	simultaneously	on	multiple	SoapUI	instances.

Getting	ready
The	approach	is	actually	quite	simple,	but	does	require	another	service	to	publish	the	test
invoice	data	in	a	thread-safe	way.	For	this,	we’ll	use	an	adapted	version	of	the	invoice	v1
REST	example	from	the	Generating	and	developing	a	RESTFul	web	service	stub	test-first
recipe	of	Chapter	1,	Testing	and	Developing	Web	Service	Stubs	With	SoapUI.	The	new
implementation	has	the	following	main	features:

Test	Data	REST	Service
Endpoint:	http://localhost:9000/test-data-service/invoice
Expects	Parameter:	Test	data	file	location,	for	example,	/temp/invoices2.csv
Dependencies:	Apache	CXF	(see	Chapter	1,	Testing	and	Developing	Web	Service
Stubs	With	SoapUI,	for	download	instructions);	following	build	&	run	command
assume	apache-cxf-3.0.1	is	in	the	root	of	the	chapter	9	samples	folder
To	run:

cd	<chapter	9	samples>/testdataservice/target/classes
Java	-cp	"../../../apache-cxf-3.0.1/lib/*:."	rest.invoice.v1.Server	
../../../invoices2.csv

To	build:

Cd	<chapter	9	samples>/testdataservice/
javac	-cp	"../apache-cxf-3.0.1/lib/*"	
src/main/java/rest/invoice/v1/*.java	-d	target/classes	

Dependencies:	Apache	CXF	(see	Chapter	1,	Testing	and	Developing	Web	Service
Stubs	With	SoapUI,	for	download	instructions)

What	the	service	does:

1.	 When	started,	the	service	loads	the	test	invoice	data	using	the	file	details	passed	as	a
parameter.

2.	 When	called,	the	service	returns	the	next	invoice	test	row:

<ns2:invoice>
<id>5</id>
<companyName>comp5</companyName>
<amount>500.0</amount>
</ns2:invoice>

3.	 The	service	implementation	is	thread-safe	and	guarantees	that	each	request	gets	a
different	test	data	row.

4.	 When	the	last	row	has	been	served,	the	service	starts	again	at	the	beginning.

OK,	so	let’s	start	it	up.	Open	a	shell/command	prompt,	change	directory	to	<chapter	9
samples>/testdataservice/target/classes,	and	run	the	service.	You	should	see	the
output	as	follows:

Loaded	10	rows	of	test	data	from	../../../invoices2.csv
…	lots	of	Apache	CXF	INFO	logging…
Server	ready,	will	exit	automatically	after	30	minutes…

Then,	call	the	endpoint	either	using	a	browser	or	SoapUI	and	you	should	be	able	to	cycle
through	all	10	of	the	invoice	test	data	records.	That’s	it	for	the	test	data	service!

This	recipe’s	SoapUI	projects,	InvoiceV3LoadTest	and
SharedDistributedDatasourceTestCase	TestCase,	can	also	be	found	in	the	chapter	9
samples,	along	with	the	invoices2.csv	test	data.

How	to	do	it…
The	execution	of	this	approach	is	actually	relatively	simple.	We	need	a	TestCase	with	an
HTTP	Test	Request	TestStep	and	a	Test	Request	TestStep	to	use	its	response	data	to
call	the	createInvoice	operation	on	the	InvoiceV3	web	service	like	before.	Lastly,	we’ll
create	a	similar	load	test	to	those	in	the	previous	recipes	and	see	how	the	approach
performs.	Perform	the	following	steps:

1.	 Create	a	new	SOAP	Project	based	on	invoice_v3.wsdl	with	a	new	TestSuite	and
TestCase.

2.	 Next,	create	an	HTTP	Test	Request	TestStep	to	call	the	test	data	service	endpoint.
There	are	no	parameters;	we	just	need	the	Endpoint	set	to
http://localhost:9000/test-data-service/invoice	and	a	method	of	GET.

3.	 Then,	create	a	new	Test	Request	TestStep	for	the	createInvoice	operation.
4.	 Use	property	expansions	for	invoiceNo,	companyRef,	and	amount	from	the	HTTP

Test	Request	response	to	populate	the	request	for	the	createInvoice	Test	Request
TestStep;	that	is:

<soapenv:Envelope	
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"	
xmlns:inv="http://soapui.cookbook.samples/schema/invoice">
			<soapenv:Header/>
			<soapenv:Body>
						<inv:createInvoice>
									<inv:id>${GetNextInvoiceTestData#Response#declare	namespace	
ns2='http://v1.invoice.rest';	//ns2:invoice[1]/id[1]}</inv:id>
<inv:customerRef>${GetNextInvoiceTestData#Response#declare	namespace	
ns2='http://v1.invoice.rest';	//ns2:invoice[1]/companyName[1]}
</inv:customerRef>
									<inv:amount>${GetNextInvoiceTestData#Response#declare	
namespace	ns2='http://v1.invoice.rest';	//ns2:invoice[1]/amount[1]}
</inv:amount>
									<inv:dueDate>2014-12-07Z</inv:dueDate>
						</inv:createInvoice>
			</soapenv:Body>
</soapenv:Envelope>

5.	 Add	assertions	like	in	recipe	one	to	ensure	a	successful	response:

Name:	ExpectSOAPResponse
Type:	SOAP	Response
Name:	ResponseAcknowldegmentShouldContainInvoiceNo
Type:	XPath
Expression:

declare	namespace	
ns1='http://soapui.cookbook.samples/schema/invoice';
//ns1:Acknowledgement[1]/ns1:invoiceNo[1]

Expected	Result:

${CreateInvoice#Request#declare	namespace	

inv='http://soapui.cookbook.samples/schema/invoice';	
//inv:createInvoice[1]/inv:id[1]}

6.	 TestCase	is	now	complete.	Start	the	services	and	give	TestCase	a	few	test	runs	if
you	like.

7.	 Now	onto	the	load	test.	Create	a	new	Load	Test	with	the	following	settings	or
whatever	settings	you	feel	your	machine	can	reasonably	cope	with	in	a	timely
manner:

Threads:	100
Strategy:	Simple
TestDelay	=	0	and	Random	=	0
Limit:	10000	(Total	Runs)

8.	 OK,	hit	the	button!	When	it	finished	these	are	the	figures	I	got:

9.	 So,	all	counts	are	showing	1000,	without	errors;	clean	bill	of	health	there!
10.	 Also,	query	the	invoicev3	service	database	as	in	the	first	recipe:	SELECT

INVOICENO,COUNT(*)	FROM	INVOICES	GROUP	BY	INVOICENO:

11.	 All	the	invoices	have	been	created	in	nice,	equal	numbers!

Tip
Fewer	threads	can	be	faster

If	you	rerun	the	above	load	test	with	10	threads	instead	of	100,	you	may	find	you	get
quicker	throughput.	I	found	that	10	threads	halved	the	overall	run	time	and	led	to
TestCase	averages	that	were	more	than	10	times	quicker	than	with	100	threads!	This	is
probably	a	sign	of	contention	between	threads	as	more	are	added.

How	it	works…
The	main	part	to	explain	here	is	how	the	test	data	service	works	and	why	it	is	thread-safe.
Fortunately,	this	is	quite	easy	to	show.	Take	a	look	at	the	TestDataResourceImpl	class:

private	List<String>	testDataRows;
				
int	rowCounter	=	-1;

//Synchronized	accessor	to	get	next	row	counter
private	synchronized	int	getRowCounter(){
//Reset	counter	to	beginning	if	at	end	of	file	i.e.	loop	datasource
								if	(++rowCounter==testDataRows.size())	rowCounter=0;
								return	rowCounter;
}
				
public	TestDataResourceImpl(String	filePath)	throws	FileNotFoundException{
						
						//Load	CSV	test	data	once	on	startup
						Scanner	testDataFile	=	new	Scanner(new	File(filePath));
						testDataRows	=	new	ArrayList<String>();
						while	(testDataFile.hasNext()){
								testDataRows.add(testDataFile.next());
						}
						testDataFile.close();
						System.out.println("Loaded	"+testDataRows.size()+"	rows	of	test	data	
from	"+filePath);
				}

				public	Invoice	getInvoice()	{
								ObjectFactory	objectFactory	=	new	ObjectFactory();
								Invoice	invoice	=	objectFactory.createInvoice();
				
								int	row	=	getRowCounter();
								String	nextRow	=	testDataRows.get(row);
				
								invoice.setId(nextRow.split(",")[0]);
								invoice.setCompanyName(nextRow.split(",")[1]);
					invoice.setAmount(Double.parseDouble(nextRow.split(",")[2]));
								return	invoice;
				}

The	key	part	is	the	synchronized	keyword	on	the	getRowCounter()	method.	When	a
request	thread	hits	the	test	data	web	service,	the	getInvoice()method	is	called	(see
chapter	1	to	understand	why),	which	builds	up	the	invoice	response	data.	To	do	this,	it
needs	to	get	the	next	row	of	test	data	from	the	List<String>	testDataRows	that	was
populated	on	service	startup	by	the	TestDataResourceImpl	constructor.	To	get	the	next
row	counter,	getInvoice()	needs	to	call	getRowCounter(),	which	will	only	allow	one
thread	to	call	it	at	a	time,	because	it’s	synchronized.	Of	course,	there	is	a	potential	trade-
off	here,	as	requests	to	getInvoice()	may	have	to	wait	under	heavy	load,	leading	to
slower	response	times,	but	at	least	the	test	data	will	be	distributed	reliably	between
threads.

There’s	more…
Apart	from	providing	thread-safe	test	data	access	to	a	single	load	test,	this	approach	also
has	the	advantage	of	being	shareable	between	more	than	one	SoapUI	load	test	instance.

Note
Machine	resource	constraints	and	distributed	load	testing

Sometimes,	machine	resource	constraints	become	an	issue	for	heavy	load	testing;	for
example,	memory,	threads,	and	processor	limitations.	So	being	able	to	distribute	your	load
tests	between	separate	SoapUIs	(JVMs)	and/or	machines	can	be	the	only	way	to	scale	your
load	tests.	Of	course,	using	a	single	shared	test	data	resource	could	then	also	become	a
bottleneck	for	multiple	load	tests	running	simultaneously.

If	you	do	want	to	distribute	your	load	tests	across	multiple	machines	and	run	them
simultaneously,	you	may	want	to	want	to	run	them	using	orchestrated	scripts.	The	next
recipe	may	help	with	the	first	step:	running	load	tests	as	scripts.	Orchestrating	them	can	be
done	using	a	variety	of	means;	for	example,	perhaps	using	a	build	script	like	Maven	or
Gradle,	and	run	using	Jenkins	(see	Chapter	6,	Reporting,	for	an	example	of	how	to	run
SoapUI	using	Jenkins).

See	also
LoadUI’s	Documentation	on	Distributed	Testing:	http://www.loadui.org/distributed-
testing/what-is—.html

http://www.loadui.org/distributed-testing/what-is--.html

Running	load	tests	using	Maven,
command	line,	Java,	Groovy,	and	Gradle
scripts
Running	load	tests	from	scripts	is	something	you	may	well	want	to	do	in	the	context	of
continuous	integration,	probably	following	successful	functional	tests.	This	recipe	builds
mainly	on	the	Running	mocks	and	tests	using	Maven	recipe	of	Chapter	5,	Automation	and
Scripting,	to	show	how	to	run	load	tests	using	the	SoapUI	Maven	plugin.

The	instructions	assume	you’re	comfortable	with	Maven	or	have	at	least	completed	the
chapter	5	Maven	recipe.

When	applied	to	load	tests,	Maven	is	possibly	the	most	different	of	the	various	scripting
approaches	covered	in	Chapter	5,	Automation	and	Scripting.	That’s	why	it’s	covered	in
full	detail	here.	Brief	details	on	how	to	run	load	tests	using	the	command	line,	Java,
Groovy,	and	Gradle	are	provided	in	the	There’s	more…	section	at	the	end.

Getting	ready
The	load	test	example	we’re	going	to	use	here	is	the	one	from	the	first	recipe.	You’ll	also
need	the	invoicev3	service	to	be	running	during	the	load	test.	Please	see	that	recipe	in	case
you	need	more	details.

The	full	working	Maven	project	for	this	recipe	is	available	under	the	/maven	folder	in	the
chapter	9	samples.	The	Groovy	load	test	runner	script	(loadtest-runner.groovy)	is	in
the	/groovy	folder.

How	to	do	it…
After	creating	a	new	Maven	project,	we’ll	need	to	configure	the	SoapUI	Maven	plugin	to
run	the	SeperateGroovyDatasourceLoadTest.	Then	we’ll	run	the	Maven	script	and	take	a
quick	look	at	the	console	output.	Perform	the	following	steps:

1.	 First,	use	the	following	Maven	archetype	command	to	generate	a	new	Maven
project:

mvn	archetype:generate	-DgroupId=soapui.cookbook.chapter9	-
DartifactId=load-test	-DarchetypeArtifactId=maven-archetype-quickstart	
-DinteractiveMode=false

2.	 This	should	create	the	following	directory	structure:

load-test/
		pom.xml
		src/
		main/java/soapui/cookbook/chapter9/App.java
				test/java/soapui/cookbook/chapter9/AppTest.java

3.	 Next,	create	a	local	load-test/src/test/resources	folder	and	add	the
InvoiceV3LoadTest-soapui-project.xml	project	file	to	it.

4.	 Create	a	load-test/reports	folder	to	store	generated	report	files.
5.	 Edit	pom.xml	and	configure	the	SoapUI	plugin	like	this:

<project	xmlns="http://maven.apache.org/POM/4.0.0"	
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	
http://maven.apache.org/maven-v4_0_0.xsd">
		<modelVersion>4.0.0</modelVersion>
		<groupId>soapui.cookbook.chapter9</groupId>
		<artifactId>load-test</artifactId>
		<packaging>jar</packaging>
		<version>1.0-SNAPSHOT</version>
		<name>load-test</name>
		<url>http://maven.apache.org</url>
		<pluginRepositories>
								<pluginRepository>
										<id>SmartBearPluginRepository</id>
													<url>http://www.soapui.org/repository/maven2/</url>
								</pluginRepository>
		</pluginRepositories>
				<build>
								<plugins>
												<plugin>
																<groupId>com.smartbear.soapui</groupId>
																<artifactId>soapui-maven-plugin</artifactId>
																<version>5.0.0</version>
			<configuration>				
		<projectFile>${basedir}/src/test/resources/InvoiceV3LoadTest-soapui-
project.xml</projectFile>
		<testSuite>TestSuite-Seperate	Data	Per	Thread</testSuite>
		<testCase>CreateInvoiceTestCase-Seperate</testCase>				
<loadTest>SeperateDataPerThreadLoadTest</loadTest>

		<limit>100</limit>
		<printReport>true</printReport>
		<outputFolder>${basedir}/reports</outputFolder>
			</configuration>			
																<executions>
																				<execution>
																								<phase>test</phase>
																								<goals>
																												<goal>loadtest</goal>
																								</goals>
																				</execution>
																</executions>
												</plugin>
								</plugins>
				</build>
</project>

Note
Plugin	configuration	notes

We’ve	used	the	loadtest	goal
We’ve	specified	the	Project,	TestSuite,	TestCase,	and	LoadTest	to	run
We’ve	overridden	the	limit	to	100
We’ve	configured	reports	to	be	generated	in	${basedir}/reports

6.	 Now,	let’s	run	the	load	test	goal	with	mvn	soapui:loadtest	to	give	a	similar	output
to	the	following	truncated	example:

[INFO]	Scanning	for	projects…
[INFO]	
[INFO]	Using	the	builder	
org.apache.maven.lifecycle.internal.builder.singlethreaded.SingleThread
edBuilder	with	a	thread	count	of	1
[INFO]																																																																									
[INFO]	--
[INFO]	Building	load-test	1.0-SNAPSHOT
[INFO]	---
[INFO]	
[INFO]	---	soapui-maven-plugin:5.0.0:loadtest	(default-cli)	@	load-test	

SoapUI	5.0.0	Maven2	LoadTest	Runner
14:06:53,811	WARN		[SoapUI]	Missing	folder	[/soapui-
cookbook/chapter9/maven/load-test/ext]	for	external	libraries
14:06:54,267	INFO		[DefaultSoapUICore]	initialized	soapui-settings	from	
[/Users/bearsoftware/soapui-settings.xml]
14:06:54,357	INFO		[HttpClientSupport$Helper]	Initializing	KeyStore
14:06:56,398	INFO		[WsdlProject]	Loaded	project	from	[file:/soapui-
cookbook/chapter9/maven/load-test/src/test/resources/InvoiceV3LoadTest-
soapui-project.xml]
14:06:57,900	INFO		[SoapUILoadTestRunner]	Running	LoadTest	
[SeperateDataPerThreadLoadTest]
14:06:57,902	INFO		[SoapUILoadTestRunner]	Overriding	limit	[10000]	with	
specified	[100]
Progress:	1	-	Creating	Virtual	User	1
...

[INFO]	---
[INFO]	BUILD	SUCCESS
[INFO]	--
[INFO]	Total	time:	11.435	s
[INFO]	Finished	at:	2014-12-03T14:07:02+00:00
[INFO]	Final	Memory:	20M/49M
[INFO]	--

How	it	works…
The	output	is	fairly	similar	to	that	seen	when	using	the	Maven	SoapUI	plugin	to	run	tests
and	mocks	in	Chapter	5,	Automation	and	Scripting.	We	can	see	from	the	console	output
that	the	limit	has	been	successfully	overridden	from	10000	to	100	in	this	example:

14:06:57,902	INFO		[SoapUILoadTestRunner]	Overriding	limit	[10000]	with	
specified	[100]

Also,	if	we	take	a	look	in	the	load-test/reports	folder	we	can	see	the	load	test	summary
reports	exported	as:

SeperateDataPerThreadLoadTest-log.txt
SeperateDataPerThreadLoadTest-statistics.txt

Details	of	failed	tests	will	also	end	up	here;	for	example,	files	like	those	for	failed	tests:

SeperateDataPerThreadLoadTest-error-<Run	Count>-entry.txt

There’s	a	warning	about	the	external	library	folder	being	missing.	If	you	need	to	provide
any	external	libraries,	remember	to	supply	the	location	of	the	external	library	folder:

mvn	soapui:loadtest	mvn	"-Dsoapui.ext.libraries=src/test/resources"

There’s	more…
In	terms	of	other	ways	to	script	load	tests,	using	the	command	line	to	run	load	tests	is
fairly	well	covered	in	the	SoapUI	online	docs	(visit	http://www.soapui.org/Load-
Testing/command-line-execution.html.for	more	details.)

For	example,	to	get	a	similar	output	to	the	preceding	Maven	script:

./loadtestrunner.sh	-s"TestSuite-Shared	Distributed	Datasource"	-
cDistributedDatasourceTestCase	
-lLoadTest-DistributedSharedDatasource	-r	-f/soapui-
cookbook/chapter9/reports	/soapui-cookbook/chapter9/InvoiceV3LoadTest-
soapui-project.xml

To	run	load	tests	using	Java,	Groovy,	or	Gradle	the	approach	is	almost	identical	to	the
following	recipes	from	Chapter	5,	Automation	and	Scripting:

Running	tests	using	Java	and	JUnit
Running	mocks	and	tests	using	Groovy	scripts
Running	mocks	and	tests	using	Gradle

This	time	though,	we’ll	be	dealing	with	the	SoapUILoadTestRunner	class	(see	API	docs	at
http://www.soapui.org/apidocs/index.html).

For	example,	a	simple	Groovy	script	to	repeat	the	above	test	would	be:

@GrabResolver(name='soapui',	
root='http://www.soapui.org/repository/maven2')
@Grab(group='com.smartbear.soapui',	module='soapui',	version='5.1.2-m-
SNAPSHOT')
@GrabExclude('jtidy:jtidy')
@GrabExclude('gnu.cajo:cajo')
import	com.eviware.soapui.tools.SoapUILoadTestRunner

SoapUILoadTestRunner	loadTestRunner	=	new	SoapUILoadTestRunner()
loadTestRunner.projectFile="../InvoiceV3LoadTest-soapui-project.xml"
loadTestRunner.testSuite="TestSuite-Seperate	Data	Per	Thread"
loadTestRunner.testCase="CreateInvoiceTestCase-Seperate"
loadTestRunner.loadTest="SeperateDataPerThreadLoadTest"
loadTestRunner.limit=100
loadTestRunner.printReport=true
loadTestRunner.outputFolder="../reports"
loadTestRunner.run()

To	run	this,	execute	the	following	command:

cd	<chapter	9	samples>/groovy
groovy	loadtest-runner.groovy

That’s	it!	After	a	bit	of	a	pause	(long	one	if	those	@Grab	dependencies	haven’t	downloaded
yet),	you	should	see	very	similar	output	to	the	Maven	and	command	line	examples.

The	Groovy	example	is	by	far	the	most	elegant	of	all	the	approaches	and	takes	care	of	all
its	dependencies,	using	those	Grape	@Grab	annotations.

http://www.soapui.org/Load-Testing/command-line-execution.html
http://www.soapui.org/apidocs/index.html

To	get	the	Java	and	Junit	versions,	you	could	work	back	from	the	Groovy	script	and	add
the	equivalent	setX	setter	methods	to	the	example	in	the	Running	tests	using	Java	and
JUnit	recipe	of	Chapter	5,	Automation	and	Scripting.

To	get	the	Gradle	version,	in	the	recipe	example’s	build.xml	from	Chapter	5,	Automation
and	Scripting,	you	would	just	need	to	substitute	in	the	preceding	Groovy	script	in	place	of
runmockandtest.groovy,	as:

task	runMockAndTest	(dependsOn:	'classes',	type:	JavaExec)	{
				main	=	'loadtest-runner'
				classpath	=	sourceSets.main.runtimeClasspath
}

See	also
SoapUI	Maven	Plugin	Load	Test	Settings:	http://www.soapui.org/Test-
Automation/maven-2x.html#5-2-loadtest-settings

http://www.soapui.org/Test-Automation/maven-2x.html#5-2-loadtest-settings

Chapter	10.	Using	Plugins
In	this	chapter,	we	will	cover	the	following	topics:

Using	old-style	(open	source)	plugins
Sending	e-mails	with	the	Email	TestStep	plugin
Using	plugins	via	the	plugin	manager	(Pro)
Using	the	Groovy	Console	plugin	to	create	and	run	a	new	TestStep
Packaging	old-style	plugins	when	running	tests	with	Maven

Introduction
If	you’ve	not	seen	plugins	before,	they	provide	a	mechanism	for	adding	new	and	extended
SoapUI	functionalities.	You	can	either	download	ready-made	SoapUI	plugins	or	develop
your	own.	This	chapter	introduces	both	open	source	(old-style)	and	pro	plugins.	It	focuses
mainly	on	how	to	use	plugins	and	provide	them	to	TestRunner	scripts	when	needed,	and
explains	briefly	how	they	work.	The	next	chapter	builds	on	the	ideas	and	skills	introduced
here	and	explains	how	to	develop	your	own	plugins.

What	you’ll	learn
You	will	learn	the	following	topics:

How	open	source	(old-style)	plugins	are	installed	and	how	they	work
How	pro	plugins	are	installed	and	how	they	work
The	differences	between	old-style	and	pro	plugins
How	to	package	plugin	dependencies	when	running	projects	with	Maven

Using	old-style	(open	source)	plugins
To	start	off,	let’s	take	a	look	at	old-style	plugins.	So	what	are	they?

They	are	a	way	of	adding	extensions	or	functionality	to	open-source	SoapUI.
They	typically	create/configure	new	SoapUI	framework	elements,	for	example,
Models,	Actions,	Events,	Listeners,	and	Factories	(more	on	those	later).
They	are	written	in	Java	or	compiled	in	Groovy.
They	are	packaged	and	deployed	as	JAR	files.
There	are	currently	six	example	plugins	available	for	download,	for	example,	Email
TestStep,	Groovy	Console,	Programmable	Web,	RAML,	Runscope,	and	Swagger
plugins.

Why	are	they	called	old-style?
The	following	are	the	reasons:

SoapUI	pro/SoapUI	NG	has	a	newer	plugin	framework	(see	the	Plugin	Manager
recipe	for	more	information)
The	new	pro	plugins	are	not	backward	compatible,	and	old-style	plugins	cannot	be
used	with	the	pro	plugin	manager

However,	old-style	does	not	mean	obsolete,	since	if	you	are	an	open	source	user,	the	old-
style	plugins	are	in	fact	current	and	work	perfectly	well!

In	this	recipe,	we’ll	take	a	look	at	where	to	get	plugins	and	how	to	install	them,	and	briefly
see	how	they	work.	As	a	simple	example,	we’ll	install	the	Email	TestStep	plugin,	and	in
the	next	recipe,	use	it	to	send	a	test	e-mail.	We’ll	also	take	a	brief	look	at	some	of	the	other
plugins	that	are	currently	available	for	download.

Getting	ready
All	you’ll	need	for	this	recipe	is	SoapUI	and	the	Email	TestStep	plugin:

Plugin	(JAR):	soapui-emailteststep-plugin-1.0-plugin.jar
Download:	http://sourceforge.net/projects/soapui-plugins/files/soapui-emailteststep-
plugin/
Source	Code	(Git):	https://github.com/olensmar/soapui-emailtestsstep-plugin

The	plugin	soapui-emailteststep-plugin-1.0-plugin.jar	file	is	included	in	the
chapter	10	samples	(/plugins	folder)	as	well	as	in	the	EmailTestStepProject	project
for	this	recipe.

http://sourceforge.net/projects/soapui-plugins/files/soapui-emailteststep-plugin/
https://github.com/olensmar/soapui-emailtestsstep-plugin

How	to	do	it…
Basically,	we’ll	just	install	the	Email	TestStep	plugin	and	check	its	availability.	To	do	this,
perform	the	following	steps:

1.	 Installing	old-style	plugins	is	easy.	Just	copy	soapui-emailteststep-plugin-1.0-
plugin.jar	to	<SoapUI	install>/java/app/bin/plugins	(you	might	need	to	create
the	plugins	folder)	and	restart	SoapUI.

2.	 Create	an	empty	project	and	a	TestSuite	and	TestCase;	then,	either	edit	TestCase	or
right-click	and	add	a	new	TestStep,	and	you	should	see	the	Email	TestStep	option:

3.	 You	will	also	see	the	e-mail	icon	in	the	TestCase	editor	window:

How	it	works…
Note
In	terms	of	using	plugins,	it’s	that	simple	really!

It’s	worth	pointing	out	that	apart	from	step	1	mentioned	earlier,	you	don’t	need	to	know
much	to	successfully	use	ready-made	plugins;	you	only	need	to	be	aware	of	any	details
about	the	actual	functionality	the	plugin	adds!	However,	if	you’d	like	to	understand	a	little
more	of	how	they	work	or	perhaps	build	your	own,	please	read	on.

To	explain	how	SoapUI	installs	old-style	plugins,	we	need	to	take	a	look	at	some	SoapUI
source	code.	If	you	take	a	look	at	com.eviware.soapui.DefaultSoapUICore	(see	the	next
chapter	for	more	on	this),	the	key	method	parts	are	as	follows:

1.	 The	init()	method	calls	loadPlugins()	to	check	the	/plugin	folder	for	plugin	files.
2.	 For	each	plugin	file,	loadOldStylePluginFrom	(pluginFile)	is	called	to:

Add	the	plugin	file	to	SoapUIExtensionClassLoader,	that	is,	the	same	place
that	the	/ext	library	is	added	to	on	startup,	so	any	plugin	Java	classes	can	be
called.
Register	any	SoapUI	Factories	found	in	META-INF/factories.xml	of	the
plugin	JAR	file.
Register	any	SoapUI	Listeners	found	in	META-INF/	listeners.xml	of	the
plugin	jar	file.
Register	any	SoapUI	Actions	found	in	META-INF/	actions.xml	of	the	plugin
jar	file.
Add	any	plugin	images	to	the	resource	class	loader,	for	example,	the	little
TestCase	editor	email	icon	seen	in	step	2.

Note
Actions,	factories,	and	listeners

If	you	haven’t	seen	them	before,	they	will	be	covered	in	more	detail	in	the	next
chapter.	Let’s	define	them	in	simple	terms	for	now:

Actions:	These	are	things	that	do	something,	for	example,	menu	items
Factories:	These	are	things	that	create	the	SoapUI	Framework	(Model)	objects,
for	example,	Projects,	TestSteps
Listeners:	These	are	things	that	run	code	when	certain	Events	are	fired,	for
example,	TestRunListener

I	also	had	to	mention	Models	and	Events	(for	example,	request	sent),	which	are
covered	in	the	next	chapter!

There’s	more…
If	you’d	like	to	know	more	about	the	Email	TestStep	plugin	or	any	of	the	other	old-style
plugins,	a	great	place	to	start	is	Ole	Lensmar’s	(plugin	creator	and	co-creator	of	SoapUI)
blog:	http://olensmar.blogspot.se/p/soapui-plugins.html.

Here,	you	can	see:

1.	 For	each	plugin,	there	are	links	to:

Download	the	plugin’s	JAR	from	SourceForge.

Tip
Open	source	plugins

I	have	downloaded	all	the	plugins	to	the	chapter	10	samples’	/plugins—just
in	case	they	should	become	unavailable	for	any	reason!

Access	the	plugin’s	source	code	in	GitHub.

Tip
Source	code	version

At	the	time	of	writing,	I	noticed	some	of	the	GitHub	links	go	to	the	pro	versions
of	the	source	code.	The	code	will	be	similar	in	essence,	but	will	feature	pro
plugin	annotations	instead	of	XML	configs.

Access	the	blog	article	for	the	plugin!

2.	 All	the	plugins	he’s	created.	Special	mentions	are:

RAML	plugin:	RAML	is	an	excellent	new	way	to	model	RESTful	web	services
(http://raml.org/).	The	plugin	can	import	RAML	definitions	and	generate
SoapUI	REST	service,	resources,	methods,	and	so	on.
Swagger	plugin:	Swagger	is	also	an	excellent	new	way	to	describe	RESTful
APIs	(http://swagger.io/).	You	can	use	this	plugin	to	not	only	import	Swagger
definitions	to	create	SoapUI	REST	service	artifacts,	but	also	to	export	Swagger
definitions	for	RESTful	web	services	defined	in	SoapUI!

Tip
Remember	to	supply	any	project	plugin	dependencies!

This	can	be	easy	to	forget,	but	if	your	project	requires	any	plugins	for	its	tests,	then
remember	to	supply	these	with	your	project	or	as	part	of	any	TestRunner	scripts.	This
normally	only	applies	to	plugins	related	to	TestCase,	for	example,	the	TestStep	and
Assertion	plugins.	To	deal	with	scripts,	see	the	recipe	Packaging	old-style	plugins	when
scripting	projects	using	Maven.

http://olensmar.blogspot.se/p/soapui-plugins.html
http://raml.org/
http://swagger.io/

See	also
The	Using	the	Groovy	Console	plugin	to	create	a	new	TestStep	from	a	script	recipe
SoapUI	Extensions	Doc	at	http://www.soapui.org/Developers-Corner/extending-
soapui.html
The	Creating	a	custom	TestStep	(Factory)	plugin	to	check	whether	a	file	exists	recipe
in	Chapter	11,	Taking	SoapUI	Further

http://www.soapui.org/Developers-Corner/extending-soapui.html

Sending	e-mails	with	the	Email	TestStep
plugin
This	recipe	is	a	quick	follow-on	example	to	show	how	to	use	the	Email	TestStep	plugin	to
send	an	e-mail.

Getting	ready
If	you’ve	got	access	to	an	SMTP	mail	server,	all	you’ll	need	for	this	recipe	is	SoapUI	and
the	Email	TestStep	plugin.	Otherwise,	you	can	use	a	dummy	SMTP	server.	A	nice	Java-
based	one	is	FakeSMTP	(fakeSMTP-1.12.jar	in	the	chapter	10	samples):

Download	FakeSMTP	from	https://nilhcem.github.io/FakeSMTP/,	and	run	with	java	–
jar	fakeSMTP-1.12.jar.

Tip
Linux/Mac	OS

You	will	need	to	start	this	with	the	root	permissions	if	you	want	to	bind	to	port	25,	for
example,	sudo	java	–jar	fakeSMTP-1.12.jar.

https://nilhcem.github.io/FakeSMTP/

How	to	do	it…
First,	we’ll	add	a	new	Email	TestStep	to	a	TestCase	and	configure	it	to	send	a	test	email	to
a	FakeSMTP	server	that	is	running	locally.	Then,	run	TestCase	and	see	the	e-mail	received.
Perform	the	following	steps:

1.	 Either	grab	EmailTestStepProject	from	the	chapter	10	samples	or	follow	the	steps
from	the	previous	recipe	to	get	your	initial	Project,	TestSuite,	TestCase,	and	Email
TestStep	plugin	installed.

2.	 Create	a	new	Email	TestStep	and	test	the	e-mail	details:

Tip
SMTP	server

The	Server	property	should	be	set	to	the	address	of	your	SMTP	server.	However,	if
you	don’t	have	one,	or	yours	runs	on	another	port	to	25	or	requires	credentials,	then
it’s	easier	to	just	test	with	the	dummy	SMTP	server;	that	is,	the	Email	TestStep	has	no
other	configuration	properties.

3.	 If	using	a	FakeSMTP	server,	start	FakeSMTP	with	Listening	port	as	25.
4.	 Now,	run	Email	TestStep,	and	you	should	get	an	e-mail:

How	it	works…
In	terms	of	how	the	Email	TestStep	plugin	works,	here	are	the	main	points.	On	loading	the
plugin	SoapUI:

1.	 It	registers	an	action	for	the	Add/Insert	Email	TestStep	menu	items.
2.	 It	registers	two	custom	factories:

EMailTestStepFactory:	This	creates	new	EMailTestStep	objects.
EMailTestStepPanelBuilderFactory:	This	creates	new
EMailTestStepDesktopPanel	objects.

3.	 EMailTestStep:	This	contains	the	actual	TestStep	implementation	to	send	the	email
using	SMTP.

4.	 EMailTestStepDesktopPanel:	This	provides	the	UI	elements	,	that	is,	the	popup
window	to	configure	TestStep.

5.	 This	contains	the	email.png	image	used	in	the	SoapUI	TestStep	menus	and
TestCase	editor	window.

6.	 This	contains	a	Maven	pom.xml	file	to	build	and	manage	dependencies	and	package
the	plugin	as	the	JAR	file.	This	can	be	used	to	rebuild	the	plugin,	for	example,	if	you
need	to	modify	it.

There’s	more…
For	more	details	on	the	Email	TestStep	plugin,	check	out	the	source	code	and	blog	links
from	the	previous	recipe.	If	you	would	also	like	to	see	how	to	check	for	emails	on	Gmail,
take	a	look	at	the	related	recipe	links	in	the	following	See	also	section.

See	also
The	Testing	for	e-mails	with	Groovy	recipe	in	Chapter	4,	Web	Service	Test	Scenarios
The	Testing	the	Gmail	API	using	OAuth2	recipe	in	Chapter	8,	Testing	AWS	and
OAuth	2	Secured	Cloud	Services

Using	plugins	via	the	plugin	manager
(Pro)
The	commercial	versions	of	SoapUI	(pro	and	SoapUI	NG)	feature	an	enhanced	plugin
framework	with	the	following	features:

Plugin	Manager:	This	is	a	UI	to	install,	update,	and	uninstall	plugins.
Plugin	Repository:	This	is	where	users	can	add	their	own	plugins	to	share	them.
Plugin	Java	Annotations:	This	is	used	to	replace	the	old-style	XML	way	to	register
Actions,	Factories,	and	Listeners.
Maven	Archetype:	This	is	used	to	allow	easier	generation	of	Maven	plugin	projects.
Improved	Plugin	ClassLoader:	The	new	ClassLoader	is	now	separated	from
SoapUIs.	This	indicates	that	any	plugin	libraries	won’t	clash	with	SoapUIs.

In	my	opinion,	the	improved	ClassLoader	is	the	most	tangible	benefit,	as	classpath
clashes	do	occur	sometimes	since	SoapUI	includes	many	popular	libraries	in	its	own
classpath.	The	other	features	can	be	more	easily	worked	around,	but	are	still	welcome!

In	this	recipe,	we’ll	use	Plugin	Manager	to	install	the	Groovy	Console	plugin	and	explain
some	of	the	differences	with	old-style	plugins.

How	to	do	it…
Pro	features	are	designed	to	be	easy	to	use,	so	this	recipe	should	be	fairly	easy	going.	As
an	example,	we’ll	use	Plugin	Manager	to	install	the	Groovy	Console	plugin	and	then	run
a	test	script.	Perform	the	following	steps:

1.	 First,	open	the	Plugin	Manager	under	the	File	menu	and	click	on	Browse	Plugin
Repository.	You	should	see	all	the	currently	available	plugins	in	the	repository:

2.	 Select	Groovy	Console	Plugin,	click	on	Install/Upgrade	Plugin,	and	then	click	on
Yes	in	the	prompt	to	download	the	plugin.	You	should	get	a	prompt	that	states	that
the	plugin	has	been	installed	successfully,	and	Groovy	Console	Plugin	should	appear
in	the	Plugin	Manager’s	list	of	installed	plugins.	That’s	it!	You’re	ready	to	use	the
plugin	(see	the	next	recipe	for	how).

Note
Load	plugin	from	a	file

Simply	browse	to	your	plugin’s	jar	file	and	select	it.	Note	that	the	old-style	plugins	for
the	open	source	version	aren’t	supported;	you’ll	get	MissingPluginClassException.

Note
Upgrade/uninstall	plugin

Following	these	operations,	a	restart	of	SoapUI	is	advised.

How	it	works…
In	terms	of	the	Plugin	Manager,	I	cannot	reasonably	talk	too	much	about	its	internals
beyond	what	has	been	explained	so	far,	since	the	pro	version	is	not	open	source.	The	main
difference	in	terms	of	plugin	code	is	the	use	of	Java	annotations	for	all	configurations.	For
example,	pro	plugins	will	have	the	following	file	PluginConfig.java:

@PluginConfiguration(groupId	=	"com.smartbear.soapui.plugins",	name	=	
"Groovy	Console	Plugin",	version	=	"1.1",
								autoDetect	=	true,	description	=	"Adds	an	interactive	Groovy	
Console	to	SoapUI",
								infoUrl	=	"https://github.com/olensmar/soapui-groovy-plugin")
public	class	PluginConfig	extends	PluginAdapter	{

}

You’ll	recognize	the	annotation	values	from	the	Plugin	Browser.	To	configure	a	custom
SoapUI	Action,	you’ll	need	an	annotation	like	this:

@ActionConfiguration(actionGroup	=	"EnabledWsdlProjectActions")
public	class	ProjectGroovyConsoleAction	extends	
AbstractSoapUIAction<WsdlProject>	{
…

Tip
Remember	to	supply	any	pro	plugin	dependencies	for	your	projects!

Like	open	source	plugins,	pro	plugins	for	test-related	objects	such	as	custom	TestStep
and	Assertion	plugins	could	become	dependencies	for	your	project	if	you	distribute	it.
One	key	difference	with	open	source	plugins	is	the	location	where	the	installed	pro	plugin
jar	files	are	stored:
{user.home}/.soapui/plugins

If	you	use	a	test	runner	method	that	does	not	require	a	local	SoapUI	pro	installation,	for
example,	Maven,	then	consider	adding	the	plugin	jar	files	manually	to	the	earlier
mentioned	location	on	the	machine	where	the	script	will	be	run.	Otherwise,	your	project’s
plugin-related	parts	won’t	work!

See	also
SoapUI	Plugin	Manager	docs:	http://www.soapui.org/Extension-Plugins/plugin-
manager.html

http://www.soapui.org/Extension-Plugins/plugin-manager.html

Using	the	Groovy	Console	plugin	to	create
and	run	a	new	TestStep
This	recipe	is	another	quick	follow-on	to	show	a	little	of	what	you	can	do	with	the	Groovy
Console	plugin.	The	Groovy	Console	plugin	currently	has	the	same	functionality	in	both
pro	and	open	source	plugin	versions,	varying	only	in	its	installation.	As	a	quick	example,
we	use	it	to	dynamically	create	a	new	Groovy	TestStep	that	contains	a	simple	script,	and
run	its	TestCase	using	a	couple	of	Groovy	statements!

Getting	ready
All	you’ll	need	for	this	recipe	is	SoapUI	pro	and	the	Groovy	Console	plugin	installed.
Follow	the	previous	recipe	or	just	use	its	GroovyConsoleProject	project	from	the	chapter
10	samples.

Note
Open	source	Groovy	Console	plugin

Download	this	from	SourceForge	at	http://sourceforge.net/projects/soapui-
plugins/files/soapui-groovy-console-plugin/	or	get	it	from	the	chapter	10	sample’s
/plugins	folder.

http://sourceforge.net/projects/soapui-plugins/files/soapui-groovy-console-plugin/

How	to	do	it…
To	use	the	Groovy	Console	plugin,	you	will	notice	a	Groovy	Console	option	at	the	bottom
of	the	menu	when	you	right-click	on	the	Workspace,	Project,	TestSuite,	and	TestCase
option.	Each	will	open	(after	a	short	pause)	the	standard	Groovy	Console;	all	look
identical,	but	with	the	following	differences:

Workspace	Console:	This	has	a	workspace	variable	available	for	scripting
Project	Console:	This	has	a	project	variable	available	for	scripting
TestSuite	Console:	This	has	a	testSuite	variable	available	for	scripting
TestCase	Console:	This	has	a	testCase	variable	available	for	scripting

So	what	good	is	the	Groovy	Console?	Well,	it’s	got	the	usual	Groovy	console	scripting
functionality;	in	addition	to	it,	it	has	access	to	the	SoapUI	framework	objects	on	its
classpath.	Therefore,	the	possibilities	are	rather	open,	and	you	can	do	all	kinds	of
whacky	stuff	with	it!	You	can	run,	query,	create,	and	modify	most	objects	in	the	SoapUI
framework	using	Groovy	statements.

1.	 For	example,	create	or	use	a	new	empty	Project,	TestSuite,	and	TestCase,	and
open	Groovy	Console	against	TestCase.	Then,	enter	the	following	script:

testCase.addTestStep("groovy",	"HelloGroovy").setScript("log.info	
'Hello!'")
testCase.run(null,	false)

2.	 Then,	run	it,	and	it	should	create	a	new	Groovy	TestStep	called	HelloGroovy	that
contains	the	script	log.info	'Hello!'.	It	then	runs	TestCase	that	contains
HelloGroovy	to	output	Hello!	in	the	Script	log.

Note
Working	out	method	and	property	names

Unfortunately,	Groovy	Console	has	no	IntelliSense/code-completion,	so	if	you	need
help	working	out	method	names	and	properties,	then	do	the	following:

Take	a	look	at	the	API	docs	(http://www.soapui.org/apidocs/index.html).
Take	a	look	at	the	source	code	(https://github.com/SmartBear/soapui).
Another	way	is	to	use	the	Groovy	MetaClass	to	list	methods	dynamically;	for
example,	println	testCase.metaClass.methods*.name.sort().unique()
will	give	you	all	the	TestCase	methods.	Similarly,	for	TestCase	properties,
println	testCase.metaClass.properties*.name.sort().unique().

In	terms	of	practical	use,	I	have	occasionally	found	the	Groovy	Console	useful	to	inspect
objects	while	debugging.	However,	its	scope	is	wide	open;	for	example,	you	could	use	it
to	generate	entire	SoapUI	projects	using	Groovy	scripts!

http://www.soapui.org/apidocs/index.html
https://github.com/SmartBear/soapui

How	it	works…
As	you	may	already	be	aware,	the	standard	Groovy	download	includes	the	same	Java
Swing-based	Groovy	console	as	the	plugin	uses	(see	the	next	link).	In	very	simple	terms,
the	plugin	allows	SoapUI	to	launch	the	Groovy	console	in	the	context	of	whatever	it	is
launched	from,	that	is,	with	the	particular	SoapUI	context	(for	example,	testCase)	added
to	the	console’s	classpath.

Note
Pro	version	source	code

This	can	be	found	in	GitHub	at	https://github.com/olensmar/soapui-groovy-console-
plugin/tree/master/src/main/java/com/smartbear/soapui/groovy.

In	terms	of	console	functionality,	the	main	class	to	look	at	is
GroovyConsoleActionHelper.java—;	since	the	UI	of	SoapUI	is	also	built	using	Java
Swing,	integration	of	the	Groovy	Console	seems	surprisingly	straightforward!

For	further	details	on	the	plugin,	a	good	place	to	start	is	Ole	Lensmar’s	blog	(the	plugin
creator	and	co-founder	of	SoapUI)	at	http://olensmar.blogspot.se/2013/02/a-groovy-
console-for-soapui.html.

https://github.com/olensmar/soapui-groovy-console-plugin/tree/master/src/main/java/com/smartbear/soapui/groovy
http://olensmar.blogspot.se/2013/02/a-groovy-console-for-soapui.html

See	also
For	more	information	on	Groovy	Console,	go	to	http://beta.groovy-
lang.org/groovyconsole.html

http://beta.groovy-lang.org/groovyconsole.html

Packaging	old-style	plugins	when	running
tests	with	Maven
Certain	types	of	plugins,	for	example,	custom	TestSteps	and	Assertions,	can	become
dependencies	for	the	successful	running	of	your	projects.	For	example,	if	you	use	the
Email	TestStep	plugin	in	your	project,	then	you	must	provide	this	plugin	if	your	project
is	used	elsewhere;	for	example,	if	other	users	want	to	use	the	project,	then	they	must	also
install	the	plugin	in	their	/plugins	folder	before	it	will	work.

A	more	complicated	but	common	case	would	be	if	your	project	runs	as	part	of	continuous
integration	(CI)	using	Maven	to	run	tests.	In	this	case,	there	may	not	be	an	install	of
SoapUI	to	manually	deploy	the	plugin	jar	file	to.	In	this	recipe,	we	will	deal	with	this	case
by	running	the	project	from	the	first	recipe	using	a	Maven	script.

Getting	ready
To	follow	this	recipe,	you	will	need	the	following:

1.	 Maven	(version	2+)	installed,	and	basic	Maven	skills	to	do	the	following:

Create	Maven	projects
Configure	the	SoapUI	Maven	plugin
Run	Maven	scripts

Note
Full	Maven	instructions	will	be	given

However,	if	you	are	new	to	Maven,	then	taking	a	look	at	the	Running	mocks	and	tests
using	Maven	recipe	in	Chapter	5,	Automation	and	Scripting,	might	help.	The	Running
load	tests	using	Maven,	command	line,	Java,	Groovy,	and	Gradle	scripts	recipe	in
Chapter	9,	Data-driven	Load	Testing	With	Custom	Datasources,	also	has	a	Maven
example.

2.	 The	project	EmailTestStepProject	(see	the	first	recipe)
3.	 The	Email	TestStep	plugin’s	jar	file	(see	the	first	recipe)
4.	 Access	to	the	SMTP	server	configured	in	Email	TestStep	or	FakeSMTP	(see	the	first

recipe)

How	to	do	it…
First,	we’ll	create	a	Maven	project	to	run	the	EmailTestStepProject	project	using	the
SoapUI	Maven	plugin.	Then,	we’ll	run	the	project	and	see	why	no	e-mail	is	sent,	and	then
provide	the	Email	TestStep	plugin’s	jar	file	to	fix	the	problem.	Perform	the	following
steps:

1.	 To	create	the	Maven	project,	we’ll	use	an	archetype	as	in	the	previous	Maven	recipes.
Open	a	shell	where	you	want	the	Maven	project	folder	created	and	enter	the
following:

mvn	archetype:generate	-DgroupId=soapui.cookbook.chapter10	-
DartifactId=email-test	-DarchetypeArtifactId=maven-archetype-quickstart	
-DinteractiveMode=false

2.	 This	should	create	the	following	folder	structure:

email-test/
		pom.xml
		src/
				main/java/soapui/cookbook/chapter10/App.java
				test/java/soapui/cookbook/chapter10/AppTest.java

3.	 Delete	App.java	and	AppTest.java,	as	we	won’t	need	them.
4.	 Next,	we’ll	add	the	SoapUI	Maven	plugin	to	the	generated	pom.xml:

<project	xmlns="http://maven.apache.org/POM/4.0.0"	
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	
http://maven.apache.org/maven-v4_0_0.xsd">
		<modelVersion>4.0.0</modelVersion>
		<groupId>soapui.cookbook.chapter10</groupId>
		<artifactId>email-test</artifactId>
		<packaging>jar</packaging>
		<version>1.0-SNAPSHOT</version>
		<name>email-test</name>
		<url>http://maven.apache.org</url>
		<pluginRepositories>
								<pluginRepository>
										<id>SmartBearPluginRepository</id>
													<url>http://www.soapui.org/repository/maven2/</url>
								</pluginRepository>
		</pluginRepositories>
				<build>
								<plugins>
												<plugin>
																<groupId>com.smartbear.soapui</groupId>
																<artifactId>soapui-maven-plugin</artifactId>
																<version>5.0.0</version>
			<configuration>				
		<projectFile>${basedir}/src/test/resources/EmailTestStepProject-
soapui-project.xml</projectFile>				
			</configuration>			
																<executions>
																				<execution>

																								<phase>test</phase>
																								<goals>
																												<goal>test</goal>
																								</goals>
																				</execution>
																</executions>
												</plugin>
								</plugins>
				</build>
</project>

5.	 Then,	if	you	don’t	have	direct	access	to	an	SMTP	server,	start	the	FakeSMTP	server	to
receive	e-mails	(as	in	the	first	recipe).

6.	 Now,	we	will	run	the	Maven	project	(from	the	pom.xml	directory)	without	supplying
the	Email	TestStep	plugin:

mvn	clean	test	

7.	 Then,	we	should	see	Maven’s	BUILD	SUCCESS	message	along	with	the	SoapUI
error	message:

ERROR	[WsdlTestCase]	Failed	to	create	test	step	for	[EmailTestStep]

8.	 There	is	no	e-mail	received	in	the	FakeSMTP	server.

Note
Plugins	folder	location

By	default,	SoapUI’s	TestRunner	expects	any	plugins	to	be	located	at
{soapui.home}/plugins,	where	soapui.home,	in	this	case,	defaults	to	where	we	are
running	Maven	from.	It	would	be	better	if	we	could	supply	the	location	from	where
to	find	the	plugin,	for	example,	src/test/resources/plugins.	Unfortunately,	unlike
the	library	extension	folder	/ext,	we	don’t	have	direct	control	over	the	location	of	the
/plugins	folder	due	to	the	way	the	loadPlugins()	method	is	written	in	SoapUI’s
code,	that	is,	in	DefaultSoapUICore.java:
File	pluginDirectory	=	new	File(System.getProperty("soapui.home"),
"plugins");

9.	 So,	to	supply	the	plugin,	create	a	new	plugins	folder	in	the	Maven	project’s	base
directory,	and	copy	the	Email	TestStep	jar	file	to	it:	email-
test/plugins/soapui-emailteststep-plugin-1.0-plugin.jar.

10.	 Finally,	rerun	the	Maven	project,	that	is,	mvn	clean	test,	and	you	should	see	the
following	log	messages	as	well	as	receive	an	e-mail:

INFO		[DefaultSoapUICore]	Adding	plugin	from	[/soapui-
cookbook/chapter10/maven/email-test/plugins/soapui-emailteststep-
plugin-1.0-plugin.jar]
INFO		[DefaultSoapUICore]	Adding	factory	[class	
soapui.demo.teststeps.email.EMailTestStepFactory]
INFO		[DefaultSoapUICore]	Adding	factory	[class	
soapui.demo.teststeps.email.EMailTestStepPanelBuilderFactory]
...

INFO		[SoapUITestCaseRunner]	Running	SoapUI	tests	in	project	
[EmailTestStepProject]

How	it	works…
As	explained	in	the	first	recipe,	when	running	projects	with	plugin	dependencies	related	to
TestCase,	SoapUI	instances	require	access	to	plugin	jar	files	in	order	to	add	them	to	the
classpath.	We	can	see	from	the	final	step’s	log	messages	that	SoapUI’s	TestRunner	scripts,
for	example,	Maven,	loads	the	plugin	successfully	if	it	is	supplied	in	a	plugins	folder
located	in	the	same	directory	as	where	the	script	is	run.	Otherwise,	the	TestRunner	scripts,
as	well	as	the	tests	may	still	pass,	but	any	plugin-related	TestSteps	would	not	work.

This	would	also	apply	to	load	and	security	test	scripts	(both	types	of	TestRunner),
assuming	that	the	TestCase(s)	they	run	might	have	plugin	dependencies.	Potentially,
running	mocks	as	war	files	could	also	be	an	issue	if	a	plugin	is	used	to	enhance	mock
functionality.

There’s	more…
In	terms	of	script	types,	the	ideas	in	this	recipe	also	apply	to	the	other	methods	of	running
TestRunner	scripts,	seen	in	the	chapter	5	samples:

Gradle	(assuming	dependency	management	is	used)
Groovy	(assuming	the	Grapes	dependency	management	or	packaged	SoapUI
libraries	are	used)
Java/Junit	(assuming	SoapUI	libraries	are	packaged)

Running	via	the	command	line	would	normally	be	fine,	assuming	you	haven’t	modified
the	standard	script	to	run	separately	to	SoapUI,	for	example,	using	a	packaged	lib	folder!

Chapter	11.	Taking	SoapUI	Further
In	this	chapter,	we	will	cover:

Building,	packaging,	and	running	SoapUI	from	source	code
Importing,	building,	running,	and	debugging	SoapUI	in	Eclipse
Developing	a	Groovy	plugin	with	custom	Action	using	Gradle
Logging	from	extensions	and	scripts
Prompting	for	user	input	with	the	UISupport	class
Creating	a	custom	RequestFilter	(Listener)	plugin
Creating	a	custom	TestStep	(Factory)	plugin	to	check	whether	a	file	exists

Introduction
Well	here	we	are!	It’s	the	final	chapter,	and	having	mastered	many	areas	in	SoapUI,	it’s
time	to	look	at	how	to	add	new	functionality!	This	chapter	focuses	mainly	on
understanding	and	extending	SoapUI	functionality	either	directly	(via	source	code)	or	by
developing	plugins.

What	you’ll	learn
You	will	learn	the	following	topics:

The	SoapUI	framework:	By	studying	and	building	SoapUI	from	its	source	code	you
have	the	ultimate	access	to	how	it	works,	how	to	use	it,	and	how	to	extend	it!
Key	SoapUI	extension	objects:	You’ll	learn	about	custom	Actions,	Factories,	and
Listeners	and	how	to	use	them	to	provide	additional	functionality.
How	to	build,	package,	deploy,	and	share	your	extensions	as	plugins:	Once	you
know	how	to	extend	SoapUI,	you’ll	learn	how	to	develop	plugins	to	package	and
share	your	great	new	functionality!

This	chapter	concentrates	on	developing	open	source	(old-style)	extensions	and	plugins.
For	more	information	on	developing	new	style	(pro)	plugins	please	see:

http://www.soapui.org/Extension-Plugins/developing-soapui-plugins.html
http://olensmar.blogspot.se/2014/07/getting-started-with-new-soapui-plugin.html

http://www.soapui.org/Extension-Plugins/developing-soapui-plugins.html
http://olensmar.blogspot.se/2014/07/getting-started-with-new-soapui-plugin.html

Building,	packaging,	and	running	SoapUI
from	the	source	code
Depending	on	your	background,	the	idea	of	building	SoapUI	from	source	code	might
sound	a	bit	hard-core	and	possibly	unnecessary,	but	the	truth	is	that	it’s	actually	relatively
straightforward	and	can	be	very	useful!	It	also	gives	you	access	to	the	latest	fixes	and
features	that	may	take	time	to	be	officially	released.	We’ll	also	see	how	to	package
SoapUI	so	that	you	can	run	it	in	its	more	familiar	form,	that	is,	as	a	normal	installation!

Getting	ready
The	source	code	itself	is	available	from	GitHub	and	can	be	found	at
https://github.com/SmartBear/soapui/.

Tip
GitHub

If	you’ve	not	seen	it	before,	it’s	well	worth	quickly	browsing	through	the	SoapUI	projects
and	source	code.

To	clone	and	build	the	code	you	will	need:

JDK	(1.6+):	Download	from
http://www.oracle.com/technetwork/java/javase/downloads/index.html	(I	used
v1.7.0_71).
Git	(v1.8+):	There	are	various	options,	for	example,	command	line	and	GUI
versions.	This	recipe	uses	the	command	line	version	(1.9.3).	Download	your	favored
option	from	http://git-scm.com/.

Tip
Prefer	a	ZIP	file	instead	of	using	Git?

No	problem,	just	go	to	the	main	SoapUI	GitHub	page	and	click	Download	Zip;	you
will	get	a	zipped	snapshot	of	all	the	source	code	in	a	folder	named	soapui-next.zip.

Maven	(3+):	We’ll	need	to	run	a	few	Maven	commands	to	build	and	run	SoapUI.	For
download	and	installation	instructions,	see	http://maven.apache.org/download.cgi
(this	recipe	used	v3.2.1).	If	you	are	new	to	Maven	or	need	a	quick	refresher,	take	a
look	at	http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html.

https://github.com/SmartBear/soapui/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://git-scm.com/
http://maven.apache.org/download.cgi
http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html

How	to	do	it…
First	we’ll	get	(clone)	the	latest	SoapUI	project	source	code	from	Git.	Then	we’ll	build	it
with	Maven	and	start	it	up.	Finally	we’ll	take	a	look	at	how	to	package	SoapUI.	Perform
the	following	steps:

1.	 To	get	the	source	code,	open	a	shell	window	and	type	the	following	Git	command:

git	clone	https://github.com/SmartBear/soapui.git

2.	 You	should	see	this	output:

Cloning	into	'soapui'...
remote:	Counting	objects:	111892,	done.
remote:	Compressing	objects:	100%	(23/23),	done.
remote:	Total	111892	(delta	4),	reused	0	(delta	0)
Receiving	objects:	100%	(111892/111892),	72.58	MiB	|	4.15	MiB/s,	done.
Resolving	deltas:	100%	(71726/71726),	done.
Checking	connectivity…	done.

3.	 This	may	take	a	minute	depending	on	your	network	connection.	A	soapui/	folder
should	have	been	created	containing:

soapui										-Main	SoapUI	project.
soapui-maven-plugin				-SoapUI	Maven	plugin	project.
soapui-maven-plugin-tester	–Plugin	tests.
soapui-installer						-SoapUI	installer	project.
soapui-system-test						-SoapUI	integration	tests.
pom.xml									-Maven	build	file.
README.md								
RELEASENOTES.txt
intellij-codestyle.jar		

4.	 Now,	to	build	it:

cd	<SoapUI	clone	dir>/soapui/
mvn	clean	install

5.	 This	may	take	a	few	minutes—mainly	due	to	the	tests—and	should	result	in	lots	of
console	output	followed	by	Maven’s	BUILD	SUCCESS	message.

Tip
Want	to	skip	tests?

Use	mvn	clean	install	–DskipTests	instead.

Tip
Maven	out	of	memory?

Use	MAVEN_OPTS	to	increase	it	before	building:	export	MAVEN_OPTS="-Xmx512m".

6.	 To	run	SoapUI	using	Maven:

cd	<SoapUI	clone	dir>/soapui/soapui/
mvn	exec:java

7.	 You	should	see	familiar	console	output	as	SoapUI	starts	up.

Tip
Extensions	and	plugins	folders

When	running	SoapUI	this	way,	the	ext/	and	plugins/	folders	would	be	created	in
this	folder	(actions/	and	listeners/	folders	are	already	created	here	in	the	Git
project).

8.	 Finally,	to	package	the	different	distributions	of	SoapUI:

cd	<SoapUI	clone	dir>/soapui/soapui-installer/
mvn	clean	package	assembly:single

9.	 Once	the	Maven	script	finishes	successfully,	you	will	find	the	various	platform
distributions	under	soapui-installer/target/assemblies/:

SoapUI-5.2.0-SNAPSHOT-dist
SoapUI-5.2.0-SNAPSHOT-dist-standalone
SoapUI-5.2.0-SNAPSHOT-linux-bin.tar.gz				
SoapUI-5.2.0-SNAPSHOT-win32-standalone-bin.zip
SoapUI-5.2.0-SNAPSHOT-mac-bin.zip				
SoapUI-5.2.0-SNAPSHOT-windows-bin.zip

10.	 To	run	one,	pick	a	particular	distribution	and	go	to	the	/bin	folder;	for	example:

cd	SoapUI-5.2.0-SNAPSHOT-dist/bin
./soapui.sh	(or	soapui.bat	for	windows)

Tip
Runner	scripts

You	will	also	find	all	the	usual	mock	and	test	runner	scripts	under	/bin	in	the	packaged
distributions	–	the	folder	structure	and	contents	structure	should	be	like	the	one	the	official
install4j	installer	creates.

There’s	more…
Now	that	you	can	build,	package,	and	run	SoapUI	from	its	source	code,	you	may	want	to
explore	and/or	change	parts	of	it.	If	so,	you	may	want	to	import	the	Maven	project	into	an
IDE.	See	the	next	recipe	for	an	example	of	how	to	do	this	with	Eclipse.

See	also
Maven	Exec	plugin:	http://mojo.codehaus.org/exec-maven-plugin/
Maven	Assembly	plugin:	http://maven.apache.org/plugins/maven-assembly-plugin/

http://mojo.codehaus.org/exec-maven-plugin/
http://maven.apache.org/plugins/maven-assembly-plugin/

Importing,	building,	running,	and
debugging	SoapUI	in	Eclipse
Importing	the	SoapUI	source	code	into	an	IDE	is	highly	recommended	if	you	want	to
explore,	change,	and/or	debug	the	application.	Again,	it’s	not	complicated	to	do	and
should	be	quite	quick	assuming	you	have	Eclipse	installed	and	are	reasonably	comfortable
with	it.

Getting	ready
The	main	part	of	this	recipe	assumes	that	you	have	already	downloaded	the	SoapUI	source
code.	If	you	haven’t,	please	see	the	previous	recipe	for	details.

You’ll	need	a	version	of	Eclipse	to	follow	this	recipe.	There	are	various	flavors	of	Eclipse;
most	Java-related	versions	should	be	fine,	for	example,	Eclipse	IDE	for	Java	Developers
from	http://www.eclipse.org/downloads/.	(I	used	Eclipse	STS	3.5.1,	which	is	a	bit	old	but
works	fine!)

http://www.eclipse.org/downloads/

How	to	do	it…
First,	we’ll	import	the	SoapUI	source	code	into	Eclipse.	Then	we’ll	run,	debug,	and
optionally	build	it.	Perform	the	following	steps:

1.	 (Optional)	If	necessary,	create	yourself	a	new	Eclipse	workspace.	Go	to	File	|	Switch
Workspace	|	Other…	and	type	in	the	Workspace	path	and	name	you’d	like.	Eclipse
will	restart	to	switch	to	your	new	workspace.

2.	 Import	the	SoapUI	project	folders	as	a	Maven	project:

Go	to	File	|	Import…	|	Maven	|	Existing	Maven	Projects

Click	on	NEXT
Then	click	on	Browse…	and	select	the	folder	containing	your	SoapUI	source
code,	as	enlisted	in	the	following	screenshot:

Select	all	the	Maven	projects
Click	Finish	and	all	the	projects	should	be	imported	and	built	(this	can	take	a
few	a	minutes…)

3.	 When	all	the	projects	have	been	imported	and	have	finished	building,	use	either
Project	Explorer	or	Navigator	to	go	to	com.eviware.soapui.SoapUI.java	under
src/main/java:

4.	 From	this	class:

Run	SoapUI:	Right-click	on	SoapUI	|	Run	As	|	2	Java	Application.	You
should	see	the	usual	SoapUI	log	output	in	the	Console	tab	and	then	be	presented
with	the	SoapUI	application.
Debug	SoapUI:	Right-click	on	SoapUI	|	Debug	As	|	2	Java	Application.
Eclipse	should	switch	from	the	Java	to	Debug	perspective	and	start	SoapUI	in
debug	mode.

5.	 If	you	need	to	build	SoapUI	from	within	Eclipse:

Find	soupui/pom.xml	in	Project	Explorer
Right-click	on	it	and	select	Run	As	|	2	Maven	Build…
In	the	Edit	Configuration	window,	enter	the	Maven	Goals	you	need—for
example,	clean	install	–DskipTests—and	click	Run	to	build

How	it	works…
Again,	there’s	not	much	I	can	add	here,	as	it’s	really	about	how	Eclipse	works.	This	recipe
is	fairly	brief	and	is	only	intended	to	be	a	quick	start	to	importing	the	SoapUI	source	code,
optionally	building	it,	then	running	and	debugging	it	as	a	Java	application.	You	may	find
the	Eclipse	documentation	helpful	as	further	reading,	which	can	be	found	at
https://eclipse.org/documentation/.

https://eclipse.org/documentation/

There’s	more…
If	you	prefer	to	use	another	IDE	instead	of	Eclipse,	all	we	have	done	is	import	SoapUI	as	a
Maven	project,	which	should	be	fairly	standard.	Hopefully	the	following	links	will	help
you	to	do	this	with	two	popular	alternatives	to	Eclipse.

See	also
IntelliJ	IDEA	setup:	For	brief	IntelliJ	SoapUI	setup	instructions,	see	Getting	started
using	Intellij	IDEA	(version	13)	at	https://github.com/SmartBear/soapui.
NetBeans	IDE	setup:	See
http://wiki.netbeans.org/MavenBestPractices#Open_existing_project.

https://github.com/SmartBear/soapui
http://wiki.netbeans.org/MavenBestPractices#Open_existing_project

Developing	a	Groovy	plugin	with	custom
Action	using	Gradle
If	you	want	to	extend	SoapUI	functionality	you	have	three	main	choices:

Modify	the	source	code:	This	is	appropriate	for	adding	core	framework	functionality
and	bug	fixes.	It	is	not	a	good	choice	if	all	you	want	to	do	is	add	some	optional	bolt-
on	functionality	and	possibly	share	it	with	others.
Traditional	extensions	(Actions,	Factories,	and	Listeners):	These	types	of
extensions	can	still	be	added.	This	is	a	more	granular	and	fragmented	option	in	that
large	extensions	might	involve	several	separate	files	to	deploy	(although	you	could
combine	them	with	another	ZIP).	If	all	you	want	to	do	is	add	a	new	listener	then	this
might	still	be	a	good	option.
Plugins:	This	is	the	newest	and	most	comprehensive	way	of	packaging	extensions,
that	is,	in	a	single	JAR	file.	This	is	probably	the	best	option	for	most	extensions.

Many	of	the	plugins	you	will	see	have	been	written	in	Java	and	built	using	Maven.	To
offer	you	another,	perhaps	more	modern	alternative,	we’ll	learn	how	to	build	a	template
for	SoapUI	plugin	with	a	simple	custom	Groovy	Action	using	Gradle.	It	isn’t	very
complicated	to	build	a	plugin;	it’s	just	a	jar	file	with	a	certain	structure.	You	could	even
build	one	using	command	line	Java	or	Groovy	and	manually	create	the	JAR	file.	However,
as	things	grow	the	strengths	of	a	build	tool	with	dependency	management	like	Gradle	or
Maven	should	pay	off.	Where	you	take	it	from	there	is	up	to	you	and	your	skills!

Getting	ready
To	complete	this	recipe	you	will	need:

Gradle	(latest	version):	As	explained	in	the	Running	mocks	and	tests	using	Gradle
recipe	of	Chapter	5,	Automation	and	Scripting,	a	Gradle	wrapper	has	been	added	to
the	sample	code	that	will	take	care	of	downloading	Gradle	if	you	don’t	already	have
it.	If	you	would	like	to	download	and	install	Gradle	anyway,	take	a	look	at
https://www.gradle.org/get-started.
IDE	(optional):	You	could	optionally	use	an	IDE	like	Eclipse,	perhaps	with	a	Gradle
plugin,	but	there	isn’t	much	coding	to	do	yet.

The	source	code	for	the	recipe’s	plugin	can	be	found	in	the	/plugins/soapui-sample-
plugin	folder	in	the	chapter	11	samples.

https://www.gradle.org/get-started

How	to	do	it…
First,	let’s	look	at	what	a	SoapUI	plugin	JAR	file	contains.

Note
Plugin	naming	convention

Up	to	version	5.0.0,	for	plugins	to	be	loaded	from	the	/plugins	folder	the	plugin	JAR	files
must	end	with	plugin.jar.	However,	I	have	noticed	that	this	requirement	has	been
removed	in	the	latest	source	code	from	GitHub,	so	future	releases	may	be	different.

There	are	no	other	strict	structural	requirements	on	the	JAR	file.	However,	a	typical	plugin
would	contain	some	or	all	of	the	following:

<package	structure>/
		ClassFile.class
				...
META-INF/
		actions.xml
		factories.xml
		listeners.xml
image.png

There	will	normally	be	a	package	structure	containing	one	or	more	compiled	Groovy	or
Java	classes.	The	naming	and	location	of	actions.xml,	factories.xml,	and
listerners.xml	is	strict,	as	it	is	hard	coded	in	the	source	code.	Sometimes	image	files	are
also	present,	for	example,	for	TestStep	icons.

To	build	something	like	this,	consider	the	sample	Gradle	plugin	project:

With	Gradle	build	file	build.gradle:

apply	plugin:	'groovy'

version	=	'1.0'

task	wrapper(type:	Wrapper)	{
		gradleVersion	=	'2.2'
}

jar	{
				classifier	=	'plugin'
				manifest	{
								attributes	'Implementation-Title':	'SoapUI	Plugin	Template',	
'Implementation-Version':	version
				}
}

repositories	{
		mavenCentral()
		maven	{	url	"http://www.soapui.org/repository/maven2"	}
}

dependencies	{
		compile(group:	'com.smartbear.soapui',	name:	'soapui',	version:'5.1.2-m-
SNAPSHOT')	{
				exclude(module:	'jms')
				exclude(module:	'jtidy')
				exclude(module:	'cajo')
		}
}

This	project	contains	a	custom	Action	written	in	Groovy	to	add	a	menu	item	called
Sample	Groovy	Project	Action	to	the	Project	menu,	with	tip	“Doesn’t	do	anything!”
when	you	hover	over	it:

package	sample.actions

import	com.eviware.soapui.impl.wsdl.WsdlProject
import	com.eviware.soapui.support.action.support.AbstractSoapUIAction

public	class	SampleProjectAction	extends	AbstractSoapUIAction<WsdlProject>{

		public	SampleProjectAction()	{
				super("Sample	Groovy	Project	Action",	"Doesn't	do	anything!")
		}

		@Override
		public	void	perform(WsdlProject	project,	Object	param)	{
				
		}
}

There	is	also	an	Action	configuration	file	to	add	this	class	to	the	SoapUI	Action	registry,
as	follows:

<?xml	version="1.0"	encoding="UTF-8"?>
<tns:soapui-actions	xmlns:tns="http://eviware.com/soapui/config">

<tns:action	id="SampleAction"	
actionClass="sample.actions.SampleProjectAction"/>

<tns:actionGroup	id="EnabledWsdlProjectActions">
		<tns:actionMapping	actionId="SampleAction"/>
</tns:actionGroup>
</tns:soapui-actions>

Now,	let’s	build	and	deploy	the	plugin	JAR	file	with	the	following	steps:

1.	 First,	open	a	shell	and	build	the	project	using	the	Gradle	wrapper	as	follows:

cd	soapui-sample-plugin
./gradlew	clean	build

Note
Lots	of	downloading

The	first	time	you	run	this,	there	will	be	possibly	Gradle	and	definitely	lots	of
SoapUI	dependencies	to	download	(like	with	the	Maven,	Gradle,	and	Groovy	Grapes
recipes	in	Chapter	5,	Automation	and	Scripting).	This	may	take	a	few	minutes.

2.	 After	the	build	has	finished	the	console	will	show	BUILD	SUCCESSFUL	and	the	plugin
JAR	file	will	have	been	created:	soapui-sample-plugin/build/libs/soapui-
sample-plugin-1.0-plugin.jar.

3.	 To	deploy	the	plugin,	copy	this	plugin	file	to	<SoapUI	Home>/bin/plugins	and	if
necessary,	restart	SoapUI.

Tip
The	plugins	folder	is	not	created	by	default;	please	create	it	if	it	doesn’t	exist.

4.	 If	you	look	in	the	SoapUI	log	tab	then	you	should	see	the	following:

INFO:Adding	plugin	from	[/Applications/SoapUI-
5.0.0.app/Contents/java/app/bin/plugins/soapui-sample-plugin-1.0-
plugin.jar]

5.	 And	if	you	right-click	on	Project	the	custom	(Action)	menu	item	is	displayed.

How	it	works…
There	are	two	main	parts	to	how	it	works:	the	Gradle	script	and	the	custom	Action.	In
terms	of	the	Gradle	script,	a	lot	of	things	with	Gradle	are	done	by	convention	over
configuration.	Firstly,	because	we	are	using	the	Groovy	plugin,	Gradle	expects	to	find	any
Groovy	classes	under	src/main/groovy,	that	is,	it	finds	and	compiles	our	custom	action’s
SampleProjectAction.groovy	file.	Also,	the	jar	task	expects	to	include	the	contents	of
classes/	and	resources/	from	the	build/	folder.	We	have	only	overridden	the	manifest
and	classifier	to	add	plugin	to	the	end	of	the	JAR	file	name	to	conform	to	the	plugin
naming	requirement.

You	may	recognize	the	wrapper,	repositories,	and	dependencies	tasks	from	the	Running
mocks	and	tests	using	Gradle	recipe	of	Chapter	5,	Automation	and	Scripting.	Please	see
this	recipe	for	more	details	on	these	tasks,	but	basically	these	tasks	make	all	the	SoapUI
classes	available	for	us	to	import	and	extend	in	our	plugin	classes.

In	terms	of	the	custom	Action	class,	it	needs	to:

Extend	AbstractSoapUIAction
Add	a	constructor	to	configure	our	action’s	name	and	tip
Override	the	perform(…)	method—this	is	where	we	would	add	our	custom	code	to
run	when	the	menu	item	is	clicked

The	actions.xml	configuration	file	will	perform	the	following	functions:

It	will	assign	an	id	of	SampleAction	to	reference	our	custom	Action	class.
It	will	provide	actionGroup	details	to	indicate	where	we	would	like	our	Action	to	be
added	in	the	menu	hierarchy.	In	this	case	we	have	put	EnabledWsdlProjectActions
to	indicate	the	Project	menu.

Tip
SoapUI	actions

When	SoapUI	starts	it	first	loads	its	standard	actions	from
soapui/src/main/resources/com/eviware/soapui/resources/conf/soapui-
actions.xml	before	adding	any	custom	actions.	Look	in	this	file	for	help	with	setting
the	actionGroup	tag	for	your	custom	Actions.

By	default,	it	will	be	added	at	the	bottom	of	the	menu.

Tip
Action	menu	position

You	can	control	the	relative	menu	position	of	the	custom	Action	by	providing
AFTER/BEFORE	and	positionRef	attributes	in	the	actionMapping;	for	example,
<tns:actionMapping	actionId="SampleAction"	position="AFTER"
positionRef="AddWadlAction"/>.

There’s	more…
We	can	obviously	go	further	with	our	Gradle	script.	For	example,	we	could	add	a	task	to
copy	our	plugin	JAR	file	to	SoapUI’s	plugins/	folder	as	follows:

task	deployPlugin(type:	Copy)	{
		from	'build/libs'
		into	'<SoapUI	Home>/bin/plugins/'
}

Then,	to	run	it,	use	this	command:	./gradlew	clean	build	deploy.

Tip
Plugin	external	library	runtime	dependencies

If	you	have	any	libraries	that	are	needed	by	the	plugin	at	runtime,	for	example,	db	drivers,
then	you’ll	need	to	copy	them	to	the	ext/	folder	before	deploying	the	plugin.	The	RAML
plugin	has	an	example	of	this.

Rather	use	Java	than	Groovy?
No	problem,	just:
Change	apply	plugin:	'groovy'	of	the	Gradle	file,	build.xml,	to	apply	plugin:
'java'.	(Note	that	the	Groovy	plugin	also	compiles	any	Java	it	finds.)
Rename	the	folder,	src/main/groovy	to	src/main/java.	Or	just	keep	the	groovy
plugin	and	add	a	Java	folder	to	support	both	languages.

Tip
Troubleshooting	plugins

Unfortunately,	if	something	goes	wrong	while	loading	your	plugin	in	the	current	release
(5.0.0)	all	you	will	see	is	this	warning:	WARN	[DefaultSoapUICore]	Could	not	load
plugin	from	file	/plugins/SoapUIPlugin-1.0-plugin.jar].	To	improve	on	this,
consider	adding	an	extra	debug	code	to	the	SoapUI	source	and	rebuilding.	See
com.eviware.soapui.DefaultSoapUICore	and	method	loadOldStylePluginFrom()	to
get	started.

See	also
Maven	SoapUI	Plugin	Template:	https://github.com/olensmar/soapui-plugin-template
Action	Extensions:	http://www.soapui.org/Developers-Corner/extending-soapui.html

https://github.com/olensmar/soapui-plugin-template
http://www.soapui.org/Developers-Corner/extending-soapui.html

Logging	from	extensions	and	scripts
In	your	extensions	you	will	often	need	to	log	messages	for	info,	debug	and	errors.	This
recipe	provides	a	brief	overview	on	how	log	messages	to	the	soapui.log	file,	soapui	log
tab	and	groovy	log	tab.

Getting	ready
To	illustrate	the	logging	approaches	we’ll	add	examples	to	a	custom	Action	plugin	based
on	the	soapui-sample-plugin	Gradle	project	from	the	previous	recipe.	You	can	find	this
in	the	plugins/soapui-logging-plugin	folder	of	the	chapter	11	samples.

How	to	do	it…
Let’s	take	a	look	at	an	example	of	each	of	the	logging	types.	Here	is	the	custom	Action
that	will	do	the	logging	for	us:

import	org.apache.log4j.Logger
import	com.eviware.soapui.SoapUI
import	com.eviware.soapui.impl.wsdl.WsdlProject
import	com.eviware.soapui.support.action.support.AbstractSoapUIAction

public	class	LoggingProjectAction	extends	AbstractSoapUIAction<WsdlProject>
{

		protected	final	Logger	soapuiLogFileLogger	=	Logger.getLogger(getClass())
		protected	final	Logger	scriptLogger	=	Logger.getLogger("groovy.log")
		
		public	LoggingProjectAction()	{
				super("Logging	Project	Action",	"Logs	some	stuff!")
		}

		@Override
		public	void	perform(WsdlProject	project,	Object	param)	{
				//Example	1-Log	something	to	the	soapui.log
				soapuiLogFileLogger.info	"Hello	from	logging	plugin!"
				
				//Example	2-Log	something	to	the	script	log	tab
				scriptLogger.info	"Hello	scriptlog	from	logging	plugin!"
				
				//Example	3-Log	message	to	soapui	log	tab
				SoapUI.log	"Hello	from	soapui	log	SoapUI.log"

				//Example	4-Log	error	to	soapui	log	tab	
//and	stacktrace	in	error	log	tab
				SoapUI.logError	new	Exception("Something	went	wrong!!")
		}
}

If	you:

Build	it:	./gradlew	clean	build
Deploy	it:	Copy	soapui-logging-plugin-1.0-plugin.jar	to	the	<SoapUI
Home>/bin/plugins	folder
Run	it:	Restart	SoapUI,	right-click	on	a	project	and	select	Logging	Project	Action
from	the	Project	menu

Then	you	should	see:

Example	1	(soapui.log):	->	INFO	[LoggingProjectAction]	Hello	from	logging
Action	plugin!
Example	2	(script	log—if	activated,	also	soapui.log):	->	INFO:Hello	script	log
from	logging	Action	plugin!
Example	3	(soapui	log	tab):	->	Hello	from	soapui	log	SoapUI.log
Example	4	(soapui	log	tab	and	stacktrace	in	error	log	tab):	->	ERROR:An	error

occurred	[Something	went	wrong!!],	see	error	log	for	details

How	it	works…
All	the	logging	types	use	standard	Apache	Log4j	Loggers	and	custom	log	monitors	to
drive	the	SoapUI	log	tabs.	For	example,	the	soapui	log	tab	listens	only	for	log	messages
from	classes	in	the	package,	com.eviware.soapui	–	see	SoapUI.initLogMonitor(…),
that’s	why	we	needed	to	use	the	SoapUI.log(…)	and	SoapUI.logError(…)	methods	to	get
our	messages	to	show	up	there.	Similarly,	the	script	log	tab	has	a	listener	setup	to	listen	to
groovy.log	–	see	SoapUI.ensureGroovyLog(…).	If	you	would	like	to	know	more,	all	of
the	setup	has	been	done	and	can	be	found	in	com.eviware.soapui.SoapUI.

See	also
Apache	Log4j:	http://logging.apache.org/log4j/2.x/

http://logging.apache.org/log4j/2.x/

Prompting	for	user	input	with	the
UISupport	class
When	developing	extensions,	plugins,	and	scripts,	you	may	need	to	display	alerts,
prompts,	and	confirmations.	The	UISupport	class	can	help	with	this!	It’s	a	rather	large
class	with	a	lot	of	capabilities	in	addition	to	those	mentioned.	In	this	recipe,	we’ll	look	at	a
few	examples	to	get	you	started.	It’s	quick	and	easy	to	use!

Getting	ready
The	UISupportExamplesProject	project	containing	the	Groovy	examples	from	this	recipe
can	be	found	in	the	chapter	11	samples.

How	to	do	it…
As	a	quick	demonstration,	we’ll	just	use	a	Groovy	TestStep	to	run	a	few	examples.	The
examples	will	also	work	in	plugin	extensions.

The	first	thing	we	need	to	do	is	import	the	class:

import	com.eviware.soapui.support.UISupport

To	display	an	info	popup,	enter	and	run:

UISupport.showInfoMessage("Hello	from	UISupport!")

To	display	a	question	prompt	with	default	value	and	capture	the	answer	as	a	String:

String	answer	=	UISupport.prompt("Question","Title","default	value")

For	a	prompt	to	click	on	Yes	or	Yes	to	All	or	No	and	capture	the	response	as	an	int:

int	result	=	UISupport.yesYesToAllOrNo("Question",	"Title")

To	display	an	error	message	popup:

UISupport.showErrorMessage("Something	went	wrong!")

How	it	works…
The	UISupport	class	does	many	things,	but	a	lot,	including	these	examples,	is	related	to
the	convenient	provision	of	Java	Swing	components.	As	you	may	be	aware,	the	SoapUI
user	interface	is	built	using	Java	Swing	and	the	UISupport	class	provides	a	quick	way	to
build	its	common	parts.	If	you	need	any	UI	related	functionality,	then	it’s	worth	taking	a
look	at	its	source	code	to	see	all	the	other	methods.

See	also
UISupport	in	API	Docs:	http://www.soapui.org/apidocs/index.html

http://www.soapui.org/apidocs/index.html

Creating	a	custom	RequestFilter
(Listener)	plugin
Custom	event	listeners	allow	for	extensions	that	run	when	things	(events)	happen	in	the
SoapUI	framework.	There	are	certain	situations	where	this	can	be	a	nice	way	to	add
functionality.	Typical	examples	would	be	cross	cutting	concerns;	for	instance,	additional
custom	logging	after	a	test	has	run	(TestRunListenerAdapter)	or	modifying	a	request
before	a	request	is	dispatched	(RequestFilter).	In	this	recipe,	we’ll	first	take	a	quick	look
at	the	various	types	of	Listener	interfaces,	then	code	a	simple	plugin	to	use	a
RequestFilter	to	intercept	a	REST	request;	and	log	its	URI	and	add	a	new	parameter	to	it
before	the	request	is	dispatched.

All	Listeners	extend	the	SoapUIListener	interface.	The	current	list	is	shown	here:

Under	the	interfaces	you	will	find	one	or	more	sub	interfaces	and/or	implementations	that
listen	for	the	particular	type	of	event.	For	example,	you	can	see	above	that	the
SoapUITestCaseRunner	(used	to	script	SoapUI	tests,	see	Chapter	5,	Automation	and
Scripting)	implements	the	TestRunListener	to	provide	custom	reporting	output.

Getting	ready
This	recipe	builds	on	the	soapui-sample-plugin	Gradle	project,	so	you	might	find	it
helpful	to	take	a	look	at	the	recipe,	Developing	a	Groovy	plugin	with	custom	Action	using
Gradle,	if	you	haven’t	already	done	so.

The	source	code	for	this	recipe’s	plugin	can	be	found	in	the	/plugins/soapui-listener-
plugin	folder	in	the	chapter	11	samples.	The	SoapUI	project,
RequestFilterListenerPluginProject,	can	also	be	found	there.

How	to	do	it…
To	change	requests	before	they	are	dispatched	we	can	use	RequestFilterListener,	which
will	be	called	when	a	request	(event)	is	triggered,	that	is,	when	someone	fires	a	test
request.	RequestFilter	will	give	us	access	to	the	request	so	that	we	can	log	and	change
the	request’s	URI	by	adding	a	dummy	parameter;	for	example,	param=value.	We’ll	then
test	the	plugin	by	making	a	simple	REST	request	to	a	mock	(you	can	use
RequestFilterListenerPluginProject	from	the	samples	for	this).	To	do	this,	perform
the	following	steps:

1.	 To	create	the	RequestFilter	plugin,	make	a	copy	of	the	soapui-sample-plugin
Gradle	project	(with	a	name	such	as	soapui-listener-plugin).

2.	 Create	a	new	Groovy	class	called	RequestFilterListener.groovy	in
src/main/groovy/sample/listeners	with	the	following	code:

package	sample.listeners

import	org.apache.log4j.Logger
import	
com.eviware.soapui.impl.wsdl.submit.filters.AbstractRequestFilter
import	com.eviware.soapui.model.iface.Request
import	com.eviware.soapui.model.iface.SubmitContext

class	RequestFilterListener	extends	AbstractRequestFilter	{
		
		protected	final	Logger	scriptLogger	=	Logger.getLogger("groovy.log")
		
		@Override
		public	void	filterRequest(SubmitContext	context,	Request	request)	{

				//Add	a	dummy	parameter	to	the	uri
				String	uri	=	context.httpMethod.URI.toString()
				uri+="?param=value"
				scriptLogger.info	"uri:	"+uri
				context.httpMethod.URI	=	URI.create(uri)
		}
}		

3.	 Next,	create	a	listeners.xml	configuration	file	in	resources/META-INF/	containing
the	following:

<?xml	version="1.0"	encoding="UTF-8"?>
<tns:soapui-listeners	xmlns:tns="http://eviware.com/soapui/config">
				<tns:listener	id="RequestFilterListener"	
listenerClass="sample.listeners.RequestFilterListener"
listenerInterface="com.eviware.soapui.impl.wsdl.submit.RequestFilter"	
/>
</tns:soapui-listeners>

4.	 (Optionally)	Delete	the	sample	Action	groovy	class	and	actions.xml.
5.	 Now	build	the	plugin	like	you	did	earlier;	open	a	shell	in	soapui-listener-plugin/

and	run	./gradlew	clean	build.
6.	 When	built,	deploy	(copy)	the	plugin	jar	file	(soapui-listener-plugin-1.0-

plugin.jar)	to	your	<SoapUI	Home>/bin/plugins/	folder	and	restart	SoapUI	if
necessary.	When	started,	the	soapui	log	tab	should	contain:

INFO:Adding	plugin	from	…/plugins/soapui-listener-plugin-1.0-
plugin.jar]
INFO:Adding	listener	[class	sample.listeners.RequestFilterListener]

7.	 To	test	the	plugin,	import/access	the	RequestFilterListenerPluginProject	project
from	the	chapter	11	samples.	The	project	has	a	simple	mock	helloworld	REST
service:

Endpoint:	http://localhost:8080/helloworld-webapp/helloworld
Response:	<xml>hello!<xml/>

8.	 If	you	make	a	request	to	the	above	endpoint	using	SoapUI,	for	example,	by	using	the
sample	request	or	a	REST	Test	Request	TestStep,	the	http	log	tab,	jetty	log	tab,
and	Raw	test	request	tab	should	all	show	the	request	URI	with	the	param=value
parameter	added	by	our	Listener:

GET	http://localhost:8080/helloworld-webapp/helloworld?param=value

9.	 Also,	the	soapui.log	file	and	script	log	tab	(if	activated)	should	contain	the
following	message:

INFO		[log]	uri:	http://localhost:8080/helloworld-webapp/

How	it	works…
When	SoapUI	loads	our	plugin,	it	reads	the	listeners.xml	file	and	registers	our
RequestFilterListener	with	the	SoapUIListenerRegistry.	When	the	SoapUI
framework	fires	a	request	event	message,	our	custom	RequestFilterListener	is	called
with	the	context	and	request	variables,	giving	us	the	opportunity	to	update	the	URI
property.

There’s	more…
Whilst	this	is	just	a	simple	plugin	example	of	a	custom	Listener,	the	possibilities	are	quite
advanced.	For	example,	a	more	advanced	application	of	a	RequestFilter	could	include
calculating	and	adding	security	information	to	a	request,	like	the	AWS	signature
parameters	seen	in	the	recipe,	Testing	AWS	services	using	Access	Key	authentication,	in
Chapter	8,	Testing	AWS	and	OAuth	2	Secured	Cloud	Services.	Another	example	is	the
Runscope	plugin	(visit	http://olensmar.blogspot.se/2013/06/a-soapui-plugin-for-
runscope.html	for	further	details).

http://olensmar.blogspot.se/2013/06/a-soapui-plugin-for-runscope.html

See	also
SoapUI	Listener	Example:	http://www.soapui.org/Developers-Corner/extending-
soapui.html#2-event-listeners-in-soapui
SoapUI	Pro	Custom	Events:	http://www.soapui.org/Scripting-Properties/custom-
event-handlers.html

http://www.soapui.org/Developers-Corner/extending-soapui.html#2-event-listeners-in-soapui
http://www.soapui.org/Scripting-Properties/custom-event-handlers.html

Creating	a	custom	TestStep	(Factory)
plugin	to	check	whether	a	file	exists
In	this	recipe	we	will	put	our	plugin	skills	to	work	to	create	a	custom	TestStep	to	check
whether	a	file	exists.	The	file	check	TestStep	will	accept	a	property	with	the	path	to	a	file
and	then	pass	or	fail	depending	on	whether	the	file	actually	exists	in	that	location.

Getting	ready
This	recipe	builds	on	the	Developing	a	Groovy	plugin	with	custom	Action	using	Gradle
recipe,	so	if	you	haven’t	done	it,	then	you	might	find	it	a	helpful	reference.

The	code	for	this	recipe	can	be	found	in	the	plugins/soapui-file-check-plugin/	folder
in	the	chapter	11	samples.	The	FileCheckPluginProject	project	can	also	be	found
there.

How	to	do	it…
To	do	this	we’re	going	to	start	from	the	soapui-sample-plugin	Gradle	project:

1.	 Add	a	new	custom	TestStep	(FileCheckTestStep.groovy)
2.	 Add	a	new	custom	Factory	to	create	the	item	for	FileCheckTestStep	Model

(FileCheckTestStep.groovy)
3.	 Add	a	new	factories.xml	configuration	file	for	our	custom	Factory.
4.	 Add	a	new	icon	(filecheck.png)	to	for	our	file	check	TestStep.
5.	 (Optionally)	Remove	SampleAction.groovy	and	actions.xml	as	we	don’t	need

them.

This	will	give	us	the	following	plugin	project	structure:

We’ll	then	build	the	plugin,	deploy	it,	and	create	a	SoapUI	project	to	give	it	a	test	run.

1.	 For	the	custom	TestStep,	create	a	new	Groovy	class,
src/main/groovy/sample/teststeps/FileCheckTestStep.groovy,	containing	the
following	code:

package	sample.teststeps

import	org.apache.log4j.Logger
import	com.eviware.soapui.SoapUI
import	com.eviware.soapui.config.TestStepConfig
import	com.eviware.soapui.impl.wsdl.testcase.WsdlTestCase
import	com.eviware.soapui.impl.wsdl.teststeps.WsdlTestStepResult
import	
com.eviware.soapui.impl.wsdl.teststeps.WsdlTestStepWithProperties
import	com.eviware.soapui.model.testsuite.TestCaseRunContext
import	com.eviware.soapui.model.testsuite.TestCaseRunner
import	com.eviware.soapui.model.testsuite.TestStepResult
import	com.eviware.soapui.model.testsuite.TestStepResult.TestStepStatus
import	com.eviware.soapui.support.UISupport

class	FileCheckTestStep	extends	WsdlTestStepWithProperties{

		protected	final	Logger	groovyLogger	=	Logger.getLogger("groovy.log")

		protected	FileCheckTestStep(WsdlTestCase	testCase,	TestStepConfig	
config,	boolean	forLoadTest)	{
				super(testCase,	config,	true,	forLoadTest);

				if(!forLoadTest)	{
						setIcon(UISupport.createImageIcon("filecheck.png"))
				}
		}

		@Override
		public	TestStepResult	run(TestCaseRunner	testRunner,	
TestCaseRunContext	context)	{
				WsdlTestStepResult	result	=	new	WsdlTestStepResult(this)
				result.startTimer()

				//If	fileToCheckFor	property	is	not	in	the	context,	try	to	get	it	
from	the	TestCase
				def	fileToCheckForProperty	=	context.getProperty("fileToCheckFor")
				if	(fileToCheckForProperty==null)	fileToCheckForProperty	=	
context.expand('${#TestCase#fileToCheckFor}')

				groovyLogger.info	"Property	fileToCheckFor="+fileToCheckForProperty

				if	(fileToCheckForProperty.isEmpty())	{
						SoapUI.logError	new	Exception("Property	fileToCheckFor	must	be	
supplied!")
						result.setStatus(TestStepStatus.FAILED)
						result.stopTimer()
						return	result
				}

				def	filePath	=	new	File(fileToCheckForProperty)
				if	(filePath.exists())	result.setStatus(TestStepStatus.OK)	else	
result.setStatus(TestStepStatus.FAILED)

				result.stopTimer()
				return	result
		}
}

2.	 For	the	custom	TestStep,	create	a	new	Groovy	class,
src/main/groovy/sample/factories/FileCheckTestStepFactory.groovy,
containing	the	following	code:

package	sample.factories

import	sample.teststeps.FileCheckTestStep
import	com.eviware.soapui.config.TestStepConfig
import	com.eviware.soapui.impl.wsdl.testcase.WsdlTestCase
import	com.eviware.soapui.impl.wsdl.teststeps.WsdlTestStep
import	
com.eviware.soapui.impl.wsdl.teststeps.registry.WsdlTestStepFactory

class	FileCheckTestStepFactory	extends	WsdlTestStepFactory	{

		private	static	final	String	FILECHECK_STEP_ID	=	"fileCheck"

		public	FileCheckTestStepFactory()	{
				super(FILECHECK_STEP_ID,	"File	Check	TestStep",	"Checks	if	a	file	
exists",	"filecheck.png")
		}

		public	WsdlTestStep	buildTestStep(WsdlTestCase	testCase,	
TestStepConfig	config,	boolean	forLoadTest)	{
				return	new	FileCheckTestStep(testCase,	config,	forLoadTest)
		}

		public	TestStepConfig	createNewTestStep(WsdlTestCase	testCase,	String	
name)	{
				TestStepConfig	testStepConfig	=	
TestStepConfig.Factory.newInstance()
				testStepConfig.setType(FILECHECK_STEP_ID)
				testStepConfig.setName(name)
				return	testStepConfig
		}

		public	boolean	canCreate()	{
				return	true
		}
}

3.	 For	the	custom	Factory	configuration,	create	a	new	XML	file,
src/main/resources/META-INF/factories.xml,	containing:

<?xml	version="1.0"	encoding="UTF-8"?>
<tns:soapui-factories	xmlns:tns="http://eviware.com/soapui/config">
				<tns:factory	id="FileCheckTestStep"	
factoryType="com.eviware.soapui.impl.wsdl.teststeps.registry.WsdlTestSt
epFactory"	
			factoryClass="sample.factories.FileCheckTestStepFactory"/>						
</tns:soapui-factories>

4.	 For	the	image,	we	need	one	that	is	16x16	pixels	(filecheck.png).	Copy	this	or	a
similar	image	to	src/main/resources.

5.	 The	Gradle	build	file	doesn’t	need	any	changes.	So,	run	it	to	create	the	plugin	jar	as
before,	that	is,	./gradlew	clean	build.

6.	 When	built,	deploy	(copy)	the	plugin	jar	file	(soapui-file-check-plugin-1.0-
plugin.jar)	to	your	<SoapUI	Home>/bin/plugins/	folder.

7.	 Now,	to	use	the	plugin	in	SoapUI,	restart	SoapUI,	if	necessary,	to	load	the	plugin.
You	should	see	the	following	in	the	SoapUI	log	tab:

INFO:Adding	plugin	from	[/Applications/SoapUI-
5.0.0.app/Contents/java/app/bin/plugins/soapui-file-check-plugin-1.0-
plugin.jar]
INFO:Adding	factory	[class	sample.factories.FileCheckTestStepFactory]

8.	 Create	an	empty	Project,	TestSuite,	and	TestCase.	In	the	TestCase	window	you
should	our	new	file	check	TestStep	at	the	end:

9.	 And	at	the	bottom	of	the	TestStep	menu	(including	tip)	you	should	see	an	icon—
Wow!	Nice	icon!

10.	 From	the	preceding	FileCheckTestStep.groovy	listing,	we	can	see	that	a	property
called	fileToCheckFor	is	expected	from	either	context	or	TestCase.	If	we	add	the
file	check,	TestStep,	and	run	it	without	this	property,	we	should	see	the	following
error	in	the	SoapUI	log	tab:

ERROR:An	error	occurred	[Property	fileToCheckFor	must	be	supplied!],	
see	error	log	for	details

11.	 You	should	also	see	an	INFO	log	message	in	the	script	log	tab:

INFO:Property	fileToCheckFor=

12.	 So,	either	add	Groovy	TestStep	before	FileCheckTestStep	to	set	the	property	on
context,	for	example,	context["fileToCheckFor"]="/temp/invoices.csv";	or	add
a	new	TestCase	level	property,	for	example,	fileToCheckFor=/temp/invoices.csv,
and	run	TestCase—if	this	file	exists,	TestCase	should	pass,	or	fail	if	it	doesn’t!

How	it	works…
Let’s	start	with	the	custom	TestStep,	FileCheckTestStep.groovy:

1.	 We	extend	WsdlTestStepWithProperties.	In	this	case,	we	don’t	override	any
standard	TestStep	code	except	the	run(…)	method.

2.	 In	our	constructor,	if	the	TestStep	isn’t	being	created	for	a	load	test,	then	set	up	the
filecheck.png	icon	image.	In	the	case	of	a	load	test,	where	multiple	threads	may
clone	our	TestStep,	there	is	no	need	for	an	image.

3.	 The	public	TestStepResult	run(…)	method	is	called	when	TestStep	is	executed
by	TestCase.	Here,	we:

Create	a	result	object.	This	is	necessary	to	communicate	the	status	of	TestStep
and	timing	back	to	the	TestCase	runner.
The	next	chunk	of	code	gets	the	fileToCheckForProperty	either	from	the
TestCase	context	or	if	this	is	null,	from	the	TestCase	using	a	property
expansion.
Log	an	error	if	the	fileToCheckForProperty	property	is	empty	and	return	a
TestStep	result	with	status	FAILED.
Check	if	the	file	with	path,	fileToCheckForProperty,	exists;	if	so,	we	return
result	status	OK,	and	if	not,	FAILED.

Next,	let’s	look	at	the	custom	factory,	FileCheckTestStepFactory.groovy:

1.	 It	needs	to	extend	WsdlTestStepFactory.	On	Factory	creation,	the	constructor
configures	the	ID,	name,	tip,	and	image	of	TestStep.

Note
Factory:	Factories	are	responsible	for	configuring	and	creating	Model	items	when
SoapUI	needs	them—in	this	case,	a	file	check	TestStep	Model	item.

Model	items:	These	are	used	to	represent	almost	all	object	types	in	SoapUI;	for
example,	Project	Models,	TestCase	Models,	and	TestStep	Models.

2.	 When	a	new	(file	check)	TestStep	is	created	for	TestCase:

The	createNewTestStep(…)	method	creates	the	configuration
(TestStepConfig)	using	the	TestStep‘s	name.
The	buildTestStep(…)	method	creates	the	new	Model	item.

3.	 The	canCreate()	method	can	be	used	to	block	the	TestStep’s	creation	if	it	isn’t
ready;	for	instance,	if	it	has	a	dependency	that	isn’t	ready.

Lastly,	the	factories.xml	file	configures	the	factory	id,	maps	its	class
(FileCheckTestStepFactory),	and	sets	its	factoryType.	The	factories.xml	file	is	used
to	add	the	factory	to	SoapUIFactoryRegistry	when	the	plugin	is	loaded.

Note

TestStep	discovery

By	registering	the	factory,	SoapUI	can	discover	all	factory	types	on	startup;	for	example,
our	file	check	TestStep	can	be	automatically	added	to	menus	and	the	TestCase	window
toolbar.

There’s	more…
As	far	as	custom	TestSteps	go	this	was	probably	as	simple	as	it	gets!	If	you	want	to
develop	others	you	may	want	to	provide	some	UI	element	such	as	inputs,	options,	and
buttons.	To	do	this	you	will	normally	need	to	do	some	Java	Swing	coding.	You	may	be
able	to	get	by	reusing	some	of	the	code	from	other	examples.	The	e-mail	TestStep	plugin
(see	Chapter	10,	Using	Plugins)	is	a	good	place	to	start	as	it	provides	a	simple	Java	Swing
PanelBuilder	(UI)	with	property	handling	code.	Also,	if	you’re	happy	learning	from
code,	you	can	use	standard	TestSteps	from	SoapUI	itself	as	examples	by	looking	in	the
source	code.	Take	a	look	at	the	package,	com.eviware.soapui.impl.wsdl.teststeps,
and	fill	your	boots!

See	also
Custom	Factories	SoapUI	Doc:	http://www.soapui.org/Developers-Corner/custom-
factories.html
Object	Model	SoapUI	Doc:	http://www.soapui.org/Scripting-Properties/the-soapui-
object-model.html

http://www.soapui.org/Developers-Corner/custom-factories.html
http://www.soapui.org/Scripting-Properties/the-soapui-object-model.html

Index
A

AbstractSoapUIRunner	class
about	/	Introduction

Access	Key	authentication
used,	for	testing	Amazon	Web	Services	(AWS)	/	Testing	AWS	services	using
Access	Key	authentication,	How	to	do	it…,	How	it	works…

Action	Extensions
URL	/	See	also

ActiveMQ
URL	/	Getting	ready
setup,	URL	/	Getting	ready

ActiveMQConnectionFactory	class
URL	/	There’s	more…

ActiveMQ	JMS	messages
publishing,	via	REST	API	/	Publishing,	browsing,	and	consuming	ActiveMQ
JMS	messages	via	the	REST	API,	How	to	do	it…
browsing,	via	REST	API	/	Publishing,	browsing,	and	consuming	ActiveMQ
JMS	messages	via	the	REST	API,	How	to	do	it…,	How	it	works…,	See	also
consuming,	via	REST	API	/	Publishing,	browsing,	and	consuming	ActiveMQ
JMS	messages	via	the	REST	API,	How	to	do	it…,	How	it	works…,	See	also

AlertSite
URL	/	AlertSite	Reports

Amazon
URL	/	Testing	AWS	services	using	Access	Key	authentication

Amazon	Web	Services	(AWS)
about	/	Testing	AWS	services	using	Access	Key	authentication
testing,	Access	Key	authentication	used	/	Testing	AWS	services	using	Access
Key	authentication,	How	to	do	it…,	How	it	works…
URL,	for	signing	requests	/	How	it	works…
URL,	for	Python	examples	/	There’s	more…
URL,	for	documentation	/	See	also

Apache	CXF
URL,	for	downloading	/	Getting	ready
version	/	Getting	ready
URL,	for	wsdl2java	script	/	How	it	works…
URL,	for	Maven	plugin	/	There’s	more…

Apache	CXF,	Java	classes
Invoice.java	/	How	it	works…
ObjectFactory.java	/	How	it	works…
InvoiceserviceV1Resource.java	/	How	it	works…
InvoiceserviceV1ResourceImpl.java	/	How	it	works…

Service.java	/	How	it	works…
Apache	CXF	JAX-RS

URL	/	See	also
Apache	CXF	MTOM

URL	/	See	also
Apache	CXF	WS-Security

URL	/	See	also
Apache	CXF	WSDL	Validator

URL	/	See	also
Apache	Log4j

URL	/	See	also
Apache	Tomcat

URL	/	Getting	ready
API	docs,	SoapUI

URL	/	There’s	more…
asynchronous	SOAP	service	callbacks

testing	/	Testing	asynchronous	SOAP	service	callbacks,	How	to	do	it…,	How	it
works…,	There’s	more…

authorization	header	/	There’s	more…
AWS	Product	Advertising	API

URL	/	Introduction
AWS	SOAP	example

URL	/	Introduction

B
Bamboo	JUnit	Style	Reporting

URL	/	See	also
Base64	encoding

URL	/	How	it	works…
basic	HTTP-authenticated	RESTful	web	services

testing	/	Testing	basic	HTTP-authenticated	RESTful	web	services,	How	to	do
it…,	Tomcat	HTTP	Basic	authentication	setup,	How	it	works…

C
chosen-plaintext	attacks

URL	/	How	it	works…
CI	tools

using	/	Publishing	JUnit	reports	using	Jenkins
client	certificate

creating	/	Client	certificate	creation	and	keystore	setup
client	certificate	authenticated	web	services

testing	/	Testing	client	certificate	authenticated	web	services,	How	to	do	it…,
Enabling	client	certificate	authentication	in	SoapUI,	How	it	works…

client	certificate	authentication
enabling,	in	SoapUI	/	Enabling	client	certificate	authentication	in	SoapUI

client	certificate	handshake
reference	link	/	How	it	works…

Cloud	Service	Providers	(CSPs)
about	/	Introduction
signing	up	/	What	you’ll	need

code-first	RESTweb	services
developing	/	Code-first	REST	services

command	line
mocks,	running	/	Running	mocks	from	the	command	line,	How	to	do	it…,	How
it	works…
tests,	running	/	Running	tests	from	the	command	line,	How	to	do	it…,	How	it
works…,	There’s	more…
mock	WAR	files,	generating	/	Generating	mock	WAR	files	from	the	command
line,	Getting	ready,	How	to	do	it…
used,	for	running	load	tests	/	Running	load	tests	using	Maven,	command	line,
Java,	Groovy,	and	Gradle	scripts,	How	it	works…,	There’s	more…

Conditional	Goto	TestStep
URL	/	See	also

Content	Negotiation
URL	/	See	also

continuous	integration	(CI)
about	/	Packaging	old-style	plugins	when	running	tests	with	Maven

Contract	Standardization
URL	/	There’s	more…

coverage	reports
analyzing,	for	tests	/	Analyzing	test,	HTTP,	and	mock	coverage	(Pro),	How	to	do
it…
analyzing,	for	HTTP	/	Analyzing	test,	HTTP,	and	mock	coverage	(Pro),	How	to
do	it…
analyzing,	for	mocks	/	Analyzing	test,	HTTP,	and	mock	coverage	(Pro),	How	to
do	it…

contract	coverage	/	Contract	coverage
assertion	coverage	/	Assertion	coverage

CSV	data
URL	/	Getting	ready

CSV	file	data
importing,	into	in-memory	H2	database	/	Importing	CSV	file	data	into	an	in-
memory	H2	database	with	Groovy
importing,	in	in-memory	H2	database	/	How	to	do	it…,	How	it	works…,	There’s
more…
looping	over	/	Looping	over	CSV	file	data	and	driving	tests	with	Groovy,	How
to	do	it…,	How	it	works…,	There’s	more…

curl
URL	/	How	to	do	it…

cURL
URL	/	How	to	do	it…

custom	Action
Groovy	plugin	developing,	Gradle	used	/	Developing	a	Groovy	plugin	with
custom	Action	using	Gradle,	How	to	do	it…,	How	it	works…,	There’s	more…

Custom	Factories	SoapUI
URL	/	See	also

custom	reports
exporting,	Groovy	used	/	Exporting	custom	reports	using	Groovy,	Getting	ready,
How	to	do	it…,	How	it	works…

custom	RequestFilter	(Listener)	plugin
creating	/	Creating	a	custom	RequestFilter	(Listener)	plugin,	How	to	do	it…,
There’s	more…

custom	TestStep	(Factory)	plugin
creating,	for	file	existence	/	Creating	a	custom	TestStep	(Factory)	plugin	to
check	whether	a	file	exists,	How	to	do	it…,	There’s	more…

D
data

checking,	JDBC	Request	TestStep	used	/	Creating	and	checking	data	with	the
JDBC	Request	TestStep,	Getting	ready,	How	to	do	it…,	How	it	works…
creating,	JDBC	Request	TestStep	used	/	Creating	and	checking	data	with	the
JDBC	Request	TestStep,	How	to	do	it…,	How	it	works…

data-driven	TestCases
load	testing,	with	separate	Groovy	datasources	/	Load	testing	data-driven
TestCases	concurrently	with	separate	Groovy	datasources,	Getting	ready,	How
to	do	it…,	How	it	works…,	There’s	more…
load	testing,	with	shared	distributed	datasource	/	Load	testing	data-driven
TestCases	concurrently	with	a	shared	distributed	datasource	,	Getting	ready,
How	to	do	it…,	How	it	works…,	There’s	more…

Decomposed	Capability
URL	/	There’s	more…

distributed	load	testing
about	/	There’s	more…

Domain	Specific	Language	(DSL)
about	/	Running	mocks	and	tests	using	Gradle

Dropbox
testing,	pregenerated	OAuth	2	Access	Token	used	/	Testing	Dropbox	using	a
pregenerated	OAuth	2	Access	Token,	Getting	ready,	How	to	do	it…,	How	it
works…
URL	/	Getting	ready
URL,	for	app	creation	/	Getting	ready
testing,	OAuth	2	Authorization	Code	Grant	flow	used	/	Getting	ready,	How	to
do	it…,	How	it	works…
testing,	OAuth	2	Implicit	Grant	flow	used	/	Testing	Dropbox	using	OAuth	2
Implicit	Grant	flow,	How	to	do	it…,	How	it	works…

Dropbox	API
URL	/	How	to	do	it…
URL,	for	documentation	/	See	also

dynamic	database-driven	REST	mocks
developing	/	Developing	dynamic	database-driven	REST	mocks,	How	to	do
it…,	How	it	works…

dynamic	database-driven	SOAP	mocks
developing	/	Developing	dynamic	database-driven	SOAP	mocks,	Getting	ready,
How	to	do	it…,	How	it	works…,	There’s	more…

E
e-mails

testing,	with	Groovy	/	Testing	for	e-mails	with	Groovy,	Getting	ready,	How	to
do	it…,	How	it	works…

Eclipse
setting	up	/	Getting	ready
SoapUI,	importing	/	Importing,	building,	running,	and	debugging	SoapUI	in
Eclipse,	Getting	ready,	How	to	do	it…,	There’s	more…
SoapUI,	debugging	/	Importing,	building,	running,	and	debugging	SoapUI	in
Eclipse,	Getting	ready,	How	to	do	it…,	How	it	works…
SoapUI,	building	/	Importing,	building,	running,	and	debugging	SoapUI	in
Eclipse,	Getting	ready,	How	to	do	it…,	How	it	works…
SoapUI,	running	/	Importing,	building,	running,	and	debugging	SoapUI	in
Eclipse,	Getting	ready,	How	to	do	it…,	How	it	works…
URL,	for	downloading	/	Getting	ready
URL,	for	documentation	/	How	it	works…

Elastic	Compute	Cloud	(EC2)
URL	/	Testing	AWS	services	using	Access	Key	authentication

Email	TestStep	plugin
reference	link	/	Getting	ready,	There’s	more…
e-mails,	sending	with	/	Sending	e-mails	with	the	Email	TestStep	plugin,	How	to
do	it…,	How	it	works…

external	file
properties,	setting	from	/	Setting	properties	from	an	external	file,	How	it	work…

F
Factories

about	/	How	it	works…
FakeSMTP

URL,	for	downloading	/	Getting	ready
files

testing,	with	Groovy	/	Testing	files	with	Groovy,	Getting	ready,	There’s	more…
form-authenticated	RESTful	web	services

testing	/	Getting	ready,	Setting	up	Tomcat	form	authentication,	Testing	with
SoapUI,	How	it	works…

G
Git	(v1.8+)

URL	/	Getting	ready
Gmail

URL,	for	accessing	/	There’s	more…
Gmail	account

URL,	for	accessing	/	Getting	ready
Gmail	API

testing,	OAuth2	used	/	Testing	the	Gmail	API	using	OAuth2,	How	to	do	it…,
How	it	works…

Google	account
URL	/	Getting	ready

Google	APIs
URL	/	There’s	more…

Google	Developer	accounts
URL	/	Getting	ready

Google	Gmail
security	/	Getting	ready

Google	Web	Server	OAuth	2
URL	/	See	also

Gradle
URL	/	See	also,	Running	mocks	and	tests	using	Gradle,	Getting	ready
used,	for	running	mocks	/	Running	mocks	and	tests	using	Gradle,	Getting
ready…,	How	to	do	it…,	How	it	works…
used,	for	running	tests	/	Running	mocks	and	tests	using	Gradle,	Getting	ready…,
How	to	do	it…,	How	it	works…
URL,	for	downloading	/	Getting	ready…
used,	for	developing	Groovy	plugin	with	custom	Action	/	Developing	a	Groovy
plugin	with	custom	Action	using	Gradle,	How	to	do	it…,	How	it	works…,
There’s	more…

Gradle	JavaExec	Task
URL	/	See	also

Gradle	Plugin	Development
URL	/	See	also

Gradle	scripts
used,	for	running	load	tests	/	Running	load	tests	using	Maven,	command	line,
Java,	Groovy,	and	Gradle	scripts,	Getting	ready,	How	it	works…,	There’s
more…

Gradle	Tasks
URL	/	See	also

Gradle	Wrapper
URL	/	See	also

Grape

about	/	Running	mocks	and	tests	using	Groovy	scripts
URL	/	Running	mocks	and	tests	using	Groovy	scripts

Groovy
URL	/	What	you’ll	need
used,	for	driving	tests	/	Looping	over	CSV	file	data	and	driving	tests	with
Groovy,	How	to	do	it…,	How	it	works…,	There’s	more…
used,	for	querying	MongoDB	/	Querying	MongoDB	with	Groovy,	How	to	do
it…,	How	it	works…,	See	also
used,	for	selecting	mock	responses	/	Selecting	mock	responses	using	Groovy,
How	to	do	it…,	There’s	more…
used,	for	testing	e-mails	/	Testing	for	e-mails	with	Groovy,	Getting	ready,	How
to	do	it…,	How	it	works…
used,	for	testing	files	/	Testing	files	with	Groovy,	How	to	do	it…,	There’s
more…
URL,	for	installing	/	Getting	ready
used,	for	exporting	custom	reports	/	Exporting	custom	reports	using	Groovy,
Getting	ready,	How	to	do	it…,	How	it	works…
used,	for	running	load	tests	/	Running	load	tests	using	Maven,	command	line,
Java,	Groovy,	and	Gradle	scripts,	How	it	works…,	There’s	more…

Groovy	Console	plugin
used,	for	creating	new	TestStep	/	Using	the	Groovy	Console	plugin	to	create	and
run	a	new	TestStep,	Getting	ready,	How	to	do	it…
used,	for	running	new	TestStep	/	Using	the	Groovy	Console	plugin	to	create	and
run	a	new	TestStep,	Getting	ready,	How	to	do	it…,	How	it	works…
URL,	for	downloading	/	Getting	ready
URL,	for	source	code	/	How	to	do	it…,	How	it	works…
URL	/	See	also

Groovy	datasources
data-driven	TestCases,	load	testing	/	Load	testing	data-driven	TestCases
concurrently	with	separate	Groovy	datasources,	Getting	ready,	How	to	do	it…,
There’s	more…

Groovy	JSON	Slurper
URL	/	See	also

Groovy	plugin
developing	with	custom	Action,	Gradle	used	/	Developing	a	Groovy	plugin	with
custom	Action	using	Gradle,	How	to	do	it…,	How	it	works…,	There’s	more…

Groovy	scripts
used,	for	running	mocks	/	Running	mocks	and	tests	using	Groovy	scripts,	How
to	do	it…
used,	for	running	tests	/	Running	mocks	and	tests	using	Groovy	scripts,	How	to
do	it…

Groovy	SQL
URL	/	How	it	works…,	How	it	works…
using	/	How	it	works…

Groovy	style	JMS	API
URL	/	There’s	more…

Groovy	XML	Slurper
URL	/	See	also

H
H2	database

URL	/	Importing	CSV	file	data	into	an	in-memory	H2	database	with	Groovy
H2	in-memory	DB

features	/	There’s	more…
H2	JAR

URL	/	Getting	ready
HAL

URL	/	Testing	HATEOAS	links
HATEOAS	links

testing	/	Testing	HATEOAS	links,	Getting	ready,	How	to	do	it…,	There’s
more…
about	/	Testing	HATEOAS	links
reference	link	/	Testing	HATEOAS	links

helloworld-webapp
login	pages,	adding	to	/	Adding	the	login	pages	to	helloworld-webapp

HermesJMS
issues	/	Publishing,	browsing,	and	consuming	ActiveMQ	JMS	messages	via	the
REST	API

HTTP
coverage	reports,	analyzing	/	Getting	Ready,	How	to	do	it…,	How	it	works…

HTTP	coverage	reports
analyzing	/	HTTP	coverage	reporting

HTTP	Digest	authenticated	RESTful	web	services
testing	/	Testing	HTTP	Digest-authenticated	RESTful	web	services,	How	to	do
it…,	How	it	works…

HTTP	Digest	authentication
URL	/	Testing	HTTP	Digest-authenticated	RESTful	web	services

HTTP	Monitor
URL	/	Code-first	REST	services,	See	also

HTTPS
enabling,	in	Tomcat	/	Enabling	HTTPS	in	Tomcat
service,	testing	over	/	Testing	the	service	over	HTTPS

I
IETF	OAuth	2	Spec

URL	/	See	also
IMAP

reference	link	/	See	also
in-memory	H2	database

CSV	file	data,	importing	/	Importing	CSV	file	data	into	an	in-memory	H2
database	with	Groovy,	How	it	works…,	There’s	more…

IntelliJ	IDEA
URL,	for	setup	/	See	also

iText	library
URL	/	There’s	more…

J
Jackson

about	/	How	it	works…
URL	/	How	it	works…

Java
used,	for	running	tests	/	Running	mocks	and	tests	using	Java	and	JUnit,	How	to
do	it…,	How	it	works…
used,	for	running	mocks	/	Running	mocks	and	tests	using	Java	and	JUnit,	How
to	do	it…,	How	it	works…
used,	for	running	load	tests	/	Running	load	tests	using	Maven,	command	line,
Java,	Groovy,	and	Gradle	scripts,	How	it	works…,	There’s	more…

Java	1.6	JAX-WS	tutorial
URL	/	See	also

Java	Architecture	for	XML	Binding	(JAXB)
URL	/	How	it	works…

Java	Concurrency
URL	/	See	also

Java	MAC
URL	/	See	also

JavaMail
URL,	for	documentation	/	See	also

JavaMail	API
URL,	for	documentation	/	There’s	more…

Java	Secure	Socket	Extension	(JSSE)
URL	/	Testing	the	service	over	HTTPS,	See	also

Java	synchronization
reference	link	/	See	also

javax.xml.ws.Holder	wrapper	object
URL	/	How	it	works…

JAX-RS
URL	/	How	it	works…

JDBC	connection	string
URL	/	Getting	ready

JDBC	driver
URL	/	Getting	ready

JDBC	Request	TestStep
used,	for	creating	data	/	Creating	and	checking	data	with	the	JDBC	Request
TestStep,	How	to	do	it…,	See	also
used,	for	checking	data	/	Creating	and	checking	data	with	the	JDBC	Request
TestStep,	Getting	ready,	How	to	do	it…,	See	also
URL	/	How	to	do	it…
used,	for	parameterising	SQL	queries	/	Parameterizing	SQL	queries	with	the
JDBC	Request	TestStep,	How	to	do	it…,	There’s	more…

JDK	(1.6+)
URL	/	Getting	ready

Jenkins
used,	for	publishing	JUnit	reports	/	Publishing	JUnit	reports	using	Jenkins,	How
to	do	it…,	There’s	more…
URL,	for	downloading	/	Getting	ready

Jenkins	Plugins
URL	/	See	also

JSON	schemas
used,	for	testing	response	compliance	/	Testing	response	compliance	using
JSON	schemas,	Getting	ready,	How	to	do	it…,	How	it	works…
URL,	for	validation	library	/	Getting	ready
URL	/	How	it	works…
reference	link	/	See	also

JSON	Slurper
using	/	How	it	works…
URL	/	How	it	works…

JUnit
URL	/	See	also
used,	for	running	tests	/	Running	mocks	and	tests	using	Java	and	JUnit,	How	to
do	it…,	How	it	works…
used,	for	running	mocks	/	Running	mocks	and	tests	using	Java	and	JUnit,	How
to	do	it…,	How	it	works…

Junit
URL	/	See	also

JUnit,	SoapUI
URL	/	See	also

JUnit	reports
reference	link	/	There’s	more…
publishing,	Jenkins	used	/	Publishing	JUnit	reports	using	Jenkins,	How	to	do
it…,	There’s	more…

K
keystore

setting	up	/	Client	certificate	creation	and	keystore	setup
Keytool

URL	/	See	also

L
load	testing

URL,	for	example	/	What	you’ll	need
data-driven	TestCases,	with	separate	Groovy	datasources	/	Load	testing	data-
driven	TestCases	concurrently	with	separate	Groovy	datasources,	Getting	ready,
How	to	do	it…,	There’s	more…
data-driven	TestCases,	with	shared	Groovy	datasource	/	Load	testing	data-driven
TestCases	concurrently	with	a	shared	Groovy	datasource	,	How	to	do	it…,	How
it	works…,	There’s	more…
data-driven	TestCases,	with	shared	distributed	datasource	/	Load	testing	data-
driven	TestCases	concurrently	with	a	shared	distributed	datasource	,	Getting
ready,	How	to	do	it…,	How	it	works…,	There’s	more…
running,	Maven	used	/	Running	load	tests	using	Maven,	command	line,	Java,
Groovy,	and	Gradle	scripts,	Getting	ready,	How	to	do	it…,	How	it	works…,
There’s	more…
running,	command	line	used	/	Running	load	tests	using	Maven,	command	line,
Java,	Groovy,	and	Gradle	scripts,	Getting	ready,	How	to	do	it…,	How	it
works…,	There’s	more…
running,	Java	used	/	Running	load	tests	using	Maven,	command	line,	Java,
Groovy,	and	Gradle	scripts,	Getting	ready,	How	to	do	it…,	How	it	works…,
There’s	more…
running,	Groovy	used	/	Running	load	tests	using	Maven,	command	line,	Java,
Groovy,	and	Gradle	scripts,	Getting	ready,	How	to	do	it…,	How	it	works…,
There’s	more…
running,	Gradle	scripts	used	/	Running	load	tests	using	Maven,	command	line,
Java,	Groovy,	and	Gradle	scripts,	Getting	ready,	How	it	works…,	There’s
more…

load	tests
reference	link	/	There’s	more…

LoadUI
about	/	Introduction
URL	/	Introduction
URL,	for	documentation	/	See	also

logging
from	extensions	/	Logging	from	extensions	and	scripts,	How	to	do	it…,	How	it
works…
from	scripts	/	Logging	from	extensions	and	scripts,	How	it	works…

login	pages
adding,	to	hello-world-webapp	/	Adding	the	login	pages	to	helloworld-webapp

M
MarkupBuilder

URL	/	There’s	more…
Maven

URL	/	See	also,	Running	mocks	and	tests	using	Maven,	See	also
used,	for	running	tests	/	Running	mocks	and	tests	using	Maven,	Getting	ready,
How	to	do	it… ,	How	it	works…
used,	for	running	mocks	/	Running	mocks	and	tests	using	Maven,	Getting	ready,
How	to	do	it… ,	How	it	works…
URL,	for	downloading	/	Getting	ready
reference	link	/	Getting	ready
used,	for	running	load	tests	/	Running	load	tests	using	Maven,	command	line,
Java,	Groovy,	and	Gradle	scripts,	Getting	ready,	How	it	works…,	There’s
more…

Maven	(3+)
URL,	for	downloading	/	Getting	ready

Maven	Assembly	plugin
URL	/	See	also

Maven	Central
URL	/	Getting	ready

Maven	Exec	plugin
URL	/	See	also

Maven	SoapUI	Plugin	Template
URL	/	See	also

Mechanical	Turk
URL	/	Introduction

MockResponse
URL	/	Building	mock	responses	dynamically

mock	responses
selecting,	Groovy	used	/	Selecting	mock	responses	using	Groovy,	How	to	do
it…,	There’s	more…
building,	dynamically	/	Building	mock	responses	dynamically,	How	it	works…

mocks
about	/	Introduction
SOAP	mocks	/	Introduction
REST	mocks	/	Introduction
deploying,	as	WAR	files	/	Deploying	mocks	as	WAR	files,	How	to	do	it…,
There’s	more…
memory	issues	/	Getting	ready
running,	from	command	line	/	Running	mocks	from	the	command	line,	How	to
do	it…,	How	it	works…
running,	on	new	server	/	How	to	do	it…
running,	in	sequence	with	tests	/	How	to	do	it…

running,	Maven	used	/	Running	mocks	and	tests	using	Maven,	Getting	ready,
How	to	do	it… ,	How	it	works…
running,	Java	and	JUnit	used	/	Running	mocks	and	tests	using	Java	and	JUnit,
How	to	do	it…,	How	it	works…
running,	Groovy	scripts	used	/	Running	mocks	and	tests	using	Groovy	scripts,
How	to	do	it…
running,	Gradle	used	/	Running	mocks	and	tests	using	Gradle,	How	to	do	it…,
How	it	works…
coverage	reports,	analyzing	/	Analyzing	test,	HTTP,	and	mock	coverage	(Pro),
How	to	do	it…,	How	it	works…

mocks	coverage	reports
analyzing	/	Mock	coverage	reporting

mock	services
securing,	X.509	certificates	used	/	Securing	mock	services	using	X.509
certificates,	How	it	works…

mock	WAR	files
generating,	from	command	line	/	Generating	mock	WAR	files	from	the
command	line,	Getting	ready,	How	to	do	it…

Model	items
about	/	How	it	works…

mojo	(Maven	plain	Old	Java	Object)
about	/	How	it	works…
URL	/	How	it	works…

MongoDB
querying,	Groovy	used	/	Querying	MongoDB	with	Groovy,	How	to	do	it…,
There’s	more…,	See	also
URL	/	Querying	MongoDB	with	Groovy,	Getting	ready,	There’s	more…

mongoimport
URL	/	There’s	more…

MySQL
URL	/	Getting	ready

MySQL	Workbench
URL	/	How	to	do	it…

N
NetBeans	IDE

URL,	for	setup	/	See	also
Nonce

URL,	for	wiki	/	See	also

O
OAuth	2

pregenerated	Access	Token,	used	for	testing	Dropbox	/	Testing	Dropbox	using	a
pregenerated	OAuth	2	Access	Token,	Getting	ready,	How	to	do	it…,	How	it
works…
Access	Token,	security	/	Getting	ready
Access	Token,	revoking	/	How	it	works…
Authorization	Code	Grant	flow,	used	for	testing	Dropbox	/	Getting	ready,	How
to	do	it…,	How	it	works…
Refresh	Token	/	There’s	more…
Implicit	Grant	flow,	used	for	testing	Dropbox	/	Testing	Dropbox	using	OAuth	2
Implicit	Grant	flow,	How	to	do	it…,	How	it	works…
URL,	for	Implicit	Grant	flow	/	How	it	works…
authentication,	automating	/	Automating	OAuth	2	authentication	and	consent,
How	to	do	it…,	How	it	works…
consent,	automating	/	Automating	OAuth	2	authentication	and	consent,	How	to
do	it…,	How	it	works…

OAuth2
used,	for	testing	Gmail	API	/	Testing	the	Gmail	API	using	OAuth2,	How	to	do
it…,	How	it	works…

oauthlib
URL	/	Getting	ready,	See	also

OAuth	Playground
URL	/	How	it	works…

Object	Model	SoapUI
URL	/	See	also

old-style	(open	source)	plugins
using	/	Using	old-style	(open	source)	plugins,	How	to	do	it…,	How	it	works…,
There’s	more…
packaging,	for	running	Maven	tests	/	Packaging	old-style	plugins	when	running
tests	with	Maven,	How	to	do	it…,	There’s	more…

P
plugins

old-style	(open	source)	plugins	/	Using	old-style	(open	source)	plugins
Email	TestStep	plugin,	used	for	sending	e-mails	/	Getting	ready,	How	to	do	it…,
How	it	works…
using,	via	the	plugin	manager	(pro)	/	Using	plugins	via	the	plugin	manager
(Pro),	How	to	do	it…,	How	it	works…
Groovy	Console	plugin	/	Using	the	Groovy	Console	plugin	to	create	and	run	a
new	TestStep

plugins,	features
Plugin	Manager	/	Using	plugins	via	the	plugin	manager	(Pro)
Plugin	Repository	/	Using	plugins	via	the	plugin	manager	(Pro)
Plugin	Java	Annotations	/	Using	plugins	via	the	plugin	manager	(Pro)
Maven	Archetype	/	Using	plugins	via	the	plugin	manager	(Pro)
Improved	Plugin	ClassLoader	/	Using	plugins	via	the	plugin	manager	(Pro)

plugins,	Maven
URL	/	There’s	more…

polling	style	asynchronous	REST	services
testing	/	Testing	polling	style	asynchronous	REST	services,	Getting	ready,	How
to	do	it…,	There’s	more…

properties
setting,	from	external	file	/	Setting	properties	from	an	external	file,	How	it
work…
working	with,	URL	/	See	also
scope	considerations	/	How	it	works…
reference	link	/	See	also

Property	Expansion	syntax
URL	/	There’s	more…

property	transfers
URL	/	See	also

R
RAML

about	/	There’s	more…
URL	/	There’s	more…

RAML	plugin
URL	/	There’s	more…
about	/	There’s	more…

regex,	Groovy
URL	/	There’s	more…

reporting,	SoapUI
URL	/	Introduction,	Pro	test	runner	options

reports
generating,	from	test	runners	/	Generating	reports	from	test	runners,	How	to	do
it…,	How	it	works…
standard	reports,	generating	/	Standard	reports
summary	reports,	generating	/	Summary	reports
JUnit	reports,	generating	/	JUnit	Reports
AlertSite	reports,	generating	/	AlertSite	Reports

report	view
Project	Tree	View	/	How	to	do	it…
Contract	Coverage	/	How	to	do	it…
Assertion	Coverage	/	How	to	do	it…
Message	Coverage	Tab	/	How	to	do	it…
Message	Content	Tab	/	How	to	do	it…
Assertion	Results	Tab	/	How	to	do	it…

repositories,	Maven
URL	/	See	also

response	compliance
testing,	JSON	schemas	used	/	Testing	response	compliance	using	JSON
schemas,	Getting	ready,	How	to	do	it…,	How	it	works…

response	WS-I	compliance
testing	/	Testing	WSDL	and	response	WS-I	compliance,	How	to	do	it…,	There’s
more…

REST	API
ActiveMQ	JMS	messages,	publishing	via	/	Publishing,	browsing,	and
consuming	ActiveMQ	JMS	messages	via	the	REST	API,	How	to	do	it…,	How	it
works…,	There’s	more…
ActiveMQ	JMS	messages,	browsing	via	/	Publishing,	browsing,	and	consuming
ActiveMQ	JMS	messages	via	the	REST	API,	How	to	do	it…,	How	it	works…,
There’s	more…
ActiveMQ	JMS	messages,	consuming	via	/	Publishing,	browsing,	and
consuming	ActiveMQ	JMS	messages	via	the	REST	API,	How	to	do	it…,	How	it
works…,	There’s	more…

REST	clients
about	/	How	to	do	it…

REST	coverage	reports
analyzing	/	REST	coverage	reporting

REST	discovery	(Pro)
used,	for	generating	SoapUI	tests	/	Generating	SoapUI	tests	with	REST
discovery	(Pro),	Getting	ready,	How	to	do	it…,	How	it	works…

RESTful	web	service	stub	test-first
developing	/	Generating	and	developing	a	RESTful	web	service	stub	test-first,
How	to	do	it…,	How	it	works…,	There’s	more…

REST	mocks
about	/	Introduction
dynamic	database-driven	REST	mocks,	developing	/	Developing	dynamic
database-driven	REST	mocks,	How	to	do	it…,	How	it	works…

REST	response	XML	schema	compliance
testing	/	Testing	REST	response	XML	schema	compliance,	Getting	ready,	How
it	works…

RFCs
URL	/	How	it	works…

runner	classes
about	/	Introduction
URL	/	Introduction

Runscope	plugin
URL	/	There’s	more…

S
safe	navigation	operator,	Groovy

about	/	There’s	more…
URL	/	There’s	more…

self-signed	certificates
about	/	Enabling	HTTPS	in	Tomcat
URL	/	Enabling	HTTPS	in	Tomcat

service
testing,	over	HTTPS	/	Testing	the	service	over	HTTPS

Service	Normalization
URL	/	There’s	more…

shared	distributed	datasource
data-driven	TestCases,	load	testing	/	Load	testing	data-driven	TestCases
concurrently	with	a	shared	distributed	datasource	,	Getting	ready,	How	to	do
it…,	How	it	works…,	There’s	more…

shared	Groovy	datasource
data-driven	TestCases,	load	testing	/	Load	testing	data-driven	TestCases
concurrently	with	a	shared	Groovy	datasource	,	How	to	do	it…,	How	it
works…,	There’s	more…

smoke	test
about	/	Smoke	test

SOAP	(MTOM+XOP)	attachments
testing	/	Testing	and	mocking	SOAP	(MTOM+XOP)	attachments,	Getting
ready,	How	to	do	it…,	There’s	more…
mocking	/	Testing	and	mocking	SOAP	(MTOM+XOP)	attachments,	Getting
ready,	How	to	do	it…,	There’s	more…

SOAP	mocks
about	/	Introduction
URL,	for	dispatch	types	/	Selecting	mock	responses	using	Groovy
dynamic	database-driven	SOAP	mocks,	developing	/	Developing	dynamic
database-driven	SOAP	mocks,	Getting	ready,	How	to	do	it…,	How	it	works…,
There’s	more…

SOAP	project
updating,	WSDL	used	/	Updating	a	SOAP	project	using	a	WSDL,	How	to	do
it…,	There’s	more…
updating,	WSDL	refactoring	(Pro)	used	/	Updating	SOAP	projects	using	WSDL
refactoring	(Pro),	How	to	do	it…

SOAP	response	schema	compliance
testing	/	Testing	SOAP	response	schema	compliance,	Getting	ready,	There’s
more…

SoapUI
URL	/	What	you’ll	need,	Introduction,	See	also,	How	to	do	it…,	See	also
pro	version,	URL	/	Getting	ready

URL,	for	documentation	/	See	also,	See	also
testing	with	/	Testing	with	SoapUI,	How	it	works…
client	certificate	authentication,	enabling	in	/	Enabling	client	certificate
authentication	in	SoapUI
URL,	for	security	scanning	/	Scanning	web	service	security	vulnerabilities
URL,	for	improving	memory	usage	/	Getting	ready
URL,	for	setting	Maven	Plugin	Load	Test	/	See	also
building,	from	source	code	/	Building,	packaging,	and	running	SoapUI	from	the
source	code,	How	to	do	it…,	There’s	more…
packaging	/	Building,	packaging,	and	running	SoapUI	from	the	source	code,
How	to	do	it…,	There’s	more…
running	/	Building,	packaging,	and	running	SoapUI	from	the	source	code,	How
to	do	it…,	There’s	more…
importing,	in	Eclipse	/	Importing,	building,	running,	and	debugging	SoapUI	in
Eclipse,	Getting	ready,	How	to	do	it…,	There’s	more…
running,	in	Eclipse	/	Importing,	building,	running,	and	debugging	SoapUI	in
Eclipse,	Getting	ready,	How	to	do	it…,	There’s	more…
building,	in	Eclipse	/	Importing,	building,	running,	and	debugging	SoapUI	in
Eclipse,	Getting	ready,	How	to	do	it…,	There’s	more…
debugging,	in	Eclipse	/	Importing,	building,	running,	and	debugging	SoapUI	in
Eclipse,	How	to	do	it…,	There’s	more…

SoapUI	Assertions
URL	/	See	also

SoapUI	Asynchronous	Doc
URL	/	See	also

SoapUI	certificate	trust	/	How	it	works…
SoapUI	Coverage	Docs

URL	/	See	also
SoapUI	Docs

URL	/	See	also
SoapUI	extensions

source	code,	modifying	/	Developing	a	Groovy	plugin	with	custom	Action	using
Gradle
Actions	/	Developing	a	Groovy	plugin	with	custom	Action	using	Gradle
Factories	/	Developing	a	Groovy	plugin	with	custom	Action	using	Gradle
Listeners	/	Developing	a	Groovy	plugin	with	custom	Action	using	Gradle
plugins	/	Developing	a	Groovy	plugin	with	custom	Action	using	Gradle

SoapUI	Extensions	Doc
URL	/	See	also

SoapUI	Groovy	JMS
URL	/	See	also

SoapUI	HTTP	Basic	authentication
testing	/	SoapUI	HTTP	Basic	authentication	testing

SoapUI	HTTP	Basic	authentication	testing

steps	/	SoapUI	HTTP	Basic	authentication	testing
SoapUI	HTTP	Digest	authentication

testing	/	SoapUI	HTTP	Digest	authentication
steps	/	SoapUI	HTTP	Digest	authentication

SoapUI	JMS	docs
URL	/	See	also

SoapUI	Listener	Example
URL	/	See	also

SoapUI	Plugin	Manager
URL,	for	documentation	/	See	also

SoapUI	Pro	Custom	Events
URL	/	See	also

SoapUI	project
URL	/	Getting	ready

SoapUI	tests
generating,	with	REST	discovery	(Pro)	/	Generating	SoapUI	tests	with	REST
discovery	(Pro),	Getting	ready,	How	to	do	it…,	How	it	works…

SoapUI	tool	integration
used,	for	generating	WSDL-first	web	service	/	Generating	a	WSDL-first	web
service	using	SoapUI	tool	integration,	Getting	ready,	How	to	do	it…,	How	it
works…,	There’s	more…

SoapUI	tools
URL	/	Getting	ready

SOAP	web	service	test-first
developing	/	Developing	a	SOAP	web	service	test-first,	How	to	do	it…,	How	it
works…

software	requisites,	web	service	stubs
Java	JDK	/	What	you’ll	need
Apache	CXF	/	What	you’ll	need
IDE	/	What	you’ll	need

source	code
used,	for	building	SoapUI	/	Building,	packaging,	and	running	SoapUI	from	the
source	code,	How	to	do	it…,	There’s	more…
URL	/	Getting	ready

SQL	queries
parameterising,	JDBC	Request	TestStep	used	/	Parameterizing	SQL	queries	with
the	JDBC	Request	TestStep,	How	to	do	it…,	There’s	more…

string	operators,	Groovy
URL	/	There’s	more…

Swagger
about	/	There’s	more…
URL	/	There’s	more…

Swagger	plugin
about	/	There’s	more…

URL	/	There’s	more…

T
@TupleConstructor	annotation

about	/	How	it	works…
URL	/	How	it	works…

TeamCity	XML	Reports
URL	/	See	also

test-driven	development	(TDD)
about	/	Developing	a	SOAP	web	service	test-first

test	runners
reports,	generating	/	Generating	reports	from	test	runners,	How	to	do	it…,	How
it	works…
pro	test	runner	options	/	Pro	test	runner	options

tests
driving,	with	Groovy	/	Looping	over	CSV	file	data	and	driving	tests	with
Groovy
running,	from	command	line	/	Running	tests	from	the	command	line,	How	to	do
it…,	How	it	works…,	There’s	more…
environment-specific	properties,	providing	/	Providing	environment-specific
properties,	How	it	works…
running,	Maven	used	/	Running	mocks	and	tests	using	Maven,	Getting	ready,
How	to	do	it… ,	How	it	works…
running,	Java	and	JUnit	used	/	Running	mocks	and	tests	using	Java	and	JUnit,
How	to	do	it…,	How	it	works…
running,	Groovy	scripts	used	/	Running	mocks	and	tests	using	Groovy	scripts,
How	to	do	it…
running,	Gradle	used	/	Running	mocks	and	tests	using	Gradle,	Getting	ready…,
How	to	do	it…,	How	it	works…
coverage	reports,	analyzing	/	Analyzing	test,	HTTP,	and	mock	coverage	(Pro),
How	to	do	it…,	How	it	works…

Thread-Safety	example,	Java
reference	link	/	See	also

Timestamp
testing	/	Testing	WS-Security	UsernameToken,	Timestamp,	and
TransportBinding,	Getting	ready,	How	to	do	it…,	How	it	works…

Tomcat
HTTPS,	enabling	in	/	Enabling	HTTPS	in	Tomcat
configuring	/	Tomcat	configuration

Tomcat	7.0.41
URL	/	Getting	ready
URL,	for	installation	/	Getting	ready

Tomcat	form	authentication
setting	up	/	Setting	up	Tomcat	form	authentication

Tomcat	HTTP	Basic	authentication

setting	up	/	Tomcat	HTTP	Basic	authentication	setup
Tomcat	HTTP	Basic	authentication	setup

about	/	Tomcat	HTTP	Basic	authentication	setup
Tomcat	HTTP	Digest	authentication

setting	up	/	Tomcat	HTTP	Digest	authentication	setup
Tomcat	security

URL	/	See	also
TransportBinding

testing	/	Testing	WS-Security	UsernameToken,	Timestamp,	and
TransportBinding,	Getting	ready,	How	to	do	it…,	How	it	works…

U
UISupport	class

user	input,	prompting	/	Prompting	for	user	input	with	the	UISupport	class,	How
it	works…
URL	/	See	also

URIBuilder
URL	/	How	it	works…

user	input
prompting,	with	UISupport	class	/	Prompting	for	user	input	with	the	UISupport
class,	How	it	works…

V
vertical	slicing

URL	/	Introduction
about	/	Introduction

W
WADL

URL	/	See	also
wadl2java

URL	/	How	to	do	it…
about	/	How	to	do	it…

WAR	files
mocks,	deploying	as	/	Deploying	mocks	as	WAR	files,	How	to	do	it…,	There’s
more…

web	service	mocking
URL	/	Introduction

web	service	security	vulnerabilities
scanning	/	Scanning	web	service	security	vulnerabilities,	Getting	ready,	How	to
do	it…,	There’s	more…

web	service	stubs
developing	/	Introduction
software	requisites	/	What	you’ll	need

WS-Addressing
URL,	for	documentation	/	Getting	ready
reference	link	/	See	also

WS-I
URL	/	Testing	WSDL	and	response	WS-I	compliance,	How	it	works…
reference	link	/	There’s	more…

WS-Security	UsernameToken
testing	/	Testing	WS-Security	UsernameToken,	Timestamp,	and
TransportBinding,	Getting	ready,	How	to	do	it…,	How	it	works…

WSDL
used,	for	updating	SOAP	project	/	Updating	a	SOAP	project	using	a	WSDL,
How	to	do	it…,	There’s	more…
testing	/	Testing	WSDL	and	response	WS-I	compliance,	How	to	do	it…,	There’s
more…

WSDL-first	web	service
generating,	SoapUI	tool	integration	used	/	Generating	a	WSDL-first	web	service
using	SoapUI	tool	integration,	Getting	ready,	How	to	do	it…,	How	it	works…,
There’s	more…

WSDL	refactoring	(Pro)
used,	for	updating	SOAP	project	/	Updating	SOAP	projects	using	WSDL
refactoring	(Pro),	How	to	do	it…

WSDL	Validator
URL	/	See	also

WWW-Authenticate	header,	parameter
Digest	/	How	it	works…
realm	/	How	it	works…

qop	/	How	it	works…
nonce	/	How	it	works…
opaque	/	How	it	works…

X
X.509	certificates

creating	/	Creating	and	using	X.509	certificates	to	test	web	services	over
HTTPS,	How	to	do	it…,	Enabling	HTTPS	in	Tomcat,	How	it	works…
used,	for	testing	web	services	over	HTTPS	/	Creating	and	using	X.509
certificates	to	test	web	services	over	HTTPS,	How	to	do	it…,	Enabling	HTTPS
in	Tomcat,	How	it	works…
used,	for	securing	mock	services	/	Securing	mock	services	using	X.509
certificates,	How	it	works…

XML	Encryption
URL	/	See	also

XML	schema	compliance
testing	/	Need	XML	schema	validation?

XML	Signature
URL	/	See	also

XML	Slurper
about	/	See	also
URL	/	See	also

XMLSurper
reference	link	/	There’s	more…

XPath
about	/	How	to	do	it…
URL	/	How	to	do	it…

XStream	library
URL	/	How	it	works…

XUnit	plugin
URL	/	There’s	more…

	SoapUI Cookbook
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Testing and Developing Web Service Stubs With SoapUI
	Introduction
	What you'll learn
	What you'll need
	Generating a WSDL-first web service using SoapUI tool integration
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Developing a SOAP web service test-first
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Updating a SOAP project using a WSDL
	Getting ready
	How to do it...
	How it works...
	There's more...
	Updating SOAP projects using WSDL refactoring (Pro)
	Getting ready
	How to do it...
	There's more...
	Generating and developing a RESTful web service stub test-first
	Getting ready
	How to do it...
	How it works...
	There's more...
	Code-first REST services
	See also
	Generating SoapUI tests with REST discovery (Pro)
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	2. Data-driven Testing and Using External Datasources
	Introduction
	What you'll learn
	What you'll need
	Creating and checking data with the JDBC Request TestStep
	Getting ready
	How to do it...
	How it works...
	See also
	Parameterizing SQL queries with the JDBC Request TestStep
	How to do it...
	How it works...
	There's more...
	See also
	Setting properties from an external file
	Getting ready
	How to do it...
	How it work...
	See also
	Importing CSV file data into an in-memory H2 database with Groovy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Looping over CSV file data and driving tests with Groovy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Querying MongoDB with Groovy
	Getting ready
	How to do it…
	How it works...
	There's more...
	See also
	Publishing, browsing, and consuming ActiveMQ JMS messages via the REST API
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	3. Developing and Deploying Dynamic REST and SOAP Mocks
	Introduction
	What you'll learn
	What you'll need
	Selecting mock responses using Groovy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Developing dynamic database-driven SOAP mocks
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Developing dynamic database-driven REST mocks
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Building mock responses dynamically
	How to do it...
	How it works...
	There's more...
	Deploying mocks as WAR files
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	4. Web Service Test Scenarios
	Introduction
	What you'll learn
	What you'll need
	Testing WSDL and response WS-I compliance
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Testing SOAP response schema compliance
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Testing REST response XML schema compliance
	Getting ready
	How to do it...
	How it works...
	There's more...
	Testing response compliance using JSON schemas
	Getting ready
	How to do it...
	How it works...
	There's more...
	Need XML schema validation?
	See also
	Testing and mocking SOAP (MTOM+XOP) attachments
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Testing HATEOAS links
	Getting ready
	How to do it...
	How it works...
	There's more...
	Testing polling style asynchronous REST services
	Getting ready
	How to do it...
	How it works...
	There's more...
	Testing asynchronous SOAP service callbacks
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Testing for e-mails with Groovy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Testing files with Groovy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	5. Automation and Scripting
	Introduction
	What you'll learn
	What you'll need
	Running mocks from the command line
	Getting ready
	How to do it...
	How it works...
	There's more...
	Running tests from the command line
	Getting ready
	How to do it…
	How it works...
	There's more...
	Providing environment-specific properties
	How to do it...
	How it works...
	See also
	Generating mock WAR files from the command line
	Getting ready
	How to do it...
	How it works...
	Running mocks and tests using Maven
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Running mocks and tests using Java and JUnit
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Running mocks and tests using Groovy scripts
	Getting ready
	How to do it...
	How it works...
	See also
	Running mocks and tests using Gradle
	Getting ready...
	How to do it...
	How it works...
	There's more...
	See also
	6. Reporting
	Introduction
	What you'll learn
	Generating reports from test runners
	Getting ready
	How to do it...
	Standard reports
	Summary reports
	JUnit Reports
	AlertSite Reports
	How it works...
	There's more...
	Pro test runner options
	Publishing JUnit reports using Jenkins
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Exporting custom reports using Groovy
	Getting ready
	How to do it…
	How it works...
	There's more...
	Analyzing test, HTTP, and mock coverage (Pro)
	Getting Ready
	How to do it...
	How it works...
	Contract coverage
	Assertion coverage
	There's more…
	HTTP coverage reporting
	Mock coverage reporting
	REST coverage reporting
	See also
	7. Testing Secured Web Services
	Introduction
	What you'll learn
	Testing basic HTTP-authenticated RESTful web services
	Getting ready
	How to do it...
	Smoke test
	Tomcat HTTP Basic authentication setup
	SoapUI HTTP Basic authentication testing
	How it works...
	There's more...
	See also
	Testing HTTP Digest-authenticated RESTful web services
	Getting ready
	How to do it...
	Tomcat HTTP Digest authentication setup
	SoapUI HTTP Digest authentication
	How it works...
	There's more...
	See also
	Testing HTTP form-authenticated RESTful web services
	Getting ready
	How to do it...
	Setting up Tomcat form authentication
	Adding the login pages to helloworld-webapp
	Testing with SoapUI
	How it works...
	Creating and using X.509 certificates to test web services over HTTPS
	Getting ready
	How to do it...
	Enabling HTTPS in Tomcat
	Testing the service over HTTPS
	How it works...
	There's more...
	See also
	Testing client certificate authenticated web services
	Getting ready
	How to do it...
	Client certificate creation and keystore setup
	Tomcat configuration
	Enabling client certificate authentication in SoapUI
	How it works...
	There's more...
	Securing mock services using X.509 certificates
	Getting ready
	How to do it...
	How it works...
	Testing WS-Security UsernameToken, Timestamp, and TransportBinding
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Scanning web service security vulnerabilities
	Getting ready
	How to do it...
	How it works...
	There's more...
	8. Testing AWS and OAuth 2 Secured Cloud Services
	Introduction
	What you'll learn
	What you'll need
	Testing Dropbox using a pregenerated OAuth 2 Access Token
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Testing Dropbox using OAuth 2 Authorization Code Grant flow
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Testing Dropbox using OAuth 2 Implicit Grant flow
	Getting ready
	How to do it...
	How it works...
	There's more...
	Testing the Gmail API using OAuth2
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Automating OAuth 2 authentication and consent
	Getting ready
	How to do it...
	How it works...
	Testing AWS services using Access Key authentication
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	9. Data-driven Load Testing With Custom Datasources
	Introduction
	What you'll learn
	What you'll need
	Load testing data-driven TestCases concurrently with separate Groovy datasources
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Load testing data-driven TestCases concurrently with a shared Groovy datasource
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Load testing data-driven TestCases concurrently with a shared distributed datasource
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Running load tests using Maven, command line, Java, Groovy, and Gradle scripts
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	10. Using Plugins
	Introduction
	What you'll learn
	Using old-style (open source) plugins
	Why are they called old-style?
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Sending e-mails with the Email TestStep plugin
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Using plugins via the plugin manager (Pro)
	How to do it...
	How it works...
	See also
	Using the Groovy Console plugin to create and run a new TestStep
	Getting ready
	How to do it...
	How it works...
	See also
	Packaging old-style plugins when running tests with Maven
	Getting ready
	How to do it...
	How it works...
	There's more...
	11. Taking SoapUI Further
	Introduction
	What you'll learn
	Building, packaging, and running SoapUI from the source code
	Getting ready
	How to do it...
	There's more...
	See also
	Importing, building, running, and debugging SoapUI in Eclipse
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Developing a Groovy plugin with custom Action using Gradle
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Logging from extensions and scripts
	Getting ready
	How to do it...
	How it works...
	See also
	Prompting for user input with the UISupport class
	Getting ready
	How to do it...
	How it works...
	See also
	Creating a custom RequestFilter (Listener) plugin
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a custom TestStep (Factory) plugin to check whether a file exists
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Index

