
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Adrian Kosmaczewski

Sencha Touch 2 Up and Running

www.allitebooks.com

http://www.allitebooks.org

ISBN: 978-1-449-33938-8

[LSI]

Sencha Touch 2 Up and Running

by Adrian Kosmaczewski

Copyright © 2013 Adrian Kosmaczewski. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette

Production Editor: Melanie Yarbrough

Proofreader: Julie Van Keuren

Indexer: Judy McConville

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrator: Rebecca Demarest

March 2013: First Edition

Revision History for the First Edition:

2013-02-12 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449339388 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Sencha Touch 2: Up and Running, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449339388
http://www.allitebooks.org

This book is dedicated with love and gratitude to Claudia. Te amo, preciosa.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface. xi

1. Getting Started. 1
What Is Sencha Touch? 1

What Kind of Applications Can You Build with It? 2
A Bit of History 2
Main Features 3
Device and Browser Support 4
Licensing 4

Installing the Developer Environment 5
Sencha Touch Distribution 6

Installing Sencha Cmd 7
Creating a New Application 9

Bare-Bones App 9
The Ext.application() Function 11
Using Sencha Cmd 15
Overview of the Class Library 17
Embedding Components 18
Layouts 18
Intro to Events 19

Sencha Touch Documentation System 19
Conclusion 22

2. The Class System. 23
Architectural Considerations 23

Folder Organization 25
Understanding the Class System 25

Using xtypes 27
Overview of the Class Library 29

v

www.allitebooks.com

http://www.allitebooks.org

Foundation Utilities 30
Ext 30
Ext.Array 35
Ext.ComponentQuery 43
Ext.DateExtras 43
Ext.DomHelper and Ext.DomQuery 48
Ext.env.Feature 50
Ext.Function 51
Ext.JSON 55
Ext.Logger 55
Ext.Number 56
Ext.Object 57
Ext.String 61
Ext.Version 63
Ext.mixin.Observable 64
Ext.util.DelayedTask 65
Ext.util.HashMap 66
Ext.util.Inflector 67

Conclusion 69

3. Views. 71
Components, Containers, and Panels 71

Events 72
Layouts 73
Templates 79

Component Library Catalog 80
Components 81
Containers 87
Panels 95
Multimedia Views 103

Creating Views 111
Choosing a Base Class 112
Creating the Class Skeleton 113
Adding Configuration Options 114
Providing Initialization 115
Firing Custom Events 116
Implement Private Methods 117

Conclusion 118

4. Data. 119
Model Classes 119

Model Field Types 121

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Associations 122
Validations 122

Stores and Proxies 123
Local Proxies 124
Remote Proxies 126
Store Types 130
The StoreManager Singleton 130

Data-Bound Controls 134
DataView 134
Lists 138
Nested Lists 140

Conclusion 142

5. Forms. 143
Form Panels 143
Fieldsets 145
Field Types 145

Text Fields 146
Checkboxes and Radio Groups 156
Slider 159

Using Data with Forms 161
Conclusion 162

6. Controllers. 163
Director of the Orchestra 163
Creating a Controller 164
Initialization 167
Routing and Deep-Linking 168
Conclusion 170

7. Styling Applications. 171
Using the Default Sencha Styles 171
Introduction to Sass 172

Variables 173
Nesting 174
Inheritance 174
Functions 175
Mixins 176

Using Sass in Sencha Touch 177
Generating CSS with Compass 179

Sencha Touch Sass Parameters 180

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Conclusion 184

8. Debugging, Testing, and Documenting. 185
Debugging 185

WebKit Web Inspector 185
Remote Debugging 192
Adobe Edge Inspect 194

Testing 196
Jasmine 197
Siesta 203

Documenting Your Code with JSDuck 208
Tips for Quality Sencha Touch Apps 212
Conclusion 214

9. Sencha Architect. 215
Introduction 215

Installation 216
User Interface 218

Creating a Simple Application 220
Configuring the Application 220
Creating a Model Class 221
Creating a Store 223
Creating Views and Forms 225
Creating Controllers 226
Working with Projects 228

Conclusion 231

10. Deployment in Devices. 233
Using Profiles 233

Adding Profiles 234
Initialization Functions 235
Custom MVC Classes 235

Using Device Features 236
Device Capabilities 237
Accessing the Camera 237
Native Notifications and Vibration 238
Orientation Changes 239
Network Connectivity 239
Location Information 240

Packaging with Sencha Cmd 242
Creating Standalone Apps 242
Creating Workspaces 243

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Packaging Applications 244
Running Applications in the iOS Simulator 246
Running Applications in an iOS Device 246

Packaging with Sencha Architect 247
Conclusion 248

11. Conclusion. 249

Index. 251

Table of Contents | ix

Preface

The world of JavaScript frameworks is a ground in constant motion. New libraries and
packages are published nearly every day, but as in any other market, only a few of them
strive to attain a relatively large audience, reaching millions of downloads and, in some
cases, some sort of cult following.

Sencha Touch is, without any doubt, one of the most talked-about of those frameworks
—sometimes loved, sometimes hated, but never ignored. Released to the public in 2010
after two years in the making, it is in many respects the most advanced touchscreen-
enabled JavaScript framework available today. It is also a daunting platform, with an
incredible amount of functionality baked in, covering almost every possible require‐
ment in the process of developing mobile applications.

This book hopes to provide a meaningful, simple path to approach the complexity en‐
capsulated in this system, allowing developers to create mobile applications for iOS,
Android, and BlackBerry devices.

Intended Audience
This book is a general introduction to the Sencha Touch framework and platform, in‐
tended for mobile developers familiar with either iOS or Android who have an inter‐
mediate or advanced level of knowledge of JavaScript.

xi

Structure of this Book
The book is structured as follows:

• Chapter 1, “Getting Started,” provides a complete overview of the framework. De‐
velopers who are in a hurry or who want to get down to the code can read this
chapter to get a feeling of what the platform is capable of.

• Chapter 2, “The Class System,” starts with a discussion of the particular flavor of
the model-view-controller (MVC) architecture used and enforced by Sencha Touch
applications. It provides an introduction to the class definition and instantiation
paradigm, and finally it contains an extensive review of low-level foundation code
provided by the framework (data structures, algorithms, application programming
interfaces [APIs], etc.)

• Chapter 3, “Views,” contains a description of the extensive library of visual com‐
ponents provided by Sencha Touch, including examples and sample code. It also
discusses the approach required to create your own components from scratch.

• Chapter 4, “Data,” explains in detail how to define and use model classes in your
applications, including a discussion of the whole infrastructure of stores, proxies,
validations, and associations.

• Chapter 5, “Forms,” builds upon the previous two chapters to discuss in detail the
creation and use of complex forms in applications, including a complete description
of every type of form field available.

• Chapter 6, “Controllers,” provides the final elements of the Sencha Touch MVC
architecture, explaining how to encapsulate business logic using controller objects,
highlighting the benefits of this approach.

• Chapter 7, “Styling Applications,” explains how to use Sass to embellish and give a
unique visual personality to applications, including a reference to the most impor‐
tant variables and elements that can be modified by application designers.

• Chapter 8, “Debugging, Testing, and Documenting,” shows how to increase the
quality of Sencha Touch applications using tools such as the WebKit Web Inspector,
Jasmine, Siesta, and JSDuck.

• Chapter 9, “Sencha Architect,” provides an introduction to this commercial tool
that provides both an integrated development environment (IDE) and a visual ap‐
plication designer canvas, used for rapid application development.

• Finally, Chapter 10, “Deployment in Devices,” explains how to distribute Sencha
Touch applications in production, either as HTML5 offline apps or as standalone
native apps for iOS and Android, to be sold through the respective marketplaces of
those platforms.

xii | Preface

Code of the Book
You can download all the code samples of this book from Github. The project contains

an installation script named install.sh that will download all the required libraries
for the samples to run. The code of the book is distributed using a liberal Berkeley Source
Distribution (BSD) license, and will be updated to reflect any changes and updates to
Sencha Touch 2.x.

Please be aware that the code samples are meant to be run from a web

server, and not just by double-clicking and opening the index.html file
in your browser directly. This is because Sencha Touch uses the

XMLHTTPRequest object, which cannot be used when opening files using

the file:/// protocol.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Preface | xiii

https://github.com/akosma/Sencha-Touch-2-Up-And-Running

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Sencha Touch 2 Up and Running by Adrian
Kosmaczewski (O’Reilly). Copyright 2013 Adrian Kosmaczewski, 978-1-449-33938-8.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers ex‐
pert content in both book and video form from the world’s leading
authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

xiv | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/sencha_touch_2.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
The idea for this book came as soon as my previous one, Mobile JavaScript Application
Development went to press. In that book I had included a short introduction to Sencha
Touch, and writing that chapter was such an enjoyable experience that I thought a full
book on the subject was a worthy goal.

Frederick Brooks famously explained the consequences of the “second-system effect,”
where small, successful systems have absolutely monstrous successors; I can say that
this book suffered from a similar pathology, maybe because I wrote it amid one of the
most complex and difficult times of my life.

Because of this context, this second book would never have been possible without the
great help of lots of incredible people scattered all over the planet: to begin with, the
whole Sencha team, who have created and documented an out-of-this-planet kind of
JavaScript framework; kudos and thanks to all of them, in particular to Jeff Hartley, vice
president of services; to David Marsland, chief instructor; and Jim Soper, senior tech‐
nical trainer at Sencha.

Preface | xv

http://oreil.ly/sencha_touch_2
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

I would also like to thank Simon St. Laurent, my editor at O’Reilly, who wholeheartedly
embraced the idea of this book just as we were sending Mobile JavaScript Application
Development to press, and was extremely supportive during the process. I would also
like to thank the reviewers of this book: Jens-Christian Fischer, from Zurich, Switzer‐
land, with whom I had the privilege of teaching Sencha Touch in the past, and who has
provided me with incredible tips and tricks to make this book a better one; Mats Bryntse,
founder of Bryntum AB from Lund, Sweden, creator of the Siesta testing framework
described in Chapter 8, and who reviewed that chapter extensively; Gabriel García
Marengo, web designer at IMD in Lausanne, Switzerland, who sent great feedback, and
who is one of the best friends anyone could have; Martín Paoletta, solutions architect
at Redbee in Buenos Aires, Argentina, who read the book from the perspective of a
solution provider and made excellent recommendations. Thanks to you all.

xvi | Preface

CHAPTER 1

Getting Started

This chapter will give you an introduction to Sencha Touch, the framework, the plat‐
form, and its developer experience. It will take you through the required steps to install
the tools in your workstation and will guide you through the creation of your first basic
applications.

What Is Sencha Touch?
Sencha Touch is an MVC JavaScript framework specially designed to create mobile web
applications for touchscreen devices. Sencha Touch allows developers to create appli‐
cations for mobile platforms that feature web browsers implementing the latest stand‐
ards, like the WebKit browser engine.

At the time of this writing, the latest available version of Sencha Touch
was version 2.1.

Sencha Touch is a rather large framework, which may look daunting to JavaScript de‐
velopers used to smaller, leaner libraries such as jQuery or Prototype. Sencha Touch is
conceived as a whole package, including most services and functions offered by other
frameworks, and it can be easily extended in many different ways to accommodate the
needs of developers in different areas of expertise. You typically do not need to use other
libraries than Sencha Touch in your project; if you need a certain utility, you can be sure
that the framework includes it by default.

The explicit choice of WebKit is an interesting one; the Sencha Touch team has taken a
deliberate decision not to support other mobile browser engines, such as Gecko (Fire‐
fox), Presto (Opera), or Trident (Internet Explorer). The exclusive support of modern

1

http://www.sencha.com/products/touch
http://www.webkit.org/

browsers allows Sencha Touch to use many of the most advanced web technologies
available today.

This choice also affects the developer experience, because only Safari or Google Chrome
can be used to debug Sencha Touch applications on a desktop environment like Linux,
Windows, or OS X.

Internet Explorer 10 support
The Sencha team has recently announced the support for Internet Ex‐
plorer 10 for Windows Phone 8 in Sencha Touch 2.2, not yet available
at the time of this writing.

What Kind of Applications Can You Build with It?
Apple, in one of the first versions of its iOS design guidelines document, famously stated
that there are three major kinds of mobile applications that could be created for the
iPhone:

• Utility apps, like weather or stocks information apps

• Productivity apps, like business or document-oriented applications

• Immersive apps, like games

Following this simple taxonomy, Sencha Touch is most suited for delivering applications
of the first two kinds. Although it is certainly possible to create games or other types of
apps featuring complex user experiences, this book covers only the creation of utility
and productivity applications.

Finally, Sencha Touch allows developers to create applications for mobile touchscreen
devices—that is, smartphones and tablets—but it can be used to create desktop appli‐
cations as well.

A Bit of History
Back in 2005, the Web 2.0 movement was starting to radically transform the notion of
web content. Ajax-enabled sites like Gmail showed the public that a new type of inter‐
action was possible, that a new kind of content could be shown in regular web pages
without using proprietary plug-ins. Douglas Crockford was explaining that JavaScript
was a great language misunderstood by many, and libraries like script.aculo.us and
Prototype were offering developers concrete and solid grounds for cross-browser
masterpieces.

Amidst all the fuss, Yahoo! released the first version of its YUI library, allowing devel‐
opers to create complex, “desktop-like” applications across operating systems and

2 | Chapter 1: Getting Started

www.allitebooks.com

http://www.sencha.com/blog/sencha-touch-with-windows-phone-8
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/Introduction/Introduction.html
http://www.crockford.com/javascript/javascript.html
http://script.aculo.us
http://prototypejs.org
http://yuilibrary.com
http://www.allitebooks.org

browsers. YUI can be considered a seminal work, after which several other libraries
appeared through the years.

Around that time, Jack Slocum started working on a set of extensions for YUI called
YUI-Ext. After a couple of releases, the interest in his library grew so much that he
removed the requirement of YUI altogether, making the library able to use Prototype
or YUI for lower-level cross-browser compatibility.

Ext JS was born. For years, Ext JS set the standard in terms of cross-browser compatibility
and design, allowing developers to create complex browser applications in a fraction of
the time, and without having to care about browser incompatibility problems. In 2009,
the company behind Ext JS incorporated as Sencha Inc., with headquarters in Redwood
City, California.

In 2009, the rise of the touchscreen smartphone and, later, the iPad, prompted the Ext
JS team to create a version of the framework geared exclusively for these new devices;
the result of their efforts is Sencha Touch, released in version 1.0 at the end of 2010.

The first version of Sencha Touch was not completely compatible with the contemporary
version of Ext JS, and it was also criticized for its relatively low performance benchmarks,
particularly in old devices such as the iPhone 3G. To address these issues, Sencha Touch
2 was released in March 2012, providing a brand-new rendering engine based 100% on
Cascading Style Sheets (CSS), and a new class system compatible with Ext JS 4.

Main Features
Sencha Touch is more than just a full-featured framework geared toward the creation
of utilities and productivity applications; it is actually a complete enterprise web appli‐
cation platform, with the following characteristics:

• Large UI library widget, largely inspired by iOS, both in design and functionality

• Fast rendering engine based on CSS, which can be hardware-accelerated in the latest
mobile devices

• Well-defined architecture, enforcing the MVC architecture from the very begin‐
ning

• Built-in connectors for network data services, such as Representational State Tran‐
fer (REST) web services, and support for offline mobile web applications

• Advanced class-loading mechanism, enforcing naming guidelines and the MVC
architecture

• A command-line build system, managing merging and minification of application
code, as well as building native applications for Android and iOS

What Is Sencha Touch? | 3

http://www.sencha.com/products/extjs

• Extensive documentation, available as a set of dynamic HTML pages, including
searching and filtering features without requiring any server-side infrastructure

Sencha Touch can be seen as an “all-in-one” framework, including all the APIs and tools
required to create your mobile applications.

Device and Browser Support
Sencha Touch, at the moment of this writing, supports only the following mobile plat‐
forms:

• iOS since version 3

• Android since version 2.3

• BlackBerry OS since version 6 (only for devices featuring WebKit-powered
browsers)

Furthermore, the Sencha Touch team has announced the upcoming availability of sup‐
port for Windows Phone 8 in 2013, as well as a preliminary version of a theme for
BlackBerry 10.

Sencha Touch is a 100% browser-based framework, and as such it is server-agnostic;
you can deploy your Sencha Touch applications using any server-side technology, like
PHP, Java, Ruby on Rails, .NET, or any other stack of your choice.

Sencha Touch 2.1 Exclusively
This book will deal exclusively with the APIs and features of Sencha
Touch 2.1, without making any references to the characteristics of pre‐
vious versions of this framework.

Licensing
Sencha Touch is available under a quite complex licensing scheme; at the time of this
writing, developers can use the framework as follows.

On open source projects:

• If you plan to distribute your application fully disclosing the source code, there is
a version of Sencha Touch distributed through the GPLv3 license.

• If you do not wish to use the GPLv3 license, there is a Free Libre and Open Source
(FLOSS) license available as well.

4 | Chapter 1: Getting Started

http://www.sencha.com/blog/sencha-touch-with-windows-phone-8
http://www.sencha.com/blog/introducing-sencha-touch-2-1-and-more/
http://www.sencha.com/products/touch/license/

On commercial projects:

• You can use Sencha Touch for free, without any fees, either per application, per user
or per developer.

• For embedded applications, you can use Sencha Touch for free up to 5,000 instal‐
lations.

• Finally, a commercial OEM license is available as well, for companies willing to
distribute Sencha Touch as part of their own commercial applications or services.

Sencha Touch is also distributed and licensed as part of the “Sencha Complete” package,
which includes the following:

• Sencha Touch and Ext JS developer licenses

• Sencha Charts, briefly described in Chapter 3

• Sencha Eclipse plug-in

• Sencha Cmd

• Support tickets

• A license of use of Sencha Architect, an application visual design tool, described in
detail in Chapter 9

Installing the Developer Environment
To create applications with Sencha Touch, you need the following tools, many of those
part of the standard web developer toolkit:

• A computer running Linux, OS X, or Windows

• Google Chrome or Apple Safari

• A text editor

• The Sencha Touch framework

• A working Ruby and RubyGems installation

And that is pretty much everything you need to start with. Of course, Sencha Touch
being a mobile framework, you might want to have either the Android or the iOS soft‐
ware development kit (SDK), both available for free from Google and Apple respectively.
And, last but not least, a mobile device, running iOS or Android, in order to test your
applications on the device. For the moment you do not need the mobile device or the
SDK; although handy, you can just use your desktop browser (based on WebKit) to run
the application as is.

Installing the Developer Environment | 5

http://www.sencha.com/products/complete/

Other tools are recommended to accelerate your developer workflow. In particular, the
example code of this book was written on a Mac running OS X Mountain Lion, plus
some other tools:

• iOS Simulator bundled with Xcode 4.5 (available for free in the Mac App Store)

• Homebrew

• Google Chrome

• iTerm2, Zsh, oh-my-zsh, and tmux

• Vim and MacVim with the Janus plug-in distribution

• LiveReload

• MAMP Pro

• iOS devices (iPhone and iPad)

The combination of MacVim (plus the JavaScriptLint plug-in) and LiveReload are huge
boosters to productivity, but of course your mileage may vary.

Of course, the next thing you need is the actual Sencha Touch library. If you go to the
Sencha website, you can get a ZIP file directly from the home page; however, pay at‐
tention to the fact that you are going to be asked about the license for your project. In
this case, we are going to browse the official download page of Sencha Touch to get the
GPLv3 version, the one we are going to use throughout this book to show examples.

Installation script
The source code of the application, available in Github, contains a script

(install.sh) for Unix systems, which automatically downloads and
installs the required libraries for the samples to work.

Sencha Touch Distribution
Once downloaded, open the ZIP file; inside you will have several different folders. The
most important are the following ones:

• Several JavaScript files are available in the root of the distribution folder: Among

them, sencha-touch-all-debug.js and sencha-touch-all.js are the most im‐
portant, used during both development and production. The biggest difference

between them is that the -debug version is not minified, which makes it easier to
pinpoint and troubleshoot errors in your applications as you develop them.

• The docs folder contains a complete documentation system, ready to use, available
offline for your perusal; later in this chapter we are going to describe in detail the
different features of this documentation system.

6 | Chapter 1: Getting Started

http://mxcl.github.com/homebrew/
http://www.google.com/chrome
http://www.iterm2.com/
http://www.zsh.org/
https://github.com/robbyrussell/oh-my-zsh
http://tmux.sourceforge.net/
http://www.vim.org
http://code.google.com/p/macvim/
https://github.com/carlhuda/janus
http://livereload.com/
http://www.mamp.info/en/mamp-pro/
http://www.sencha.com/products/touch/download/
https://github.com/akosma/Sencha-Touch-2-Up-And-Running

• The examples folder contains lots of sample applications built with Sencha Touch,
each showcasing a particular aspect of the framework. It is strongly recommended

to try them all, particularly the Kitchen Sink application (located in examples/

kitchensink), which is a complete demo of all the widgets available in the Sencha
Touch framework.

• The resources folder contains not only pre-built CSS files and images provided by
the framework, but also the complete list of SASS source files used to generate those
CSS styles. In a later chapter we are going to study in detail how to customize your
Sencha Touch application, creating your own styles for your applications.

• Finally, the src folder contains the original JavaScript source files of the Sencha
Touch framework, used to generate the final, minified JavaScript files that you will
actually use to power your own apps.

Installing Sencha Cmd
Another optional component that can be installed is Sencha Cmd, which consists of
command line tools that can be used to create and update Sencha Touch applications
from a terminal.

The Sencha Cmd distribution can be downloaded from the same official download page
of Sencha Touch. It requires a working Java installation in your workstation.

At the time of this writing, the current version of Sencha Cmd was
version 3.0.0.250.

After downloading Sencha Cmd, unzip the distribution file and execute the installer;
Figure 1-1 shows the installer for OS X.

Sencha Touch Distribution | 7

http://www.sencha.com/products/touch/download/
http://www.sencha.com/products/touch/download/

Figure 1-1. Sencha Cmd Installer

After you have installed the Sencha Cmd tools, make sure to update your PATH variable
to point to the default location where the Sencha Cmd tools are installed:

~/bin/Sencha/Cmd/3.0.0.250

Mountain Lion and Java
The latest version of OS X at the time of this writing, Mountain Lion,
does not include a Java Runtime Environment by default, and the Sen‐
cha Cmd Tools installer requires one to execute. You can force the in‐

stallation of the latest JRE very easily by running java -version on a
command line; this will prompt OS X to download and install it.

To make sure the installation went well, open a terminal window and type the sencha
command; you should see an output similar to the following:

Sencha Cmd v3.0.0.250

Options

 * --debug, -d - Sets log level to higher verbosity

 * --plain, -p - enables plain logging output (no highlighting)

 * --quiet, -q - Sets log level to warnings and errors only

8 | Chapter 1: Getting Started

 * --sdk-path, -s - sets the path to the target framework

Categories

 * app - Perform various application build processes

 * compile - Compile sources to produce concatenated output and metadata

 * fs - A set of useful utility actions to work with files.

 * generate - Generates models, controllers, etc. or an entire application

 * manifest - Extract class metadata

 * package - Packages a Sencha Touch application for native app stores

 * theme - Builds a set of theme images from a given html page

Commands

 * ant - Invoke Ant with helpful properties back to Sencha Command

 * build - Builds a project from a JSB3 file.

 * config - Loads a config file or sets a configuration property

 * help - Displays help for commands

 * js - Executes arbitrary JavaScript file(s)

 * which - Displays the path to the current version of Sencha Cmd

We are going to use this tool later in this chapter; for the moment, let us see how to
create a new application manually.

Creating a New Application
We are going to start our journey of discovery of Sencha Touch by creating the simplest
possible application that you could create with it: a canonical “Hello, World!” applica‐
tion. It will have the following features:

• It will include all the required icons and default images supported by iOS and
Android.

• It will use the most minimal index.html file possible.

Bare-Bones App
The most basic Sencha Touch application consists, at least, of the following:

1. The Sencha Touch libraries (which we have downloaded in the previous section)

2. An index.html file

3. One JavaScript file containing the source code of your application, which we will
usually refer to in this book as app.js

Creating a New Application | 9

Let’s begin with index.html:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <title>Hello World</title>

 <!-- Load Sencha Touch -->

 <link rel="stylesheet" href="/_libs/sencha/resources/css/

sencha-touch.css" />

 <script src="/_libs/sencha/sencha-touch-all-debug.js"></script>

 <!-- Load our code -->

 <script src="app.js"></script>

</head>

<body>

</body>

</html>

As you can see, this is the most bare-bones HTML5 file you could expect; it just specifies
the encoding of the page, its title, and loads both the JavaScript and the CSS included
in the Sencha Touch distribution. Finally, we load our own app.js JavaScript file, where
the fun happens.

Do not forget the <body> tag!
Do not forget to add an opening and closing set of <body></body> tags,
as otherwise your application might not appear on the screen. Sencha

Touch manipulates the root element of the body tag to generate the
required tags for the UI to appear on the screen.

Let’s see now how the JavaScript file must be:

Ext.application({

 name: 'HelloWorld',

 launch: function () {

 // This is where the fun starts!

 }

});

At this stage, if you navigate to your file index.html using Safari or Chrome, you will
be able to see an empty screen appear. If you use the web inspector provided by those
browsers, you should not have any errors or warnings displayed. Not the best feedback,
but we are going to add more personality to our application soon.

10 | Chapter 1: Getting Started

The Ext.application() Function
Every Sencha Touch application has at least the structure shown above, starting with

the most important element, a call to the Ext.application() function, which takes a
literal object as parameter.

This is a very common idiom in Sencha Touch; many functions are built in such a way
that the developer has to pass only a literal object, usually also referred to as a dictionary,
as the only parameter. We are going to see this pattern all over the framework:

Ext.someFunction({

 parameter1: 'value1',

 parameter2: false

});

The following technique will help you avoid typing errors or problems with unfinished
dictionaries:

1. First, write the function signature in its entirety, without any parameters inside the
brackets:

Ext.someFunction({}); // yes, including the semicolon

2. Second, “open up” the curly brackets and fill the parameters inside:

Ext.someFunction({ /* enter the parameters now */ });

Commas vs. semicolons
Remember that inside the curly brackets, the parameters are separated
by commas, and not by semicolons. Using a “JavaScript Lint” tool in
your editor will allow you to catch these and other common typing
errors every time you save the file.

The call to the Ext.application() function takes as its sole parameter an object with
two very important keys:

• name: This property is of type string and provides the root namespace for all the
objects contained inside the application. Sencha Touch creates this namespace au‐
tomatically for the developer, and this name will be used throughout the application
to scope all objects and avoid cluttering the global namespace.

• launch: This property expects a function that will be executed when the framework
code has been loaded and the application is ready to execute.

For all practical purposes, the launch function is the de facto entry point of your ap‐
plication; it is the location where the developer starts writing his own code, and begins

Creating a New Application | 11

providing personality and style to the app. For example, the following application will
display an alert window when the application starts:

Ext.application({

 name: 'HelloWorld',

 launch: function () {

 Ext.Msg.alert('Application launched');

 }

});

You can see the result of the code in Figure 1-2.

Figure 1-2. A bare-bones Sencha Touch 2 application

12 | Chapter 1: Getting Started

www.allitebooks.com

http://www.allitebooks.org

iOS developers might find it useful to think about the object passed as

parameter of the Ext.application() function as the “application del‐
egate” that is so common in the mobile operating system created by
Apple.

What other parameters can be passed to the Ext.application() function? There are
many of them, as shown in the following snippet:

Ext.application({

 name: 'HelloWorld',

 appFolder: 'app',

 profiles: ['Phone', 'Tablet', 'Desktop'],

 icon: {

 57: 'img/Icon.png',

 72: 'img/Icon-iPad.png',

 114: 'img/Icon@2x.png', // Retina iPhone

 144: 'img/Icon-iPad@2x.png' // Retina iPad

 },

 startupImage: {

 '320x460': 'img/Default.png',

 '640x920': 'img/Default@2x.png', // Retina iPhone

 '768x1004': 'img/Default-Portrait.png',

 '748x1024': 'img/Default-Landscape.png',

 '1536x2008': 'img/Default-Portrait@2x.png', // Retina iPad, Portrait

 '1496x2048': 'img/Default-Landscape@2x.png' // Retina iPad, Landscape

 },

 models: [],

 views: [],

 controllers: [],

 fullscreen: true,

 isIconPrecomposed: true,

 statusBarStyle: 'black', // can also be 'default'

 launch: function () {

 Ext.Msg.alert('Application launched');

 }

});

• appFolder specifies an alternative location for the files of the application; by default,

Sencha Touch loads automatically, on demand, the files located in an app folder, at

the same level as the index.html file.

• profiles allows the application to become “universal,” that is, to feature different
user interfaces (UIs) for different supports. Sencha Touch supports three different
profiles, for phones, tablets, and desktop browsers. Using profiles, a developer can

Creating a New Application | 13

create customized UIs for different devices, sharing the same controllers and low-
level logic. Profiles are explained in detail in Chapter 10.

• icon takes a dictionary of number-string pairs; the number represents the size in
pixels of the expected icon, and the string attached to the number is the relative
location of the associated icon file.

• startupImage takes a dictionary as parameter, with keys representing the widths
and heights of different iOS devices. The values of this dictionary are the paths to
the corresponding startup images shown by iOS when the user opens a web appli‐
cation saved on the home screen.

• models, views, and controllers hold arrays of class names to be loaded automat‐
ically by Sencha Touch.

• isIconPrecomposed specifies whether the icon of the application, when saved on
the home screen of an iOS device, receives the typical shading provided by the
operating system.

• Finally, statusBarStyle specifies the type of status bar (black, default, or translu‐
cent) to be shown on top of the application when running on an iPhone or an iPod
Touch device.

Using the information in the keys above, such as icon and startupImage, Sencha Touch

generates the required <meta> tags in the DOM of the browser, as shown in Figure 1-3.

Figure 1-3. HTML5 meta tags generated by Sencha Touch 2

14 | Chapter 1: Getting Started

Using Sencha Cmd
Let us see now how to create a simple Sencha Touch application using the command-
line tools.

This section requires you to have the Sencha Cmd tools installed. Please
refer to “Installing Sencha Cmd” (page 7) for more information.

The first thing to do is to open a terminal window and, assuming that the Sencha Touch

folder is located inside the _libs folder (as is the case for the source code of this book),
type the following command:

$ sencha -sdk _libs/sencha generate app NewApp ./NewAppFolder

The sencha generate app command takes two parameters: the name of the app (in

this case NewApp) and the location (in this case, the NewAppFolder, which is a subfolder

of the current location). The -sdk switch specifies the location (anywhere in the disk)
of the Sencha Touch distribution (namely, the folder created when the ZIP file is
unzipped.)

The terminal window will show the following output (edited for brevity):

Sencha Cmd v3.0.0.250

[INF] init-properties:

[INF] init-sencha-command:

[INF] init:

[INF] -before-generate-workspace:

[INF] generate-workspace-impl:

[WRN] Ignoring @require ../version/Version.js in js/String.js

[WRN] Ignoring @require ../Ext-more.js in js/Format.js

[INF] -before-copy-framework-to-workspace:

[INF] copy-framework-to-workspace-impl:

[INF] [copy] Copying 1103 files to NewApp/touch

[INF] [copy] Copied 171 empty directories to 1 empty directory

under NewApp/touch

[INF] [copy] Copying 1 file to NewApp/touch

[INF] [copy] Copying 1 file to NewApp/touch

[INF] [propertyfile] Updating property file: NewApp/.sencha/workspace/

sencha.cfg

 [...SNIP...]

[INF] generate-app:

Finally, if you open your browser and navigate to the web application that has just been
generated, you will see an output similar to that of Figure 1-4.

Creating a New Application | 15

Figure 1-4. Sencha Touch 2 application generated by the command-line tools

As mentioned in the preface of this book, please be aware that Sencha

Touch applications use the XMLHTTPRequest object extensively and that

opening your HTML files directly (that is, using the file:/// protocol)
does not work; you should use a local web server instead.

Sencha Cmd provides many other services, which we will see in detail in Chapter 10.

For the moment, suffice to say that the sencha command builds an application that
conforms to the MVC standard enforced by Sencha Touch.

16 | Chapter 1: Getting Started

Overview of the Class Library
Sencha Touch comes bundled with a long list of components, objects, functions, and
code ready to use out of the box. This class library is comparable with the ones bundled
with the Java or .NET runtimes, and provides nearly all the basic blocks to create com‐
plex applications rapidly.

Not only that, but these classes are also built upon the principle of the MVC architecture,
each of them fitting in a particular layer of a more complex architecture.

The Sencha Touch 2 class library includes the following families of classes:

• Model classes, providing developers with the means of describing the business
entities that are ultimately managed, created, edited, and destroyed by your own
applications. These classes are described independently of the storage medium re‐
quired, be it remote or local, based upon JSON or XML. Chapter 4 provides more
information about this subject.

• Communication classes, describing both the storage and communication strate‐
gies to be used when creating new applications. The most important classes in this

family are Store, Proxy, and Reader, which provide common abstractions allowing
applications to consume data from remote web services or to store information
locally on the host browser.

• Views, which are used to easily build the user interface of any application with a
consistent set of patterns; these are the most visible parts of the application and can
use the advanced hardware acceleration capabilities of modern mobile devices to
render themselves as quickly as possible, using CSS exclusively. Chapter 3 describes
this family of classes in detail, showing examples of how to use the most important
view components in your applications.

• Controller classes provide the glue between views and models, centralizing all the
interaction in specialized classes, which hold the most important parts of the logic
of the application. Controllers allow developers to organize their code in useful and
reusable components, separating the business logic from the UI, and providing a
more maintainable architecture for applications. Chapter 6 dives into this family
in detail, showing all the advantages of using controllers in your own applications.

• Utility classes are pervasive in the framework and provide a tremendous amount
of ready-to-use code, ranging from date and number formatters, containers, prox‐
ies, and many other classes.

The following chapters will deal with each of these families in detail.

Creating a New Application | 17

Embedding Components
The usual data structure used to represent the in-memory structure of objects embedded
into a user interface is the tree; this is very easy to achieve in Sencha Touch, thanks to

one of the most important properties of any visual component: the items property.

The items property (available in subclasses of the Ext.Container class) takes an array
of widgets ready to be embedded as children to the current component. For example:

Ext.define('BookApp.view.CustomList', {

 extend: 'Ext.dataview.List',

 config: {

 items: [{

 xtype: 'toolbar',

 title: 'To Do List',

 items: [{

 xtype: 'spacer'

 }, {

 xtype: 'button',

 iconCls: 'add',

 ui: 'plain'

 }]

 }]

 }

});

Analogies with other mobile platforms
For iOS developers, you can think of the items property as the Sencha

Touch equivalent of the addSubview: method. In the case of Android,

the equivalent API would be the addView() method of the View class.

The biggest difference in the case of Sencha Touch is that the items
property takes an array of views as parameter, while the APIs of both
iOS and Android take individual view instances as parameters.

Layouts
However, a basic question remains: How does the parent component know how to
embed the children component, particularly regarding its location on the screen? It
turns out that many components are actually expected to be located in precise parts of
the screen, like toolbars or navigation bars; in those cases, the component will be dis‐
played exactly at the required location, without requiring further intervention from the
developer.

For most components, however, it is required to specify the location of the child com‐

ponent in its parent; in those cases, you can add a layout parameter to the parent view,

18 | Chapter 1: Getting Started

and then Sencha Touch will position the child objects accordingly to their respective

orders in the items array.

Layouts will be described in great detail in Chapter 3.

Intro to Events
Most Sencha Touch user interface components are able to react to user events, and
developers can attach functions to be executed every time one of these events is trig‐
gered.

It is very simple to attach functions as event handlers: The only thing that is required is

to specify a listeners configuration element to your user interface object.

Ext.Viewport.add({

 xtype: 'panel',

 items: [{

 xtype: 'toolbar',

 docked: 'top',

 items: [{

 xtype: 'button',

 text: 'Show alert',

 listeners: {

 tap: function(button, e, eOpts) {

 Ext.Msg.alert('Event triggered');

 }

 }

 }]

 }]

});

In the example above, the button in the toolbar is able to react to the tap event, which
is one of the simplest events found in Sencha Touch. This event triggers the execution
of the corresponding function, which takes a certain number of parameters; the Sencha
Touch documentation, described in the next section, provides the exact definition of
the parameters required in every one of the events exposed by the framework. Events
will be described in more detail in Chapter 3.

However, attaching event handlers to view components using this approach can quickly
lead to unmaintainable and/or non-reusable code, which somehow breaks the MVC
architecture, as the business logic is intertwined with the view logic. Sencha Touch allows
developers to centralize business logic and event handlers in controller classes, inher‐

iting from Ext.app.Controller. This approach will be explained in Chapter 6.

Sencha Touch Documentation System
As mentioned before, the Sencha Touch distribution contains the entire API documen‐
tation that is available on the website; this makes it very easy to use and to refer to by

Sencha Touch Documentation System | 19

developers, who can access this invaluable information even when offline. To open it,

just double-click the docs/index.html file in your Sencha Touch distribution folder;
Figure 1-5 shows the contents of the documentation when they are opened for the first
time.

Figure 1-5. Sencha documentation system

The Sencha Touch documentation is bundled as an HTML5 application that uses the
local storage of your browser to remember which tabs were open during your last ses‐
sion. This way, you will always find your way and, should you inadvertently close the
browser window, the same pages will be opened for you the next time you access the
documentation, as shown in Figure 1-6.

20 | Chapter 1: Getting Started

Figure 1-6. Sencha documentation tabs

Another handy feature of the built-in documentation system is integrated, full-text
client-side search; type any text on the search field on the top right of the documentation
browser, and you will be able to find your way. You can type any kind of API, function,
even xtypes; all of them are just a keystroke away. Figure 1-7 shows how this brilliant
search system works.

Sencha Touch Documentation System | 21

Figure 1-7. Sencha documentation search

It’s a good idea to have this documentation system open at all times, whenever you are
writing your Sencha Touch applications; the amount of information contained in it is
invaluable. Even better, as we will learn in Chapter 8, you can generate the same kind
of documentation for your own projects!

Conclusion
This chapter has shown you how to download the Sencha Touch distribution, and how
to write and understand the basic principles of every application created with the
framework. The next chapters will explore in depth different aspects of Sencha Touch,
used to create very complex applications.

22 | Chapter 1: Getting Started

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2

The Class System

This chapter will provide an overview of the most important central characteristic of
Sencha Touch; the class system. This framework provides a higher-level object-oriented
abstraction on top of JavaScript, allowing developers to define classes and to create
instances using a syntax similar to that of other programming languages.

Although many JavaScript fans might find this approach heretical, the truth is that the
class system provides a useful abstraction, helping developers achieve a higher produc‐
tivity, creating more maintainable code.

This chapter ends with a discussion of the various extensions provided by Sencha Touch
around the JavaScript core language and APIs, making developers write better cross-
browser compatible code.

Architectural Considerations
Since its inception in the ’70s, as part of the Smalltalk programming language, the MVC
architecture has known many different interpretations. Every object-oriented frame‐
work or toolkit has brought its own flavor of MVC, sometimes inconsistent with other
systems. It’s enough to remember that Cocoa, Ruby on Rails, or Django, not to mention
ASP.NET MVC, all propose slight variations of the MVC theme. These variations show
the infinite flexibility of software, and the adaptability of design patterns to different
situations and environments.

Sencha Touch is no different, as it provides yet another form of MVC, this time adapted
to applications running on mobile web browsers. Figure 2-1 shows the typical structure
of Sencha Touch MVC applications, which includes several new structural components:

• Stores are abstractions over arrays of model instances; data-bound components
connect to stores to display lists or trees of data, delegating the sorting, ordering,
and grouping of the data to the store. Data-bound views are tied to stores in such

23

a way that any change to the data of the store will be updated automatically on the
UI.

• Proxies are abstract entities that encapsulate the connection to a particular storage
mechanism, either local or remote. Ideally, Sencha Touch applications are com‐
pletely oblivious to the fact that the data is stored locally or remotely; stores use
proxies to isolate the rest of the application from the underlying location of the data.

Both stores and proxies are explained in detail in Chapter 4.

Figure 2-1. Sencha Touch 2 application architecture

24 | Chapter 2: The Class System

Folder Organization
Sencha Touch MVC applications have a well-defined folder structure that is enforced
throughout the framework, the class loader, Sencha Architect (explained in detail in
Chapter 9) and even Sencha Cmd (explained in Chapter 10).

As you saw in Chapter 1, the code of your applications is contained within the app folder,
located next to the index.html and app.js files. If for some reason you need to override

this default location, the app.js file can contain an optional appFolder key, which will
be used by the class loader instead.

Inside the app folder, the application code is structured as follows:

• controller contains all the classes specified in the controllers key of the

Ext.application() function call in app.js.

• model contains the data model definitions.

• profile is where the different application profiles are stored.

• store contains the store definitions.

• Finally view is the placeholder for all the custom visual components used in the
application.

Singular and plural names
Pay attention to the fact that folder names are singular words—app/

controller, app/model, app/view—while the keys in the profiles or the

Ext.application() function call in app.js are words in plural—

controllers: [], models: [], views: [], and so on.

Understanding the Class System
JavaScript is a rather strange language, somewhat challenging to understand for devel‐
opers used to more “traditional” programming languages such as Java, C#, or PHP.
JavaScript has been defined by Douglas Crockford as “Lisp in C’s clothing,” and this
description is actually very accurate, for JavaScript is a functional language; it is probably
the most widely deployed and used functional programming language in the history of
computing.

JavaScript also has some object-oriented features baked in, most of them being based
on the functional nature of the language; JavaScript even has a “new” keyword, which
leads developers to think that the class system is similar to that of Java or C++.

The reality sinks in quite fast, though; JavaScript does not have classes, at least not in
the traditional sense of the word, but simply function templates that create in-memory

Understanding the Class System | 25

structures linked to one another. JavaScript has only literal objects and functions; and
with those two building blocks, you will create all of your web applications.

Sencha Touch tries to simplify and hide the quirkiest parts of JavaScript by providing
its own class system; this makes it possible for developers to think about JavaScript in
more traditional ways, defining classes and creating new instances from those.

As such, the Sencha Touch class system is based upon two main functions:

• Ext.define() allows developers to define a new class, including all its configuration
options, static members, instance methods, event handlers, and other pieces.

• Ext.create() allows developers to create new instances of a class, overriding the
default configuration options and providing useful run-time information.

Both Ext.define() and Ext.create() are aliases of Ext.ClassManag

er.define() and Ext.ClassManager.instantiate(), respectively.
However, the latter methods are considered private, and you should
always use the shorthand functions instead.

Let’s define and create a simple class to see how all these elements work together.

Ext.define('BookApp.view.CustomList', {

 extend: 'Ext.dataview.List',

 xtype: 'customlist',

 config: {

 // ...

 }

});

In the preceding code, we define a new class called BookApp.view.CustomList; this

class extends the Ext.dataview.List class and provides a custom xtype property as
well; we’ll see in the next section how to use this property.

Classes defined using Ext.define() always ultimately inherit from

Ext.Base, as do all the classes in the Ext namespace.

Ext.Base is not the same as Ext.Class, which is a class factory used

internally by Ext.ClassManager, and which should not be accessed di‐
rectly by developers.

Finally, a config parameter provides customization options that will be used to cus‐
tomize each new instance of this class during the lifetime of the application.

Now let’s see how to create a new instance of the class we’ve just created:

26 | Chapter 2: The Class System

var list = Ext.create('BookApp.view.CustomList');

// Alternatively you can also use the syntax below:

// var list = Ext.widget('customlist');

The preceding single statement is enough to get a pointer to a new instance of the

BookApp.view.CustomList class, which is exactly what we wanted to do here. If you
need to provide some extra configuration, just add a second parameter to the call to

Ext.create():

var list = Ext.create('BookApp.view.CustomList', {

 items: [

 // ...

],

 title: 'Some title',

 // ... more parameters here, separated by commas

});

Using xtypes
One of the most characteristic elements of the Sencha Touch 2 class system is the xtype
property. This property has a special meaning to Sencha Touch, and it represents a
mapping between a class name and a shorter name, easier to type and remember. In

short, you can think of the xtype as an alias to the real name of a class in the Sencha
Touch class system.

Thanks to the xtype property, Sencha Touch objects can be instantiated both with the

Ext.create() function, which requires the class name of the object, or by using dic‐

tionaries with the xtype keyword. When reading this parameter, Sencha Touch will

automatically create the object of the corresponding class. Alternatively, the Ext.widg

et() function can also be used to create objects just by specifying their xtype.

The following table shows the xtype values of different classes available in Sencha
Touch.

Table 2-1. Various xtypes already defined by Sencha Touch

Category xtype Class

Basic button Ext.Button

component Ext.Component

container Ext.Container

dataview Ext.DataView

panel Ext.Panel

toolbar Ext.Toolbar

spacer Ext.Spacer

Understanding the Class System | 27

Category xtype Class

tabpanel Ext.TabPanel

Form form Ext.form.FormPanel

checkbox Ext.form.Checkbox

select Ext.form.Select

field Ext.form.Field

fieldset Ext.form.FieldSet

hidden Ext.form.Hidden

numberfield Ext.form.NumberField

radio Ext.form.Radio

slider Ext.form.Slider

textarea Ext.form.TextArea

textfield Ext.form.TextField

Data store Ext.data.Store

arraystore Ext.data.ArrayStore

jsonstore Ext.data.JsonStore

xmlstore Ext.data.XmlStore

To use the xtype syntax, just create a standard JavaScript dictionary and use it in the

items property of your panel, just as you would use any other instance.

Ext.define('BookApp.view.CustomList', {

 extend: 'Ext.dataview.List',

 config: {

 items: [{

 xtype: 'toolbar',

 title: 'To Do List',

 items: [{

 xtype: 'spacer'

 }, {

 xtype: 'button',

 iconCls: 'add',

 ui: 'plain'

 }]

 }]

 }

});

When Sencha Touch finds the preceding code, it will create a toolbar with a spacer and
a button inside, automatically.

28 | Chapter 2: The Class System

Overview of the Class Library
Sencha Touch comes bundled with a long list of components ready to use out of the
box. This class library is comparable with the ones bundled with the Java or .NET run‐
times, and provide nearly all the basic blocks to create complex applications rapidly.

Not only that, but these classes are also built upon the principle of the MVC architecture,
each of them fitting in a particular layer of a more complex architecture.

The Sencha Touch 2 class library includes the following families of classes:

• Model classes, providing developers with the means of describing the business
entities that are ultimately managed, created, edited, and destroyed by their appli‐
cations. These classes are described independently of the storage medium required,
be it remote or local, based upon JSON or XML. Chapter 4 provides more infor‐
mation about this subject.

• Communication classes, describing both the storage and communication strate‐
gies to be used when creating new applications. The most important classes in this

family are the Store, Proxy, and Reader classes, which provide common abstrac‐
tions allowing applications to consume data from remote web services, or to store
information locally on the host browser. These components are also described in
detail in Chapter 4.

• Views, which are used to describe the user interface of any application with ease
and with a consistent set of patterns; these are the most visible parts of the appli‐
cation and can use the advanced hardware acceleration capabilities of modern mo‐
bile devices to render themselves as quickly as possible, using CSS exclusively.
Chapter 3 describes this family of classes in detail, showing examples of how to use
the most important view components in your applications.

• Controller classes provide the glue between views and models, centralizing all the
interaction in specialized classes, which hold the most important parts of the logic
of the application. Controllers allow developers to organize their code in useful and
reusable components, separating the business logic from the UI, and providing a
more maintainable architecture for applications. Chapter 6 dives into this family
in detail, showing all the advantages of using controllers in your own applications.

• Foundation utilities are pervasive in the framework and provide a tremendous
amount of ready-to-use code, ranging from date and number formatters, contain‐
ers, proxies, and many other classes.

The following chapters will deal with every one of these families in detail; we are going
to start our exploration with the foundation utilities family, which is used throughout
the framework.

Understanding the Class System | 29

Foundation Utilities
As a convenience to developers, and to remove the requirement of using other JavaScript
libraries (such as jQuery, Backbone.js, or Require.js), Sencha Touch provides an exten‐
sive foundation of functions and classes ready to be used. This section contains a
summary of the most important functions available in Sencha Touch; for a complete
description of each API, please refer to the documentation.

Ext
The Ext root object (also used as root namespace by Sencha Touch) contains a large
number of useful functions and properties.

emptyFn

Ext.emptyFn contains a reusable, empty function that you can pass as a default param‐
eter to callbacks or event handlers.

version

Ext.version returns the version of the current Sencha Touch library loaded in the
browser.

application()

Ext.application(), described in detail in Chapter 1, is used to bootstrap the applica‐
tion during launch.

bind()

Ext.bind() is used to attach functions to objects, setting the correct this pointer at the
end of the operation. This function is required to solve some quirks inherent to
JavaScript.

clone()

Ext.clone() can be used to create a shallow copy of the object passed as parameter.

create(), define(), and widget()

Ext.define() is a shortcut for Ext.ClassManager.define() and is used to create new

classes, as described earlier in this chapter. Similarly, Ext.create() is a shortcut to

Ext.ClassManager.instantiate(), and is used to create new instances of the class

whose name is passed as parameter. Finally, Ext.widget() can be used to create in‐

stances just by using the xtype instead of the whole class name.

30 | Chapter 2: The Class System

decode() and encode()

Ext.decode() is a shortcut to Ext.JSON.decode(), used to parse a JSON string and

return the corresponding object. Similarly, Ext.encode() is a shorthand for

Ext.JSON.encode() and returns the JSON string that represents the object passed as
parameter.

defer()

Ext.defer() is a shortcut for Ext.Function.defer(), used to delay the execution of a
function by some milliseconds. The function also takes as parameters the context of
execution, some optional arguments, and of course the number of milliseconds before
executing the function. For more control over delayed execution, check the

Ext.DelayedTask class, which provides tighter control and more options.

Please refer to the section about Ext.Function.defer() that follows
for more information and an example of use.

destroy()

Ext.destroy() is used to remove objects from memory completely, avoiding memory
leaks or dangling references. The objects passed as parameters of this function will be
removed from the DOM, and their event listeners will be removed as well.

each()

Ext.each() is a shortcut to Ext.Array.each(), and as the name implies, it takes an
array as both parameter and function, and executes the function passing each element
of the array as parameter. The callback function can be return false at any time to stop
the iteration process.

getBody(), getDoc(), and getHead()

These three functions return a pointer to the current HTML elements representing the

<body>, <html>, and <head> elements, respectively.

getClass() and getClassName()

These functions can be used to query any Sencha Touch object about itsclass:

var button = Ext.create('Ext.Button');

var classObject = Ext.getClass(button);

var className = Ext.getClassName(button);

The output of the Ext.getClass() function is a complex object dump, showing the
complete internal structure of class objects:

Foundation Utilities | 31

$className: "Ext.Button"

$isClass: true

$onExtended: Array[2]

addConfig: function (config, fullMerge) {

addInheritableStatics: function (members) {

addMember: function (name, member) {

addMembers: function (members) {

addStatics: function (members) {

addXtype: function (xtype) {

arguments: null

borrow: function (fromClass, members) {

callParent: function (args) {

caller: null

create: function () {

createAlias: function (a, b) {

displayName: "Ext.Button"

extend: function (parent) {

getName: function () {

implement: function () {

length: 0

mixin: function (name, mixinClass) {

name: ""

onExtended: function (fn, scope) {

override: function (members) {

prototype: Object

superclass: Object

triggerExtended: function () {

xtype: "button"

__proto__: function Empty() {}

As expected, Ext.getClassName() has a simpler output: Ext.Button.

getCmp() and getStore()

These functions return pointers to specific Sencha Touch objects; getCmp() takes an ID
as a parameter and returns a pointer to the corresponding component (not HTML

element, but component!). On the other hand, getStore() is a shortcut to Ext.da

ta.StoreManager.lookup() and provides a handy mechanism to get a pointer to any
store defined in the current application.

Sencha components are explained in detail in Chapter 3, while stores
are described in Chapter 4.

id()

The id() function is used to create unique ID values for individual components.

32 | Chapter 2: The Class System

www.allitebooks.com

http://www.allitebooks.org

isArray(), isBoolean(), isDate(), isDefined(), isElement(), and others

The Ext object exposes a series of similar methods returning Boolean values, stating the
type of the objects passed as parameter; these functions are the following:

• isArray()

• isBoolean()

• isDate()

• isDefined()

• isElement()

• isEmpty()

• isFunction()

• isIterable()

• isNumber()

• isNumeric()

• isObject()

• isPrimitive()

• isString()

The usage and semantics of these functions are trivial:

var array = [];

var bool = Ext.isArray(array);

iterate()

The Ext.iterate() function provides a unified interface that allows you to repeat a
function over all the objects contained in arrays or objects, indistinctively:

var obj = {

 key1: 'value1',

 key2: 'value2',

 key3: 345,

 key4: false

};

Ext.iterate(obj, function (key, value) {

 var str = key + ': ' + value;

 console.log(str);

}, this);

var arr = ['value1', 'value2', 678, true];

var index = 0;

Ext.iterate(arr, function (item) {

 var str = index + '> ' + item;

Foundation Utilities | 33

 console.log(str);

 ++index;

}, this);

The function detects the type of object passed as parameter and executes the corre‐

sponding function in either Ext.Array or Ext.Object, as required. This is the output
of the preceding code:

key1: value1

key2: value2

key3: 345

key4: false

0> value1

1> value2

2> 678

3> true

namespace()

The namespace() function (and its alias ns()) take a string literal with a namespace
definition (usually a long list of strings separated by dots) and dynamically and recur‐
sively create the nested object structure that it represents. This is done immediately and
synchronously, which means that the JavaScript code can reference those objects right

after the namespace() function call.

Ext.namespace('Whatever.You.Want.Here.can.be.Done');

console.dir(Whatever);

The output would be an object whose structure is the following:

Object

 You: Object

 Want: Object

 Here: Object

 can: Object

 be: Object

 Done: Object

typeOf()

Similarly to the isArray() family of functions previously described, the typeOf()

function works as an extended (and patched) alternative to the typeof() function
provided by the JavaScript standard. The following code shows an example of how to
use it:

var undef;

var nil = null;

var str = 'string';

var num = 234;

var bool = true;

var date = new Date();

var func = function () {

34 | Chapter 2: The Class System

 console.log('something');

};

var obj = { key1: 'value1' };

var arr = ['value1', 'value2'];

var reg = /match/gi;

var elem = Ext.getDoc().dom;

var all = [undef, nil, str, num, bool, date, func, obj, arr, reg, elem];

var index = 0;

Ext.iterate(all, function (item) {

 var txt = index + '> ' + item + ': ' + Ext.typeOf(item);

 console.log(txt);

 ++index;

}, this);

The result of the execution of this code is the following:

0> undefined: undefined

1> null: null

2> string: string

3> 234: number

4> true: boolean

5> Wed Nov 07 2012 14:24:22 GMT+0100 (CET): date

6> function () {

 console.log('something');

}: function

7> [object Object]: object

8> value1,value2: array

9> /match/gi: regexp

10> [object HTMLHtmlElement]: element

Ext.Array
The Ext.Array object contains a large number of utility functions that developers can
use to manipulate arrays. They provide workarounds to solve common problems ap‐
pearing in some implementations of JavaScript (such as in Internet Explorer), and they
provide great value in very simple APIs.

These methods all work on top of the standard JavaScript Array class,
but they are not instance methods; they are class methods. This ap‐

proach has the benefit of not polluting the existing Array class with
methods that could be implemented in future versions of the language,
making your code stable in case of future evolutions.

Foundation Utilities | 35

clean()

The clean() function removes “empty” items from an array. The mentioned earlier

empty in this case is brought by the Ext.isEmpty() function, described later in this
chapter.

var sampleArray = [1234, true, 'asdfadf', null, 'another string', '', 0];

var cleanArray = Ext.Array.clean(sampleArray);

The preceding code yields an array that only contains the values [1234, true, 'asd

fadf', 'another string', 0].

contains()

The contains() function returns a Boolean value stating whether a certain value exists
in the array or not.

var sampleArray = [1234, true, 'asdfadf', null, 'another string', '', 0];

var tests = [false, '', 'whatever', 'asdfadf', 1234, 6578];

Ext.Array.each(tests, function (item) {

 if (Ext.Array.contains(sampleArray, item)) {

 console.log('"' + item + '" IS contained');

 }

 else {

 console.log('"' + item + '" is NOT contained');

 }

}, this);

The result of the code is the following:

"false" is NOT contained

"" IS contained

"whatever" is NOT contained

"asdfadf" IS contained

"1234" IS contained

"6578" is NOT contained

difference()

The difference() function returns a new array containing the result of subtracting,
from the first array passed as parameter, the elements that exist in a second array passed
as parameter. For example:

var sampleArray = [1234, true, 'asdfadf', null, 'another string', '', 0];

var anotherArray = ['asdfadf', new Date(), 1234, true, '', 234];

var difference = Ext.Array.difference(sampleArray, anotherArray);

The contents of the preceding difference variable are the following: [null, 'another

string', 0].

36 | Chapter 2: The Class System

erase()

The erase() function provides a simpler API to the standard Array.splice() method
of the JavaScript standard library. It allows you to remove a certain number of items
from an array, starting at a particular point.

var sampleArray = [1234, true, 'asdfadf', null, 'another string', '', 0];

var erasedArray = Ext.Array.erase(sampleArray, 1, 3);

The result of the preceding code is the following: [1234, 'another string', '', 0].

every() and some()

The every() and some() functions iterate over the items of an array, evaluating each of
them in a function passed as parameter; both functions work very similarly, with the

difference that every() stops iterating as soon as the function returns false, while

some() will stop iterating as soon as the function returns true. For example:

var sampleArray = [1234, true, 'asdfadf', null, 'another string', '', 0];

var result = Ext.Array.every(sampleArray, function (item) {

 // If here the inner function returns "false" at any point, the

 // loop ends and the value in "result" will be "false."

 // In this case, however, as 'whatever' is not contained in the

 // sampleArray, the function always returns true, and 'result'

 // contains true as well.

 return (item !== 'whatever');

}, this);

console.log('Result of `every()`: ' + result);

var sampleArray = [1234, true, 'asdfadf', null, 'another string', '', 0];

console.log('Original Array');

console.dir(sampleArray);

var result = Ext.Array.some(sampleArray, function (item) {

 // If here the inner function returns "true" at any point, the

 // loop ends and the value in "result" will be "true."

 // In this case, however, as 'another string' is contained in the

 // sampleArray, the function returns true at some point, and 'result'

 // contains true as well.

 return (item === 'another string');

}, this);

console.log('Result of some(): ' + result);

The respective outputs would look like this:

Result of every(): true

Result of some(): true

The preceding results can be read as follows: “Every item in the first array was different

from whatever,” and “Some item in the second array was equal to another string.”

Foundation Utilities | 37

filter()

The filter() function evaluates every item of the array passed as parameter, and it
returns a new array that contains all the values where the provided function returns

true.

var sampleArray = [1234, true, 'asdfadf', null, 'another string', '', 0];

var filteredArray = Ext.Array.filter(sampleArray, function (item) {

 return (typeof(item) === 'string');

}, this);

In the preceding code, the resulting array will contain only the strings: ['asdfadf',

'another string', ''].

flatten()

The flatten() function takes an array with nested arrays and brings all the values in
the nested arrays as part of the topmost one:

var sampleArray = [1234, true, 'asdfadf', ['inner array', true, false, 234], 'an

other string', '', 0];

var flattenedArray = Ext.Array.flatten(sampleArray);

The result of the code is the following array: [1234, true, "asdfadf", "inner ar

ray", true, false, 234, "another string", "", 0].

from()

The from() function creates a new array from any object or primitive passed as
parameter:

var bool = true;

var booleanArray = Ext.Array.from(bool);

The preceding code yields an array containing a single value inside: [true].

include()

The include() function works like a selective push() method: It adds new items to an
array only if those items do not already exist, ensuring that the each element appears
only once:

var sampleArray = [1234, 456, true, 'test'];

Ext.Array.include(sampleArray, true);

Ext.Array.include(sampleArray, 'whatever');

The result of the preceding code is the following array: [1234, 456, true, 'test',

'whatever']. The value true is not added a second time, since it already exists when

the first call to include() is made.

38 | Chapter 2: The Class System

indexOf()

As the name implies, this function returns the index of the item passed as parameter.

In case the object is not found, the function returns -1:

var sampleArray = [1234, 456, true, 'test'];

var index = Ext.Array.indexOf(sampleArray, 'whatever');

console.log('Index of "whatever" (should be -1):');

insert()

The insert() function allows you to interpolate values in an existing array at a partic‐
ular position:

var sampleArray = [1234, 456, true, 'test'];

var itemsToInsert = [768, 'something', false, null];

var insertedArray = Ext.Array.insert(sampleArray, 1, itemsToInsert);

The result of the preceding code is the following: [1234, 768, "something", false,

null, 456, true, "test"]. The values of the array itemsToInsert have been em‐
bedded in the first array, starting at position number 1.

intersect()

The intersect() function returns a new array that merges the values from all the arrays
passed as parameter (this function can take a large number of arguments):

var sampleArray = [1234, 456, true, 'test'];

var anotherArray = [true, false, 'test', 'whatever', 456];

var intersection = Ext.Array.intersect(anotherArray, sampleArray);

The result of the intersection is the following: [true].

map() and pluck()

The map() and pluck() functions will sound familiar to developers versed in functional
languages such as Haskell or Lisp. They both operate over the contents of an array but

in different ways: map() will execute a function in each item, returning a new array with

the results of each execution. On the other hand, pluck() will return a new array with
the values of a particular key from an array of objects:

var sampleArray = [1234, 456, true, 'test'];

var mapped = Ext.Array.map(sampleArray, function (item) {

 return item + '_boom';

}, this);

The mapped array looks like this: ['1234_boom', '456_boom', 'true_boom',

'test_boom'].

var sampleArray = [{

 key1: 'value1',

 key2: 'value2'

Foundation Utilities | 39

}, {

 key1: 'value3',

 key2: 'value4'

}, {

 key1: 'value5',

 key2: 'value6'

}, {

 key1: 'value7',

 key2: 'value8'

}, {

 key1: 'value9',

 key2: 'value0'

}];

console.log('Original Array');

console.dir(sampleArray);

var plucked = Ext.Array.pluck(sampleArray, 'key1');

After this code executes, plucked contains all the values referenced by the key key1:

['value1', 'value3', 'value5', 'value7', 'value9'].

max(), mean(), min(), and sum()

All of these functions perform the typical mathematical operations on any array:

var sampleArray = [1234, 456, -234, 654, 0, 'whatever'];

var max = Ext.Array.max(sampleArray);

var min = Ext.Array.min(sampleArray);

var sum = Ext.Array.sum(sampleArray);

var sampleArray2 = [1234, 456, -234, 654, 0];

var mean = Ext.Array.mean(sampleArray2);

After executing the preceding code, max is 1234, min is equal to -234, sum is 2110what

ever (pay attention to how the string was added at the end of the mathematical sum!)

and mean is equal to 422.

merge() and union()

The merge() function (and its alias union()) create a new array with all the values of
those passed as parameter, but appearing only once:

var sampleArray = [1234, 456, true, 'test'];

var anotherArray = [true, false, 'test', 'whatever', 456];

var merge = Ext.Array.merge(anotherArray, sampleArray);

The result of the preceding code is the following: [true, false, 'test', 'whatev

er', 456, 1234].

40 | Chapter 2: The Class System

remove()

The remove() function, as the name implies, removes items from an array, but only if
they exist (of course!):

var sampleArray = [1234, 456, -234, 654, 0, 'whatever', "BOOM", true, 'test'];

Ext.Array.remove(sampleArray, 'whatever');

Ext.Array.remove(sampleArray, -234);

Ext.Array.remove(sampleArray, true);

Ext.Array.remove(sampleArray, 'non existent value');

The result of the code is that sampleArray now contains the values [1234, 456, 654,

'0', 'BOOM', 'test'].

replace() and splice()

The replace() function takes two arrays as parameters and replaces values in the first
array using the values in the second. For that it also requires some indexing information,
in particular the location where to start making replacements in the first array, and the
number of such replacements to make.

var sampleArray = [1234, 456, -234, 654, 0, 'whatever', "BOOM", true, 'test'];

var replacements = ['boom', 'boom again'];

Ext.Array.replace(sampleArray, 4, 2, replacements);

The result of the preceding code is the following: [1234, 456, -234, 654, "boom",

"boom again", "BOOM", true, "test"]. As you can see, the values of the replace

ments array was inserted after the fifth item, replacing the values 0 and whatever.

The splice() function does exactly the same; however, it uses the same signature of
the function of the same name in the JavaScript standard library:

var sampleArray = [1234, 456, -234, 654, 0, 'whatever', "BOOM", true, 'test'];

Ext.Array.splice(sampleArray, 4, 2, 'boom', 'boom again');

The result of this code is exactly the same as the one returned by the replace() function.

slice()

The slice() function returns a subsection of an existing array, and it takes both the
start and end indexes.

A very common error when using this function is to consider the second
argument to be the length of the requested slice; it is not a length, it is
the ending index!

var sampleArray = [1234, 456, -234, 654, 0, 'whatever', "BOOM", true, 'test'];

var slice = Ext.Array.slice(sampleArray, 4, 7);

Foundation Utilities | 41

The result of this method is the following: [0, 'whatever', 'BOOM'].

sort()

The sort() function takes an array and a comparison function as parameter and returns
a new array with the same items as the original one, but sorted:

var sampleArray = [1234, true, 'ASDFADF', -76, '', null, 'another string', '',

0];

var sorted = Ext.Array.sort(sampleArray, function (item1, item2) {

 if (item1 === item2) {

 return 0;

 }

 return (item1 < item2) ? -1 : 1;

});

The result of the code is the following: [-76, "", null, "", 0, true, 1234, "ASD

FADF", "another string"].

toArray()

The toArray() function transforms an “iterable object” into a real array. This includes

the arguments object (automatic object containing all the arguments of a function in
JavaScript) as well as any literal object whose keys are numeric:

var iterable = {

 0: 'value0',

 1: 'value1',

 2: 'value2',

 3: 'value3',

 4: 'value4',

 length: 5

};

var array = Ext.Array.toArray(iterable);

The preceding code yields an array with these values: ['value0', 'value1', 'val

ue2', 'value3', 'value4'].

unique()

The unique() function returns a new array with only one instance of each repeated
object in the original array:

var sampleArray = [1234, 456, 'whatever', 'whatever', 456, 'whatever'];

var unique = Ext.Array.unique(sampleArray);

The result of this function call is the following: [1234, 456, 'whatever'].

42 | Chapter 2: The Class System

www.allitebooks.com

http://www.allitebooks.org

Ext.ComponentQuery
The Ext.ComponentQuery singleton object provides a very useful query() function,
used to retrieve pointers to one or many individual components in the application using
a syntax similar to that of CSS selectors. This functionality is heavily used in Sencha
Touch controllers (described in more detail in Chapter 6).

Although very similar to Ext.DomQuery, the Ext.Component

Query.query() function does not return pointers to DOM elements,
but rather Sencha Touch components, themselves represented by one

or many DOM elements. The results of Ext.ComponentQuery are then
higher in the abstraction ladder.

Component Query Syntax

The component query syntax is very similar to that of CSS selectors; to retrieve com‐
ponents, you can use the following options:

• The xtype property.

• The itemId property, using the #myItemId syntax (just like in CSS).

• Attributes wrapped in brackets, such as button[action=saveFile].

• Functions returning “truthy” values, using curly brackets: {isHidden()}.

• Optionally, you can use the > sign to indicate parent/child relationships, or the

comma (,) to concatenate different queries in one: panel > button, or button,

segmentedbutton are some examples.

• Finally, the not operator can also be used: not button will return all the components
that are not buttons in the application.

Ext.DateExtras
Sencha Touch includes a series of utility methods for managing date and time infor‐

mation contained within the Ext.DateExtras object. These functions all work with the

standard Date class provided by the standard JavaScript library.

Similarly to the Ext.Array functions, many of these functions do not exist as instance

methods of the Date class, but rather as static methods of the Ext.Date object.

Foundation Utilities | 43

Pay attention to the fact that these functions are not included by default
by Sencha Touch; to use them in your code, you have to include the
following line in the controller or view where you wish to use them:

requires: 'Ext.DateExtras'. However, to use them, you have to use

the Ext.Date object.

add()

The add() function allows you to increment or decrement a given date by a certain
interval. The type of interval can be specified using the constants available in the

Ext.Date object, such as DAY, HOUR, or MONTH.

var sampleDate = new Date();

var futureDate = Ext.Date.add(sampleDate, Ext.Date.DAY, 10);

The result of this code is a date 10 days in the future.

between()

The between() function takes three dates and evaluates whether the first one is located
amid the other two dates passed as parameters:

var sampleDate = new Date();

var anotherDate = Ext.Date.add(sampleDate, Ext.Date.YEAR, 10);

var betweenDate = Ext.Date.add(sampleDate, Ext.Date.MONTH, 5);

var inBetween = Ext.Date.between(betweenDate, sampleDate, anotherDate);

In this case, the inBetween variable contains the true value.

clearTime()

This useful function removes any time information from the date passed as parameter.

var sampleDate = new Date();

var noTime = Ext.Date.clearTime(sampleDate);

format()

This is probably one of the most useful additions of the Ext.DateExtras object: This
function allows developers to display date and time information in human-readable
form, using the same format specifiers known to PHP developers.

The specifiers accepted by the format() are described in the following table:

Table 2-2. Formats accepted by the format() function

Format Examples Description

d 01 to 31 Day of the month, two digits with leading zeros

D Mon to Sun A short textual representation of the day of the week

44 | Chapter 2: The Class System

Format Examples Description

j 1 to 31 Day of the month without leading zeros

l Sunday to Saturday A full textual representation of the day of the week

N 1 (for Monday) through 7 (for Sunday) ISO-8601 numeric representation of the day of the week

S st, nd, rd or th. Works well with j. English ordinal suffix for the day of the month, two characters

w 0 (for Sunday) to 6 (for Saturday) Numeric representation of the day of the week

z 0 to 364 (365 in leap years) The day of the year (starting from 0)

W 01 to 53 ISO-8601 week number of year, weeks starting on Monday

F January to December A full textual representation of a month, such as January or March

m 01 to 12 Numeric representation of a month, with leading zeros

M Jan to Dec A short textual representation of a month

n 1 to 12 Numeric representation of a month, without leading zeros

t 28 to 31 Number of days in the given month

L 1 if it is a leap year, 0 otherwise. Whether it’s a leap year

o 1998 ISO-8601 year number (identical to Y, but if the ISO week number [W] belongs to the

previous or next year, then that year is used instead)

Y 1999 A full numeric representation of a year, four digits

y 03 A two-digit representation of a year

a am or pm Lowercase ante meridiem and post meridiem

A AM or PM Uppercase ante meridiem and post meridiem

g 1 to 12 12-hour format of an hour without leading zeros

G 0 to 23 24-hour format of an hour without leading zeros

h 01 to 12 12-hour format of an hour with leading zeros

H 00 to 23 24-hour format of an hour with leading zeros

i 00 to 59 Minutes, with leading zeros

s 00 to 59 Seconds, with leading zeros

u 999876543210 Decimal fraction of a second (minimum one digit, arbitrary number of digits allowed)

O +1030 Difference to Greenwich Mean Time (GMT) in hours and minutes

P -08:00 Difference to Greenwich Mean Time (GMT) with colon between hours and minutes

T EST, MDT, PDT … Time zone abbreviation of the machine running the code

Z -43200 to 50400 Time zone offset in seconds (negative if west of UTC, positive if east)

c 1997-05-16T19:23:30,12345-0400 ISO-8601 date (see http://www.w3.org/TR/NOTE-datetime for more info)

U 1193432466 or -2138434463 Seconds since the Unix Epoch (January 1 1970 00:00:00 GMT)

MS \/Date(1238606590509)\/ Microsoft AJAX serialized dates

The following code shows a simple usage example of the format() function:

var sampleDate = new Date();

var patterns = {

Foundation Utilities | 45

http://www.w3.org/TR/NOTE-datetime

 ISO8601Long:"Y-m-d H:i:s",

 ISO8601Short:"Y-m-d",

 ShortDate: "n/j/Y",

 LongDate: "l, F d, Y",

 FullDateTime: "l, F d, Y g:i:s A",

 MonthDay: "F d",

 ShortTime: "g:i A",

 LongTime: "g:i:s A",

 SortableDateTime: "Y-m-d\\TH:i:s",

 UniversalSortableDateTime: "Y-m-d H:i:sO",

 YearMonth: "F, Y"

};

var key = null;

var format = '';

console.log('Formatted dates:');

for (key in patterns) {

 if (patterns.hasOwnProperty(key)) {

 format = patterns[key];

 formatted = Ext.Date.format(sampleDate, format);

 console.log(format + ': ' + formatted);

 }

}

The output of the code is the following:

Formatted dates:

Y-m-d H:i:s: "2012-11-07 11:06:24"

Y-m-d: "2012-11-07"

n/j/Y: "11/7/2012"

l, F d, Y: "Wednesday, November 07, 2012"

l, F d, Y g:i:s A: "Wednesday, November 07, 2012 11:06:24 AM"

F d: "November 07"

g:i A: "11:06 AM"

g:i:s A: "11:06:24 AM"

Y-m-d\TH:i:s: "2012-11-07T11:06:24"

Y-m-d H:i:sO: "2012-11-07 11:06:24+0100"

F, Y: "November, 2012"

getDayOfYear(), getWeekOfYear(), isLeapYear()

These functions provide useful information about the year of the date passed as pa‐
rameter and are quite self-explanatory:

var sampleDate = new Date();

var dayOfYear = Ext.Date.getDayOfYear(sampleDate);

var week = Ext.Date.getWeekOfYear(sampleDate);

var isLeap = Ext.Date.isLeapYear(sampleDate);

getDaysInMonth(), getFirstDateOfMonth(), getFirstDayOfMonth(), getLastDateOfMonth(),
getLastDayOfMonth()

These functions provide information about the month of the date passed as parameter:

46 | Chapter 2: The Class System

var sampleDate = new Date();

var daysInMonth = Ext.Date.getDaysInMonth(sampleDate);

var firstDate = Ext.Date.getFirstDateOfMonth(sampleDate);

var firstDay = Ext.Date.getFirstDayOfMonth(sampleDate);

var firstDayName = Ext.Date.dayNames[firstDay];

var lastDate = Ext.Date.getLastDateOfMonth(sampleDate);

var lastDay = Ext.Date.getLastDayOfMonth(sampleDate);

var lastDayName = Ext.Date.dayNames[lastDay];

getElapsed()

The getElapsed() function returns the time interval in milliseconds between two dates
passed as parameter:

var sampleDate = new Date();

var anotherDate = Ext.Date.add(sampleDate, Ext.Date.YEAR, 10);

var elapsed = Ext.Date.getElapsed(sampleDate, anotherDate);

The preceding code returns the value 315532800000, which is the number of millisec‐
onds contained in a 10-year period.

getGMTOffset(), getTimezone(), isDST()

These functions provide information about the time zone of the date instance passed
as a parameter:

var sampleDate = new Date();

var offset = Ext.Date.getGMTOffset(sampleDate);

var timezone = Ext.Date.getTimezone(sampleDate);

var isDST = Ext.Date.isDST(sampleDate);

At the moment of this writing, the values returned by these functions are as follows:

+0100 for the offset, CET for the time zone, and false for the DST information.

getMonthNumber(), getShortDayName(), getShortMonthName(), getSuffix()

These functions are useful helpers for displaying time and date information in a human-
readable way:

var number = Ext.Date.getMonthNumber("June");

var shortDayName = Ext.Date.getShortDayName(4);

var shortMonthName = Ext.Date.getShortMonthName(4);

var sampleDate = new Date();

var suffix = Ext.Date.getSuffix(sampleDate);

In the last case, at the moment of this writing the suffix returned is th, but of course

it could be any value, such as st, nd, rd, or th.

Foundation Utilities | 47

isValid()

The isValid() function takes at least values for year, month, and day (in that order),
optionally for time information and checks whether they correspond to valid date val‐
ues. This might be handy when checking user input in forms, for example:

var isValid1 = Ext.Date.isValid(1984, 4, 6);

var isValid2 = Ext.Date.isValid(355423, 4564564, 23424);

As you can easily imagine, the first set of values yields a valid date, while the second
does not.

parse()

Finally, the parse() function takes a string with date information and an optional format

parameter and returns the Date instance that corresponds.

var parsed = Ext.Date.parse('2012-11-15', 'Y-m-d');

Ext.DomHelper and Ext.DomQuery
Sencha Touch also provides the required functionality for web developers to refer to
the HTML elements that make up a web page, individually or as a group. For that, it
exposes functions similar to those of jQuery or Zepto, taking very similar parameters
and behaving in similar ways.

select() and selectNode()

Using select() and selectNode(), developers can retrieve pointers to individual
HTML objects (or groups thereof) in the current context:

var divs = Ext.DomQuery.select('DIV');

var div = Ext.DomQuery.selectNode('#queryDiv');

The allowed element selectors are the following (in this example, we are using li and

ul as an example, but any HTML tag can be used in this context):

*

any element

ul, li
an element with any of these tags

ul li

all descendant li elements of ul

ul > li

all li that are direct children of ul

48 | Chapter 2: The Class System

ul + li

all li elements that are immediately preceded by ul

ul ~ li

all li elements that are preceded by a sibling element with the tag ul

The use of quotes and the @ sign are optional in attribute selectors.

Developers can also use attribute selectors:

ul[class]

an ul element that has a class attribute

ul[class=main]

an ul element that has a class attribute with the main value

ul[class$=main]

an ul element that has a class attribute that ends with the main value

ul[class*=main]

an ul element that has a class attribute that contains the main value

ul[class%=2]

an ul element that has a class attribute whose value is evenly divisable by 2

ul[class!=main]

an ul element that has a class attribute that does not equal the main value

CSS value selectors are also possible and use the same syntax as attribute selectors but

with curly brackets instead of square brackets: ul{display=block}, for example.

Finally, pseudo-class selectors are also possible: li:first-child, li:last-child,

li:only-child, li:4th-child, li:odd, li:even, etc.

append(), insertBefore(), insertAfter(), overwrite(), insertHtml()

Once you have selected one or many nodes, Ext.DomHelper provides useful functions
that allow you to manipulate the HTML nodes. For example, taking the following HTML
fragment:

<div class="outerDiv"><div id="someDiv" class="innerDiv"></div></div>

We can operate on it as follows, and Figure 2-2 shows the result:

var div = Ext.DomQuery.selectNode('#someDiv');

Foundation Utilities | 49

Ext.DomHelper.overwrite(div, '<div id="someDiv">This is an overwritten DIV</

div>');

Ext.DomHelper.append(div, '<p>A paragraph added using append()</p>');

Ext.DomHelper.insertBefore(div, '<p>A paragraph inserted before the div</p>');

Ext.DomHelper.insertAfter(div, '<p>A paragraph inserted after the div</p>');

// Valid parameters:

// beforeBegin: <HERE><div>Contents</div>

// afterBegin: <div><HERE>Contents</div>

// beforeEnd: <div>Contents<HERE></div>

// afterEnd: <div>Contents</div><HERE>

Ext.DomHelper.insertHtml('beforeBegin', div, '<div class="inserted">inserted as

HTML</div>');

Figure 2-2. Ext.DomHelper manipulations

Ext.env.Feature
The Ext.env.Feature class (of which Ext.feature is the singleton instance) exposes
a series of properties, each highlighting a particular HTML5 feature of the browser
where the application is running:

var key = null;

var value = false;

var text = '';

console.log('Available features:');

for (key in Ext.feature.has) {

 value = Ext.feature.has[key];

 text = key + ': ' + value;

 console.log(text);

}

After executing this code in Safari 6.0.2 on OS X Mountain Lion, this is the result:

50 | Chapter 2: The Class System

Available features:

Canvas: true

Svg: true

Vml: true

Touch: false

Orientation: false

OrientationChange: false

DeviceMotion: false

Geolocation: true

SqlDatabase: true

WebSockets: true

Range: true

CreateContextualFragment: true

History: true

CssTransforms: true

Css3dTransforms: true

CssAnimations: true

CssTransitions: true

Audio: true

Video: true

ClassList: true

LocalStorage: true

Chapter 10 includes a description about how to access native device
functionality such as geolocation or orientation from Sencha Touch
applications.

Ext.Function
The Ext.Function object contains useful helper…well, functions, that extend and aug‐
ment the already interesting native capabilities of JavaScript functions. Many of these
functions are used by Sencha Touch for managing event handling, supporting extended
events (such as double-tap events) and other features. They are also available for de‐
velopers to use (and maybe abuse).

createDelayed()

The createDelayed() function wraps a function, causes a delay in milliseconds, and
returns a new function that fires the wrapped function after the requested delay:

var fn = function (value) {

 console.log('this is fn, this is the value: "' + value + '"');

};

var delayed = Ext.Function.createDelayed(fn, 1500, this, [345]);

delayed();

Foundation Utilities | 51

This function causes the text this is fn, this is the value: "345" on the console
after approximately a second and a half.

createInterceptor()

The createInterceptor() function takes a function and wraps it with another one,
composing everything into a third one that is returned. When this returned function is
executed, all input is piped to the wrapping function (the second argument) which must
return true or false. The original function (the wrapped one, passed as first argument)
is executed only if the wrapper returns true.

In the following example, originalFn() is executed only when interceptor() is called

with a value of 234; the check is performed by newFn().

var originalFn = function (value) {

 console.log('original function, this is the value: "' + value + '"');

};

var newFn = function (value) {

 console.log('inside newFn, value is "' + value + '"');

 return (value === 234);

};

var interceptor = Ext.Function.createInterceptor(originalFn, newFn);

interceptor(0);

interceptor(666);

interceptor(234);

The output of the code is the following:

inside newFn, value is "0"

inside newFn, value is "666"

inside newFn, value is "234"

this is the original function, this is the value: "234"

This mechanism is very useful to filter input to functions, composing them as required,
on the fly, at runtime.

createSequence()

The createSequence() function is used to chain the execution of functions together;
it takes two functions, and returns a new one. When the returned function is called, the
wrapped functions are called, with their parameters passed accordingly. However, the
return value of the wrapping function is the return value of the first function wrapped.

var first = function (value) {

 console.log('inside the first() function, value = "' + value + '"');

 return 'first';

};

52 | Chapter 2: The Class System

www.allitebooks.com

http://www.allitebooks.org

var second = function (value) {

 console.log('inside the second() function, value = "' + value + '"');

 return 'second';

};

var third = Ext.Function.createSequence(first, second);

var value = third('boom');

console.log('third() returns "' + value + '"');

The execution of the code yields the following result in the console:

inside the first() function, value = "boom"

inside the second() function, value = "boom"

third() returns "first"

createThrottled()

The createThrottled() function is a particularly interesting one: It wraps a function
and takes a delay in milliseconds as a parameter; it then filters the execution of the
wrapped function, allowing it at least to wait for the specified delay before executing it
again.

In the following example, the first call to throttled() executes immediately. However,
in the following ones, no matter how many of them are triggered, only one will be
executed, and after 4 seconds.

var fn = function () {

 console.log('This is being throttled');

};

var throttled = Ext.Function.createThrottled(fn, 4000, this);

// The first call is executed immediately:

throttled();

// No matter how many times we try, this will only be executed

// once, and after 4 seconds:

throttled();

throttled();

throttled();

throttled();

throttled();

throttled();

defer()

defer() is used to delay the execution of a function by some milliseconds. The function
also takes as parameters the context of execution and, of course, the number of milli‐
seconds before executing the function.

Foundation Utilities | 53

Ext.Function.defer(function (arg) {

 console.log('This function has been deferred 1500 ms, arg = "' + arg + '"');

}, 1500, this, ['argument1']);

For more control over delayed execution, check the Ext.DelayedTask class, which pro‐
vides tighter control and more options, including the capability of canceling a scheduled
execution before it happens.

flexSetter()

The flexSetter() function is used to provide more flexibility for passing arguments

to functions. When wrapping a function using flexSetter(), it can be called using its
original signature or using dictionaries of key-value pairs, allowing to chain assignations

and calls in a more straightforward manner. The method wrapped by Ext.Func

tion.flexSetter() must take two arguments.

For example:

var setValue = Ext.Function.flexSetter(function(name, value) {

 console.log('name: "' + name + '", value: "' + value + '"');

});

setValue('name1', 'value1');

setValue({

 name2: 'value2',

 name3: 'value3',

 name4: 'value4'

});

The preceding code yields the following output in the console; the wrapped function

by Ext.Function.flexSetter() is called as many times as required, once for each pair
of name and value parameters:

name: "name1", value: "value1"

name: "name2", value: "value2"

name: "name3", value: "value3"

name: "name4", value: "value4"

pass()

The pass() function is useful to wrap a function and prepopulate the argument list, all
while allowing the wrapper function to pass new arguments to the wrapped function.

var originalFunction = function(){

 console.log('inside the original function, arguments:');

 console.dir(Ext.Array.from(arguments));

};

var callback = Ext.Function.pass(originalFunction, ['first', 'second']);

54 | Chapter 2: The Class System

callback();

callback('third');

This code yields the following console messages:

inside the original function, arguments:

Array[2]

 0: "first"

 1: "second"

inside the original function, arguments:

Array[3]

 0: "first"

 1: "second"

 2: "third"

Ext.JSON
The Ext.JSON object contains an implementation of Douglas Crockford’s own JSON

parser, including two functions, encode() and decode():

var txt = '{"key1":"value1","key2":"2012-11-06T13:24:07","key3":true,"key4":

345.65,"key5":["value2","value3",768]}';

var decoded = Ext.JSON.decode(txt);

console.dir(decoded);

var obj = {

 key1: 'value1',

 key2: new Date(),

 key3: true,

 key4: 345.65,

 key5: [

 'value2',

 'value3',

 768

]

};

var encoded = Ext.JSON.encode(obj);

console.log(encoded);

Ext.Logger
The Ext.Logger object contains several useful methods that can be used to debug your
Sencha Touch applications; you can think of them as extensions and complements to

the usual console.log() function that we have been using in this book so far.

deprecate(), error(), log(), and warn()

These four functions provide useful additional information to the developer when ver‐
ifying the behavior of her code on the console. They include visual hints such as icons

and color to provide more information than the usual console.log() statement.

Foundation Utilities | 55

It could not be easier to use them:

Ext.Logger.deprecate('this method is deprecated');

Ext.Logger.error('this is an error message');

Ext.Logger.log('this is an generic log message', 0);

Ext.Logger.warn('this is a warning message');

The result of the call of these methods appears in Figure 2-3.

Figure 2-3. Using the Ext.Logger component

Ext.Number
The Ext.Number object contains some functions that provide useful functionality for
formatting and verifying numeric input in Sencha Touch applications.

constrain()

This function takes three parameters: a numeric value and minimum and maximum
bound values. It then checks whether the first numeric value is located within the min‐
imum and maximum bounds, and if so, it returns it.

var constrained = Ext.Number.constrain(234, 0, 6030);

var txt = 'Constrained value: ' + constrained;

console.log(txt);

In the preceding code, the value shown will include the constrained value 234, because
it is indeed located within the provided range.

from()

The from() function takes two values: a generic value and a default value, which must
be numeric; the function then tries to parse a numeric value from the first parameter,
and if this is not possible, it will return the default value provided in the second pa‐
rameter.

var num1 = Ext.Number.from('4535', 1111);

var num2 = Ext.Number.from('Some other value', 1111);

var txt1 = 'Retrieved value: ' + num1;

56 | Chapter 2: The Class System

var txt2 = 'Retrieved value: ' + num2;

console.log(txt1);

console.log(txt2);

In the preceding example, the output will be as follows:

Retrieved value: 4535

Retrieved value: 1111

The first value could be parsed as a numeric input, while the second could not; hence,
the default value is returned.

snap()

This function is used to round (or “snap”) numbers, providing minimum and maximum
bounds at the same time. The first parameter is the number to be rounded; the second
parameter is an incremental factor, of which the result of the function will be a multiple;
and the final two parameters are minimum and maximum values, used to constrain the
final result:

var num = Ext.Number.snap(223, 100, 0, 1000);

var txt = 'Snapped value: ' + num;

console.log(txt);

The preceding code will show the snapped value “200.”

toFixed()

Finally, this function can be used to format a number as a string, using a fixed-point
precision that is specified as the second parameter:

var num = Ext.Number.toFixed(243.54234534, 2);

var txt = 'Fixed value: ' + num;

console.log(txt);

This code will output the value “243.54” on the console.

Ext.Object
Similarly to Ext.Array, the Ext.Object component carries a useful set of functions that
extend the native capabilities of JavaScript objects, allowing developers to inspect the
state and capabilities of any object.

each()

This function executes a function for every key-value pair in the object.

var obj = {

 key1: 'value1',

 key2: 123,

 key3: true

};

Foundation Utilities | 57

Ext.Object.each(obj, function (key, value) {

 var txt = [key, ': ', value].join('');

 console.log(txt);

}, this);

The console output of the preceding code is the following:

key1: value1

key2: 123

key3: true

fromQueryString() and toQueryString()

These functions perform two reverse operations, allowing the encoding and decoding
of complex object structures as simple key-value pairs that could be used as URL
parameters.

var txt1 = 'key1=value1&key2=123&key3=true';

var obj1 = Ext.Object.fromQueryString(txt1);

console.dir(obj1);

var obj2 = {

 key1: 'value1',

 key2: 123,

 key3: true

};

var txt2 = Ext.Object.toQueryString(obj2);

console.log(txt2);

The output of the preceding code is the following:

Object

 key1: "value1"

 key2: "123"

 key3: "true"

key1=value1&key2=123&key3=true

getKey(), getKeys(), getSize(), getValues()

Predictably enough, these functions provide insight into the internal structure and
contents of the object being inspected:

var obj = {

 key1: 'value1',

 key2: 123,

 key3: true

};

var key = Ext.Object.getKey(obj, 'value1');

var keys = Ext.Object.getKeys(obj);

var size = Ext.Object.getSize(obj);

var values = Ext.Object.getValues(obj);

58 | Chapter 2: The Class System

console.dir(key);

console.dir(keys);

console.dir(size);

console.dir(values);

The output of the code is quite self-explanatory:

key1

Array[3]

 0: "key1"

 1: "key2"

 2: "key3"

 length: 3

3

Array[3]

 0: "value1"

 1: 123

 2: true

 length: 3

merge()

The Ext.Object.merge() function recursively joins two distinct literal objects; an ex‐
ample will show exactly how this works:

var obj1 = {

 key1: 'value1',

 key2: 'value2',

 key3: 345,

 key4: false,

 key5: {

 innerKey1: 'innerValue1'

 }

};

var obj2 = {

 key6: 345,

 key7: 'value1',

 key8: 'value2',

 key9: false,

 key5: {

 innerKey2: 'innerValue1'

 }

};

var merged = Ext.Object.merge(obj1, obj2);

console.dir(merged);

The result of this execution is the following:

Object

 key1: "value1"

 key2: "value2"

 key3: 345

 key4: false

 key5: Object

Foundation Utilities | 59

 innerKey1: "innerValue1"

 innerKey2: "innerValue1"

 key6: 345

 key7: "value1"

 key8: "value2"

 key9: false

Ext.Object.merge() is aliased to Ext.merge() for convenience.

toQueryObjects()

This function will encode an object into an array containing name-value pairs that can
be used as parameters for sending complex nested structures as part of POST HTTP
requests to a server:

var obj = {

 day: 5,

 month: 3,

 year: 2002,

 time: {

 hour: 9,

 minute: 20

 }

};

var objs = Ext.Object.toQueryObjects('date', obj, true);

console.dir(objs);

The preceding code returns an array object containing the values of the original object
in nested keys that can be sent as parameters for a POST HTTP request:

Array[5]

 0: Object

 name: "date[day]"

 value: 5

 1: Object

 name: "date[month]"

 value: 3

 2: Object

 name: "date[year]"

 value: 2002

 3: Object

 name: "date[time][hour]"

 value: 9

 4: Object

 name: "date[time][minute]"

 value: 20

 length: 5

60 | Chapter 2: The Class System

Ext.String
The Ext.String object provides a large array of very useful functions.

capitalize()

This function takes a string as a parameter and returns the same string with its first
letter capitalized:

var sample = "whatever you shouldn't usually do.";

var txt = Ext.String.capitalize(sample);

console.log(txt);

After executing this code, the console shows the text Whatever you shouldn't usually

do.

ellipsis()

This function cuts the string passed as parameter before the number of characters
specified, and adds, if required, an ellipsis at the end; for example, the following code

will display the text whatever you... in the console.

var sample = "whatever you shouldn't usually do.";

var txt = Ext.String.ellipsis(sample, 15);

console.log(txt);

escape() and escapeRegex()

These two functions can be used to properly encode characters such as apostrophes,
which cannot be properly displayed in some circumstances:

var sample = "whatever you shouldn't usually do.";

var txt1 = Ext.String.escape(sample);

var txt2 = Ext.String.escapeRegex(sample);

console.log(txt1);

console.log(txt2);

This shows the following text in the console:

whatever you shouldn\'t usually do.

whatever you shouldn't usually do\.

format()

This function provides a very useful equivalent to the sprintf() family of functions
available in many other programming languages; it takes a template string, an undefined
list of parameters, and it performs the required substitutions:

var sample = '<p class="{0}">This is a {1}</p>';

var txt = Ext.String.format(sample, 'test', 'paragraph');

console.log(txt);

Foundation Utilities | 61

The output in the console would be in this case <p class="test">This is a

paragraph</p>.

htmlDecode() and htmlEncode()

These two functions perform inverse operations, decoding and encoding characters
using their equivalent HTML entities:

var sample1 = '<p class="test">

This is a paragraph</p>';

var txt1 = Ext.String.htmlDecode(sample1);

console.log(txt1);

var sample2 = '<p class="test">This is a paragraph</p>';

var txt2 = Ext.String.htmlEncode(sample2);

console.log(txt2);

The console would show the following:

<p class="test">This is a paragraph</p>

<p class="test">

This is a paragraph</p>

leftPad(), repeat(), and trim()

These functions are quite self-explanatory:

var sample1 = "whatever you shouldn't usually do.";

var txt1 = Ext.String.leftPad(sample, 10, '-');

console.log(txt1);

var txt2 = Ext.String.repeat('=-=-=-=', 50, '/');

console.log(txt2);

var sample3 = " whatever you shouldn't usually do. ";

var txt3 = Ext.String.trim(sample3);

console.log(txt3);

The output in the console would be:

----------------whatever you shouldn't usually do.

=-=-=-=/=-=-=-=/=-=-=-=/=-=-=-=/=-=-=-=/=-=-=-=/=-=-=-=/=-=-=-=/=-=-=-=/=-=-=-=

whatever you shouldn't usually do.

toggle()

This function provides a very simple way to display mutually exclusive strings depend‐
ing on a simple condition: whenever one value is passed as parameter, the other is
returned:

var txt = 'No';

txt = Ext.String.toggle(txt, 'Yes', 'No');

console.log(txt);

62 | Chapter 2: The Class System

In the preceding code, the string Yes would be returned by the function.

urlAppend()

This function takes care of serializing and appending encoded parameters to a URL:

var sample = 'http://test.com/whatever';

var params = {

 key1: 'value1',

 key2: true,

 key3: 34536.65

};

var paramsTxt = Ext.Object.toQueryString(params);

var txt = Ext.String.urlAppend(sample, paramsTxt);

console.log(txt);

The preceding code would return the following: http://test.com/whatever?

key1=value1&key2=true&key3=34536.65.

Ext.Version
The Ext.Version object contains functions that manipulate version information. With
them you can verify, compare, and extract information out of version strings, such as
“1.0,” “2.5.6,” or even “6.2.5alpha”; the following code summarizes the most important
capabilities offered by these functions:

var currentVersion = Ext.version;

var version = Ext.create('Ext.Version', currentVersion);

var results = {};

results.equals = version.equals('1.0');

results.build = version.getBuild();

results.major = version.getMajor();

results.minor = version.getMinor();

results.patch = version.getPatch();

results.release = version.getRelease();

results.shortVersion = version.getShortVersion();

results.greaterThan1 = version.isGreaterThan('1.0');

results.greaterThanOrEqual1 = version.isGreaterThanOrEqual('1.0');

results.lessThan1 = version.isLessThan('1.0');

results.lessThanOrEqual1 = version.isLessThanOrEqual('1.0');

results.match = version.match('5.0');

results.array = version.toArray();

Ext.Object.each(results, function (key, value) {

 console.log(key + '> "' + value + '"');

}, this);

The preceding code would display the following in the console:

equals> "false"

build> "0"

Foundation Utilities | 63

major> "2"

minor> "1"

patch> "0"

release> ""

shortVersion> "210"

greaterThan1> "true"

greaterThanOrEqual1> "true"

lessThan1> "false"

lessThanOrEqual1> "false"

match> "false"

array> "2,1,0,0,"

Ext.mixin.Observable
The Ext.mixin.Observable mixin is the component that enables Sencha Touch objects

to publish, fire, and listen to events; in the following example, the Animal class uses the

mixin so that instances of it can listen to individual eating and beingEaten events,

which are fired by the eat() method:

// Defining the animal class

Ext.define('Animal', {

 mixins: ['Ext.mixin.Observable'],

 config: {

 name: '(some animal name here)',

 kind: '(animal kind here)'

 },

 constructor: function(config) {

 this.initConfig(config);

 },

 eat: function (animal) {

 // Here is where the magic happens

 this.fireEvent('eating', animal);

 animal.fireEvent('beingEaten', this);

 }

});

// Creating two instances of the Animal class

var lion = Ext.create('Animal', {

 name: 'Simba',

 kind: 'Lion',

 listeners: {

 eating: function (prey) {

 var template = '{0} the {1} is eating {2} the {3}!';

 var name = this.getName();

 var kind = this.getKind();

 var preyName = prey.getName();

 var preyKind = prey.getKind();

 var txt = Ext.String.format(template, name, kind, preyName,

64 | Chapter 2: The Class System

 preyKind);

 console.log(txt);

 }

 }

});

var zebra = Ext.create('Animal', {

 name: 'Pumbaa',

 kind: 'Warthog',

 listeners: {

 beingEaten: function (predator) {

 var template = '{0} the {1} is being eaten by {2} the {3}!';

 var name = this.getName();

 var kind = this.getKind();

 var predName = predator.getName();

 var predKind = predator.getKind();

 var txt = Ext.String.format(template, name, kind, predName,

 predKind);

 console.log(txt);

 }

 }

});

// And now nature follows its path

lion.eat(zebra);

Ext.util.DelayedTask
The Ext.util.DelayedTask provides a simple API around the standard setTime

out() and clearTimeout() functions of the standard JavaScript library. DelayedTask
instances can be delayed and canceled using a very simple API:

var task = Ext.create('Ext.util.DelayedTask', function() {

 console.log('This message took 1.5 seconds to appear');

});

task.delay(1500);

Predictably enough, the cancel() method can be called on tasks to prevent their exe‐
cution.

What is the difference with Ext.defer()?
Ext.util.DelayedTask objects wrap a function to be called at some

point in the future. These objects also expose the cancel() method,
giving more control to the developer, as the task not only can be passed
as parameter to other parts of the application, but it can also be canceled

if needed. On the other hand, the Ext.Function.defer() provides a
non-cancelable, one-shot execution of a function.

Foundation Utilities | 65

Ext.util.HashMap
The Ext.util.HashMap is a container class that can be used in lieu of standard JavaScript
literal dictionaries; it provides a very simple API and, most importantly, it exposes useful
events that allow applications to be notified when items are added or removed from
these containers.

add(), clear(), remove(), removeByKey(), replace()

These methods are used to manipulate the items inside an Ext.util.HashMap instance.
They all trigger the execution of the corresponding events:

• add

• clear

• remove

• replace

The following code shows an example of use:

var map = Ext.create('Ext.util.HashMap');

map.on('add', function (map, key, value, eOpts) {

 console.log('EVENT; item added; key: "' + key + '",

 value: "' + value + '"');

});

map.on('clear', function (map, eOpts) {

 console.log('EVENT; map cleared');

});

map.on('remove', function (map, key, value, eOpts) {

 console.log('EVENT; item removed; key: "' + key + '",

 value: "' + value + '"');

});

map.on('replace', function (map, key, value, old, eOpts) {

 console.log('EVENT; item replaced; key: "' + key + '", old value: "' +

 old +'", new value: "' + value + '"');

});

map.add('key1', 'value1');

map.add('key2', 1234);

map.add('key3', true);

map.clear();

map.add('key1', 'value1');

map.add('key2', 1234);

map.add('key3', true);

map.remove(true);

map.removeByKey('key2');

map.replace('key2', 'new value');

66 | Chapter 2: The Class System

contains(), containsKey()

These two functions are used to test for the existence of values (or keys) in a particular
instance.

var map = Ext.create('Ext.util.HashMap');

map.add('key1', 'value1');

map.add('key2', 1234);

map.add('key3', true);

console.log('Map contains "value1" : ' + map.contains('value1'));

console.log('Map contains "key2" : ' + map.containsKey('key2'));

each()

The each() method takes a function as parameter; this function is called for each key-
value pair in the hash map following the iterator pattern.

var map = Ext.create('Ext.util.HashMap');

map.add('key1', 'value1');

map.add('key2', 1234);

map.add('key3', true);

map.each(function (key, value) {

 var txt = key + '> ' + value;

 console.log(txt);

});

get(), getCount(), getKeys(), getValues()

These functions are used to inspect the current state of the instance.

var map = Ext.create('Ext.util.HashMap');

map.add('key1', 'value1');

map.add('key2', 1234);

map.add('key3', true);

console.log('Map has ' + map.getCount() + ' values');

var obj = map.get('key1');

console.log('object with key "key1" = "' + obj + '"');

var keys = map.getKeys();

console.dir(keys);

var values = map.getValues();

console.dir(values);

Ext.util.Inflector
The Ext.util.Inflector class provides some utility functions that are used to manage
the pluralization and singularization of words in English.

Foundation Utilities | 67

isTransnumeral()

In English, a transnumeral word is a word that does not change when used in plural or
singular forms.

var words = ['fish', 'people', 'gents', 'women', 'happiness', 'sheep', 'code'];

Ext.iterate(words, function (item) {

 var txt = [item, ' is transnumeral: ',

 Ext.util.Inflector.isTransnumeral(item)].join('');

 console.log(txt);

}, this);

This yields the following console output:

fish is transnumeral: true

people is transnumeral: false

gents is transnumeral: false

women is transnumeral: false

happiness is transnumeral: false

sheep is transnumeral: true

code is transnumeral: false

ordinalize()

This function takes a number as a parameter and returns the proper ordinal string:

var words = [1, 2, 3, 4, 5, 345, 456, 822, 21, 80];

Ext.iterate(words, function (item) {

 var txt = Ext.util.Inflector.ordinalize(item);

 console.log(txt);

}, this);

The result is the following:

1st

2nd

3rd

4th

5th

345th

456th

822nd

21st

80th

pluralize(), singularize()

These functions take a word in either plural and singular form and return the opposite
version.

var singular = ['person', 'country', 'mouse', 'thing', 'boom'];

Ext.iterate(singular, function (item) {

 var txt = ['One', item, 'many',

 Ext.util.Inflector.pluralize(item)].join(' ');

68 | Chapter 2: The Class System

 console.log(txt);

}, this);

var plural = ['people', 'countries', 'mice', 'things', 'booms'];

Ext.iterate(plural, function (item) {

 var txt = ['Many', item, 'one',

 Ext.util.Inflector.singularize(item)].join(' ');

 console.log(txt);

}, this);

This is the result:

One person many people

One country many countries

One mouse many mice

One thing many things

One boom many booms

Many people one person

Many countries one country

Many mice one mouse

Many things one thing

Many booms one boom

Conclusion
This chapter provided an introduction to the Sencha Touch class system, used to define
classes and to create new instances out of those classes. We have also taken a look at the
different class families available in the framework, and we have studied more about the
low-level code utilities integrated into Sencha Touch, which remove the need for ex‐
ternal libraries.

Conclusion | 69

CHAPTER 3

Views

Views are the most visible element of any application; using view components, devel‐
opers can assemble and create the UIs of their applications, the same ones their users
will learn to love (or hate) as they use their software—although the team at Sencha seems
to have done all it can to make sure users love the applications built with this framework!

Sencha Touch has an unprecedented number of high-level components, ready to be
used in your applications; these components fit together quite nicely and have a vast
array of events that can be used to provide interactivity. This chapter will delve into all
of these aspects in detail and will provide an overview of the most important UI classes
available in the framework.

Components, Containers, and Panels
All the visual components of Sencha Touch inherit from a base class called Ext.Compo

nent. Components can draw themselves on the screen; they can be shown and hidden,
enabled and disabled at any time; they can be resized, moved, and animated; and finally
they can also trigger events, allowing developers to react to user input or to changing
conditions.

However, if you look at the class inheritance of most Sencha Touch view components,

you are going to see that many inherit also from Ext.Container. It turns out that con‐
tainers are a special kind of component that can also contain (hence the name) other
child components inside. This means that containers can add and remove child com‐
ponents, as well as arranging them in layouts.

Finally, some other containers, such as message boxes, inherit from Ext.Panel, itself a

subclass of Ext.Container. Panels can be shown as overlays on top of other components,
including animations and transitions.

71

Events
One of the most useful things about components is that they can trigger events. Events
in Sencha Touch view components can be added in two separate locations:

• On the view definition itself, using the listeners configuration entry

• On a separate controller class

You can mix and match both approaches; this means that when an event is fired, all the
functions configured as event handlers for that particular event will fire (in no particular
order, though).

Controllers will be described in detail in Chapter 6.

The following code shows a very simple event handler for a button:

{

 xtype: 'button',

 text: 'Action button',

 listeners: {

 tap: function (button, e, eOpts) {

 console.log('Button was tapped');

 }

 }

}

In the preceding example, we are using the simplest of all Sencha Touch components:

the button, represented by the class Ext.Button or its xtype button. Inside this button

definition, we attach a function to the tap event, which is fired whenever the button is
touched.

Event handler parameters
Event handler functions like the preceding take myriad parameters; it
is a very good programming practice to always check the documenta‐
tion for the proper function signature of each event handler and to add
all of those parameters. Even if they are not useful at first sight, you
might need to use them later.

Typical events in Sencha Touch include the following:

• The initialize, hide, and show events in the Ext.Component class

72 | Chapter 3: Views

• The add and remove events in the Ext.Container class, which are triggered every
time subviews are added or removed from a parent component

• The scrollstart, scroll, and scrollend events in the Ext.scroll.Scroller
class, which is used internally by components that are scrollable

• The tap event in the Ext.Button class (as shown in the previous example)

• The itemtap, itemsingletap, itemdoubletap, and disclose events in the Ext.da

ta.List class

• The maprender event in the Ext.Map

• The toggle event in the Ext.SegmentedButton class

• The play, pause, stop, and ended events in the Ext.Video and Ext.Audio classes

• The back, pop, and push events in the Ext.navigation.View class

• The focus and blur events in the Ext.field.Text class (to be studied in detail in
Chapter 5)

As you can see, the number of events is huge; application developers can be notified at
any moment of any activity in any component, just by attaching functions wherever
required. Remember to check the documentation for the proper signatures of the
functions!

Layouts
As we have seen, containers are a type of component that can hold other components

as children. This is done through the use of the items property, which takes an array of
component instances.

JavaScript arrays only specify order, but containers need more information than just
order to render themselves in the screen; they need to know where to position each
child component before being drawn.

To give containers a hint about the relative positions of each child component on the

screen, developers specify a layout configuration property, which describes an instance

of any of the subclasses of Ext.layout.Default. There are several layouts available:

• fit, which is the simplest of all the available layouts, and which makes the child
component completely fit the available space of its parent

• hbox, which stacks child views horizontally

• vbox, used to stack child components vertically

• card, used to stack several components on the same structure but display only one
at a time (particularly useful in smartphone screens)

Components, Containers, and Panels | 73

Additionally, every layout is able to dock components, which is used to force some
components to be placed at the edges (top, right, bottom, or left), resizing the other
components if required.

The first layout is fit, which is by far the easiest to understand; it just tells its receiver
to occupy the whole space made available by its parent, as shown in the following ex‐
ample:

Ext.define('Chapter3Layouts.view.FitDemo', {

 extend: 'Ext.Container',

 xtype: 'fitdemo',

 config: {

 layout: {

 type: 'fit'

 },

 items: [{

 xtype: 'component', margin: 10,

 html: 'This component is set to fit',

 style: 'background-color: lightgray'

 }]

 }

});

The result of the code is shown in Figure 3-1.

Figure 3-1. Fit layout

The second layout is hbox, which is very similar to vbox, with only a major difference:
the orientation of the resulting layout. In both cases, though, the child views must have

a flex configuration parameter, which works as follows:

1. The layout sums all the values of the flex parameter in the child views.

74 | Chapter 3: Views

2. The available space for the child views is divided evenly using the formula “flex /
(sum of flex values).”

In the following example, the flex values are 1 and 3, which means that the sum is 4; in
that case, the first view receives one-fourth of the available space, while the second view
receives three-fourths of it.

Ext.define('Chapter3Layouts.view.HBoxDemo', {

 extend: 'Ext.Container',

 xtype: 'hboxdemo',

 config: {

 defaults: {

 margin: 10

 },

 layout: {

 type: 'hbox'

 },

 items: [{

 xtype: 'component', flex: 1,

 html: 'Flex: 1', style: 'background-color: pink'

 }, {

 xtype: 'component', flex: 3,

 html: 'Flex: 3', style: 'background-color: lightgray'

 }]

 }

});

The code for the vbox layout demo is strictly the same, apart from the layout:

'vbox' parameter. The resulting UIs are shown in Figure 3-2 and Figure 3-3.

Figure 3-2. HBox layout

Components, Containers, and Panels | 75

The card layout is probably the most important of all, as it provides a way to easily
switch among views in devices with little screen real estate, such as smartphones.

In a card layout, the only view that is visible by default is the first one in the items array,
while the others are hidden “beneath” the first one. To switch to any other view, just call

the setActiveItem() function (which is added automatically to any container that uses

the card layout, but is not available otherwise) and the view will switch accordingly,
with an animation if required.

Figure 3-3. VBox layout

The following source code yields the result shown in Figure 3-4.

76 | Chapter 3: Views

Ext.define('Chapter3Layouts.view.CardDemo', {

 extend: 'Ext.Container',

 xtype: 'carddemo',

 config: {

 defaults: {

 margin: 10

 },

 layout: {

 type: 'card'

 },

 items: [{

 xtype: 'segmentedbutton',

 docked: 'top',

 items: [{

 text: 'First', pressed: true

 }, {

 text: 'Second'

 }, {

 text: 'Third'

 }],

 listeners: {

 toggle: function (segmentedbutton, button, isPressed, eOpts) {

 if (isPressed) {

 var container = segmentedbutton.getParent();

 var txt = button.getText()

 var selectedComponent = container.getComponent

 (button.getText());

 container.setActiveItem(selectedComponent); //

 }

 }

 }

 }, {

 xtype: 'component', itemId: 'First',

 html: 'First component', style: 'background-color: pink'

 }, {

 xtype: 'component', itemId: 'Second',

 html: 'Second component', style: 'background-color: lightgray'

 }, {

 xtype: 'component', itemId: 'Third',

 html: 'Third component', style: 'background-color: cyan'

 }]

 }

});

The call to the setActiveItem() triggers the change from one view to the other.

The card layout is used extensively throughout Sencha Touch; for example, the

Ext.Viewport singleton instance uses it by default, as well as many complex containers

such as the Ext.tab.Panel and the Ext.carousel.Carousel classes.

Components, Containers, and Panels | 77

Figure 3-4. Card layout

Finally, you can override some layout properties and force the location of some subviews

using the docked property, which takes four self-explanatory values: top, bottom,

right, and left. Figure 3-5 shows the result of having a fit layout with a view in the
center, surrounded by four other views docked at the edges of the screen.

Ext.define('Chapter3Layouts.view.DockingDemo', {

 extend: 'Ext.Container',

 xtype: 'dockingdemo',

 config: {

 defaults: {

 margin: 5

 },

 layout: {

 type: 'fit'

 },

 items: [{

 xtype: 'component', docked: 'top', html: 'Docking: "top"',

 style: 'background-color: pink'

 }, {

 xtype: 'component', docked: 'left', html: '"left"',

 style: 'background-color: lightblue'

 }, {

 xtype: 'component', docked: 'right', html: '"right"',

 style: 'background-color: lightgreen'

 }, {

 xtype: 'component', docked: 'bottom', html: 'Docking: "bottom"',

 style: 'background-color: cyan'

 }, {

 xtype: 'component', html: 'Centered',

 style: 'background-color: lightgray'

78 | Chapter 3: Views

 }]

 }

});

Figure 3-5. Docking views

Templates
The Sencha Touch view subsystem also uses templating to generate dynamic HTML
code, in a similar way as mustache, jQuery templates, or pure do.

The Sencha Touch template system is based in the Ext.XTemplate class and is also baked

in the Ext.Component class through the tpl configuration parameter.

In the example that follows, we populate a container with the tpl parameter, instead of

using the simpler html configuration. This allows developers to consume complex sets
of data and to display them in intricate ways:

Ext.define('Chapter3Layouts.view.TemplatesDemo', {

 extend: 'Ext.Container',

 xtype: 'templatesdemo',

 config: {

 scrollable: true,

 data: {

 countries: [{

 country: 'Argentina', flagColors: ['light blue', 'white']

 }, {

 country: 'Switzerland', flagColors: ['red', 'white']

 }, {

 country: 'France', flagColors: ['blue', 'white', 'red']

 }]

 },

Components, Containers, and Panels | 79

http://mustache.github.com/
http://api.jquery.com/category/plugins/templates/
http://beebole.com/pure/

 tpl: Ext.create('Ext.XTemplate', '<tpl for="countries">',

 '<div>{#}. {country}: {flagColors:this.join}</div>',

 '</tpl>',

 {

 join: function (value) {

 return value.join(', ');

 }

 })

 }

});

The preceding code yields the result shown in Figure 3-6. As shown, templates can be
extended with custom functions, and they include a large array of built-in functions
that deal with string manipulation and date and number formatting.

Figure 3-6. Using templates

Component Library Catalog
Sencha Touch, like many other large, “enterprisey” programming frameworks, offers
an incredible library of components ready to be used in applications. This section will
go through most of them, providing examples of use, screenshots, and usage guidelines
for them.

This section will not cover data-bound views, which are covered in
Chapter 4, or form fields, which are covered in extensive detail in
Chapter 5. However, those are components and, in some cases, also
containers.

The diagram in Figure 3-7 shows a simplified overview of the hierarchy of view classes
available in Sencha Touch 2.1 (for the sake of readability, not all view classes are repre‐
sented in the diagram). This chapter considers three major families of components:

80 | Chapter 3: Views

• Basic components, inheriting from Ext.Component

• Containers, inheriting from Ext.Container

• Panels, inheriting from Ext.Panel

This chapter also adds yet another group to these families: the “Multimedia” compo‐
nents, allowing developers to include complex visualizations such as audio, video, or

graphs. These components are usually just subclasses of Ext.Component, but they de‐
serve a place of their own, as they encapsulate exceptionally useful functionality behind
surprisingly simple interfaces.

Figure 3-7. View classes hierarchy diagram (simplified)

Let’s review each of these class families in detail.

Components
The first family of visual elements available in the Sencha Touch framework includes
direct subclasses of Ext.Component. In this group we find common and simple elements
such as buttons and labels.

All components in Sencha Touch (which basically means anything you can see on the
screen of your Sencha Touch application) can be configured using these properties:

• The centered property is a Boolean value that specifies whether the current in‐
stance must be centered inside its parent container.

Component Library Catalog | 81

• The contentEl property allows developers to populate a Sencha Touch component

with any HTML element available in the page; the property can hold an Ext.Ele

ment object, a DOM reference, or a string with an element ID.

• The disabled property is a Boolean that specifies whether the current component
is active or not, to receive user input and to react to events. Please pay attention to

the fact that there is no enabled property!

• The docked property specifies the location where to anchor a particular component

on a complex layout; the valid values for this parameter are top, bottom, left, and

right.

• The flex property is used by the hbox and vbox layouts to specify the proportion
of screen real estate to be reserved to a particular component. Please refer to the
“Layouts” section later in this chapter for more information about them.

• The fullscreen property is used when a component is directly added to the

Ext.Viewport singleton instance of the application; this Boolean specifies whether
the component in question has to stretch itself to occupy the whole space available.

• The hidden property specifies whether the current component is visible or not.

Please pay attention to the fact that there is no visible property available!

• The hideAnimation and showAnimation properties provide very simple ways to
apply animations to your user interfaces. You can specify either a string with the

name of an animation (such as fadeIn or pop) or a complex object representing an

instance of the Ext.Anim class.

• The itemId property should always be preferred instead of the more common id

property; this is because the itemId property requires uniqueness of value only

among child components of a container, while the id property requires all values
to be different throughout the whole application, which can be difficult to use. The

values of the itemId property are usually used with the Ext.Container.getCompo

nent() instance function, which is used to retrieve pointers of child components
inside a container.

• maxHeight, maxWidth, minHeight, and minWidth are used to constrain the size of
the current instance, making sure that the automatic layout process of the applica‐
tion respects some basic boundaries.

82 | Chapter 3: Views

• The style property allows developers to inject any kind of CSS string that they wish
directly into the application. Although this is convenient, it would be wiser to use

the cls property instead, which specifies additional CSS classes, defined in an ex‐
ternal CSS file.

• Finally, the styleHtmlContent Boolean property (whose value is false by default)

specifies whether the value of the html property can be styled or not (for example,

when using HTML text that contains , , or <a> tags, which carry their
own styling semantics).

Button

Buttons are the most common user interface element in any visual widget toolkit. As

expected, creating buttons in Sencha Touch could not be simpler, using the Ext.But

ton class (or the button xtype):

{

 xtype: 'button',

 text: 'Reply',

 badgeText: '42',

 ui: 'normal',

 iconCls: 'reply',

 iconMask: true,

 iconAlign: 'top',

 margin: '5 5 5 30',

 listeners: {

 tap: function (button, e, eOpts) {

 console.log('button tap');

 }

 }

}

The result of the preceding code can be seen in Figure 3-8.

Figure 3-8. Button example

Component Library Catalog | 83

Button instances can be configured in several different ways:

• The text property specifies the label displayed by the button.

• The badgeText property provides a value to be shown on a red badge on top of the
button, to notify the user about some particular situation.

• The ui property can take several values: action, back, confirm, decline, forward,
normal, plain, and round. Applying any of these values will change the shape and
color of the button, providing context and hints about the functionality of the but‐

ton to the user. See Figure 3-9 for examples of setting different values to the ui
property.

• Buttons can have icons applied to them. Using the iconCls property together with

the iconMask: true property, you can use a large array of default icons provided
by Sencha Touch: action, add, arrow_down, arrow_left, arrow_right, arrow_up,
bookmarks, compose, delete, download, favorites, home, info, locate, maps, more,
organize, refresh, and reply. See Figure 3-10 for some examples.

• The iconAlign property can be used to change the relative position of the icon to
the text; it accepts the values top, right, bottom, left, and center. You can see some
of these positions in Figure 3-10.

• Finally, the listeners property allows developers to attach event handlers to in‐
dividual buttons, although this can also be done using controllers.

Remember to set iconMask: true whenever using the default icons
provided by Sencha Touch; otherwise these will not be visible in the
button.

84 | Chapter 3: Views

Figure 3-9. Buttons with different UI properties

Component Library Catalog | 85

Figure 3-10. Buttons with different icons

Label

The Ext.Label class (xtype label) is probably the simplest of all the components avail‐
able in Sencha Touch; it just provides a placeholder to display any HTML text inside of
your application. Creating one of these, as usual, involves a very simple operation:

{

 xtype: 'label',

 html: 'This is a label; it can display any kind of HTML or plain text.'

}

86 | Chapter 3: Views

Containers
As previously explained, containers are a special kind of component that can contain
other components. We are going to learn about the most important containers available:

• Carousel

• Navigation view

• Segmented button

• Tab panel

• Title bar

• Toolbar

Containers allow developers to organize large applications into the small screens avail‐
able in smartphones and tablets. They provide visual cues for users to find their way,
including animation and indicators.

In addition to the configuration options provided by the Ext.Component class, con‐
tainers can be customized using several more properties:

• The most important property of containers is, without doubt, the items property,
which defines the child elements to be embedded inside it.

• The defaultType property specifies the xtype of the child elements of a particular
container; for example, toolbars expect their children to be buttons, while tab panels
expect them to be just components, and so on. You can define your own expected

value for this property, and automatically all components defined inside the items
property will be instances of that type (unless you specify a custom xtype, of course).

• The defaults property specifies common properties for all the child components
defined inside the current container.

• The layout property specifies the arrangement for the child elements of a container.
Since the items property is just a linear array, Sencha Touch needs to have more
information on how to distribute the elements of this array. The layout property
provides that information.

• Finally, the scrollable property specifies whether the component can scroll to
reveal child components not visible otherwise.

Let’s now study the most important containers available in Sencha Touch.

Carousel

The Ext.carousel.Carousel class (xtype carousel) simply stacks child views hori‐
zontally or vertically and allows the user to swipe from one to the other. The component

Component Library Catalog | 87

also provides a visual indicator at the bottom of the screen (or at the right side when

using the vertical direction setting), giving the user an indication of the total number
of pages available, as well as a hint about the current one:

{

 xtype: 'carousel',

 fullscreen: true,

 direction: 'vertical',

 items: [{

 html: 'Red',

 style: 'background-color: red'

 }, {

 html: 'Yellow',

 style: 'background-color: yellow'

 }, {

 html: 'Green',

 style: 'background-color: green'

 }]

}

The result of the code is a screen that looks like Figure 3-11, as the user scrolls from the
second to the third embedded component.

Navigation view

The Ext.navigation.View class provides a stack-based navigation component that is

heavily inspired by the UINavigationController class of iOS. A navigation view allows
users to drill down in data from general to more specific categories, all while being able
to return to the previous screen using a Back button, conveniently located on the upper-
left side of the screen.

The navigation view itself is a container that does not show lots of UI chrome to the
users besides the navigation bar and the Back button itself. However, it offers a very
interesting interface to application developers, who can programmatically use the

push() and pop() functions to add and remove views, triggering an animation and the
display of the next screen in the sequence.

You can see examples of the Ext.navigation.View class in action when
browsing the code examples in a smartphone device.

88 | Chapter 3: Views

Figure 3-11. Carousel in action

Segmented button

Segmented buttons provide a finger-sized alternative to radio buttons. They are (as
many other components in Sencha Touch) heavily inspired by their iOS cousin, the

UISegmentedControl class.

Creating a segmented button, as usual, is a straightforward task:

{

 xtype: 'segmentedbutton',

 items: [{

 text: 'Hue'

 }, {

 text: 'Saturation'

 }, {

 text: 'Brightness'

 }]

}

The result is shown in Figure 3-12.

Component Library Catalog | 89

Figure 3-12. Segmented buttons

Tab panel

If navigation views are stack-based containers, helping users to navigate sequentially
between components, then you can think of tab panels as array-based containers, ena‐
bling random navigation among components.

As usual, configuring a tab panel involves filling the items array with some components:

{

 xtype: 'tabpanel',

 layout: {

 // Possible values: cover, cube, fade, flip, pop, reveal, scroll, slide

 // You can also specify "false" (Boolean value) to disable all

 // animations

 animation: 'flip'

 },

 tabBarPosition: 'bottom',

 items: [{

 title: 'Profile',

 iconCls: 'user', iconMask: true,

 style: 'background-color: #e17467; color: white',

 html: 'Your profile screen here'

 }, {

 title: 'Favorites',

 iconCls: 'favorites', iconMask: true,

90 | Chapter 3: Views

 style: 'background-color: #f6eb69',

 html: 'Your favorites here'

 }, {

 title: 'Search',

 iconCls: 'search', iconMask: true,

 style: 'background-color: #74e796',

 html: 'Search engine here'

 }, {

 title: 'Action',

 iconCls: 'action', iconMask: true,

 style: 'background-color: #688ee2',

 html: 'Do something here'

 }, {

 title: 'More',

 iconCls: 'more', iconMask: true,

 style: 'background-color: lightgray',

 html: 'There is lots you can do here'

 }]

}

The result of the preceding configuration can be seen in Figure 3-13.

Figure 3-13. Tab panel

Component Library Catalog | 91

Using the tabBarPosition: 'top' value will send the tab bar to the top, which is a
common choice for Android applications. In that case, the result will be similar to the
one shown in Figure 3-14, and given the increased width of the individual buttons in
the tab bar, developers should include an additional configuration option to increase
the usability of the component:

{

 xtype: 'tabpanel',

 tabBarPosition: 'top',

 tabBar: {

 scrollable: true

 },

 // ...

}

Thanks to the activeitemchange event (defined in the Ext.Container class) developers
can be notified of the fact that the user has selected a different screen using the tab bar.

Figure 3-14. Tab panel with tab bar on top

Title bars and toolbars

Title bars (represented by the Ext.TitleBar class or the titlebar xtype) and toolbars

(Ext.Toolbar, or simply toolbar) are very similar components; the main difference

between them is that the title configuration in the title bar is always centered, while

the toolbar does not make this assumption. In both cases, though, the docked config‐

uration (usually top or bottom) is used to attach the component to a specific location
of its parent container.

The following source code shows how to create a very simple toolbar with some buttons
in it:

{

 xtype: 'toolbar', docked: 'bottom',

 items: [{

 iconCls: 'favorites', iconMask: true

92 | Chapter 3: Views

 }, {

 xtype: 'spacer'

 }, {

 iconCls: 'search', iconMask: true

 }]

}

A spacer object (officially, a component of type Ext.Spacer) inserts a flexible space
between buttons, allowing a group of buttons to be “pushed” to the right side of the

screen automatically. This object is familiar to iOS developers, who can use a UIBar

ButtonItem instance, with the SystemItem parameter set to UIBarButtonSystemItem

FlexibleSpace in pretty much the same way.

To create a title bar, it is as simple as usual; in this case, the title will be automatically
centered.

{

 xtype: 'titlebar', docked: 'top', title: 'Top',

 items: [{

 iconCls: 'action', iconMask: true, align: 'left', text: 'Action'

 }, {

 iconCls: 'user', iconMask: true, align: 'right', text: 'Profile'

 }]

}

The result of the preceding code snippets can be seen in Figure 3-15.

Viewport

The Ext.Viewport is a singleton instance, created automatically for you when an MVC

Sencha Touch application is launched through the Ext.application() function (or the

Ext.setup() function for non-MVC apps). The Viewport is set to fullscreen: true
by default and is meant to be populated with the views that make up the application. It
is also configured with a “card” layout ready to be used out of the box.

In a sense, the Viewport in Sencha Touch can be thought of as the single

UIWindow instance used in iOS applications or the root Activity in
Android applications—the place where the UI is built from scratch and
populated.

Component Library Catalog | 93

Figure 3-15. Title bar and toolbar

The Ext.Viewport singleton is most often used in the launch() function, either in the

main app.js file or in the individual profiles for different device types, like in the fol‐
lowing example:

Ext.define('Chapter3Views.profile.Tablet', {

 extend: 'Ext.app.Profile',

 config: {

 name: 'Tablet',

 models: [],

 views: ['AkoLib.view.SplitView'],

 controllers: ['TabletController']

 },

 isActive: function () {

 return Ext.os.is.Tablet || Ext.os.is.Desktop;

 },

94 | Chapter 3: Views

 launch: function () {

 Ext.Viewport.add({

 xtype: 'akosplitview',

 screenTitle: 'View Catalog',

 menuButtonTitle: 'Demos',

 masterView: {

 xtype:

 'indexview'

 },

 detailView: {

 xtype: 'panel',

 html: 'Choose a demo from the menu'

 }

 });

 }

});

Panels
Panels (instances of the Ext.Panel class, with the xtype panel) are a special kind of
container that can be used as overlay views, floating on top of other components. The

most important API they offer developers is the showBy() function, which takes any
other component as a parameter and makes the panel appear “pointing” to it. Figure 3-16
shows an example of a panel appearing near a button, as defined in the following code:

{

 xtype: 'button',

 text: 'Touch to open panel',

 itemId: 'openPanelButton',

 listeners: {

 tap: function (button, e, eOpts) {

 if (!button.panel) {

 button.panel = Ext.widget('panel', {

 html: 'This is a panel',

 padding: 20,

 width: 280,

 modal: true,

 hideOnMaskTap: true, //

 hidden: true,

 hideAnimation: 'fadeOut',

 showAnimation: 'fadeIn'

 });

 }

 button.panel.showBy(button);

 }

 }

}

This is a very useful configuration to set on panels, so that users can dismiss the
panel just by hitting anywhere around it.

Component Library Catalog | 95

Figure 3-16. Floating panel

Many components in Sencha Touch extend panels to display fancy overlays in
applications:

• Action sheets

• Message boxes

• Pickers

• Sheets

In the following sections, we are going to see each one of these subclasses.

96 | Chapter 3: Views

Action sheet

Action sheets (represented by the xtype actionsheet or its equivalent, the Ext.Action

Sheet class) are also inspired by its iOS counterpart. They are commonly used to display
a modal interface allowing the user to choose from a restricted set of buttons, typically
to perform some operation on the current screen.

The following code shows how to configure and use an action sheet:

{

 xtype: 'button',

 text: 'Touch to open action sheet',

 itemId: 'openButton',

 listeners: {

 tap: function (button, e, eOpts) {

 if (!button.sheet) {

 button.sheet = Ext.widget('actionsheet', {

 items: [{

 text: 'Delete',

 listeners: {

 tap: function (btn, e, eOpts) {

 button.sheet.hide();

 }

 }

 }, {

 text: 'Approve',

 ui: 'confirm',

 listeners: {

 tap: function (btn, e, eOpts) {

 button.sheet.hide();

 }

 }

 }, {

 text: 'Cancel',

 ui: 'decline',

 listeners: {

 tap: function (btn, e, eOpts) {

 button.sheet.hide();

 }

 }

 }]

 });

 Ext.Viewport.add(button.sheet); //

 }

 button.sheet.show(); //

 }

 }

}

You must add the sheet to the current Viewport before using it!

To display the sheet, just call its show() function.

Component Library Catalog | 97

The result of the preceding code is shown in Figure 3-17.

Figure 3-17. Action sheet in action

Message box

Message boxes are triggered by using the Ext.Msg singleton object, which is of class

Ext.MessageBox class. This class exposes three methods, all sharing the same names
with the equivalent browser based message boxes:

• alert(), which displays a title, a text and an OK button to dismiss the dialog

• confirm(), which prompts the user to answer a single question by “Yes” or “No”

• prompt(), which can be used to ask the user for some input

98 | Chapter 3: Views

These dialog boxes are asynchronous
In spite of sharing the same name as their “native” JavaScript counter‐

parts, the dialog boxes exposed by the Ext.Msg singleton object are
asynchronous; this has several consequences:

1. The execution of the calling JavaScript code is not blocked until
the user dismisses the dialog boxes, which in turn means that any
network callbacks or other events are still being processed and ex‐
ecuted.

2. To retrieve the input from the user, whenever any of these dialog
boxes are dismissed, you have to provide a callback function that
will be executed as soon as the user taps any of the buttons
provided.

The following source code shows how to create a simple user interface with three but‐
tons, each triggering a different kind of dialog box. The result of calling the

Ext.Msg.alert() function can be seen in Figure 3-18.

items: [{

 xtype: 'button',

 text: 'alert()',

 itemId: 'alertButton',

 listeners: {

 tap: function (button, e, eOpts) {

 Ext.Msg.alert('alert()', 'This is an alert box');

 }

 }

}, {

 xtype: 'button',

 text: 'confirm()',

 itemId: 'confirmButton',

 listeners: {

 tap: function (button, e, eOpts) {

 Ext.Msg.confirm('confirm()', 'This is a confirm dialog', function

(answer) {

 Ext.Msg.alert('Answer to confirm()', 'You said ' + answer);

 console.log('Answer to confirm(): ' + answer);

 }, this);

 }

 }

}, {

 xtype: 'button',

 text: 'prompt()',

 itemId: 'promptButton',

 listeners: {

 tap: function (button, e, eOpts) {

 Ext.Msg.prompt('prompt()', 'This is a prompt dialog',

 function (answer, text) {

Component Library Catalog | 99

 Ext.Msg.alert('Answer to prompt()', 'You said "' + text + '"');

 console.log('Answer to prompt(): ' + text);

 }, this);

 }

 }

}]

Figure 3-18. Alert dialog box

Picker

Pickers allow users of touchscreen devices to select an option from a set; the following
code shows how to create a picker and then retrieve the choice back in the flow of the
code, as shown in Figure 3-19.

{

 xtype: 'button',

 text: 'Touch to show picker',

100 | Chapter 3: Views

 listeners: {

 tap: function (button, e, eOpts) {

 if (!button.picker) {

 button.picker = Ext.widget('picker', {

 slots: [{ //

 name: 'first_name',

 title: 'First name',

 data: [{

 text: 'John', value: 'john'

 }, {

 text: 'James', value: 'james'

 }, {

 text: 'Paul', value: 'paul'

 }, {

 text: 'Michael', value: 'michael'

 }]

 }, {

 name: 'last_name',

 title: 'Last name',

 data: [{

 text: 'Smith', value: 'smith'

 }, {

 text: 'Raymond', value: 'raymond'

 }, {

 text: 'Graham', value: 'graham'

 }, {

 text: 'Fowler', value: 'fowler'

 }]

 }],

 listeners: { //

 cancel: function (picker, opts) {

 Ext.Msg.alert('cancel', 'Picker has been canceled');

 },

 change: function (picker, value, opts) {

 Ext.Msg.alert('chance', 'Picker has value: ' +

Ext.JSON.encode(value));

 }

 }

 });

 Ext.Viewport.add(button.picker); //

 }

 button.picker.show(); //

 }

 }

}]

The slots configuration option is used to specify the items to be displayed in

each of the “cylinders” of the component; each of the entries in the slots
configuration must have a name, a title, and some data to display. The data is just
an array of text/value pairs, each providing a human-readable and a computer-
readable version of the information being displayed.

Component Library Catalog | 101

The most important events of pickers are the cancel and the change events,

which are self-explanatory. The change event handler function takes a value
parameter, which is a simple dictionary with a sequence of key-value pairs. In
this example we are just encoding it as a JSON text, to be displayed in a message
box.

Just like with any other panel, remember to add them to the Viewport prior to
use!

Use the show() function to display the picker.

Figure 3-19. Using the picker

102 | Chapter 3: Views

Sheet

The Ext.Sheet class (xtype sheet) provides a generic panel that appears animated on

the screen and can display any kind of content. It is the base class of the Ext.Action

Sheet class previously described.

This is a very simple code that shows how to create and display a sheet in a Sencha
Touch application:

{

 xtype: 'button',

 text: 'Touch to show sheet',

 itemId: 'openButton',

 listeners: {

 tap: function (button, e, eOpts) {

 if (!button.sheet) {

 button.sheet = Ext.widget('sheet', {

 html: 'Some text inside of the sheet',

 style: 'color: white; font-weight: bold',

 stretchX: true, //

 hideOnMaskTap: true

 });

 Ext.Viewport.add(button.sheet);

 }

 button.sheet.show();

 }

 }

}

This parameter makes the sheet appear at the top of the application, next to the
status bar. Otherwise, the sheet appears by default from the bottom, animating
itself until it reaches the center of the screen.

Multimedia Views
Sencha Touch components are also able to display more than just buttons and data;
several classes allow developers to include rich content into their applications, namely:

• Images

• Audio

• Video

• Charts

• Maps

We are going to learn more about each of these views in detail in the following sections.

Component Library Catalog | 103

Image

The Ext.Image class (xtype image) allows the placement in applications of individual

images, just like the tag allows it in standard HTML.

{

 xtype: 'image',

 src: '/img/icons/Icon@2x.png',

 height: 114,

 width: 114

}

The code will display an image, just like any other component, in your application (see
Figure 3-20).

Figure 3-20. Using the Ext.Image class

104 | Chapter 3: Views

Audio

The Ext.Audio class (xtype audio) wraps the HTML5 <audio> tag, supported by most
major mobile web browsers these days. The configuration and the creation of a new
instance of this class are straightforward, and the result is shown in Figure 3-21:

{

 xtype: 'audio',

 url : 'res/audio/music.mp3'

}

The supported formats for audio are the following:

• Uncompressed WAV and AIF audio

• MP3 audio

• AAC-LC

• HE-AAC audio

When used in Android devices, the audio tag does not provide native
playback controls like in iOS; developers should then provide their own

controls, and use the play(), pause(), stop(), and toggle() methods

provided by the Ext.Media class instead.

Figure 3-21. Embedded audio

Video

Similarly to the audio element, the Ext.Video class (xtype video) can be used to wrap

the native <video> tag provided by HTML5 in most major mobile web browsers.

{

 xtype: 'video',

 itemId: 'videoComponent',

 url : 'res/video/iphone.m4v',

 posterUrl: 'res/video/jerome.png'

}

Component Library Catalog | 105

The code will yield an embedded video player as shown in Figure 3-22, with an image

that is displayed while the video finishes loading (specified by the posterUrl property.)

Just like with the Ext.Audio class, you must pay attention to the video
formats supported in each platform; unfortunately, iOS and Android
have different requirements, so it is very important to read the docu‐
mentation in each case and to provide the formats that are supported
in each case.

Moreover, many older Android devices have known issues with video
playback, which means that testing is required to make sure that the
application behaves correctly in the supported devices for your appli‐
cation.

Figure 3-22. Embedded video

Charts

Sencha Touch 2 includes powerful 2D charting capabilities. As you have guessed, charts

are represented by instances of the Ext.chart.AbstractChart class, of which three
subclasses provide the most useful functionality:

• Ext.chart.CartesianChart (xtype chart) represents simple charts using the “x”
and “y” Cartesian axes.

• Ext.chart.PolarChart (xtype polar) is used to display charts based on polar or
radial coordinates.

106 | Chapter 3: Views

• Ext.chart.SpaceFillingChart (xtype spacefilling) useful to display charts
(without axes) that take all the available space in the component.

Ext.draw.Component
Itself, the Ext.chart.AbstractChart class inherits from Ext.draw.Com

ponent, itself a subclass of Ext.Container. The Ext.draw.Component,
as the name implies, allows developers to draw any kind of object on

the UI of their applications. The Ext.draw.Component class is beyond
the scope of this book, but suffice it to say that it wraps the Scalable

Vector Graphics (SVG) and <canvas> functionality of the underlying
browser, allowing an application to render any kind of visual content
on the screen.

Charts in Sencha Touch are complex enough to deserve a whole chapter for themselves.
In this book, we are just going to scratch the surface, showing how to create simple
charts.

Charts are a commercial component of Sencha Touch
Although available in the GPL version of Sencha Touch, all the charts
created with this version contain a watermark specifying that they were
“Powered by Sencha Touch GPL.” To remove this watermark, develop‐
ers should get a commercial license for Sencha Touch.

One of the great features of Sencha Touch charts is that they are fully integrated with
the data subsystem of the framework. Please refer to Chapter 4 for more information
about the data management features of Sencha Touch.

To create a simple chart, you have to specify the following configuration options:

• store: Specifies the store that contains the data to be displayed. In the following
example, the data will be retrieved from the JSONP API provided for free by open‐
weathermap.org.

• series: Specifies the different series of data to be displayed in the chart. In the
example that follows, we are displaying a line series, with the time in the x-axis, and
the temperature in the y-axis.

• axes: This configuration option specifies the formatting and layout of each one of
the axes in the chart: colors, labels, marks, etc.

• legend: Includes all the required information to format the legend of the chart
correctly.

Component Library Catalog | 107

http://openweathermap.org/data/2.1/history/station/39276?type=day
http://openweathermap.org/data/2.1/history/station/39276?type=day

The following code shows an example of the configuration for a simple chart:

Ext.define('Chapter3Views.view.ChartsDemo', {

 extend: 'Ext.Container',

 xtype: 'chartsdemo',

 config: {

 layout: {

 type: 'fit'

 },

 items: [{

 xtype: 'chart', background: 'none',

 store: 'TemperatureStore', animate: true,

 interactions: ['panzoom', 'itemhighlight'],

 legend: {

 position: "bottom"

 },

 series: [{

 type: 'line', xField: 'time',

 yField: 'temperature', title: 'Temperatures',

 style: {

 stroke: 'magenta', lineWidth: 2

 },

 highlightCfg: {

 scale: 2

 },

 marker: {

 type: 'circle', stroke: 'magenta',

 fill: 'pink', lineWidth: 1,

 radius: 3, shadowColor: 'rgba(0,0,0,0.7)',

 shadowBlur: 10, shadowOffsetX: 3,

 shadowOffsetY: 3,

 fx: {

 duration: 100

 }

 }

 }],

 axes: [{

 type: 'numeric', position: 'left',

 grid: {

 odd: {

 fill: 'lightgray'

 }

 },

 minZoom: 0.5, maxZoom: 2,

 style: {

 axisLine: true,

 stroke: 'lightgray'

 }

 }, {

 type: 'time', dateFormat: 'd M', position: 'bottom',

 minZoom: 0.5, maxZoom: 2,

 style: {

 stroke: 'lightgray'

108 | Chapter 3: Views

 },

 label: {

 rotate: {

 degrees: 315

 }

 }

 }]

 }]

 }

});

The result of the preceding code can be seen in Figure 3-23.

Figure 3-23. Charts

Map

The final type of multimedia view that we are going to discuss in this chapter is maps;
Sencha Touch wraps the Google Maps API, allowing developers to include any kind of
maps in their applications.

<script type="text/javascript"

src="http://maps.google.com/maps/api/js?sensor=true"></script>

Once the standard Google Maps API JavaScript file is included, adding a map view to
a Sencha Touch application is a very simple task:

Ext.define('Chapter3Views.view.MapDemo', {

 extend: 'Ext.Panel',

Component Library Catalog | 109

 xtype: 'mapdemo',

 config: {

 layout: {

 type: 'card'

 },

 items: [{

 xtype: 'map',

 useCurrentLocation: true

 }]

 }

});

If the application requires markers or other type of embellishment on the map, then
developers must use the standard markers API provided by Google. Sencha Touch does
not provide any wrapper functionality to simplify this task. The following example
shows how to integrate the Sencha Touch map component with other libraries, as well
as how to include markers, info windows, and other elements.

{

 xtype: 'map',

 useCurrentLocation: false,

 mapOptions: {

 zoom: (Ext.os.is.Phone) ? 6 : 8, //

 center: new google.maps.LatLng(46.801111, 8.226667) //

 },

 listeners: {

 maprender: function(component, googleMap, eOpts) {

 var store = Ext.getStore('citiesStore');

 var markers = [];

 store.each(function(city, index, length) { //

 var position = new google.maps.LatLng(city.get("latitude"),

 city.get("longitude"));

 var marker = new google.maps.Marker({

 position: position,

 city: city

 });

 marker.setClickable(true);

 markers.push(marker);

 google.maps.event.addListener(marker, 'mouseup', function() {

 var city = this.city;

 var content = ''

 + city.get('name') + '';

 if (!component.infoWindow) {

 component.infoWindow = new google.maps.InfoWindow(); //

 }

 component.infoWindow.setContent(content);

 component.infoWindow.open(googleMap, this);

 });

 });

 var mcOptions = { gridSize: 50, maxZoom: 16 };

 var markerCluster = new MarkerClusterer(googleMap, markers,

110 | Chapter 3: Views

1. The latitudes and longitudes of cities in Switzerland have been borrowed from timegenie.com.

 mcOptions); //

 }

 }

}

If the user is seeing this application in a smartphone, we use a smaller zoom factor
than if using, say, a tablet or a desktop browser.

This is the geographical center of Switzerland, according to Wikipedia.

For each city in the store, we are going to add a marker; as you can see, we are
using the official marker API provided by Google, and not a Sencha Touch
wrapper.

We are creating a single InfoWindow object that will be shown every time the user

taps on a marker. In this case we are attaching the function to the mouseup event,
which at the time of this writing is the preferred way to do this and have a
touchscreen-compatible behavior.

This code uses the MarkerClusterer for Google Maps v3 library.

The result of this code is shown in Figure 3-24.1

Creating Views
The class model of Sencha Touch allows developers to create their own components,
containers, or panels to satisfy the requirements of individual applications.

In this section, we are going to learn how to create the AkoLib.view.SplitView con‐
tainer class, provided as an example in the Github repository for this book. This class
provides the following functionality:

• It is a subclass of Ext.Container and as such can contain other components inside.

• It provides a very similar user experience to the UISplitViewController class in
iOS, allowing developers to create “master-detail” user interfaces in tablets and
desktop applications.

The full code of the SplitView class is available in the AkoLib
folder of the source code distribution for this book, in Github.

Creating Views | 111

http://www.timegenie.com/latitude_and_longitude/country_coordinates/ch
http://en.wikipedia.org/wiki/Geographical_centre_of_Switzerland
http://google-maps-utility-library-v3.googlecode.com/svn/trunk/markerclusterer/docs/reference.html
https://github.com/akosma/Sencha-Touch-2-Up-And-Running
https://github.com/akosma/Sencha-Touch-2-Up-And-Running

Figure 3-24. Google Maps

Choosing a Base Class
As we have seen, UI components in Sencha Touch can usually be grouped in the fol‐
lowing families:

• Components

• Containers

• Panels

When faced with the creation of a new visual element, developers should ask themselves
some very simple questions to find the proper base class to extend:

112 | Chapter 3: Views

1. Should the new widget appear floating or on top of other components? If so, it

should extend Ext.Panel. If not, continue to question 2.

2. Should the new widget contain other components? If so, then it should be a subclass

of Ext.Container.

3. If the answer to both the previous questions is “no,” then your new component

should just extend Ext.Component.

In the case of the AkoLib.view.SplitView class, the answers for the questions are the
following:

1. No.

2. Yes.

And thus it extends Ext.Container.

Creating the Class Skeleton
With the information at hand, we can begin the creation process of our own component;

the file will be located in the AkoLib/view folder and will be named SplitView.js:

Ext.define('AkoLib.view.SplitView', {

 extend: 'Ext.Container',

 xtype: 'akosplitview',

 config: {},

 initialize: function () {

 this.callParent(arguments);

 }

});

The first elements of our new class are already in place:

• The extend attribute correctly specifies the base class of our new component.

• The xtype attribute provides a short name for our class so that instantiating it in
our applications will be simpler and easier.

• The config attribute will hold several default values, many of which will be over‐
ridden by developers when using the class.

• The initialize function will allow us to customize the behavior and the properties
of instances of this class in advanced ways.

Creating Views | 113

The initialize function
As shown, the first thing to do every time you override a function pro‐

vided by Sencha Touch is to call this.callParent(arguments), so that
the behavior provided by the base class is executed before your own.
Doing so ensures that every instance behaves in a predictable way.

Adding Configuration Options
We are going to add some configuration options to our component, all of which are
completely customizable by developers using it:

Ext.define('AkoLib.view.SplitView', {

 extend: 'Ext.Container',

 xtype: 'akosplitview',

 config: {

 // Custom properties

 masterView: null,

 detailView: null,

 screenTitle: 'Sample Split View',

 menuButtonTitle: 'Menu',

 detailToolbarButtons: null,

 collapsesMasterView: null,

 showToggleButton: false,

 collapsed: false,

 // Common properties for components

 itemId: 'splitView',

 layout: 'hbox',

 items: []

 },

 initialize: function () {

 this.callParent(arguments);

 }

});

As you can see, configuration options can be of any type of object provided by JavaScript:
Booleans, strings, numbers, or null values. Even better, every time a configuration op‐
tion is defined in a new class, Sencha Touch automatically generates the corresponding

setter and getter functions. For example, for our masterView configuration property,

the class will provide setMasterView() and getMasterView() functions.

We also specify some common configuration options, such as itemId, layout, and

items.

114 | Chapter 3: Views

About setting the itemId
As shown in the example, we are not specifying the id property, but

rather the itemId property. The distinction between those two is im‐

portant, as Sencha Touch requires the id property to any two objects in

an application to be strictly different. Using the itemId property in your
own components ensures that Sencha Touch is able to generate different
ID values for different instances of the same class.

In the case of the AkoLib.view.SplitView class, this is not a big deal,
since there will usually be only one instance of it at any given time;
however, for other component types, this is a critical consideration.

Providing Initialization
Whenever a new instance of this component is created, we want to set some event
handlers that cannot be set using standard configuration options; we are going to use

the initialize() function for that:

initialize: function(){

 this.callParent(arguments);

 var o = Ext.Viewport.getOrientation();

 this.handleOrientationChange({ orientation: o });

 Ext.Viewport.onBefore('orientationchange',

 'handleOnBeforeOrientationChange', this, { buffer: 50 });

 Ext.Viewport.on('orientationchange', 'handleOrientationChange', this, {

buffer: 50 });

 // ...

 var showMenuButton = this.getShowMenuButton();

 showMenuButton.setText(this.getMenuButtonTitle());

 showMenuButton.addListener('tap', function (button, e, eOpts) {

 this.getOverlayView().showBy(button, 'tl-bc');

 }, this);

 // ...

}

The first thing that we want our SplitView component to do is to react to orientation

changes; for that, we hook the handleOrientationChange function to the orientation

change event, and then we use several getters and setters to build our user interface
accordingly.

The event handlers handleOnBeforeOrietationChange, handleOrientationChange,

and toggle are defined later on, as instance methods, as shown here:

Ext.define('AkoLib.view.SplitView', {

 extend: 'Ext.Container',

Creating Views | 115

 xtype: 'akosplitview',

 config: {

 // ...

 },

 initialize: function () {

 this.callParent(arguments);

 // ...

 },

 handleOnBeforeOrientationChange: function () {

 // ...

 },

 handleOrientationChange: function (obj) {

 // ...

 },

 toggle: function () {

 // ...

 }

});

Firing Custom Events
The AkoLib.view.SplitView component has some interesting characteristics; it can
toggle its master view, which can happen as well when the device is set in portrait ori‐
entation. Similarly, in portrait view, an overlay view can be used to show this same master
view if required. We would like to be able to notify our clients about these facts, and for
that we are going to extend our class with some custom events.

Creating events is simply a matter of calling the fireEvent() function, passing the name
of the event as the first parameter, and passing an optional list of parameters after that.
Usually the first parameter of an event handler will be a reference to the object firing
the event.

The following source code shows how to call the fireEvent() function inside our new
component:

showMasterView: function () {

 this.fireEvent('beforemasterviewshow', this);

 this.getMasterPanel().show();

 this.getShowMenuButton().hide();

 this.getToggleButton().setIconCls('arrow_left');

 this.setCollapsed(false)

 this.fireEvent('masterviewshow', this);

}

Applications using the AkoLib.view.SplitView class can hook themselves into this
workflow, adding their own event handlers:

launch: function () {

 Ext.Viewport.add({

 xtype: 'akosplitview',

116 | Chapter 3: Views

 screenTitle: 'Universal App',

 menuButtonTitle: 'Menu',

 masterView: {

 xtype: 'indexview'

 },

 detailView: {

 xtype: 'panel',

 html: 'Select an item in the menu'

 },

 showToggleButton: true,

 collapsesMasterView: true,

 listeners: {

 masterviewshow: function (splitview) {

 console.log('masterviewshow event handler');

 }

 }

 });

}

Implement Private Methods
Although JavaScript does not actually allow methods to be marked private or public,
we are going to define a series of methods that will only be used internally by the class

to properly manage its state; as an example, here is the getOverlayView() function,
which is used to show the overlay panel that holds the master view when the application
is shown in portrait mode:

getOverlayView: function () {

 if (!this.overlayView) {

 this.overlayView = Ext.Viewport.add({

 xtype: 'panel',

 layout: 'card',

 modal: true,

 hideOnMaskTap: true,

 width: 300,

 height: 600,

 hidden: true,

 hideAnimation: 'fadeOut',

 showAnimation: 'fadeIn'

 });

 this.overlayView.addListener('show', function () {

 this.getOverlayView().add(this.getMasterView());

 }, this);

 this.overlayView.addListener('hide', function () {

 this.getMasterPanel().add(this.getMasterView());

 }, this);

 }

 return this.overlayView;

}

Creating Views | 117

Conclusion
This chapter has provided an overview of the most visible part of Sencha Touch: its
extensive support for complex view hierarchies. Developers can use the classes already
provided by Sencha Touch, but thanks to the ease of use of the class system, they can
also create their own views from scratch.

118 | Chapter 3: Views

CHAPTER 4

Data

Sencha Touch provides an incredible support for data-bound applications. Whether the
information is stored locally or on a remote server, the framework allows developers to
quickly prototype and develop applications consuming complex data, in XML or JSON
formats.

This chapter will provide an introduction to the basic concepts of data management in
Sencha Touch apps. You’ll learn in detail about stores and proxies, as well as about
different data-bound controls such as lists and data views.

Model Classes
The basic component of data bound applications is, without doubt, the Ext.data.Mod

el class. Every business component of a Sencha Touch application, like for example
“customers,” “orders,” or “invoices,” is represented in Sencha Touch as a subclass of the

Ext.data.Model class.

Sample application
To explain the concepts of this chapter, we are going to use a generic
MVC application that consumes data in JSON or XML format. The data
is produced by a set of PHP files, reading a rather large MySQL database
containing random contact information. Users can choose whether to
load data in JSON or XML format. Figure 4-1 shows a screenshot of the
application.

This PHP application is located in the Chapter_04_Data/Server folder
of the source code files provided with book, available in Github.

119

https://github.com/akosma/Sencha-Touch-2-Up-And-Running

Figure 4-1. Data sample application

The following code provides the definition of a Person class:

Ext.define('Chapter4Data.model.Person', {

 extend: 'Ext.data.Model',

 config: {

 fields: [{

 name: 'entryId', type: 'int'

 }, {

 name: 'firstName', type: 'string'

 }, {

 name: 'lastName', type: 'string'

 }, {

//

// ... snip ...

//

 }, {

 name: 'enabled', type: 'boolean', defaultValue: true

 }, {

 name: 'createdOn', type: 'date'

 }],

 idProperty: 'entryId',

 belongsTo: 'Company',

120 | Chapter 4: Data

 hasMany: {

 model: 'Orders', name: 'orders'

 },

 validations: [{

 type: 'presence', field: 'firstName'

 }, {

 type: 'presence', field: 'lastName'

 }, {

 type: 'length', field: 'description', min: 15

 }, {

 type: 'inclusion', field: 'role', list: ['User', 'Admin']

 }]

 }

});

As previously shown, a model class definition consists of two major configuration op‐
tions:

1. The list of the data fields that each instance of this class must store; they are repre‐

sented as literal objects with name and type entries.

2. An idProperty entry, indicating the field that is used to uniquely identify each entry
in a store. This field is extremely important, since as we are going to see in a minute,
Sencha Touch stores use this information pervasively.

You can also specify other parameters together with the name and the type of a field; for

example, developers can add information about default values using the defaultVal

ue property; other useful properties are allowNull, sortDir (which can take the values

ASC or DESC), or dateFormat (for date fields).

Finally, you can also specify model relationships, as well as validation logic in your
models, which we’ll learn more about in the following sections.

Model Field Types
Sencha Touch models can have fields with the following types:

• int

• string

• float

• boolean

• date

Every field in a model class is an instance of the Ext.data.Field class.

Model Classes | 121

Associations
This is the part of the book where Ruby on Rails developers will feel at home. Sencha
Touch allows us to define relationships among model classes, using two very common

configuration properties: belongsTo and hasMany, which are self-explanatory.

Thanks to associations, developers can chain objects using these predefined semantics,
creating code that is easy to read and which, thanks to stores and proxies, can be mapped
to server-side entities as well:

var person = Ext.create('Chapter4Data.model.Person')

person.set('firstName', 'Aaron');

person.set('lastName', 'Schwartz');

var company = person.getCompany(function (company) {

 console.log('Here is the company information: ' + company.get('name'));

});

person.orders().add({

 item: 234,

 value: 699.00,

 note: 'To be delivered next month'

});

person.orders().sync();

The preceding script shows that the belongsTo relationship automatically generates a

getCompany() function, which works asynchronously; you have to provide a callback
to it, to be executed as soon as the data is retrieved. This is required to avoid blocking
the JavaScript engine of the browser while the data is fetched, potentially from a remote
location.

Validations
Finally, models can carry their own validation logic. Using the validations key in the
configuration of a model, we can ensure that new instances are valid or not at any given
time, providing a unified, simple API for developers.

There are many kinds of possible validations, all defined as functions in the Ext.da

ta.Validations singleton object:

• email, used to check the proper formatting of email addresses

• inclusion and exclusion, which ensure that the value provided is included or not
included in a predefined list

• format, making sure that a particular string conforms to some regular expression

122 | Chapter 4: Data

• length, which as the name implies verifies the length of a particular string field

• presence, used to check the existence of a particular value in a model instance

During runtime, applications can use the validate() method on model instances to
trigger all the required validations and to return an object containing all the information
about any errors found during the procedure:

var person = Ext.create('Chapter4Data.model.Person')

person.set('firstName', 'Aaron');

person.set('lastName', 'Schwartz');

// Perform validation

var validationResults = person.validate();

console.log('Is valid? ' + validationResults.isValid());

console.log('All problems: ' + validationResults.items);

console.log('Specific problem: ' + validationResults.getByField('email'));

Stores and Proxies
Models, by themselves, are completely oblivious to any kind of storage mechanism; they
just define in-memory individual data structures, with types, validation rules, and mu‐
tual interrelationships.

This is where stores and proxies come in; they provide ways to abstract different con‐
cepts that are pervasive in most data-bound apps, providing a plug-and-play API that
isolates applications from the underlying data storage.

• Stores can be thought of as managed sets of model instances; for example, you can

have a store containing all the instances of the Person class in your application.
There are two basic types of stores: linear and hierarchical.

• Proxies, on the other hand, encapsulate the logic required to connect to a local or

remote data source, such as the browser’s localStorage object, or a REST web
service elsewhere on the network.

There are two kinds of proxies available in Sencha Touch: local and remote. We are
going to learn more about these two groups in the following sections.

Stores and Proxies | 123

Local Proxies
Local proxies are used by stores to keep sets of model instances in the local browser.
There are three kinds of local proxies:

• Memory

• LocalStorage

• SessionStorage

Let’s study each of these in detail.

Memory

The memory proxy, represented by the Ext.data.proxy.Memory class, is used only as a
simple in-memory storage option that is not persisted across page refreshes.

The following code shows how to create a very simple memory proxy:

Ext.define('Chapter4Data.store.MemoryPeopleStore', {

 extend: 'Ext.data.Store',

 xtype: 'peoplestore',

 config: {

 model: 'Chapter4Data.model.Person',

 storeId: 'peopleStore',

 autoLoad: true,

 sorters: [{

 property: 'firstName',

 direction: 'ASC'

 }],

 proxy: {

 type: 'memory',

 reader: {

 type: 'json',

 root: 'people'

 }

 }

 }

});

You can use the Memory proxy to keep small amounts of in-memory temporary data.

However, the SessionStorage proxy (described later in this section) is a better choice
for larger quantities of temporary data.

LocalStorage

One of the most common proxies available in Sencha Touch is represented by the

Ext.data.proxy.LocalStorage class, also identified by its localstorage xtype. This

proxy uses the HTML5 localStorage functionality available in modern browsers, a

124 | Chapter 4: Data

simple key-value storage facility that accepts only strings for both keys and values. This
proxy is able to serialize and deserialize complex objects into strings, transparently and
seamlessly.

The code that follows shows a very simple example of a localstorage proxy:

Ext.define('Chapter4LocalStorage.store.PeopleStore', {

 extend: 'Ext.data.Store',

 xtype: 'peoplestore',

 config: {

 model: 'Chapter4LocalStorage.model.Person',

 storeId: 'peopleStore',

 autoLoad: true,

 autoSync: true,

 sorters: [{

 property: 'firstName',

 direction: 'ASC'

 }],

 proxy: {

 type: 'localstorage',

 id: 'peopleproxy'

 }

 }

});

The contents of the localStorage store are preserved across browser restarts, usually
accepting a maximum of 5 MB of data. This might be the most useful local proxy avail‐
able.

SessionStorage

Finally, the third local proxy available is the Ext.data.proxy.SessionStorage class,

also identified by its xtype sessionstorage. This proxy uses the HTML5 sessionStor

age functionality, which is very similar to the localStorage described in this chapter

in terms of API. However, remember that the contents of the sessionStorage proxy
are erased as soon as the browser window is closed; so in a certain way it is closer in

behavior to the Memory proxy we have seen before.

The following code shows a very simple example of a sessionstorage proxy:

Ext.define('Chapter4LocalStorage.store.SessionPeopleStore', {

 extend: 'Ext.data.Store',

 xtype: 'peoplestore',

 config: {

 model: 'Chapter4LocalStorage.model.Person',

 storeId: 'peopleStore',

 autoLoad: true,

 autoSync: true,

 sorters: [{

 property: 'firstName',

 direction: 'ASC'

Stores and Proxies | 125

 }],

 proxy: {

 type: 'sessionstorage',

 id: 'peopleproxy'

 }

 }

});

The SessionStorage proxy stores its contents in disk, which makes it a better option

than the Memory proxy for storing large amounts of temporary data.

Remote Proxies
Remote proxies are used to connect stores to remote data sources, located elsewhere on
the network. They encapsulate all the logic required to perform typical “CRUD” (create,
read, update, delete) operations on stores, and to map those operations to their corre‐
sponding HTML requests.

The remote proxies available in Sencha Touch are the following:

• Ajax

• JsonP

• Rest

The following sections will provide some insight about these proxies.

Ajax

The ajax proxy, represented by the Ext.data.proxy.Ajax class, is used to access data
sources located in the same domain as the Sencha Touch application. This proxy en‐

capsulates requests performed using the XMLHTTPRequest component, available in all
modern browsers, and allowing developers to perform asynchronous HTTP requests
from a web page.

Same domain policy
Remember that browsers are bound to the “same domain policy”; this

limits the use of the Ext.data.proxy.Ajax proxy to web services loca‐
ted in the same domain as your Sencha Touch application.

The following code shows how to create a store using a very simple ajax proxy:

Ext.define('Chapter4Data.store.PeopleStore', {

 extend: 'Ext.data.Store',

 xtype: 'peoplestore',

 config: {

126 | Chapter 4: Data

 model: 'Chapter4Data.model.Person',

 storeId: 'peopleStore',

 autoLoad: true,

 sorters: [{

 property: 'firstName',

 direction: 'ASC'

 }],

 proxy: {

 type: 'ajax',

 url : 'Server/index.php?format=json'

 }

 }

});

By default, ajax proxies can read data in JSON format; however, they can very easily
read XML data as well, and for that, developers only need to specify a reader of type

Ext.data.reader.Xml, whose xtype is simply xml:

{

 type: 'ajax',

 url : 'Server/index.php?format=xml',

 reader: {

 type: 'xml',

 rootProperty: 'data',

 record: 'person'

 }

}

As previously shown, the xml reader requires you to specify the rootProperty and the

record properties; in this case, the values are data and person respectively, because the
XML feed being read has the following structure:

<data>

 <person>

 <entryId>1857</entryId>

 <firstName>Jennifer</firstName>

 <lastName>Hudson</lastName>

 <phone>1 66 871 1728-5906</phone>

 <email>est.arcu.ac@sem.edu</email>

 <address>7509 Eleifend. Rd.</address>

 <city>Hope</city>

 <zip>A5C 9Z5</zip>

 <state>Gld.</state>

 <country>Mexico</country>

 <description>

 dui, semper et, lacinia vitae, sodales at, velit.

 </description>

 <password>FAB39FTL9MV</password>

 <createdOn>2010-07-25</createdOn>

 <modifiedOn>2009-12-19</modifiedOn>

 </person>

 <person>

Stores and Proxies | 127

 <!-- ... -->

 </person>

</data>

JsonP

To overcome the same-domain policy of the ajax proxy, the Ext.data.proxy.JsonP

proxy class (usually referred to as jsonp) can be used. When this proxy is activated, it

injects a <script> tag to the current DOM, with its src attribute pointing to the remote
URL of the data service.

The name JsonP comes from the expression “JSON with Padding,” be‐
cause the data served by the remote URL is “padded” with a function
call, which enables it to be “activated” and consumed by the current
JavaScript application.

The biggest limitation of this proxy is that it can execute only GET requests; however,
they can be executed on any remote domain, not only on the current domain of the web

application. The following code shows a simple example of how to create a jsonp proxy
connecting to Twitter, in order to get the latest tweets about “argentina,” for example:

{

 type: 'jsonp',

 url : 'http://search.twitter.com/search.json?q=argentina',

 reader: {

 type: 'json',

 rootProperty: 'results'

 }

}

Rest

The final remote proxy we are going to learn about is the rest proxy type, which is

represented by the Ext.data.proxy.Rest class. This is a subclass of the Ext.da

ta.proxy.Ajax class (which means that it can work only under the umbrella of the
same-domain policy) and provides a means to easily connect to REST web services.

128 | Chapter 4: Data

REST web services
REST stands for “REpresentational State Transfer” and is currently one
of the strongest alternatives to Simple Object Access Protocol (SOAP)
web services. Many server-side technologies allow developers to create
REST web services, returning different kinds of data in formats such as
XML and JSON; to name a few, Ruby on Rails, ASP.NET MVC, or even
some PHP frameworks allow developers to create such services very
easily.

The rest proxy can be configured to perform requests using different HTTP verbs for
every CRUD operation:

• Create: POST

• Read: GET

• Update: PUT

• Delete: DELETE

REST proxies can also be configured, through the api property, to use different URLs
for each of these operations, if required by the server-side technology being used.

The following code snippet shows the creation of a very simple rest proxy attached
directly to a model.

Ext.define('Chapter4Data.model.Person', {

 extend: 'Ext.data.Model',

 config: {

 fields: [{

 name: 'id',

 type: int

 }, {

 // ... snip ...

 }],

 proxy: {

 type: 'rest',

 url: '/users'

 }

 }

});

Once a model has been defined this way, you can manipulate its instances directly in

your controllers and just use the save() method, which will automatically push any
changes to the remote web server automatically:

var person = Ext.create('Chapter4Data.model.Person', {

 firstName: 'John',

Stores and Proxies | 129

 lastName: 'Smith'

});

// This will trigger a POST request to "/users"

person.save({

 success: function (person) {

 console.log('new person has been sent to the server!');

 }

});

The dictionary passed to the save() function includes a set of optional callbacks to be
executed asynchronously as soon as the network operation completes.

What about SOAP web services?
Many companies have invested heavily in web services using the SOAP
technology, which received a strong push by Microsoft and other ven‐
dors in the early 2000s. To help these companies leverage the power of
the platform, the Sencha team has announced the availability of a SOAP
proxy, but (at least at the moment of this writing) it is only available to
companies and teams who have purchased a “Sencha Complete: Team”
package. Also, it is only available for desktop applications developed
with Ext JS 4.1.2.

Store Types
While proxies encapsulate the logic required to read and write information, stores are
designed to hold data and to make it available to other components, most notably data-
bound components such as lists.

The two most common kinds of stores are linear ones, usually just referred to as stores,
and hierarchical stores, usually represented by tree stores. We are going to learn more
about these two kinds of stores in the following sections.

The StoreManager Singleton
Sencha Touch MVC applications usually contain one or more stores, and they are usually
referred to from different locations: event handlers, controllers, or even from the

Ext.application() function call.

To make it easier for developers to work with several stores in the same application, and

to be able to refer uniquely to each one of them, the Ext.data.StoreManager singleton

comes in handy. It provides a simple lookup() method which takes an ID as parameter;

this ID must be a string, and it is the same one provided in the storeId configuration
property.

130 | Chapter 4: Data

http://www.sencha.com/blog/taking-a-look-at-the-new-sencha-soap-data-proxy
http://www.sencha.com/blog/taking-a-look-at-the-new-sencha-soap-data-proxy

For convenience, the Ext.data.StoreManager.lookup() function is aliased to Ext.get

Store(), which is a commonly used alternative, particularly in the code samples for this
book.

Linear stores

The most common kind of store is the linear one, usually represented by an instance of

the Ext.data.Store class. In the grand scheme of a Sencha Touch MVC application,
stores are associated to a model, and stores contain a proxy object. Proxies are usually
associated with a Reader and a Writer object, which contain the logic required to seri‐
alize back and forth model objects from the transport mechanism used.

Let’s take a look at a simple example of a store and a proxy.

Ext.define('Chapter4Data.store.PeopleStore', {

 extend: 'Ext.data.Store',

 xtype: 'peoplestore',

 config: {

 model: 'Chapter4Data.model.Person',

 storeId: 'peopleStore',

 autoLoad: true,

 sorters: [{

 property: 'firstName',

 direction: 'ASC'

 }],

 proxy: {

 type: 'ajax',

 url : 'Server/index.php?format=json'

 }

 }

});

In the preceding code, we define a class named Chapter4Data.store.PeopleStore

which is associated to the Person model we have defined previously. We also define
some key properties of our store:

• storeId provides a unique string that can be used to retrieve this store instance

from anywhere in the application, using Ext.data.StoreManager.lookup() or its

alias Ext.getStore().

• autoLoad specifies that as soon as this object is created and initialized, it will attempt
to connect to the remote (or local) data source automatically. There is a similar

property called autoSync that can be used to push back to the proxy object any
changes that have been made in the store at runtime.

• sorters provides the information required to sort the information on the store
automatically.

Stores and Proxies | 131

• Finally, proxy contains the definition of the proxy object associated to the store. In

this case, it’s an ajax kind of proxy, whose url is specified immediately after.

One of the most interesting characteristics of the association between stores and proxies
is that they can be composed at runtime; a store can change its proxy dynamically, and
thus “talk” to a different server or storage mechanism as required; in the following code
we see such a behavior taking place.

switchFormat: function (segmentedButton, button, isPressed, eOpts) {

 // Get a reference to the store

 var store = Ext.getStore('peopleStore');

 // This is required because the "Ext.SegmentedButton" class

 // calls its event handler once for each button; we are only

 // interested in the event pertaining to the pressed button:

 if (isPressed) {

 var format = button.getText();

 var newProxy = null;

 // If the user selects "JSON," use an AJAX proxy

 // with a JSON reader (the default option)

 if (format === 'JSON') {

 newProxy = {

 type: 'ajax',

 url : 'Server/index.php?format=json'

 };

 }

 // Otherwise, use an XML reader

 else if (format === 'XML') {

 newProxy = {

 type: 'ajax',

 url : 'Server/index.php?format=xml',

 reader: {

 type: 'xml',

 rootProperty: 'data',

 record: 'person'

 }

 };

 }

 // Set the proxy in the store and reload!

 store.setProxy(newProxy);

 store.load();

 }

}

Object composition at work!

132 | Chapter 4: Data

Hierarchical stores

The other kind of store is the hierarchical store, usually represented by an instance of

the Ext.data.TreeStore class, whose xtype is tree.

Tree stores have their origin in the ExtJS framework, where they are used to represent
visual tree nodes in UI widgets; however, given that Sencha Touch is a touchscreen
framework, and that common tree-like UIs are hard to represent and manipulate with

fingers, tree stores are usually associated with the Ext.dataview.NestedList class,
which will be described in detail.

For the moment, suffice to show the following tree store definition:

store: {

 type: 'tree',

 fields: [{ //

 name: 'text',

 type: 'string'

 }],

 defaultRootProperty: 'team', //

 sorters: 'text', //

 root: {

 text: 'Teams',

 team: [{

 text: 'Finance',

 team: [{

 text: 'Alma Boyle',

 leaf: true

 }] //

 }, {

 text: 'Accounting',

 team: [{

 text: 'Fletcher Herbert',

 leaf: true

 }, {

 text: 'Elmo Irwin',

 leaf: true

 }]

 }, {

 text: 'Human Resources',

 team: [{

 text: 'Felicia Gray',

 leaf: true

 }, {

 text: 'Petra Ferguson',

 leaf: true

 }]

 }]

 }

}

Stores and Proxies | 133

Instead of defining a model property that points to some subclass of Ext.da

ta.Model, we can simply specify the names (eventually also the types) of the fields
of each data item.

The defaultRootProperty specifies the name of the key, in each data node, that

contains child items. If not specified, the tree store will use the value children.

Specifying the sorters property here will automatically provide the store values
in an ordered fashion.

The root property contains the raw hierarchical data of each node. Pay attention

to the fact that each node has both a text property (used for sorting and

displaying) and a teams property, previously defined as the defaultRootProper

ty.

We are going to see a detailed example of use of a tree store when learning about the

Ext.dataview.NestedList class.

Data-Bound Controls
One of the most important uses of stores is to be paired to data-bound view components,
such as a list. Whenever a data-bound component is shown on the screen, it associates
in such a way to its store that any change in the underlying data will be reflected auto‐

matically in the visual component. Developers do not need to call any refresh() meth‐
od to see their changes; as soon as a model instance is changed in the store, the associated
view component is updated automatically.

The three data-bound controls available in Sencha Touch are the following:

• DataView

• List

• NestedList

We are going to learn more about these in the following sections.

DataView
The Ext.dataview.DataView class (also known by its xtype dataview) is the simplest
of all the data-bound controls. It can be thought of as a very simple template engine,
which takes data from a store as a parameter and renders that data according to a string
template.

The following example shows a very simple dataview loading some tweets about
Argentina:

134 | Chapter 4: Data

Ext.define('Chapter4DataViews.view.DataViewDemo', {

 extend: 'Ext.dataview.DataView',

 xtype: 'dataviewdemo',

 config: {

 xtype: 'dataview',

 title: 'DataView Demo',

 itemTpl: '<div class="tweetdiv"><div class="avatar">

 </div><div class="text">

 <p class="username">{from_user_name}</p><p class="tweet">{text}

 </p><p class="date">{[Ext.Date.format(values.created_at, "d.m.Y, H:i")]}

 </p></div></div>', //

 store: {

 autoLoad: true,

 fields: [{

 name: 'id', type: 'int'

 }, {

 name: 'profile_image_url', type: 'string'

 }, {

 name: 'from_user', type: 'string'

 }, {

 name: 'from_user_name', type: 'string'

 }, {

 name: 'text', type: 'string'

 }, {

 name: 'created_at', type: 'date',

 dateFormat: 'D, j M Y H:i:s O' //

 }],

 proxy: {

 type: 'jsonp',

 url: 'http://search.twitter.com/search.json?q=argentina',

 //

 reader: {

 type: 'json',

 rootProperty: 'results'

 }

 }

 }

 }

});

The itemTpl property specifies a string or an Ext.XTemplate object, used to
render each item in the data store. Pay attention to the fact that the data is

formatted using the Ext.Date.format() function, inside the template code. Even
mathematical expressions can be used in templates.

Here we specify the format of each created_at field, as returned by Twitter.
Sencha Touch will take care of transforming each one of these values into a proper

JavaScript Date object for us.

This store is attached to a very simple jsonp proxy, downloading the latest tweets
about Argentina.

Data-Bound Controls | 135

The itemTpl property provides a rather complex template, which can be styled as follows
to get the result shown in Figure 4-2:

div.tweetdiv {

 float: left; width: 300px; padding: 10px 10px 0px 10px; margin: 10px;

 border-color: lightgray; border-width: 1px;

 border-style: solid; min-height: 150px;

}

div.avatar {

 float: left; width: 50px; margin-left: 10px;

 margin-right: 10px; margin-top: 5px;

}

div.text {

 width: 200px; float: left;

}

p.username {

 font-weight: bold; font-size: 0.8em;

}

p.tweet {

 margin-top: 5px; font-size: 0.8em;

}

p.date {

 color: gray; font-size: 0.7em; margin-top: 5px; margin-bottom: 10px;

}

This CSS code is stored in the Chapter_04_DataViews/css/styles.css file included
in the source code of the book.

136 | Chapter 4: Data

Figure 4-2. DataView on an iPad

DataView Events

As expected, the Ext.dataview.DataView class (and its subclasses) are able to react to
various events; the most important are the following:

• itemtap and itemsingletap: They are both triggered when the user taps only once

on any item of the dataview.

• itemdoubletap: Triggered when the user double-taps on an item.

• itemswipe: Executed when the user swipes his finger on top of a particular item.

itemtap versus itemsingletap
The main difference between itemtap and itemsingletap is that the
former is triggered immediately, while the second one is triggered with

a slight delay of a couple of milliseconds; thus, the itemsingletap event

is specially adapted to be used together with the itemdoubletap event,

because in case the user taps twice on an object, the itemtap event would

not yield to the execution of the itemdoubletap event.

Data-Bound Controls | 137

Using the listeners configuration key, we can add some event handlers for our data

view:

listeners: {

 itemsingletap: function (dataview, index, target, record, e, eOpts) {

 var id = record.get('id');

 var author = record.get('from_user');

 var message = Ext.String.format('Tweet {0}
from {1}', id, author);

 Ext.Msg.alert('Information', message);

 },

 itemswipe: function (dataview, index, target, record, e, eOpts) {

 var id = record.get('id');

 var message = Ext.String.format('Swiping! {0}', id);

 Ext.Msg.alert(message);

 },

 itemdoubletap: function (dataview, index, target, record, e, eOpts) {

 var name = record.get('from_user_name');

 var message = Ext.String.format('Double tap! {0}', name);

 Ext.Msg.alert(message);

 }

}

Lists
Lists are the quintessential data-bound control. They are represented by the Ext.data

view.List class, itself a subclass of Ext.dataview.DataView. Similarly as their super‐

class, they require a store definition (in this case, the peoplestore defined earlier in

the chapter) and an itemTpl which defines the template used to render each cell of the
list.

The code that follows describes a very simple list, attached to the peoplestore men‐
tioned previously:

Ext.define('Chapter4DataViews.view.IndexView', {

 extend: 'Ext.navigation.View',

 xtype: 'indexview',

 config: {

 id: 'navigationView',

 items: [{

 xtype: 'list',

 title: 'People',

 store: {

 xtype: 'peoplestore'

 },

 itemTpl: '<div class="contact">{firstName} {lastName}

 </div>'

 }]

 }

});

138 | Chapter 4: Data

Lists can also be grouped, and they could also show a nice indexBar on the right side
to simplify navigation and scrolling, and the result would be the same as shown in
Figure 4-3:

{

 xtype: 'list',

 title: 'People',

 grouped: true,

 indexBar: true,

 store: {

 xtype: 'peoplestore'

 },

 itemTpl: '<div class="contact">{firstName} {lastName}

 </div>'

}

Figure 4-3. List component

Finally, just like their superclass, list components can react to the itemtap, item

swipe, and itemdoubletap events. They can also react to the disclose event, which is
fired when the user taps on the disclosure button.

Data-Bound Controls | 139

Nested Lists
Finally, nested lists (represented by the Ext.dataview.NestedList component, whose

xtype is nestedlist) are used to represent hierarchical stores, implemented using the

Ext.data.TreeStore class seen previously in this chapter.

A nestedlist component does not inherit either from Ext.dataview.DataView or

from Ext.dataview.List; rather, it is a class that uses as many list components as
required to help the user navigate the hierarchy of data being presented.

Nested lists or navigation views?
The question has come from many different developers: When is it
better to use a nested list versus a navigation view with a series of em‐
bedded list components?

The answer, as always in these cases, is the famous “It depends.” Expe‐
rience shows that nested lists are quite rigid and inflexible components,
which usually work best when the underlying hierarchical data set is
uniform and coherent. In those cases, nested lists are wonderfully sim‐
ple and straightforward.

On the other hand, when your application has to deal with heteroge‐
neous sets of data, where parents and children have radically different
structures, or when each list has to have a really different visual layout
from the rest, then it is better to use a navigation view, encapsulating
individual consecutive lists.

The following code shows the basic configuration required to get a nested list in your
application, which looks like the one shown in Figure 4-4:

Ext.define('Chapter4DataViews.view.NestedListDemo', {

 extend: 'Ext.dataview.NestedList',

 xtype: 'nestedlistdemo',

 config: {

 title: 'Teams',

 margin: 20,

 listConfig: { //

 ui: 'round',

 itemTpl: '{text}'

 },

 detailCard: { //

 xtype: 'panel',

 html: 'This is the leaf node detail card'

 },

 listeners: { //

 itemtap: function (nestedList, list, index,

 target, record, e, eOpts) {

 var name = record.get('text');

140 | Chapter 4: Data

 var html = Ext.String.format('This is the leaf

 node card of {0}', name);

 this.getDetailCard().setHtml(html);

 }

 },

 store: { //

 // ...

 }

 }

});

The configuration of each list used by the nestedlist can be modified using the

listConfig property. Ensure that the same configuration will be used for all the

lists used by the nestedlist.

The detailCard property (which can be accessed by event handlers using the

getDetailCard() getter function) contains a panel definition, which is

automatically displayed every time the user selects an item whose leaf flag is set
to true.

The listeners key, as usual, contains the definition of event handlers to be
executed at some point in the future.

Please refer to the previous section about stores, where we have shown how to

create a hierarchical Ext.data.TreeStore object.

Figure 4-4. Nested list component

Data-Bound Controls | 141

Different itemtap events handler signatures!
Pay attention to the fact that the itemtap event handler signature is

different between the Ext.dataview.NestedList and the Ext.data

view.List classes; for the nestedlist class, this is the signature:

itemtap(nestedList, list, index, target, record, e, eOpts)

while for the list and dataview classes, it’s the following:

itemtap(list, index, target, record, e, eOpts)

This is due to the fact that NestedList “contains” an instance of the

List class, and as such the event handler receives a pointer to both
objects. This difference in signatures is often a source of confusion.

Conclusion
One of the most important aspects for enterprise applications is the management of
data, and this is precisely one of the strongest points of Sencha Touch. It offers a complete
set of tools to allow developers to describe not only data structures, including their
validation rules and mutual interrelationships, but also the storage mechanisms that
apply in each case, and it even proposes a set of visual components that automatically
bind themselves to stores for displaying data.

142 | Chapter 4: Data

CHAPTER 5

Forms

Forms are a fundamental element to enable interactivity in data-driven business appli‐
cations; Sencha Touch builds upon the latest features of HTML5 to provide advanced
support for forms.

This chapter will describe in detail all the different types of fields that you can use in
your forms, and how you can enable your mobile users to enter and modify data in your
applications.

Form Panels
Forms in Sencha Touch have a very simple architecture: an instance of Ext.form.Panel

holds one of many Ext.form.Fieldset instances, and each fieldset can contain one or

more instances of any of the available subclasses of Ext.field.Field. (See Figure 5-1
for an example of Sencha Touch form structure.)

The available types of fields in Sencha Touch are described in Table 5-1, including their
common class names and their xtypes.

143

Table 5-1. Sencha Touch form classes and xtypes

xtype Class

fieldset Ext.form.FieldSet

field Ext.field.Field

checkboxfield Ext.field.Checkbox

datepickerfield Ext.field.DatePicker

emailfield Ext.field.Email

hiddenfield Ext.field.Hidden

numberfield Ext.field.Number

passwordfield Ext.field.Password

radiofield Ext.field.Radio

searchfield Ext.field.Search

selectfield Ext.field.Select

sliderfield Ext.field.Slider

spinnerfield Ext.field.Spinner

textfield Ext.field.Text

textareafield Ext.field.TextArea

togglefield Ext.field.Toggle

urlfield Ext.field.Url

Figure 5-1. Sencha Touch form structure

Figure 5-2 shows the class hierarchy of the different types of fields available in Sencha
Touch.

144 | Chapter 5: Forms

Figure 5-2. Field classes hierarchy diagram

Fieldsets
The fields of a form can be grouped visually inside an instance of the Ext.form.Field

set class; a form can have as many fieldsets as required, of course, and they would appear
one below the other following the order of their definition. You can create fieldsets by

adding them to the items property of the enclosing form, using the fieldset xtype
property.

Fieldsets have a few configuration properties:

• title provides descriptive text on top of the fields. This helps the user to figure out
the roles of the different fieldsets.

• instructions provides longer text, appearing below the fields, with detailed in‐
formation about the context and type of information expected in that section of the
form.

Field Types
This section will provide an overview of the types of fields that are available in Sencha
Touch.

Fieldsets | 145

Text Fields
Text fields are the most common and simple to use. The base Text field class provides
lots of functionality, shared by all the types of text entry fields, such as capitalization,
validation, events, and look and feel.

There are several subclasses of the Text field available:

• DatePicker

• Email

• Hidden

• Number

• Password

• Search

• Select

• TextArea

• Url

By default, all text fields share the following configuration options:

• autoCapitalize, autoComplete, and autoCorrect all take Boolean values, which
activate and deactivate each one of the options.

• clearIcon makes the field display a small button, used to clear the current value of
the field in a simple gesture.

• maxLength specifies the maximum length of text accepted by the current instance.

• placeHolder provides a text to be shown to the user when the field does not contain
any information or contents. This is particularly useful as a help for users to learn
which kind of information to enter into complex forms.

• readOnly is a Boolean value that specifies whether the current field can be modified
by the user.

You can see all the text fields in action in Figure 5-3.

146 | Chapter 5: Forms

Figure 5-3. Text fields in a form

We are going to study each one of them in detail in the next sections.

DatePicker

As the name implies, this component is meant to simplify the selection of a date or time

in a form. The DatePicker component in Sencha Touch is heavily inspired by the date
picker in iOS, using the visual idiom of scrolling wheels.

This component is quite characteristic in its structure: To select dates, an instance of

the DatePicker field contains (does not inherit, but contains) an instance of the

Ext.picker.Date class, which is in turn a subclass of Ext.picker.Picker, itself a sub‐

class of Ext.Sheet. All of this explains that the DatePicker component shows up as a
sheet, popping up from the bottom edge of the screen, all while displaying a slot-based
picker.

When the user is not selecting dates, the DatePicker field appears like a normal field
on screen, showing the date using a human-readable, configurable format.

Please refer to Chapter 3 for a description of the Ext.picker.Picker
class.

Field Types | 147

There are several configuration options available for the DatePicker field:

• dateFormat requires a string, which specifies the formatting option used to display
the date on the picker. The accepted date formats are exactly those of the

Ext.Date.format() function, themselves directly inspired by those of the PHP
“date()” function.

• value specifies the default value of the picker upon creation. It accepts a variety of

values, ranging from standard JavaScript Date objects to a literal object of the form

{year: 2012, day: 10, month: 9}.

• picker is a getter that provides access to the Ext.picker.Date object contained by
the current instance.

There are several available configuration options for Ext.picker.Date objects, to name
a few:

• cancelButton is a property which, when set to true, makes the picker feature a
“Cancel” button on top of the picker. This property also takes a string value, which

replaces the default text. To hide the button, just set the property to null or false.

• doneButton is very similar to cancelButton, but when activated provides the user
with a button that can be used to dismiss the picker and return the chosen date to
the calling code.

• height specifies the height in points of the picker.

• slotOrder specifies the order of the day, month, and year slots in the picker; by
default, the American English “month/day/year” structure is used, so specifying a

value like ["day", "month", "year"] will make your picker more familiar to
European audiences.

• yearFrom and yearTo specify the upper and lower bounds for the year slots.

All of these properties are demonstrated in the following code sample:

{

 xtype: 'datepickerfield',

 name: 'date',

 label: 'Date Picker',

 dateFormat: 'D d M Y',

 placeHolder: 'dd/mm/yyyy',

 picker: {

 slotOrder: ['day', 'month', 'year'],

 yearFrom: (new Date()).getFullYear(),

 yearTo: (new Date()).getFullYear() + 20

 }

}

The code above generates a date picker that looks like the one in Figure 5-4.

148 | Chapter 5: Forms

http://www.php.net/date
http://www.php.net/date

Figure 5-4. Date picker

Email

The Email field type encapsulates the creation of a standard HTML5 <input

type="email"> field. Recent mobile web browsers will show a specialized keyboard,
suitable for typing email addresses with a touchscreen mobile device.

To learn more about the different types of available HTML5 form fields,
check out Mobile JavaScript Application Development (O’Reilly).

{

 xtype: 'emailfield',

 name: 'email',

 value: 'test@akosma.com',

 label: 'Email Field',

 required: false

}

Field Types | 149

http://shop.oreilly.com/product/0636920025252.do

You can see the keyboard associated to the email field in Figure 5-5.

Figure 5-5. Email field keyboard

Hidden

This component just encapsulates the creation of a standard <input type="hidden">
HTML component, used to store values out of sight from the user.

{

 xtype: 'hiddenfield',

 name: 'hidden',

 value: 'Some invisible value',

 label: 'Hidden Field'

}

Number

This subclass of the Text field is used to provide an easy way for users to enter numeric
values; this includes displaying an ad hoc keyboard, suitable for number input, as well
as a set of spinner buttons to make the entry process even easier.

There are several possible configurations:

150 | Chapter 5: Forms

• minValue and maxValue provide the lower and upper bounds of the range of ac‐
cepted values in the field.

• stepValue specifies the amount of change to be applied to the field every time the
user taps on the spinner buttons.

{

 xtype: 'numberfield',

 name: 'number',

 value: '350',

 label: 'Number Field',

 minValue: 100,

 maxValue: 500,

 stepValue: 10

}

Spinner

This is a special kind of Number field, which displays a pair of buttons used to increment
and decrement the value of the field, which simplifies the taks of the user to enter and
modify values.

There are some configuration options particularly useful for this component:

• accelerateOnTapHold is true by default and specifies whether the user is able to
accelerate the increase rate of the field if she keeps touching the same button.

• cycle is a Boolean (set to false by default) that makes the component return to
the minimum value when the maximum value is reached, or to the maximum value
as soon as the minimum value is reached.

• increment is the value that is subtracted or added to the component every time one
of the spinner buttons is touched.

• groupButtons is a Boolean value (set to true by default) that specifies the relative

position of the spinner buttons; when true, they appear together at the right side

of the field; when false, they appear on each side of the input field.

{

 xtype: 'spinnerfield',

 name: 'spinner',

 value: '6500',

 label: 'Spinner Field',

 minValue: 1000,

 maxValue: 10000,

 stepValue: 10,

 accelerateOnTapHold: true,

 cycle: false,

 increment: 200,

Field Types | 151

 groupButtons: false

}

Password

The Password field is used, as expected, to provide a concealed input field for the user
to enter secure or sensitive data.

{

 xtype: 'passwordfield',

 name: 'password',

 value: 'Some secret password',

 label: 'Password Field'

}

Search

This special kind of Text input provides a typical search box, with rounded corners and
a magnifying glass icon on the field.

{

 xtype: 'searchfield',

 name: 'search',

 value: 'Search text',

 label: 'Search Field'

}

Select

This component provides a touchscreen-enabled pop-up field, where the user can select
one of many different predefined options. There are several configurations available

beyond those of the Text field:

• options provides all the options to be displayed on the picker UI. These are usually
represented as an array of literal objects with defined fields.

• displayField specifies the field that contains the text shown to the user.

• Similarly, valueField specifies the key of the options array objects to be used as
machine-readable data, for submissions and other operations.

• store specifies the Ext.data.Store object to be used as data source for this com‐
ponent. This makes it easy to bind this component to a local or remote data source.

• usePicker is a Boolean value that toggles the component from using a list overlay

(the default) to a standard Ext.picker.Picker object instead.

152 | Chapter 5: Forms

The following code snippet shows how to create a simple select field that uses a modal
popover (visible only in the iPad or other tablets):

{

 xtype: 'selectfield',

 name: 'select',

 label: 'Select Field',

 options: [{

 display: 'key1',

 value: 'value1'

 }, {

 display: 'key2',

 value: 'value2'

 }, {

 display: 'key3',

 value: 'value3'

 }],

 displayField: 'display',

 valueField: 'value'

}

You can see the select field popover in Figure 5-6.

Figure 5-6. Modal popover for tablets

Field Types | 153

On the other hand, the following code shows the same example but using a standard
picker:

{

 xtype: 'selectfield',

 name: 'select',

 label: 'Select Field with Picker',

 usePicker: true,

 options: [{

 display: 'key1',

 value: 'value1'

 }, {

 display: 'key2',

 value: 'value2'

 }, {

 display: 'key3',

 value: 'value3'

 }],

 displayField: 'display',

 valueField: 'value'

}

The standard picker used for select fields can be seen in Figure 5-7.

Figure 5-7. Standard picker for select fields

154 | Chapter 5: Forms

TextArea

This component provides a common multi-line entry field, suitable for entering longer
quantities of text than usual text fields.

Entering text in touchscreen devices is usually considered a tedious
option, so use this component carefully.

There is a simple yet common configuration option for this component: maxRows, which
takes an integer value specifying the maximum visible number of rows available for the
user on screen.

{

 xtype: 'textareafield',

 name: 'textarea',

 label: 'Text Area Field'

}

Url

This last type of Text encapsulates the creation of an <input type="url"> HTML5
component, which allows users to conveniently type URLs. Modern touchscreen brows‐
ers provide an adapted keyboard for entering URL data into forms.

{

 xtype: 'urlfield',

 name: 'url',

 label: 'URL',

 value: 'http://akosma.com/'

}

You can see the keyboard associated with the URL field in Figure 5-8.

Field Types | 155

Figure 5-8. URL field keyboard

Checkboxes and Radio Groups
Checkboxes provide a very simple and standard UI for users, allowing them to answer
“yes” or “no” to a simple question.

Checkboxes can be configured using the following properties:

• name provides the machine-readable name of the data to be checked or unchecked
using the current field.

• value provides the machine-readable value to be recorded when the user checks
the current field.

• label provides a human-readable value, shown on the right side of the checkbox.

• checked specifies whether the current field is checked or not; by default, the field
is not checked.

• labelWidth specifies a percent value, used to increase or decrease the width of the
label for the current field. By default, the label is quite narrow, and to display long
names, it may be unreadable; this property helps to solve this problem.

• labelWrap specifies a Boolean value stating whether the label of the current field
can be wrapped on several lines; this is false by default, which means that long labels
are shown with an ellipsis (“…”) at the end.

156 | Chapter 5: Forms

• required specifies whether the current field is mandatory. By default, Sencha Touch
adds an asterisk (*) to the field marked as required.

There is a subclass of the Checkbox class that has a particular behavior: the Radio field
type.

Ext.define('Chapter5Forms.view.CheckboxSample', {

 extend: 'Ext.form.Panel',

 xtype: 'checkboxsample',

 config: {

 items: [{

 xtype: 'fieldset',

 title: 'Checkboxes',

 instructions: 'Select one or many countries',

 items: [{

 xtype: 'checkboxfield',

 name: 'country', value: 'ar',

 label: 'Argentina', checked: false, labelWidth: '70%'

 }, {

 xtype: 'checkboxfield',

 name: 'country', value: 'fm',

 label: 'Federated States of Micronesia',

 labelWrap: true, labelWidth: '70%', required: false

 }, {

 xtype: 'checkboxfield',

 name: 'country', value: 'ch',

 label: 'Switzerland', checked: true,

 required: true, //

 labelWidth: '70%'

 }, {

 xtype: 'checkboxfield',

 name: 'country', value: 'us',

 label: 'United States', checked: false,

 labelWidth: '70%'

 }]

 }]

 }

});

The value required: true is responsible for the asterisk shown next to the word
“Switzerland” in Figure 5-9.

Checkboxes can be seen in Figure 5-9.

Field Types | 157

Figure 5-9. Checkboxes (the asterisk highlights a required value)

Radio

The Radio field type is a subclass of the Checkbox class, and it provides a common “radio
button” experience to forms; it allows users to select one and only one value from a

group of options. The most important thing to remember about creating a Radio button

group is to use the same name parameter.

There are two convenient methods provided in this class, helping developers to set and

get the values selected in a Radio group: getGroupValue() and setGroupValue(value).

Ext.define('Chapter5Forms.view.RadioButtonSample', {

 extend: 'Ext.form.Panel',

 xtype: 'radiobuttonsample',

 config: {

 items: [{

 xtype: 'fieldset',

 title: 'Radio buttons',

 instructions: 'Select only one country',

 items: [{

 xtype: 'radiofield',

 name: 'country',

 value: 'dk',

 label: 'Denmark',

 labelWrap: true

 }, {

 xtype: 'radiofield',

 name: 'country',

 value: 'de',

 label: 'Germany',

 checked: false

158 | Chapter 5: Forms

 }, {

 xtype: 'radiofield',

 name: 'country',

 value: 'za',

 label: 'South Africa',

 checked: false

 }, {

 xtype: 'radiofield',

 name: 'country',

 value: 'tw',

 label: 'Taiwan',

 checked: true

 }]

 }]

 }

});

Radio buttons can be seen in Figure 5-10.

Figure 5-10. Radio buttons

Slider
This component provides users with an easy-to-use mechanism to enter bounded nu‐
meric values in a form. Visually, the field is displayed as a knob that can be dragged left
or right, allowing the user to select a value from a continuous set of values.

Field Types | 159

Several configurations are available:

• minValue and maxValue provide the lower and upper bounds of the range of values
allowed to the user.

• increment provides the value used to change the value of the component as the
user moves the knob left or right.

• value specifies the default value to select when the component is initialized.

There is a special kind of Slider called the Toggle, described in the next section.

Toggle

This field (somewhat surprisingly, a subclass of Slider) is used to enter Boolean values

on a form. It supports only two values, true and false which can be set and retrieved

programmatically using the serValue(value) and getValue() methods provided by

the parent Field class.

This class can be customized visually using the minValueCls and maxValueCls prop‐
erties, to override the visual styles provided by Sencha Touch.

Ext.define('Chapter5Forms.view.SliderToggleSample', {

 extend: 'Ext.form.Panel',

 xtype: 'slidertogglesample',

 config: {

 items: [{

 xtype: 'fieldset',

 title: 'Slider and Toggle',

 items: [{

 xtype: 'sliderfield',

 minValue: 10,

 maxValue: 400,

 increment: 10,

 value: 100,

 label: 'Slider',

 name: 'slider'

 }, {

 xtype: 'togglefield',

 label: 'Toggle',

 name: 'toggle',

 value: true

 }]

 }]

 }

});

Slider and toggle can be seen in Figure 5-11.

160 | Chapter 5: Forms

Figure 5-11. Slider and toggle

Using Data with Forms
One of the greatest features of forms is their tight integration with the overall MVC
architecture promoted by Sencha Touch. Forms can consume and return instances of

Ext.data.Model subclasses, automatically matching the values of individual fields to
the properties of data objects.

You can load data into a form using basically two methods:

1. The setValues() method, which takes a literal object with data, whose keys should

match the name parameter of the form fields; or:

form.setValues({

 name: 'Adrian',

 email: 'adrian@akosma.com',

 password: 'secret'

});

2. The setRecord() method, which takes an Ext.data.Model instance as parameter.

In this case, the data fields of the model should match the name fields of the form,
and Sencha Touch will automatically feed every value on every field:

Ext.define('MyApp.model.User', {

 extend: 'Ext.data.Model',

 config: {

 fields: ['name', 'email', 'password']

 }

});

var user = Ext.create('MyApp.model.User', {

 name: 'Adrian',

 email: 'adrian@akosma.com',

 password: 'secret'

});

Using Data with Forms | 161

form.setRecord(ed);

As you can imagine, there are matching getValues() and getRecord() methods, which
allow the developer to programmatically ask the form about the data stored in the form.

In terms of architectural approach, pay attention to the fact that forms are part of the
“view” layer of the MVC architecture; as such, they should not contain business logic
or network operations. Separating this code from your forms will allow you to reuse
them in other contexts, which is a desirable characteristic of views.

Please refer to Chapter 6 for a discussion of how to separate the business
logic of Sencha Touch applications into dedicated controller classes.

However, for small applications, you can use the submit() method, which basically

sends the contents of the form to any URL using a regular POST request.

form.submit({

 url: 'url/to/submit/to',

 method: 'POST',

 success: function() {

 alert('form submitted successfully!');

 }

});

Conclusion
Forms are a core element of any business application; in Sencha Touch, they include
lots of functionality and have a very nice default look and feel, which can be tweaked in
lots of different ways. Furthermore, forms integrate beautifully with the MVC archi‐
tecture of Sencha Touch, providing a very easy abstraction for developers to create data-
bound applications in very few steps.

162 | Chapter 5: Forms

CHAPTER 6

Controllers

In this chapter we are going to talk about controllers. They are the last piece of the MVC
architecture provided by Sencha Touch, and they provide many services that are very
useful for software developers creating mobile applications.

Director of the Orchestra
To put it bluntly, the primary objective of controllers is to concentrate power. They
provide an interaction layer that sits somewhere between models, stores, and views, and
they act as the director of an orchestra, reacting to events, making decisions, and chang‐
ing the state of the application as needed.

As you saw in Chapter 3, Sencha Touch allows you to provide event handlers for your
views, including code that will be executed whenever the user triggers an event on a
particular control on the application. These event handlers can be included in the con‐

figuration section of any control, using the listeners key.

However handy, this approach leads to unmaintainable and non-reusable code in the
long run. It makes the code difficult to learn and debug, not only for new team members,
but also for the original team who wrote the code. Finally, it makes reusing code more
difficult; what happens if you have several controls whose event handlers are similar, or
strictly the same? Should you cut and paste the code?

Controllers provide a concrete answer to this question, including many other interesting
features at the same time:

Routing and deep-linking
Using controllers, you can provide URLs to access different views of your applica‐
tion.

163

History management
Sencha Touch uses controllers to support the Back Button available in browsers and
in Android devices.

Applications can have as many controllers as required, and even better, many controllers
can add event handlers to the same components, each one executing some particular
function (in no particular order, though.)

We are going to learn in detail how to use controllers in the following sections.

Creating a Controller
The first task is to create a controller for our application. All Sencha Touch application

controllers are instances of the Ext.app.Controller class. The following code shows
how to create one:

Ext.define('Chapter6Controllers.controller.MainController', {

 extend: 'Ext.app.Controller',

 config: {

 refs: {},

 control: {},

 routes: {}

 }

 // Event handlers go here

});

Controllers in Sencha Touch are located in the app/controller folder, and they have a

very simple structure; the config section takes only three keys:

• refs contains a list of user interface elements, referenced using the Ext.Component

Query syntax. Each of the elements referenced in this key will automatically be
wrapped in a getter function.

• control binds one or many entries of the preceding refs configuration to the event
handlers contained in the controller.

• routes provides routing and deep-linking to the application.

To learn about the Ext.ComponentQuery syntax, please refer to Chap‐
ter 2.

To make your application load controllers automatically on start-up, remember to add

them to the corresponding key in your Ext.application() function call:

164 | Chapter 6: Controllers

Ext.application({

 name: 'Chapter6Controllers',

 models: // ...

 views: // ...

 controllers: ['MainController'], //

 stores: // ...

 launch: function () {

 // ...

 }

});

This will make your controllers available automatically when your application
starts.

Let’s look at a more complex example to understand how to use controllers.

Ext.define('Chapter6Controllers.controller.MainController', {

 extend: 'Ext.app.Controller',

 config: {

 refs: {

 listView: 'indexview > #listView' //

 },

 control: {

 listView: {

 itemtap: 'listViewItemTap' //

 }

 }

 },

 listViewItemTap: function(list, index, target, record, e, eOpts) { //

 console.log('list item tap handler: ' + record.get('text'));

 }

});

In the refs section of our controller, we use a very simple Ext.Component

Query to retrieve a pointer to the list contained inside the component whose xtype

is indexview. The name listView is purely arbitrary here, and apart from
JavaScript reserved words, you can use any name here (just make sure to reuse
it in the file).

Then, in the control section of our configuration, we bind a function to one of
the many events exposed by the list component; in this case, we want to listen to

the itemtap event, and this will execute a function named listViewItemTap.

Finally, we implement the listViewItemTap function in our controller, using the

exact syntax as we would in a normal listeners configuration, and with the

same parameters specified in the documentation of the Ext.dataview.List
class.

Creating a Controller | 165

You can reference as many components in your controllers as you want, and you can
also reference as many event handlers as required for each of your components. There
are not any real rules for the organization of the code in your controllers; your team
should decide the best approach on a case-by-case basis, taking into account the func‐
tionality of your application and the degree of code reuse that you want to achieve:

Ext.define('Chapter6Controllers.controller.MainController', {

 extend: 'Ext.app.Controller',

 config: {

 refs: {

 indexView: 'indexview',

 listView: 'indexview > #listView'

 },

 control: {

 listView: {

 itemsingletap: 'listViewItemTap',

 itemdoubletap: 'listViewDoubleTap'

 },

 indexView: {

 whatever: 'whateverHandler' //

 }

 }

 },

 listViewItemTap: function(list, index, target, record, e, eOpts) {

 console.log('list item single tap handler: ' + record.get('text'));

 },

 listViewDoubleTap: function (list, index, target, record, e, eOpts) {

 console.log('BOOM: list item double tap handler!');

 },

 whateverHandler: function (view) {

 console.log('This is an event handler for a custom event');

 }

});

The whatever event is fired by the Chapter6Controllers.view.IndexView class
every time an item is selected; please refer to the source code to see how this is

done (basically, it involves using the fireEvent() function, just as explained in
Chapter 3.)

Although you can add event handlers in the listeners configuration
of your views as well as in one or many controllers, you must pay at‐
tention to the fact that they are executed in no particular order; as such,
there must be no dependencies among event handlers.

166 | Chapter 6: Controllers

Initialization
As practical as configuration options are, just as with views, sometimes you need to

initialize controllers before use. For that, you can use the init() and launch() func‐
tions, as shown here:

Ext.define('Chapter6Controllers.controller.MainController', {

 extend: 'Ext.app.Controller',

 config: {

 // ...

 },

 init: function () {

 console.log('INIT from MainController');

 },

 launch: function () {

 console.log('LAUNCH from MainController');

 },

 // ...

});

When are these functions executed? When a Sencha Touch application starts, there is
a very specific sequence of execution followed by all the controllers, the profiles, and
the application itself to initialize and prepare for action:

1. All the controllers execute their init() functions first.

2. Then, the current profile (“Tablet”, in the following example) executes its own

launch() function.

3. After that, the main launch() function (defined in the app.js file) is executed.

4. Finally, the individual launch() functions defined in each controller are executed.

Adding console.log() statements in all of these locations generates the following
output:

MainController.js:19 INIT from MainController

AnotherController.js:19 INIT from AnotherController

TabletController.js:16 INIT from TabletController

Tablet.js:13 LAUNCH from Tablet profile

app.js:43 LAUNCH from app.js

MainController.js:22 LAUNCH from MainController

AnotherController.js:22 LAUNCH from AnotherController

TabletController.js:19 LAUNCH from TabletController

Device profiles (such as the Tablet.js file previously mentioned) will
be explained in detail in Chapter 10.

Initialization | 167

Routing and Deep-Linking
Another functionality provided by Sencha Touch controllers is routing and deep-
linking. This allows applications to use URLs to refer to individual screens or application
states, providing Back button and history support, as well as the possibility of book‐
marking or sharing those URLs with other users.

To implement routing, just use a routes configuration in your controller:

Ext.define('Chapter6Controllers.controller.RoutesController', {

 extend: 'Ext.app.Controller',

 config: {

 refs: {

 splitView: 'akosplitview',

 indexView: 'indexview'

 },

 routes: {

 'checkboxes': 'showCheckboxes',

 'radio': 'showRadioButtons',

 'form': 'showForm',

 'form/:id': 'fillForm' //

 }

 },

 showCheckboxes: function () {

 var widget = Ext.widget('checkboxsample', {

 title: 'Checkboxes'

 });

 this.showWidget(widget);

 },

 showRadioButtons: function () {

 var widget = Ext.widget('radiobuttonsample', {

 title: 'Radio Buttons'

 });

 this.showWidget(widget);

 },

 showForm: function () {

 var widget = Ext.widget('textfieldsample', {

 title: 'Form'

 });

 this.showWidget(widget);

 },

 fillForm: function (id) {

 var widget = Ext.widget('textfieldsample', {

 title: 'Form'

 });

 widget.down('#sampleTextField').setValue('ID: ' + id); //

 this.showWidget(widget);

 },

 showWidget: function(widget) {

 if (Ext.os.is.Phone) {

 this.getIndexView().push(widget); //

 }

168 | Chapter 6: Controllers

 else {

 this.getSplitView().displayComponent(widget);

 }

 }

});

For each one of the routes that we want to manage, we are going to specify the
anchor and its associated function. If the anchor includes a parameter, like in
this case, then the function will receive that parameter at runtime.

The function is executed, and we can retrieve and use that parameter at runtime.

Finally, given that this application uses profiles, it must behave differently
depending on whether it runs on a smartphone or a tablet.

The result of the previous code is that users can append anchor tags such as #radio,

#checkboxes, or #form/Adrian and the application will behave accordingly, as shown
in Figure 6-1.

Figure 6-1. Implementing routing with controllers

When using application profiles, you can avoid having if statements
scattered in your controllers, testing whether your application is run‐
ning on a phone or a tablet; you should rather use custom controllers
for that! Please refer to Chapter 10 for more information about device
profiles.

Routing and Deep-Linking | 169

Conclusion
This chapter has shown us how to organize the code of our application in a consistent,
predictable, and maintainable way. Sencha Touch controllers are a cornerstone in the
MVC architecture, providing the required structure and support to centralize all the
event handlers of an application in a central location. They also provide support for
routing and deep-linking, allowing users to reference screens individually using custom
URLs.

170 | Chapter 6: Controllers

CHAPTER 7

Styling Applications

Creating a good mobile application takes much more than just quality code. The most
successful applications have a great personality, conveyed through the proper use of
design elements like color, proportion, whitespace, and font choices.

Sencha Touch is no exception to this rule; thankfully, designers can leverage all their
current CSS knowledge to provide a strong visual identity to their creations. In this
chapter, we are going to learn how Sencha Touch empowers designers to customize the
look and feel of their applications.

Using the Default Sencha Styles
The easiest and most straightforward way to style your Sencha Touch application is to

use the default CSS files provided by Sencha in the resources/css folder of the frame‐
work distribution folder. Just adding the default stylesheets included there will provide
a “native” look and feel to your Sencha Touch applications:

<!--The default Sencha Touch style-->

<link rel="stylesheet" href="resources/css/sencha-touch.css" />

<!--The default iOS style-->

<link rel="stylesheet" href="resources/css/apple.css" />

<!--The default Android style-->

<link rel="stylesheet" href="resources/css/android.css" />

<!--The default BlackBerry 6 style-->

<link rel="stylesheet" href="resources/css/bb6.css" />

You can use these stylesheets in lieu of the default one provided by Sencha in the file

sencha-touch.css on the same folder. You can see the different look and feel of the
same application, using these default stylesheets, in Figure 7-1: from left to right, the
default Sencha Touch style, the iOS style, the Android style, and the BlackBerry 6 style.

171

Figure 7-1. Comparison of the default stylesheets

Introduction to Sass
As useful and practical as the standard stylesheets are, most designers will prefer crafting
a more personalized look and feel for their applications. Thankfully, Sencha Touch has
an incredibly powerful theming subsystem built on top of Sass, or “Syntactically Awe‐
some Stylesheets.” Sass is a superset of CSS, which adds features like nesting, variables,
mixins, and inheritance to standard CSS.

Sass stylesheets can be compiled into standard CSS using Compass, an authoring tool
based on Ruby.

In order to use Sass and Compass, please make sure that your developer
environment includes a working Ruby installation:

• OS X ships with a working Ruby installation that can be used out
of the box.

• Windows users need to download and install Ruby from ru‐
byinstaller.org.

• Finally, Linux users can install Ruby using the package manager
included with their favorite distribution.

To install Compass, just use the standard RubyGems command: gem

install compass.

Sass files have the .scss extension, which basically stands for “Sassy CSS” or “SCSS” for
short. Also, it is worth pointing out that every CSS file is a valid SCSS file.

Sass allows developers to create and maintain more complex stylesheets than with stan‐
dard CSS, including the following features:

172 | Chapter 7: Styling Applications

http://sass-lang.com/
http://compass-style.org/
http://rubyinstaller.org/
http://rubyinstaller.org/

• Variables

• Nesting

• Inheritance

• Functions, including very useful color manipulations

• Mixins

The following sections provide a quick introduction to each one of these features.

Variables
Sass allows developers to define variables, providing reuse and readability to long style‐

sheets. Variables are simply declared using the $ sign in front of the name, and can be
used throughout the stylesheet afterward:

/* ---------- Sass ---------- */

$blue: #9dbed3;

$margin: 5px;

#p {

 background-color: $blue;

 margin-top: $margin

}

/* ---------- Generated CSS ---------- */

#p {

 background-color: #9dbed3;

 margin-top: 10px;

}

Variable expressions can also contain arithmetic calculations involving different units,
liberating the developer from performing complex calculations:

/* ---------- Sass ---------- */

$height: 920px;

div.instructions {

 width: 2in + 7pt;

 height: $height / 2;

}

/* ---------- Generated CSS ---------- */

div.instructions {

 width: 2.09722in;

Introduction to Sass | 173

 height: 460px;

}

Nesting
Nesting directives allows developers to avoid repeating themselves, which is all too
common in standard CSS:

/* ---------- Sass ---------- */

body {

 font: {

 family: Times;

 weight: bold;

 size: 1em;

 }

}

#div {

 background-color: gray;

 .emphasize {

 text-decoration: underline;

 }

}

/* ---------- Generated CSS ---------- */

body {

 font-family: Times;

 font-weight: bold;

 font-size: 1em;

}

#div {

 background-color: gray;

}

#div .emphasize {

 text-decoration: underline;

}

Inheritance
Just like in many programming languages, and somewhat similarly to nesting, Sass uses
inheritance to make a directive automatically replicate CSS instructions elsewhere in
the final stylesheet:

/* ---------- Sass ---------- */

174 | Chapter 7: Styling Applications

.alert {

 font-size: 0.9em;

 background-color: gray;

}

.alert.important {

 font-weight: bold;

}

.redalert {

 @extend .alert;

 background-color: red;

}

/* ---------- Generated CSS ---------- */

.alert, .redalert {

 font-size: 0.9em;

 background-color: yellow;

}

.alert.important, .redalert.important {

 font-weight: bold;

}

.redalert {

 background-color: red;

}

Functions
Sass also provides a large set of pre-built functions, ready to be used, working on the
following data types:

• Colors

• Booleans

• Strings

• Numbers

• Lists

Here are some useful functions provided by Sass:

• quote() and unquote(), for strings

• length() and nth(), for lists

• min(), max(), abs(), ceil(), and floor() for numbers

Introduction to Sass | 175

http://sass-lang.com/docs/yardoc/Sass/Script/Functions.html

• Finally, type-of(), unit(), and if(), which are more generic functions

Color manipulation

Among its built-in functions, Sass has an impressive array of color manipulation ones,

all built on top of the Color type. Color objects in Sass have the following methods and
properties (among others):

• alpha

• red, green, and blue

• hue, saturation, and lightness

Color objects can be passed as parameters, converted into other representations, and
combined with other colors.

/* Create a custom color */

$red: 18;

$green: 152;

$blue: 227;

$alpha: 0.7;

$blue: rgba($red, $green, $blue, $alpha);

/* Manipulate the color */

$list-color: complement(darken($blue, 20%));

Just like complement and darken, other useful color manipulation functions are the
following:

• darken() and lighten()

• saturate() and desaturate()

• complement() and invert()

• opacify() and transparentize()

• ie-hex-str($color), which returns a color definition compatible with IE filters

Mixins
Mixins provide a very simple way to encapsulate and reuse chunks of CSS code
throughout your stylesheet, without having to repeat them everywhere. They are de‐

clared using the @mixin keyword, they can take any number and type of variables and

are used with the @include keyword:

/* ---------- Sass ---------- */

@mixin some-special-style($color, $font-size) {

176 | Chapter 7: Styling Applications

http://sass-lang.com/docs/yardoc/Sass/Script/Color.html

 font: {

 family: serif;

 size: $font-size;

 }

 color: $color;

}

div.special {

 @include some-special-style(red, 45pt);

 margin: 1em;

}

div.notsospecial {

 @include some-special-style(green, 3em);

 margin: 1em;

 padding: 10px;

 background-color: yellow;

}

/* ---------- Generated CSS ---------- */

div.special {

 font-family: serif;

 font-size: 45pt;

 color: red;

 margin: 1em;

}

div.notsospecial {

 font-family: serif;

 font-size: 3em;

 color: green;

 margin: 1em;

 padding: 10px;

 background-color: yellow;

}

Using Sass in Sencha Touch
To start using Sass with Sencha Touch, we are going to style one of the applications we
created in the previous chapters. To do that, the first thing we need to do is to create a

resources folder in the project and then copy the following two files, usually located

in the /resources/sass folder of the Sencha Touch distribution:

• config.rb

• sencha-touch.scss

Using Sass in Sencha Touch | 177

After this is done, the config.rb file has to be modified, so that it automatically includes

the Sencha Touch libraries. This usually involves using the File.join() Ruby method
call, and setting up the proper path to the Sencha Touch distribution folder:

Get the directory that this configuration file exists in

dir = File.dirname(__FILE__)

Load the sencha-touch framework automatically.

load File.join(dir, '..', '..', '_libs', 'sencha', 'resources', 'themes')

Compass configurations

sass_path = dir

css_path = File.join(dir, "..", "css")

environment = :production

Remember to set 'output_style = :compressed' before going on

production!

#

output_style = :compressed

output_style = :expanded

On the other hand, the default sencha-touch.scss file has the following structure:

@import 'sencha-touch/default/all';

@include sencha-panel;

@include sencha-buttons;

@include sencha-sheet;

@include sencha-picker;

@include sencha-tabs;

@include sencha-toolbar;

@include sencha-toolbar-forms;

@include sencha-indexbar;

@include sencha-list;

@include sencha-list-paging;

@include sencha-list-pullrefresh;

@include sencha-layout;

@include sencha-carousel;

@include sencha-form;

@include sencha-msgbox;

@include sencha-loading-spinner;

In the preceding snippet, it is important to make the following distinctions:

• @import is used to dynamically import SCSS statements in an external file. This
directive is used by the Sass compiler when the final CSS file is generated.

• On the other hand, @include is used to import Sass “mixins,” which are reusable
blocks of Sass commands that might include parameters.

178 | Chapter 7: Styling Applications

Generating CSS with Compass
To generate the final CSS from the Sass files, we are going to use the Compass tool.
Compass watches a certain folder in the file system waiting for changes and triggers the
compilation of the Sass sources automatically. For this, we need to first launch the tool
with the following command:

$ compass watch [dirname]

tmux is particularly helpful in this situation, since it is very convenient

to leave a tmux window or pane with Compass running in it as the
developer works with the CSS files.

However, if you do not want to use Compass, and you are using
LiveReload, you can configure it to automatically generate CSS files
from your Sass source files.

On the other hand, if you want to use Compass but would rather not
use a command line tool for that, then you can use Compass.app, a
cross-platform (Linux, Windows, and OS X) tool.

The output of the execution of this command looks like this:

$ compass watch .

Dear developers making use of FSSM in your projects,

FSSM is essentially dead at this point. Further development will

be taking place in the new shared guard/listen project. Please

let us know if you need help transitioning! ^_^b

- Travis Tilley

>>> Compass is polling for changes. Press Ctrl-C to Stop.

>>> Change detected at 08:02:16 to: sencha-touch.scss

overwrite ./../css/sencha-touch.css

>>> Change detected at 08:02:35 to: sencha-touch.scss

overwrite ./../css/sencha-touch.css

>>> Change detected at 10:20:55 to: sencha-touch.scss

error sencha-touch.scss (Line 21: Invalid CSS after "$list-color: ":

expected expression (e.g. 1px, bold), was ";")

Sass::SyntaxError on line ["21"] of

sass/sencha-touch.scss: Invalid CSS after

"$list-color: ": expected expression (e.g. 1px, bold), was ";"

Run with --trace to see the full backtrace

>>> Change detected at 10:21:15 to: sencha-touch.scss

overwrite ./../css/sencha-touch.css

>>> Change detected at 10:21:22 to: sencha-touch.scss

identical ./../css/sencha-touch.css

>>> Change detected at 10:34:57 to: sencha-touch.scss

overwrite ./../css/sencha-touch.css

Using Sass in Sencha Touch | 179

http://tmux.sourceforge.net/
http://livereload.com
http://compass.handlino.com/

As explained by the tool, you can press the Ctrl+C key combination at any time to stop
the watch and rebuild the process. Also, as previously shown, the compiler informs the
developer in case of errors in the source Sass file.

Using Sencha Cmd
Applications generated with Sencha Cmd include a resources/sass
folder by default, which is taken into account automatically (that is,
compiled and minified) every time an application is packaged or built
using the command line tools. This is explained in detail in Chapter 10.

Sencha Touch Sass Parameters
Sencha Touch uses Sass extensively, and there are many global variables that can be
“tweaked” and fine-tuned to modify the look and feel of your application. Among those
variables, the most important are the following:

• $base-color, which specifies the original color, used throughout the Sass system
to style the whole application. Many styles use this variable, modifying it through
Sass functions, to provide a unified and elegant look to your application.

• $base-gradient takes the values bevel, glossy, recessed, and matte (the latter
one being the default value). This gradient is used in title bars and list section head‐
ers.

• $active-color is the color used by pickers, action buttons, and selected rows in
lists.

• $font-family specifies the base font to be used in the application.

• $global-row-height determines the size of list rows (usually 46 pixels by default).

• $include-border-radius is a Boolean value that specifies whether buttons and
other elements should display rounded corners or not.

• $include-default-icons specifies whether the default icons included in Sencha
Touch (as explained in Chapter 3) have to be included or not. If you do not use tab

bars or toolbars in your application, then setting this value to false will save you
a great amount of space and bandwidth, because these icons are included as base-64
encoded images in the CSS file.

• $neutral-color is the color used by toolbars and tab bars for the ui style.

• $page-bg-color is the background color used by components set to fullscreen.

In addition to these global Sass variables, each UI component in Sencha Touch exposes
a certain number of variables, and all of them are explained in the documentation sys‐
tem, as shown in Figure 7-2.

180 | Chapter 7: Styling Applications

Figure 7-2. Documentation page for styles

After customization, our application features (at least in iOS 6, where the font named
“AvenirNextCondensed-DemiBold” is available) a really customized look, as shown in
Figure 7-3, using the following Sass file:

/* Here we override global variables as required by our design */

/* Custom color */

$red: 18;

$green: 152;

$blue: 227;

$alpha: 0.7;

$blue: rgba($red, $green, $blue, $alpha);

/* Base parameters */

$base-color: $blue;

$font-family: AvenirNextCondensed-DemiBold, sans;

$include-border-radius: false;

$base-gradient: recessed; /* bevel, glossy, recessed, matte (default) */

/* Buttons */

$button-height: 2em;

$include-button-uis: false;

/* Lists */

$list-color: complement(darken($blue, 20%));

$list-zebrastripe: true;

Sencha Touch Sass Parameters | 181

/* Variables with calculations */

$height: 920px;

div.instructions {

 width: 2in + 7pt;

 height: $height / 2;

}

/* Mixins */

@mixin some-special-style($color, $font-size) {

 font: {

 family: serif;

 size: $font-size;

 }

 color: $color;

}

div.special {

 @include some-special-style(red, 45pt);

 margin: 1em;

}

div.notsospecial {

 @include some-special-style(green, 3em);

 margin: 1em;

 padding: 10px;

 background-color: yellow;

}

@import 'sencha-touch/default/all';

@include sencha-panel;

@include sencha-buttons;

@include sencha-sheet;

@include sencha-picker;

@include sencha-tabs;

@include sencha-toolbar;

@include sencha-indexbar;

@include sencha-list;

@include sencha-layout;

@include sencha-msgbox;

@include sencha-loading-spinner;

@include sencha-draw;

/*

You should remove elements that are not used, to make the resulting CSS

smaller and faster to download:

@include sencha-toolbar-forms;

@include sencha-carousel;

182 | Chapter 7: Styling Applications

@include sencha-list-paging;

@include sencha-list-pullrefresh;

@include sencha-form;

@include sencha-charts;

*/

Remove unused styles!
To make the final CSS file smaller, you can comment out (or remove

altogether) one or many of the @include statements at the end of the
Sass file; this way, your production CSS file will contain only the styles
and definitions that are actually required.

Figure 7-3. A customized style for our application

Sencha Touch Sass Parameters | 183

Conclusion
Sencha Touch uses Sass extensively, allowing designers to customize the look and feel
of their applications completely. Not only that, but the API documentation system in‐
cludes all the references required to know the name of the variables to be overridden
throughout the system.

Even better, Sencha Touch includes pre-cooked CSS files reproducing the styles of iOS,
Android, and BlackBerry applications, making it very easy to integrate Sencha Touch
applications in these environments.

184 | Chapter 7: Styling Applications

CHAPTER 8

Debugging, Testing, and Documenting

More than with any other programming language, the dynamic nature of JavaScript
makes it fundamental to have the proper tools in order to increase the quality of our
applications. This chapter will provide an introduction to some important tools used
for debugging, testing, and documenting Sencha Touch applications.

Of course, “testing” is a rather large concept, and it would be foolish to pretend that this
chapter will give you a complete overview of testing Sencha Touch apps. However, these
simple techniques will allow you and your team to increase your quality, helping you
ship code on schedule.

Debugging
Debugging your application is certainly an art. Thankfully, JavaScript developers do not

need to rely on the good old alert() debugging technique anymore. In this section, we
are going to learn about more modern and effective ways to debug your application:

• WebKit Web Inspector

• Remote Debugging (for iOS 6 and OS X Mountain Lion)

• Adobe Edge Inspect (formerly “Adobe Shadow” and “weinre”)

WebKit Web Inspector
The first tool that will be used to debug mobile web applications is the Web Inspector
that ships natively with WebKit-based browsers. It is a very powerful tool, originally
inspired by the famous Firebug plug-in for Firefox by Joe Hewitt; these days, the WebKit
Web Inspector, Opera DragonFly, or the Internet Explorer Developer Tools all allow
you to perform the following functions:

185

• Inspect the HTML structure of the current web page, including all elements that
are generated dynamically (this is especially handy in the case of Sencha Touch,
which generates HTML elements on the fly).

• Set breakpoints in your JavaScript code, to debug your code and to verify that ev‐
erything works as expected.

• Explore the different HTML5 storage options of your browser, including databases,

cookies, or the localStorage.

• Modify the CSS of your page dynamically, changing properties and seeing them
“live” on your page, which is a huge help for designers and developers alike.

In the case of Sencha Touch, the requirement of using WebKit-based
mobile browsers restricts our choice of development tools a bit, to just
Apple Safari or Google Chrome. At least at the time of this writing, you
cannot use Firebug on Firefox or other browsers to inspect your appli‐
cations.

Enable the WebKit Inspector

To enable the WebKit Inspector in Google Chrome or Apple Safari, follow these steps:

• In Google Chrome, in the View menu, select the Developer entry, and click Devel‐
oper Tools.

• In Apple Safari, open the Preferences panel, and in the Advanced tab, check the
“Show Develop menu in menu bar” option, as shown in Figure 8-1.

Latest versions of Chrome and Safari
At the time of this writing, the latest version of Google Chrome was 23,
and the latest version of Apple Safari for OS X Mountain Lion was 6.0.2.

Different UIs
Please pay attention to the fact that the user experience of the web in‐
spector in Safari 6 has been extensively modified from the version
shipped in Chrome.

186 | Chapter 8: Debugging, Testing, and Documenting

Figure 8-1. Safari Preferences panel

Setup for mobile development

The following setup is recommended for working with the WebKit Web Inspector on
Chrome:

1. Open Chrome and navigate to the URL of your Sencha Touch application in the
development web server.

2. Right-click the application and select Inspect Element; this will open the WebKit
inspector, which by default appears in the lower section of the screen.

3. Open the inspector settings, clicking on the Settings button on the lower-right cor‐
ner of the inspector (outlined in Figure 8-2.)

4. In the General tab of the settings screen (shown in Figure 8-3) select the following
options:

• “Dock to right,” to make the inspector appear on the right side of the Chrome
window, instead of on the bottom.

• “Disable cache,” to avoid having bad surprises because of cached files when re‐
loading source code files.

5. In the Overrides tab, select the following options (as shown in Figure 8-4):

• Check the User Agent checkbox and select “iPhone - iOS 5” in the drop-down
menu.

Debugging | 187

• Check the “Device metrics” checkbox, and select 320 and 480 in the width and
height fields, respectively.

Your screen should now look like Figure 8-2.

Figure 8-2. Google Chrome WebKit setup for mobile development (settings highlighted)

188 | Chapter 8: Debugging, Testing, and Documenting

Figure 8-3. General tab of the Google Chrome WebKit inspector settings

Debugging | 189

Figure 8-4. Overrides tab of the Google Chrome WebKit inspector settings

Inspect the HTML of your app

Using the web inspector, you can see the complete structure of your page, including all
the nested elements, and including those that are created during runtime. This is par‐
ticularly useful when debugging the HTML code created by frameworks like Sencha
Touch.

Figure 8-5 shows how the WebKit Inspector highlights the UI of the application as the
user hovers over the corresponding areas of the HTML code.

Log messages in the console

Using the console, you can inspect the internal state of your application without having

to use the old alert() way of doing things. There are two different instructions that
you can use to output text to the console:

• console.log(message), where message is a string, will output that text to the con‐

sole. If the object is not a string, then the result of the toString() method will be
displayed.

• console.dir(object) will display the complete structure of an object in the con‐
sole, allowing you to see its internal tree structure.

Some inspectors perform the same task when invoking console.log()

and console.dir(); as always, there might be differences across brows‐
ers and even among versions of the same browser. However, both
methods are supported these days.

190 | Chapter 8: Debugging, Testing, and Documenting

Figure 8-5. Inspecting the HTML

Figure 8-6 shows many messages printed in the console of the WebKit Inspector (all
generated by the sample application from Chapter 6).

Set breakpoints

Finally, the web inspector allows you to set breakpoints in your JavaScript code, which
helps developers to execute their programs instruction by instruction, to see the values
of the variables in the current stack frames, and to step in and out from functions,
lambdas, and methods.

Debugging | 191

Figure 8-6. Using breakpoints

Remote Debugging
Starting with iOS 6 and Safari 6, included in OS X 10.8 Mountain Lion, developers can
use new remote debugging capabilities, allowing them to inspect the internal workings
of their application in real time, whether it is running on the iOS Simulator or in an iOS
device connected through a USB cable. This method works for applications using Mo‐
bile Safari, standalone browser applications (those “saved on home screen” among other

applications), and also applications using UIWebView (such as applications packaged
using Sencha Cmd or PhoneGap).

This section applies only to developers and devices using iOS 6 or high‐
er, and OS X 10.8 Mountain Lion or higher.

To take advantage of remote debugging on iOS and OS X, follow these steps:

1. Load your Sencha Touch application, either on the iOS Simulator or on your iOS
device of choice.

192 | Chapter 8: Debugging, Testing, and Documenting

http://phonegap.com

If using an iOS device, remember to plus its USB cable to your Mac.

2. In Safari, select the Developer menu and select either the iPhone Simulator or the
menu with the name of your iOS device.

3. In the submenu, select the application you wish to debug. As you are selecting it,
the application is highlighted to help the developer choose the correct one.

This operation will open a standalone WebKit Inspector window, like the one shown in
Figure 8-7. Using this window, you can perform the typical debugging operations pre‐
viously described, with the added benefit of running your application in an environment
that closely resembles that of normal production.

Figure 8-7. Using remote debugging in iOS and OS X

Debugging | 193

Adobe Edge Inspect
As useful as remote debugging is, it works only with iOS 6 and OS X Mountain Lion,
and you might want to inspect the state of your application as it runs in an Android
device, or to use Windows to perform the debugging session; to help you with that, the
Adobe Edge Inspect tool is there.

Adobe Edge Inspect (formerly known as “Adobe Shadow”) is based on a project origi‐
nally created by the PhoneGap team, called weinre (this name stands for Web Inspector
Remote). Adobe acquired weinre during the merge of PhoneGap and has packaged it
in a way that makes it very easy to use.

Adobe Edge Inspect consists of the following elements:

• Desktop applications for Mac and Windows

• A Google Chrome plug-in

• Mobile applications for Android and iOS

To use Adobe Edge Inspect, follow these steps:

1. Install the desktop application on the system of your choice.

2. Install the Google Chrome plug-in.

3. Install the mobile application in your device.

4. Launch the applications in both your computer and your smartphone or iPad (make
sure all your devices are in the same wireless network). To use the desktop appli‐
cation, you need an Adobe Creative Cloud account, but you can use a free account,
which allows you to connect only one device at a time.

5. You might need to pair the mobile and desktop applications. For that, open the
Google Chrome plug-in and select the name of your device. The mobile device will
propose a security code that you should type into your browser plug-in window.

6. In Google Chrome, navigate to the URL of your web application. Your mobile device
should follow the navigation automatically, displaying (eventually) the mobile ver‐
sion, or at least the same page.

7. Click the < > button on the Google Chrome plug-in next to your device, and this
should open the window shown in Figure 8-8. In that window, select the device in
the Remote tab and use the web inspector window as you normally would.

Figure 8-9 shows the result of dynamically invoking Ext.Msg.alert() on the de‐
vice, which triggers a dialog to appear on the device.

194 | Chapter 8: Debugging, Testing, and Documenting

http://html.adobe.com/edge/inspect/
http://phonegap.github.com/weinre/
http://www.adobe.com/products/creativecloud.html

Figure 8-8. Adobe Edge Inspect session, including live DOM manipulation

This works on iOS and Android devices over the local network. At the moment of this
writing, Adobe Edge Inspect still does not allow for setting breakpoints and for executing
JavaScript code step by step, but hopefully this functionality will be included soon. Also,
bear in mind that with a free Adobe Creative Cloud account, you can connect only one
device at a time.

Debugging | 195

Figure 8-9. Adobe Edge Inspect session on an iOS device

Testing
This section will introduce one open source and one commercial testing framework
that you can use to test your Sencha Touch applications:

• Jasmine

• Siesta

The sample To Do List application, shown in Figure 8-10, demonstrates each of these
frameworks. This application is a very simple Sencha Touch MVC application, including
two views, a model, a store, and a controller.

196 | Chapter 8: Debugging, Testing, and Documenting

https://github.com/pivotal/jasmine
http://www.bryntum.com/products/siesta/

Figure 8-10. To Do List sample application

Jasmine
Test-driven development (TDD) has probably been one of the major breakthroughs of
the past 15 years. Nearly every programming language has at least one unit testing
library, but lately the fashion has gone to the new field of behavior-driven development
(BDD), in which the suite of tests will “describe” the actions taken by the piece of software
being considered, evaluating the output against some predetermined values.

The idea behind BDD is not only to test the possible outcomes of a piece of software,
but also to provide a living documentation that can be used by other developers, or even
by customers, to verify the correct mechanisms of their software.

Jasmine is a JavaScript BDD library that has two special characteristics to it: First, it does
not require the DOM to work; this means that it is implemented using core JavaScript
objects and APIs, and that Jasmine tests can run outside the browser. The second in‐
teresting fact is that Jasmine does not depend on other libraries; this means that it’s
extremely simple to install and use.

Testing | 197

The latest available version of Jasmine at the time of this writing is 1.3.1.
You can also try Jasmine without installing it on your machine just by
browsing to the Try Jasmine site, created by the developers of Jasmine.

As a very simple example, let’s use Jasmine to test the ToDoListApp.model.Task class
used by the To Do List application:

Ext.define('ToDoListApp.model.Task', {

 extend: 'Ext.data.Model',

 config: {

 identifier: 'uuid',

 fields: [{

 name: 'id',

 type: 'int'

 }, {

 name: 'completed',

 type: 'boolean'

 }, {

 name: 'dueDate',

 type: 'date'

 }, {

 name: 'title',

 type: 'string',

 defaultValue: ''

 }, {

 name: 'description',

 type: 'string'

 }],

 idProperty: 'id'

 }

});

To do that, we have first to download the latest Jasmine library from Github. Inside the

Jasmine distribution there is a lib/jasmine-core/example folder, containing a file

named SpecRunner.html. We are going to modify that file and include our own classes:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

 <title>Jasmine Spec Runner</title>

 <link rel="shortcut icon" type="image/png" href="lib/jasmine_favicon.png">

 <link rel="stylesheet" type="text/css" href="lib/jasmine.css">

 <script type="text/javascript" src="lib/jasmine.js"></script>

 <script type="text/javascript" src="lib/jasmine-html.js"></script>

 <!--include a console runner here-->

 <script type="text/javascript" src="lib/console-runner.js"></script>

198 | Chapter 8: Debugging, Testing, and Documenting

http://tryjasmine.com/
https://github.com/pivotal/jasmine/tags

 <!-- include source files here... -->

 <script src="/_libs/sencha/sencha-touch-all-debug.js"></script>

 <!-- test launcher -->

 <script type="text/javascript" src="src/AppTest.js"></script>

 <!-- include spec files here... -->

 <script type="text/javascript" src="src/TaskSpec.js"></script>

 <script type="text/javascript">

 (function() {

 var jasmineEnv = jasmine.getEnv();

 jasmineEnv.updateInterval = 1000;

 var htmlReporter = new jasmine.HtmlReporter();

 jasmineEnv.addReporter(htmlReporter);

 window.consoleReporter = new jasmine.ConsoleReporter();

 jasmineEnv.addReporter(consoleReporter);

 jasmineEnv.specFilter = function(spec) {

 return htmlReporter.specFilter(spec);

 };

 var currentWindowOnload = window.onload;

 window.onload = function() {

 if (currentWindowOnload) {

 currentWindowOnload();

 }

 execJasmine();

 };

 function execJasmine() {

 jasmineEnv.execute();

 }

 })();

 </script>

</head>

<body>

</body>

</html>

Here we load the Sencha Touch library files.

This file contains the definition of the application we want to test.

This file contains the spec files that describe the tests.

Testing | 199

We also need to create a simpler version of our app.js file in order to bootstrap and
load the required files during the testfootnote. This bootstrap file has been adapted from
the one used in the documentation of Ext JS 4.1:

Ext.require('Ext.app.Application');

Ext.Loader.setConfig({

 paths: {

 'ToDoListApp': '../Chapter_08_ToDoApp/app'

 }

});

var Application = null;

Ext.onReady(function() {

 Application = Ext.create('Ext.app.Application', {

 name: 'ToDoListApp',

 models: ['Task'],

 launch: function() {

 //include the tests in the test.html head

 jasmine.getEnv().addReporter(new jasmine.TrivialReporter());

 jasmine.getEnv().execute();

 }

 });

});

A suite of tests written with a BDD library is usually called a “spec.” The spec file looks
like a complete description of the behavior and structure of the class being tested. Jas‐

mine provides functions named describe, grouping several calls to a function called it.

describe ("Task", function() {

 var task = null;

 beforeEach (function() {

 task = Ext.create('ToDoListApp.model.Task');

 });

 describe ("when a new one is created", function () {

 it ("should have an empty description", function () {

 expect(task.get('description')).toBeNull();

 });

 it ("should have an empty name", function () {

 expect(task.get('title')).toEqual('');

 });

 it ("should not be completed", function () {

 expect(task.get('completed')).toBeFalsy();

 });

 });

200 | Chapter 8: Debugging, Testing, and Documenting

http://docs.sencha.com/ext-js/4-1/#!/guide/testing

 describe ("when one is modified", function () {

 it ("should have the description passed as parameter", function () {

 var newDescription = "Whatever";

 task.set('description', newDescription);

 expect(task.get('description')).toEqual(newDescription);

 });

 it ("should have the specified date", function () {

 var newDate = new Date();

 task.set('duedate', newDate);

 expect(task.get('duedate')).toEqual(newDate);

 });

 it ("should have the specified completed status", function () {

 task.set('completed', true);

 expect(task.get('completed')).toBeTruthy();

 });

 it ("should have the name specified as parameter", function () {

 var newName = "new name";

 task.set('title', newName);

 expect(task.get('title')).toEqual(newName);

 });

 });

 describe ("when one is reset", function () {

 it ("should not be marked as done", function () {

 task.set('completed', false);

 expect(task.get('completed')).toBeFalsy();

 });

 });

});

Reloading the SpecRunner.html file on the browser provides the following output,
showing that all the tests have passed, and outputting the texts passed as parameters of

the describe and it functions. The result is shown in Figure 8-11.

Finally, we can also run the tests from the command line, thanks to the PhantomJS open-
source library, itself powered by the WebKit engine.

You can install PhantomJS in OS X using Homebrew.

Testing | 201

http://phantomjs.org/
http://phantomjs.org/
http://mxcl.github.com/homebrew/

Figure 8-11. Jasmine output

If your development environment already contains PhantomJS, and assuming that you

can access the code samples at http://localhost, then you can type the following

command line in the Chapter_08_Jasmine folder of the source code for this book:

$ phantomjs lib/run_jasmine_test.coffee http://localhost/Chapter_08_Jasmine/

SpecRunner.html

Starting...

Starting...

Task when a new one is created: 3 of 3 passed.

Task when one is modified: 4 of 4 passed.

Task when one is reset: 1 of 1 passed.

Finished

8 specs, 0 failures in 0.006s.

ConsoleReporter finished

This technique can be leveraged to have nightly automatic test runs for your projects
and is based in Joshua Carver’s Jasmine runner for Phantom.js, freely available on Git‐
hub.

202 | Chapter 8: Debugging, Testing, and Documenting

https://github.com/jcarver989/phantom-jasmine

Siesta
Another tool that we are going to introduce in this chapter is Siesta, a commercial
JavaScript testing framework that targets many frameworks, such as jQuery, Dojo, and
Prototype, and of course also Ext JS and very recently Sencha Touch.

Using Siesta, developers can automate integration testing tasks on their applications,
simulating touches and navigation throughout their Sencha Touch apps. They can be
used to test not only individual components, but also whole applications, including the
interaction between screens and the navigation.

This is simplified because Siesta is aware of many exclusive features of both Ext JS and

Sencha Touch, like the Ext.ComponentQuery syntax, providing a higher level of ab‐
straction than other testing frameworks. Not only that, but Siesta is also able to work
in asynchronous modes, waiting for classes to be loaded dynamically (using the

requireOk() function). It is also aware of the MVC structure of Sencha Touch apps,
including stores and models.

Siesta is a product of Bryntum, a company in Helsingborg, Sweden, started by Mats
Bryntse. Siesta is available in two versions: Lite, which is provided free of charge, and
Standard, providing enterprise features like premium support, cross page testing, and
Selenium integration.

Siesta Standard unit test suites can also be executed on the command line, using Phan‐
tomJS or Node.js. This simplifies the integration of tests in larger, continuous integration

chains. It can also be used to perform “black box” testing, by using the hostPageUrl
option.

We are going to show how to create a simple testing suite for our To Do List application.
The first thing we need to do is to create a bootstrap HTML and JavaScript file that will
be used to display the tests as they are executed.

<!DOCTYPE html>

<html>

 <head>

 <!-- Sencha Touch library CSS-->

 <link rel="stylesheet"

 href="../../_libs/sencha/resources/css/sencha-touch.css">

 <title>Testing with Siesta</title>

 <!-- Siesta CSS -->

 <link rel="stylesheet"

 href="siesta-1.1.0-preview/resources/css/siesta-touch-all.css">

 </head>

 <body>

 <div id="splashLoader">

 <div id="loading">

 Loading...

 <div class="x-loading-spinner">

Testing | 203

http://bryntum.com/products/siesta/
http://bryntum.com/
https://twitter.com/bryntum
https://twitter.com/bryntum
http://seleniumhq.org/
http://phantomjs.org/
http://phantomjs.org/
http://nodejs.org/

 <span class="x-

loading-bottom">

 </div>

 </div>

 </div>

 <!-- Sencha Touch library -->

 <script src="../../_libs/sencha/sencha-touch-all-debug.js"></script>

 <!-- Siesta application -->

 <script src="siesta-1.1.0-preview/siesta-touch-all.js"></script>

 <!-- The test harness -->

 <script src="index.js"></script>

 </body>

</html>

This HTML file references the Sencha Touch 2 and the Siesta libraries, each composed
of a JavaScript and a CSS file.

The next step is to create a JavaScript file that will be used to describe the suite of tests
to be executed:

var Harness = Siesta.Harness.Browser.SenchaTouch;

Harness.configure({

 title : 'Testing the To Do List Application',

 transparentEx : false,

 loaderPath : { 'ToDoListApp' : '/Sencha%20Touch/todoapp/app' }

});

Harness.start(

 {

 group : 'To Do List',

 // Load these files for each ST 2.0 test

 preload : [

 "/_libs/sencha/sencha-touch-all-debug.js",

 "/_libs/sencha/resources/css/sencha-touch.css"

],

 items : [

 'tests/sanity.js',

 'tests/model.js',

 'tests/createTask.js'

]

 }

);

Siesta requires various pieces of JavaScript code to define tests:

1. A “test harness,” which will reference individual tests.

204 | Chapter 8: Debugging, Testing, and Documenting

2. One or more individual test files, each testing an individual section of the applica‐
tion. Each test file runs in a completely isolated scope from other test files, separating
different test scenarios from one another.

The configuration of the harness in the preceding script uses the loaderPath key, which
is required by Siesta when dealing with MVC applications that use the Sencha Loader
mechanism. We are providing, as a parameter, the location of the Sencha Application
being tested.

Figure 8-12 shows the screen displayed when the user navigates to the testing harness
from within the Mobile Safari browser in an iOS device.

Figure 8-12. Siesta before executing the tests

Each individual testing file targets a particular aspect of the application being tested; for

example, tests/model.js tests the ToDoListApp.model.Task class:

StartTest(function(t) {

 t.diag("Testing Task model");

 t.requireOk('ToDoListApp.model.Task', function() {

 var task = Ext.create('ToDoListApp.model.Task', {

Testing | 205

 title: 'Buy milk',

 description: 'This is a test task',

 completed: true,

 dueDate: new Date()

 });

 t.is(task.get('title'), 'Buy milk', 'title works ok');

 t.is(task.get('description'), 'This is a test task',

 'Could read description');

 t.ok(task.get('completed'), 'The task is completed');

 t.isNot(task.get('dueDate'), null, 'The task date must not be null');

 });

});

Siesta includes a number of useful assertions that can be used to test the state of different
parts of the code:

• t.is() takes three parameters and verifies the identity or equality of the first two

operands. As you might imagine, t.isNot() performs the inverse operation.

• t.ok() verifies that a particular statement is true. Of course, t.notOk() does ex‐
actly the opposite.

Many other functions are provided by Siesta to allow developers to script the expected
actions of their applications:

• t.requireOk() is used to load asynchronously required classes, and to perform a
function once the code is loaded.

• t.chain() is used to execute a sequence of asynchronous operations, having Siesta
waiting for the end of the current operation before starting a new one.

• t.waitForCQ() expects a particular element to be rendered and available in the
DOM before executing a callback function.

Siesta documentation
Siesta contains a full documentation set (created using JSDuck) in the
bryntum.com website.

To see these functions in play, check the source code repository for this book; in the
“Testing and Debugging” folder, you are going to find examples that cover these
methods.

Figure 8-13 shows the iOS browser after all the tests have been executed. This screen
details the number of tests that have been executed, including the number of failed and
passed tests.

206 | Chapter 8: Debugging, Testing, and Documenting

http://www.bryntum.com/docs/siesta/#!/api/Siesta.Test.SenchaTouch

Figure 8-13. Siesta output after the execution of the tests

Developers can inspect the individual status of each test, as shown in Figure 8-14.

Testing | 207

Figure 8-14. Result of an individual Siesta test

Documenting Your Code with JSDuck
In Chapter 1, you read about the amazing documentation tool provided by Sencha
Touch. As another major contribution to the open-source world, Sencha has released
the source code of the underlying tool used to generate this documentation set, and it
is called JSDuck.

You can easily install JSDuck using RubyGems, the standard package manager for the
Ruby community, using the following command:

gem install jsduck

This will install the required dependencies automatically.

208 | Chapter 8: Debugging, Testing, and Documenting

https://github.com/senchalabs/jsduck
http://rubygems.org/

Installing JSDuck in Mountain Lion
If the installation of JSDuck fails under Mountain Lion (something that
happened while writing this chapter), you might want to try the fol‐
lowing set of commands, borrowed from a Ruby forum thread:

$ gem uninstall libv8

 --> select all versions!

$ gem install therubyracer

$ gem install jsduck

The preceding commands should normally fix the problem.

Once JSDuck is installed, you should start adding documentation tags to your code. If

you browse the source code of the AkoLib.view.SplitView class (included in the source
code of this book in Github) you will see a set of documentation tags, very similar to
those of Javadoc, Doxygen, or similar code documentation tools.

To begin with, you can add a header to your classes, showing examples of how to use
your components, including dependencies or other interesting information:

/**

 * Basic class for creating a component similar to the

 * UISplitViewController in the iPad.

 *

 * This component requires two components to work:

 *

 * - On the left side, the `masterView` usually contains a list of

 * objects.

 * - On the right side, the `detailView` displays the details of the

 * item selected on the `masterView`.

 *

 * To use it, include the `AkoLib` in your project:

 *

 * Ext.Loader.setConfig({

 * paths: {

 * 'AkoLib': '../AkoLib'

 * }

 * });

 *

 * Then configure a new instance of it and add it to your Viewport, typically

 * inside the profile for tablets or desktop apps:

 *

 * Ext.Viewport.add({

 * xtype: 'akosplitview',

 * screenTitle: 'Universal App',

 * menuButtonTitle: 'Menu',

 * masterView: {

 * xtype: 'indexview'

 * },

 * detailView: {

 * xtype: 'panel',

Documenting Your Code with JSDuck | 209

http://www.ruby-forum.com/topic/4306127
https://github.com/akosma/Sencha-Touch-2-Up-And-Running
http://en.wikipedia.org/wiki/Javadoc
http://doxygen.org

 * html: 'Select an item in the menu'

 * }

 * });

 *

 */

Ext.define('AkoLib.view.SplitView', {

 extend: 'Ext.Container',

 xtype: 'akosplitview',

 config: {

Developers can then document the individual config parameters of the class:

/**

 * @cfg {Object} [detailView=null]

 * The Component instance to be displayed on the right-hand side

 * of the split view.

 */

detailView: null,

/**

 * @cfg {String} [screenTitle="Sample Split View"]

 * The default title shown when the split view is initialized.

 */

screenTitle: 'Sample Split View',

/**

 * @cfg {Array} [detailToolbarButtons=null]

 * An array of buttons that are added to the toolbar on top of

 * the detail component.

 */

detailToolbarButtons: null,

/**

 * @cfg {Boolean} [collapsesMasterView=true]

 * A flag that indicates whether the component can collapse

 * its master view or not.

 */

collapsesMasterView: true,

The different events fired by the component can also be exposed:

/**

 * @event masterviewhide

 * Fires whenever the master view has been hidden

 * @param {AkoLib.view.SplitView} this The component instance

 */

/**

 * @event beforemasterviewshow

 * Fires whenever the master view is about to be shown

 * @param {AkoLib.view.SplitView} this The component instance

 */

And last, but not least, the documentation tags for methods, both public and private:

210 | Chapter 8: Debugging, Testing, and Documenting

/**

 * Sets the title of the current split view.

 * @param {String} title The new title for the split view.

 */

setTitle: function (title) {

 var toolbar = this.getTitleToolbar();

 toolbar.setTitle(title);

},

/**

 * Sets the component to be displayed inside the detail view.

 * @param {Ext.Component} component The component to be displayed.

 */

displayComponent: function (component) {

 var contentPanel = this.getContentPanel();

 contentPanel.removeAll(false, false);

 contentPanel.add(component);

 this.hideOverlayView();

},

/**

 * Returns a pointer to the content panel, located inside the

 * detail panel.

 * @private

 */

getContentPanel: function () {

 if (!this.contentPanel) {

 this.contentPanel = this.getDetailPanel().getComponent('contentPanel');

 }

 return this.contentPanel;

},

Once the code is documented, the jsduck command generates the set of HTML files
with the documentation set:

jsduck AkoLib/view/SplitView.js --external Ext.Component --output docs

The resulting HTML looks identical to the official Sencha Touch documentation set, as
shown in Figure 8-15; it includes all the standard functionality provided by the standard
documentation, including live searching and filtering, menus, and tree structure.

Documenting Your Code with JSDuck | 211

Figure 8-15. Documentation generated by JSDuck

For another nice example of documentation generated by JSDuck take
a look at the Siesta documentation site.

Tips for Quality Sencha Touch Apps
You might find the following guidelines useful when developing and debugging Sencha
Touch apps:

• Use a tool such as JSLint or JSHint to continuously deliver quality JavaScript code.
The best approach is to use it every time you save your JavaScript files, and many
IDEs and code editors allow you to do that. Check the documentation of your
favorite tool!

• Use a continuous approach when writing your code. Make small changes in your
code, and test them in your browser as soon as possible. This will help you spot
problems as soon as you have written a particular line of code, instead of after having
written hundreds of them. The ideal setup is to have your editor window next to
your browser, and as soon as your files are saved, to refresh the browser window
immediately. To makes things easier, use a tool such as LiveReload, which works

212 | Chapter 8: Debugging, Testing, and Documenting

http://www.bryntum.com/docs/siesta/#!/api/Siesta.Test.SenchaTouch
http://www.jslint.com/
http://www.jshint.com/
http://livereload.com/

brilliantly when using several monitors. You can edit your code on one screen, have
your browser in another, and as soon as you save your file, your modifications are
immediately visible.

• Test your code in real devices; many bugs and performance issues are visible only
when running the application in a real device, so you should be aware of those as
soon as possible. If you are using LiveReload, you can have many devices connected
to your workstation and see them being refreshed automatically every time you
save your files. You can also use Adobe Edge Inspect or the remote debugging
capabilities of iOS 6, Safari 6, or OS X Mountain Lion to help you in this task.

• Commit early and often to your source code repository. This is particularly im‐
portant when working in teams.

• Use the MVC structure proposed and enforced by Sencha Touch. Even for small
applications, it is totally worth it.

• Use unit tests for the most critical sections of your code; remember the Pareto
Principle: “80% of the benefits come from 20% of the effort.” Find that 20% critical
section of your code and document and test it. Do it for the rest of your project only
if you have the budget and time to do it.

• Reuse code. Create a small library (like the AkoLib library provided in the code
samples for this book) and reuse it in your projects. The best libraries consist of
code that has been put into production in previous applications, so do not hesitate
to reuse classes and components if required.

• If you are going to reuse code, remember to document it using JSDuck, and even
test it, if required.

Finally, to make your life simpler during development, you can use this trick to enable
mouse scrolling support in Sencha Touch applications (because, as you might have
experienced, it is not possible to scroll lists or other scrollable components using your
mouse!):

// Native scrolling in browser

document.addEventListener('mousewheel', function (e) {

 var el = e.target;

 var results = [];

 while (el !== document.body) {

 if (el && el.className && el.className.indexOf('x-container') >= 0) {

 var cmp = Ext.getCmp(el.id);

 if (cmp &&

 typeof cmp.getScrollable == 'function' &&

 cmp.getScrollable()) {

 var scroller = cmp.getScrollable().getScroller();

 if (scroller) {

 var offset = {

 x: 0,

 y: -e.wheelDelta * 0.5

Tips for Quality Sencha Touch Apps | 213

http://en.wikipedia.org/wiki/Pareto_principle
http://en.wikipedia.org/wiki/Pareto_principle
http://bit.ly/12sUqV7
http://bit.ly/12sUqV7

 };

 scroller.fireEvent('scrollstart',

 scroller,

 scroller.position.x,

 scroller.position.y,

 e);

 scroller.scrollBy(offset.x, offset.y);

 scroller.snapToBoundary();

 scroller.fireEvent('scrollend',

 scroller,

 scroller.position.x,

 scroller.position.y - offset.y);

 break;

 }

 }

 }

 results.push(el = el.parentNode);

 }

 return results;

}, false);

The preceding script is included in the AkoLib/scripts folder in the source code
repository of this book in Github.

Conclusion
In this chapter we have seen how to use several different technologies to debug, test,
and document our code before shipping it. The WebKit Inspector can be used to increase
the quality of our applications, and it can be accessed in many different ways, both locally
and remotely. Siesta and Jasmine constitute enterprise-level testing frameworks, which
can be used to verify and certify the quality of any application. Finally, JSDuck enables
your team to document the code of your applications, to be able to generate useful
documentation sets for the team to refer to.

214 | Chapter 8: Debugging, Testing, and Documenting

https://github.com/akosma/Sencha-Touch-2-Up-And-Running

CHAPTER 9

Sencha Architect

During the past few chapters, we have crafted the user interface of our applications,

using the common items and xtype properties in both parent and child views. In this
chapter we are going to learn about Sencha Architect, a full fledged user interface de‐
signer and IDE designed to simplify the creation of complex projects based on Sencha
Touch or Ext JS.

Introduction
Sencha Architect is a cross-platform desktop application, running on Windows, Linux,
and OS X, that allows developers and designers to quickly draft, prototype, and create
user interfaces based on both Ext JS and Sencha Touch. It can be downloaded from the
Sencha Architect home page as shown in Figure 9-1.

At the time of this writing, the latest available version of Sencha Archi‐
tect is 2.1.0 (build 676).

iOS and .NET developers will immediately feel at home using Sencha Architect, because
this tool provides a similar experience to that of Interface Builder (now integrated into
Xcode) or the classic Visual Studio designer experience.

215

http://www.sencha.com/products/architect

Figure 9-1. Sencha Architect download page

But Sencha Architect allows developers to do much more than just craft an elegant UI
in a few mouse clicks; Sencha Architect actually supports the whole MVC architecture
of Sencha Touch and Ext JS, and it allows you to visually define and customize the
following types of objects:

• Models, including relationships, fields, data types, and other characteristics

• Stores, of array or tree types

• Views, including forms and complex containers

• Controllers, with their refs, control, routes and event handler functions

With Sencha Architect, very complex applications can be created in a few mouse clicks,
ready to be customized and personalized. Even better, Sencha Architect generates high-
quality JavaScript code, easy to understand and to customize afterward.

Installation
Sencha Architect is available through a commercial license, as it is not an open-source
application. It is available as a standalone download from the Sencha website, and it is
also available as part of the yearly developer subscriptions, including support and new
releases.

216 | Chapter 9: Sencha Architect

Sencha Architect runs on Windows, OS X, and Linux, generating the same project files
and JavaScript code on each platform, ensuring cross-platform support. It requires and
generates applications running only under Sencha Touch 2.0 or higher, and Ext JS 4.0
or higher.

Sencha Architect can be downloaded and used for 30 days with a free
trial license. To use it for free during the trial period, you need a Sencha
Forums account, which can be created for free directly from the Sencha
Architect welcome screen, as shown in Figure 9-2.

Figure 9-2. Creating a Sencha Forums ID directly from Sencha Architect

Sencha Architect is distributed with an easy-to-use installer that will perform all the
required operations to get the software up and running in your workstation.

Introduction | 217

User Interface
When Sencha Architect is launched, it displays the welcome screen shown in
Figure 9-3, allowing the user to open a previous project or to create a new one, in either
Sencha Touch or Ext JS.

Figure 9-3. Sencha Architect welcome screen

After the user chooses to create a new project using Sencha Touch 2.1, the screen shown
in Figure 9-4 appears.

218 | Chapter 9: Sencha Architect

Figure 9-4. Sencha Architect main window

The Sencha Architect window is divided into four sections (the numbers correspond
to those used in Figure 9-4):

1. The toolbar on top provides access to the most common project manipulation
options available.

2. The leftmost pane contains the toolbox, offering a menu of different components,
arranged in categories, and with a filter search box on top, to allow users to quickly
find the components they are looking for. The toolbox contains not only visual
components such as toolbars or buttons, but also models, stores, and even graph
configuration objects, which can be dragged and dropped on top of the application
canvas.

3. The center pane contains the canvas, where the developer can craft the UI of her
application, and also modify the source code if required, using the Design/Code
switch on top. At the bottom of the canvas, a drop-down list (shown in
Figure 9-5) allows the developer to switch among simulated devices (with choices
such as iPhone, iPad, Google Nexus S, Playbook, Kindle Fire, and even the possi‐
bility of defining your own sizes). A switch also allows you to toggle between the

Introduction | 219

portrait and landscape orientations, as well as to zoom in and out (particularly
useful when simulating large tablets).

4. The rightmost pane contains, on top, the Project Inspector, which displays the
MVC structure of the project, including stores and resources.

5. On the bottom-right side of the screen, the Attribute Inspector allows the manip‐
ulation of the internal structure of any object selected either on the canvas or in the
Project Inspector.

Figure 9-5. Simulating different device sizes on the canvas

In the following sections, we are going to see how to create a simple application, and
the discussion will refer to the UI elements highlighted in the previous paragraphs.

Creating a Simple Application
Sencha Architect is a rather large application, worthy of a whole book; in this chapter
we are going to provide a short introduction to it, creating from scratch the To Do list
application that was created initially for Chapter 8.

Configuring the Application
The first step whenever you create a new Sencha Architect project is to save it in a
convenient location, and to provide an application name for it. Remember that, as we
saw in Chapter 1, the name of the application is used as the base namespace for all the

classes required by the application, and loaded by the Ext.Loader infrastructure, so it
must not contain spaces.

To provide a name for your application, click the Application object in your Project

Inspector, and then scroll the Attributes Inspector until you find the name property;

220 | Chapter 9: Sencha Architect

change its value from MyApp (which is the default value) to ToDoList, as shown in
Figure 9-6.

Figure 9-6. Changing the name of the application

You can change several high-level properties for your application at this moment, such

as the startupImage, statusBarStyle, or icon properties.

Creating a Model Class
We are going to start working on our application at the “lowest” layers of the MVC
architecture: the models and the stores. The first step will be the definition of a model

class for our application, conveniently called Task.

To do that, filter the toolbox by clicking on the Data category, and then select, from the
Data Models group, a model object, and drag and drop it to the Models node in your

Creating a Simple Application | 221

Project Inspector. In the Attributes Inspector, select the userClassName attribute and

change its value to Task.

We are going to follow a similar workflow to add fields to our model class; in the toolbox,
in the Data Models group, we are going to drag and drop four field objects on top of
our model in the Project Inspector; we are going to select each one of them, and change
their properties in the Attributes Inspector below:

• For the first field, change its name property to title, and set its type to string (you
can select the type in a convenient drop-down list.)

• For the second one, change its name to completed and its type to boolean, with a

defaultValue of false. To change the defaultValue property, click the Edit button

in the inspector field, and type false in the code window that appears on the canvas.

• The third field must have a name value of description, with a type of string.

• Finally, the last field must be named dueDate, with a date type.

If you click now on the Task model in your Project Inspector, and then select the Code
switch on the canvas, you are going to see the source code generated by Sencha Architect,
representing our own model class, as shown in Figure 9-7.

Figure 9-7. Model definition

222 | Chapter 9: Sencha Architect

Creating a Store
Having defined our model, we are going to do the same operation to create a suitable
store. In the Data category of the toolbox, scroll down until you see the Data Stores
section; select a Store object from the toolbox and drag it to the Stores item in your
Project Inspector.

Configure the store in the Attributes Inspector with the following properties:

• userClassName: TaskStore

• autoLoad: true

• autoSync: true

• model: Task (you can select the proper model from a drop-down list)

• storeId: TaskStore (this value will be used by the Ext.data.StoreManager sin‐
gleton, remember?)

Adding a proxy

As you might remember from Chapter 4, stores delegate the choice of the underlying
storage strategy to proxies; in our case, we are going to select a LocalStorage Proxy from
the Data Proxies group in the toolbox and drag it on top of our newly added store object

in the Project Inspector. Then make sure your proxy is selected and change the id

property in the Attributes Inspector, using the senchatasks value.

Adding sorters and groupers

Just like in the previous step, we can add sorting and grouping options to our store in
a few clicks. In the toolbox, select a Sorter object (from the Data Utilities group) and
configure it as follows:

• displayName: dueDateSorter

• direction: ASC

• property: dueDate

Next, select a Grouper object in the toolbox, drop it on your store object in the Project
Inspector, and configure it in the Attributes Inspector as follows:

• displayName: dueDateGrouper

• sortProperty: dueDate

The final property we are going to configure in our grouper is the groupFn property,
which will expose you to the integrated code editor of Sencha Architect; just click the

Creating a Simple Application | 223

Edit button next to the groupFn property, and this will display an empty code editor
section on the canvas. This code editor features syntax highlighting of JavaScript code,
and even includes integrated JSHint functionality to highlight common errors, as shown
in Figure 9-8.

Figure 9-8. JSHint integration

The TaskStore class for our project should look like Figure 9-9, which also displays the
“edit” button that appears on the gutter of the Canvas when hovering with the mouse
on top of a JavaScript function. Clicking on that button opens up an editor window that
allows the code to be edited inside of Sencha Architect.

Figure 9-9. Store definition

224 | Chapter 9: Sencha Architect

http://www.jshint.com/

Creating Views and Forms
Arguably the most interesting task that can be performed on Sencha Architect is the
creation and manipulation of view components. Developers can create complex com‐
ponent hierarchies just by dragging and dropping components on top of one another.

The procedure is very similar to what we have seen so far; grab the component from
the toolbox, drag it on top of the Views node on the Project Inspector (or, alternatively,
on top of the canvas) and configure its properties using the Attributes Inspector. In the
case of our To Do List application, we are going to perform the following tasks:

1. Drag a Navigation View on the canvas

• Configure it, setting the autoDestroy property to false (the property is true by
default.)

2. Drag a List on the Navigation View created in the previous step.

• Configure the list to use the TaskStore store, and to have its grouped and

onItemDisclosure properties set to true. Also, set its title property to To Do
List.

3. Drag a Toolbar object on top of the list.

• Set its docked property to bottom.

4. Drag a Spacer object on top of the toolbar created above.

5. Drag a Button on top of the toolbar.

• Set its iconCls property to add, and its ui property to plain. Also, remove the

contents of the text property. Finally, add a custom property named action with

the value createTask. Sencha Architect allows you to add as many properties as
required, including those that are not included by default in the framework.

A similar procedure will be used to create the task form shown in Figure 9-10.

In Figure 9-10 also shows the icon used by Sencha Architect (at the

rightmost edge of the screen, next to the RootNavView navigation view)
to indicate the view that is displayed on application startup. This pa‐
rameter can be changed in the Attributes Inspector, thanks to the

initialView property.

Creating a Simple Application | 225

Figure 9-10. Form editor

Adding a CSS resource

To spice up our design, we can also add a supplementary CSS file to our application; in
the Resources group of the toolbox, grab a CSS Resource object and drag it to the Re‐

sources node in the Project Inspector. Change its url property in the Attributes In‐

spector to styles.css, and Sencha Architect will automatically generate a new file in

the application, as well as including it in the app.html file. Any styles added to this file
will be used automatically in your application as well.

Creating Controllers
The final piece in the MVC puzzle is controllers. As usual, editing them in Sencha
Architect involves building them, piece by piece, including all the elements described

in Chapter 6: refs, control, routes, and event handler functions.

The toolbox contains controller-related objects in the Behaviors category. The first thing
to do will be to grab a Controller object and to drag it to the Controllers node of the

Project Inspector. The only attribute that must be changed in this case is the userClass

Name, this time set to TaskController.

226 | Chapter 9: Sencha Architect

Creating refs

We are going to add a refs entry, represented by Controller Reference objects on the
toolbox. Drag and drop one and set its properties as follows:

• displayName: createTaskButton

• ref: createTaskButton

• selector: button[action=createTask]

As explained in Chapter 6, each entry in the refs object will have its getter function
automatically generated; in the case above, we will be able to get a reference to this

button anywhere in the controller functions, thanks to the this.getCreateTaskBut

ton() function.

Creating control entries

Now we have to add a control entry, which binds a refs entry to any event handlers
defined in the controller. To do that, just grab a Controller Action object from the tool‐

box, drag it on top of the TaskController object created previously on the Project
Inspector, and set its properties as follows in the Attributes Inspector:

• controlQuery: createTaskButton

• targetType: Ext.Button (you can select this value from a drop-down list)

• fn: createTask

• name: tap (this event name is also provided by a drop-down list)

Because JavaScript variables can have any type, we have to tell Sencha Architect man‐

ually about the targetType of our object; this enables the tool to filter the events exposed
by a particular component class, and it also provides us with the complete list of pa‐
rameters for its handler functions.

Populating an event handler

By setting the parameters above in the definition of our controller action, Sencha Ar‐

chitect will create an empty createTask JavaScript function with the proper parameters

corresponding to a tap event handler; by selecting the Code view in the canvas, we can
click that function and set its code to be the following:

Ext.Msg.alert('createTask', 'On the create task tap handler!');

Run the application, click the + button appearing at the bottom of the list, and you
should see an alert box appear on screen. The actual code of the event handler will
perform more meaningful tasks (creating a task, attaching it to the form, and displaying
the form) but this is shown in detail in the source code repository in Github.

Creating a Simple Application | 227

https://github.com/akosma/Sencha-Touch-2-Up-And-Running

In any case, repeating this sequence of steps will gradually populate your controller with
all the required logic to handle tasks in your application, as shown in Figure 9-11.

Figure 9-11. Editing controllers

Working with Projects
Sencha Architect enables a series of very useful operations on projects, for example:

• Saving snapshot images of UI elements

• Creating a new component in the toolbox

• Previewing your application in a browser

• Publishing your application to a web server

Saving snapshots

By clicking on the Snapshot button on the toolbar (or selecting the View → Snap
Screenshot… menu item) you will be prompted to save the currently visible components
on the canvas, on any simulated device or size, as a PNG file in the location of your

228 | Chapter 9: Sencha Architect

choice. This can be very useful to share with your team, as you move forward in the
development of your application, showing the current state of the application in dif‐
ferent sizes.

Adding components to the toolbox

This is a really neat feature; by selecting the Actions → Save to Toolbox… menu entry,
the user is prompted to save the currently selected UI component on the canvas as a
reusable object in the toolbox. Figure 9-12 shows the dialog presented to the user when

trying to save the TaskForm component created in the previous sections as an object on
the toolbox.

Figure 9-12. Saving a component in the toolbox

Previewing an application

Anytime during the development of your application, you can click the Preview button
on the toolbar (or use the File → Preview Project… menu entry) and open a browser
window. The first time this functionality is invoked, the user can enter the URL where
the project can be seen (assuming, of course, that the project is hosted and available
through a local or remote web server).

Creating a Simple Application | 229

Figure 9-13. Previewing an application

Publishing an application

Finally, when developers want to deploy their applications, they can invoke the Publish
button in the toolbar (or, alternatively, use the File → Publish Project… menu entry)
and copy the required files to a local or remote web server; the first time this functionality
is invoked, Architect asks for the path where the files should be deployed, as shown in
Figure 9-14.

About packaging applications
Readers might have noticed a Package button in the toolbar as well; this
functionality will be described in detail in Chapter 10.

Figure 9-14. Publishing an application

230 | Chapter 9: Sencha Architect

Conclusion
The final application, completely created from scratch using Sencha Architect, can be
found in the source code of this book in Github.

Sencha Architect is a commercial application that provides a great environment geared
toward rapid application development. It allows developers to quickly craft user inter‐
faces using visual tools, but it also provides a complete integration of the whole MVC
architecture. It allows you to design not only the UI of an application, but actually every
single aspect of it, including models, stores, and controllers.

Developers, designers, and enterprise architects can use this tool to create and customize
complex applications in a fraction of the time required to create the same systems man‐
ually. Sencha Architect generates clean, easy-to-read code that is also easily extensible
by the developer team.

Conclusion | 231

https://github.com/akosma/Sencha-Touch-2-Up-And-Running

CHAPTER 10

Deployment in Devices

Sencha Touch apps are by no means limited to live their lives exclusively in a browser;
developers can deploy their creations also as native iOS and/or Android applications to
their respective marketplaces.

To make the experience richer for the end user, Sencha Touch applications can access
a large selection of native device APIs, including connectivity, location, and orientation
information. Even better, Sencha Touch applications can detect whether they run in a
tablet, a smartphone, or a desktop environment, and change their appearance in a very
convenient way, using a feature named “profiles.”

This last chapter will provide an overview of the tasks required to get your applications
running as native applications!

Using Profiles
Mobile devices such as tablets and smartphones have different screen sizes, and they
are used in different contexts; however, mobile applications have to share code and
resources to make them look alike and to have similar and consistent behavior across
devices. As such, it is nice to know that Sencha Touch provides profiles, which allow
developers to offer different user experiences in different device categories.

Nearly all the applications included in the source code of this book,
hosted in Github, use profiles by default and offer different user inter‐
faces in different contexts.

233

https://github.com/akosma/Sencha-Touch-2-Up-And-Running

Adding Profiles
Profiles are implemented through the Ext.app.Profile class. Applications use this

class in the standard app.js file, as entries in the profiles key:

Ext.application({

 name: 'Chapter10Profiles',

 profiles: ['Phone', 'Tablet', 'Desktop'],

 // ...

 launch: function () {

 // ...

 }

});

When the application above starts, Sencha Touch will load the files located in the fol‐
lowing locations: app/profile/Phone.js, app/profile/Tablet.js, and app/profile/Desktop.js.

Each of these files should contain a similarly named class, inheriting from Ext.app.Pro

file:

Ext.define('Chapter10Profiles.profile.Phone', {

 extend: 'Ext.app.Profile',

 config: {

 name: 'SamplePhone'

 },

 isActive: function () {

 return Ext.os.is.Phone; //

 },

 launch: function () {

 // ...

 }

});

Subclasses of Ext.app.Profile should implement this method, which in the base

class returns false by default. The usual implementation involves, as shown
above, asking about the current environment (operating system, browser, and so
on).

The profile classes are all loaded at once; their isActive() functions are called in no

particular order. The first profile that returns true is the one that will be active, and the
evaluation of the other profiles is stopped at that point. That is why it is important to

know that the isActive() function calls can happen in any order, particularly when an

application contains several profiles returning true in a certain context.

234 | Chapter 10: Deployment in Devices

It is very common to have two profiles in applications, one for smart‐
phones and another shared by tablets and desktop browsers. However,
the profile system allows for maximum flexibility, and developers can
adapt it to any situation.

Initialization Functions
In Chapter 6 you read about how the application startup process works; there is a par‐
ticular sequence of function calls happening when an application starts, and of course
profiles are part of this equation as well. In particular, profiles can define their own

launch() functions, allowing developers to provide different behaviors in different de‐
vices.

The sequence of calls is the following:

1. All the controllers execute their init() functions first.

2. Then the current profile (the first one that returned true from isActive(), as

explained above) executes its own launch() function.

3. After that, the main launch() function (defined in the app.js file) is executed.

4. Finally, the individual launch() functions defined in each controller are executed.

This is useful to bootstrap different UIs for tablets and phones; for example, you can

use the AkoLib.view.SplitView class introduced in Chapter 3 when loading your ap‐
plication in a tablet or a desktop browser and use a different approach on phones alto‐

gether. The launch() function defined in the app.js file is also executed, allowing for
sharing initialization code among devices.

Custom MVC Classes
In addition to specifying its own launch() function, each profile can include its own

set of model, view, and controller entries, each extending the functionality specified
in the app.js file.

Ext.define('Chapter10Profiles.profile.Phone', {

 extend: 'Ext.app.Profile',

 config: {

 name: 'SamplePhone',

 models: [],

 views: ['PhoneView'], //

 controllers: []

 },

 isActive: function () {

 return Ext.os.is.Phone;

 },

Using Profiles | 235

 launch: function () {

 Ext.Viewport.add({

 xtype: 'phoneview' //

 });

 }

});

This entry prompts the class loader to include the Chapter10Profiles.view.sam

plephone.PhoneView in the current application. The location of the file should

be app/view/samplephone/PhoneView.js, as expected, and the samplephone part

comes from the fact that the name parameter in the configuration of the profile

is SamplePhone.

This xtype corresponds to the PhoneView class, specified in the preceding views
collection.

The same naming conventions apply to models and controllers, as expected.

Using Device Features
Sencha Touch applications running as native ones might require access to extended
functionality, such as the following:

• Learning about the capabilities of the current device

• Access the camera or the photo library

• Using native notification options

• Handling orientation changes

• Managing network connectivity

• Getting location information

The following section explains which APIs are available in Sencha Touch to help in these
situations.

What about contacts?
At the time of this writing, the official word from the Sencha team is
that there exists an API to access the contacts stored in the device, using

the Ext.device.Contacts object. However, although the API is avail‐
able and documented, it does not appear to work in a live example. The
source code of the sample applications for this book in Github will be
updated as soon as possible to include an example of this API, but this
chapter does not include a discussion of it.

236 | Chapter 10: Deployment in Devices

https://github.com/akosma/Sencha-Touch-2-Up-And-Running

Device Capabilities
In “Ext.env.Feature” (page 50), you saw how to use the Ext.env.Feature class to learn
about the capabilities of the current system where the application is running:

var key = null;

var value = false;

var text = '';

console.log('Available features:');

for (key in Ext.feature.has) { //

 value = Ext.feature.has[key];

 text = key + ': ' + value;

 console.log(text);

}

Ext.feature is the singleton instance of the Ext.env.Feature class.

The execution of the code above could yield the following output:

Available features:

Canvas: true

Svg: true

Vml: true

Touch: false

Orientation: false

OrientationChange: false

...

Accessing the Camera
To access the camera, Sencha exposes the Ext.device.Camera API, which can be used
as shown here:

loadCamera: function (button, e, eOpts) {

 var self = this;

 Ext.device.Camera.capture({

 source: 'camera',

 destination: 'file',

 success: function(url) {

 self.getImage().setSrc(url);

 }

 });

}

Changing the source parameter to library prompts the user to choose an image from
the local image library instead of the camera.

Using Device Features | 237

Accessing the camera or the photo library is a security risk; in iOS 6 or
higher, users are prompted before allowing the application to access
them, and in Android, your application should request the appropriate
permissions in the manifest XML file.

Native Notifications and Vibration
You learned in Chapter 3 about the powerful asynchronous notifications provided by

Sencha Touch in the Ext.Msg singleton object; however, to provide a stronger native
look and feel to your application, you can access the native alerts provided by the op‐

erating system instead. To do that, just use the Ext.device.Notification.show()
method, as shown in the following code:

Ext.device.Notification.show({

 title: 'Native notification',

 message: 'This is a native notification',

 buttons: ['Red', 'Yellow', 'Green'],

 callback: function(answer) {

 button.getParent().down('#mainLabel').setHtml('Touched button: '

 + answer);

 }

});

In iOS, this notification appears as shown in Figure 10-1.

Figure 10-1. Native iOS notification

238 | Chapter 10: Deployment in Devices

To trigger a vibration of your device, just use this simple code:

Ext.device.Notification.vibrate();

Orientation Changes
The Ext.device.Orientation object triggers the orientationchange event, which can
be handled just like any other Sencha Touch event; the function that works as event

handler receives an event object as parameter, with the alpha, beta, and gamma param‐
eters. The W3C DeviceOrientation Event Specification explains in detail what these
parameters mean:

The alpha, beta, and gamma attributes of the event must specify the orientation of the
device in terms of the transformation from a coordinate frame fixed on the Earth to a
coordinate frame fixed in the device. The coordinate frames must be oriented as described
below.

The Earth coordinate frame is a East, North, Up frame at the user’s location. It has the
following 3 axes, where the ground plane is tangent to the spheroid of the World Geodetic
System 1984, at the user’s location.

• East (X) is in the ground plane, perpendicular to the North axis and positive towards

the East.

• North (Y) is in the ground plane and positive towards True North (towards the

North Pole).

• Up (Z) is perpendicular to the ground plane and positive upwards.

— W3C DeviceOrientation Event
Specification

The following code shows how to use the device orientation information in your app:

Ext.device.Orientation.on('orientationchange', function(e) {

 var alpha = Math.round(e.alpha);

 var beta = Math.round(e.beta);

 var gamma = Math.round(e.gamma);

 var text = [alpha, beta, gamma].join(", ");

 console.log('Orientation changed: ' + text);

 self.setHtml('Orientation changed: ' + text);

});

Network Connectivity
The Ext.device.Connection object contains two useful methods that can be used to
get information about the current network connection of the device:

• isOnline() returns a self-describing Boolean value

Using Device Features | 239

http://dev.w3.org/geo/api/spec-source-orientation.html#deviceorientation

• getType() returns a string with a textual description of the current network con‐
ditions.

You can also hook yourself to the onlinechange event to be notified live of any new
networking condition experienced by your device.

Pay attention to false positives and negatives!
This information relies on rather shaky heuristics to detect the network
status of the current device; as a matter of fact, a device can be online
(which usually means having an assigned IP address and a routing
connection) without a real connection to the Internet (which actually
depends on many other factors, usually out of reach of the user).

So, whenever this API reports that the device is “online,” remember to
add the proper fallback code, in case your network requests are dropped
or fail to return the required information.

The getType() function returns one of the following string constants:

• UNKNOWN: 'Unknown connection'

• ETHERNET: 'Ethernet connection'

• WIFI: 'WiFi connection'

• CELL_2G: 'Cell 2G connection'

• CELL_3G: 'Cell 3G connection'

• CELL_4G: 'Cell 4G connection'

• NONE: 'No network connection'

The code below shows how to use this API:

if (Ext.device.Connection.isOnline()) {

 this.setHtml('Connected (' + Ext.device.Connection.getType() + ')');

} else {

 this.setHtml('Disconnected');

}

Location Information
The final API we are going to see in this section is the Ext.device.Geolocation object,
which provides Sencha Touch applications with information about the current latitude,
longitude, altitude, speed, and compass heading of the current device.

There are two functions available in Ext.device.Geolocation, both very similar in
terms of parameters and outcome:

240 | Chapter 10: Deployment in Devices

getCurrentPosition()

Performs a one-time call

watchPosition()

Calls the success event handler periodically with the information of the current
position as the user moves around

The following code shows how to use these API functions:

initialize: function () {

 this.callParent(arguments);

 var self = this;

 Ext.device.Geolocation.getCurrentPosition({

 success: function(position) {

 self.showPosition(position.coords);

 },

 failure: function() {

 self.showError();

 }

 });

 Ext.device.Geolocation.watchPosition({

 frequency: 5000,

 success: function(position) {

 self.showPosition(position.coords);

 },

 failure: function() {

 self.showError();

 }

 });

},

showPosition: function (position) {

 var label = this.down('#dataLabel');

 var text = [

 'Accuracy: ' + position.accuracy,

 'Altitude: ' + position.altitude,

 'Altitude accuracy: ' + position.altitudeAccuracy,

 'Heading: ' + position.heading,

 'Latitude: ' + position.latitude,

 'Longitude: ' + position.longitude,

 'Speed: ' + position.speed

];

 label.setHtml(text.join('
'));

},

showError: function () {

 var label = this.down('#dataLabel');

 label.setHtml('Could not retrieve location');

}

Using Device Features | 241

Include your success and failure callbacks
If things can go wrong, they will; so be sure to include your success

and failure callbacks, not only when using the Ext.device.Geoloca

tion API but also with any other device API, and provide feedback to
the user whenever possible if your application cannot provide the ser‐
vice requested by the user.

Packaging with Sencha Cmd
We briefly talked about Sencha Cmd in Chapter 1. In this section, we are going to learn
to use these tools to perform the following operations:

• Create standalone applications

• Create workspaces

• Package applications as HTML5 apps

• Package and run applications in a simulator or a device

The installation of Sencha Cmd is covered in “Installing Sencha
Cmd” (page 7), in Chapter 1.

Creating Standalone Apps
You can create standalone applications using Sencha Cmd using the following command
in your terminal:

$ sencha -sdk _libs/sencha generate app NewApp ./NewAppFolder

The sencha command requires you to know the location of the Sencha Touch distri‐
bution folder (generated when unzipping the archive downloaded from the Sencha

website). This can be achieved using the -sdk switch, as shown in the previous code, or
just by running the command from the same Sencha Touch distribution folder. This is
required so that the generated application references the correct locations of the frame‐
work files required for the app to run.

The standalone applications generated by the sencha command already contain the
following elements:

• The standard MVC folder structure: app/model, app/controller, and so on

• A set of JSON and XML files, including metadata used for packaging the application
and generating production builds

242 | Chapter 10: Deployment in Devices

• A Sass file, ready to be customized as explained in Chapter 7, in the resources/sass
folder

• A file named index.html representing the main HTML file of the application

Creating Workspaces
Workspaces are useful to group a set of related applications together, enabling them to
share code or to be deployed in a consistent fashion.

To create a workspace, just type the following command:

$ sencha -sdk _libs/sencha generate workspace ./MyWorkspace

You can add an external library (such as the AkoLib library provided by the source code
of this book, available in Github) editing the .sencha/workspace/sencha.cfg file in your

new workspace and adding a workspace.classpath entry:

workspace.build.dir=${workspace.dir}/build/${app.name}

workspace.classpath=${workspace.dir}/AkoLib

touch.dir=${workspace.dir}/touch

workspace.cmd.version=3.0.0.250

Then you can generate individual applications inside of the workspace folder, using the
same command as explained above for creating standalone apps. However, to enable

code sharing inside these individual apps, remember to edit the app.js file in each one

and to remove the <debug> and </debug> statements on top of the file. Also, include
the shared code library for the Sencha class loader system to work properly:

Ext.Loader.setPath({

 'Ext': '../touch/src',

 'Chapter10Device': 'app',

 'AkoLib': '../AkoLib' //

});

Ext.application({

 name: 'Chapter10Device',

 profiles: ['Phone', 'Tablet'],

// ...

This line is required for the Ext.Loader class loader to find the files of the AkoLib
library.

The source code for this book, available in Github, is structured as a
workspace so you can access it to inspect its structure.

Packaging with Sencha Cmd | 243

https://github.com/akosma/Sencha-Touch-2-Up-And-Running
https://github.com/akosma/Sencha-Touch-2-Up-And-Running

Packaging Applications
During and after the development process, Sencha Cmd allows developers to package
the source code of the application in many different ways.

Test package

To generate a test package, without minified source code (which makes it easier to
debug) just type the following command:

$ sencha app build testing

The result of this command will be contained in a folder named build/APPNAME/test‐

ing (where APPNAME is the name of your application, given during the execution of the

sencha generate app command). Navigating into this folder and opening the in‐
dex.html folder will display the application running as intended, but the JavaScript files
will not be minified, which simplifies the debugging process.

HTML5 package

To generate a production HTML5 application, type the following command:

$ sencha app build production

This command performs the following tasks:

• It concatenates and minifies all the JavaScript files of the application into a single
app.js file. This file includes only the required parts of the Sencha Touch distribution

(as specified by the requires statements inserted all over the application code),
which makes the application faster to download and take up less storage space.

• It creates the resources/css/app.css CSS file from the Sass files, and minifies its con‐
tents.

• It creates a cache.appcache file, which is a valid HTML5 application cache file.

The resulting application (to be found in the build/APPNAME/production folder) can be
deployed as any other offline HTML5 app, and it will be stored offline by the native
browsers of iOS and Android as required.

Native package

Finally, the following command generates a native application, using the information
contained in the packager.json file:

$ sencha app build native

The packager.json file contains a large amount of metadata that can be configured in
order to generate iOS or Android apps and to change their names and behavior as
required. Here are the contents of the default packager.json file:

244 | Chapter 10: Deployment in Devices

{

 "applicationName":"My Application",

 "applicationId":"com.mycompany.myAppID",

 "bundleSeedId":"KPXFEPZ6EF",

 "versionString":"1.0",

 "versionCode":"1",

 "icon": {

 "57":"resources/icons/Icon.png",

 "72":"resources/icons/Icon~ipad.png",

 "114":"resources/icons/Icon@2x.png",

 "144":"resources/icons/Icon~ipad@2x.png"

 },

 "inputPath":"./",

 "outputPath":"../build/",

 "configuration":"Debug",

 "platform":"iOSSimulator",

 "deviceType":"Universal",

 "certificateAlias": "iPhone Developer: John Smith",

 "certificatePath":"/path/to/certificate.file",

 "certificatePassword":"",

 "provisionProfile":"",

 "sdkPath":"/path/to/android-sdk",

 "androidAPILevel":"8",

 "permissions":[

 "INTERNET",

 "ACCESS_NETWORK_STATE",

 "CAMERA",

 "VIBRATE",

 "ACCESS_FINE_LOCATION",

 "ACCESS_COARSE_LOCATION",

 "CALL_PHONE"],

 "orientations": [

 "portrait",

 "landscapeLeft",

 "landscapeRight",

 "portraitUpsideDown"

]

}

This is the name of the application icon when the application is installed in the
device.

This is the application ID, set through the developer consoles provided by Apple
for iOS applications and Google for Android applications.

This parameter must be set for iOS applications, and it has to match the
application ID specified in the provisioning profile file downloaded from Apple.

This should be Debug or Production, as required.

This can be iOS, Android, iOSSimulator, or AndroidEmulator. This entry is used

by the sencha package run command explained in the next section.

Packaging with Sencha Cmd | 245

This entry can be iPhone, iPad, or Universal, and is taken into account only by
iOS apps.

This entry is not included by default, but it should be added and it should match
the entry of the iOS developer certificate downloaded from Apple and installed
in the Keychain.

The values sdkPath, androidAPILevel, and permissions are required only for
Android applications.

Running Applications in the iOS Simulator
To run an application in the iOS Simulator, follow these steps:

1. You must first package it as either a testing or a production build using the com‐
mands shown in the previous sections.

2. Then modify the packager.json file as follows:

• Modify the inputPath key, pointing to the folder location of the testing or pro‐
duction build.

• Also, specify iOSSimulator in the platform key.

3. Finally, type the command below and watch the iOS Simulator starting up and
running your application:

$ sencha package run -p packager.json

Install the Xcode tools or the Android SDK first!
In order for you to run the application in the iOS Simulator or the
Android Emulator, please make sure that you install these tools first,
and that you configure the Android keys specified in the previous sec‐
tion accordingly.

Running Applications in an iOS Device
To run an application in your iOS device, follow these steps:

You should have a working iOS developer set up and ready before trying
these steps. You can deploy applications into a real device only if you
are a registered iOS developer with a valid paying subscription. Your
computer must have all the required certificates and provisioning pro‐
files installed, too.

246 | Chapter 10: Deployment in Devices

1. Edit the following entries in your packager.json file:

• Change applicationName and applicationId to the entries corresponding to
your application.

• Change bundleSeedId to match the application ID prefix used in your provi‐
sioning profile.

• Change inputPath to be build/APPNAME/package.

• Change platform to iOS.

2. Build the application as a native one, using the sencha app build native com‐
mand.

3. Package the app using the sencha package build -p packager.json command.

4. Open Xcode and navigate to Window → Organizer. Select the Devices tab in the
Organizer.

5. Plug in your iOS device (make sure this device is included in the list of enabled
devices in your provisioning profile).

6. Drag the application file located in the build folder onto the Applications entry
below your device.

The application should be copied into your device, and you should be able to run it like
any other native application in your device.

Packaging with Sencha Architect
Sencha Architect, described in detail in Chapter 9, also provides a handy, integrated
packaging system.

The first step to package applications using Architect is to configure the project for
packaging. Click the Package button on the toolbar, and a configuration dialog should
appear, as shown in Figure 10-2:

1. In the “Install plug-ins” entry, set the path of your Sencha Cmd folder (usually
~/bin/Sencha/Cmd/3.0.0.250) and click the Verify button.

2. On the “Setup project with Cmd” screen, set the path of the Sencha Touch frame‐
work that you are using for the project (that is, the folder that was generated after
unzipping the framework distribution ZIP file downloaded from Sencha).

3. Finally, in the “Package settings” screen, click the Add Package Settings button.

Packaging with Sencha Architect | 247

Figure 10-2. Sencha Architect configuration for packaging

Once this is done, click the Simulate button to open the iOS Simulator with the appli‐
cation running, or click the Build button to compile the application as a native one.

Conclusion
Sencha Touch offers a wide array of technical possibilities to get your web applications
running as native ones. Profiles allow them to adapt their behavior and appearance in
different devices, while the packaging system (available both as command-line tools
and as embedded functionality in Sencha Architect) allows developers to deploy them
as both HTML5 offline apps or as native iOS and/or Android applications. Finally, the
native device APIs can make the final user experience richer and more enjoyable by
including real-world data, live in your application.

248 | Chapter 10: Deployment in Devices

CHAPTER 11

Conclusion

I sincerely hope that this book has provided you with a good introduction to Sencha
Touch, its capabilities, and its possibilities in the realm of modern enterprise mobile
web applications. Without a doubt, Sencha Touch 2.1 is, at the time of this writing, one
of the most serious options to create complex mobile web apps.

Sencha Touch is available under a flexible licensing scheme, including both GPLv3 and
FLOSS licenses for open-source projects, and commercial licenses (free and paid) for
companies not willing to be subject to the terms imposed by the GPL, or expecting
support for their operations.

Sencha Touch applications can be packaged as native applications, ready to be deployed
on the iOS App Store or in any of the available marketplaces for Android, such as Google
Play, using the Sencha Cmd tools. Similarly, Sencha Architect provides a serious option
for rapid application development of Sencha Touch systems.

249

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
-skd switch, 15
.NET, 4
.scss extension, 172
10-year period, milliseconds in, 47
<audio>, 105
<body>, 31
<head>, 31
<html>, 31

A
action sheets, 97
add() function, 44
add() method, 66
Adobe Edge Inspect, 194
Adobe Shadow, 194
ajax proxy, 126
AkoLib.view.SplitView container class, 111
alerts, 98
aliases, 27
Android OS

Activity root, 93
addview() method, 18
audio controls in, 105
versions supported, 4
video formats, 106

Android SDK, 246
apostrophes, displaying, 61

append() function, 49
appFolder property, 13, 25
Apple Safari, debugging in, 186
application delegate, 13
applications

creating basic, 9–14
creating complex, 215–231
creating standalone, 242
creating with command-line tools, 15
customizing with styles, 171
entry point for, 11
folder organization for, 25
increasing quality of, 212
previewing, 229
publishing, 230
types possible, 2
typical structure for, 23

Array class, 35
arrays, manipulating, 35
associations, 122
attribute selectors, 49
audio, 105

B
back buttons, 88, 168
base class, choosing, 112
behavior-driven development (BDD), 197
belongsTo property, 122
between() function, 44

251

bind() function, 30
BlackBerry OS, versions supported, 4
body tags, 10
BookApp.view.CustomList class, 26, 27
browsing history, 168
Bryntse, Mats, 203
buttons

back, 168
defining, 72, 83, 88
radio, 158
segmented, 89
sliders, 159
spinner, 151
toggles, 160

C
cameras, 237
cancel() method, 65
capitalize() function, 61
card layout, 76
carousel view, 87
Carver, Joshua, 202
Cascading Style Sheets (CSS), 3, 171, 171, 176,

179
(see also Sass)

charts, 106
checkboxes, 156
child components, 71, 73, 87
class library, overview of, 17, 29
class skeleton, creating, 113
class system

creating a new instance, 26
defining a simple class, 26
main functions, 26
overview of library, 29
understanding, 25
usefulness of, 23

clean() function, 36
clear() method, 66
clearTime() function, 44
clearTimeout() function, 65
clone() function, 30
color manipulation, 176
commas vs. semicolons, 11
commercial projects, licensing for, 5, 249
communication classes, overview of, 17, 29
Compass authoring tool, 172, 179
component library catalog, 80–111
component query syntax, 43

components, 71, 73, 81, 112
config parameter, 26
configuration options, adding, 114
console.log() function, 55
constrain() function, 56
contacts, 236
containers

carousel views, 87
choosing a base class, 112
controlling child components with, 71
customizing, 87
items property and, 73
navigation view, 88
segmented buttons, 89
tab panels, 90
title/toolbars, 92
viewport control, 93

contains() function, 36, 67
containsKey() function, 67
controller classes, 19
controller classes, overview of, 17, 29
controllers, 163–170

creating, 164, 226
custom, 169
initializing, 167, 235
routing/deep-linking, 168

controllers property, 14, 25
coordinate frames, 239
create() function, 30
createDelayed() function, 51
createInterceptor() function, 52
createSequence() function, 52
createThrottled() function, 53
Crockford, Douglas, 2, 25, 55
cross-browser compatibility

early libraries for, 3
Sencha Touch extensions for, 23

CSS Resource, 226

D
data, 155

(see also text fields)
entering on forms, 143
entering secure, 152
hiding, 150
loading into forms, 161

data management, 119–142
data-bound controls, 134–141
model classes, 119–123

252 | Index

stores/proxies, 123–134
data-bound controls, 134–141

DataView, 134
DataView events, 137
lists, 138
nested lists, 140

dataview, 134
DataView events, 137
Date class, 43
date/time information, 43–48
DatePicker component, 147
debugging

Adobe Edge Inspect, 194
browser choices, 2, 186
Ext.Logger object, 55
remote, 192
WebKit Inspector, 185

decode() function, 31
defer() function, 31, 53
define() function, 30
delayed execution, 31, 53, 65
deployment in devices, 233–248

device features, 236–241
packaging with Sencha Architect, 247
packaging with Sencha Cmd, 242
profiles, 233

deprecate() function, 55
desktop applications, 2
destroy() function, 31
developer environment, installation of, 5
device capabilities, detecting, 237
device orientation, 239
difference() function, 36
docked property, 78, 82
documentation, 208–211
documentation system, 20

E
each() function, 31, 57
each() method, 67
Earth coordinate frame, 239
ellipsis () function, 61
Email field type, 149
embedding components

items property and, 18
layout parameter and, 18

emptyFn, 30
encode() function, 31
erase() function, 37

error() function, 55
escape() function, 61
escapeRegex() function, 61
event handlers

buttons, 72
controller classes for, 19, 72
custom, 115
execution order, 166
Ext.Function object, 51
parameters for, 72
populating, 227

event triggers, listeners configuration element,
19, 64, 72, 163

events, firing custom, 116
every() function, 37
EXT JS, 3
Ext root object, 30–35
Ext.ActionSheet class, 97, 103
Ext.application function

object properties, 11
parameters for, 11, 13

Ext.Array object, 35–42
clean() function, 36
contains() function, 36
erase() function, 37
every/some() functions, 37
filter() function, 38
flatten() function, 38
from() function, 38
include() function, 38
indexOf() function, 39
insert() function, 39
intersect() function, 39
map/pluck() functions, 39
mathematical functions, 40
remove/replace() functions, 41
slice/sort() functions, 41
toArray() function, 42
unique() function, 42

Ext.Array.each() function, 31
Ext.Audio class, 73, 105
Ext.Base vs. Ext.Class, 26
Ext.Button class, 72, 73, 83
Ext.carousel.Carousel class, 77, 87
Ext.chart.AbstractChart, 106
Ext.ClassManager, 26
Ext.ClassManager.define() function, 26, 30
Ext.ClassManager.instantiate() function, 26, 30
Ext.Component class, 71, 72, 79, 80, 81, 87

Index | 253

Ext.ComponentQuery object, 43
Ext.Container class, 71, 73, 80
Ext.create() function, 26, 27, 30
Ext.data.Field class, 121
Ext.data.List class, 73
Ext.data.Model class, 119
Ext.data.Model subclasses, 161
Ext.data.proxy.Ajax class, 126
Ext.data.proxy.JsonP, 128
Ext.data.proxy.Memory class, 124
Ext.data.proxy.Rest, 128
Ext.data.proxy.SessionStorage, 125
Ext.data.Store class, 131
Ext.data.StoreManager, 130
Ext.data.StoreManager.lookup() function, 32
Ext.data.TreeStore, 133
Ext.data.Validations object, 122
Ext.dataview.DataView, 134, 137
Ext.dataview.List class, 26, 138
Ext.dataview.NestedList, 140
Ext.DateExtras, 43
Ext.define() function, 26, 26, 30
Ext.DelayedTask class, 31, 54
Ext.DomHelper/DomQuery, 48
Ext.DomQuery, 43
Ext.env.Feature, 50
Ext.field.Field, 143
Ext.field.Text class, 73
Ext.form.Fieldset class, 143, 145
Ext.Function object, 51
Ext.Function.defer() function, 31, 65
Ext.Image class, 104
Ext.JSON encode, 31
Ext.JSON object, 55
Ext.JSON.decode() function, 31
Ext.Label class, 86
Ext.layout.Default, 73
Ext.Logger object, 55
Ext.Map class, 73
Ext.MessageBox class, 98
Ext.mixin.Observable object, 64
Ext.Msg object, 98
Ext.navigation.View class, 73, 88
Ext.Number object, 56
Ext.Object, 57
Ext.Panel, 71, 80
Ext.scroll.Scroller class, 73
Ext.SegmentedButton class, 73
Ext.Sheet class, 103

Ext.String object, 61
Ext.tab.Panel class, 77
Ext.util.DelayedTask, 65
Ext.util.HashMap container class, 66
Ext.util.Inflector, 67
Ext.Version object, 63
Ext.Video class, 73, 105
Ext.Viewport class, 77, 93
Ext.widget () function, 27
Ext.XTemplate class, 79

F
field types, 145–160

checkboxes/radio groups, 156
sliders, 159
text fields, 146

fields
class names/xtypes, 143
hierarcy of, 144

fieldsets, 145
filter() function, 38
Firebug plug-in, 185
fireEvent() function, 116
fit layout, 74
flatten() function, 38
flexSetter() function, 54
FLOSS (Free Libre and Open Source) license, 4,

249
folder structure, 25
form() function, 56
format() function, 44, 61
forms, 143–162

creating, 225
field types, 145–160
fieldsets, 145
form panels, 143
using data with, 161

foundation utilities, 30–68
Ext root object, 30–35
Ext.Array object, 35–42
Ext.ComponentQuery, 43
Ext.DateExtras, 43
Ext.DomHelper/DomQuery, 48
Ext.env.Feature, 50
Ext.Function object, 51
Ext.JSON object, 55
Ext.Logger object, 55
Ext.mixin.Observable object, 64
Ext.Number object, 56

254 | Index

Ext.Object, 57
Ext.String object, 61
Ext.util.DelayedTask, 65
Ext.util.HashMap container class, 66
Ext.util.Inflector, 67
Ext.Version object, 63

Free Libre and Open Source (see FLOSS)
from() function, 38
fromQueryString() function, 58
functions

in Sass, 175
overriding, 113
prepackaged in Sensa Touch, 30

G
Gecko (Firefox), 2
generic panels, 103
geolocation, 240
get() function, 67
getBody() funtion, 31
getClass() function, 31
getClassName, 31
getCmp() function, 32
getCount() function, 67
getDayOfYear() function, 46
getDaysInMonth() function, 46
getDoc() function, 31
getElapsed() function, 47
getFirstDateOfMonth() function, 46
getGMTOffset() function, 47
getHead() funtion, 31
getKeys() function, 67
getLastDateOfMonth() function, 46
getLastDayOfMonth() function, 46
getMonthNumber() function, 47
getOverlayView() function, 117
getShortDayName() function, 47
getShortMonthName() function, 47
getStore() function, 32
getSuffix() function, 47
getTimezone() function, 47
getValues() function, 67
getWeekOfYear() function, 46
Google Chrome, 2, 186
Google Maps API, 109
GPLv3 license, 4, 6, 249
grouping options, 223

H
handleOrientationChange function, 115
hasMany property, 122
hbox layout, 74
Hewitt, Joe, 185
hidden data, 150
hierarchical stores, 130, 133
history support, 168
HTML code, inspecting, 190
HTML elements, 31, 48
HTML files, opening, 16
HTML5 features

highlighting, 50
support for forms, 143

HTML5 meta tags, 14
HTML5 packages, 244
htmlDecode () function, 62
htmlEncode() function, 62

I
icon property, 14
icons, shading on iOS devices, 14
id() function, 32
images, 104
include() function, 38, 39
index.html, 13
indexBar, 139
indexOf() function, 39
inheritance, 174
initialization, of controllers, 167, 235
initialize function, 113, 115
insert() function, 39
insertAfter() function, 49
insertBefore() function, 49
insertHtml() function, 49
interactivity (see forms)
Internet Explorer 10, 2
intersect() function, 39
iOS

addSubview: method, 18
application delegate, 13
customized startup images for, 14
Ext.ActionSheet class, 97
remote debugging, 192
running applications on, 246
status bar specification, 14
UINavigationController class, 88
UISegmentedControl class, 89

Index | 255

UISplitViewController class, 111
UIWindow, 93
versions supported, 4
video formats, 106

iOS Simulator, 246
iPhone 3G, 3
iPhone/iPod Touch, status bar specification, 14
isArray() function, 33
isBoolean() function, 33
isDate() function, 33
isDefined() function, 33
isDST() function, 47
isElement() function, 33
isIconPrecompsed property, 14
isLeapYear() function, 46
isTransnumberal() function, 68
isValid() function, 48
itemID property, 114
items property, embedding components with,

18, 73, 87
itemtap versus itemsingletap events, 137
iterate() function, 33

J
Jasmine, 197–202
Java, 4
JavaScript

lack of classes in, 25
misunderstood by many, 2
workarounds for, 35, 37

JavaScript Lint tool, 11
JSDuck, 208–211
JSON string, parsing, 31, 55
JSON with Padding, 128
jsonp proxy, 128

K
keyboards, 149, 150, 155

L
labels, 86
launch propery, 11
layout parameter, overview of, 18
layouts, 73–78, 81
leftPad() function, 62
licensing, 4, 107, 216
linear stores, 130, 131

listeners configuration element, 19, 163
lists, 138
localstorage proxy, 125
location information, 240
log() function, 55

M
map() function, 39
mapping, with xtypes, 27
maps, 109
mathematical operations, 40, 173
max() function, 40
mean() function, 40
memory, 124
merge() function, 40, 59
message boxes, 71, 98
meta tags, 14
min() function, 40
mixins, 176
model classes

defining, 119, 221
defining relationships among, 122
overview of, 17, 29

model field types, 121
model-view-controller architecture (see MVC

architecture)
models property, 14, 25
Mountain Lion

JSDuck installation, 208
remote debugging in, 192

Mountain Lion, Sencha Cmd installation in, 8
multimedia views, 103–111
MVC architecture

adherance to standard, 16
class library and, 29
event handlers and, 19
families of classes in, 17
for mobile browsers, 23

N
name property, 11
names, changing, 220
namespace() function, 34
namespace, creation of, 11
native applications, 233
native notifications/vibrations, 238
native packages, 244
navigation view, 88, 140

256 | Index

nested lists, 140
nesting, 174
network connectivity, 239
NewAppFolder, 15
notifications, 238
numeric data

entering, 150
verifying, 56

O
objects

creating with xtypes, 27
displaying state/capabilities of, 57
displaying structure of, 31
transforming with toArray, 42

open source projects, licensing for, 4
ordinalize() function, 68
orientation changes, 115, 239
overwrite() function, 49

P
panels, 95–103, 112
parse() function, 48
pass() function, 54
passwords, 152
PhantomJS, 201
PhoneGap Web Inspector Remote, 194
photo libraries, 237
PHP, 4
pickers, 100
pluck() function, 39
pluralization, 67
pluralize() function, 68
pop-up fields, 152
Presto (Opera), 2
private methods, 117
productivity applications, 2
profiles, 233
profiles property, 14, 25
Protype library, 2
proxies

local, 124
overview of, 24
remote, 126

Proxy class
overview of, 17, 29

push() method, 38, 39

Q
quality control, 212
query() function, 43

R
radio groups, 156, 158
Reader class, overview of, 17, 29
Reader objects, 131
remote data service, 128
remote debugging, 192
remove() function, 41
remove() method, 66
removeByKey() method, 66
repeat() function, 62
replace() function, 41
replace() method, 66
REpresentational State Transfer (see REST web

services)
rest proxy, 128
REST web services, 128
root namespace, creation of, 11
rounding numbers, 57
routing/deep-linking, 168
Ruby on Rails, 4, 172

S
Safari, 2, 186
same domain policy, 126, 128, 128
Sass

introduction to, 172
parameters for, 180
using, 177

Sassy CSS, 172
script.aculo.us library, 2
scrolling wheels, 147
search boxes, 152
segmented buttons, 89
select, 152
select() function, 48
selectNode() function, 48
Sencha Architect, 215–231

creating an application, 220–230
configuring the app, 220
creating a model class, 221
creating a store, 223
creating controllers, 226
creating views/forms, 225

Index | 257

project operations, 228
definition/customization with, 216
downloading, 215
installation, 216
licensing, 216
packaging with, 247
user interface, 218

Sencha Cmd
installation of, 7
packaging with, 242
using, 15, 180

Sencha Complete package, products included, 5
Sencha Forums account, 217
sencha generate app command, parameters for,

15
Sencha Touch

application types possible, 2
browsers supported by, 2
class library of, 17
comprehensiveness of, 1, 4, 71
debugging on desktops, 2
description of, 1
distribution of, 6, 15, 177
documentation system, 20
history of, 2
installing, 6
introduction to, 1
licensing, 4, 107, 249
main features of, 3
platforms supported, 4
server-side technology, 4
tools recommended, 6
tools required, 5

sessionstorage proxy, 125
setActiveItem() function, 76
setTimeout() function, 65
sheets, 103
Siesta, 203
Simple Object Access Protocol (see SOAP web

services)
singular vs. plural names, 25
singularization, 67
singularize() function, 68
slice() function, 41
sliders, 159
Slocum, Jack, 3
smartphones

adjusting for screen sizes, 233
card layout for, 76

organizing large applications for, 87
snap() function, 57
snapshots, 229
SOAP web services, 128, 130
some() function, 37
sort() function, 42
sorting options, 223
special characters, displaying, 61
spinner buttons, 151
splice() function, 41
SplitView class, 111, 115
sprintf() function, 61
standalone apps, 242
startupImage property, 14
statusBarStyle, 14
Store class, overview of, 17, 29
store types, 130
StoreManager singleton, 130
stores component

in app folder, 25
overview of, 24

stores/proxies, 123–134, 223
local proxies, 124
remote proxies, 126
store types, 130
StoreManager singleton, 130

styles
default, 171
personalizing with Sass, 172

sum() function, 40
swipe views, 87
Syntactically Awesome Stylesheets (see Sass)

T
tab panels, 90
tablets, adjusting for screen sizes, 233
tap event, 19, 72
templates, 79
test packages, 244
test-driven development (TDD), 197
testing, 196–206
text fields, 146–155

date picker, 147
email, 149
hidden, 150
multi-line area, 155
number, 150
password, 152
search, 152

258 | Index

select, 152
spinner buttons, 151
URLs, 155

title bars, 92
To Do List, creation of, 220
toArray() function, 42
toFixed() function, 57
toggle() function, 62
toggles, 160
toolbars, 92
toolboxes, 229
toQueryObjects function, 60
toQueryString() function, 58
tpl configuration, 79
transnumerals, 68
tree stores, 130, 133
Trident (Internet Explorer), 2
trim() function, 62
troubleshooting

application doesn’t appear on screen, 10
commas vs. semicolons, 11
Ext.DomQuery vs. Ext.ComponentQuery, 43
Ext.Msg dialog boxes are asynchronous, 98
false positives and negatives, 240
file:/// protocol doesn’t work, 16
iOS developer certificates, 246
JSDuck installation fails, 208
mistaking ending index for length, 41
singular vs. plural names, 25
success/failure callbacks, 242

Twitter, 128
typeOf() function, 34
typing errors

catching, 11
preventing, 11

U
UINavigationController class, 88
UIs, 71

(see also views)
UIs, customized with profiles property, 14
UISplitViewController class, 111
UIWindow, 93
union() function, 40
unique() function, 42
URL data field, 155

URL pass, 58
urlAppend() function, 63
URLs, custom, 168
user interfaces (see UIs)
utility applications, 2
utility classes, overview of, 17

V
validations, 122
variable expressions, 173
vbox layout, 75
version, 30
vibrations, 238
video, 105
viewports, 93
views

component library catalog, 80–111
components, 71–80
creating, 111–117, 225

views classes
diagram of available, 80
hierarchy diagram, 81
overview of, 17, 29

views property, 14, 25

W
warn() function, 55
Web Inspector Remote, 194
web inspectors, 10
WebKit Web Inspector, 185
WebKit-based mobile browsers, 185
widget() function, 30
Windows Phone 8, 2, 4
workspaces, 243
Writer objects, 131

X
Xcode tools, 246
XMLHTTPRequest object, 16, 126
xtype property, 26, 27

Y
Yahoo!, 3
YUI library, 3

Index | 259

About the Author
Adrian Kosmaczewski has been working as an iOS developer since 2008. Before that,
he was a web developer working with classic ASP since 1996, ASP.NET, PHP, Ruby on
Rails, Django, and more. He runs a consulting and training business in Oron-la-Ville,
Switzerland. He has a master of science degree in information technology from the
University of Liverpool.

Colophon
The animal on the cover of Sencha Touch 2 Up and Running is a kultarr.

The cover image is from Meyers Kleines Lexicon. The cover font is Adobe ITC Gara‐
mond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Intended Audience
	Structure of this Book
	Code of the Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting Started
	What Is Sencha Touch?
	What Kind of Applications Can You Build with It?
	A Bit of History
	Main Features
	Device and Browser Support
	Licensing

	Installing the Developer Environment
	Sencha Touch Distribution
	Installing Sencha Cmd

	Creating a New Application
	Bare-Bones App
	The Ext.application() Function
	Using Sencha Cmd
	Overview of the Class Library
	Embedding Components
	Layouts
	Intro to Events

	Sencha Touch Documentation System
	Conclusion

	Chapter 2. The Class System
	Architectural Considerations
	Folder Organization

	Understanding the Class System
	Using xtypes
	Overview of the Class Library

	Foundation Utilities
	Ext
	Ext.Array
	Ext.ComponentQuery
	Ext.DateExtras
	Ext.DomHelper and Ext.DomQuery
	Ext.env.Feature
	Ext.Function
	Ext.JSON
	Ext.Logger
	Ext.Number
	Ext.Object
	Ext.String
	Ext.Version
	Ext.mixin.Observable
	Ext.util.DelayedTask
	Ext.util.HashMap
	Ext.util.Inflector

	Conclusion

	Chapter 3. Views
	Components, Containers, and Panels
	Events
	Layouts
	Templates

	Component Library Catalog
	Components
	Containers
	Panels
	Multimedia Views

	Creating Views
	Choosing a Base Class
	Creating the Class Skeleton
	Adding Configuration Options
	Providing Initialization
	Firing Custom Events
	Implement Private Methods

	Conclusion

	Chapter 4. Data
	Model Classes
	Model Field Types
	Associations
	Validations

	Stores and Proxies
	Local Proxies
	Remote Proxies
	Store Types
	The StoreManager Singleton

	Data-Bound Controls
	DataView
	Lists
	Nested Lists

	Conclusion

	Chapter 5. Forms
	Form Panels
	Fieldsets
	Field Types
	Text Fields
	Checkboxes and Radio Groups
	Slider

	Using Data with Forms
	Conclusion

	Chapter 6. Controllers
	Director of the Orchestra
	Creating a Controller
	Initialization
	Routing and Deep-Linking
	Conclusion

	Chapter 7. Styling Applications
	Using the Default Sencha Styles
	Introduction to Sass
	Variables
	Nesting
	Inheritance
	Functions
	Mixins

	Using Sass in Sencha Touch
	Generating CSS with Compass

	Sencha Touch Sass Parameters
	Conclusion

	Chapter 8. Debugging, Testing, and Documenting
	Debugging
	WebKit Web Inspector
	Remote Debugging
	Adobe Edge Inspect

	Testing
	Jasmine
	Siesta

	Documenting Your Code with JSDuck
	Tips for Quality Sencha Touch Apps
	Conclusion

	Chapter 9. Sencha Architect
	Introduction
	Installation
	User Interface

	Creating a Simple Application
	Configuring the Application
	Creating a Model Class
	Creating a Store
	Creating Views and Forms
	Creating Controllers
	Working with Projects

	Conclusion

	Chapter 10. Deployment in Devices
	Using Profiles
	Adding Profiles
	Initialization Functions
	Custom MVC Classes

	Using Device Features
	Device Capabilities
	Accessing the Camera
	Native Notifications and Vibration
	Orientation Changes
	Network Connectivity
	Location Information

	Packaging with Sencha Cmd
	Creating Standalone Apps
	Creating Workspaces
	Packaging Applications
	Running Applications in the iOS Simulator
	Running Applications in an iOS Device

	Packaging with Sencha Architect
	Conclusion

	Chapter 11. Conclusion
	Index
	About the Author

