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 FOREWORD     

  Software modeling is in a schizophrenic situation. On the one hand, it is targeted 
towards the development of completely formal systems, i.e., executable code. On 
the other hand, the tools dominating in software modeling are typically drawing 
tools prepared with specifi c graphical icons. This dichotomy implies that the targeted 
meaning of a software model is limited in its use towards human understanding and 
communication only. 

 This dichotomy is reconciled when software is enriched with formulae speci-
fying the functionality of the code. This is an exciting branch in software engineer-
ing, however, for the time being, this is a very labor - intensive exercise that can only 
be applied for smaller scale systems with particular value, e.g., strong safety 
requirements.

 The above - explained dichotomy is also reduced when software models are 
exploited in model - driven development for the semi - automatic derivation of more 
formal models, e.g., executable code (stubs). In such model - driven development the 
meaning of a model is implicitly defi ned by mapping it into a (more), formal model. 
This (more) formal model, however, is exclusively oriented towards operational 
semantics, it does not bear any semantic meaning for issues like organization and 
modularization of software models. 

 Hence, what is obviously missing is a stronger notion of meaning for software 
models themselves. A meaning that is not only accessible to human interpretation, 
but that can be operationalized on the software model alone and not only on one 
view of a software model but on different sublanguages that together constitute a 
software modeling framework. 

 In this book, Fernando Silva Parreiras makes a major step towards realizing 
such meaning for software models. With his methodology TwoUSE — Transforming 
and Weaving Ontologies and UML for Software Engineering — he combines the 
established routines of current - day software modelers with the most recent technol-
ogy for reasoning over large and complex models, i.e., ontology technology. 

 Ontology technology, based on the family of description logics dialects, has 
thrived over the last 15 years, coming from small formal systems where it was hardly 
possible to manage 102 entities in one model to systems that reason over 105 
entities — and growing. It is the core target of ontology technologies to model classes, 
their relationships, and their instances in a versatile manner that still leads to a decid-
able logical language, which can (mostly) be reasoned about for models that do not 
appear in the worst case, but in practice. Hence, ontology technology is ideally suited 
to be carried over to the world of software models. 

xxi



xxii FOREWORD

 Such a step seems to be incremental at fi rst sight. This, however, is not the 
case. The reason is that it is not suffi cient to come up with a single mapping, e.g., 
from UML class diagrams to an ontology language, because the range of software 
models is ranging much farther and what is needed is a methodology with example 
cases and best practices rather than an ad hoc development. 

 Fernando Silva Parreiras has accomplished such a methodology with TwoUse. 
And this methodology has become infl uential even before this book could be pub-
lished. First, the EU project MOST — Marrying Ontology and Software Technolo-
gies — running from Februrary 2008 to April 2011 has relied heavily on Fernando ’ s 
TwoUse methodology and has taken it as a major source of inspiration for further 
developing best practices for using ontology technologies in software development. 
Second, his work has become pivotal for other researchers in our lab — and beyond -
 who have been building on the integration of software models and ontologies and 
have further refi ned it, most notably Tobias Walter and Gerd Gr ö ner. 

 Finally, the development of TwoUse has been a major accomplishment, 
because its development has been off the beaten path between the software modeling 
and the ontology technology communities and staying within neither. At the same 
time, advising Fernando and charting unexplored research terrain with him has 
become one of my most beloved research experiences of the last years — intellectu-
ally and personally — one that I would not want to miss by any means. 

   Steffen Staab 
 Koblenz, Germany 

April 2012       



 PREFACE     

  The audience for this book embraces computer science graduate students, research-
ers, advanced professionals, practitioners, and implementers in the areas of software 
engineering, knowledge engineering, and artifi cial intelligence, interested in knowing 
the possibilities of using semantic web technologies in the context of model - driven 
software development or in enhancing knowledge engineering process with model -
 driven software development. 

 For the knowledge engineering community, the advent of ontology engineer-
ing required adapting methodologies and technologies inherited from software engi-
neering to an open and networked environment. With the advances provided by 
model - driven software development, the semantic web community is keen on learn-
ing what the benefi ts are of disciplines like metamodeling, domain - specifi c model-
ing, and model transformation for the semantic web fi eld. 

 For software engineering, declarative specifi cation is one of the major facets 
of enterprise computing. Because the Ontology Web Language (OWL) is designed 
for sharing terminologies, interoperability, and inconsistency detection, software 
engineers will welcome a technique that improves productivity and quality of soft-
ware models. This book is relevant for researchers who work in the fi eld of complex 
software systems using model - driven technology and for companies that build large -
 scale software like enterprise software offerings, data - warehousing products, and 
software product lines. 

  HOW TO READ THIS BOOK 

 In Part I, we present the fundamental concepts and analyze state - of - the - art 
approaches. Chapters  2  and  3  describe the concepts and technologies around MDE 
and ontologies, respectively. In Chapter  4 , we present the commonalities and varia-
tions of both paradigms, analyze existing work in this area, and elicit the require-
ments for an integrated solution. 

 Part II describes the role of MDE techniques (DSL, model transformation, and 
metamodeling) and ontology technologies (reasoning services, query answering) in 
an integrated approach. In Chapters  5  and  6 , we describe the conceptual architecture 
of our approach. Chapter  7  presents the TwoUse Toolkit — the implementation of the 
conceptual architecture. 

 We use the TwoUse Toolkit to realize case studies from the model - driven 
engineering and ontology engineering domains. Part III assembles case studies that 
use our approach at the modeling level and at the language level. Chapter  8  analyzes 
the application of TwoUse in software design patterns, and in Chapter  9  we present 

xxiii
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xxiv PREFACE

the application of TwoUse in ontology - based information systems. Chapter  10  
describes the usage of TwoUse to support software developers in integrating soft-
ware languages. 

 Part IV presents an analysis of employing our approach in ontology engineering 
services. We address the need for multiple languages for ontology mapping in Chapter 
 11 . Chapter  12  presents a domain - specifi c language for specifying ontology APIs. 
Chapter  13  uses templates for encapsulating complexity of ontology design patterns.  

  COMMUNICATIONS OF THIS BOOK 

 We have communicated the research presented in this book through conference 
papers, a journal paper, conference tutorials, conference demonstrations, and bach-
elor/master theses. In the following, we list the publications according to the chapters 
covering the respective contributions.

Chapter 3 :      Silva Parreiras, F., Staab, S., Ebert, J., Pan, J.Z., Miksa, K., 
Kuehn, H., Zivkovic, S., Tinella, S., Assmann, U., Henriksson, J.: Seman-
tics of Software Modeling. In: Semantic Computing. Wiley (2010) 
229 – 248

Chapter 4 :      Silva Parreiras, F., Staab, S., Winter, A.: On marrying ontological 
and metamodeling technical spaces. In: Proceedings of the 6th joint meeting 
of the European Software Engineering Conference and the ACM SIGSOFT 
International Symposium on Foundations of Software Engineering, 2007, 
Dubrovnik, Croatia, September 3 – 7, 2007, ACM (2007) 439 – 448  

Applications in MDE:

* Software Languages

* Ontology-Based Inf. Systems

* Software Design Patterns

Applications in Ontology Engineering

* Generation of Ontology APIs

* Ontology Translation Language

* Ontology Templates

The TwoUseApproach

Structure, Querying, Notations

TwoUseToolkit

Architecture and Services

Fundamentals

MDE foundations, ontology foundations, commonalities, and variations

Roadmap of This Book.
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Chapters 5, 6, 9 :      Parreiras, F.S., Staab, S.: Using ontologies with UML class -
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FUNDAMENTALS 



  CHAPTER 1
INTRODUCTION

    1.1    MOTIVATION 

 Among recent attempts to improve productivity in software engineering, model -
 driven engineering (MDE) is an approach that focuses on the design of artifacts and 
on generative techniques to raise the level of abstraction of physical systems  [142] . 
As model - driven engineering gains momentum, the transformation of artifacts and 
domain - specifi c notations become essential in the software development process. 

 One of the pre - existing modeling languages that boosted research on MDE is 
the Unifi ed Modeling Language (UML). UML is a visual design notation  [117]  for 
designing software systems. It is a general - purpose modeling language, capable of 
capturing information about different views of systems, like static structure and 
dynamic behavior. 

 In addition to general - purpose modeling languages, MDE relies on domain -
 specifi c languages (DSL). Such languages provide abstractions and notations for 
modeling specifi c aspects of systems. A variety of domain - specifi c languages and 
fragments of their models is used to develop one large software system. 

 Among artifacts produced by multiple modeling languages, MDE faces the 
following challenges  [57] : support for developers, interoperability among multiple 
artifacts, and formal semantics of modeling languages. Addressing these challenges 
is crucial to the success of MDE. 

 In contrast, issues like interoperability and formal semantics motivate the 
development of ontology web languages. Indeed, the World Wide Web Consortium 
(W3C) standard Web Ontology Language (OWL)  [61] , together with automated 
reasoning services, provides a powerful solution for formally describing domain 
concepts in an extensible way, thus allowing for precise specifi cation of the seman-
tics of concepts as well as for interoperability between ontology specifi cations. 

 Ontologies provide shared domain conceptualizations representing knowledge 
by a vocabulary and, typically, logical defi nitions  [62, 161] . OWL provides a class 
defi nition language for ontologies. More specifi cally, OWL allows for the defi nition 
of classes by required and implied logical constraints on the properties of their 
members.

 The strength of OWL modeling lies in disentangling conceptual hierarchies 
with an abundance of relationships of multiple generalization of classes (cf.  [128] ). 
For this purpose, OWL allows for  deriving  concept hierarchies from logically and 
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4 CHAPTER 1 INTRODUCTION

precisely defi ned class axioms stating necessary and suffi cient conditions of class 
membership. The logics of class defi nitions may be validated by using corresponding 
automated reasoning technology. 

 Ontology engineers usually have to cope with W3C standard specifi cations 
and programming languages for manipulating ontologies. The gap between W3C 
specifi cations and programming language leads ontology engineers to deal with 
multiple languages of different natures. For instance, W3C specifi cations are plat-
form independent, whereas programming languages include platform - specifi c 
constructs.

 Indeed, addressing these issues has been one of the objectives of model - driven 
engineering. MDE allows for developing and managing abstractions of the solution 
domain towards the problem domain in software design, turning the focus from 
code - centric to transformation - centric. 

 Understanding the role of ontology technologies like knowledge representa-
tion, automated reasoning, dynamic classifi cation, and consistency checking in MDE 
as well as the role of MDE technologies like model transformation and domain -
 specifi c modeling in ontology engineering is essential for leveraging the develop-
ment of both paradigms. 

 For example, UML and OWL constitute modeling approaches with strengths 
and weaknesses that make them appropriate for specifying distinct aspects of soft-
ware systems. UML provides means to express dynamic behavior, whereas OWL 
does not. OWL is capable of inferring generalization and specialization between 
classes as well as class membership of objects based on the constraints imposed on 
the properties of class defi nitions, whereas UML class diagrams do not allow for 
dynamic specialization/generalization of classes and class memberships or any other 
kind of inference per se . 

 Though schemas  [111]  and UML extensions (UML profi les) for OWL ontolo-
gies exist, an integrated usage of both modeling approaches in a coherent framework 
has been lacking so far. This book unveils research problems involving the composi-
tion of these two paradigms and presents research methods to assess the application 
of a novel framework integrating UML class - based models and OWL ontologies and 
technologies.

 Investigating the composition of UML class - based modeling and ontology 
technologies requires a systematic procedure to address a series of research ques-
tions. Firstly, we need to characterize the fundamental concepts and technologies 
around UML class - based modeling and OWL ontologies and to elicit the require-
ments of an integrated framework. Consequently, we need to specify a framework 
that realizes the integration of both paradigms and fulfi lls the requirements previ-
ously elicited. 

 To analyze the impact of an integrated approach, we need to apply it in both 
domains: model - driven engineering and ontology engineering. In the domain of 
model - driven engineering, we apply the proposed framework to address shortcom-
ings of software design and software languages. Our aim is to reduce complexity 
and to improve reusability and interoperability. 

 In the domain of ontology engineering, we tackle issues addressing the gap in 
clarity and accessibility of languages that operate ontologies, e.g., ontology transla-
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tion languages or ontology APIs generation. Our framework is then used to support 
the development of platform independent models, aiming at improving maintain-
ability and comprehensibility. 

 In the following subsections, we describe the motivation for investigating an 
integration between UML class - based modeling and OWL in Section  1.2 . We pre-
sented the guidelines for reading this book and listed the previous publications 
covering parts of this book in the preface. 

   1.2    RESEARCH QUESTIONS 

 Over the last decade, the semantic web and the software engineering communities 
have investigated and promoted the use of ontologies  and UML class - based model-
ing as modeling frameworks for the management of schemas. While the foci of these 
communities are different, the following question arises:

Question I   What are the commonalities and variations around ontology tech-
nologies and model - driven engineering?

 By identifying the main features of both paradigms, a comparison of both leads 
to the following sub - questions:

Question I.A   What are the scientifi c and technical results around ontologies, 
ontology languages, and their corresponding reasoning technologies that 
can be used in model - driven engineering?

Question I.B   What are the scientifi c and technical results around UML class -
 based modeling that can be used in ontology engineering?

 While investigating this problem, our goal is to analyze approaches that use 
both UML class - based technologies and ontology technologies and to identify pat-
terns involving both paradigms. The result of such analysis is a feature model, 
described in Chapter  4 . 

 The feature model reveals the possible choices for an integrated approach of 
OWL ontologies and model - driven engineering and serves as a taxonomy to catego-
rize existing approaches. Furthermore, the classifi cation allows for eliciting require-
ments for a composed approach. 

 We carry out exploratory research by conducting a domain analysis over 
approaches involving UML class - based technologies and ontology technologies 
found in the literature. Domain analysis addresses the analysis and modeling of 
variabilities and commonalities of systems or concepts in a domain  [32] . 

 The research result is a descriptive model characterized by a feature model for 
the area of marrying UML class - based modeling and ontology technologies. 

 While there exist mappings between these modeling paradigms  [114] , an 
analysis of the outcome of an integrated approach for UML class - based modeling 
and OWL is lacking so far. The challenge of this task arises from the large number 
of differing properties relevant to each of the two modeling paradigms. 
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 For example, UML modeling provides means to express dynamic behavior, 
whereas OWL 2 does not. OWL is capable of inferring generalization and specializa-
tion between classes as well as class membership of objects based on restrictions 
imposed on properties of class defi nitions, whereas UML class diagrams do not 
allow for dynamic specialization/generalization of classes and class memberships or 
any other kind of inference per se . 

 Contemporary software development should make use of the benefi ts of both 
approaches to overcome their restrictions. This need leads to the following 
question:

Question II   What are the techniques and languages used for designing inte-
grated models?

 To address this question, we use the requirements resulting from Question I 
to propose a framework comprising the following building blocks: (i) an integration 
of the structure of UML class - based modeling and OWL; (ii) the defi nition of nota-
tions for denoting integrated artifacts; and (iii) the specifi cation of a query solution 
for retrieving elements of integrated artifacts. Together, these building blocks con-
stitute our original approach to Transform and Weave Ontologies and UML class -
 based modeling in Software Engineering —  TwoUse  (Figure  1.1 ).   

 We analyze the impact of the TwoUse approach with case studies in the 
domain of model - driven engineering and ontology engineering. 

Applying TwoUse in Model -Driven Engineering.   In UML class - based 
modeling, software design patterns provide elaborated, best practice solutions for 
commonly occurring problems in software development. However, software design 
patterns that manage variants delegate the decision of what variant to choose to client 
classes. Moreover, the inevitable usage of several software modeling languages leads 
to unmanageable redundancy in engineering and managing the same information 

     Figure 1.1     Context of the Book.  
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across multiple artifacts and, eventually, information inconsistency. The growing 
demand for networked and federated environments requires the convergence of 
existing web standards and software modeling standards. 

 In contrast, the strength of OWL modeling lies in disentangling conceptual 
hierarchies with multiple generalization of classes  [128] . OWL allows for  deriving
concept hierarchies from logically and precisely defi ned class axioms stating neces-
sary and  suffi cient conditions of class membership. 

 OWL provides exclusive features that distinguish it from class - based modeling 
languages: class expressions, individual equality, and class expression axioms. 
Hence, the following question arises:

Question III   What is the structural impact of using OWL constructs in design-
ing software artifacts?

 To address this problem, we work on identifying patterns at the modeling level 
as well as at the language level. At the modeling level, we analyze the situation 
where the decision of what class to instantiate typically needs to be specifi ed at a 
client class. We investigate the following question:

Question III.A   How does one determine the selection of classes to instantiate 
using only class descriptions rather than by weaving the descriptions into 
class operations?

 In systems that rely on ontologies, i.e., in ontology - based information systems, 
the question is the following:

Question III.B   How does one reuse existing knowledge captured by domain 
ontologies in the specifi cation of functional algorithms of ontology - based 
information systems?

 At the language level, to support the interrelationships of software modeling 
languages in distributed software modeling environments, we need to answer the 
following question:

Question III.C   Which ontology technologies can help existing modeling lan-
guages in managing the same information across multiple artifacts and how 
can they do so?

 The hypothesis is that an ontology - based approach improves software quality 
and provides guidance to software engineers. To test the hypothesis at the modeling 
level, we analyze the TwoUse approach with three case studies: software design 
pattern, designing of ontology - based information systems, and model - driven soft-
ware languages. 

 At the modeling level, we analyze the application of TwoUse in addressing 
drawbacks of software design patterns and in design ontology - based information 
systems. At the language level, we analyze the application of TwoUse in addressing 
the transformation and matching of modeling languages into OWL.  

Applying TwoUse in Ontology Engineering.   In ontology engineering, 
the design of ontology engineering services  [170]  has drawn the attention of the 
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ontology engineering community in the last years. However, as ontology engineering 
services become more complex, current approaches fail to provide clarity and acces-
sibility to ontology engineers who need to see and understand the semantic as well 
as the lexical/syntactic part of specifying ontology engineering services. Ontology 
engineers use services in an intricate and disintegrated manner, which draws their 
attention away from the core task and into the diverging platform details. 

 From this scenario, the problem of supporting generative techniques in ontol-
ogy engineering services emerges, adding expressiveness without going into plat-
form specifi cs, i.e., 

Question IV   How does one fi ll the abstraction gap between specifi cation 
languages and programming languages?

 We propose a representation approach for generative specifi cation of ontology 
engineering services based on model - driven engineering (MDE). In order to recon-
cile semantics with lexical and syntactic aspects of the specifi cation, we integrate 
these different layers into a representation based on a joint metamodel. 

 The hypothesis is that fi lling the gap between ontology specifi cation languages 
and general purpose programming languages helps to improve productivity, since 
ontology engineers do not have to be aware of platform - specifi c details. Moreover, 
it simplifi es the tasks of maintenance and traceability because knowledge is no 
longer embedded in the source code of programming languages. 

 We validate our approach with three case studies of three ontology engineering 
services: ontology mapping, ontology API generation, and ontology modeling. 

 For ontology mapping, we present a solution for ontology translation specifi ca-
tion that intends to be more expressive than current ontology mapping languages 
and less complex and granular than programming languages to address the following 
question:

Question IV.A   How does one fi ll the abstraction gap between ontology 
mapping languages and programming languages?

 For ontology API generation, we present a model - driven solution for design-
ing mappings between complex ontology descriptions and object oriented 
representations — the  agogo  approach — and tackle the following question:

Question IV.B   What are the results of applying MDE techniques in ontology 
API development?

 For ontology modeling, we present a model - driven approach for specifying 
and encapsulating descriptions of ontology design patterns and address the following 
problem:

Question IV.C   How does one allow declarative specifi cations of templates 
and tools to test these template specifi cations and realizations?



  CHAPTER 2
MODEL- DRIVEN 
ENGINEERING FOUNDATIONS 

     This chapter discusses the state of the art for model - driven engineering. We inspect 
approaches, abstractions, and techniques constituting MDE, describe them with 
respect to their concepts and relationships, and investigate the conceptual structure 
that underpins MDE in this state - of - the - art review. The result is a static structural 
model represented by UML class diagrams.  

   2.1    INTRODUCTION 

 Raising the level of abstraction is one of the basic principles of software engineering. 
It eliminates complexity that is not inherent in software artifacts. The idea is to 
selectively abstract away from non - fundamental aspects and to concentrate on the 
essential aspects of software artifacts. 

 Approaches that aim at reducing complexity have an impact upon software 
productivity. In productivity models, complexity metrics compose the cost metrics 
together with resources and personnel  [45] . 

 Model - driven engineering (MDE) is an approach that uses models, notations, 
and transformation rules to raise the level of abstraction of a physical system  [142]  
aiming at improving productivity. 

 In this chapter, we present the fundamental concepts of the model - driven 
engineering structure. In Section  2.2 , we use the concept of  megamodel   [44]  to 
present a description of the structure of MDE. We use this structure to group con-
cepts around ontology technologies and model - driven technologies in Section  2.3 .  

   2.2    MODEL - DRIVEN ENGINEERING STRUCTURE 

 Model - driven techniques provide management, transformation, and synchronization 
of software artifacts. The objective is to factorize complexity into different levels of 
abstraction and concern, from high - level conceptual models down to the individual 
aspects of target platforms. 

 There is a consensus in the literature about the cornerstones of MDE: (i) lan-
guages comprising models that represent real - world elements, metamodels to 
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describe the structure of models, and language semantics; and (ii) transformations 
between languages. Schmidt  [142]  argues that model - driven engineering technolo-
gies should combine domain - specifi c modeling languages and transformation 
engines to address platform complexity. For Kent  [88] , MDE requires a family of 
languages, transformations between languages, and a process associated with the 
conception of languages and transformations. In this chapter, we concentrate on the 
structural specifi cation of model - driven engineering. 

 An instance of MDE is the Model - Driven Architecture (MDA)  [100] , which 
is based on OMG ’ s Meta - Object Facility. It frequently includes UML as its modeling 
language and a common pipeline of managing and transforming models  [90] : A 
platform - independent model (PIM) is transformed into a platform - specifi c model 
(PSM) and eventually into an executable representation (code), being the target 
platform.

 Favre  [44]  proposes a descriptive model that specifi es the concepts that are 
the cornerstones of MDE: model, metamodel, modeling language, and model trans-
formation. This descriptive model is called  megamodel  (Figure  2.1 ). We extend this 
model later to illustrate the relationships between MDE concepts and ontology 
technologies.   

 In the following section, we analyze and describe the concepts and relations 
depicted in the Figure  2.1 . 

     Figure 2.1     Main Concepts of Megamodel.  
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   2.2.1    Models 

 The notion of  model  accepted in MDE is that a model is a simplifi cation of a physi-
cal system. Apostel  [5]  uses the word  “ simplifi cation ”  to denote a viewpoint of a 
system from a certain scale where the system is controlled with a certain purpose in 
mind. This notion is aligned with Rothenberg ’ s defi nition in which a model is a 
representation of the reality for a given purpose  [136] . 

 The UML specifi cation  [117]  corroborates this notion describing a model as 
an abstraction of a physical system. Bezivin  [13]  and Favre  [44]  use the association 
representedBy  or  representationOf  to connect the system under study to a 
model. Thus, a system can have multiple models depending on the viewpoint. For 
example, developers can use the UML and Java to represent different viewpoints of 
the real - world system  e-shop  (Figure  2.2 ).   

 Notice that Favre specifi es the notion of a model as a relation to the system 
because a system can play the role of a model. For example, a Java program can be 
a model of a system and can also serve as a system for a UML model of the Java 
program.

   2.2.2    Metamodels 

 While models describe a specifi c abstraction of reality, metamodels are models of 
languages used to defi ne models  [44, 145] . For example, the structure of the UML 
language is the metamodel of UML diagrams (Figure  2.3 ). Thus, we infer that a 
given UML class diagram conforms to the UML metamodel, i.e., a model conforms 
to its metamodel.   

 Metamodel - based approaches are based on a staged architecture of models and 
metamodels, where the structure of lower level models is defi ned by higher level 
metamodels. This staged architecture defi nes a layered structure, which is applied 
to defi ne domain - specifi c languages and general - purpose languages, e.g., UML. 
Figure  2.4  illustrates a layered structure using UML as metamodeling language.   

     Figure 2.2     Notion of RepresentationOf in Megamodel.  
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 At the top level (M3) is situated the Meta Object Facility  [111]  (MOF), which 
is a class - based modeling language that defi nes itself. Language specifi cations like 
the UML specifi cation are viewed as (linguistic) instances  [7]  of the MOF situated 
on the metamodel level (M2). The model level (M1) contains concrete models 
defi ned by metamodels on M2. These models represent real - world systems situated 
on M0. 

 2.2.2.1     EMOF      Metamodeling relies on constructs like  package ,  class , 
inheritance ,  property , and  operation . Therefore, OMG reuses common core 
packages of UML 2.0 and MOF 2.0 to defi ne the essential constructs of MOF —
 EMOF. These essential constructs are reused by multiple modeling languages, query 

     Figure 2.4     Layered 
Architecture.

     Figure 2.3     Notion of ConformsTo in Megamodel.  
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languages, and transformation languages and comprise the core constructs for defi n-
ing metamodels. Figure  2.5  shows the main classes of EMOF.   

 A  Package  contains  Types  or nested Packages.  DataType  and  Class  are 
specializations of Type . A class contains properties and operations. An  Operation
specifi es the behavioral features of classifi ers. An operation specifi es a type ( Clas-
sifier ),  Parameters , and constraints for executing a behavior.  

 2.2.2.2    Ecore     Ecore is an implementation of EMOF defi ned in the Eclipse 
Modeling Framework  [164] . Ecore addresses practical issues regarding the structure 
of EMOF. For example, while EMOF defi nes one class for defi ning properties, Ecore 
defi nes two types of structural features: attributes and references. The practical 
aspects inherent in Ecore make it more suitable for adoption. 

 Figure  2.6  presents the main classes of Ecore. The class  EModelElement
allows to tag model elements with names. EPackage  is an  EModelElement  that 
contains classifi ers and sub - packages. Properties are defi ned by references and attri-
butes as structural features. An  EReference  is a type of structural feature that has 
as type an EClass . An  EAttribute  is a type of structural reference that has as type 
an EDataType .     

   2.2.3    Modeling Languages 

 Favre defi nes the role of a language in megamodeling as an abstract system compris-
ing a set of elements  [44]  or a set of coordinated models  [94] . 

 In the realm of modeling languages, i.e., languages for defi ning models, we 
identify two categories of languages according to the purpose of usage: general -
 purpose modeling languages (GPML) and domain - specifi c modeling languages 
(DSML).

 General - purpose modeling languages (GPML) provide constructs to represent 
multiple aspects of a system. For example, the Unifi ed Modeling Language (UML) 
and the Extensible Markup Language (XML) are general - purpose modeling lan-
guages used to model a wide variety of systems. 

     Figure 2.5     EMOF Classes.  
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 In contrast to GPML, domain - specifi c modeling languages (DSML) capture 
the essential concepts of a limited domain. They address specifi c applications. An 
Example of DSML is the W3C HyperText Markup Language (HTML). 

 According to Atkinson and K ü hne  [7] , a language defi nition covers four com-
ponents: (i) an abstract syntax, realized by metamodels in MDE; (ii) a concrete 
syntax that renders the concepts defi ned in the metamodel; (iii) well - formedness, 
defi ned by constraints on the abstract syntax; and (iv) the semantics describing 
the meaning of the concepts. For Harel and Rumpe  [67, 68] , a modeling language 
consists of a syntactic notation, its semantics, and semantic mappings that relate the 
syntactic expressions to the semantic domain. In the next subsections, we describe 
these components and illustrate them with examples. 

     Figure 2.6     Ecore Structure.  
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 Figure  2.7  depicts the relationships and concepts for defi ning a modeling 
language using the megamodel structure. The UML metamodel defi nes the model 
of the e - shop domain. This model is the input of an injector that serializes the input 
e - shop UML model into a textual representation of UML ( e-shop.uml.text ). This 
textual model conforms to the EBNF grammar for UML. A mapping function con-
nects the e - shop UML model to an equivalent representation ( fol-representation ) 
in fi rst - order logics (FOL), giving semantics to the UML language.   

 2.2.3.1    Syntax     The syntax provides a structure for arranging the elements of a 
given language. It comprises the symbols and signs that represent the language 
concepts. We identify two types of syntax: textual syntax and diagrammatic syntax. 

 A textual syntax comprises elements in the form of sequences of characters. 
A textual syntax defi nes the valid combinations of words and sentences. Examples 
of textual notations are the Human - Usable Textual Notation (HUTN)  [110] , HTML, 
and XML. 

 A diagrammatic syntax, in contrast, comprises elements in the form of pictorial 
signs. Examples of diagrammatic notations are UML and the Business Process 
Modeling Notation (BPMN)  [112] .  

 2.2.3.2    Abstract Syntax     Model - driven engineering as promoted by the OMG 
is based on UML diagrams as model descriptions. UML class diagrams are a means 
for describing application domains and software systems in the instance -
 schemametaschema dimension (ISM - dimension). UML class diagrams have their 
roots in entity - relationship (ER) descriptions of database schemas, on the one hand, 
and in design notations for object - oriented programs, on the other. 

 The OMG Meta Object Facility (MOF) is the relevant subset of UML to 
describe abstract syntax during metamodeling. In other words, in model - driven 
engineering, metamodels serve as abstract syntax, whereas models serve as snap-
shots of languages. 

 A snapshot is the static confi guration of a system or model at a given point in 
time  [137] . It consists of objects, values, and links that represent the instances of a 
metamodel.

 2.2.3.3    Semantics     The semantics of a modeling language allows for determin-
ing the truth value of elements in the model with respect to the system being defi ned. 
In other words, the semantics of a modeling language provides the meaning to its 
syntactical elements by mapping them to a meaningful representation  [68, 141] . 
France et al.   [48]  and Harel and Rumpe  [67]  denominate the target of these map-
pings ’  semantic model or semantic domain. For Harel and Rumpe  [67] , the semantic 
defi nition of a language comprises a semantic domain and a semantic mapping from 
the syntax to the semantic domain. 

 For example, the UML specifi cation  [117]  defi nes the semantics of the UML 
language by explaining each UML modeling concept using natural language. In a 
formal approach, Berardi  [12]  defi nes the semantics of UML class diagrams by 
mapping UML class diagram constructs to fi rst - order logic (FOL) formulas and, 
more specifi cally, to its fragment description logics (see Chapter  3 ).   
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   2.2.4    Model Transformations 

 A transformation defi nition is a set of transformation rules that together describe the 
conversion of one model in the source language into another related model in the 
target language  [90] . 

 A transformation rule is a function that takes as input one or more model ele-
ments of a language and generates one or more model elements of a target language. 
For example, the transformation model

uml Class x mof Class x: (? ) : (? )→

  produces one MOF class for each UML class, i.e.,

uml Class Product mof Class Product: ( ) : ( )→

 The Object Management Group (OMG) defi nes a standard model transforma-
tion language within the MOF metamodeling environment: Query/View/Transforma-
tion (QVT)  [113] . The call for proposals of the QVT language encouraged the 
development of other transformation languages: AGG  [167] , GReTL  [71] , and ATL  [82] .  

   2.2.5    Query Languages 

 In order to manipulate models, one requires a language capable of specifying query 
operations. In common MOF modeling practice, the Object Constraint Language 
(OCL)  [116]  is the textual query language used to specify such queries. 

 Beyond querying, OCL may also be used to specify invariants on classes and 
types in the class model, to describe pre -  and post conditions on operations and 
methods, and to specify initial and derived rules over a UML model. 

 The OCL syntax differs from SQL and SPARQL. Indeed, SQL and SPARQL 
do not require a starting point for query, i.e., it takes a global point of view. OCL, 
on the other hand, takes the object - oriented point of view, starting the queries from 
one given class. 

 In OCL, expressions are written in the context of an instance of a specifi c class 
 [116] . The reserved word  self  is used to denote this instance. 

 OCL expressions may be used to specify the body of query operations. Since 
OCL is a typed language, i.e., each OCL expression is evaluated to a value, expres-
sions may be chained to specify complex queries or invariants. 

 Let us consider the example of an international e - shop system. A snippet of 
the corresponding UML class diagram is presented in the Figure  2.8 .   

 The class  TaskCtrl  is responsible for controlling the sales orders. A  Sales-
Order  can be a  USSalesOrder  or a  CanSalesOrder , according to the  Country
where the Customer  lives. 

 The operation getSalesOrder() queries the country of the customer and returns 
the subclass of SalesOrder  to be instantiated (either  CanSalesOrder  or  USSale-
sOrder ). Following the example mentioned above, the target operation can be 
denoted by the following OCL expression:
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context TaskCtrl::getSalesOrder(): OclType

body : 

if customer.country.name  = 'USA' then

USSalesOrder

else

if customer.country.name  = 'Canada' then

CanSalesOrder

endif

endif

 The example above illustrates the usage of refl ection in OCL to deliver the 
right type. The usage of OCL refl ection capabilities is common in model transforma-
tions. OCL defi nes a predefi ned class called  OclAny , which acts as a superclass for 
every type except for the OCL pre - defi ned  collection  types. Hence, features of 
OclAny  are available on each object in every OCL expression, and every class in a 
UML model inherit all operations defi ned on  OclAny . We highlight two of these 
operations:

    •      oclIsTypeOf(typespec:  OclType ):  Boolean : evaluates to  true  if the given 
object is of the type  identifi ed by  typespec ;  

   •      oclIsKindOf(typespec:  OclType ):  Boolean : evaluates to  true  if the object is 
of the type  identifi ed by  typespec  or one of its subtypes.    

 We exemplify these operations as follows. The fi rst one evaluates to true if 
we have an instance of SalesOrder  and ask whether it is an instance of  Sales-
Order . The second one evaluates to true if we have an instance of  USSalesOrder
and ask whether it is an instance of USSalesOrder  or if we have an instance of 
USSalesOrder  and ask whether it is an instance of  SalesOrder ,  but not the 
opposite . 

 2.2.5.1    Semantics     The specifi cation of OCL is given in natural language, 
although an informative semantics based on  [134]  is part of the specifi cation. Beckert 
et al.   [11]  propose a translation of OCL into fi rst - order predicate logics. Bucker 
presents a representation of the semantics of OCL in higher - order logic  [25] .    

     Figure 2.8     UML Class Diagram of an E - Shop System.  
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   2.3    TECHNICAL SPACES 

 The concept of megamodel as used by Favre is platform - independent. Applying this 
structure into a set of technologies yields a technical space. Kurtev et al.   [94]  have 
coined the term technical space  to organize concepts and to compare sets of solu-
tions. A technical space comprises a framework for specifying models and metamod-
els, and a set of functions that operate on these models. 

 A common characteristic among several technical spaces is the organization 
of modeling levels. A technical space usually comprises a  metametamodel  (M3) that 
defi nes itself and defi nes metamodels (M2). Metamodels defi ne models (M1) that 
represent systems (M0). Additionally, a technical space has a set of languages associ-
ated with it. In the context of the MDE structure presented in Section  2.2 , we con-
sider two types of languages: query languages and transformation languages. 

 Figure  2.9  shows the MOF Technical Space. In MOF, the metametamodel is 
MOF itself and an example of metamodel is UML. The query metamodel is OCL, 
whereas examples of transformation metamodels are ATL and QVT.    

     Figure 2.9     MOF Technical Space.  
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   2.4    CONCLUSION 

 This chapter describes the main concepts and techniques around model - driven engi-
neering. It provides the fundamental understanding about the role of model - driven 
engineering in software engineering. The contribution is a descriptive model con-
necting the main concepts of MDE that can be used to model further technical 
spaces. We use the descriptive model in further chapters for organizing the concepts 
and technologies presented in this book.    



  CHAPTER 3
ONTOLOGY FOUNDATIONS     

     Ontology technologies organize system knowledge in conceptual domains according 
to its meaning. It addresses various software engineering needs by identifying, 
abstracting, and rationalizing commonalities, and checking for inconsistencies 
across system specifi cations. This chapter describes the state of the art of ontology 
technologies. The result is an outline of the languages and services around the Web 
Ontology Language. Additionally, we arrange these blocks using a model - driven 
perspective.

   3.1    INTRODUCTION 

 Ontologies play a fundamental role in bridging computing and human understand-
ing. The fi eld of artifi cial intelligence has been studying ontologies under multiple 
perspectives like knowledge engineering and natural - language processing. 

 Ontology languages have constructs similar to UML class - based modeling, 
e.g., classes, properties, and data cardinalities. Indeed, ontology languages provide 
various means for describing classes to the extent that explicit typing is not 
compulsory. 

 This chapter gives an overview of the scientifi c and technical results around 
ontologies, ontology languages, and their corresponding reasoning technologies 
used in model - driven engineering. We introduce the concept of ontology in 
Section  3.2 . 

 Section  3.3  presents the W3C standard ontology language for ontology - based 
information systems — the Web Ontology Language. Section  3.4  describes ontology 
services like reasoning and querying. In Section  3.6  we describe the rule language 
for the semantic web. 

 Figure  3.1  presents the stack of technologies described in this chapter above 
in colored boxes. In Section  3.8 , we describe the relations between these technolo-
gies using technical spaces. 

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

21



22 CHAPTER 3 ONTOLOGY FOUNDATIONS

   3.2    ONTOLOGY 

 The word  ontology  has its origin in philosophy, and it denotes the philosophical 
study of the nature of existence. In this sense, ontology involves identifying the 
fundamental categories of things. For example, ontological categories might be used 
to group objects as essential or existential, abstract or concrete. 

 Computer science took the term ontology and attributed a technical meaning 
to it:  “ An ontology is an explicit specifi cation of a conceptualization ”   [62] . Studer 
et al .  [166]  argue that this specifi cation is also formal, i.e., an ontology is an  “ explicit 
and formal specifi cation of a conceptualization ”   [4] . 

 In the semantic web fi eld, ontologies provide shared domain conceptuali-
zations representing knowledge by a vocabulary and, typically, logical defi nitions 
 [62]  to model the problem domain as well as the solution domain. Developers 
usually use ontologies as domain models for ontology - based information systems. 

   3.2.1    Ontology Modeling 

 The Web Ontology Language (OWL)  [61]  provides a class defi nition language for 
ontologies, i.e., OWL allows for the defi nition of classes by required and implied 
logical constraints on properties of their members. 

 The process of modeling ontologies exhibits a couple of overlaps with the 
development of conceptual models  [162] . Requirements elicitation is followed by 
the design phase, where classes and relationships are defi ned similarly as in a UML 
class diagram. This stage, however, is followed by another step that depends on the 
ontology modeling paradigm and its corresponding language. 

 In the realm of description logic based ontologies  [9] , the strength of ontology 
modeling lies in disentangling conceptual hierarchies with an abundance of relation-
ships of multiple generalization of classes. For this purpose, description logics allow 
for deriving concept hierarchies from logically, precisely defi ned class axioms, 
stating necessary and suffi cient conditions of class membership. 

 In the realm of logic programming - based ontologies  [2] , the strength of ontol-
ogy modeling lies in a formally integrated consideration of expressive class and rule 
defi nitions. 

     Figure 3.1     Semantic Web Stack Covered in 
This Chapter.  
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 In both paradigms, the structure of class defi nitions may be validated by intro-
specting the model, using corresponding reasoning technology. In the fi rst model of 
description logics, this is indeed the focus of its reasoning technology, while, in the 
second model, the focus of the corresponding reasoning technology is on reasoning 
with objects in a logical framework. 

 An ontology constitutes a formal conceptual model. Hence, its core concerns, 
i.e., formal defi nitions of classes and relationship, are germane to the software engi-
neering community. However, ontologies have always been used differently than 
conceptual models in software and data engineering. Hence, the perspectives on 
modeling and using ontologies are slightly twisted if compared to conceptual models 
such as UML class diagrams. 

 For the sake of illustration, Figure  3.2  depicts an incomplete specifi cation of 
the example presented in the Figure  2.8  using a description logic syntax. The identi-
fi er  Customer  is used to declare the corresponding class (3.1) as a specialization of 
Thing  (T), since classes in OWL are specializations of the reserved class  Thing . 
The class Consumer  has a restriction on property  country  with exactly one 
Country  (3.2). The class  Country   contains  the individuals  USA  and  CANADA  (3.3). 
USSalesOrder  is defi ned as a subclass of a  SalesOrder  with at least one restric-
tion on the property country , the value range must include the country  USA  (3.4). 
The description of the class CanSalesOrder  is analogous. The intersection of both 
classes is empty ( ⊥ ), i.e., they are disjoint (3.6). The class  SalesOrder  is equal to 
the union of CanSalesOrder  and  USSalesOrder , i.e., it is a complete generaliza-
tion of both classes (3.7).     

     Figure 3.2     E - Shop Example with Description Logic Syntax.  
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   3.3    THE ONTOLOGY WEB LANGUAGE 

 The language and reasoning paradigm that has been predominantly used and 
researched is the family of description logic languages covered by the W3C recom-
mendation Web Ontology Language (OWL)  [61] . Description logic languages allow 
for capturing the schema in the  “ terminological box ”  (T - Box) and the objects and 
their relationships in the  “ assertional box ”  (A - Box). The terminological box captures 
knowledge about the class level, i.e., independent of a given situation. 

 The sub - languages of OWL (or profi les) differ in the set of modeling con-
structs they support. Depending on the exact confi guration of allowed modeling 
primitives, a profi le requires sound and complete reasoning algorithms that are 
NLogSpace - Complete (OWL 2 QL), PTime - Complete (OWL 2 EL and OWL 2 RL), 
NExpTime - Complete (OWL DL), or 2NExpTimeComplete (OWL 2)  [181] . 

 Each OWL sub - language corresponds to a given set of constructs in descrip-
tion logics. For example, OWL 2 EL corresponds to the description logic language 
EL   +   +  and OWL DL corresponds to  SHOIN(D) . OWL 2 extends both and it cor-
responds to SROIQ(D)  (see  [9]  for more about description logics). 

   3.3.1     OWL  2 Syntax 

 In order to save and share OWL 2 ontologies, one requires a concrete syntax for 
OWL 2. There are multiple concrete syntax notations for OWL 2: RDF/XML syntax, 
OWL/XML syntax, Manchester Syntax, Functional Syntax, and Turtle. Each of these 
notations is suitable for a specifi c purpose. In this work, we use the OWL 2 Func-
tional Syntax due to its axiomatic nature, facilitating the analysis of the OWL 2 
formal structure. 

 An OWL 2 Vocabulary  VO     =    ( Vcls ,  Vop ,  VD ,  Vdp ,  Vind ,  Vlt ) is a 6 - tuple consisting 
of the following elements:

1.      Vcls  is a set of named classes, class expressions, and the built - in classes 
owl:Thing  and  owl:Nothing .  

2.      Vop  is a set of object properties, including the built - in object properties 
owl:topObjectProperty  and  owl:bottomObjectProperty .  

3.      Vdp  is a set of data properties, including the built - in data properties 
owl:topDataProperty  and  owl:bottomDataProperty .  

4.      Vind  is a set of individuals.  

5.      Vdt  is a set of datatypes.  

6.      Vlt  is a set of literals.    

 Given the vocabulary  VO , we use the following convention in Tables  3.1  to  3.4 :

    •       OP  indicates an object property;    

   •       OPE  indicates an object property expression;  

   •       DP  indicates a data property;  

   •       DPE  indicates a data property expression;  

   •       C  indicates a class;  
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  TABLE 3.1    Syntax of Class Expression Axioms. 

   OWL 2 Syntax     Description Logic Syntax  

  SubClassOf( CE1   CE2 )  CE1          CE2

  EquivalentClasses( CE1     ...     CEn )     CE1     ≡     ...     ≡     CEn

  DisjointClasses( CE1     ...     CEn )  CE1          ...          CEn     ≡     ⊥
  DisjointUnion( C CE1     ...     CEn )  CE1          ...          CEn     ≡     C  and  CE1          ...          CEn     ≡     ⊥

  TABLE 3.2    Syntax of Object Property Axioms. 

   OWL 2 Syntax     Description Logic Syntax  

  SubObjectPropertyOf(ObjectPropertyChain 
(OPE1     ...     OPEn ) OPE)  

OPE1   o     ...     o OPE n          OPE

  SubObjectPropertyOf( OPE1   OPE2 )  OPE1          OPE2

  EquivalentObjectProperties( OPE1     ...     OPEn )     OPE1     ≡     ...     ≡     OPEn

  DisjointObjectProperties( OPE1     ...     OPEn )  OPE1          ...          OPEn     ≡     ⊥
  InverseObjectProperties( OPE1   OPE2 )     OPE1     ≡     OPE2

 − 

  ObjectPropertyDomain( OPE CE )  OPE .            CE

  ObjectPropertyRange( OPE CE )            ∀OPE . CE

  FunctionalObjectProperty( OPE )       ≤    1  OPE

  E InverseFunctionalObjectProperty( OPE )       ≤    1  OPE − 

  Refl exiveObjectProperty( OPE )              OPE . Self

  E.Self Irrefl exiveObjectProperty( OPE )  OPE . Self          ⊥
  SymmetricObjectProperty( OPE )  OPE          OPE − 

  AsymmetricObjectProperty( OPE )  OPE          ¬OPE − 

  TransitiveObjectProperty( OPE )     OPE + 

  TABLE 3.3    Syntax of Data Property Axioms. 

   OWL 2 Syntax     Description Logic Syntax  

  SubDataPropertyOf( DPE1   DPE2 )  DPE1          DPE2

  EquivalentDataProperties( DPE1     ...     DPEn )     DPE1     ≡     ...     ≡     DPEn

  DisjointDataProperties( DPE1     ...     DPEn )  DPE1          ...          DPEn     ≡     ⊥
  DataPropertyDomain( DPE CE )  DPE . Literal          DR

  DataPropertyRange( DPE DR )  Literal          ∀DPE . DR

  FunctionalDataProperty( DPE )  Literal     ≤    1  DPE

  DatatypeDefi nition( DT DR )     DT     ≡     DR

   •       CE  indicates a class expression;  

   •       DT  indicates a datatype;  

   •       DR  indicates a data range;  

   •       a  indicates an individual (named or anonymous);  

   •       lt  indicates a literal.    
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  TABLE 3.5    Syntax of Class Expressions. 

   OWL 2 Syntax     Description Logic Syntax  

  ObjectIntersectionOf( CE1     ...     CEn )  CE1          ...          CEn

  ObjectUnionOf( CE1     ...     CEn )  CE1          ...          CEn

  ObjectComplementOf( CE )  ¬CE

  ObjectOneOf( a1     ...     an )    { a1 ,    ...    ,  an }  

  ObjectSomeValuesFrom( OPE CE )  OPE . CE

  ObjectAllValuesFrom( OPE CE )     ∀OPE . CE

  ObjectHasValue( OPE a )     OPE .{ a }  

  ObjectHasSelf( OPE )  OPE.Self

  ObjectMinCardinality( n OPE )     ≥n OPE

  ObjectMaxCardinality( n OPE )     ≤n OPE

  ObjectExactCardinality( n OPE )     =n OPE

  ObjectMinCardinality( n OPE CE )     ≥n OPE.CE

  ObjectMaxCardinality( n OPE CE )     ≤n OPE.CE

  ObjectExactCardinality( n OPE CE )     =n OPE.CE

  DataSomeValuesFrom( DPE1     ...     DPEn  DR )    { DPE1 .DR } … { DPEn .DR }  

  DataAllValuesFrom( DPE1     ...     DPEn  DR )    { ∀DPE1 .DR } … { ∀DPEn .DR }  

  DataHasValue( DPE lt )     DPE .{ lt }  

  DataMinCardinality( n DPE )     ≥n DPE

  DataMaxCardinality( n DPE )     ≤DPE

  DataExactCardinality( n DPE )     =n DPE

  DataMinCardinality( n DPE DR )     ≥n DPE.DR

  DataMaxCardinality( n DPE DR )     ≤n DPE.DR

  DataExactCardinality( n DPE DR )     =n DPE.DR

 In order to illustrate the equivalences between OWL 2 and description logics, 
we present a list of OWL 2 axioms with their corresponding representation in 
description logics. Tables  3.1 ,  3.2 , and  3.3  present lists of axioms for class expres-
sions, object properties, and data properties. Table  3.4  presents the list of assertions, 
Table  3.5  the list of class expressions, and Table  3.6  shows the syntax of data ranges.    

  TABLE 3.4    Syntax of Assertions. 

   OWL 2 Syntax     Description Logic Syntax  

  SameIndividual( a1     ...     an )  a1        ...        an

  DifferentIndividuals( a1     ...     an )     a1     ≠     ...     ≠     an

  ClassAssertion( CE a )     CE ( a )  

  ObjectPropertyAssertion( OPE a1   a2 )     OPE ( a1 ,  a2 )  

  NegativeObjectPropertyAssertion( OPE a1   a2 )  ¬OPE ( a1 ,  a2 )  

  DataPropertyAssertion( DPE a lt )     DPE ( a1 ,  lt )  

  NegativeDataPropertyAssertion( DPE a lt )  ¬DPE ( a1 ,  lt )  
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   3.3.2     OWL  2 Semantics 

 OWL 2 corresponds to the description logic  SROIQ(D)   [75]  and has a model -
 theoretic semantics defi ned by interpretations  [105] . Model - theoretic semantics 
allows for interpreting unambiguously the legitimate expressions of a given lan-
guage; for evaluating the truth of a language statement under a particular interpreta-
tion; and for carrying out automated reasoning with these statements  [43] . 

 An interpretation is a pair  I     =    ( ΔI ,  ·  I ), where  ΔI  is the domain and  · I is the 
interpretation function that satisfi es the conditions described in Tables  3.7 – 3.11 . We 
say an interpretation I  satisfi es an ontology  O  if and only if it satisfi es every axiom 
in O .    

   3.3.3    World Assumption and Name Assumption 

 Analyzing the semantics of OWL, we can see that OWL does not assume unique 
names for individuals. For example, according to the defi nition of functional proper-
ties in Table  3.8  ( ∀x ,  y1 , y2  : ( x ,  y1 )    ∈    ( OPE ) I  and ( x ,  y2 )    ∈    ( OPE ) I  implies  y1     =     y2 ), 
for the two pairs of functional object property assertions p ( x ,  y1 ) and  p ( x ,  y2 ), it is 
inferred that y1  and  y2  are the same individual. The knowledge base becomes incon-
sistent only if it is asserted that y1  and  y2  are different individuals ( y1     ≠     y2 ). 

 In contrast, according to the semantics of UML class - based modeling, the 
model would be inconsistent since it is assumed by default that y1  and  y2  are different 
individuals.

 Another important assumption is whether the set of instances is considered 
complete or not (world assumption). The underlying semantics of UML class - based 

  TABLE 3.6    Syntax of Data Ranges. 

   OWL 2 Syntax     Description Logic Syntax  

  DataIntersectionOf( DR1     ...     DRn )  DR1          ...          DRn

  DataUnionOf( DR1     ...     DRn )  DR1          ...          DRn

  DataComplementOf( DR )  ¬DR

  DataOneOf( lt1     ...     ltn )    { lt1 ,    ...    ,  ltn }  

  TABLE 3.7    Semantics of Class Expression Axioms. 

   Description Logic Syntax     Semantics  

CE1          CE2   ( CE1 ) I     ⊆    ( CE2 ) I

CE1     ≡     ...     ≡     CEn   ( CEj ) I     =    ( CEk ) I  for each 1    ≤     j     ≤     n  and each 1    ≤     k     ≤     n

CE1          ...          CEn     ≡     ⊥ ( ) ( )CE CEj k∩ = /0 for each 1    ≤     j     ≤     n  and each 
1    ≤     k     ≤     n  such that  j     ≠     k

CE1          ...          CEn     ≡     C  and 
CE1          ...          CEn     ≡     ⊥

  ( CE1 ) I     ∪     ...     ∪    ( CEn ) I     =    ( C ) I  and   ( ) ( )CE CEj k∩ = /0 for 
each 1    ≤     j     ≤     n  and each 1    ≤     k     ≤     n  such that  j     ≠     k
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  TABLE 3.9    Semantics of Data Property Axioms. 

   Description Logic Syntax     Semantics  

DPE1          DPE2   ( DPE1 ) I     ⊆    ( DPE2 ) I

DPE1     ≡     ...     ≡     DPEn   ( DPEj ) I     =    ( DPEk ) I  for each 1    ≤     j     ≤     n  and each 1    ≤     k     ≤     n

DPE1          ...          DPEn     ≡     ⊥ ( ) ( )DPE DPEj k∩ = /0 for each 1    ≤     j     ≤     n  and each 1    ≤     k     ≤     n
such that j     ≠     k

DPE . Literal       DR ∀x , y  : ( x , y )    ∈    ( DPE ) I  implies  x     ∈    ( DR ) I

Literal          ∀DPE .  DR ∀x , y  : ( x , y )    ∈    ( DPE ) I  implies  y     ∈    ( DR ) I

Literal     ≤    1  DPE ∀x , y1 , y2  : ( x , y1 )    ∈    ( DPE ) I  and ( x , y2 )    ∈    ( OPE ) I  implies  y1     =     y2

DT     ≡     DR   ( DT ) I     =    ( DR ) I

  TABLE 3.10    Semantics of Assertions. 

   Description Logic Syntax     Semantics  

a1        ...        an   ( aj ) I     =    ( ak ) I  for each 1    ≤     j     ≤     n  and each 1    ≤     k     ≤     n

a1     ≠     ...     ≠     an   ( aj ) I     ≠    ( ak ) I  for each 1    ≤     j     ≤     n  and each 1    ≤     k     ≤     n  such that  j     ≠     k

CE ( a )    ( a ) I     ∈    ( CE ) I

OPE ( a1 ,  a2 )    (( a1 ) I , ( a2 ) I )    ∈    ( OPE ) I

¬OPE ( a1 ,  a2 )    (( a1 ) I , ( a2 ) I )    ∉    ( OPE ) I

DPE ( a1 ,  lt )    (( a1 ) I , ( lt ) I )    ∈    ( DPE ) I

¬DPE ( a1 ,  lt )    (( a1 ) I , ( lt ) I )    ∉    ( DPE ) I

  TABLE 3.8    Semantics of Object Property Axioms. 

   Description Logic Syntax     Semantics  

OPE1   o     ...     o OPE n          OPE ∀y0 ,    ...    ,  yn  : ( y0 ,  y1 )    ∈    ( OPE1 ) I  and    ...    and ( yn     −    1,  yn )
∈    ( OPEn ) I  implies ( y0 ,  yn )    ⊆    ( OPE ) I

OPE1          OPE2   ( OPE1 ) I     ⊆    ( OPE2 ) I

OPE1     ≡     ...     ≡     OPEn   ( OPEj ) I     =    ( OPEk ) I  for each 1    ≤     j     ≤     n  and each 1    ≤     k     ≤     n

OPE1          ...          OPEn     ≡     ⊥ ( ) ( )OPE OPEj k∩ = /0 for each 1    ≤     j     ≤     n  and each 
1    ≤     k     ≤     n  such that  j     ≠     k

OPE .            CE ∀x,y  : ( x,y )    ∈    ( OPE ) I  implies  x     ∈    ( CE ) I

          ∀OPE . CE ∀x,y  : ( x,y )    ∈    ( OPE ) I  implies  y     ∈    ( CE ) I

     ≤    1  OPE ∀x,y1 , y2  : ( x,y1 )    ∈    ( OPE ) I  and ( x,y2 )    ∈    ( OPE ) I  implies 
y1     =     y2

     ≤    1  OPE − ∀x1 , x2 , y , : ( x1 , y )    ∈    ( OPE ) I  and ( x2 , y )    ∈    ( OPE ) I  implies 
x1     =     x2

          OPE . Self ∀x  :  x     ∈     ΔI  implies ( x , x )    ∈    ( OPE ) I

OPE . Self          ⊥ ∀x  :  x     ∈     ΔI  implies ( x , x )    ∉    ( OPE ) I

OPE          OPE − ∀x , y  : ( x , y )    ∈    ( OPE ) I  implies ( y , x )    ∈    ( CE ) I

OPE          ¬OPE − ∀x , y  : ( x , y )    ∈    ( OPE ) I  implies ( y , x )    ∉    ( CE ) I

OPE + ∀x , y , z  : ( x , y )    ∈    ( OPE ) I  and ( y , z )    ∈    ( OPE ) I  implies 
(x , z )    ∈    ( CE ) I
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modeling assumes that the set of instances of a given model is complete, i.e., the 
set of instances has exactly one interpretation. In this one interpretation, the classes 
and relations in the model are interpreted by the objects and tuples in the instance. 
Therefore, the lack of information in the set of objects and values that are an instance 
of a UML based - class model is interpreted as negative information, since there is 
only one interpretation and everything that does not belong to this interpretation 
belongs to its complement (closed - world assumption). 

 In contrast, OWL assumes incomplete knowledge by default. The set of indi-
viduals, literals, and property assertions has many different interpretations. There-
fore, the absence of information in this set is only the evidence of lack of knowledge 
(open - world assumption). 

 Each of these approaches (OWA and CWA) has its proper place. OWA serves 
to describe knowledge in an extensible way, since OWL is monotonic. The OWA is 
suitable to represent the core knowledge of a domain. 

  TABLE 3.11    Semantics of Class Expression. 

   Description Logic Syntax     Semantics  

CE1          ...          CEn   ( CE1 ) I     ∩     ...     ∩    ( CEn ) I

CE1          ...          CEn   ( CE1 ) I     ∪     ...     ∪    ( CEn ) I

¬CE ΔI ( CE ) I

  { a1 ,    ...    ,  an }    {( a1 ) I ,    ...    , ( an ) I }  

OPE . CE   { x| y  : ( x ,  y )    ∈    ( OPE ) I  and  y     ∈    ( CE ) I }  

∀OPE.CE   {x |∀y  : ( x ,  y )    ∈    ( OPE ) I  implies  y     ∈    ( CE ) I }  

OPE .{ a }    { x| ( x , ( a ) I )    ∈    ( OPE ) I }  

OPE.Self   { x| ( x ,  x )    ∈    ( OPE ) I }  

≥n OPE   { x|# { y| ( x ,  y )    ∈    ( OPE ) I }  ≥     n }  

≤n OPE   { x|# { y| ( x ,  y )    ∈    ( OPE ) I }  ≤     n }  

=n OPE   { x|# { y| ( x ,  y )    ∈    ( OPE ) I }    =     n }  

≥n OPE.CE   { x|# { y| ( x ,  y )    ∈    ( OPE ) I  and  y     ∈    ( CE ) I }  ≥     n }  

≤n OPE.CE   { x|# { y| ( x ,  y )    ∈    ( OPE ) I  and  y     ∈    ( CE ) I }  ≤     n }  

=n OPE.CE   { x|# { y| ( x ,  y )    ∈    ( OPE ) I  and y    ∈    ( CE ) I }    =     n }  

  { DPE1 . DR } … { DPEn .DR }    { x| y1 ,    ...    ,  yn  : ( x, y k )    ∈    ( DPEk ) I  for each 
1    ≤     k     ≤     n  and ( y1 ,    ...    ,  yn )    ∈    ( DR ) I }  

  { ∀DPE1 . DR } … { ∀DPEn . DR }    { x|∀y1 ,    ...    ,  yn  : ( x ,  yk )    ∈    ( DPEk ) I  for each 
1    ≤     k     ≤     n  and ( y1 ,    ...    ,  yn )    ∈    ( DR ) I }  

DPE .{ lt }    { x| ( x , ( lt ) I )    ∈    ( DPE ) I }  

≥n  DPE    { x|# { y| ( x ,  y )    ∈    ( DPE ) I  }  ≥     n }  

≤n  DPE    { x|# { y| ( x ,  y )    ∈    ( DPE ) I  }  ≤     n }  

=n  DPE    { x|# { y| ( x ,  y )    ∈    ( DPE ) I  }    =     n }  

≥n DPE.DR   { x|# { y| ( x ,  y )    ∈    ( DPE ) I  and  y     ∈    ( DR ) I }  ≥     n }  

≤n DPE.DR   { x|# { y| ( x ,  y )    ∈    ( DPE ) I  and  y     ∈    ( DR ) I }  ≤    n}  

=n DPE.DR   { x|# { y| ( x ,  y )    ∈    ( DPE ) I  and  y     ∈    ( DR ) I }    =     n }  
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     Figure 3.3     Closing the Domain of E - Shop with OWL Axioms.  

 Closed - world assumption is appropriate for defi ning integrity constraints and 
validation based on negation as failure (NAF). The negation as failure inference 
allows for deriving the negation of a proposition if it is not possible to obtain the 
affi rmation of this proposition. 

 Let us use the example depicted in Table  3.2 . We consider the following 
instances and property assertions: country ( JOHN ,  USA ),  country ( HANS ,  CANADA ). 
Under the CWA, querying the ontology for customers who  are not  American ( Cus-
tomer          ¬ country.{ USA }?) produces  HANS . Since there is no fact about  HANS  being 
American, it is derived that he is not. The same query under OWA would produce 
no results, since there are no facts asserting that HANS  is not American. To achieve 
the same result, we need to close the domain. 

 There are OWL constructs that can be used to constrain the interpretation to 
a defi ned set of individuals, i.e., to  close the domain  (closed - domain assumption). 
Figure  3.3  shows axioms used to close the domain of the ontology presented in the 
Figure  3.2 . One may declare that the set of all existing individuals comprises { HANS , 
JOHN ,  ORDER1 ,  USA ,  CANADA } (Line 3.16). Moreover, because of the non - unique 
name assumption, we have to assert that all individuals are different from each other 
(Line 3.17). Additionally, we declare that the classes  SalesOrder ,  Customer  and 
Country  are disjoint from each other (Line 3.18) as well as the subclasses of Sale-
sOrder are (Line 3.19).   

 By adding these axioms, we can also deliver the same results of CWA using 
OWA in the query aforementioned. We can infer that  HANS  does not live in  USA , 
since HANS  is a  Customer , a  Customer  must live in exactly one country (3.2),  HANS
lives in CANADA , and  CANADA  is different from  USA . 

 However, closing the domain does not imply CWA because NAF is not in 
place. For example, if we remove the object property assertion Country  ( HANS , 
CANADA ) and ask the same query, using CWA, the result is still  HANS  because the 
lack of information about HANS . By using OWA, there are no results, since the lack 
of information about HANS  is not enough to infer that he is not American. 

 Research in the fi eld of combining description logics and logic programming 
 [103]  provides solutions to support OWL reasoning with CWA. Different strategies 
have been explored like adopting an epistemic operator  [35, 87]  or extending OWL 
with the specifi cation of external predicates that implements the idea of negation as 
failure  [131] . 

 The CWA and OWA are not contradictory. Recent results  [104]  show that it 
is possible to control the degree of incompleteness in an ontology obtaining a more 
versatile formalism. Such  “ under - specifi cation ”  can be used to allow reuse and 
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extension and does not mean insuffi ciency. Again using our example, suppose we 
defi ne an incomplete list of countries part of the North American Free Trade Agree-
ment (NAFTA) comprising only Canada and USA, because these are the countries 
the store ships to, and we do not need to know the others. If the store starts shipping 
to Mexico at some point in time, a query about whether Mexico is a member of 
NAFTA returns  undefi ned , which is reasonable, providing that our list of NAFTA 
countries is incomplete and does not include Mexico.   

   3.4    ONTOLOGY SERVICES 

 Ontology - Based Information Systems  [170]  provide users with a set of functional-
ities to manage ontologies — ontology services. 

 Tran  et al .  [170]  described a set of ontology services for supporting ontology 
engineering. In this book, we concentrate on the following services: reasoning and 
querying.

   3.4.1    Reasoning Services 

 Reasoning services are services provided by reasoning systems with respect to the 
ontology. Standard reasoning services are services available in all reasoning systems, 
whereas non - standard reasoning services are extensions of basic reasoning 
services.

 The standard reasoning services for TBox are satisfi ability and subsumption. 
A class  C  is unsatisfi able ( C          ⊥ ) with respect to an ontology  O  if  C  is empty (does 
not have any instances) in all models of O . Satisfi ability checking is useful for veri-
fying whether an ontology is meaningful, i.e., whether all classes are instantiable. 

 Subsumption is useful to hierarchically organize classes according to their 
generality. A class  C  is subsumed by another class  D  with respect to an ontology  O  if 
the set denoted by C  is a subset of the subset denoted by  D  for every model of  O . 

 The standard reasoning services for ABox are instance checking, consistency, 
realization, and retrieval. Instance checking  proves whether a given individual  i
belongs to the set described by the class C . An ontology is  consistent  if every indi-
vidual i  is an instance of only satisfi able classes. The  realization  service identifi es 
the most specifi c class a given individual belongs to. Finally, the  retrieval  service 
identifi es the individuals that belong to a given concept.  

   3.4.2    Querying 

 Querying ontologies is a research fi eld that comprises multiple techniques and lan-
guages. We limit the scope of our analysis to two languages, conjunctive query and 
the SPARQL - like language SPARQL - DL. We address conjunctive queries because 
they have been the querying mechanism for description logic - based knowledge 
bases. The reason for using SPARQL is that it is a W3C standard query language 
 [69] , and it includes the defi nition of graph pattern matching for OWL 2 Entailment 
Regime  [55] . 
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 3.4.2.1    Conjunctive Query     Conjunctive queries correspond to the conjunc-
tive existential subset of fi rst - order logic formulas, i.e., disjunction (  ), negation 
(¬ ), or universal quantifi cation ( ∀ ) are not allowed. The body of a conjunctive query 
consists of one or more atoms binding variables or literal values to class expressions 
or property expressions in the ontology  [77] . 

 For example, the query

Q x y Customer x hasOrder x y( , ) : ( ) ( , )− ∧

  is a query for any instance of the concept Customer ( x  is a distinguished variable) 
that have some order ( y  is a non - distinguished variable). 

 Let  VO     =    ( Vcls ,  Vop ,  Vdp ,  Vind ,  VD ,  Vlit ) be an OWL vocabulary. Let 
x     ≡    { y1 ,    . . .    ,  yn } and  y     ≡    { x1 ,    . . .    ,  xn } be sets of distinguished and non - distinguished 
variables. A conjunctive query  Q ( si ) is a conjunction of atoms in the form:

Q s P s P ci i i i i( ) ( ) ( )← � �∪
  where 

   •       P     ∈     Vcls     ∪     Vop     ∪     Vdp     ∪     VD

   •       s     ≡     y     ∪     x

   •       c     ∈     Vind     ∪     Vlit

 An answer of a conjunctive query  Q  w.r.t. ontology is an assignment  σ  of 
individuals to distinguished variables, such that I     |=     Q ( xσ ,  y ).  

 3.4.2.2     SPARQL      SPARQL 1.0  [69]  is the triple - based W3C standard query 
language for RDF graphs. The semantics of SPARQL 1.0 is based on graph pattern 
matching and does not take into account OWL, although the specifi cation allows for 
extending the SPARQL basic graph matching. SPARQL 1.1  [69]  will address this 
problem by specifying an OWL entailment regime for SPARQL  [55] . 

 Sirin and Parsia  [154]  have done preliminary work on answering full SPARQL 
queries on top of OWL ontologies on SPARQL - DL. Next, we describe the abstract 
syntax of SPARQL - DL and its semantics. 

SPARQL-DL Abstract Syntax.   The abstract syntax of SPARQL - DL com-
prises basically the extension of the OWL abstract syntax to cover the usage of vari-
ables and blank nodes for classes, properties, individuals, and literals. Let VO     =    ( Vcls , 
Vop ,  Vdp ,  Vap ,  Vind ,  VD ,  Vlit ) be an OWL vocabulary. Let  Vbnode  and  Vvar  be the set 
of blank nodes and set of variables. A SPARQL - DL query atom  q  is of the form:

q ← Type( a, C) | PropertyValue( a, p, v) | SameAs( a, b) | 

DifferentFrom(a, b) | 

ClassExpressionAxioms(CE1, . . . , CEn) | 

ObjectPropertyAxioms(OPE1, . . . , OPEn) | 

DataPropertyAxioms(DPE) | Annotation( s, p a,o)

where a ,  b     ∈     Vind     ∪     Vbnode     ∪     Vvar ,  v     ∈     Vind     ∪     Vlit     ∪     Vbnode     ∪     Vvar , 
p     ∈     Vop     ∪     Vdp     ∪     Vvar ,  CE     ∈     Vcls     ∪     Vvar , s     ∈     Vcls     ∪     Vop     ∪     Vdp     ∪     Vap     ∪     Vind     ∪     VD , 
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pa     ∈     Vap ,  o     ∈     Vcls     ∪     Vop     ∪     Vdp     ∪     Vap     ∪     Vind     ∪     VD     ∪     Vlit . A SPARQL - DL query  Q  is 
a fi nite set of SPARQL - DL query atoms and the query is interpreted as the conjunc-
tion of the elements in the set. 

 For example, the query

Type(?x, ObjectHasValue( country, USA))

returns all individuals that have the individual USA  as value of the property 
country . 

 The semantics of SPARQL - DL extends the semantics of OWL to provide 
query evaluation. We say that there is a model of the query  Q     =     q1          . . .          qn

(I     |=     σ Q ) with respect to an evaluation  σ  iff  I     |=     σ q i  for every  i     =    1,    . . .    ,  n . 
 A solution to a SPARQL - DL query  Q  with respect to an OWL ontology  O  is 

a variable mapping   μ  :  Vvar     →     Vuri     ∪     Vlit  such that  O     |=     μ ( Q ).     

   3.5    ONTOLOGY ENGINEERING SERVICES 

 On top of core ontology services, ontology engineers count on functionalities to 
support the ontology development life cycle  [170] . Two ontology engineering ser-
vices are particular useful for application in UML class - based modeling: explanation 
and ontology matching. 

   3.5.1    Explanation 

 Users rely on reasoning services for classifi cation and consistency checking. 
However, in case of inconsistencies in ontologies with a large amount of classes, 
users need to identify which constructs are causing the inconsistencies. Therefore, 
research on explanations of inferred assertions is gaining attention. 

 Explanations can be seen as a form of  debugging  ontologies. It consists of 
identifying and computing justifi cations, i.e., the set of axioms causing the 
subsumption.

 There are distinguishing methods for computing a simple justifi cation or all 
justifi cations  [83, 84] . 

 3.5.1.1    Black Box Method for Single Justifi cation     The algorithm of a black -
 box technique for computing a justifi cation comprises two steps. Firstly, axioms of 
an ontology O  are inserted into a new ontology  O′  until a class C becomes unsatisfi -
able with regard to O′ . Secondly, irrelevant axioms are pruned until concept C 
becomes satisfi able, i.e., a single minimal justifi cation is achieved.  

 3.5.1.2    Computing All Justifi cations     Once a single justifi cation is achieved, 
one requires other techniques to compute the remaining justifi cations. Please refer 
to Kalyanpur et al.   [84]  for a description of a variation of the Hitting Set Tree (HST) 
algorithm  [129]  for fi nding all justifi cations.   
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   3.5.2    Ontology Matching 

 Ontology matching is the discipline responsible for studying techniques for reconcil-
ing multiple resources on the web. It comprises two steps: matching and determining 
alignments and the generation of a processor for merging and transforming  [38] . 
Matching identifi es the correspondences. A correspondence for two ontologies  A  and 
B  is a quintuple, including an id, an entity of ontology  A , an entity of ontology  B , a 
relation (equivalence, more general, disjointness), and a confi dence measure. A set 
of correspondences forms an alignment. Correspondences can be done at the schema -
 level (metamodel) and at the instance - level (model). 

 Matchings can be based on different criteria: name of entities, structure (rela-
tions between entities, cardinality), or background knowledge like existing ontolo-
gies or wordnet. Techniques can be string - based or rely on linguistic resources like 
wordnet.

 Furthermore, matchings are established according to the different structures 
that are compared. There are three techniques for comparing structures: internal 
structure comparison, relational structure comparison, and extensional techniques. 
Internal structure comparison includes the comparison of property, key, datatype, 
domain, and multiplicities. Relational structure comparison comprises the compari-
son of the taxonomic structure between the ontologies. 

 Finally, the extensional techniques cover the usage of extensional information, 
e.g., formal concept analysis for comparison.   

   3.6    RULES 

 Efforts in extending the expressiveness of the OWL language has led to the combi-
nation of OWL with the unary/binary Datalog sublanguages of RuleML  [18] : The 
Semantic Web Rule Language (SWRL)  [76] . 

 A drawback of SWRL rules is that they are undecidable in general. Never-
theless, Motik et al.  have identifi ed the decidable subset of OWL, usually called 
description logic safe rules  [107] . Although a syntax for description logic safe 
rules is not part of the OWL 2, standard existing work  [54]  defi nes such a syntax 
which is supported by the de facto standard OWL application program interface 
(OWL API)  [72] . Thus, engineers can use description logic safe rules over reasoners 
that implement the tableau algorithm for description logic safe rules extension 
to OWL. 

 A rule comprises an antecedent and a consequent. Antecedents and conse-
quents are composed by a set of atoms. An atom has the form  P ( x ) where  P  can be 
a class expression, data range, object property expression, data property expression, 
sameAs  construct,  differentFrom  construct, or built - ins and x are variables or 
named individuals. 

 The model - theoretic semantics for SWRL extends the semantics of OWL  [105]  
to defi ne extensions of OWL interpretations that map variables to elements of the 
ontology (bindings). Hence, an interpretation satisfi es a rule  iff  every binding that 
satisfi es the antecedent also satisfi es the consequent  [76] .  



3.7 METAMODELS FOR ONTOLOGY TECHNOLOGIES 35

   3.7    METAMODELS FOR ONTOLOGY TECHNOLOGIES 

 The defi nition of metamodel for ontology technologies enables the specifi cation of 
model transformations of software engineering artifacts into OWL - related lan-
guages. For example, the transformation of UML class diagrams into OWL uses 
transformation rules based on the metamodel of both languages. In the next subsec-
tions, we give an overview of existing metamodels for OWL - related specifi cations. 

   3.7.1     OWL  Metamodels 

 The following section presents a short description of the most prominent OWL 
metamodels, namely the OMG OWL Metamodel   [114] , the  NeOn OWL Metamodel
 [23] , and the  W3C OWL 2 Metamodel   [106] . 

 We do not to describe these metamodels completely. Instead, we concentrate 
on two central constructs: classes and properties. Please refer to the citations for 
more details. 

OMG OWL Metamodel.   The  OMG OWL Metamodel  is part of the OMG 
Ontology Defi nition Metamodel   [114] . It has a large number of classes, since it 
imports the OMG RDFS Metamodel . Thus, some relations between classes are 
described in the RDFS Metamodel and reused in the OWL Metamodel. 

 For example, Figures  3.4  and  3.5  depict the class description diagram and the 
properties diagram, respectively. The domain and range of properties are specifi ed 
in the RDFS Metamodel, depicted in Figure  3.6 .   

     Figure 3.4     OWL Class Descriptions of the OMG OWL Metamodel  [114] .  
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 The OMG Metamodel has public acceptance as standard and popularity. Nev-
ertheless, the OMG Metamodel introduces unnecessary complexity in dealing with 
RDF without any gain. Furthermore, the OMG Metamodel does not provide support 
for OWL 2.  

NeOn OWL Metamodel.   The  NeOn Metamodel   [23]  is a concise metamodel 
able to cover the OWL - DL functional syntax. Figures  3.7  and  3.8  depict the OWL 
class hierarchy and the property diagram, respectively. The relationship between 
Class  and  Property  is direct, since the NeOn OWL Metamodel does not provide 
support for RDFS.   

     Figure 3.6     RDFS Properties of the OMG OWL Metamodel  [114] .  

     Figure 3.5     OWL Properties of the OMG OWL Metamodel  [114] .  
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     Figure 3.7     OWL Class Descriptions of the NeOn Metamodel.  

     Figure 3.8     OWL Properties of the NeOn Metamodel.  
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     Figure 3.9     OWL Class Descriptions of the OWL 2 Metamodel.  

 The NeOn OWL Metamodel is smaller on the number of classes and simpler, 
since it is not attached to the RDF Metamodel. However, the NeOn Metamodel does 
not cover OWL 2 constructs.  

W3C OWL 2 Metamodel.   Improvements in the OWL language led the 
W3C OWL Working Group to publish working drafts of a new version of OWL: 
OWL 2   [106] . OWL 2 is fully compatible with OWL - DL and extends the latter with 
limited complex role inclusion axioms, refl exivity and irrefl exivity, role disjointness, 
and qualifi ed cardinality restrictions. 

 The OWL 2 Metamodel is considerably different from the aforementioned 
metamodels for OWL. Constructs like Axiom and OWLEntity play central roles and 
associations between classes and properties are done by axioms. Figures  3.9  and 
 3.10  exemplify such constructs.    

SWRL Metamodel.   The SRWL Metamodel (Figure  3.11 ) is an extension of 
the OWL 2 Metamodel to provide support for OWL Rules. Brockmans  et al .  [21]  
have defi ned a Metamodel for SWRL rules.   

 In the SWRL Metamodel, a  Rule  is a subclass of  OWLAxiom , which is defi ned 
as an element of an Ontology . A  Rule  contains an  Antecedent  and a  Conse-
quent , and those contain atoms. An  Atom  factors out OWL 2 axioms that can be 
used in SWRL rules like OWLClass and ObjectProperty.    
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     Figure 3.10     OWL Properties of the OWL 2 Metamodel.  

     Figure 3.11     Snippets of the SWRL Metamodel and the Connections with the OWL 
Metamodel.
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     Figure 3.12     Snippets of the SPARQL Metamodel.  

   3.7.2     SPARQL  Metamodel 

 In addition to OWL and SWRL, we capture the structure of the SPARQL language 
using a metamodel. Since the SPARQL specifi cation does not recommend a struc-
tural specifi cation of the SPARQL language, we have designed the SPARQL 
Metamodel based on the SPARQL EBNF Syntax. 

 Figure  3.12  presents the main classes of the SPARQL Metamodel. A SPARQL 
query comprises a prologue, where namespaces are declared, and the query body. 
There are multiple types of SPARQL queries: DESCRIBE, CONSTRUCT, SELECT, 
and ASK.   
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 SPARQL queries have a WHERE clause, where the conditions are defi ned in 
the form of graph pattern. A graph pattern contains a triple block of subjects, proper-
ties, and objects. In SPARQL queries, variables and blank nodes may occur in any 
position of the triples. 

   3.8    ONTOLOGICAL TECHNICAL SPACES 

 In order to organize the concepts presented in this chapter, we use the notion of 
technical spaces presented in Chapter  2 . Figure  3.13  presents the description logics 
technical space.   

 The description logics technical space uses the description logic terminology 
as schema for defi ning knowledge bases as well as the SPARQL - DL or the conjunc-
tive query vocabulary for defi ning queries. Query models are representations of 
evaluation functions that map variables into elements of a knowledge base. 

 The description logics technical space is an abstract technical space which 
is realized by the serialization of text fi les. OWL includes a set of concrete 
syntax notations for modeling OWL ontologies underpinned by description logics. 
Figure  3.14  depicts the relationships between OWL and description logics under the 

     Figure 3.13     The Description Logics Technical Space.  
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     Figure 3.15     Model - Driven Viewpoint of Ontology Technologies.  

     Figure 3.14     Relation between the EBNF Technical Space and the Description Logics 
Technical Space.  
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model - driven structure. The Java language is used to create Java programs that 
realize the idea of a reasoner and of a query engine. OWL reasoners take as input 
an OWL ontology written using, e.g., the OWL 2 Functional Syntax and generate a 
knowledge base in memory for applying description logic algorithms. The same 
principles apply to query engines.   

 As defi ned in Section  3.7 , there exist multiple MOF Metamodels for ontology 
technologies and these are the main artifacts for model - driven engineering. Figure 
 3.15  depicts ontology technologies defi ned based on three technical spaces: MOF, 
EBNF, and description logics technical space. MOF - based models of OWL ontolo-
gies and queries are defi ned using ontology - related MOF Metamodels. These models 
are serialized using projectors that generate textual representations of ontologies and 
queries. The textual fi le is the input artifact for reasoners, query engines, and ontol-
ogy services.    

   3.9    CONCLUSION 

 This chapter describes the main technologies of the semantic web stack related to 
ontology technologies. Additionally, we group languages and techniques according 
to the model - driven engineering structure. The contribution is a model - driven view-
point of ontology technologies. We refer to these concepts and techniques later as 
we describe the integration with model - driven engineering.    



  CHAPTER 4
MARRYING ONTOLOGY AND 
MODEL- DRIVEN ENGINEERING     

     In this chapter, we present a literature review and describe a domain analysis of 
ontological technical spaces and MOF technical space, explaining the features of 
the different paradigms. We analyze their similarities and describe frequently used 
patterns for transformations between instantiations of metamodeling technical spaces 
and ontological technical spaces. 1

   4.1    INTRODUCTION 

 Ontology technologies and model - driven engineering have distinct foci. For example, 
MOF targets automating the management and interchange of metadata, whereas 
knowledge representation focuses on semantics of the content and on automated 
reasoning over that content  [49] . 

 While the focus of these communities is somewhat different, the following 
question arises: What are the commonalities and variations around ontology tech-
nologies and model - driven engineering? 

 MDE can be based on the  MOF Technical Space  (MMTS) (cf. Section  2.3 ) as 
well as on the Ontological Technical Space  (OTS) (cf. Section  3.8 ). Figure  4.1  
illustrates an example indicating the use of OTSs in the MDE process. The classical 
MDE transformations, residing in the MOF technical space, are extended by further 
transformations, making use of OTSs.   

 Further transformation into other technical spaces may provide additional 
analysis and implementation support that is not as effi ciently available in metamod-
eling technical spaces. Current MDE uses semi - formal metamodels instead of formal 
specifi cation languages as support for describing models  [168] . In Figure  4.1 , EMOF 
is transformed into an ontological representation in OWL, e.g., for model checking. 
The resulting ontology describes a submodel of EMOF that enables logic - based 
model analysis and serves as knowledge base for a reasoner. 

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

 1   This chapter contains work from the paper  “ On Marrying Ontological and Metamodeling Technical 
Spaces ”  presented at ESEC - FSE ’ 07  [150]  and EU STReP MOST Deliverable D1.1  “ Report on Transfor-
mation Patterns ”   [152] . 
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 In order to improve the understanding of the space composed by MMTS and 
OTS (MMTS + OTS), we compare MMTS + OTS approaches using a feature model 
and validate the model offering a survey and categorization of a number of existing 
approaches.

 The chapter is organized as follows: Section  4.2  defi nes basic similar concepts 
between UML class - based modeling and OWL modeling. Section  4.3  presents an 
understanding of the domain in the form of a feature model. In Section  4.4 , the 
model categorizing related approaches is applied.  

   4.2    SIMILARITIES BETWEEN  OWL  MODELING 
AND  UML  CLASS - BASED MODELING 

 Despite having distinct purposes, OTS and MMTS share similar constructs. Recent 
approaches presented similarities between MOF and RDF  [53] , between OWL/RDF 
and Object - Oriented Languages  [92] , and between UML and OWL  [114, 42] . The 
features are summarized in Table  4.1 . For the subtleties, please refer to the cited 
papers.   

 These similarities allow for translating UML class - based modeling into 
description logics, which gives UML class - based modeling a model - theoretic seman-
tics. For example, the work of Berardi et al.   [12]  investigates the translation of UML 
class diagrams into D Rifd , an expressive yet decidable description logic. 

     Figure 4.1     Marrying MMTS and OTS.  

  TABLE 4.1     OTS  and  MMTS : Comparable Features. 

   UML Class - Based Modeling     OWL  

  Package    Ontology  

  Class    Class  

  Instances and attribute values    Individuals and data values  

  Association, attribute    Property  

  Datatypes    Datatypes  

  Subclass, generalization    Subclass, sub - property  

  Enumeration    Enumeration  

  Navigable, non - navigable    Domain, range  

  Disjointness, cover    Disjointness, disjoint union  

  Multiplicity    Cardinality  
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 Figure  4.2  depicts distinguishing features of UML class diagrams ( D Rifd ), 
OWL - DL ( S OIQ  (D)), OWL 2 ( SROIQ (D)), and  A CQI , a fragment sup-
ported by state - of - the - art reasoning services that  D Rifd  has in common with 
SROIQ (D). Considering Figure  4.2 , UML class diagrams ( D Rifd ) differentiate 
from OWL - DL ( S OIQ  (D)) by representing n - ary relations, functional dependen-
cies on n - ary relations, identifi cation constraints on concepts  [27, 26] , limited 
complex role inclusion axioms, and role disjointness.   

 State - of - the - art automated reasoning systems do not support all constructs of 
UML class diagrams ( D Rifd ). However, by dropping functional dependencies and 
identifi cation constraints, one achieves  A CQI .  A CQI  is the most expressive 
fragment in common between UML class diagrams ( D Rifd ) and OWL 2 
(SROIQ (D)). Automated reasoning systems  [155]  support constructs of OWL - DL 
(S OIN  (D)), OWL 2( SROIQ (D)), and, consequently,  A CQI . 

 Notice that we compare the language constructs and we do not consider OCL. 
Rahmani et al.   [127]  described an adjustable transformation from OWL to Ecore 
and identifi ed that it is possible to represent most OWL constructs with Ecore and 
OCL invariants. However, such a transformation has the purpose of aligning OWL 
constraints with OCL invariants and does not cover OWL reasoning services like 
realization and instance checking.  

   4.3    COMMONALITIES AND VARIATIONS 

 In this section, we present a domain analysis of MMTS + OTS approaches. Domain 
analysis is concerned with analyzing and modeling the variabilities and commonali-
ties of systems or concepts in a domain  [32] . 

     Figure 4.2     Comparing UML Class Diagrams, OWL - DL, OWL 2, and DL - Lite.  
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 The product of such analysis is a feature model, described in this section. A 
feature model comprises a feature diagram, depicted in the Figure  4.3 , the descrip-
tion of the features, and examples. The feature model reveals the possible choices 
for a MMTS + OTS approach and also serves as a taxonomy to categorize approaches 
involving both paradigms. We describe the features in Figure  4.3  in the next 
sections.   

   4.3.1    Language 

 The choice of a language shapes the message exchange between agents. A language 
is defi ned based on:

1.     A concrete syntax describing the way in which the language elements appear 
in a human - readable form. Extended BNF is frequently used to describe the 
concrete syntax of lexical notations. In the case of graphical notations, natural 
language and symbols are used to describe how graphical symbols represent 
information, and how these symbols are laid out. A particular case of concrete 
syntax is a serialization syntax, which allows the language expressions to be 
made persistent or interchanged between tools. XML can be used as serializa-
tion syntax. Syntactical variations may co - exist for one given language.  

2.     An abstract syntax of a language portraying the elements that compose the 
language, and the possible combination of these elements. Abstract syntax 
graphs, metamodels, and Extended BNF are commonly used to represent the 
abstract syntax of a language.  

3.     The semantics of a language attributes meaning to the language primitives and 
its vocabulary. This attribution can be done by means of a formal language, 
using mathematics, or an informal language, using natural language. The 
relevant formal semantics for MMTS + OTS are  [156] : 

    •       Model - theoretic semantics.      Model - theoretic semantics assigns meaning to 
a set of logical sentences by considering all  possible interpretations that may 
be given to its atomic elements. Such a set of logical sentences is then sat-
isfi able if there is an interpretation that will render all the sentences to 
become true (refer to Section  3.3.2 ).  

   •       Axiomatic semantics.      Axiomatic semantics is based on methods of logical 
deduction from predicate logic. The semantic meaning of a program is based 
on assertions about relationships that remain the same each time the program 
executes.

   •       Translational semantics.      Another way of giving a semantics to a language 
is translating expressions from one language into another language that has 
a defi ned semantics.      

 The abstract syntax characterizes the primitives of a language. The concrete 
syntax realizes the primitives by a concrete notation. The semantics assigns meaning 
to the primitives, and the models constructed using these primitives. 

 Let us consider three examples: UML is a modeling language with a 
graphical notation, an informal semantics described in natural language (there exist 
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translational semantics approaches for UML) that uses a metamodeling approach to 
describe its abstract syntax, as well as natural language and symbols to describe the 
concrete syntax. 

 OWL is an ontology modeling language with a lexical notation, formalized by 
description logics. It is a subset of fi rst - order predicate logics with a model - theoretic 
semantics. OWL ’ s concrete and abstract syntax are specifi ed by Extended BNF. 

 RDF(S) is a language based on triples as the abstract syntax graph, with a 
concrete lexical notation and a formal axiomatic semantics  [47] .  

   4.3.2    Formalism 

 We defi ne the term  “ formalism ”  as formal language used to precisely defi ne concepts 
of the world. A formalism is the basis for reasoning over models. We distinguish 
between four formalisms applicable to MMTS + OTS:

    •      First - Order Logic.      First - order logic is a logical language able to express rela-
tions between individuals using predicates and quantifi ers  [157] .  

   •      Description Logics.      Description logics is a family of knowledge representa-
tion formalisms aimed at unifying and giving a logical basis to frame - based 
systems, semantic networks, object - oriented representations, semantic data 
models, and type systems  [9] . Core to each language from this family is its 
capability to express class defi nitions by restrictions on relationships to other 
classes and by inheritance relations. Though the exact expressiveness varies, 
all description logic languages are subsets of fi rst - order predicate logics.  

   •      Horn Rules.      Horn rules restrict fi rst - order predicate logics to axioms of a 
particular form. Though horn rules are in general Turing powerful, in a practi-
cal situation it is possible to oversee deductive consequences and to reason 
effi ciently with terms (i.e., kind of objects). 

 While horn rules can be given a model - theoretic semantics, e.g., fi rst - order 
predicate logics, in order to handle negation effi ciently, most approaches select 
specifi c interpretation functions in order to decide upon satisfi ability (or 
inconsistency).

   •      Frame Logic.      Frame logic is a syntactically more expressive variant of horn 
rules. It constitutes a deductive, object - oriented database language combining 
declarative semantics and the expressiveness of deductive database languages 
with the data modeling capabilities supported by the object - oriented data 
model  [2] .    

 Ontologies and models written in a given language, e.g., OWL, are usually 
translated to one or more formalisms, e.g., S OIN  (D), a member of the family 
of description logic languages, to realize reasoning.  

   4.3.3    Data Model 

 A data model is an underlying structure mandating how data is represented. The data 
model provides a basis for organizing the primitive elements of a language. This 



50 CHAPTER 4 MARRYING ONTOLOGY AND MODEL-DRIVEN ENGINEERING

organization is used by the abstract syntax of the language to relate the primitives. 
We differentiate four data models:

1.      Graph : consisting of (hyper - )edges and nodes.  

2.      Tree : constituting a restricted graph data model having a hierarchical organiza-
tion of the data. 

3.      Object - based : organizing data according to the object - oriented paradigm.  

4.      Relational : organizing data in relations.    

 A modeling approach can be seen from the point of view of data models. For 
instance, the UML class diagram is commonly seen either as a graph data model or 
as an object data model. 

 OWL is primarily based on unary relations (i.e., logically defi ned classes) and 
binary relations (i.e., relationships between objects), but there are alternative access 
methods, e.g., via Java object APIs or querying through the SPARQL graph data 
model query language. 

 RDF(S) constitutes a graph data model, but it can also be seen as a kind of 
object model or a constrained relational model.  

   4.3.4    Reasoning 

 Each type of reasoning is based on a formalism, typically a logical language, to 
deduce (infer) conclusions from a given set of facts (also called assertions) encoded 
in a model. Standard reasoning services include:

1.     Logical consistency.      Logical consistency checks whether a set of logical sen-
tences, i.e., a logical theory, has an interpretation, i.e., admits a model.  

2.     Logical implication.      Given a set of logical sentences as a premise (i.e., a 
 “ theory ” ), another set of logical sentences may be implied as a conclusion 
because every model of the premise is also a model of the conclusion.  

3.     Subsumption.      Subsumption is a special case of checking logical implications. 
Subsumption tests whether one class defi nition is more specifi c than another 
one — given a set of logical sentences as background theory. Subsumption tests 
can be used to generate a sound and complete classifi cation of a set of class 
defi nitions.  

4.     Extension test.      An extension test checks whether a tuple is contained in a 
logical relation. Specifi cally, it tests whether an instance belongs to the exten-
sion of a class, which is a unary relation.    

 Indeed, all standard reasoning services in fi rst - order predicate logics (and in 
description logics, specifi cally) that are illustrated here can be based on consistency 
checking.

 In horn rules formalisms, reasoning is defi ned either based on resolution or on 
na ï ve bottom - up evaluation.  
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   4.3.5    Querying 

 Querying plays an important role for accessing and bridging between technical 
spaces. The work by Haase  et al.   [64]  comparing aspects of query languages for 
ontologies has been used to identify features of querying:

1.     Inference support.      A query engine may access only explicitly available data 
(e.g., SPARQL  [69] ), or it may include facts derived by using a reasoner (e.g., 
OWL - QL  [46]  or SAIQL  [93] ).  

2.     Closure.      A query language may represent the results of a query on a 
model (i.e., a kind of database) either in the same format as the model itself 
(usual) or in a different paradigm. For instance, the earliest RDF query 
languages returned results as variable bindings, i.e., as relations rather 
than graphs, while SPARQL may return results in its native paradigm, i.e., as 
a graph.  

3.     Safety.      A query language is considered safe, iff a syntactically correct query 
returns a fi nite set of results.    

 Queries are expressed in a language, over a data model, in a modeling level, 
and can use a reasoning service. For example, OCL can be used as a query language 
with lexical notation over a UML object data model. 

 SPARQL is a query language with lexical notation over RDF graph data model 
without reasoning support (according to the version 1.0 of SPARQL specifi cation 
 [126] ) and with results being either represented as relations or as graphs.  

   4.3.6    Rules 

 Rules are present inside technical spaces as well as in transformations between them. 
Rule languages can be considered to include a querying mechanism over a data 
model. The term  “ rules ”  is ambiguous and includes in its range:

1.     Integrity constraints.      Integrity constraints restrict the number of possible 
interpretations. They do not add inferences, but they signal exceptions.  

2.     Derivation rules.      Integrity constraints comprise one or more conditions from 
which a fact is derived as conclusion iff the rule holds.  

3.     Reaction rules.      Reaction rules have as a core feature their reactivity. They 
comprise a triggering event and a condition that carries out a triggered action 
iff the rule holds.  

4.     Logical rules.      Logical rules describe a logical axiom that holds.    

 For example, OCL is a language with lexical notation, uses metamodeling to 
represent its abstract syntax, and has translational semantics into fi rst - order logics. 
It serves to write integrity constraints and derivation rules as well. Part of the UML 
specifi cation called action semantics can be used to specify reaction rules. 

 F - logic rules  [2]  are logical rules can be considered to constitute derivation 
rules and can be confi gured to model integrity constraints. 
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 DL - safe rules  [107]  are a logical rule mechanism for a subset of OWL allow-
ing for sound and complete reasoning with class defi nitions and a restricted rule 
language that defi nes specifi c logical axioms. 

 ATL  [82]  and QVT  [113]  are languages with lexical notation, metamodeling 
abstract syntax and they can be used to write transformation rules.  

   4.3.7    Transformation 

 A transformation defi nition is a set of transformation rules that together describe the 
conversion of one model in the source language into another related model in the 
target language  [90] . Concerning MMTS + OTS, we distinguish between three aspects 
of transformations:

1.     Semantic.      The semantic aspect of a transformation differs between precise 
transformation and approximative transformations. Approximative transfor-
mations give up on soundness (rarely) or completeness (more often) in order 
to speed up subsequent querying or reasoning. Precise transformations are 
sound and complete.  

2.     Syntactic.      We distinguish between (i) graph - based syntactic transformation, 
which draws on the theoretical work on graph transformations, operating on 
typed, attributed, labeled graphs (e.g., UMLX  [179]  and GReTL  [71] ); and (ii) 
hybrid syntactic transformations, which involve declarative and prescriptive 
notations. ATL  [82]  is an example of a hybrid language.  

3.     Directionality.      Directionality concerns the generation of models in different 
directions based on the defi nition of a transformation. Bidirectional transfor-
mations are suffi cient to transform forward and backward between source and 
target models. Examples include QVT and UMLX  [179] . Unidirectional trans-
formations allow for transformations in exactly one direction, such as ATL, 
in general. 

 A transformation language requires querying over a data model and transformation 
rules to manipulate the source and target metamodels. For example, an ATL transforma-
tion has a lexical notation, precise semantics, and hybrid syntax, and is composed by 
transformation rules using OCL as a query language over UML object models. 

   4.3.8    Mediation 

 Mediation is the process of reconciling differences between heterogeneous models. 
Mediation plays a central role in MMTS + OTS, as models in different languages 
must coexist. A mediation consists of:

1.     Integration.      Integration focuses on interoperability between models so that 
they work together effectively. It comprises: 

    •       Aligning . Aligning preserves the source models and produces a new model 
containing additional axioms to describe the relationship between the con-
cepts from the source models.  

   •       Merging . Merging refers to the creation of one new merged model from two 
or more source models. The merging process can involve aligning as a step.    
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2.     Mapping.      Mappings are declarative specifi cations of the correspondences 
between elements of the two models. In the transformation process, the 
mapping specifi cation precedes the transformation defi nition.  

3.     Composition.      Composition comprises the combination of elements that 
conform to overlapping concepts in different source models. Usually, each 
source model handles a different dimension of the overlapping elements. A 
weaving process does not necessarily produce a merged mediation, but it can 
produce a model with new knowledge based on the source models.    

 Both integration and composition make use of mappings to specify overlaps. 
A transformation usually takes as input the source models and the mappings to 
generate the target models.  

   4.3.9    Modeling Level 

 Considering that  “ everything is a model ”  in model - driven engineering, these models 
are organized according to their conformance. Such an organization is defi ned by 
 [13]  as follows:

1.      System : corresponding to the executable system, the runtime instances.  

2.      Model : defi ning the circumstances under which a system operates and evolves.  

3.      Metamodel : defi ning the constructs to design models.  

4.      Metametamodel : defi ning the constructs to design metamodels.    

 This organization corresponds to the OMG layered metamodel architecture: 
the metametamodel level (M3), the metamodel level (M2), the model level (M1), 
and the runtime instances (M0). Each modeling level is described using a language 
and is organized according to a data model (refer to Section  11.3.2  for an example 
of the OMG layered metamodel architecture). 

 Figure  4.4  shows a layered architecture of the features presented in this section 
according to the abstraction level. Each layer exploits facilities of the layers below. 
It shows how the features are organized to realize each of the technical spaces.     

     Figure 4.4     Organization of Features According to Technical Space.  
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   4.4    THE STATE OF THE ART OF 
INTEGRATED APPROACHES 

 In this section, we apply the model presented in Section  4.3  to MMTS + OTS 
approaches found in the literature. As an example, we identify major categories that 
group related work. Each category corresponds to one confi guration of our feature 
model.

   4.4.1    Model Validation 

 This category assembles the works that use automated reasoning techniques for 
checking and validation of models in formal languages. It implies aligning the source 
model and the target model by a mapping. A  unidirectional transformation  approach 
takes the mapping and uses transformation rules to generate the models. Queries 
against a reasoner serve to verify the models. 

 Approaches for validating models verify specifi cation against design. The 
description logics technical spaces, however, have specifi cally been defi ned to vali-
date the internal  consistency of a set of class defi nitions. To exploit this model of 
validation, one may transform a part of a given MDE - based model, e.g., a UML 
class diagram, into a set of OWL class defi nitions (cf.  [12] ) and one may check class 
hierarchy relationships, property hierarchies and the logical consistency of instantiat-
ing classes. 

 Berardi  et al.   [12]  provide automated reasoning support for detecting relevant 
properties of UML class diagrams, e.g., implicit consequences, refi nement of proper-
ties, and class equivalence. This work consists of aligning a UML class diagram 
(independent of modeling level) and a DL  A CQI  knowledge base. A precise 
automatic unidirectional transformation generates an A CQI  knowledge base that 
corresponds to the UML class diagram. 

 We illustrate this process using the simple diagram depicted in the Figure  4.5 . 
The diagram shows that a WebPortalAccount  is a particular kind of 
UserAccount  and that each  UserAccount  is owned by one and only one  User.
Additionally, there exist two types of users:  Researcher  and  Student . A 
Researcher  can have only one  WebPortalAccount . The association class  Uses
specializes the association class Owns. 

     Figure 4.5     Checking Consistency of UML Models.  
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 After applying the transformation from UML into a description logic model, 
such as OWL (more specifi cally, Berardi  et al.   [12]  mapped it into  A CQI ), we 
ask the reasoner to verify the model. By reasoning over such a diagram, we discover 
undesirable characteristics. For instance, the class Researcher  must be empty and, 
hence, cannot be instantiated. The reason is that the disjointness constraint asserts 
that there is no Researcher  that is also  Student . Furthermore, since the class 
User  is made up by the union of classes  Researcher  and  Student , and since 
Researcher  is empty, the classes  User  and  Student  are equivalent, implying 
redundancy. 

 By dropping the generalization  Student-Researcher , we arrive at a valid 
model. If we invoke the reasoner one more time, we can refi ne the multiplicity of 
the role Researcher  in the association uses to  1 .  Owns  is a generalization of  Uses , 
hence every link of Uses  is a linkof  Owns , and because  Account  is owned by 
exactly one User , necessarily every  WebPortalAccount  is used by at most one 
Researcher , since  WebPortalAccount  is a subclass of  Account . 

 Straeten  [165]  proposes an approach to detect and resolve inconsistencies 
between versions of UML models, specifi ed as a collection of class diagrams, 
sequence diagrams, and state diagrams. She presents a UML profi le able to describe 
the evolution of the models. 

 Ren  et al.   [130]  propose an approach for validating refi nements of BPMN 
diagrams with OWL based on the execution set semantics. The OWL ontology 
serves to identify the invalid execution set in the refi ned BPMN diagram according 
to the abstract BPMN diagram. 

 The confi guration of this category uses the following features (Figure  4.6 ): (i) 
a model at a given modeling level (model, metamodel, or metametamodel), written 

     Figure 4.6     Feature Model Confi guration for Model Checking.  
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in a graphical language, using an object data model; (ii) a target model, written in 
a language with model - theoretic semantics and lexical notation, including one for-
malism, reasoning capability, querying with closure, inference support, and safety; 
(iii) a mapping specifi cation describing the links between the models; (iv) a unidi-
rectional, declarative, and precise transformation defi nition, which includes trans-
formation rules and querying.    

   4.4.2    Model Enrichment 

 This category comprises the approaches that make use of ontologies to infer knowl-
edge from the MMTS models and convert these inferences back as facts in the new 
MMTS models. The main difference between this category and the former is the 
bidirectional transformation and the application of transformation rules and reason-
ing on the OTS side. First, the MMTS model is transformed into an OTS model. On 
the OTS side, inference services and transformation rules are used to make explicit 
the assertions that are implicit in the MMTS. Then, the resulting OTS model is 
transformed back. 

 Let us illustrate this process with an example of mappings between two MMTS 
models, depicted in the Figure  4.7 . Let us assume that we have two models capturing 
bibliographical references. On the left side, we have the model Ma  with the class 
Publication , which generalizes  Article  and  Thesis , which generalizes  MSc-
Thesis  and  PhDThesis . On the right side, we have the model  Mb  with the classes 
Entry  and  Thesis . At the center, we have the mapping  Mab  with the association 

     Figure 4.7     Mapping between Two Models Ma and Mb.  
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class MScThesis2Thesis , mapping a  MScThesis  onto a  Thesis , and the associa-
tion class PhDThesis2Thesis , mapping a  PhDThesis  onto a  Thesis .   

 After translating both models into RDF models, we can use TRIPLE  [33] , a 
RDF query, inference, and transformation language, to apply the transformation 
rules depicted in Figure  4.7 , corresponding to the  MScThesis2Thesis  and 
PhDThesis2Thesis  labels. This resulting query is translated back into MMTS 
model Mb. 

 The works that fi t in this category have different facets. Billig  et al.   [15]  
use TRIPLE to generate mappings between a PIM and a PSM using a feature model 
that describes user requirements as input. It comprises a transformation from 
MMTS into OTS (TRIPLE), the generation of the mappings, the transformation into 
a PSM under OTS, and the transformation OTS to MMTS of the PSM. Roser and 
Bauer  [135]  propose a framework to automatically generate model transformations 
inside a MMTS using the OTS; Kappel et al.   [86]  provide an approach for model -
 based tool integration; it consists of transforming two MMTS metamodels into 
ontologies, using reasoning services and generating mapping between the two 
MMTS.

 The confi guration of features in this category includes (Figure  4.8 ): (i) a model 
at a given modeling level (model, metamodel, or metametamodel), written in a given 
language, using an object data model; (ii) a target model, written in a given logical 
language, reasoning capability, querying with closure, inference support, and safety; 
(iii) a mapping specifi cation describing the links between the models; (iv) a bidirec-
tional declarative transformation defi nition, which includes transformation rules and 
querying; and (v) logical rules and reasoning to make the knowledge explicit on the 
OTS side.    

     Figure 4.8     Feature Model Confi guration for Model Enrichment.  
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   4.4.3    Ontology Modeling 

 This category assembles the efforts into giving a graphical notation to ontology 
modeling. Referring to our feature model, this category embraces the usage of 
MMTS graphical notations to design OTS ontologies. It requires integration, bidi-
rectional transformation, the model level, transformation rules, and querying. It is 
the only one that does not involve reasoning. 

 Cranefi eld and Purvis  [31]  and Falkovych  et al.   [42]  advocate the usage of 
UML without extensions as Ontology Representation Language capable of repre-
senting ontologies. 

 Extensions of the Unifi ed Modeling Language for ontology development were 
proposed  [10] , culminating in a new metamodel into the MDA family of modeling 
languages  –  the Ontology Defi nition Metamodel  [23, 114, 34] . These approaches 
use UML extension mechanisms (UML profi le) to represent the ontology, a mapping 
onto the ODM, and a transformation from the ODM into the serialization syntax of 
the OWL ontology language. Figure  4.9  depicts the example of a UML class diagram 
representing an OWL ontology using the ODM UML profi le for OWL. 

 The confi guration of this category includes (Figure  4.10 ): (i) a model written 
in a given language with graphical notation from MMTS; (ii) a target model written 
in a given language and including one formalism from OTS; and (iii) a mapping 
specifi cation describing the links between the models.     

   4.5    EXISTING WORK ON CLASSIFYING 
INTEGRATED APPROACHES 

 Research on the understanding of the large number of possible relations between 
OTS and MMTS is not new. Uschold and Jasper  [171]  propose a framework for 
understanding the ontology application scenarios outside the artifi cial intelligence 

     Figure 4.9     Ontology Modeling with UML Profi le.  
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community. Despite presenting application scenarios of ontologies in software 
development, the work does not explore the domain modeling community within 
software engineering. 

 Tetlow  et al.   [168]  propose ideas based on how semantic web technologies 
can be applied in systems and software engineering and examples of these ideas. 
Such work does not present a framework pointing out ways of integration. It serves 
as a research agenda instead, involving applications in the software engineering 
process.

 Happel  et al.   [66]  categorize ontologies in software engineering, distinguishing 
between four groups: ontology - driven development (ODD), ontology - enabled devel-
opment (OED), ontology - based architectures (OBA), and ontology - enabled architec-
tures (OEA). Our work takes a more detailed look at the ODD and OBA groups. 

 B é zivin  et al.   [14]  bridge model engineering and ontology engineering using 
a M3 - neutral infrastructure. They consider software engineering and ontology engi-
neering as two similarly organized areas, based on different metametamodels 
(M3 - level).

   4.6    CONCLUSION 

 In this chapter, we have illustrated commonalities and variations of using metamod-
eling technical spaces (MMTS) with ontological technical spaces (OTS). The basic 
pattern is that, next to existing technical spaces of established metamodeling frame-
works, new technical spaces are positioned that either enrich or exploit the software 
engineering capabilities by or for ontology technologies. We have identifi ed the main 
characteristics of such approaches and designed a feature model to enlighten the 
possible conceptual choices. We have applied our model illustrating the usage of 
ontology technologies.  

     Figure 4.10     Feature Model Confi guration for Ontology Modeling.  
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 CONCLUSION 
OF PART I     

     In this part, we have used the concept of megamodeling to provide a descriptive 
model for specifying the structure of MDE approaches (research question I). We use 
this model to describe the relationship between concepts of MDE and ontologies. 
Moreover, we use the approach to specify the relations between metamodeling 
technical spaces and ontological technical spaces. 

 Additionally, we propose a classifi cation for existing approaches that use MDE 
and ontologies and identify patterns for transformations between both paradigms, 
addressing the Research Questions I.A and I.B from Section  1.2 . The analysis of 
existing work resulted in the identifi cation of requirements for the integration of 
MDE and ontology technologies.         



  PART II
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  CHAPTER 5
THE TWO U SE CONCEPTUAL 
ARCHITECTURE

     The next software engineering era will rely on the synergy between both model -
 driven engineering and ontology technologies. However, an approach that allows 
for exploiting the uniqueness of each paradigm has been missing so far. This chapter 
defi nes an integration between OWL and UML class - based modeling. It comprises 
an integration of existing metamodels and UML profi les, including relevant (sub)
standards such as OCL. The result is a model - driven architecture for specifying 
integrated systems 1 .  

   5.1    INTRODUCTION 

 UML class - based modeling and OWL comprise similar constituents: classes, asso-
ciations, properties, packages, types, generalization, and instances  [114] . Despite the 
similarities, both approaches come with restrictions that may be overcome by an 
integration.

 On the one hand, a key limitation of UML class - based modeling is that it 
allows only for static specifi cation of specialization and generalization of classes 
and relationships, whereas OWL provides mechanisms to defi ne these in a dynamic 
fashion. In other words, OWL allows for recognition of generalization and special-
ization between classes as well as class membership of objects based on conditions 
imposed on the properties of class defi nitions. 

 On the other hand, UML provides means to specify dynamic behavior, whereas 
OWL does not. The Object Constraint Language (OCL)  [116]  complements UML 
by allowing the specifi cation of query operations, derived values, constraints, and 
pre and post conditions. 

 Since both approaches provide complementary benefi ts, contemporary soft-
ware development should make use of both. The benefi ts of an integration are 
twofold. Firstly, it provides software developers with additional modeling facilities. 

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

 1   This chapter contains work from the paper  “ Using Ontologies with UML Class - based Modeling: The 
TwoUse Approach ”  published in the Journal Data  &  Knowledge Engineering  [122] . 
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Secondly, it enables semantic software developers to use object - oriented concepts 
like operation and polymorphism together with ontologies in a platform independent 
way. These considerations have led us to investigate the following challenge: How 
can we develop and denote models that benefi t from advantages of the two modeling 
paradigms?

 We present TwoUse in this chapter as follows: Section  5.2  describes the 
requirements for integrating ontology technologies and model - driven engineering. 
Section  5.3  presents and explains the building blocks of TwoUse. In Section  5.4  we 
present the metamodeling infrastructure for UML class - based models and OWL. In 
Section  5.5 , we describe the notations for designing TwoUse models.  

   5.2    REQUIREMENTS FOR INTEGRATING ONTOLOGY 
TECHNOLOGIES AND MODEL - DRIVEN ENGINEERING 

 Section  4.4  presents in the state - of - the - art research and MDE approaches that use 
OWL technologies and  vice versa . However, the relationships between the two para-
digms are still under exploration. In this section, we present the requirements for an 
integrated framework. These requirements are extended and refi ned in Part III and 
Part IV, where we present the case studies. 

   5.2.1    Usage of Ontology Services in  MDE  

 In addition to model validation and model enrichment, ontology technologies have 
more to offer. The integration between MDE and ontology technologies enables 
extending UML class - based modeling with OWL constructs and using ontology 
services to support the MDE process. 

 5.2.1.1    Integrate  OWL  Constructs in  UML  Class - Based Modeling     While 
mappings from one modeling paradigm to the other one were established a while 
ago (see Section  4.4.1 ), the task of an integrated language for UML class - based 
modeling and OWL models is missing so far. 

 Such an approach simplifi es the modeling task by introducing intuitive con-
structs that require complex OCL expressions otherwise, and it enables the defi nition 
of domain models enriched by formal class descriptions. Moreover, the usage of 
OWL class expressions allows decoupling class selection from the defi nition of 
query operations in client classes. 

 Such an integration is not only intriguing because of the heterogeneity of the 
two modeling approaches, but it is now a strict requirement to allow for the develop-
ment of software with thousands of ontology classes and multiple dozens of complex 
software modules in the realms of medical informatics  [108] , multimedia  [159] , or 
engineering applications  [160] .  

 5.2.1.2    Usage of Ontology Services in  UML  Class - Based Modeling     In 
addition to integrating OWL constructs in UML class - based modeling, the usage of 
ontology services (see Section  3.4 ) is essential for realizing the potential of ontology 
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technologies. Therefore, one requires model transformations that transform inte-
grated models into OWL ontologies. 

 Moreover, the integration between UML class - based modeling and OWL 
needs to cover the usage of ontology services at runtime as well as in design time. 
Thus, developers specify queries that use ontology services over the OWL represen-
tation. These queries are the interface between users and ontology services. The 
results generated by ontology services should be compatible with existing languages 
used to operate UML class - based models, e.g., OCL. 

 The intended benefi t is that developers will not have to program by having to 
enumerate actions class - by - class. Instead they will rely on the ontology engine to 
perform generic operations to retrieve classes that satisfy ontological relationships 
with other classes, so that developers can focus only on the application specifi c 
actions.   

   5.2.2    Usage of  MDE  Techniques in 
 OWL  Ontology Engineering 

 5.2.2.1     MDE  Support for Ontology Modeling     Research on ontology engi-
neering has been inspired by the advances in software engineering over the years. 
For example, current approaches (see  4.4.3 ) use the graphical notation of UML to 
design OWL ontologies to support the ontology development life cycle. Moreover, 
as in software engineering, the usage of design patterns in ontology engineering is 
an established practice  [52] . 

 As new modeling techniques in model - driven engineering emerge, it is desir-
able to analyze the application of MDE techniques in ontology modeling. For 
example, the usage of domain - specifi c modeling is a promising approach for improv-
ing the usability of the OWL language by providing users with syntactical shortcuts. 
Moreover, the usage of templates in UML class - based modeling for reusing pieces 
of models is an accepted practice for improving reusability.  

 5.2.2.2    Usage of Domain Specifi c Modeling for Ontology Engineering 
Services     Currently, the development of ontology engineering services needs to 
manage multiple languages for defi ning services. For example, modelers of ontology 
matching services need to manage different languages: (1) an ontology translation 
language to specify translation rules and (2) a programming language to specify 
built - ins, when the ontology translation language does not provide constructs to 
completely specify a given translation rule. This intricate and disintegrated manner 
draws their attention away from the alignment task proper down into diverging 
technical details of the translation model. 

 Addressing this issue allows developers to concentrate on constructs related 
to the problem domain, raising the abstraction level. Moreover, by defi ning domain 
concepts as fi rst - class citizens, developers may reuse these domain concepts in dif-
ferent situations. This helps to improve productivity, since modelers will not have 
to be aware of platform - specifi c details and will be able to exchange translation 
models even when they use different ontology translation platforms.    
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   5.3    ADDRESSING THE REQUIREMENTS 
WITH THE TWO U SE APPROACH 

 We build the TwoUse approach based on four core ideas:

1.     As abstract syntax, it provides an integrated  MOF - based metamodel  as a 
common backbone for UML class - based modeling and OWL modeling 
(Section  5.4 ).  

2.     As concrete syntax, it uses pure UML, Ecore, a  UML profi le  supporting stan-
dard UML2 extension mechanisms, and a textual concrete syntax to write 
integrated models (Section  5.5 ).  

3.     It provides a canonical  set of transformation rules  in order to deal with inte-
gration at the semantic level.  

4.     It provides a novel SPARQL - like language to write queries and constraints 
over OWL ontologies, SPARQLAS (Chapter  6 ).    

 To give an idea of the target integration, let us consider the simple example 
of E - Shop (see Figure  2.8 ). Instead of defi ning the operation  getTypes () in the class 
SalesOrder  using OCL, a more transparent and maintainable solution will use the 
expressiveness of the OWL language. Using the querying service, a query retrieves 
the OWL subclasses of  SalesOrder  according to the logical requirements of a 
given instance. The body of the  getTypes () operation will then be specifi ed by:

context SalesOrder 

def getTypes(): Set(Class)

?self type ?T 

?T subClassOf SalesOrder 

 As specifi ed above, to identify which subclasses are applicable, we use the 
variable ?T  to get all types of  ?self  that are subclasses of  SalesOrder . We explain 
these and other expressions in Section  6.3 . 

 The usage of the variable  ?self  means that at the implementation level, we 
consistently correlate class instances with individuals in the ontology. That is, for 
every object in the system, we generate a corresponding individual in the ontology. 
As the classifi cation of these individuals depends on structural relationships between 
objects, we need to update the individual information whenever changes in the object 
state occur. 

 The advantage of this integrated formulation of  getTypes()  lies in separating 
two sources of specifi cation complexity. First, the classifi cation of complex classes 
remains in an OWL model. The classifi cation is re - useable for specifying other 
operations, and it may be maintained using diagram visualizations as well as decid-
able, yet rigorous reasoning models. Second, the specifi cation of the business logic 
itself remains in OCL specifi cations. It becomes smaller, more understandable, and 
easier to maintain. 

 Figure  5.1  presents a model - driven view of the TwoUse approach. TwoUse 
uses UML profi les for class diagrams and textual notations for designing combined 
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     Figure 5.1     The TwoUse Conceptual Architecture.  

models ( Syntax ). These notations are input for model transformations that generate 
TwoUse models conforming to the TwoUse metamodel ( Structure ). The TwoUse 
metamodel provides the abstract syntax for the TwoUse approach. Further model 
transformations take TwoUse models and generate the OWL ontology and Java code 
(Platform-Specific Artifacts  and the  Semantic Web Stack ).   

 We correlate the building blocks in Figure  5.1  with the requirements presented 
in Section  5.2  to show how TwoUse realizes the integration of MDE and ontology 
technologies. Table  5.1  depicts a traceability matrix and correlates the requirements 
(columns) with the building blocks (rows).   

 Extended languages for MDE (syntax and structure) and the TwoUse adapter 
allow for using OWL constructs in UML class - based modeling, whereas the SPAR-
QLAS language enables the usage of ontology services. Domain - specifi c languages 
and the TwoUse adapter realizes the usage of MDE techniques for supporting ontol-
ogy engineering.  
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   5.4    METAMODELING ARCHITECTURE 

 In this section, we describe the concepts with respect to the integration of UML 
class - based modeling and OWL in the form of metamodels. The advantages of 
having an integrated metamodel are threefold:

    •      It enables the verifi cation of well - formed models integrating both 
paradigms.

   •      It provides a common structure for supporting multiple notations.  

   •      It realizes the mapping between UML class - based constructs and OWL 
constructs.    

   5.4.1    The Two U se Metamodel 

 The TwoUse metamodel provides the abstract syntax integrating UML class - based 
modeling, OWL, and a SPARQL - like query language. The abstract syntax provides 
an abstraction over the concrete syntax notations used in TwoUse. 

 The TwoUse metamodel provides the integration between common constructs 
in OWL and UML class - based modeling: package, class, property, instance, and 
datatype. Basically, we compose classes from the Ecore metamodel with classes 
from the OWL metamodel. 

 We use model adaptation as a composition technique to integrate the OWL 
metamodel and the Ecore metamodel. This consists of applying the Object Adapter 

  TABLE 5.1    Correlating Building Blocks with Requirements. 

   Requirements vs. Building Blocks     OWL 
Constructs in 

UML 
Class - Based 

Modeling
(5.2.1.1)

   Ontology 
Services in 

UML 
Class- based 
Modeling
(5.2.1.2)

   MDE 
Support

for
Ontology
Modeling
(5.2.2.1)

   Domain 
Modeling for 

Ontology
Engineering

Services
(5.2.2.2)

  Notations for MDE    X              

  Domain - Specifi c Notations for 
Ontology Engineering 

              X  

  SPARQLAS        X          

  SPARQLAS4TwoUse        X          

  TwoUseAdapter    X    X    X    X  

  TwoUse4OntoEng            X    X  

  TwoUse4MDE    X    X          

  SPARQLAS - MM        X    X      

  SPARQLAS4TwoUse - MM        X    X      
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Pattern  [51]  to  adapt  classes of the OWL metamodel to corresponding classes of the 
Ecore metamodel (see Table 4.2 for common features between UML class - based 
modeling and OWL). The Object Adapter Pattern allows us to compose objects 
within Adapters , called TwoUse classes. 

 Following the nomenclature of Gamma  et al.   [51] ,  Target  classes represent 
the interfaces from the Ecore metamodel ( EPackage, EClass, EDatatype,

EAttribute, EReference, EEnum, EEnumLiteral, and EObject ).  Adapter
classes are prefi xed with  TU  and suffi xed with  Adapter (TUPackageAdapter,

TUClassAdapter, TU-DatatypeAdapter, TUAttributeAdapter, TURefer-

enceAdapter, TUEnumAdapter, TUEnumLiteralAdapter , and  TUObjectA-
dapter ).  Adaptee  classes are classes of the OWL 2 metamodel. 

 Figure  5.2  illustrates the principle of model adaptation. We adapt the class 
Class  from the OWL 2 metamodel for the class  EClass  from the Ecore metamodel. 
In the class TUClassAdapter, we implement the operations defi ned in the class 
Ecore::EClass .   

 For example, the class  Ecore::EClass  defi nes the operation  addAttribute
for inserting attributes into a class. The class  TUClassAdapter  implements this 

     Figure 5.2     Adapting the OWL Class for UML Class - Based Modeling.  
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  LISTING 5.1    Implementing the Operation  addAttribute  in the Class  TUClassAdapter . 

1 public Void addAttribute(Attribute attribute) { 

// DataPropertyDomain

DataPropertyDomain dpd = owl2fsFactory 
.createDataPropertyDomain();

5 dpd.setDataPropertyExpression(attribute.getName());

dpd.setDomain(eclass.getName());

...

// DataPropertyRange

10 DataPropertyRange dpr = owl2fsFactory 
.createDataPropertyRange();

dpr.setDataPropertyExpression(attribute.getName());

dpr.setRange(attribute.getEAttributeType().getName()); 

...

15

attributes.add(attribute);

}

operation as described in Listing  5.1 . The implementation creates instances of 
the OWL 2 metamodel corresponding to the mappings between UML class - 
based modeling and OWL. In this example, for the addition of an attribute in a 
class in UML class - based modeling, we need to create two OWL axioms: one 
assert ing the domain of the dataproperty and another asserting the range of the 
dataproperty.   

 Figure  5.3  depicts the mappings for the TwoUse metamodel using a simplifi ed 
notation that associates the interfaces in the UML class - based metamodel to the 
corresponding concepts in the OWL 2 metamodel. As we have mentioned, this 
integration is independent of metamodeling level, i.e., it works for MOF, UML, and 
any UML - class based modeling systems.     

   5.5    SYNTAX 

   5.5.1     UML  Profi le for  OWL  

 The TwoUse approach provides developers with UML profi ling as concrete syntax 
for simultaneous design of UML models and OWL ontologies, exploiting the full 
expressiveness of OWL ( SROIQ (D)) and allowing usage of existing UML2 tools. 
We reuse the UML profi le for OWL proposed by OMG  [114]  and introduce stereo-
types to label integrated classes. 

 We use the UML profi le for OWL proposed by OMG  [114]  for designing OWL 
ontologies using UML notation. We call the UML class diagram with elements 
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     Figure 5.3     The OWL 2 Metamodel Adapted for the UML Class - Based Metamodel — the 
TwoUse Metamodel.  
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stereotyped by a UML profi le for OWL a  hybrid diagram . The hybrid diagram 
comprises three viewpoints, illustrated in the Figure  5.4 : (1) the UML view, includ-
ing OCL, (2) the OWL view and its logical class defi nitions, and (3) the TwoUse 
view, which integrates UML classes and OWL classes and, relying on SPARQLAS, 
defi nes query operations that use ontology services (Chapter  6 ).   

 Considering the example of E - Shop (Figure  5.4 ), the OWL view consists of 
nine classes, fi ve of which are named classes and four are unnamed classes. The 
restriction classes are required for reasoning on the subclasses USSalesOrder  and 
CanSalesOrder . The UML View comprises six classes. The TwoUse view will 
contain fi ve classes and the SPARQLAS query operation. 

 A TwoUse class is the bridge that links OWL elements with SPARQLAS 
expressions. To be compatible with tools that support UML2 extension mechanisms, 
developers annotate the UML element  OpaqueBehavior  with the stereotype 

SPARQLASQuery   and defi ne the SPARQLAS query as the body of the opaque 
behavior. 

 Table  5.2  illustrates the mappings between the UML profi le for OWL (hybrid 
diagram) and the TwoUse metamodel. Any class that has the stereotype  owl-

Class   in the hybrid diagram is mapped onto a TwoUse class. Any class with the 
stereotype owlRestriction   and its properties  datatypeProperty   or 

objectProperty   are mapped onto OWL classes and properties. Any class 
without any stereotype results in a regular class (Ecore::EClass). A TwoUse package 
is any package that has TwoUse classes. The UML Opaque behaviors stereotyped 
as SPARQLASQuery   are mapped onto SPARQLAS.    

     Figure 5.4     UML Class Diagram Profi led with UML Profi le for OWL and TwoUse Profi le.  
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  TABLE 5.2    Mapping between the  UML  Profi le for  OWL  (Hybrid Diagram) and the 
TwoUse Metamodel. 

   UML Class Diagram     TwoUse Metamodel  

UML Package      TUPackageAdapter

UML Class      Ecore::Class

(owlClass)UMLClass      TUClassAdapter

(owlRestriction)UMLClass      OWL::Class

(owlRestriction)UMLClass.(datatypePropert)

UMLProperty

OWL::DataProperty

(owlRestriction)UMLClass.(objectProperty)

UMLProperty

OWL::ObjectProperty

(owlClass)UMLClass.(owlDataProperty)UMLProperty      TUAttributeAdapter

(owlClass)UMLClass.(owlObjectProperty)

UMLProperty

TUReferenceAdapter

(owlIndividual)InstanceSpecification      TUObjectAdapter

(dataRange)Enumeration      TUEnumAdapter

 2   In this case, the expressiveness of the generated OWL ontology is limited to the description logic 
ALCOIQ ( D ), since  DLRifd  is not supported by state - of - the - art DL - based reasoning systems  [12] . 

   5.5.2    Pure  UML  Class Diagrams 

 We have explored additional notations with increasing expressiveness, presented 
next. In addition to the UML Profi le for TwoUse, one may use the pure UML class 
diagram notation to model OWL ontologies with SPARQLAS expressions at class 
operations or use a textual syntax to design class - based models with OWL 
descriptions.

 To let UML2 users develop ontology - based information systems, pure UML 
class diagrams may be used. Developers who do not need the full expressiveness of 
OWL can use this approach without having to handle the OWL syntax. 

 Model transformations transform the UML class diagram into a TwoUse 
model to support SPARQLAS expressions over the OWL translation of the UML 
class diagram. In this case, developers attach SPARQLAS expressions to the body 
of opaque behavior of class operations. Each UML class will be a TUClassAdapter. 
For transforming UML class diagrams into ontologies, we follow the rules defi ned 
in  [114] . 2

   5.5.3    Textual Notation 

 As an alternative to graphical languages, we have defi ned a textual notation for 
specifying UML class - based models together with OWL. This approach is useful 
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for experienced developers who work more productively with textual languages than 
visual languages. 

 In the following, we illustrate the textual notation with our running example. 
Again, each class is a TUClassAdapter. In this case, the textual notation allows for 
exploring the full expressiveness of OWL. The textual notation is a combination of 
the Java - like syntax and the OWL Manchester Syntax  [74]  (see Appendix  A.1  for 
the EBNF grammar).

1 package PurchaseOrder  // package name

PurchaseOrder // namespace prefix

"http://org.example/PurchaseOrder. ecore " //

namespace URI

{

5

class TaskCtrl { 

reference SalesOrder salesOrder (0.. −1);
reference Customer customer (0.. −1);

10 operation process(); 

}

class SalesOrder { 

attribute EFloat price (0..1); 

15

reference Customer customer (1..1) opposite orders; 

operation EClass (0.. −1) getTypes(); 
operation EFloat total(); 

20 operation EFloat taxes(); 

operation EFloat freight(); 

}

class CanSalesOrder  extends SalesOrder [equivalentTo 

[SalesOrder and [customer some [country value CANADA]]]] 

{}

25

class USSalesOrder  extends SalesOrder [equivalentTo 

[SalesOrder and [customer some [country value USA]]]] {} 

class Customer { 

reference SalesOrder orders (0.. −1) opposite 
customer;

30 reference Country country (1..1); 

}

enum Country { 

1 : USA = "USA";

35 2 : Canada = "Canada";

}

}
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 The textual notation uses constructs familiar to programmers and enables 
developers to write class descriptions in a human readable way.   

   5.6    CONCLUSION 

 In this chapter, we have introduced a technique for integrating existing UML class -
 based metamodels and OWL metamodels. We describe the usage of the adapter 
design pattern to compose similar constructs between the OWL 2 metamodel and 
the Ecore metamodel. Moreover, we have defi ned notations for creating integrated 
models. As we apply our approach in Parts III and IV, we will extend the integrated 
metamodel according to application requirements.  



  CHAPTER 6
QUERY LANGUAGES FOR 
INTEGRATED MODELS 

     After providing a unifi ed view of metamodels and addressing the integration of model-
ing languages in the previous chapter, this chapter describes a querying approach to 
support developers in querying integrated models. We examine a combination of exist-
ing approaches and introduce our solution for querying integrated models. 1

   6.1    INTRODUCTION 

 To exploit integrated models, it is important to enable engineers with the proper 
tools to manage and understand models. An important service for developers to gain 
insight into their models and to manage models is integrated querying. 

 In order to be able to query integrated models, a query framework needs to 
be integrated on the metamodeling level. A querying framework provides engineers 
with support for using existing approaches and for addressing modeling decisions. 

 In this chapter, we investigate the possibilities for querying elements of the 
combined metamodel in a fl exible manner using or combining existing languages. 

 The chapter is structured as follows: in Section  6.2 , we analyze the combina-
tion of existing query languages for UML class - based modeling and OWL. In 
Section  6.3 , we present a concise query language for querying OWL ontologies: 
SPARQLAS. We extend SPARQLAS for supporting integrated models in Section 
 6.4 : SPARQLAS4TwoUse.  

   6.2    COMBINING EXISTING APPROACHES 

 The OCL language provides the defi nition of functions and the usage of built - in 
functions for defi ning query operations in UML class diagrams, whereas SPAR-
QLDL provides a powerful language to query resources in OWL ontologies, allow-
ing for retrieval of concepts, properties, and individuals. While OCL assumes 
Unique Name Assumption (UNA) OWL may mimic it using constructs like 
owl:AllDifferent  and  owl:distinctMembers . 

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

 1   This chapter contains work from EU STReP MOST Deliverable D1.2  “ Report on Querying the Com-
bined Metamodel ”   [81]  and of the paper  “ Using Ontologies with UML Class - Based Modeling: The 
TwoUse Approach ”  published in the Data  &  Knowledge Engineering Journal  [122] . 
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 A combination of existing languages refl ects confi gurations for querying inte-
grated models. Figure  6.1  presents an architecture for querying integrated models. 
These confi gurations can be realized by adopting current approaches or combining 
different assumptions and reasoning services. We describe these confi gurations in 
the following sections.   

Using SPARQL over  OWL with  OWA.   Among existing RDF - based query 
languages for the semantic web, SPARQL is the W3C recommendation. It is based 
on triples patterns and allows for querying the vocabulary and the assertions of a 
given domain. 

 Restrictions on the SPARQL language, i.e., entailment regimes, allow for 
querying OWL ontologies, including TBox, RBox, and ABox. One implementation 
is SPARQL - DL  [154]  (see Section  3.4.2.2  for a description of SPARQL - DL). 

 SPARQL - DL enables querying OWL ontologies using the Open World 
Assumption. It is currently available with the Pellet Reasoner  [155] .  

Using SPARQL over  OWL with  CWA.   Polleres et al.  [124]  have explored 
the usage of the SPARQL language in combination with closed - world reasoning in 
SPARQL ++ . SPARQL ++  extends SPARQL by supporting aggregate functions and 
built - ins. SPARQL ++  queries can be formalized in HEX Programs or description 
logic programs. However, SPARQL ++  covers only a subset of RDF(S) and how it 
can be extended towards OWL is still an open issue.  

Using OCL over  UML Class -Based Modeling with CWA.   This is the 
standard application of OCL as a query language. Query operations may be defi ned 
and used as helpers for OCL queries and constraints. Default values as well as initial 
and derived values can be defi ned by using UML and OCL.  

Using OCL and  SPARQL over  OWA and  UML Class -Based Modeling.   In 
some cases, a combination of UML class - based modeling and OWL is desired, e.g., 
for defi ning complex class descriptions or reusing existing ones. To make use of 
behavioral features like query operations, helpers, and built - ins, UML class - based 
modeling comes into play. 

 In the next section, we present our approach for such a combination. Our 
approach allows for describing query operations using SPARQL - like syntax. Query 

     Figure 6.1     Existing Approaches for Querying Models.  
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operations are written in SPARQL - like notation and are translated into SPARQL and 
executed against an OWL knowledge base. The results are used as input for OCL 
query operations that allows the usage of helpers, query operations and built - ins 
defi ned in OCL.     

   6.3    QUERYING ONTOLOGIES USING 
 OWL  SYNTAX:  SPARQLAS  

 Writing SPARQL queries for OWL can be time - consuming for those who work with 
OWL ontologies, since OWL is not triple - based and requires reifi cation of axioms 
when using a triple - based language. 

 Therefore, we propose SPARQLAS, a language that allows for specifying 
queries over OWL ontologies with the OWL syntax  [143] . SPARQLAS uses the 
OWL Functional Syntax as well as OWL 2 Manchester Syntax and allows using 
variables wherever an entity ( Class, ObjectProperty, DataProperty, 
NamedIndividual ) or a literal is allowed. 

 We will illustrate the SPARQLAS concrete syntax with examples in Section 
 6.3.1 , present the main classes of the SPARQLAS metamodel in Section  6.3.2 , and 
exemplify the transformation of SPARQLAS into SPARQL in Section  6.3.3 . 

   6.3.1     SPARQLAS  Concrete Syntax 

 For creating SPARQLAS queries, we adopt the existing standard concrete syntax 
notations for OWL 2. Users can write SPARQLAS queries using the OWL 2 Func-
tional Syntax  [106]  or the OWL 2 Manchester - like Syntax  [74] . Appendix  A.3  and 
Appendix  A.2  specify the EBNF grammar for both notations. 

 Listing  6.1  and Listing  6.2  present the same query using the two different 
notations. The query results in all subclasses of a class that have, as the value of the 
property customer , a customer who lives in  USA .   

  LISTING 6.1    Example of  SPARQLAS  Query with Functional Syntax. 

1 Namespace (  = <http://www.example.org/customer#> ) 
Select ?x 

Where ( 

SubClassOf (

5 ?x

ObjectSomeValuesFrom(

customer

ObjectIntersectionOf(

Customer

10 ObjectHasValue(country USA) 

)

)

)

)
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 Since SPARQLAS copes with the OWL 2 syntax, it does not provide support 
for SPARQL solution sequences and modifi ers ( ORDER BY, OFFSET ) or optional 
values ( OPTIONAL ). Schneider  [143]  presents an analysis of these constructs and the 
details about the mappings between SPARQLAS and SPARQL.  

   6.3.2     SPARQLAS  Metamodel 

 The SPARQLAS metamodel extends the OWL 2 metamodel  [106]  for including 
support for variables. Figure  6.2  depicts the additional classes in the SPARQLAS 
metamodel used for supporting the usage of variables. In the appendix, Figure  A.1  
depicts the complete SPARQLAS metamodel.   

 The class  Variable  is a term that has a symbol as property, which represents 
the variable (e.g., ?x ). Specializations of the class  Variable  defi ne the existing 
variable types: ClassVariable ,  ObjectPropertyVariable ,  DataProper-
tyVariable ,  IndividualVariable  and  LiteralVariable . All these classes 
extend the class Variable  and the corresponding class in the OWL 2 metamodel. 
For example, the class ClassVariable  extends the class  Variable  as well as the 
class ClassExpression . Therefore, users can use variables whenever class expres-
sions fi t.  

   6.3.3    Transformation from  SPARQLAS  to  SPARQL  

 SPARQLAS queries are translated into SPARQL queries to be executed by SPARQL 
engines that support graph pattern matching for OWL 2 entailment regime  [55] . The 

  LISTING 6.2    Example of  SPARQLAS  Query with Manchester - like Syntax. 

1 Namespace:  <http://www.example.org/customer#>
Select ?x 

Where: ?x subClassOf (customer some (Customer and (country value 

USA)))

     Figure 6.2     Variables in the 
SPARQLAS Metamodel.  
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model transformation comprises the implementation of the mappings from the OWL 
2 structural specifi cation to RDF Graphs (please consult  [123]  for the list of 
mappings).

 For the sake of illustration, Listing  6.3  presents the corresponding SPARQL 
query for the SPARQLAS query defi ned in Listing  6.1  and  6.2 . The SPARQL syntax 
uses triples to reify class expressions defi ned in the SPARQLAS queries.     

   6.4    QUERYING INTEGRATED MODELS: 
 SPARQLAS 4 T WO U SE 

 An adaptation of SPARQLAS allows for defi ning the body of query operations in 
integrated models using an OWL - like language. Such an approach enables users to 
use ontology services integrated with UML class - based modeling, as depicted in the 
Figure  5.4 . 

  LISTING 6.3     SPARQL  Query Generated from the  SPARQLAS  Query. 

1 PREFIX rdf:  <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

5 PREFIX :  <http: //www.example.org/customer#>
SELECT DISTINCT ?x 

WHERE { 

?x rdfs:subClassOf [ 

10 rdf:type owl:Restriction ; 

owl:onProperty :customer ; 

owl:someValuesFrom [ 

rdf:type owl:Class ; 

owl:intersectionOf [ 

15 rdf:first :Customer ; 

rdf:rest [ 

rdf:first [ 

rdf:type owl:Restriction ; 

owl:onProperty :country ; 

20 owl:hasValue :USA 

];

rdf:rest rdf:nil 

]

]

25 ]

]

}



6.4 QUERYING INTEGRATED MODELS: SPARQLAS4TWOUSE 83

     Figure 6.3     Composing the SPARQLAS Metamodel and the TwoUse Metamodel.  

  LISTING 6.4    Example of  SPARQLAS  Query with Manchester - like Syntax. 

1 context SalesOrder::getCustomer() : Customer 

Namespace: <http://www.example.org/customer#>
Select ?c 

Where: ?self :customer ?c 

 For this purpose, we need fi rst to compose the TwoUse metamodel with the 
SPARQLAS metamodel. Figure  6.3  depicts the navigation from the class  TU-
AdapterClass  to the query defi nition  SPARQLAS::Query . The  TUAdapterClass
extends the EClass, which contains operations. An operation extends a model 
element that contains constraints. A constraint contains a body as an expression. The 
ExpressionInSPARQLAS  defi nes a SPARQLAS Query.   

The Variable ?self.   Unlike in SPARQLAS, the expressions are written in 
the context of an instance of a specifi c class in SPARQLAS4TwoUse. We use the 
same rationale as OCL and reserve the variable  ?self  for referring to the contextual 
instance. For example, the SPARQLAS4TwoUse query in Listing  6.4  evaluates to 
John  if the contextual instance of the class  SalesOrder  is  ORDER1  (see Table  3.2  
for the running example).   
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 SPARQLAS queries operate on the modeling layer (M) as well as on the 
snapshot layer (M - 1). In the Figure  6.4 , we present an object diagram representing 
a possible snapshot for the running example.   

 The result of SPARQLAS queries is mapped from OWL onto UML class -
 based modeling, i.e., although all OWL expressions like property chains and uni-
versal quantifi cation can be used to write SPARQLAS queries, only classes, instances, 
and literals can be delivered as the result. 

 Table  6.1  presents results of evaluating SPARQLAS expressions considering 
the snapshot depicted in Figure  6.4 . We take two objects of the snapshot ( ORDER1 , 
ORDER2 ) and bind them to the predefi ned variable  self . For example, for the 
expression ?self type SalesOrder  where  ?self  is bound to  ORDER1 , the result 
is true.   

 Since the results of SPARQLAS4TwoUse queries are transformed back from 
OWL into UML class - based modeling, the results can be used by OCL expressions 
that utilize query operations defi ned in SPARQLAS4TwoUse. For example, the 
OCL expression  self.getTypes().size();  evaluates to  3  if the contextual 
instances are ORDER1 ( Thing, SalesOrder, USSalesOrder ). Consequently, 
OCL expressions can use query operations defi ned in SPARQLAS4TwoUse as input 
(see Figure  6.5 ).       

   6.5    CONCLUSION 

 This chapter analyzes how current approaches can serve to query UML class - based 
modeling and OWL and possible combinations. The query languages SPARQLAS 

     Figure 6.4     Snapshot of the Running Example.  

  TABLE 6.1    Evaluation of  SPARQLAS  Expressions According to the Running Example 
Snapshot.

        ORDER1     ORDER2  

?self type SalesOrder true true

?self type 

USSalesOrder

true false

?self type ?C SalesOrder, USSalesOrder SalesOrder, CanSalesOrder 

?self inverse order 

?c

John Hans

?self directType ?C USSalesOrder CanSalesOrder
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and OCL may be used according to different requirements to query OWL and UML 
class - based modeling, respectively. 

 The adaptation of SPARQLAS, SPARQLAS4TwoUse, allows the defi nition 
of query operations for TwoUse classes that rely on ontology reasoning services. 
The combination of OCL and SPARQLAS4TwoUse allows for using the results of 
ontology reasoning services as input of OCL queries.  

     Figure 6.5     Positioning SPARQLAS4TwoUse among Existing Approaches.  
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  CHAPTER 7
THE TWOUSE TOOLKIT     

     The gap between the specifi cation of standards and the implementation of standards 
in a programming language leads to adaptation penalties when new versions are 
available. Among the possible solutions for raising the level of abstraction from code 
to standard specifi cation, a framework that allows the integration of multiple stan-
dards at the design level is so far lacking. This chapter presents a generic architecture 
for designing artifacts using multiple standard languages, turning the focus from 
code - centric to transformation - centric. We test this architecture by instantiating its 
conceptual blocks in an integrated development environment — the TwoUse Toolkit. 1

   7.1    INTRODUCTION 

 Although integrating ontology technologies and software engineering has gained 
more attention, practitioners still lack tool support. And though guidelines for model 
transformations and implementations of these transformations exist, these still is not 
a comprehensive framework dedicated to fi ll the gap between model - driven engi-
neering and ontology technologies. Ontology engineering environments  [101]  exclu-
sively support ontology development and do not provide support for OMG 
standards.

 Providing a framework for integrating MDE and ontology technologies 
requires dealing with the following challenges:

    •      Seamless integration between UML class - based modeling languages and 
OWL. Developers should be able to design models seamlessly in different 
formats like Ecore, UML, XML, and OWL.  

   •      Modeling design patterns. Integrated frameworks should provide developers 
with capabilities for reusing existing knowledge from other projects in the 
form of design patterns.  

   •      Integration with existing standard and recommendations such as SWRL  [76]  
and OCL  [116] . Developers should be able to work with semantic web lan-
guages (OWL, SWRL, and SPARQL) as well as with software languages 
(UML and OCL).    

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

 1   This chapter contains work from the tool demonstration  “ Filling the Gap between the Semantic Web and 
Model - Driven Engineering: The TwoUse Toolkit ”  at ECMFA2010  [147] . 
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 In this chapter, we present a generic architecture to implement OWL - related 
standard specifi cations and model - driven techniques in an integrated engineering 
tool, turning the focus from code - centric to transformation - centric. It comprises 
a set of model transformations, graphical and textual editors, and reasoning 
services.

 We organize this chapter as follows. In Section  7.2 , we describe the use cases 
for such an architecture based on the requirements specifi ed in Section  5.2  and cor-
relate use cases and requirements in Section B.2. We describe the generic architec-
ture in Section  7.3 . In Section  7.4 , we describe an instantiation of the generic 
architecture for development of model - driven applications and ontology - based infor-
mation systems — the TwoUse Toolkit.  

   7.2    USE CASE DESCRIPTIONS 

 In Section  5.2 , we present the requirements for an integrated approach. Figure  7.1  
depicts the use cases (UC) to address those requirements. It gives an overview of 
actors and their relation to the use cases. Appendix  B.1  presents the description of 
these use - cases.   

 Designing integrated UML class diagrams or integrated Ecore models (UC 
Design Integrated Model ) enables the integration of OWL constructs in UML 
class - based modeling. By specifying SPARQLAS4TwoUse query operations at 
classes (UC Specify Query Operations ), software engineers can defi ne queries 
over ontologies and thus use classifi cation and realization to improve software 
quality (see case studies 8 and 9). Moreover, when ontology engineers transform 
Ecore - based models and metamodels into OWL (UC  Transform to OWL ), it allows 
the usage of explanation (UC Explain Axiom ), querying (UC  Query UML class -
based models ) and ontology matching (UC  Compute Alignments ) for support-
ing software engineers in debugging and maintenance. 

 The Usage of SPARQLAS for querying OWL ontologies applies the principles 
of MDE (domain - specifi c modeling and model transformation) to enable ontology 
engineers to write SPARQL queries without having to deal with the reifi cation of 
OWL axiom in RDF triples (UC  Query OWL ontologies ). Moreover, the design 
and generation of ontology engineering services (UC Design Ontology Engi-

neering Service ) counts on domain - specifi c modeling and model transformation 
to generate platform - specifi c artifacts and raises the level of abstraction (see case 
studies 11, 12, and 13).  

   7.3    A GENERIC ARCHITECTURE FOR  MDE  
AND ONTOLOGY ENGINEERING 

 The architecture of an integrated environment for OWL modeling and UML class -
 based modeling serves as a guideline for the development of artifacts for ontology 
engineering that use model - driven technologies and artifacts for model - driven engi-
neering that use ontology technologies. It comprises a layered view according to the 
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degree of abstraction of the components. Components of higher layers invoke com-
ponents of lower layers. 

 Figure  7.2  depicts the generic architecture for developing integrated artifacts. 
It comprises a set of core services, services for ontology engineering, services for 
MDE, and a front - end layer.   

   7.3.1    Core Services 

 The core services comprise the core ontology services and the model management 
services. The core ontology services correspond to the ontology services described 
in Section  3.4  and cover querying and reasoning. 

     Figure 7.1     Use Case for a Generic Architecture for MDE and Ontology Engineering.  
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 The model management services involve model transformations and the syn-
chronization of the source and target model. For example, when transforming a UML 
class diagram into OWL, one requires that the generated OWL ontology remains 
synchronized with changes on the source model.  

   7.3.2    Engineering Services 

Services for Ontology Engineering.   Engineering services assemble the ser-
vices for ontology engineering and the services for MDE. Among the services for 
ontology engineering, we highlight three services that use model - driven technolo-
gies to support ontology engineering: ontology translation, ontology modeling, and 
ontology API specifi cation. Further ontology engineering services are described in 
 [170] . 

 The ontology modeling service provides the structure for designing ontologies. 
It covers the support for ontology design patterns and the validation and verifi cation 
of well - formedness constraints. 

 Ontology translation enables the translation of a source ontology into target 
formalisms. It adopts a dedicated language for defi ning mappings of multiple natures: 
semantic, syntactic, and lexical. 

 Ontologies require dedicated APIs to encapsulate the complexity of concepts 
and relations. Therefore, to facilitate the adoption of these ontologies, ontology 
engineers specify which ontological concepts and roles require operations for cre-
ation, update, and deletion. The ontology API service supports this task.  

Services for Model -Driven Engineering.   Among the services for MDE, we 
have identifi ed the following services that use ontology technologies to support 

     Figure 7.2     A Generic Architecture for MDE and Ontology Engineering.  
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MDE: debugging, matching, validation, and extension. Debugging allows for sup-
porting software engineers in identifying the model elements that underpin a logical 
conclusion. For example, it consists of pointing out the assertions that support a 
given statement. 

 The matching services consist of applying ontology matching techniques  [38]  
to identify similar concepts or relations in multiple models (see Section  3.5.2  for 
ontology matching techniques). 

 Finally, the model extension service controls the integration between OWL 
and UML class - based modeling. It manages the extension of UML class diagrams 
and textual Ecore notation with OWL axioms and the specifi cation of a SPAR-
QLAS4TwoUse query as the body of query operations.    

   7.3.3    Front - End 

 The layer  Front-End  is the interface between services and ontology engineers / 
software engineers. It comprises editors, views, commands, and perspectives. 

 The editors enable engineers to create and update artifacts written in ontology 
languages as well as in software languages. For example, the OWL2FS editor 
enables ontology engineers to create OWL ontologies using the OWL 2 functional 
syntax.

 Commands comprise the actions that engineers execute to manipulate artifacts. 
For example, to evaluate a given query operation, ontology engineers execute the 
command evaluate  that requests the instance specifi cations to be used as the 
snapshot and invokes the model extension to control the applicable model 
transformations.

 The component  View  provides engineers with multiple types of visualizations 
of artifacts. For example, engineers require the visualization of classes in a class 
hierarchy or the results of a query in a grid. 

 Perspectives arrange views and editors in the workbench. It consists of sup-
porting the organization of the front - end services according to engineers needs.   

   7.4    INSTANTIATING THE GENERIC MODEL - DRIVEN 
ARCHITECTURE: THE TWOUSE TOOLKIT 

 TwoUse toolkit is an open source tool that implements the research presented in this 
book. It is an instantiation of the generic architecture and an implementation of 
current OMG and W3C standards for designing ontology - based information systems 
and model - based OWL ontologies. It is a model - driven tool to bridge the gap 
between semantic web and model - driven engineering. 

 TwoUse toolkit building blocks are (Figure  7.3 ):

    •      A set of textual and graphical editors. TwoUse relies on textual and graphical 
editors for editing and parsing W3C standard languages (OWL 2 and SPARQL), 
OMG standards (UML, MOF and OCL), and other domain - specifi c 
languages.    
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   •      A set of model transformations. Generic transformations like  “ Ecore to OWL ”  
allow developers to transform any software language into OWL. Specifi c 
transformations like  “ UML to OWL ”  and  “ BPMN to OWL ”  allow developers 
to create ad hoc OWL representations of software models.  

   •      A set of ontology services like reasoning, query answering and explanation.    

 Figure  7.4  depicts the TwoUse instantiation of the generic architecture depicted 
previously in Figure  7.2 . It comprises core services, services for ontology engineer-
ing and model - driven engineering, and a front -   end. 

Core Services.   The TwoUse toolkit uses the implementation of SPARQL -
 DL and the OWL 2 reasoner provided by the Pellet reasoner  [155]  as components 
for realizing the core ontology services. The model transformation component con-
sists of a set of model transformations implemented using the Java language  [56]  as 
well as the model transformation language ATL  [82] . The synchronization service 
maintains the dependencies between the source artifacts and the target artifacts. For 
example, when engineers use a SPARQLAS query, a corresponding SPARQL query 
is generated and executed. The synchronization service maintains the generated 
SPARQL query updated in case of changes on the SPARQLAS query. It basically 
implements the observer pattern  [51]  to notify state changes on the source model.  

Services for Engineering.   The services for ontology engineering cover 
concrete applications of the TwoUse toolkit. We detail each of these applications in 
Part IV. 

 The services for model - driven engineering cover explanation, ontology match-
ing, and the TwoUse metamodel. The explanation service uses ontology services to 
help software engineers in pinpointing statements. The TwoUse toolkit covers the 
following types of explanation: unsatisfi ability, class subsumption, instantiation, and 
property assertion. The matching service uses the Ontology Alignment API  [40]  to 
support engineers in identifying similar constructs over multiple metamodels. We 
illustrate the application of these services in Chapter  10 . 

     Figure 7.3     The TwoUse 
Toolkit.  

TwoUse
Toolkit
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 Figure  7.5    depicts a snapshot of the TwoUse Toolkit showing the view Expla-
nation. The result of the explanation is showed in the console with links to the class 
on the UML class diagram.  

Front-End.   The front - end is the interface of the TwoUse toolkit to engineers. 
It comprises multiple editors that implement W3C standard languages and OMG 
standards as well as other domain - specifi c languages. We defi ne three views to help 
engineers in visualizing models: a hierarchy of the inferred classes (Figure  7.6 ), a 
user interface for explanation and an interface for query results. The commands 
involve transforming models into OWL, executing queries, and generating services 
and code. We group the editors, views, and commands under two perspectives: 
ontology - based model design and model - driven ontology development.   

 We implement the TwoUse toolkit on top of the Eclipse Rich Client Platform 
 [97]  as an open - source tool under the eclipse public license. It is available for down-
load on the Project Website. 2

 2    http://twouse.googlecode.com/ . 

     Figure 7.4     Instantiation of the Generic Architecture: The TwoUse Toolkit.  
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   7.5    CONCLUSION 

 In this chapter, we have specifi ed a generic architecture for integrated approaches. 
The architecture fulfi lls the requirements defi ned in Section  5.2 . We validated the 
architecture by instantiating it as an implementation of the conceptual architecture —
 the TwoUse Toolkit.  

     Figure 7.5     TwoUse Toolkit Snapshot: Explanation Service.  

     Figure 7.6     TwoUse Toolkit Snapshot: View Inferred Class Hierarchy.  



 CONCLUSION 
OF PART II     

     This part presented TwoUse as a solution for developing and denoting models that 
benefi t from the advantages of UML class - based modeling and OWL modeling 
(Research Question II from Section  1.2 ). We described the main building blocks of 
a conceptual architecture covering an integration of UML class - based modeling, 
OWL, and a query language for OWL. Moreover, we specify a generic architecture 
for implementing the conceptual architecture and describe an instantiation of the 
generic architecture — the TwoUse Toolkit.         



  PART III
APPLICATIONS IN 
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  CHAPTER 8
IMPROVING SOFTWARE 
DESIGN PATTERNS WITH  OWL      

     This chapter tackles problems in common design patterns and proposes OWL model-
ing to remedy these issues. We exploit the TwoUse approach and integrate OWL 
with UML class - based modeling to overcome drawbacks of the strategy pattern, 
which are also extensible to the abstract factory pattern. The results are ontology -
 based software design patterns to be used with software design patterns. 1

   8.1    INTRODUCTION 

 Design patterns  [51]  provide elaborated, best practice solutions for commonly occur-
ring problems in software development. During the last years, design patterns were 
established as general means to ensure quality of software systems by applying refer-
ence templates containing software models and their appropriate implementation to 
describe and realize software systems. 

 In addition to their advantages, Gamma  et al.   [51]  characterize software design 
patterns by their consequences including side effects and disadvantages caused by 
their use. In this chapter, we address the drawbacks associated with pattern - based 
solutions for variant management  [169] . Design patterns rely on basic principles of 
reusable object design like manipulation of objects through the interface defi ned by 
abstract classes, and by favoring delegation and object composition over direct class 
inheritance in order to deal with variation in the problem domain. 

 However, the decision of what variation to choose typically needs to be speci-
fi ed at a client class. For example, solutions based on the strategy design pattern 
embed the treatment of variants into the client ’ s code, leading to an unnecessarily 
tight coupling of classes. Gamma  [51]  identifi es this issue as a drawback of pattern -
 based solutions, e.g., when discussing the strategy pattern and its combination with 
the abstract factory pattern. Hence, the question arises of how the selection of spe-
cifi c classes could be determined using only their descriptions rather than by weaving 
the descriptions into client classes. 

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

 1   This chapter contains work from the paper  “ Improving Design Patterns by Description Logics: A Use 
Case with Abstract Factory and Strategy ”  presented at Modellierung ’ 08  [151] . 
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 Here,  description logics  come into play. Description logics, in general, and 
OWL as a specifi c expressive yet pragmatically usable W3C recommendation  [61]  
allow for specifying classes by rich, precise logical defi nitions  [9] . Based on these 
defi nitions, OWL reasoners dynamically infer class subsumption and object 
classifi cation. 

 The basic idea of this chapter lies in decoupling class selection from the defi ni-
tion of client classes at runtime by exploiting OWL modeling and reasoning. We 
explore a slight modifi cation of the strategy pattern and the abstract factory pattern 
that includes OWL modeling and leads to a minor, but powerful variation of existing 
practices: the Selector Pattern . To realize the  Selector Pattern , we apply the TwoUse 
approach.

 This chapter is organized as follows. Section  8.2  presents an example demon-
strating the application of the strategy and abstract factory patterns to solve a typical 
implementation problem. The example illustrates the known drawbacks of the state -
 of - the - art straightforward adoption of these patterns. Section  8.3  presents a solution 
extending the existing patterns by OWL modeling. We explain how our revision 
modifi es the prior example and how it addresses the issues raised in the example. 
Section  8.4  describes an abstraction of the modifi ed example, i.e., the selector 
pattern. We present its structure, guidelines for adoption, consequences, and related 
works. A short discussion of open issues concludes this chapter in Section  8.6 .  

   8.2    CASE STUDY 

 This section presents a typical case study of design patterns involving the strategy 
and abstract factory patterns. To illustrate an application of such patterns, we take 
the example of an order - processing system for an international e - commerce company 
in the United States  [146] . This system must be able to process sales orders in dif-
ferent countries, e.g., the US and Germany, and handle different tax calculations. 

 Design patterns rely on principles of reusable object - oriented design  [51] . In 
order to isolate variations , we identify the  concepts  (commonalities) and concrete 
implementations (variants) present in the problem domain. The  concept  generalizes 
common aspects of variants  by an abstract class. If several variations are required, 
the variations are subsumed to contextual classes, which delegate behavior to the 
appropriate variants. These variants are used by  clients . 

   8.2.1    Applying the Strategy Pattern 

 Considering the principles above, we identify the class  SalesOrder  as a  context , 
Tax  as a  concept , and the classes  USTax  and  GermanTax  as the  variants  of tax 
calculation. Since tax calculation varies according to the country, the strategy pattern 
allows for encapsulating the tax calculation and letting them vary independently of 
the context . The resulting class diagram is depicted in the Figure  8.1 .   

 To specify operations, we use the Object Constraint Language (OCL)  [116] . 
The TaskController  requires the operation  getRulesForCountry , which 
returns the concrete strategy to be used. The specifi cation must include criteria to 
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select from the strategies. In our example, the criterion is the country where the 
customer of a sales order lives. 

 The drawback of this solution is that, at runtime, the  client   TaskController
must decide on the variant  of the  concept   Tax  to be used, achieved by the operation 
getRulesForCountry . Nevertheless, it requires the  client  to understand the dif-
ferences between the variants, which increases the coupling between these classes. 

 Indeed, the decision of whether a given object of  SalesOrder  will use the 
class GermanTax  to calculate the tax depends on whether the corresponding  Cus-
tomer  lives in Germany. Although this condition refers to the class  GermanTax , it 
is specifi ed in the class  TaskController . Any change in this condition will require 
a change in the specifi cation of the class  TaskController , which is not intuitive 
and implies an undesirably tight coupling between the classes GermanTax ,  Country , 
and TaskController  (Figure  8.2 ).    

   8.2.2    Extending to the Abstract Factory 

 When the company additionally needs to calculate the freight, new requirements 
must be handled. Therefore, we apply again the strategy pattern for freight calcula-
tion. As for the tax calculation, the  context   SalesOrder  aggregates the  variation
of freight calculation, USFreight  and  GermanFreight  generalized by the  concept
Freight  (Figure  8.3 ).   

     Figure 8.1     Application of the Strategy Pattern in the Running Example.  
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     Figure 8.3     Strategy and Abstract Factory Patterns with Confi guration Object.  
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     Figure 8.2     Drawbacks of the Strategy Pattern.  
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 As we now have families of objects related to the US and Germany, we apply 
the abstract factory pattern to handle these families. The abstract factory pattern 
provides an interface for creating groups of related variants   [51] . 

 As one possible adaptation of the design patterns, the  client  ( TaskCon-
troller ) remains responsible for selecting the  variants  of the  concept   Abstract-
Factory  to be used, i.e., the family of strategies, and passes the concrete factory 
as a parameter to the class SalesOrder . The class  SalesOrder  is associated with 
the class AbstractFactory , which interfaces the creation of the strategies  Tax
and Freight . The concrete factories  USAbsFact  and  GermanAbsFact  implement 
the operations to create concrete strategies USFreight ,  GermanFreight ,  German-
Tax , and  USTax . 

 The adaptation of the design patterns used as the example introduces a Con-
fi guration object  [146]  to shift the responsibility for selecting variants from one or 
several clients to a Configuration  class, as depicted in the Figure  8.3 . The class 
Configuration  decides which variant to use. The class  SalesOrder  invokes the 
operation getRulesForCountry  in the class  Configuration  to get the variant. 
These interactions are also depicted in a sequence chart in Figure  8.4 .    

   8.2.3    Drawbacks 

 In general, the strategy pattern solves the problem of dealing with variations. 
However, as documented by Gamma  [51] , the strategy pattern has a drawback. The 
clients must be aware of variations and of the criteria to select between them at 
runtime, as described at the end of Section  8.2.1 . 

     Figure 8.4     UML Sequence Diagram of Strategy and Abstract Factory Patterns with 
Confi guration Object.  

: TaskController : AbstractFactory
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 When combining the strategy and abstract factory patterns, the problem of 
choosing among the variants of the AbstractFactory  remains almost the same. 
Indeed, the abstract factory pattern assembles the families of strategies. Hence, the 
client must still be aware of variations. 

 The solution using the class  Configuration  does not solve this problem 
either, i.e., the coupling migrates. As the  Configuration  must understand how the 
variants differ, the selection is transferred from the client  TaskController  to the 
class Configuration . 

 Furthermore, each occurrence of the strategy and the abstract factory patterns 
increases the number of operations that the class Configuration  must be able to 
handle. It makes the specifi cation of such a class complex, decreasing class 
cohesion.

 Thus, a solution that reuses the understanding of the variations without increas-
ing the complexity is desirable. Furthermore, such a solution should allow one to 
decide on the appropriate variants as late as possible. Separating the base of the 
decision from the decision itself will provide an evolvable and more modular soft-
ware design. In the next section, we describe how TwoUse provides such a 
mechanism.   

   8.3    APPLICATION OF THE TWOUSE APPROACH 

 A solution for the drawbacks presented at the end of Section  8.2  is to dynamically 
classify the context , and verify whether it satisfi es the set of requirements of a given 
variant . To do so, one requires a logical class defi nition language that is more 
expressive than UML, e.g., the Web Ontology Language (OWL)  [61] . 

 To benefi t from the expressiveness of OWL and UML modeling it is necessary 
to weave both paradigms into an integrated model - based approach, e.g., by using 
the TwoUse modeling approach (see Chapter  5 ). 

   8.3.1     OWL  for Conceptual Modeling 

 OWL provides various means for expressing classes, which may also be nested into 
each other. One may denote a class by a class identifi er, an exhaustive enumeration 
of individuals, a property restriction, an intersection of class descriptions, a union 
of class descriptions, or the complement of a class description. 

 For the sake of illustration, an incomplete specifi cation of the E - Shop example 
using a description logic syntaxs repeated here. The identifi er  Customer  is used 
to declare the corresponding class (8.1) as a specialization of Thing  ( ), since 
all classes in OWL are specializations of the reserved class  Thing . The class 
Country   contains  the individuals  USA  and  GERMANY  (8.2). The class  USCustomer
is defi ned by a restriction on the property  hasCountry ; the value range must 
include the country USA  (8.3). The description of the class  GermanCustomer
is analogous (8.5). USSalesOrder  is defi ned as a subclass of a  SalesOrder  with 
at least one USCustomer  (8.4). The intersection of both classes is empty ( ⊥ ), 
i.e., they are disjoint (8.7). The class  SalesOrder  is equal to the union of 
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GermanSalesOrder  and  USSalesOrder , i.e., it is a complete generalization of 
both classes (8.8).

    Customer     (8.1)  

    { , }USA GERMANY Country     (8.2)  

    USCustomer Customer hasCountry USA� � ∃ { }     (8.3)  

    USSalesOrder SalesOrder hasCustomer USCustomer� � ∃ .     (8.4)  

    GermanCustomer Customer hasCountry GERMANY� � ∃ { }     (8.5)  

    GermanSalesOrder SalesOrder hasCustomer GermanCustomer� � ∃ .     (8.6)  

    GermanSalesOrder USSalesOrder� � ⊥     (8.7)  

    SalesOrder GermanSalesOrder USSalesOrder≡     (8.8)   

 Notations for OWL modeling have been developed, resulting in lexical nota-
tions (cf.  [73, 61] ) and in UML as visual notation (cf.  [21, 34, 114]  ). When modeling 
the problem domain of our running example using a UML profi le for OWL  [114] , 
the diagram looks as depicted in the Figure  8.5 . The number relates the list of DL 
statements above to the corresponding visual notation.    

   8.3.2    TwoUse for Software Design Patterns: 
The Selector Pattern 

 To integrate the UML class diagram with patterns (Figure  8.3 ) and the OWL profi led 
class diagram (Figure  8.5 ), we rely on the TwoUse approach. We use UML profi les 

     Figure 8.5     Domain Design by a UML Class Diagram Using a UML Profi le for OWL.  
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as concrete syntax, and allow for specifying UML entities and OWL entities using 
one hybrid diagram. These entities are connected using the UML profi le and SPAR-
QLAS queries. This hybrid diagram, i.e., a UML class diagram with profi les for 
OWL and TwoUse, is mapped later onto the TwoUse abstract syntax. 

 The approach enables the modeler to use SPARQLAS4TwoUse expressions 
to describe the query operations of classes that have both semantics of an OWL class 
and a UML class in the  same  diagram. Moreover, this operation can query the OWL 
model, i.e., invoke a reasoning service at runtime that uses the same OWL model. 

 Hence, we can achieve dynamic classifi cation writing SPARQLAS4TwoUse 
query operations in the context  to classify the  variation  in the OWL model in 
runtime. The result is returned as a common object - oriented class. 

 8.3.2.1    Structure     The hybrid diagram is depicted in Figure  8.6  and in Figure 
 8.7 . The classes  Customer  and  Country  are OWL classes and UML classes, i.e., 

     Figure 8.6     Profi led UML Class Diagram of an Ontology - Based Solution.  
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     Figure 8.7     Profi led UML Class Diagram with the Strategy Pattern.  

they are hybrid TwoUse classes. They are used in the OWL part of the model to 
describe the variations of the context SalesOrder . The TwoUse profi le provides a 
mapping between the names in OWL and in UML in such a way that class names 
in both OWL and UML are preserved.   

 The concrete factories, i.e., the variants to be instantiated by the client  Task-
Controller  are TwoUse classes as well. The concrete factories are described based 
on the restrictions on the class SalesOrder  which must also exist in both para-
digms. In the OWL part of the model, the concrete factories specialize the  Sales-
Order , but in UML, they specialize the class  AbstractFactory . Hence, they do 
not inherit the methods of the class SalesOrder , because the associations between 
the variants and the context happen only in OWL part of the model.  

 8.3.2.2    Participants and Collaborations     The TwoUse approach preserves 
the signature and behavior of existing pattern implementations, as only the body of 
the operation getRulesForCountry  is affected. The class  Configuration  is no 
longer needed, as the selection is moved to querying the OWL part of the model (cf. 
the query in Figure  8.6 ). 

 As depicted in Figure  8.8 , the class  TaskController  invokes the operation 
process  in the class  SalesOrder  (2), which invokes the operation  getRulesFor-
Country  (3). This operation calls SPARQLAS4TwoUse query operations. The 
SPARQLAS4TwoUse operations use reasoning services to classify dynamically 
the object SalesOrder  to the appropriate subclass. The resulting OWL class, i.e., 
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US-SalesOrder  or  GermanSalesOrder , is mapped onto a UML class and is 
returned. The remaining sequence (5 - 12) remains unchanged.   

 For instance, let  ORDER1  be a SalesOrder with the property  customer  being 
HANS  with the property  country  being  GERMANY . The call  ORDER1.getRules-
ForCountry () results in an object of type  GermanSalesOrder .  

 8.3.2.3    Comparison     In the strategy and abstract factory solution, the decision 
of which variant  to use is left to the  client  or to the  Configuration  object. It requires 
associations from these classes ( TaskController  and  Configuration , respec-
tively) with the concepts ( Tax  and  AbstractFactory , respectively). Furthermore, 
the conditions are hard - coded in the client ’ s operations. 

 The TwoUse - based solution cuts these couplings, as the selection is done at 
the OWL concept level, without any impact on the UML level, allowing the OWL 
part of the model to be extended independently. 

 The descriptions of the classes  USSalesOrder  and  GermanSalesOrder  are 
used for the Reasoner to classify the object dynamically. As the classifi cation occurs 
at the OWL level, resulting OWL classes are transformed into UML classes. Hence, 
the conditions are specifi ed as logical descriptions. 

 When evolving from Figure  8.1  to Figure  8.3 , the OWL part of the model does 
not change. Thus, new patterns can be applied without additional effort in modeling 
the OWL domain.    

     Figure 8.8     Sequence Diagram of an OWL - Based Solution.  
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   8.4    VALIDATION 

 After analyzing the case study of composing OWL and design patterns in Section 
 8.3 , we abstract repeatable arrangements of entities and propose a design pattern 
supported by OWL to address decision of variations —  the selector pattern . 

 The selector pattern provides an interface for handling variations of context. 
It enables the context to select the appropriated variants based on their descriptions. 
Selections in the selector pattern are encapsulated in appropriate SPARQLAS -
 queries against the concept, facilitating a clear separation between the base of the 
decision and the decision itself. 

   8.4.1    Participants and Collaborations 

 The selector pattern is composed by a  context  (e.g.,  SalesOrder  in Figure  8.6 ), the 
specifi c  variants  (e.g.,  USAbsFact  and  GermanAbsFact  in Figure  8.6 ) of this 
context and their respective descriptions, and the concept  (e.g.,  AbstractFactory
in Figure  8.6 ), which provides a common interface for the variations (Figure  8.9 ). 
Its participants are:

    •       Context  maintains a reference to the  Concept  object.    

   •       Concept  declares an abstract method  behavior  common to all variants.  

   •       Variants  implement the method  behavior  of the class  Concept .    

 The  Context  has the operation  select , which uses SPARQLAS operations 
to call the reasoner and dynamically classify the object according to the logical 
descriptions of the variants. A  Variant  is returned as the result (Figure  8.9 ). Then, 
the Context  establishes an association with the  Concept , which interfaces the 
variation.

     Figure 8.9     Structure, Participants, and Collaborations in the Selector Pattern.  
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   8.4.2    Applicability 

 The selector pattern is applicable:

    •      when the strategy pattern is applicable (cf.  [51] );  

   •      when the decision of what variant to use appears as multiple conditional state-
ments in the operations;  

   •      when exposing complex and case - specifi c data structures must be avoided.    

 The selector pattern preserves the interactions of the strategy and abstract 
factory patterns, studied in this chapter. The following steps guide the application 
of the selector pattern:

1.     Design the OWL part of the model using a UML profi le for OWL, identifying 
the concept and logically describing the variations;  

2.     Map the overlapping classes in UML and in OWL using a UML profi le;  

3.     Write the operation in the  Context  class corresponding to the operation selec-
tor using SPARQLAS expressions.     

   8.4.3    Drawbacks 

 The proposed solution may seem complex for practitioners. Indeed, applying the 
selector pattern requires suffi ciently deep understanding by developers of topics like 
open and closed world assumption, class expressions, and satisfi ability, in addition 
to knowledge of SPARQLAS4TwoUse. Moreover, the diagram presented by Figure 
 8.6  is visibly more complex than the corresponding version without patterns, 
although applying aspect - oriented techniques can minimize this problem. 

 Further, calls from OCL to SPARQLAS4TwoUse may return OWL classes 
that are not part of the TwoUse model. This implies a dynamic diffusion of OWL 
classes into the UML model and either they must be accommodated dynamically 
into it or an exception needs to be raised. 

 Therefore, class descriptions must be suffi cient for the reasoner to classify the 
variant, i.e., classes and properties needed to describe the variants must also exist 
at the OWL level. When this is not possible, the reasoner cannot classify the variants 
correctly.  

   8.4.4    Advantages 

 The application of the selector pattern presents the following consequences:

Reuse.      The knowledge represented in OWL can be reused independently of 
platform or programming language.  

Flexibility .      The knowledge encoded in OWL can be modeled and evolved 
independently of the execution logic.  

Testability .      The OWL part of the model can be automatically tested by logical 
unit tests, independently of the UML development.  
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Easy Adoption .      Expanding Figure  8.3  with Figure  8.6  and Figure  8.4  with 
Figure  8.8  in the motivating example, shows that the changes required by 
applying the selector pattern in existing practices are indeed minor.  

UML Paradigm Dominance .      The concrete cases are bound to the context 
only in OWL. It has no impact on the UML part of the model. The program-
mer freely specifi es the SPARQLAS operation calls when applicable.      

   8.5    RELATED WORK 

 State - of - the - art approaches require hard - coding the conditions of selecting a particu-
lar variant  [146] . Our approach relies on OWL modeling and reasoning to dynami-
cally subclassify an object when required. 

 The composition of OWL with object - oriented software has been addressed 
by  [91]  and  [119] . We address this composition at the modeling level in a platform -
 independent manner  [90] .  

   8.6    CONCLUSION 

 We have proposed a novel way of reducing coupling in important design patterns 
by including OWL modeling. We have proposed an ontology - based software design 
pattern called selector pattern and discuss the impact of adopting the new approach. 

 The application of TwoUse can be extended to other design patterns concern-
ing variant management and control of execution and method selection. Software 
design patterns that factor out commonality of related objects, e.g., prototype, factory 
method and template method, are good candidates.  



  CHAPTER 9
MODELING ONTOLOGY -
 BASED INFORMATION 
SYSTEMS     

     Developers of ontology - based information systems have to deal with domain knowl-
edge represented in ontologies and domain logic represented by algorithms. An 
approach that allows developers to reuse knowledge embedded in ontologies for 
modeling algorithms is lacking so far. In this chapter, we apply the TwoUse approach 
for enabling developers of ontology - based information systems to reuse domain 
knowledge for modeling domain logic. This results in improvements in maintain-
ability, reusability, and extensibility. 1

   9.1    INTRODUCTION 

 The development of ontology - based information systems has gained momentum as 
users increasingly consume applications relying on semantic web technologies. For 
example, a core ontology - based information system for the Semantic Web is the 
semantic annotation of formulas, text, or image, which transforms human -
 understandable content into a machine - understandable form. 

 The development of these applications requires software engineers to handle 
software artifacts and the ontologies separately. For instance, software engineers 
cannot use OWL class expressions in the body of operations that rely on information 
contained in the ontology. Therefore, software engineers have to defi ne the condi-
tions for selecting classes twice, fi rst in the ontology and second in the body of 
operations. This process is error prone and requires the synchronization of both 
defi nitions in case of changes. 

 In this chapter, we analyze the application of the TwoUse approach for inte-
grating the ontologies in the development of ontology - based information systems. 
TwoUse enables ontology engineers to specify conditions reusing the knowledge 
encoded in the ontology. 

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

 1   This chapter contains work from the paper  “ Using Ontologies with UML Class - based Modeling: The 
TwoUse Approach ”  published in the Data  &  Knowledge Engineering Journal  [122] . 
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 This chapter is structured as follows: Section  9.2  describes the domain of the 
case study and analyzes current modeling techniques. In Section  9.3 , we apply the 
TwoUse approach for integrating domain ontologies and software specifi cation. 
Section  9.4  analyzes the application of the TwoUse approach according to ISO 9126 
non - functional software requirements, and it describes the limitations.  

   9.2    CASE STUDY 

 We describe the case study in the context of the semantic multimedia tools in this 
chapter. The K - Space Annotation Tool (KAT)  [138]  is a framework for semi -
 automatic and effi cient annotation of multimedia content that provides a plug - in 
infrastructure (analysis plug - ins and visual plug - ins) and a formal model based on 
the Core Ontology for Multimedia (COMM)  [6] . 

 Analysis plug - ins provide functionalities to analyze content, e.g., to semi -
 automatically annotate multimedia data like images or videos, or to detect structure 
within multimedia data. However, as the number of available plug - ins increases, it 
becomes diffi cult for KAT end - users to choose appropriate plug - ins. 

 For example, semantic multimedia developers provide machine learning –
 based classifi es, e.g., support vector machines (SVM), for pattern recognition. There 
are different recognizers (object recognizers, face detectors, and speaker identifi ers) 
for different themes (sport, politics, and art), for different types of multimedia data 
(image, audio, and video), and for different formats (JPEG, GIF, and MPEG). More-
over, the list of recognizers is continuously extended and, like the list of multimedia 
formats, it is not closed but, by sheer principle, it needs to be open. 

 Therefore, the objective is to provide KAT end - users with the functionality of 
automatically selecting and running the most appropriate plug - in(s) according to the 
multimedia data captured by the ontology. Such improvement enhances user satis-
faction, since it prevents KAT end - users from employing unsuitable recognizers over 
multimedia data. 

 In the following, we consider three recognizers that work over soccer videos: 
highlight recognizer, jubilation recognizer, and goal shots detector. A highlight rec-
ognizer works on detecting sets of frames in videos with high changing rates, e.g., 
intervals where the camera view changes frequently in a soccer game. A jubilation 
recognizer analyzes the video and audio, searching for shouts of jubilation. Finally, 
a goal shots detector works on matching shouts of jubilation with changes in camera 
view to characterize goal shots. 

   9.2.1     UML  Class - Based Software Development 

 We apply an extensible approach to model recognizer variations, namely an adapta-
tion of the strategy pattern  [51] . The strategy pattern allows for encapsulating rec-
ognizers uniformly, as depicted in Figure  9.1 .   

 Figure  9.1  depicts the KAT domain in the UML class diagram. It is a complex 
domain since KAT uses the COMM ontology that comprises multiple occurrences 
of ontology design patterns, e.g., semantic annotation  used in the running example. 
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 Users select KAT algorithms for SVM recognition and, consequently, the class 
controller  invokes the method  run()  in the class  kat_algorithm  (Figure  9.1 ). 
The method run()  invokes the method  getRecognizers() , which uses refl ection 
to get a collection ( rNames() ) of the recognizers ( _r ) applicable to a given multi-
media content (multimedia_data). Then, the method  recognize()  of each recog-
nizer is invoked, which adds further annotations to multimedia data to refi ne the 
description.

 Nevertheless, applying the strategy design pattern opens the problem of strat-
egy selection. To solve it, one needs to model how to select the appropriate 
recognizer(s) for a given item of multimedia content. Listing  9.1  illustrates a solution 
using OCL. It shows the description of the query operation rNames()  in OCL. This 
operation is used in the guard expression of the loop combined fragment in the 
sequence diagram (Figure  9.1 ).   

 The operation  rNames()  collects the classes of recognizers to be created. The 
OCL expression  Set(OclType)  (Line 4) is used here as a refl ection mechanism to 
get a list of the classes to be created. This is required to iterate through the instances 
of kat_algorithm  (Line 4) and test whether it satisfi es the requirements of a given 
recognizer. If it does, the recognizer is added into a collection of recognizers to be 
created (Line 17). 

 In fact, the OCL expressions in Listing  9.1  contain class descriptions in some 
sense. For example, the classes highlight_recognizer  and  jubilation_
recognizer  need a  kat_algorithm  with some  annotated_data_role  with 
some video_data  (Lines 19 – 24). The description of a  goal_shots_detector  is 
complicated (Lines 7 – 15), since it needs a  soccer_video , that is a subclass of 
video_data , with some  semantic_annotation  with some  highlight , and 
with some semantic_annotation  with some  jubilation . 

     Figure 9.1     UML Class Diagram and Sequence Diagram of KAT Algorithms.  
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loop (0, _recognizers->size())
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 Indeed, the UML/OCL approach has limitations:

    •      It restricts information that can be known about objects to object types, i.e., 
known information about objects is limited by information in object types (or 
in object states when using OCL). 

   •      Class descriptions, e.g.,  goal_shots_detector  (Lines 7 – 16), are embedded 
within conditional statements that are hard to maintain and reuse. In scenarios 
with thousands of classes, it becomes diffi cult to fi nd those descriptions, 
achievable only by text search.  

   •      OCL lacks of support for transitive closure of relations  [165, 17] . It makes 
expressions including properties like part-of  more complex.     

  LISTING 9.1     OCL  Expressions for the  UML  Sequence Diagram of Figure  9.1 . 

1 context kat_algorithm 

def rNames() : Set(OclType)

= kat_algorithm. allInstances () 
−>iterate ( _i : kat_algorithm; 

5 _r : Set(OclType) = Set{} | 
if

_i.annotated_data_role−>exists ( adr | 
adr.video_data−>exists ( v | 

v.oclIsTypeOf (soccer_video)  and

10 v.semantic_annotation−>exists (sa | 
sa.kat_thing−>exists ( g | 

g.oclIsTypeOf (highlight) ) )  and

v.semantic_annotation−>exists (sa | 
sa.kat_thing−>exists ( j | 

15 j.oclIsTypeOf (jubilation) ) )

) )

then

_r−>including(goal_shots_detector)
else if

20 _i.annotated_data_role−>exists ( adr | 
adr.video_data−>exists ( v | 
v.oclIsTypeOf(video_data) ) )

then

_r −>including(highlight_recognizer)−>union(
25 _r−>including(jubilation_recognizer))

else

_r

endif

endif)−>asSet()
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   9.2.2    Ontology - Based Software Development 

OWL Modeling.   Instead of hard - coding class descriptions using OCL 
expressions, a more expressive and extensible manner of modeling data provides 
fl exible ways to describe classes and, based on such descriptions, it enables type 
inference.

 Therefore, one requires a logical class defi nition language that is more expres-
sive than UML class - based modeling. Indeed, OWL provides various means for 
describing classes. One may denote a class by a class identifi er, an exhaustive enu-
meration of individuals, property restrictions, an intersection of class descriptions, 
a union of class descriptions, or the complement of a class description. 

 For the sake of illustration, we use description logic syntax to specify the KAT 
domain as follows (Table  9.1 ). KAT uses the COMM ontology  [6]  as a conceptually 
sound model of MPEG - 7 and as a common but extensible denominator for different 
plug -   ins exchanging data. 

 For example, the classes  jubilation  and  highlight  are subclasses of 
kat_thing  (1). A soccer_video is a subclass of video_data (2). A highlight_annota-
tion is a semantic_annotation  that  setting_for  some  highlight  (3). A 
highlight_video  is equivalent to a  video_data  that  setting  some  high-
light_annotation  (4). A  jubilation_video  is similarly described (5). A 
highlight_recognizer  is a subclass of a  kat_algorithm  and is equivalent to 
a kat_algorithm  that  defines  some  annotated_data_role  that is  played_by
some video_data  (7). 

 OWL is compositional, i.e., OWL allows for reusing class descriptions 
to create new ones. A look at the class  soccer_jub_hl_video  (6) shows that it 
is equivalent to an intersection of soccer_video ,  highlight_video , and  
jubilation_video , i.e., a soccer video with highlight and jubilation. Thus, it 
becomes easier to describe the class goal_shots_detector  (8), which is a sub-
class of a kat_algorithm  and is equivalent to a  kat_algorithm  that  defines

  TABLE 9.1    Specifying  KAT  with Description Logic Syntax. 

jubilation highlight kat thing, _     (9.1)   
     soccer video video data_ _     (9.2)   
     highlight annotation semantic annotation setting for high_ _ _≡ ∃ . llight     (9.3)   
     highlight video video data setting highlight annotation_ _ _≡ ∃ .     (9.4)   
     jubilation video video data setting jubilation annotation_ _ _≡ ∃ .     (9.5)   
     soccer jub hl video soccer video highlight video jubilatio_ _ _ _ _≡ nn video_     (9.6)   

     

highlight recognizer kat algorithm

defines annotated data

_ _

_

≡
∃ ( __ _ _role played by video data∃ . )    (9.7)   

     
goal shots detector kat algorithm

defines annotated data

_ _ _

_ _

≡
∃ ( rrole played by soccer jub hl video∃ _ _ _ _. )

    (9.8)    
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some annotated_data_role  that is  played_by  some  soccer_jub_hl_video . 
Moreover, OWL allows for defi ning properties as transitive, simplifying query 
expressions. The reader may compare these reusable class defi nitions against 
the involved and useable implicit defi nition of distinctions provided in Listing  9.1  
(Lines 6 – 25).  

OWL Reasoning.   OWL ontologies can be operated on by reasoners provid-
ing consistency checking, concept satisfi ability, instance classifi cation, and concept 
classifi cation. The reasoner performs model checking to the extent that entailments 
of the Tarski - style model theory of OWL are fulfi lled. For instance, it is possible to 
verify whether it is possible to apply goal_shots_detector  to images (consis-
tency checking) (the answer is  “ no ”  if  goal_shots_detector  is disjoint from 
image recognizers) or whether a given instance is a soccer_jub_hl_video

(instance classifi cation). It is possible to ask a reasoner to classify the concepts of 
the ontology and fi nd that  highlight_video  and  jubilation_video  are both 
superclasses of soccer_jub_hl_video  (concept classifi cation). 

 More specifi cally, given that we know an object to be an instance of  high-
light_video , we can infer that this object has the property  setting  and the value 
of setting  is an individual of  highlight_annotation . Conversely, if we have 
an object of video_data , which has the property  setting  and the value of 
setting  associated with such an individual is a  highlight_annotation , we can 
infer that the prior individual is an instance of highlight_video . This example 
illustrates how to defi ne OWL classes like  highlight_video  by necessary and 
suffi cient conditions. 

 To sum up, OWL provides important features complementary to UML and 
OCL that improve software modeling: it provides multiple ways of describing 
classes; it handles these descriptions as fi rst - class entities; it provides additional 
constructs like transitive closure for properties; and it enables dynamic classifi cation 
of objects based upon class descriptions. 

 The need for an integration emerges since OWL is a purely declarative and 
logical language and not suitable to describe, e.g., dynamic aspects of software 
systems such as states or message passing. Thus, to benefi t from inference, one must 
decide at which state or given which trigger one should call the reasoner. In the next 
section, we address this issue among others, proposing ways of integrating both 
paradigms using the TwoUse approach.     

   9.3    APPLICATION OF THE TWOUSE APPROACH 

 We apply the TwoUse approach described in Part II to enable engineers to design 
and integrate UML models and OWL ontologies, exploiting the full expressiveness 
of OWL( SROIQ (D)) and allowing usage of existing UML2 tools. 

 To give an idea of the integration, we use the example of the E - Shop domain. 
Instead of defi ning the query operation  rNames  using UML/OCL expressions, we 
use the expressiveness of the OWL language together with SPARQLAS4TwoUse. 
Querying an OWL reasoning service , it is possible to ask which OWL subclasses of 
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kat_algorithm  describe a given instance, enabling dynamic classifi cation. Such 
expression will then be specifi ed by:

1 context kat_algorithm 

def rNames(): Set(Class)

?self type ?T 

?T subClassOf kat_algorithm 

 As specifi ed above, to identify which subclasses are applicable, we use the 
variable ?T  to get all types of  ?self  that are subclasses of  kat_algorithm . 

 The advantage of this integrated formulation of  rNames  lies in separating two 
sources of specifi cation complexity. First, the classifi cation of complex classes 
remains in an OWL model. The classifi cation reuses the COMM model and it is 
reuseable for specifying other operations; it is maintainable using graphical nota-
tions; and it is a decidable, yet rigorous reasoning model (see Figure  9.2 ). Second, 
the specifi cation of the execution logic remains in the UML specifi cation (sequence 
diagram in the Figure  9.1 ).   

   9.3.1    Concrete Syntax 

 Figure  9.2  shows a snippet of the UML class diagram for the case study. In this 
snippet, the OWL view consists of fi ve classes. The UML view comprises the seven 
classes depicted in the Figure  2.8  and the TwoUse view contains six classes and a 
SPARQLAS query expression. 

     Figure 9.2     UML Class Diagram of KAT.  



9.3 APPLICATION OF THE TWOUSE APPROACH 119

  LISTING 9.2    Modeling  KAT  Using the Textual Language. 

1 class controller {} 

class kat_algorithm  extends core:algorithm { 

attribute recognizer recognizers (0.. −1);
operation void run(); 

5 operation recognizer (0.. −1) getRecognizers (); 
operation rNames(): Set(OclType) 

Select ?T where ?self type ?T ?T subClassOf kat_algorithm; 

}

. . . 

10 abstract class recognizer{ 

operation void recognize(); 

}

   class highlight_annotation [equivalentTo [core:semantic_annotation 

and [dsn:setting_for some highlight]]] {} 

class highlight_video [equivalentTo [core:video_data and 

[dsn:setting some highlight_annotation]]] {} 

15 class jubilation_video [equivalentTo [core:video_data and 

[dsn:setting some jubilation_annotation]]] {} 

class soccer_jub_hl_video [equivalentTo [soccer_video and 

highlight_video and jubilation_video]] {} 

class highlight_recognizer  extends kat_algorithm, [subClassOf 

[dns:defines some [core:annotated_data_role and [played_by some 

core:video data]]]] {} 

class jubilation_recognizer  extends kat_algorithm, [subClassOf 

[dns:defines some [core:annotated_data_role and [dns:played_by 

some core:video_data]]]] {} 

class goal_shots_detector  extends kat_algorithm, [subClassOf 

[dns:defines some [core:annotated_data_role and [dns:played_ 

by some soccer_jub_hl_video]]]] {} 

 Another way or integrating ontologies in the development of ontology - based 
information systems is using the textual syntax. Listing  9.2  presents the equivalent 
of the UML class diagram defi ned using the textual syntax for Ecore and includes 
the OWL class expressions (between brackets).    

   9.3.2    Abstract Syntax 

 The TwoUse abstract model is generated as output of model transformations that 
take as input models defi ned using any of the notations supported by TwoUse. Figure 
 9.3  depicts an excerpt of the abstract model for the running example.    
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   9.3.3    Querying 

 Table  9.2  lists results of evaluating SPARQLAS expressions considering the snap-
shot depicted in the Figure  9.4 . We take two objects of the snapshot ( alg1,alg2 ) 
and bind them to the predefi ned variable  self . For example, for the expression 
self.owlIsInstanceOf(highlight_recognizer)  where  self  is bound to 
alg1 , the result is  true .       

   9.4    VALIDATION 

 Based on the case study, we analyze how TwoUse features refl ect development -
 oriented non - functional requirements according to a quality model covering the 
following quality factors: maintainability, effi ciency (ISO 9126  [80] ), reusability, 
and extensibility  [37] . The decision to use UML with OWL does not affect other 
ISO 9126 quality factors. 

Maintainability.   We analyze maintainability with regard to analyzability, 
changeability, and testability as follows.

Analyzability.      In case of failure in the software, developers have the possibility 
of checking the consistency of the domain and then use axiom explanation 
to track down failure, which helps to improve failure analysis effi ciency. 

  TABLE 9.2    Evaluation of  SPARQLAS  Expressions According to the  KAT  Snapshot. 

  Context object     alg1     alg2  

   SPARQLAS expression  

?self directType 

highlight_recognizer

true      true

?self directType goal_

shots_detector

false      true

?self type ?T algorithm, description, 

highlight_recognizer,

jubilation_recognizer,

method

algorithm, description, 

highlight_recognizer,

jubilation_

recognizer, goal_

shots_detector,

method

?self type ?T ?T 

subClassOf algorithm

highlight_recognizer,

jubilation_recognizer

highlight_recognizer,

jubilation_

recognizer, goal_

shots_detector

?self directType _:t 

?a type _:t

alg1, alg2      alg1, alg2

?self directType ?T     highlight_recognizer      goal_shots_detector
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Changeability.      The knowledge encoded in OWL evolves independently of 
the execution logic, i.e., developers maintain class descriptions in the ontol-
ogy and not in the software. Since the software does not need recompilation 
and redistribution, the work time spent to change decreases.  

Testability.      Developers used queries declared in unit tests to test ontology 
axioms, enabling test suites to be more declarative.     

Reusability.   Extending the COMM core ontology allows developers to reuse 
available knowledge about multimedia content, semantic annotation, and algorithm. 
Furthermore, developers can reuse the knowledge represented in OWL indepen-
dently of platform or programming language. 

 Moreover, developers rely on usage of class descriptions to semantically query 
the domain. Semantic query plays an important role in large domains like KAT 
(approx. 750 classes). For example, it is possible to reuse algorithm descriptions 
applicable to videos. By executing the query 

     Figure 9.4     Snapshot of KAT (M0).  
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1 ?T subClassOf (defines some (annotated_data_role  and

(played_by some video))) 

 using SPARQLAS, developers see that the classes  highlight_recognizer,
jubilation_recognizer , and  goal_shots_detector  are candidates to reuse. 
Such a semantic query is not possible with UML/OCL.  

Extensibility.   When the application requires it, developers can be more spe-
cifi c by extending existing concepts and adding statements. By adding new state-
ments, developers update the OWL ontology, which does not require generating code 
if the UML model is not affected. For example, if developers identify that an algo-
rithm works better with certain types of videos, developers extend the algorithm 
description.    

   9.4.1    Limitations 

 By weaving UML and OWL ontologies, TwoUse requires suffi cient understanding 
of developers about class expressions and satisfi ability. There is a trade - off between 
a concise and clear defi nition of syntax that is unknown to many people as in Table 
 9.1  versus an involved syntax that people know. From past experiences, we conclude 
that, in the long term, the higher level expressivity will prevail, as developers are 
willing to learn a more expressive approach. 

 Indeed, we have defi ned multiple notations according to different developers ’  
needs, but this does not prevent them from understanding the semantics of OWL 
constructs. This shortcoming is minimized in case of ontology - based information 
systems, since software developers are familiar with OWL.   

   9.5    CONCLUSION 

 In this chapter, we show how our approach yields improvements on the maintain-
ability, reusability, and extensibility for designing ontology - based information 
systems, which corroborates literature on description logics  [98] . TwoUse allows 
developers to raise the level of abstraction of business rules until now embedded in 
OCL expressions.  



  CHAPTER 10
ENABLING LINKED DATA 
CAPABILITIES TO  MOF  
COMPLIANT MODELS     

     In the software development process, there are standards for general - purpose model-
ing languages and domain - specifi c languages, capable of capturing information 
about different views of systems like static structure and dynamic behavior. In a 
networked and federated development environment, modeling artifacts need to be 
linked, adapted, and analyzed to meet information requirements of multiple stake-
holders. In this chapter, we present an approach for linking, transforming, and query-
ing MOF - compliant modeling languages on the web of data. We propose the usage 
of semantic web technologies for linking and querying software models. We apply 
the proposed framework in a model - driven software.  

   10.1    INTRODUCTION 

 In a model - driven architecture, software engineers rely on a variety of languages for 
designing software systems. As different stakeholders need different views of infor-
mation, the software development environment needs to encompass a myriad of 
general - purpose and domain - specifi c languages with complementary and overlap-
ping applications. 

 Since it is not feasible to capture all aspects of software into only one single 
model, contemporary model - driven architectures include numerous notations to 
serve according to the software development task. The inevitable usage of multiple 
languages leads to unmanageable redundancy in developing and managing the same 
information across multiple artifacts and, eventually, information inconsistency. 
With the growing demand for networked and federated environments, the question 
arises about what and how existing web standards can help existing modeling stan-
dards in fulfi lling the requirements of a  web of models . 

 Semantic web technologies  [4]  and linked open data (LOD) principles  [16]  
enable any kind of data to be represented, identifi ed, linked, and formalized on the 
web. The same data can be adapted for use according to the software engineer ’ s 
perspective.

 The interest in this topic motivated the Object Management Group (OMG) to 
issue a request for proposals aimed at defi ning a structural mapping between Meta 
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Object Facility (MOF) models and Resource Description Framework (RDF) repre-
sentations  [115] . This mapping should make possible to apply LOD principles to 
MOF compliant models and to publish MOF compliant models as LOD resources. 

 In a collaborative environment, developers need to be able to create architec-
tures with information expressed in multiple modeling languages. According to the 
development phase, developers rely on multiple languages for modeling distinct 
aspects of the system. 

 OWL  [61]  provides a powerful solution for formally describing domain 
concepts in networked environments. OWL is part of the semantic web stack 
and is compatible with RDF and with LOD principles. OWL ’ s objective is 
to provide evolution, interoperability, and inconsistency detection of shared 
conceptualizations.

 Although transformations from the MOF metamodel to OWL have been pro-
posed before, addressing the aforementioned problems requires a coherent frame-
work comprising techniques not only for transforming but for extending, linking, 
and querying MOF compliant models. 

 In this chapter, we propose TwoUse as a framework for supporting interrelation-
ships of modeling languages in distributed software modeling environments. We 
present this chapter as follows: Section  10.2  describes the running example used 
through the chapter and analyzes the requirements to be addressed. Section  10.3  
describes the application of the TwoUse approach. We analyze the approach on Section 
 10.4  and the related work in Section  10.5 . Section  10.6  concludes the chapter. 

   10.2    CASE STUDY 

 As a case study, we use the development of the TwoUse toolkit, i.e.,  “ we eat our 
own dog food. ”  As described in Chapter  7 , the TwoUse Toolkit is a model - driven 
implementation of current OMG and W3C standards for designing ontology - based 
information systems and model - based OWL ontologies. 

 TwoUse ’ s development life cycle comprises fi ve phases: requirement specifi ca-
tion, analysis, design, code, and management. Figure  10.1  depicts these phases and 

     Figure 10.1     Development Life Cycle of the TwoUse Toolkit.  
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the artifacts generated in each phase. In the requirement specifi cation phase, develop-
ers use UML use case diagrams and a domain - specifi c language for specifying require-
ments. These requirements are realized by Business Process Model Notation (BPMN) 
and UML component diagrams in the analysis phase. During the design phase, devel-
opers specify metamodels, generations for those metamodels, model transformations, 
and, in the case of editors, the grammar specifi cation. At the end of the development 
life cycle, these artifacts are transformed to source code and the dependencies between 
TwoUse plug - ins are captured by eclipse manifest fi les. Finally, the management phase 
controls the development life cycle and provides versioning. 

 Figures  10.2 ,  10.3  and  10.4  depict three concrete diagrams and show how 
they depend on each other. The UML use case diagram depicts use cases from the 
perspective of two actors: software engineer and ontology engineer (Figure  10.3 ). 

     Figure 10.2     Snippets of Use Case Diagram from TwoUse Toolkit.  
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     Figure 10.3     Snippets of BPMN Diagram from TwoUse Toolkit.  
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Software engineers use the TwoUse toolkit to extend UML or Ecore models with 
OWL annotations, to transform either of these metamodels into OWL, and subse-
quently to query them. Ontology engineers use a textual or graphical editor to design 
an OWL ontology to be queried afterwards.   

 The BPMN diagram shows the realization of these use cases from the perspec-
tive of the software engineer (Figure  10.3 ). Concretely, software engineers open the 
perspective  “ ontology development ”  to start editing and querying models and 
metamodels in OWL format. 

 The component diagram shows the internal structure and dependencies of 
component in the TwoUse architecture (Figure  10.4 ). 

 The TwoUse toolkit development life cycle relies on multiple models to 
provide viewpoints according to the development phase. For example, testers are 
interested in the information fl ow to realize functionalities provided by the system. 
Software engineers are interested in the impact of changing a given component or 
task. Other software engineers are interested in a modular view of the system for 
coordinating deliverables. 

   10.2.1    Requirements 

 Based on demand identifi ed in developing the TwoUse toolkit, we identify three 
fundamental requirements for realizing a linked - open data environment in model -
 driven engineering:

 RQ 1: Model and metamodel interoperability .      Multiple metamodels may 
defi ne the same concepts in different ways. Therefore, one needs to extend 
existing metamodeling frameworks (e.g., EMOF) to include support for 
primitives for relating different representations, thus allowing for integrated 
models that conform to heterogeneous metamodels.  

     Figure 10.4     Snippets of Component Diagram from TwoUse Toolkit.  
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 RQ 2: Techniques for composition of models and metamodels .      For semi -
 automatically integrating modeling languages, one requires alignment tech-
niques that allow for identifying equivalences over multiple languages and 
represent these equivalences (linking).  

 RQ 3: Integration management .      To achieve interoperability of modeling 
languages, one needs to control all stages of linking modeling languages. 
Models and metamodels must be transformed  into the same representation. 
After the composition takes place developers can create or execute queries
over artifacts.    

 Addressing these requirements allows for achieving the following features:

Consistent view over multiple  MOF  models :      Based on an integration of 
multiple (MOF - based) languages, it is possible to have a consistent view 
over multiple artifacts.  

Query answering :      Based on underlying formal semantics and constraints, it 
is possible to defi ne queries over multiple artifacts. For example, it is pos-
sible to answer questions like: What is the effect of updating the plug - in 
pellet? Which case tests must be executed if this plug - in is updated? More-
over, it enables the identifi cation of the impact of some model components 
upon others (impact analysis) and thus the identifi cation of cyclic depen-
dencies or other unexpected consequences.      

   10.3    APPLICATION OF THE  T  WO  U  SE  APPROACH 

 In this section, we describe how we exploit the TwoUse approach to address the 
requirements described in the previous section. We present how to extend and trans-
form modeling languages into OWL. We illustrate how to query and manage links 
between modeling languages. 

 In the next subsections, we show how we apply the TwoUse components 
described in Chapter  7  to realize linked data capabilities to MOF languages. The 
approach consists of the following components: (1) model extension, (2) model 
transformation, (3) matching, and (4) querying (please refer to Section  7.3  for the 
components of the generic architecture). 

   10.3.1    Model Extension 

 OWL specifi es class expression axioms, object property axioms, and individual 
axioms that serve to link similar classes and individuals over multiple metamodels 
and models. Because of OWL 2 expressiveness, it is possible to combine class 
expressions and axioms to express equivalencies between classes. 

 Figure  10.5  shows snippets of the UML and BPMN metamodels. From the 
UML metamodel, it depicts classes of the Use Case package and the Activity 
package. From the BPMN metamodel, it depicts classes that describe tasks and 
message edges. A look at both metamodels shows correspondences between the 
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     Figure 10.5     Snippet of BPMN Metamodel and UML Metamodel for Use Cases.  

activity package and the BPMN metamodel. For example, the UML class  Activity
is equivalent to BPMN class BpmnDiagram .

 In Listing  10.1 , we present examples using OWL 2 syntax of constructs that 
can serve to link Ecore metamodels with OWL. In Line 1, we describe the equiva-
lence ofa UML  Activity  and  BpmnDiagram . The equivalence of the set of 

  LISTING 10.1    Linking Ecore Metamodels with  OWL . 

1 EquivalentClasses (uml:Activity bpmn:BpmnDiagram) 

     EquivalentClasses (uml:OpaqueAction ObjectSomeValuesFrom  

    (bpmn:activityType bpmn:Task)) 

     TransitiveObjectProperty (uml:general ) 

     SubObjectPropertyOf( ObjectPropertyChain (bpmn:outgoingEdges bpmn:target)

      bpmn:sucessorActivities) 

5 SubObjectPropertyOf( ObjectPropertyChain (uml:outgoing uml:target) 

    uml: sucessorNodes ) 

     SubObjectPropertyOf( ObjectPropertyChain (uml:include uml:addition) 

      uml:includeUseCases ) 

     SubObjectPropertyOf( ObjectPropertyChain  

    (ObjectInverseOf(uml:addition) uml:includingCase) 

      uml:includingUseCases ) 

  EquivalentObjectProperties (uml:sucessorNodes 

  bpmn:sucessorActivities)   
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individuals of the class OpaqueAction  and the set of individuals of the class 
Activity  where the property  activityType  is set to  Task  in the BPMN 
metamodel is defi ned in Line 2. Lines 3 and 4 characterize the property  general
of the UML metamodel as transitive. In Line 5, we derive a new property in the 
BPMN metamodel based on a property chain, i.e., a composition of the properties 
outgoingEdges  and  target  are properties of  sucessorActivities . For 
instance, outgoingEdges ( x ,  y ),  target ( y ,  z )  →   successor Activities ( x ,  z ). Similarly, a 
property chain ancestorNodes  for the UML metamodel is defi ned in Line 6. The 
equivalence of the defi ned property chains is expressed in Line 7.   

 At the model level, developers can link models elements (metamodel instances) 
using OWL constructs. The  SameIndividual  axioms allow to defi ne the equality 
of individuals in order to assert that instances of different metamodels are the same. 
For example, if we have a UML package called  west.twouse.backend , we can 
assert that this package is the same as the Java package with the same name —
SameIndividual(uml:west.twouse.backend java:west.twouse.backend) . 

 Additionally, OWL 2 provides constructs to enrich Ecore metamodels and 
extend its expressiveness. For example, object property axioms aim at characterizing 
object properties like the defi nition of sub - property relations and the expression of 
refl exive, irrefl exive, symmetric, asymmetric, and transitive properties. 

 Another benefi t of extending Ecore with OWL is monotonicity, i.e., adding 
further axioms to a model does not negate existing entailments. We can extend Ecore 
metamodels with OWL without invalidating any existing assertions. Thus, OWL 
provides a non - invasive way to integrate the same or similar concepts of different 
modeling languages. 

 In order to extend the expressiveness of Ecore metamodels, we use the textual 
notation defi ned in the TwoUse approach (Chapter  5 ). 

 By extending the Ecore metamodel with OWL, we enable developers with 
primitives for connecting metamodels like property equivalence, class equivalence, 
and individual equality, addressing the requirement  RQ1 .  

   10.3.2    Model Transformation 

 Based on the mappings between UML class - based modeling and OWL ontology, we 
develop a generic transformation to transform any Ecore Metamodel/Model into 
OWL TBox/ABox — OWLizer  [163] . Figure  10.6  depicts the conceptual schema of 
transforming Ecore into OWL.   

 A model transformation takes a language metamodel and the annotations as 
input and generates an OWL ontology where the concepts, enumerations, properties, 
and datatypes (terms) correspond to classes, enumerations, attributes/references, and 
datatypes in the language metamodel. Additionally, the transformation takes the 
language model created by the language user and generates assertions in the OWL 
ontology. 

 The structural mapping from Ecore - based metamodels and models to OWL 
makes Ecore models in general data available as federated, accessible, and query -
 ready LOD resources. Multiple UML models can be transformed into a common 
representation in OWL ontologies according to this structural mapping. Having 
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     Figure 10.6     Mapping Ecore and OWL.  

models represented in OWL ontologies, one might connect these ontologies and 
process these ontologies in a federated way. 

 Thus, the resulting OWL representations address the requirement RQ3 defi ned 
in Section  10.2.1 .  

   10.3.3    Matching 

 In a model - driven paradigm, resources that are expressed using different modeling 
languages must be reconciled before being used. As described previously (see 
Section  3.5  in Chapter on Ontology Foundations), ontology matching allows for 
identifying correspondences of elements between two ontologies. 

 The quality of the correspondences depends on the applied criteria and tech-
nique. For example, if we apply only string matching, it generates a false positive 
correspondence between the UML  Activity  and the BPMN  Activity . However, 
if we apply structure - based techniques and analyze the structure of the UML class 
Action and the BPMN class Activity, we see that both have similar structures (both 
have one superclass with two associations with the same cardinalities). However, 
the UML class Action is abstract and the BPMN class Activity is concrete. So, we 
could assert that the class Activity is a subclass of class Action. 

 Automatic matching techniques can be seen as support but should be assisted 
by domain experts, because of false positive matches. For example, the correspon-
dence between BpmnDiagram  and UML  Activity  is hard to catch automatically. 

 Ontology matching capabilities address the requirement RQ2 by identifying 
correspondences in order to link between (meta) models. 

   10.3.4    Querying with  SPARQLAS  

 As described in Section  6.3 , SPARQLAS allows for specifying queries using the 
OWL syntax for querying OWL ontologies. Listing  10.2  shows a SPARQLAS query 
about use cases that include other use cases. In this example, we ask about the 
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individuals ?x  whose type is an anonym class where the transitive property inclu-
deUseCase has as a value some use case.   

 With SPARQLAS, we cover the requirement RQ3 by providing distributed 
query facilities for models and metamodels that are represented in OWL. 

   10.4    VALIDATION 

 In order to validate our approach, we applied it in the TwoUse Toolkit. Table  10.1  
presents the list of artifacts that are part of the development process of TwoUse 
Toolkit and the corresponding metrics. TwoUse Toolkit is a model - driven approach, 
i.e., each artifact listed below has an Ecore metamodel. For each artifact, we present 
the number of classes on the metamodel and the number of instances.   

 Using our approach, we are able to extract information about the Ecore 
metamodels and models listed in Table  10.1 , partially fulfi lling requirement RQ3. 
Our approach for transforming Ecore - compliant metamodels and models captures 
all Ecore constructs. Thus, transformations from OWL back to Ecore can be done 
lossless.

 After extracting metamodel/model information from TwoUse artifacts, we 
used ontology matching techniques to identify correspondences between metamod-
els, fulfi lling the requirement RQ2. For Ecore metamodels and models, we have 

  LISTING 10.2    Use cases That Includes Some Other Use Case. 

1 Namespace: uml  = <http://www.eclipse.org/uml2/3.0.0/UML#>
Select ?x 

Where:

?x type (UseCase and includeUseCase  some UseCase) 

  TABLE 10.1     T  wo  U  se  Measurement. 

   Phase     Artifact     Classes     Instances  

  User Requirements    Requirements specifi cation    24    212  

  UML diagrams    261    174  

  Analysis    BPMN diagram    24    754  

  Design    Metamode    23    5370  

  Generator specifi cation    20    3374  

  Grammar specifi cation    38    7611  

  Model transformation    46    8043  

  Code    Manifest specifi cation    53    2824  

  Management    Versioning and 
development life cycle 

  22    7032  
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used string distance method that analyzes the similarities between names of ele-
ments. Additionally, we have used the class structure alignment method for establish-
ing alignments based on the comparison of class properties. 

 Ontology matching techniques still generate false positives. Thus, it is neces-
sary that domain experts assist the ontology matching process at the metamodel level 
(M2) by manually determining which of the identifi ed correspondences should be 
implemented. At the modeling level (M1), this problem is minimized by alignment 
rules that query the metamodels. For example, if an instance x of UML metaclass 
OpaqueAction  has the same name as an instance of the BPMN metaclass Activity, 
then they are the same activity. 

 Once that domain experts have acknowledged which correspondences should 
take place, the axioms for realizing the correspondences are generated, fulfi lling the 
requirement RQ2. Listing  10.3  presents sample axioms for linking model and 
metamodel. Equivalent classes or class expressions are connected by the construct 
EquivalentClasses , whereas individuals with the same name are connected by 
the construct SameIndividual .   

 Finally, we present the specifi cation of queries mentioned at the beginning of 
this section, fulfi lling the requirement RQ3. Listing  10.4  presents the SPARQLAS 
query for determining which tasks realize the use case Querying . The usage of the 
transitive property and property chain for includeUseCases  simplifi es the query. 

  LISTING 10.3    Sample of Linking Ecore Metamodels with  OWL . 

1 EquivalentClasses (uml:Activity bpmn:BpmnDiagram) 

EquivalentClasses (uml:ActivityNode bpmn:Vertex) 

EquivalentClasses ( uml:OpaqueAction ObjectSomeValuesFrom 

(bpmn:activityType bpmn:Task)) 

EquivalentDataProperties (uml:name bpmn:name) 

5 SameIndividual (uml:west.twouse.reasoner srs:west.twouse.reasoner) 

SameIndividual (mf:west.twouse.reasoner srs:west.twouse.reasoner) 

SameIndividual (uml:ReasoningServices srs:ReasoningServices) 

  LISTING 10.4    Which Tasks Realize Use Case Querying? 

1 Namespace :  = <http://www.eclipse.org/uml2/3.0.0/UML#>
Select ?name 

Where: _:u name "Querying"  xsd:string 

_:u includeUseCases ?uc 

5 ?uc ownedBehavior ?act 

?act node ?node 

?node type OpaqueAction 

?node name ?name 
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Moreover, the query works for Activity Diagrams and BPMN Diagrams, since both 
are integrated.   

 Listing  10.5  presents an example of querying involving both levels (metamodel 
M2 and model M1) at the same time. It uses the alignments presented above, i.e., 
individuals of class UseCase  and class  Component  are the same as individuals of 
classes UseCase  and  Component  with the same name. Moreover, it uses an anonym 
property that corresponds to a property chain of the property uml:includingCase

and the inverse of the property uml:addition .   

   10.4.1    Limitations 

 Since there exist multiple strategies for matching and aligning ontologies, it is pos-
sible that false positive matches occur. For example, OWL classes with the same 
name are matched as equivalent, if one uses a string - based matching technique, 
although the two concepts are semantically different. Thus, domain experts must be 
involved to validate the results of matching and alignments.   

   10.5    RELATED WORK 

 The integration of software artifacts has been the topic of works including  [3, 102] . 
However, these approaches presented dedicated extractors for specifi c systems like 
bug tracking and version control but not for software models. Moreover, neither of 
these approaches presents formats for publishing data suitable to the linked - data 
approach, i.e., they do not share the principles of interoperability for connecting 
federated software models across the web. 

 Kiefer  et al.   [89]  and Iqbal  et al.   [79]  explore semantic web approaches for 
transforming software artifacts such as data from version control systems, bug track-
ing tools, and source code into linked data. Both approaches use artifact - specifi c 

  LISTING 10.5    What Use Cases to Test If the Component west.twouse.reasoner Is 
Updated

1 Namespace: uml  = <http://www.eclipse.org/uml2/3.0.0/UML#>
Namespace: srs  = <http://west.uni−koblenz.de/SRS#>
Namespace: mf  = <http://west.uni−koblenz.de/EclipseManifest#>
Select ?name 

5 Where: ?component mf:name  "west.twouse.reasoner"  xsd: string 

?component srs:requirement ?requirement 

?requirement srs:useCase ?uc 

?uc uml:name ?name 

Union:

10 ?uc (inverse uml:addition o uml:includingCase) ?iuc 

?iuc uml:name ?name 
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extractors and thus work only for a fi xed number of software artifacts. We propose 
a generic approach for transforming and managing any MOF metamodel in a web 
format.

 The OMG ontology defi nition metamodel  [114]  specifi es mappings between 
OWL and UML. In this chapter, we present a general approach for mapping arbitrary 
Ecore models into OWL. We provide the means to express any MOF metamodel in 
its equivalent OWL. 

 The OMG Request For Proposal for MOF to RDF Structural Mapping in 
support of Linked Open Data  [115]  aims at defi ning a structural mapping between 
OMG - MOF models and RDF. This work can be seen as a response to this request. 
We propose an approach that can serve as a benchmark for future proposals.  

   10.6    CONCLUSION 

 In this chapter, we propose an approach to enable analysis, federation, and querying 
of models expressed in MOF compliant languages, including OMG standards and 
domain - specifi c languages. The contribution in this chapter shows that the usage of 
the Ontology Web Language for specifying metamodels is a viable solution to 
achieve interoperability and shared conceptualizations. The role of OWL is not to 
replace MOF or the Object Constraint Language, since OWL addresses distinct 
requirements, specially concerning networked environments. OWL should comple-
ment the spectrum of software modeling languages in a unifi ed architecture.    



 CONCLUSION 
OF PART  III      

     In this part, we have analyzed the impact of using OWL constructs and OWL ontol-
ogy services in software modeling languages (addressing Research Problem III from 
Section  1.2 ). 

 We used class expressions to decouple class selection from OCL expressions 
embedded in query operations (addressing Research Problem III.A) and improve 
software design patterns that address variant management. 

 When applying it in ontology - based information systems, the usage of SPAR-
QLAS4TwoUse for integrating queries over ontologies with operations impacts on 
maintainability, reusability, and extensibility (addressing Research Problem III.B). 

 Moreover, the transformation of MOF - based software languages into OWL 
supports software development by allowing developers to extract software engineer-
ing data using SPARQL - like queries over multiple software artifacts (addressing 
Research Problem III.C).         



  PART IV
APPLICATIONS IN 
THE SEMANTIC WEB 



  CHAPTER 11
MODEL- DRIVEN 
SPECIFICATION OF 
ONTOLOGY TRANSLATIONS     

     The alignment of different ontologies requires the specifi cation, representation, and 
execution of translation rules. The rules need to integrate translations at the lexical, 
the syntactic, and the semantic layer requiring semantic reasoning as well as low -
 level specifi cation of ad - hoc conversions of data. Existing formalisms for represent-
ing translation rules cannot cover the requirements of these three layers in one 
model. We propose a metamodel - based representation of ontology alignments that 
integrate semantic translations using description logics and lower - level translation 
specifi cations into one model of representation for ontology alignments. 1

   11.1    INTRODUCTION 

 The reconciliation of data and concepts from ontologies and data repositories in the 
Semantic Web requires the discovery, representation, and execution of ontology 
translation rules. Although research attention is now devoted to the discovery of 
alignments between ontologies, a shallow inspection of ontology alignment chal-
lenges reveals that there does not exist one  accessible way of representing such 
alignments as translation rules  [41] . 

 The reason is that alignments must address ontology translation problems at 
different layers  [30, 39] :

1.     At the  lexical layer , it is necessary to arrange character sets, handling token 
transformations.

2.     At the  syntactic layer , it is necessary to shape language statements according 
to the appropriate ontology language grammar.  

3.     At the  semantic layer , it is necessary to reason over existing ontological speci-
fi cations and data in both the source and the target ontologies.    

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

 1   This chapter contains work from the paper  “ Model - Driven Specifi cation of Ontology Translations ”  
presented at ER ’ 08  [149] . 
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 For addressing ontology translation problems at the semantic layer, existing 
frameworks provide reasoning in one or several logical paradigms, such as descrip-
tion logics  [19, 65]  or logic programming  [28, 36, 96] . For addressing ontology 
translation problems at lexical and syntactic layers, alignment frameworks take 
advantage of platform - specifi c implementations, sometimes abstracted into transla-
tion patterns  [109, 95]  or into logical built - ins  [96] . 

 Such hybrid approaches, however, fail to provide clarity and accessibility to 
the modelers that need to see and understand translation problems at semantic, 
lexical, and syntactic layers. Indeed, modelers need to manage different languages: 
(1) an ontology translation language to specify translation rules and (2) a program-
ming language to specify built - ins, when the ontology translation language does not 
provide constructs to completely specify a given translation rule. This intricate and 
disintegrated manner draws their attention away from the alignment task proper 
down into diverging technical details of the translation model. 

 Filling the gap in the ontology translation domain between ontology mapping 
languages and general purpose programming languages helps to improve productiv-
ity, since modelers will not have to be aware of platform - specifi c details and will be 
able to exchange translation models, even if they use different ontology translation 
platforms. Moreover, maintenance and traceability are facilitated because knowl-
edge about mappings is no longer embedded in the source code of programming 
languages.

 We propose a platform - independent approach for ontology translations, based 
on model - driven engineering (MDE) of ontology alignments. The framework 
includes a language to specify ontology translations — the Model - Based Ontology 
Translation Language (MBOTL). In order to reconcile  semantic  reasoning with 
idiosyncratic lexical  and  syntactic  translations, we integrate these three translation 
problems into a representation based on a joint metamodel. The joint metamodel 
comprises, among others, the OWL 2 metamodel and the OCL metamodel to support 
specifi cation, representation, and execution of ontology translations. 

 The chapter is organized as follows: The running example and the requirements 
for ontology translation approaches are explained in Section  11.2 . Our solution is 
described in Section  11.3 , followed by examples in Section  11.4 . In Section  11.5  we 
discuss the requirements evaluation, and in Section  11.6  we present related work. The 
conclusion, Section  11.7 , fi nishes the chapter with an outlook to future work. 

   11.2    CASE STUDY 

 We consider two ontologies of bibliographic references from the test library of the 
Ontology Alignment Evaluation Initiative (OAEI)  [41]  to demonstrate the solution 
presented in this chapter: the reference ontology (#101) and the Karlsruhe ontology 
(#303). Canonical mappings covered by examples in this chapter and snippets of the 
source and target ontologies using the Manchester OWL Syntax  [73]  are shown in 
Figure  11.1 . Please refer to OAEI for complete ontologies.   

 By examining the mapping between ontology #101 and ontology #303, it 
becomes clear that translations are required in order to realize the mapping. Individu-
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als of the classes Chapter  and  InBook  in ontology #101 are translated into indi-
viduals of the class InBook  in the ontology #303. Values of the object property 
month  having a Gregorian month, e.g.,  “–01” , are translated into the equivalent 
unabbreviated form, e.g., “January” . Values of the data property  pages  in ontol-
ogy #303 can be calculated by subtracting the value of the data property initial-

Page  from the value of the property  endPage  in ontology #101. 
 We defi ne the translation rules explained above by the following logical rules. 

All variables are treated as universally quantifi ed and prefi xed with a question mark. 
Let builtin :  notShortened  be a built - in function that returns the unabbreviated month, 
builtin :  toUpper  be a built - in function to capitalize strings,  builtin : — be a subtractor 
function, s  be the namespace prefi x of the source ontology #101, and  t  be the namespace 
prefi x of the target ontology #303, the translation rules can be written as follows:

t InBook x t month x m t title x n t pages x p: (? ) : (? , ? ) : (? , ? ) : (? , ? )∧ ∧ ∧ ←
(( : (? ) : (? )) : (? , ? )

:

s InBook x s Chapter x s month x y

builtin notSh

∨ ∧ ∧
oortened y m s title x z

builtin toUpper z n s pa

(? , ? ) : (? , ? )

: (? , ? ) :

∧ ∧
∧ gges x w s startP age w a

s endPage w e builtin

(? , ? ) : (? , ? )

: (? , ? ) :

∧ ∧
∧ − ((? , ? , ? ).e a p

    (11.1)   

 The translation rule of authors is not trivial either. While in ontology #101 the 
authors are collected by recursively matching the property first  of the class  Per-
sonList , in ontology #303 it is a matter of cardinality of the object property 
author . Let  list:contains  be the built - in able to fi lter a list structure into object 
properties, the referred rule can be written as follows:

    
t Book x t author x u

s Book x s author x y list

: (? ) : (? , ? )

: (? ) : (? , ? )

∧ ←
∧ ∧ :: (? , ? ).contains y u

    (11.2)   

     Figure 11.1     Ontology Mapping Challenge for the Running Example.  
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 However, built - ins are black boxes that conceal knowledge about algorithms, 
compromising traceability and maintenance. Therefore, an approach able to specify 
rules and built - ins without code specifi cs is required. 

 From inspecting these examples, we illustrate requirements for a platform -
 independent ontology translation approach addressing translation problems at the 
following ontology translation layers proposed by Corcho and G ó mez - P é rez  [30]  
based on Euzenat  [39] : the lexical layer, the syntactic layer, the semantic layer, and 
the pragmatic layer. Since the pragmatic layer addresses the meaning of representa-
tion in a given context, it is similar to the semantic layer from the point of translation 
decisions. In this chapter, we refer to both layers as semantic layer.

1.     The lexical layer deals with distinguishing character arrangements, 
including:

   (a)     Transformations of element identifi ers .      These are required when different 
principles are applied to named objects, for example, when transforming 
the value of the data property title  into capital letters.  

  (b)     Transformations of values .      These are necessary when source and target 
ontologies use different date formats, for example, when transforming a 
Gregorian month into an unabbreviated form. 

2.     The syntactic layer covers the anatomy of the ontology elements according to 
a defi ned grammar. The syntactic layer embraces: 

   (a)     Transformations of ontology element defi nitions .      These are needed when 
the syntax of source and target ontologies are different, e.g., when trans-
forming from OWL RDF syntax into OWL XML syntax.  

  (b)     Transformations of datatypes .      These involve the conversion of primitive 
datatypes, e.g., converting string datatype to date datatype.    

3.     The semantic layer comprises transformations dealing with the denotation of 
concepts. We consider the following aspects: 

   (a)     Inferred knowledge .      Reasoning services are applied to deduce new knowl-
edge, e.g., inferring properties from class restrictions.  

  (b)     Transformations of concepts .      This takes place when translating ontology 
elements using the same formalism, e.g., translating a concept from Karl-
sruhe ’ s OWL ontology for bibliographic references into one or more 
concepts in the INRIA ’ s OWL ontology.      

 The translation problems are classifi ed in non - strict layers, e.g., one rule com-
monly addresses more than one translation problem. For example, in Rule 2, the 
built - in  toUpper  solves a translation problem at the lexical layer, the translation of 
months happens at the syntactical layer and is achieved by the built - in  notShort-
ened  and, fi nally, the translation of the union of individuals of the classes  Chapter
and InBook  in ontology #101 into individuals of the class  InBook  in ontology #303 
appears at the semantic layer. 

 An orthogonal classifi cation of ontology translation problems is given by Dou 
et al.   [36] . From their point of view, ontology translation problems comprise dataset 
translation, ontology - extension generation, and querying. This chapter concentrates 
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on dataset translation, i.e., translation of instances, leaving the model - driven engi-
neering of the remaining problems for future work.  

   11.3    APPLICATION OF THE TWOUSE APPROACH 

 The proposed ontology translation approach relies on advances in model - driven 
engineering (MDE) with support for ontology reasoning services  [20] . We defi ne 
here the Model - Based Ontology Translation Language (MBOTL) comprising (1) a 
textual concrete syntax used to write translation rules, (2) an integrated metamodel 
as abstract syntax to represent the translation rules as models, (3) an extensible 
model library to provide built - in constructs, and (4) model transformations yielding 
translational semantics. 

 Figure  11.2  relates MBOTL with existing approach with respect to abstraction 
and expressiveness. Languages for specifying translation rules like F - logic and RDF 
abstract from platform details, but they are not as powerful as programming lan-
guages. The usage of a domain specifi c language for ontology translation (MBOTL) 
provides the right trade - off between abstraction and expressiveness.   

   11.3.1    Concrete Syntax 

 While visual notations are effective in communicating models, textual notations are 
preferable to express more complex structures. The following subsections present 
the anatomy of the translation rules, alluding to the requirements presented in 
Section  11.2 . 

 11.3.1.1    Dealing with Translation Problems at Semantic Layer     In order 
to extract information from the source ontology, we need a query language able to 
determine which datasets are to be translated. We use OCL expressions  [116]  to 
formulate queries. Indeed, OCL has been used in MDE for specifying constraints 
and queries that are side effect free operations. As OCL is originally designed for 
UML or MOF, we provide a transformation from OCL to SPARQL. 

     Figure 11.2     Abstraction vs. 
Expressiveness.
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 Ontology translation problems at the semantic layer are treated by querying 
individuals of the source ontology using OCL queries and matching target individu-
als. These assumptions have been used by model transformation languages like 
OMG MOF Query/View/Transformation (QVT)  [113]  and the Atlas Transformation 
Language (ATL)  [82] . We base MBOTL upon the ATL concrete syntax to specify 
ontology translations. 

 The example depicted in the Figure  11.3  illustrates the concrete syntax. A rule 
Conference2Conference  is defi ned for translating individuals of the class  Confer-
ence  in ontology #101 into individuals of the class  Conference  in ontology #303. 

 In OCL, a dot - notation is used to navigate through properties. In the scope of 
our extension of OCL, a property can be an OWL data property, an OWL object 
property, a predefi ned operation, or a helper. A helper is a user defi ned side effect 
free query operation belonging to a defi ned class in one of the given ontologies. 

 For example, in the expression  s.location, s  is a reference to an individual of 
the class Conference  with  location  resulting in a value of the class  Address . The 
navigation can also end with an operation evaluation, as depicted in the Figure  11.3 , 
where the operation concat  is used to concatenate the properties  city  and  country .  

 11.3.1.2    Addressing Translation Problems at Lexical and Syntactic 
Layers     Ontology translation problems at lexical and syntactic layers are supported 
by employing operations or helpers. For example, for the type string , the operation 
toUpper()  returning a string object with capital letters is available. Thus, the evalu-
ation of s.title.toUpper()  capitalizes the value of the property  title . 

 The operation  toUpper()  is an example of predefi ned operation. The set of 
predefi ned operations is available in the OCL library (M1 layer). These operations 
are applicable to any type in OCL. Additionally, it is possible to specify  ad hoc
operations, the so - called helpers.   

   11.3.2    Metamodels 

 The textual concrete syntax for ontology translation specifi cation presented in the 
previous section has an integrated metamodel as equivalent abstract syntax. The 
integrated metamodel consists of the following metamodels: MOF metamodel  [111] , 
OCL metamodel  [116] , OWL metamodel  [114] , and part of the ATL metamodel  [82] . 

     Figure 11.3     Example of a Translation Rule.  
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 The translation metamodel (Figure  11.4 ) allows for describing translations 
between two ontologies by a model. A translation is characterized as a  Module
relating source ontologies ( inModels ) and target ontologies ( outModels ). A 
MatchedRule  is a specifi c translation rule that has a pattern for the input model 
(inPattern ) and a pattern for the output model ( outPattern ). The  InPattern
has one or more elements that are OCL variables ( Variable ). Variables are bound 
to model elements ( OclModelElement ). The  InPattern  has an  OclExpression
acting as query to refi ne individuals of the  OclModelElement .   

 Since each expression in OCL has a type, we need a type metamodel (Figure 
 11.5 ). The expression evaluation produces a value of type of the expression. The 

     Figure 11.4     Fragment of the ATL Metamodel.  
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     Figure 11.5     Snippet of the Package  Type  and Package  Expressions  of the OCL 
Metamodel.
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type TUClassAdapter  is the particular composition of the OWL class with the 
MOF class. This composition allows for applying side effect - free operations into 
individuals of OWL classes.   

 Figure  11.5  depicts additionally another part of the integrated metamodel, 
namely the package Expressions  of the extended OCL metamodel. The class 
OclExpression  enables MBOTL to defi ne the abstract syntax for OCL expres-
sions. The integration with the OWL metamodel is accomplished by expressions of 
the type PropertyCallExp . Such expression allows for navigating through OWL 
properties, as explained in Section  11.3.1 . 

 The operation call expressions ( OperationCallExp ) support the declaration 
of built - in operations and helpers. An operation call expression evaluates to the result 
of a class operation, providing that such operation is side effect free. This resource 
is particularly relevant in the scope of ontology translation, i.e., it enables queries 
to invoke built - in reasoning operations or helpers.  

   11.3.3    Model Libraries 

 The model libraries defi ne a number of datatypes, class identifi ers, and operations 
that must be included in the implementation of MBOTL. These constructs are 
instances of an abstract syntax class. The foundation library exists at the M1 level, 
where the abstract syntax (metamodel) exists at M2 level. The foundation library is 
composed of the XML Schema Datatypes library, the RDF library, the OWL library, 
and the OCL library. 

 An example of M1 object of the extended OCL library is the construct  oclAny . 
All types inherit the properties and operations of oclAny , except collection types. 
This invariant allows for attributing predefi ned operations to classes. The OCL 
library is based on the standard OMG OCL library  [116] .    

   11.3.4    Semantics 

 The semantics of MBOTL is defi ned by the semantics of the languages comprising 
the integrated metamodel (Section  11.3.2 ). 

 MBOTL is translated into a target language (SPARQL and Java). Regarding 
the target languages, the semantics of SPARQL is described by entailment regimes, 
whereas the semantics of Java can be defi ned by providing an Abstract State Machine 
 [63] . More specifi cally, the SPARQL basic graph pattern is described according to 
an entailment regime. Indeed, SPARQL - DL  [154]  provides an entailment regime for 
OWL - DL.

   11.3.5    Ontology Translation Process 

 In order to guide the user from the ontology translation specifi cation until the running 
code, the ontology translation process covers the following steps:

1.     Specifi cation of Ontology Translation .      The ontology translation rules and 
helpers are specifi ed by the user using MBOTL.  
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2.     Specifi cation of Model Transformations .      In order to have a running implemen-
tation of ontology translation, the ontology translation specifi cation model is 
transformed into models for a given platform. The model transformation 
specifi cation mapping the MOBTL model onto platform - specifi c models must 
be specifi ed here. Our framework provides model transformations from 
MOBTL into SPARQL and Java as target platforms. Notice that other target 
platforms like F - Logic and Java can be considered.  

3.     Transformation into Target Platform .      Three transformations take place at this 
step. Firstly, the ontology translation specifi cation in the concrete syntax 
(MOBTL fi le) is injected into a model conforming with the integrated 
metamodel, i.e., the ontology translation specifi cation model. The second 
transformation is responsible for generating models according to the target 
metamodels, e.g., SPARQL and Java metamodels. Thirdly, SPARQL queries 
in the SPARQL concrete syntax and Java code are extracted from the SPARQL 
and Java MOF - based models.     

   11.3.6    Implementation 

 The implementation comprises (1) the environment to specify ontology translations 
and (2) transformations into ontology translation engines in order to realize ontology 
translation. Figure  11.7  depicts a screen shot of the MBOTL implementation on 
TwoUse toolkit.   

 Taking the ontology translation specifi cation model as a source model, we use 
the Atlas Transformation Language  [82]  framework to defi ne model transformations 
into models for an ontology translation platform (2). We use SPARQL and Java as 
target languages and the Jena framework as a ontology translation solution. The Jena 
framework includes an API for OWL ontologies and reasoners, as well as a SPARQL 
engine.

 Elements of the ontology translation specifi cation model concerning transla-
tion problems at the semantic layer are transformed by ATL into SPARQL CON-
STRUCT queries. The SPARQL engine can be extended using custom SPARQL 

     Figure 11.6     Ontology Translation Process.  
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fi lter functions — as foreseen as an extension hook in the SPARQL standard, but also 
using so - called  predicate functions . Predicate functions are not matched against the 
knowledge base like normal RDF predicates, but evaluated in Java code. Filter and 
predicate functions are used to handle translation problems at the lexical and syn-
tactic layer. These functions are defi ned in the ontology translation specifi cation 
model and have the Java code automatically generated by the ATL transformation. 

 The next section illustrates our approach by addressing the translation prob-
lems presented in Section  11.4 , specifying the translation rules and transforming the 
ontology translation specifi cation into SPARQL and Java code.   

   11.4    EXAMPLES 

 This section presents rules integrating translation problems at semantic, syntactic, 
and lexical layers, according to the problems presented in Section  11.2 . 

Example 1: Semantic, Syntactic, and Lexical Translations.   The classes 
Chapter  and  InBook  in ontology #101 are translated into the class  InBook  in the 
ontology #303. The translation rule uses a helper to transform a Gregorian month, 
e.g., “–01” , into its equivalent unabbreviated form, e.g.,  “January” . This helper 
is applicable only to the gMonth datatype. Using MBOTL, we can specify both the 
rule and the helper — and hence lexical, syntactical and semantical translations —

     Figure 11.7     Screenshot of MBOTL.  
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 using an integrated framework. The helper is shown on top of Listing  11.1 , followed 
by the translation rule.   

 After specifying mappings with MBOTL, we transform MBOTL specifi cation 
into suitable languages for execution. Our implementation uses SPARQL queries for 
semantic mappings and Java code for syntactic translations. 

 In this example, the rule  ChapterInBook2Inbook  is transformed into a 
SPARQL query (Listing  11.2 ), whereas the helper  notShortened  is transformed 
into Java code (Listing  11.3 ). The Java code extends a suitable SPARQL engine, in 
this case Jena.   

  LISTING 11.1    Semantic, Syntactic, and Lexical Translations with  MBOTL . 

1 helper context _101 ! gMonth 

def: notShortened() : String =
Sequence{’January’,’February’,’March’}−>at ( 

Sequence{’–01’,’–02’,’–03’}−>indexOf(self.toString()))
5

rule ChapterInBook2Inbook {

from

s : _101!Part (s.owlIsInstanceOf (Chapter) or

s.owlIsInstanceOf(Inbook))

10 to

t : _303!Inbook ( 

title <− s.title. toUpper(),
pages <− s.pages.endPage − s.pages.startPage,

month <− s.date.month.notShortened(), 
15 )

}

  LISTING 11.2     SPARQL  Query Corresponding to    ChapterInBook2Inbook . 

1CONSTRUCT {?x rdf:type _303:Inbook. ?x _303:title ?y. 

?x _303:pages ?z. ?x _303:month ?w} 

WHERE {

?x rdf:type _101:Part. 

5  {?x rdf:type _101:Chapter UNION ?x rdf:type _101:Inbook} 

?x _101:title ?u. ?u userdef: toUpper ?y. 

?x _101:pages [rdf:type _101:Page; 

_101:startPage ?w; _101:endPage ?u]. 

?z userdef:difference (?u ?w). 

10  ?x _101:date [rdf:type _101:Date; _101:month ?m]. 

?m userdef:notShortened ?w. 

}
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 In Lines 1 and 2 of Listing  11.2 , the pattern in the target ontology is specifi ed. 
It is fi lled with variable bindings obtained from the pattern in Lines 4 – 11. Variables 
in SPARQL are denoted with a question mark. In Line 5 we see the disjunction of 
chapter and book. In Lines 7 – 8, the start and end page properties of the complex 
 “ Page ”  concept in the source ontology is matched. They are used to compute the 
simpler page length in the target ontology using a predicate function in Line 9. 
Analogously, the abbreviated date is matched and mapped in Lines 10 – 11. 

 As an example of the translation of a helper, we show a part of the Java code 
resulting from transforming notShortened  into a Jena predicate function in 
Listing  11.3 .  

Example 2: Semantic and Syntactic Translation of Complex Structures.   In 
the ontology #101, the class Article  has the property  author  with the range of 
type PersonList .  PersonList  has a property  first  with the range of type  Person
and a property rest  with the range of type  PersonList . 

  LISTING 11.3    Automatically Generated Java Code for the Function   notShortened . 

1 public class NotShortened  extends PFuncSimple { 

/** Implements Sequence { ’January’, ’February’, ’March’} */

private List colLit1() {

List /*(String)*/ myList = new ArrayList(/*String*/);

5 myList.add ( "January" ); 

myList.add ( "February" ); 

myList.add ( "March" ); 

return myList; 

}

10

/** Implements Sequence { ’−−01’, ’−−02’, ’−−03’} */

private List colLit2() { 

List /*(String)*/ myList = new ArrayList( /*String*/);

myList.add ( "–01" ); 

15 myList.add ( "–02" ); 

myList.add ( "–03" ); 

return myList; 

}

20 private QueryIterator execFixedSubj(Node subject, 

Node object, Binding binding, 

ExecutionContext execCxt) {

/** Implements the built−in notShortened() : String */

25 return new QueryIterSingleton ( 

colLit1().size() > colLit2().indexOf(this.toString())

?((String)colLit1().get(colLit2().indexOf(this.toString()))) 

: "", execCxt); 

}

30 } 
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 This rule relies on a helper, able to match elements recursively. In this case, 
the helper algorithm must add the current value of the property first  to the collec-
tion of authors and verify whether the value of the property rest  is  nil , returning 
in this case the collection. Otherwise, the helper is invoked until value nil  is found. 

 As we can see from the examples, helpers are used for lexical and syntactical 
translations (Example 1) and semantic translations (Example 2).     

   11.5    ANALYSIS 

 In response to the requirements deduced in Section  11.2 , Table  11.1  shows use cases 
according to each requirement and where to fi nd the corresponding examples in this 
chapter.   

 Translation problems of lexical nature, e.g., converting a string to an uppercase 
string, are managed by using predefi ned OCL operations applied to specifi c types 
of objects, in this example a string type. It is also possible to write functions, i.e., 
helpers, to perform ad hoc  operations. For example, the helper  notShortened
(Listing  11.1 ) allows for converting date formats, i.e., replacing a value of  gMonth
type to the unabbreviated form. 

 Translation problems inherent in the syntactic layer are handled distinctly. For 
example, datatype conversions are achieved by invoking predefi ned operations, e.g., 
toString()  (Listing  11.1 ). 

 Translation problems at the semantic layer, regarding datasets of ontologies 
with different vocabularies but the same formalism, is demonstrated by the running 
example. In Listing  11.1 , the individuals of the class  Chapter  in ontology #101 and 
the individuals of the class InBook  are translated into individuals of the class 
InBook  in ontology #303. 

Limitations.   Our approach has restrictions refl ected by the ATL metamodel. 
With ATL, it is possible to realize only unidirectional translations. A bidirectional 
translation must be accomplished by two unidirectional translations. 

 Moreover, at the current state of development, it is not possible to validate or 
to reason over translation models. In other words, it is not possible to test the transla-
tion model without transforming it into the target platform (SPARQL and Java).     

  TABLE 11.1    Satisfying Ontology Translation Requirements. 

   Requirement (Section  11.2 )     Use Case     Implementation  

  1.(a)    Converting to capital letters    Listing 11.1, Line 12  

  1.(b)    Converting date formats    Listing 11.1, Line 14  

  2.(b)    Converting  gMonth  to  String   Listing 11.1, Line 14  

  3.(a)(b)    Union of  Chapter  and  InBook   Listing 11.1, Line 8 – 9  
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   11.6    RELATED WORK 

 Since related work has been done in the fi eld of ontology alignment, we group works 
according to semantic, syntactic, and lexical layers. 

 Among works covering lexical and syntactic translations, Model transforma-
tion languages like OMG Query/View/Transformation (QVT)  [113]  and Atlas Trans-
formation Language (ATL)  [82]  allow for defi ning how to transform MOF - based 
models using declarative and imperative constructs. Nevertheless, they do not 
support the OWL metamodel and do not provide description logic constructs. Our 
contribution extends the ATL solution by integrating with the OWL metamodel and 
providing such constructs. 

 The work of Atzeni  et al.   [8]  is based on a metamodel approach with models 
described in terms of the constructs they involve, taken from a given set of pre-
defi ned ones. However, the work is in the scope of databases and does not support 
reasoning at the semantic layer. 

 Among works covering semantic reasoning capabilities, C - OWL  [19]  and the 
ontology mapping system proposed by Haase and Motik  [65]  are formal solutions 
for ontology mapping with description logic expressiveness. The mappings are based 
on subsumption relationships of concepts between ontologies. Notwithstanding, the 
usage of built - ins to express lexical and syntactic translation problems is not pos-
sible. A metamodeling - based approach of Haase and Motik  [65]  is provided by 
Brockmans et al.   [22] . Although the usage of built - ins in mapping rules is allowed, 
the latter approach does not provide the means do specify built - ins without recourse 
to programming languages, whereas MBOTL allows for specifying  ad hoc  functions 
by helpers. 

 Among works covering lexical, syntactic, and semantic translations, MAFRA 
 [109]  and RDFT  [95]  are frameworks enabling dataset translations. Nonetheless, 
both are based on RDF schema and neither provide the expressiveness of OWL nor 
support reasoning capabilities of description logic inference engines. 

 OntoMorph  [28]  and the framework proposed by Dou  [36]  for ontology trans-
lation rely on fi rst - order logic (FOL) expressiveness to specify translation rules. Our 
approach counts on the decidable subset of FOL, the description logic SHOIN  (D), 
with complete and sound automated reasoning services for addressing semantic 
translation problems. Moreover, while the fi rst solution relies on PowerLoom and 
the latter on Web - PDDL, we propose a platform independent model - based transla-
tion language, fl exible enough to cope with different knowledge representation 
systems.

 OntoMap  [96]  is a mapping solution allowing for visual specifi cation of map-
pings, with a limited number of translation functions. Snoogle  [133]  is an ontology 
translation tool that enables the use of SWRL rules to express translations and align-
ments between geospatial ontologies. While in both approaches it is possible to use 
custom plug - ins, the user has to write functions using Java and the Jena framework. 
In contrast, our approach allows for specifying mapping rules and functions in a 
platform - independent and integrated way. 

 Corcho and G ó mez - P é rez  [29]  propose ODEDialect, a set of declarative lan-
guages to specify ontology translations. However, it is a platform - specifi c approach 
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based on Java that exposes users to the complexity of programming languages, 
whereas MBOTL allows modelers to concentrate on business logics instead.  

   11.7    CONCLUSION 

 This chapter presents a solution for ontology translation specifi cation that aims at 
being more expressive than ontology mapping languages and less complex and fi ne -
 grained than programming languages. The solution is comprised of a concrete 
syntax, an integration metamodel covering OWL, MOF, OCL, and ATL metamodels, 
and model transformations from MOBTL into SPARQL and Java. We validate our 
solution against canonical ontology translation problems organized in three layers —
 lexical, syntactic, and semantic.  



  CHAPTER 12
AUTOMATIC GENERATION 
OF ONTOLOGY APIS     

     When developing application programming interfaces of ontologies that include 
instances of ontology design patterns, developers of ontology - based information 
systems usually have to handle complex mappings between descriptions of informa-
tion given by ontologies and object - oriented representations of the same information. 
In current approaches, annotations on API source code handle these mappings, 
leading to problems with reuse and maintenance. We propose a domain - specifi c 
language to tackle these mappings in a platform - independent way —  agogo . Agogo 
provides improvements on software engineering quality attributes like usability, 
reusability, maintainability, and portability. 1

   12.1    INTRODUCTION 

 Upper level ontologies and domain ontologies comprise occurrences of a variety of 
ontology design patterns (OPs)  [52] . These ontologies are generally large and 
densely axiomatized. Therefore, in comparison with generic solutions like RDF or 
OWL APIs, the development of dedicated application programming interfaces 
(APIs) eases the adoption of this kind of ontologies. 

 When developing such dedicated APIs, developers of ontology - based informa-
tion systems face the challenge of mapping descriptions of complex relations or 
entities to object - oriented (OO) representations thereof. For example, core ontolo-
gies such as COMM  [6] , X - COSIMO  [50] , or Event - Model - F  [140]  represent 
complex objects, e.g., a multimedia annotation, a conversation among participants, 
or an event decomposition. Such objects are not represented by a single instance of 
a class but by ontology design patterns involving a number of connected (linked) 
instances.

 The task of implementing object manipulation functionality becomes complex 
as well. For example, the specifi cation of creation or deletion of multimedia objects 
is spread out in a number of connected (linked) data instances using decompositions, 
descriptions, and segments. 

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

 1   This chapter contains work from the paper  “ APIs  a gogo : Automatic Generation of Ontology APIs ”  
presented at ICSC ’ 09  [153] . 
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 Specifying interfaces for manipulating ontologies should provide constructs 
that enable handling of complex structures defi ned by ontologies. Accordingly, such 
constructs need to map from a single programming object to multiple RDF 
statements.

 Current approaches store annotations as plain text on API source code to handle 
these mappings. These approaches have the following disadvantages (Figure  12.1 ):

    •      Low level of abstraction. When it comes to complex mappings between ontol-
ogy classes and OO classes, current approaches require developers to deal with 
platform - specifi c details like database connection, data validation, and deviat-
ing attention from the mappings.    

   •      No portability. The APIs are tightly coupled to programming languages and 
cannot be easily ported to other programming platforms.  

   •      Low reuse rate. Mappings between ontology classes and OO classes are in the 
form of annotations. These annotations are stored as plain text, and to be 
reused, they have to be copied instead of being referred. 

   •      Hard maintenance. Changes of mappings on the ontology usually imply chang-
ing all occurrences of a given Java annotation, since mappings are stored as 
annotations and must be copied to be reused. 

 Indeed, addressing these issues has been one of the objectives of the fi eld of 
model - driven engineering (MDE)  [88] , i.e., to develop and manage abstractions of 
the solution domain towards the problem domain in software design. Considering 
the expansion and usage of MDE techniques, we investigate the following problems 
in this chapter: What MDE techniques address the aforementioned issues? What are 
the results of applying these techniques in ontology API development? 

     Figure 12.1     Limitations of Current Approaches.  
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 Tackling the aforementioned problems results in improving the usability, 
maintainability, and portability of ontology API specifi cations. This enables develop-
ers to concentrate on the mappings instead of taking care of problems inherent in 
programming. By considering mappings as fi rst - order objects rather than as annota-
tions, developers can keep track of mapping ontology elements like classes and 
properties. Finally, introducing an abstraction from the programming language 
allows developers to generate APIs for different programming languages or domain -
 specifi c APIs. 

 We extend the TwoUse approach and introduce  agogo , an approach that pro-
vides a development environment for API developers to handle complex mappings, 
to defi ne and to reuse complex OPs, and to automatically generate ontology API 
code. Moreover, we present results of comparing  agogo  with existing ontology API 
code, showing drastic reduction in size. 

 We organize this chapter as follows: After introducing the challenges and 
benefi ts of  agogo , we analyze current approaches in Section  12.5 . We derive require-
ments based on our experience in developing APIs for core ontologies (COMM  [6] , 
X - COSIMO  [50] , and Event - Model - F  [140] ) in Section  12.2 . Section  12.3  presents 
the techniques and artifacts used by agogo  to tackle these requirements. We describe 
how agogo  uses these techniques and artifacts by example in Section  12.3.2 . In 
Section  12.4 , we analyze how the  agogo  approach allows for improving quality of 
ontology APIs based on the quality characteristics introduced in this section. Finally, 
Section  12.6  concludes this chapter.  

   12.2    CASE STUDY 

 From the set of ontology design patterns found in the COMM ontology, we use the 
Semantic Annotation Pattern to illustrate the solution presented in this chapter. The 
basic rationale applies to any other pattern used in COMM, X - COSIMO  [50] , and 
Event - Model - F  [140] . Figure  12.2  illustrates the semantic annotation pattern as 

     Figure 12.2     Ontology and API for the Semantic Annotation Pattern.  
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defi ned by the COMM ontology and the desired classes of the API in the program-
ming model.   

 The pattern describes the annotation of a multimedia item with some label, 
e.g., the annotation of a part of a photo with a label pointing to a person — Carsten 
(not included in the Figure  12.2 ). This association is embodied through a  semantic-
annotation  that satisfi es a  method  (e.g., algorithms for image recognition) that 
defi nes a  semantic-label-role  as well as an  annotated-data-role . The 
multimedia-data  has to play the  annotated-data-role , which identifi es the 
part of the image that is annotated. The depicted particular has to play the  semantic-
label-role , e.g., the instance  Carsten . 

 The COMM API comprises mappings between such patterns and Java objects. 
For instance, objects of the class SemanticAnnotation  represent instantiations of 
the pattern semantic-annotation . The mapping is achieved by implementing the 
intended behavior for create, read, update, and delete operations (CRUD) that affect 
the knowledge base accordingly:

Create :      The construction of a  new  object, i.e., an object representing data that 
is not yet present  in the knowledge base, needs to result in the correct and 
complete instantiation of an ontology pattern.  

Read :      The construction of an object based on  existing  data in the knowledge 
base. Although similar from an application programming interface point of 
view, the underlying operation in the knowledge base is fundamentally 
different. In this case, the knowledge base is queried for the instance of a 
pattern, and all involved resources and statements required to fully instanti-
ate the object. 

Update :      The update of an object needs to result in the replacement of infor-
mation in the knowledge base. Thereby, developers need to implement 
distinct update behaviors. For example, the class MultimediaData  imple-
ments a method to add a SemanticAnnotation . This method either adds 
a semantic label to an existing SemanticAnnotation  for the image or 
creates a new instance of a SemanticAnnotation .  

Delete:      The deletion of an object has different implications. For instance, the 
deletion of SemanticAnnotation  results in the deletion of the  relation
between the image and Carsten as expressed by the instance of the pattern. 
In another scenario, developers may want to delete the image and Carsten 
as well or to delete the representation of Carsten. 

 Based on our experience in developing the core ontologies COMM, 
X - COSIMO, and Event - F and their APIs, we have identifi ed problems and derived 
the following requirements:

RQ1. Emphasis on domain concepts .      When programming ontology APIs, 
developers have to deal with aspects inherent in programming languages 
like database access coding or data validation coding. For example, for each 
mapping, developers have to write code for handling access to the knowl-
edge base. These tasks divert developers ’  attention from the specifi cation 
of ontology APIs.    
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 Moreover, currently, developers have to redundantly implement programming 
code for validating the correct instantiation of objects, e.g., code that checks whether 
all required information is available in an object. In our example, the Java class 
SemanticAnnotation  needs to provide code that checks whether all information 
for a correct instantiation of the Semantic Annotation Pattern  is available. The 
instantiation of this pattern without both the part of the image and the depicted 
person makes no sense.

RQ2. Patterns as fi rst - class citizens .      Currently, when specifying standard 
behaviors for CRUD operations, developers have no choice but tangling 
the specifi cation over the classes that implement the pattern. Thus, develop-
ers cannot reuse these operations across software projects or programming 
languages.

RQ3. Support for debugging .      The ontology API code consists of complex 
queries. Such queries are typically represented as strings and are not always 
recognized by programming languages or programming environments 
during compile time. This makes debugging particularly hard for two 
reasons: First, the programming environment gives no hints for syntax 
errors during compile time. Accordingly, developers can track syntax 
errors only at runtime. Second, even at runtime, semantic errors are hard 
to recognize. For instance, the following SPARQL - query has the correct 
syntax but does not return any results due to the mistyped concept 
name semantic - an(n)otation :   “ select ?s where  { ?s a comm: semantic - 
anotation }  ” 

RQ4. Change management .      As the programming code references ontology 
concepts that the programming environment ignores, refactoring code in 
case of ontology changes is diffi cult. For instance, if a developer changes 
the ontology concept semantic-annotation  to  Annotation , associa-
tions in the programming code (e.g. annotations, query strings, URI strings) 
need to be updated manually.  

RQ5. Generation of APIs for the same ontology or for different 
platforms .      Currently, mappings cannot be reused in other programm-
ing languages, since they are implemented by programming code 
and specifi c means provided by a programming language, e.g., Java 
annotations.    

 The problems that motivate these requirements impair the development of 
ontology APIs by retarding their availability, affecting the adoption of the respective 
ontologies. Moreover, having families of APIs for a given ontology or APIs for dif-
ferent platforms is implausible due to the effort needed. 

 To enforce the importance of these requirements, we analyze the current 
COMM API. The current COMM ontology has 702 classes while its API has 34 
packages, 294 classes, 1823 functions, and 11597 non - commenting source state-
ments (NCSSs).  
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   12.3    APPLICATION OF THE TWOUSE APPROACH 

agogo  is an application of the TwoUse approach for automatically generating OWL 
APIs on demand. To tackle the problems presented in the previous section,  agogo
relies on technologies regularly applied in model - driven development: metamodel-
ing, concrete syntax, and model transformations. 

 Agogo ’ s metamodel and concrete syntax constitute a domain - specifi c lan-
guage (DSL) that provides an abstraction layer over programming languages, encap-
sulating redundant data validation, or implementation behavior. The DSL simplifi es 
the process of specifying ontology APIs by focusing on domain concepts (RQ1). 

 Moreover, the usage of metamodels allows for defi ning concepts in a structured 
way, improving maintainability (RQ4). For example, elements of the ontology API 
specifi cation are maintained as single units instead of being stored in annotations. 

 The defi nition of constraints on concepts in the  agogo  metamodel improves 
design time checking, i.e., it enables API developers to validate API specifi cations 
against these constraints, minimizing errors at runtime (RQ3). 

 The concrete syntax for ontology API specifi cation enables users to model 
patterns as fi rst - class citizens (RQ2). For example, developers specify CRUD opera-
tions and patterns using SPARQL syntax independently from the class defi nition. 
Furthermore, the concrete syntax allows for identifying missing references and for 
helping to fi nd errors before code generation. 

 Model transformations allow for code generation to eventually more than one 
platform, overcoming the restriction on programming language (RQ5). Additionally, 
model transformations ease the creation of families of APIs. It enables developers 
to release a subset of the COMM API for lightweight applications, if required. 

   12.3.1    Key Domain Concepts 

 The  agogo  metamodel extends the TwoUse metamodel and defi nes the concepts of 
an ontology API specifi cation and corresponds to the abstract syntax of  agogo  DSL. 
The defi nition of the concepts of an ontology API specifi cation in a metamodel raises 
the abstraction level and allows API developers to work exclusively with relevant 
constructs. For example, developers handle mappings, patterns, and operations 
without considering implementation issues. 

 In the following, we describe  agogo  key concepts. Figure  12.3  depicts how 
these concepts are related in the agogo  metamodel.

Classes.      The construct  Class  defi nes the associations between platform spe-
cifi c classes and ontology classes. The property  ontoElement  associates 
classes to patterns or ontology classes. 

Patterns .      When a platform specifi c class does not correspond directly to a 
single ontology class but to an occurrence of an ontology design pattern 
(OP), the concept of pattern applies. The construct  QueryPattern
describes OPs using SPARQL queries  [126] . It is possible to defi ne patterns 
for classes, properties and operations.  
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Operations .      CRUD operations (Create, Read, Update, and Delete) are defi ned 
in ontology APIs to enable manipulation of ontology classes. Using 
SPARQL - like syntax, these operations as well as patterns are defi ned in a 
platform independent way.  

Imports .      Developers may group patterns for classes, properties, and opera-
tions into packages and make them available or reuse them in another API 
specifi cation.    

 The  agogo  metamodel extends the TwoUse metamodel that and reuses existing 
metamodels for SPARQL, OWL 2, and Ecore. 

Metamodel Constraints.   Together with the  agogo  metamodel, we defi ne 
constraints used by the syntax checker to enforce valid ontology API specifi cations. 
This functionality allows for identifying errors before generating ontology APIs. 

 In Listing  12.1 , we exemplify these constraints with two OCL constraints. In 
the fi rst constraint, we enforce that all variables passed as parameter to an operation 
are used in the body of the query.   

 In the second constraint, we enforce that every pattern associated to a property 
must include the variable ?obj  in the select statement. The predefi ned variable  ?obj
points to the range of a property in the OO representation.    

     Figure 12.3     Snippet of the  agogo  Metamodel.  
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  LISTING 12.1    Constraints on the  agogo  Metamodel. 

1 context Operation 

inv inv1:self.ontoElement.SPARQLQuery.whereClause 

.variables.includesAll(self.parameters);

5 context Property 

inv inv2: self.ontoElement.SPARQLQuery 

.variables.varname. includes ( "obj");

   12.3.2      agogo   Concrete Syntax by Example 

 In this section, we demonstrate the main components of the  agogo  textual syntax 
and exemplify them with the running example. In this chapter, we concentrate on 
how agogo  supports patterns as fi rst - class citizens, CRUD operations, support for 
debugging, and change management. 

 To improve user experience, we have based the defi nition of the  agogo  textual 
syntax on the SPARQL syntax  [126] . For example, for prefi x declaration and speci-
fi cation of patterns, we use the SPARQL constructs. 

 Listing  12.2  presents the basic constructs of the  agogo  syntax like  PACKAGE , 
IMPORT ,  CLASS , and  PROPERTY  in exemplary fashion. We group API specifi cations 
into packages, which contain all model elements. The construct  IMPORT  allows for 
reusing classes and patterns defi nitions.   

 The construct  CLASS  specifi es the mappings between ontology concepts and 
OO representations. The reserved word  TO  points to a pattern declaration or directly 
to a SPARQL query that represents a pattern. The construct  PROPERTY  follows the 
same rationale. In Listing  12.2 , the property label is of type  dvl:particular  and 
points to the pattern prop label , defi ned in Listing  12.3 .   

  LISTING 12.2    An Example of Using  agogo  Basic Constructs. 

1 PREFIX rdf:  <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX core:  <http://comm/core.owl#>
PREFIX dvl:  <http://comm/dolce−very−lite.owl#>
PREFIX edns:  <http://comm/extended−dns−very−lite.owl#>

5 PREFIX agogo:  <http://uni−koblenz/agogo#>

PACKAGE <http://comm.agogo#> { 

IMPORT <http://comm−lite.agogo#>;
10

CLASS SemanticAnnotation  TO core:semantic −annotation { 
PROPERTY label ̂ˆdvl:particular TO prop_label; 

. . . 
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 To detach pattern specifi cations from class specifi cations, patterns must 
be fi rst - class citizens, i.e., their declarations must not be associated to class 
declarations.

 The defi nition of patterns is an essential point in our approach. To represent a 
pattern, we need to represent how ontology classes and relations compose this 
pattern. A user - friendly way of doing it is by using the SPARQL syntax. By using 
the SPARQL SELECT construct, developers describe the pattern structure. 

 In Listing  12.2 , we declare that the OO class  SemanticAnnotation  maps 
onto the ontology class core:semantic-annotation  and that the OO class 
SemanticAnnotation  has a property of name  label  of type  dvl:particular . 
Next, we specify how the values of the property label  are matched. To have the 
labels of a semantic annotation, we need to navigate through the structure of the 
Semantic Annotation Pattern (Figure  12.2 ). 

 Listing  12.3  shows the declaration of a query pattern for the property  label . 
The pattern is a SPARQL query that describes the structure of the Semantic Annota-
tion Pattern. In the clause WHERE , the structure of the pattern is represented. In the 
clause WHERE , we have all classes and relations that need to be created, read, 
updated, and deleted when dealing with the property label . The SPARQL query in 
Listing  12.3  is comparable with the classes and relations composing the pattern in 
the Figure  12.2 . 

 The defi nition of patterns includes the usage of two predefi ned variables: 
?subj  and  ?obj . The variable  ?subj  identifi es the OO class, i.e., in this case, the 
class SemanticAnnotation , while the variable  ?obj  refers to the values or the 
property label. 

 For example, this pattern will match the labels associated to the class 
semantic-annotation , e.g., the particular  Carsten  (see Section  12.2 ). In other 

  LISTING 12.3    Patterns as First - Class Citizens. 

1 PATTERN prop_label  { 

SELECT ?obj

WHERE

{ ?subj edns:satisfies ?method . 

5 ?method rdf:type edns:method ; 

edns:defines ?slr ; 

edns:defines ?adr . 

?slr rdf:type core:semantic−label−role . 
?adr rdf:type core:annotated−data−role . 

10 ?obj edns:plays ?slr . 

?data edns:plays ?adr ; 

rdf:type core:multimedia−data . 
?subj edns:setting–for ?obj ; 

edns:setting–for ?data . 

15 }

}
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words, the domain of the pattern prop_label  is the ontology class  semantic-
annotation  and the range is the class  particular  (see declaration in 
Listing  12.2 ). 

 Model transformations are responsible for generating automatically CRUD 
(Create/Read/Update/Delete) operations for each OO property based on the pattern 
specifi cation. Although CRUD operations are generated automatically, in some 
cases, developers may want to customize operations. For example, developers may 
want to customize an insert operation to use existing individuals. 

 To specify Read operations, we use the standard construct  SELECT , and to 
specify custom CRUD operations, we use SPARQL Update  [144]  syntax 2 . Listing 
 12.4  shows the defi nition of the customized operation  addLabel . The operation 
uses an existing instance of the class method—:method1 . For each variable in 
the INSERT clause, one new individual is created in the ontology (except variables 
?subj  and  ?obj ).   

 Model transformations take specifi cations of CUD and generate corresponding 
programming language code. For example, the usage of variables (Listing  12.4 , 
Lines 4 – 6) leads to the generation of statements to create a new instance of the class 
semantic-annotation-role (?slr) . 

 Developers may declare patterns anonymously, i.e., developers may associate 
patterns directly with properties or classes. Listing  12.5  shows the specifi cation of 
a pattern associated with the property semantic annotation .   

 The defi nition of the SPARQL syntax together with the SPARQL metamodel 
allows for identifying non - well - formed SPARQL statements. Consequently, 

  LISTING 12.4    Defi nition of an Operation Using SPARQL Update Syntax. 

1 OPERATION addLabel (? obj ) { 

INSERT DATA 

{

:method1 edns:defines ?slr.

5 ?slr a core:semantic −label−role.
?obj edns:plays ?slr . 

?subj edns:setting−for ?obj.

}

WHERE

10 {

?subj edns:satisfies :method1.

}

};

 2 agogo  does not require a SPARQL Update engine. We use the SPARQL Update syntax only to generate 
appropriate code. 
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developers may check for syntax errors at design time. Moreover, by integrating the 
OWL 2 metamodel into the  agogo  metamodel,  agogo  allows for enforcing the ontol-
ogy as schema for the specifi cation. If developers mistype names of classes or 
individuals, the syntax checker identifi es that there is no corresponding element in 
the ontology for that name. This functionally helps to identify typos at design time.  

   12.3.3    Implementation 

agogo  consists of a model - driven process composed of model transformations, 
models, and metamodels. Figure  12.4  depicts the  agogo  architecture and the embed-

     Figure 12.4     Architecture of the 
agogo  Approach.  
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  LISTING 12.5    Mapping a Property onto a Pattern. 

1 CLASS MultimediaData  TO core:multimedia −data { 
PROPERTY semantic −annotation ˆˆ core:semantic −annotation TO { 

SELECT ?obj

WHERE

5 {?obj edns:setting−for ?subj ; 

rdf:type core:semantic −annotation ; 
edns:satisfies   ?method . 

?method rdf:type edns:method ; 

edns:defines  ?adr . 

10 ?adr rdf:type core:annotated −data−role . 
?subj edns:plays ?adr . 

}

};
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ded MDA process. Developers use  agogo  textual syntax to specify ontology API 
specifi cations. These specifi cations are injected to platform - independent models 
(PIMs). We use EFMText  [70]  for defi ning  agogo  textual syntax and Ecore  [164]  
for defi ning the  agogo  metamodel.   

 Model transformations take the PIM and a confi guration fi le as input. The 
confi guration fi le contains directives for code generation like names of classes and 
identifi ers. Consequently, model transformations produce platform - specifi c models 
(PSMs) as output, which are then extracted to programming code. To specify model 
transformations, we use the Atlas Transformation Language (ATL)  [82] . 

 The usage of a PIM enables developers to detach the ontology API specifi ca-
tion from programming code. Consequently, model transformations for different 
programming platforms may be specifi ed, allowing code generation for multiple 
platforms.

 We have implemented  agogo  as part of the TwoUse Toolkit. Figure  12.5  shows 
a screen shot of the semantic annotation example design using the agogo DSL. By 
referring to non - existing classes or using misspelled reserve words, the editor raises 
an error.     

   12.4    ANALYSIS 

 In this section, we analyze how  agogo  ’ s functionalities affect the quality of ontology 
API specifi cations. In the following, we consider four quality characteristics of 
ontology API specifi cation according to ISO 9126  [80] .

     Figure 12.5     Screenshot of  agogo  Implementation.  
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Q1. Usability .      One cognitive dimension of usability analysis is the abstraction 
level  [58] . With  agogo , developers concentrate on constructs related to the 
problem domain, e.g., map  and  pattern , raising the abstraction level.    

 Raising the abstraction level infl uences productivity. To demonstrate this 
impact, we have conducted an exploratory evaluation of the size of both agogo  API 
specifi cations and Java API specifi cations of the running example based on the 
current COMM API. 

 As metric for size, we consider the number of non - commenting source state-
ments (NCSSs)  [121] . Table  12.1  summarizes the comparison of size between  agogo
and the current COMM API in two cases. 

 In  Case1 , we consider a specifi cation with only two classes:  SemanticAn-
notation  and  SemanticLabel . The current COMM API requires coding 19 Java 
Classes and more than 400 NCSSs. With  agogo , developers concentrate on coding 
50 NCSSs in two classes. 

 To have an idea of the effort of extending or taking a subset of the COMM 
API, we consider the addition of the class MultimediaData  in  Case2 . Although 
including the class MultimediaData  implies implementing another OP — the object 
decomposition — the size of the ontology API increases drastically to approximately. 
nine times the original size. 

 Based on this exploratory analysis, even if developers have in  agogo  half of 
the productivity ratio they have in Java, because the agogo  specifi cation is smaller 
than the Java specifi cation, the effort for producing NCSSs in Java is still higher. In 
other words, developers are more productive with agogo , with benefi ts increasing 
as the API grows due to the possibilities for reuse and improved maintenance.

Q2. Reusability .      By defi ning patterns as fi rst - class citizens, developers may 
reuse patterns on further mappings. Moreover, complete libraries can be 
reused to generate derived APIs. For example, API developers may want 
to have multiple ontology APIs according to the complexity, e.g., COMM 
lite and COMM full.  

Q3. Maintainability .    agogo  defi nes constructs as metamodel concepts instead 
of parsing strings of text. Consequently, structured models are easier to 
maintain than plain text.    

  TABLE 12.1    Comparison of Size between  agogo  and the Current  COMM   API  
in Two Cases. 

agogo      Current COMM API  

   Case 1     Case 2     Case 1     Case 2  

  Packages    1    1    4    15  

  Classes    2    5    19    101  

  NCSS    50    70    461    3928  
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 When the ontology changes, developers change the ontolgy API specifi cation 
and automatically regenerate the ontology API. The syntax checker assists develop-
ers with tasks like renaming and raises errors for missing references. 

 Moreover, constraint validation and syntax checking take place at design time, 
and not only at runtime as by existing approaches. The developer counts on a syntax 
checker for pattern specifi cations.

Q4. Portability .      Providing that model transformations are available, it is pos-
sible to generate APIs for multiple programming languages. Developers 
describe ontology APIs once and model transformations use the specifi ca-
tion to generate ontology APIs for multiple platforms.    

agogo  may be seen as an abstraction layer over existing approaches for gen-
erating ontology APIs (Section  12.5 ). As  agogo  does not mandate a specifi c pro-
gramming language, developers may specify model transformations for transforming 
agogo  API specifi cations into programming code for the platform of choice. 

 Nevertheless, developers need to bear in mind the effort of specifying the 
model transformations. To achieve abstraction from programming code, the model 
transformations have to handle the gap between the agogo  API specifi cation and the 
programming language. The initial effort in developing these model transformations 
needs to be considered when deciding to provide ontology APIs in a given program-
ming language. 

 To track how the  agogo  approach addresses the requirements of Section  12.2  
and affects ontology API quality characteristics, we present a traceability matrix in 
Table  12.2 . It relates  agogo  requirements, the artifacts that tackle these requirements 
(metamodel (MM), concrete syntax (CS), and transformations (T)), examples, and 
their relations to quality attributes. As one may notice, by establishing a domain -
 specifi c notation for designing ontology APIs, we improve the quality characteristics 
above, corroborating the literature on domain - specifi c languages  [99] .    

   12.5    RELATED WORK 

 Ontology engineers count on a variety of solutions for specifying ontology 
APIs. In the following, we analyze these approaches according to the abstraction 
level.

  TABLE 12.2    Correlating  agogo  Requirements with Quality Attributes. 

   Requirement     Artifact     Example     Quality Attribute  

  RQ1    MM, CS    Figure  12.3 , List. 12.2    Q1  

  RQ2    MM, CS    List. 12.2, List. 12.3    Q2  

  RQ3    MM, CS    Figure  12.3 , List. 12.1    Q3  

  RQ4    MM, CS    List. 12.5    Q3  

  RQ5    T     —     Q4  



170 CHAPTER 12 AUTOMATIC GENERATION OF ONTOLOGY APIS

 Generic solutions for developing ontology APIs are the Jena API  [178]  and 
the Sesame API  [24] . However, these approaches are triple - based, i.e., developers 
have to work with methods such as getSubject  and  getObject . Low abstraction 
level and high complexity are aggravated when dealing with big ontologies. 

 RDFReactor  [172]  and  [85]  are  “ plain ”  RDFS — Java/OO mapping approaches. 
These approaches do not provide support for complex mappings implied by ontology 
design patterns, i.e., developers have to program one java class for each ontology 
class. Moreover, when the ontology changes, developers have to manually change 
ontology API code. 

 A solution with higher abstraction level is ActiveRDF  [118] . ActiveRDF relies 
on annotations to specify mappings for Ruby programs. As we have seen, annota-
tions are hard to maintain and to debug. Moreover, these applications force API 
developers to commit to one programming language.  

   12.6    CONCLUSION 

 This chapter presents an application of TwoUse for designing mappings between 
complex ontology descriptions and object oriented representations —  agogo . The 
solution comprises a domain - specifi c language and model transformations to gener-
ate API programming code. 

agogo  improves productivity on ontology API specifi cation and enables devel-
opers with functionalities infeasible until now. Additionally,  agogo  accomplishes 
improvements in reusability and maintainability.  



  CHAPTER 13
USING TEMPLATES IN 
 OWL  ONTOLOGIES     

     Integrating model - driven development and semantic web resulted in metamodels 
and model - driven tools for the semantic web. However, these metamodels or tools 
do not provide dedicated support for dealing with templates in ontology engineering. 
Templates are useful for encapsulating knowledge and modeling recurrent sets of 
axioms. We propose an extension of existing metamodels and tools to support ontol-
ogy engineers in modeling ontology templates. Our approach allows ontology engi-
neers to keep template specifi cations as fi rst - class citizens, reducing complexity and 
increasing reusability in ontology engineering. We demonstrate our approach with 
templates for ontology design patterns. 1

   13.1    INTRODUCTION 

 As OWL ontologies becomes more complex, approaches that use abstraction to 
encapsulate complexity emerge. For example, ontology engineers may use macros 
and annotations to represent ontology design patterns (ODPs)  [52] , key artifacts for 
reuse in ontology engineering. 

 Nevertheless, these approaches do not consider abstraction mechanisms as 
fi rst - class citizens to encapsulate complexity. For instance, the development of ODPs 
relies on the usage of macros  [173]  or annotations  [78]  to represent the structure of 
these patterns. Ontology engineers should be able to encapsulate reusable sets of 
axioms that capture modeling practices in templates. In other words, ontology engi-
neers need declarative specifi cations of templates and tools to test these specifi ca-
tions and realizations. 

 The usage of templates is a well - known technique to encapsulate complexity 
in generative programming, leading OMG to add support for templates in UML 
 [117] . For ontology engineers, the main advantages of using templates are increase 
in productivity, since ontology engineers rely on well - known reusable pieces to 
design the ontology; and increase in reliability, since templates comprise reliable 
sets of axioms developed by domain experts. 

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

 1   This chapter contains work from the paper  “ A Model - Driven Approach for Supporting Ontology Design 
Patterns ”   [148] . 
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 Providing declarative specifi cations of templates and support for template 
realization enables ontology engineers to handle templates as fi rst - class citizens 
instead of having template descriptions embedded in ontologies as annotations or 
using preprocessing macros. Moreover, a dedicated approach for handling templates 
enables ontology engineers to explore the full expressiveness of template declara-
tions and to analyze template realization scenarios. 

 Current approaches  [78, 173, 158]  have limited expressiveness and are tool -
 oriented instead of generic, i.e., they do not allow ontology engineers to choose 
freely tools and representation notations for templates. Moreover, current ontology 
metamodels and model - driven tools do not provide these constructs  [114, 23, 106] . 

 Templates should be fi rst - class citizens in a higher abstract level than annota-
tions, i.e., in the ontology metamodel. Such an approach allows the following: (1) 
to extend the usage of templates to other OWL - related languages like SWRL  [76] , 
SAIQL  [93] , or SPARQL - DL  [154] ; (2) to use different modeling notations, includ-
ing graphical languages; and (3) to extend the usage of templates beyond individuals, 
classes, and properties to literals and class expressions. 

 The contribution of this chapter is twofold: (1) we present an approach for 
modeling ontology templates applicable to different OWL metamodels and exten-
sible to SWRL, SPARQL - DL, and SAIQL; (2) we introduce graphical notations 
containing dedicated constructs to specify templates and to bind them with domain 
ontologies, enabling ontology engineers to design and test templates as fi rst - class 
citizens.

 We present our approach in this chapter as follows. Section  13.2  gives a 
scenario motivating template design. We give an example of our approach and 
describe the graphical notations and the main constructs of our approach in 
Section  13.3 . Section  13.4  presents application scenarios of ontology templates. 
Section  13.5  presents an analysis of existing approaches, and Section  13.6  concludes 
the chapter.  

   13.2    CASE STUDY 

 As a running example, we consider an ontology for capturing music records as 
domain ontology. For this domain ontology, we want to reuse existing knowledge 
from three resources: ontology design patterns (ODP), SWRL rules, and domain 
closure.

 To represent the role of performers, we use the  AgentRole  ontology design 
pattern  [52]  from the ontology design pattern collection. The intention of this ODP 
is to represent agents and their roles. A  Role  is a subclass of the class  Concept , 
i.e., a Role  is a specialization of  Concept . An  Agent  is a specialization of the class 
Object . The property  hasRole  assigns  Roles  to  Objects , whereas the inverse 
property isRoleOf  assigns  Objects  to  Roles . 

 Additionally, we want to propagate the genre of a musical group to a record, 
i.e., we want to assert that the style of the record is the same as the style of the 
group. Thus, we reuse a SWRL rule (in this case a description logic rule) to move 
the property values from one individual to a related individual. 
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 Furthermore, we want to consider the knowledge about genres as complete. 
In general, OWL models realize the open - world assumption (OWA), i.e., the repre-
sented knowledge base is considered as incomplete. However, in certain applica-
tions, it is more appropriate to consider a knowledge base as complete. If complete 
knowledge is assumed, the set of all individuals in the knowledge base must be 
equivalent to the set of individuals declared. 

 The following knowledge base (TBox and ABox) describes a simple domain 
ontology about music records. Beatles  and  RollingStones  are instances of  Group . A 
Group  has  Per former  as a member. A  Per former  plays a role in a  Group . The  Group
belongs to a Genre  and produces  Records . In our knowledge base, there are only 
four genres: Rock ,  Blues ,  Country , and  Samba .

    
Group hasMember Performer hasStyle Genre

creatorOf Reco

� �
�

∃ ∃
∃

. .

. rrd
    (13.1)  

    Record stylePeriod Style∃ .     (13.2)  

    Performer hasRole Position∃ .     (13.3)  

    Genre Rock Blues Country Samba Record LetItBleed( , , , ), ( )     (13.4)  

    Group RollingStones Performer Mick Position Vocalist( ), ( ), ( )     (13.5)  

    hasRole Mick Vocalist creatorOf RollingStones LetItBleed( , ), ( , )     (13.6)  

    hasMember RollingStones Mick( , )     (13.7)  

    hasStyle RollingStones Rock Group Beatles( , ), ( )     (13.8)  

    hasStyle Beatles Blues hasStyle Beatles Country( , ), ( , )¬ ¬     (13.9)  

    hasStyle Beatles Samba( , )¬     (13.10)   

 Based on this knowledge base, a user may be looking for all rock bands as 
described by the following description logic query: hasStyle .{ Rock }. If we con-
sider an incomplete knowledge base, the result of this query contains only the 
individual RollingStones . If we assume a complete knowledge base though, the result 
also includes the group Beatles . 

 There are multiple strategies for closing the domain of a class. In this chapter, 
we only make the class Genre  equivalent to the set of existing individuals of the 
class Genre , i.e.,  Rock, Blues, Country, Samba . 

 Additionally, we want to assert that the genre of a record is the same as the 
genre of the group:

    
Performer a Genre s Record c hasStyle a s

creatorO

(? ) (? ) (? ) (? ? )∧ ∧ ∧
→ ff a c stylePeriod c s(? , ? ) (? , ? )→

    (13.11)   

 For other ontologies, ontology engineers want to reuse these resources, since 
these resources represent modeling guidelines and best practices identifi ed by 
domain experts. Thus, it makes sense to encapsulate these axioms, identifying 
generic pieces, i.e., to create a template . We consider templates as parameterized 
generic sets of axioms that can be combined with different specifi cations to produce 
a variety of artifacts like domain ontologies and queries. 
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 A possibility is to use inheritance to encapsulate reusable axioms and defi ne 
a super class of Genre  that is equivalent to a list of existing individuals of this type, 
and the SWRL rule to propagate the genre to records. However, this super class and 
rule are reusable for other types of art like poetry, painting, and acting and work 
only for music. 

 In summary, the usage of a template has the following advantages:

    •      Templates work as interfaces to encapsulate axioms and expose only the con-
structs to be used as parameters. Thus, ontology engineers know exactly which 
concepts and roles are needed for applying the ontology design pattern. 

   •      Ontology engineers can reuse repeatedly templates in other ontologies or in 
other pieces of the same ontology.  

   •      Ontology engineers bind and unbind templates to exploit different results, e.g., 
using the open world or closed domain assumption.  

   •      Templates are reliable, since ontology experts derive templates from well -
 known sets of axioms.  

   •      Templates realize macros when inheritance is not enough.     

   13.3    APPLICATION OF THE TWOUSE APPROACH 

 In this section, we describe the application of TwoUse and the main constructs of 
our metamodel extension and the different notations. 

 Figure  13.1  depicts the result of applying TwoUse into the running example 
to add support for templates in OWL ontologies. It uses the UML profi le for OWL 
with package templates. A template  agent-role  represents the agent role ODP. 
This template has the two parameters — Agent and Role — to be bound in order to 
adopt this pattern.   

 A template  closed-domain  defi nes a class  X  that is equivalent to a list of 
individuals {}. Class X  and class expression {} are template parameters and are 
bound to the class Genre  and to the class expression { Rock Blues Country 

Samba }of the ontology  music records . 
 Finally, the third template shows an ontology with a SWRL rule asserting that 

the genre of an artist is the same as the genre of a record. When realizing these 
template bindings, the result is set of axioms (1 – 11) presented in Section  13.2 . 

   13.3.1    Extending the  OWL  Metamodel with Templates 

 In this section, we use the TwoUse integration and apply the idea of package tem-
plates of UML into OWL and extend it to different OWL - related languages like 
SWRL  [76]  and query languages like SPARQL - DL Abstract Syntax  [154]  and 
SAIQL  [93] . 

 UML  [117]  allows software developers to design templates of packages and 
classes. With templates, software developers describe reusable structures with 
unbound parameters. In order to use these templates, developers have to bind 



     Fi
gu

re
 1

3.
1  

   M
od

el
in

g 
th

e 
R

un
ni

ng
 E

xa
m

pl
e 

w
ith

 O
M

G
 U

M
L

 P
ro

fi l
e 

fo
r 

O
W

L
 a

nd
 U

M
L

 P
ro

fi l
e 

fo
r 

SW
R

L
.  

175



176 CHAPTER 13 USING TEMPLATES IN OWL ONTOLOGIES

package templates to actual classes or properties to create real structures. By binding 
template parameters to actual values, developers apply, for example, software design 
patterns to a software model. 

 While UML package templates allow classes, interfaces, and datatypes as 
parameterable elements, we defi ne ontology templates as templateable elements and 
allow classes, properties, datatypes, literals, and class expressions as parameterable 
elements.

 In the following, we explain each of these metamodel elements as addressed 
in our solution and present the relationships between them in Figure  13.2 .

    •      TemplateableElement:      A templateable element is an element that can option-
ally be defi ned as a template. When a template is used, a  template binding  is 
created describing the replacement of template parameters with actual param-
eters. Examples of templateable elements are ontologies and queries.    

   •      Ontology:      The class  Ontology  specializes  TemplateableElement  to 
specify an ontology template. We apply the same rationale to queries 
(SPARQLDL::Query  and  SAIQL::Query ). For example, in Figure  13.1 , 
closed-domain ,  artist , and  agent-role  are ontology templates.  

   •      TemplateSignature:      A template signature wraps the set of template parameters 
for a templateable element. In Figure  13.1 , the signature of  closed-domain
is a bundle containing the parameters X , and {}.  

     Figure 13.2     Metamodel for Ontology Templates.  
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   •      TemplateParameter:      A template parameter exposes a parameterable element 
as a template parameter of a template. For example, in the template signature 
closed-domain ,  X , and {} are representations of the parameterable elements 
with the same names.  

   •      ParameterableElement:      A parameterable element is an element that can be 
exposed as a template parameter for a template or be specifi ed as an actual 
parameter in a binding of a template. In Figure  13.2 , we show only some 
parameterable elements like ObjectProperty, Class, and Individual. Other 
parameterable elements include DataProperty, ClassExpression, and Literal. 
For example, in Figure  13.1 , the class  X  and the class expression {} are tem-
plate parameters while the class Genre  and the class expression { Rock Blues 
Country Samba } are actual parameters in the template binding.  

   •      TemplateBinding:      A template binding represents a relationship between a 
templateable element and template parameters. A template binding specifi es 
the substitutions of actual parameters for the template parameters of the tem-
plate. In Figure  13.1 , the template binding is represented on top of the ontology 
music-record ontology  by the symbol  –> .  

   •      TemplateParameterSubstitution:      A template parameter substitution relates the 
actual parameter(s) to a template parameter as part of a template binding.    

 The metamodel for ontology templates depicted in Figure  13.2  is independent 
of the ontology metamodel. Although we have considered the OWL 2 metamodel 
for our implementation, implementers can use any OWL metamodel of choice or 
other ontology metamodels like RDF. Implementers must then specialize the class 
ParameterableElement  with the elements that can be used as parameters, e.g., 
RDFClass . 

 To write description logic rules, ontology engineers rely on the structure pro-
vided by the SWRL metamodel, which connects with the OWL metamodel through 
the class Rule . 

 In order to have query templates, we specialize the class  TemplateableEle-
ment  with the class  Query  and the class  ParameterableElement  with variables. 
Thus, we can specify templates of queries and give variables as parameters. We 
discuss query templates in Section  13.3.4 .  

   13.3.2    Semantics of Templates 

 We treat templates as generators, i.e., templates for generating axioms. Thus, reason-
ers cannot inspect the contents of templates until a transformation realizes  the 
template bindings by generating an effective OWL ontology. 

 One issue when creating templates is to ensure that they are consistent, i.e., 
that there exists at least one possible valid binding. A mechanism for doing this is 
to realize the template by automatically generating an ontology and the respective 
bindings. Thus, the effective OWL ontology can be tested with any standard reason-
ing for satisfi ability and consistency. 

 The template mechanics do not add to the complexity of the OWL ontology. 
The complexity of the effective OWL ontology is composed of the complexity of 
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the template and the complexity of the ontology bound to the template. For example, 
if the template defi nition has expressivity  S ON  and the ontology bound to the 
template has expressivity A CIQ , the effective ontology would have expressivity 
S OINQ . 

 The outcome of realizing the template bindings is an effective OWL ontology 
that can be normally checked by reasoners. When realizing template bindings, actual 
parameters replace template parameters, and the remaining elements are copied. 
Consequently, the template defi nition is not part of the effective ontology document 
(the generated one), but of the implicit ontology document based on our approach. 
The implicit ontology document contains all axioms defi ned by the ontology engi-
neers and the template defi nitions. 

 The realization of template bindings takes place when transforming the implicit 
ontology document into an effective ontology document. Figure  13.3  depicts in 
abstract language the transformation realizing the template bindings of actual param-
eters of a templateable element (ontology or query) and the template parameters of 
at least one template.   

 The recursive algorithm  RecursiveBinding  (Figure  13.3 ) guarantees that 
all binds of an eventual template chain take place, since templates can be connected 
to other templates. The input of the algorithm is a templateable element  E , e.g., the 
music record ontology. The second input parameter is the set of all templates that 
generate the output element (ontology or query). For the templates, the type list is 
used, since in case of multiple connected templates, the ordering of the binding of 
the template parameters is signifi cant. 

 The fi rst case (line 1,2) occurs if no template is given. The second case (line 
3,4) is the end of the recursion. In the third case, the binding and generation is real-
ized. The next template (fi rst element of the template list) is bound with the previous 

     Figure 13.3     The Template Binding Realization Algorithm.  
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     Figure 13.4     Modeling the Running Example with OWL 2 Graphical Syntax.  

(recursive) template bindings and generations, which is templateable element Recur-
siveResult . The binding and generation is in lines 9 – 14. The template parameters are 
substituted by the actual parameter of RecursiveResult  according to the parameter 
substitution (lines 9 – 11). After the binding, the  RecursiveResult  (ontology or query) 
is imported or included to the bound template ( Result ). The result, i.e., the effective 
ontology is a set of axioms, like axioms (1 – 7) presented in Section  13.2 .  

   13.3.3    Notations for Templates in  OWL  

 TwoUse provides an abstraction independent of concrete syntax, i.e., it is possible to 
provide multiple notations for modeling ontology templates. In Figure  13.1 , we show 
the running example modeled using the OMG UML Profi le for OWL and the UML 
Profi le for SWRL  [21] . It relies on package templates natively supported by UML. 

 Figure  13.4  shows the same example using the OWL 2 graphical notation. We 
have implemented a graphical notation based on  [1]  that uses the OWL 2 metamodel 
as concrete syntax.   
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 A model transformation takes a diagram in one of the supported notations 
(OWL 2 graphical syntax or UML Profi le for OWL/SWRL) and parses it into an 
implicit ontology document model based on our approach. The realization step takes 
the output and generates the effective ontology document model, which is later 
parsed into OWL standard syntax. Figure  13.5  describes these steps.    

   13.3.4    Query Templates 

 In this section, we show how ontology engineers can benefi t from query templates. 
Taking the running example, we analyze a simple query about artists belonging to 
a set of genres. 

 Since there exist different types of Artists (musician, painter, actor), it is useful 
to write the query once and set artist and style as parameters. Listing  13.1  depicts 
this query using SPARQLAS with templates.   

 Lines 4 – 5 of Listing  13.1  show the declaration of two parameters for the query 
template: ?artist  and  ?style . Each of these parameters has a specifi c type associ-
ated to it: owl:Class  and  owl:oneOf  (from the default namespace). 

 It is possible to reuse this query for search for music groups popular in the 
USA. Thus, Users need to bind the parameter  ?artist  to the class  Group  of ontol-
ogy Ontology1261152793434  and the parameter  ?style  to the list { Rock Blues 
Country }. Listing  13.2  depicts these bindings.   

  LISTING 13.1    Artists of a Given Style. 

1 Prefix: owl = <http://www.w3.org/2002/07/owl#>

IRI <http://ArtistsStyle#>
Parameters: ?artist type owl:Class, ?style owl: oneOf

Select ?x 

5 Where (  

?x type (?artist  and (hasStyle  some ?style))  

)

     Figure 13.5     Ontology Development with Templates.  
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 Realizing these bindings produce the query presented in Listing  13.3 .   
 It is clear here that abstraction plays an important role. Users can reuse knowl-

edge encoded in query templates and combine the results. We apply the same ratio-
nale illustrated with SPARQLAS into SAIQL queries  [93] .   

   13.4    ANALYSIS 

 The requirements of using templates in OWL ontologies and SPARQLAS are based 
in our experience in building core ontologies in the past years  [6, 140, 139]  and in 
modeling software artifacts with OWL. In this section, we analyze the application 
of our approach. 

Many Versions of Ontologies.   We can, at the low maintenance cost of a 
template binding, generate many versions of an ontology. For example, it is possible 
to have two versions of the artist ontology: one with the open - world assumption and 
another with the closed - domain assumption on class  Genre . In some domains like 
software engineering, it is usual to assume complete knowledge. We can generate 
variations of ontologies simply by changing the bindings.  

Ontology Design Patterns.   Ontology design patterns (ODPs) are key arti-
facts for reuse in ontology engineering. Applying templates in ODPs demands 
specialized support for ODP constructs. 

 We have applied our approach in the development of domain ontologies that 
use core ontologies: the COMM ontology  [6] , the Event - Model - F ontology  [140] , 
and the M3O ontology  [139] . We are able to model all ODPs of these ontologies 
(three of COMM, six of Event - Model - F, four of M3O), which pointed at advantages 
and limitations of our approach. 

  LISTING 13.2    Groups and Styles Popular in the  USA . 

1 Prefix: = <http://Ontology1261152793434.owl#>
Prefix: q = <http://ArtistsStyleInUSA#>
Bind: (q:artist Group) (q:style {Rock Blues Country}) 

  LISTING 13.3    Effective Query. 

1 Prefix: = <http://Ontology1261152793434.owl#>
Select ?x  

Where (  

?x type ( Group and (hasStyle  some {Rock Blues Country}))  

5 ) 
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 Introducing templates raises the level of abstraction by allowing ontology 
engineers to identify the requirements for using a given ODP. For example, in the 
COMM ontology, the semantic annotation design pattern involves at least 12 con-
cepts and six roles to represent that a multimedia data is annotated with a label. The 
concepts are grounded by upper - level ontologies like DOLCE. In this case, we use 
templates for creating an interface  for semantic annotations, i.e., we expose only 
two classes — label and multimedia - data — as parameters. In comparison with textual 
templating systems, the main advantage of our approach is portability. Because we 
handle templates and macros at the platform - independent level, it is possible to 
develop plug - ins for multiple ontology editors like Prot é g é  or NeOn Toolkit.    

   13.4.1    Limitations 

 The usability of the tool is a fact to consider when working with templates. Although 
we used existing standards for UML profi les for OWL and SWRL created to popu-
larize OWL among software developers, there is limited tool support for these. 

 Another issue is transparency. Because templates work as generators, their 
results are not always apparent. Therefore, using templates requires attention about 
possible unsatisfi ability or inconsistency caused by properties or concepts added to 
the effective ontology.   

   13.5    RELATED WORK 

 Relevant works related to this chapter cover mainly the engineering of ontology 
design patterns from three perspectives: macros, annotations, and language 
dependency. 

 Multiple works cover the engineering of ontology design patterns  [78, 173, 
158] . Iannone  [78]  uses a pre - processor language to specify knowledge patterns to 
allow modeling on a more general pattern level than directly in the OWL ontology. 
This is a tool - oriented application with procedural constructs like ADD and 
REMOVE. Our approach is declarative and provides support for multiple 
notations.

 Vrandecic analyzes the usage of macros in ontologies in  [173] . These macros 
allow the specifi cation of design patterns for OWL ontologies. In a preprocessing 
step, a macro is transformed to a set of axioms in the OWL ontology. However, the 
authors do not provide a concrete specifi cation language for macros. 

 In  [158]  semantic patterns are described in RDF. These semantic patterns are 
transformed into the target language. The target language is not restricted to a certain 
language; therefore, the semantic patterns are more general. Although general, this 
approach does not provide constructs to handle patterns as fi rst - class citizens as our 
approach does. 

 Presutti  [125]  considers the creation of ontology design patterns from existing 
ontologies. The creation methods that are similar to our approach are the re -
 engineering from other (conceptual) data models and the extraction method from 
reference ontologies. 
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 In comparison with related work, we provide an approach that is fl exible, since 
it supports multiple notations (including UML), extensible, as it comprises metamod-
els for OWL and related languages like SWRL, SPARQL, and SAIQL, and platform 
independent, since templates are tackled at the modeling level and not at the 
language - specifi c level.  

   13.6    CONCLUSION 

 In this chapter, we present an approach that raises the level of abstraction in the 
ontology development process by providing platform - independent specifi cations of 
templates. The prime benefi t of this approach is that it is based on pre - existing 
metamodels and profi les and, therefore, enhances the utility of previous work. More-
over, our approach is generic enough to enable model - driven tools to support 
metamodels of multiple OWL - related languages.  



 CONCLUSION 
OF PART  IV      

     In this part, we investigate the support of generative techniques in ontology engineer-
ing services and address the abstraction gap between specifi cation languages and 
programming languages for ontology engineering tasks (Research Question IV from 
Section  1.2 ). 

 Applying the TwoUse approach raises the abstraction level and consequently, 
infl uences productivity. With the TwoUse approach, ontology engineers concentrate 
on domain problems instead of implementation problems. Moreover, the usage of 
domain - specifi c languages enables ontology engineers to handle domain concepts 
as fi rst - class citizens, improving maintainability (and addressing Research Questions 
IV.A and IV.B). 

 We use the integration between UML class - based modeling and OWL model-
ing to extend techniques used in model - driven engineering to ontology engineering 
to declaratively specify artifacts (Research Question IV.C).         



  CHAPTER 14
CONCLUSION

     This book addresses challenges in composing model - driven engineering and OWL 
technologies. This work comprises multiple facets of this challenge, namely: (1) 
classifi cation of existing approaches integrating both paradigms; (2) the specifi cation 
of a coherent framework for integrated usage of both modeling approaches, compris-
ing the benefi ts of UML class - based modeling and OWL; and applications of the 
proposed framework to improve (3) model - driven engineering and (4) ontology 
engineering.

   14.1    CONTRIBUTIONS 

 This work present contributions of different natures. In the following, we summarize 
the contributions of this book. 

Classifi cation of Approaches Involving  MDE and  OWL Ontologies.   We 
outline state - of - the - art research on model - driven engineering and ontology technolo-
gies. Then, we describe a domain analysis of both paradigms and identify their 
commonalities and variations. The contribution is a taxonomy to categorize 
approaches involving ontology technologies and model - driven engineering.  

Integration of UML Class -Based Modeling and OWL Ontologies.   We 
propose an integrated use of both modeling approaches in a coherent framework —
 TwoUse. We present a framework involving multiple notations for developing inte-
grated models and use a SPARQL - like approach for writing query operations. We 
validate TwoUse ’ s applicability with case studies and conclude that TwoUse achieves 
enhancements of non - functional software requirements like maintainability, reus-
ability, and extensibility. The contribution is a method for applying ontology tech-
nologies in model - driven engineering and for applying model - driven engineering in 
ontology engineering.  

Ontology-Based Software Design Patterns.   We deal with problems in 
common design patterns and propose ontology - based modeling to overcome draw-
backs of the strategy pattern, that are also extensible to the abstract factory pattern 
and other patterns that deal with variant management. The result is an ontology -
 based software design pattern to be used with design patterns: the Selector Pattern.  

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.
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Transformation of Modeling Languages into OWL.   In a networked and 
federated development environment, modeling artifacts need to be linked, adapted, 
and analyzed to meet the information requirements of multiple stakeholders. We 
present an approach for linking, transforming, and querying MOF - compliant model-
ing languages on the web of data. We use the defi nition of structural mappings 
between MOF and OWL and propose the usage of semantic web technologies for 
linking and querying software models.  

Framework for Designing Ontology -Based Domain Specifi c Lan-
guages.   We address major challenges in the fi eld of domain specifi c languages 
with OWL ontologies and automated reasoning in  [175] . We applied the TwoUse 
approach to enable applications of reasoning to help DSL designers and DSL users 
through the development and usage of DSLs. DSL designers profi t by formal rep-
resentations, an expressive language, and constraint analysis. DSL users profi t by 
progressive verifi cation, debugging support, and assisted programming.  

A Language for Specifying Ontology Translations.   We address the balance 
between abstraction and expressiveness that causes ontology mapping frameworks 
to turn to programming languages when built - in constructs fail in specifying complex 
rules for dataset translation. The contribution is a platform - independent language 
that allows modelers to abstract from implementation details while providing expres-
siveness to address translation problems at the semantic as well as at the syntactical 
and lexical layer.  

Automatic Generation of Ontology APIs.   We address the complex map-
pings between descriptions of information given by ontologies and object - oriented 
representations of the same information for developing application programming 
interfaces of ontologies that include instances of ontology design patterns. The 
contribution is a domain - specifi c language to tackle these mappings in a platform 
independent way —  agogo . Agogo provides improvements on software engineering 
quality attributes like usability, reusability, maintainability, and portability.  

Templates for OWL Ontologies.   Metamodels for the semantic web do not 
provide dedicated support for dealing with templates in ontology engineering. Our 
contribution is an extension of existing metamodels and tools to support ontology 
engineers in modeling ontology templates. Our approach allows ontology engineers 
to keep template specifi cations as fi rst - class citizens, reducing complexity and 
increasing reusability in ontology engineering.  

The TwoUse Toolkit.   The result of implementing the approach is a free 
open source tool available for use — the TwoUse Toolkit. We address the lack of a 
framework that allows the integration of multiple W3C and OMG standards at the 
designing level. The contribution is the implementation of an architecture for design-
ing artifacts using multiple standard languages, turning the focus from code - centric 
to transformation - centric.     
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   14.2    OUTLOOK 

 This research has been made possible by intensive work in the last 10 years in the 
fi elds of MDE and ontology technologies. There remains a considerable body of 
research problems that are currently being tackled or that are open for future work. 

   14.2.1    Ongoing Research 

Integrating Linguistic Metamodeling and Ontological Metamodeling.   The 
integration between OWL modeling and UML class - based modeling covered in this 
book involves the usage of OWL ontologies for linguistic metamodeling  [7] . The 
alignment between UML class - based modeling and OWL in the metamodeling level 
requires the transformation of elements of the metamodel into OWL classes and 
properties and the transformation of elements of the model into OWL individuals 
and assertions. 

 In this book, we do not address the usage of OWL for ontological metamodel-
ing as described by Atkinson and K ü hne  [7] . An integration of both linguistic 
metamodeling and ontological metamodeling involves the usage of MOF for 
metamodeling as a language defi nition tool (linguistic metamodeling) and the usage 
of OWL for modeling the relationships between concepts and domain types at the 
same linguistic modeling level. 

 Walter investigates such an integration with preliminary results in  [176, 174] .  

Modeling and Querying Patterns for MDE in  OWL.   In this book, we align 
constructs of UML class - based modeling and OWL modeling and allow the integra-
tion of UML class - based modeling and OWL modeling independently of the model-
ing level, i.e., at the metamodeling level (language bridge) or at the modeling level 
(model bridge)  [163] . 

 Nevertheless, some modeling approaches require a dedicated transformation of 
model constructs into OWL. For example, the transformation of business process 
models into OWL handles the mappings of tasks and gateways into OWL classes 
 [177] , whereas the transformation of feature models handles mappings of features and 
relationships between parent feature and its child features onto OWL classes  [130] . 

 Gr ö ner investigates patterns of modeling, querying, and reasoning for MDE 
in OWL in his ongoing research, with preliminary results in  [60, 59] .  

Linked Data in Software Engineering.   The advent of the semantic web has 
given a new perspective to aspects of software engineering like collaboration, rep-
resentation, and interoperability. For example, existing works present the impact of 
semantic web technologies like RDF(S) and SPARQL on programmer ’ s assistance 
 [79, 180] . 

 Semantic web technologies and Linked Data principles  [16]  are paving the 
way for the Web of Data, a global data space that relies on a stack of technologies 
like URIs, HTTP, and RDF to empower information retrieval. In this context, there 
is a need for investigation of the impact of applying Linked Data principles and 
techniques for mining, collecting, and analyzing software engineering data.  
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Scalability of Ontological Reasoning Technology.   The scalability of onto-
logical reasoning technology has matured over the last 10 years and current imple-
mentations point to the assumption that reasoners will scale to higher effi ciency by 
one or several orders of magnitude. Research on techniques for semantic transforma-
tions between OWL profi les  [132, 120]  is in place to benefi t from the most appropri-
ate and most effi cient technique at each given point in the software development 
process.           
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   A.1    EBNF  DEFINITION OF THE CONCRETE 
TEXTUAL SYNTAX FOR TWOUSE 

     LISTING A.1    EBNF Syntax for Concrete Syntax. 

1

digit = "0" |  "1" |  "2" |  "3" |  "4" |  "5" |  "6" |  "7" |  "8" |  "9" ; 

nonnulldigit = "1" |  "2" |  "3" |  "4" |  "5" |  "6" |  "7" |  "8" |  "9" ; 

integer = [  "-" ] nonnulldigit { digit }|  "0" ; 
5 nonnegativeinteger  = "0" | nonnulldigit { digit } ; 

name = ( letter |  "_" ) { letter | digit |  "_" } ; 
letter = "a" ..  "z" |  "A" ..  "Z" ; 

EPackage = { EAnnotation }  " package  " name [ EDataType ] [  "\"" EDataType 
"\"" ]  "{" { EClass }{EPackage }  "}" ; 

10EClass = [  "abstract" ](  "interface" |  "class" )[  "<" EClass { ","
EClass } ">" ] name [  "\"" name  "\"" ][  "extends" EClass { ","
EClass }] { classAnnotation } "{" { EClass | EOperation }  "}" ; 

EAttribute = { EAnnotation }{( "derived" |  "volatile" |  "unique"|
"ordered" |  "unsettable" |  "changeable" |  "transient" |  "iD" ) } 

"attribute " ( EClass | EGenericType ) name [  "=" "\"" name  "\"" ] 

[ "("integer".."integer")" ]  ";" ; 

EParameter = { EAnnotation }{(  " ordered  " |  " unique " ) } EClass name 
[ "(" integer  ".." integer  ")" ]; 

EReference =
{( "containment" |  "derived" |  "transient" |  "volatile" |  "unique"

| "ordered" |  "unsettable" |  "changeable" |  "resolveProxies" ) } 

15 { frontReferenceAnnotation } " reference  " ( EClass | EGenericType ) 

name [ "=" "\"" name  "\"" ][  "(" integer  ".." integer  ")" ] 

[ "opposite" EReference ] { endReferenceAnnotation }  ";" ; 

EOperation = { EAnnotation }{(  "ordered" |  "unique" ) }  " operation  "
( "void" | EClass ) [  "(" integer  ".." integer  ")" ][  "<"
ETypeParameter { "," ETypeParameter }  ">" ] name  "(" [ EParameter 
{"," EParameter }]  ")" [  "throws " EClass { "," EClass }]  ";" ; 

EEnum = { EAnnotation } [  " serializable  " ]  "enum"name"\"" name  "\""
"{" { EEnumLiteral }  "}" ; 

EEnumLiteral = { EAnnotation } EDataType  ":" name  "=" "\""

EEnumLiteral "\"" ";" ; 

EAnnotation = "(" {  "eAnnotations" ":" EAnnotation |  "source" ":"

"\"" name  "\"" |  "details" ":" "\"" name  "\"" "=" "\"" name 

"\"" |  "contents" ":" EObject |  "references" ":" EReference | 

"eModelElement" ":" EObject }  ")" ; 
(Continued )
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20 EObject = "EObject" ; 

EFactory = "EFactory ";

EStringToStringMapEntry = "cardinality" integer ; 

EDataType = { EAnnotation } [  "serializable" ]  " datatype " name  "\"" name 
"\"" ; 

ETypeParameter = { EAnnotation } name ; 
25 EGenericType = "typed" [  "<" ( ETypeParameter |  "?" "extends"

EGenericType | "?" "super" EGenericType )  ">" ] EClass [  "<"
( EGenericType | "?" ) { "," ( EGenericType |  "?" ) }  ">" ]; 

frontReferenceAnnotation = "(" (  "functional" |  "inversefunctional" | 

"symmetric" |  "asymmetric" |  "reflexive" |  "irreflexive" | 

"transitive ") ")" ; 

endReferenceAnnotation = "(" (  "equivalentTo" OPE |  "subPropertyOf"

OPE | " domain " CE |  "range" CE |  "disjointWith" OPE |  "inverseOf"

name | "subPropertyChain" OPE  "o" OPE { "o" OPE})  ")" ; 

classAnnotation = "(" ( 

30 ( "equivalentTo" |  "disjointWith" ) CE {CE}| 

"subClassOf" CE | 

"disjointUnionOf" CE CE {CE} 

) ")" ; 

35 CE = "(" ([  "not" ] name | 

"not" CE | 

CE "and " CE {  "and" CE }| 

CE "or" CE { "or" CE}| 

OPE ( "some" |  "only" ) CE | 

40 OPE "Self" | 

OPE ( "min" |  "max" |  "exactly" )  "cardinality"

nonnegativeinteger CE ) 

")" ; 

OPE = name |  "(" "inverse" name  ")" ; 

  A.2    EBNF  GRAMMAR OF SPARQLAS 
FUNCTIONAL SYNTAX 

    LISTING A.2      EBNF  Grammar of SPARQLAS Functional Syntax. 

1

cardinality = "a nonempty finite sequence of digits between 0 and 9 " ; 

lexical = "a nonempty finite sequence of alphanumeric characters 

enclosed in a pair of \ " (U +22) characters " ; 
variable = "a nonempty finite sequence of alphanumeric characters 

starting with either a ? (U +3F) character or a $ (U +24)
character " ; 

5 nodeID  = "a finite sequence of characters matching the 

BLANK _NODE_LABEL production of SPARQL " ; 

prefix = "a finite sequence of characters matching the PNAME _NS 

production of SPARQL " ; 

LISTING A.1 (Continued )
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LISTING A.2 (Continued)

fullIRI = "an IRI as defined in RFC3987 , enclosed in a pair of <
(U+3C) and > (U+3E) characters " ; 

abbreviatedIRI = "a finite sequence of characters matching the 

PNAME_LN production of SPARQL " ; 

10 IRI = fullIRI | abbreviatedIRI ; 

OntologyDocument = [ QueryIRI ] { Import }{ PrefixDefinition } 
Query ; 

QueryIRI = "IRI" "(" fullIRI  ")" ; 

Import = "Import" "(" fullIRI  ")" ; 

15 PrefixDefinition = "Namespace" "(" [ prefix ] "=" fullIRI  ")" ; 

Query = SelectQuery | ConstructQuery | AskQuery | DescribeQuery ; 

SelectQuery = "Select" [ variable { variable }|  "*" ]  "Where" "(" { 

Atom } ")" ; 

20 ConstructQuery = "Construct" "(" { ConstructAtom }  ")" "Where" "(" { 

WhereAtom } ")" ;  

AskQuery = "Ask" "Where" "(" { Atom }  ")" ; 

DescribeQuery = " Describe  " DescribeIRI |  "Describe" "Where" "(" { 

Atom } ")" ; 

ConstructAtom = Atom ; 
25 WhereAtom = Atom ; 
DescribeIRI = fullIRI ; 

ClassVariable = variable ; 
ObjectPropertyVariable = variable ; 

30 DataPropertyVariable = variable ; 
IndividualVariable = variable ; 
LiteralVariable = variable ; 

Class = IRI ; 
35 Datatype = IRI ; 
ObjectProperty = IRI ; 
DataProperty = IRI ; 
NamedIndividual = IRI ; 
ConstrainingFacet = IRI ; 

40 AnonymousIndividual = nodeID ; 
NamedLiteral = lexical  " " Datatype ; 

Atom = Assertion | ClassAtom | ObjectPropertyAtom | DataPropertyAtom 
| HasKey | Declaration ; 

45 Assertion = ClassAssertion | DirectType | ObjectPropertyAssertion | 
DataPropertyAssertion | NegativeObjectPropertyAssertion | 

NegativeDataPropertyAssertion | SameIndividual | 

DifferentIndividuals ; 

ClassAssertion = (  "ClassAssertion" |  "Type" )  "(" Individual 
ClassExpression ")" ; 

DirectType = "DirectType" "(" Individual ClassExpression  ")" ; 

(Continued )
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ObjectPropertyAssertion = (  " ObjectPropertyAssertion  " | 
"PropertyValue" )  "(" SourceIndividual ObjectPropertyExpression 

TargetIndividual ")" ; 

50 DataPropertyAssertion = (  "DataPropertyAssertion" |  "PropertyValue"
) "(" SourceIndividual DataPropertyExpression TargetValue  ")" ; 

NegativeObjectPropertyAssertion = ( 
" NegativeObjectPropertyAssertion  " |  "NegativePropertyValue" ) 

"(" SourceIndividual ObjectPropertyExpression TargetIndividual 

")" ; 

NegativeDataPropertyAssertion = (  "NegativeDataPropertyAssertion" | 
"NegativePropertyValue" )  "(" SourceIndividual 

DataPropertyExpression TargetValue ")" ; 

SameIndividual = (  "SameIndividual" |  "SameAs" )  "(" Individual 
Individual { Individual } ")" ; 

DifferentIndividuals = (  "DifferentIndividuals" |  "DifferentFrom" ) 
"(" Individual Individual { Individual }  ")" ; 

55 SourceIndividual = Individual ; 
TargetIndividual = Individual ; 
Individual = NamedIndividual | IndividualVariable | 

AnonymousIndividual ; 

TargetValue = Literal ; 
Literal = LiteralVariable | NamedLiteral ; 

60

ClassAtom = SubClassOf | DirectSubClassOf | StrictSubClassOf | 
EquivalentClasses | DisjointClasses | DisjointUnion ; 

SubClassOf = "SubClassOf" "(" SubClassExpression 

SuperClassExpression ")" ; 

DirectSubClassOf = "DirectSubClassOf" "(" SubClassExpression 

SuperClassExpression ")" ; 

65 StrictSubClassOf = "StrictSubClassOf" "(" SubClassExpression 

SuperClassExpression ")" ; 

EquivalentClasses = (  "EquivalentClasses" |  "EquivalentTo" )  "("
ClassExpression ClassExpression { ClassExpression } ")" ; 

DisjointClasses = (  "DisjointClasses" |  "DisjointWith" )  "("
ClassExpression ClassExpression { ClassExpression } ")" ; 

DisjointUnion = "DisjointUnion" "(" DisjointClass 

DisjointClassExpression DisjointClassExpression { 

DisjointClassExpression } ")" ; 

SubClassExpression = ClassExpression ; 
70 SuperClassExpression = ClassExpression ; 
DisjointClass = ClassVariable | Class ; 
DisjointClassExpression = ClassExpression ; 

ClassExpression = ClassVariable | Class | ObjectUnionOf | 
ObjectComplementOf | ObjectOneOf | ObjectIntersectionOf | 

ObjectAllValuesFrom | ObjectSomeValuesFrom | ObjectHasValue | 

ObjectMinCardinality | ObjectMaxCardinality | 

ObjectExactCardinality | DataAllValuesFrom | DataSomeValuesFrom 

| DataHasValue | DataMinCardinality | DataMaxCardinality | 

DataExactCardinality ; 

LISTING A.2 (Continued )
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75

ObjectUnionOf = (  "ObjectUnionOf" |  "Or" )  "(" ClassExpression 
ClassExpression { ClassExpression } ")" ; 

ObjectComplementOf = (  "ObjectComplementOf " |  "Not" )  "("

ClassExpression ")" ; 

ObjectOneOf = (  "ObjectOneOf" |  "One" )  "(" Individual { Individual 
} ")" ; 

ObjectIntersectionOf = (  " ObjectIntersectionOf  " |  "And " )  "("

ClassExpression ClassExpression { ClassExpression } ")" ; 

80 ObjectAllValuesFrom = (  "ObjectAllValuesFrom" |  " All " )  "("
ObjectPropertyExpression ClassExpression ")" ; 

ObjectSomeValuesFrom = (  "ObjectSomeValuesFrom" |  "Some" )  "("
ObjectPropertyExpression ClassExpression ")" ; 

ObjectHasValue = (  "ObjectHasValue" |  "Has" )  "("
ObjectPropertyExpression Individual ")" ; 

ObjectMinCardinality = (  "ObjectMinCardinality" |  "Min " )  "("

cardinality ObjectPropertyExpression [ ClassExpression ] ")" ; 

ObjectMaxCardinality = (  "ObjectMaxCardinality" |  "Max " )  "("

cardinality ObjectPropertyExpression [ ClassExpression ] ")" ; 

85 ObjectExactCardinality = (  "ObjectExactCardinality" |  " Exact  " )  "("
cardinality ObjectPropertyExpression [ ClassExpression ] ")" ; 

DataAllValuesFrom = (  " DataAllValuesFrom  " |  "All" )  "("
DataPropertyExpression DataRange ")" ; 

DataSomeValuesFrom = (  "DataSomeValuesFrom" |  "Some" )  "("
DataPropertyExpression DataRange ")" ; 

DataHasValue = (  "DataHasValue" |  "Has" )  "(" DataPropertyExpression 
Literal ")" ; 

DataMinCardinality = (  "DataMinCardinality" |  "Min" )  "("
cardinality DataPropertyExpression [ DataRange ] ")" ; 

90 DataMaxCardinality  = (  "DataMaxCardinality" |  "Max" )  "("
cardinality DataPropertyExpression [ DataRange ] ")" ; 

DataExactCardinality = (  "DataExactCardinality" |  " Exact " )  "("
cardinality DataPropertyExpression [ DataRange ] ")" ; 

DataRange = Datatype | DataUnionOf | DataComplementOf | DataOneOf | 
DataIntersectionOf | DatatypeRestriction ; 

95 DataUnionOf  = (  "DataUnionOf " |  "Or" )  "(" DataRange DataRange { 

DataRange } ")" ; 

DataComplementOf = (  " DataComplementOf " |  "Not " )  "(" DataRange  ")" ; 

DataOneOf = (  " DataOneOf  " |  "One" )  "(" Literal { Literal }  ")" ; 
DataIntersectionOf = (  "DataIntersectionOf" |  "And" )  "(" DataRange 

DataRange { DataRange } ")" ; 

DatatypeRestriction = "DatatypeRestriction" "(" Datatype 

FacetRestriction { FacetRestriction } ")" ; 

100FacetRestriction = ConstrainingFacet Literal; 

ObjectPropertyAtom = SubObjectPropertyOf | 
EquivalentObjectProperties | DisjointObjectProperties | 

ObjectPropertyDomain | ObjectPropertyRange | 

InverseObjectPropertyAtom | FunctionalObjectProperty | 

(Continued )

LISTING A.2 (Continued)
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InverseFunctionalObjectProperty | ReflexiveObjectProperty | 

IrreflexiveObjectProperty | SymmetricObjectProperty | 

AsymmetricObjectProperty | TransitiveObjectProperty ; 

SubObjectPropertyOf = (  "SubObjectPropertyOf" |  "SubPropertyOf" ) 
"(" SubObjectPropertyExpression SuperObjectPropertyExpression 

")" ; 

105 EquivalentObjectProperties = (  "EquivalentObjectProperties " | 

"EquivalentProperty" )  "(" ObjectPropertyExpression 

ObjectPropertyExpression { ObjectPropertyExpression } ")" ; 

DisjointObjectProperties = (  "DisjointObjectProperties" | 
"DisjointProperty" )  "(" ObjectPropertyExpression 

ObjectPropertyExpression { ObjectPropertyExpression } ")" ; 

ObjectPropertyDomain = (  "ObjectPropertyDomain" |  "Domain" )  "("
ObjectPropertyExpression ClassExpression ")" ; 

ObjectPropertyRange = (  "ObjectPropertyRange" |  "Range" )  "("
ObjectPropertyExpression ClassExpression ")" ; 

InverseObjectPropertyAtom = ( "InverseObjectProperties" | 
"InverseOf" )  "(" ObjectPropertyExpression 

ObjectPropertyExpression ")" ; 

110 FunctionalObjectProperty = "FunctionalObjectProperty" "("

ObjectPropertyExpression ")" ; 

InverseFunctionalObjectProperty = ( 
"InverseFunctionalObjectProperty" |  "InverseFunctional" )  "("

ObjectPropertyExpression ")" ; 

ReflexiveObjectProperty = (  "ReflexiveObjectProperty" |  "Reflexive"
) "(" ObjectPropertyExpression  ")" ; 

IrreflexiveObjectProperty = (  "IrreflexiveObjectProperty" | 
"Irreflexive" )  "(" ObjectPropertyExpression  ")" ; 

SymmetricObjectProperty = (  "SymmetricObjectProperty" |  "Symmetric"
) "(" ObjectPropertyExpression  ")" ; 

115 AsymmetricObjectProperty  = (  "AsymmetricObjectProperty" | 
"Asymmetric" )  "(" ObjectPropertyExpression  ")" ; 

TransitiveObjectProperty = (  " TransitiveObjectProperty  " | 
" Transitive  " )  "(" ObjectPropertyExpression  ")" ; 

SubObjectPropertyExpression = ObjectPropertyExpression | 
ObjectPropertyChain ; 

SuperObjectPropertyExpression = ObjectPropertyExpression ; 
ObjectPropertyChain = (  "ObjectPropertyChain " |  "Chain" )  "("

ObjectPropertyExpression ObjectPropertyExpression { 

ObjectPropertyExpression } ")" ; 

120

ObjectPropertyExpression = ObjectPropertyVariable | ObjectProperty | 
InverseObjectProperty ; 

InverseObjectProperty = (  "ObjectInverseOf" |  "InverseOf" )  "("
ObjectPropertyExpression ")" ; 

125 DataPropertyAtom = SubDataPropertyOf | EquivalentDataProperties | 
DisjointDataProperties | DataPropertyDomain | DataPropertyRange 

| FunctionalDataProperty ; 

LISTING A.2 (Continued )
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SubDataPropertyOf = (  "SubDataPropertyOf" |  "SubPropertyOf" )  "("
SubDataPropertyExpression SuperDataPropertyExpression ")" ; 

EquivalentDataProperties = (  "EquivalentDataProperties" | 
"EquivalentProperty" )  "(" DataPropertyExpression 

DataPropertyExpression { DataPropertyExpression } ")" ; 

DisjointDataProperties = (  "DisjointDataProperties" | 
" DisjointProperty  " )  "(" DataPropertyExpression 

DataPropertyExpression { DataPropertyExpression } ")" ; 

130 DataPropertyDomain = (  "DataPropertyDomain" |  "Domain " )  "("

DataPropertyExpression ClassExpression ")" ; 

DataPropertyRange = (  "DataPropertyRange" |  "Range" )  "("
DataPropertyExpression DataRange ")" ; 

FunctionalDataProperty = "FunctionalDataProperty" "("

DataPropertyExpression ")" ; 

SubDataPropertyExpression = DataPropertyExpression ; 
SuperDataPropertyExpression = DataPropertyExpression ; 

135

DataPropertyExpression = DataPropertyVariable | DataProperty ; 

HasKey = "HasKey" "(" ClassExpression  "(" { ObjectPropertyExpression 

} ")" "(" { DataPropertyExpression }  ")" ")" ; 

140 Declaration = ObjectPropertyDeclaration | DataPropertyDeclaration | 
NamedIndividualDeclaration | ClassDeclaration ; 

ObjectPropertyDeclaration = "ObjectProperty" "(" ObjectProperty | 

ObjectPropertyVariable ")" ; 

DataPropertyDeclaration = "DataProperty" "(" DataProperty | 

DataPropertyVariable ")" ; 

NamedIndividualDeclaration = "NamedIndividual" "(" NamedIndividual | 

IndividualVariable ")" ; 

145 ClassDeclaration  = "Class" "(" Class | ClassVariable  ")" ; 

  A.3    EBNF  GRAMMAR OF SPARQLAS 
MANCHESTER SYNTAX 

     LISTING A.3     EBNF  Grammar of  SPARQLAS  Manchester Syntax. 

1

cardinality = "a nonempty finite sequence of digits between 0 and 9 " ; 

lexical = "a nonempty finite sequence of alphanumeric characters 

enclosed in a pair of \ " (U +22) characters " ; 
variable = "a nonempty finite sequence of alphanumeric characters 

starting with either a ? (U +3F) character or a $ (U +24)
character " ; 

5 nodeID  = "a finite sequence of characters matching the 

BLANK _NODE_LABEL production of SPARQL " ; 

prefix = "a finite sequence of characters matching the PNAME _NS 

production of SPARQL " ; 

fullIRI = "an IRI as defined in RFC3987 , enclosed in a pair of <
(U+3C) and > (U+3E) characters " ; 

LISTING A.2 (Continued)

(Continued )
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abbreviatedIRI = "a finite sequence of characters matching the 

PNAME_LN production of SPARQL " ; 

10 IRI = fullIRI | abbreviatedIRI ; 

OntologyDocument = [ QueryIRI ] { Import }{ PrefixDefinition } 
Query ; 

QueryIRI = "IRI" "(" fullIRI  ")" ; 

Import = "Import : " fullIRI ; 

15 PrefixDefinition = "Namespace:" [ prefix ] fullIRI ; 

Query = SelectQuery | ConstructQuery | AskQuery | DescribeQuery ; 
SelectQuery = " Select  " [ variable { variable }|  "*" ]  "Where:" { 

Atom } ; 

20 ConstructQuery = "Construct:" { ConstructAtom }  "Where:" { WhereAtom 

};

AskQuery = "Ask" "Where:" { Atom }; 

DescribeQuery = " Describe " DescribeIRI |  "Describe" "Where:" { Atom 

};

ConstructAtom = Atom; 
25 WhereAtom = Atom ; 
DescribeIRI = fullIRI ; 

ClassVariable = variable ; 
ObjectPropertyVariable = variable ; 

30 DataPropertyVariable = variable ; 
IndividualVariable = variable ; 
LiteralVariable = variable ; 

Class = IRI ; 
35 Datatype = IRI ; 
ObjectProperty = IRI ; 
DataProperty = IRI ; 
NamedIndividual = IRI ; 
ConstrainingFacet = IRI ; 

40 AnonymousIndividual = nodeID ; 
NamedLiteral = lexical  " " Datatype ; 

Atom = Assertion | ClassAtom | ObjectPropertyAtom | DataPropertyAtom 
| HasKey | Declaration ; 

45 Assertion = ClassAssertion | DirectType | ObjectPropertyAssertion | 
DataPropertyAssertion | NegativeObjectPropertyAssertion | 

NegativeDataPropertyAssertion | SameIndividual | 

DifferentIndividuals ; 

ClassAssertion = Individual  "type" ClassExpression ; 
DirectType = Individual  " directType  " ClassExpression ; 
ObjectPropertyAssertion = SourceIndividual ObjectPropertyExpression 

TargetIndividual ; 

LISTING A.3 (Continued )
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50 DataPropertyAssertion = SourceIndividual DataPropertyExpression 
TargetValue ; 

NegativeObjectPropertyAssertion = SourceIndividual  "not"
ObjectPropertyExpression TargetIndividual ; 

NegativeDataPropertyAssertion = SourceIndividual  "not"
DataPropertyExpression TargetValue ; 

SameIndividual = Individual  "sameAs" Individual |  "SameIndividuals"
"(" Individual Individual { Individual }  ")" ; 

DifferentIndividuals = Individual  "differentFrom" Individual | 
"DifferentIndividuals" "(" Individual Individual { Individual } 

")" ; 

55 SourceIndividual = Individual ; 
TargetIndividual = Individual ; 
Individual = NamedIndividual | IndividualVariable | 

AnonymousIndividual ; 

TargetValue = Literal ; 
Literal = LiteralVariable | NamedLiteral ; 

60

ClassAtom = SubClassOf | DirectSubClassOf | StrictSubClassOf | 
EquivalentClasses | DisjointClasses | DisjointUnion ; 

SubClassOf = SubClassExpression  " subClassOf  " SuperClassExpression ; 
DirectSubClassOf = SubClassExpression  " directSubClassOf  "

SuperClassExpression ; 

65 StrictSubClassOf = SubClassExpression  "strictSubClassOf"
SuperClassExpression ; 

EquivalentClasses = "EquivalentClasses:" ClassExpression  ","

ClassExpression { "," ClassExpression }| ClassExpression 

" equivalentClasses  " ClassExpression {  "," ClassExpression }| 

ClassExpression " equivalentTo  " ClassExpression {  ","

ClassExpression }; 

DisjointClasses = " DisjointClasses : " ClassExpression  ","

ClassExpression { "," ClassExpression }| ClassExpression 

" disjointClasses  " ClassExpression {  "," ClassExpression }| 

ClassExpression " disjointWith  " ClassExpression {  ","

ClassExpression }; 

DisjointUnion = DisjointClass  " DisjointUnionOf : "
DisjointClassExpression DisjointClassExpression { 

DisjointClassExpression } ; 

SubClassExpression = ClassExpression ; 
70 SuperClassExpression = ClassExpression ; 
DisjointClass = ClassVariable | Class ; 
DisjointClassExpression = ClassExpression ;

ClassExpression = ClassVariable | Class | ObjectUnionOf | 
ObjectComplementOf | ObjectOneOf | ObjectIntersectionOf | 

ObjectAllValuesFrom | ObjectSomeValuesFrom | ObjectHasValue | 

ObjectMinCardinality | ObjectMaxCardinality | 

ObjectExactCardinality | DataAllValuesFrom | DataSomeValuesFrom 

| DataHasValue | DataMinCardinality | DataMaxCardinality | 

DataExactCardinality ; 

LISTING A.3 (Continued)
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75

ObjectUnionOf = "(" ClassExpression  "or" ClassExpression {  "or"

ClassExpression } ")" ; 

ObjectComplementOf = " not " ClassExpression ; 

ObjectOneOf = "{" Individual {  "," Individual }  "}" ; 

ObjectIntersectionOf = "(" ClassExpression  "and " ClassExpression { 

" and " ClassExpression }  ")" ; 

80 ObjectAllValuesFrom = ObjectPropertyExpression  "only"
ClassExpression | "(" ObjectPropertyExpression  "only"

ClassExpression ")" ; 

ObjectSomeValuesFrom = ObjectPropertyExpression  "some"
ClassExpression | "(" ObjectPropertyExpression  "some"

ClassExpression ")" ; 

ObjectHasValue = ObjectPropertyExpression  "value" Individual |  "("
ObjectPropertyExpression "vaule " Individual  ")" ; 

ObjectMinCardinality = ObjectPropertyExpression  "min" cardinality [ 
ClassExpression ] | "(" ObjectPropertyExpression  "min"

cardinality [ ClassExpression ] ")" ; 

ObjectMaxCardinality = ObjectPropertyExpression  "max" cardinality [ 
ClassExpression ] | "(" ObjectPropertyExpression  "max"

cardinality [ ClassExpression ] ")" ; 

85 ObjectExactCardinality  = ObjectPropertyExpression  "exactly "

cardinality [ ClassExpression ] | "(" ObjectPropertyExpression 

" exactly  " cardinality [ ClassExpression ]  ")" ; 

DataAllValuesFrom = DataPropertyExpression  "only" DataRange |  "("
DataPropertyExpression "only" DataRange  ")" ; 

DataSomeValuesFrom = DataPropertyExpression  " some  " DataRange |  "("
DataPropertyExpression "some" DataRange  ")" ; 

DataHasValue = DataPropertyExpression  " value  " Literal |  "("
DataPropertyExpression "value " Literal  ")" ; 

DataMinCardinality = cardinality  "min " DataPropertyExpression [ 

DataRange ] | "(" cardinality  "min" DataPropertyExpression [ 

DataRange ] ")" ; 

90 DataMaxCardinality = cardinality  "max" DataPropertyExpression [ 
DataRange ] | "(" cardinality  "max" DataPropertyExpression [ 

DataRange ] ")" ; 

DataExactCardinality = cardinality  "exactly" DataPropertyExpression 
[ DataRange ] | "(" cardinality  "exactly" DataPropertyExpression 

[ DataRange ] ")" ; 

DataRange = Datatype | DataUnionOf | DataComplementOf | DataOneOf | 
DataIntersectionOf | DatatypeRestriction ; 

95 DataUnionOf  = "(" DataRange  "or" DataRange {  "or" DataRange }  ")" ; 

DataComplementOf = " DataComplementOf  " DataRange |  "not" DataRange ; 

DataOneOf = "{" Literal { Literal }  "}" ; 

DataIntersectionOf = "(" DataRange  "and" DataRange {  "and " DataRange 

} ")" ; 

DatatypeRestriction = Datatype  "[" FacetRestriction { 
FacetRestriction } "]" ; 

100 FacetRestriction = ConstrainingFacet Literal; 

LISTING A.3 (Continued )
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ObjectPropertyAtom = SubObjectPropertyOf | 
EquivalentObjectProperties | DisjointObjectProperties | 

ObjectPropertyDomain | ObjectPropertyRange | 

InverseObjectPropertyAtom | FunctionalObjectProperty | 

InverseFunctionalObjectProperty | ReflexiveObjectProperty | 

IrreflexiveObjectProperty | SymmetricObjectProperty | 

AsymmetricObjectProperty | TransitiveObjectProperty ; 

SubObjectPropertyOf = SubObjectPropertyExpression ( 
" subObjectPropertyOf  " |  " subPropertyOf  " ) 

SuperObjectPropertyExpression ; 

105 EquivalentObjectProperties = (  "EquivalentObjectProperties:" | 
"EquivalentProperties:" ) ObjectPropertyExpression  ","

ObjectPropertyExpression { "," ObjectPropertyExpression }| 

ObjectPropertyExpression ( "equivalentObjectProperties "|

"equivalentTo" ) ObjectPropertyExpression {  ","

ObjectPropertyExpression } ; 

DisjointObjectProperties = (  "DisjointObjectProperties:" | 
"DisjointProperties:" ) ObjectPropertyExpression  ","

ObjectPropertyExpression { "," ObjectPropertyExpression }| 

ObjectPropertyExpression ( "disjointObjectProperties" | 

"disjointWith" ) ObjectPropertyExpression {  ","

ObjectPropertyExpression } ; 

ObjectPropertyDomain = ObjectPropertyExpression ( 
"objectPropertyDomain" |  "domain" ) ClassExpression ; 

ObjectPropertyRange = ObjectPropertyExpression ( 
"objectPropertyRange" |  "range" ) ClassExpression ; 

InverseObjectPropertyAtom = ObjectPropertyExpression ( 
"inverseObjectProperties" |  "inverseOf" ) 

ObjectPropertyExpression ; 

110 FunctionalObjectProperty  = (  "FunctionalObjectProperty" | 
"Functional" ) ObjectPropertyExpression ; 

InverseFunctionalObjectProperty = ( 
"InverseFunctionalObjectProperty" |  "InverseFunctional" ) 

ObjectPropertyExpression ; 

ReflexiveObjectProperty = (  "ReflexiveObjectProperty" |  "Reflexive"
) ObjectPropertyExpression ; 

IrreflexiveObjectProperty = (  "IrreflexiveObjectProperty" | 
" Irreflexive " ) ObjectPropertyExpression ; 

SymmetricObjectProperty = (  " SymmetricObjectProperty  " |  "Symmetric"
) ObjectPropertyExpression ; 

115AsymmetricObjectProperty = (  "AsymmetricObjectProperty" | 
"Asymmetric" ) ObjectPropertyExpression ; 

TransitiveObjectProperty = (  "TransitiveObjectProperty" | 
"Transitive" ) ObjectPropertyExpression ; 

SubObjectPropertyExpression = ObjectPropertyExpression | 
ObjectPropertyChain ; 

SuperObjectPropertyExpression = ObjectPropertyExpression ; 
ObjectPropertyChain = "SubPropertyChain:" ObjectPropertyExpression 

"o" ObjectPropertyExpression {  "o" ObjectPropertyExpression } ; 

LISTING A.3 (Continued)
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120

ObjectPropertyExpression = ObjectPropertyVariable | ObjectProperty | 
InverseObjectProperty ; 

InverseObjectProperty = (  " ObjectInverseOf  " |  " inverseOf  " ) 
ObjectPropertyExpression ; 

125 DataPropertyAtom = SubDataPropertyOf | EquivalentDataProperties | 
DisjointDataProperties | DataPropertyDomain | DataPropertyRange 

| FunctionalDataProperty ; 

SubDataPropertyOf = SubDataPropertyExpression (  "subDataPropertyOf"
| "subPropertyOf" ) SuperDataPropertyExpression ; 

EquivalentDataProperties = (  "EquivalentDataProperties:" | 
"EquivalentProperties:" ) ObjectPropertyExpression  ","

ObjectPropertyExpression { "," ObjectPropertyExpression }| 

ObjectPropertyExpression ( "equivalentDataProperties" | 

"equivalentTo" ) ObjectPropertyExpression {  ","

ObjectPropertyExpression } ; 

DisjointDataProperties = (  "DisjointDataProperties:" | 
"DisjointProperties:" ) ObjectPropertyExpression  ","

ObjectPropertyExpression { "," ObjectPropertyExpression }| 

ObjectPropertyExpression ( " disjointDataProperties  " | 

" disjointWith  " ) ObjectPropertyExpression {  ","

ObjectPropertyExpression } ; 

130 DataPropertyDomain = DataPropertyExpression (  " dataPropertyDomain  " | 
"domain" ) ClassExpression ; 

DataPropertyRange = DataPropertyExpression (  " dataPropertyRange : " | 
"range" ) DataRange ; 

FunctionalDataProperty = (  "FunctionalDataProperty" |  "Functional" ) 
DataPropertyExpression ; 

SubDataPropertyExpression = DataPropertyExpression ; 
SuperDataPropertyExpression = DataPropertyExpression ; 

135

DataPropertyExpression = DataPropertyVariable | DataProperty ; 

HasKey = "HasKey" "(" ClassExpression  "(" { ObjectPropertyExpression 

} ")" "(" { DataPropertyExpression }  ")" ")" ; 

140 Declaration = ObjectPropertyDeclaration | DataPropertyDeclaration | 
NamedIndividualDeclaration | ClassDeclaration ; 

ObjectPropertyDeclaration = "ObjectProperty:" "(" ObjectProperty | 

ObjectPropertyVariable ")" ; 

DataPropertyDeclaration = "DataProperty:" "(" DataProperty | 

DataPropertyVariable ")" ; 

NamedIndividualDeclaration = "NamedIndividual:" "(" NamedIndividual 

| IndividualVariable ")" ; 

145 ClassDeclaration = "Class:" "(" Class | ClassVariable  ")" ;

  A.4   SPARQLAS METAMODEL 

 See Figure  A.1 .    

LISTING A.3 (Continued )
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  A.5   ECORE TO  OWL : TRANSLATION RULES 

 In this section, we describe the transformation rule for generating OWL ontologies 
based on the Ecore metamodel. 

OWL::ClassDeclaration(?x) ← Ecore::EClass(?x) 

OWL::Class(?x) ← Ecore::EClass(?x) 

iri(?x,?y) ← name(?x,?y) 

OWL::SubClassOf(?x,?y) ← Ecore::EClass(?x)   Ecore::EClass(?y)  

superClass(?x,?y)

OWL::Class(?x) ← Ecore::EClass(?x) 

OWL::Class(?y) ← Ecore::EClass(?y) 

iri(?x,?z1) ← name(?x,?z1) 

iri(?y,?z2) ← name(?y,?z2) 

OWL::DataPropertyDeclaration(?y) ← Ecore::EClass(?x)  

Ecore::EAttribute(?y)

 Ecore::EPrimitiveType(?z)   eAttributes(?x,?y)  

eAttributeType(?y,?z)

OWL::DataProperty(?y) ← Ecore::EAttribute(?y) 

iri(?y,?z) ← name(?y,?z) 

OWL::ObjectPropertyDeclaration(?y) ← Ecore::EClass(?x) 

 Ecore::EAttribute(?y)   Ecore::EEnum(?z)   eAttributes(?x,?y)  

eAttributeType(?y,?z)

OWL::ObjectProperty(?y) ← Ecore::EAttribute(?y) 

iri(?y,?z) ← name(?y,?z) 

OWL::ObjectPropertyDeclaration(?y) ← Ecore::EClass(?x)  

Ecore::EReference(?y)

 Ecore::EClass(?z)   eReferences(?x,?y)   eReferenceType(?y,?z) 

OWL::ObjectProperty(?y) ← Ecore::EReference(?y) 

iri(?y,?z) ← name(?y,?z) 

OWL::EquivalentClasses(?v) ← Ecore::EEnum(?v) 

OWL::Class(?w) ← Ecore::EEnum(?v) 

iri(?w,?x) ← name(?v,?x) 

equivalentClass(?v,?w) ←.

OWL::ObjectOneOf(?y) ← Ecore::EEnum(?v) 

OWL::NamedIndividual(?z) ← Ecore::EEnumLiteral(?z) 

oneOfIndividual(?y,?z) ← eLiterals(?v,?z) 

equivalentClass(?v,?y) ←.
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OWL::ClassAssertion(?x,?y) ← Ecore::EClass(?x)  

Ecore::EObject(?y)  eClass(?y,?x) 

OWL::Class(?x) ← Ecore::EClass(?x) 

iri(?x,?z1) ← name(?x,?z1) 

OWL::NamedIndividual(?y) ← Ecore::EObject(?y) 

iri(?y,?z2) ← name(?y,?z2) 

OWL::ObjectPropertyAssertion(?x,?y,?z) ← Ecore::EObject(?s) 

 Ecore::EObject(?o)   Ecore::EReference(?r)   eGet(?r, ?s,?o) 

OWL:ObjectProperty(?r) ← Ecore::EReference(?r) 

iri(?r,?n1) ← name(?r,?n1) 

OWL::NamedIndividual(?s) ← Ecore::EObject(?s) 

iri(?s,?n2) ← name(?s,?n2) 

OWL::NamedIndividual(?o) ← Ecore::EObject(?o) 

iri(?o,?n3) ← name(?o,?n3) 

OWL::DataPropertyAssertion(?x,?y,?z) ← Ecore::EObject(?s) 

 Ecore::Literal(?l)   Ecore::EAttribute(?r)   eGet(?a, ?s,?l) 

OWL:ObjectProperty(?r) ← Ecore::EAttribute(?a) 

iri(?a,?n1) ← name(?r,?n1) 

OWL::NamedIndividual(?s) ← Ecore::EObject(?s) 

iri(?s,?n2) ← name(?s,?n2) 

OWL::Literal(?l) ← Ecore::Literal(?l) 



 APPENDIX B     

   B.1   USE CASES 

 In the following subsections we describe the use cases of the TwoUse approach. 
After describing the use cases, we map these use cases onto the requirements in the 
traceability matrix presented in Section  B.2 . 

  B.1.1   Design Integrated Models 

Brief Description :      This use case covers the creation and visualization of 
OWL constructs with UML class - based modeling.  

Preconditions :      None.  

Postconditions :      An OWL ontology is generated.  

Basic Flow:

1.     Software engineer  Design Integrated models .  

2.     Software engineer saves integrated model.  

3.     System transforms TwoUse model into OWL.  

4.     Use case terminates.    

Sub fl ow :      Abstract  Design Integrated models .     

  B.1.2   Design Integrated  UML  Class Diagram 

Brief Description :      This use case covers the creation and visualization of 
hybrid models using UML as concrete syntax.  

Sub fl ow :    Design Integrated models

1.     Software engineer creates a new UML class diagram.  

2.     Software engineer use stereotypes of the UML profi le for OWL to anno-
tate UML elements.  

3.     System transforms the hybrid class diagram into a TwoUse model.    

Alternate Flows:

1.     Software engineer imports existing UML class diagram.       

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
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  B.1.3   Design Integrated Ecore Model 

Brief Description :      This use case covers the creation and visualization of 
Ecore models using the textual syntax.  

Sub fl ow :    Design Integrated models

1.     Software engineer creates a new Ecore model.  

2.     Software engineer creates annotations with OWL axioms to Ecore 
elements.

3.     System transforms Ecore model with annotations for OWL into a 
TwoUse model.    

Alternate Flows:

1.     Software engineer imports existing Ecore model.       

  B.1.4   Specify  SPARQLAS4T  wo  U  se  Query Operations 

Brief Description :      This use case covers the specifi cation of query operations 
for classes using SPARQLAS4TwoUse for usage of ontology services in 
UML class - based modeling.  

Preconditions :      Integrated model exists.  

Postconditions :      None.  

Basic Flow:

1.     Software engineer creates query operations at classes.  

2.     Software engineer specifi es the body of query operations using 
SPARQLAS4TwoUse.  

3.     System transforms the hybrid class diagram into a TwoUse model.  

4.     System generates an OWL ontology from the TwoUse model.  

5.     System generates a SPARQL query from the SPARQLAS4TwoUse query.  

6.     Use case terminates.    

Alternate Flows :      None.     

  B.1.5   Transform to  OWL  

Brief Description :      This use case covers the transformation of Ecore - based 
modeling languages. It consists of transforming model and metamodel into 
individuals and classes in an OWL ontology for usage of ontology services 
in UML class - based modeling.  

Preconditions :      A model and its metamodel designed using Ecore technolo-
gies exist.  

Postconditions :      An OWL ontology is generated including elements of the 
model as individuals and property assertions and the elements of the 
metamodel as classes and properties.  
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Basic Flows:

1.     Software engineer selects a model for transformation.  

2.     System creates an OWL ontology.  

3.     System reads selected model ’ s metamodel and transform it into OWL 
classes and properties.  

4.     System reads selected model and transforms it into OWL individuals, 
class assertions, and property assertions.  

5.     Use case terminates.    

Alternate Flows :      None.     

  B.1.6   Compute Alignments 

Brief Description :      This use case covers the computation of alignments 
between two UML class - based models. It consists of transforming models 
into OWL and applying matching techniques to identify similarities between 
two models.  

Preconditions :      Two models exist.  

Postconditions :      Results of alignments are displayed.  

Basic Flows:

1.     Software engineer selects two UML class - based models for comparison.  

2.     System reads the two corresponding OWL ontologies.  

3.     System computes the alignment between these ontologies.  

4.     System displays the result.  

5.     Use case terminates.    

Alternate Flows :      None.     

  B.1.7   Browse 

Brief Description :      This covers the usage of queries and fi lters for extrating 
data.

Preconditions :      UML class - based modeling exists.  

Postconditions :      Results are presented.  

Basic Flows:

1.     Engineer creates new SPARQLAS query.  

2.     Engineer saves SPARQLAS query.  

3.     Engineer executes SPARQLAS query.  

4.     Engineer  Select Model .  

5.     System transforms UML class - based model into OWL.  

6.     System transforms SPARQLAS query into SPARQL query.  

7.     System uses reasoning systems to classify and realize the ontology and 
to execute the SPARQL query.  
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8.     System shows query results.  

9.     Use case terminates.    

Alternate Flows :      Engineer visualizes inferred class hierarchy. 

1.     System shows the inferred class hierarchy.       

  B.1.8   Explain Axioms 

Brief Description :      This covers the usage of explanation services.  

Preconditions :      OWL exists.  

Postconditions :      None.  

Basic Flows:

1.     Engineer selects axioms for explanation.  

2.     System generates an explanation for the selected axioms.  

3.     Use case terminates.    

Alternate Flows :      None.  

Sub fl ow :      Abstract  Select Model .     

  B.1.9   Query  UML  Class - Based Models 

Brief Description :      This covers the usage of queries over UML class - based 
modeling.

Sub fl ow :    Select Model

1.     Software Engineer selects UML class - based model.  

2.     System transforms UML class - based model into OWL.       

  B.1.10   Query  OWL  Ontologies 

Brief Description :      It extends use case Query.  

Sub fl ow :    Select Model

1.     Software Engineer selects OWL ontology.       

  B.1.11   Design Ontology Engineering Services 

Brief Description :      This involves the specifi cation of Ontology Engineering 
Service.

Preconditions :      OWL ontology exists.  

Postconditions :      None.  

Basic Flows:

1.     Ontology Engineer  Design Services .  

2.     System  Generate Service .  

3.     Use case terminates.    
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Alternate Flows :      None.  

Extension Point :    Generate Service .  

Sub fl ow :      Abstract  Design Services .     

  B.1.12   Design Ontology  API  

Brief Description :      This involves the specifi cation of OWL ontology API.  

Sub fl ow :    Design Services . 

1.     Ontology engineer creates OWL ontology API specifi cation.  

2.     Ontology engineer specifi es API using a domain - specifi c textual language. 

3.     Ontology engineer saves OWL Ontology API specifi cation.    

Alternate Flows :      None.  

Preconditions :      OWL ontology exists.  

Postconditions :      None.     

  B.1.13   Design Ontology Translation 

Brief Description :      This outlines the design of OWL ontology dataset 
translations.

Sub fl ow :    Design Services . 

1.     Ontology engineer creates OWL ontology dataset translation 
specifi cation.  

2.     Ontology engineer specifi es OWL ontology dataset translation using a 
domain - specifi c textual language.  

3.     Ontology engineer saves OWL ontology dataset translation 
specifi cation.    

Alternate Flows :      None.  

Preconditions :      Source OWL ontology and Target OWL ontology exist.  

Postconditions :      None.     

  B.1.14   Design Ontology Template 

Brief Description :      This covers the usage of templates in OWL ontologies.  

Sub fl ow :    Design Services . 

1.     Ontology engineer imports domain ontology.  

2.     Ontology engineer specifi es ontology templates.  

3.     Ontology engineer binds templates to domain ontology.    

Alternate Flows

1.     Ontology engineer uses UML class diagrams for creating templates.  

2.     Ontology engineer uses the OWL 2 graphical notation for creating 
templates.    
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Preconditions :      Domain ontology exists.  

Postconditions :      OWL ontology generated.     

  B.1.15   Generate Service 

Brief Description :      This covers the transformation of specifi cation into plat-
form specifi c artifacts.  

Extension Flows :    Generate Service . 

1.     System generates platform specifi c artifacts for the ontology engineering 
service.

  B.2   CONNECTING USE CASES WITH REQUIREMENTS 

 Having described the use cases in Section  B.1 , we have mapped them onto the 
requirements presented in Section  5.2  in Table  B.1   , which depicts a traceability 
matrix and correlates the requirements with the use cases.      

  TABLE B.1    Mapping Use Cases and Requirements. 

   Requirements Use Cases     OWL 
Constructs

in UML 
class - based 
modeling
(5.2.1.1)

   Ontology 
services in 

UML 
class- based 
modeling
(5.2.1.2)

   MDE 
support for 
ontology
modeling
(5.2.2.1)

   Domain 
modeling for 

ontology
engineering

Services
(5.2.2.2)

  Design integrated models ( B.1.1 )    X              

  Design integrated UML class diagram 
( B.1.2 )

  X              

  Design integrated Ecore model ( B.1.3 )    X              

  Specify SPARQLAS4TwoUse query 
operations ( B.1.4 )  

      X          

  Transform to OWL ( B.1.5 )        X          

  Compute alignments ( B.1.6 )        X          

  Browse ( B.1.7 )        X    X    X  

  Query UML class - based models ( B.1.9 )        X          

  Query OWL ontologies ( B.1.10 )            X    X  

  Explain axioms ( B.1.8 )        X          

  Design ontology engineering services 
( B.1.11 )  

          X    X  

  Design ontology API ( B.1.12 )                X  

  Design ontology translation ( B.1.13 )                X  

  Design ontology template ( B.1.14 )            X      

  Generate service ( B.1.15 )            X      



 REFERENCES     

   1.       Dean   Allemang   and   James   Hendler  .  Semantic Web for the Working Ontologist: 
Effective Modeling in RDFS and OWL .  Morgan Kaufmann Publishers Inc. ,  San 
Francisco, CA, USA ,  2008 .  

   2.       J ü rgen   Angele   and   Georg   Lausen  .  Ontologies in F - logic . In  Handbook on Ontologies , 
International Handbooks on Information Systems, pages  29  –  50 .  Springer ,  2004 .  

   3.       Giuliano   Antoniol  ,   Massimiliano   Di   Penta  ,   Harald   Gall  , and   Martin   Pinzger  .  Towards 
the Integration of Versioning Systems, Bug Reports and Source Code Meta - Models . 
Electr. Notes Theor. Comput. Sci. ,  127 ( 3 ): 87  –  99 ,  2005 .  

   4.       Grigoris   Antoniou   and   Frank   van   Harmelen  .  A Semantic Web Primer, 2nd Edition . 
 The MIT Press ,  Cambridge, MA, USA ,  2008 .  

   5.       L.   Apostel  .  Towards the formal study of models in a non formal science .  Synthese , 
 12 : 125  –  161 ,  1960 .  

   6.       Richard   Arndt  ,   Rapha ë l   Troncy  ,   Steffen   Staab  ,   Lynda   Hardman  , and   Miroslav   Vacura  . 
 COMM: Designing a Well - Founded Multimedia Ontology for the Web . In  Proceed-
ings of the 6th International Semantic Web Conference and 2nd Asian Semantic Web 
Conference (ISWC/ASWC 2007), Busan, South Korea, 11 – 15th November, 2007 , 
volume 4825 of Lecture Notes in Computer Science , pages  30  –  43 . Springer,  2007 .  

   7.       C.   Atkinson   and   T.   Kuhne  .  Model - driven development: a metamodeling foundation . 
Software, IEEE ,  20 ( 5 ): 36  –  41 , Sept. – Oct.  2003 .  

   8.       Paolo   Atzeni  ,   Paolo   Cappellari  , and   Philip A.   Bernstein  .  Model - Independent Schema 
and Data Translation . In  Proceedings of 10th International Conference on Extending 
Database Technology (EDBT 2006), Munich, Germany, March 26 – 31, 2006 , volume 
3896 of Lecture Notes in Computer Science , pages  368  –  385 . Springer,  2006 .  

   9.       Franz   Baader  ,   Diego   Calvanese  ,   Deborah L.   McGuinness  ,   Daniele   Nardi  , and   Peter F.  
 Patel - Schneider  , editors.  The Description Logic Handbook .  Cambridge University 
Press,  Cambridge, UK ,  2003 .  

   10.       Kenneth   Baclawski  ,   Mieczyslaw M.   Kokar  ,   Paul A.   Kogut  ,   Lewis   Hart  ,   Jeffrey E.  
 Smith  ,   Jerzy   Letkowski  , and   Pat   Emery  .  Extending the Unifi ed Modeling Language 
for ontology development . Software and System Modeling ,  1 ( 2 ): 142  –  156 ,  2002 .  

   11.       Bernhard   Beckert  ,   Uwe   Keller  , and   Peter H.   Schmitt  .  Translating the Object Con-
straint Language into First - order Predicate Logic . In  Proceedings of the Second 
Verifi cation Workshop (VERIFY 2002), July 25 – 26, 2002, Copenhagen, Denmark , 
volume 02 – 07 of  DIKU technical report . DIKU,  2002 .  

   12.       Daniela   Berardi  ,   Diego   Calvanese  , and   Giuseppe   De   Giacomo  .  Reasoning on UML 
class diagrams . Artif. Intell. ,  168 ( 1 ): 70  –  118 ,  2005 .  

   13.       Jean   B é zivin  .  On the unifi cation power of models .  Software and System Modeling , 
 4 ( 2 ): 171  –  188 ,  2005 .  

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

212



REFERENCES 213

   14.       Jean   B é zivin  ,   V.   Devedzic  ,   D.   Djuric  ,   J.M.   Favreau  ,   D.   Gasevic  , and   Fr é d é ric   Jouault  . 
 An M3 - Neutral Infrastructure for Bridging Model Engineering and Ontology 
Engineering. In Interoperability of Enterprise Software and Applications , pages 
 159  –  171 .  Springer ,  2005 .  

   15.       Andreas   Billig  ,   Susanne   Busse  ,   Andreas   Leicher  , and   J ö rn   Guy    S ü ss. Platform 
independent model transformation based on TRIPLE . In Proceedings of the ACM/
IFIP/USENIX International Middleware Conference, Middleware 2004, Toronto, 
Canada, October 18 – 20, 2004 , volume 3231 of  Lecture Notes in Computer Science , 
pages  493  –  511 . Springer,  2004 .  

   16.       Christian   Bizer  ,   Tom   Heath  , and   Tim   Berners - Lee  .  Linked Data — The Story So Far . 
International Journal on Semantic Web and Information Systems ,  5 ( 3 ): 1  –  22 ,  2009 .  

   17.       Jean - Paul   Bodeveix  ,   Thierry   Millan  ,   Christian   Percebois  ,   Christophe   Le   Camus  ,   Pierre 
 Bazex  , and   Louis   Feraud  .  Extending OCL for verifying UML models consistency . In 
Proceedings of the Workshop on Consistency Problems in UML - based Software 
Development, Workshop at UML 2002, Dresden, Germany, October 1, 2002 , volume 
2002:06 of Research Report , pages  75  –  90 . Blekinge Institute of Technology,  2002 . 

   18.       Harold   Boley  ,   Said   Tabet  , and   Gerd   Wagner  .  Design Rationale for RuleML: A 
Markup Language for Semantic Web Rules . In  Proceedings of the fi rst Semantic Web 
Working Symposium (SWWS 2001), Stanford University, CA, USA, July 30  - August 1, 
2001 , pages  381  –  401 ,  2001 .  

   19.       Paolo   Bouquet  ,   Fausto   Giunchiglia  ,   Frank   van   Harmelen  ,   Luciano   Serafi ni  , and 
  Heiner   Stuckenschmidt  .  C - OWL: Contextualizing Ontologies . In  Proceedings of 
Second International Semantic Web Conference (ISWC 2003), Sanibel Island, FL, 
USA, October 20 – 23, 2003 , volume 2870 of  Lecture Notes in Computer Science , 
pages  164  –  179 . Springer,  2003 .  

   20.       Saartje   Brockmans  ,   Robert M.   Colomb  ,   Elisa F.   Kendall  ,   Evan   Wallace  ,   Christopher  
 Welty  ,   Guo Tong   Xie  , and   Peter   Haase  .  A Model Driven Approach for Building OWL 
DL and OWL Full Ontologies . In  Proceedings of 5th International Semantic Web 
Conference (ISWC), Athens, GA, USA, November 5 – 9, 2006 , volume 4273 of  Lecture 
Notes in Computer Science , pages  187  –  200 . Springer, November  2006 .  

   21.       Saartje   Brockmans  ,   Peter   Haase  ,   Pascal   Hitzler  , and   Rudi   Studer  .  A Metamodel and UML 
Profi le for Rule - Extended OWL DL Ontologies . In  Proceedings of the 3rd European 
Semantic Web Conference, ESWC 2006, Budva, Montenegro, June 11 – 14, 2006 , volume 
4011 of  Lecture Notes in Computer Science , pages  303  –  316 . Springer,  2006 . 

   22.       Saartje   Brockmans  ,   Peter   Haase  , and   Heiner   Stuckenschmidt  .  Formalism - Independent 
Specifi cation of Ontology Mappings — A Metamodeling Approach . In  Proceedings of 
On the Move to Meaningful Internet Systems (OTM 2006), Montpellier, France, 
October 29 – November 3, 2006 , volume 4275 of  Lecture Notes in Computer Science , 
pages  901  –  908 . Springer,  2006 .  

   23.       Sara   Brockmans  ,   Raphael   Volz  ,   Andreas   Eberhart  , and   Peter   L ö ffl er  .  Visual Modeling 
of OWL DL Ontologies Using UML . In  Proceedings of the Third International 
Semantic Web Conference, ISWC 2004, Hiroshima, Japan, November 7 – 11, 2004 , 
volume 3298 of Lecture Notes in Computer Science , pages  198  –  213 . Springer,  2004 .  

   24.       Jeen   Broekstra  ,   Arjohn   Kampman  , and   Frank   van   Harmelen  .  Sesame: A Generic 
Architecture for Storing and Querying RDF and RDF Schema . In  Proceedings of the 
First International Semantic Web Conference (ISWC 2002), Sardinia, Italy, June 
9 – 12, 2002 , volume 2342 of  Lecture Notes in Computer Science , pages  54  –  68 . 
Springer,  2002 .  



214 REFERENCES

   25.       Achim D.   Brucker   and   Burkhart   Wolff  .  A Proposal for a Formal OCL Semantics in 
Isabelle/HOL. In Proceedings of the 15th International Conference on Theorem 
Proving in Higher Order Logics (TPHOLs 2002), Hampton, VA, USA, August 20 – 23, 
2002 , volume 2410 of  Lecture Notes in Computer Science , pages  99  –  114 . Springer -
 Verlag,  2002 .  

   26.       Diego   Calvanese  ,   Giuseppe   De   Giacomo  , and   Maurizio   Lenzerini  .  On the decidability 
of query containment under constraints . In  Proceedings of the 17th ACM SIGACT -
 SIGMOD - SIGART Symposium on Principles of Database Systems, PODS 1998, 
Seattle, WA, USA, June 1 – 3, 1998 , pages  149  –  158 . ACM Press,  1998 .  

   27.       Diego   Calvanese  ,   Giuseppe   De   Giacomo  , and   Maurizio   Lenzerini  .  Identifi cation 
constraints and functional dependencies in description logics . In  Proceedings of the 
17th International Joint Conference on Artifi cial Intelligence, IJCAI 2001, Seattle, 
WA, USA, August 4 – 10, 2001 , pages  155  –  160 . Morgan Kaufmann Publishers Inc., 
2001.

   28.       H.   Chalupsky  .  OntoMorph: A Translation System for Symbolic Knowledge . In 
Principles of Knowledge Representation and Reasoning Proceedings of the Seventh 
International Conference (KR 2000), Breckenridge, CO, USA, April 11 – 15, 2000 , 
pages  471  –  482 . Morgan Kaufmann,  2000 .  

   29.       O.   Corcho   and   A.   G ó mez - P é rez  .  ODEDialect: A Set of Declarative Languages for 
Implementing Ontology Translation Systems .  Journal of Universal Computer Science , 
 13 ( 12 ): 1805  –  1834 ,  2007 .  

   30.        Ó scar   Corcho   and   Asunci ó n   G ó mez - P é rez  .  A Layered Model for Building Ontology 
Translation Systems .  Int ’ l Journal on Semantic Web  &  Information Systems ,  1 ( 2 ): 22  –
  48 ,  2005 .  

   31.       Stephen   Cranefi eld   and   Martin K.   Purvis  .  UML as an Ontology Modelling Language . 
In Proceedings of the IJCAI - 99 Workshop on Intelligent Information Integration, 
Intelligent Information Integration 1999, Stockholm, Sweden, July 31, 1999 , volume 
23 of CEUR Workshop Proceedings . CEUR - WS.org,  1999 .  

   32.       Krzysztof   Czarnecki  .  Domain Engineering . In   John J.   Marciniak  , editor,  Encyclopedia
of Software Engineering .  John Wiley & Sons, Inc .,  2002 .  

   33.       Stefan   Decker  ,   Michael   Sintek  ,   Andreas   Billig  ,   Nicola   Henze  ,   Peter   Dolog  ,   Wolfgang  
 Nejdl  ,   Andreas   Harth  ,   Andreas   Leicher  ,   Susanne   Busse  ,   Jos é  Luis   Ambite  ,   Matthew  
 Weathers  ,   Gustaf   Neumann  , and   Uwe   Zdun  .  TRIPLE — an RDF Rule Language with 
Context and Use Cases . In  Proceedings of the W3C Workshop on Rule Languages for 
Interoperability (2005), Washington, DC, USA, April 27 – 28, 2005 . W3C,  2005 .  
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