
M A N N I N G

Jesus Garcia
Anthony De Moss
Mitchell Simoens

IN ACTION

www.allitebooks.com

http://www.allitebooks.org

Sencha Touch in Action

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Sencha Touch
in Action

JESUS GARCIA
ANTHONY DE MOSS

MITCHELL SIMOENS

M A N N I N G
SHELTER ISLAND
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Photographs in this book were created by Martin Evans and Jordan Hochenbaum, unless
otherwise noted. Illustrations were created by Martin Evans, Joshua Noble, and Jordan
Hochenbaum. Fritzing (fritzing.org) was used to create some of the circuit diagrams.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Frank Pohlmann
20 Baldwin Road Technical proofreader: Jamund Ferguson
PO Box 261 Copyeditor: Liz Welch
Shelter Island, NY 11964 Proofreader: Melody Dolab

Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617290374
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 19 18 17 16 15 14 13
www.allitebooks.com

www.manning.com
http://www.allitebooks.org

 To my wife Erika and my sons Takeshi and Kenji
 —J.G.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

brief contents
PART 1 INTRODUCTION TO SENCHA TOUCH.1

1 ■ Introducing Sencha Touch 3

2 ■ Using Sencha Touch for the first time 23

3 ■ Sencha Touch foundations 40

PART 2 BUILDING MOBILE USER INTERFACES............................53

4 ■ Mastering the building blocks 55

5 ■ Toolbars, buttons, and docked items 85

6 ■ Getting the user’s attention 104

7 ■ Data stores and views 123

8 ■ Working with forms 149

9 ■ Maps and media 177

PART 3 CONSTRUCTING AN APPLICATION195

10 ■ Class system foundations 197

11 ■ Building Sencha Touch applications 231
vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

contents
preface xv
acknowledgments xvii
about this book xix
about the authors xxii
about the cover illustration xxiii

PART 1 INTRODUCTION TO SENCHA TOUCH1

1 Introducing Sencha Touch 3
1.1 What is Sencha Touch? 4

What Sencha Touch is not 6 ■ Lots of wiring under the hood 6
Hardware compatibility 6 ■ Full-screen goodness 7

1.2 A 10,000-foot view 7
1.3 The Sencha Touch UI 9

Containers 9 ■ Controlling your UI with the Tab panel 10
Accepting input with the Form panel 10 ■ Sheets and pickers 13
Data-bound views 15 ■ Maps and Media 18

1.4 Thinking like a mobile developer 18
Think lightweight 19 ■ Remember—it’s a browser! 19
Throw away what you don’t need 20 ■ “finger” !== “mouse” 20
Reduce the data 21

1.5 Summary 21
ix

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
2 Using Sencha Touch for the first time 23
2.1 License considerations 23
2.2 Unpacking the framework 24
2.3 Sencha Touch says “Hello World” 26
2.4 Setting the stage for your first application 29

Your simple application at a glance 29
Preparing your project 29

2.5 Developing your app 31
Creating the data store 32 ■ Constructing the PersonList
class 33 ■ Building PersonDetail 34 ■ Setting up the
MainContainer class 35 ■ Rendering your application 37

2.6 Summary 39

3 Sencha Touch foundations 40
3.1 One Component model to rule them all 41
3.2 Introducing the component life cycle 43

Initialization/instantiation phase 43 ■ Render phase 46
Destruction phase 48

3.3 XTypes and the ComponentManager 50
Examples of instantiations 50 ■ The pros and cons 51

3.4 Summary 52

PART 2 BUILDING MOBILE USER INTERFACES53

4 Mastering the building blocks 55
4.1 Containers: Mounting our UI workhorse 56

Container’s anatomy 56 ■ Keeping unruly children
on the right track 57 ■ Ask and ye shall receive:
querying the container hierarchy 61

4.2 Everything must have its place: layouts 63
The default layout 63 ■ Make it fit: the fit layout 65
Card layout 67 ■ HBox and VBox layouts 70
Nesting layouts 72

4.3 Floating away… with panels 76
4.4 Flip the deck with TabPanels 80
4.5 Summary 84

CONTENTS xi
5 Toolbars, buttons, and docked items 85
5.1 Looking into docked items 86

Understanding the basics 86 ■ Dynamic docking 89

5.2 Gearing up the toolbars 92
Under the hood 92 ■ Adding buttons to a toolbar 93
Centering items 95 ■ Adding nonstandard components 97

5.3 Go ahead, press my button! 98
Customizing buttons 99

5.4 Summary 103

6 Getting the user’s attention 104
6.1 Using sheets for modal user interactions 105

Using sheets for simple overlays 107 ■ Using ActionSheets 110

6.2 Choosing pickers 112
Creating a basic picker 112 ■ Date picker 114

6.3 Talking to the user via a message box 115
Alerting users 116 ■ Prompting users 117
Requesting input from users 120

6.4 Summary 122

7 Data stores and views 123
7.1 Examining data stores 124

The anatomy of data stores 124 ■ Using proxies
to load data 125 ■ Using readers to digest data 126
Understanding models 127 ■ Writer to sync 128
Simple store example 128

7.2 Implementing DataView 130
How DataViews work 130 ■ Walking through XTemplate 131
Implementing your first DataView 134

7.3 Advanced features with List 135
How List differs from DataView 135 ■ CSS differences between
List and DataView 136 ■ Using infinite data with List 137
Advanced features for List 140 ■ Example of IndexBar,
grouping, and disclosures 141

7.4 Displaying hierarchical data with NestedList 143
Understanding the hierarchical data 144 ■ Using TreeStore 145
Creating a basic nested list 146 ■ Showing details 147

7.5 Summary 148

CONTENTSxii
8 Working with forms 149
8.1 What makes Form panels so special anyway? 149
8.2 Building a basic form 151
8.3 An overview of the different Form widgets 154

Text field 154 ■ URL field 155 ■ Email field 156
Number field 156 ■ Password field 156 ■ Text area 157
Check box field 157 ■ Radio field 157 ■ Date Picker field 158
Spinner field 158 ■ Slider field 159 ■ Toggle field 159
Select field 160

8.4 Building complex forms 162
More organized forms with fieldsets 162
Multicolumn forms 163 ■ Doing more with
your multicolumn form 167

8.5 Managing data with models 168
Submitting data 168 ■ Loading data into your form 169

8.6 Binding a form to a list 172
8.7 Summary 176

9 Maps and media 177
9.1 Maps in your application 177

Maps under the hood 178 ■ Location awareness 178
Creating a simple map 179 ■ Getting advanced with
Google Maps API 180

9.2 Handling images 182
Image basics 182 ■ Preloading an image with a spinner 184

9.3 Mastering media 186
Media base 186 ■ Listening to audio 189
Playing video 190 ■ Things to keep in mind 193

9.4 Summary 193

PART 3 CONSTRUCTING AN APPLICATION...................195

10 Class system foundations 197
10.1 Classic JavaScript inheritance 198

Inheritance with JavaScript 199

10.2 Using the Sencha Touch class system 201
Using Ext.define 201

CONTENTS xiii
10.3 Extending Sencha Touch components 205
Thinking about what you’re building 206 ■ Getting the CSS and
icons out of the way 207 ■ Creating the ActionListItem class 208
Creating the ActionList class 216

10.4 Creating a Sencha Touch plug-in 221
The anatomy of a plug-in 221 ■ Developing your plug-in 223

10.5 Summary 229

11 Building Sencha Touch applications 231
11.1 The Sencha 30,000-foot view 232
11.2 Typical application development workflow 232

What is Sencha Cmd? 234 ■ Obtaining Sencha Cmd 235

11.3 Creating your application container 235
Examining Cmd app resources 237

11.4 A view of what you’re building today 238
Looking at what you’re building 238
A quick glance at the namespace 240

11.5 Building the Phone profile version of your
application 242
Developing your data model and store 243 ■ Creating the generic
main view class 244 ■ Looking at app.js for the first time 247
Checking in on progress 250 ■ A quick lesson on how
applications bootstrap 251 ■ Adding the Phone profile 254
Introducing the common controller 256 ■ Adding the Phone
profile controller 257 ■ Adding the Phone profile main view 258
Building the data-driven ContactsList view 260 ■ Creating the
ContactDetails view 262 ■ Wiring up the workflow models
into the controllers 263 ■ Adding the Phone profile
main controller 266

11.6 Building the tablet version of your application 269
Building the Tablet profile class 270 ■ Constructing the tablet
main view 271 ■ Constructing the tablet controller 272

11.7 Packaging your application for web deployment 274
Creating a testing build 274 ■ Creating a production build 276
A deep dive into the production Microloader 277 ■ Creating a
production delta build 280 ■ Where to go from here? 282

11.8 Summary 283

index 285

preface
I started my career in the world of Sencha back in 2006 when the precursor to what’s
known as ExtJS today (Sencha’s desktop JavaScript framework) was still an experi-
ment. Soon after my introduction, I became addicted to the design patterns that were
promoted by the quickly evolving framework. But more importantly, I fell in love with
the thriving community of developers looking to contribute.

 I was inspired by many of the active members and decided to become a contribut-
ing member myself, spending tens of hours per week answering people’s questions,
writing blog posts, and eventually publishing instructional screencasts.

 I can remember the feeling of excitement when I learned of the development of
Sencha Touch back in 2009. Back then, HTML5 was something that people didn’t talk
about much, and it was only a draft specification. In 2012, Sencha Touch 1.0 arrived
and was the first HTML5 mobile framework on the market. A lot of the technology
driving Sencha Touch is considered revolutionary in the industry. For example, the
Sencha Touch scroller is one of the most robust and smoothest available for single-
page applications for mobile devices.

 To be honest, I’d never done mobile development before then. I didn’t own a
smartphone and I didn’t know much about WebKit. I’m happy to say that Sencha
Touch changed all that for me!

 The reason I got into mobile development was because Sencha Touch allowed me
to use my existing HTML, JavaScript, and CSS skills to build applications for smart-
phones. Back in 2009, I didn’t have time to learn Objective C and I honestly didn’t
care much for Java.
xv

PREFACExvi
 Fast forward to 2013, and I’m in awe at what I’ve been able to accomplish with this
framework. From all of the activity that I’ve been a part of over the past few years, I was
led here, to share with you what I know, once again contributing to the now known
and still thriving Sencha community.

JAY GARCIA

acknowledgments
Anthony DeMoss—From the beginning, you’ve worked with me to get this manuscript
developed for Sencha Touch 1.0 and then worked feverishly to get it migrated to 2.0.
I’m happy we got a chance to work on this together.

 Mitchell Simoens—Your knowledge of the framework has been ever-evolving and
it’s been a pleasure to follow your career growth. Being a coauthor of this manuscript
is a testament to how much you’ve achieved over the past few years.

 Abe Elias—You have been an amazing friend and mentor to me. Thank you for
your continued advice throughout the years and for affording me the opportunities to
work closely with the various Sencha teams and gain experiences that help me push
my knowledge forward.

 Jamie Avins—Thank you for your continued support with the Sencha Touch
framework. Having you available to ask questions and bounce ideas off has been
immensely helpful and I’m grateful to you for that.

 Jacky Nguyen—As part of the Sencha community, we recognize the technical
achievements you’ve made possible with Touch 2.0. You were there for me when I was
faced with technical challenges that were beyond my experience.

 Ed Spencer—Even though you’re no longer with Sencha, your contributions to my
early knowledge of Touch haven’t been forgotten. Your presence in the Sencha com-
munity is missed.

 Don Griffin—Thank you for the back-and-forth when it came to Sencha Cmd! Gain-
ing access to this tool in its infancy helped me close the final chapter for this book.
xvii

ACKNOWLEDGMENTSxviii
 Sebastian Sterling—The publication of this book has taken a lot longer than we
anticipated. As my primary developmental editor at Manning, you challenged my writ-
ing and helped me bring out the best content.

 Frank Pohlmann—Frank, you came in at a busy point in the development of this
manuscript and you did a hell of a job getting things right for production. Thank you.

 Liz Welch—Thank you for the hard work in getting this manuscript better orga-
nized during the copyediting phase. It’s been an absolute pleasure working with you.

 Jamund Ferguson—Thank you for your careful technical proofread of the final
manuscript shortly before it went into production.

 Our reviewers—Thanks for reading the manuscript at various stages of its devel-
opment and for providing invaluable feedback: Àlex Madurell, Darragh Duffy,
Doug Warren, Frank Ableson, Grgur Grisogono, J.J. van de Merwe, Loiane Groner,
Matt Goldspink, Pawankumar Tripathi, Robi Sen, Stuart Davies, Tony Niemann, and
Vincent Winckelmans.

 Finally, to my wife, Erika: You’ve supported me in everything I’ve aimed for, and I
know that you’ve sacrificed time with me so that I could share my knowledge with oth-
ers. You always push me to do better and I’m truly grateful to you. Also to my sons,
Takeshi and Kenji: Thank you for the adventures you put your mom through while I
worked on this book in my basement “man cave.” The stories she’s told me certainly
have been colorful.

JAY GARCIA

about this book
This book is designed to walk you through the flexible and powerful mobile HTML5
framework, Sencha Touch, from explaining the basics all the way to developing and
deploying production mobile web applications. After you’ve read this book, you
should be able to develop mobile HTML5 applications for tablets and phones.

Who should read this book
This book is intended for developers who want to create rich mobile HTML5 applica-
tions that feel native using Sencha Touch. Although Sencha Touch is highly cus-
tomizable, this book is targeted at those who primarily do the programming part of
specification implementation.

 The book assumes you already have a working understanding of how websites
interact with web servers. To be most effective in writing robust and responsive
applications, you need a solid background in core technologies like HTML, CSS,
JavaScript, and JSON. The only thing we cover in detail about these core technologies
is in chapter 10, where we discuss prototypal inheritance with JavaScript, a prerequi-
site to the Sencha Touch class system.

What you’ll need
This book has a lot of hands-on examples that we walk you through. To get the most
value out of this book, you need the following:

■ A web server (Apache HTTPD or Microsoft IIS recommended)
■ An intelligent IDE (WebStorm or Aptana recommended)
xix

www.allitebooks.com

http://www.allitebooks.org

ABOUT THIS BOOKxx
■ Sencha Cmd installed (available at www.sencha.com/products/sencha-cmd/
download)

Roadmap
This book is designed to give you a guided tour of Sencha Touch. During this tour,
we’ll focus on many of the rich features that Sencha Touch provides, including UI wid-
gets, data stores, models, and proxies. This tour consists of 11 chapters.

 Chapter 1 is an introductory chapter, focused on getting you familiar with the
framework. This chapter takes a top-down view of the framework, and we’ll discuss
many of the commonly used widgets. We’ll also talk about what it’s like to think like
a mobile developer.

 In chapter 2, you’ll get your feet wet and learn how the framework is delivered to
you and about its contents. In this chapter, you’ll develop a simple application.

 Chapter 3 details foundational topics, such as the Component model and the compo-
nent life cycle. We’ll also talk about how Sencha Touch allows you to lazy-instantiate com-
ponents and how components are tracked with a class called Ext.ComponentManager.

 Chapter 4 provides a deep understanding of how containers play an important
role in your applications and how they implement layouts. You’ll learn the ins and
outs of the various layouts.

 Chapter 5 focuses on how components are “docked” within your UI. You’ll also
learn how toolbars work and how to implement buttons with proper spacing.

 Chapter 6 addresses how to get the user’s attention with core widgets such as the
sheet, picker, and message box. What you learn in this chapter will come in handy
when it comes to notifying a user of activity or requesting information from them.

 Chapter 7 gives you an opportunity to take a small break from the UI world for a
bit and focuses primarily on data management. You’ll take an in-depth look at data
stores and their supporting classes, Model and Proxy. You’ll also use data stores with
the List and NestedList widgets.

 Chapter 8 shows you how to get information from the user via Form panels. We’ll
discuss the various form input fields and what it takes to use them effectively.

 In chapter 9 you’ll learn how to render Google maps in your applications. You’ll
also get an opportunity to use the Sencha Touch Media widget to render video and lis-
ten to audio via your browser’s native HTML5 media tags.

 Chapter 10 focuses on object-oriented JavaScript and shows you how to use the
Sencha Touch class system to create custom extensions. You’ll get hands-on experi-
ence creating a custom extension and a plug-in.

 Chapter 11 deals with the development of an application. You’ll see how to boot-
strap an application with Sencha Cmd and then move on to developing an application
using Sencha Touch. Once the application is developed, you’ll learn how to create
testing and production builds for deployment.

www.sencha.com/products/sencha-cmd/download
www.sencha.com/products/sencha-cmd/download

ABOUT THIS BOOK xxi
Code conventions
All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. We make use of many languages and markups in this book—
JavaScript, HTML, CSS, XML, Java, and JSP—but we tried to adopt a consistent approach.
Method and function names, properties, XML elements, and attributes in text are pre-
sented using this same font.

 In many cases, the original source code has been reformatted: we’ve added line
breaks and reworked indentation to accommodate the available page space in the book.
In rare cases even this was not enough, and some listings include line-continuation
markers. Additionally, many comments have been removed from the listings.

 Code annotations accompany many of the listings, highlighting important con-
cepts. In some cases, numbered bullets link to explanations that follow the listing.

Getting the latest examples
The examples in this book are designed to be easy to navigate. Every chapter has its own
folder, with each example named in accordance to the listing to which it corresponds.

 We’ll work to keep the examples up to date as the framework gets upgraded. To get the
latest version of the examples, visit https://github.com/ModusCreateOrg/sencha-touch-
in-action-examples or the publisher’s website at manning.com/SenchaTouchinAction.

Author Online
Purchase of Sencha Touch in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser to manning.com/SenchaTouchinAction.
This page provides information on how to get on the forum once you are registered,
what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

 Two other author resources are: Jay’s blog at http://moduscreate.com/ and Mitch-
ell’s blog at http://mitchellsimoens.com/.

http://moduscreate.com/
http://mitchellsimoens.com/
https://github.com/ModusCreateOrg/sencha-touch-in-action-examples
https://github.com/ModusCreateOrg/sencha-touch-in-action-examples
http://manning.com/SenchaTouchinAction
http://manning.com/SenchaTouchinAction

about the authors
JAY GARCIA is CTO and cofounder of Modus Create, a company focused on delivering
high-end solutions with Sencha products. Jay’s involvement with the world of Sencha
started in 2006. Since that time, Jay has been focused on knowledge sharing through
books, blog articles, screencasts, meetups, and conferences.

ANTHONY DEMOSS is an entrepreneur who has been involved with Sencha-related
projects since 2007, focusing on enterprise-level applications. Anthony has developed
a custom Sencha Touch 2 front-end for Jira and shares his knowledge via blog posts
and meetup presentations.

MITCHELL SIMOENS is the internet forum manager at Sencha. Mitchell’s involvement
in the community includes helping individuals solve problems and produce profes-
sional-grade extensions for Sencha Touch.
xxii

about the cover illustration
The figure on the cover of Sencha Touch in Action is captioned an “Inhabitant of Novi-
grad in the lowlands, Dalmatia.” Novigrad is a little historic fishing village situated on a
narrow inlet of the Novigrad Sea on the Adriatic coast in the region of Dalmatia in what
is now Croatia. This illustration is taken from a recent reprint of Balthasar Hacquet’s
Images and Descriptions of Southwestern and Eastern Wenda, Illyrians, and Slavs published
by the Ethnographic Museum in Split, Croatia, in 2008. Hacquet (1739–1815) was an
Austrian physician and scientist who spent many years studying the botany, geology,
and ethnography of many parts of the Austrian Empire, as well as the Veneto, the
Julian Alps, and the western Balkans, inhabited in the past by peoples of many differ-
ent tribes and nationalities. Hand-drawn illustrations accompany the many scientific
papers and books that Hacquet published.

 The rich diversity of the drawings in Hacquet’s publications speaks vividly of
the uniqueness and individuality of Alpine and Balkan regions just 200 years ago.
This was a time when the dress codes of two villages separated by a few miles iden-
tified people uniquely as belonging to one or the other, and when members of an
ethnic tribe, social class, or trade could be easily distinguished by what they were
wearing. Dress codes have changed since then and the diversity by region, so rich
at the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another and the residents of the picturesque towns and villages on the
Adriatic coast are not readily distinguishable from people who live in other parts
of the world.
xxiii

ABOUT THE COVER ILLUSTRATIONxxiv
 At a time when it is hard to tell one computer book from another, we at Manning
celebrate the inventiveness, the initiative, and the fun of the computer business with
book covers based on costumes from two centuries ago brought back to life by illustra-
tions such as this one.

Part 1

Introduction
to Sencha Touch

Welcome to Sencha Touch in Action, an in-depth guide into the world of
Sencha Touch. In this book, in addition to learning how to get things done
using the Sencha Touch framework, you’re going to learn how the various com-
ponents and widgets that comprise the framework work and operate.

 Chapters 1 through 3 are designed to give you the essential knowledge to
understand many of the fundamental aspects of the framework. Your journey
begins with chapter 1, where you’ll learn the basics of the framework. Chapter 2
is your “boot camp” chapter and is where you’ll get your first exposure to devel-
oping with the framework. Chapter 3 covers some of the internal machinery of
the framework, such as the Component and Container models.

 After reading the chapters in part 1 you’ll be ready to explore the many wid-
gets that compose Sencha Touch.

Introducing Sencha Touch
You’re on the hook to build a mobile application. Perhaps you’ve been tasked
with a project, or you have a great idea and want to make it a reality. Either way,
to build your application you’re going to have to learn at least Objective C for
iOS or Java for Android. It should be no surprise that if you want to support both
types of devices you’ll have to learn and master both languages, unless you
choose a third-party native framework like Sencha Touch to bridge the gap
between the devices.

 Chances are you have experience in HTML, CSS, and JavaScript and want to use
what you already know to build your mobile application. The ability to tie in your
prior experience is part of what makes Sencha Touch a good choice for folks like
you and me, because it offers a wide range of UI widgets to choose from, as well as
robust data, layout, and component models.

 In this chapter you’ll begin your journey into the world of Sencha Touch, where
you’ll learn what Sencha Touch is and the problems it aims to solve, such as enabling

This chapter covers
■ Solving problems with Sencha Touch
■ Using the Sencha Touch UI palette
■ Thinking like a mobile-web developer
3

4 CHAPTER 1 Introducing Sencha Touch
development of cross-platform user interfaces with HTML5. Then we’ll look at the wid-
gets that the framework provides. Lastly we’ll discuss some of the ways you should think
about developing your mobile application to avoid future performance issues.

 What you’ll learn along the way is that developing mobile applications with this
framework isn’t as difficult as with other technologies such as Objective C or Java.

1.1 What is Sencha Touch?
Sencha Touch was born out of the culture and many of the ideas from the venerable
Ext JS framework and is the first mobile HTML5 JavaScript framework.

 Sencha Touch solves cross-platform mobile app development problems by giving
developers the tools necessary to build cross-platform applications that mimic natively
compiled applications, while making full use of HTML5 and CSS3. It also allows devel-
opers who have years of experience on the web to develop cross-platform mobile apps
that can exist solely on the web, or be deployed in an app store with either the Sencha
native packager or tools like PhoneGap.

 As of this writing, Sencha Touch runs on mobile WebKit-based browsers in iOS
(iPhone, iPad) devices as well as on Android phones and tablets.

Figure 1.1 Checkout is a full-screen Sencha Touch application that allows you to keep tabs on your
GitHub account and followers. You can learn more about it at http://checkout.github.com.

http://checkout.github.com

5What is Sencha Touch?
An excellent example of a Sencha Touch application is Checkout, by Steffen Hiller,
shown in figure 1.1 running on an iPad. Here you can see an application that makes
use of Sencha Touch providing a rich UI with HTML5.

 To see other Sencha Touch applications you can point your browser to http://
sencha.com/apps and view the Sencha Touch App Gallery (figure 1.2). Here you can
preview apps via images and even see them work live via embedded links.

 Much like Ext JS, Sencha Touch creates the feel of a native application by means of
a clever blend of HTML5, CSS3, and JavaScript, all optimized for the best possible
mobile experience given the constraints of mobile devices today, such as limited CPU
and memory for your applications.

Read about HTML5
HTML5 is a collection of technologies that includes enhancements to HTML itself,
CSS3, and even JavaScript. It’s changing the way we develop web applications by
providing JavaScript API access to do things like talk directly to a graphics card
(WebGL), manipulate sound, and even provide offline storage. Though it’s not
completely necessary to know everything about HTML5 to use Sencha Touch, it’s
a good idea to get the basics down. A great site for learning about HTML5 is
www.html5rocks.com.

Figure 1.2 The Sencha Touch App Gallery
www.allitebooks.com

www.html5rocks.com
http://sencha.com/apps
http://sencha.com/apps
http://www.allitebooks.org

6 CHAPTER 1 Introducing Sencha Touch
 Also like its big brother Ext JS, Sencha Touch is designed to be extensible and
modifiable out of the proverbial box.

1.1.1 What Sencha Touch is not

Although Sencha Touch works on desktop WebKit browsers, like Safari and Chrome
(to a limited extent), it isn’t designed for desktop rich internet applications. Upon its
release lots of developers balked at the idea of this framework not functioning in
Firefox or Internet Explorer.

 The fact is that Sencha Touch is aimed at the development of mobile applications
only. This means that if you’ve only developed applications with Firefox, IE, and their
respective debugging toolkits, you’re going to have to leave your comfort zone.

1.1.2 Lots of wiring under the hood

To make use of mobile device interactions Sencha Touch comes with a gesture library,
which allows you to easily hook into gesture-based events, such as tap, pinch, and
swipe. One way Sencha Touch comes close to the feel of native applications is by
means of a custom physics-based Scroller class, which uses hardware-accelerated
CSS3 transitions and includes key variables like slide friction and spring effects.

1.1.3 Hardware compatibility

Many mobile touch-screen smart devices are entering the marketplace today, which is
driving the increase in demand for mobile applications. Though Sencha Touch aims
at 100% compatibility across all mobile devices the best user experience is on iOS and
high-powered Android devices.

“Sencha Touch” !== “Ext JS”
If you’re a veteran Ext JS developer you’ll feel right at home when learning Sencha
Touch. It’s important to know that some significant differences exist between the two
libraries. Throughout this book we’ll point out some of the differences, but we can’t
cover every possible point. If you have doubts always check the API documentation.

If you’re unfamiliar with Ext JS and need to develop applications for the desktop web
check out Ext JS in Action (Manning, 2010).

Why the difference in user experience?
The main reason for the difference in user experience between iOS and Android has
to do with the physical computing power of each device and how each device manufac-
turer compiles mobile WebKit for their device. Apple devices include a GPU and compile
mobile Safari with GPU acceleration enabled. Most Android devices don’t have dedi-
cated GPUs. And even for the ones that do, manufacturers typically don’t compile
mobile WebKit to enable GPU acceleration.

7A 10,000-foot view
Sencha Touch applications do such a great job of mimicking how native applications
look and feel that it’s often easy to get lost in the fact that you’re using a web-based
application. This especially holds true when the mobile WebKit toolbars are hidden
from view.

1.1.4 Full-screen goodness

Figure 1.3 illustrates how a Sencha Touch application looks when accessing the appli-
cation via mobile Safari (left) compared to accessing the application via a shortcut on
your home screen.

 After you look at figure 1.3 it should be clear that a full-screen view of a Sencha
Touch application closely resembles a native application. Also having your app in
full screen means that there’s more much-needed screen real estate available
in your applications.

 Sencha Touch offers a lot when it comes to UI widgets, but it’s certainly just the sur-
face of this framework. If you’re like us you probably want to just skip ahead and dive
into code. But before you get your hands dirty let’s browse through the library and
discuss some of its features.

1.2 A 10,000-foot view
If you glanced at the Sencha Touch API documentation the sheer number of classes in
the library might have overwhelmed you. To make sense of it all you must understand
that these classes can be broken down into a few major groups. Table 1.1 describes the
major groups into which Sencha Touch is broken down.

Figure 1.3 Looking at the
Sencha Touch kitchen sink
example via Mobile Safari
directly (left), or a shortcut
on your home screen (right)

8 CHAPTER 1 Introducing Sencha Touch
The base library for Sencha Touch is known as Sencha Platform. Sencha Platform is
based off Ext JS 4.0 but is much improved in many respects. The class system in Sencha
Touch resembles that of Ext JS 4, but it’s much more advanced in many ways. For
example, it includes a feature known as Config System which allows Sencha Touch to
work much more effectively than Ext JS.

 The Layout portion of Sencha Touch is implemented by some of the UI widgets
and is the code responsible for visually organizing items on the screen. The layouts
are responsible for implementing transitional animations if configured to do so.

 The Utilities section of the framework is a collection of useful bits of functionality
that are often implemented by the framework and can be implemented by you. For
instance, the List widget implements XTemplate to paint HTML fragments on screen.
The XTemplate is open for you to use to do the same in your own custom widget.

 The Data package is a group of classes that gives Sencha Touch the ability to fetch
and read data from a myriad of sources, including mobile WebKit’s HTML5 Session,
Local, and Database Storage methods. Sencha Touch can read data in a variety of for-
mats, including XML, Array, JSON, and Tree (nested).

 The Style area of the framework isn’t something that you typically deal with on
a day-to-day basis, but it’s worth mentioning. From the very beginning Sencha
Touch has implemented Sass to allow easy style changes to the UI. This means that
if you want to change your entire color scheme you can do so with relative ease if
you know Sass.

Table 1.1 Describing the various sections of the Sencha Touch framework

Group Purpose

Platform This is the shared base of Sencha Touch and Ext JS v4, and the bulk of the code for
Sencha Touch.

Layout A set of managers for visually organizing widgets on screen.

Utilities A group of useful odds and ends for the framework.

Data Data is the information backbone for Sencha Touch and includes the means for
retrieving, reading, and storing data.

Style Sencha Touch’s theme is automatically generated via Sass (Syntactically Awesome
Style Sheets).

MVC Sencha Touch comes with an MVC framework for your application.

UI Widgets A collection of visual components that your users will interact with.

Learn more about Sass
Sass has taken the world of style sheet management by storm and has arguably rev-
olutionized how people style their web pages and apps. To learn more about this util-
ity check out Sass and Compass in Action (Manning, 2013).

9The Sencha Touch UI
Sencha Touch includes an MVC framework that allows developers familiar with that
pattern to develop applications within a familiar workspace. It also contains a custom
URL routing mechanism and history state support.

 The widgets that users will interact with in your application comprise the UI
portion of Sencha Touch. When thinking about designing and constructing your
applications you have a lot to choose from, which is why it’s a good idea to look at
each of them.

1.3 The Sencha Touch UI
The Sencha Touch UI is a rich mixture of widgets that can be displayed on screen for
you and your users to interact with. The UI palette is large, and table 1.2 helps you
identify the groups of UI components.

 After reviewing the groups we’ll dive deeper into each group and discuss the UI
components in greater detail.

Now that you have a good overview of the widget groups let’s begin our visual exploration.

1.3.1 Containers

Containers in Sencha Touch do the heavy lifting when it comes to managing widgets
inside of widgets. Container is what we like to call the workhorse of Sencha Touch
applications because it offers extreme configurability and flexibility. Containers can
dock child widgets to their sides or render child widgets inside of their bodies. To see
what we mean take a look at figure 1.4.

 In figure 1.4 you see a container with three docked items. We have a toolbar
docked at the top, List view docked on the left, and another toolbar docked at the bot-
tom. Notice how the top-docked toolbar simply contains a title, whereas the bottom
toolbar contains buttons. This shows some of the power and flexibility of the toolbars.

 If you need to display screens controlled by a toolbar the Tab panel will get the
job done.

Table 1.2 The various groups of UI widgets available in the Sencha Touch framework

Group Purpose

Containers Widgets that are designed for nothing more than managing other child items. An example
of these types of widgets is the Tab panel. Containers typically implement layouts.

Sheets Sheets are generally any popup or side-anchored container and appear in a modal fash-
ion, requiring users to interact with the sheet before moving forward. An example of a
sheet is the Date Picker widget.

Views Views are widgets that implement data stores to display data. The List and Nested List
are both views that implement Stores.

Misc This collection of widgets ranges from Buttons to Maps to Media.

10 CHAPTER 1 Introducing Sencha Touch
1.3.2 Controlling your UI with the Tab panel
The Tab panel (figure 1.5) is a container that automatically sets a top-docked or bottom-
docked toolbar for you with automatically generated buttons for every child item. Tap-
ping any of the buttons allows you to “flip” through items known as “cards.”

 In figure 1.5 we’ve configured a Tab panel that implements a “slide” transition
with two child panels. By selecting Panel 2 in the toolbar Sencha Touch automatically
applies the CSS3 transition properties to both child panel elements, allowing for a
smooth transition from one panel to another.

 The Tab panel does an excellent job of managing the display of items in your
screen, but sooner or later you’ll need the ability to accept data input from your users.
For that you’ll use the Form panel.

1.3.3 Accepting input with the Form panel
The Form panel is a container that’s typically used to display any of the input fields
that Sencha Touch provides and is automatically scrollable. Your fields can be
grouped via the FieldSet widget. Figure 1.6 shows an example of a Form panel requir-
ing user input.

 In figure 1.6 we have most of the input fields that Sencha Touch offers, with the
exception of the Hidden field. With Sencha Touch the Text, Checkbox, URL, Email,

Left-docked
List

Container body

Top-docked
Toolbar

Bottom-docked
Toolbar

Figure 1.4 A demonstration of some of the
panel content areas

11The Sencha Touch UI
Figure 1.5 The Tab panel allows you to configure UIs that can be changed by a tap of a button and
includes optional transition animations (from left to right).

Checkbox

DatePicker

Select
Toggle field

Text field

Slider

URL field

Email field

Textarea

Password

Spinner

Number field

Radio field

Figure 1.6 Form panels are used to display input fields and contain necessary controls to manage the
submission of data to your server.

12 CHAPTER 1 Introducing Sencha Touch
Textarea, Number, Password, and Radio fields all implement native HTML5 input ele-
ments, with the addition of styling. Each of these, except for the Radio and Checkbox
fields, will force the native slide-in keyboard to appear when focused, allowing users to
enter data into the fields.

 The Checkbox and Radio fields work similarly to their native web counterparts,
except that they’re stylized via Sencha Touch’s own check icon to mimic native appli-
cation behavior. In this example the Role checkboxes, grouped in a Fieldset, are
Radio fields, allowing only one selection in the set.

 Next the Spinner field is a custom-styled input field, allowing users to enter
numeric values, much like the Number field, with the addition of easy-to-use decre-
ment and increment buttons on each side of the field.

 The Slider field implements native Sencha Touch Draggable and Droppable classes,
allowing users to input a numeric value, via swipe and tap gestures. The Toggle field
extends Slider, allowing users to toggle a field of two values via swipe and tap gestures,
much like an on/off toggle switch that you see in various physical devices.

 Lastly, the Date Picker and Select fields give your
users the ability to choose data from a set. The Date
Picker field implements what’s known as a sheet, which
is an overlay panel that slides in from the bottom allow-
ing the user to select values via vertical swipe or “flick”
gestures. Figure 1.7 shows an example of a date picker
displayed on an iPhone.

 No matter what the device or its orientation the
Date Picker field will always display a sheet forcing
selection through this modal overlay. The Date Picker
widget may seem familiar to you because it mimics the
native iOS Date Picker input widget.

 The Select field will display different input wid-
gets based on the device. Figure 1.8 shows our imple-
mentation of the Select widget on a phone and on a
tablet device.

 On the left in figure 1.8 the Select widget is display-
ing a Picker sheet because Sencha Touch detected that
it’s running inside of a phone versus a tablet (right).
The difference is that iOS tablets natively display dialog
controls for selection.

 As you’ve just seen, Sencha Touch offers quite a few
wrapped native HTML5 input fields as well as a few cus-
tom widgets. Because we’ve been talking about the Date Picker and Select fields
implementing sheets let’s look at the various Pickers and Sheets that Sencha Touch
offers, outside of the Form panel.

Figure 1.7 The Date picker
slider in action

13The Sencha Touch UI
1.3.4 Sheets and pickers

We’ve already seen the Date picker and Picker classes
implemented via their associated form input widgets.
Sencha Touch provides you with a widget called a
sheet, which is a floating modal panel that animates
into view, grabbing the user’s attention and focus. Fig-
ure 1.9 shows a sheet in action.

 In figure 1.9 you can see a sheet with top- and bot-
tom-docked toolbars, managing a scrollable List view.
You can configure such a UI because Sheet is a subclass
of Panel and includes all of the UI goodness that Panel
provides.

 What’s neat about the Sheet widget is that it’s orien-
tation-aware. This means that flipping the device while
the application code is executing immediately causes
the sheet to render in landscape mode, as illustrated in
figure 1.10.

 The story about Sheet doesn’t end here. It has three
subclasses: ActionSheet, MessageBox, and Picker. You’ve
already seen Picker and its subclass, Date picker, but
you haven’t seen ActionSheet and MessageBox.

 We’re throwing a lot of new names at you, so to help
with any confusion see the simple inheritance model
diagram (figure 1.11).

 Out of the box the ActionSheet widget allows you to easily render buttons in a sheet,
rendered in a vertical stack. Because ActionSheet is a subclass of Sheet, which extends
Panel, you can add pretty much anything you want to the stack of widgets. Figure 1.12
shows an example of an ActionSheet widget rendered with a custom HTML title.

Figure 1.8 The Select
field will display a different
input widget based on the
type of device that’s
running your UI.

Figure 1.9 A generic sheet in
action displayed in portrait mode

14 CHAPTER 1 Introducing Sencha Touch
Such an ActionSheet could be used to request action
from users, requiring that they choose an action via
one of the buttons. In this case you’re asking the user
to choose one of three options, and with the custom
title you’re providing a hint along with the actionable
button set.

MessageBox is a subclass of Sheet that provides Sen-
cha Touch–styled alert-like functionality to your appli-
cations. Figure 1.13 illustrates the three most common
uses of MessageBox, including alert (top left), confirm
(bottom left), and prompt (top right). Each of these
dialogs appears with smooth CSS3 transitions and mim-
ics their native counterparts.

 The key differences among the three are apparent.
The alert MessageBox widget is designed to alert the
user of some condition and only displays one button.
The confirm dialog allows the user to make a decision
by tapping on a button, enabling a branch of logic to
execute. Lastly, the MessageBox prompt asks the user
for direct input.

 You’ve seen all that Sheet and its subclasses have to
offer. Next let’s look at the various data-bound views
that Sencha Touch provides.

Figure 1.10 A generic Sheet
widget displayed in landscape
mode

Picker

Date

Sheet

MessageBox ActionSheet

Panel

Figure 1.11 The Sheet inheritance model

Figure 1.12 An ActionSheet
displayed in an application

15The Sencha Touch UI
1.3.5 Data-bound views

If you’re an Ext JS developer you might be surprised to learn that Sencha Touch only
provides three data-bound views and that this list excludes a GridPanel. At your dis-
posal you have Data View, List, and NestedList. We’ll begin with the most basic, Data
View, and work our way to the most complex.

 Data View is a widget that binds to a data store to render data on screen. It gives
you 100% control over how you’ll render your data. Figure 1.14 is an example of a
simple Data View widget displaying a set of names, beginning with the last name.

 Here we have a stylized Data View widget rendering data from a data store, which
contains a list of names. This example rendered only names to keep it simple but you
can use Data Views to render anything imaginable and to allow for user interaction.

Figure 1.13 The common
MessageBox implementations:
alert (top left), confirm (bottom
left), and prompt (right)

Figure 1.14 A stylized Data
View widget with an “itemtap”
event handler, displaying an
action sheet based on selection
www.allitebooks.com

http://www.allitebooks.org

16 CHAPTER 1 Introducing Sencha Touch
With the Data View widget you’re completely responsible for a lot of work, including
defining the XTemplate that’ll be used to stamp out the HTML fragments, as well as
styling how the items are rendered on screen. If you’re like us and want the look and
feel of a native list the List class is at your disposal. Figure 1.15 shows a List widget, ren-
dering the exact same data as in the previous example.

 The difference between this example and the previous one should be clear. What’s
not as obvious is that the level of effort required to create this List view is orders of
magnitude less than creating the earlier Data view. You’ll see what we mean by this in
chapter 6, when we tackle List views head on.

 In addition to allowing for a native application look and feel the List view has three
more key features, shown in figure 1.16.

 With a few minor tweaks you’re able to transform a simple List view into a
grouped List view. The grouped list in figure 1.16 has what’s known as a grouping
bar, which is a separator between items in the list. The Sencha team has been able
to get this list to work nearly identically to native grouped lists, and it includes
optional disclosure icons, as well as an index bar for fast searching with a single fin-
ger swipe.

 The Data View and List widgets are designed to display data in a linear set. But
there are times when you want to display nested data. For that you’ll need to use the
NestedList widget, shown in figure 1.17.

 In figure 1.17 we’ve set up a NestedList for the selection of a food item. There are
two main categories: Drinks and Food (left). We chose “Drinks,” which brought us to
three subcategories (center). We then chose “Sports Drinks,” which led us to the last

Figure 1.15 A simple List View
with an action sheet

17The Sencha Touch UI
Grouping bar

Index bar

Disclosure icon

Figure 1.16 A grouped List view, sporting
an index bar

Figure 1.17 A NestedList widget in action used in a navigational manner

18 CHAPTER 1 Introducing Sencha Touch
section of items, which is a list of specific sports drinks (right). All of this is done with
the slide animation.

 You’ve just explored the Data View, List, and NestedList widgets. Next let’s exam-
ine the Map and Media widgets.

1.3.6 Maps and Media

With the rapid-expansion world of mobile applica-
tions integrating maps into your applications can
provide a huge boost in productivity for your users.
To meet this growing demand Sencha Touch inte-
grates Google Maps to supercharge your location-
aware applications. Figure 1.18 shows the Sencha
Touch Map widget in action.

 The Sencha Touch Map widget literally wraps
Google Maps, allowing your application code to
manage the Google Maps instance as if it was native
to Sencha Touch. This means that the Map widget
can take part in layouts and has normalized events,
as well as an interface method to easily update the
map’s coordinates.

 Another growing demand for mobile applica-
tions is the ability to play audio and video content.
HTML5 natively has video and audio tags that bring
this functionality to Mobile Safari but Sencha Touch
makes it easier to use. Figure 1.19 shows the Media
widget displaying a video on a tablet.

 Just like the Map widget, the Media widget uses
familiar interface methods, and it’s easily configu-
rable to play audio and video in your applications.

 We’ve just completed our UI walkthrough. Before
we wrap up this chapter we want to talk about thinking like a mobile developer. This
conversation will be especially helpful to you if this is your first dive into the world of
mobile application development. We know you’re itching to get down to coding so we
won’t hold you very long.

1.4 Thinking like a mobile developer
If you’re like us you’re making the transition from Ext JS to Sencha Touch. Making
the transition to mobile from desktop application development poses thought-
process challenges that must be overcome if you plan to build successful apps.
Here are some points you need to think about before moving forward with your
application development.

Figure 1.18 The Sencha Touch
Map widget in portrait mode

19Thinking like a mobile developer
1.4.1 Think lightweight

When spec’ing out or developing your mobile app you must think “lightweight” or
your app is destined to run into performance issues. If you’ve made the transfor-
mation from a native desktop application developer to a desktop-web application
developer it’s likely that you’ve encountered this issue during your transition,
because native desktop applications can handle much more of a burden than
desktop-web applications.

 Due to the reduced computing power of mobile devices the mobile browser is lim-
ited in many ways when compared to its desktop counterpart. This is why thinking
“lightweight” is paramount for a successful application.

 Our suggestion is to try to reduce the amount of data as well as the complexity of
the screen size as much as possible. Reducing the user interaction models is also a plus
since complex user interaction models bog down mobile-web applications.

1.4.2 Remember—it’s a browser!

Many developers are tasked with converting native applications to Sencha Touch–
powered web applications. Often during the conversion process they experience per-
formance issues, and Sencha Touch is blamed.

Figure 1.19 A panel wrapping a Media widget to play video on a tablet

20 CHAPTER 1 Introducing Sencha Touch
 It’s during these times that we tell developers caught in this cycle to remember that
the application they’re developing is running inside of a browser and thus has limited
power relative to native-compiled mobile applications. Just as native desktop applica-
tions can handle more difficult tasks than desktop-web applications, native mobile
apps have more muscle than mobile-web applications.

 We believe that entering the conversion process with this in mind helps you set
realistic expectations with your customers.

1.4.3 Throw away what you don’t need

With the reduced power of mobile devices comes an increase of responsibility to keep
things as clean as possible and reduce DOM clutter and bloat. For desktop-web appli-
cations this isn’t as critical, but for mobile web it’s extremely critical.

 This means that when placing items such as ActionSheets in the Document Object
Model (DOM) you must take care to destroy them when they are no longer needed.
DOM bloat is the enemy of performance.

Sencha Touch widgets come with a complete three-phase lifecycle, allowing you to
easily destroy components, thus removing items from the DOM and freeing up cru-
cial resources.

 Along with the destruction of items that are no longer needed you should only
instantiate what’s needed. We often find hugely nested components being instanti-
ated when only a single component is needed for a particular action. To keep things
safe think conservatively.

1.4.4 “finger” !== “mouse”

Part of transitioning to mobile development involves understanding the user
interaction models and how they relate to browser events. Table 1.3 describes
some of the most common user gestures, alongside their desktop counterparts
(when applicable).

Mobile Safari will crash
Mobile Safari will crash if your application causes it to run out of memory. This will
simply cause the application to disappear from the user without warning.

Table 1.3 Comparing touch gesture events with desktop mouse gesture events

Mobile Desktop Description

touchstart mousedown The initial point at which a touch is detected in the UI.

touchend mouseup Signals the end of a touchstart event.

tap click A tapstart and tapend event for a single target.

21Summary
Always test all of your complex interaction models with the physical platforms that
you’re targeting for your applications. It’s only then that you can truly see how they’ll
react during events like pinch, swipe, and drag.

1.4.5 Reduce the data

When developing your applications you have to remember to reduce the amount of
data you’re sending to the browser. If you find yourself pushing megabytes of data to
the server for a single Ajax request reconsider your approach.

 Along these lines, also aim for a reduction in data complexity. Remember that
these devices are relatively low-powered and any time spent manipulating complex
data could be spent allowing the user to interact with the application. Tasking your
mobile application to deal with deeply nested and complicated data structures is
highly discouraged.

Through your application development iterations we suggest placing yourself in the
shoes of your end user. Remember, mobile applications should be quick and responsive.

1.5 Summary
We covered quite a bit in this first chapter, beginning with a high-level discussion
about what Sencha Touch is and the problems that it aims to solve for the mobile-web
application space.

 You then took a deep dive into the world of the Sencha Touch UI widget set and
learned about what’s offered out of the box. You explored some of the differences
between widgets, such as the Data View and List view.

doubletap doubleclick Two successive tapstart and tapends for a single target.

swipe A tapstart and tapend event with a delta in X (horizontal) or
Y (vertical) coordinates.

pinch A complex multifinger “pinch” gesture. It consists of multiple
touchstart and touchend events with deltas in the X and Y coordi-
nate space.

Server-side developers will have to work harder
Often deeply nested data structures are passed to clients because of the amount of
work involved for the server-side developers to reduce complexity. We’d much rather
have our server-side developers work harder than impact the performance of the client
and thus avoid a negative view of our mobile applications.

Table 1.3 Comparing touch gesture events with desktop mouse gesture events (continued)

Mobile Desktop Description

22 CHAPTER 1 Introducing Sencha Touch
 Finally, you learned how you should think about mobile applications and some of
the limitations that mobile devices pose.

 In the next chapter we’ll begin our deep dive into Sencha Touch, beginning with
where to get the framework, and then we’ll inspect its contents. After you’ve become
familiar with setting up a basic Sencha Touch app page you’ll develop a quick applica-
tion with the framework.

Using Sencha Touch
for the first time
In the previous chapter you looked at what Sencha Touch provides developers.
That chapter effectively set the stage for you to begin using the framework, and
that’s precisely what you’ll be doing next.

 In this chapter you’ll begin to understand how pieces of Sencha Touch work
and fit together as you start to develop an application using critical pieces of the
framework such as the class Loader. Because this is an introductory chapter we
won’t be going into too much detail about how things operate. We’ll go into more
detail starting with chapter 3.

2.1 License considerations
To get a copy of the Sencha Touch framework you’ll need to visit http://sencha.com/
products/touch/download/. You’ll be greeted with a page like the one in figure 2.1.

This chapter covers
■ Downloading Sencha Touch
■ Exploring the package contents
■ Creating a “Hello World” example
■ Developing an application
23

http://sencha.com/products/touch/download/
http://sencha.com/products/touch/download/

24 CHAPTER 2 Using Sencha Touch for the first time
From here you’re required to make a decision about which license you’re going to
use. In case you’re not sure which version to choose we’ve detailed a few scenarios in
table 2.1.

If you’re still unsure which license to choose you can consult the Sencha licensing
page at http://sencha.com/products/touch/license or email the Sencha license sup-
port team at licensing@sencha.com.

 Now that we’ve gotten the hairy licensing issue out of the way we can begin to look
at the package contents of the framework.

2.2 Unpacking the framework
The Sencha Touch framework comes to you via a zip file which you must unpack in
order to use the library. Figure 2.2 shows what you can expect to find in the zip file
you downloaded.

 The zip package inflates to a directory that is just over 270 MB. If you’re wondering if
all of the package contents are required to deploy with your application, the answer is no.

Table 2.1 Choosing a license model for Sencha Touch

License Type Reason

Open Source Your project will be available for anyone to download and modify according to the GNU
GPL license v3. FLOSS (Free/Libre and Open Source) exceptions are available.

Commercial You’re creating an application that you plan on selling or distributing and aren’t willing
to permit direct access to your source. If you plan on packaging your product to offer in
an app store this is the license you want to go with.

Click for a
commercial

version

Click for the
open source

version

Figure 2.1 You must make a decision about which version of Sencha Touch you’re going to download.

http://sencha.com/products/touch/license

25Unpacking the framework
The good news is that most of the space used in the package goes to docs, exam-
ples, and other goodies that you typically don’t and shouldn’t deploy with your
applications. See table 2.2 for a description of each of the items in the archive that
you just extracted.

What you have may look a bit different
As of this writing we’re covering Sencha Touch 2.2. It’s known that the SDK contents
change a bit from version to version.

Table 2.2 The various files in the Sencha Touch package

Item(s) Purpose

builds/ This directory contains the sencha-touch-compat.js file, which contains the code
you’d use if you wanted to run your app with backward-compatible 1.0 code. Don’t
depend on this version of the framework for your application code; we suggest
migrating to 2.0 as quickly as possible.

cmd/ This directory contains necessary files for the Sencha Cmd toolset, which is like a
Swiss army knife of the Sencha Touch 2 development world. We won’t be diving
into Cmd until we talk about advanced topics in chapter 11.

docs/ The docs directory is where you’ll be able to view the framework documentation
without the need to go online. This directory itself is over 139 MB in size.

examples/ This folder contains all of the one-off examples as well as a few example applica-
tions. This folder is also responsible for the hefty weight of the unzipped pack-
age—it’s over 113 MB in size.

Figure 2.2 Looking at the package
contents
www.allitebooks.com

http://www.allitebooks.org

26 CHAPTER 2 Using Sencha Touch for the first time
As you can tell, there’s a lot in the Sencha Touch framework out of the box. When it
comes to our applications we typically rely on what Sencha Cmd outputs (see chap-
ter 11 for a sneak peek) to generate project structure. For docs and examples refer-
ence we refer to a virtual host on our dev machines, which contain each version of the
framework for reference.

 Now that you have a good understanding of the package contents you can begin to
set up Sencha Touch on a dev web server.

2.3 Sencha Touch says “Hello World”
To get this party started you’re going to create an HTML file that you’ll have to popu-
late with HTML and required JavaScript and CSS references. The following listing
shows the test page.

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <link rel="stylesheet"
href="js/sencha-touch-2.0.0/resources/css/sencha-touch.css"

microloader/ This directory contains various versions of the Sencha microloader code. We’ll be
covering this in greater detail in Chapter 11, but for now I’ll tell you that the micro-
loader is responsible for bootstrapping your application code from start to finish.

resources/ This folder contains all of the CSS and image files required to style the frame-
work. It also has a subdirectory named “sass,” which includes all the Sass code
needed to get you started developing your own custom themes.

src/ Here’s where all of the complete source files are located. You’d typically view the
src directory contents if you wanted to take a deep dive into the framework and
learn how the widgets work.

getting-started.html
and index.html

getting-started.html is a rather lengthy write-up on how to get started with Sencha
Touch, and the index.html file serves as a landing page for you if you ever browse
the contents of the framework directory. From here you can launch the API docu-
mentation and example pages.

release-notes.html This document describes in great detail all the changes to the framework since its
initial release.

sencha-touch*.js Four “sencha-touch” js files are included, each with varying sizes. We typically use
sencha-touch-debug-w-comments.js (not shown in figure 2.2) when debugging
locally inside of a browser, and we use sencha-touch-debug.js when debugging on
a device. The comments file contains extra weight that makes it 1.54 MB in size,
whereas the debug file without comments is just over 750 K. When going to pro-
duction you should build a custom version of Sencha Touch via Sencha Cmd. This
will give you an optimized build based on your application needs.

Listing 2.1 The HTML body for your helloworld.html file

Table 2.2 The various files in the Sencha Touch package (continued)

Item(s) Purpose

Includes Sencha
Touch CSS

 b

27Sencha Touch says “Hello World”
type="text/css">

 <script type="text/javascript"

➥ src="js/sencha-touch-2.2/sencha-touch-debug.js"></script>

 <script type="text/javascript"></script>
</head>
 <body>
 </body>
</html>

In listing 2.1 you have all the necessary structured HTML for your simple “Hello World”
page. It includes the required tags for the Sencha Touch CSS B and JavaScript c
files, as well as an empty script tag d that you can use as a simple playground.

 If you load this page now you’re only going to see a blank page. That’s because you
haven’t implemented anything from Sencha Touch yet.

 The next listing contains code that’ll launch the Sencha Touch MessageBox, pro-
viding an indication that everything is working well.

<script type="text/javascript">
 Ext.application({
 launch : function() {
 Ext.Msg.alert(
 'Hello!',
 'Hello there from Sencha Touch!'
);
 }
 });
</script>

In listing 2.2 you use Sencha Touch for the first time, rendering the MessageBox on
your screen. Here’s how all of this works.

 To bootstrap your code you execute Ext.application B inside your playground
JavaScript code block. Ext.application is a utility function that’s used to configure
Sencha Touch for use on your mobile devices and should be called only once, as it’s
designed to assist with bootstrapping of your code if you don’t intend to use the Sen-
cha MVC framework.

 You pass one parameter to Ext.application, which is known as a configuration
object. Within the config object is one property, known as onReady c, which is exe-
cuted by Sencha Touch when it detects that WebKit has the document fully loaded
and is ready for direct manipulation.

Listing 2.2 Using Sencha Touch for the first time

Know thy config object
Because you’ll see the term config object used a lot in the Sencha Touch API docu-
mentation and this book it’s important that you know exactly what we’re talking
about. Like Ext JS, in Sencha Touch most constructors and some methods use config
objects, which are used by classes to modify how the class or widget behaves.

References debug
JavaScript

c

Includes empty
script tagd

Calls Ext.applicationb

Contains
Ext.launch
functionc

28 CHAPTER 2 Using Sencha Touch for the first time
Within the onReady function is your use of the MessageBox class, accessible via the
Ext.Msg singleton. To get the MessageBox widget to display you call the alert method
and pass three parameters: title, message body, and callback. The callback is a ref-
erence to a reusable empty function that resides inside the Ext namespace.

Your helloworld.html file is ready to be viewed in a browser or device. Figure 2.3 illus-
trates your first Sencha Touch code execution.

 Success! Your first Sencha Touch code is live and working. As illustrated in figure 2.3,
your code is executable in a desktop browser as well as on a mobile device. In this par-
ticular instance your code is running inside Chrome.

 Great! Now you’ve gotten your hands a little dirty with Sencha Touch, but you’re
not done yet. You did this simple demo so you can ensure that your first Sencha Touch
project is configured correctly and functioning properly.

Ext namespace?
Sencha Touch uses the Ext namespace because it shares a common codebase with
its big brother, Ext JS. This common codebase is known as the Sencha Platform. If
the Sencha Touch framework code were to be moved to a “Sencha” namespace
some unnecessary weight would be added to the framework.

Figure 2.3 Your helloworld.html in a browser and on a phone

29Setting the stage for your first application
You just learned a bit about Ext.application. Doing all of this work sets the stage for
you to develop a basic application with this mobile framework.

2.4 Setting the stage for your first application
Because this is most likely your first attempt at creating a Sencha Touch application
we’re going to take things easy. For instance, you won’t be worrying about any target
devices, orientation, or even MVC.

 Also, you won’t implement any server-side code. Instead you’ll use an existing API
online and fetch data via JSON-P. Before you can write a single line of code you need to
know what the application is going to do.

2.4.1 Your simple application at a glance

Today you’re going to build a relatively simple contact manager application. This
application will allow you to view details of records and will have a left-to-right work-
flow. Figure 2.4 shows what it’ll look like on a tablet.

 You can see that you’ll be implementing List and FormPanel widgets along with
some toolbars. Your app will implement a typical left-to-right workflow, where you’ll
be able to select a record on the left and see its details on the right in the Form-
Panel instance.

 Your next step is to prepare a project that allows you to construct this application.

2.4.2 Preparing your project

To construct the foundation of your code you’ll need first to create some files and a
directory to organize your class structure. You’ll be creating these separate files
because we want you to get used to the idea of having one class per file, because it’s
considered a best practice by the Sencha community and follows object-oriented pro-
gramming (OOP).

 You’ll be using the class Loader system, so you’ll need to create some files and fold-
ers in your development environment as shown in figure 2.5. For now, just make these
empty files. You’ll fill them out along the way.

 In our example you have one directory, MyApp, with several files. Inside the
MyApp directory are the five JavaScript class files you’ll soon create.

 Table 2.3 details what function each file will perform.

Your desktop browser choices
Because Sencha Touch is designed to work with WebKit browsers only, the choice
of desktop-based development and debugging tools is limited to two browsers,
Safari and Google Chrome. Both of these browsers are based on the WebKit engine
but are somewhat different. As of this writing Safari’s 3D CSS is fully supported by
Sencha Touch, whereas Chrome’s 3D CSS is currently in the experimental phase
and not fully functional.

30 CHAPTER 2 Using Sencha Touch for the first time
Table 2.3 The list of files in the MyApp directory and the role of each in your application

File Role

MainContainer.js This file extends Ext.Container and will be a home for the PersonDetail
and PersonList classes using the VBox layout.

PersonDetail.js Here you’ll extend Ext.form.Panel and render a few text fields, displaying the
details of the PersonModel instances selected from the PersonList class.

PersonList.js You’ll extend Ext.dataview.List here to display the data in the data.json file
and implement the PersonStore class.

Figure 2.4 A preview of your contact manager app

Figure 2.5 The directories that
implement the MVC code structure

31Developing your app
As a sibling to the MyApp directory you have app.html, which will launch your application.
 That’s pretty much all there is to it.

Now that you have a clear picture of what
you’ll be constructing you can start getting
your hands dirty.

2.5 Developing your app
Begin developing your application by defin-
ing the model (using the PersonModel
class) that’ll drive your data store exten-
sion, PersonStore. All of your classes will
be inside the MyApp namespace.

 You’ll use the class Loader system,
which means that you’ll have to set up a
dependency model, where one class will
cause the automatic loading of another
(figure 2.6).

Let’s begin by creating the PersonModel class. The code in the next listing will reside
in MyApp/PersonModel.js.

Ext.define('MyApp.PersonModel', {
 extend : 'Ext.data.Model',
 config : {
 fields : [
 'city',
 'firstname',

PersonModel.js This class will define your data model for the person and provide the PersonList
and PersonDetail widgets with the data for each record in the data.json file.

PersonStore.js Here you’ll extend Ext.data.Store and implement your PersonModel
class. You’ll configure this class to pull data from an online resource.

Exposure to advanced concepts
You’re going to use Ext.define, a method that allows you to declare classes. It’s
okay if you don’t fully understand what’s going on here. But if you want to learn about
Ext.define take a peek at chapter 9. Be sure to come right back when you’re done;
we have a lot of work to do!

Listing 2.3 The PersonModel extension

Table 2.3 The list of files in the MyApp directory and the role of each in your application (continued)

File Role

MainContainer

PersonDetail PersonList

PersonStore

PersonModel

Figure 2.6 The class dependency model

Defines modelb

Extends
Ext.data.Modelc

Configures data fieldsd

32 CHAPTER 2 Using Sencha Touch for the first time
 'lastname',
 'middle',
 'state',
 'street',
 'zip'
]
 }
});

To define your PersonModel class you employ Ext.define, specifying the full name-
space for your MyApp.PersonModel B extension. You instruct Ext JS to extend the
Ext.data.Model class c and configure the data fields d for the model to use. These
will be useful in mapping the inbound data from your remote web service and will be
used to supply data to the PersonDetail extension.

 That wraps up the PersonModel class file. We can now move on to adding content
to the PersonStore.js file.

2.5.1 Creating the data store
Your next step is to define the data store extension, which will implement your
PersonModel class. The following listing displays the code for PersonStore, which will
reside in MyApp/Personstore.js.

Ext.define('MyApp.PersonStore', {
 extend : 'Ext.data.Store',
 alias : 'store.personstore',
 requires : ['MyApp.PersonModel'],
 config : {
 autoLoad : true,
 model : 'MyApp.PersonModel',
 proxy : {
 type : 'jsonp',
 url : 'http://extjsinaction.com/dataQuery.php',
 limit : 20,
 reader : {
 type : 'json',
 rootProperty : 'records'
 }
 }
 }
});

In listing 2.4 you define your PersonStore class B, an extension to Ext.data.Store.
After instructing Ext JS to extend the data.Store class, you configure an alias parameter.

 To have Sencha Touch automatically load the PersonModel class you’ll need to
document it as a dependency to the PersonStore class, which you do with the
requires property c.

 Next tell PersonStore to implement PersonModel d via the model config and
instruct it to use a JSON-P proxy that will request data from an online web service e.
This data store will automatically load once instantiated.

Listing 2.4 The PersonStore extension

Defines
PersonStoreb

Sets up class
dependencyc

Implements
PersonModeld

Uses
external
web data
sourcee

33Developing your app
 You now have the data portion of your application code defined. You can now
move on and configure your list extension.

2.5.2 Constructing the PersonList class

To create your PersonList class you’ll have to extend Ext.dataview.List, which will
require and implement the PersonStore class you defined previously. The contents of
the PersonList class are shown in the next listing.

Ext.define('MyApp.PersonList', {
 extend : 'Ext.List',
 xtype : 'personlist',
 requires : ['MyApp.PersonStore'],
 config : {
 allowDeselect : false,
 itemTpl : '{lastname}, {firstname}',
 store : {
 type : 'personstore'
 },
 items : [
 {
 xtype : 'toolbar',
 title : 'People',
 docked : 'top'
 }
]
 }
});

To define the PersonList class B you extend Ext.dataview.List and set up an
XType alias c for lazy instantiation later on the inside of the MainContainer class
you’ll soon create. After the alias you set up the requirement for the PersonStore d
class and instruct Sencha Touch to load that class immediately after PersonList is
loaded and defined.

 The last block of code, the class config object, contains properties that allow you to
configure how each instance of this class will behave. For example, you set the
itemTpl property as a string that contains tokens that’ll render first and last names, as
defined in your data store’s model. This works because you configured your Person-
List class to use your PersonStore class via lazy instantiation e.

Listing 2.5 The PersonList class

Why so lazy?
Lazy instantiation is a pattern in which you define a plain JavaScript object and use it
to configure an instance of some class. We’ll talk about lazy instantiation in chapter 3
when we discuss XTypes.

Defines PersonListb Configures
XType alias

c

Requires
PersonStored

Implements
PersonStoree

34 CHAPTER 2 Using Sencha Touch for the first time
The items configuration property allows you to configure a toolbar
that will be docked to the top of your List extension, providing a
nice area for a title. Figure 2.7 shows what it’d look like if you ren-
dered it onscreen by itself.

 Your PersonList class is complete. Next up is the PersonDetail
screen.

2.5.3 Building PersonDetail

The extension to the Sencha Touch form Panel class, which will
be known as PersonDetail in your code base, will be responsible
for constructing all the fields required to display the details of a
record selected in the PersonList class.

 The following listing contains the code for this new class.
This will be the longest listing in this chapter, simply because the
input fields require a lot of code, relatively speaking.

Ext.define('MyApp.PersonDetail', {
 extend : 'Ext.form.Panel',
 xtype : 'persondetail',
 config : {
 items: [
 {
 xtype : 'fieldset',
 defaultType : 'textfield',
 defaults : { labelWidth : 100 },
 items : [
 {
 label : 'First',
 name : 'firstname'
 },
 {
 label : 'Last',
 name : 'lastname'
 },
 {
 label : 'Street',
 name : 'street'
 },
 {
 label : 'City',
 name : 'city'
 },
 {
 label : 'State',
 name : 'state'
 },
 {
 label : 'Zip',

Listing 2.6 The PersonDetail class

Figure 2.7 The
PersonList class
rendered by itself

Defines PersonDetailb

Configures
XTypec

Configures
input fieldsd

35Developing your app
 name : 'zip'
 }
]
 },
 {
 xtype : 'toolbar',
 title : 'Person Details',
 docked : 'top'
 }
]
 }
});

In listing 2.6 you define the PersonDetail class B and its XType alias c. The longest
section of this listing defines the child items d for this extension. Here you define all
of the input fields to display the data and a toolbar (docked at the top of the widget)
that contains a simple title. Figure 2.8 illustrates what this widget looks like rendered
onscreen alone with data in it.

Your PersonDetail class is now complete and ready to be stitched in. Next you’ll cre-
ate the MainContainer class, which will allow you to tie everything together.

2.5.4 Setting up the MainContainer class

As we mentioned a bit earlier, the MainContainer class is going to be the master UI
class for your mini-application. This widget will be responsible for rendering the Person-
List and PersonDetail widgets onscreen and will tie in the simple left-to-right workflow
using event listeners.

 The next listing contains the code for this MainContainer class and has some of
the most advanced Sencha Touch implementation code you’ve seen so far.

Ext.define('MyApp.MainContainer', {
 extend : 'Ext.Container',
 requires : [
 'MyApp.PersonList',
 'MyApp.PersonDetail'

Listing 2.7 The MainContainer class layout

Figure 2.8 The PersonDetail
widget rendered onscreen

Defines MainContainerb

Requires PersonList,
PersonDetailc
www.allitebooks.com

http://www.allitebooks.org

36 CHAPTER 2 Using Sencha Touch for the first time
],
 config : {
 layout : {
 type : 'hbox',
 align : 'stretch'
 },
 items : [
 {
 xtype : 'personlist',
 itemId : 'list',
 width : 200,
 style : 'border-right: 1px solid #999'
 },
 {
 xtype : 'persondetail',
 itemId : 'detail',
 flex : 1
 }
],
 listeners : {
 select : {
 fn : 'onListSelect',
 delegate : '> #list'
 }
 }
 },
 onListSelect : function(list, record) {
 this.getComponent('detail').setRecord(record);
 }
});

You first define your MainContainer B class in listing 2.7. Because you’ll be instantiat-
ing this class directly there’s no need to configure an XType alias for it. To have Sen-
cha Touch automatically load your PersonList and PersonDetail classes you must list
them in the requires configuration block c.

 Next you implement your PersonList and PersonDetail widgets by means of lazy
instantiation with their XTypes d. You configure each widget with a special itemId.
Doing so will allow you to do things such as configure event listeners and gain refer-
ences to these components later on.

 To tie into the selection from PersonList and load the selected record into the
PersonDetail class you configure a listeners object, which defines the event to lis-
ten to (select), what function to call (onListSelect) e, and which child to hook
the event into (PersonList). This uses the new power of the Sencha Touch 2 event
system, where you can define event handlers via String representation of method
names and use ComponentQuery selector syntax to guide event handler registration.

 The onListSelect method f will always be called within the scope of your
instance of MainContainer. Therefore, you can use the this.getComponent, a Container
method, to gain a reference to the PersonDetail instance via itemId and execute its
setRecord method, passing in the model instance (record) as the only argument. All

Implements
PersonList,
PersonDetaild

Listens for
select event

e

Displays
dataf

37Developing your app
of this will cause the PersonDetail class to bind to the instance of the record and dis-
play its data in the input fields.

 All of your classes are defined and ready to roll. Now you can render your app.

2.5.5 Rendering your application

To render your application you’ll need to add HTML and JavaScript to your app.html
file. The following listing contains the contents of that file.

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">
 <title>Sencha Touch in Action CH2 app</title>
 <link rel="stylesheet"
 href="../../sencha-touch-2.0.0/resources/css/sencha-touch.css"
 type="text/css">
 <script type="text/javascript"
 src="../../sencha-touch-2.0.0/sencha-touch-all-debug.js">
 </script>

 <script type='text/javascript'>
 Ext.Loader.setConfig({
 enabled : true,
 paths : {
 MyApp : 'MyApp'
 }
 });

 Ext.require([
 'MyApp.MainContainer'
]);

 Ext.application({
 launch : function () {
 Ext.create('MyApp.MainContainer', {
 fullscreen : true
 })
 }
 });
 </script>

</head>
<body>
</body>
</html>

Listing 2.8 contains everything you need to render the entire application. Aside
from the HTML that defines the page and loads Sencha Touch and the necessary
CSS, you have a script tag that does a bit of work to bootstrap things and render
the application.

Listing 2.8 The contents of app.html

Enables class
loader

b

Configures
namespace and pathc

Dynamically loads
MainContainerd

Renders
MainContainere

38 CHAPTER 2 Using Sencha Touch for the first time
 The first step to render your app is to enable the Sencha Touch class Loader via
the Ext.Loader.setConfig method call B. You also have to tell Loader in which
directory to look for the class files in the MyApp namespace c, and you do this via
the paths property.

 To render the application you call Ext.require and pass your MainContainer
class d. Doing so allows Sencha Touch to load this class using script tags, a process
that’s considered best practice for performance, and will delay the “ready state” for
the browser. Because you have your class requirements well defined, MainContainer
is the only class you’ll need to instruct Ext JS to load.

 The last step to render your application onscreen is to call Ext.application and
pass an onReady e method to it. Setting up this method will allow your application to
launch at the correct time in the browser’s page load cycle. You need this because
your app will attempt to manipulate the DOM before it’s fully built by the browser and,
without this, you’d get exceptions and never leave the launch pad.

 Inside the onReady function you call Ext.create and pass a String representation
of your classname. With Sencha Touch Ext.create replaces the use of the JavaScript
new keyword because it plays nicely with the Loader system.

If you load your application in a WebKit browser (we typically choose Google Chrome)
you can see the class system at work. Figure 2.9 shows you what we saw when we
peeked at the WebKit debug tools.

 Looking at the WebKit Inspector Network tab, you can see that immediately after
Sencha Touch was loaded the MainContainer class was loaded. Next, PersonList and
then PersonDetail were loaded. The Loader system inspected the requirements for
PersonList and loaded PersonStore, and then loaded its requirement, PersonModel.

 All of this sets the stage for your application to function. Figure 2.10 shows what it
looks like rendered in Chrome after we’ve selected the first record in the PeopleList UI.

 After rendering your application you can see that selecting a record from the People-
List widget on the left will result in the details of that record being displayed on the right.

 This read-only application sets the stage for having full-blown create, read,
update, and delete (CRUD) against the data. You could create buttons for Create,
Update, and Delete operations, but we think this is a good time to stop. We hope
this example has whetted your appetite to learn more of what’s happening under
the hood in this framework.

 In the next chapter we’ll cover understanding critical concepts, such as lazy
instantiation.

New is so old!
We realize that this may seem foreign to you at this stage in the game. It did to us at
first as well! If you peek at chapter 9, where we dive into the class Loader system,
you’ll gain an appreciation for Ext.create.

39Summary
2.6 Summary
In this chapter you downloaded the framework and delved into its contents. Then you
created a simple “Hello World” example, implementing the MessageBox widget.

 Next you created a simple application. In this exercise you were exposed to critical
bits of knowledge like defining classes, XTypes, class dependencies, and event delega-
tion. You rendered your application in Google Chrome and learned how your classes
were dynamically loaded, and you saw how to run your application.

 In the next chapter you’ll begin your journey into the heart of Sencha Touch,
beginning with a thorough look into the component life cycle and a discussion of
the various layouts in the framework. This will help you set the foundation for fur-
ther exploration.

Figure 2.9 We can see the
Sencha Touch Loader working
as it loads the classes.

Figure 2.10 The application rendered
in Google Chrome

Sencha Touch foundations
Sencha Touch components are the building blocks of the Sencha Touch universe.
They make up the foundation upon which the rest of the framework relies. Work-
ing with components is a bit like working with Legos—no matter what you’re
building, you always stack blocks on top of each other in various ways. The won-
drous things you create are limited only by your own imagination and the rules of
the framework.

 To grasp exactly how Sencha Touch enforces these rules and how components
fit together you have to understand the underlying Component model and its rela-
tionship to components. In this chapter you’ll take a close look at the component
life cycle and learn why you should care about it. In addition you’ll see the various
ways of creating components and look at the pros and cons of each approach. But
first you need to build a good foundation to expand from, so let’s take a look at the
Component model.

This chapter covers
■ Getting to know the Component model
■ Exploring the component life cycle
■ Learning utility methods to create components
40

41One Component model to rule them all
3.1 One Component model to rule them all
Part of the magic behind Sencha Touch, and what makes it so
special compared to other frameworks, is the way in which UI
widgets are structured and fit together almost seamlessly. In
every UI widget, if you go far enough up the inheritance
chain, you always arrive at the same common ancestor, the
Ext.AbstractComponent class. Every UI piece in Sencha
Touch is a subclass of Ext.AbstractComponent, something
that’s made possible via the Sencha Touch Component
model, a centralized model that governs all component-
related tasks. Ext.AbstractComponent is the base of the Com-
ponent model but shouldn’t be used directly. Instead you
should use Ext.Component. The Component model provides a
set of rules and behaviors that all children of Ext.Abstract-
Component have to follow in some way or another. Figure 3.1
depicts the common components in the Component model,
showing just how many UI pieces subclass Component, either
directly or indirectly. Fret not if figure 3.1 seems overwhelm-
ing at first glance. It simply provides a big picture overview of all of the Sencha Touch
components and can serve as a good reference point to return to as you read later chap-
ters or venture into your own development endeavors.

 Figure 3.1 shows the more common components in Sencha Touch 2 that you’ll
most likely use in everyday applications. These aren’t all the components that Sencha
Touch 2 has. Next in figure 3.2 you’ll see the entire hierarchy of the Component
model in Sencha Touch 2, which may look overwhelming but is a great depiction of
where each component is in the hierarchy.

 One thing that might not be immediately apparent when looking at figures 3.1
and 3.2 is what exactly the benefits of the Component model are. First, knowing what
components another component extends is valuable knowledge. The rules the Com-
ponent model has to adhere to ensure dependability. If you know what behavior a
Container has, you can depend on the knowledge that its subclasses, Panel for
instance, will most likely behave in the same way (for example, events will fire in a cer-
tain order). This dependability is one of the most overlooked benefits of the Compo-
nent model; whether or not you know it, you’ll be relying on this every day you’re
developing with Sencha Touch.

 Second, knowing exactly how each UI widget is going to behave introduces predict-
ability and stability into the framework. Whether you’re dealing with native Sencha
Touch widgets or components created by third-party developers, you can always count
on specific events and behaviors to occur at predetermined points.

 What makes all of this possible is the thing that governs how a component is
instantiated, rendered, and destroyed: the component life cycle.

AbstractComponent

Container

Panel

Component

Figure 3.1 The common
components in the
Sencha Touch
Component model,
depicted with their
hierarchies and
subclassing

42 CHAPTER 3 Sencha Touch foundations
AbstractComponent

Panel

DataView List

Map

Sheet

ActionSheet

MessageBox

Picker

Media

NestedList Picker Slot

Button

Carousel

Component

TabIndexBar

Video

Audio

Toolbar Tab Bar

FieldSet

Form Panel

Segmented

Button

Field

DatePicker

Slider

Checkbox

Hidden

Textfeld

Radio

Url

TextArea

Email

Select

Search

Password

Number Spinner

Date Picker

Tab Panel

Decorator

TitleBar

Viewport

Spacer

Mask LoadMask

Label

Img

Infnite

Carousel

Carousel

Indicator

DataItem

Navigation

View

Navigation

Bar

Slider Toggle

Slider Thumb

Base

Container

Evented

Figure 3.2 This illustration of the Sencha Touch class hierarchy maps out all the subclasses of
Ext.AbstractComponent and depicts how widely used the Component model is in the framework.

43Introducing the component life cycle
3.2 Introducing the component life cycle
Each component in the Sencha Touch universe shares a common ancestor,
Ext.Component. Just as in genetics, this ancestor passes down some of its traits. One of
those traits is the component life cycle, a set of rules and behaviors that determines what
happens when a component is “born,” what happens while it “lives,” and what happens
when it “dies.”

 Given that the average app created by the average user frequently consists of
out-of-the-box components without too much customization, the need to study all
the gory details behind the component life cycle can be assessed by each devel-
oper. For those “average” developers, the component life cycle will be one of
those things that they hear about on the forums and that they’ll most likely have a
high-level understanding of—which tells them that a component is created dur-
ing the initialization phase, rendered during the render phase, and destroyed
during the destruction phase. Knowing a lot of details beyond that isn’t a require-
ment, at least not for the average app. For those developers who wish to venture
into creating their own custom components and plug-ins that extend the core
functionality of the framework this somewhat dry topic will provide a goldmine of
information. Quite a few steps take place at each of the three phases in the life
cycle (see figure 3.3).

 Everything must have a beginning, so let’s start with the beginning of each compo-
nent: the initialization phase.

3.2.1 Initialization/instantiation phase

The initialization phase is when a component is born. Any necessary prerender
actions like configuration settings and HTML structure creation take place during this
phase. The exact steps break down as shown in figure 3.4.

 Let’s explore each step of the initialization phase. The numbers in figure 3.4 corre-
spond to each step in the following list:

1 The component configuration is applied—When creating an instance of a compo-
nent you pass it a configuration object that contains all the necessary knobs and
dials to tell the component what to do and how to behave.

2 A unique ID is created—Each component within your app must have a unique
identifier. This requirement is dictated by the Ext.ComponentManager, because
all components are automatically registered with the ComponentManager.

Initialization

DestructionRender

Figure 3.3 The Sencha Touch
component life cycle always starts
with the initialization phase and ends
with the destruction phase. The
component doesn’t need the render
phase to be destroyed.

44 CHAPTER 3 Sencha Touch foundations
There are two ways a component can come by its ID:

– The first is for Sencha Touch to automatically generate an ID, which is the
default and preferred behavior when no ID is supplied during component
instantiation. Sencha Touch–generated IDs usually take the form of ext-
component-1, ext-component-2, and so forth. The format is ext-{xtype}-
{number} where {xtype} is the XType of the component and {number} is an
incremental number.

– The second is for you (the developer) to supply an ID during instantiation,
thus providing more control over what the ID should be. The ID can be any
string you desire; the only caveat to keep in mind is that the Component-
Manager doesn’t allow duplicate IDs within the entire application. This
means it’s up to you to keep track of custom IDs you set and ensure there are
no duplicates. Whenever a component with an already existing ID is regis-
tered the ComponentManager overwrites the already registered version with
the newly supplied one. Nuking existing components causes undesirable
effects and is a pain to debug, so be careful about this.

ItemId to the rescue
One easy way to alleviate having to track countless IDs across your entire application
is to use the itemId property for IDs assigned by you and to let Sencha Touch auto-
matically assign the id whenever possible. The itemId has to be unique within a con-
tainer, meaning you could have two Panel instances, each containing a Textfield
with an itemId of “myTextField,” and not run into any collision issues.

Confguration1

Unique ID
2

Generation

Component

Registration
3

Render Phase Starts7

HTML Structure

Created
4

initConfg5

initialize6

Figure 3.4 The initialization phase of the component life cycle executes important
steps such as component registration and calling the initConfig and initialize
methods. It’s important to remember that a component can be instantiated without
being rendered.

45Introducing the component life cycle
3 The component is registered with the ComponentManager—Each instance of a com-
ponent is automatically registered with the Ext.ComponentManager using its
unique ID. If you know this unique ID you can utilize the Ext.Component-
Manager to perform a lookup of the component and get a handle on it for inter-
action via the Ext.getCmp function.

4 The HTML structure is created—Each component has its own HTML structure so
that it can display properly. This step creates the HTML structure, but it’s not
placed in the DOM to be rendered yet. Sencha Touch 2 creates this structure
so it can do a one-batch DOM write instead of doing multiple DOM writes.
This approach helps with performance—one of the things that’ll slow your
app the most is DOM write—so minimizing the number of writes is a good
way to improve performance. Remember, you’re still in the initialization
phase; the component won’t be rendered until the render phase later in the
life cycle.

5 initConfig is executed—One of the new key features in Sencha Touch 2 is the
config object. The config object automatically creates a getter and setter
method for each config object item. initConfig is the method that every
component (and every class) has, and it performs the creation of the getter
and setter methods. A getter method will return the property value that
was in the config object. Not only will the setter method set the property
value, but it will also use apply and update methods. When you execute the
created setter method it first looks for an apply method and executes it,
passing in the new and old values as arguments. The apply method is great
for transforming the value or providing validation, and it must return a value.
After the apply method is executed the property value is then set. Then the
update method is fired, passing the new and old values. The update method
takes action on setting a new value, like updating some other component or
DOM element.

6 initialize is executed—The initialize method is used to add additional con-
figuration before the render phase starts. initialize is the last template
method that you can override for subclassing before the component is ren-
dered. This can provide a last chance to change items or apply event listeners.
Note that some Sencha Touch components use initialize, so if you need to
override this method you’ll usually have to execute callParent to call the
superclass’s method.

ComponentQuery
A more flexible and robust way is to make use of Ext.ComponentQuery, taking
advantage of the hierarchy of your application. You can go up and down the hierarchy
searching XTypes and properties. The caveat is there’s a small performance hit when
using this, but today’s devices are getting more powerful every day.
www.allitebooks.com

http://www.allitebooks.org

46 CHAPTER 3 Sencha Touch foundations
7 The component is rendered—If the fullscreen config is set to true the compo-
nent will fire the fullscreen event, which the global Ext.Viewport component
listens to, and the Viewport will automatically add the component to itself, trig-
gering the rendering.

This phase of a component’s life is usually the swiftest, due to the fact that all the work
is done behind the scenes in JavaScript, and no rendering is necessary up to this
point. It’s particularly important to remember that a component doesn’t have to be
rendered in order for it to be destroyed.

3.2.2 Render phase

The render phase provides visual feedback that a component has been successfully
instantiated. If the component encountered any issues during the initialization phase
it’s unlikely to render correctly or at all. Unless the fullscreen property is specified
rendering of the component is deferred until the component is added as an item of a
container. We’ll talk more about containers in the next chapter.

 If your component is a child of a container the container’s layout usually takes
care of doing the rendering. The following code shows how to use the fullscreen
property to have Ext.Viewport automatically add the component as an item:

var myComponent = new Ext.Component({
 fullscreen : true,
 html : 'testing'
});

In this example you instantiate an instance of Ext.Component and create a reference
to it, myComponent. After the instance is instantiated it sees the fullscreen property is
set to true and will then fire the fullscreen event on itself. Ext.Viewport listens for
the fullscreen event and when a component fires this it’ll automatically add that
component as an item of itself.

 In Sencha Touch 1 you usually used the renderTo or fullscreen config, which
would render that component to a particular element, or you’d add a component to a
container and that would then render the component within the container. In Sencha
Touch 2 you can still render components to an element, but you’re going to add com-
ponents as items of containers 99% of the time.

 Also in Sencha Touch 1 the layouts were JavaScript-based; they didn’t perform
well and weren’t 100% accurate. In Sencha Touch 2 layouts are CSS-based (see fig-
ure 3.5), so they’re going to be highly accurate and perform very well. In the case of
an orientation change the layouts are usually finished before the browser has finished
updating its size, so you can’t get much faster than that.

 The component rendering is split into multiple steps, as you see in figure 3.5.
The number for each step corresponds to the number in the list that follows.
There are a few steps that are big but important. Let’s explore the steps of the ren-
der phase:

47Introducing the component life cycle
1 doAdd is called—The doAdd method is called, adding the component to the con-
tainer as an item. This method doesn’t render anything by itself, but it kicks off
the rendering process.

2 setParent is called—The component needs to have a defined parent. This
method checks to see if the parent property on the component is set, and if it
is the method automatically removes the component from the current parent.
Then it’ll set the parent property to the container that the component is being
added to.

3 The component is reported rendered—At this point the component reports that it’s
rendered. This step is a little tricky, because the component isn’t rendered in
the sense that it’s in the DOM. The HTML structure was already created back
in the initialization phase, so it’s rendered outside of the DOM. It’s a little crazy
to think that way, but it gives the framework a chance to change the HTML
before it’s inserted into the DOM. Remember from earlier that DOM writing is
slow. Doing it this way saves a few crucial milliseconds.

4 The renderedchange event is fired—Because the component now reports that it’s
rendered, the renderedchange event is fired. If you use this event to manipulate
the element of the component you need to be aware that the component isn’t
in the DOM at this point. This is important: you can do things to the compo-
nent, but your options may be limited because it’s not in the DOM.

5 The hide event is fired—This is another important step. The component is still
not in the DOM, but it’s getting hidden. But why? When the component is
finally inserted into the DOM it’s hidden in order for the layouts to correctly
catch up so you don’t see the browser jerking things around. This approach
results in a much better user experience. It’s like the saying, “Sometimes you
have to take a step back to go forward.” You’ll see in the following steps that
there are still things that are going to happen to the component.

doAdd()1

Parent Is Set2 Report Rendered3

renderedchange

Event Fired
4

hide Event Fired5

DOM Insertion6

add Event Fired7

show Event Fired9

activate Event Fired8

Figure 3.5 The render phase of a component is simple when layouts are CSS-based.

48 CHAPTER 3 Sencha Touch foundations
6 The component is inserted in the DOM—It’s been a long road, but the component is
now finally inserted into the DOM! The component is still hidden, but it’s there.
You have a few more things to do and then it’ll be made visible.

7 The add event is fired—The parent of the component will now fire an add event.
This isn’t a step for the component because its parent is the one that fires the
add event, but it’s part of the rendering process of the component and you
should know about it as you develop your application.

8 The activate event is fired—This event will fire only if the container of the com-
ponent doesn’t already have an active item. If the component is to be made the
active item it’ll have the activate event fired. This event will also make the com-
ponent visually active so it’s no longer hidden, but do remember that the event
is fired before the component is visually shown. The show event is fired after the
component is visually shown at this point.

The render phase consists of a lot of events. Because the process is event-driven the
code remains flexible. You could handle this phase by executing methods, but the same
events the framework uses to render a component can also be listened to when you’re
developing an application; methods are much harder to hook into.

 You’ve seen how a component is created in the initialization phase and optionally
rendered in the render phase. The last part of the component life cycle is to destroy
the component in the destruction phase.

3.2.3 Destruction phase
The death of a component is a crucial step in its life. Destroying the component is per-
formed via the destroy method, which takes care of critical tasks such as removing
the component and any children from the DOM tree, purging event listeners, and
unregistering the component from the Ext.ComponentManager. The component’s
destroy method can be called by a parent container or manually by your code. Fig-
ure 3.6 illustrates the steps that go into the destruction phase.

 With our Lego blocks from childhood it was always harder to build something than
to tear it down. The destruction phase is no different in that regard. Here are the
steps that make up the final stage of a component’s life. Keep in mind that each step
corresponds to a step in figure 3.6.

1 The component is removed from the parent—If the component is an item of a con-
tainer, it’ll be removed from the container.

2 The renderedchange event is fired—The renderedchange event is fired, telling
the component that it’ll no longer be rendered. Note that the event is fired
before the component is removed.

3 The DOM is removed—Unlike the render phase, where you had to wait for the
DOM to reflect the component, the destruction of the component removes
the DOM elements early on.

4 The remove event is fired—Now is the time for the container to announce that
the component has been removed by firing the remove event. The remove event

49Introducing the component life cycle
is an important step in the destruction phase, even though the event isn’t fired
on the component itself.

5 References are destroyed—Each component has a referenceList property that’s an
array of strings, with each string being a property on the component. For exam-
ple, all components will have the string 'element' in the referenceList array,
and every component has an element property that’s an Ext.dom.Element of the
component’s DOM. This step loops through each item and executes the destroy
method on each item. Even though the DOM elements for the component have
been removed there are still Ext.dom.Element references to them and, if not
destroyed, they’ll cause a memory leak.

An advanced technique when you’re creating custom components is to uti-
lize this referenceList array to clean up references. You just have to make sure
it has a destroy method or you’ll get a JavaScript error.

6 The component is deregistered—The reference for the component in the Ext
.ComponentManager is removed.

7 Listeners are purged—All listeners on the component are cleared and removed
from the component. If this step didn’t happen the leftover listeners would
be considered a memory leak and would quickly add up and slow down your
application.

Now that you’ve endured the long and arduous road through the component life
cycle, we want to warn you not to underestimate the importance of the three different
phases, especially when you’re venturing into creating your own components. Many
developers have dismissed the destruction phase, only to leave a continuously polling
data store hanging around to cause havoc.

 The last part of this chapter shows you how to create and manage components.

Component Removed

From Parent
1

renderedchange Event

Fired
2

DOM Elements

Destroyed
3

remove Event Fired4

Component References

Destroyed
5

Component

deregistration
6

Listeners Are

Removed
7

Figure 3.6 The destruction phase of a component is equally as important as
the initialization phase. This is where cleanup of event listeners and DOM
elements, as well as deregistration and removing of elements, happens—all
in the spirit of keeping your application running like the well-oiled machine
that it is.

50 CHAPTER 3 Sencha Touch foundations
3.3 XTypes and the ComponentManager
Each component within the Sencha Touch framework can be created in one of three
ways: direct instantiation, direct-loaded instantiation, and lazy instantiation. So what’s
the difference? Direct instantiation will instantiate a component right away when the
browser executes the code. Direct-loaded instantiation is similar to direct instantiation
in that the component will be created right away, but only after checking if the class is
loaded. Sencha Touch can dynamically load components, so in order to create a com-
ponent the file has to be loaded and then the component can be instantiated. Lazy
instantiation uses a configuration object. Once the component is required to be
instantiated the component will then be instantiated using that configuration object.

3.3.1 Examples of instantiations

Direct instantiation will look familiar to most programmers; most languages use it
predominantly. In this case the component is created explicitly via its constructor,
providing instant access to the component and all of its properties, including the com-
ponent’s DOM structure once it renders.

 In practice it looks something like this:

var myPanel = new Ext.Panel({
 modal : true,
 hideOnMaskTap : true,
 centered : true,
 scrollable : 'vertical',
 width : 300,
 height : 200,
 styleHtmlContent : true,
 html : '<h2>Hello Readers</h2>'
});

The direct-loaded instantiation method makes use of Ext.create. Ext.create can
create a Sencha Touch component. This is similar to the direct instantiation method
where it creates the component immediately, but here it uses Ext.Loader. If the com-
ponent isn’t loaded, Ext.Loader will load that class and then create the component
like direct instantiation does via the constructor. We’ll take a look at Ext.Loader a bit
later. Here’s an example of using Ext.create:

var myPanel = Ext.create('Ext.Panel', {
 modal : true,
 hideOnMaskTap : true,
 centered : true,
 scrollable : 'vertical',
 width : 300,
 height : 200,
 styleHtmlContent : true,
 html : '<h2>Hello Readers</h2>'
});

Sencha Touch also allows for the use of lazy instantiation, an alternative method to
direct and direct-loaded instantiation that uses an XType to represent the component:

51XTypes and the ComponentManager
var myPanel = {
 xtype : 'panel',
 modal : true,
 hideOnMaskTap : true,
 centered : true,
 scrollable : 'vertical',
 width : 300,
 height : 200,
 styleHtmlContent : true,
 html : '<h2>Hello Readers</h2>'

};

Ext.ComponentManager.create(myPanel).show();

Instead of explicitly creating a new instance of a component, a plain JavaScript object
containing a special string property named an XType, along with the other various
configuration values for the class, is used in its place. The XType value serves as a
unique identifier linking the string value to a Sencha Touch component registered
with the Ext.ComponentManager, a singleton class that tracks all components and
their XTypes. This link tells the ComponentManager which component to instantiate
when an XType is encountered. The reason the previous code sample works is because
every single UI widget is registered with the Ext.ComponentManager, and the code uses
'panel' as the XType, which corresponds to the Ext.Panel component.

 Whenever a component is initialized the ComponentManager automatically checks
whether the component contains any child items, and for each child item checks whether
the XType property is set. If it is, a new instance of the class that corresponds to the
XType is created where the child component should be.

3.3.2 The pros and cons

Now that you know the ways to instantiate a component, when should you use one
over the other? First let’s look at some pros and cons of using each method in order to
make a decision about what to use.

 Direct instantiation will create the component right away, which is good, right? Yes
and no. It’s good because that component and all the properties and methods are
available right away, but the problem is that in some situations you don’t need to have
that component instantiated right away. Direct-loaded instantiation has the same issue
but could create an Ajax request to load the component’s source file, which could
delay start-up time and thus give the user the illusion that the application is running
slowly, and performance would take a negative hit.

 If that component isn’t being used then it may not need to be instantiated and
take up precious memory on the mobile device; this is where lazy instantiation may
be a better choice. When you don’t need to have all those properties and methods
available you can use lazy instantiation to have only a small object stored in memory.
Once the component is needed it’ll be instantiated into a full component, thus sav-
ing memory on that mobile device, and your application will perform better. Later

52 CHAPTER 3 Sencha Touch foundations
in chapter 9 you’ll learn about creating your own class using Ext.define and in the
config property you’ll use lazy instantiation.

 Another benefit of using lazy instantiation is that your code will be cleaner and
more elegant. Child items can be declared in line versus creating them one by one,
resulting in more streamlined code. This configuration object can be assembled
dynamically by your code and even be retrieved from a backend by Ajax.

 So lazy instantiation sounds fantastic, doesn’t it? Sometimes, when something
sounds too good to be true, it can be. Using lazy instantiation defers both the instanti-
ation phase and the render phase of the component life cycle, resulting in a loss of
immediate access to the component, something that isn’t a problem when using
direct or direct-loaded instantiation.

 If you need to take action on a component, it must be instantiated. If the compo-
nent hasn’t been transformed into a full component you can’t do anything with it. You
always need to be aware of this limitation in your application. Is that component going
to be a component or is it going to be a configuration object?

 There are many things to take into consideration, but don’t be overwhelmed. The
choice between direct instantiation and direct-loaded instantiation is simple: could
that component’s source file not be loaded? If there’s a chance it might not be loaded,
then direct-loaded instantiation is the way to go; if it’s going to be loaded, then using
Ext.create may cause a little overhead that isn’t needed and you can just go with
direct instantiation. The decision between direct/direct-loaded instantiation and lazy
instantiation comes down to whether or not the component is needed when the line
of code is executed by the browser’s JavaScript engine. Lazy instantiation can allow
you to boost performance, but it can also create more work because it’s not a compo-
nent. If you can get away with using lazy instantiation we recommend it over the other
two options.

3.4 Summary
This chapter may not be the most glamorous chapter, but it’s important. Before you
can build the walls of a house you must have a stable foundation. You saw the entire
Component model, checked out the component life cycle and its three phases, and
explored how to create a component. You also learned what to think about when
deciding how to instantiate a component in your application. So far you’ve only
scratched the surface of what Sencha Touch provides and what’s possible. If you aren’t
yet comfortable with the material covered in this chapter it might be prudent to move
on and periodically circle back to this chapter as a refresher. Ready for some more
excitement? Next we’re going to take a look at containers and some different panels
that liven up Sencha Touch components.

Part 2

Building mobile
user interfaces

By now you’ve obtained core knowledge that’s essential to implementing
the Sencha Touch framework. In this part you’ll start to see the various widgets
that comprise Sencha Touch. You’ll also have an opportunity to look at how
data-driven views work.

 We kick things off with chapter 4, where you get an opportunity to look at
how containers and layouts work to arrange your UI. Chapter 5 is focused on
how components are “docked” and how to use toolbars effectively. Chapter 6
shows you how to use sheets and other widgets to focus the user’s attention. In
chapter 7 you learn how to use data stores to drive views. Chapter 8 focuses on
getting data from the users with form panels and various input fields. We close
out this part with chapter 9, where you learn how to use Google Maps, audio,
and video in your applications.

 By the end of this part you’ll have a solid foundation of how Sencha Touch
widgets work and how to use each of them effectively.

Mastering the
building blocks
In the previous chapter we covered a lot of foundational topics, including the
Component model and component life cycle, and most important, how to create
components. Armed with all this knowledge, you can now see how Sencha Touch
uses these new concepts in some of the major UI components and thus master such
topics as containers, panels, and TabPanels—exactly the things covered in this
chapter. We’ll explore how components are managed within containers and how
to arrange components in various ways using the provided layouts. In the process
we’ll look into building a simple wizard-style interface, and explore how to build a
TabPanel that looks similar to the typical iOS apps with icons at the bottom.

 First things first: let’s begin by diving into the anatomy of the Container class.

This chapter covers
■ Exploring the Sencha Touch Container model
■ Learning utility methods to arrange and

manage widgets
■ Learning to float and drag panels
■ Implementing the TabPanel
55

56 CHAPTER 4 Mastering the building blocks
4.1 Containers: Mounting our UI workhorse
The container is the workhorse widget of Sencha Touch because it’s typically deployed
to display and help organize your application layout. It provides the foundation for
components to manage their unruly children and facilitates ways to add, insert,
remove, and query child components. The container is an extremely versatile widget
and is even deployed by the framework authors to add other UI components to the
framework. To get a feel for the gravity of the container’s importance take a look at its
class inheritance model in figure 4.1.

 As illustrated in figure 4.1, the Container class is the base for at least 14 immediate
subclasses, including widgets that you might not expect like NestedList, Carousel,
and Toolbar.

 In case you’re wondering, the reason Container is used as the base for these wid-
gets will become much clearer when we take a look under the hood of this widget.

4.1.1 Container’s anatomy

The versatility of the Container class stems from its ability to contain child widgets
and the ability to easily manage and arrange them. The container uses a layout man-
ager to visually organize child items in an area known as the content body, or “body”
for short. To understand what that looks like, go ahead and build your first container
using the code in the next listing.

Container

Panel

DataView List

Sheet

ActionSheet

MessageBox

Picker

NestedList Picker Slot

Carousel

Component

Toolbar Tab Bar

FieldSet

Form Panel

Segmented

Button

Date Picker

Tab Panel

TitleBar

Viewport

Infnite

Carousel

DataItem

Navigation

View

Navigation

Bar

Slider Toggle

Figure 4.1 The Container class inheritance model

57Containers: Mounting our UI workhorse
var loginContainer = Ext.create('Ext.Container', {
 itemId : 'loginContainer',
 fullscreen : true,
 items : [
 {
 xtype : 'textfield',
 label : 'Login',
 placeHolder : 'Enter Username Here'
 },
 {
 xtype : 'textfield',
 label : 'Organization',
 itemId : 'orgField',
 placeHolder : 'Enter Your Organization Here'
 },
 {
 xtype : 'textfield',
 label : 'Password',
 placeHolder : 'Enter Password Here'
 }
]
});

The code itself is relatively simple. You instantiate a
container and give it an id. Because you’ll reuse this
sample code in later examples assigning an id is nec-
essary so you can obtain a handle on the container.
This is your one and only container on the screen so
you can mark it as fullscreen: true. Doing so ensures
that the container automatically uses the full height
and width of the device on which it’s run. After that
you add a few form elements via XType. Once the code
executes it should look like figure 4.2.

 You have your first container, with a login form, no
less. Obviously, you’ll want to interact with the compo-
nents for various reasons, such as obtaining values from
the form elements, or because you need to change the
content of the container to fit your particular applica-
tion logic. To do so you’ll need to learn how to obtain
references to the container and its children and how to
make changes to the container.

4.1.2 Keeping unruly children on the right track
Dealing with unruly children is a frustrating fact of life
for any parent. Over the years you develop tricks that
help with that endeavor. Remedies include timeouts, revoking TV privileges, or hand-
ing them off to your parents for a while.

Listing 4.1 Building your first container

Figure 4.2 The rendered
container UI for listing 4.1

58 CHAPTER 4 Mastering the building blocks
 Just as in real life, you must develop ways to handle
children within containers to keep them in line. Luck-
ily for you most of the helpers and utility methods you
need to accomplish this are already in place. Mastering
these methods will enable you to dynamically update
the UI of your app and make it more interactive. Now
let’s get acquainted with these methods.

 Adding components into a container is a relatively
simple task, and you’re provided with two methods to
accomplish it: add and insert. The add method appends
the new child component to the container’s hierarchy,
whereas the insert method places the new component
at the specified index. To illustrate the add functionality
further let’s add to the container created in listing 4.1.
To do this you’ll use the handy browser debug console:

var container = Ext.ComponentQuery.query
('#loginContainer')[0];

container.add({
 xtype : 'checkboxfield',
 label : 'Remember'
});

Running this code will add a new component (a check-
box) to the container (figure 4.3). The container’s lay-
out automatically handles refreshing the container and
updating the position and size of all child components to make the new component
appear in the right place.

Inserting a component works basically the same way as adding one; the main differ-
ence is the additional parameter that determines the index where the new compo-
nent should be inserted. In this example you’re inserting a new item at index 0,
making the new component the first item in the container:

var container = Ext.ComponentQuery.query('#loginContainer')[0];
container.insert(0, {
 html: '<h1>Please enter your credentials</h1>'
 });

Running this snippet of code from the Safari debug console will produce what’s
shown in figure 4.4.

Ext JS and Sencha Touch 1.x developers take note
For those developers upgrading from Sencha Touch 1.x (or coming from Ext JS), you
might’ve noticed that the new component shows up immediately. This is due to the
new layout manager which removes the need to call doLayout() separately.

Figure 4.3 Illustration of code
from listing 4.1 with a checkbox
added dynamically; notice that
the checkbox was appended at
the end.

59Containers: Mounting our UI workhorse
 As you can see, adding and inserting components is
easy as pie. Removing components is no different in
that regard. You either provide a reference to the com-
ponent that should be removed from the container or
to the component’s id or itemId:

var container = Ext.ComponentQuery.query
('#loginContainer')[0];

 container.remove('orgField');

Executing this statement from the debugger console
causes the component to invoke its destroy method
automatically, thus initiating the destruction phase and
deleting the component’s DOM element.

 One special thing to note about the remove method
is an optional second parameter that can be passed to
tell the removed component to skip invoking the
destroy method. Using this parameter is particularly
useful if you wish to move a component from one con-
tainer to another. In principle this works by obtaining a
reference to the component you wish to remove and
then removing the component while passing false as
the additional second parameter. Doing so leaves the
component on the screen and only removes it from the
container. You then add the component (using the ref-
erence you still have) to the second container, thus trig-
gering the DOM elements for the removed component
being moved into the new container. To see this trans-
lated into code take a peek at the following listing.

var mainContainer = Ext.create('Ext.Container', {
 fullscreen : true,
 defaults : {
 style : 'margin-bottom:30px'
 },
 items : [
 {
 itemId : 'panel1',
 items : [
 {
 xtype : 'textfield',
 label : 'Login',
 itemId : 'loginField',
 placeHolder : 'Enter Username Here'
 },
 {
 xtype : 'textfield',

Listing 4.2 Moving items between containers

Figure 4.4 Rendered UI using
code from listing 4.1 with
dynamically added item shown
in figure 4.3, as well as an
inserted panel at position 0.
Because the panel doesn’t have
any borders around it, it shows
as an HTML snippet at the top.

Defines default
values for childrenb

60 CHAPTER 4 Mastering the building blocks
 label : 'Password',
 placeHolder : 'Enter Password Here'
 }
]
 },
 {
 itemId : 'panel2',
 items : [
 {
 xtype : 'textfield',
 label : 'Organization',
 placeHolder : 'Enter Your Organization Here'
 },
 {
 xtype : 'checkboxfield',
 label : 'Remember Login'
 }
]
 }
]
});

Ext.Function.defer(function() {
 var myField = mainContainer.down('#loginField');

 var panel1 = mainContainer.down('#panel1');
 panel1.remove(myField, false);

 var panel2 = mainContainer.down('#panel2');
 panel2.add(myField);
}, 2000, this);

Listing 4.2 might look complicated at first but it breaks down relatively simply. You’re
creating an Ext.Container that contains two child panels, each of them with a differ-
ent itemId and two form elements, textfields and checkboxes respectively. The
main panel contains a defaults property B that contains configuration options that
are automatically applied to all of its direct children, in this case panel1 and panel2.

 After instantiation you create a function c whose execution is deferred by 2 sec-
onds. For this you’re using the Ext.defer method, which is similar to the standard
JavaScript setTimeout function. It defers the execution of a function by a specified
number of milliseconds. What makes it special is that it allows you to set the scope of
the function execution, thus enabling you to run the deferred function in the right
context with the variables you need available. The deferred function first obtains a refer-
ence on the field you wish to move, the loginField, and then a reference to the panel
you wish to remove it from, panel1 d. You call panel1.remove and pass in the refer-
ence to the loginfield and false to indicate that you want to keep the loginField
around after it’s removed from panel1. You then obtain a handle on panel2 and add
the loginField there.

 At this point you’re probably wondering exactly how you obtained a reference to
the items you wanted and how the down method works. For this and more stay tuned
for the next part of the chapter.

Defers function
execution

c

Obtains handle
on childrend

61Containers: Mounting our UI workhorse
4.1.3 Ask and ye shall receive: querying the container hierarchy

Containers provide multiple ways for you to find and get a handle on children. Gener-
ally these methods can be split into two groups. The first group contains methods that
only return direct children of the container. The second group contains methods that
return children at any level. To illustrate the difference, imagine an Ext.Container
that contains an Ext.Fieldset with a single textfield element. The first set of meth-
ods would only be able to reach the fieldset, because that’s a direct child of the
panel. The second set of methods would be able to return the textfield because it
can find items at any level by searching within items of the container.

 Of all these methods, getComponent is by far the easiest to use, and it falls into the
first group. It accepts only a single parameter which can either be an index or a
string. The index corresponds to the index location of the item within the items col-
lections of the container. The string corresponds either to the id or the itemId of the
component you want to retrieve. In practice, using getComponent looks like this:

mainContainer.getComponent(0);
mainContainer.getComponent("panel2");

Not much to it, eh? The first line retrieves the first child component within myPanel,
and the second line retrieves a component with an id or itemId of panel2. If you
assume a code structure like that in listing 4.2, then the first line would retrieve
panel1 and the second line would retrieve panel2. Keep in mind that this method
only returns direct children of the container you’re querying.

 Although getComponent is relatively simple to use its use is somewhat limited. This
is why Sencha Touch presents you with three functions that have more flexibility in
what and how you query.

 All three of these functions take a single selector string that behaves similarly to
CSS selectors, allowing you to query for items either by id, itemId, XType, or any com-
bination thereof. To draw more parallels to CSS, you can search by id and itemId the
same way as when you’re addressing an id in CSS: via the pound sign. Likewise, XTypes
are similar to classes, requiring the use of a dot to address them.

 The first function is the child method, which falls into the first group we discussed
earlier, returning only direct children of a container. You’ll once again use the code
structure from listing 4.2 as a baseline for the next example, which consists of multiple
calls to the child method. Each call will pass in one of the selectors from table 4.1,
just like this:

mainContainer.child("SELECTOR-GOES-HERE");

Looking at table 4.1, you can immediately see the benefits of using child to make
your queries. As mentioned before, it isn’t the only method. The other two are the
down and query methods. Both follow the same syntax as the child method, with
the only distinction being that all sublevels of a container are searched, not just
direct children.

62 CHAPTER 4 Mastering the building blocks
If you were to rewrite the second sample from table 4.1 to use down instead of child
it’d look like the following and return the login field:

mainContainer.down("#loginField");

Both down and child return only a single item. More specifically, they return the first
match encountered. If you anticipate having multiple results and want them all use
the query method. Rewriting the last sample call from table 4.1 to use query returns
an array of three items, all of them textfields:

mainContainer.query(".textfield");

The only thing to keep in mind about query that makes it slightly different from the
other methods is that it always returns an array. Even if a single item or nothing was
found it’d still return an array, albeit one that contained a single item or was empty.

We’ve covered containers and how to fill them with components, as well as how to
add, edit, and remove components from containers. Each example so far has only
dealt with the most basic way to arrange components: stacking them on top of each
other using the default layout. We’re not sure about you, but we want our applica-
tions to be more visually appealing than simply having elements stacked one above
the other. So let’s take a closer look at the magic behind arranging components within
your containers: the Sencha layouts.

Table 4.1 Sample selectors that should help you differentiate between different selectors that the
child, down, and query methods accept

Selector Explanation and result

"#panel1" The pound sign indicates that you’re searching for an item by id or itemId, in
this case, "panel1" (because panel1 is the first item that’s a direct child of
mainPanel and matches the itemId).

"#loginField" Here you’re searching for the loginField by itemId. Because login-
Field isn’t a direct child of mainPanel null is returned.

".panel" This line searches for items with the panel XType. This is indicated by the dot
in the beginning. This would return panel1 because it’s the first direct child
with an XType of panel.

".textfield" This line would once again return null because you’re searching for items
with an XType of textfield, none of which are direct children of
mainContainer.

A note about good form
When you’re using the new ComponentQuery functions to search by XType a dot pre-
fix (.xtype) is optional, but it’s considered good form to use it anyway because doing
so makes it clear that you’re searching for an XType.

63Everything must have its place: layouts
4.2 Everything must have its place: layouts
One of the hardest parts when building any app is managing all the UI pieces. Posi-
tioning everything correctly so it shows up where it’s supposed to and making sure
things remain that way after the user starts wildly thrashing around in your beautifully
laid-out application are difficult to achieve. This is where the Sencha Touch layout
management schemes come to the rescue. They’re responsible for managing the
visual organization of all components onscreen. The complexity of these layouts
ranges from a simple fit layout, which automatically sizes a single child item to fit
within the confines of its parent, to more complex layouts like the card layout, which
provides a wizard-like interface with multiple screens.

 When exploring these layouts we’ll hit upon some more lengthy and verbose
examples that can serve as a great starting point for your application. Let’s start our
journey by taking a look at the building block for all layouts, the default layout, shown
in figure 4.5.

4.2.1 The default layout

The default layout serves as the foundation for all other layouts. Besides managing items
that need to be laid out and positioning them it provides the capability to dock items. This
ability is in turn passed down to all other layouts. You’ll learn more in the next chapter.

 The default layout is the easiest to use because it’s automatically assigned for any
container that doesn’t have a specific layout defined. Any items within a container

Learn more about ComponentQuery
One little-known secret about the container’s child, down, and query methods is
that they implement something called ComponentQuery under the hood. Component-
Query is a way to search your application for instances of components using Sen-
cha’s query language. The methods we just mentioned scope the query to a specific
container instance, but you could search an entire application using Ext.Component-
Query.query(). To learn more about this check out Ext.ComponentQuery in the
Sencha Touch API documentation.

Box

HBox VBox

Fit

Card

Abstract

Figure 4.5 The Layout class hierarchy

64 CHAPTER 4 Mastering the building blocks
using this layout are placed on the screen, one on top of another. Items aren’t directly
size-managed, meaning that any item can conform to the size of the parent, but it
doesn’t necessarily have to do so. To see this you need to set up a dynamic example
using a few components, as shown in the following listing.

var myContainer = Ext.create('Ext.Container', {
 fullscreen : true,
 defaults : {
 style : 'border: 1px solid blue;'
 },
 items : [
 {
 docked : 'top',
 xtype : 'toolbar',
 title : 'Default Layout'
 },
 {
 docked : 'bottom',
 xtype : 'toolbar',
 items : [
 {
 text : 'Add Child',
 handler : function() {
 myContainer.add({
 xtype : 'container',
 style : 'border: 1px solid blue;',
 html : 'Child'
 });
 }
 },
 {
 text : 'Add Fixed Width Child',
 handler : function() {
 myContainer.add({
 xtype : 'container',
 style : 'border: 1px solid blue;',
 width : 100,
 html : 'Fixed Child'
 });
 }
 }
]
 },
 {
 html : 'First Child'
 },
 {
 html : 'Fixed Width Child',
 width : 100
 },
 {
 html : 'Child'

Listing 4.3 The default layout

Use fullscreen
option

b

Contains default
values for childrenc

Creates
title bar

d

Creates bottom-
docked toolbare

Adds child
panels

f

65Everything must have its place: layouts
 }
]
});

Listing 4.3 does quite a lot to exercise the default layout. The primary reason is to
illustrate how items stack and don’t resize when added dynamically.

 The first thing you do is instantiate a container that occupies the entire screen
through the fullscreen option B. Because you’ll be adding simple child containers,
which don’t come with any visual indicators to mark their bounding boxes, you’ll once
again use the defaults object c to automatically give each child a blue, one-pixel bor-
der. To be a bit more user-friendly you add a title bar d, which is a toolbar with
docked:'top' and a title property. After that you add a second toolbar at the bot-
tom, with two buttons e, to allow the addition of new items that have a fixed width
and items that don’t have a fixed width. Note that although the toolbars are defined
inside of the items array, they contain the docked option, which means they don’t
show as part of the container body itself. The toolbar buttons have handlers that add a
new child container into the main container. Last, you set up three static container
instances in the items array property f. Notice that you aren’t specifying any XTypes
for the child items. Unless otherwise specified all direct children of a container use
"container" as the default XType. When you run the sample you should get a screen
like the one on the left side of figure 4.6. Be sure to hit the buttons in the toolbar a
few times to see how items are sized once they’re added, just like the one you see in
the right side of figure 4.6.

Although the default layout provides little to manage the size of child items, it isn’t
completely useless. Relative to the other layouts it’s lightweight, making it ideal if you
want to display child items that have fixed dimensions. There are times, though, when
you’ll want to have child items dynamically resize to fit the parent container. For those
times the fit layout is exactly what you need.

4.2.2 Make it fit: the fit layout

The fit layout, shown in listing 4.4, forces a container’s single child to “fit” to its body
element and is by far the simplest of the layouts to use. It only requires that you have a
single item within the container.

A change from Sencha Touch 1.x
If you’re upgrading from Sencha Touch 1.x you might be wondering what happened to
AutoContainerLayout and AutoComponentLayout. The answer is simple: they’ve
both been replaced by the default layout. They have, however, been added as alter-
nate classnames for the default layout to provide backward compatibility, ensuring
you don’t have to change your existing apps to accommodate this change.

66 CHAPTER 4 Mastering the building blocks
var myContainer = new Ext.Container({
 fullscreen : true,
 layout : 'fit',
 items : [
 {
 docked : 'top',
 xtype : 'toolbar',
 title : 'Fit Layout'
 },
 {
 xtype : 'container',
 style : 'background-color: pink; padding: 20px;',
 html : 'I Fit in my parent'
 }
]
});

Listing 4.4 generates a simple panel that automatically occupies the entire screen of
the device it’s run on, as shown in figure 4.7.

 One caveat to keep in mind about the fit layout is that it’s only suitable if a single
item is present. The layout will break if multiple items are housed within the same
container, thus causing undesirable effects. For managing multiple items within a con-
tainer take a look at the card and box layouts next.

Listing 4.4 The fit layout

Figure 4.6 The result of a
simple default layout. The left
side shows the initial state of the
code from listing 4.3, whereas
the right side shows the result of
clicking the Add Child and Add
Fixed Width Child buttons a few
times. The blue border makes it
easier to see the bounding boxes
for each item.

67Everything must have its place: layouts

Ret
cur
4.2.3 Card layout
A direct subclass of the fit layout, the card layout combines the concept of compo-
nents conforming to the size of the container from the fit layout with the ability to
have multiple children under one container. The layout behaves somewhat like a car-
ousel or wizard, only showing a single “card” or “screen” at a time. Each card automat-
ically occupies the full size of the container and can house any number of Component
instances. Managing which card is shown is done during render time using a con-
tainer’s activeItem configuration, and after rendering flipping between cards is left
to the developer via the container’s setActiveItem method. Under the hood, the
card layout taps into the container’s activeitemchange event to catch whenever it’s
supposed to change items and perform the change.

 Navigation frequently occurs in a wizard-like interface through the use of previous
and next buttons in a toolbar, or through actions embedded within the cards. Of
course, there are various other methods to achieve the same thing: a programmatic
timer or event-based methods, for example. In the next listing you explore how to
create a simple wizard-style interface.

var handleNavigation = function(btn) {
 var currentContainer = myContainer.getActiveItem(),
 innerItems = myContainer.getInnerItems(),
 totalItems = innerItems.length,
 currentIndex = innerItems.indexOf(currentContainer),
 direction,
 newIndex;

 if (btn.getText() == 'Back') {
 direction = 'right';
 newIndex = currentIndex > 0
 ? (currentIndex - 1) : (totalItems - 1);
 }
 else {
 direction = 'left';
 newIndex = currentIndex < (totalItems - 1)
 ? (currentIndex + 1) : 0;
 }

Listing 4.5 The card layout

Figure 4.7 Using the fit layout
to illustrate a single child
resizing to fit its parent

Declares
function to
handle
navigationb

rieves
rently
active

card c

Determines
which
button was
pressedd

68 CHAPTER 4 Mastering the building blocks
 myContainer.animateActiveItem(newIndex, {
 type : 'slide',
 direction : direction
 });
};

var myContainer = Ext.create('Ext.Container',{
 fullscreen : true,
 activeItem : 1,
 layout : {
 type : 'card',
 animation : 'slide'
 },
 items : [
 {
 xtype : 'toolbar',
 docked : 'top',
 title : 'Card Layout',
 items : [
 {
 text : 'Back',
 ui : 'back',
 handler : handleNavigation
 },
 { xtype : 'spacer' },
 {
 text : 'Forward',
 ui : 'forward',
 handler : handleNavigation
 }
]
 },
 {
 html : 'Card 1',
 style : 'background-color: #99F;'
 },
 {
 html : 'Card 2',
 style : 'background-color: #F99;'
 },
 {
 html : 'Card 3',
 style : 'background-color: #9F9;'
 }
]
});

The first thing you do is create a method to control the card flipping B by determin-
ing the active item’s index and then calculating which index to show next. This is
accomplished by first retrieving the activeItem using the getActiveItem method c,
which returns a reference to the currently active container. From there you deter-
mine where in the set of cards the activeItem is, because the animateActiveItem
method that allows you to navigate between different cards works based on the index
of the new card to which you wish to move. To obtain the index use the standard

Gives container
a card layout

e

Sets active itemf

Attaches nav
handler to
buttonsg

69Everything must have its place: layouts
array function indexOf, feeding it a reference to the activeItem. This tells you the
location of the card within the items array of the container. By checking the text of
the button that was pressed you can determine which direction to navigate d, either
back or forward. The only thing left then is incrementing or decrementing the index
to reflect the direction you’re moving. Because you want to wrap around from the first
card to the last, and from the last card to the first, you need to perform an additional
check to ensure that the new index doesn’t go below 0 or above the number of items
you have in the container. If you don’t want to wrap around you could change this
same logic to skip the navigation when Previous or Next is clicked from the first or last
card, respectively.

 Now that you have a way to navigate between different cards in a card layout, you
need to create said cards. To do this, start with a container, giving it a layout of
"card" e. This automatically triggers certain changes in the container to make it lis-
ten to the activeItem config option and expose the getActiveItem and animate-
ActiveItem methods. Use the activeItem config f to start with the second card by
setting the config option to 1. This works because cards are in a 0-based index, so
index number 1 is actually the second item. After that, add a toolbar with two buttons
and point the handlers of the buttons to the handy navigation function g you created
earlier. The only thing left to get what’s shown in figure 4.8 is to add the cards as child
items. For this you only need to specify the html property, because all child items are
containers by default.

Figure 4.8 A card layout showing the initial card, along with a “cube” transition

70 CHAPTER 4 Mastering the building blocks
The card layout is one of the most useful layouts because it provides a way to show
content without much clutter, allowing the user to navigate through it one piece at a
time. Be careful using it, though. Each card takes up valuable rendering time and
memory. This is especially true on mobile devices where CPU cycles and RAM aren’t in
abundance. Adding too many cards can result in a significant slowdown of your appli-
cation. The exact number when this occurs depends on the content of each card, and
that’s something you’ll have to play around with. It’s certainly something to keep in
mind when designing your application.

 Another major drawback of the card layout is that each card automatically occu-
pies the entire container, thus eating up valuable screen space. To alleviate that you
have another two layouts at your disposal that allow you to place multiple components
on a screen in rows or columns: the box layouts.

4.2.4 HBox and VBox layouts

The HBox and VBox layouts are different from the ones we’ve discussed so far in that
they display items in columns or rows respectively. This allows for much greater flexi-
bility when creating complex layouts for your application, as each row or column
could utilize its own layout, allowing you to combine a set of rows with a card layout in
each row, for example. Let’s dive into the HBox layout in the next listing.

var myContainer = Ext.create('Ext.Container', {
 fullscreen : true,
 layout : {
 type : 'hbox',
 pack : 'start',
 align : 'start'
 },
 defaults : {
 style : 'border: 1px solid red;'
 },
 items: [
 {
 html : 'Panel 1',
 height : 100
 },
 {
 html : 'Panel 2',
 height : 75,
 width : 100
 },
 {
 html : 'Panel 3',
 height : 200
 }
]
});

Listing 4.6 The HBox layout

71Everything must have its place: layouts
In listing 4.6 you create a container with three irregularly shaped child containers to
properly exercise the different layout configuration parameters available. The first is
pack, or horizontal alignment, and the second is align, or vertical alignment. You’ll
notice that the sample code has a defaults property that sets a red border style, which
will be automatically applied to all child items. This is done so you can better see the
boundaries for each item, because containers don’t have any borders by default.

 The pack parameter accepts four different values: 'start', 'center', 'end', and
'justify'. The first three options align the content on the horizontal axis either on the
left, in the middle, or on the right side of the container. The fourth option, 'justify',
aligns the content with the left and right side of the container at the same time, thus
spreading content across the entire width. Modifying the pack parameter in listing 4.6
will result in one of the rendered panels in figure 4.9.

 The align parameter accepts four possible values: 'start', 'center', 'end', and
'stretch'. The first three options align at the top, middle, and bottom respectively,
and the fourth option overwrites the height, thus stretching the content to occupy the
entire height of the container. The default value for align is 'center'. Figure 4.10
illustrates how you can change the way children are sized and arranged based on a few
different combinations.

 One of the great features behind box layouts is the ability to size rows and columns
either manually, by specifying a fixed height and width as you did in listing 4.6, or
dynamically via the use of a percentage value or a special flex value. The flex value
acts as a weight, or a priority, if you will, instead of a percentage that a component
should occupy. Let’s assume for a second that you want to create a layout of multiple
columns where all columns have an equal width. You would use an HBox layout and
give each column the same flex value. If you wanted to have two of the columns

Figure 4.9 Showcasing the various pack options. These screenshots use an align:start setting
as well.

72 CHAPTER 4 Mastering the building blocks
occupy the first half of the screen, and the third column expand to fill the other half,
you’d have to ensure that the flex value for each of the first two columns is exactly
half that of the third column. For instance:

items: [
 {
 html : 'Panel 1',
 flex : 1
 },
 {
 html : 'Panel 2',
 flex : 1
 },
 {
 html : 'Panel 3',
 flex : 2
 }
]

The main caveat when using either one of the box layouts is that each item has to have
a sizing indicator. This means fixed size, percentage, or the flex parameter must be
present. Furthermore, using the align:stretch option only works with flex. Leaving
these off will either have undesirable results, or simply not work, which can take hours
to debug. Trust us, we’ve been there.

4.2.5 Nesting layouts

Something many starting developers don’t realize is that you can easily nest different
layouts to achieve crazy combinations that don’t generally exist out of the box.
Because Sencha Touch doesn’t provide for a table layout or column layout like Ext JS
does, HBox and VBox are the only options at your disposal to achieve a multirow or

Figure 4.10 Mixing the pack parameter with different align options can produce interesting and
useful combinations.

73Everything must have its place: layouts
multicolumn layout. Figure 4.11 illustrates what you can achieve with a little creativity,
by nesting the HBox and VBox layouts and adding a modified version from the card lay-
out sample covered earlier in listing 4.5.

 Your goal is to create a grid-like structure with a
carousel at the top that spans the full width, and two
rows of content with three columns each, just like fig-
ure 4.11.

 To get started you take a standard Container
instance and give it a VBox layout. To achieve evenly
spaced rows you specify a flex of 1 in the defaults
property, thus forcing the same height on each row.
Notice the additional width parameter that forces each
direct child to have a width of 100%. This is needed
because each child of the main Panel doesn’t automati-
cally adjust the width of the child items, and the flex
parameter only applies to the height since you’re using
a VBox layout. Assembled, the code would look like this:

var mainContainer = Ext.create('Ext.Container', {
 fullscreen : true,
 layout : 'vbox',
 defaults : {
 width : '100%',
 flex : 1
 },
 items : [
 // … content items go here …
]
});

Now that you have your base container, you start add-
ing content to it. See the following listing.

var myContainer = Ext.create('Ext.Container', {
 fullscreen : true,
 layout : 'vbox',
 defaults : {
 width : '100%',
 flex : 1
 },
 items : [
 {
 itemId : 'cardContainer',
 layout : {
 type : 'card',
 animation : 'slide'
 },
 activeItem : 0,

Listing 4.7 Nested layouts

Figure 4.11 It’s possible to
nest different layouts to achieve
more complex results. This could
easily turn into a magazine
layout, where the cards
represent a picture gallery and
the individual panels represent
an article.

Obtains
handle

b

74 CHAPTER 4 Mastering the building blocks
 items : [
 {
 xtype : 'toolbar',
 docked : 'top',
 title : 'Nested Layouts',
 items : [
 {
 text : 'Back',
 ui : 'back',
 handler : handleNavigation
 },
 { xtype : 'spacer' },
 {
 text : 'Next',
 ui : 'forward',
 handler : handleNavigation
 }
]
 },
 { html : 'Card 1' },
 { html : 'Card 2' },
 { html : 'Card 3' }
]
 },
 {
 layout : 'hbox',
 style : 'border: 1px solid blue;',
 defaults : {
 style : 'border: 1px solid red;',
 flex : 1
 },
 items : [
 { html : 'Panel (0, 0)' },
 { html : 'Panel (1, 0)' },
 { html : 'Panel (2, 0)' }
]
 },
 {
 layout : 'hbox',
 style : 'border: 1px solid blue;',
 defaults : {
 style : 'border: 1px solid red;',
 flex : 1
 },
 items : [
 { html : 'Panel (0, 1)' },
 { html : 'Panel (1, 1)' },
 { html : 'Panel (2, 1)' }
]
 }
]
});

First up is the card layout code from listing 4.5, which you add into the items array.
The only tweak you have to make to it is to give it an itemId B in listing 4.7 so you can

Provides
HTML
content

dCreates
panels

with
HBox

layout

c

75Everything must have its place: layouts
obtain a handle on it later when you tweak the handleNavigation function. After
that you add two Panels c with an HBox layout and three child Panels d each. You
give each of the Panels a one-pixel border to make it easier to see where each one
starts and ends. The three child Panels within each HBox container you give a flex of
1 and a height of 100%, as well as some simple HTML content. The flex is needed so
that the three Panels are the same width and height, occupying the full height avail-
able. This is exactly the same paradigm as before with the VBox layout, but the height
and width are reversed.

 To finish it all up, you still need to tweak your handy navigation function for the
carousel toolbar to fit into your new sample. The major difference between this ver-
sion of the function and the one you had in listing 4.5 is that the card layout is no lon-
ger the main container, but instead is nested within another container. This means
that you need to obtain a reference to it when you want to interact with it. You accom-
plish this by using the down method in conjunction with the newly added itemId.

 As with listing 4.5, place the following function above your container instance
(myContainer):

var handleNavigation = function(btn) {
 var cardContainer = myContainer.down('#cardContainer'),
 currentPanel = cardContainer.getActiveItem(),
 innerItems = cardContainer.getInnerItems(),
 totalItems = innerItems.length,
 currentIndex = innerItems.indexOf(currentPanel),
 direction,
 newIndex;

 if (btn.getText() == "Back") {
 direction = 'right';
 newIndex = currentIndex > 0
 ? (currentIndex - 1) : (totalItems - 1);
 }
 else {
 direction = 'left';
 newIndex = currentIndex < (totalItems - 1)
 ? (currentIndex + 1) : 0;
 }
 cardContainer.animateActiveItem(newIndex, {
 type : 'slide',
 direction : direction
 });
};

In the end you have a complex layout that can easily be used as a springboard for an
application. Potential uses include an online magazine or a picture gallery. The possi-
bilities are almost endless.

 Now that you’ve mastered containers and their layouts to some degree, it’s time to
look at how Sencha builds on containers and expands their functionality through two
Container subclasses: Panel and TabPanel.

76 CHAPTER 4 Mastering the building blocks
4.3 Floating away… with panels
Back in the olden days, the Panel class used to be the work-
horse widget of Sencha Touch. A panel was the de facto go-
to component whenever you needed to manage multiple
child items. These days, however, the panel’s dominance
has been usurped by the standard container, relegating the
Panel class to a simple extension of the Container class
with some added styling, like a border, and the ability to
float. It’s important to note that because Panel does
extend Container it carries with it all of the same abilities
that Container has, including the use of layouts, docking
items, and managing children. Figure 4.12 shows a quick
overview of the full Panel inheritance chain.

 As illustrated in figure 4.12 the Panel class is the
base for everything floating and modal, such as sheets,
pickers, and message boxes. This is because panels
make for great overlays; they have special handling for
the showBy method, where the panel shows a small tip
pointing to the reference component that shows the
panel. To see an illustration of this take a peek at fig-
ure 4.13.

 Although figure 4.13 does look mighty pretty you’re
not here to simply look at pretty pictures. So let’s get
our hands dirty and implement a panel. Because we’re touting the panel’s ability to

Container

Panel

Sheet

ActionSheet MessageBox

Picker

Component

Form Panel

Date Picker
Figure 4.12 The Panel class
inheritance model

Figure 4.13 Floating panel with
showBy used

77Floating away… with panels
float, that’s what we’ll cover first. Let’s up the ante, though, and add the ability to drag
panels around as well while we’re at it, as shown in the next listing.

var floatingPanel = Ext.create('Ext.Panel', {
 height : 200,
 width : 200,
 draggable : true,
 floating : true,
 html : 'Some help could go here.',
 left : 50,
 top : 50,
 items : [
 {
 xtype : 'toolbar',
 docked : 'top',
 title : 'Drag me!'
 }
]
});

Ext.Viewport.add(floatingPanel);

var fsPanel = Ext.create('Ext.Panel', {
 fullscreen : true,
 style : 'background-color: #CCF;',
 html : 'Full screen Panel'
});

As shown in listing 4.8, to create a floating and draggable panel B you must set the
draggable c and floating d options to Boolean true. Setting floating to true
instructs Panel to set its element as absolutely positioned on the page immediately
after it has rendered on screen. Likewise, upon render Panel enables drag and drop
by means of creating a new instance of Ext.util.Draggable for itself.

Next, you set the panel’s position e to 50 pixels in the X and Y coordinate space.
Doing so demonstrates that the absolute positioning set forth by the floating config-
uration option works.

 After creating and rendering the floating and draggable panel you need to add
it to the automatically created Ext.Viewport instance f in order to make the
panel show up. This is because after the panel is created it isn’t managed by any

Listing 4.8 Creating a draggable and floating panel

Know the root of this functionality
Even though we’re using Panel to demonstrate floating and the drag and drop fea-
tures, the root of this functionality is the Ext.Component class. This means that you
can enable these features for just about any subclass of Component, which includes
any custom widgets that you create. All of the features we’ll be discussing moving
forward will be from the perspective of Panel.

Creates floating
panelb

Makes it
draggablec

Makes it
floatingd

Moves to
the 100 X, Y
coordinatese

Shows
panelf

78 CHAPTER 4 Mastering the building blocks
parent container, and because it’s floating you need to use the main viewport to
make it visible.

 Listing 4.8 concludes with the creation of a full-screen panel for contrasting pur-
poses. You do this because the probability that you’ll have a floating and draggable
panel above a full screen and stationary panel is very high. Figure 4.14 illustrates how
it renders on a phone.

 After rendering your floating and draggable panel on screen you might notice that
the floating panel looks more decorated than a nonfloating panel. This is because the
Panel class wraps an extra thick border around itself when it’s set to floating. It gives it
more of a windowed UI feel.

 Because you set draggable to true you can move the panel around the screen by
means of a drag gesture. Notice how the panel is constrained to the limits of the dis-
play. This is a typical touch interface UI convention.

Before we wrap up this discussion there are a few important nuggets of information
you should know about floating panels.

Postinstantiation floating and dragging
If you want to enable these features after a component has been instantiated you
can use the setFloating and setDragging methods. The framework API has full
details on how these methods work under the Ext.Component class.

Figure 4.14 Demonstrating
the floating and draggable
panel

79Floating away… with panels
The first is the fact that floating panels can be set to modal, meaning that Sencha
Touch will create a div element underneath the floating panel, effectively creating a
dimming effect on the rest of the screen. Doing so helps drive attention to your float-
ing panel. To enable the modal feature, add the following configuration parameter to
listing 4.8:

modal: true

Figure 4.15 has a side-by-side comparison of a modal floating panel and a nonmodal
floating panel.

 Figure 4.15 illustrates how a modal floating panel (left) has a dimming effect on
the rest of the screen, making everything else but the floating panel look darker com-
pared to the non-modal floating panel, which seems to have the same contrast as the
rest of the UI.

 The next tidbit you should know about floating panels is that they’ll self-hide
whenever the user taps outside of the confines of the panel. This is the default behav-
ior of a modal panel, but you can modify it via the following parameter:

hideOnMaskTap : false

The hideOnMaskTap configuration property defaults to Boolean true, which enables
the default behavior. To alter the default set it to false. Doing so will ensure that
the Panel won’t hide automatically when tapping outside of the panel’s element.
One thing to note is that this default behavior is enabled whether or not you set
modal to true.

Figure 4.15 Comparing a
modal floating panel (left)
to a nonmodal floating
panel (right)

80 CHAPTER 4 Mastering the building blocks
Another feature to be aware of is that the appearance and disappearance of the panel
can be animated relatively easily. All you have to do is set the following attributes:

showAnimation : 'pop',
hideAnimation : 'fade'

The showAnimation configuration property is used by Panel to animate the appear-
ance of the panel, whereas hideAnimation is used to animate the disappearance. Each
of these parameters accepts a String object. You would pass a Boolean false if you
wanted to disable a component’s default transition. For instance, you might do this if
you created a new instance of Ext.MessageBox and didn’t want to use its animation
for show and hide actions.

 Use a string where you want to use any one of the preconfigured animations from
the Ext.anims singleton. The best ones to use are pop and fade because they’re
designed to transition in a single item, compared to the cube or flip animations
which are designed to animate between two different components. If you only set a
showAnimation Sencha Touch will automatically do the opposite animation for hiding
the panel.

We’ve covered a fair bit about the first of our two Container extensions, the Sencha
Touch Panel class. You learned about floating and dragging and how to show a
panel with another component. As promised, let’s delve into the second of the exten-
sions, the TabPanel.

4.4 Flip the deck with TabPanels
TabPanel is a special class that, although the name might imply differently, extends
Container. The widget allows you to easily create an interface for users to navigate
between screens by tapping on a special button known as a tab, located in a special
toolbar called the TabBar. The TabPanel mimics the traditional desktop tabbed inter-
face but within the modern mobile UI guidelines.

Don’t leave your users hanging!
We’ve run into situations where developers introduced bugs by disabling hide-
MaskOnTap and not giving the users any way to dismiss the dialog. Remember, if
you’re going to disable hideOnMaskTap your users will have no way to get rid of the
modal panel. This means you’ll need to create a button that allows them to do so or
hide the modal panel after a certain time.

Animation performance is crucial
Be aware that animations use CSS3 transitions and work best on devices that have
a dedicated GPU and are complemented with an instance of mobile WebKit compiled
to utilize the GPU. Enabling animations on devices that can’t handle them will result
in a clunky UI and ultimately turn off your users.

81Flip the deck with TabPanels
 To fully understand how they work and how they can be customized you’ll create a
base example in the next listing that you can modify later on.

Ext.create('Ext.TabPanel', {
 fullscreen : true,
 ui : 'light',
 tabBarPosition : 'top',
 items : [
 {
 style : 'background-color: #FCC;',
 html : 'Panel 1',
 title : 'Users'
 },
 {
 style : 'background-color: #CFC;',
 html : 'Panel 2',
 title : 'Admins'
 },
 {
 style : 'background-color: #CCF;',
 html : 'Panel 3',
 title : 'Locations'
 }
]

});

Listing 4.9 represents an example of a simple Tab-
Panel B that contains four child panels d. You use
tabBarPosition c to set whether the TabBar should
appear at the top or bottom of the TabPanel. In this
case, you specifically defined it as top, but given that
that’s the default you could’ve just left it off. Lastly, you
configure an array of items e for the TabPanel to
manage. These are generic configuration items that
will be used to create instances of Container. What’s
important to focus on is the title property. This is not
a normal property for Container. In this case, it’ll end
up being used to set the title text of instances of Tab
that will live in the TabBar. Figure 4.16 shows what all
of this looks like rendered onscreen.

 Figure 4.16 illustrates the result from listing 4.9,
which contains your simple TabPanel with left-aligned
tabs. To display any of the screens the user can tap on
any of the tabs, which will use the default slide anima-
tion transition.

Listing 4.9 Creating a simple TabPanel

Creates TabPanelb

Configures
TabPanel

c

Adds TabPanel
child itemsd

Sets title
for tabe

Figure 4.16 The results of
listing 4.9: a rendered TabPanel

82 CHAPTER 4 Mastering the building blocks
 If you wanted to change the alignment of the TabBar items to be right-aligned, for
example, you’d have to utilize the tabBar option to override the default alignment.
To do so, add the following code to listing 4.9:

tabBar : {
 layout : {
 pack : 'right'
 }
}

The layout parameter might look immediately familiar from earlier parts of the chap-
ter. If so, you’re absolutely correct, since the TabBar uses an HBox layout under the
hood. So by adding pack: "right" you override a portion of the layout to align items
differently.

 The same paradigm would be true if you wanted to change the animation used
when switching between cards. Let’s say you wanted a cube animation instead of the
default slide. In that case, add the following code to listing 4.9:

layout : {
 animation : 'cube'
},

The animation configuration property is part of the layout options for the TabPanel
and instructs the TabPanel to animate the transition between the different cards
(screens). You set this property to use the cube animation, which is different from the
default slide animation. To disable animations you set this property to false. Gener-
ally, you want to consider disabling animation when transitions become sluggish.

You might notice that when you top-align the TabBar the rendered tabs only show the
given text and look rather plain. Given the way tabs are constructed from a class per-
spective, you can’t easily add icons to them without an override, extension, or plug-in
of some sort. This means you’ll either have to go through quite a bit of pain to hack
those in yourself, or bottom-dock the TabBar, which gives you the ability to set an
iconCls property for each child item in the TabPanel. To better illustrate this, we’ve
included an example in the following listing that modifies listing 4.9 to do just that.

Ext.create('Ext.TabPanel', {
 fullscreen : true,
 ui : 'light',

See all of the animations
You’re given the choice of fade, slide, flip, cube, pop, and wipe animations to
use for TabPanel transitions. You can see all of these animations in the “Kitchen
Sink” example, which can be found in the examples directory of the Sencha Touch
SDK.

Listing 4.10 Showing a bottom-docked TabBar for a TabPanel

Docks TabBar
to bottomb

83Flip the deck with TabPanels
 tabBar : {
 docked : 'bottom',
 layout : {
 pack : 'center'
 }
 },
 items : [
 {
 style : 'background-color: #FCC;',
 html : 'Panel 1',
 title : 'User',
 iconCls : 'user'
 },
 {
 style : 'background-color: #CFC;',
 html : 'Panel 2',
 title : 'Groups',
 iconCls : 'team'
 },
 {
 style : 'background-color: #CCF;',
 html : 'Panel 3',
 title : 'Locations',
 iconCls : 'maps'
 },
 {
 style : 'background-color: #FFC;',
 html : 'Panel 4',
 title : 'Settings',
 iconCls : 'settings'
 }
]

});

To dock the TabBar to the bottom of a TabPanel you
provide an alternative to the tabBarPosition you used
before by injecting a docked: bottom configuration B
into the tabBar config, thus piggybacking on the fact
that you’re already using the tabBar config. Next, you
add an iconCls property c for the items in the Tab-
Panel to dress them up a bit. Figure 4.17 illustrates the
newly configured tabs rendered in the bottom-docked
TabBar.

 As illustrated in figure 4.17, the bottom-docked Tab-
Bar renders with the tabs displaying the icons you con-
figured for them. It’s important to note that the
iconCls property is required for tabs in bottom-docked
TabBars. If you don’t specify iconCls the tabs will ren-
der but will be barely usable as they’ll be extremely
small, just like in figure 4.18.

Sets
iconClsc

Figure 4.17 Your TabPanel with
a bottom-docked TabBar
containing tabs that display icons

84 CHAPTER 4 Mastering the building blocks
There you have it! You’ve just seen how you can configure TabPanels with both top
and bottom-docked TabBars. You should be able to use these lessons when developing
your TabPanel-enabled application.

4.5 Summary
We’ve covered a lot of ground in this chapter. You learned how containers manage
child items, and how to add and remove components dynamically in an already-
rendered UI. You also learned how to arrange components in various ways using
layout schemes. Although we covered enough material to make just about any devel-
oper’s head spin, we barely scratched the surface of what’s possible.

 That being said, you may have noticed a recurring theme across many of the sam-
ples you encountered in this chapter. More specifically, you used toolbars and docked
items in quite a few of them. Given the prevalence of toolbars and docked items in
even the simple examples, it’s important for you to better understand the capabilities
of these powerful tools at your disposal. So in the next chapter you’ll do exactly that
by delving deeper into toolbars, buttons, and docked items.

Figure 4.18 Bottom tabs without icons

Toolbars, buttons,
and docked items
In previous chapters we covered a lot of foundational topics, including the compo-
nent life cycle, containers, and layouts. Many of the examples encountered thus far
made use of docked items via toolbars, which set the stage for you to master the top-
ics in this chapter, including toolbars, buttons, or anything else you want to dock.

 You’re already aware that containers and panels have the ability to dock widgets,
so this chapter focuses on expanding on that concept. You’ll learn how to dock just
about any widget to any of a container’s outer quadrants. In the process, you’ll dis-
cover the importance of the order of docked items. You’ll see a variety of ways to orga-
nize buttons and other widgets inside the toolbar. There you’ll learn how to use the
spacer component as well as customize the toolbar’s HBoxLayout implementation.

 The chapter ends by unraveling the secrets of buttons, and you’ll learn how to
customize their appearance by exploiting the built-in configuration options.
Although this chapter is a bit shorter and doesn’t cover quite as many topics as the
others, the experience gained will be absolutely necessary for almost any applica-
tion you build.

This chapter covers
■ Unlocking the secrets of docking
■ Mastering the toolbar
■ Using and customizing buttons
85

86 CHAPTER 5 Toolbars, buttons, and docked items
5.1 Looking into docked items
It’s relatively easy to create a container with items
docked to a quadrant, but there are some hidden
nuances that we’ve discovered along the way. To illus-
trate these we’ll provide a basic example you can play
around with.

5.1.1 Understanding the basics

As with most things in life, a picture is worth a thou-
sand words. To get a better understanding of the basic
example you’re going to build, take a quick peek at fig-
ure 5.1, which shows a docked container on each outer
quadrant of a panel.

 This image illustrates docked containers at each
possible outer quadrant of a panel. A panel (or any
container, really) will allow any amount of docked
items at any given time. For learning purposes you’re
going to include only four, one in each quadrant.
The following listing shows the code that results in
figure 5.1.

var topDock = {
 xtype : 'container',
 docked : 'top',
 style : 'border-bottom: 1px solid; background-color: #F99;',
 height : 100,
 html : 'Top dock'
 },
 bottomDock = {
 xtype : 'container',
 docked : 'bottom',
 style : 'border-top: 1px solid; background-color: #9F9;',
 height : 100,
 html : 'Bottom dock'
 },
 leftDock = {
 xtype : 'container',
 docked : 'left',
 width : 100,
 style : 'border-right: 1px solid; background-color: #99F;',
 html : 'Left dock'
 },
 rightDock = {
 xtype : 'container',
 docked : 'right',

Listing 5.1 Placing containers at each of the outer panel quadrants

Figure 5.1 A simple panel
example with four docked
containers

Configures docked
item objects

b

Contains top-positioned
docked item c

87Looking into docked items
 width : 100,
 style : 'border-left: 1px solid; background-color: #FF9;',
 html : 'Right dock'
 };

var myPanel = Ext.create('Ext.Panel',{
 fullscreen : true,
 bodyStyle : 'padding: 10px;',
 html : 'Panel content body',
 items : [
 topDock,
 bottomDock,
 leftDock,
 rightDock
]
});

Listing 5.1 contains the necessary code to dock a container at each of the panel’s
outer quadrants. It begins with registering references to configuration objects B for
each of the docked containers.

In order to control where a widget is docked you must set a docked property c. There
are four possible values: top, bottom, left, and right. Each value controls in which
outer quadrant you want to render the widget.

 Then you register the docked containers with the newly created panel by setting
the panel’s items property to an array d containing references to each of the config-
uration objects you created earlier. Notice that even though the docked items are
within the items array, they show up in their docked position and don’t interfere with
the panel content body.

Now you have a good handle on how to register docked items. One thing that might
be a bit confusing is that the order in which you register docked items will affect
how the items are laid out in the quadrants. Take the configurations in figure 5.2,
for instance.

Just about anything can be docked
You’re using the container in listing 5.1 to reduce the code complexity of this exam-
ple, but you can place pretty much any widget in a panel’s outer quadrant.

Docking multiple items in a quadrant
Although our examples only dock a single item in each quadrant you could easily
duplicate one of the configuration objects in the items array, and thus dock multiple
items in one of the quadrants. The additional items would stack. Keep in mind that
the order matters.

Registers docked
items with Paneld

88 CHAPTER 5 Toolbars, buttons, and docked items
Figure 5.2 demonstrates dock configurations that are
different than the example you created in listing 5.1.
This is because the order in which you list docked items
controls how they’re sized. The rule for sizing is simple:
the docked items with the lower indexes get the largest
portion of a quadrant.

 To test this rule, you’ll have to modify the items
panel configuration property in listing 5.1 and shuffle
the order of the docked items as follows:

items : [
 leftDock,
 rightDock,
 topDock,
 bottomDock
]

With the left- and right-docked items listed first, the
docked containers would render as shown in figure 5.3.

 As predicted, the left- and right-docked containers
are larger than the ones located at the top and bottom.
What if you wanted the left and right items to be the
two that are the largest? You’d again have to modify
the order in which you list the items. Given what
you’ve just learned, can you predict how you should
organize the items to achieve this desired result?

Figure 5.2 The order in which
you place docked items will
affect the amount of screen
space they have.

Figure 5.3 The result of your
first modification to listing 5.1

89Looking into docked items
 If you guessed the following order you’re absolutely correct:

items : [
 leftDock,
 topDock,
 rightDock,
 bottomDock
]

The result of your second change to listing 5.1 renders
as shown in figure 5.4.

 As predicted, the left dock is the largest of the four
and the top takes as much space as it can, whereas the
right captures all available space in its quadrant. The
bottom dock is the absolute smallest.

 One secret to understanding how this all works is to
know that the order of precedence rule only applies
to docked items that are intersecting. For instance, the
top intersects with the left- and right-docked but never
the bottom. The bottom dock could care less about
how large the top is. Likewise, the right dock intersects
with the top and the bottom docks. The right doesn’t
fret about the left dock, nor does it care that the left
dock is even rendered on screen.

 Now you have a solid grasp on the docked items
order of precedence rule, but you’re not quite done
with docked items yet. To fully realize their power, let’s
look at how you can use the dynamic nature of docked
items to create dynamic UIs that can expand the work-
flows of your application.

5.1.2 Dynamic docking

In chapter 4 you learned how to dynamically add and remove items in a container via
the add and remove methods. Adding docked items works exactly the same way. In
fact, it uses the same methods (add and remove) as any other components would. The
only difference is that docked items must have the docked property set. The add and
remove methods will automatically figure out if the item is a docked item and do the
appropriate thing.

For those developers upgrading from Sencha Touch 1.x
In previous iterations of the framework you had to employ the addDocked and
removeDocked methods to make changes to docked items. With Sencha Touch 2.x
these methods have been deprecated, and their functionality has been rolled into the
standard add/remove methods.

Figure 5.4 The result of your
second modification to listing 5.1

90 CHAPTER 5 Toolbars, buttons, and docked items
Containers (and thus panels as well) use two convenient functions to get hold of a
specific docked item or all docked items at once (see table 5.1).

The two methods in table 5.1 are particularly useful if you need to work with docked
items. They allow you to surgically target a specific docked item or work with all of
them at once, without having to worry that nondocked items will interfere.

 The next listing demonstrates adding and removing top-docked items by means of
a general-purpose button rendered inside a panel.

var handleAddButton = function () {
 var dockedItems = myPanel.getDockedItems();

 myPanel.add({
 xtype : 'container',
 docked : 'top',
 style : 'border-bottom: 1px solid; background-color: #F99;',
 height : 30,
 html : 'Top dock: ' + dockedItems.length
 });
};

var handleRemoveButton = function () {
 var dockedItems = myPanel.getDockedItems(),
 totalItems = dockedItems.length,
 dockedItem;

 if (totalItems > 0) {
 dockedItem = myPanel.getDockedComponent(totalItems - 1);
 myPanel.remove(dockedItem, true);
 }
};

Ext.create('Ext.Panel', {
 fullscreen : true,
 bodyStyle : 'padding: 10px;',
 layout : {
 type : 'vbox',
 pack : 'center'
 },
 items : [
 {
 xtype : 'button',

Table 5.1 The methods used to manage docked items dynamically

Method Description

getDockedComponent This method is responsible for retrieving and returning a reference to a
component that’s in the docked collection. It takes a single argument, the
itemId (String) of the component or the index (integer).

getDockedItems This method returns a list of all currently docked items.

Listing 5.2 Adding and removing dockedItems

Handles
button
clicks

cAdds top-
docked item

d

Removes last
top-docked iteme

Creates
panelb

91Looking into docked items
 text : 'Add top',
 handler : handleAddButton
 },
 {
 xtype : 'button',
 text : 'Remove top',
 handler : handleRemoveButton
 }
]
});

Listing 5.2 contains the code to render a general-purpose panel with two buttons in
the middle: one button to add a new top-docked item, and one button to remove the
last top-docked item. Here’s how you make it all work.

 Begin by creating a panel B with two buttons defined as simple child items within
the panel. Use a VBox layout with pack: center, which will vertically align the buttons
in the center. The first button is for adding top-docked items; the second is for remov-
ing docked items. Each of the buttons has a handler defined that points to a function
to handle the tap event. The handler for the add button c starts out by getting hold
of all the docked items. You need to do this if you allow for adding multiple docked
items, because you want to be user-friendly and allow the user to tell the different
items apart. Do this by dynamically tweaking the configuration for the items you’re
adding d, and setting the html property of the new item based on the docked items
count. The configuration object specifies docked: top, which causes the newly added
item to be stacked in the top quadrant. To add the top-docked item you simply use the
add method of the panel.

 The remove handler also works by first getting all of the docked items. It then
checks to see if any exist, and if so, retrieves the last docked item. Because the docked
items use an array, which is a 0-based index, the length of the array will always be one
more than the index of the last item; hence the need to use length-1. Use the get-
DockedComponent method in conjunction with the index to retrieve the last docked
item, which is then removed by passing the item to the remove method e of the
panel. Notice the additional Boolean value passed to the remove method. This is to
ensure that the docked item is destroyed and not just removed from the panel. In case
this doesn’t ring a bell, a revisit to chapter 4 might be necessary. Figure 5.5 shows the
example rendered onscreen.

 In figure 5.5 you can see that a panel renders with two buttons in the center of the
screen (left). A couple taps of the button add and dock a container to the top dock,
demonstrating the add method in conjunction with the docked config property. Any
subsequent taps on the remove button will remove one of the top-docked containers,
which demonstrates the remove function.

 You’ve successfully demonstrated how to add, remove, and query for docked items.
Next up, we’ll elaborate on one of the most commonly docked items, the toolbar.

92 CHAPTER 5 Toolbars, buttons, and docked items
5.2 Gearing up the toolbars
Toolbar extends the Container class. The toolbar is typically docked at the top or bot-
tom, and it’s used to house a set of buttons and text elements, such as a centered title.
The toolbar is more versatile than that and in fact can be docked anywhere and con-
tain pretty much anything, not just buttons and text.

5.2.1 Under the hood

The secret to Toolbar’s versatility is that it’s a subclass of Container, which means that
it can render and manage just about any component in the Sencha Touch framework.
Before you get ahead of yourself, take a step back and create a basic example you can
build on in the next listing.

var toolbar = {
 xtype : 'toolbar',
 docked : 'top',
 title : 'User admin'
};

Ext.create('Ext.Panel', {
 fullscreen : true,
 style : 'background-color: #CCF;',
 html : 'Full screen Panel',
 items : toolbar
});

Listing 5.3 Constructing a simple toolbar

Figure 5.5 The initial results of
listing 5.2 (left), and the same
after adding the top docked
container by tapping the button
a few times (right)

Configures
toolbarb

Sets titlec

Includes
toolbar

d

93Gearing up the toolbars
Listing 5.3 contains a recipe for a panel that includes a top-docked toolbar B. To
keep things simple for now, you give the toolbar a title c and nothing more. Because
you’re going to be building on this listing you’ll use a tablet to view it; that will give
you the most amount of screen real estate to work with. Figure 5.6 shows how your
freshly minted toolbar d looks when rendered on a tablet.

 Figure 5.6 shows you how something as simple as adding a toolbar with a title can
easily dress up an application. Though there are many situations where having a tool-
bar with just a title is sufficient, more often than not you’ll run into situations where
you need buttons for users to interact with as well. This is where things get interesting,
because toolbars can contain a mixture of buttons, text, and much more.

5.2.2 Adding buttons to a toolbar

The following listing contains a modification of listing 5.3, where you redefine the
Toolbar configuration object by adding two buttons and a spacer component.

var toolbar = {
 xtype : 'toolbar',
 docked : 'top',
 title : 'User admin',
 items : [

Listing 5.4 Adding buttons to your simple toolbar

Figure 5.6 A simple toolbar with a title, rendered on a tablet

94 CHAPTER 5 Toolbars, buttons, and docked items
 {
 xtype : 'button',
 text : 'Submit'
 },
 {
 xtype : 'spacer'
 },
 {
 xtype : 'button',
 text : 'Cancel'
 }
]
};

Ext.create('Ext.Panel', {
 fullscreen : true,
 style : 'background-color: #CCF;',
 html : 'Full screen Panel',
 items : toolbar
});

Listing 5.4 contains a toolbar with a title, two buttons B, and a spacer component c.
To drill down into what all of this is doing under the covers you must first see how it’s
rendered onscreen, as shown in figure 5.7.

 Figure 5.7 illustrates how the newly modified top-docked toolbar renders on
screen. Notice how the submit and cancel buttons are on opposite ends of the screen.

Configures
simple buttonb

Adds
spacerc

Figure 5.7 Rendering a toolbar with a title, two buttons, and a hidden spacer component

95Gearing up the toolbars
This is because the spacer component takes 100 percent of the available screen space
between the two buttons.

 To get a full grasp on what’s happening here, recall chapter 4, where you learned
about the HBox layout and the flex configuration property. By default, the toolbar
uses the HBox layout internally, whenever it’s docked at the top or bottom. The reason
the buttons are pushed to opposite ends is because the spacer component is between
them, and it has a default flex property of 1, instructing the HBox layout to size the
spacer to 100 percent of the available horizontal space minus the widths of the but-
tons and some padding.

5.2.3 Centering items

The fact that the toolbar implements an HBox layout can be extremely useful if you
want to center buttons or a set of buttons. The following listing modifies listing 5.4
and is a recipe for centering an instance of SegmentedButton between our two previ-
ous buttons.

var toolbar = {
 xtype : 'toolbar',
 docked : 'top',
 items : [
 {
 xtype : 'button',
 text : 'Submit'
 },
 {
 xtype : 'spacer'
 },
 {
 xtype : 'segmentedbutton',
 items : [
 {
 text : 'Comedy'
 },
 {
 text : 'Thrillers'
 },
 {
 text : 'Horror'
 }
]
 },
 {
 xtype : 'spacer'
 },
 {
 xtype : 'button',
 text : 'Cancel'
 }

Listing 5.5 Centering with two spacer components

Contains first
spacer

b

Configures
SegementedButtonc

Contains
second spacerd

96 CHAPTER 5 Toolbars, buttons, and docked items
]
};

Ext.create('Ext.Panel', {
 fullscreen : true,
 style : 'background-color: #CCF;',
 html : 'Full screen Panel',
 items : toolbar
});

Listing 5.5 demonstrates how to center a SegementedButton c by sandwiching it between
two spacer (B and d) components. Figure 5.8 shows how it looks rendered onscreen.

 The result of listing 5.5 is shown in figure 5.8, where a SegmentedButton is cen-
tered between two outside buttons. The reason it’s centered is because the spacer has
a default flex property of 1, instructing the HBox layout to allow the spacers to use all
the available space equally.

 Because of the HBox layout’s flexibility you can set static widths on the spacers or
even have the buttons dynamically sized via the flex parameter. The HBox layout’s
flexibility can lead to truly creative toolbar item organization, but as we said earlier,
you can render just about anything inside the toolbar.

 What you just implemented was the centering of items in addition to having items
flush on each side of the toolbar. If you wanted to have all items centered you
wouldn’t need to use the flexible spacer component but instead would simply instruct

Figure 5.8 Centering a SegmentedButton by means of two spacer components

97Gearing up the toolbars
the HBox layout to do the work for you by adding the following parameter to your
Toolbar configuration object:

layout : {
 pack : 'center'
}

You’ve just experimented with various ways to lay out items inside a toolbar. Next,
you’ll take a stab at a toolbar configuration that can implement more than just but-
tons and spacers.

5.2.4 Adding nonstandard components

Because you’ve already learned that Toolbar extends Container and thus allows for
any item to be placed in it you’re going to proceed with a recipe for a toolbar-based
search for your application. To do this you’ll need to add a text input field to the tool-
bar items configuration parameter, as shown in the following listing.

var toolbar = {
 xtype : 'toolbar',
 docked : 'top',
 title : 'User admin',
 items : [
 {
 xtype : 'spacer'
 },
 {
 xtype : 'textfield',
 width : 200
 },
 {
 xtype : 'button',
 iconCls : 'search',
 ui : 'plain',
 iconMask : true
 }
]
};

Ext.create('Ext.Panel', {
 fullscreen : true,
 style : 'background-color: #CCF;',
 html : 'Full screen Panel',
 items : toolbar
});

Listing 5.6 proves that you can render more than just buttons in a toolbar. Because
a common design paradigm is to place search fields to the right of the toolbar, use a
spacer component to move things over B. Next is the text c input field, followed
by a button d configuration option that has some unique styling. Figure 5.9 illus-
trates how it renders onscreen.

Listing 5.6 Adding a text input field to a toolbar

Contains
flexible spacer

b

Configures
textfieldc

Adds search
buttond

98 CHAPTER 5 Toolbars, buttons, and docked items
So far you’ve seen how toolbars work, but we haven’t talked much about buttons. It’s
hard to argue with the fact that buttons are an integral part of many of the screens
you’ll be creating for any application. This is why we’ll be shifting gears to focus on
these versatile widgets.

5.3 Go ahead, press my button!
The Sencha Touch Button class is used all over the place in your applications, and
for whatever reason, its versatility is often overlooked by many of us. The fact of the
matter is that the button can be easily customized to match almost all of your appli-
cation needs.

 The general use of buttons is simple. For example, here’s a typical Button configu-
ration object:

var myBtn = {
 xtype : 'button',
 text : 'Delete',
 iconCls : 'delete',
 iconMask : true,
 ui : 'drastic',
 scope : someObject,
 handler : function() { /* code here */ }
}

Figure 5.9 The text input field rendered inside a toolbar, alongside a nicely styled button

99Go ahead, press my button!
This configuration object can be used to render a Button within a Toolbar or
Container, though the xtype property is typically omitted when being used inside a
toolbar, because its default type is button.

 When tapped the button will execute a function, known as a handler, which can be
executed within the scope of any object.

At runtime you can change the handler of any button via its setHandler method,
which takes two arguments, a reference to a function that will be called on the but-
ton’s tap event and the scope in which that function will execute.

5.3.1 Customizing buttons

Buttons can be rendered anywhere on screen, and they can be children of any Container
or subclass of Container. The next listing shows an example of some modified buttons
rendered in a top-docked toolbar, as well as inside a panel. Because of the sheer num-
ber of configuration properties in this example it’s going to be pretty long, so please
bear with us.

var tbar = {
 xtype : 'toolbar',
 docked : 'top',
 defaults : {
 iconMask : true
 },
 items : [
 {
 text : 'delete',
 iconCls : 'delete',
 iconAlign : 'left',
 ui : 'back'
 },
 {
 text : 'organize',
 iconCls : 'organize',
 iconAlign : 'right',
 ui : 'decline'
 }
]
};

Does “scope” sound foreign?
In JavaScript functions can be executed within the “scope” or context of any object.
This means that when the function is executed the magic keyword this points to
said object. To demystify the this keyword visit www.slideshare.net/moduscreate/
javascript-classes-and-scoping.

Listing 5.7 Customizing buttons

Configures
toolbarb

Adds
buttonsc

www.slideshare.net/moduscreate/javascript-classes-and-scoping
www.slideshare.net/moduscreate/javascript-classes-and-scoping

100 CHAPTER 5 Toolbars, buttons, and docked items
var bbar = {
 xtype : 'toolbar',
 docked : 'bottom',
 defaults : {
 iconMask : true
 },
 items : [
 {
 iconCls : 'refresh',
 iconAlign : 'top',
 ui : 'plain'
 },
 {
 text : 'search',
 iconCls : 'search',
 ui : 'drastic',
 iconAlign : 'bottom'
 }
]
};

Ext.create('Ext.Panel', {
 fullscreen : true,
 defaultType : 'button',
 defaults : {
 iconMask : true
 },
 layout : {
 type : 'vbox',
 pack : 'center',
 align: 'center'
 },
 items : [
 tbar,
 bbar,
 {
 text : 'generic',
 width : 150
 },{
 text : 'compose',
 iconCls : 'compose',
 iconAlign : 'right',
 ui : 'action',
 width : 150
 },{
 text : 'star',
 iconCls : 'star',
 ui : 'confirm',
 width : 150
 }
]
});

Docks toolbar
to bottomd

Adds buttons to
bottom toolbare

Includes both
toolbars

f

Adds buttons
to panelg

101Go ahead, press my button!
Listing 5.7 contains the necessary code to create a panel that contains both bottom-
and top-docked toolbars as well as three buttons rendered in its body. Here’s how it all
fits together.

 You begin by creating a configuration object for the top-docked toolbar B. This
toolbar contains two buttons c, with an icon alignment set via the iconAlign property.

Because you’re using the built-in icons, both of the buttons must have their iconMask
option set to true. Setting this option to true instructs Sencha Touch to apply the
default iconMaskCls CSS class (x-icon-mask) to the button, applying a CSS alpha
channel mask that makes the icon visible on the screen. If it’s not set to true the icons
won’t be visible.

Next, configure the bottom-docked toolbar d that also has two buttons e. One of
the buttons has its icon top-aligned, whereas the other button has its icon bottom-
aligned. As you’ll see in a bit, the icons will render above and below the text according
to the iconAlign configuration property. Notice that the iconMask property is set to
true via the toolbar’s defaults configuration object.

The last block of code in listing 5.7 creates a full-screen panel f that contains three
buttons g centered on screen by means of the VBox layout.

Know thy iconAlign
The iconAlign property can be set to left, right, top, or bottom.

Learn about CSS alpha channel masks
CSS alpha channel masks allow you to take one image (the alpha channel) and blend
it with another to create complex blending that previously required powerful image
editing software. For an excellent beginner’s tutorial on masks visit www.webkit.org/
blog/181/css-masks/.

Unleashing the pictos (icons)
A little-known fact is that Sencha Touch has over 330 icons that can be used in your
mobile apps, but only 26 of them are usable out of the box. To access the rest you’ll
need Sass and the related libraries, such as Ruby, and some elbow grease. To down-
load Sass you can visit http://sass-lang.com/. Also Shea Frederick, a veteran of the
Sencha community, has an excellent article on his blog that details how to use Sass
to compile the Sencha Touch CSS to include only the icons you plan on using in a
process he calls “trimming the fat.” His article can be found at www.vinylfox.com/
custom-styling-a-sencha-touch-app/.

www.webkit.org/blog/181/css-masks/
www.vinylfox.com/custom-styling-a-sencha-touch-app/
www.vinylfox.com/custom-styling-a-sencha-touch-app/
http://sass-lang.com/
www.webkit.org/blog/181/css-masks/

102 CHAPTER 5 Toolbars, buttons, and docked items
 There are some other bits of information about this
listing that we should discuss, but we think it’s best to
see the result first, because that will better frame up
what we’ll be talking about next. Figure 5.10 shows how
it all looks rendered on a mobile device.

 Figure 5.10 illustrates the result of listing 5.7, ren-
dering a panel containing a top-docked and a bottom-
docked toolbar with two customized buttons each.
Notice how the icon alignment is organized exactly
how you configured it to be.

 Each of the buttons has something unique aside
from iconAlign-ment, and that has to do with the ui
configuration property. Of the five buttons rendered
onscreen, one of them is a generic button, meaning it
doesn’t have an icon and doesn’t have a ui configura-
tion property to alter its appearance.

 This optional configuration property is important
to remember because it allows you to alter the appear-
ance of buttons and other widgets with ease. Here’s
how it works.

 When you specify the ui configuration property
Sencha Touch adds a CSS class to the widget’s ele-
ment, allowing you to alter its physical appearance by
using some of the built-in UI styles. The two buttons in the top-docked toolbar in
figure 5.10 have ui properties set. The first of these properties is back, which
alters the physical shape of the button but doesn’t alter the default color. The sec-
ond button uses the decline ui style, which gives it a red color but doesn’t change
its shape.

 If you look at the rendered buttons in the panel you’ll see that there are three col-
ors. The first is a generic button and demonstrates how buttons will appear if ren-
dered outside of a toolbar without icons or a ui style applied. The second uses a ui
style called action, giving it a blue tint, whereas the third button uses the confirm
ui style, coloring it green.

 Focusing on the bottom toolbar, you’ll find a button that has no border around it
and a generic button with iconAlign set to bottom. The focal point here is the first
button, which has its ui property set to plain. Setting a button’s ui property to plain
within a toolbar will render the button without borders. We must stress the fact that
the plain ui style only works within toolbars. Adding this ui style to a button ren-
dered inside a container will prevent the button from rendering.

 In addition to the back ui style you can alter the shape of buttons via the forward,
round, and small ui styles. You even have the capability to use compound styles, such
as action-small, confirm-small, and decline-small.

Figure 5.10 Rendering
customized buttons as a result
of listing 5.7

103Summary
Instead of listing all of the possible combinations, figure 5.11 shows a quick example
of all the possible out-of-the-box styles.

 Figure 5.11 shows all of the possible out-of-the-box button ui styles within a tool-
bar and a panel. The ui style used to alter each button is set as its text, so you can
quickly figure out what style you want to use. In case you’re wondering, the code for
this example comes with the example code zip file under examples/chapter04/
all_button_styles.html.

 Now you know just about everything you need to know about how buttons work
and how to deploy them in a normal or customized manner.

5.4 Summary
Great work! We covered a lot in this chapter and you worked on many of the building
blocks for mobile application development with Sencha Touch.

 You began by looking into some of the intricacies behind docked items and where
they can be placed, and learned the importance of the order of docked items and its
effect on item sizing. From there, you learned about the most commonly docked item,
the toolbar, and saw how to arrange and space out items within toolbars. Last but not
least, you explored how to customize buttons and make them a bit more user-friendly
through various icons and styling options. All of this work set the stage for you to
explore how Sencha Touch uses many of these concepts in the built-in widgets it ships
with. The next chapter focuses on sheets, pickers, and the message box, all of which
use various concepts from this chapter and the previous ones.

Figure 5.11 Demonstrating all possible button styles

Getting the user’s attention
While exploring the exciting world of containers, panels, and multiscreen applica-
tions via the use of components and tabs in the previous chapter, you might’ve
noticed that all of those paradigms share one trait: they all force the user away from
the current application screen to facilitate user interaction. Although this is fre-
quently a desired behavior, especially if content needs to be shown in a logically
separated way, navigating between different screens can disrupt the flow and usabil-
ity of your app. This is particularly true if all you need is to get a quick message to
the user, or prompt for simple information like a name. In such cases a TabPanel or
a card layout that navigates to a different screen simply to return to the user after
information has been gathered is just overkill.

 This is exactly where sheets, pickers, and message boxes come into play. These
components are specifically designed to allow quick interaction with the user and
enable you to easily overlay information onto the current screen (sheet), allow the

This chapter covers
■ Creating simple overlays
■ Using sheets as modal dialogs
■ Understanding the Picker class
■ Using and customizing message boxes
104

105Using sheets for modal user interactions
user to select something from a list of values (picker), or notify the user of something
that has happened (message box). Each component serves its purpose, and under-
standing the ins and outs of all three components and how they fit together is neces-
sary. Let’s start our journey through these components by taking a look at sheets.

6.1 Using sheets for modal user interactions
Sheets form the basis for all modal dialogs in Sencha Touch. Whether you’re looking
at a date picker, a select field, a message box, or an ActionSheet, they all extend the
basic Sheet class. To see exactly how all the modal dialogs are based on the Sheet class
take a look at the class diagram in figure 6.1.

By default sheets slide in from the bottom of the screen, automatically covering up
existing content and imposing a mask on the rest of the screen. Although this is the
default, you aren’t limited to this behavior only. With a few simple tweaks to the configu-
ration the sheet can be made to enter from any direction using the enter property. It

For those developers coming from Ext JS
You can think of Sheets as a close cousin to the Ext.Window class with a modal
option set to true. The main difference is that sheets are panels and have all the
same options as standard panels. These include layouts, toolbars, and child item
management.

Evented Base

Container

Panel

Sheet

ActionSheet MessageBox Picker

Component

Date Picker Figure 6.1 Sheets and modal
dialogs class diagram

106 CHAPTER 6 Getting the user’s attention
could be made to slide in from the left side of the screen, for example. The beauty
behind sheets is that no matter which behavior you choose the sheet will behave the
same way on all devices, causing it to work seamlessly on phones and tablets alike.
Take a look at figure 6.2 to see a sample of a fully rendered Sheet instance on a phone
and a tablet.

 As you can see, the same sheet rendered on two different devices shows the same
content in the same place, only utilizing more space on a tablet than on a phone.
Reorienting a device keeps the sheet in its place and automatically recalculates its size.

Size is where one of the weaknesses of sheets comes to light. Unless you specify a
height and width parameter or utilize the stretching configuration options (stretchX
and stretchY, respectively), your sheets won’t automatically size themselves prop-
erly. Because sheets are panels they use the default AutoContainerLayout discussed
in chapter 4, rendering components one on top of the other without any care for
sizing or restrictions on the height of the sheet. Leaving off the height can result in
a sheet that looks like figure 6.3, where the content isn’t shown and all that’s visible
is the toolbar.

 On the flip side, adding too many elements without specifying a proper layout can
result in one of the two scenarios shown in figure 6.4, where either the content extends
beyond the sheet or part of the sheet reaches beyond the screen, inaccessible to the user.

Figure 6.2 A sheet sliding in from the bottom on a phone (left) and the same sheet
rendered on a tablet (right)

107Using sheets for modal user interactions
The moral of the story is that you should always make sure you specify the proper
height, width, and layout configuration to avoid situations like this.

 That’s enough theoretical talk for the moment. It’s time you get your hands dirty
and start building some sheets.

6.1.1 Using sheets for simple overlays

In its most basic form a sheet can be used as a straightforward overlay, triggered to
show additional information about content on the screen.

For those developers coming from Ext JS
You can think of sheets as a less powerful version of the Ext.Tooltip class that
exists on the Ext JS side. On the Ext JS side things like mouseovers are possible, and
close buttons are built in from the start in an aesthetically pleasing way. In compari-
son, sheets in Sencha Touch are bound to finger input and require you to add your
own close button and style it.

Figure 6.3 A sheet without
proper height

Figure 6.4 Sheets without
proper layout configuration

108 CHAPTER 6 Getting the user’s attention
In general it’d probably be advisable to use a floating panel to represent the overlay
because that provides functionality for show by, which aligns the floating panel with a
specified component or element. In certain instances design might dictate that over-
lays are shown by sliding in from the bottom of the screen (like sheets do) for space
consideration or any other arbitrary reason. The following listing illustrates how to
do this.

var buttonHandler = function() {
 Ext.Viewport.add({
 xtype : 'sheet',
 height : 130,
 hideOnMaskTap : true,
 hidden : true,
 enter : 'bottom',
 style : 'color:white; ',
 html : 'Place your additional information right here.'
 + '
It can be multi line and everything!',
 items : {
 docked : 'bottom',
 xtype : 'button',
 text : 'Close',
 handler : function(button) {
 button.up('sheet').hide();
 }
 }
 }).show();
};
Ext.create('Ext.Panel', {
 fullscreen : true,
 layout : {
 type : 'vbox',
 align : 'center',
 pack : 'middle'
 },
 items : {
 xtype : 'button',
 text : 'Open the overlay',
 handler : buttonHandler
 }
});

Probably expected more, eh? Fortunately, the code ends up on the simple side. To
understand how this works you need to first focus on the bottom portion of the listing,
where you render a full-screen panel d with a centered button e. This button has a
handler configured, known as buttonHandler b in this program.

buttonHandler is responsible for creating an instance of Sheet by using the view-
port’s add method and passing a lazy instantiation object to it. The sheet is shown
because you chain a show method call immediately after the add operation. The sheet
has an added close button c, which has an inline handler to hide the sheet via an

Listing 6.1 Using a sheet as an overlay

Adds sheet to
viewport, shows itb

Adds button
to close sheetc

Creates panel
with buttond

Handles click
events on button

e

109Using sheets for modal user interactions
upward component query (using the Button instance) to find the parent Sheet class
and chain a hide method call. Figure 6.5 shows what it looks like rendered on a phone,
animating in the Sheet instance that you create via the buttonHandler function.

 The sheet you created earlier is set up to slide in from the top, which is accom-
plished with the enter property. Changing this property to left, right, or bottom
changes where the sheet enters the screen. To ensure the sheet occupies the full width
of the screen you set it to stretch on the x-axis via stretchX: true. For content you
populate it with some text through the html property. By default the sheet doesn’t
understand when it needs to hide. This means you either have to add a toolbar with a
close button on it or set it to automatically hide whenever the mask (the area not
occupied by the sheet) is clicked via the hideOnMaskTap property. Notice that in
order to show the sheet you need to add it to the overall viewport. You must do so
in order that the sheet can be managed for layout purposes. One thing to keep in
mind here is that once you add the sheet to the viewport it’d normally show up auto-
matically (without any animation). To fix this you set the sheet to hidden: true in
order to give you full control over when it should be shown.

 All in all, the design pattern is deceptively simple. Where things get interesting is
dealing with content that needs to be dynamically loaded into a sheet. In that case, the
elements in your panel body would each need a unique identifier so you can deter-
mine which specific element was clicked. From the event handler you’d make your
Ajax call to the backend to retrieve whatever data you need, waiting for the success

Figure 6.5 The results of listing 6.1

110 CHAPTER 6 Getting the user’s attention
handler to come back before showing the content of the sheet. This way, no sheet
would show if the Ajax call failed, and you can fish the content out of the response
and dynamically set it before creating the sheet. Voilà!

 Although using sheets as overlays is a nice example it most likely represents one of
those cases you don’t run into all too often. One of the more common sheet types is
the ActionSheet, which mimics the way iOS prompts users to make a choice.

6.1.2 Using ActionSheets

Whether you need to prompt the user for a yes/no answer or confirm that the user
wants to delete that one record in a list, ActionSheets are the preferred way to handle
this type of user interaction. From a design perspective ActionSheets take after the stan-
dard Apple iOS style prompts and will look immediately familiar to most iPhone/iPad
users. Even if you’re developing for non-Apple devices, fret not; the design is simple and
intuitive enough to be self-explanatory to the user. See for yourself in figure 6.6.

 By default, ActionSheets always slide in from the bottom and always occupy the full
width of the screen, and just like the normal Sheet class, ActionSheets don’t change
their looks or behaviors based on the user’s device. This means that the ActionSheet
from the left side of figure 6.6 will look exactly the same on a tablet except that it’ll be
wide, as shown on the right side of figure 6.5. Though this might seem a bit counterin-
tuitive at first, especially given the aesthetics of the tablet version, it does create a sense
of consistency across different devices and removes any doubt as to the meaning of
the ActionSheet.

 Setting up an ActionSheet is relatively straightforward, and the next listing illus-
trates how you’d create the ActionSheet in figure 6.6.

Figure 6.6 A simple ActionSheet with three choices and a title

111Using sheets for modal user interactions
var myActions = Ext.create('Ext.ActionSheet', {
 items : [
 {
 xtype : 'component',
 height : 50,
 style : 'color: #FFF; text-align: center; font-size: 1.2em;',
 html : 'What do you want to do?'
 },
 {
 text : 'Add to home screen',
 ui : 'confirm'
 },
 {
 text : 'Add bookmark'
 },
 {
 text : 'Meh, never mind!',
 ui : 'decline'
 }
],
 defaults : {
 handler : function() {
 this.ownerCt.hide();
 }
 }
});
Ext.Viewport.add(myActions).show();

You begin by setting up an Ext.ActionSheet instance with a title and three items. In
this implementation you’re opting to put the title in a standard component B using
html and placing it in the items array of the ActionSheet instead of a docked title bar.

 The visual difference might not be immediately apparent until you compare the
title bar from figure 6.5 with that of figure 6.4. A docked title bar creates a starker
visual separation between the title and the content, primarily due to the different
background and spacing between the toolbar and the content. By using a simple
component you’re sacrificing the functionality that a toolbar would provide you in
exchange for a title that looks more like it’s part of the content.

 Next you add the three actions c into the items array. Because the default item
type for ActionSheet is Button and all actions are buttons, you don’t need to specify
an XType for your actions. Each action receives a title via the text property and an
optional ui parameter to visually distinguish it. Notice that none of the buttons have a
handler defined. In this state they’d simply be dummy buttons that don’t do any-
thing. You take care of that through the use of the defaults object and provide a
default handler d for all actions that hides the ActionSheet. The handler isn’t scoped
in any specific way so the handler function will receive the default scope: the button
that was clicked. You don’t want to hide the button so you use the convenient parent
property, which gives you access to the button’s parent, the ActionSheet. Keep in
mind that this setup is simply for illustrative purposes. In a real-world application,

Listing 6.2 A simple ActionSheet

Uses html
for title

b

Defines
actions

c

Sets up default
handlerd

112 CHAPTER 6 Getting the user’s attention
each item would most likely have a unique handler that performs a particular action
instead of all actions sharing the same handler.

 One caveat to keep in mind when dealing with ActionSheets is that you can define
an arbitrary amount of actions and no limit is enforced. Although this is great in cases
where you need to present a handful of options, it can quickly get out of hand if your
actions exceed the available screen space because the ActionSheet doesn’t support
scrolling by default. In cases where you need to present a particularly large set of items
to the user simply use a picker, which we’ll cover in the next section.

6.2 Choosing pickers
Imagine sitting at Caesar’s Palace in Las Vegas, drink in
one hand and the other feeding a one-armed bandit.
You pull down its arm and the slots start spinning. The
first slot shows a 7; then a second 7 shows. One more and
you hit the jackpot. The third slot is spinning for what
seems like an eternity. It stops, and…you lose yet again.

 Pickers in Sencha Touch have a similar concept to
slot machines; they provide a series of “slots” with a pre-
defined set of values for each slot. But unlike in Vegas,
Sencha Touch allows users to pick the exact value they
want. For a sample of this take a look at the screen in
figure 6.7.

 The picker behaves just like all other classes in the
Sheet family, where the default behavior is to slide in
from the bottom of the screen when triggered and
occupy the full width of the screen, behaving the same
way on phones and tablets alike. Internally, Sencha
Touch uses a picker for the select form field, which
we’ll cover in more detail in chapter 7. But let’s not get
ahead of ourselves; first let’s explore basic pickers like
the one in figure 6.7.

6.2.1 Creating a basic picker

Under the hood the picker consists of a sheet with multiple Ext.Picker.Slot instances,
where each slot is a scrollable data view. A picker can have an arbitrary number of
slots, limited only by the amount of screen real estate available to you. The following
listing demonstrates how to go about building a basic picker.

var myPicker = Ext.create('Ext.Picker', {
 useTitles : true,
 hidden : true,

Listing 6.3 A basic picker

Figure 6.7 A typical picker with
a single “slot”

Generates
titlesb

113Choosing pickers
 slots : [
 {
 name : 'agegroup',
 title : 'Age group (years old)',
 data : [
 { text: '1 - 10', value: 1 },
 { text: '11 - 14', value: 2 },
 { text: '15 - 18', value: 3 },
 { text: '19 - 24', value: 4 },
 { text: '25 - 31', value: 5 },
 { text: '32 - 40', value: 6 },
 { text: '41 - 50', value: 7 },
 { text: '51 - 75', value: 8 },
 { text: '75 - 100+', value: 9 }
]
 }
]
});
Ext.Viewport.add(myPicker).show();

You start out with the simplest picker possible, containing only a single slot. You
instantiate the picker and tell it to give each column a title B via the useTitles prop-
erty. When this property is enabled the picker will automatically add a toolbar to each
slot with a title equal to the title property defined in the slot. In this case the title
would be “Age group (years old)”. You provide the one and only slot c defined for
this particular picker. The picker automatically provides the XType for the slot, so you
don’t have to worry about it at all. Giving the slot a name provides you with a way to
identify each slot and its corresponding value if you were to call the getValue method
of the picker. The only thing left is to define the data to show. You do so via an array of
objects d, each of which consists of a text property and a value property. The for-
mer is the actual text that shows in the picker and the latter is the value that’d be
returned as part of the getValue call.

 If you wanted to add another slot to the picker you’d build it adjacent to the cur-
rent one and structure it the same way, with a name, a title, and an array of data
objects. That’s all there really is to pickers.

 When looking at the documentation for pickers in the Sencha Touch docs you’ll
most likely notice a severe deficiency in styling options. The standard picker looks
somewhat bland. One bright spot is that you can easily add HTML tags to the text. Tags
allow you to provide some quick-and-dirty, albeit not dynamic, styling for each item.
Here’s a sample slot definition:

{
 name : 'color',
 title: 'Color',
 data : [
 { text: '<div class="color-red">RED</div>', value: 'red' },
 { text: '<div class="color-green">GREEN</div>', value: 'green' },
 { text: '<div class="color-blue">BLUE</div>', value: 'blue' }
]
}

Sets up slotc

Provides
data for slotd

114 CHAPTER 6 Getting the user’s attention
This snippet assumes that the following CSS classes
are present:

.color-red { background: red; }

.color-green { background: green; }

.color-blue { background: blue; }

In this case each item in the slot would show with a dif-
ferent color: red, green, and blue respectively, just like
in figure 6.8.

 Although you might cry foul, claiming that this
approach is cheating and doesn’t style the picker
itself, the truth of the matter is that pickers don’t pro-
vide much out-of-the-box functionality to change their
appearance. Sadly, most of the functionality gained
from the fact that slots extend data views has been
locked down, preventing you from passing a custom
XTemplate, for example. To truly change the look
and feel of a picker you’ll have to venture deep into
the bowels of Sencha Touch and write your own
extension to the Picker and Slot classes, as well as
some serious CSS.

 On the topic of extending classes, let’s see if you can
get a better idea of what’s achievable by taking a look at
the date picker to extend the standard Picker class.

6.2.2 Date picker

Built on top of the standard Picker class, the built-in
date picker consists of three slots, one each for year,
month, and day. Onscreen the entire thing looks pretty
much the way you’d expect a picker with three slots to
look (figure 6.9).

 Things get interesting when you take a closer look
at the configuration options and the actual code behind
the date picker. To better illustrate the options avail-
able to you take a look at the code for figure 6.9:

var myDatePicker = Ext.create('Ext.DatePicker', {
 yearFrom : 2010,
 yearTo : 2025,
 slotOrder : ['year', 'month', 'day'],
 value : {
 year : 2011,
 month : 7,
 day : 4

Figure 6.8 A picker with styled
HTML content

Figure 6.9 A standard date
picker

115Talking to the user via a message box
 }
});
Ext.Viewport.add(myDatePicker).show();

In this case you limit the dates to start in 2010 (via the yearFrom property) and only
go up to 2025 (via the yearTo property). By default the year starts in 1980 and goes
until the current year. Slots are normally sorted by month/day/year, but because you
want to be friendly to your international readers you’ll change the order. To do so
you utilize the slotOrder property and change it to year/month/day instead. The date
picker takes care of automatically creating all the slots for you, so you don’t have to
worry about that part. The only thing left is to set a starting value. This can either be a
proper JavaScript date object or a JSON object with a year, month, and day property.

 If you encounter one of those cases where you only need to query a user for a year
and a month, for example, you can simply change the slot order and leave out the day
slot. This will automatically hide any slot not mentioned in the order.

Although pickers are easy to set up and sheets are versatile in the content you can
populate them with, neither one provides an easy or quick way to prompt the user for
input or relay a quick message to the user. Fortunately, the Sencha Touch developers
have thought exactly of this use case and given you the MessageBox class.

6.3 Talking to the user via a message box
Whether your goal is to notify the user of something that happened, prompt for
input, or query the user to make a quick yes/no decision, the MessageBox class is the
way to go. It provides the easiest out-of-the-box interaction with the user.

MessageBox extends the basic Sheet class and automatically sets a few of the con-
figuration options associated with the Sheet for you. MessageBoxes by default always
use the dark ui, show centered on the screen, and pop in and out for their enter-
Animation and exitAnimation.

 Creating a message box largely follows the same paradigm as all the other Sencha
Touch components, but there are a few caveats to keep in mind that distinguish it
from the rest.

 First, you as a developer never have to worry about instantiating a MessageBox
instance yourself. Although it’s possible to do so Sencha Touch automatically creates a
singleton instance for you with the global alias Ext.Msg, thus removing the need for
you to create your own before using it. MessageBox is the only component in the
framework that does this.

Calendar picker is MIA
For those developers coming from the Ext JS side, as of this writing the date picker
is the only way to select dates and there’s no true equivalent to the Ext JS date
picker that shows a calendar-like structure split into rows and columns.

116 CHAPTER 6 Getting the user’s attention
 What this means effectively is that instead of doing this

 var myMessageBox = Ext.create("Ext.MessageBox", { /*options here*/ });
 myMessageBox.show();

you can easily do this:

 Ext.Msg.show({ /*options here*/ });

The primary reason for this is that the heart of MessageBox is in its show method,
which allows for a rather complex configuration object to be passed to it. Before we
delve into the depths of the show method let’s take a look at the simplest way to show
a message box via the following sample:

Ext.Msg.show({
 title: 'Southpark',
 msg: 'Ice Ice Timmy!'
});

This code uses the MessageBox singleton to show a sim-
ple message consisting of a title and msg (message)
body. If you run the code from the console you’ll notice
the presence of an OK button, just like you’ll see in fig-
ure 6.10.

 Even though you didn’t specify it the message box
automatically creates a toolbar with an OK button to
provide the user with an easy way to dismiss your mes-
sage. Given that this example barely scratches the sur-
face of what’s possible let’s see if you can get a better
idea of your options from the show method and some
of the helper functions, starting with alerts.

6.3.1 Alerting users

Alerts consist of a title and a message body, and they’re
perfect for telling the user when an operation has fin-
ished or an error has occurred, or any similar type of
message. The outcome is much like you’ve already seen
in figure 6.10.

 There are only three properties within the show
method of MessageBox that concern themselves with
showing text. Table 6.1 provides details on all of them.

Table 6.1 The available show options for displaying basic text

Option Description

title This option sets the title of the message box. If it’s left blank or omitted entirely no top
toolbar is created. As of this writing it’s impossible to have a multiline title, either by
entering long text or by forcing a line break via HTML tags.

Figure 6.10 Basic
MessageBox with title and
message body

117Talking to the user via a message box
The code that creates an alert is the same as the code you used for figure 6.9 earlier.
For convenience purposes the MessageBox class exposes an alert function, which
automatically wraps the show method with default values. To use the alert method
follow this sample:

Ext.Msg.alert("Title Goes Here", "Message goes here");
Ext.Msg.alert("Title Goes Here", "Message goes here", myAwesomeFn, this);

The alert function is broken down into four parameters: the first is the title, the sec-
ond the message to show, and the third and fourth a callback function to invoke
when the message box is closed and its respective scope. Under the hood the alert
method automatically inserts an OK button and calls the show method, passing along
the specified parameters. In the previous code the first function call would simply
show the alert with the provided title and msg. In the second call the myAwesomeFn
function would be invoked when the OK button is clicked, using the scope of which-
ever object called the alert. The callback function passes you three parameters. The
first is the itemId of the button that was clicked. In this case it would be OK. The sec-
ond is the value, which only applies to prompts, and in the case of an alert is null. The
last is a copy of the config object passed to the show method. For the most part, the
callback function is used more infrequently on alerts than any of the other types of
message boxes. To see a better example of the callback being used let’s take a look at
the next section, which deals with ways to prompt the user for simple yes/no answers
and then act based on those answers.

6.3.2 Prompting users

In the world of Sencha Touch a message box that presents the user with a set of but-
tons to be clicked is called a confirmation box. Typically confirmation boxes are used
in cases where the user might do something risky, and you as the developer have to
protect the user from rash actions like deleting a record, submitting a payment form,
or other similar things.

 In terms of coding confirmations follow the same paradigm as the options already
used for alerts in figure 6.9, with the addition of configuration options to define the
buttons and callback function. The easiest way to invoke a confirmation message is via
the Ext.Msg.confirm method. The syntax is exactly the same as for the alert method
discussed earlier:

msg This option specifies the message body you want to show. In the event of a prompt you’ll
use this as the text to show right above the prompt, similar to a label for a text field.

modal This Boolean option defines whether the message box should be modal. It determines
whether the rest of the screen should be masked or still be available for interaction.

Table 6.1 The available show options for displaying basic text (continued)

Option Description

118 CHAPTER 6 Getting the user’s attention
Ext.Msg.confirm(
 "Are you sure?",
 "This will shutoff the internet!",
 myAwesomeFn
);

The primary difference between alert and confirm is
a change in buttons. Where the alert method only
shows an OK button the confirmation box by default
shows a Yes and a No button, just like you’ll see in fig-
ure 6.11.

 For the confirmation box to be truly useful you’ll
have to make sure you pass a callback function so you
can process which button was actually clicked. Because
the confirm call depicted in figure 6.11 expects a call-
back named myAwesomeFn let’s see what that might
look like:

var myAwesomeFn = function (buttonID, value,
opts) {

 if (buttonID === "no") {
 // whew. Threat averted!
 }
 else {
 // oh noes! the internet is going down
 }
}

This is all that’s needed to handle a confirmation box and process the response.
 “Wait!” you might say. “This can’t be everything!” You know for a fact you’ve seen

message boxes with multiple buttons that weren’t Yes or No. Right you are. The Yes/No
combination is simply the default when using the Ext.Msg.confirm helper function.
To define your own buttons you’d use the show method and pass in your own buttons
configuration, just like this:

Ext.Msg.show({
 title : 'Are you sure?',
 msg : 'This will shutoff the internet!',
 buttons : Ext.MessageBox.OKCANCEL,
 fn : callbackFunction
});

This code would show the same confirmation prompt as figure 6.11, but the buttons
would be OK/Cancel instead of Yes/No. To better understand the various options
related to confirmation dialogs and how to define custom buttons take a look at
table 6.2.

 One often-overlooked feature in regard to confirmation dialogs is the option to
define completely custom buttons, which you can do by setting the buttons configura-
tion of the dialog to an object structured like either one of the following samples:

Figure 6.11 Default
confirmation box

119Talking to the user via a message box
Ext.Msg.show({
 title : 'Are you sure?',
 msg : 'This will shutoff the internet!',
 fn : callbackFunction,
 buttons : {
 text : 'go!',
 ui : 'action'
 }
});

or for multiple buttons:

Ext.Msg.show({
 title : 'Are you sure?',
 msg : 'This will shutoff the internet!',
 fn : callbackFunction,
 buttons : [
 {
 text : 'go!',
 ui : 'action'
 },
 {
 text : 'umm, no'
 }
]
});

Table 6.2 Configuration options related to buttons, handlers, and scoping of functions

Option Description

Buttons This option defines which button(s) to show in the message box. Out of the box four
single button(s) are defined:

■ Ext.MessageBox.OK: Shows a simple OK button
■ Ext.MessageBox.CANCEL: Shows a simple Cancel button
■ Ext.MessageBox.YES: Shows a simple Yes button
■ Ext.MessageBox.NO: Shows a simple No button

In addition to these four buttons there are three button sets provided:

■ Ext.MessageBox.OKCANCEL: Shows an OK/Cancel button combination
■ Ext.MessageBox.YESNO: Shows a Yes/No button combination
■ Ext.MessageBox.YESNOCANCEL: Shows a Yes/No/Cancel button

combination

fn This option allows you to define a callback function that’s invoked whenever one
of the buttons from the button configuration is clicked. By default buttons
provide their own scope, which means the callback wouldn’t necessarily have
access to the rest of your application. To alleviate this you can use the scope
parameter.

scope This optional parameter allows you to change the scope of the callback function to
provide easy access to whichever level of code you need within the callback.

120 CHAPTER 6 Getting the user’s attention
With alert and confirm out of the way the only mys-
tery left is how to handle user input in a message box.
To learn more you’ll explore the prompt method in
the next section.

6.3.3 Requesting input from users

Prompts provide a way to ask the user for a single line
or multiple lines of text. Anything more than that and
you’ll have to look into building a form, something cov-
ered in chapter 7. Prompts build on top of the alert
and confirm functionality we covered in the previous
section. The title is retained and the message body is
appropriated as the label for the input field. Instead of
using a Yes/No button like the confirm box, prompts
use an OK/Cancel button combination by default (see
figure 6.12).

 The default prompt uses a single-line input field,
with autocomplete, autocapitalize, and autocorrect
turned off. Just like the other helper functions, prompt
calls the show method of the message box, setting
which buttons you want to use. Showing a prompt fol-
lows almost the same syntax as the alert and confirm
dialog showcased earlier:

Ext.Msg.prompt('Sorry dude!', 'What is your name again?', callbackFunction);

This code represents the standard call for a prompt. Notice that we said that it
almost follows the same syntax. The major difference is the addition of extra param-
eters to set whether the input field should be multiline, whether it should contain
an initial value, as well as a configuration object to turn on or off things like auto-
complete or set the maximum length of the field. Showing a multiline prompt looks
like this:

Ext.Msg.prompt(
 'Sorry dude!',
 'What is your name again?',
 callbackFunction,
 this,
 true,
 'Anthony',
 {
 maxlength : 180,
 autocapitalize : true
 }
);

Figure 6.12 Basic message
box with input prompt

121Talking to the user via a message box
The first two parameters are the title and message
body; parameters 3 and 4 are the callback function
and its scope. Parameter 5 sets the prompt to be mul-
tiline. Setting this to true means the input field will
utilize the default height of 75 pixels. You could pro-
vide a number instead of true, and the supplied num-
ber becomes the height of the input field. The next
parameter is the initial value you want the input field
to have, whereas the last parameter represents the
configuration for the input field. Fully rendered,
the prompt looks like figure 6.13.

 That’s all there is to prompts. The main thing to
keep in mind is that you’re not bound to use the
prompt helper function. You can always call the
Ext.Msg.show method directly and pass a configura-
tion object with your desired combination of options.
To recap the options related to text input take a look
at table 6.3.

If you happen to look through the documentation, you might notice the show method
specifies cls, height, width, and defaultTextHeight as valid options to be passed.
The truth is that as of this writing these parameters don’t accurately work; the show
method ignores them. To use any of these options you’ll have to instantiate your own
Ext.MessageBox instance and pass this option into the config of the MessageBox
(instead of the show method), and then call the show method of your custom Message-
Box instance. Using the provided Ext.Msg singleton won’t work with these options.

Table 6.3 Available configuration options for prompting users for input

Option Description

multiLine This option can either be a Boolean value or a number. In the event it’s set to
true the input box will be multiline and use the default 75-pixel height. In the event
that you provide a number the number specified will be used as the height for the
input box.

prompt This option takes a configuration object that allows you to specify properties for the
input field. The options include any of the available options for a textfield
instance, which are autocomplete, autocapitalize, autocorrect,
maxlength, autofocus, and placeholder.
All of these have defaults that are automatically set, and you wouldn’t need to bother
with most of them.

value Automatically populates the input box with the defined value. This option is only
useful when you’re prompting the user to provide input.

Figure 6.13 A multiline prompt

122 CHAPTER 6 Getting the user’s attention
 There you have it, ladies and gentlemen, MessageBoxes in a nutshell! A round of
applause, please.

6.4 Summary
Your newfound knowledge of how to overlay information onto the current screen with
sheets, how to notify and prompt the user for information via message boxes, and how
to present users with an abundance of choices through use of pickers should help
make your apps more intuitive and user-friendly.

 You’re starting to amass an impressive list of tools in your tool belt, ranging from
managing components, to using panels and tabs, to docking items, to harassing the
user with those pesky pop-up messages. Although this is an impressive list you might
be thinking, “What we’ve learned so far is great, but I have all this data on a remote
server and I don’t know what to do with it!” You’re absolutely correct. Without further
ado, the next chapter will introduce you to the exciting world of data stores, lists, and
the ever-so-powerful data view.

Data stores and views
You’ve learned quite a lot so far about how to work with Panel and Sheet, and you
can build a great-looking application. But the application you’re able to build so far
is static and may need to consume or save remote data. Say you’re tasked with
building a mobile viewer so that anyone in your client’s company can search a
global address book and find contact information while they’re traveling. You’ll
likely want some sort of list that will load the contact list from a remote server.
Building such a list might sound complicated, and it is, but Sencha Touch makes it
easy to achieve.

 In this chapter you’ll explore Ext.data.Store and the classes it uses to send
a request to a server and read the response. We’ll also look at displaying this data
in Ext.DataView.DataView and Ext.DataView.List, and you’ll learn when to
use them.

This chapter covers
■ How data stores work with models, proxies,

and readers
■ Using DataView
■ Exploring lists
■ Digging into nested lists
123

124 CHAPTER 7 Data stores and views
 Before we jump into using the widgets you need to learn about data stores. A list
can’t display anything without a data store, so let’s begin with an overview of what a
data store is and how it works.

7.1 Examining data stores
Ext.data.Store is one of the most commonly used classes in Sencha Touch. From the
perspective of someone just learning Sencha Touch it can be quite a daunting task to
understand how the store works and consumes remote data. You’re going to take it
one step at a time. First, you’ll build your knowledge of how a store sends a request to
a server and decodes data so that the store can properly consume the data.

7.1.1 The anatomy of data stores

If you’re familiar with databases, then an easy way to think of a store is like a table
in a database; it has fields and it has rows of data. That’s the simplified version, but
the Store class has many different supporting classes that it uses to load remote
data and read the data and consume it. To get data from a server-side source you
use a proxy to send your request to the server. The server will then respond with a
format such as JSON or XML and you’ll use a reader to decode the data, allowing
the store to read the response. Looking at figure 7.1, you can visualize how the
process happens: the store only talks to the proxy, and the proxy does the coordi-
nating. There are some other classes in the mix, but generally speaking this is a
great overview of the workflow the store uses to retrieve remote data and work
with it. To add some flexibility you can use a Model class that can hold the fields,
use a proxy and reader, build associations with other Models, and even validate
data. If you change a Model instance, or record, that’s within a store and you want
to send that change to the server, the store will use a writer to get the needed data
and encode it for transfer by the proxy to the server. Figure 7.1 shows the main
classes the store uses.

Store

Writer

Proxy

Reader

Server
Request

Response

R
equestR

eq
ue

st

Request

Response

R
es

po
ns

e

R
esponse

Step 1

Step 2 Step 3

Step 4

Step 5

Step 6Step 7

Step 8

Figure 7.1 Overview of how the store
can load remote data from the server

125Examining data stores
Figure 7.1 shows you an overview of the workflow for the store to load remote data in
eight steps:

1 The store tells the proxy that it wants to make a request.
2 The proxy asks the writer if it has anything it can add to the request that the

proxy will make. This is where changes you’ve made to the store, such as cre-
ating, editing, or removing a record from the store, will synchronize with
the server.

3 If the writer has anything to add it’ll add data to the request. The data can be
encoded using JSON or XML and other options we’ll discuss in a little bit.

4 The proxy now has everything it needs to make the request, so it sends the
request to the server. The type of request depends on what proxy you’re using.
For instance, an Ajax proxy sends an Ajax request, but the LocalStorage proxy
uses HTML5’s localStorage property.

5 The server does whatever it needs, such as gathering data or handling the new,
edited, or removed records, and responds. The response will come back in
either JSON or XML, depending on what you chose as your response.

6 The proxy gets the response from the server but it’s basically just a string, either
JSON or XML, with JSON being recommended. As is, the store won’t be able to
handle this raw data, so the proxy sends the raw data to the reader for decoding.

7 The reader decodes the raw data, taking the JSON or XML and turning it into
JavaScript.

8 The round-trip for the request is now complete. The proxy will create records
from the JavaScript and return the records to the store.

Now the different widgets are able to display the data. It’s good to know about
Ext.data.Operation. This class does much of the heavy lifting behind the scenes and
works in parallel with the proxy. This class is more for advanced users; you’re not
going to deal with Operation directly. Let’s slow down and review the various classes
that you just saw in more detail.

7.1.2 Using proxies to load data

As we mentioned, you use a proxy in a store to load data, but what does that mean?
The most popular proxy class is the Ext.data.proxy.Ajax proxy, which uses an
Ext.Ajax request to get data from a remote data source.

 There are other proxies that you can use depending on your server requirements,
but they all work in the same way. You have Ajax, Direct, JsonP, LocalStorage, Memory,
Rest, and SessionStorage proxies, and they all work the same. They’re just different
ways of communicating with a data source. Table 7.1 shows some of the commonly
used configurations of the proxies.

NOTE All proxies, except the default Memory proxy, load data asynchronously,
so you need to use a callback or an event to take action when a store loads.

126 CHAPTER 7 Data stores and views
There are a couple of websites that can help you debug responses if you’re returning
JSON data. If you’re using the Ajax proxy with the JSON reader, www.jsonlint.com is a
great place to test the response coming from the server so that it’s returning what
you’re expecting, and it’ll also format the JSON so you can better read the response. If
you’re using the JsonP proxy, www.jsonplint.com is the site to do your server testing
and response visualization. Both sites can handle remote requests, or you can paste
the response to lint the data and its format.

7.1.3 Using readers to digest data

Like the different proxies, there are three readers you can use: array, JSON, and
XML. It’s recommended that your server return JSON; therefore, you should use

Table 7.1 The common configurations of a proxy

Config Description Defaults

url The URL of the remote data source. Empty string, ""

api An object of URLs for each CRUD
action. You should only use this over
the url config if you need to have dif-
ferent URLs for each action.

{ create : undefined, read :
undefined, update :
undefined, destroy :
undefined }

actionMethods An object of methods to use for each
CRUD action.

{ create : 'POST', read :
'GET', update : 'POST',
destroy : 'POST' }

extraParams An object of parameters to include in
the request. These will always be sent
but can be overridden in the params
config of the load method.

Empty object, {}

reader A configuration object to configure the
reader.

{ type : 'json' }

writer A configuration object to configure the
writer.

{ type : 'json' }

Cross-domain loading
JSONP is a means of loading cross-origin content without CORS (cross-origin
resource sharing) to get around browser security. CORS allows you to make Ajax
calls cross-origin, but it requires server setup. You’ll find a quick reference to set-
ting up CORS at www.enable-cors.com/. The server has to respond with a valid
JSONP response. A valid response is JSON surrounded by a callback function
whose name is sent in the request. For example, if in your request you have a call-
back parameter with a value of 'Ext.data.JsonP.callback1', then the response
should look like this: Ext.data.JsonP.callback1({"foo": "bar"});. Learn more
at www.jsonplint.com.

www.jsonlint.com
www.jsonplint.com
www.enable-cors.com/
www.jsonplint.com

127Examining data stores
Ext.data.reader.Json to decode that JSON. If your server returns XML you
should use Ext.data.reader.Xml. Table 7.2 shows some important configurations
of a reader.

7.1.4 Understanding models

Models are the rows of data within the store and must have the fields defined to repre-
sent the value in each model. In a real-world application you should have your code
organized so that you always have a model defined for a store to use; you shouldn’t
define fields on the store.

You know a store can have a proxy defined, but there’s some flexibility when using
models. You may need to load a single row of data, and using a store is a bit of overkill
because it handles an array of data. To handle this use case the model can have a
proxy defined so it can load that single row of data.

 If you have a store that’s using a model that has a proxy defined the store will then
use the proxy defined on the model. If you have a proxy defined on both and you try
to load the store the proxy defined on the store will then be used.

Table 7.2 Common configurations of a reader

Config Description Type Defaults

idProperty The field name in the response to use as the
ID of each record.

String 'id'

messageProperty The property in the top level of the response
to use as the message of the response. This
is useful if there was an error and the server
needs to reply with the error message.

String null

rootProperty The property in the top level of the response
to use as the root of the data.

String Empty string, ''

successProperty The property in the top level of the response
to use as the success signal.

String 'success'

totalProperty The property in the top level of the response
to use as the number of total results. This
number is used for paging and tells the store
the total number of results, not how many are
in the returned page.

String 'total'

Models are records
In the Sencha Touch community we call records instances of models. We’ll be using
these two terms moving forward.

128 CHAPTER 7 Data stores and views
7.1.5 Writer to sync

The last bit we’ll talk about to complete the store ecosystem is the writer. A writer’s job
is to include new, edited, or destroyed records in the sync request from the store. You
execute a sync request by executing the sync method on the store, and if there are
any dirty records they’ll be included in the request. A “dirty record” is a record that’s
new, edited, or destroyed. You’ll also see the term “phantom record,” which is a new
record on the client side that hasn’t yet been synced with the server side.

 As with the proxies and readers various writers are available depending on your
situation. Table 7.3 shows the common configurations of the writers, but each writer
has its own specialized config for its request format, so there are some others.

7.1.6 Simple store example

The following listing shows a simple example of how to set up a local store. It’s called
“local” because the data is specified locally (in this case, inline), whereas a remote
store would load remote data via a proxy.

Ext.define('MyModel', {
 extend : 'Ext.data.Model',

 config : {
 fields : [
 'name',
 { name : 'twitter', type : 'string' }
]
 }
});
var store = Ext.create('Ext.data.Store', {
 model : 'MyModel',
 data : [
 { name : 'Mitchell Simoens', twitter : 'SenchaMitch' },

Table 7.3 Common configurations of a writer

Config Description Type Defaults

encode Only for JSON writer. Set to true to encode
the request and be placed in the request
body, or if rootProperty is set as the
value of that property.

Boolean false

writeAllFields For both JSON and XML writers. Set to true
to send all field values, else send only the
ones that were changed.

Boolean true

rootProperty Only for JSON writer. The property in the top
level of the request to send the encoded data.

String 'records'

documentRoot Only for XML writer. The property to be used
as the root of the XML document.

String 'xmlData'

Listing 7.1 Basic local store example

Defines
Modelb

Specifies
fieldsc

Instantiates
store

d

Includes
datae

129Examining data stores
 { name : 'Jay Garcia', twitter : 'ModusJeasus' },
 { name : 'Anthony De Moss', twitter : 'ademoss1' }
]
});

As you can see in listing 7.1, implementing a local store with inline data is simple. You’re
using something new, Ext.define B, which we’ll cover more in chapter 10. Ext.define
creates a new class definition, and in this case, a Model class to be used for the Model
instances. A model has to have fields, so you use the fields configuration to specify an
array of fields. You can use a string or a configuration object to specify your fields. If you
specify a string as you did with name it’ll be used as the name config and no conversion
will happen. But if you specify a configuration object c it’ll be used to create the
Ext.data.Field instance. If you need to do value conversion you can specify the type
configuration; refer to Ext.data.Field for more configurations you may need.

 Now you get into creating the store d. You use the model configuration to tell the
store which Model class definition to use. To finish off a simple local store you give it
inline data e, which is an array of objects. Notice the properties name and twitter in
the data objects, which will map to the fields in the MyModel Model class definition.
With this code your store now has three records (Model instances) and is ready for a
view to display this data.

 Now let’s look at implementing a proxy and reader to use with a remote store.
Configuration is pretty straightforward, but we’ll highlight some of the main areas in
the next listing. You’ll reuse the MyModel model you created in listing 7.1.

var store = Ext.create('Ext.data.Store', {
 model : 'MyModel',
 autoLoad : true,
 proxy : {
 type : 'ajax',
 url : 'authors.php',
 reader : {
 type : 'json',
 rootProperty : 'authors',
 totalProperty : 'totalNumber'
 }
 }
});

If you remember that you’re reusing the MyModel class from listing 7.1 and you picture
the anatomy of the store from figure 7.1 it’s easy to understand how this remote store
works. By default, the store won’t load automatically, so you can set the autoLoad con-
figuration to true to make the store load right away. You could also execute the load
method after the store was created to have control of when the store loads. To load
remote data you specify a proxy to be used. You’ll use Ajax to load remote data, so
specify type and url so you can use the Ajax proxy. This may throw you, but looking
back at figure 7.1 you can see the proxy talks to the reader, not the store, so you put the

Listing 7.2 Basic remote store example

130 CHAPTER 7 Data stores and views
reader configuration in the proxy config object, not the store. To configure the reader
tell it to use the JSON reader with the type configuration and also use the rootProperty
and totalProperty to properly map where the data is and the total number of records
in the database.

 This Store configuration would expect the following response from authors.php:

{
 "success": true,
 "totalNumber": 3,
 "authors": [
 {
 "name": "Mitchell Simoens",
 "twitter": "msims84"
 },
 {
 "name": "Jay Garcia",
 "twitter": "_jdg"
 },
 {
 "name": "Anthony De Moss",
 "twitter": "ademoss1"
 }
]
}

You now know how to configure both local and remote stores and what a sample
response would look like for the remote store. In chapter 8 we’ll walk you through sav-
ing data back to the server. Now it’s time for the fun part: learning about and creating a
few different views to use the store to display data. First, let’s look at the DataView.

7.2 Implementing DataView
You know how to get data from a data source, but now you need to learn how to dis-
play this data. For that you can use the Ext.DataView.DataView widget that takes the
records from a store and displays them with an XTemplate. You can get as advanced as
you like or keep it simple.

7.2.1 How DataViews work
Just as when we walked through the various
classes for the store, we’ll show you what classes
DataView uses. You learned in chapter 3 that
there’s a Component model; one Component

extends another Component in order to give stabil-
ity and enforce standard behavior. DataView

extends Container and each record in the store
gets rendered as an item to DataView, so now you
have items within the parent container (Data-
View). Figure 7.2 illustrates how DataView

extends Container and gets the records from the

Container Store

Records

DataView

Item

Item

Item

Figure 7.2 Showing the workflow of
how DataView gets the records from
the store to render its items

131Implementing DataView
store to render its items. What does that mean? Well, DataView gets all the records
within the store and loops through the array to generate HTML for each row using the
record data and the template you defined in the itemTpl configuration. What’s that
itemTpl configuration? It’s an Ext.XTemplate configuration, usually a string that gen-
erates HTML when you pass it data.

7.2.2 Walking through XTemplate

XTemplate is a subclass of Template. We like to think of an XTemplate as a template
on steroids. It can map data in a basic form or it can get more advanced, where you
can loop through an array in your data, use template methods to establish some logic
to change or format what’s to be displayed, and even execute JavaScript. The XTemplate
is intimidating, we’ll give you that. But by going over it piece by piece, we’ll show you
how to take advantage of this class easily.

 In the next listing we’ll look at the XTemplate’s most basic form, where you can
map data to display data-driven HTML.

var template = Ext.create('Ext.XTemplate',
 'Book: {data}'
);

var html = template.apply({
data : 'Sencha Touch in Action'

});

Ext.getBody().setHtml(html);

That was easy! First you created an XTemplate and
passed in a couple parameters. In this case you passed
in two strings, but you can pass in a couple of different
things. You can pass in one string or a number of
strings that’ll be combined into one. You can also pass
in an array that’ll be joined into a single string. You then
used the apply method on the XTemplate to apply the
object of properties and values that’ll get mapped.
This object has a data property that’ll get mapped to
the {data} string within the string. Finally, you want
to display the HTML that was just created, so you use
the setHtml method on Ext.getBody(), which is just the
document.body. The results of listing 7.3 can be seen in
figure 7.3.

 Our examples are becoming increasingly advanced,
and you can see how it’s not that difficult to take advan-
tage of the power behind the XTemplate. Next we’ll
tackle looping through an array so you can display data

Listing 7.3 XTemplate example

Figure 7.3 Results of the basic
XTemplate

132 CHAPTER 7 Data stores and views
that may be in array form. For this you use a for loop as we would in JavaScript, but
you don’t have to worry about setting an iteration variable or specifying a length so
the for loop can know how to loop through an array; the XTemplate will take care of
this for you, as shown in the following listing.

var template = Ext.create('Ext.XTemplate',
 'Book: ',
 '{data}',
 '<tpl for="authors">',
 '<p style="padding-left: 2em;">{name}</p>',
 '</tpl>'
);

var html = template.apply({
 data : 'Sencha Touch in Action',
 authors : [
 {
 name : 'Mitchell Simoens'
 },
 {
 name : 'Jay Garcia'
 },
 {
 name : 'Anthony De Moss'
 }
]
});

Ext.getBody().setHtml(html);

The example in listing 7.4 builds on listing 7.3 to eas-
ily show how to loop through data. When the XTem-
plate parses the string you pass it, if it sees the <tpl>
tag B it knows that it has something to do. In this
case you use the for attribute, which tells it that it
needs to loop through the authors array in the data
passed in. At each iteration through the authors array
that object will be applied to the string within the
<tpl> and </tpl> tags, so you can use {name} c to
map to the name property of the objects within the
authors array d. It can sometimes be hard to visual-
ize what this will produce; figure 7.4 shows the output.
Notice the indented lines, which show what’s in the
array that you looped through.

 The next example shows two ways you can format
the data that gets mapped. Say you’re expecting a Date
object and you want to format it. The next listing shows

Listing 7.4 XTemplate array looping

Uses <tpl>
tag to loop

b

Maps to name
propertyc

Specifies
authors arrayd

Figure 7.4 Results of looping
through an array within an
XTemplate

133Implementing DataView
how you can use Ext.util.Format and also how you can use member functions to
return a formatted date string.

var template = Ext.create('Ext.XTemplate',
 '<p>Ext.util.Format: ',
 '{dateVal:date("Y-m-d")}</p>',
 '<p>Member Function: ',
 '{[this.formatDate(values.dateVal)]}</p>',
 {
 formatDate : function(date) {
 return Ext.util.Format.date(date, "Y-m-d");
 }
 }
);

var html = template.apply({
 dateVal : new Date()
});

Ext.getBody().setHtml(html);

In this listing you see an example of how to define
and use member functions for the XTemplate. When
you see {dateVal:date("Y-m-d")} it means that you
want to execute Ext.util.Format.date, passing in the
value of the mapped data. In this case it’s the dateVal
property, and you also pass in the format string B. This
is the same as doing it in the member function, which
you tell it to execute via the square brackets c. The
scope is that of the XTemplate, and the member func-
tions specified in the object (in the same place you
specify the strings) are placed on the XTemplate. You
have to get the data point from the values object,
which the formatDate member function d will exe-
cute when you apply data to the template. Note that
you should always return something in the member
function. Figure 7.5 shows the output of listing 7.5
using the shortcut method c and the member func-
tion d.

 The XTemplate isn’t meant to replace JavaScript; it
just makes it easier to have control over what’s to be dis-
played by allowing JavaScript to be executed from
within the XTemplate. The following listing shows how
to execute JavaScript from within an XTemplate.

Listing 7.5 Using methods within an XTemplate

Passes in
format
string

b

Executes
member
function

c

Specifies
member
functiond

Figure 7.5 The output of two
ways to execute functions within
the XTemplate

134 CHAPTER 7 Data stores and views
window.STIA = {};

STIA.formatDate = function(date, format) {
 return Ext.util.Format.date(date, format);
};

var template = Ext.create('Ext.XTemplate',
 '<p>Javascript execution: ',
 '{[STIA.formatDate(values.dateVal, "Y-m-d")]}</p>'
);

var html = template.apply({
 dateVal : new Date()
});

Ext.getBody().setHtml(html);

As listing 7.6 shows, executing JavaScript from within
an XTemplate is similar to executing member func-
tions. First you specify the function that you want to
execute; in this case, it’s a formatDate method on the
STIA namespace c that you created B. Then just as
you did with the member function, you execute the
method within the square brackets d. The results of
listing 7.6 are shown in figure 7.6.

 We’ve walked through some useful features of
XTemplates to display data-driven HTML. You may be
thinking the XTemplate is great, and it is, but it has a
downside. With everything you do in a mobile app, you
have to think about performance. If you overuse XTem-
plates rendering DataViews may be very slow because
all the code within the XTemplates will be executed for
each record in the store. So if you have 50 records in
the store your code will execute 50 times. You need to
ensure your XTemplate is as small as you can make it
while still accomplishing what you need to.

7.2.3 Implementing your first DataView

You’ve learned about the store and its proxy, reader,
and model; you’ve also learned how the DataView class
works and the functionality of the XTemplate. How do you put all that together to
make a fully working DataView? That’s what we’re going to look at next, and it’s easier
than you may think.

 You’ll use the store from listing 7.1 to have the data present for your DataView to
display, and you’ll use the remote store in listing 7.2 when you try out the list. First
let’s look at the next listing to see how you can implement your first DataView.

Listing 7.6 XTemplate array looping

Creates STIA
namespaceb

Creates function
to executec

Executes JavaScript
functiond

Figure 7.6 The output when
executing your own JavaScript
within an XTemplate

135Advanced features with List
var dataview = Ext.create('Ext.dataview.DataView', {
 fullscreen : true,
 store : store,
 itemTpl : [
 '{name} ',
 '',
 '@{twitter}',
 ''
]
});

The first step is to instantiate the DataView, in this case
via direct instantiation. You use the fullscreen config-
uration to add the DataView to Ext.Viewport in order
to render the DataView to the DOM so you can see the
data. You use the store from listing 7.1 with inline data
by using the store configuration. Lastly, you use the
XTemplate to get the data from the store to display
using the itemTpl. Because the store has data in it
DataView will take that data and apply it to the XTem-
plate you specified in the itemTpl configuration, which
will result in figure 7.7. You use {name} and {twitter}
to tell the XTemplate where to display the data from
the store.

 One thing to know about itemTpl is that it can
accept a few different types of values. In listing 7.7 you
specified an array of strings, but you could’ve specified
a string or an actual XTemplate instance. It’s common
to just specify a string or an array of strings; we used an
array only to fit it on the page of this book.

 You just learned about DataViews, which can display
data from a store. Now let’s talk about a subclass of
DataView: List.

7.3 Advanced features with List
So far in this chapter you’ve learned how to get data with the store and display the
data in the DataView using the XTemplate. In this section you’ll look at the Ext.data-
view.List component and learn to use its extra functionality.

7.3.1 How List differs from DataView

The List class extends DataView, so you get all the functionality that you’ve learned
about so far in this chapter, such as getting data from a store and displaying it with an
XTemplate. There are several things that List can do that DataView can’t:

Listing 7.7 Basic DataView

Figure 7.7 Results from
listing 7.7 showing inline data
from the store using the
DataView

136 CHAPTER 7 Data stores and views
■ CSS—List has some CSS that DataView doesn’t have.
■ Infinite—List can handle an infinite amount of data in the store. This is sometimes

known as an infinite scrolling List and is only available in Sencha Touch 2.1 and later.
■ IndexBar—This is a vertically stacked alphabet that when tapped on will jump

to a group of records. You should only use this when your list is grouped.
■ Group data—Each of your records can be grouped and have a header to specify

the group.
■ Disclosure icon—An icon typically appears to the right of each row that signifies

that an action can take place when you tap on that icon.

Taking it slow, let’s see how to create a basic list. In the next listing you’ll use the same
store and itemTpl you did in listing 7.7 so that you can compare the results of the
basic list and the basic DataView.

var list = Ext.create('Ext.dataview.List', {
 fullscreen : true,
 store : store,
 itemTpl : [
 '{name} ',
 '',
 '{twitter}',
 ''
]
});

We have to admit something: we used a common copy/paste shortcut that you should
avoid. All we did in listing 7.8 was change the first line B. For this basic list the con-
figurations are exactly the same as the basic DataView in listing 7.7. Let’s look at fig-
ure 7.8 to see the differences.

 On the left we have the DataView and on the right we have the list. The main dif-
ference here is visual, because the list has some CSS to differentiate the rows. Another
difference is if you tap on a row in each the list displays the row with a blue back-
ground and white text to signal it has been selected, whereas the DataView doesn’t.
You’d need to handle that in your CSS.

7.3.2 CSS differences between List and DataView
As you can see in figure 7.8, the list has a different look than the DataView. The struc-
ture of the DOM (Document Object Model) or the elements that you see is much the
same, so why do they look different? It’s because the CSS that’s bundled with Sencha
Touch has styling for List, but DataView is meant to allow developers to style it how
they need without overriding styles. Another CSS difference is visible when a row is
selected. Both DataView and List can allow each row to be selected, and if you look at
the CSS classes on the row element you’ll notice it gets a CSS class name added, usually
x-item-selected. When you select a row in the DataView visually nothing will hap-
pen, but if you select a row in the list you’ll see that row will get a blue gradient

Listing 7.8 Basic list

Creates
listb

137Advanced features with List
background and the text will be white to show the selection. You could specify your
own CSS to handle selection, but with List you’ll have to keep in mind that there’s
already CSS styling that you may have to override; with DataView there’s none.

CSS styling is the first of the differences between List and DataView. The other
three are just more advanced features, so they’re going to be grouped into one sec-
tion and example. It’ll be exciting to see more visual changes happen, but before you
can play you must first do your homework.

7.3.3 Using infinite data with List
New in Sencha Touch 2.1, Ext.dataview.List now supports infinite data. Now you
can have 100 Models in your store and performance will still be high just as if you had
only 10. In fact, you can have thousands in your store and it’ll perform very high. This
is a major update in Sencha Touch 2.1. Let’s see how it works and whether there are
any negative side effects.

 Unlike DataView, List doesn’t have a 1-to-1 relationship between a Model instance
and a DOM node. Instead, List figures out how many rows can fit in the screen, adds
some for a buffer, and reuses them on the fly as you’re scrolling. So say your screen
can fit 10 rows on screen; List will then use 15 rows so there’s a little buffer as you’re
scrolling, because it takes time to change the data in a row. So you have a total of 15
rows rendered and you scroll down; the first couple of rows are transformed to the
bottom using CSS and data from the next Model instances is applied to the rows. As
you scroll up or down, data is constantly being moved and written to these rows. This
is how the list can be infinite: it’s reusing 15 rows for possibly hundreds or thousands
of rows. Figure 7.9 illustrates this row movement.

Figure 7.8 Differences between
a basic DataView (left) and basic
list (right)

138 CHAPTER 7 Data stores and views
This sounds great, but all of this moving and writing
can come at a cost. In iOS we’ve found the scrolling
to be smooth. Android has always been plagued with
subpar CSS transform performance except in the
Android 4.1 and 4.2 versions and especially when
using Chrome for Android. In older or underpow-
ered devices the scrolling may be a little twitchy. To
combat this, the only thing you can do is keep the
itemTpl template as minimal as possible. That way,
there aren’t many DOM elements being created,
removed, and transformed.

 Another functionality that’s lost is making a list
unscrollable. Because the list doesn’t have a 1-to-1
relationship between a Model instance and a DOM
node, not all models in a store are going to be ren-
dered. So it’s not feasible to have an unscrollable list
or else you won’t be able to see the models that
aren’t rendered; it depends on the scrolling. You may
be asking yourself why this matters; some use cases
require a button or some other component at the
bottom of the list so you can take some action when
you scroll to the bottom, as shown in figure 7.10. To
achieve that in Sencha Touch 2.0 nest a list within a container and make the con-
tainer, not the list, scrollable. That way, you can have the list and button as child
items of the container, and because the container is the component that’s scroll-
ing you’ll see the button at the bottom of the container. You can see something
like that in the following listing.

S
w

ip
e

D
ire

ct
io

n

S
cr

ol
l D

ire
ct

io
n

Figure 7.9 Scroll down by
swiping up; the top row will be
moved to the bottom to be reused.

Figure 7.10 Show a button
under a list

139Advanced features with List
Ext.create('Ext.Container', {
 fullscreen : true,
 scrollable : 'vertical',
 items : [
 {
 xtype : 'list',
 scrollable : false,
 itemTpl : ''.concat(
 '{name} ',
 '',
 '@{twitter}',
 ''
),
 store : {
 fields : ['name', 'twitter'],
 data : [
 { name : 'Mitchell Simoens', twitter : 'SenchaMitch' },
 { name : 'Jay Garcia', twitter : 'ModusJeasus' },
 { name : 'Anthony De Moss', twitter : 'ademoss1' }
]
 }
 },
 {
 xtype : 'button',
 text : 'Load Next',
 ui : 'confirm'
 }
]
});

In listing 7.9 you create a container B and set scrollable to 'vertical' c. For the
child list you disable the scrolling by setting scrollable to false d. The container
has a second child, a button e that’ll show under the list. The list will be the height
that the rows take up and the button will be right under the last row in the list. This
means that if you had a long list the container would control the scrolling so that
once you got to the end of the list you’d see the button. Remember, this code will
work with Sencha Touch 2.0 but not 2.1 and newer.

 In Sencha Touch 2.1 and later the list has to be scrollable, so this technique
won’t work. To support this functionality you can have components docked to the
list, but it’s not as easy as setting the docked config on the component. If you set
the docked config the component will be docked and won’t participate in the
scroll, which isn’t exactly what you want to happen. A new config has been created
called scrollDock that tells the infinite scrolling list that this item is to be docked
to the top or bottom when the scroll has gone to the top or bottom. Along with
the docked config you can now accomplish what you want, which is to see the com-
ponent at the bottom. The following listing shows the docked and scrollDock con-
figs in use.

Listing 7.9 Button under a list

Creates wrapping
containerb

Sets container to
scroll verticallyc

Disables
scroll on listd

Shows
buttone

140 CHAPTER 7 Data stores and views
Ext.create('Ext.dataview.List', {
 fullscreen : true,
 itemTpl : ''.concat(
 '{name} ',
 '',
 '@{twitter}',
 ''
),
 store : {
 fields : ['name', 'twitter'],
 data : [
 { name : 'Mitchell Simoens', twitter : 'SenchaMitch' },
 { name : 'Jay Garcia', twitter : 'ModusJeasus' },
 { name : 'Anthony De Moss', twitter : 'ademoss1' }
]
 },
 items : [
 {
 xtype : 'button',
 docked : 'bottom',
 scrollDock : 'bottom',
 text : 'Load Next',
 ui : 'confirm'
 }
]
});

Although a few differences exist between listing 7.9 and 7.10 both show the same thing,
as seen in figure 7.10. Because you don’t need to wrap the list in a container you create
a List instance B. You create a button as an item of the list c and give it the docked
config d so it will display after the last list item. If you didn’t use this config the button
would display above the last list item. You also set the scrollDock config e to the same
value as docked so that the docking of the button will happen when the scrolling of
the list is at the bottom.

7.3.4 Advanced features for List

There are three more differences between List and its superclass DataView. Because
they’re features we can save time by discussing each and then seeing a single example.
Don’t worry; we’ll walk through the code so you can see which lines are doing what to
accomplish what you see in figure 7.11.

INDEXBAR

Many native apps that list data have what’s called an IndexBar. In figure 7.11 the
IndexBar is on the right side of the list. It’s a vertical stack of the alphabet docked to
the right side of the list, and when tapped it allows your list to jump down to the group
that matches the letter tapped. You’ll usually only see the IndexBar when a list is
grouped or sorted. Also note that it’ll show all letters, even if, as in figure 7.11, there
are only three groups.

Listing 7.10 New button under list

Creates
listb

Creates button
as item of list

c

Docks button under
last list itemd

Docks to
bottome

141Advanced features with List
GROUPED DATA

Say you have a list of people who have both a first name
and a last name, as people usually do. You could pres-
ent the application user with a long list of people, and
maybe even sort this list by last name. You can imagine
what this list would look like. Our users may get lost
scrolling through a long list searching for a particular
person. A better solution is to provide your users with a
header over a group of records. For instance, all last
names that begin with A will be under the A header and
last names that begin with X will be under the X header.
Looking at figure 7.11 you can see a short list grouped
with the blue headers over each group. If you were to
scroll and have more rows in the list the header would
be docked to the top until the next header reached the
top, where that header would then be docked to the top.
The store will need to be configured to be able to group
(which will also sort based on the grouping) so that the
data being provided to the list is in order, which makes
it easy for the list to display the data. We’ll look at this
store modification shortly.

DISCLOSURE ICON
Still looking at figure 7.11, notice the icons on each row floating to the right. These
icons, called disclosure icons, aren’t just cosmetic but will change and add behavior
when tapped. Normally when you tap on a row it’ll be selected, but if you tap on the dis-
closure icon it won’t select the row but will instead fire the disclose event on the list.
The onItemDisclosure config on the list can be set to a Boolean value or a function. If
onItemDisclosure is specified as a function, when you tap on the disclosure icon it’ll
fire the disclose event and will also execute the function, giving you two ways to handle
the disclosure icon tapping. In your application we suggest sticking with the disclose
event, but in some cases it may be easier just to handle the tap in the onItemDisclosure
config function. In our upcoming example you’ll use the disclose event and specify
the onItemDisclosure config as the function, but know that you could just specify the
onItemDisclosure configuration as true and use the disclose event.

 We just went over three new features of the list that the DataView doesn’t have. You
learned that the list has some CSS styling that the DataView doesn’t have. Can you
imagine what all these features look like? No? Well, let’s build an example and see
what the list will look like with all these features working together.

7.3.5 Example of IndexBar, grouping, and disclosures

In listing 7.11 you’ll enable the IndexBar, grouping, and disclosures to show how con-
figurable the list is and how easy these features are to include. You’ll also use the

Figure 7.11 The list showing
the IndexBar, groups, and
disclosure icons

142 CHAPTER 7 Data stores and views
remote store from listing 7.2 with a little modification for grouping so that you can see
what happens when the list has to wait for data to load so it can display. You can add
the following grouper configuration to the store to enable grouping:

grouper : {
 groupFn : function(record) {
 return record.get('name')[0];
 }
}

For each record this gets the value from the name property and returns the first letter.
This now groups all records on the first letter of the name property. Now let’s put it all
together in an advanced list in the next listing.

var list = Ext.create('Ext.dataview.List', {
 fullscreen : true,
 store : store,
 indexBar : true,
 grouped : true,
 onItemDisclosure : true,
 itemTpl : [
 '{name} ',
 '',
 '{twitter}',
 ''
],
 listeners : {
 disclose : function(list, record) {
 Ext.Msg.alert(
 'Author Tap',
 'You tapped on ' + record.get('name')
);
 }
 }
});

First, you set the indexBar config B to true. You enable grouping using the grouped
config c, so now you have the headers to distinguish the groups. To display the disclo-
sure icons you set the onItemDisclosure config d to true and listen for the disclose
event e to show an Ext.Msg.alert when you tap on one of the disclosure icons.

 While the list and DataView are loading the list will by default show an instance of
Ext.LoadMask (figure 7.12, on the left). You can configure this by using the loading-
Text config of List or DataView. The middle image in figure 7.12 is what the list looks
like with the IndexBar, grouping, and disclosure icons all enabled on the list. The
IndexBar is the vertical alphabet on the right. If you had a long list and tapped on a
letter the list would scroll down to the beginning of that group. If a group doesn’t
exist for that letter the list will scroll to the letter before it. To show that the list is
grouped it displays the headers for each group with the groupFn value in the bright
blue header. Do you see the blue circle with a white arrow in it? That’s the disclosure

Listing 7.11 Advanced list

Uses
IndexBar

b

Enables list
grouping

c

Shows
disclosure iconsd

Listens to
disclose evente

143Displaying hierarchical data with NestedList
icon, and if you tap it listing 7.11 will display an Ext.Msg.alert when the disclose
event fires (figure 7.12, on the right).

 You can use each of these three features of List independently of one another, so
you can have just disclosure icons or grouped data with or without the IndexBar. This
example shows an advanced example of what List is capable of out of the box.

 Now you’ve seen the features of the list, and things look really good! You can build
some fantastic, visually rich lists for your users. Next we’re going to talk about Nest-
edList, which is an extension of Container that uses child lists to display hierarchical
data in a card layout.

7.4 Displaying hierarchical data with NestedList
If you have flat data you should use DataView or List. But if you have hierarchical
data then neither is equipped to handle that data. They’ll show the first level, also
called the root level, of data, but not any of the child data levels. Not to leave you out
in the cold, Sencha Touch has a component equipped to handle hierarchical data
called the nested list. As the name suggests, the nested list component will show a list for
each nested level of data. The NestedList class extends Container and uses the card
layout. Each item is a list and the number of items depends on the number of levels in
your hierarchical data. The nested list also has a top-docked title bar to show a back but-
ton when not on the root level, allowing you to traverse backward. This title bar will also
show the title text, usually the same text that’s shown on the row you tapped on.

Figure 7.12 The list loading (left), the three features (middle), and handling the disclose event (right)

144 CHAPTER 7 Data stores and views
 To get the data you don’t just use a regular store like you used for DataView
and List; Store also doesn’t support hierarchical data. For this you have to use
TreeStore.

7.4.1 Understanding the hierarchical data

Before we dive into NestedList and TreeStore let’s see how the hierarchical data
should look. Hierarchical data is nested data where each record is known as a node.
The data becomes hierarchical when a node contains child nodes, and those can con-
tain child nodes, and so on. A node that doesn’t have any children is known as a leaf.
You’re likely familiar with the file system on a computer where folders can have fold-
ers and files. A node that has children is like a folder and a leaf is like a file.

 Here’s what a basic JSON sample of hierarchical data looks like:

{
 "children" : [
 {
 "text" : "Mitchell Simoens",
 "children" : [
 {
 "text" : "@msims84",
 "leaf" : true
 },
 {
 "text" : "http://www.linkedin.com/in/mitchellsimoens",
 "leaf" : true
 }
]
 },
 {
 "text" : "Jay Garcia",
 "children" : [
 {
 "text" : "@ModusJesus",
 "leaf" : true
 },
 {
 "text" : "http://www.linkedin.com/in/tdginnovations",
 "leaf" : true
 }
]
 },
 {
 "text" : "Anthony De Moss",
 "children" : [
 {
 "text" : "@ademoss1",
 "leaf" : true
 },
 {
 "text" : "http://www.linkedin.com/in/ademoss",
 "leaf" : true
 }

145Displaying hierarchical data with NestedList
]
 }
]
}

Looking at this JSON you can see the hierarchy. The top level is the root of the data,
which has a single property, named children. Each level will have a children prop-
erty to specify what children that item has, unless that item has the leaf property. It’s
assumed each item has children unless the leaf property is set to true, meaning that
it won’t have children; it’s the end of the road. Each item, leaf or not, will have a text
property that’ll be displayed.

7.4.2 Using TreeStore

As we mentioned at the beginning of section 7.4, you need to use a TreeStore, not a reg-
ular store, to consume hierarchical data. There isn’t a difference when creating a Tree-
Store, but the TreeStore is able to handle hierarchical data whereas a store can’t.

 Using the same JSON you saw in section 7.4.1, the following listing is a sample Tree-
Store with the associated Model.

Ext.define('Author', {
 extend : 'Ext.data.Model',

 config : {
 fields : [
 'text',
 'link'
]
 }
});

var store = Ext.create('Ext.data.TreeStore', {
 model : 'Author',
 autoLoad : true,
 proxy : {
 type : 'ajax',
 url : 'authors-tree.json'
 }
});

Creating a TreeStore is easy. As with a regular store, you create a Model class defini-
tion; in this case you’re naming it Author B. The only thing required is that you spec-
ify which field you intend to display, which in this case is text. You also specify another
field that you’ll use later, named link c. You then create the TreeStore d and give it
the model, autoLoad, and proxy configs, and within the proxy config you’re going to
use the Ajax proxy with url set to the authors-tree.json file that contains the JSON
from section 7.4.1.

 Run the code from listing 7.12 and the TreeStore will load the JSON from the
authors-tree.json file and parse the hierarchical data to be used in a nested list.

Listing 7.12 Sample TreeStore

Creates
Author Modelb

Specifies
Model fieldsc

Creates
TreeStored

146 CHAPTER 7 Data stores and views
7.4.3 Creating a basic nested list

So you can load data, but that’s no fun without being able to display the data. As we
discussed earlier, you can’t use a DataView or a list to display hierarchical data. For this
task Sencha Touch has the nested list component. As mentioned in section 7.4, the
nested list is just a container that uses the card layout to display child lists. The follow-
ing listing is a basic example of how to display the JSON from section 7.4.1 using the
TreeStore from listing 7.6.

var nestedlist = Ext.create('Ext.dataview.NestedList', {
 fullscreen : true,
 store : store,
 title : 'Authors'
});

There’s not much going on in this simple nested list. You create the nested list and
give it the fullscreen configuration to add it to Ext.Viewport so it can be dis-
played. You also specify the store for the nested list to use. You give it the title con-
fig, which is a title for the root level. The title config is optional, but without it the
nested list will look a little funny, because the top-docked title bar will be blank.
With title, when you are on the root level the title bar will display this value so your
users can tell what they’re looking at. Check out figure 7.13 to see what you get
when you run listing 7.13.

 As you can see in figure 7.13, the image on the left is the root level. You can see
the title that you specified in listing 7.13 at the top. Without it you’d just get the blue

Listing 7.13 Basic NestedList

Figure 7.13 Results of
listing 7.13 showing a simple
NestedList

147Displaying hierarchical data with NestedList
toolbar docked there, which doesn’t look so great. Plus, with title set, you can now
see that this list is named Authors. If you tap on the first list item, Mitchell Simoens,
the image on the right would animate to show the children of the Mitchell Simoens
list item. Note that the top title bar now displays the same text for the title as the list
item you tapped on. If you tap on Anthony De Moss, the title bar would say Anthony
De Moss instead of Mitchell Simoens. If the text were longer than could fit in the title
bar the text would be cut off and an ellipsis used to give a better presentation rather
than just letting the text run off the screen. Also note in the title bar that you now
have a button that says you can go back to the Authors list. This button uses the back
ui config and uses the text from what was in the title bar as the title. In this case the
last title was Authors. If you didn’t specify the title config on the nested list the but-
ton would display the text Back, so the back button should never be blank.

7.4.4 Showing details

So what happens when you get to the level that’s a leaf? You can tap on it and it’ll be
selected, but nothing happens. Because it’s a leaf there are no more children, but
usually you’ll want to show details about that leaf. A configuration of the nested list
that you haven’t covered so far is the detailCard config. Tapping on a leaf will cre-
ate and add a detail card to the nested list and animate to this component. The
detail card can be another list, a container, or a form—just about anything you need
it to be.

 Let’s take a look at how to work with detailCard in the next listing.

var nestedlist = Ext.create('Ext.dataview.NestedList', {
 fullscreen : true,
 store : store,
 title : 'Authors',
 detailCard : {
 xtype : 'container',
 tpl : [
 'Titter Page: ',
 '',
 '{text}',
 '',
 '

',
 'Tapping on this link will take you outside of this app'
]
 },
 listeners : {
 leafitemtap : function(nestedlist, list, index, t, record) {
 var detailCard = nestedlist.getDetailCard();

 detailCard.setData(record.getData());
 }
 }
});

Listing 7.14 Nested list details

Specifies config
detailCard

b

Uses Xtype
container

c

Includes template
to display datad

Adds listener to
leafitemtap

 e

Gets detailCard
instancef

Applies data
to detailCard g

148 CHAPTER 7 Data stores and views
You took the nested list from listing 7.14 and added
detailCard B. This is the configuration object that’ll
be used to create the component that will display
details about the leaf that was tapped. This detail card
will use the XType 'container' c and a template using
the tpl configuration d to accept data and display it.
If you left it here you’d get a blank screen, so you need
to add a leafitemtap event listener e that’ll only be
fired when you tap on a list item that’s a leaf. Within
this leafitemtap event listener you need to get the
reference to the detail card using the getDetailCard
method f on the nested list, which is passed as an argu-
ment on the function. Finally, to show data you execute
the setData method on the detailCard instance, pass-
ing in the data from the record that was tapped on g.
Now you should see what’s shown in figure 7.14.

 Instead of another list you’ll see the component
you specified in the detailCard config. With the logic
in the leafitemtap event listener you applied the data
from the record you tapped on to the detail card. Now
you have the ability to create a view that can handle
hierarchical data and even show a detail view on it. Can
you imagine what you can use NestedList for? It’s powerful but simple to configure.

7.5 Summary
In this chapter, we covered how to use data and what views to use to build more
dynamic applications. You first learned how to use the store and its proxy, reader,
writer, and model classes. You also saw how to use these classes to build powerful, data-
driven applications.

 You then learned how a DataView works and what an XTemplate is. You implemented
some common configurations in order to display data from a store. This was your first step
into a data-driven view that you’ll more than likely need to use in your applications.

 Next you built on the DataView with the subclass List. You saw the differences
between DataView and List and then implemented an IndexBar, grouped your list,
and learned what a disclosure is and how to take action on a user tapping on the dis-
closure icon. You learned that a list can visually and functionally be an important com-
ponent to have in your arsenal.

 Lastly, you learned what hierarchical data looks like and how to consume it with the
specialized TreeStore. You used the nested list component to display this data one level at
a time and used the detailCard config in NestedList to display details about a leaf item.

 In the next chapter we’ll enter the world of forms, with all of its various fields, and
you’ll learn how to submit data from the form to a remote server.

Figure 7.14 View of the detail
card in the nested list

Working with forms
So far in this book we’ve covered many ways to manage data and display it onscreen
using Sencha Touch’s various UI widgets, ranging from tabs, to generic compo-
nents, to XTemplates. Though this information is important for most applications,
we’re sure your users are just as demanding as ours and want to interact with the
data—and maybe even save it!

 Interacting with the data is done using Form panels and form fields. In this
chapter you’ll examine the various form elements, their uses, and how to put them
together in a form that can be loaded and saved. After that you’ll explore ways to use
forms in conjunction with other components, like the list sample from chapter 5. So
what are you waiting for? Let’s get started.

8.1 What makes Form panels so special anyway?
It should come as no surprise that developing and designing forms represents one
of the common tasks in every app developer’s life, and as such, we developers are a

This chapter covers
■ Building simple and complex forms
■ Loading and saving forms
■ Binding a form to a list
149

150 CHAPTER 8 Working with forms
demanding bunch. A way to load the form? You bet. A way to save it? Of course. Vali-
dation? An absolute must!

 With the bar set high it’s only natural for Sencha to tap into the extensive set
of widgets developed for Ext JS, Sencha Touch’s bigger cousin, and bring some of
those features over to provide you with an impressive list of different Form ele-
ments. Figure 8.1 gives an overview of all the forms-related UI widgets and their
inheritance chain.

 Forms in Sencha Touch are rendered using the Form Panel class, which gets filled
with one of the various UI widgets that require input. These range from generic text
fields, to date pickers, to sliders, all of which extend the Field class, as shown in fig-
ure 8.1.

Form Panel follows our familiar Component model pattern and extends the base
Panel class, as shown in figure 8.2. As such, it has all the standard capabilities of a
panel, like layouts, ways to manage children, and a few additional methods to handle
submitting and loading of form data.

 The Field class in turn extends the Decorator class, which provides extra visual
decoration around the base Component class and provides functionality to render
labels next to the form fields, get and set the value of a form field, or even mask the
field during load operations.

EventedBase

Component

Field

Date Picker

Slider

Checkbox

Hidden

Textfeld

Radio

Url

Text Area

Email

Select

Search

Password

Number

Spinner

Toggle

Decorator

Figure 8.1 Forms-related widgets and their inheritance

151Building a basic form
 Back in chapter 3 we talked about the Compo-
nent model and the stability and predictability it
introduces to the framework. The relationship
between the Form Panel and Field classes is a
prime example to highlight this paradigm. The
Field class exposes several functions to allow get-
ting, setting, or resetting the value of the field. In
addition, it tracks whether the field is “dirty,” which
refers to whether the field value has changed
since the initial load. The Form Panel understands
these things about every field intrinsically and uses
these methods to automatically populate any of its
child fields whenever the form is loaded or submit-
ted. This is possible because each field instance
exposes these same functions, creating the afore-
mentioned predictability.

Now that you have a basic overview of forms and their relationship to fields it’s time
to put this knowledge into practice and build a form.

8.2 Building a basic form
Like all the other Container subclasses the Form Panel class can use any layout that’s
available in the framework to create exquisitely laid-out forms. Before delving into
multicolumn or multitabbed forms, something that requires you to go through quite
a few design and usability considerations, let’s review the basics and use the default
VBox layout to stack form elements one on top of another.

 In the next listing you’ll put together a simple form that can be used to edit data.

var myForm = Ext.create('Ext.form.FormPanel', {
 fullscreen : true,
 items : [
 { xtype : 'textfield',

"Sencha Touch" !== "Ext JS"
If you’re coming over from the Ex JS side of things you’ll find that forms in Sencha
Touch deviate slightly from their Ext JS variant. These deviations range from a dras-
tically different, dare we say prettier, visual design, to a more simplistic layout that
better accommodates touch input. Under the hood are various changes as well. As
of this writing there’s no built-in validation for forms, and the load method that was
your bread and butter for populating forms with data has been replaced with a meth-
odology that forces you to use models instead.

Listing 8.1 A basic form

EventedBase

Container

Panel

Component

Fieldset

Form Panel

Figure 8.2 Inheritance chain for
Form Panel and Fieldset

Instantiates
Form Panelb

Instantiates text fieldc

152 CHAPTER 8 Working with forms
 label : 'First',
 name : 'firstName',
 placeHolder : 'Enter First Name Here'
 },
 {
 xtype : 'textfield',
 label : 'Last',
 name : 'lastName',
 placeHolder : 'Enter Last Name Here'
 },
 {
 xtype : 'selectfield',
 label : 'Status',
 name : 'inviteStatus',
 placeholder : 'nothing',
 options : [
 {
 text : 'Undecided',
 value : 'undecided'
 },
 {
 text : 'Accepted',
 value : 'accept'
 },
 {
 text : 'Declined',
 value : 'decline'
 }
]
 }
]
});

The code should be pretty straightforward by now. You start by creating a Form Panel
instance B and giving it the fullscreen option. Doing so works because Form Panel is
an extension of the Panel class, and as such the fullscreen option will make it
occupy the entire screen. Note that without this option the form wouldn’t show on the
screen, because Sencha Touch always requires one container to take up the entire
screen by using the fullscreen option. For the child elements of the form you define
two text fields c, one for first name and one for last name. You give each text field
placeholder text d that’ll automatically be shown whenever the text field is empty. In
general it’s best to try to make the placeholder text as useful and instructive as possi-
ble to give users an idea of what they’re supposed to do on your form. Lastly, you
define a select field and give it three options e that, depending on the platform on
which this example is running, will show up either as an ActionSheet or a drop-down
when the field is activated. Once you execute the code from listing 8.1 you should get
a result that looks like figure 8.3.

 In case you’re wondering about the one property we didn’t talk about yet, the name
property, it serves one purpose: to provide an identifier for each field, which the Form
Panel uses whenever you load data into or retrieve data from the form.

Assigns
placeholder
textd

Defines options
for select fielde

153Building a basic form
During load operations a JSON object containing name/value pairs is used. The name of
each property in the JSON object is mapped to a field that shares the same name within
the Form Panel. The form automatically handles assigning the values from the JSON
object to each respective field. A sample JSON object you could use to load data into the
form from listing 8.1 looks like this:

{
 firstName : 'Anthony',
 lastName : 'De Moss',
 inviteStatus : 'accept'
}

On the flip side, retrieving values works almost exactly in reverse. The form exposes
a convenient getValues method that returns a JavaScript object containing name/
value pairs for each field in the form. Running the following line in the Safari debug
console would return a JavaScript object that looks exactly like the one you used
for loading:

myForm.getValues();

You’re probably wondering just exactly how loading and submitting of form data
works. Don’t fret; we’ll cover this topic in greater detail in later parts of this chapter,
after you’ve gotten a better understanding of all the various form elements and the
caveats to keep in mind about each.

Figure 8.3 Basic form sample
on the left and the same form
with text fields filled in and a
select field activated on the right

154 CHAPTER 8 Working with forms
8.3 An overview of the different Form widgets
Sencha Touch offers quite a few wrapped native HTML5 input fields, as well as a few cus-
tom widgets. The fields text field, check box, URL field, email field, text area, number
field, password field, and radio all implement native HTML5 input elements with addi-
tional styling to make everything look the “Sencha way.” Each one of these widgets, with
the exception of the radio and check box fields, will force the native slide-in keyboard to
appear when focused, thus allowing users to enter data into the field. Figure 8.4 illus-
trates what most of these input fields look like when rendered on the screen.

 Now that you’re equipped with some visuals let’s explore each one of these form
elements in more detail.

8.3.1 Text field
Text fields provide the base for quite a few of the other fields on this list. A text field
wraps the standard HTML5 input field and exposes a set of convenient config options
to customize the behavior to some degree or another. Instantiation is straightforward
and looks like this:

{
 xtype : 'textfield',
 label : 'Text Field',
 placeHolder : 'Something goes here',
 value : 'This is a text field',
 required : true,
 autoCorrect : true,
 autoCapitalize: true,
 autoComplete : true,

Text field

Text Area

URL field

Email field

Select field

Slider

Checkbox

Date Picker Password field

Number field

Spinner field

Toggle field

Radio field

Figure 8.4 Overview of various form widgets

155An overview of the different Form widgets
 maxLength : 5
}

The label provides a convenient way to mark what your field is all about, and it’s auto-
matically attached to the left side of your field. Each and every form element can have
a label associated with it. Keep in mind that the device you’re using limits the size of a
label. On a phone, for example, your labels are significantly smaller than on a tablet
device, causing long text in the label to automatically wrap, which can look quite ugly.

 All the text-based fields (URL field, email field, text area, and select field) provide for
a placeholder text that’s automatically shown whenever the field is empty. The place-
holder can be used to augment the label and provide additional instructions to the user.
Generally it isn’t advisable to forgo the label in lieu of a placeholder because the place-
holder disappears once a field is filled out, creating a scenario where the user has to
guess the purpose of the field.

 The required parameter may be confusing, especially for those developers com-
ing from Ext JS. As of this writing Sencha Touch doesn’t provide any built-in form vali-
dation, so this parameter simply marks a field as required by adding an asterisk to the
label. There’s no additional visual feedback if a field is left blank or to prevent a form
from being submitted.

 The maxLength parameter allows you to limit the number of characters that can be
entered into a text field. Once the limit has been reached any additional characters typed
on the keyboard are discarded. If you manually set the value of a text field through the
value config parameter or the setValue function the maxLength parameter is circum-
vented and it’s possible to add an arbitrary number of characters to the field.

 The last three config options deal with autocorrection, autocapitalization, and
autocomplete. The device you’re using determines the usefulness of these options.
On an iOS device (iPhone/iPad) autocapitalization will automatically enable the Shift
key for the first character, and autocorrection will trigger the annoying correction
bubble that shows up to suggest a “better” spelling for your word.

8.3.2 URL field

Urlfield extends the basic textfield and brings with it all the same configuration
options. Under the hood the HTML5 input field is set to type url. The only real pur-
pose this serves is that, depending on your device, the keyboard will automatically be
put into “URL” mode, showing keys that are more useful for entering a URL when edit-
ing the field. From an implementation perspective, the code looks like the following:

{
 xtype : 'urlfield',
 label : 'Url',
 value : 'http://www.senchatouchinaction.com'
}

Because the URL field is based on the text field you could’ve used any of the other
config options you used for the text field. Note that this field doesn’t provide any vali-
dation to ensure that the URL is properly formatted.

156 CHAPTER 8 Working with forms
8.3.3 Email field
The email field acts as a close cousin to the URL field and follows the same principle,
except for email addresses. Whenever the field is edited the onscreen keyboard is
switched to “email” mode to make it easier to enter an email address. As with the URL
field you could use any other config option from the text field. Follow this code to
instantiate an email field:

{
 xtype : 'emailfield',
 label : 'Email',
 value : 'youremail@yourcompany.com'
}

Just like the URL field, the email field doesn’t provide any validation to ensure that the
email address is valid or even that it’s formatted correctly.

8.3.4 Number field
The number field is yet another field similar to the email and URL fields. It extends
textfield and provides additional config options for minimum and maximum val-
ues, as well as a step value. At this point these options are only relevant if you plan on
using your app in a nonmobile browser. Mobile browsers will render this field as a
plain text field that brings up the numeric keyboard when the field is edited. Instanti-
ation follows almost the same code as the text field before and looks like this:

{
 xtype : 'numberfield',
 label : 'Number',
 minValue : 1,
 maxValue : 10,
 stepValue : 1,
 value : 7
}

Because HTML5 still isn’t properly implemented in most browsers as of this writing,
especially as far as field validations are concerned, it’d normally be possible to enter
any arbitrary value into the field, instead of being restricted to only numbers. Fortu-
nately for us, Sencha Touch comes to the rescue and does basic validation to ensure
the entered value is indeed a number.

8.3.5 Password field
The password field is where you start seeing your first deviation from the text field.
The field automatically obscures any user-entered text as asterisk characters. The
same is true for manually assigned values, either through the value config option or
the setValue function. Both of those will be obfuscated as well:

{
 xtype : 'passwordfield',
 label : 'Password',
 value : 'abc'
}

157An overview of the different Form widgets
One of the most useful aspects of the password field is the fact that it allows for the
same config options as the text field, including the placeholder option, which shows
up as plain text instead of starred-out characters.

8.3.6 Text area
The text area is similar to the text field; the main difference is that the text area allows
for multiline text, which is something the text field doesn’t. Newline characters (“\n”)
are automatically interpreted by the field and will insert a new line into the text.
Implementation follows the same principle as the text field and looks just as easy:

{
 xtype : 'textareafield',
 label : 'Text Area',
 maxRows : 5,
 value: "This is a larger text area.\n\nWe can even get multiple lines in

here"
}

Notice the maxRows config option; it can be used to limit the number of rows you want
the user to be able to enter.

8.3.7 Check box field
The check box field works similarly to its native-web counterpart, except it’s stylized
via Sencha Touch’s own check icon to mimic native application behavior. Instantiation
is easy and largely consists of only a label. It’s possible to set the initial value of the
check box via the checked option:

{
 xtype : 'checkbox',
 label : 'checkbox - ready',
 value : 'yes',
 checked : true
}

The value option provides you with a way to set the value that’ll be submitted if the
check box is checked and a form submit occurs. In the previous example the value
“yes” would be submitted, instead of the default “true” value.

8.3.8 Radio field
The radio field follows in the footsteps of the check box field, both visually and under
the hood. It extends the check box and in fact looks the same once rendered. The
only difference between it and the check box is the behavior when a radio field is acti-
vated: it switches between the different grouped fields, allowing only one of them to
be checked at a time. To see an example of this take a look at the following code:

{
 xtype : 'radio',
 name : 'myradio',
 label : 'radio - one'
},

158 CHAPTER 8 Working with forms
{
 xtype : 'radio',
 name : 'myradio',
 label : 'radio - two'
}

This code provides you with two radio fields that are automatically grouped together
(not visually, but from a selection perspective). The grouping happens based on the
name of the field. Any radio field that shares the same name with an already existing
radio field is automatically added to the group. Whenever you click one of the two
fields the other one becomes unchecked.

8.3.9 Date Picker field

The Date Picker field gives your users the ability to choose a date from a set by
mimicking the native iOS Date Picker input widget. The Date Picker field imple-
ments a sheet, which is an overlay that slides in from the bottom, allowing the user
to select values via vertical swipe or “flick” gestures. No matter what the device or
its orientation the Date Picker field will always display a sheet, forcing selection
though this modal overlay. The following code illustrates how to instantiate a Date
Picker field:

{
 xtype : 'datepickerfield',
 label : 'Pick a Date',
 value : {
 year : 2011,
 month : 2,
 day : 23
 }

}

It’s possible to set the initial value of the field via the value config option or the set-
Value method. Both ways accept either a JavaScript date object in the form of new
Date() or a custom JavaScript object containing a year, month, and day property like
the sample code earlier.

8.3.10 Spinner field

The spinner field is a custom-styled input field, allowing users to enter numeric val-
ues, much like the number field, with the addition of easy-to-use decrement and
increment buttons on the side of the field. Notice that the increment and decre-
ment buttons are larger than standard HTML spinner buttons, making them easier
to use on a touch device. Implementation follows largely the same parameters as the
number field:

{
 xtype : 'spinnerfield',
 label : 'Spinner',
 minValue : 1,

159An overview of the different Form widgets
 maxValue : 10,
 increment : 2,
 cycle : true,
 value : 9
}

The main difference in config options compared to the number field is the addition
of a cycle property. This causes the value to “wrap” around if minValue or maxValue is
reached. For example, assume the current value is 9, the max is 10, and you have an
increment of 2. The next click to increase the value would bring it over 10, thus caus-
ing it to wrap around to the bottom and start over at 1. Unlike the number field, the
spinner field doesn’t allow the user to enter values directly but instead forces a value
change through the increment and decrement buttons.

8.3.11 Slider field

The slider field implements native Sencha Touch Draggable and Droppable classes,
allowing users to input a numeric value via swipe and tap gestures. The slider can be
restricted via the minValue and maxValue options, as well as the increment option. In
code that looks like this:

{
 xtype : 'sliderfield',
 label : 'Slide me',
 minValue : 20,
 maxValue : 100,
 value : 50,
 increment : 5
}

The minValue and maxValue don’t change how far the slider can move but only
change what the left edge and right edge represent respectively. The increment
option changes where the slider snaps to when moved. This option takes into account
where you drop the slider and automatically rounds to the nearest number that repre-
sents the next increment. One of the major drawbacks of the slider is the lack of visual
feedback about its current value.

8.3.12 Toggle field

togglefield extends sliderfield, allowing users to toggle the field like an on/off
switch via a swipe and tap gesture. Under the hood, the toggle field is just a slider with
a minValue of 0 and a maxValue of 1:

{
 xtype : 'togglefield',
 label : 'Toggle Me',
 value : 1
}

You can set the initial state of the togglefield to on or off by setting the value field
to 1 or 0 respectively.

160 CHAPTER 8 Working with forms
8.3.13 Select field

The select field is the closest thing to a traditional combo box/drop-down you’ll find
in the Sencha Touch arsenal. It allows you to present the user with a list of choices to
pick from, and whichever the user selects will be shown in the field. Depending on the
device the select field displays different input widgets. On a phone it uses a sheet that
slides in from the bottom, similarly to the Date Picker, and on a tablet it uses a small
dialog-type control containing the options to select from. Here’s an example imple-
mentation of a select field using hard-coded options:

{
 xtype : 'selectfield',
 label : 'Select',
 options : [
 {
 text : 'Yes',
 value : 'yes'
 },
 {
 text : 'No',
 value : 'no'
 }
]
}

In this case the defined options never change. Each option must have a text and a value
field, where the text property represents the text that’s shown in the list and the value
property represents the value that’ll be submitted when the form is submitted.

 Quite frequently you’ll find yourself in a situation where your data isn’t formatted
to contain a text or value field or where hard-coding the options isn’t feasible. For
those instances the select field provides additional options in the form of a display-
Field and a valueField. These are strings that determine which property from your
data should be used instead of the text and value properties.

 To fill your select field with dynamic data you can employ a data store, which trig-
gers a remote load. In practice it looks like the code in the following listing.

Ext.define('Person', {
 extend : 'Ext.data.Model',
 config : {
 fields : [
 { name : 'name' },
 { name : 'pID' }
]
 }
});

var peopleStore = Ext.create('Ext.data.Store', {
 model : 'Person',
 autoLoad : true,

Listing 8.2 Dynamically loaded select field

Defines model
with two fieldsb

Uses model
for store

c

161An overview of the different Form widgets
 proxy : {
 type : 'ajax',
 url : 'getPersons.json',
 reader : {
 type : 'json',
 rootProperty : 'data'
 }
 }
});

var myPanel = Ext.create('Ext.form.Panel', {
 fullscreen : true,
 items : [
 {
 xtype : 'toolbar',
 title : 'Tell us about yourself.',
 docked : 'top'
 },
 {
 xtype : 'selectfield',
 label : 'Select Name',
 valueField : 'pID',
 displayField : 'name',
 store : peopleStore
 }
]
});

A lot happens in listing 8.2 just to load data into the select field from a remote
source. You start by defining a model B with two fields. In this case you’re repre-
senting people, so you give everyone a name and a pID (short for personal ID) that’ll
serve as a unique identifier for each record. Of course, you need to put your model
to good use, so you continue with a store that points to your model c. The store
alone won’t know how to get to the data. Because of that you need to define a proxy
that tells the store from where and how the data is going to be loaded. The where is
handled through the url property d, which points to a static JSON file. The how
is handled through the reader, defined on the proxy, that uses a type of JSON, which
just so happens to be the format of your data. Use the following dummy data and
save it in a file named getPersons.json:

{
 "success" : true,
 "data" : [
 {
 "name" : "Jay Garcia",
 "pID" : 1
 },
 {
 "name" : "Anthony De Moss",
 "pID" : 2
 },
 {
 "name" : "Mitchell Simoens",

Sets URL
of stored

Sets valueField
and displayFielde

162 CHAPTER 8 Working with forms
 "pID" : 3
 }
]
}

After you’re done setting up the model and store you move on to create a Form
panel with a select field and point it at the store you just created. You already know
that your data won’t have the standard text and value properties that the select
field expects so you employ the valueField e and the displayField properties
and point them to pID and name respectively. This way, name is shown in the actual
field and the pID would be used if you were to submit the form. That’s all there is to
loading a store dynamically.

 By now you should have a good overview of the different form elements and how
to go about creating a simple form as well as dynamically loading content into a select
field. Obviously, nothing is ever simple in life, and the likelihood of being able to
accomplish everything you need with a plain and basic form is virtually nonexistent.
This is where some of the advanced techniques like multicolumn forms and fieldsets
from the next section will come into play.

8.4 Building complex forms
Most of the forms you’ve built so far all have one thing in common: they follow the
most basic design possible, stacking form elements in a single column, one on top of
the other. This paradigm has certain advantages, especially when considering the fact
that your form most likely has to work on multiple different devices, such as a variety
of phones or tablets. For that reason a single column is the perfect fit because it works
across the spectrum of devices. This doesn’t mean that your form has to be one long
and boring list of stacked elements, though. Sencha Touch provides for an easy way to
split up your form visually by grouping elements into separate child containers with
titles and instructions via the use of a fieldset.

8.4.1 More organized forms with fieldsets

The Fieldset class extends the Container class, and as such you can think of fieldsets
simply as containers with a title. In practice the result of using a fieldset looks like the
right side of figure 8.5, versus the standard stacked form on the left.

 The way the form is broken up into smaller pieces should make the benefits of
using a fieldset immediately apparent. Smaller pieces are more easily digestible by the
end user and thus provide improved usability and flow. Place the following code
within the items array of a Form panel to see it in action for yourself:

{
 xtype : 'fieldset',
 title : 'Personal Info',
 instructions : 'Enter your personal information',
 items : [
 {
 xtype : 'textfield',

163Building complex forms
 label : 'First',
 name : 'firstname',
 placeHolder : 'Enter your first name'
 },
 {
 xtype : 'textfield',
 label : 'Last',
 name : 'lastname',
 placeHolder : 'Enter your last name'
 }
]
}

The code follows most of the samples we’ve already covered. You start by defining
the fieldset using an XType and give it a title and instructions. Based on figure 8.5
you can see that the title shows up above the first field, and the instructions are
shown below the last field. Although figure 8.5 doesn’t illustrate this perfectly,
instructions are centered and automatically wrapped to additional lines if necessary.
Because the fieldset is itself a container it has its own items array where you place
the form elements you wish to include. In this case you have two text fields with a
label and placeholder text.

8.4.2 Multicolumn forms

While we’ve established that using fieldsets can dramatically improve the visuals of your
forms, we still have one major problem: any tablet device wastes a sizable amount of
screen real estate on wide fields when all the fields are organized in a single column.
For such purposes, keep in mind that forms (and fieldsets) are simply containers that

Figure 8.5 A form without
fieldsets on the left; the same
form with fieldsets and
instructions on the right

164 CHAPTER 8 Working with forms
can contain their own layout. Knowing this you can create multicolumn forms that are
specifically tailored to tablet devices with larger screens.

The next sample ventures into the world of multicolumn forms. Take a peek at fig-
ure 8.6 to see what you’re building. Note that this sample is made specifically for tab-
let devices and won’t work properly on mobile phones due to space constraints.

 Although all four of the fieldsets needed aren’t terribly complex you’ll start out by
first defining each one separately before assembling it all together into a full Form
panel at the end. The first two fieldsets in the next listing represent the left column,
which consists of two text fields and a text area.

Mobile phones are cramped with tiny screens
It’s important to remember that no matter how big the screen is on a mobile phone
it’s always going to be cramped and have less screen real estate than a tablet device.
Consequently, multicolumn layouts are rarely suitable for phone devices, something
that should be evident when taking a closer look at how cramped the labels are in
figure 8.5.

Figure 8.6 The multicolumn form with fieldsets you’re going to build

165Building complex forms
var fieldset1 = {
 xtype : 'fieldset',
 title : 'Personal Info',
 instructions : 'Tell us who you are.'
 + '
The more detail the better',
 items : [
 {
 xtype : 'textfield',
 label : 'First',
 name : 'firstname',
 placeHolder : 'Enter your first name'
 },
 {
 xtype : 'textfield',
 label : 'Last',
 name : 'lastname',
 placeHolder : 'Enter your last name'
 }
]
};

var fieldset2 = {
 xtype : 'fieldset',
 title : 'Party Info',
 instructions : 'Describe your party so people know what'
 + ' they are attending',
 items : {
 xtype : 'textareafield',
 label : 'Description'
 }
};

For the most part you keep it short and simple by defining both fieldsets via XType
configuration B and providing a title and instructions c for each fieldset. Notice
that the instructions on the first fieldset contain an HTML line break to force the
instructions into two lines. You could easily use any other HTML markup here to mark
text in bold, italics, or underlined, or pepper it with CSS classes. You then proceed to
populate the first fieldset with two text fields d, each of which receives a label, as well
as placeholder text to provide even more ways to tell the user what to do. The second
fieldset e follows the same basic steps and simply contains a barebones text area.

 From here you’ll continue into both fieldsets in the right column, which you can
see in the following listing.

var fieldset3 = {
 xtype : 'fieldset',
 title : 'Party Size',
 instructions : 'Tell us how many people you\'re bringing',
 items : [
 {

Listing 8.3 Creating the fieldsets for the left column

Listing 8.4 Creating the second column of fieldsets

Sets XType
to fieldset

b

Provides title,
instructions

c

Defines
text fields

d

Defines second
fieldset

e

Adds three
radio fields

b

166 CHAPTER 8 Working with forms
 xtype : 'radiofield',
 name : 'size',
 label : 'Just Me',
 value : 'small'
 },
 {
 xtype : 'radiofield',
 name : 'size',
 label : 'A few people',
 value : 'medium'
 },
 {
 xtype : 'radiofield',
 name : 'size',
 label : 'What\'s my limit?',
 value : 'large'
 }
]
};

var fieldset4 = {
 xtype : 'fieldset',
 title : 'Dates',
 instructions : 'When is this happening?',
 items : {
 xtype : 'datepickerfield',
 label : 'Party Date',
 name : 'partydate'
 }
};

As before, listing 8.4 starts out with the initial fieldset B, which you populate with
three radio fields. Notice that each one of the radio fields has the same name c in
order to mark them as a set. Last but not least, you define the final fieldset d and give
it a Date Picker field that starts out blank.

 This marks the last step in setting up all the components required to generate both
columns. You’re now ready to put it all together in the next listing and construct the
Form panel that’ll house everything.

var myPanel = Ext.create('Ext.form.Panel', {
 fullscreen : true,
 scrollable : 'vertical',
 layout : {
 type : 'hbox',
 align : 'stretch'
 },
 defaults : {
 flex : 1,
 style : 'padding: 5px;'
 },
 items : [
 {

Listing 8.5 Putting it all together

Shares same
name

c

Configures
Date Picker

d

Starts with
Form panelb

Uses HBox layout
for columnsc

Sets default values
for columnsd

167Building complex forms
 xtype : 'toolbar',
 title : 'Party Organizer 2000',
 docked : 'top'
 },
 {
 xtype : 'container',
 items : [
 fieldset1,
 fieldset2
]
 },
 {
 xtype : 'container',
 items : [
 fieldset3,
 fieldset4
]
 }
]
});

Here you’re finally creating your Form panel B and putting everything together.
Because the Form panel is nothing more than a special container you start by deviat-
ing from the standard VBox layout and give the Form panel an HBox layout c with an
align:stretch option instead. If you think back to chapter 4, the HBox layout pro-
vides you with a way to have multiple columns in a container and the align option is
used for the vertical alignment, which in the case of stretch overrides the height,
forcing each column to occupy the full height of the Form panel. You uniformly size
each column horizontally through the use of the flex property, which you stick into a
defaults object d so it gets automatically applied to each column. In addition, you
don’t want the two columns to touch each other, so you set an additional padding of 5
pixels via the style property.

 Next you move on to defining the actual containers e, which are downright easy
compared to everything else. An XType definition as well as an items array that con-
tains the fieldsets f you want in each column does the trick. Each container will auto-
matically use the default VBox layout and stack the fieldsets one on top of the other. In
the end you come out with a form that looks like figure 8.6.

8.4.3 Doing more with your multicolumn form
Before we move on to loading content and managing data within forms let’s chat
about some of the possibilities we didn’t cover. The form you just built is multicolumn
through the use of the HBox layout and containers. Instead of doing that you could’ve
designed the form differently and used fieldsets that span the entire width of the form
but contain two columns within each fieldset. Because a fieldset extends the Container
class it can take any of the layouts we covered in chapter 4, and as such you could
define an HBox layout within a fieldset and then populate it with two containers, each
containing the form components you want in each column. The possible combina-
tions you could achieve are virtually endless. The one caveat you always have to keep

Defines container
for each column

e

Places fieldsets
in containerf

168 CHAPTER 8 Working with forms
in mind is that you should never nest Form panels within each other. There’s no ben-
efit to it, and in fact it causes tremendous problems that are hard to debug. If you do
require multiple Form panels on a screen make sure to keep them separate.

 By now you’ve seen how combining multiple components, fieldsets, and layouts
can result in something that’s both usable and space-saving. With that out of the way
it’s time we actually inject some function into form and talk about ways to load and
submit data using forms.

8.5 Managing data with models
Submitting and loading data is one of the most crucial parts of forms, and incidentally
one of the areas where new developers commonly get tripped up. Sencha Touch form
submission requires a bit of rethinking from the old school, page-refresh-type form sub-
mission a lot of developers are used to. For those developers coming from the Ext JS
side form submission will be a walk in the park. On the flip side, loading a form has
changed quite dramatically and will most likely require getting used to.

8.5.1 Submitting data
Submitting a form requires only a few steps you need to be aware of. The first is that
you need to get a handle on your Form panel. Use one of the component query
methods we discussed in chapter 5 or assign the form to a variable the way you did
in listing 8.5. The second thing you need to understand is how the submit method
works. For that, take a look at the following listing, which is based on the code from
listing 8.5.

var formSubmit = function () {
 omyForm.submit({
 url : 'success.json',
 success : function (form, response) {
 Ext.Msg.alert('Success', response.msg);
 },
 failure : function (form, response) {
 Ext.Msg.alert('Failure', response.msg);
 }
 });
};

In listing 8.6 you create a formSubmit function that handles submission of your form
and that could be called from anywhere else in the code. Your handler function uses
the form.submit method to take care of sending the data. The format is pretty much
the same as it is in Ext JS; it consists of a url that determines where the form should be
submitted, as well as a success and a failure handler.

 Although you specify the URL in the submit call be aware that you could’ve just as
easily used the url config option on the Form panel, which is automatically used
when the submit method is called. The only reason you didn’t do that in this sample is
to illustrate the fact that the URL can be changed at runtime.

Listing 8.6 Submitting your form

169Managing data with models
 The success and failure handlers are callback functions called if the form sub-
mission was successful or failed, respectively. At a bare minimum your backend needs
to return a JSON response containing a Boolean success property, which influences
which callback is triggered. This example expects an additional msg field to let the
user know what’s going on:

{ "success" : true, "msg" : "Thank you for your submission."}

Likewise, if your server-side code deems the submission unsuccessful for any reason
the server should return a JSON object with the success property set to false. Unlike
Ext JS there’s no way in Sencha Touch to provide additional feedback or validation
information for individual form fields. You’ll simply have to roll your own in this case
and handle that in your callback.

8.5.2 Loading data into your form

The use case for just about every form includes saving and loading data. In the good
ol’ Ext JS days that was done using the load method, which follows the same paradigm
as submitting data with the submit method. Sencha Touch isn’t like Ext JS in this
regard. It removes the generic load method, replacing it with a setRecord method
that consumes a Model instance. This new methodology forces you to use a model and
proxy to load data first and then feed it into the form. To illustrate this concept you’ll
once again visit listing 8.5. Before you can begin you must have data to load, so let’s
dive right into creating some sample data. Save the following JSON data in a file called
data.txt:

[
 {
 "firstname" : "Anthony",
 "lastname" : "De Moss",
 "description" : "Sencha Touch In Action Launch Party!!",
 "size" : "medium",

Handling form validation
A common paradigm is to validate the data in your form before submitting. Doing so
ensures that all required fields are filled out and that any specific validations, like an
email field containing an email address, are true. In Ext JS achieving this task was a
breeze using the form.validate function. As of this writing Sencha Touch doesn’t
have any equivalent function in its arsenal, forcing you to get creative. One way
around this is to put validations on the model, like we covered in chapter 7, and then
before submitting pull the data out of the form using the getValues function and feed
it into a new instance of the model. This allows you to use the model validators to
validate your form.

Alternatively you can visit the website for this book at www.senchatouchinaction.com,
where you can find additional plug-ins and extensions that alleviate this problem
as well.

www.senchatouchinaction.com

170 CHAPTER 8 Working with forms
 "partydate" : {
 "year" : 2011,
 "month" : 2,
 "day" : 23
 }
 }
]

Unlike the response for the form submission the model.load method doesn’t require
a success property to be present in the JSON response, but instead expects the data to
be wrapped in additional square brackets to create an array of records. To consume
the JSON object from earlier you need to first create a model:

var PersonModel = Ext.define('Person', {
 extend : 'Ext.data.Model',
 config : {
 fields : [
 'firstname',
 'lastname',
 'description',
 'size',
 'partydate'
],
 proxy : {
 type : 'ajax',
 url : 'data.txt',
 reader : 'json'
 }
 }
});

You register your model and give it a name and fields that correspond to the names of
the form elements from listing 8.5. You define an Ajax proxy on the model itself and
point it to the data.txt file that you created earlier. Notice that you assign the return
value of Ext.regModel to a variable you name PersonModel. This approach gives you a
few benefits when doing the load. Each registered model exposes a few functions that
can be called without needing an instance of Model, requiring, though, that you have
a handle on the registered model itself. Alternatively, you could’ve used Ext.Model-
Manager.getModel instead and fed it the name of your model to get a handle on the
model itself. Next up is the function that handles the loading:

var formLoad = function () {
 PersonModel.load(123, {
 success : function (record) {
 myForm.setRecord(record);
 }
 });
};

Here you create a formLoad function to take care of loading data remotely via the
model you registered. Keep this function somewhat generic so it can easily be called
from anywhere in the code. You reference the PersonModel you stored earlier and

171Managing data with models
call the load method. The load method expects two parameters: the unique ID of
the record you want to load, and the config object that contains a success handler
and a failure handler, to be triggered based on whether the load operation com-
pleted successfully.

 The success handler function receives the loaded record (an instance of your
Model) as its only parameter. You in turn feed that into the form using the setRecord
method. Voilà! You have data in your form, just like in figure 8.7.

 In the event you already have the data on hand, let’s say because you made a separate
Ajax call, or use data from another component such as a list, you can set the values of
the form fields using myForm.setValues(dataObj), where dataObj represents a JSON
object equivalent to the content you stored in data.txt, minus the square brackets.

TIP To retrieve the values from any given form, call getValues from the Form
Panel instance. For example, myForStillm.getValues() would return an
object containing keys representing the names of the fields and their values.

Loading data can be as simple as that.
 Congratulations! You’ve now configured your first truly complex form, learned

how to load and save its data, and are familiar with the basics of forms in general. It’s

Figure 8.7 Your multicolumn form loaded with data

172 CHAPTER 8 Working with forms
time you put all this knowledge together and see what you can do when you use forms
with other components, like a list.

8.6 Binding a form to a list
Standalone samples and isolated test cases are a great way to illustrate a particular con-
cept, but let’s be honest: they never cover the interesting stuff or represent real-world
scenarios. Our next sample should remedy that to some degree by utilizing portions of
the list sample from chapter 7, panels from chapter 4, as well as code from listing 8.1.
The app you’re building is a simple party invitation manager (see figure 8.8) that shows
a list of invitees, which are bound to a form to allow editing.

 Although this scenario is still contrived it represents a starting point that could
easily be adapted for other situations. Figure 8.8 illustrates the different screens your
app will have, beginning with the list view on the left, to the edit screen in the middle,
to the exposed picker for the invitation status on the right. Hitting Save on the form
posts the changes back to the list and makes them visible in real time.

 The circle you see to the left of the names is used as an indication to display the
attendee’s RSVP status. Red means that the attendee declined and green is used to
indicate that the person has accepted the invitation. Gray indicates that the person
is undecided.

 To render the circle in your List implementation you’ll need to bake some cus-
tom CSS, as shown in the following listing.

Figure 8.8 The different screens for the party invitation manager

173Binding a form to a list
<style type="text/css">
 .invite-list .status {
 display: inline-block;
 vertical-align: middle;
 width: 20px;
 height: 20px;
 border-radius: 10px;
 margin-right: 10px;
 }

 .invite-list .decline {
 background-color: red;
 }

 .invite-list .undecided {
 background-color: grey;
 }

 .invite-list .accept {
 background-color: green;
 }
</style>

The CSS in Listing 8.7 is responsible for rendering the invitation status indicator B
and different status colors c.

 In the next listing you’re going to implement your custom CSS by telling the list
to use your custom invite-list CSS class and use data to drive each item’s invita-
tion status.

Ext.Viewport.add({
 xtype : 'list',
 fullscreen : true,
 cls : 'invite-list',
 itemTpl : '{name}',
 items : {
 xtype : 'toolbar',
 docked : 'top',
 title : 'Party Invitation Manager'
 },
 store : {
 data : [
 {
 name : 'Jay Garcia',
 decision : 'decline'
 },
 {
 name : 'Anthony De Moss',
 decision : 'undecided'
 },
 {
 name : 'Sebastian Stirling',

Listing 8.7 The CSS for your custom List implementation

Listing 8.8 A List implementation using your custom CSS

Adds base
styleb

Introduces
status
colors

c

Adds list to
viewportb

Uses
custom
invite-list
CSS classc

Creates data store
with dummy datad

174 CHAPTER 8 Working with forms
 decision : 'accept'
 }
]
 },
 listeners : {
 itemtap : function (listView, index, target, record) {
 sheet.down('formpanel').setRecord(record);
 Ext.Viewport.add(sheet);
 sheet.show();
 }
 }
});

To render your custom list you call the add method B of the Viewport class and pass
it an anonymous configuration object that creates an instance of a list view and ren-
ders it full screen. You don’t need a reference to this List in the rest of your program,
so this is the best pattern.

 This List instance uses your custom CSS because you configure the cls property c,
setting it to the base CSS invite-list. Each list item will then use the status CSS
because the itemTpl has the token "{decision}", which gets filled in by the data
items you configured in your dummy data store d.

 The last bit to focus on in this listing is the itemtap listener e. This function is
fired when the itemtap event is fired by the List view instance. The fourth argument
is the data record that’s used to render each list item. You bind that record to the form
that resides in the sheet that you have yet to create. You also add the sheet to the view-
port and then tell it to appear.

 The next logical step would be to create the sheet, but the configuration to
include the toolbar and its Save and Cancel buttons, along with the Form panel and
its input fields, requires a sizable amount of code. It’s for this reason that you’ll be
breaking up the sheet creation into three steps.

 Because you’ve already done this stuff these next three listings will be a relatively
easy read. First, let’s look at the following listing.

var sheetToolbar = {
 xtype : 'toolbar',
 docked : 'top',
 title : 'Edit Invitee',
 items : [
 {
 ui : 'default',
 text : 'Cancel',
 handler : function (btn) {
 btn.up('sheet').hide();
 }
 },
 {
 xtype : 'spacer'
 },

Listing 8.9 Defining the toolbar and form for the pop-up sheet

On item
tap shows
sheet with
forme

Configures
toolbar XTypeb

Hides sheetc

175Binding a form to a list
 {
 ui : 'confirm',
 text : 'Save',
 handler : function (btn) {
 var form = sheet.down('formpanel'),
 record = form.getRecord();

 form.updateRecord(record);
 btn.up('sheet').hide();
 }
 }
]
};

To configure the toolbar create a named reference (sheetToolbar) that points to an
XType config object B. This object contains the Cancel and Submit button configura-
tions. The Cancel button has a handler that hides the Sheet instance c. The Submit
button handler is responsible for updating the record with the form data and then
hiding the sheet d.

 With the toolbar configuration complete let’s move on to the Form panel configu-
ration in the next listing.

var sheetForm = {
 xtype : 'formpanel',
 defaults : { labelWidth : 65 },
 items : [
 {
 xtype : 'textfield',
 label : 'Name',
 name : 'name'
 },
 {
 xtype : 'selectfield',
 label : 'Status',
 name : 'decision',
 options : [
 {
 text : 'Undecided',
 value : 'undecided'
 },
 {
 text : 'Accepted',
 value : 'accept'
 },
 {
 text : 'Declined',
 value : 'decline'
 }
]
 }
]
};

Listing 8.10 The Form panel configuration

Persists changes,
updates list

d

Hides sheetc

Configures
Form panelb

Includes
input fieldsc

Sets up
select fieldd

176 CHAPTER 8 Working with forms
The Form panel configuration B in listing 8.10 includes two input fields c, one of
which is a select field d. This is where attendees will be able to set their invitation sta-
tus with a few taps.

 Now that you have the Form panel configuration complete let’s wrap things up
with the sheet configuration. You’ve already done all of the hard work, so this one will
be simple:

var sheet = Ext.create('Ext.Sheet', {
 layout : 'fit',
 modal : true,
 hideOnMaskTap : false,
 height : 170,
 width : 310,
 items : [
 sheetToolbar,
 sheetForm
]
});

You create the Sheet instance right away in this code snippet and implement the tool-
bar (listing 8.9) and Form panel (listing 8.10) configurations. It’s worth noting that
the sheet doesn’t get displayed until the itemtap event is fired from the list you cre-
ated in listing 8.8.

 There you have it! Binding a list to a form requires a bit of typing, but the difficulty
level is minimal.

8.7 Summary
In focusing on the Form Panel class we’ve covered quite a few topics, including many
of the commonly used fields, ways to arrange forms in creative ways, and most
important, how to deal with form data. Although forms in Sencha Touch don’t have
features like validation checking you can easily add such features by means of exten-
sions or plug-ins. If you need such features check out the Sencha Touch extensions
and plug-in forums. Oftentimes community members publish their code, free of
charge, for you to use in your applications.

 Moving forward, in the next chapter you’ll get a look at the exciting world of maps
and media before finally topping it all off with a larger application.

Maps and media
So far in this book you’ve learned how to create and lay out components and
retrieve data from a backend to populate data views and lists. Feels pretty good to
get this far, doesn’t it? Let’s push a bit further and see what you can do with Sencha
Touch and modern mobile devices. This chapter explores maps and how to use the
Google Maps API, the simple Img (image) component, and the Media class and its
subclasses, Audio and Video. First up is the map component.

9.1 Maps in your application
Google Maps are often used in mobile applications. Have a “Contact Us” section of
your application? It could be a smart decision to have a map to show your users the
location of your business. In figure 9.1 you see an application that uses Google
Maps markers to show house listings in the Houston, Texas area. What you may not
know is that the functionality to add markers is surprisingly easy. You may think
that it’s difficult, but with Sencha Touch’s map component and Google Maps and
its API it’s not that hard. In this section you’ll take a look at the Sencha Touch

This chapter covers
■ Using the map component
■ Using the image component
■ Exploring multimedia
177

178 CHAPTER 9 Maps and media
map component, create a simple map, and dive into
using the Google Maps API to add markers.

9.1.1 Maps under the hood

At first looking at what Ext.Map does under the hood
can be confusing. You have the Sencha Touch map
(Ext.Map) component but you also have the Google
Map component, making it hard to understand which
map component you need to use. To make it worse,
Ext.Map also uses Ext.util.Geolocation, which is a
utility class to get GPS coordinates and other useful
information via the HTML5 Geolocation spec. So as you
can see it may be confusing, but we’ll take it slow and
discuss each piece separately and then bring them all
together at the end.

9.1.2 Location awareness

When the World Wide Web Consortium (W3C) was
working on the HTML5 family one of the highly touted
specs was the Geolocation spec. This spec provided
rules about how devices should allow the browser to get
the current location. Sencha Touch has a utility class
called Ext.util.Geolocation that takes advantage of
this spec and allows you to poll to get location updates.

A good thing to know is that the Geolocation spec does require the browser to ask for
permission to get the location. The first time a user tries to get the location the
browser will prompt the user for permission to allow the application to receive location
updates. This setting will be saved so it won’t keep requesting permission for access to
location data from the user each time your code attempts to retrieve it. Let’s dive into an
example of how to use the Ext.util.Geolocation class in the next listing.

var geo = new Ext.util.Geolocation({
 allowHighAccuracy : true,
 listeners : {

W3C Geolocation
You can learn more about this spec directly from the W3C’s website. It’s a technical
description but allows you to truly understand what’s going on in the background. The
URL is http://dev.w3.org/geo/api/spec-source.html.

Listing 9.1 Using the Geolocation class

Gets high
accuracy

b

Figure 9.1 This example shows
a map using markers for points of
interest. This application was
created by the Houston
Association of Realtors to show
housing listings.

http://dev.w3.org/geo/api/spec-source.html

179Maps in your application
 locationupdate : function(geo) {
 console.log('New latitude: ' + geo.getLatitude());
 },
 locationerror : function(geo, timeout) {
 if (timeout){
 console.log('Timeout occurred.');
 } else {
 console.log('Error occurred.');
 }
 }
 }
});
geo.updateLocation();

Listing 9.1 shows how easy it is to use the Sencha Touch Geolocation class. By default
the location’s accuracy may not be that great. It would be good for general location,
but if you need more accuracy then you need to set the allowHighAccuracy config to
true B. Be aware that this config has adverse effects on the time it takes to get a loca-
tion and may use more of the device’s battery. Getting location is asynchronous, so
you have to listen for the locationupdate c event to handle when a location is finally
retrieved and for the locationerror d event because sometimes it may fail. In the
locationupdate event you can get the latitude and longitude coordinates among
other details about the current location. The locationerror can fire either because
of a failure to connect to the GPS satellites and timing out or just because something
went wrong. Just creating the Geolocation class won’t cause anything to happen, so
you have to execute the updateLocation e method. You have to execute this method
each time you want to get a new location, but by default the autoUpdate config is set
to true, so it will automatically poll and fire the locationupdate event. The frequency
of this automatic update is based on the frequency config, which is 10000 (10,000 ms)
by default.

 Now that you know how to get your location let’s look at how you can create
a map.

9.1.3 Creating a simple map

We need to cover just a few quick things before looking at some code. In your
index.html file add a <script> tag to load the Google Maps API. Without this nothing
will work and you’ll receive error messages. This is an example of what the addition
should look like:

<script
 type='text/javascript'
 src='http://maps.google.com/maps/api/js?sensor=true'
></script>

The following snippet shows how to create a map component:

Ext.create('Ext.Map', {
 useCurrentLocation : true,
 mapOptions : {

Listens for
locationupdatec

Handles
errord

Starts
polling

e

180 CHAPTER 9 Maps and media
 mapTypeControl : false
 }
});

That’s it! Just six lines of code and you have a map
that uses your GPS location. Technically even if you
don’t have any configuration options set you’d still
have a map rendered. But you set useCurrentLocation
to true so that you could use Ext.util.Geolocation to
determine your current location and center the map
on that location. If useCurrentLocation is set to true
the map won’t render until the location is found. You
then specified the mapOptions configuration to an object
to configure the Google Maps instance. You set the map-
TypeControl option here to ensure that the user can’t
switch between the different map types that would other-
wise be available, like a satellite view. You can see more
configuration options that can go into this mapOptions
configuration by visiting http://code.google.com/apis/
maps/documentation/javascript/reference.html#Map-
Options. Figure 9.2 shows the results.

9.1.4 Getting advanced with Google Maps API

You just learned how to create a simple map. So far, so good, but now let’s get a little
more advanced and learn how to incorporate more features from the Google Maps
API. We won’t get too in-depth at this point, so you’ll just learn how to add a marker to
the map and display an InfoWindow to give some information about what the marker
is for. To start let’s set the foundation by creating a basic Ext.Map instance:

var onMapRender = function() {},
 map = Ext.create('Ext.Map', {
 fullscreen : true,
 autoUpdate : false,
 useCurrentLocation : true,
 listeners : {
 maprender : onMapRender,
 single : true
 }
 });

In this example you don’t need automatic updating of your position, so you set
autoUpdate to false. If you don’t need automatic updating but left this set to true
you’ll be wasting CPU cycles, memory, and battery by polling the current location
every 10,000 milliseconds, and you don’t want to waste performance and the user’s
battery. You want the map to render centered on your current location so you set
useCurrentLocation to true. Finally, you can’t add any markers to a map that isn’t
rendered, so you have to listen for the maprender event, and after its first firing it’ll

Figure 9.2 A simple map
component in action

http://code.google.com/apis/maps/documentation/javascript/reference.html#MapOptions
http://code.google.com/apis/maps/documentation/javascript/reference.html#MapOptions
http://code.google.com/apis/maps/documentation/javascript/reference.html#MapOptions
http://code.google.com/apis/maps/documentation/javascript/reference.html#MapOptions

181Maps in your application
remove the listener by using the single event option. The maprender event is fired on
Ext.Map when the Google Map is inserted and rendered. Just like you set autoUpdate
to false to avoid wasting resources, you can remove the maprender listener. You know
you can save some memory because it’s only going to fire once.

 So you have a map ready, but it’s just a plain map, and you want a Google Maps
marker to show where on the map you are. The Google Maps marker also gives some
context to the map. Without the marker you’d just have a plain map and your users
might not know what they’re looking at.

 You created a simple map and added a listener to the maprender event, but the
onMapRender function is an empty function and you need to take action within that
function to show the marker. You want to have a marker render at your current loca-
tion, and when a user clicks or taps on that marker, have a Google InfoWindow appear
to let the user know why the marker is there. See the following listing.

var onMapRender = function (touchMap) {
 var maps = google.maps,
 map = touchMap.getMap (),
 geo = touchMap.getGeo(),
 lat = geo.getLatitude(),
 lng = geo.getLongitude(),
 coords = new maps.LatLng(lat, lng),
 marker = new maps.Marker({
 position : coords,
 map : map
 }),
 infowindow = new maps.InfoWindow({
 content : 'This is the current location'
 });

 maps.event.addListener(marker, 'click', function() {
 infowindow.open(map, marker);
 });
};
new Ext.Map({
 fullscreen : true,
 autoUpdate : false,
 useCurrentLocation : true,
 listeners : {
 maprender : on MapRender,
 single : true
 }
});

In listing 9.2 you update the onMapRender function that gets fired from the maprender
event. First you cache the google.maps namespace onto the maps variable for minifi-
cation and very tiny, minimal performance gain purposes. You then need to get the
location, so you use getGeo B on the touchMap argument, which is the Ext.Map
instance and returns the Geolocation instance. To get the latitude and longitude you

Listing 9.2 Creating a marker and InfoWindow

Gets Geolocation
class instanceb

Creates Google
InfoWindow
instance

c

Adds click
event listener
to markerd

182 CHAPTER 9 Maps and media
execute the getLatitude and getLongitude methods
to retrieve those coordinates from the Geolocation
class. You need to create a Google LatLng instance
based on the latitude and longitude coordinates so the
marker knows where to show in the Google Map.
Finally, the marker is created, passing in the LatLng
instance as the position config and the Google Map
instance as the map config. If you were to stop there
you’d have a marker show on the map, but you also
want an InfoWindow to describe the marker. So you
then create the InfoWindow instance c, passing in
some content that can hold HTML (but be careful of
how much you put in there, because the user may be
on a cell phone that has limited screen real estate). You
then add a click listener on the marker with the
addListener method d so that you can open the
InfoWindow using the open method, passing in the
Google Map instance and the marker. Figure 9.3 shows
what listing 9.2 yields.

 That’s it! You should now have a general understand-
ing of how to incorporate the Google Maps API with the
Sencha Touch map component, yet there’s so much
more you can do with the Google Maps API. You’ve only
used marker and the InfoWindow, but you can show
directions between two points or get information about the elevation of a certain coordi-
nate. Reference the Google Maps API documentation to see the different classes you can
use. Google even provides some samples. Next up, some fun with the Img component!

9.2 Handling images
You may be thinking, “Why is there an image component within Sencha Touch? It’s
so basic.” We agree. Images are such a basic thing that there may not be a need. The
reason Sencha Touch has an Img component is to provide a way to show an image
from a simple configuration and also provide a load and error event to let you know
when an image is loaded or when loading has failed. For the Img component, get-
ting an image to play nice in layouts would require some extra steps, and Sencha
Touch has removed those extra steps and added some features that you can use to
create stunning things.

9.2.1 Image basics
The Img component simplifies the job of having images be held in a layout, but it also
complicates the issue—it’s not just a simple component setting an image as the HTML of
the component. There are two modes to the Img component: background and image.
The background mode sets the background-image CSS rule to the URL of the image you

Figure 9.3 Google Maps
marker added to the map. Tap on
the marker to view the Google
InfoWindow.

183Handling images
pass in on the <div> element. The image mode will create a tag and set the src
attribute to the URL of the image you pass in; it’s wrapped in the <div> element. So
you can tell the two modes may accomplish the same thing, but they go at it in two dif-
ferent ways. Here’s how to define the Img component:

Ext.create('Ext.Img', {
 width : 100,
 height : 100,
 src : 'path/to/image.png'
});

By default the Img component is in background mode, so if you were to inspect the
DOM you’d notice a single <div> element with the background-image CSS rule set to
the src config. Now let’s look at the image mode and the results (shown in figure 9.4):

Ext.create('Ext.Img', {
 width : 100,
 height : 100,
 src : 'path/to/image.png',
 mode : 'image'
});

Now if you were to inspect the DOM you’d see an element wrapped in a <div>
element, but if you compare the two end results you may not see a difference. Let’s
remove the width and height configs from both instances and check the end result.
Notice that the image mode has a size but the background mode Img component
doesn’t. Why is that? It’s because the tag is telling the <div> that it has a size,
and due to the styles on the <div> it’s allowing itself to be autosized based on the size

Figure 9.4 Visually both mode
configurations look the same;
background mode is on the left
and image mode is on the right.
Check out the DOM and each Img
component will look different.

184 CHAPTER 9 Maps and media
of the element. With the background mode Img component the <div> element
can’t get a size from its CSS background-image rule.

 More advanced users will also note that you can do different things with each DOM
structure. Using the default background mode you can tile the image so it’ll repeat
horizontally and vertically or just one direction using CSS. Also with CSS you can cen-
ter the background image, but if you used the image mode you’d have to use more
CSS to get the centering effect.

 Moving forward, you have other functionality. For example, the Img component
exposes a load and error event to notify you if the image was loaded or if there was an
error, along with a tap event that will fire when it detects it has been tapped on. You
can also use the setSrc method to change the URL of the image on the fly and even
use setMode to change between background and image mode on the fly. Another hid-
den gem of the Img component is that when it’s hidden the image is removed from
the DOM, but because the browser will cache the image when the Img component is
shown again it’ll reset the src attribute and the image will appear instantly. This will
free up some memory because the image doesn’t need to be in memory when hidden,
a great feature of Sencha Touch 2.

9.2.2 Preloading an image with a spinner
Showing a static image with the Img component is easy. Let’s do something fun and
use what you’ve learned so far in this book. You’ll build a proof of concept example in
listing 9.3, where you display a preloading spinner while the image you want to show
loads. You’ll create a container with two Img components. The first item of the con-
tainer will be the preloading spinner Img component that has been Base64-encoded
so that it doesn’t have to be downloaded but can be shown right away. The second
item will be the image you want to show, but it may take a second or more to down-
load on a mobile cellular network that usually has high latency. The Base64-encoded
spinner image won’t be shown here because it’s quite a long string; this image comes
with Sencha Touch and is located at /sencha-touch-2.0.0/resources/themes/images/
default/loading.gif.

Ext.create('Ext.Container', {
 fullscreen : true,
 items : [
 {
 xtype : 'image',
 height : 250,
 width : 250,
 cls : 'loading-image',
 src : 'data:image/gif;base64,-------'
 },
 {
 xtype : 'image',
 height : 250,
 width : 250,

Listing 9.3 Image preloading spinner example

Adds preloading
image

b

Adds real
image

c

185Handling images
 hidden : true,
 src : 'path/to/image.png',
 listeners : {
 delay : 2000,
 load : function(image) {
 var container = image.up('container'),
 spinner = container.down('image');

 container.remove(spinner);
 image.show();
 }
 }
 }
]
});

In listing 9.3 you use a container to wrap the two Img components. You have two image
items under the container, and once the image is loaded you’ll remove the loading
image and show the image. The first item is the Img component B for the preloading
spinner image that uses the Base64-encoded string of the loading.gif animated GIF
image that comes with Sencha Touch 2. The second item is the image c that you
want to show, but because you want control over when that Img component is shown
you have it marked as hidden. You use a URL to load the image from. You set the
height and width of both Img components; you did this so that the size will remain
the same when you switch to the Img component in the load event listener.

 Because you’re only creating a proof of concept example right now you’re using a
computer, and that means you have a reliable internet connection. So to see if it all
works you can use the delay event option to delay the firing of the load event listener
by 2,000 milliseconds. Within the load event listener you get the Img component
instance as the first argument, so you can resolve the container by using the Component-
Query convenience method up on the Img component instance. Now that you have the
Container instance you can get the preloading spinner Img component by using
the ComponentQuery convenience method down on the container. Because the pre-
loading spinner Img component is the first child item of the Container and the down
method will return the first instance it finds you know it’ll return the correct Img
component. The load event fired on the actual Img component, so you don’t need to
preload the spinner Img component. That means you can go ahead and remove d
the preloading spinner Img component so that the memory it’s using can be used for
other things. Finally, you show the Img component e.

 Run the code replacing the src configs with the Base64 string and a URL to a remote
image, and possibly update the width and height configs. For a remote image URL
we found a nice Sencha logo at www.sencha.com/files/blog/old/blog/wp-content/
uploads/2010/06/sencha-logo.png, which is 250px by 250px. Works pretty well, huh?
Figure 9.5 shows the before and after image loading from this test.

 This preloading spinner is a great candidate to be made into its own class to han-
dle this internally. To do this you’d use Ext.define to define a new class, which we’ll
cover in chapter 10.

Removes
preloading
image

d

Shows real
Imagee

www.sencha.com/files/blog/old/blog/wp-content/uploads/2010/06/sencha-logo.png
www.sencha.com/files/blog/old/blog/wp-content/uploads/2010/06/sencha-logo.png
www.sencha.com/files/blog/old/blog/wp-content/uploads/2010/06/sencha-logo.png

186 CHAPTER 9 Maps and media
9.3 Mastering media
Another feature of an application that could be a large selling point is adding multime-
dia: audio and video. Maybe you have an application that helps teach a user a subject.
Reading text will work, but playing audio or (even better) playing a video to walk the
user through something is a great tool to have, and your users would most likely keep
coming back because of this multimedia experience. In this section we’ll explore both
the audio and video components, but first we need to cover the base class, Media.

9.3.1 Media base

As you learned back in chapter 3, Sencha Touch has a Component model where com-
ponents extend other components to introduce common functionality among sub-
classes (call abstraction) and dependability. The audio and video components both
extend from the media component. So what does the media component give the
audio and video components?

 First you must understand what’s going on under the hood. HTML5 has both
<audio> and <video> DOM elements, and there are many common features of these
tags, like common events and ways to control them. The media component is a wrap-
per of these so that its subclasses can have this functionality without duplicating the
code. Now let’s take a look at the common functionality in the media component.

 Events are usually a large part of your app, so having some useful events is critical.
Think of a DVD player; it plays, pauses, stops, rewinds, and fast-forwards, basic func-
tionality that every model must have. The media component bubbles play, pause,
ended, and timeupdate events from the underlying <audio> or <video> so you have

Figure 9.5 The loading
spinner (left) and the actual
image loaded (right)

187Mastering media
events for the basic functionality that a media component should have, as shown in fig-
ure 9.6. You also have a volumechange event that’ll fire when you use the HTML5 con-
trols to change the volume. Along with the volumechange event you get a mutedchange
event that’ll fire when the <audio> or <video> element is muted or unmuted. There are
quite a few useful events to build multimedia functionality into your application.

NOTE The volumechange event won’t fire if you change your device’s volume.
This event will only fire if you use the onscreen control to change the volume
of the media or use the setVolume method.

Table 9.1 shows some of the most commonly used configuration settings.

The most frequently used config will be the url config so that you can play a media
file. If you don’t want controls on screen so that you can change the volume or seek
through the media file you can set enableControls to false (enableControls
defaults to true unless you’re on Android, in which case it defaults to false). If you

Table 9.1 Common configurations

Config Description Defaults

url The URL of the media file to be used Empty string, ''

enableControls true to show the onscreen controls to play/pause,
seek, and change the volume

Android – false
Others – true

autoResume true to start playback when the component has been
visually activated

false

autoPause true to stop playback when the component has been
visually deactivated

true

preload true to begin the preloading of the media immediately true

loop true to loop the media forever false

volume The volume level of the media accepting a value between
0 (no volume) and 1 (full volume)

1

muted true to mute the media volume false

<audio>
<video>

Ext.Audio
Ext.Video

pause

play

stop

timeupdate

volumeupdate
Figure 9.6 The five events that get bubbled
from the <audio> and <video> DOM elements
to the Ext.Audio and Ext.Video Sencha
Touch components

188 CHAPTER 9 Maps and media
want the media to start playing when the media component is visually activated you
can set autoResume to true; it defaults to false. Users may not want to wait around
for media and may decide to jump to another section of your application without
stopping the playing of the media. The autoPause config, which defaults to true,
will pause the media when the media component has been visually deactivated, sav-
ing a lot of resources on the device. You also have a loop config that’ll loop the
media when the media reaches the end; it defaults to true. To configure the volume
you have a muted config that can start the media muted (it defaults to false), and
you also have a volume config that accepts a value from 0 to 1 (it defaults to 1). You
can visit Sencha Touch 2’s API documentation for these configuration settings and
more. Setting up the media component and listening for its events is just two-thirds
of the functionality. Let’s look at some of the methods to control the media compo-
nent programmatically.

 Table 9.2 shows some of the methods associated with the most commonly used
configuration settings.

Each of the configurations has a set method associated, with the first letter of the con-
fig uppercased and set as the prefix. For example, you can change the URL on the fly
with the setUrl method. If the media was playing at the time the setUrl method
fired it’d start the playing of the new media. You also get the setEnableControls,
setAutoResume, setAutoPause, setLoop, setMuted, and setVolume methods from the
configs. With these alone you can see how much control you now have over the media,
and that’s not all the control you have. You also have play, pause, and stop methods,
as well as a toggle method. The toggle method toggles the playback status between
playing and paused. Another method to control the media is the setCurrentTime
method, which allows you to jump around the timeline of the media.

 Not all methods are used to control the media; you also have methods to get
information about the media. These methods are getDuration, getCurrentTime, and

Table 9.2 The associated get and set methods of the configurations from table 9.1

Config Get Method Set Method Returns/Accepts

url getUrl setUrl String

enableControls getEnableControls setEnableControls Boolean

autoResume getAutoResume setAutoResume Boolean

autoPause getAutoPause setAutoPause Boolean

preload getPreload setPreload Boolean

loop getLoop setLoop Boolean

volume getVolume setVolume Int (0-1)

muted getMuted setMuted Boolean

189Mastering media
isPlaying. getDuration will tell you the length of the media in seconds. getCurrent-
Time will tell you where in the media the current time is in seconds. To find out if the
media is currently playing you can use the isPlaying method, which will return a
Boolean whether or not the media is playing. Like the set methods from the configs,
you also have the get methods from the configs: getUrl, getEnableControls, get-
AutoResume, getAutoPause, getLoop, getMuted, and getVolume.

 Wow, that’s a lot of functionality! Remember, this is just the base class of the audio
and video components, so each of them has all of these configs, events, and methods,
providing a lot of control over your media. We just covered Media; now let’s look at its
first subclass, Audio.

9.3.2 Listening to audio
Because the media component has all that functionality the audio component doesn’t
have any more functions to provide. The audio component is basically just a configu-
ration component to set up the DOM elements that the functionality from the media
component can control. The following listing shows how to set up the audio compo-
nent shown in figure 9.7.

Ext.create('Ext.Audio', {
 fullscreen : true,
 url : 'assets/audio/audio.mp3',
 autoResume : true,
 loop : true,
 volume : 0.5
});

Listing 9.4 Basic audio example

Figure 9.7 The audio views
before playback (left) and after
pressing the play button on the
onscreen controls (right)

190 CHAPTER 9 Maps and media
Listing 9.4 shows how easy it is to set up an audio com-
ponent. You give a URL to an MP3 file to play. When the
audio component is visually activated you want to set
autoResume to true. You don’t want the audio to stop
playing, so set loop to true so that it’ll just continue to
play instead of stopping at the end. You never know
how loud the user has his volume set so setting the vol-
ume configuration to half volume or even less may be a
good idea, as the user could change this at any time.

 To be a little more advanced you could put the audio
component within a container and give the container a
docked toolbar with some buttons to control the play-
back and volume, as shown in figure 9.8, using what you
know about the control methods that the media compo-
nent brings. Let’s look at some of these functions.

 There’s one thing to note about using the audio
component. It can only work if the device, or more spe-
cifically the operating system, can play the audio file.
Not every audio file and codec is supported on a mobile
operating system. For instance, iOS and Android don’t
support the Windows Media formats like WMA. The rec-
ommended formats for cross-device compatibility are
uncompressed WAV and AIF, MP3, AAC-LC, and HE-AAC,
with MP3 probably the most common format supported.
If the audio component isn’t playing more than likely the codec isn’t supported, and
trying one of the other recommended formats could serve as a quick test to debug the
issue. You’d be amazed at how many times someone has complained that the audio
component wasn’t working when it turned out that the device’s volume was turned
down or muted.

 Because this is only for audio you won’t see anything except the onscreen con-
trols unless you set the enableControls config to false. Even if the MP3 file has
album artwork the HTML5 audio won’t display this. You can get around this by using a
container with an Img component to display an image and an audio component as
children of the container. Just having the audio with its onscreen controls may look a
bit underwhelming to your user, but this is up to your UI.

 Those are the basics of the audio component. Sencha Touch makes playing audio
simple. Hopefully your mind is going crazy thinking of all the audio stuff you can do
in your application. Let’s kick it up another gear and look at playing video.

9.3.3 Playing video

Like the audio component the video component extends the media component, so
Video gets all the same methods, configurations, and events. The video component

Figure 9.8 An example of
an audio component in a
container with some toolbars
to handle simple playback and
volume change

191Mastering media
adds one extra feature: the use of a poster. A poster is an initial image that’s used
instead of showing the video; tapping on the poster will start playing the video. This is
a departure from the <video> tag specification, but the reason Sencha Touch does
this is due to device resource limitation. It takes quite a lot of resources to handle
video; the device has to decode the video file and then play it. Scrolling around an
application would feel choppy and wouldn’t provide your users with a great experi-
ence. To get around this Sencha Touch shows a simple image (poster) in place of the
video, allowing for application performance to be much better. Of course, once that
video is playing the benefits of the poster will be lost. Let’s take a look at creating a
Video instance in the next listing.

Ext.create('Ext.Video', {
 fullscreen : true,
 url : 'assets/audio/video.mp4',
 posterUrl : 'assets/poster/video.png',
 autoResume : true,
 loop : true,
 volume : 0.5
});

You first give the video the URL of an MP4 video file and also use the URL of a PNG
image to serve as the poster. You use autoResume to resume video playback on activa-
tion and loop to keep the video playing endlessly. You set volume to 0.5 so that you
don’t play video with overly loud sound. Figure 9.9 shows the video component on
an iPhone.

Listing 9.5 Basic video example

Figure 9.9 The video
component on an iPhone with
the poster (left) and in the
native video player when
playing the video (right)

192 CHAPTER 9 Maps and media
Once again, not every mobile operating system can play every video file format and
codec. What does all this mean to you as a web developer? It means there’s no stan-
dard video format in the HTML5 video spec. Both iOS 5.1 and Android 4 currently
support an MP4 file with H.264 as of this writing, but Google has pulled H.264 support
in its popular Chrome browser for personal computers, so the future of H.264 sup-
port in Android is unknown. As of this writing Google has made no announcement
that it’ll pull H.264 support in Android. We’d be surprised if iOS stops H.264 sup-
port any time soon, even if a competing codec is adopted in the HTML5 video spec.
Figure 9.10 shows the video component playing with a tablet.

HTML5 video history
At first Ogg Theora was recommended as the video codec standard for HTML5, but
some unknown patents have scared large companies like Apple away from supporting
it. Interestingly, the H.264 codec may also have unknown patents, but H.264 has
been widely used so the perceived threat to mobile operating system makers has
decreased to almost nothing. Even though H.264/MPEG-4 AVC has been widely used
it hasn’t been made part of the HTML5 video specification because users have to pay
licensing fees to the MPEG LA group. Microsoft and Apple are among the members
of this group.

iOS is made by Apple, an MPEG LA group member, so Apple doesn’t have to worry
about the licensing fees as much as Google (creator of the Android operating system)
does. Google isn’t part of the MPEG LA group but it still supports the H.264 codec.
Google acquired On2, and thus the VP8 codec, and provided a royalty-free license to
users of the VP8 codec. Google combined the VP8 video codec with the Vorbis audio
format within a Matroska container, creating the WebM format. Microsoft and others
have criticized the WebM format, but Mozilla and Opera have asked for the inclusion
of WebM into the HTML5 video specification.

Figure 9.10 The video component running on an iPad, where you can see the poster (left) and the video
playing inline in the application (right). (Source: Blender Institute, part of the Blender Foundation)

193Summary
9.3.4 Things to keep in mind

We need to go over a few things about using media in your application. Keep in mind
that you’re on a mobile network that has high latency and isn’t as reliable as home
broadband. Having several audio or video components load at the same time will
choke the connection on your user’s device. You have no way to know what else users
will be doing or what their network connection will be like. Your users could be on a
network that isn’t great and their connection may be slow, so loading audio and video
files could take forever. So loading one at a time and optimizing files for mobile devices
is recommended. For instance, a video file that looks great on a high-definition, 1080p
television is way too much for a mobile device. You can keep 1080p high-definition, but
the video size should be smaller because tablets and phones don’t have large screens
and it’d be a waste to have a large-sized video.

 Performance is another issue. Today’s devices are more powerful than ever, with
more memory, quad-core CPUs and GPUs, and mobile connections that rival home
broadband connections. But even these mobile devices can still be strained with
large video files and you can’t always be certain that your users will have the latest
and greatest devices. A good application will keep performance in mind with every
feature implemented and be tested on older devices. We know that people with
iPhone 3 devices view our applications so we still need to support these devices. As
long as you put performance first you’ll have no problem finding ways to have every
feature you want.

 Using poster images for videos will help performance quite a bit. Scrolling with
inline videos without a poster image will provide a bad experience, making your appli-
cation look like it has performance issues. The user doesn’t know that the device is
having problems keeping everything rendered at once. Using a poster image, the
device doesn’t have to try to keep videos rendered and keep up with the scrolling;
images are a tremendously smaller strain on the device.

 One more thing to know is that each device is going to handle videos differently.
The iPad will play the video inline with your application (depicted in figure 9.10 ear-
lier) as you’d want, but the iPhone with the same iOS version will launch the video in
the native video player (depicted in figure 9.9) so the video isn’t actually playing
within your application. This isn’t going to affect you and your application, because
when users press the Done button they’ll return to your application where they left
off. Nevertheless, it’s something to be aware of, because this is the behavior of the
device rather than your application and it’s what your users will experience. We sug-
gest trying to view your application on a variety of devices so you know the experience
your users will have and you can make changes based on your results and what you
want your users to experience.

9.4 Summary
This chapter added a considerable amount of fun to your applications. You first
looked at how the map component works and you learned how to incorporate the

194 CHAPTER 9 Maps and media
Google Maps API. The pair can be used together to give your application a great
user experience. You then learned about the Img component and saw that it’s
much more than meets the eye. You created a proof of concept using a preloading
spinner image that displays while the real image loads. Finally, you explored Media
and its subclasses, Audio and Video. You learned that the Media class has a lot of
functionality that the audio and video components inherit. You saw how to create
and set up Audio and Video instances and also what codecs can be used. Learning
about the history of the HTML5 video spec allows you to be intelligent while devel-
oping your application, and you learned that playing videos can have conse-
quences for the device and its mobile connection. By using what you learned in
this chapter you can improve the user experience of your application by adding
map and media functionality.

 In the next chapter we’ll take a closer look at how to use basic JavaScript proto-
typal inheritance, and then you’ll learn to master the Sencha Touch class system.
You’ll also create a plug-in while you’re at it.

Part 3

Constructing
an application

Part 3 is aimed at getting your Sencha Touch knowledge up to the level of
professionals, beginning with chapter 10.

 In chapter 10 you’ll tackle advanced concepts like prototypal inheritance
with JavaScript and the Sencha Touch class system. You’ll also have the opportu-
nity to learn how the dependency injection system works. You’ll take that knowl-
edge and create a custom list widget as well as a custom plug-in.

 Chapter 11 is focused on creating applications. Here you’ll learn how to use
Sencha Cmd to manage an application from start to finish. We’ll also walk you
through the development of an application where you’ll get to experience com-
plex theories like developing with the Sencha Touch application architecture
and MVC.

 By the end of part 3 you’ll have learned many of the secrets to implementing
advanced features in the Sencha Touch framework.

Class system foundations
Every Sencha Touch developer faces challenges where reusability is an issue.
Often, a component of an application is required to appear more than once
within the application’s usage lifetime. Without mastering these techniques you
could end up with what’s known as “function soup,” or unmaintainable code. This
is why we’ll focus on the concept of reusability by the use of framework extensions
and plug-ins.

 In the first section of this chapter you’ll learn the basics of extending (subclass-
ing) with Sencha Touch. You’ll begin by learning how to create subclasses with
JavaScript, where you’ll see what it takes to get the job done with the native lan-
guage tools. This section will give you the foundation to refactor your newly created
subclass to use the Sencha Touch class system.

This chapter covers
■ Understanding prototypal inheritance
■ Developing your first extension
■ Knowing how plug-ins work
■ Developing a real-world plug-in
■ Looking into the Sencha Touch class loader
197

198 CHAPTER 10 Class system foundations
 Once you’re familiar with creating basic subclasses you’ll focus your attention on
extending Sencha Touch components. You’ll have fun learning the basics of frame-
work extensions, and you’ll solve a real-world problem by extending the grid Panel
widget and see it in action.

 When you finish the extension you’ll learn how extensions solve problems but can
create inheritance issues when similar functionality is desired across multiple widgets.
After you’ve gotten your hands dirty with the creation of a custom extension you’ll
dive into creating a plug-in. In this exercise you’ll learn how to inject the ability for
fieldsets to be collapsible in any of your applications.

 After you’ve built a solid foundation in the Sencha Touch class system you’ll take a
few moments to look at the dynamic class loader that Sencha Touch provides. You’ll
learn about the three popular patterns for using the dynamic class loader and the
caveats that go along with each one.

10.1 Classic JavaScript inheritance
JavaScript provides all the necessary tools for prototypal inheritance, but it falls short
when it comes to easily setting up multiple class inheritance. Sencha Touch makes
multiple class inheritance much easier with the class system. To begin learning about
inheritance, you’ll create a base class.

 To help you along, envision that you’re working for an automobile dealership that
sells two types of cars. One type is the base car, which serves as a foundation to con-
struct the premium model. Instead of using 3D models to describe the two car models,
you’ll use JavaScript classes.

NOTE If you’re new to object-oriented JavaScript or are feeling a bit rusty, the
Mozilla foundation has an excellent article to bring you up to speed or polish
your skills. You can find it at https://developer.mozilla.org/en-US/docs/
JavaScript/Introduction_to_Object-Oriented_JavaScript.

You’ll begin by constructing a class to describe the base car, as shown in the next listing.

 var BaseCar = function(config) {
 this.octaneRequired = 86;
 this.shiftTo = function(gear) {
 this.gear = gear;
 };
 this.shiftTo('park');
 };
 BaseCar.prototype = {
 engine : 'I4',
 turbo : false,
 wheels : 'basic',
 getEngine : function() {
 return this.engine;
 },

Listing 10.1 Constructing your base class

Creates
constructorb

Assigns prototype
object

c

https://developer.mozilla.org/en-US/docs/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/JavaScript/Introduction_to_Object-Oriented_JavaScript

199Classic JavaScript inheritance
 drive : function() {
 return 'Vrrrrooooooom - I'm driving!';
 }
 };

In listing 10.1 you create the BaseCar class constructor B which, when instantiated, sets
the instance’s local this.octaneRequired property, adds a this.shiftTo method, and
calls it, setting the local this.gear property to 'park'. Next, you configure the Base-
Car’s prototype object c, which contains three properties that describe the BaseCar
and two methods.

 You could use the following code to instantiate an instance of BaseCar and inspect
its contents with the WebKit JavaScript console:

 var mySlowCar = new BaseCar();
 mySlowCar.drive();
 console.log(mySlowCar.getEngine());
 console.log('mySlowCar instance:’, mySlowCar);

Figure 10.1 shows what the output of this code looks like
in the WebKit JavaScript multiline editor and console.

 With your BaseCar class set you can now focus on sub-
classing it. First you’ll do it the traditional way. This
approach will give you a better understanding of what’s
going on under the hood when you use Ext.define later.

10.1.1 Inheritance with JavaScript

Creating a subclass using native JavaScript is achievable
with multiple steps. Rather than simply describing them
we’ll walk through the steps together. The following list-
ing creates PremiumCar, a subclass of the BaseCar class.

 var PremiumCar = function() {
 PremiumCar.superclass.constructor.call(this);
 this.octaneRequired = 93;
 };

 PremiumCar.prototype = new BaseCar();
 PremiumCar.superclass = BaseCar.prototype;

 PremiumCar.prototype.turbo = true;
 PremiumCar.prototype.wheels = 'premium';
 PremiumCar.prototype.drive = function() {
 this.shiftTo('drive');
 PremiumCar.superclass.drive.call(this);
 };
 PremiumCar.prototype.getEngine = function() {
 return 'Turbo ' + this.engine;
 };

Listing 10.2 Creating a subclass the old-school way

Figure 10.1 Instantiating an
instance of BaseCar and
exercising two of its methods

Calls superclass
constructorb

Sets subclass
prototypec

Sets the
superclassd

200 CHAPTER 10 Class system foundations
To create a subclass you begin by creating a new constructor which is assigned to the
reference PremiumCar. Within this constructor is a call to the constructor method of
PremiumCar.superclass within the scope of the instance of PremiumCar being cre-
ated (this).

 You do this because, unlike other object-oriented languages, JavaScript subclasses
don’t natively call their superclass constructor B. Calling the superclass constructor
gives it a chance to execute and perform any constructor-specific functions that the
subclass might need. In our case, the shiftTo method is being added and called in
the BaseCar constructor. Not calling the superclass constructor would mean that your
subclass wouldn’t get the benefits provided by the base class constructor.

 Next, you set the prototype of PremiumCar to the result of a new instance of Base-
Car c. Performing this step allows PremiumCar.prototype to inherit all of the proper-
ties and methods of BaseCar. This is known as inheritance through prototyping, and it’s
the most common and robust method of creating class hierarchies in JavaScript.

 In the next line you set the PremiumCar’s superclass reference to the prototype
of the BaseCar class d. You can then use this superclass reference to do things
like create so-called extension methods, such as PremiumCar.prototype.drive.
This method is known as an extension method because it calls the like-named
method from the superclass prototype, but from the scope of the instance of the
subclass it’s attached to.

TIP All JavaScript functions (JavaScript 1.3 and later) have two methods that
force the scope execution: call and apply. To learn more about them, visit
www.webreference.com/js/column26/apply.html.

With the subclass now created you can test things out by instantiating an instance of
PremiumCar with the following code entered into the WebKit JavaScript console editor:

 var myFastCar = new PremiumCar();
 myFastCar.drive();
 console.log('myFastCar contents:');
 console.dir(myFastCar);

Figure 10.2 shows what the output would look like in
the WebKit JavaScript multiline editor and console.

 This output shows that your subclass performed
as desired. From the console.dir output you can see
that the subclass constructor set the octaneRequired
property to 93, and the drive extension method
even set the gear method as "drive".

 This exercise shows that you’re responsible for all
of the crucial steps in order to achieve prototypal
inheritance with native JavaScript. First you had to
create the constructor of the subclass. Then you had
to set the prototype of the subclass to a new instance

Figure 10.2 Your PremiumCar
subclass in action

http://www.webreference.com/js/column26/apply.html

201Using the Sencha Touch class system
of the base class. Next, for convenience, you set the subclass’s superclass reference.
Last, you added members to the prototype one by one.

 You can see that quite a few steps need to be followed in order to create multiple
classes with the native language constructs. We think this is a lot of work and it frus-
trates us, so luckily there’s an easier way to achieve this result.

 Next you’ll see how the Sencha Touch class system makes creating classes and mul-
tiple inheritance much easier.

10.2 Using the Sencha Touch class system
The Sencha Touch class system takes JavaScript’s prototypal inheritance to another
level, adding features like dependency injection, automatic setter and getter method
creation, statics, and mix-in support (multiple inheritance). All of these features require
the use of Sencha Touch class-specific methods, such as Ext.define, Ext.create, and
Ext.require, as you’ll learn later. As we walk through this section you’re going to learn
why the Sencha Touch class system is a great solution for developing your applications.

10.2.1 Using Ext.define

You just saw what it takes to implement JavaScript prototypal inheritance. You had to do
quite a bit of work just to get a single level of inheritance set up. With complex software
like your applications you’d have to do quite a bit of typing to get inheritance going. This
means that you’d have a lot of redundant code in your projects, resulting in a lot of bloat.

 Sencha Touch is in the perfect position to take on the heavy lifting for you, and it
even adds a bit of automation. To see what we mean you’ll have to take a step back to
the first two classes you created. Begin by redefining the BaseCar class you con-
structed in section 10.1. Along the way we’ll introduce you to the “config system.”
Afterward you’ll extend the BaseCar class to define PremiumCar.

The next listing shows the BaseCar class defined in the MyApp.car namespace. You’ll
extend Ext.Component because that’s where you’ll spend a lot of your time when
developing applications.

Ext.define('MyApp.car.BaseCar', {
 extend : 'Ext.Component',
 requires : 'Ext.Component',

You’ll be using namespaces!
Instead of just using basic class names you’ll be defining your class names using
properly namespaced class names, much like you find in classic languages such as
Java or C++. If you’re new to namespaces, they help organize your code much like
folders do in a file system. When developing applications, you’ll need to organize your
code according to namespace, so it’s good to get used to it now.

Listing 10.3 Defining your base class

Defines BaseCar
classb

202 CHAPTER 10 Class system foundations
 config : {
 octaneRequired : null,
 gear : null,
 engine : 'I4',
 turbo : false,
 wheels : 'basic'
 },
 constructor : function() {
 this.callParent();
 this.setOctaneRequired(86);
 this.setGear('park');
 },
 drive : function() {
 console.log("Vrrrrooooooom - I'm driving!");
 }
});

Listing 10.3 demonstrates the most basic use of Ext.define, where you define
MyApp.car.BaseCar B. The first thing that might strike you as strange is the way you
define the class names: by string. You do so because Sencha Touch gives you an oppor-
tunity to define a class and namespace together. Sencha Touch will create the
MyApp.car namespace for you if it hasn’t been previously defined, and it’ll place
the BaseCar class within that namespace. This pattern paves the way for using the class
loader system later on, where you’ll learn how important it is to organize your classes
in your project’s file system according to the namespace for which they’re defined.
For now, let’s finish looking at this class. We still have a lot to discuss.

 In the class definition you instruct the class system to extend Ext.Component,
which is now known as the superclass for your BaseCar class.

You also instruct Sencha Touch to require Ext.Component. Doing so allows you to fully
utilize the class loader dependency injection system which is absolutely necessary to
use the Sencha SDK, which we’ll cover in chapter 11.

 Next you define what’s known as the class config object c. This object is some-
what special and is used to define custom properties that’ll be set and accessed after
instantiation. When you define classes, setter and getter methods are automatically
generated for you. The config object also gives you the capability to define custom
properties in a single place, instead of in the prototype of the class.

 In the constructor d you immediately call the superclass’s constructor. Doing so
allows the superclass to do what it needs to do in its own constructor.

Why extend Ext.Component?
You’re extending Ext.Component because it gives you the capabilities to use the
automatically generated setters and getters. Most of your work will be done extending
classes that have these magic functions created, so it makes sense to start getting
used to it now.

Defines config
object c

Sets the
constructord

203Using the Sencha Touch class system
 You can see this in action by instantiating an instance of your custom class. To
instantiate this class you’ll have to use Ext.create instead of the JavaScript new key-
word. By now you should be used to using Ext.create for Sencha Touch classes, but
we want you to use it within the context of your own class. Here’s how you do it:

var mySlowCar = Ext.create('MyApp.car.BaseCar');
mySlowCar.setGear('drive')
mySlowCar.drive();
console.log(mySlowCar.getEngine());

Figure 10.3 shows the results of implementing the MyApp
.car.BaseCar class, which are exactly as you’d expect.

 Notice how you’re using the setGear() and get-
Engine() methods. These are magic methods auto-
matically generated by the class system. Right away
you can start to see how the Sencha Touch class sys-
tem brings power to your code by generating API methods for your custom class, and
there’s more to the class system than what we just covered.

 With your custom class instantiated, you can extend it using Ext.define. In doing
so you’ll see more of how the class system works. The following listing contains the
code for the PremiumCar class, which extends your BaseCar class.

Ext.define('MyApp.car.PremiumCar', {
 extend : 'MyApp.car.BaseCar',
 config : {
 turbo : true,
 wheels : 'premium',
 stereo : '5.1'
 },
 constructor : function() {
 this.callParent(arguments);
 this.setOctaneRequired(93);
 },
 applyEngine : function(engine) {
 return 'Turbo ' + engine;
 },
 drive : function() {
 this.setGear('drive');
 this.callParent();
 console.log('The turbo makes a big difference!');
 }
});

In listing 10.4 you create the MyApp.car.PremiumCar class, which is an extension (sub-
class) of the MyApp.car.BaseCar superclass, using the Ext.define method. Here’s how
this works.

 You first call on Ext.define and define the MyApp.car.PremiumCar B extension
class. You instruct Sencha Touch to extend your previously defined MyApp.car.BaseCar
class by naming it via string representation set to the extend keyword.

Listing 10.4 Extending BaseCar with Ext.define

Figure 10.3 The results of our
first Sencha Touch class

Defines PremiumCar classb

Overrides BaseCar
config primitivesc

Creates PremiumCar
constructord

Adds apply
methode

Extends drive
methodf

204 CHAPTER 10 Class system foundations
 Next you set the config object c to override the turbo, wheels, and stereo prop-
erties inherited from the superclass. Even though you override those three properties
the other config properties from the superclass will be inherited.

When thinking about extending classes you must consider whether prototypal meth-
ods in the subclass will share the same name as prototypal methods in the base class. If
they’ll share the same symbolic reference name you must consider whether they’ll be
extension methods or overrides.

 An extension method is a method in a subclass that shares the same reference
name as another method in a base class. What makes this an extension method is the
fact that it includes the execution of the base class method within itself. The reason
you’d want to extend a method would be to reduce code duplication, reusing the
code in the base class method.

 The constructor d for this class is an extension method. It’s an exact duplicate of
the previously created PremiumCar constructor, with the addition of the call to the par-
ent class constructor via this.callParent(arguments);. This statement allows the sub-
class to chain the constructor method calls, effectively allowing the MyApp.car.BaseCar
superclass constructor to execute within the scope of new instances of your MyApp
.car.PremiumCar subclass.

 You’re doing something a bit different in this class, adding what’s known as an
apply method e or applier function. An apply method is called by a setter method
and gives your class an opportunity to do something with the value being set. In our
example you’re prepending Turbo to the set engine type. So every time the autogene-
rated setEngine() method is called the engine type will always have turbo applied.

The drive method f is an extension method as well. In this method you automati-
cally set the gear to drive and then call the parent method. Doing so allows you to

Managing inheritance for config properties
One of the things we want you to recognize and remember is that the class system
will manage what’s known as “deep merging of config properties.” That is, the
extension class will inherit properties that are defined in the superclass. This is very
much like basic prototypal inheritance except it adds those automatically generated
setters and getters for you.

A unique class inheritance pattern
Internally Sencha Touch uses the config system for every class, and apply methods
are in a lot of the classes. For the Component base class apply methods are used
to do things like construct instances of classes via a factory method known as
Ext.Factory. The reason apply methods exist is to abstract the construction of
instances of classes from a setter method.

205Extending Sencha Touch components
easily call drive on instances of this extension class and it automatically sets the gear
for you.

Now that you have your PremiumCar configured using Ext.define you can see it in
action using the WebKit JavaScript console. You can do so using the same code you
used when exercising your manually created subclass:

var myFastCar = Ext.create('MyApp.car.PremiumCar');
myFastCar.drive();
console.log(myFastCar.getEngine());

Figure 10.4 shows what it looks like in the WebKit
JavaScript console.

 You’ve just successfully extended a class using
Ext.define. What we’ve shown you are just the
basics of using Ext.define, where you created a class
from scratch (MyApp.car.BaseCar) and extended it
(MyApp.car.PremiumCar).

 From here you can extend the MyApp.car.PremiumCar class and create a MyApp.car
.SportsCar class that adds features like drift()-ing and perhaps dragRace()-ing.

 What you’ve done thus far with prototypal inheritance with JavaScript and
Ext.define positions you to start exercising your newly found knowledge and start
extending Sencha Touch.

10.3 Extending Sencha Touch components
Extensions to the framework are developed to introduce additional functionality to
existing classes in the name of reusability. The concept of reusability drives the frame-
work, and when utilized properly it can enhance the development of your applications.

 Some developers create preconfigured classes, which are constructed mainly as
a means of reducing the amount of application-level code by stuffing configuration
parameters into the class definition itself. Having such extensions relieves the
application-level code from having to manage much of the configuration, requiring
only the simple instantiation of such classes. This design pattern is okay but should
only be used if you’re expecting to stamp out more than one instance of this class.
Otherwise it’s considered wasteful to define a class just as a home for a collection of
configuration parameters.

Overriding methods
Even though you’re not using it it’s good to discuss what an override is. An override
is a method in a subclass that shares the same name as another method in a super-
class but doesn’t chain method calls up to the superclass via this.callParent().
You override a method if you wish to completely discard the code that’s in the like-
named method in the base class. Therefore you don’t call this.callParent()within
the method and the upwards execution chain won’t occur.

Figure 10.4 The results of the
instantiation of the PremiumCar
class

206 CHAPTER 10 Class system foundations
 Other extensions embed behavioral logic inside the class itself or add features
such as utility methods. An example of this would be a Form panel that automatically
pops up a message box whenever a save operation failure occurs. We often create
extensions for applications for this very reason, where the widget contains limited
built-in behavioral logic. We say “limited” because with Sencha Touch 2.0 you now
have an MVC architecture for which you can abstract business logic to controllers. This
is something you’ll learn about in the next chapter.

 We’re going to develop an extension to Sencha Touch’s List widget and really
dive into some complex concepts such as configuring and controlling CSS3 animation
and callbacks.

 Instead of attempting to recreate the example code in the rest of this chapter, I’d
like you to follow along in the example code that you got from the zip file as you read
the listings here. The code for this section can be found in examples/chapter10 and
for clarity is located in the following files:

■ examples/chapter10/actionslist.html
■ examples/chapter10/actionlist.css
■ examples/chapter10/js/ActionList.js
■ examples/chapter10/js/ActionListItem.js
■ examples/chapter10/icons/icons.css

Let’s move on, shall we? This is going to be fun!

10.3.1 Thinking about what you’re building

Many phone and tablet applications use lists of some sort. Often to invoke an action
(such as delete or update) you tap on a list item, and another screen appears allowing
you to invoke that action. It turns out that there’s a better way to invoke actions, and it
all has to do with a swipe gesture on a list item. With a bit of work you can extend the
List and ListItem classes to allow you to inject this little bit of functionality, making
your applications much more intuitive and easier to use. To make the picture clearer
figure 10.5 illustrates your extension sliding the actions for a list item into view.

 As figure 10.5 depicts, swiping on a row will cause the row actions to appear via slide
animation. Tapping on any action icon that’s not the dismiss (X) icon will cause an event
to be fired by your custom list implementation, allowing your app do things like call
someone. Tapping on the dismiss icon will cause the action row to close. The action row
will also be dismissed if the user decides to scroll the list or selects or swipes another row.

 The Sencha Touch List widget renders instances of ListItem to display data from
the Store. This means that in order to achieve our goal we’ll need to extend ListItem
and List. Our extension to ListItem will be known as ActionListItem and will be
responsible for managing the horizontal swipe gesture. Our extension to List will
be named ActionList and will implement our ActionListItem and work with it to
manage things like disabling of the vertical scroll bar, since horizontal swipe and verti-
cal scroll gestures conflict somewhat.

207Extending Sencha Touch components
You’ll code this extension in four phases:

■ Create the CSS and discuss the action icons
■ Build the ActionListItem extension
■ Generate the ActionList extension
■ Implement your ActionList

Let’s begin coding, shall we?

10.3.2 Getting the CSS and icons out of the way

To get your extension to work you’ll have to generate some CSS to render the icons in
their proper place. To do this you’ll have to create a CSS style sheet.

 Create a CSS file and add the contents of the following listing to it. Don’t forget to
include your newly created file in your example page.

.flexbox {
 display : -webkit-box;
 height : 47px;
 background-color : rgb(205, 231, 194);
 -webkit-box-shadow : inset 0 5px 5px #888;
}

.list-icon {
 margin : -5px 5px 0;
 background-position : center center;
 background-repeat : no-repeat;
 width : 32px;
 height : 32px;

Listing 10.5 The CSS for the actions

Figure 10.5 Four frames demonstrating our first extension in action, where we flip-slide an action into
view for a list item via a swipe event and tap on an action to display the Message Box alert dialog

Orders icons in
horizontal rowb

Styles each iconc

208 CHAPTER 10 Class system foundations
 margin-top : 7px;
}

.target-dismiss {
 position : absolute;
 right : 10px;
}

.opaque-list-item {
 background-color : rgba(247, 247, 247, 1);
 z-index : 99;
 position : absolute;
 top : 0;
}

The CSS styling for listing 10.5 is relatively simple. It contains CSS styles for the con-
tainer for the icons B so that they’re arranged side to side using the WebKit horizon-
tal box layout. The listing also contains styles for all action icons c, allowing them to
be properly spaced from each other. We also set up the proper styles for the dismiss
icon d, ensuring that it’s flush to the right. The final style e will be used to prevent
the icons from displaying through the ListItem element, which is transparent by
default. So when it’s time to animate the ListItem element out of view we’ll apply this
CSS class to it, ensuring that we get the look that we’re trying to achieve.

 The last bit of styling we need to discuss before you can start writing JavaScript
revolves around icons. To render actions you need a set of icons. We found a free set
called Glyphicons (http://glyphicons.com/). The entire set contains 420 icons. To
complete this example, copy examples/chapter10/icons from this book’s examples
zip file that you downloaded and include the icons.css file. Otherwise you won’t see
actions, and that’s no good!

 With the styling and icon discussion out the way you can start carving out some
JavaScript.

10.3.3 Creating the ActionListItem class

Our custom ActionList extension requires some support for a class that we’ll call
ActionListItem. This class will be responsible for the horizontal gesture manage-
ment, animating of the visible row data, and rendering the actions in each row (hence
the “Item” suffix in the name), and will be responsible for most of the work.

 This class is nearly 200 lines long and is much too large to print and digest in one
fell swoop, so we’ll look at the first third in one shot, as shown in listing 10.6. This will
allow you to get a sense of the basic structure of the class. Afterwards we’ll fill in four
of the method stubs that I’ve outlined.

 It’s worth noting that this is a foundational class and we won’t be able to render
anything on screen until we implement our ActionList class in section 10.3.4.

 The full contents of the listings in this subsection can be found in js/ActionList-
Item.js. Later on when we define our ActionList extension we’ll require the Action-
ListItem with the class loader dependency injection system.

Styles last
(remove) icond

Makes the
ListItem opaquee

http://glyphicons.com/

209Extending Sencha Touch components
Ext.define('Ext.ux.ActionListItem', {
 extend : 'Ext.dataview.component.ListItem',
 xtype : 'actionlistitem',

 config : {
 actionsEl : null,

 actionsTpl : [
 '<div class="flexbox">',
 '<tpl for=".">',
 '<div class="list-action list-icon {.}" action="{.}">'
 '</div>',
 '</tpl>',
 '<span class="target-dismiss list-icon remove_2"' +
 'action="dismiss"> ',
 '</div>'
].join('')
 },

 applyActionsTpl : function(cfg) {},
 initialize : function() {},
 onElementTap: function(eventObj) {},
 onDrag : function(event) {},
 showActions : function(actions, moveToX) {},
 onDragEnd : function() {},
 hideActions : function() {},
 clearActionsEl : function() {}
});

We kick things off with listing 10.6 by defining our custom Ext.ux.ActionListItem
class B. For our class we must extend the Ext.dataview.component.ListItem class.
To make implementation in the ActionListItem easy we set up a custom XType.

 The config block contains three key items. The first is actionsEl, a null property
that we’re setting to allow us to have automatically generated getter and setter meth-
ods. We’ll use this to track the element that will contain the actions we’ll render with
the template defined as actionsTpl c.

actionsTpl initially is an HTML fragment that is converted to an instance of
XTemplate via the applier function named applyActionsTpl d. We use the applier
functions that are called automatically when the class is defined and when the setter
methods are called. Appliers in this context are treated as factories that return instances
of something.

 In this case, our applier is returning an instance of XTemplate for us. The reason
we are using an applier here is because at the time our class JavaScript file is parsed by
the browser, Ext.XTemplate is not available for instantiation. However, we know for a
fact that when our ActionListItem instances are created, XTemplate will be available
because it’s a core UI class that’s used by much of the framework.

 When we cover showActions I’ll show you how we’ll use the automatically instanti-
ated XTemplate instance to render actions and inject it into the DOM for our Action-
ListItem extension.

Listing 10.6 The ActionListItem extension with method stubs

Defines our classb

Configures the
actions Template

c

Creates the actions
Template instanced

210 CHAPTER 10 Class system foundations
 The rest of this listing contains stubbed-out methods. Table 10.1 provides a quick
rundown of what these methods will do.

Now that we have a basic understanding of what each method is responsible for, let’s
look at the contents of the initialize and onItemHorizontalDrag methods in the
next listing.

initialize : function() {
 var me = this,
 myElement = me.element;

Table 10.1 Stubbed-out methods of our custom ActionListItem class

Method Purpose

initialize This method will help bootstrap this class, hooking up necessary element-level
event listeners for the tap, drag and dragend events.

onElementTap Whenever the ActionListItem element is tapped this method is called. If
an action was tapped it will fire a custom event and pass necessary data like
the action name and the item’s data record.

onDrag This method is called when the component’s element drag event is fired. It’s
going to be responsible for doing some math to figure out if the drag is hori-
zontal in order to slide out the rendered data and reveal the actions under-
neath. It will also fire a custom horizontaldrag event that will be listened
to by the parent ActionList class. Given that a single ActionListItem
is not aware of any siblings, the parent ActionList will need to determine if
it’s OK for an ActionListItem to show its actions or not, since it’s aware of
all child ActionListItem instances.

showActions The parent ActionList extension will call this method when it’s absolutely
sure that an ActionListItem instance should reveal its actions under-
neath. This method will be responsible for configuring the CSS3 animation dur-
ing the drag event cycle.

onDragEnd After an ActionListItem has engaged in a horizontal drag gesture, the
onDrag method will set some class-level members, storing critical data to
finalize the gesture. If someone swipes the ActionListItem left or right
they are gesturing to show the actions for that row. Eventually they’ll stop drag-
ging the ActionListItem element that displays the row data, and we’ll
need to animate that element to allow the actions to become visible. This
method will also be responsible for some cleanup of class-level member
properties set by onDrag.

hideActions This method will be called by the parent ActionList and will animate the
data element back into position and, after the animation has completed, will
execute clearActionsEl.

clearActionsEl Here we’ll manage the destruction of the element that is displaying the actions.

Listing 10.7 The last four methods of our ActionListItem extension

Initializes
the classb

211Extending Sencha Touch components
 me.callParent();

 myElement.on({
 scope : me,
 tap : 'onElementTap'
 });

 myElement.on({
 scope : me,
 drag : 'onDrag',
 dragend : 'onDragEnd',
 delegate : '.x-list-item-inner'
 });
},

onElementTap : function(eventObj) {
 var me = this,
 action = eventObj.target.getAttribute('action');

 if (action) {
 if (action != 'dismiss') {
 me.fireEvent('actiontap', me, action, me.getRecord());
 }
 me.hideActions();
 }

 if (me.getActionsEl()) {
 eventObj.stopEvent();
 }
},

The initialize method B is responsible for bootstrapping the ActionListItem
instance. After setting some variable references we chain the superclass initialize
method via the execution of this.callParent. We call the parent initialize method
so soon in order to allow the parent’s initialize method to do whatever work it
needs to do right away. After the parent initialize method execution, we register
event handlers on the ActionListItem instance’s element c. The first event handler
is a generic tap handler, which will call our onElementTap method. The next two
events are responsible for the dragging of the list item data-representation element,
hence the delegate CSS selector property.

onElementTap d is responsible for firing an actiontap event handler if an action
was tapped. It knows this because we’ve set an action parameter directly on the ele-
ment via the actionsTpl as defined in listing 10.6. If an action was tapped we fire the
custom event and call hideActions to animate the data-representing element over
the actions. This element stops the element tap event from bubbling up if we’re dis-
playing the actions to prevent the List view from attempting to select that row.

 Next we’ll look at the onDrag method, which is shown in the following listing.

onDrag : function(event) {
 var me = this,
 currX = event.getXY()[0],

Listing 10.8 The onDrag method

Registers event
listeners for
the elementc

Handles the element
tap event

d

212 CHAPTER 10 Class system foundations
 prevX = me.prevX || currX,
 deltaX = currX - prevX,
 initX = me.initialDragX,
 moveToX;

 me.prevX = currX;

 // Horizontal Dragging
 if (Math.abs(deltaX) >= 5) {
 me.isDraggingHorizontal = true;

 if (! initX) {
 me.initialDragX = currX;
 }

 if (currX < initX) {
 me.dragDirection = 'left';
 moveToX = currX - initX;
 }
 else if (currX > initX) {
 me.dragDirection = 'right';
 moveToX = Math.abs(currX - initX);
 }
 me.fireEvent('horizontaldrag', me, moveToX);

 }
},

Recall that onDrag is going to be executed when the drag event is fired from the
ActionListItem’s element. The drag event will be fired for an ActionListItem
instance while the user is scrolling, so it’s essential to figure out whether or not the
user is doing vertical dragging (scrolling the data) or horizontal, which indicates that
the user wants to reveal the actions underneath.

 This method might seem quite complex at first glance, but it’s actually very simple.
If the drag event fires and we’re tracking a gesture (think of the prevX property), we
need to figure out if it’s a horizontal swipe gesture. The drag event needs to fire at
least twice in order for the gesture tracking to work, which is why we cache some local
instance properties. We’re not using the config system here because we want to be as
fast as possible, and using the auto-generated getter and setter methods could slow
things down as they would add unnecessary call stack overhead.

 If the gesture is horizontal and the delta is at least greater than or equal to five
pixels, we do some calculations to figure out the direction of the gesture and fire a
custom horizontaldrag event, passing in the ActionListItem instance and X coor-
dinate to move to. This horizontaldrag event will be listened to by the ActionList
class to halt vertical scrolling and hide scroll bars if they are present, as well as exe-
cute the ActionListItem instance’s showActions method, thereby completing the
animation sequence.

 Before we move on, it’s important to note the dragDirection property being set
on the instance of the ActionListItem via this method. The dragDirection property
is set by this method to acknowledge that a horizontal drag event was detected and in
which direction. This dragDirection property will be used by onDragEnd to figure

213Extending Sencha Touch components
out in which direction to complete the slide-out animation of the element represent-
ing the data in the model.

 In the next listing we’ll cover the showActions method.

showActions : function(actions, moveToX) {
 var me = this,
 itemDockBody = me.element.down('.x-dock-body'),
 itemTextElCt = itemDockBody.down('.x-list-item-inner'),
 itemTextElCtStyle = itemTextElCt.dom.style,
 itemActionsEl = me.getActionsEl(),
 actionsTpl = me.getActionsTpl();

 itemTextElCt.addCls('opaque-list-item');

 if (! itemActionsEl) {
 itemActionsEl = actionsTpl.append(itemDockBody, actions);
 itemActionsEl = Ext.get(itemActionsEl);
 me.setActionsEl(itemActionsEl);

 itemTextElCtStyle.webkitTransitionTimingFunction = 'ease-out';
 itemTextElCtStyle.webkitTransitionProperty = 'translate3d';
 itemTextElCtStyle.webkitTransitionDuration = '.05s';
 }

 itemActionsEl.setWidth(itemTextElCt.getWidth());

 itemTextElCtStyle.webkitTransform = 'translate3d(' + moveToX
 + 'px, 0, 0)';
},

showActions is going to be executed by the parent List class in response to the
ListItem’s horizontaldrag event. At this point, you may wonder why we didn’t call
showActions from onDrag. The answer is that our application will be interfacing
with ActionList, not the ActionList child ActionListItem instances. Therefore,
we’ll configure the ActionList with the actions to be rendered on the Action-
ListItem instances, and the perfect time to make the ActionListItem instances
aware of the actions to be displayed is at the time when the ActionListItem needs
to display them.

 This showActions method has two main responsibilities: injecting the DOM for the
action icons and animating the data element left or right based on the moveToX
parameter passed. It accomplishes these tasks by first setting the appropriate variable
references and then adding the ‘opaque-list-item’ CSS class to the element that ren-
ders the data from our model instances. The purpose of this is to ensure that when we
do inject the DOM for the actions, the icons do not bleed through the text, causing
some really ugly effects.

 After the class is applied to the appropriate element, we use the actions XTemplate
instance, which was constructed in our applyActionsTpl applier method (listing 10.6),
to merge the array of actions—passed as the first argument from our ActionsList
instance with the template—and inject it in the ActionListItem DOM. The DOM

Listing 10.9 The showActions method

214 CHAPTER 10 Class system foundations
fragment is injected as a sibling to the element that wraps the DOM representing the
data in our model instances. Figure 10.6 shows what the injected DOM looks like
inside of the ActionListItem instance.

 The last bit of work this method accomplishes is the setting of the appropriate
CSS3 transition properties to allow the data element to slide left or right based on the
moveToX parameter.

 The next method we’ll cover is onDragEnd (shown in the next listing), which is
responsible for the end-cycle of the drag event loop.

onDragEnd : function() {
 if (! this.dragDirection) {
 return;
 }

 var me = this,
 itemDockBody = me.element.down('.x-dock-body'),
 dockBodyWidth = itemDockBody.getWidth(),
 itemTextElCt = itemDockBody.down('.x-list-item-inner'),
 itemTextElCtDom = itemTextElCt.dom,
 itemTextElStyle = itemTextElCtDom.style,
 moveToX = dockBodyWidth;

 if (me.isDraggingHorizontal) {
 me.fireEvent('horizontaldragend', me);
 }

 if (me.dragDirection === 'left') {
 moveToX *= -1;
 }

 itemTextElStyle.webkitTransitionDuration = '.20s';
 itemTextElStyle.webkitTransform = 'translate3d('
 + moveToX + 'px, 0, 0)';

Listing 10.10 The onDragEnd method

Figure 10.6 The DOM for our ActionListItem class

215Extending Sencha Touch components
 delete me.prevX;
 delete me.prevY;
 delete me.isDraggingHorizontal;
 delete me.initialDragX;
 delete me.dragDirection;
},

onDragEnd is charged with managing the end of the drag event loop and its sole
responsibility is to complete the animation of the element that represents the data
from the ActionListItem model. It seems complex at first glance, but it’s rather sim-
ple. The first thing we do is check to see if this.dragDirection is set on the instance
of ActionListItem. If it’s not, we simply abort the execution of this method. Recall
that drag events occur for ActionListItem for both the scrolling of the data and the
horizontal gesture we’re trying to implement. dragDirection is set by the onDrag
method but only if a horizontal drag gesture is present. As you may already see, the
dragDirection property is essential for figuring out how to set up the remaining CSS3
slide-out animation.

 After the initial if-condition, we set up a bunch of lexically scoped references to ele-
ments in the DOM that represent the ActionListItem as well as the dimensions of the
element known as the “dock body.” We need these so that we can finish off the slide-
out animation of the data-representing element, which is done by adding the webkit-
TransitionDuration and webkitTransform properties directly on the data-representing
element’s CSS object.

 The final bit of work that’s accomplished is removal of members that were used to
track the drag gesture, set by the onDrag method (listing 10.9), via the JavaScript
delete keyword operator.

 This wraps up the bit of code that’s responsible for revealing the actions. The next
step is to worry about hiding the actions. This is where we’ll end the ActionListItem
class, looking at the hideActions and clearActionsEl methods in the next listing.

hideActions : function() {
 if (! this.getActionsEl()) {
 return;
 }

 var me = this,
 itemDockBody = me.element.down('.x-dock-body'),
 itemTextElCt = itemDockBody.down('.x-list-item-inner'),
 itemTextElCtDom = itemTextElCt.dom,
 itemTextElCtStyle = itemTextElCtDom.style,
 transitionListener = function() {

 itemTextElCtDom.removeEventListener(
 'webkitTransitionEnd',
 transitionListener
);
 itemTextElCtStyle.webkitTransitionDuration = '0s';

Listing 10.11 The hideActions and clearActionsEl methods

216 CHAPTER 10 Class system foundations
 itemTextElCt.removeCls('opaque-list-item');
 me.clearActionsEl();
 };

 itemTextElCtDom.addEventListener(
 'webkitTransitionEnd',
 transitionListener
);

 itemTextElCtStyle.webkitTransform = 'translate3d(0,0,0)';
},

clearActionsEl : function() {
 Ext.destroy(this.getActionsEl());
 this.setActionsEl(null) ;
}

Finally, we land on the hideActions. This method is simply responsible for animating
the first card back into view, hiding the actions that we rendered and displayed via the
showActions method. It does this by means of setting up references, very much like
onDragEnd did, with the addition of a transition callback function, known here as
transitionListener.

 We create the transition callback in this way because we want to be able to perform
some post-animation cleanup, such as deregistering the listener after the animation is
done, as well as a few other things like removing the ‘opaque-list-item’ class from
the data-representing element. It’s important to note that clearActionsEl is called
from this callback handler.

 After the references are set, we apply the webkitTransitionEnd listener via the
typical DOM addEventListener method, and then tell the data-representing element
to translate back to its home position via the setting of the CSS style object’s webkit-
Transform property.

clearActionsEl is responsible for the destruction of the element that renders the
actions, as well as setting the local actions member to null via a call to this.setActions.
We do this so we can perform immediate cleanup of the DOM and release resources.

 This wraps up the ActionListItem foundational class. In order to see it working
we need to write ActionList, which will implement ActionListItem.

10.3.4 Creating the ActionList class
We’ve just defined a major dependency, ActionListItem. As you’ll soon see, defining
the ActionList is going to be rather easy, since ActionListItem does the bulk of the
work to make this extension work.

 The role of ActionList is not only to implement instances of ActionListItem but
to perform tasks like managing the enabling and disabling of the scroll when the hor-
izontal drag is occurring on an ActionListItem, as well as propagating the actiontap
event from the ActionListItem instances.

 This class is 86 lines, which is much too long to fit on one page, so we’ll break it up
much like we did with the ActionListItem class that we just covered. The following
file will be created as js/ActionList.js.

217Extending Sencha Touch components
Ext.define('Ext.ux.ActionList', {
 extend : 'Ext.dataview.List',
 xtype : 'actionlist',

 requires : ['Ext.ux.ActionListItem'],

 config : {
 defaultType : 'actionlistitem',
 actions : null,
 currentActionsItem : null,

 control : {
 'container > actionlistitem' : {
 actiontap : 'onActionItemTap',

 // Custom events fired by ActionListItem
 horizontaldrag : 'onItemHorizontalDrag',
 horizontaldragend : 'onItemHorizontalDragEnd'
 }
 }
 },

 initialize : function() {
 var me = this;
 me.callParent();

 me.getScrollable().getScroller().on({
 scope : me,
 scroll : 'onScrollClearActionsEl'
 });

 me.on({
 scope : me,
 select : 'onItemSelectClearActionsEl'
 });
 },

 onItemHorizontalDrag : function(item, moveToX) {},
 onItemHorizontalDragEnd : function() {},
 onScrollClearActionsEl : function() {},
 onItemSelectClearActionsEl : function() {},
 onActionItemTap : function(listItem, action, record) {}
});

The listing above contains quite a bit in a very small package. It begins with the defini-
tion of our custom Ext.ux.ActionList class B, which extends Ext.dataview.List.
We set the XType to ‘actionlist’ and we’ll use it for lazy instantiation in just a little bit.

 We inject the ActionListItem dependency by setting it in the requires array c.
This ensures that the ActionListItem class is loaded and stays defined in the
namespace before we get a chance to instantiate it.

 Focusing on the config object d, we find that we set our extension’s defaultType
property to the value of ‘actionlistitem.’ Recall that this is the XType of our Action-
ListItem class and defaultType is a Container-specific config option. This config

Listing 10.12 The ActionList class

Defines
ActionListb

Requires
ActionListItemc

Implements
ActionListItemd

Registers event
handlers on
ActionListIteme

Initializes
ActionListf

218 CHAPTER 10 Class system foundations
object contains two null values. The first is actions, which we’ll use for implementa-
tion of this class. As we’ll see later on, this will be passed an array of strings. The sec-
ond is currentActionsItem, which will be used to track the current ActionListItem
instance displaying its actions.

 The last bit to focus on for the config object is the control construct e. Here we’re
instructing our class to listen to the actiontap, horizontaldrag, and horiztonal-
dragend events of any ActionListItem instance present as a child of our List. When-
ever any of those events are fired, their respective event listener method will be called
within the scope of our custom ActionList instance. We’ll look deeper into these
methods later on.

 The initialize method f contains a few key things, such as the registration of
listeners on the Scroller instance, as well as the actual ActionList component
instance. We listen for the scroll event on the Scroller instance so we can attempt to
clear any visible actions when the user scrolls the list vertically. We listen to the select
event of this ActionList instance so that we can do the same if someone selects an
item while another item may be displaying its actions.

 The rest of the methods for this ActionList class are relatively simple and we’ll
look at them in the next listing. This listing is somewhat lengthy, but I’ve formatted it
so it’s a really easy read.

onItemHorizontalDrag : function(item, moveToX) {
 var me = this,
 scrollable = me.getScrollable(),
 scroller = scrollable.getScroller(),
 currActions = me.getCurrentActionsItem();

 scroller.setDisabled(true);
 scrollable.hideIndicators();

 item.showActions(this.getActions(), moveToX);

 if (currActions != item) {
 me.onScrollClearActionsEl();
 }
 me.deselectAll();
 me.setCurrentActionsItem(item);
},

onItemHorizontalDragEnd : function() {
 var scrollable = this.getScrollable(),
 scroller = scrollable.getScroller();

 scroller.setDisabled(false);
},

onScrollClearActionsEl : function() {
 var me = this,
 actionItem = me.getCurrentActionsItem();

 if (actionItem) {
 actionItem.hideActions();

Listing 10.13 The last five methods for the ActionList class

Manages the
horizontaldrag
eventb

Handles the
horizontaldragend
event

c

Clears the
actions when
scroll occurs

d

219Extending Sencha Touch components
 me.setCurrentActionsItem(null);
 }
},

onItemSelectClearActionsEl : function() {
 this.onScrollClearActionsEl();
},

onActionItemTap : function(listItem, action, record) {
 var me = this;

 me.setCurrentActionsItem(null);
 me.deselectAll();

 me.fireEvent('actiontap', me, listItem, action, record);
}

onItemHoriztonalDrag B will be executed whenever an ActionListItem instance
fires its horizontaldrag event and will mainly be responsible for disabling the scroller
and hiding its UI, as well as hiding any visible actions and clearing any selected items.

 When an ActionListItem ends its horizontal gesture cycle, it fires a horiztonal-
dragend event. onItemHorizontalDragend c is called from that event and is in
charge of re-enabling the scroller for the list.

onScrollClearActionsEl d is called whenever the user makes a scroll gesture
and is responsible for hiding any visible actions. Similarly, whenever a user selects an
item in the list, onItemSelectClearActionsEl e is called to hide any visible actions.

 Lastly, when a set of actions is visible, if a user taps on an action, the ActionList-
Item fires an event. When that event is fired, onActionTap f is executed and fires an
event passing along the data for the tapped ActionListitem.

 This puppy is now complete and ready to be implemented. This is where we’ll get
to see two extensions work together with custom CSS!

Ext.Loader.setConfig({
 paths : {
 'Ext.ux' : 'js/'
 }
});

Ext.require([
 'Ext.MessageBox',
 'Ext.data.Store',
 'Ext.ux.ActionList'
]);

Ext.define('ListModel', {
 extend : 'Ext.data.Model',
 config : {
 fields : [
 'firstName',
 'lastName'
]

Listing 10.14 Implementing our ActionList class

Hides the
actions when an
item is selected

e

Clears the
actions when an
item is tappedf

220 CHAPTER 10 Class system foundations
 }
});

Ext.application({
 launch : function() {

 Ext.create('Ext.ux.ActionList', {
 fullscreen : true,
 itemTpl : '{lastName}, {firstName}',
 items : {
 xtype : 'toolbar',
 docked : 'top',
 title : 'ActionList extension!'
 },
 store : {
 model : 'ListModel',
 autoLoad : true,
 proxy : {
 type : 'ajax',
 url : 'complexData.json'
 }
 },
 actions : [
 'phone',
 'thumbs_up',
 'thumbs_down'
],
 listeners : {
 actiontap : function(list, listItem, action, record) {
 var msg = record.data.firstName
 + ' ' + record.data.lastName;

 Ext.Msg.alert(
 'You tapped ' + action,
 msg
)
 }
 }
 });
 }
});

In implementing our custom ActionList class B we can configure an array of strings,
known as actions c, that represent action icons to be rendered. To get feedback that
an action was tapped we simply set up a listener for the custom actiontap event d.
That displays a MessageBox alert dialog showing which record was tapped.

 Figure 10.7 shows what it looks like on a phone.
 We just saw the power of creating custom extensions with Sencha Touch. With

some work we were able to extend two classes to give our applications a capability
that’s found in many native applications.

 The key to making custom extensions like this lies in reading the Sencha Touch
documentation and source code. When I first developed this extension I had to

Creates
instance of
ActionList

b

Configures
custom
action icons

c

Listens for
the actiontap

event d

221Creating a Sencha Touch plug-in
read through the Ext.dataview.List source, which led me to look through how it
works and uses the ListItem class. From there, I stepped through the code and
inspected the DOM. With some experimentation I was able to publish this extension.

 So, the lesson is, don’t ever be afraid to look at the source code. Even if you don’t
get it at first glance, you’ll learn something along the way and will be able to create
some pretty awesome UI goodness.

 You have your extension out of the way and now you can move on to the last thing
you’ll do in this chapter: creating a plug-in.

10.4 Creating a Sencha Touch plug-in
You’re going to create a plug-in that will allow form fieldsets to be collapsible via a tap
of the associated fieldset title. Before you dive into creating plug-ins let’s have a quick
chat about how plug-ins work.

10.4.1 The anatomy of a plug-in

The basic anatomy of a plug-in is simple: it starts out by defining your class. If you want
to extend an existing Sencha Touch class, it’s okay to do so. For your plug-in you’ll
extend Component, because you’ll need to inject DOM into your list:

Component life cycle refresh
In case you don’t remember when exactly plug-ins are created and initialized, now
would be an excellent time to brush up on the initialization phase of the component
life cycle, which we covered in chapter 3.

Figure 10.7 Four frames demonstrating our first extension in action, in which we flip-slide an action
into view for a List item via a swipe event and tap on an action to display the MessageBox alert dialog

222 CHAPTER 10 Class system foundations
Ext.define('MyApp.plugins.MyPlugin', {
 extend : 'Ext.Component,
 alias : 'plugin.myplugin',
 // class related stuff
});

The previous snippet demonstrates the basics of creating a plug-in using Ext.define,
in which you set up alias as 'plugins.myplugin'. You prefix your plug-in alias with
'plugins' to allow the Sencha Touch class management system to route the registra-
tion of this class with PluginManager, which will be responsible for creating instances
of your classes via lazy objects. These are much like XTypes, but they’re known as plug-
in types in this case.

 Here’s an example of how you’d use a lazy object to configure this plug-in in a
generic Component instance:

Ext.create('Ext.Component', {
 plugins : [
 {
 type : 'myplugin'
 }
]
});

In this code you create an instance of Ext.Component and set its plugins property to
an array with a single object. The single object has a type property set as 'myplugin'.
When the component nears the end of its initialization phase it’ll create an instance
of your custom plug-in via this type shortcut.

 This pattern is considered the best practice by many in the industry, and it uses the
Sencha Touch lazy instantiation mechanism. There’s an alternative pattern that uses
the fully qualified class name, and it looks like this:

Ext.create('Ext.Component', {
 plugins : [
 {
 xclass : 'MyApp.plugin.MyPlugin'
 }
]
});

The difference between the two patterns is that the first one (using type) requires the
class itself to be defined in memory. If you used the xclass pattern and that class isn’t
in memory, Sencha Touch will require it on demand via the loader system, which
could cause a performance blip in your app while the network request is going on for
the required resource. The best way to avoid this is to define your plug-ins as required
classes in your application. In case you’re wondering, we’ll cover dependency injec-
tion in relationship to applications in chapter 11.

 The theory of plug-ins is rather simple, but in order to fully understand how this
stuff works you’ll have to put it into practice.

223Creating a Sencha Touch plug-in
10.4.2 Developing your plug-in
The plug-in allows users to expand and collapse fieldsets by tapping the fieldset title.
Figure 10.8 shows what the plug-in looks like rendered on screen. The collapse of the
fieldset is animated, adding a bit of flare to the plug-in.

 You’ll call this plug-in FieldsetCollapser, and you’ll have to create js/Filedset-
Collapser.js in your project. The class is much too large for print so we’ll present it in
three phases. We’ll begin by looking at the base class structure and an applier method.
Then, we’ll look at the largest method, init, followed by the last three methods for
the class. The next listing shows the base class structure.

Ext.define('Ext.ux.FieldsetCollapser', {
 extend : 'Ext.Component',
 alias : 'plugin.fieldsetcollapser',

 config : {
 collapsed : false,
 body : null,
 indicatorEl : null,
 initialCollapse : false,
 bodyHeight : null
 },

 applyCollapsed : function(collapsed) {
 var me = this;

Listing 10.15 Base structure for the FieldsetCollapser plug-in

Figure 10.8 Your plug-in lets you collapse a fieldset by tapping its title.

Defines FieldsetCollapserb

Sets plug-in
aliasc

Defines
config objectd

Adds applier
method

e

224 CHAPTER 10 Class system foundations
 if (collapsed && ! me.getBody()) {
 me.setInitialCollapse(collapsed);
 }
 else if (me.getBody()) {
 me.doCollapse(collapsed);
 }

 return collapsed;
 },

 init : function(parent) {},

 onTitleTap : function() {},

 doCollapse : function(collapsed) {},

 updateIndicator : function(val) {}
});

The base definition for the FieldsetCollapser class B in listing 10.15 is rather busy. To
provide lazy instantiation you have to set the alias as 'plugin.fieldsetcollapser' c.
You’re extending Ext.Component because it provides the necessary config object inte-
gration that we’ve come to love.

 The config object d contains a lot of custom properties. To learn how they’re
used see table 10.2.

applyCollapsed e is an applier method for the collapsed config object. You use the
applier pattern for a few reasons:

Table 10.2 The plug-in config object properties

Property Purpose

collapsed This property is used as a configuration option. Implementations of this plug-in
can be set with the value as Boolean true or false. A true value will
ensure that the fieldset is rendered collapsed. This method has a special
applier method that we’ll cover.

body This is a private member used to cache the reference to the fieldset’s body
element.

indicatorEl Use this to store a reference to the element that indicates whether the fieldset
is collapsed or expanded. You’ll render a plus sign (+) to show that it can be
expanded and a minus sign (-) to show that it can be collapsed.

initialCollapse This property is used internally to specify whether you want to collapse the
fieldset as soon as it’s rendered. Because of the timing of how things get
painted in the DOM, you have to work a bit to keep track of certain steps in the
rendering process.

bodyHeight Because you’ll be collapsing and expanding the fieldset body element you’ll
need to keep a copy of the original height so that when the fieldset is collapsed
you can expand it.

225Creating a Sencha Touch plug-in
1 You want to allow for the use of the automatically generated setCollapsed
instance method. As you’ll see in the init method you’ll bind a setCollapsed
method plug-in’s parent (Fieldset).

2 You want to allow the fieldset to render collapsed initially. This means that
when the plug-in is implemented, "collapsed : true" is passed. If you didn’t
have an applier function you wouldn’t have an opportunity to collapse the field-
set after it’s rendered.

The applier function takes care of these issues by checking to see if collapsed is true
and whether the fieldset body element exists. If collapsed is true and the fieldset
body doesn’t exist, then you must cache the collapsed value via the automatically
generated setInitialCollapse method. If collapsed is false and the body element
is present, then you call upon doCollapse, invoking the animation of the fieldset’s
body element height change.

 Next we’ll look at the rather large init method for your plug-in, as shown in the
next listing.

init : function(parent) {
 var me = this,
 title = parent.down('title'),
 body = parent.element.down('.x-dock-body'),
 titleEl = title.element,
 bodyStyle = body.dom.style,
 indicatorEl,
 bodyHeight;

 setTimeout(function() {
 bodyHeight = body.getHeight();
 me.setBodyHeight(bodyHeight);

 if (me.getInitialCollapse()) {
 bodyStyle.height = 0;
 me.updateIndicator('+');
 }
 else {
 bodyStyle.height = bodyHeight + 'px';
 }

 }, 1);

 titleEl.on({
 scope : me,
 tap : 'onTitleTap'
 });

 indicatorEl = Ext.Element.create({
 style : "font-weight: bold; float: left; width: 16px;"
 });

 indicatorEl.setHtml('-');

Listing 10.16 The init method for the FieldsetCollapser plug-in

Defers height
calculation

b

Collapses body
elementc

Registers tap
event

d

Creates
new
element

e

Sets initial
state

f

226 CHAPTER 10 Class system foundations
 titleEl.down('.x-innerhtml').insertFirst(indicatorEl);

 me.setIndicatorEl(indicatorEl);
 me.setBody(body);

 body.setStyle({
 '-webkit-transition-property' : 'height',
 '-webkit-transition-duration' : '.5s'
 });

 parent.setCollapsed = Ext.Function.bind(me.setCollapsed, me);
},

In listing 10.16 the init method does quite a bit for this plug-in and has some of the
most advanced use of Sencha Touch that you’ve seen in this book. After creating a
number of local references you have a function that’s executed after 1 ms via a set-
Timeout B method. Inside setTimeout, you get the current calculated height of the
fieldset body element. You cache it via the autogenerated setBodyHeight method and
then test to see if your plug-in was configured initially with collapsed set to true c
(remember applyCollapsed). If that value is set to true you immediately set the
height of the fieldset body element to 0, forcing it to collapse immediately. You update
the indicator to show that the fieldset can be expanded. If the plug-in isn’t initialized
with collapse set to true, then set the fieldset body element’s style.height attribute
to the calculated height. You do so because animations don’t work well when the
height isn’t explicitly set (it’s set to auto by default). So in order to prevent a glitch in
the animation you must perform this step.

After the setTimeout function you register a tap event listener (onTitleTap) for the
fieldset title element d. You’ll learn about that method in the next listing.

 Next you create an element for the collapse status e, set its initial HTML to '-' f,
and then inject it into the fieldset title element’s DOM g structure. After the injec-
tion you cache references to the indicator and the fieldset body element.

 The final bit of work that this method performs is to set some necessary CSS3
transition styling on the fieldset body element. These properties will instruct the ele-
ment to animate the height of the element when it’s changed and complete the ani-
mation within half a second. You also bind a setCollapsed API method to the
Fieldset instance, allowing implementation code to collapse/expand a fieldset via
a simple method call on the fieldset itself without having to dig for a reference to
the plug-in instance.

Why use setTimeout?
The reason you use the setTimeout function is that at the time the init method is
called the fieldset’s body element hasn’t been injected into the DOM, preventing you
from getting the proper height or even setting it. The deferred execution allows the
DOM to be painted, and this logic to be executed soon thereafter, ensuring that you
can do everything you need to do.

Injects
indicatorg

227Creating a Sencha Touch plug-in
 That does it for the init method. The last three methods, shown in the next list-
ing, are small potatoes compared to the monstrous init method.

onTitleTap : function() {
 this.setCollapsed(! this.getCollapsed());
},

doCollapse : function(collapsed) {
 var me = this,
 body = me.getBody(),
 bodyStyle = body.dom.style,
 origHeight = me.getBodyHeight(),
 indicator = '-',
 height = 0;

 if (collapsed) {
 indicator = '+';
 }
 else {
 height = origHeight + 'px';
 }

 bodyStyle.height = height;
 me.updateIndicator(indicator);
},

updateIndicator : function(val) {
 this.getIndicatorEl().setHtml(val);
}

As listing 10.17 shows, the last three methods are responsible for some core features
but their methods are rather simple. onTitleTap B is called when the fieldset title
element is tapped, and it’ll call this.setCollapsed(), passing in the negated result of
this.getCollapsed(). The autogenerated setCollapsed method will call the apply-
Collapsed applier method. The applier method will call doCollapse to collapse or
expand the fieldset body element.

doCollapse will collapse or expand the body tag c based on whether the passed
collapsed argument is true or false. It also updates the indicator element text
accordingly via a call to updateIndicator d.

 Look at that! You’re done with sculpting the plug-in. It’s time to work on the
implementation to wrap up this chapter. The next listing may look lengthy but it’s
rather simple. Most of this stuff you’ve seen before.

Ext.Loader.setConfig({
 paths : {
 'Ext.ux' : 'js/'
 }
});

Listing 10.17 The final three methods for the FieldsetCollapser plug-in

Listing 10.18 Implementing your FieldsetCollapser plug-in

Toggles collapse/
expandb

Collapses,
expands body
element

c

Updates indicator
element

d

228 CHAPTER 10 Class system foundations
Ext.require([
 'Ext.MessageBox',
 'Ext.form.Panel',
 'Ext.ux.FieldsetCollapser'
]);

Ext.Viewport.add({
 xtype : 'toolbar',
 docked : 'top',
 title : 'Collapsible Fieldsets'
});

Ext.Viewport.add({
 xtype : 'formpanel',
 items : [
 {
 xtype : 'fieldset',
 defaultType : 'textfield',
 title : 'Name info',
 plugins : {
 type : 'fieldsetcollapser'
 },
 items : [
 {
 label : 'First'
 },
 // more fields here
]
 },
 {
 xtype : 'fieldset',
 defaultType : 'textfield',
 title : 'Address info',
 plugins : {
 type : 'fieldsetcollapser',
 collapsed : true
 },
 items : [
 {
 label : 'Address'
 },
 // more fields here
]
 }
]
});

The implementation for the plug-in is rather simple. You first ensure that the plug-in
is required into the namespace B. Then you create the first fieldset for the Form
panel configuration. There you set plug-ins to a simple lazy-instantiation object whose
type property is set to the same 'fieldsetcollapser' c, your plug-in alias. There’s a
second fieldset that you configure. It also has an instance of our FieldsetCollapser
plug-in d, but it’s configured to be collapsed initially by default.

Requires
plug-inb

Expands plug-in
by defaultc

Configures
plug-in in
collapsed stated

229Summary
Figure 10.9 shows that your plug-in works as you expect, with the second fieldset col-
lapsed initially.

 You just saw that with a little bit of work, you can create a plug-in to inject function-
ality into a standard Sencha Touch component. The truth is that in order to create
this plug-in we had to inspect the DOM and figure out how the fieldset was rendered.
After this discovery we had to generate the plug-in to modify the fieldset’s underlying
HTML to allow it to be expandable or collapsible.

 This concludes the exploration of plug-ins. You now have the basic knowledge to
create plug-ins that can enhance functionality in your projects. If you have an idea for
a plug-in and aren’t sure if it’s been done before, visit us at the Sencha Touch forums
(http://sencha.com/forum). An entire section is dedicated to user extensions and
plug-ins, where fellow community members have posted their work, some of which is
completely free to use.

 Sencha has a nice collection of user extensions that you can download at its own
marketplace. You can visit it at http://market.sencha.com.

 You now understand the mechanics of developing an extension to the framework
and constructing a plug-in to meet real-world requirements.

10.5 Summary
In this chapter you learned how to implement the prototypal inheritance model using
the basic JavaScript tools. You saw how this inheritance model is constructed step by

Figure 10.9 Your plug-in in action

http://sencha.com/forum
http://market.sencha.com

230 CHAPTER 10 Class system foundations
step. Using that foundational knowledge you refactored classes using the Ext.define
class definition method.

 Next you took that foundational knowledge and applied it to the extension of a
List. You were able to inject custom functionality to slide in custom DOM that was
injected by your extensions. You also took the opportunity to fire custom events based
on the configuration that was passed to your ActionList extension.

 Finally you created a plug-in that allowed you to collapse and expand fieldsets via
a tap of the title element. While doing this you learned how to inject custom DOM
and CSS attributes to make the animation of the expansion or collapse of the field-
set a snap.

 In the next chapter we’re going to look at how you work with the SDK tools to
develop an application for deployment. Afterward, we’ll look at creating a simple
application that will work for phones and tablets via Sencha Touch profiles.

Building Sencha Touch
applications
Until now, you’ve focused on pieces of Sencha Touch, learning how they work and
how to use them properly. In this chapter we’re going to show you design patterns
that’ll help you develop your applications from start to finish. It’s impossible for us
to cover every facet of application development, so we’ll center on many of the key
things that you’ll need to know.

 This chapter is structured differently than what you’re used to. The workflow
is tutorial-like, and you’ll progressively build on things you’ve learned. We real-
ize that you might be in a hurry to develop your applications and that you might
need a simple answer to a question such as “How do I bind controllers to custom
view events?” But be aware that not reading this chapter as it was written may
lead to confusion, because we’ll reference prior material as we progress through
the chapter.

This chapter covers
■ Exploring the app development cycle
■ Using Sencha Cmd
■ Deploying an example app
■ Using Sencha Microloader
231

232 CHAPTER 11 Building Sencha Touch applications
 You’ll start by looking at a process that governs how applications are typically devel-
oped. From there you’ll explore Sencha Cmd and use it to generate your application
template project. We’ll walk you through many basic concepts and show you how to
use device profiles to create a single application that can service phones and tablets.
You’ll also learn how to fire custom events from your views and listen to them via
Touch controllers.

 After you’ve developed your application you’ll use Sencha Cmd to create testing
and production builds. There will be a lot of discussion of the Sencha Touch Micro-
loader, and you’ll learn how it plays a key role in every phase of application develop-
ment and deployment.

 This is the most intense, yet rewarding, chapter of this book. Let’s go and have
some fun!

11.1 The Sencha 30,000-foot view
Since MVC was introduced applications developed with Sencha Touch have to follow
specific design patterns both in the JavaScript space and inside the filesystem. There’s
also a general process that you must follow to ensure a smooth development cycle with
minimal tripping over your own feet.

 If you’re a seasoned developer you probably know all of this stuff, but if you’re rel-
atively new to application development and deployment design patterns understand-
ing this workflow is crucial to the success of any project.

11.2 Typical application development workflow
The application development process is detailed in the (relatively) simple workflow
shown in figure 11.1. We’ll walk you through it quickly.

 We made the development workflow diagram simple enough for just about any
developer to digest. It illustrates a generic workflow loop that you’ll go through when
developing applications with any product. Table 11.1 breaks it all down.

Generate
App

Generate &
deploy

production
build

YES

NO

YES

Develop
stuff

OK to go
prod?

Bugs or
nits?

Beer
time!

OK to
build
test?

YES

NO

NO

Generate
testing &

verify build1 2 3 4

567

8
Figure 11.1 A generic
application workflow diagram

233Typical application development workflow
The development workflow in table 11.1 works very well for most cases and we suggest
you use it for future projects. You need discipline to be able to follow it, which is some-
thing that the greatest developers have, no matter what the programming language
or technology.

 As we move forward through this chapter we’ll walk you through the major
development steps, beginning with a quick look at the toolset to kick things off:
Sencha Cmd.

Table 11.1 The application development cycle

Step Process explanation

1 You begin with the generation of the application. As you’ll learn later in this chapter, you do so
using the Sencha Cmd toolset; all of the basic directory structures will be generated for you
and you’re only responsible for developing your application.

2 This step is where you spend most of the application development time generating model,
store, view, and controller classes. In this process you can develop custom themes and fix
bugs. Any and all changes are subject to being tested, which takes place in step 3.

3 At some point you must decide to show off what you’ve developed to your customers or QA
team members. This step marks this decision. If you’re not confident that you’re ready to move
forward, jump back to step 2.

4 Once you’re confident that your application can be viewed by QA staff or customers you use
Sencha Cmd to generate a testing build and deploy it to your designated environment. A testing
build is a concatenation of your JavaScript files and you bundle it with other assets like CSS
and images. A testing build is generally deployed to a testing environment for QA and/or cus-
tomer approval.

5 After you’ve deployed your testing branch determine if it’s all right to go to production. Many
decisions can lead to the NO branch of this process, which can include bugs and missing fea-
tures that have yet to be developed. If for whatever reason you’ve reached the NO decision you
must return to step 2 and work your way forward until you’re confident that you can move ahead
with a production build.

6 The production build process is very much like doing a testing build, except your JavaScript is
run through a minification process (in which the code size is reduced) and the Sencha Touch
Microloader is enabled for code caching. (We’ll cover the Microloader in much greater detail
later in this chapter.) This is the code that’ll be shipped off to your production environment for
customer use. The greatest stress of an application development process is generally experi-
enced between this step and the next.

7 Sometimes you go to production with bugs. Software tends to be among the most complicated
things that humans generate (even in JavaScript!), and your software will be shipped with bugs.
It’s inevitable! Shortly before or after a production launch you need to identify bugs in your soft-
ware. If you find bugs return to step 2 and work through the process again until you do another
production push. At this point in the game you might want to jump from step 2 to step 6. But
skipping steps can lead to what are known as regression bugs (breaking things that worked in
the past), so it’s wise to work through each step in the process even though it may be time-
consuming and painful. The last thing you want is your boss complaining that you broke some-
thing that used to work because you cut corners.

8 Congratulations! At this point of the game no known bugs are found, so it’s time to relax and
have a drink.

234 CHAPTER 11 Building Sencha Touch applications
11.2.1 What is Sencha Cmd?

Don Griffin’s engineering team at Sencha developed the successor to SDK Tools 2.0
and he renamed it Sencha Cmd 3.1. This all-new and more robust version of the
Sencha command-line utilities has been rebuilt from scratch using Java as the core
technology to aid in cross-platform reliability as well as speed. It comes with optional
integration with Apache Ant for those of you who use it for your continuous integra-
tion build processes.

 So why use Sencha Cmd? We could probably write a few more pages on why you’d
want to use Sencha Cmd, but table 11.2 presents a quick list of features that we hope
will whet your appetite.

Table 11.2 Sencha Cmd features

Feature Explanation

Multiple platforms supported Sencha Cmd will run on your Windows, Mac, and popular Linux (32- or
64-bit) systems with ease. This means that you can develop your code
in one platform and rely on another to execute your production or test
build processes accordingly.

Code-generation tools Sencha Cmd can be used to start your application and concatenate/
minify your application. It can also be used to generate code stubs for
controllers, views, models, forms, and profiles. Using Sencha Cmd can
assist with code consistency when more than one person is working on
your application.

Awesome documentation Part of what makes this toolset so great is its amazing documentation.
It begins with an introduction of what Sencha Cmd is all the way down
to a quick reference for the toolset.

Great command-line help If you get stuck on a particular feature of Sencha Cmd and need help,
the toolset comes to the rescue by offering help in your shell via the
help flag.

Multiple build targets With the Sencha Cmd toolset you can develop testing, production,
and native builds. With testing, your code is concatenated but not min-
ified, so it’s readable and thus possible to debug. The production build
is basically a testing build with the addition of code minification and a
few more features to allow your apps to bootstrap lightning-fast after
the first load.

Integration with UglifyJS,
Google Closure Compiler, or
YUI Compressor

JavaScript is an interpreted programming language. Often you write
programs to be human-readable. This means lots of whitespace, com-
ments, and so forth. All of that stuff has to be parsed out by the
browser’s JavaScript engine. Doing so is time-consuming, but one way
to speed things up is to remove white space and change variable
names and function arguments to single letters. Another way is to look
at the JavaScript and reorganize things to make it easier for your code
to be digested by the browser’s JavaScript engine. Each tool has its
benefits and drawbacks, all of which are beyond the scope of this
book. Using any one of these tools is way better than using none
at all!

235Creating your application container
You’ve just completed our 30,000-foot view of Sencha Cmd, and it’s time to start some
preparation work. Before you start developing your application let’s discuss where to
get Cmd and some of its dependencies.

11.2.2 Obtaining Sencha Cmd

Sencha Cmd uses a suite of technologies that it installs on its own but it requires
you to have dependencies already on your system. Here’s a quick list of what’s
required. Chances are you might have some of these dependencies already on your
development environment and installation can be done in minutes on a fast inter-
net connection:

■ Java JRE 1.6: www.oracle.com/technetwork/java/javase/downloads
■ Ruby on Rails: http://rubyonrails.org/
■ Sass: http://sass-lang.com/download
■ Compass: http://compass-style.org/
■ Sencha Touch 2.2 or greater: www.sencha.com/products/touch

Obtaining Sencha Cmd is as easy as visiting http://sencha.com/products/sencha-cmd
and then downloading and installing it. We’re not going to go over the process
because Sencha has a nice install guide on their website for each system.

 You should already have a copy of Sencha Touch, but if it’s version 2.0.2 or lower
you’ll need to upgrade. The easiest way to check what version of Sencha Touch you
have is to look at the release-notes.html file in your browser. You’ll find the version at
the top of the rendered page.

 The stage is now set for you to start developing your application.

11.3 Creating your application container
To kick things off let’s invoke step 1 of the development process (figure 11.1). To
generate your Sencha Touch application you’ll need to drop down to a command
shell. Listing 11.1 contains the command-line output of the application genera-
tion process.

Native packaging Sencha Cmd can take your Touch apps and wrap them in a native
packager, allowing you to easily distribute in the Apple App Store or
Google Play.

Automation hooks with or with-
out Ant

For those of you who rely on Apache Ant to deploy your applications,
you can integrate Sencha Cmd with your Ant tasks. If you don’t use Ant
you can still generate builds using the command-line utilities; they’ll
throw exceptions and exit with an unfavorable return code (anything
greater than 0) so your automation scripts and tools can catch the
exception and deal with it accordingly.

Table 11.2 Sencha Cmd features (continued)

Feature Explanation

www.oracle.com/technetwork/java/javase/downloads
www.sencha.com/products/touch
http://rubyonrails.org/
http://sass-lang.com/download
http://compass-style.org/
http://sencha.com/products/sencha-cmd

236 CHAPTER 11 Building Sencha Touch applications
jay:~ jgarcia$ cd /www/touch/sencha-touch-2.2.0/

jay: sencha-touch-2.2.0 jgarcia$ sencha generate app App /www/myapp

Sencha Cmd v3.1.1.274
[INF]
[INF] init-plugin:
[INF]
// Truncated
[INF] [mkdir] Created dir: /www/myapp/packages
[INF]
[INF] copy-framework-to-workspace-impl:
[INF] [copy] Copying 1976 files to /www/myapp/touch
[INF] [copy] Copied 233 empty directories to 1 empty directory under
 /www/myapp/touch
[INF] [copy] Copying 1 file to /www/myapp/touch
[INF] [copy] Copying 1 file to /www/myapp/touch
[INF] [propertyfile] Updating property file:
 /www/myapp/.sencha/workspace/sencha.cfg
// Truncated
[INF] generate-starter-app:
[INF] [mkdir] Created dir: /www/myapp/app/model
[INF] [mkdir] Created dir: /www/myapp/app/controller
[INF] [mkdir] Created dir: /www/myapp/app/store
[INF] [mkdir] Created dir: /www/myapp/app/profile
// Truncated

Your first step is to change the directory to wherever you put your extracted package
contents for Sencha Touch 2.2 (or greater) B. We like to place everything we do in
/www/touch for ease of typing but you don’t have to follow our pattern.

NOTE The output from Sencha Cmd we’re showing you is generated by an
early copy of the tool. The results you see may differ slightly.

A quick word about OS and syntax differences
We’ll demonstrate using Mac OS X. The commands in Linux will be the same but the
Windows counterpart will require a simple change to how the paths are written. Unix-
style paths look like this: /path/to/your/project. Windows paths look something like
this: C:\path\to\your\project. We’ll leave it up to you to make the proper substitu-
tions and changes where required.

Listing 11.1 Generating an application

You don’t have to follow our lead on file location
We’re placing our files in /www/myapp for simplicity but you can put your project
wherever you feel most comfortable. Also be sure to have your local web server up
and running. Your web server will also need access to the files you’ve just created
with Sencha Cmd.

Makes changes to
Touch SDK directoryb

Instructs
Cmd to create

app stub c

Copies Touch
resources

d

Creates app
stube

237Creating your application container
Next you instruct Sencha Cmd to generate your application stub c via the following
sencha command construct:

sencha generate app App /www/myapp

The first argument to the sencha command invokes the generate mode. There are two
arguments to the app generation command. The first is your application JavaScript
namespace (App) and the path to where the files are going to be placed.

NOTE It’s worth noting that everything you do with Sencha Cmd literally
begins with sencha in the shell.

If you examine the output of the generate app command you’ll find that it copies a lot
of resources to your destination, /www/myapp. First is a copy of the Sencha Touch
library d minus the fluff (docs, examples, etc.) as well as the Sass source files and
images. You also see output where an app/ directory is created e with subdirectories
for supporting classes.

 To better understand what’s happened let’s look at the directory and talk about
it a little.

11.3.1 Examining Cmd app resources

You just generated your stub app and saw a flurry of
output from Sencha Cmd. Before you can start
building your application you need to figure out
what was laid out. Take a look at figure 11.2.

 The first thing to look at is the app directory B.
You’ll find directory stubs for your controller, model,
profile, stores, and views. In the view directory you’ll
find one Main.js class. Feel free to open that file in
your editor. You’ll see that this file contains a simple
tab panel implementation with a “Welcome to Sencha
Touch 2” set of screens. You’ll be overwriting this file.

 Next look at the resources directory c. This
directory contains the necessary directories that con-
tained your compiled CSS, launch icons, custom
theme stub (Sass), and loading screens (startup).
The loading directory is a legacy directory and will
most likely be removed from the distribution soon.

 The touch directory d is a directory that con-
tains all of the Sencha Touch resources. Generally
you shouldn’t be entering this directory at all.

 The last group of files e plays a role in your
application’s development life cycle. We’re going
to talk about these files from a high level and do
deep-dives later on:

1

2

3

4

Figure 11.2 A snapshot of your
newly generated application

238 CHAPTER 11 Building Sencha Touch applications
■ app.js is the file that defines the structure of your application. It’s designed to
include all immediate dependencies—generally controllers and profiles. You
can add any other class to be required in your app.js. Take a look at it in your
editor and get some exposure. We’ll look at it in greater detail later on.

■ app.json is a file that describes to Sencha Touch what resources to load in devel-
opment mode and describes to Sencha Cmd how your application should be
built. If you have external JavaScript code or libraries that you need to load with
your application you can specify them in the “js” section of this file. We gener-
ally place them in app/lib/<library_name>/.

■ index.html is used to load your application in the browser. It contains necessary
things like a CSS3 boot animation and what’s known as the Sencha Touch
Microloader, which contains the minimum amount of JavaScript to kick every-
thing off.

■ packager.json is a file that’s used by Sencha Cmd to package your application; it
wraps your app in a native binary for deployment.

You’ve just finished generating your application stub. But before you start developing
take a look at figure 11.3 to see what renders onscreen.

 As you can see, the application stub generated by Sencha Cmd renders perfectly in
the iOS simulator (and Chrome or Safari). This means that all your preparation work
is done for your application development. You can begin breaking ground and start
developing your app.

11.4 A view of what you’re building today
You just generated the app stub via the Sencha Cmd toolset and saw what the stubbed-
out application looks like in a browser. You’re going to start developing your applica-
tion soon, and we’ll begin by discussing exactly what you’re building.

11.4.1 Looking at what you’re building

To exercise a lot of what you’ve learned and to implement new concepts you’re going
to develop a relatively simple application that works on tablets and phones via Sencha
Touch profiles. The heart of the application is simple. It’s a contact editor with two
screens: a list of contacts and a detail screen that lets you modify the data. Most of the
work that you’ll do involves writing the controller logic that manages the interaction
models between phone and tablet. Let’s look at the phone version first (figure 11.4).

Be careful when modifying app.json!
It’s absolutely normal and a sanctioned act to modify app.json to add your own
resources or change the default configurations for how your application is bundled.
Just be careful not to inject errors into the JSON file. Errors in this file will prevent
your application from loading at all.

239A view of what you’re building today
 The point of the example application is to see data
and modify it. That’s it! Figure 11.4 demonstrates the
two main screens that you’ll implement on a phone.
The navigation is simple. Tap on an item in the list
(left) and slide in the detail screen (right). The back
button returns the user to the list and commits the
changes to the list.

 The tablet version is a bit different. Let’s take a
quick look at it (figure 11.5).

 As illustrated in Figure 11.5, in the tablet version
of the application you’ll be displaying both views.
When the user taps on an item in the list the form in
the center updates with the relevant data. You’ll
notice that there’s a save button in the tablet version
of the detail screen, whereas there’s no save button
in the phone version (figure 11.4). To persist the
data on the tablet version the user will have to hit
the save button.

 You now have an understanding of what your app
will look like when you render it on both phone and
tablet devices. Next let’s take a quick glance at the
namespace you’ll be developing.

Figure 11.3 The application
stub generated by Sencha Cmd
rendered on the iPhone simulator

Figure 11.4 The example
application on a phone

240 CHAPTER 11 Building Sencha Touch applications
11.4.2 A quick glance at the namespace
Figure 11.6 illustrates how the namespace for your application will look once you’re
done programming.

 The namespace for this application may seem insanely complicated at first glance,
but in reality it’s simple. Here’s why.

Everything begins with the App namespace that you told Sencha Cmd to generate for
you. There are subnamespaces (packages) defined under App, which are controller,
model, profile, store, and view. Each of these packages contains either subpackages
or classes.

File placement is important
It’s extremely important that you place your classes on your filesystem exactly how
they’re organized in their namespace. As you develop this application we’ll remind
you what classes go where, but it’ll be up to you to remember this rule when working
on your own applications. Failure to do so might lead to exceptions thrown by Sencha
Touch—and frustration.

Figure 11.5 The example app in a tablet simulator

241A view of what you’re building today
If you look at the controller namespace you’ll see that it has a Main class as well as
two subpackages, phone and tablet, each with its own Main class. We’ll dive further
into this later, but to quell your curiosity, you define one main controller in the con-
troller namespace that’s used as a common class, and the Phone and Tablet profiles
will subclass controller.Main to implement specific behaviors for the tablet and
phone versions.

 For the model and store packages you have a class each. Because the Model and
Store classes won’t need to change for the tablet or phone versions you have no need
to make a subpackage.

Filename capitalization
We’ve been involved with projects that have had issues when migrating from one sys-
tem type to another due to simple mistakes, where a class name and its related file
were capitalized differently. Development environments or your filesystem and OS
may tolerate these differences, but testing or production environments may not. So
please try to be diligent when it comes to naming your files and classes. Your dili-
gence will pay off! It’s worth noting that using Sencha Cmd to generate your class
files can assist with this effort.

controller

phone

tablet

model

Main

Main

store

profile

Contact

phone

tablet

Main

Main

ContactDetails

ContactsList

Main

view

Main

App

LEGEND

package

Class

Phone

Tablet

Contacts

Figure 11.6 The application namespace that you’ll create

242 CHAPTER 11 Building Sencha Touch applications
NOTE Since a Model instance is a single instance of a Contact you name it
in singular, whereas the Store instance deals with one or more Contacts, so
you name it in plural. This is a common convention for naming Model and
Store classes.

The profile package is used to define device profiles to Sencha Touch. In this case
you’re only dealing with two types of devices, and as you’ll see when you implement
the code, you’re going to be general in how you define what a tablet or phone is to
your application.

NOTE With Sencha Touch device profiles you can get extremely granular
and create specific profiles for different devices and name them exactly how
you want to. For example, you could have one profile for iPhone4, another
for iPhone5, another for SamsungGS3 (Galaxy S3), and so forth.

Lastly, the view package contains packages for the profiles, a generic main view, and
two views that begin with the word Contact. You named the class files (and classes
themselves) in such a way that they describe what they do. For example, ContactsList
is a list of contacts and ContactDetails shows details of a contact. When you name your
classes keep in mind what exactly the class is trying to do and optionally append to it
the superclass’s name or something that describes what it does.

 That wraps up all of the preliminary work you have to do to develop the example
application. Next you’ll grab your shovel and start digging in!

11.5 Building the Phone profile version of your application
You’ll develop this application in phases. These phases are all encompassed by step 2
of our development process, and you’ll stay in this step until the views are done and
the interaction models are all wired up.

 Here’s how you’ll develop this application beginning with the Phone profile:

1 Define the model and data stores.
2 Define the Phone profile.
3 Stub out the main and Phone profile main controller.
4 Define the main and Phone profile main views.
5 Wire up the interaction models for the Phone profile.
6 Define the Tablet profile controller.
7 Define the tablet view.
8 Wire up the interaction model for the tablet controller.

Once you’re satisfied with how the app works on the phone and tablet you’ll use Sen-
cha Cmd to generate testing and production HTML5 builds.

243Building the Phone profile version of your application
11.5.1 Developing your data model and store

You’re beginning with the data model and store because they’ll be responsible for
feeding data into the various contact views. Consequently, these two classes will be
some of the simplest that you’ll create. You won’t see any of these classes in action
until you start to develop the ContactsList class.

 Because the model feeds the store let’s start with that. Normally you’d write this
class by hand but this is an excellent opportunity to show you how to use Sencha Cmd
to generate a class file. Here’s the Sencha Cmd syntax for creating the file app/
model/Contact.js:

sencha generate model -n Contact -f firstname,lastname,phone

The –n flag allows you to define a class and file name, whereas –f lets you define all of
the model’s fields. Running the command yields the results shown in listing 11.2.

NOTE If you want to learn more about the sencha generate model syntax sim-
ply ask Sencha for help by using the following command syntax: sencha help
generate model. Remember that you can get help for any of the commands.

Ext.define('App.model.Contact', {
 extend : 'Ext.data.Model',

 config : {
 fields : [
 {name : 'firstname', type : 'auto'},
 {name : 'lastname', type : 'auto'},
 {name : 'phone', type : 'auto'}
]
 }
});

The model definition is very simple. It begins by defining the model class namespace B
and extending Ext.data.Model.

NOTE You’re defining the model with the App namespace. Later on when we
look at app.js we’ll talk about how the App namespace is first bootstrapped.

Next you have the prototypal config object c, which contains the data fields that’ll
help drive the list and form views you’ll create later on.

 With the model defined you can next define your store. For simplicity you won’t
be using Sencha Cmd, but we’ll show you the classes themselves. Create the file
app/store/Contacts.js and put the content shown in the following listing inside
the file.

Listing 11.2 The Contact model class

Defines Model classb

Sets up prototypal
config objectc

244 CHAPTER 11 Building Sencha Touch applications
Ext.define('App.store.Contacts', {
 extend : 'Ext.data.Store',

 alias : 'store.contacts',
 requires : ['App.model.Contact'],

 config : {
 model : 'App.model.Contact',
 data : [
 {
 id : 1,
 firstname : 'Mel',
 lastname : 'Gibson',
 phone : '394-953-4537'
 },
 {
 id : 2,
 firstname : 'John',
 lastname : 'Travolta',
 phone : '357-642-3162'
 }
 // More data in the downloadable example
]
 }
});

Listing 11.3 illustrates the Contacts data store extension B. Within the class defini-
tion is an alias declaration which allows you to use shorthand notation to configure an
instance of this store. The contact model is also set up as a dependency for this store
so that when this class is defined the contact model is loaded and registered in the
appropriate namespace.

 You configure your store to use your contact model c and throw in some mock
data for your view to consume d. The supporting Model and Store classes were easy
to complete.

NOTE We removed a bunch of records from the listing that you’ve seen in the
images of the sample application in order to reduce the size of the listing.
Feel free to copy from the downloaded version of this exercise or create your
own following the data design pattern.

Next we’ll start work on the application views of the application structure.

11.5.2 Creating the generic main view class

Before you can start loading stuff in the browser you’ll need to generate a main view.
In Sencha Touch applications the main view is generally responsible for navigation
transitions. But depending on the device being rendered and the application, the
main view may just act as a static canvas to render bits of your view. Let’s revisit the way
the app is rendered on the phone versus on the tablet (figure 11.7).

Listing 11.3 The Contacts store class

Defines
Contacts storeb

Uses contact
model

c

Throws
in datad

245Building the Phone profile version of your application
In the case of the Phone profile the main view will be responsible for displaying the
list, then transitioning in the ContactDetails view via the card layout and slide anima-
tion to display detailed data. At the same time that the animation is initiated you’ll dis-
play a back button to let users return to the ContactsList. All of this stuff is happening
within the main view. Essentially, the top-docked toolbar, ContactsList, and Contact-
Details will be children of the main view.

 Recall that the tablet version of this application is different (figure 11.8).
 The tablet version of the main view won’t need to transition items from left to right

because you have a ton of real estate. But it’ll remain a parent to the top-docked tool-
bar (minus the back button), ContactsList, and ContactDetails views.

 In reviewing the application you see that there’s a main set of features that you can
implement. This is why you need to create a generic main view and then move on to
create versions of the main view for the Phone and Tablet profiles. See the namespace
diagram in figure 11.9 for clarification.

 To create the common main view you’ll need to open up the app/view/Main.js file
and replace its contents with those in listing 11.4.

Ext.define('App.view.Main', {
 extend : 'Ext.Container',
 xtype : 'main',

 config : {
 fullscreen : true,

Listing 11.4 The common main view class

Figure 11.7 Your application
on a phone

Defines common
main viewb

Makes view
full-screen

c

246 CHAPTER 11 Building Sencha Touch applications
 items : {
 docked : 'top',
 xtype : 'toolbar',
 title : 'Contacts'
 }
 },

 setTitle : function(title) {
 this.down('toolbar').setTitle(title);
 }
});

The common main view class in listing 11.4 is simple but it contains a bit of reusable
code that your phone and tablet versions will implement. First you register the

Figure 11.8 Your application rendered inside the iPad simulator

Adds top-docked
toolbard

Sets toolbar
title

e

phone

tablet

Main

Main

Main

view

LEGEND

package

Class

Figure 11.9 The Phone and Tablet profile-based main views will extend the
common view.Main class.

247Building the Phone profile version of your application
App.view.Main class B, extending Ext.Container. You give it an XType of main which
will be used in your controller to hook onto for events.

 In the config section you instruct the view to be full-screen c and configure a top-
docked toolbar d.

 Lastly, the setTitle utility method e uses ComponentQuery to search for the
toolbar and, by means of chaining, sets its title.

 For a moment recall that you’re doing the Phone profile first. You may be wonder-
ing, where’s the layout? Where are the child items (such as ContactsList and Contact-
Details)? As you’ll soon find out, the Phone profile (and the Tablet profile for that
matter) will be responsible for selecting which layout to implement and how to lay out
the child items.

 For now let’s move forward with rendering the main view on the screen so you can
soon start to view your incremental changes in the browser. To do so you’ll have to
update app.js to render your common main view. Afterward you can move forward
with creating the ContactsList and Detail views and see them in action.

11.5.3 Looking at app.js for the first time

To generate your project you used Sencha Cmd, which created a bunch of directories
and files for you. Earlier we discussed app.js, where we told you that it was used to
describe and launch your application. Although you generally won’t do a ton of work
with app.js you must understand what’s in it and what you’re doing with it.

 The next listing contains a version of app.js that we’ve modified a bit, but it still
contains most of what’s been generated by Sencha Cmd. We have to warn you, this is a
long listing and we’re going to enter a pretty lengthy and deep discussion here.

//<debug>
Ext.Loader.setPath({
 'Ext': 'touch/src',
 'App': 'app'
});
//</debug>

Ext.application({
 models: ["Contact"],

 name: 'App',

 requires: [
 'Ext.MessageBox'
],

 views: ['Main'],

 icon: {
 // Icons go here
 },

 isIconPrecomposed: true,

Listing 11.5 app.js

Initializes
class loaderb

Bootstraps
application

c

Includes
views

d

Defines
app iconse

248 CHAPTER 11 Building Sencha Touch applications
 startupImage: {
 // startup images go here
 },

 launch: function() {
 // Destroy the #appLoadingIndicator element
 Ext.fly('appLoadingIndicator').destroy();

 // Initialize the main view
 Ext.Viewport.add(Ext.create('App.view.Main'));
 },

 onUpdated: function() {
 Ext.Msg.confirm(
 "Application Update",
 "This application has just successfully been updated to the

latest version. Reload now?",
 function(buttonId) {
 if (buttonId === 'yes') {
 window.location.reload();
 }
 }
);
 }
});

The app.js listing begins with the initialization of the Sencha Touch Loader system,
where Sencha Touch itself is initialized via the Loader’s setConfig method B. It also
contains something that you probably haven’t seen before:

//<debug>
 … some code …
//</debug>

These pseudo debug tags are used by Sencha Cmd to know what blocks of code to
strip for production and testing builds. In this case, when you’re in development
mode you need the Loader system, but not in testing or production builds. This
means that you can use these pseudo tags to wrap all types of debug messages or even
include conditional breakpoints—as anything in between these tags will be stripped
from your production builds.

 The next important piece of this listing to focus on is the Ext.application
method call c where you pass an anonymous object—the app config object. This is
the place that defines the bootstrapping of your application. A lot goes on here, so
let’s take a few moments to look further into it.

 The property you find in the app config object is models, which is an array that
contains the name of your recently created contact model. It’s here because whenever
you generate a class via Sencha Cmd it generates the associated keys for models, views,
controllers, and profiles. At first glance this seems like an awesome feature, but don’t
use this pattern for a few reasons.

 First is that the number of items—all of your views, apps, controllers, and profiles—
can get rather large and unmanageable as your application grows. How we (and many

Starts image
definitionsf

Launches
appg

Executes
when app
is updated

h

249Building the Phone profile version of your application
other experts) use app.js is to bootstrap the application and potentially deal with appli-
cation-level events. The requirements of views, models, and stores should always begin
via profiles or controllers if you have no device profiles in your application.

 Second, the way your required items are laid out may not be conducive to self-
documenting code, which is something that the best programmers practice religiously.
When you’re done you won’t be requiring models, stores, or application views from
app.js. The rule of thumb we follow is that only global models, stores, utility classes,
and overrides are required via app.js. Anything specific to a view should be required
by that view or that view’s controller.

 So for now, remove the models key. We’ll talk more about proper ways of thinking
about dependency modeling a little later on.

 Sencha Touch learns how to register your application namespace via the name
key in the application config object. In this case your namespace is App (recall the
Sencha Cmd command you executed to do this); therefore you can deduce that
your application namespace can be accessed anywhere after your application is ini-
tialized. We’ll look at this again when you render your app for the first time in
your browser.

 The next part is a requires array for Ext.MessageBox. This part was put in
place by Sencha Cmd when you generated the application. The reason it’s here is
to satisfy the requirement of application update alerts (onUpdated), which we’ll get to
in a moment.

 Next you’ll find the views array d. Sencha Cmd also adds the views array when
you generate your app for the first time. In this case it may make sense to leave it
there, but to be honest, it’s not going to be necessary, so you’ll remove it. Once you
get to the point where you’re adding your profiles and controllers we’ll show you the
bigger picture as to how all of your dependencies get injected.

 Moving forward you’ll find icon, iconPreComposed, and startupImage keys. The
launch icon e and startupImage f keys both are objects that describe image size
and locations. We removed them from the listing to shorten it a bit. The iconPre-
Composed key is a Boolean used in iOS that basically tells it whether or not it should
modify the icon. By default it’s set to yes.

The last major sections of listing 11.5 are the launch method g and onUpdated h.
The launch method is called when the application instance is created but only
after all dependencies are loaded. In your launch method the loading indicator is

App icons and startup images
Sencha Touch comes with some well-composed launch icons (found in the extracted
SDK in resources/icons) and startup screen images (resources/startup). These
items are sized according to their need and are usable right out of the box, but they
have Sencha’s branding and will need to be replaced with your own branding before
you move to production.

250 CHAPTER 11 Building Sencha Touch applications
removed from the DOM. Later we’ll discuss the loading indicator and why this step
in the bootstrapping of an application is important. Next, an instance of App.view
.Main is created and immediately added to the Ext.Viewport instance. This effec-
tively renders the main view into your browser.

onUpdated is a function that’s called by the Microloader in a production build only
after an update to a production build of your application is found. In essence what
this method does is display a message box telling users that the application has been
updated successfully and give them an opportunity to reload the app or defer to see
the changes after the application has been closed and reopened.

 We’re sure you have questions about the Microloader, production build, and MVC.
We’ll cover these in great detail later on. But for now we want you to see that what
you’ve developed thus far does render on screen.

11.5.4 Checking in on progress

Figure 11.10 shows what your work has allowed you to do thus far. It’s not much at the
moment, but it’s a great place to talk about the current progress.

 In figure 11.10 we’ve expanded the App namespace in the debug tools to show you
what Sencha Touch knows about your application. What you’ll find is that there’s an
.app property of the App namespace. The .app property is quite literally a reference

Figure 11.10 Viewing your app
in a browser with its namespace
visible in the debug tools

251Building the Phone profile version of your application
to the application instance. This means that within your code bits (controllers only,
please!) you can access the application instance via <ApplicationNamespace>.app
and can do things such as register event handlers or fire events.

 Next look at the view subpackage, where you see a Main property. Main is the construc-
tor for the App.view.Main common view that you see rendered in the browser’s viewport.

 The reason we’re pointing out these things is so that you know that as you con-
tinue developing this application you can pop up the app in the browser, fire up the
JavaScript debug console, and explore the namespace. Doing so can help you identify
issues such as classes not being defined and namespace issues (remember, JavaScript
is case sensitive). Exploring the namespace via the console can also allow you to get
some visibility into some global utilities/objects that you may have defined.

 You just bootstrapped an application with a basic custom main view. You have a lot
more to do in this chapter, but now’s a good time to take a detour that’ll lead you to a
understanding of how applications bootstrap with Sencha Touch. Once you have a good
grasp of this concept you can build a controller and profiles, both of which are needed
to complete your application using proper design patterns.

11.5.5 A quick lesson on how applications bootstrap

Application bootstrapping begins at index.html and typically ends with data being
loaded. The following listing provides a truncated version of index.html. We removed
the CSS to save space. If you want to read the CSS, feel free to open the file in your editor.

<!DOCTYPE HTML>
<html manifest="" lang="en-US">
<head>
 <meta charset="UTF-8">
 <title>App</title>
 <style type="text/css">
 /* Loading indicator styles removed for sanity */
 </style>
 <!-- The line below must be kept intact for
 Sencha Command to build your application -->
 <script id="microloader" type="text/javascript"
 src="touch/microloader/development.js"></script>
</head>
<body>
 <div id="appLoadingIndicator">
 <div></div>
 <div></div>
 <div></div>
 </div>
</body>
</html>

index.html contains some stuff that’s critical to getting your code loaded. It begins
with the loading indicator CSS and its related HTML. The purpose of this HTML is to

Listing 11.6 index.html (truncated)

252 CHAPTER 11 Building Sencha Touch applications
render something onscreen so the users can see that the app is doing something. In
this case it’s loading.

In case you haven’t seen the loading indicator yet fig-
ure 11.11 shows what it looks like.

 The next thing that’s important to look at is the
script tag where the Sencha Touch Microloader Java-
Script file is being loaded. As the comment above the
line states, don’t alter or remove this line. It’s absolutely
essential not only to the loading of your application but
to the Sencha Cmd build phases as well. If you look at
the tag you’ll see that it’s loading the development ver-
sion of the Microloader.

 If you browse to the touch/microloader/ directory
you’ll find that are three versions: development, test-
ing, and production. Each version of the Microloader
does something similar, except as you move from devel-
opment to testing to production the loading process
changes with each phase. As you’ll learn later the pro-
duction version of the Microloader kicks major butt!
For now we’ll focus on the application bootstrapping of
the development version of the Microloader. As we
move to testing and production we’ll slow down to dis-
cuss how those work as well.

There’s a lot of stuff that goes on to get your application bootstrapped. We’re not
going to delve into the gory details, but a general discussion will help you develop and
debug Sencha Touch applications after you’ve put down this book. To help with this
discussion we’ve created a simple workflow diagram, shown in figure 11.12.

 Table 11.3 shows a quick rundown of how Sencha Touch applications bootstrap in
development mode.

Remember launch?
Remember that inside the launch method (app.js) of your application definition is a
step where the app loading indicator HTML is removed from the DOM. For conve-
nience’s sake, here it is: Ext.fly('appLoadingIndicator').destroy();.

Feel free to read the Microloader source
The Microloader source isn’t minified so the source is readable. It’s got some advanced
stuff in there, but it’s worth glancing at just to get some exposure to the code.

Figure 11.11 The application
loading indicator rendered in a full-
screen version of your application

253Building the Phone profile version of your application
Table 11.3 The app loading process breakdown

Step Description

1 index.html is first loaded by the browser. This is where the application-loading indicator is displayed.

2 The development version of the Microloader is loaded and parsed as part of index.html, but we broke
it out as a separate step to highlight its importance. Steps 3–6 all occur within the Microloader itself.

3 From here the Microloader fires off a synchronous Ajax request to load app.json. Recall that
app.json contains data objects that describe CSS and JavaScript resources to be loaded. In this
case a single CSS file (resources/css/app.css) and two JavaScript files (touch/sencha-touch.js
and app.js) are defined by default.

4 After the Ajax request completes, metatags are injected into the document to make the HTML
document behave in an application-like way. These behaviors include the prevention of user
scaling via the pinch gesture and the ability for the application to launch full screen (iOS only).

5 Next, all CSS files that were defined inside app.json are injected into the documented via link
tags. The default is to have a single app.css (default Sencha Touch 2 theme) loaded, but you can
add other CSS files to be loaded by the framework inside app.json. Just be sure to follow the
design patterns and remember to not make mistakes in this file.

6 The next step is very important: this is where all of the JavaScript files that are defined in
app.json are injected into the document via script tags. This includes the bootstrap file for the
framework (sencha-touch.js) and your recently modified app.js file. This step kicks off a flurry of
framework file loads to inject more of the Sencha Touch framework, including the event system,
DOM utilities, layouts, component system, and a few other things. As we’ve discussed, sencha-
touch.js contains the basics of framework (base utilities, loader, etc.) and the definition for the
Ext.application method.

index.html

loaded

Microloader

loaded & parsed

app.json loaded

Meta tags applied

to make HTML

app-like

CSS denied in

app.json loaded

JavaScript

de iedn in

app.json loaded

1

2

3

4

5

6

Application is

de iedn (app.js)

All documented

dependencies

injected

Application is

rendered on

screen

7

8

9

Figure 11.12 The application
bootstrap phase

254 CHAPTER 11 Building Sencha Touch applications
As you just saw, a lot’s going on under the hood to launch your Sencha Touch applica-
tions. This discussion has paved the way for you to continue constructing your appli-
cation without the fog of the unknown when it comes to application bootstrapping.

 We’ll continue with the addition of a Phone profile and related controller.

11.5.6 Adding the Phone profile
So far all you’ve done is generate an application stub and modify it so you have a cus-
tom main view displaying. Next you’ll need to add a Phone profile, which will call on
the phone-specific controller to manage the full-screen navigation from the List view
to the Form panel.

 Here’s what you’ll need to accomplish before you can render your app again:

1 Modify app.js, removing the dependency for the main view and replacing it
with the Phone profile.

2 Create the Phone profile file.
3 Generate the common main controller.
4 Build the Phone profile’s main controller, extending the common main controller.
5 Create the Phone profile’s main view, extending the common main view.

The steps detail how you’re going to proceed. The process seems like a lot of work,
but believe us when we say that you’ll take a lot of little steps that will amount to one
giant leap. This is going to be a long section, so please bear with us. You have a lot of
exploring to do along the way.

 You’ll begin this transition by doing some open-heart surgery on app.js. This means
that you won’t be able to see anything render until you’re done, so tread carefully.

7 Recall that inside app.js you call on Ext.application to define your app. A lot occurs inside
the Ext.application method, but we’ll highlight some parts you need to know. The first is
that Ext.Loader is configured with your application namespace (App) pointing to what’s
known as the appFolder ('app'). Next, Ext.app.Application is required, causing
the base application classes to be loaded, including Controller, History, Profile,
and Router.

8 In this next step documented dependencies are loaded by the Loader system. This step begins
with Ext.MessageBox (remember that requires line in app.js?) and all of its dependen-
cies. When you’re done building this application profiles, controllers, views, models, and stores
will be loaded in the order that they’re documented via the requires array. This application
dependency injection begins with profiles, followed by controllers. Views, models, and stores are
loaded depending on how they’re documented in the corresponding profiles and controllers. Keep
in mind that profiles are optional and only need to be used when you want to develop an applica-
tion beyond one device.

9 The last step to this phase is the application being rendered onscreen. This is when the applica-
tion instance’s launch method is called, removing the application-loading indicator and render-
ing the common main view class that you created earlier.

Table 11.3 The app loading process breakdown (continued)

Step Description

255Building the Phone profile version of your application
 The first thing to do is open app.js in your editor and find the following line:

views : ['Main'],

Replace it with this:

profiles : [
 'Phone'
],

You’re replacing views with profiles because you’re going to put the device profiles in
charge of requiring the phone-specific main view controller. As you’ll see later, it’s going
to be the controller’s responsibility to require the main view and because you’re going to
be using the Phone profile the phone-specific main view will be loaded and initialized.
It’s worth noting that we’ll revisit this section to add the Tablet profile once you’re
done with the Phone profile.

 The next step to getting the Phone profile setup is to create the JavaScript file
app/profiles/Phone.js, as shown in the following listing.

Ext.define('App.profile.Phone', {
 extend: 'Ext.app.Profile',

 config: {
 controllers:[
 'Main'
],
 views : [
 'Main'
]
 },

 isActive: function() {
 return true; // remove when testing on devices
 return Ext.os.is('Phone');
 },

 launch: function() {
 Ext.create('App.view.phone.Main');
 }
});

There may not seem like a lot’s going on in listing 11.7, but this code does quite a bit
from the application bootstrap perspective. You begin by defining the Phone profile
class B which extends Ext.app.Profile. Whenever you’re going to create a device
profile you will need to extend app.Profile.

 Listing 11.7 has a config section that features a controllers array with Main as a sin-
gle controller c. Placing controllers here will tell Sencha Touch to look in app/
controllers/phone for the Main controller class. If you were to place the main control-
ler in the application definition (which is totally legal), the Phone profile version of
the main controller wouldn’t be loaded and key features for the phone version of the

Listing 11.7 Your Phone profile class

Defines Phone
profile classb

Configures Phone
profile controllersc

Includes Phone
profile viewsd

Makes this
profile active

e

Renders Phone
profile main view

f

256 CHAPTER 11 Building Sencha Touch applications
app wouldn’t be properly configured. This could lead to stopping the application
from rendering or exceptions being thrown by the framework.

NOTE Because profiles act very much like a subset of an application instance
they can load stores, models, views, and controllers. This extremely powerful
feature allows you to customize your application down to what features are
available based on what profile is active.

You add a views directive, which will require the main view from the App.view
.phone namespace d. By requiring the view as part of this profile you’re ensuring
that the class is loaded in its designated namespace by the time the profile’s launch
method is called.

 The isActive method e is an important method to discuss because it’s where
the framework figures out what profile is the correct one to use to render your
application. Here you can inject all sorts of tests, such as looking at screen resolu-
tion or any other type of attribute that’s specific to the device for which you’re devel-
oping a profile.

 In your simple isActive method, you’ve put in a stub that returns true. Doing so
ensures that the framework will select this profile even if you test in the desktop
browser, where you do 90% of your development tasks. When you’re done developing
this profile you’ll remove that line and have this method return the result of the
Ext.os.is('Phone') test.

 The last method is the launch method f which creates an instance of the Phone
profile–specific main view, concluding the bootstrapping of the application from the
profile’s perspective.

 With the Profile class complete, let’s move on to creating the common main con-
troller and its Phone profile extension.

11.5.7 Introducing the common controller

The next listing defines the common Controller class. After you’ve created the Contacts-
List and ContactDetails views we’ll revisit this class to add in the interaction modeling.

Ext.define('App.controller.Main', {
 extend: 'Ext.app.Controller',

Profile naming convention
For this simple application you’re creating two simply named profiles, Phone and Tab-
let. The important thing to note is that even though we’re beginning the profile’s class
Constructor with an uppercase letter (you’re following naming standards) classes for
each profile will be located using the “package” or “property” naming convention.
That means that controller/phone and view/phone will be used for the Phone profile
that you’ve just created.

Listing 11.8 The common main controller stub

Defines the Main
controllerb

257Building the Phone profile version of your application
 config : {
 refs : {

 },

 control : {

 },

 views : [

]
 }
});

Listing 11.8 begins by defining the common main controller B. When creating new
controller definitions that aren’t profile-specific you must extend app.Controller.
Next you have a stub for instance-based references, known as refs c, and one for
ComponentQuery-based control constructs d.

 As you’ll see later, refs will act as a means to set up static references to instances of
views. Because this application is relatively simple you’ll have references for the main
view, contact list, and the details form. As you develop each view you’ll circle around
and add refs as needed.

 The control object describes to the framework which views to be on the lookout
for and which events from those views to listen to. In addition to the events you describe
what methods to call in reaction to the described events. In this case you want to know
when a contact is selected in the contact list, when the back button is pressed (Phone
profile only), and when the save button is pressed (Tablet profile only). For now, leave
it as an empty object stub as a reminder and you’ll return to it when you’ve developed
those views and are ready to wire up the event model.

 The last bit is an empty views declaration e. You added this stub for views that’ll be
common to both the tablet and phone versions of the app, ContactsList and Contact-
Details. This means that as you work to build these views and wire them in you’ll revisit
this common controller.

 Your common main controller may not seem as if it’s doing a lot right now. Don’t
worry; you’re still in the beginning phase of developing this application. As you start
to develop the views you’ll see how it’ll play a key role in housing reusable code
between the Tablet and Phone profiles.

 The next step is to create the Phone profile-specific controller.

11.5.8 Adding the Phone profile controller

You just saw the addition of the common main controller class. As you’ll see in the fol-
lowing listing, the Phone profile controller is responsible for phone-specific layout
and view management.

Ext.define('App.controller.phone.Main', {
 extend: 'App.controller.Main',

Listing 11.9 The Phone profile controller

Creates a
refs stubc

Adds a stub
control constructd

Includes a
views stube

Extends common
main controller

b

258 CHAPTER 11 Building Sencha Touch applications
 config : {
 anims : {
 next : {
 type : 'slide',
 direction : 'left'
 },
 previous : {
 type : 'slide',
 direction : 'right'
 }
 }
 },

 showContactDetails: function(record) {}
});

To define the Phone profile controller you must extend the common controller you
made earlier B. Doing so allows you to inherit everything that you’ll need for this
profile-specific controller to do its job.

 Think back to how this application is supposed to be displayed: full screen.
This means that when a user taps on an item on the list you must replace the exist-
ing List view and display the detailed Form panel. The user can navigate back to the
list via the back button. To configure these animations you set up a custom anims
object c, which contains the animation definitions for forward and backward
navigation. You set this up in the spirit of reusability. Technically speaking, object
creation is expensive. So if you can create once and reuse many times you win and
the user wins. These animation objects demonstrate how you can set up reusable
objects. You’ll implement these objects via getter methods in the showContact-
Details method d.

 You have two methods in this class: showContactDetails and onMainBackButton.
Both of them are going to be executed by your common main controller. Because you
don’t have views to manage you’re not going to add code to them yet. showContact-
Details will be called when a user selects an item in the list, and it’ll be responsible
for creating an instance of ContactDetails (if it doesn’t yet exist) and animating it
into the viewable space.

 With the Phone profile controller now in place you can add the Phone profile
main view, which prepares you for the development of the ContactsList and Contact-
Details views and wiring up the interaction models between them.

11.5.9 Adding the Phone profile main view

You just set up the Phone profile class and its related controller, paving the way for
you to create the Phone profile view. This is where you start to pick up the pace a little;
the pieces to this application are starting to come together for the phone version.

 Create the following file in your project’s filesystem: app/view/phone/Main.js.
(See the following listing.)

Sets up reusable
animation objectsc

Adds event
listener stub

d

259Building the Phone profile version of your application
Ext.define('App.view.phone.Main', {
 extend : 'App.view.Main',

 requires : [
 'Ext.layout.Card'
],

 config : {

 layout : 'card',

 control : {
 'button[ui=back]' : {
 tap : 'onMainBackButtonTap'
 }
 }
 },

 initialize : function() {
 var me = this;
 me.add({
 xtype : 'contacts'
 });

 me.down('toolbar').add({
 xtype : 'button',
 text : 'Back',
 ui : 'back',
 hidden : true
 });

 me.callParent();
 },

 onMainBackButtonTap : function(btn) {
 this.fireEvent('back', this, btn);
 }
});

A lot’s going on in listing 11.10, beginning with the registration of the App.view
.phone.Main class B. Notice how this view extends the common App.view.Main class
you created earlier. If you compare it to the common main view you can see that it
adds to it in a few dimensions.

 The first is the requirement of the card layout class and its implementation. Your
common main view has no layout required or implemented. Later you’ll compare the
Phone main view to the Tablet main view, and the Tablet main view will implement an
Hbox layout to provide a completely different user experience for this application.

 In the config object you’ll find a control object c. This object allows your main
view, a subclass of Container, to listen for events from a child anywhere in its parent-
child hierarchy using ComponentQuery syntax. In this case you’re listening to the tap
event of the back button that you inject in the initialize method d. When the
tap event is fired the onMainBackButtonTap method e is called, allowing you to fire a
custom event.

Listing 11.10 The Phone profile main view

Defines Phone
profile main viewb

Listens for
tap event

c

Adds ContactsList
viewd

Handles back
button tap

e

260 CHAPTER 11 Building Sencha Touch applications
As you’ll see later, the control construct you’re setting up in this view works the same
way as the control constructs that you define in controllers. The reason you define
control constructs in views is because you’re treating this profile-specific view as a class
in its own right, meaning that you can have class-specific events. In this case you fire
the back event when the back button is pressed, passing along key references for the
main controllers (common and profile-specific) to manage navigation.

Inside the initialize method you do quite a bit of work. The first step is to add the
soon-to-be-created ContactsList view as a child. It doesn’t yet exist, so attempting to
view our app in the browser at this point will cause an exception to be thrown, render-
ing the app in a failed state.

 You also add a hidden back button to the top-docked toolbar. It’s hidden because
when the application initializes the ContactsList is the first view to be rendered. The
back button doesn’t need to be visible until the ContactDetails view is focused. Soon
you’ll be managing its appearance via updates to the Phone profile’s main controller.

 The next step in your journey is to build the ContactsList view.

11.5.10Building the data-driven ContactsList view

The ContactsList view is the first data-driven view in your application and is easy to
develop, as shown in the following listing.

Ext.define('App.view.ContactsList', {
 extend : 'Ext.dataview.List',
 xtype : 'contacts',

Why are you firing this custom event and not doing any work?
The reason you’re firing a custom event is because we want to show you the capability
of firing custom events for your views and how to capture them in your controllers. In
the onMainBackButton method you could do some work such as validating the form
values and preventing backward navigation if something is missing or incomplete.

Control event registration and execution scope
When defining control constructs inside the prototypal config object you use string
representation of the method names to be executed by the event system. You do this
because the this keyword refers to window, not the instance of App.view.phone
.Main when the control object is being parsed by JavaScript (when the class is
defined). String representation of method names affords you the flexibility to set up
these event listener constructs without the this limitation. Event handlers defined
via string representation for the control constructs are always called within the scope
for the class in which the control construct is being defined.

Listing 11.11 The ContactsList view

261Building the Phone profile version of your application
 requires : ['App.store.Contacts'],

 config : {
 itemTpl : '{firstname} {lastname}',
 store : {
 type : 'contacts'
 }
 }
});

There’s not much to the ContactsList view, but there are some key points we need to
discuss. First is the requirement of the Contacts store class, where you’re seeing the
documented inclusion of this class for the first time. The Contacts store is imple-
mented via a shortcut object using its alias.

 The next step to getting this to work is to ensure that this class is documented as
a requirement. The best place to do this is the common main controller because it’s a
shared view between the Phone and Tablet profiles. To do this you’ll have to open
the common main controller class (app/controller/Main.js) and add the follow-
ing to the config object:

 views : [
 'ContactsList',
// 'ContactDetails'
]

By adding this snippet into the config object of the
common main controller you’re ensuring that when
that controller is defined your ContactsList is injected
into the namespace as a dependency to this controller.
The ContactDetails view is commented out because you
haven’t created it yet and we want you to see part of the
phone version of this app in action (figure 11.13).

 If you look at the app you can see the ContactsList
view for the first time and that the back button in the
top toolbar is hidden. Recall that the back button is
hidden because you configured it that way when you
created the Phone profile’s main view class.

 At this point you’ve done a lot of work to get the
Phone profile working and you can begin to see the
fruits of your labor. But you’re not done yet. To fin-
ish this profile you’ll need to create the Contact-
Details view and then wire up the interaction models
with the controllers. Afterward you’ll create the tab-
let view and then move on to package this applica-
tion for production.

Figure 11.13 Seeing the
ContactsList for the first time

262 CHAPTER 11 Building Sencha Touch applications
11.5.11Creating the ContactDetails view

The ContactDetails view will be responsible for displaying the details of the contact
model selected via the itemtap event from the ContactsList and will allow users to
modify the data because it extends form.Panel. The next listing shows you how
to do it.

Ext.define('App.view.ContactDetails', {
 extend : 'Ext.form.Panel',
 xtype : 'contactdetails',

 requires : [
 'Ext.form.FieldSet'
],

 config : {
 items : {
 xtype : 'fieldset',
 title : 'Contact details',

 defaults : {
 xtype : 'textfield',
 labelWidth : '30%',
 autoCapitalize : true
 },

 items : [
 {
 name : 'firstname',
 label : 'First'
 },
 {
 name : 'lastname',
 label : 'Last'
 },
 {
 name : 'phone',
 label : 'Phone'
 }
]
 }
 }
});

The ContactDetails view is simple even though listing 11.12 is rather long. You define
the class B, extending form.Panel, and set an XType for lazy instantiation. What
makes this listing so big is the number of form items c.

 To see this view render in your application you’re going to need to make a few
quick changes to the infrastructure classes. Start by modifying the views array in the
common main controller class (app/controller/Main.js). Uncomment out all of
the views in the views array so that it looks like this:

Listing 11.12 The ContactsDetails view

Defines classb

Adds fieldsc

263Building the Phone profile version of your application
 views : [
 'ContactsList',
 'ContactDetails'
]

By making this change you’re instructing the applica-
tion to load the ContactDetails view as a dependency.
This change won’t make it viewable yet. You want to see
it render so you can detect whether you’ve made any
errors in your code.

 The next change is a temporary one, where you’ll
modify the Phone profile class itself (app/profile/
Phone.js), forcing this view to render. Modify the
me.add method call in the initialize method so that
it looks like this:

me.add({
 xtype : 'contactdetails'
});

By making this change you’re forcing ContactDetails to
render instead of the ContactList. This is a temporary
change to ensure that you have no problems. Figure 11.14
shows how the ContactDetails view looks on a phone.

 You can see that your newly developed view works
pretty well. No data is present yet, and that’s okay. To
get this to work you’ll have to wire in the interaction models.

 Before you do that you must change your change to the initialize method of the
Phone profile so that you add the ContactList XType instead of ContactDetails:

me.add({
 xtype : 'contacts'
});

Let’s move on to working on the interaction models.

11.5.12Wiring up the workflow models into the controllers
Before we dig into the code let’s review how this app is going to work. First, users are
presented with a list of contacts. They select a contact via a tap event, which will invoke
the rendering and displaying of the ContactDetails view via a slide animation. It’s at
this time that the back button appears at the top-docked toolbar. Users can elect to
make changes while on the ContactDetails screen. Whenever the back button is
pressed you’ll ensure that those changes are persisted in the model and the Contacts-
List view is animated into view.

 You’ll begin by modifying the common main controller (app/controller/Main.js)
to inject some commonly used refs, control constructs, and methods. Instead of giving
you a step-by-step instruction guide on how to change the common main controller
we’ll show you the final class (see the next listing) and dive into it after you’ve read it.

Figure 11.14 Your
ContactDetails view rendered
on a phone, error-free

264 CHAPTER 11 Building Sencha Touch applications
Ext.define('App.controller.Main', {
 extend: 'Ext.app.Controller',

 config : {
 refs : {
 mainView : 'main',
 contacts : 'contacts',
 details : 'contactdetails'
 },

 control : {
 contacts : {
 select : 'onContactSelect'
 }
 },

 views : [
 'ContactsList',
 'ContactDetails'
]
 },

 onContactSelect: function(list, record) {
 this.showContactDetails(record);
 },

 persistContact : function() {
 var details = this.getDetails(),
 record = details.getRecord();

 if (! record) {
 return;
 }
 record.beginEdit();
 record.set(details.getValues());
 record.endEdit();
 record.commit();
 },

 /**
 * Override for each profile
 */
 showContactDetails : Ext.emptyFn,
 onMainBackButton : Ext.emptyFn
});

The updates to your common main controller begin with the addition of the static ref-
erences via the refs key B. These references work by means of key-value pairs to tell
the controller how to find an instance of a component via ComponentQuery. We
should spend a moment discussing this further because it’s a key feature that can
be useful.

 Let’s take the first ref, mainView. You see the word mainView as the key and main as
the value of this object. The value (the right side of the colon) is the Component-
Query syntax, where you’re looking for any class with the XType set to main. The key

Listing 11.13 The common main controller updated

Configures static
references

b

Sets up event
listenerc

Handles ContactList
select

d

Persists data in
modele

Implements
showContactDetails

f

265Building the Phone profile version of your application
(the left side of the colon) is set to the same name and will be used to automatically
create the reference and getter method. Later you’ll use the self-generated getMain-
View method in the Phone profile controller to get a reference to the class that the
ComponentQuery found.

You have the control constructs c to set up a select listener for the ContactsList
instance where the local member onContactListSelect will be executed. There’s also
a back event listener for the main view instance that’ll trigger the execution of onMain-
BackButton.

 The onContactSelect method d is defined as a means to call the showContact-
Details f member, passing in only what’s required, which is the record. show-
ContactDetails is a method that has different implementations for each profile, so
because you’re in the common main controller you create empty functions that are
marked via comments to be overridden by profile-specific controller subclasses.

persistContact e is a method that’s defined to merge the data from the Contact-
Details screen (form) to the list. It’s essentially a method that’ll be called in two use
cases. The first is when the user is viewing a contact on the Phone profile and hits the
back button. The second is when the person is viewing a contact on the Tablet profile
and hits the save button.

You’re almost ready to wrap up the Phone profile. To do so you need to get the Phone
profile main controller wired up with the application. It’ll implement the showContact-
Details method and add another.

Refs designed for single instances
Lots of people get confused by refs when they’re trying to access an instance of a
class where many instances may exist at any one time. It’s helpful to clear up this
confusion early by highlighting the fact that refs are designed for single instances
only. When developing apps we typically use them as pointers to the main view. All
other views typically can be thrown away, but the main view generally stays there to
manage navigation for the entire application. So the rule of thumb is that if you need
to access more than one instance of a view, don’t use refs. We’ll show you how to lever-
age the control constructs to manage view instance awareness via event handlers.

Why no save button in the Phone profile?
Without getting into too much user experience theory, in most apps changes are per-
sisted when users modify data and navigate away from the screen that they made
those changes in. Not only does this eliminate the need for the screen real estate to
display the save button, but it allows the app to be used in a manner where users
“get in and get out,” which is the goal for the best-designed phone applications. For
tablet apps you generally have the screen real estate, so you’ll add a save button to
the ContactDetails form when you build that profile and controller workflow model.

266 CHAPTER 11 Building Sencha Touch applications
11.5.13Adding the Phone profile main controller

As you’ll see, the Phone profile main controller (app/controller/phone/Main.js) is
going to extend the common main controller and implement the showContactDetails
and onMainBackButton methods, effectively achieving forward and backward naviga-
tion between the two screens.

 The next listing is long, but you’ve seen a third of it. The last two-thirds are the two
method implementations and are new, so we’ll put our focus there.

Ext.define('App.controller.phone.Main', {
 extend: 'App.controller.Main',

 config : {
 views : ['App.view.phone.Main'],
 anims : {
 next : {
 type : 'slide',
 direction : 'left'
 },
 previous : {
 type : 'slide',
 direction : 'right'
 }
 },
 control :{
 main : {
 back : 'onMainBackButton'
 }
 }
 },

 showContactDetails: function(record) {
 var me = this,
 mainView = me.getMainView(),
 contactsList = me.getContacts(),
 lastName = record.get('lastname'),
 firstName = record.get('firstname'),
 contactDetails = mainView.down('contactdetails'),
 nextAnim = me.getAnims().next;

 if (! contactDetails) {
 contactDetails = mainView.add({
 xtype : 'contactdetails',
 hideFields : false
 });
 }

 contactDetails.setRecord(record);

 mainView.setTitle(firstName + ' ' + lastName);
 mainView.down('[ui=back]').show();
 mainView.animateActiveItem(contactDetails, nextAnim);

 Ext.defer(contactsList.deselectAll, 1, contactsList);
 },

Listing 11.14 Phone profile main controller

Listens to
back event

b

Shows
ContactDetails
form

c

Creates
ContactDetails
view onced

267Building the Phone profile version of your application
 onMainBackButton : function() {
 var me = this,
 main = me.getMainView(),
 contacts = main.down('contacts');

 me.persistContact();

 main.setTitle('Contacts');
 main.down('[ui=back]').hide();
 main.animateActiveItem(contacts, me.getAnims().previous);
 }
});

The additions to the Phone profile controller in listing 11.14 may seem like a lot at
first glance, but they’re relatively minor. Here’s the gist.

 The first thing we want you to focus in on is how you register listeners to the back
event B of the main view via ComponentQuery syntax. onMainBackButton will be
called when the user presses the back button, and it’ll be responsible for retrieving
the values from the form, merging the values into the selected record from the list,
and thus effectively persisting the changes in memory. The method will also be
responsible for animating the list back into the viewable space.

 The showContactDetails method c is called when an item is selected. Recall
that the workflow begins with a select event being fired from ContactDetails (see list-
ing 11.14), which causes the common main controller’s onContactSelect method
to execute. onContactSelect then executes showContactDetails.

 Inside this method you gain several references at the very top for later use in the
rest of the method. You first hit an if condition, where you create an instance of Contact-
Details the first time this method is called c. Next you instruct the instance of
ContactDetails to bind the selected contact record instance via its setRecord method,
allowing the ContactDetails screen to make the data editable. You also animate the
ContactDetails screen into view d via the main view’s animateActiveItem method
using the preconstructed and reusable next animation object set up in the controller’s
prototypal config block.

 When the user hits the back button on the application it causes the tap event to be
fired. The tap event is listened to via the common main controller (listing 11.14),
which will cause the onMainBackButton method e to be called.

 Inside this method you call the inherited persistContact method, found in the
common main controller, to merge the data from the ContactDetails screen to the
current instance of the model.

 The last job of this method is to animate the ContactList back into view via the reus-
able previous animation configuration object defined in the prototypal config object.

 This wraps up the Phone profile version of this application. Fire it up on your
phone or browser and exercise the workflows. Figure 11.15 shows a quick demo of us
working with the app utilizing one full cycle of the workflow.

 The application workflow for the Phone profile seems to work well. The next thing
you need to do is to look at this application in a tablet (figure 11.16).

Handles back
nav, persists
datae

268 CHAPTER 11 Building Sencha Touch applications
The first thing you might think is this thing looks silly. And it does! It looks silly
because of the gobs of wasted space. The reason you have all of this wasted space is
because an HTML5 app that was designed for a phone experience can render on a tab-
let, but it begs some serious design reconsideration.

Figure 11.15 The full application workflow cycle in action

Figure 11.16 The application in a tablet

269Building the tablet version of your application
Given screen-size difference the user interaction model will change a bit. Figure 11.17
shows what your app should look like on the tablet.

 As you compare the phone version to the tablet version you can see that you’ll
need to make changes. First, note that there’s no back button in the tablet version.
Second, you’ll need to inject a save button underneath the form panel.

 We hope that you’re excited to get close to completing this. Let’s switch gears and
get the tablet version done. You’re going to move at a much faster pace because
you’ve already experienced a lot of what you’re about to do.

11.6 Building the tablet version of your application
To develop the Phone profile version of your app you had to do quite a bit! Recall that
you worked to set up the infrastructure for this application, which includes the data
model and store. The tablet version of your app will require some work but it’ll reuse
over 98 percent of the existing code.

 Here’s the full list of items you need to accomplish for the Tablet profile:

■ Add the Tablet profile class.
■ Construct the view.
■ Wire in the interaction models with the tablet controller.

Before you begin working on the Tablet profile you must modify the Phone profile.
Currently you have the isActive method set up like this:

Figure 11.17 The app in a tablet simulator

270 CHAPTER 11 Building Sencha Touch applications
isActive : function() {
 return true;
 return Ext.os.is('Phone');
},

You need to modify it, removing the return true; statement, so it looks like this:

isActive : function() {
 return Ext.os.is('Phone');
},

Recall that you added the return true; statement because you wanted to force the
case where the application profile always thought that it was the active profile when
you were working on the Phone version. This is no longer the case.

 With that small modification out of the way, you now have the green light to move
ahead with the construction of the Profile class.

11.6.1 Building the Tablet profile class

As you’ll see, the Tablet profile looks almost identical to the Phone profile, with a few
minor edits to make it tablet specific. The next listing shows the Tablet profile class,
app/profile/Tablet.js.

Ext.define('App.profile.Tablet', {
 extend: 'Ext.app.Profile',

 config: {
 controllers:[
 'Main'
],
 views : [
 'Main'
]
 },

 isActive: function() {
 return true; // remove before production build
 return Ext.os.is('Tablet') || Ext.os.is('Desktop');
 },

 launch: function() {
 Ext.create('App.view.tablet.Main');
 }
});

To construct the Tablet profile class you follow the same pattern that you did with the
Phone profile. This includes the immediate return true; of the isActive method B,
because you’re working on this application at the moment. Just as you did with the
Phone profile, you’ll remove this return true; statement before you move on to work-
ing toward the production build.

Listing 11.15 The Tablet profile class

Forces tablet
profile to be
active

b

Creates
main viewc

271Building the tablet version of your application
 Very much like the Phone profile, the launch method c of the Tablet profile is
responsible for creating the instance of the Tablet profile main view subclass that
you’ll be creating next.

11.6.2 Constructing the tablet main view

To construct the tablet main view you’ll follow a similar pattern to the phone main
view, with a twist. The following listing contains app/view/tablet/Main.js.

Ext.define('App.view.tablet.Main', {
 extend : 'App.view.Main',

 requires : [
 'Ext.layout.HBox'
],

 config : {
 layout : {
 type : 'hbox',
 align : 'stretch'
 }
 },

 initialize : function() {
 var me = this;
 me.add([
 {
 xtype : 'contacts',
 flex : 1
 },
 {
 xtype : 'contactdetails',
 flex : 3
 }
]);

 me.callParent();

 me.down('contactdetails').add({
 xtype : 'button',
 text : 'Save',
 ui : 'confirm',
 itemId : 'saveDetails',
 style : 'float: right; margin-right: 10px;',
 width : 100
 });
 }
});

To implement the different layout you first require and then implement the HBox
layout B, giving you the flexibility to have the ContactList and ContactDetails
forms side by side. Inside the initialize function you’re adding the ContactList

Listing 11.16 The tablet main view

Requires
HBox
layoutb

Adds
custom
viewsc

Injects save
buttond

272 CHAPTER 11 Building Sencha Touch applications
and ContactDetails views as children c at the same time. After you execute this.call-
Parent(), you immediately inject a save button as a child of the ContactDetails view d.

With the view complete you can move on to getting the tablet main controller done
and then look at how your app behaves.

11.6.3 Constructing the tablet controller

Relative to the phone main controller, the tablet main controller in the following list-
ing is simple. This is because there’s no navigation to manage for this application. You
simply have to manage the selection of an item and then persist the changes if some-
one taps on the save button.

Ext.define('App.controller.tablet.Main', {
 extend: 'App.controller.Main',

 config : {
 control : {
 'button[itemId=saveDetails]' : {
 tap : 'onSaveButtonTap'
 }
 }
 },

 showContactDetails: function(record) {
 this.getDetails().setRecord(record);
 },

 onSaveButtonTap : function() {
 this.persistContact();
 }
});

To listen to the save button tap event you must set up a control construct B using
ComponentQuery syntax. Here you’re searching any button with an itemId of save-
Details. You could’ve gotten a lot more specific with that query, but for our purposes
this is good enough.

 The next thing to look at is the showContactDetails method c. In the Phone
profile main controller you had to worry about creating an instance of ContactDetails,

Why are you injecting a button into the view from the profile?
The reason you’re injecting a button into the view from the profile is because the
whole point of the device profiles is to inject changes into views and application
behaviors. If you elected to add this logic to the ContactDetails view you’d negate the
purpose of the profile, which would make your application much more rigid and diffi-
cult to maintain.

Listing 11.17 The tablet controller

Listens to
save button
tap event

b

Shows data in
Form panel

c

Persists data to
contact modeld

273Building the tablet version of your application
binding the record, and then animating it in. In the tablet main controller all you
have to worry about is binding the record to the instance of the ContactDetails screen.

 The onSaveButtonTap method d is called when the tap event is fired by the newly
injected save button (from the Tablet profile view). This method will call this.persist-
Contact(). You could inject a bit of work here if you wanted to, such as verifying that
the form fields are valid and electing to persist the values if the data is clean and pres-
ent, or showing a MessageBox alert dialog that tells the user about data issues that
they must resolve.

 You have one more task to do, and that’s to tell your application that you have a new
device profile to load. To do so you’ll need to open app.js and modify the profiles
array so it includes the Tablet profile:

profiles : [
 'Phone',
 'Tablet'
],

Now load up your app in your tablet simulator or browser and see if everything works
as advertised (figure 11.18).

 You’ve just seen what it takes to build an application from start to finish. You used
Sencha Cmd to generate the application structure and you created the necessary
model, store, views, profiles, and controllers to support a tablet and phone version of
the application.

Figure 11.18 The Tablet profile of your application works well on a tablet simulator.

274 CHAPTER 11 Building Sencha Touch applications
Before we move on to making testing and production builds let’s do a little house-
keeping. Open the Tablet profile, app/profile/Tablet.js. Next, remove the return
true; statement from the isActive method so that it looks like this:

 isActive: function() {
 return Ext.os.is('Tablet') || Ext.os.is('Desktop');
 },

The last leg of this journey involves generating a testing build and then migrating to
production, where we’ll introduce you to the Touch Microloader.

11.7 Packaging your application for web deployment
You’re currently at step 3 of the app development process. At this point you’ve
deemed the application feature rich enough to begin the development testing phase.

 In this section you’ll explore HTML5 packaging options. This includes going
through the testing and production build phases to ensure your application operates
the way you want. You’ll begin with the testing build.

11.7.1 Creating a testing build

You’re now at step 4 of the development process (generate and verify testing build).
To create a testing build you must drop down to a shell and change directories to
where your application resides. (We changed directories to where we generated the
application, /www/myapp.)

 From there you’re going to issue the proper Sencha Cmd syntax to generate the
testing build. The next listing shows how to do it.

sencha app build testing
Sencha Cmd v3.0.0.190
[INFO] init-properties:
[INFO] init-sencha-command:
[INFO] init:
[INFO] -before-app-build:
[INFO] app-build-impl:
[INFO] building application
[INFO] Deploying your application to /www/myapp/build/App/testing
[INFO] Copied touch/sencha-touch.js
[INFO] Copied app.js
[INFO] Copied resources/css/app.css
[INFO] Copied /www/myapp/resources/icons
[INFO] Copied /www/myapp/resources/startup
[INFO] Resolving your application dependencies
 (file:////www/myapp/index.html)
[INFO] Compiling app.js and dependencies
[INFO] Processing classPath entry : /www/myapp/sencha-compile-temp-dir
[INFO] Processing classPath entry : /www/myapp/touch/src
[INFO] Processing classPath entry : /www/myapp/app.js
[INFO] Processing classPath entry : /www/myapp/app
[INFO] Processing class inheritance graph

Listing 11.18 Generating a testing build

Issues proper commandb

Begins Cmd
outputc

Resolves
dependency

d

275Packaging your application for web deployment
[INFO] Processing instantiation refereces to classes and aliases
[INFO] Processing source dependencies
[INFO] Concatenating output to file
 /www/myapp/build/App/testing/app.js
[INFO] Completed compilation.
[INFO] Processed local file touch/sencha-touch.js
[INFO] Processed local file app.js
[INFO] Generated app.json
[INFO] Embedded microloader into index.html
[INFO] -after-app-build:
[INFO] app-build:

Sencha Cmd does quite a bit to generate a testing build. It all begins with the submis-
sion of the sencha app build testing command B, which causes a flurry of activity
from the shell console c.

 As you can tell from the Cmd output, resources are copied to build/App/testing
relative to where your application resides. When invoking any type of build Cmd will
analyze (not execute) your application’s dependency structure d and generate a
dependency model, which it uses in conjunction with the app.json file to concatenate
all of your JavaScript classes into a single file named app.js e.

Sencha Cmd places app.js in the root of your project build directory (<app_location>/
build/App/testings). It’s worth noting that app.js contains all of the required Sencha
Touch code as well as whitespace and comments; thus it isn’t intended for production
(generally internet) deployments.

NOTE If you’d like to change where Sencha Cmd places builds you can mod-
ify them in the section labeled “buildPaths” in app.json. You can use relative
or absolute paths.

After the build process completes you can look at it in the browser via http://yourhost/
build/App/testing. Because the application will look the same as the previous listings
there’s no point showing you how the app renders. Focus your attention on the Network
tab of the WebKit inspector tool (figure 11.19). As you can see, you have few resources
being requested and loaded relative to the development mode of your application. This
has to do with the fact that Sencha Cmd has concatenated your files into a single app.js.

Remember our conversation about dependency modeling?
Recall our conversation where we were discussing documenting your application’s
JavaScript requirements via both the requires statement in your class definitions
and app.json modifications. If you have files that aren’t documented properly you
might find yourself with a bad testing or production build. The best way to detect
these things is to look at the Network tab of the WebKit inspection tool. There you’ll
likely find that JavaScript files other than app.js are being loaded. In this case you
want to revisit your application definition and add those files to the app.json file or
the dependent class(es).

Concatenates
JavaScript filee

http://yourhost/build/App/testing
http://yourhost/build/App/testing

276 CHAPTER 11 Building Sencha Touch applications
Your testing build can now officially be used for user acceptance testing (UAT). Step 5
of the app development process dictates that you should verify whether it’s okay to
produce a production build. Because you’ve tested your application successfully, you
can move on to step 6: producing and verifying a production build.

11.7.2 Creating a production build

The creation of a production build is similar to that of a testing build. The next listing
shows what one looks like.

sencha app build production
Sencha Cmd v3.0.0.190
[INFO] init-properties:
[INFO] init-sencha-command:
[INFO] init:
[INFO] -before-app-build:
[INFO] app-build-impl:
[INFO] building application
[INFO] Deploying your application to /www/myapp/build/App/production
[INFO] Copied app.js
[INFO] Copied resources/css/app.css
[INFO] Copied /www/myapp/resources/icons
[INFO] Copied /www/myapp/resources/startup

A quick word about the testing version bootstrap
We went over, in pretty good detail, how the Microloader application bootstrap works
in the development version. The reason we’re not covering the testing build Micro-
loader bootstrap is because it’s nearly identical to that of the development version.
The only major difference between the development and production versions of the
Microloader that you need to be aware of is that the Microloader for development is
loaded via an external script tag request, whereas the testing version of the Micro-
loader is embedded inside index.html.

Listing 11.19 Generating a production build

Figure 11.19 The resources loading from a testing build

Generates
production
buildb

277Packaging your application for web deployment

tion
[INFO] Resolving your application dependencies
 (file:////www/myapp/index.html)
[INFO] Compiling app.js and dependencies
[INFO] Processing classPath entry : /www/myapp/sencha-compile-temp-dir
[INFO] Processing classPath entry : /www/myapp/touch/src
[INFO] Processing classPath entry : /www/myapp/app.js
[INFO] Processing classPath entry : /www/myapp/app
[INFO] Processing class inheritance graph
[INFO] Processing instantiation refereces to classes and aliases
[INFO] Processing source dependencies
[INFO] Concatenating output to file
 /www/myapp/build/App/production/app.js
[INFO] Completed compilation.
[INFO] Processed remote file touch/sencha-touch.js
[INFO] Processed local file app.js
[INFO] Minified app.js
[INFO] Minified resources/css/app.css
[INFO] Generated app.json
[INFO] Embedded microloader into index.html
[INFO] Generating appcache
[INFO] Generating checksum for appCache item: index.html
[INFO] -after-app-build:
[INFO] app-build:

If you scan the output of a production build you’ll find that it’s close to the testing
build process. It all begins with the submission of the sencha app build production
command B in the shell. Just like in the testing build, application dependencies are
resolved c and those dependencies are concatenated into a single file called app.js d.
This is where the similarities end for the most part.

 After the file concatenation phase app.js is minified e. This is where the file size
is reduced by the removal of unnecessary whitespace and comments. Also the code is
modified so that its footprint is smaller (obfuscation).

 The last few important items have to do with the production version of the Micro-
loader f. After a production version of app.json is created index.html is created with
the production version of the Microloader, effectively arming it with a caching mecha-
nism that we’ll explore in a little bit. In order for the Microloader to work properly a
checksum has to be generated g for this production build.

 You can view the production build of your application by visiting http://yourhost/
build/App/production/ in your browser. This sets the stage for us to discuss the
Microloader.

11.7.3 A deep dive into the production Microloader

As we’ve discussed in the past, the Sencha Touch Microloader is responsible for boot-
strapping and loading necessary resources to kick off the application in your browser.
The production version of the Microloader adds features to your application that
allow your apps to bootstrap lightning-fast after the first launch.

 To put our conversation into context let’s peer into what resources are loaded when
the production version of your application launches for the first time (figure 11.20).

Resolves applica
dependenciesc

Concatenates
dependency

 d

Minifies
resources

e

Injects production
Microloader

f

Creates
checksum
for buildg

http://yourhost/build/App/production/
http://yourhost/build/App/production/

278 CHAPTER 11 Building Sencha Touch applications
Note the loading of app.json, app.css, and app.js. These three files are required to
bootstrap this application. app.json contains the necessary data for the production
Microloader to know what build of the application is being loaded. There’s more to
the relationship between app.json and the Microloader that we’ll be revisiting shortly.

NOTE Much like the testing build, the production Microloader is embedded
inside index.html. The difference between the two is that the production ver-
sion is minified; thus it’s difficult to read when looking at index.html within
your editor.

For now, let’s see what happens when the application is refreshed in the browser. Fig-
ure 11.21 shows the WebKit inspector tool’s Network tab with the same application
loaded a second time.

 When comparing the resources loaded in an initial load of a Sencha Touch pro-
duction app (figure 11.20) and successive loads (figure 11.21) you’ll find a stark dif-
ference. There are no requests for app.css and app.js.

 How could this be? How does your application work without those resources being
requested from the server?

 The answer is quite simple. The production Sencha Touch Microloader caches
your application JavaScript and CSS inside HTML5 offline storage, known as local stor-
age. Here’s how this all works.

Production Microloader internals
You’ve learned how the development (and testing) modes work. The internals of the
production version of the Microloader are somewhat complex, so we won’t be cover-
ing how it works. We’ll highlight what you need to know to ensure that your application
deployments are successful.

Figure 11.20 The application resources loaded in the production build for the first time

279Packaging your application for web deployment
NOTE If this is the first time that you’ve gotten exposure to local storage you
can learn more by visiting www.html5rocks.com/en/features/storage.

When your application launches for the first time (figure 11.20) the Microloader
kicks off an Ajax request for app.json. From here the Microloader decides what to do
next after it knows more about your application.

 To further the conversation, let’s look at the (formatted) contents of app.json:

{
 "id": "c64fe431-3558-435e-9b52-40f3f7f088af",
 "js": [
 {
 "update": "delta",
 "path": "app.js",
 "type": "js",
 "bundle": true,
 "version": "8d652b33d85f3ef0a80b47f9064d88474fd020ff"
 }
],
 "css": [
 {
 "update": "delta",
 "path": "resources/css/app.css",
 "type": "css",
 "version": "addd145186967b17aaf5440d171933031f33f2d8"
 }
]
}

In app.json the application ID is listed as well as data items for your JavaScript file and
CSS file. Each file has its own version, which is a checksum of that current build. These
are vital data points for the production Microloader to perform the following decision.

 During an initial load of your application the production Microloader checks local
storage to see if your application resources are there. If they aren’t it requests them
(figure 11.20) from your web server and caches them in local storage. For subsequent
loads it loads app.json and verifies that the application ID and file checksum match
what’s in local storage.

Figure 11.21 The application resources loaded in the production build for the second time

www.html5rocks.com/en/features/storage

280 CHAPTER 11 Building Sencha Touch applications
Figure 11.22 shows what things look like in local storage for our production build. If
you want to look at it in your app, jump to the JavaScript console, type in local-
Storage, and press Enter. You’ll see something similar to figure 11.22.

 What you see is that the production Microloader stores your code based on the
application ID. Each file is marked with the checksum. If you were to make changes to
this application you’d see that the Microloader reacts differently.

 Let’s walk through a simple change and rebuild things in production. You’ll be
moving pretty quickly through this.

11.7.4 Creating a production delta build

To create a delta production build you have to modify some code. Rather than mak-
ing a functional change you’ll make a cosmetic one.

 Open app/view/Main.js in your editor and change the top toolbar title from

title : 'Contacts'

to

title : 'My Contacts'

This will give you the platform to generate a production delta build. Make sure that
you didn’t mess anything up by looking at your application inside the development
version (figure 11.23).

 You have no syntactical errors in the development version of your application
which means that you can go ahead with a testing build. Drop to a command shell and
enter the following:

sencha app build testing

After the build process completes you can look at it in the browser at http://yourhost/
build/App/testing. Did you see any exceptions? No? Do you see the change?
Yes? Awesome!

 Next, let’s generate a production build. At the command line, enter

sencha app build production

For this and subsequent production builds you’re going to see output where Sencha
Cmd recognizes that there has been a change in the codebase and will generate one
or more delta files.

Figure 11.22 The application JavaScript and CSS cached inside local storage

http://yourhost/build/App/testing
http://yourhost/build/App/testing

281Packaging your application for web deployment
Here’s what one of those info lines looks like for your application (it’s rather large!):

[INFO]Generated delta for: app.js from hash:
 '8d652b33d85f3ef0a80b47f9064d88474fd020ff' to hash:
 '1c30d0bbd2cd15e8f05ffda8a94328b6a20939fe'

What you’re seeing is that Microloader has noticed that the concatenated build file,
app.js, is different, and a different version has been laid down into your production
build. This causes app.json to be modified with the relevant changes, which will cause
the Microloader to react on the next launch of your application.

 From here you can load your application in a browser and see the onUpdated
method called from the Microloader (figure 11.24).

 Because the production Microloader found a delta in app.json it’ll call the onUpdated
method of your application instance, causing the message box (figure 11.24, on the
left) to be displayed, giving users the opportunity to load the change now or defer it
until the next launch of the application. By this time the application delta has already
been stored into local storage, so the user will see the change immediately on the next
load of this application.

Figure 11.23 Your application change in
development mode

282 CHAPTER 11 Building Sencha Touch applications
From here you can deploy the contents of the build/App/production directory to
your production web server and serve your customers! This wraps up the application
development process!

11.7.5 Where to go from here?

By all standards, the application you developed was simple. The reason it was so sim-
ple is because we wanted to focus on the semantics of application development includ-
ing MVC and Sencha Cmd and everything in between.

 There are lots of example applications in the wild that demonstrate all types of
design patterns, including DiscoverMusic, an application that this author (Jay) co-
authored, which demonstrates how to create custom navigation and views with Sencha
Touch 2, providing a cool tablet experience (figure 11.25).

 To see this application in action point your modern 10-inch tablet’s browser to the
following URL: http://discovermusic.senchafy.com/. This application is completely
open source and you can get it at the following GitHub URL: https://github.com/
ModusCreateOrg/DiscoverMusic.

 You can find other applications in the Sencha Touch application gallery at
www.sencha.com/apps/. Sometimes authors will provide URLs to demos of their
applications and, if their project is open source, the URL for the source code.

 Lastly, the Sencha community forum at http://sencha.com/forum/ is an excellent
place where people post show-and-tell articles of their applications, contributing to a
ton of resources to learn more about developing applications with Sencha Touch 2.0.

Figure 11.24 By default (per
the onUpdated method
defined in app.js) your
production builds will notify
users if there has been an
update to the application code.

www.sencha.com/apps/
http://discovermusic.senchafy.com/
https://github.com/ModusCreateOrg/DiscoverMusic
https://github.com/ModusCreateOrg/DiscoverMusic
http://sencha.com/forum/

283Summary
11.8 Summary
Wow! You’ve made it! This has been an incredible journey. You’ve learned a ton in this
final chapter.

 You started by taking a quick look at a basic development workflow process that
begins with creating a simple application with Sencha Cmd, all the way to the deploy-
ment of a production application. The application development kicked off with a
deep inspection of what this application does and a walk through the namespace. You
started the code with the creation of an application project via Sencha Cmd. From
there you inspected Sencha Cmd and the files laid down by Cmd, the foundation for
your application.

 We walked through the development of a basic application. You used that simple
application to learn about Sencha Touch’s MVC. You learned key things, from how to
leverage control constructs for custom views to how to fire custom events for your
application. You also saw how to implement basic profiles for tablets and phones.

 After developing the application you saw what it was like to leverage Sencha Cmd
to create testing and production builds for web deployments. During this phase you
learned how the production Microloader accelerates application bootstraps by use of
the Microloader.

Figure 11.25 DiscoverMusic is an excellent resource for learning how to build
custom applications with Sencha Touch 2.0.

index
A

ActionList class 217–221
actionMethods config 126
ActionSheet class 13
ActionSheets 110–112
activate event 48
activeItem method 68
activeitemchange event 67
Add Child button 66
add event 48
Add Fixed Width Child

button 66
add method 58, 89, 263
addDocked method 89
addListener method 182
Ajax proxy 125
alert method 28, 117–118
alerting, with message

boxes 116–117
align option 72, 167
align parameter 71
allowHighAccuracy 179
animateActiveItem method 69,

267
anims object 258
api config 126
App Gallery, Sencha Touch 5
app.js file 238, 247–251
app.json file 238
App.view.Main class 247,

259
App.view.phone namespace

256
<ApplicationNamespace>.app

251

applications
contact editor application

application
namespace 240–242

overview 238–239
contact manager

data store for 32–33
MainContainer class 35–

37
model for 31–32
organizing class

structure 29–31
overview 29
PersonDetail class 34–35
PersonList class 33–34
rendering application 37

development workflow 232–
234

generating application
stub 235–238

loading process for 251–254
packaging for web deploy-

ment
and Microloader 277–280
creating production

build 276–277
creating production delta

build 280–282
creating testing build 274–

276
phone profile

adding phone profile 254–
256

app.js contents 247–251
application loading

process 251–254

common main
controller 256–257, 263–
265

ContactDetails view 262–
263

ContactsList view 260–261
creating data model 243–

244
debugging in browser 250–

251
generic main view

class 244–247
phone profile

controller 257–258, 266–
269

phone profile main
view 258–260

Sencha Cmd 3.0
overview 234–235
requirements for 235

tablet profile
tablet main controller 272–

274
tablet main view 271–272
tablet profile class 270–271

apply method 45, 131, 200
audio tags 18
audio, playing

considerations for 193
overview 189–190

<audio> element 187
autocapitalization option 120,

155
autocomplete 120, 155
AutoComponentLayout 65
AutoContainerLayout 65, 106
285

INDEX286
autocorrection option 120, 155
autoPause configuration 187
autoResume configuration 187,

191
autoUpdate config 179

B

BaseCar class 199–200
binding, form to list 172–176
bloat, reducing 20
browsers

compatibility for 6
debugging in 250–251
mobile development for 19–

20
building applications

contact editor application
application

namespace 240–242
overview 238–239

development workflow 232–
234

generating application
stub 235–238

packaging for web deploy-
ment
and Microloader 277–280
creating production

build 276–277
creating production delta

build 280–282
creating testing build 274–

276
phone profile

adding phone profile 254–
256

app.js contents 247–251
application loading

process 251–254
common main

controller 256–257, 263–
265

ContactDetails view 262–
263

ContactsList view 260–261
creating data model 243–

244
debugging in browser 250–

251
generic main view

class 244–247
phone profile

controller 257–258, 266–
269

phone profile main
view 258–260

Sencha Cmd 3.0
overview 234–235
requirements for 235

tablet profile
tablet main controller 272–

274
tablet main view 271–272
tablet profile class 270–271

builds directory 25
Button class 98
buttonHandler function 109
buttons

adding to toolbars 95
customizing 99–103
overview 98–99

Buttons option 119

C

call method 200
callback parameter 28
callParent() method 272
card layout 67–70
cascading style sheets. See CSS
centering items, in toolbars 95–

97
Checkbox field 12
checkbox widget 157
checkboxes element 60
child method 61
children property 145
children, handling with Con-

tainer class 57–60
class system for Sencha

Touch 201–205
classes

organization structure for 29–
31

overview 7–9
click event 20
cls property 174
cmd directory 25
collapsible fieldsets

plug-in 223–229
Commercial license model 24
common main controller, for

contact editor
application 256–257, 263–
265

compatibility
for browsers 6
for hardware 6–7

Component class 41, 43, 78, 150

component configurations 43
component life cycle

destruction phase 48–49
initialization phase

comparison of
methods 51–52

direct instantiation 50–51
direct-loaded

instantiation 50–51
lazy instantiation 50–51
overview 43–46

render phase 46–48
component model 41
ComponentManager class 43–

45, 48–52
ComponentQuery class 45, 63
ComponentQuery method 185
ComponentQuery syntax 259,

264, 267, 272
components

for maps 178
Img

including images
using 182–184

overview 182
preloading image with

spinner 184–185
config object 27, 33, 45
config option 69
config property 52
Config System feature 8
confirm ui style 102
constructor method 200
contact editor application

application namespace 240–
242

overview 238–239
phone profile

adding phone profile 254–
256

app.js contents 247–251
application loading

process 251–254
common main

controller 256–257, 263–
265

ContactDetails view 262–
263

ContactsList view 260–261
creating data model 243–

244
debugging in browser 250–

251
generic main view

class 244–247

INDEX 287
contact editor application
(continued)
phone profile

controller 257–258, 266–
269

phone profile main
view 258–260

tablet profile
tablet main controller 272–

274
tablet main view 271–272
tablet profile class 270–271

contact manager application
example

data store for 32–33
MainContainer class 35–37
model for 31–32
organizing class structure 29–

31
overview 29
PersonDetail class 34–35
PersonList class 33–34
rendering application 37

ContactDetails view 245, 260–
263, 266, 272

ContactsList class 243
ContactsList view 260–261, 263
Container class 55–56, 60–61,

76, 92, 162, 167
anatomy of 56–57
handling children 57–60
querying hierarchy of 61–62

Container method 36
containers

moving items between 59
overview 9

Containers group, Sencha
Touch 9

controller.Main class 241
CORS (cross-origin resource

sharing) 126
cross-domain loading 126
CRUD (create, read, update,

and delete) 38
CSS (cascading style

sheets) 207–208
customizing buttons 99–103
cycle property 159

D

Data group, Sencha Touch 8
data models

for contact editor
application 243–244

for forms 168–172
loading data 169–172
submitting data 168–169

data stores
displaying with DataView

widget 130–135
implementing 134–135
overview 130–131
vs. List class 135–137
XTemplate class 131–134

displaying with List class 135–
143
disclosure icons in 141–

143
grouping data in 141–143
IndexBar feature 140–143
using infinite data

with 137–140
vs. DataView widget 135–

137
displaying with NestedList

class 143–148
creating list 146–147
displaying details in 147–

148
overview 144–145
using TreeStore 145

example of 128–130
for contact manager applica-

tion example 32–33
models in 127
overview 124–125
using proxies to load

data 125–126
using readers to digest

data 126–127
writers for 128

data usage, reducing 21
data-bound views 15–18
DataView class 123, 130
DataView widget 15–16, 130–

135
implementing 134–135
overview 130–131
vs. List class 135–137
XTemplate class 131–134

Date class 13
Date Picker field 12
date pickers 114–115
Date() method 158
datepickerfield widget 158
debug console, Safari 58
debugging, in browser 250–

251
Decorator class 150

default layout 63–65
defaults object 65, 111
defaults property 60, 71, 73
defaultTextHeight 121
deploying applications

and Microloader 277–280
creating production

build 276–277
creating production delta

build 280–282
creating testing build 274–

276
destroy method 48–49, 59
destruction phase, component

life cycle 48–49
detailCard config 147–148
development workflow, for

building applications 232–
234

direct instantiation
overview 50–51
vs. direct-loaded

instantiation 51–52
vs. lazy instantiation 51–52

direct-loaded instantiation
overview 50–51
vs. direct instantiation 51–

52
vs. lazy instantiation 51–52

dirty record 128
disclose event 141–143
disclosure icons

in List class 141–143
overview 136

DiscoverMusic application 282
displayField 160
<div> element 183
doAdd method 47
docked config property 91
docking items

dynamic docking 89–91
overview 86–89
title bar 111

docs directory 25
documentRoot config 128
doLayout() method 58
DOM (Document Object

Model) 136
doubleclick event 21
doubletap event 21
Draggable class 12, 77, 159
draggable panels 77
drive method 200
Droppable class 12, 159
dynamic docking 89–91

INDEX288
E

emailfield widget 156
enableControls

configuration 187
encode config 128
enter property 105, 109
enterAnimation 115
examples directory 25
exitAnimation 115
Ext namespace 28
Ext.AbstractComponent

class 41–42
Ext.ActionSheet 111
Ext.anims 80
Ext.application method 27, 38,

248
Ext.create method 38, 50
Ext.defer method 60
Ext.define 201–205
Ext.define method 128–129,

145
Ext.dom.Element 49
Ext.getBody() method 131
Ext.regModel 170
Ext.require method 38
extending Sencha Touch

ActionList class 217–221
class system 201–205
CSS styling 207–208
JavaScript inheritance 198–

201
planning for 206–207
plug-ins

collapsible fieldsets
plug-in 223–229

overview 221–222
extensions

for Ext JS components 205
with JavaScript 199–201
See also plug-ins 201

ExtJS 6, 107, 151
extraParams config 126

F

Field class 129, 150–151
Fieldset class 61, 162
FieldSet widget 10
fieldsets, for forms 162–163
fit layout 65–66
flex property 95–96
flex value 71
floating panels 108
fn option 119

for attribute 132
Form panel 10–12, 162, 164,

166–168
Form Panel class 150–151, 176
Format class 133–134
formatDate function 133
forms

binding to list 172–176
creating 151–153
data models for 168–172

loading data 169–172
submitting data 168–169

fieldsets for 162–163
multi-column forms 163–168
overview 149–151
widgets for

checkbox widget 157
datepickerfield widget 158
emailfield widget 156
numberfield widget 156
passwordfield widget 156–

157
radio widget 157–158
selectfield widget 160–162
sliderfield widget 159
spinnerfield widget 158–

159
textareafield widget 157
textfield widget 154–155
togglefield widget 159
urlfield widget 155

formSubmit function 168
framework, unpacking 24–26
fullscreen option 64–65, 152
fullscreen property 46
full-screen view, of Sencha

Touch 7

G

gear method 200
gear property 199
generate app command 237
Geolocation class 178–179, 181–

182
getActiveItem method 68–69
getAutoPause method 188
getAutoResume method 188
getComponent method 61
getDockedComponent

method 90–91
getDockedItems method 90
getEnableControls method 188
getLatitude method 182
getLongitude method 182

getLoop method 188
getMainView method 265
getMuted method 188
getPersons.json file 161
getPreload method 188
getting-started.html 26
getUrl method 188
getValue method 113
getValues() method 153, 169,

171
getVolume method 188
Google Maps 18, 180–182
google.maps namespace 181
groupFn value 142
grouping data, in List class 141–

143

H

handleNavigation function 75
handler function 111
hardware, compatibility for 6–7
HBox layout 70–72, 95–97
hide event 47
hideOnMaskTap property 79,

109
hierarchy, of Container

class 61–62
html property 69, 91, 109
HTML tags 113, 116
HTML5 5

I

iconAlign property 101
iconCls property 82–83
iconMask property 101
iconPreComposed key 249
idProperty config 127
images/Img component

including images using 182–
184

overview 182
preloading image with

spinner 184–185
 tag 183
increment option 159
index.html file 26, 238
IndexBar feature

List class 140–143
overview 136

indexOf function 69
infinite data, with List class 137–

140
infinite scrolling List 136

INDEX 289
InfoWindow, Google 181
inheritance, in JavaScript 198–

201
initConfig method 44–45
initialization phase, component

life cycle
comparison of methods 51–

52
direct instantiation 50–51
direct-loaded

instantiation 50–51
lazy instantiation 50–51
overview 43–46

initialize method 44–45, 259–
260, 263

input, requesting 120–122
insert method 58
isActive method 256, 269–270,

274
isPlaying method 189
itemId property 44, 60
items array 65, 69, 74, 111, 162–

163, 167
items property 87
itemtap event 174, 176
itemTpl property 33, 138

J

JavaScript
extensions with 199–201
inheritance in 198–201

Json reader 127

L

launch method 249, 252, 254,
256, 271

Layout class 63
Layout group, Sencha Touch 8
layouts

card layout 67–70
default layout 63–65
fit layout 65–66
HBox layout 70–72
nesting 72–75
VBox layout 70–72

lazy instantiation
overview 50–51
vs. direct instantiation 51–52
vs. direct-loaded

instantiation 51–52
leaf property 145
leafitemtap event listener 148
license considerations 23–24

license models 24
life cycle of components

destruction phase 48–49
initialization phase

comparison of
methods 51–52

direct instantiation 50–51
direct-loaded

instantiation 50–51
lazy instantiation 50–51
overview 43–46

render phase 46–48
lightweight development 19
List class 16, 33, 123, 135–143

disclosure icons in 141–143
grouping data in 141–143
IndexBar feature 140–143
using infinite data with 137–

140
vs. DataView widget 135–137

List extension 34
List view 9, 13, 16–17, 21
listeners 49
lists, binding form to 172–176
load method 151, 169–171
Loader class 50
Loader system 31, 38
loading data, for forms 169–172
loading process, for

applications 251–254
localStorage property 125
LocalStorage proxy 125
locationupdate event 179
loginField 60
loop configuration 187

M

Main class 241, 246, 259
Main property 251
main view class, for contact edi-

tor application 244–247
Main.js class 237
MainContainer class, for con-

tact manager application
example 35–37

MainContainer.js file 30
Map widget 18
maprender event 180–181
maps

components for 178
creating 179–180
Geolocation class 178–179
Google Maps API 180–182
in Sencha Touch UI 18

mapTypeControl option 180
maxLength parameter 155
maxValue 159
media

considerations for 193
Img component

including images
using 182–184

overview 182
preloading image with

spinner 184–185
in Sencha Touch UI 18
Media class 186–189
playing audio 189–190
playing video 190–192

Media class 186–189
Media widget 18–19
Memory proxy 125
message body parameter 28
message boxes 115–122

alerting with 116–117
prompting with 117–120
requesting input with 120–

122
MessageBox class 13–14, 28, 80,

115, 117
messageProperty config 127
Microloader 277–280
microloader directory 26
minValue 159
Misc group, Sencha Touch 9
mobile development

browser-based 19–20
reducing bloat 20
reducing data usage 21
thinking lightweight 19
user interaction 20–21

Mobile Safari 20
modal option 117
Model class 124, 129, 145
ModelManager class 170
models

for contact manager applica-
tion example 31–32

in data stores 127
mousedown event 20
mouseup event 20
Msg class 115, 117–118, 121,

142–143
msg option 117
multi-column forms 163–168,

171
multiLine option 121
muted configuration 187
mutedchange event 187

INDEX290
MVC group, Sencha Touch 8
MyApp namespace 31, 38
myAwesomeFn function 117
MyModel class 129

N

name property 132, 142
namespaces, for contact editor

application 240–242
NestedList class 143–148

creating list 146–147
displaying details in 147–

148
overview 144–145
using TreeStore 145

NestedList widget 16–17
nesting layouts 72–75
new keyword 38
newline characters 157
nonfloating panels 78
Number field 12
numberfield widget 156

O

object-oriented programming.
See OOP

octaneRequired property 199–
200

onContactSelect method 265,
267

onItemDisclosure method 141–
142

onListSelect method 36
onMainBackButton

method 258, 260, 266–
267

onMainBackButtonTap
method 259

onMapRender function 181
onReady function 28, 38
onSaveButtonTap method 273
onUpdated method 250, 281–

282
OOP (object-oriented

programming) 29
open method 182
Open Source license model 24
Operation class 125

P

pack parameter 71–72
packager.json file 238

packaging for web deployment
and Microloader 277–280
creating production

build 276–277
creating production delta

build 280–282
creating testing build 274–

276
Panel class 41, 51, 76, 78, 80,

150, 152
parent property 47, 111
passwordfield widget 156–157
persistContact method 265, 267
persistContact() method 273
personal ID. See pID
PersonDetail class, for contact

manager application
example 34–35

PersonDetail.js file 30
PersonList class, for contact

manager application
example 33–34

PersonList.js file 30
PersonModel class 31–32, 170
PersonModel.js file 31
PersonStore class 30, 32–33
PersonStore.js file 31–32
phantom record 128
phone profile

adding phone profile 254–
256

app.js contents 247–251
application loading

process 251–254
common main

controller 256–257, 263–
265

ContactDetails view 262–263
ContactsList view 260–261
creating data model 243–244
debugging in browser 250–

251
generic main view class 244–

247
phone profile controller 257–

258, 266–269
phone profile main view 258–

260
Picker class 13, 104, 114
pickers 112–115

creating 112–114
date pickers 114–115

pID (personal ID) 161
pinch event 21
placeholder option 157

Platform group, Sencha
Touch 8

playing
audio

considerations for 193
overview 189–190

video
considerations for 193
overview 190–192

plug-ins
collapsible fieldsets

plug-in 223–229
overview 221–222

preload configuration 187
preloading images, with

spinner 184–185
PremiumCar class 199–200
PremiumCar.prototype.drive

method 200
production build 276–277
production delta build 280–282
Profile class 255
prompt method 120
prompt option 121
prompting, with message

boxes 117–120
proxies, for data stores 125–126

Q

quadrants, docking in 87
querying, Container class

hierarchy 61–62

R

Radio field 12
radio widget 157–158
reader config 126
readers, for data stores 126–127
referenceList property 49
release-notes.html 26
remove event 48
remove method 59, 89, 91
removeDocked method 89
render phase, component life

cycle 46–48
renderedchange event 47–48
rendering applications, contact

manager application
example 37

required parameter 155
requirements, for Sencha Cmd

3.0 235
resources directory 26

INDEX 291
reusability, Sencha Touch
ActionList class 217–221
class system 201–205
CSS styling 207–208
JavaScript inheritance 198–

201
planning for 206–207
plug-ins

collapsible fieldsets
plug-in 223–229

overview 221–222
rootProperty config 127–128,

130

S

Sass (Syntactically Awesome
Style Sheets) 8

scope option 119
script tag 252
scrollDock 139
SegmentedButton 95–96
Select field 12
selectfield widget 160–162
Sencha Cmd 3.0

overview 234–235
requirements for 235

Sencha Touch
browser compatibility 6
classes in 7–9
full-screen view 7
hardware compatibility 6–7
included libraries 6

Sencha Touch UI
containers 9
data-bound views 15–18
Form panel 10–12
maps in 18
media in 18
sheets 13–14
Tab panel 10

sencha-touch*.js file 26
setActiveItem method 67
setAutoPause method 188
setAutoResume method 188
setConfig method 38
setDragging method 78
setEnableControls method 188
setFloating method 78
setHandler method 99
setHtml method 131
setLoop method 188
setMuted method 188
setParent method 47
setPreload method 188

setRecord method 36, 169, 171,
267

setSrc method 184
setter method 45
setTimeout function 60
setTitle method 247
setUrl method 188
setValue method 155–156, 158
setValues() method 171
setVolume method 188
Sheet class 13, 105, 109–110,

115
sheets 105–112

ActionSheets 110–112
creating with sheets 107
overview 13–14
simple overlays with 107–110

Sheets group, Sencha Touch 9
shiftTo method 199–200
showAnimation property 80
showBy method 76
showContactDetails

method 258, 265–267, 272
simple overlays, creating with

sheets 110
Slider field 12
sliderfield widget 159
Slot 112
slotOrder property 115
Spinner field 12
spinnerfield widget 158–159
spinners, preloading image

with 184–185
src attribute 183–184
src directory 26
STIA namespace 134
STmap argument 181
Store class 32, 123–124, 128–

129
stores, data

displaying with DataView
widget 130–135
implementing 134–135
overview 130–131
vs. List class 135–137
XTemplate class 131–134

displaying with List class 135–
143
disclosure icons in 141–143
grouping data in 141–143
IndexBar feature 140–143
using infinite data

with 137–140
vs. DataView widget 135–

137

displaying with NestedList
class 143–148
creating list 146–147
displaying details in 147–

148
overview 144–145
using TreeStore 145

example of 128–130
models in 127
overview 124–125
using proxies to load

data 125–126
using readers to digest

data 126–127
writers for 128

stretchX option 106
stretchY option 106
stub, application

directory contents for 237–
238

generating 235–238
Style group, Sencha Touch 8
subclassing Sencha Touch

ActionList class 217–221
class system 201–205
CSS styling 207–208
JavaScript inheritance 198–

201
planning for 206–207
plug-ins

collapsible fieldsets
plug-in 223–229

overview 221–222
submit method 168–169
submitting data, for forms 168–

169
success property 169–170
successProperty config 127
superclass method 200–201
swipe event 21
sync method 128
Syntactically Awesome Style

Sheets. See Sass

T

Tab panel 9–11
tabBar option 82
tabBarPosition 81, 83
tablet profile

tablet main controller 272–
274

tablet main view 271–272
tablet profile class 270–271

TabPanel class 80–84

INDEX292
tap event 20
testing build 274–276
text property 160
textareafield widget 157
textfield element 60–61
textfield widget 154–155
timeupdate event 186
title config 146–147
title option 116
title parameter 28
title property 65, 113
Toggle field 12
togglefield widget 159
toolbars

adding buttons to 95
adding nonstandard compo-

nents to 97–98
centering items in 95–97
overview 92–93

Tooltip class 107
totalProperty config 127, 130
touchend event 20
touchstart event 20
<tpl> tag 132
TreeStore 145

U

UAT (user acceptance
testing) 276

ui parameter 111
ui property 102
UI Widgets group, Sencha

Touch 8
unique IDs 43
unpacking framework 24–26
url config option 126, 168
url configuration 187
url property 161

urlfield widget 155
useCurrentLocation 180
user acceptance testing. See UAT
user interaction

for mobile development 20–
21

message boxes 115–122
alerting with 116–117
prompting with 117–120
requesting input with 120–

122
pickers 112–115

creating 112–114
date pickers 114–115

using sheets 105–112
ActionSheets 110–112
simple overlays with 107–

110
useTitles property 113
Utilities group, Sencha Touch 8

V

validate function 169
value config option 156, 158
value option 121
value property 113
valueField 160
VBox layout 30, 70–72, 91, 101,

151, 167
video tags 18
video, playing

considerations for 193
overview 190–192

<video> element 187
Viewport class 46, 135, 146
Views group, Sencha Touch 9
volume configuration 187
volumechange event 187

W

W3C (World Wide Web
Consortium) 178

widgets, for forms
checkbox widget 157
datepickerfield widget 158
emailfield widget 156
numberfield widget 156
passwordfield widget 156–

157
radio widget 157–158
selectfield widget 160–162
sliderfield widget 159
spinnerfield widget 158–159
textareafield widget 157
textfield widget 154–155
togglefield widget 159
urlfield widget 155

Window class 105
World Wide Web Consortium.

See W3C
writeAllFields config 128
writer config 126
writers, for data stores 128

X

Xml reader 127
XTemplate class 114, 131–134
XTemplate configuration 131
XType alias 33, 35–36
xtype property 99
XTypes 50–52

Y

yearFrom property 115
yearTo property 115

Garcia ● De Moss ● Simoens

T
he Sencha Touch framework makes it easy to build cross-
platform mobile apps using HTML5 and JavaScript. It off ers
numerous features that mimic native mobile APIs and an

MVC architecture that feels right at home for application devel-
opers. So you get the power and richness of native apps and the
convenience of standard web tools.

Sencha Touch in Action is a complete guide for developers of
native-quality mobile Sencha Touch applications. You’ll explore
real-world examples as you master this impressive framework
from the ground up. Th e book shows you good practices for
mobile web development, from widget implementation to the
structure of MVC applications.

What’s Inside
● Covers Sencha Touch 2
● Build on your existing web dev skills
● Create mobile web apps that feel like native apps
● Extend enterprise apps to mobile clients

Th e book requires basic JavaScript skills. It assumes no experi-
ence with Sencha Touch or Ext JS.

Jay Garcia is a popular speaker, Sencha community advocate, and
author of Ext JS in Action. Anthony De Moss is a professional web
and mobile developer. Mitchell Simoens is a Sencha developer
supporting the Sencha Touch and Ext JS products.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit manning.com/SenchaTouchinAction

$44.99 / Can $47.99 [INCLUDING eBOOK]

Sencha Touch IN ACTION

MOBILE/WEB DEVELOPMENT

M A N N I N G

“One of the best
 Sencha Touch books ever!”

—Loiane Groner, Citibank

“A powerful mobile
 development handbook.”—Doug Warren, Java Web Services

“Jump start your mobile
 web development.”—Darragh Duff y, Core International

“Highly recommended!”—Pawankumar Tripathi, Infosys

“Sencha Touch off ers
everything, including

the kitchen sink. Th is book
will show you around

 the kitchen.”—Tony Niemann
Zier Niemann Consulting

SEE INSERT

	Front cover
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	What you’ll need
	Roadmap
	Code conventions
	Getting the latest examples
	Author Online

	about the authors
	about the cover illustration
	Part 1—Introduction to Sencha Touch
	1 Introducing Sencha Touch
	1.1 What is Sencha Touch?
	1.1.1 What Sencha Touch is not
	1.1.2 Lots of wiring under the hood
	1.1.3 Hardware compatibility
	1.1.4 Full-screen goodness

	1.2 A 10,000-foot view
	1.3 The Sencha Touch UI
	1.3.1 Containers
	1.3.2 Controlling your UI with the Tab panel
	1.3.3 Accepting input with the Form panel
	1.3.4 Sheets and pickers
	1.3.5 Data-bound views
	1.3.6 Maps and Media

	1.4 Thinking like a mobile developer
	1.4.1 Think lightweight
	1.4.2 Remember—it’s a browser!
	1.4.3 Throw away what you don’t need
	1.4.4 “finger” !== “mouse”
	1.4.5 Reduce the data

	1.5 Summary

	2 Using Sencha Touch for the first time
	2.1 License considerations
	2.2 Unpacking the framework
	2.3 Sencha Touch says “Hello World”
	2.4 Setting the stage for your first application
	2.4.1 Your simple application at a glance
	2.4.2 Preparing your project

	2.5 Developing your app
	2.5.1 Creating the data store
	2.5.2 Constructing the PersonList class
	2.5.3 Building PersonDetail
	2.5.4 Setting up the MainContainer class
	2.5.5 Rendering your application

	2.6 Summary

	3 Sencha Touch foundations
	3.1 One Component model to rule them all
	3.2 Introducing the component life cycle
	3.2.1 Initialization/instantiation phase
	3.2.2 Render phase
	3.2.3 Destruction phase

	3.3 XTypes and the ComponentManager
	3.3.1 Examples of instantiations
	3.3.2 The pros and cons

	3.4 Summary

	Part 2—Building mobile user interfaces
	4 Mastering the building blocks
	4.1 Containers: Mounting our UI workhorse
	4.1.1 Container’s anatomy
	4.1.2 Keeping unruly children on the right track
	4.1.3 Ask and ye shall receive: querying the container hierarchy

	4.2 Everything must have its place: layouts
	4.2.1 The default layout
	4.2.2 Make it fit: the fit layout
	4.2.3 Card layout
	4.2.4 HBox and VBox layouts
	4.2.5 Nesting layouts

	4.3 Floating away… with panels
	4.4 Flip the deck with TabPanels
	4.5 Summary

	5 Toolbars, buttons, and docked items
	5.1 Looking into docked items
	5.1.1 Understanding the basics
	5.1.2 Dynamic docking

	5.2 Gearing up the toolbars
	5.2.1 Under the hood
	5.2.2 Adding buttons to a toolbar
	5.2.3 Centering items
	5.2.4 Adding nonstandard components

	5.3 Go ahead, press my button!
	5.3.1 Customizing buttons

	5.4 Summary

	6 Getting the user’s attention
	6.1 Using sheets for modal user interactions
	6.1.1 Using sheets for simple overlays
	6.1.2 Using ActionSheets

	6.2 Choosing pickers
	6.2.1 Creating a basic picker
	6.2.2 Date picker

	6.3 Talking to the user via a message box
	6.3.1 Alerting users
	6.3.2 Prompting users
	6.3.3 Requesting input from users

	6.4 Summary

	7 Data stores and views
	7.1 Examining data stores
	7.1.1 The anatomy of data stores
	7.1.2 Using proxies to load data
	7.1.3 Using readers to digest data
	7.1.4 Understanding models
	7.1.5 Writer to sync
	7.1.6 Simple store example

	7.2 Implementing DataView
	7.2.1 How DataViews work
	7.2.2 Walking through XTemplate
	7.2.3 Implementing your first DataView

	7.3 Advanced features with List
	7.3.1 How List differs from DataView
	7.3.2 CSS differences between List and DataView
	7.3.3 Using infinite data with List
	7.3.4 Advanced features for List
	7.3.5 Example of IndexBar, grouping, and disclosures

	7.4 Displaying hierarchical data with NestedList
	7.4.1 Understanding the hierarchical data
	7.4.2 Using TreeStore
	7.4.3 Creating a basic nested list
	7.4.4 Showing details

	7.5 Summary

	8 Working with forms
	8.1 What makes Form panels so special anyway?
	8.2 Building a basic form
	8.3 An overview of the different Form widgets
	8.3.1 Text field
	8.3.2 URL field
	8.3.3 Email field
	8.3.4 Number field
	8.3.5 Password field
	8.3.6 Text area
	8.3.7 Check box field
	8.3.8 Radio field
	8.3.9 Date Picker field
	8.3.10 Spinner field
	8.3.11 Slider field
	8.3.12 Toggle field
	8.3.13 Select field

	8.4 Building complex forms
	8.4.1 More organized forms with fieldsets
	8.4.2 Multicolumn forms
	8.4.3 Doing more with your multicolumn form

	8.5 Managing data with models
	8.5.1 Submitting data
	8.5.2 Loading data into your form

	8.6 Binding a form to a list
	8.7 Summary

	9 Maps and media
	9.1 Maps in your application
	9.1.1 Maps under the hood
	9.1.2 Location awareness
	9.1.3 Creating a simple map
	9.1.4 Getting advanced with Google Maps API

	9.2 Handling images
	9.2.1 Image basics
	9.2.2 Preloading an image with a spinner

	9.3 Mastering media
	9.3.1 Media base
	9.3.2 Listening to audio
	9.3.3 Playing video
	9.3.4 Things to keep in mind

	9.4 Summary

	Part 3—Constructing an application
	10 Class system foundations
	10.1 Classic JavaScript inheritance
	10.1.1 Inheritance with JavaScript

	10.2 Using the Sencha Touch class system
	10.2.1 Using Ext.define

	10.3 Extending Sencha Touch components
	10.3.1 Thinking about what you’re building
	10.3.2 Getting the CSS and icons out of the way
	10.3.3 Creating the ActionListItem class
	10.3.4 Creating the ActionList class

	10.4 Creating a Sencha Touch plug-in
	10.4.1 The anatomy of a plug-in
	10.4.2 Developing your plug-in

	10.5 Summary

	11 Building Sencha Touch applications
	11.1 The Sencha 30,000-foot view
	11.2 Typical application development workflow
	11.2.1 What is Sencha Cmd?
	11.2.2 Obtaining Sencha Cmd

	11.3 Creating your application container
	11.3.1 Examining Cmd app resources

	11.4 A view of what you’re building today
	11.4.1 Looking at what you’re building
	11.4.2 A quick glance at the namespace

	11.5 Building the Phone profile version of your application
	11.5.1 Developing your data model and store
	11.5.2 Creating the generic main view class
	11.5.3 Looking at app.js for the first time
	11.5.4 Checking in on progress
	11.5.5 A quick lesson on how applications bootstrap
	11.5.6 Adding the Phone profile
	11.5.7 Introducing the common controller
	11.5.8 Adding the Phone profile controller
	11.5.9 Adding the Phone profile main view
	11.5.10 Building the data-driven ContactsList view
	11.5.11 Creating the ContactDetails view
	11.5.12 Wiring up the workflow models into the controllers
	11.5.13 Adding the Phone profile main controller

	11.6 Building the tablet version of your application
	11.6.1 Building the Tablet profile class
	11.6.2 Constructing the tablet main view
	11.6.3 Constructing the tablet controller

	11.7 Packaging your application for web deployment
	11.7.1 Creating a testing build
	11.7.2 Creating a production build
	11.7.3 A deep dive into the production Microloader
	11.7.4 Creating a production delta build
	11.7.5 Where to go from here?

	11.8 Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Back cover

