
SEMANTIC WEB
AND MODEL-DRIVEN
ENGINEERING

www.allitebooks.com

http://www.allitebooks.org

 IEEE Press
 445 Hoes Lane

 Piscataway, NJ 08854

IEEE Press Editorial Board
 Lajos Hanzo, Editor in Chief

 R. Abhari M. El - Hawary O. P. Malik
 J. Anderson B - M. Haemmerli S. Nahavandi
 G. W. Arnold M. Lanzerotti T. Samad
 F. Canavero D. Jacobson G. Zobrist

 Kenneth Moore, Director of IEEE Book and Information Services (BIS)

www.allitebooks.com

http://www.allitebooks.org

SEMANTIC WEB
AND MODEL-DRIVEN
ENGINEERING

FERNANDO SILVA PARREIRAS
FUMEC University, Brazil

A JOHN WILEY & SONS, INC., PUBLICATION

IEEE PRESS

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2012 by Institute of Electrical and Electronics Engineers. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifi cally disclaim any implied warranties of
merchantability or fi tness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profi t or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our web
site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN: 978-1-118-00417-3

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

www.allitebooks.com

http://www.allitebooks.org

To my family

www.allitebooks.com

http://www.allitebooks.org

CONTENTS IN BRIEF

PART I

FUNDAMENTALS

1 INTRODUCTION 3

2 MODEL-DRIVEN ENGINEERING FOUNDATIONS 9

3 ONTOLOGY FOUNDATIONS 21

4 MARRYING ONTOLOGY AND MODEL-DRIVEN ENGINEERING 44

PART II

THE TWOUSE APPROACH

5 THE TWOUSE CONCEPTUAL ARCHITECTURE 65

6 QUERY LANGUAGES FOR INTEGRATED MODELS 78

7 THE TWOUSE TOOLKIT 86

PART III

APPLICATIONS IN MODEL-DRIVEN ENGINEERING

8 IMPROVING SOFTWARE DESIGN PATTERNS WITH OWL 99

9 MODELING ONTOLOGY-BASED INFORMATION SYSTEMS 112

vii

CONCLUSION OF PART I

CONCLUSION OF PART II

www.allitebooks.com

http://www.allitebooks.org

viii CONTENTS IN BRIEF

PART IV

APPLICATIONS IN THE SEMANTIC WEB

11 MODEL-DRIVEN SPECIFICATION OF ONTOLOGY TRANSLATIONS 141

12 AUTOMATIC GENERATION OF ONTOLOGY APIs 156

13 USING TEMPLATES IN OWL ONTOLOGIES 171

10 ENABLING LINKED DATA CAPABILITIES TO MOF COMPLIANT MODELS 124

CONCLUSION OF PART III

CONCLUSION OF PART IV

14 CONCLUSION 187

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

PART I

FUNDAMENTALS

1 INTRODUCTION 3

1.1 Motivation 3

1.2 Research Questions 5

2 MODEL-DRIVEN ENGINEERING FOUNDATIONS 9

2.1 Introduction 9

2.2 Model-Driven Engineering Structure 9

2.2.1 Models 11

2.2.2 Metamodels 11

2.2.3 Modeling Languages 13

2.2.4 Model Transformations 17

2.2.5 Query Languages 17

2.3 Technical Spaces 19

2.4 Conclusion 20

3 ONTOLOGY FOUNDATIONS 21

3.1 Introduction 21

3.2 Ontology 22

3.2.1 Ontology Modeling 22

3.3 The Ontology Web Language 24

3.3.1 OWL 2 Syntax 24

3.3.2 OWL 2 Semantics 27

3.3.3 World Assumption and Name Assumption 27

LIST OF FIGURES xv

LIST OF TABLES xix

FOREWORD xxi

PREFACE xxiii

ACRONYMS xxvii

ix

www.allitebooks.com

http://www.allitebooks.org

x CONTENTS

3.4 Ontology Services 31

3.4.1 Reasoning Services 31

3.4.2 Querying 31

3.5 Ontology Engineering Services 33

3.5.1 Explanation 33

3.5.2 Ontology Matching 34

3.6 Rules 34

3.7 Metamodels for Ontology Technologies 35

3.7.1 OWL Metamodels 35

3.7.2 SPARQL Metamodel 40

3.8 Ontological Technical Spaces 41

3.9 Conclusion 43

4 MARRYING ONTOLOGY AND MODEL-DRIVEN ENGINEERING 44

4.1 Introduction 44

4.2 Similarities between OWL Modeling and UML Class-Based Modeling 45

4.3 Commonalities and Variations 46

4.3.1 Language 47

4.3.2 Formalism 49

4.3.3 Data Model 49

4.3.4 Reasoning 50

4.3.5 Querying 51

4.3.6 Rules 51

4.3.7 Transformation 52

4.3.8 Mediation 52

4.3.9 Modeling Level 53

4.4 The State of the Art of Integrated Approaches 54

4.4.1 Model Validation 54

4.4.2 Model Enrichment 56

4.4.3 Ontology Modeling 58

4.5 Existing Work on Classifying Integrated Approaches 58

4.6 Conclusion 59

PART II

THE TWOUSE APPROACH

5 THE TWOUSE CONCEPTUAL ARCHITECTURE 65

5.1 Introduction 65

5.2 Requirements for Integrating Ontology Technologies and Model-Driven
Engineering 66

5.2.1 Usage of Ontology Services in MDE 66

5.2.2 Usage of MDE Techniques in OWL Ontology Engineering 67

5.3 Addressing the Requirements with the TwoUse Approach 68

CONCLUSION OF PART I

www.allitebooks.com

http://www.allitebooks.org

CONTENTS xi

5.4 Metamodeling Architecture 70

5.4.1 The TwoUse Metamodel 70

5.5 Syntax 72

5.5.1 UML Profi le for OWL 72

5.5.2 Pure UML Class Diagrams 75

5.5.3 Textual Notation 75

5.6 Conclusion 77

6 QUERY LANGUAGES FOR INTEGRATED MODELS 78

6.1 Introduction 78

6.2 Combining Existing Approaches 78

6.3 Querying Ontologies Using OWL Syntax: SPARQLAS 80

6.3.1 SPARQLAS Concrete Syntax 80

6.3.2 SPARQLAS Metamodel 81

6.3.3 Transformation from SPARQLAS to SPARQL 81

6.4 Querying Integrated Models: SPARQLAS4TwoUse 82

6.5 Conclusion 84

7 THE TWOUSE TOOLKIT 86

7.1 Introduction 86

7.2 Use Case Descriptions 87

7.3 A Generic Architecture for MDE and Ontology Engineering 87

7.3.1 Core Services 88

7.3.2 Engineering Services 89

7.3.3 Front-End 90

7.4 Instantiating the Generic Model-Driven Architecture: The TwoUse Toolkit 90

7.5 Conclusion 93

PART III

APPLICATIONS IN MODEL-DRIVEN ENGINEERING

8 IMPROVING SOFTWARE DESIGN PATTERNS WITH OWL 99

8.1 Introduction 99

8.2 Case Study 100

8.2.1 Applying the Strategy Pattern 100

8.2.2 Extending to the Abstract Factory 101

8.2.3 Drawbacks 103

8.3 Application of the TwoUse Approach 104

8.3.1 OWL for Conceptual Modeling 104

8.3.2 TwoUse for Software Design Patterns: The Selector Pattern 105

CONCLUSION OF PART II

www.allitebooks.com

http://www.allitebooks.org

xii CONTENTS

8.4 Validation 109

8.4.1 Participants and Collaborations 109

8.4.2 Applicability 110

8.4.3 Drawbacks 110

8.4.4 Advantages 110

8.5 Related Work 111

8.6 Conclusion 111

9 MODELING ONTOLOGY-BASED INFORMATION SYSTEMS 112

9.1 Introduction 112

9.2 Case Study 113

9.2.1 UML Class-Based Software Development 113

9.2.2 Ontology-Based Software Development 116

9.3 Application of the TwoUse Approach 117

9.3.1 Concrete Syntax 118

9.3.2 Abstract Syntax 119

9.3.3 Querying 121

9.4 Validation 121

9.4.1 Limitations 123

9.5 Conclusion 123

10 ENABLING LINKED DATA CAPABILITIES TO MOF COMPLIANT MODELS 124

10.1 Introduction 124

10.2 Case Study 125

10.2.1 Requirements 127

10.3 Application of the TwoUse Approach 128

10.3.1 Model Extension 128

10.3.2 Model Transformation 130

10.3.3 Matching 131

10.3.4 Querying with SPARQLAS 131

10.4 Validation 132

10.4.1 Limitations 134

10.5 Related Work 134

10.6 Conclusion 135

PART IV

APPLICATIONS IN THE SEMANTIC WEB

11 MODEL-DRIVEN SPECIFICATION OF ONTOLOGY TRANSLATIONS 141

11.1 Introduction 141

11.2 Case Study 142

CONCLUSION OF PART III

CONTENTS xiii

11.3 Application of the TwoUse Approach 145

11.3.1 Concrete Syntax 145

11.3.2 Metamodels 146

11.3.3 Model Libraries 148

11.3.4 Semantics 148

11.3.5 Ontology Translation Process 148

11.3.6 Implementation 149

11.4 Examples 150

11.5 Analysis 153

11.6 Related Work 154

11.7 Conclusion 155

12 AUTOMATIC GENERATION OF ONTOLOGY APIs 156

12.1 Introduction 156

12.2 Case Study 158

12.3 Application of the TwoUse Approach 161

12.3.1 Key Domain Concepts 161

12.3.2 agogo Concrete Syntax by Example 163

12.3.3 Implementation 166

12.4 Analysis 167

12.5 Related Work 169

12.6 Conclusion 170

13 USING TEMPLATES IN OWL ONTOLOGIES 171

13.1 Introduction 171

13.2 Case Study 172

13.3 Application of the TwoUse Approach 174

13.3.1 Extending the OWL Metamodel with Templates 174

13.3.2 Semantics of Templates 177

13.3.3 Notations for Templates in OWL 179

13.3.4 Query Templates 180

13.4 Analysis 181

13.4.1 Limitations 182

13.5 Related Work 182

13.6 Conclusion 183

14 CONCLUSION 187

14.1 Contributions 187

14.2 Outlook 189

14.2.1 Ongoing Research 189

CONCLUSION OF PART IV

xiv CONTENTS

APPENDIX A 191

A.1 EBNF Defi nition of the Concrete Textual Syntax for TwoUse 191

A.2 EBNF Grammar of SPARQLAS Functional Syntax 192

A.3 EBNF Grammar of SPARQLAS Manchester Syntax 197

A.4 SPARQLAS Metamodel 202

A.5 Ecore to OWL: Translation Rules 204

APPENDIX B 206

B.1 Use Cases 206

B.1.1 Design Integrated Models 206

B.1.2 Design Integrated UML Class Diagram 206

B.1.3 Design Integrated Ecore Model 207

B.1.4 Specify SPARQLAS4TwoUse Query Operations 207

B.1.5 Transform to OWL 207

B.1.6 Compute Alignments 208

B.1.7 Browse 208

B.1.8 Explain Axioms 209

B.1.9 Query UML Class-Based Models 209

B.1.10 Query OWL Ontologies 209

B.1.11 Design Ontology Engineering Services 209

B.1.12 Design Ontology API 210

B.1.13 Design Ontology Translation 210

B.1.14 Design Ontology Template 210

B.1.15 Generate Service 211

B.2 Connecting Use Cases with Requirements 211

REFERENCES 212

INDEX 226

 LIST OF FIGURES

 1.1 Context of the Book. 6
 2.1 Main Concepts of Megamodel. 10
 2.2 Notion of RepresentationOf in Megamodel. 11
 2.3 Notion of ConformsTo in Megamodel. 12
 2.4 Layered Architecture. 12
 2.5 EMOF Classes. 13
 2.6 Ecore Structure. 14
 2.7 Structure, Semantics, and Syntax of the UML Language. 16
 2.8 UML Class Diagram of an E - Shop System. 18
 2.9 MOF Technical Space. 19
 3.1 Semantic Web Stack Covered in This Chapter. 22
 3.2 E - Shop Example with Description Logic Syntax. 23
 3.3 Closing the Domain of E - Shop with OWL Axioms. 30
 3.4 OWL Class Descriptions of the OMG OWL Metamodel [114]. 35
 3.5 OWL Properties of the OMG OWL Metamodel [114]. 36
 3.6 RDFS Properties of the OMG OWL Metamodel [114]. 36
 3.7 OWL Class Descriptions of the NeOn Metamodel. 37
 3.8 OWL Properties of the NeOn Metamodel. 37
 3.9 OWL Class Descriptions of the OWL 2 Metamodel. 38
 3.10 OWL Properties of the OWL 2 Metamodel. 39
 3.11 Snippets of the SWRL Metamodel and the Connections with the OWL

Metamodel. 39
 3.12 Snippets of the SPARQL Metamodel. 40
 3.13 The Description Logics Technical Space. 41
 3.14 Relation between the EBNF Technical Space and the Description Logics

Technical Space. 42
 3.15 Model - Driven Viewpoint of Ontology Technologies. 42
 4.1 Marrying MMTS and OTS. 45
 4.2 Comparing UML Class Diagrams, OWL - DL, OWL 2, and DL - Lite. 46
 4.3 Snippet of the Feature Model of Bridging OTS and MMTS. 48
 4.4 Organization of Features According to Technical Space. 53
 4.5 Checking Consistency of UML Models. 54
 4.6 Feature Model Confi guration for Model Checking. 55
 4.7 Mapping between Two Models Ma and Mb. 56
 4.8 Feature Model Confi guration for Model Enrichment. 57
 4.9 Ontology Modeling with UML Profi le. 58

xv

xvi LIST OF FIGURES

 4.10 Feature Model Confi guration for Ontology Modeling. 59
 5.1 The TwoUse Conceptual Architecture. 69
 5.2 Adapting the OWL Class for UML Class - Based Modeling. 71
 5.3 The OWL 2 Metamodel Adapted for the UML Class - Based Metamodel —

the TwoUse Metamodel. 73
 5.4 UML Class Diagram Profi led with UML Profi le for OWL and TwoUse

Profi le. 74
 6.1 Existing Approaches for Querying Models. 79
 6.2 Variables in the SPARQLAS Metamodel. 81
 6.3 Composing the SPARQLAS Metamodel and the TwoUse Metamodel. 83
 6.4 Snapshot of the Running Example. 84
 6.5 Positioning SPARQLAS4TwoUse among Existing Approaches. 85
 7.1 Use Case for a Generic Architecture for MDE and Ontology Engineering. 88
 7.2 A Generic Architecture for MDE and Ontology Engineering. 89
 7.3 The TwoUse Toolkit. 91
 7.4 TwoUse Toolkit Snapshot: Explanation Service. 92
 7.5 TwoUse Toolkit Snapshot: View Inferred Class Hierarchy. 92
 7.6 Instantiation of the Generic Architecture: The TwoUse Toolkit. 93
 8.1 Application of the Strategy Pattern in the Running Example. 101
 8.2 Drawbacks of the Strategy Pattern. 102
 8.3 Strategy and Abstract Factory Patterns with Confi guration Object. 102
 8.4 UML Sequence Diagram of Strategy and Abstract Factory Patterns with

Confi guration Object. 103
 8.5 Domain Design by a UML Class Diagram Using a UML Profi le for OWL. 105
 8.6 Profi led UML Class Diagram of an Ontology - Based Solution. 106
 8.7 Profi led UML Class Diagram with the Strategy Pattern. 107
 8.8 Sequence Diagram of an OWL - Based Solution. 108
 8.9 Structure, Participants, and Collaborations in the Selector Pattern. 109
 9.1 UML Class Diagram and Sequence Diagram of KAT Algorithms. 114
 9.2 UML Class Diagram of KAT. 118
 9.3 Excerpt of a KAT model (M1). 120
 9.4 Snapshot of KAT (M0). 122

 10.1 Development Life Cycle of the TwoUse Toolkit. 125
 10.2 Snippets of Use Case Diagram from TwoUse Toolkit. 126
 10.3 Snippets of BPMN Diagram from TwoUse Toolkit. 126
 10.4 Snippets of Component Diagram from TwoUse Toolkit. 127
 10.5 Snippet of BPMN metamodel and UML metamodel for Use Cases. 129
 10.6 Mapping Ecore and OWL. 131
 11.1 Ontology Mapping Challenge for the Running Example. 143
 11.2 Abstraction vs. Expressiveness. 145
 11.3 Example of a Translation Rule. 146
 11.4 Fragment of the ATL Metamodel. 147
 11.5 Snippet of the Package Type and Package Expressions of the OCL

Metamodel. 147
 11.6 Ontology Translation Process. 149
 11.7 Screenshot of MBOTL. 150

LIST OF FIGURES xvii

 12.1 Limitations of Current Approaches. 157
 12.2 Ontology and API for the Semantic Annotation Pattern. 158
 12.3 Snippet of the agogo Metamodel. 162
 12.4 Architecture of the agogo Approach. 166
 12.5 Screenshot of agogo Implementation. 167
 13.1 Modeling the Running Example with OMG UML Profi le for OWL and UML

Profi le for SWRL. 175
 13.2 Metamodel for Ontology Templates. 176
 13.3 The Template Binding Realization Algorithm. 178
 13.4 Modeling the Running Example with OWL 2 Graphical Syntax. 179
 13.5 Ontology Development with Templates. 180
 A.1 SPARQLAS Metamodel 203

 LIST OF TABLES

 3.1 Syntax of Class Expression Axioms. 25
 3.2 Syntax of Object Property Axioms. 25
 3.3 Syntax of Data Property Axioms. 25
 3.4 Syntax of Assertions. 26
 3.5 Syntax of Class Expressions. 26
 3.6 Syntax of Data Ranges. 27
 3.7 Semantics of Class Expression Axioms. 27
 3.8 Semantics of Object Property Axioms. 28
 3.9 Semantics of Data Property Axioms. 28
 3.10 Semantics of Assertions. 28
 3.11 Semantics of Class Expression. 29
 4.1 OTS and MMTS: Comparable Features. 45
 5.1 Correlating Building Blocks with Requirements. 70
 5.2 Mapping between the UML Profi le for OWL (Hybrid Diagram) and the

TwoUse Metamodel. 75
 6.1 Evaluation of SPARQLAS Expressions According to the Running Example

Snapshot. 84
 9.1 Specifying KAT with Description Logic Syntax. 116
 9.2 Evaluation of SPARQLAS Expressions According to the KAT Snapshot. 121

 10.1 TwoUse Measurement. 132
 11.1 Satisfying Ontology Translation Requirements. 153
 12.1 Comparison of Size between agogo and the Current COMM API in Two

Cases. 168
 12.2 Correlating agogo Requirements with Quality Attributes. 169
 B.1 Mapping Use Cases and Requirements. 211

xix

 FOREWORD

 Software modeling is in a schizophrenic situation. On the one hand, it is targeted
towards the development of completely formal systems, i.e., executable code. On
the other hand, the tools dominating in software modeling are typically drawing
tools prepared with specifi c graphical icons. This dichotomy implies that the targeted
meaning of a software model is limited in its use towards human understanding and
communication only.

 This dichotomy is reconciled when software is enriched with formulae speci-
fying the functionality of the code. This is an exciting branch in software engineer-
ing, however, for the time being, this is a very labor - intensive exercise that can only
be applied for smaller scale systems with particular value, e.g., strong safety
requirements.

 The above - explained dichotomy is also reduced when software models are
exploited in model - driven development for the semi - automatic derivation of more
formal models, e.g., executable code (stubs). In such model - driven development the
meaning of a model is implicitly defi ned by mapping it into a (more), formal model.
This (more) formal model, however, is exclusively oriented towards operational
semantics, it does not bear any semantic meaning for issues like organization and
modularization of software models.

 Hence, what is obviously missing is a stronger notion of meaning for software
models themselves. A meaning that is not only accessible to human interpretation,
but that can be operationalized on the software model alone and not only on one
view of a software model but on different sublanguages that together constitute a
software modeling framework.

 In this book, Fernando Silva Parreiras makes a major step towards realizing
such meaning for software models. With his methodology TwoUSE — Transforming
and Weaving Ontologies and UML for Software Engineering — he combines the
established routines of current - day software modelers with the most recent technol-
ogy for reasoning over large and complex models, i.e., ontology technology.

 Ontology technology, based on the family of description logics dialects, has
thrived over the last 15 years, coming from small formal systems where it was hardly
possible to manage 102 entities in one model to systems that reason over 105
entities — and growing. It is the core target of ontology technologies to model classes,
their relationships, and their instances in a versatile manner that still leads to a decid-
able logical language, which can (mostly) be reasoned about for models that do not
appear in the worst case, but in practice. Hence, ontology technology is ideally suited
to be carried over to the world of software models.

xxi

xxii FOREWORD

 Such a step seems to be incremental at fi rst sight. This, however, is not the
case. The reason is that it is not suffi cient to come up with a single mapping, e.g.,
from UML class diagrams to an ontology language, because the range of software
models is ranging much farther and what is needed is a methodology with example
cases and best practices rather than an ad hoc development.

 Fernando Silva Parreiras has accomplished such a methodology with TwoUse.
And this methodology has become infl uential even before this book could be pub-
lished. First, the EU project MOST — Marrying Ontology and Software Technolo-
gies — running from Februrary 2008 to April 2011 has relied heavily on Fernando ’ s
TwoUse methodology and has taken it as a major source of inspiration for further
developing best practices for using ontology technologies in software development.
Second, his work has become pivotal for other researchers in our lab — and beyond -
 who have been building on the integration of software models and ontologies and
have further refi ned it, most notably Tobias Walter and Gerd Gr ö ner.

 Finally, the development of TwoUse has been a major accomplishment,
because its development has been off the beaten path between the software modeling
and the ontology technology communities and staying within neither. At the same
time, advising Fernando and charting unexplored research terrain with him has
become one of my most beloved research experiences of the last years — intellectu-
ally and personally — one that I would not want to miss by any means.

 Steffen Staab
 Koblenz, Germany

April 2012

 PREFACE

 The audience for this book embraces computer science graduate students, research-
ers, advanced professionals, practitioners, and implementers in the areas of software
engineering, knowledge engineering, and artifi cial intelligence, interested in knowing
the possibilities of using semantic web technologies in the context of model - driven
software development or in enhancing knowledge engineering process with model -
 driven software development.

 For the knowledge engineering community, the advent of ontology engineer-
ing required adapting methodologies and technologies inherited from software engi-
neering to an open and networked environment. With the advances provided by
model - driven software development, the semantic web community is keen on learn-
ing what the benefi ts are of disciplines like metamodeling, domain - specifi c model-
ing, and model transformation for the semantic web fi eld.

 For software engineering, declarative specifi cation is one of the major facets
of enterprise computing. Because the Ontology Web Language (OWL) is designed
for sharing terminologies, interoperability, and inconsistency detection, software
engineers will welcome a technique that improves productivity and quality of soft-
ware models. This book is relevant for researchers who work in the fi eld of complex
software systems using model - driven technology and for companies that build large -
 scale software like enterprise software offerings, data - warehousing products, and
software product lines.

 HOW TO READ THIS BOOK

 In Part I, we present the fundamental concepts and analyze state - of - the - art
approaches. Chapters 2 and 3 describe the concepts and technologies around MDE
and ontologies, respectively. In Chapter 4 , we present the commonalities and varia-
tions of both paradigms, analyze existing work in this area, and elicit the require-
ments for an integrated solution.

 Part II describes the role of MDE techniques (DSL, model transformation, and
metamodeling) and ontology technologies (reasoning services, query answering) in
an integrated approach. In Chapters 5 and 6 , we describe the conceptual architecture
of our approach. Chapter 7 presents the TwoUse Toolkit — the implementation of the
conceptual architecture.

 We use the TwoUse Toolkit to realize case studies from the model - driven
engineering and ontology engineering domains. Part III assembles case studies that
use our approach at the modeling level and at the language level. Chapter 8 analyzes
the application of TwoUse in software design patterns, and in Chapter 9 we present

xxiii

www.allitebooks.com

http://www.allitebooks.org

xxiv PREFACE

the application of TwoUse in ontology - based information systems. Chapter 10
describes the usage of TwoUse to support software developers in integrating soft-
ware languages.

 Part IV presents an analysis of employing our approach in ontology engineering
services. We address the need for multiple languages for ontology mapping in Chapter
 11 . Chapter 12 presents a domain - specifi c language for specifying ontology APIs.
Chapter 13 uses templates for encapsulating complexity of ontology design patterns.

 COMMUNICATIONS OF THIS BOOK

 We have communicated the research presented in this book through conference
papers, a journal paper, conference tutorials, conference demonstrations, and bach-
elor/master theses. In the following, we list the publications according to the chapters
covering the respective contributions.

Chapter 3 : Silva Parreiras, F., Staab, S., Ebert, J., Pan, J.Z., Miksa, K.,
Kuehn, H., Zivkovic, S., Tinella, S., Assmann, U., Henriksson, J.: Seman-
tics of Software Modeling. In: Semantic Computing. Wiley (2010)
229 – 248

Chapter 4 : Silva Parreiras, F., Staab, S., Winter, A.: On marrying ontological
and metamodeling technical spaces. In: Proceedings of the 6th joint meeting
of the European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2007,
Dubrovnik, Croatia, September 3 – 7, 2007, ACM (2007) 439 – 448

Applications in MDE:

* Software Languages

* Ontology-Based Inf. Systems

* Software Design Patterns

Applications in Ontology Engineering

* Generation of Ontology APIs

* Ontology Translation Language

* Ontology Templates

The TwoUseApproach

Structure, Querying, Notations

TwoUseToolkit

Architecture and Services

Fundamentals

MDE foundations, ontology foundations, commonalities, and variations

Roadmap of This Book.

PREFACE xxv

Chapters 5, 6, 9 : Parreiras, F.S., Staab, S.: Using ontologies with UML class -
 based modeling: The TwoUse approach. Data & Knowledge Engineering
69(11) (2010) 1194 – 1207

Chapter 7 : Silva Parreiras, F., Walter, T., Gr ö ner, G.: Filling the gap between
the semantic web and model - driven engineering: The TwoUse toolkit. In:
Demo and Posters Proceedings of the 6th European Conference on Model-
ling Foundations and Applications, ECMFA 2010, Paris, France, June
15 – 18, 2010. (2010)

Chapter 8 : Silva Parreiras, F., Staab, S., Winter, A.: Improving design pat-
terns by description logics: A use case with abstract factory and strategy.
In: Proceedings of Modellierung 2008, Berlin, Germany, March 12 – 14,
2008. Number 127 in LNI, GI (2008) 89 – 104

Chapter 11 : Silva Parreiras, F., Staab, S., Schenk, S., Winter, A.: Model
driven specifi cation of ontology translations. In: Proceedings of Conceptual
Modeling – ER 2008, 27th International Conference on Conceptual Model-
ing, Barcelona, Spain, October 20 - 24, 2008. Number 5231 in LNCS,
Springer (2008) 484 – 497

Chapter 12 : Silva Parreiras, F., Walter, T., Staab, S., Saathoff, C., Franz, T.:
APIs a gogo: Automatic generation of ontology APIs. In: Proceedings of
the 3rd IEEE International Conference on Semantic Computing (ICSC
2009), September 14 – 16, 2009, Santa Clara, CA, USA, IEEE Computer
Society (2009) 342 – 348

Chapter 13 : Silva Parreiras, F., Groener, G., Walter, T., Staab, S.: A model -
 driven approach for using templates in OWL ontologies. In: Knowledge
Management and Engineering by the Masses, 17th International Confer-
ence, EKAW 2010, Lisbon, Portugal, October 11 – 15, 2010. Proceedings.
Volume 6317 of LNAI, Springer (2010) 350 – 359

 We presented parts of this work in the following tutorials:

 • Silva Parreiras, F., Walter, T., Wende, C., Thomas, E.: Model - Driven Software
Development with Semantic Web Technologies. In: Tutorial at the 6th Euro-
pean Conference on Modelling Foundations and Applications, ECMFA 2010,
Paris, France, June 15 – 18, 2010. (2010)

 • Silva Parreiras, F., Walter, T., Wende, C., Thomas, E.: Bridging Software
Languages and Ontology Technologies. In: SPLASH ’ 10: Proceedings of the
ACM international conference companion on Object oriented programming
systems languages and applications companion, October 17, 2010, Reno/
Tahoe, NV, USA., ACM (2010) 311 – 315

 • Gasevic, D., Silva Parreiras, F., Walter, T.: Ontologies and Software Language
Engineering. In: Tutorial at Generative Programming and Component Engi-
neering (GPCE ’ 10) co - located with Software Language Engineering (SLE
2010), October 10, 2010, Eindhoven, The Netherlands. (2010)

 • Staab, S., Walter, T., Gr ö ner, G., Silva Parreiras, F.: Model Driven Engineering
with Ontology Technologies. In: Reasoning Web. Semantic Technologies for

xxvi PREFACE

Software Engineering, 6th International Summer School 2010, Dresden,
Germany, August 30 – September 3, 2010. Tutorial Lectures. LNCS 6325
Springer (2010) 62 – 98

 The implementation of the approach described in this book served as basis for
the following bachelor ’ s thesis, Studienarbeiten or Diplomarbeiten :

 • Saile, David: Integrating TwoUse and OCL - DL. Studienarbeit .

 • Schneider, Mark: SPARQLAS — Implementing SPARQL Queries with OWL
Syntax. Studienarbeit . [In German]

 • Fichtner, Vitali: Developing a Semantic Environment for Analyzing Software
Artifacts. Bachelor ’ s Thesis. [In German]

 • Schneider, Carsten: Towards an Eclipse Ontology Framework: Integrating
OWL and the Eclipse Modeling Framework. Diplomarbeit . [In German]

 Moreover, the implementation of the approach led to the development of a
free open - source set of tools for designing models combining model - driven engi-
neering and OWL — the TwoUse Toolkit. 1

 ACKNOWLEDGMENTS

 I thank God and the Holy Mary, Mother of God, for all the blessings on my way
and for giving me strength to carry on through the hard times.

 I would like to thank Prof. Steffen Staab for helping in my development as a
researcher. I am also indebted to Prof. Andreas Winter and Prof. J ü rgen Ebert for
their valuable advice and the constructive meetings through the last years.

 I am grateful to Prof. Dr. Uwe Assmann and Prof. Dr. Daniel Schwabe for
their time invested in reading and reviewing this book.

 I am happy and thankful to have worked with Thomas Franz, Carsten Saathoff,
and Simon Schenk on the applications of the work described in this book. I am also
thankful to my colleagues Gerd Gr ö ner and Tobias Walter, with whom I shared an
offi ce, for the many brainstorming hours.

 I would like to thank the current and former students for their indispensable
work on implementing the approach presented in this book: David Saile, Johannes
Knopp, Sven K ü hner, Henning Selt, Mark Schneider, Marko Scheller, and Carsten
Schneider.

 I am extremely grateful to my mother and father for shaping my character.
 Finally, from the bottom of my heart, I thank my wife for her support and

donating that time I was supposed to spend with her and my son toward writing this
book.

Fernando Silva Parreiras

 1 http://twouse.googlecode.com/ .

 ACRONYMS

ABOX Assertional Box
API Application Program Interface
ATL Atlas Transformation Language
BPMN Business Process Modeling Notation
COMM Core Ontology on Multimedia
CS Concrete Syntax
CWA Closed World Assumption
DL Description Logic
DSL Domain - Specifi c Language
EBNF Extended BackusNaur Form
EMOF Essential MOF
EU European Union
FOL First - Order Logic
GPML General Purpose Modeling Language
GReTL Graph Repository Transformation Language
HTTP Hypertext Transfer Protocol
KAT K - Space Annotation Tool
MDA Model - Driven Architecture
MDE Model - Driven Engineering
MMTS MOF Technical Space
MOF Meta Object Facility
NAF Negation As Failure
OCL Object Constraint Language
ODP Ontology Design Pattern
OIS Ontology - Based Information System
OMG Object Management Group
OTS Ontological Technical Space
OWA Open World Assumption
OWL Web Ontology Language
PIM Platform Independent Model
PSM Platform Specifi c Model
QVT Query/View/Transformation Language
RDF Resource Description Framework
RDFS RDF Schema
SAIQL Schema And Instance Query Language
SPARQL SPARQL Protocol And RDF Query Language

xxvii

xxviii ACRONYMS

SWRL Semantic Web Rule Language
TBOX Terminological Box
TS Technical Space
UML Unifi ed Modeling Language
URI Unifi ed Resource Identifi er
W3C World Wide Web Consortium
XML Extensible Markup Language

 PART I
FUNDAMENTALS

 CHAPTER 1
INTRODUCTION

 1.1 MOTIVATION

 Among recent attempts to improve productivity in software engineering, model -
 driven engineering (MDE) is an approach that focuses on the design of artifacts and
on generative techniques to raise the level of abstraction of physical systems [142] .
As model - driven engineering gains momentum, the transformation of artifacts and
domain - specifi c notations become essential in the software development process.

 One of the pre - existing modeling languages that boosted research on MDE is
the Unifi ed Modeling Language (UML). UML is a visual design notation [117] for
designing software systems. It is a general - purpose modeling language, capable of
capturing information about different views of systems, like static structure and
dynamic behavior.

 In addition to general - purpose modeling languages, MDE relies on domain -
 specifi c languages (DSL). Such languages provide abstractions and notations for
modeling specifi c aspects of systems. A variety of domain - specifi c languages and
fragments of their models is used to develop one large software system.

 Among artifacts produced by multiple modeling languages, MDE faces the
following challenges [57] : support for developers, interoperability among multiple
artifacts, and formal semantics of modeling languages. Addressing these challenges
is crucial to the success of MDE.

 In contrast, issues like interoperability and formal semantics motivate the
development of ontology web languages. Indeed, the World Wide Web Consortium
(W3C) standard Web Ontology Language (OWL) [61] , together with automated
reasoning services, provides a powerful solution for formally describing domain
concepts in an extensible way, thus allowing for precise specifi cation of the seman-
tics of concepts as well as for interoperability between ontology specifi cations.

 Ontologies provide shared domain conceptualizations representing knowledge
by a vocabulary and, typically, logical defi nitions [62, 161] . OWL provides a class
defi nition language for ontologies. More specifi cally, OWL allows for the defi nition
of classes by required and implied logical constraints on the properties of their
members.

 The strength of OWL modeling lies in disentangling conceptual hierarchies
with an abundance of relationships of multiple generalization of classes (cf. [128]).
For this purpose, OWL allows for deriving concept hierarchies from logically and

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

3

4 CHAPTER 1 INTRODUCTION

precisely defi ned class axioms stating necessary and suffi cient conditions of class
membership. The logics of class defi nitions may be validated by using corresponding
automated reasoning technology.

 Ontology engineers usually have to cope with W3C standard specifi cations
and programming languages for manipulating ontologies. The gap between W3C
specifi cations and programming language leads ontology engineers to deal with
multiple languages of different natures. For instance, W3C specifi cations are plat-
form independent, whereas programming languages include platform - specifi c
constructs.

 Indeed, addressing these issues has been one of the objectives of model - driven
engineering. MDE allows for developing and managing abstractions of the solution
domain towards the problem domain in software design, turning the focus from
code - centric to transformation - centric.

 Understanding the role of ontology technologies like knowledge representa-
tion, automated reasoning, dynamic classifi cation, and consistency checking in MDE
as well as the role of MDE technologies like model transformation and domain -
 specifi c modeling in ontology engineering is essential for leveraging the develop-
ment of both paradigms.

 For example, UML and OWL constitute modeling approaches with strengths
and weaknesses that make them appropriate for specifying distinct aspects of soft-
ware systems. UML provides means to express dynamic behavior, whereas OWL
does not. OWL is capable of inferring generalization and specialization between
classes as well as class membership of objects based on the constraints imposed on
the properties of class defi nitions, whereas UML class diagrams do not allow for
dynamic specialization/generalization of classes and class memberships or any other
kind of inference per se .

 Though schemas [111] and UML extensions (UML profi les) for OWL ontolo-
gies exist, an integrated usage of both modeling approaches in a coherent framework
has been lacking so far. This book unveils research problems involving the composi-
tion of these two paradigms and presents research methods to assess the application
of a novel framework integrating UML class - based models and OWL ontologies and
technologies.

 Investigating the composition of UML class - based modeling and ontology
technologies requires a systematic procedure to address a series of research ques-
tions. Firstly, we need to characterize the fundamental concepts and technologies
around UML class - based modeling and OWL ontologies and to elicit the require-
ments of an integrated framework. Consequently, we need to specify a framework
that realizes the integration of both paradigms and fulfi lls the requirements previ-
ously elicited.

 To analyze the impact of an integrated approach, we need to apply it in both
domains: model - driven engineering and ontology engineering. In the domain of
model - driven engineering, we apply the proposed framework to address shortcom-
ings of software design and software languages. Our aim is to reduce complexity
and to improve reusability and interoperability.

 In the domain of ontology engineering, we tackle issues addressing the gap in
clarity and accessibility of languages that operate ontologies, e.g., ontology transla-

1.2 RESEARCH QUESTIONS 5

tion languages or ontology APIs generation. Our framework is then used to support
the development of platform independent models, aiming at improving maintain-
ability and comprehensibility.

 In the following subsections, we describe the motivation for investigating an
integration between UML class - based modeling and OWL in Section 1.2 . We pre-
sented the guidelines for reading this book and listed the previous publications
covering parts of this book in the preface.

 1.2 RESEARCH QUESTIONS

 Over the last decade, the semantic web and the software engineering communities
have investigated and promoted the use of ontologies and UML class - based model-
ing as modeling frameworks for the management of schemas. While the foci of these
communities are different, the following question arises:

Question I What are the commonalities and variations around ontology tech-
nologies and model - driven engineering?

 By identifying the main features of both paradigms, a comparison of both leads
to the following sub - questions:

Question I.A What are the scientifi c and technical results around ontologies,
ontology languages, and their corresponding reasoning technologies that
can be used in model - driven engineering?

Question I.B What are the scientifi c and technical results around UML class -
 based modeling that can be used in ontology engineering?

 While investigating this problem, our goal is to analyze approaches that use
both UML class - based technologies and ontology technologies and to identify pat-
terns involving both paradigms. The result of such analysis is a feature model,
described in Chapter 4 .

 The feature model reveals the possible choices for an integrated approach of
OWL ontologies and model - driven engineering and serves as a taxonomy to catego-
rize existing approaches. Furthermore, the classifi cation allows for eliciting require-
ments for a composed approach.

 We carry out exploratory research by conducting a domain analysis over
approaches involving UML class - based technologies and ontology technologies
found in the literature. Domain analysis addresses the analysis and modeling of
variabilities and commonalities of systems or concepts in a domain [32] .

 The research result is a descriptive model characterized by a feature model for
the area of marrying UML class - based modeling and ontology technologies.

 While there exist mappings between these modeling paradigms [114] , an
analysis of the outcome of an integrated approach for UML class - based modeling
and OWL is lacking so far. The challenge of this task arises from the large number
of differing properties relevant to each of the two modeling paradigms.

6 CHAPTER 1 INTRODUCTION

 For example, UML modeling provides means to express dynamic behavior,
whereas OWL 2 does not. OWL is capable of inferring generalization and specializa-
tion between classes as well as class membership of objects based on restrictions
imposed on properties of class defi nitions, whereas UML class diagrams do not
allow for dynamic specialization/generalization of classes and class memberships or
any other kind of inference per se .

 Contemporary software development should make use of the benefi ts of both
approaches to overcome their restrictions. This need leads to the following
question:

Question II What are the techniques and languages used for designing inte-
grated models?

 To address this question, we use the requirements resulting from Question I
to propose a framework comprising the following building blocks: (i) an integration
of the structure of UML class - based modeling and OWL; (ii) the defi nition of nota-
tions for denoting integrated artifacts; and (iii) the specifi cation of a query solution
for retrieving elements of integrated artifacts. Together, these building blocks con-
stitute our original approach to Transform and Weave Ontologies and UML class -
 based modeling in Software Engineering — TwoUse (Figure 1.1).

 We analyze the impact of the TwoUse approach with case studies in the
domain of model - driven engineering and ontology engineering.

Applying TwoUse in Model -Driven Engineering. In UML class - based
modeling, software design patterns provide elaborated, best practice solutions for
commonly occurring problems in software development. However, software design
patterns that manage variants delegate the decision of what variant to choose to client
classes. Moreover, the inevitable usage of several software modeling languages leads
to unmanageable redundancy in engineering and managing the same information

 Figure 1.1 Context of the Book.

www.allitebooks.com

http://www.allitebooks.org

1.2 RESEARCH QUESTIONS 7

across multiple artifacts and, eventually, information inconsistency. The growing
demand for networked and federated environments requires the convergence of
existing web standards and software modeling standards.

 In contrast, the strength of OWL modeling lies in disentangling conceptual
hierarchies with multiple generalization of classes [128] . OWL allows for deriving
concept hierarchies from logically and precisely defi ned class axioms stating neces-
sary and suffi cient conditions of class membership.

 OWL provides exclusive features that distinguish it from class - based modeling
languages: class expressions, individual equality, and class expression axioms.
Hence, the following question arises:

Question III What is the structural impact of using OWL constructs in design-
ing software artifacts?

 To address this problem, we work on identifying patterns at the modeling level
as well as at the language level. At the modeling level, we analyze the situation
where the decision of what class to instantiate typically needs to be specifi ed at a
client class. We investigate the following question:

Question III.A How does one determine the selection of classes to instantiate
using only class descriptions rather than by weaving the descriptions into
class operations?

 In systems that rely on ontologies, i.e., in ontology - based information systems,
the question is the following:

Question III.B How does one reuse existing knowledge captured by domain
ontologies in the specifi cation of functional algorithms of ontology - based
information systems?

 At the language level, to support the interrelationships of software modeling
languages in distributed software modeling environments, we need to answer the
following question:

Question III.C Which ontology technologies can help existing modeling lan-
guages in managing the same information across multiple artifacts and how
can they do so?

 The hypothesis is that an ontology - based approach improves software quality
and provides guidance to software engineers. To test the hypothesis at the modeling
level, we analyze the TwoUse approach with three case studies: software design
pattern, designing of ontology - based information systems, and model - driven soft-
ware languages.

 At the modeling level, we analyze the application of TwoUse in addressing
drawbacks of software design patterns and in design ontology - based information
systems. At the language level, we analyze the application of TwoUse in addressing
the transformation and matching of modeling languages into OWL.

Applying TwoUse in Ontology Engineering. In ontology engineering,
the design of ontology engineering services [170] has drawn the attention of the

8 CHAPTER 1 INTRODUCTION

ontology engineering community in the last years. However, as ontology engineering
services become more complex, current approaches fail to provide clarity and acces-
sibility to ontology engineers who need to see and understand the semantic as well
as the lexical/syntactic part of specifying ontology engineering services. Ontology
engineers use services in an intricate and disintegrated manner, which draws their
attention away from the core task and into the diverging platform details.

 From this scenario, the problem of supporting generative techniques in ontol-
ogy engineering services emerges, adding expressiveness without going into plat-
form specifi cs, i.e.,

Question IV How does one fi ll the abstraction gap between specifi cation
languages and programming languages?

 We propose a representation approach for generative specifi cation of ontology
engineering services based on model - driven engineering (MDE). In order to recon-
cile semantics with lexical and syntactic aspects of the specifi cation, we integrate
these different layers into a representation based on a joint metamodel.

 The hypothesis is that fi lling the gap between ontology specifi cation languages
and general purpose programming languages helps to improve productivity, since
ontology engineers do not have to be aware of platform - specifi c details. Moreover,
it simplifi es the tasks of maintenance and traceability because knowledge is no
longer embedded in the source code of programming languages.

 We validate our approach with three case studies of three ontology engineering
services: ontology mapping, ontology API generation, and ontology modeling.

 For ontology mapping, we present a solution for ontology translation specifi ca-
tion that intends to be more expressive than current ontology mapping languages
and less complex and granular than programming languages to address the following
question:

Question IV.A How does one fi ll the abstraction gap between ontology
mapping languages and programming languages?

 For ontology API generation, we present a model - driven solution for design-
ing mappings between complex ontology descriptions and object oriented
representations — the agogo approach — and tackle the following question:

Question IV.B What are the results of applying MDE techniques in ontology
API development?

 For ontology modeling, we present a model - driven approach for specifying
and encapsulating descriptions of ontology design patterns and address the following
problem:

Question IV.C How does one allow declarative specifi cations of templates
and tools to test these template specifi cations and realizations?

 CHAPTER 2
MODEL- DRIVEN
ENGINEERING FOUNDATIONS

 This chapter discusses the state of the art for model - driven engineering. We inspect
approaches, abstractions, and techniques constituting MDE, describe them with
respect to their concepts and relationships, and investigate the conceptual structure
that underpins MDE in this state - of - the - art review. The result is a static structural
model represented by UML class diagrams.

 2.1 INTRODUCTION

 Raising the level of abstraction is one of the basic principles of software engineering.
It eliminates complexity that is not inherent in software artifacts. The idea is to
selectively abstract away from non - fundamental aspects and to concentrate on the
essential aspects of software artifacts.

 Approaches that aim at reducing complexity have an impact upon software
productivity. In productivity models, complexity metrics compose the cost metrics
together with resources and personnel [45] .

 Model - driven engineering (MDE) is an approach that uses models, notations,
and transformation rules to raise the level of abstraction of a physical system [142]
aiming at improving productivity.

 In this chapter, we present the fundamental concepts of the model - driven
engineering structure. In Section 2.2 , we use the concept of megamodel [44] to
present a description of the structure of MDE. We use this structure to group con-
cepts around ontology technologies and model - driven technologies in Section 2.3 .

 2.2 MODEL - DRIVEN ENGINEERING STRUCTURE

 Model - driven techniques provide management, transformation, and synchronization
of software artifacts. The objective is to factorize complexity into different levels of
abstraction and concern, from high - level conceptual models down to the individual
aspects of target platforms.

 There is a consensus in the literature about the cornerstones of MDE: (i) lan-
guages comprising models that represent real - world elements, metamodels to

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

9

10 CHAPTER 2 MODEL-DRIVEN ENGINEERING FOUNDATIONS

describe the structure of models, and language semantics; and (ii) transformations
between languages. Schmidt [142] argues that model - driven engineering technolo-
gies should combine domain - specifi c modeling languages and transformation
engines to address platform complexity. For Kent [88] , MDE requires a family of
languages, transformations between languages, and a process associated with the
conception of languages and transformations. In this chapter, we concentrate on the
structural specifi cation of model - driven engineering.

 An instance of MDE is the Model - Driven Architecture (MDA) [100] , which
is based on OMG ’ s Meta - Object Facility. It frequently includes UML as its modeling
language and a common pipeline of managing and transforming models [90] : A
platform - independent model (PIM) is transformed into a platform - specifi c model
(PSM) and eventually into an executable representation (code), being the target
platform.

 Favre [44] proposes a descriptive model that specifi es the concepts that are
the cornerstones of MDE: model, metamodel, modeling language, and model trans-
formation. This descriptive model is called megamodel (Figure 2.1). We extend this
model later to illustrate the relationships between MDE concepts and ontology
technologies.

 In the following section, we analyze and describe the concepts and relations
depicted in the Figure 2.1 .

 Figure 2.1 Main Concepts of Megamodel.

2.2 MODEL-DRIVEN ENGINEERING STRUCTURE 11

 2.2.1 Models

 The notion of model accepted in MDE is that a model is a simplifi cation of a physi-
cal system. Apostel [5] uses the word “ simplifi cation ” to denote a viewpoint of a
system from a certain scale where the system is controlled with a certain purpose in
mind. This notion is aligned with Rothenberg ’ s defi nition in which a model is a
representation of the reality for a given purpose [136] .

 The UML specifi cation [117] corroborates this notion describing a model as
an abstraction of a physical system. Bezivin [13] and Favre [44] use the association
representedBy or representationOf to connect the system under study to a
model. Thus, a system can have multiple models depending on the viewpoint. For
example, developers can use the UML and Java to represent different viewpoints of
the real - world system e-shop (Figure 2.2).

 Notice that Favre specifi es the notion of a model as a relation to the system
because a system can play the role of a model. For example, a Java program can be
a model of a system and can also serve as a system for a UML model of the Java
program.

 2.2.2 Metamodels

 While models describe a specifi c abstraction of reality, metamodels are models of
languages used to defi ne models [44, 145] . For example, the structure of the UML
language is the metamodel of UML diagrams (Figure 2.3). Thus, we infer that a
given UML class diagram conforms to the UML metamodel, i.e., a model conforms
to its metamodel.

 Metamodel - based approaches are based on a staged architecture of models and
metamodels, where the structure of lower level models is defi ned by higher level
metamodels. This staged architecture defi nes a layered structure, which is applied
to defi ne domain - specifi c languages and general - purpose languages, e.g., UML.
Figure 2.4 illustrates a layered structure using UML as metamodeling language.

 Figure 2.2 Notion of RepresentationOf in Megamodel.

12 CHAPTER 2 MODEL-DRIVEN ENGINEERING FOUNDATIONS

 At the top level (M3) is situated the Meta Object Facility [111] (MOF), which
is a class - based modeling language that defi nes itself. Language specifi cations like
the UML specifi cation are viewed as (linguistic) instances [7] of the MOF situated
on the metamodel level (M2). The model level (M1) contains concrete models
defi ned by metamodels on M2. These models represent real - world systems situated
on M0.

 2.2.2.1 EMOF Metamodeling relies on constructs like package , class ,
inheritance , property , and operation . Therefore, OMG reuses common core
packages of UML 2.0 and MOF 2.0 to defi ne the essential constructs of MOF —
 EMOF. These essential constructs are reused by multiple modeling languages, query

 Figure 2.4 Layered
Architecture.

 Figure 2.3 Notion of ConformsTo in Megamodel.

2.2 MODEL-DRIVEN ENGINEERING STRUCTURE 13

languages, and transformation languages and comprise the core constructs for defi n-
ing metamodels. Figure 2.5 shows the main classes of EMOF.

 A Package contains Types or nested Packages. DataType and Class are
specializations of Type . A class contains properties and operations. An Operation
specifi es the behavioral features of classifi ers. An operation specifi es a type (Clas-
sifier), Parameters , and constraints for executing a behavior.

 2.2.2.2 Ecore Ecore is an implementation of EMOF defi ned in the Eclipse
Modeling Framework [164] . Ecore addresses practical issues regarding the structure
of EMOF. For example, while EMOF defi nes one class for defi ning properties, Ecore
defi nes two types of structural features: attributes and references. The practical
aspects inherent in Ecore make it more suitable for adoption.

 Figure 2.6 presents the main classes of Ecore. The class EModelElement
allows to tag model elements with names. EPackage is an EModelElement that
contains classifi ers and sub - packages. Properties are defi ned by references and attri-
butes as structural features. An EReference is a type of structural feature that has
as type an EClass . An EAttribute is a type of structural reference that has as type
an EDataType .

 2.2.3 Modeling Languages

 Favre defi nes the role of a language in megamodeling as an abstract system compris-
ing a set of elements [44] or a set of coordinated models [94] .

 In the realm of modeling languages, i.e., languages for defi ning models, we
identify two categories of languages according to the purpose of usage: general -
 purpose modeling languages (GPML) and domain - specifi c modeling languages
(DSML).

 General - purpose modeling languages (GPML) provide constructs to represent
multiple aspects of a system. For example, the Unifi ed Modeling Language (UML)
and the Extensible Markup Language (XML) are general - purpose modeling lan-
guages used to model a wide variety of systems.

 Figure 2.5 EMOF Classes.

14 CHAPTER 2 MODEL-DRIVEN ENGINEERING FOUNDATIONS

 In contrast to GPML, domain - specifi c modeling languages (DSML) capture
the essential concepts of a limited domain. They address specifi c applications. An
Example of DSML is the W3C HyperText Markup Language (HTML).

 According to Atkinson and K ü hne [7] , a language defi nition covers four com-
ponents: (i) an abstract syntax, realized by metamodels in MDE; (ii) a concrete
syntax that renders the concepts defi ned in the metamodel; (iii) well - formedness,
defi ned by constraints on the abstract syntax; and (iv) the semantics describing
the meaning of the concepts. For Harel and Rumpe [67, 68] , a modeling language
consists of a syntactic notation, its semantics, and semantic mappings that relate the
syntactic expressions to the semantic domain. In the next subsections, we describe
these components and illustrate them with examples.

 Figure 2.6 Ecore Structure.

2.2 MODEL-DRIVEN ENGINEERING STRUCTURE 15

 Figure 2.7 depicts the relationships and concepts for defi ning a modeling
language using the megamodel structure. The UML metamodel defi nes the model
of the e - shop domain. This model is the input of an injector that serializes the input
e - shop UML model into a textual representation of UML (e-shop.uml.text). This
textual model conforms to the EBNF grammar for UML. A mapping function con-
nects the e - shop UML model to an equivalent representation (fol-representation)
in fi rst - order logics (FOL), giving semantics to the UML language.

 2.2.3.1 Syntax The syntax provides a structure for arranging the elements of a
given language. It comprises the symbols and signs that represent the language
concepts. We identify two types of syntax: textual syntax and diagrammatic syntax.

 A textual syntax comprises elements in the form of sequences of characters.
A textual syntax defi nes the valid combinations of words and sentences. Examples
of textual notations are the Human - Usable Textual Notation (HUTN) [110] , HTML,
and XML.

 A diagrammatic syntax, in contrast, comprises elements in the form of pictorial
signs. Examples of diagrammatic notations are UML and the Business Process
Modeling Notation (BPMN) [112] .

 2.2.3.2 Abstract Syntax Model - driven engineering as promoted by the OMG
is based on UML diagrams as model descriptions. UML class diagrams are a means
for describing application domains and software systems in the instance -
 schemametaschema dimension (ISM - dimension). UML class diagrams have their
roots in entity - relationship (ER) descriptions of database schemas, on the one hand,
and in design notations for object - oriented programs, on the other.

 The OMG Meta Object Facility (MOF) is the relevant subset of UML to
describe abstract syntax during metamodeling. In other words, in model - driven
engineering, metamodels serve as abstract syntax, whereas models serve as snap-
shots of languages.

 A snapshot is the static confi guration of a system or model at a given point in
time [137] . It consists of objects, values, and links that represent the instances of a
metamodel.

 2.2.3.3 Semantics The semantics of a modeling language allows for determin-
ing the truth value of elements in the model with respect to the system being defi ned.
In other words, the semantics of a modeling language provides the meaning to its
syntactical elements by mapping them to a meaningful representation [68, 141] .
France et al. [48] and Harel and Rumpe [67] denominate the target of these map-
pings ’ semantic model or semantic domain. For Harel and Rumpe [67] , the semantic
defi nition of a language comprises a semantic domain and a semantic mapping from
the syntax to the semantic domain.

 For example, the UML specifi cation [117] defi nes the semantics of the UML
language by explaining each UML modeling concept using natural language. In a
formal approach, Berardi [12] defi nes the semantics of UML class diagrams by
mapping UML class diagram constructs to fi rst - order logic (FOL) formulas and,
more specifi cally, to its fragment description logics (see Chapter 3).

 Fi
gu

re
 2

.7

 St
ru

ct
ur

e,
 S

em
an

tic
s,

 a
nd

 S
yn

ta
x

of
 t

he
 U

M
L

 L
an

gu
ag

e.

16

www.allitebooks.com

http://www.allitebooks.org

2.2 MODEL-DRIVEN ENGINEERING STRUCTURE 17

 2.2.4 Model Transformations

 A transformation defi nition is a set of transformation rules that together describe the
conversion of one model in the source language into another related model in the
target language [90] .

 A transformation rule is a function that takes as input one or more model ele-
ments of a language and generates one or more model elements of a target language.
For example, the transformation model

uml Class x mof Class x: (?) : (?)→

 produces one MOF class for each UML class, i.e.,

uml Class Product mof Class Product: () : ()→

 The Object Management Group (OMG) defi nes a standard model transforma-
tion language within the MOF metamodeling environment: Query/View/Transforma-
tion (QVT) [113] . The call for proposals of the QVT language encouraged the
development of other transformation languages: AGG [167] , GReTL [71] , and ATL [82] .

 2.2.5 Query Languages

 In order to manipulate models, one requires a language capable of specifying query
operations. In common MOF modeling practice, the Object Constraint Language
(OCL) [116] is the textual query language used to specify such queries.

 Beyond querying, OCL may also be used to specify invariants on classes and
types in the class model, to describe pre - and post conditions on operations and
methods, and to specify initial and derived rules over a UML model.

 The OCL syntax differs from SQL and SPARQL. Indeed, SQL and SPARQL
do not require a starting point for query, i.e., it takes a global point of view. OCL,
on the other hand, takes the object - oriented point of view, starting the queries from
one given class.

 In OCL, expressions are written in the context of an instance of a specifi c class
 [116] . The reserved word self is used to denote this instance.

 OCL expressions may be used to specify the body of query operations. Since
OCL is a typed language, i.e., each OCL expression is evaluated to a value, expres-
sions may be chained to specify complex queries or invariants.

 Let us consider the example of an international e - shop system. A snippet of
the corresponding UML class diagram is presented in the Figure 2.8 .

 The class TaskCtrl is responsible for controlling the sales orders. A Sales-
Order can be a USSalesOrder or a CanSalesOrder , according to the Country
where the Customer lives.

 The operation getSalesOrder() queries the country of the customer and returns
the subclass of SalesOrder to be instantiated (either CanSalesOrder or USSale-
sOrder). Following the example mentioned above, the target operation can be
denoted by the following OCL expression:

18 CHAPTER 2 MODEL-DRIVEN ENGINEERING FOUNDATIONS

context TaskCtrl::getSalesOrder(): OclType

body :

if customer.country.name = 'USA' then

USSalesOrder

else

if customer.country.name = 'Canada' then

CanSalesOrder

endif

endif

 The example above illustrates the usage of refl ection in OCL to deliver the
right type. The usage of OCL refl ection capabilities is common in model transforma-
tions. OCL defi nes a predefi ned class called OclAny , which acts as a superclass for
every type except for the OCL pre - defi ned collection types. Hence, features of
OclAny are available on each object in every OCL expression, and every class in a
UML model inherit all operations defi ned on OclAny . We highlight two of these
operations:

 • oclIsTypeOf(typespec: OclType): Boolean : evaluates to true if the given
object is of the type identifi ed by typespec ;

 • oclIsKindOf(typespec: OclType): Boolean : evaluates to true if the object is
of the type identifi ed by typespec or one of its subtypes.

 We exemplify these operations as follows. The fi rst one evaluates to true if
we have an instance of SalesOrder and ask whether it is an instance of Sales-
Order . The second one evaluates to true if we have an instance of USSalesOrder
and ask whether it is an instance of USSalesOrder or if we have an instance of
USSalesOrder and ask whether it is an instance of SalesOrder , but not the
opposite .

 2.2.5.1 Semantics The specifi cation of OCL is given in natural language,
although an informative semantics based on [134] is part of the specifi cation. Beckert
et al. [11] propose a translation of OCL into fi rst - order predicate logics. Bucker
presents a representation of the semantics of OCL in higher - order logic [25] .

 Figure 2.8 UML Class Diagram of an E - Shop System.

TaskCtrl

process()
getSalesOrder()

CanSalesOrder USSalesOrder

SalesOrder
price

total()
taxes()
freight()

Country

Customer

10..n

+customer

+order

1

0..n

+country

+customer

2.3 TECHNICAL SPACES 19

 2.3 TECHNICAL SPACES

 The concept of megamodel as used by Favre is platform - independent. Applying this
structure into a set of technologies yields a technical space. Kurtev et al. [94] have
coined the term technical space to organize concepts and to compare sets of solu-
tions. A technical space comprises a framework for specifying models and metamod-
els, and a set of functions that operate on these models.

 A common characteristic among several technical spaces is the organization
of modeling levels. A technical space usually comprises a metametamodel (M3) that
defi nes itself and defi nes metamodels (M2). Metamodels defi ne models (M1) that
represent systems (M0). Additionally, a technical space has a set of languages associ-
ated with it. In the context of the MDE structure presented in Section 2.2 , we con-
sider two types of languages: query languages and transformation languages.

 Figure 2.9 shows the MOF Technical Space. In MOF, the metametamodel is
MOF itself and an example of metamodel is UML. The query metamodel is OCL,
whereas examples of transformation metamodels are ATL and QVT.

 Figure 2.9 MOF Technical Space.

20 CHAPTER 2 MODEL-DRIVEN ENGINEERING FOUNDATIONS

 2.4 CONCLUSION

 This chapter describes the main concepts and techniques around model - driven engi-
neering. It provides the fundamental understanding about the role of model - driven
engineering in software engineering. The contribution is a descriptive model con-
necting the main concepts of MDE that can be used to model further technical
spaces. We use the descriptive model in further chapters for organizing the concepts
and technologies presented in this book.

 CHAPTER 3
ONTOLOGY FOUNDATIONS

 Ontology technologies organize system knowledge in conceptual domains according
to its meaning. It addresses various software engineering needs by identifying,
abstracting, and rationalizing commonalities, and checking for inconsistencies
across system specifi cations. This chapter describes the state of the art of ontology
technologies. The result is an outline of the languages and services around the Web
Ontology Language. Additionally, we arrange these blocks using a model - driven
perspective.

 3.1 INTRODUCTION

 Ontologies play a fundamental role in bridging computing and human understand-
ing. The fi eld of artifi cial intelligence has been studying ontologies under multiple
perspectives like knowledge engineering and natural - language processing.

 Ontology languages have constructs similar to UML class - based modeling,
e.g., classes, properties, and data cardinalities. Indeed, ontology languages provide
various means for describing classes to the extent that explicit typing is not
compulsory.

 This chapter gives an overview of the scientifi c and technical results around
ontologies, ontology languages, and their corresponding reasoning technologies
used in model - driven engineering. We introduce the concept of ontology in
Section 3.2 .

 Section 3.3 presents the W3C standard ontology language for ontology - based
information systems — the Web Ontology Language. Section 3.4 describes ontology
services like reasoning and querying. In Section 3.6 we describe the rule language
for the semantic web.

 Figure 3.1 presents the stack of technologies described in this chapter above
in colored boxes. In Section 3.8 , we describe the relations between these technolo-
gies using technical spaces.

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

21

22 CHAPTER 3 ONTOLOGY FOUNDATIONS

 3.2 ONTOLOGY

 The word ontology has its origin in philosophy, and it denotes the philosophical
study of the nature of existence. In this sense, ontology involves identifying the
fundamental categories of things. For example, ontological categories might be used
to group objects as essential or existential, abstract or concrete.

 Computer science took the term ontology and attributed a technical meaning
to it: “ An ontology is an explicit specifi cation of a conceptualization ” [62] . Studer
et al . [166] argue that this specifi cation is also formal, i.e., an ontology is an “ explicit
and formal specifi cation of a conceptualization ” [4] .

 In the semantic web fi eld, ontologies provide shared domain conceptuali-
zations representing knowledge by a vocabulary and, typically, logical defi nitions
 [62] to model the problem domain as well as the solution domain. Developers
usually use ontologies as domain models for ontology - based information systems.

 3.2.1 Ontology Modeling

 The Web Ontology Language (OWL) [61] provides a class defi nition language for
ontologies, i.e., OWL allows for the defi nition of classes by required and implied
logical constraints on properties of their members.

 The process of modeling ontologies exhibits a couple of overlaps with the
development of conceptual models [162] . Requirements elicitation is followed by
the design phase, where classes and relationships are defi ned similarly as in a UML
class diagram. This stage, however, is followed by another step that depends on the
ontology modeling paradigm and its corresponding language.

 In the realm of description logic based ontologies [9] , the strength of ontology
modeling lies in disentangling conceptual hierarchies with an abundance of relation-
ships of multiple generalization of classes. For this purpose, description logics allow
for deriving concept hierarchies from logically, precisely defi ned class axioms,
stating necessary and suffi cient conditions of class membership.

 In the realm of logic programming - based ontologies [2] , the strength of ontol-
ogy modeling lies in a formally integrated consideration of expressive class and rule
defi nitions.

 Figure 3.1 Semantic Web Stack Covered in
This Chapter.

3.2 ONTOLOGY 23

 In both paradigms, the structure of class defi nitions may be validated by intro-
specting the model, using corresponding reasoning technology. In the fi rst model of
description logics, this is indeed the focus of its reasoning technology, while, in the
second model, the focus of the corresponding reasoning technology is on reasoning
with objects in a logical framework.

 An ontology constitutes a formal conceptual model. Hence, its core concerns,
i.e., formal defi nitions of classes and relationship, are germane to the software engi-
neering community. However, ontologies have always been used differently than
conceptual models in software and data engineering. Hence, the perspectives on
modeling and using ontologies are slightly twisted if compared to conceptual models
such as UML class diagrams.

 For the sake of illustration, Figure 3.2 depicts an incomplete specifi cation of
the example presented in the Figure 2.8 using a description logic syntax. The identi-
fi er Customer is used to declare the corresponding class (3.1) as a specialization of
Thing (T), since classes in OWL are specializations of the reserved class Thing .
The class Consumer has a restriction on property country with exactly one
Country (3.2). The class Country contains the individuals USA and CANADA (3.3).
USSalesOrder is defi ned as a subclass of a SalesOrder with at least one restric-
tion on the property country , the value range must include the country USA (3.4).
The description of the class CanSalesOrder is analogous. The intersection of both
classes is empty (⊥), i.e., they are disjoint (3.6). The class SalesOrder is equal to
the union of CanSalesOrder and USSalesOrder , i.e., it is a complete generaliza-
tion of both classes (3.7).

 Figure 3.2 E - Shop Example with Description Logic Syntax.

24 CHAPTER 3 ONTOLOGY FOUNDATIONS

 3.3 THE ONTOLOGY WEB LANGUAGE

 The language and reasoning paradigm that has been predominantly used and
researched is the family of description logic languages covered by the W3C recom-
mendation Web Ontology Language (OWL) [61] . Description logic languages allow
for capturing the schema in the “ terminological box ” (T - Box) and the objects and
their relationships in the “ assertional box ” (A - Box). The terminological box captures
knowledge about the class level, i.e., independent of a given situation.

 The sub - languages of OWL (or profi les) differ in the set of modeling con-
structs they support. Depending on the exact confi guration of allowed modeling
primitives, a profi le requires sound and complete reasoning algorithms that are
NLogSpace - Complete (OWL 2 QL), PTime - Complete (OWL 2 EL and OWL 2 RL),
NExpTime - Complete (OWL DL), or 2NExpTimeComplete (OWL 2) [181] .

 Each OWL sub - language corresponds to a given set of constructs in descrip-
tion logics. For example, OWL 2 EL corresponds to the description logic language
EL + + and OWL DL corresponds to SHOIN(D) . OWL 2 extends both and it cor-
responds to SROIQ(D) (see [9] for more about description logics).

 3.3.1 OWL 2 Syntax

 In order to save and share OWL 2 ontologies, one requires a concrete syntax for
OWL 2. There are multiple concrete syntax notations for OWL 2: RDF/XML syntax,
OWL/XML syntax, Manchester Syntax, Functional Syntax, and Turtle. Each of these
notations is suitable for a specifi c purpose. In this work, we use the OWL 2 Func-
tional Syntax due to its axiomatic nature, facilitating the analysis of the OWL 2
formal structure.

 An OWL 2 Vocabulary VO = (Vcls , Vop , VD , Vdp , Vind , Vlt) is a 6 - tuple consisting
of the following elements:

1. Vcls is a set of named classes, class expressions, and the built - in classes
owl:Thing and owl:Nothing .

2. Vop is a set of object properties, including the built - in object properties
owl:topObjectProperty and owl:bottomObjectProperty .

3. Vdp is a set of data properties, including the built - in data properties
owl:topDataProperty and owl:bottomDataProperty .

4. Vind is a set of individuals.

5. Vdt is a set of datatypes.

6. Vlt is a set of literals.

 Given the vocabulary VO , we use the following convention in Tables 3.1 to 3.4 :

 • OP indicates an object property;

 • OPE indicates an object property expression;

 • DP indicates a data property;

 • DPE indicates a data property expression;

 • C indicates a class;

3.3 THE ONTOLOGY WEB LANGUAGE 25

 TABLE 3.1 Syntax of Class Expression Axioms.

 OWL 2 Syntax Description Logic Syntax

 SubClassOf(CE1 CE2) CE1 CE2

 EquivalentClasses(CE1 ... CEn) CE1 ≡ ... ≡ CEn

 DisjointClasses(CE1 ... CEn) CE1 ... CEn ≡ ⊥
 DisjointUnion(C CE1 ... CEn) CE1 ... CEn ≡ C and CE1 ... CEn ≡ ⊥

 TABLE 3.2 Syntax of Object Property Axioms.

 OWL 2 Syntax Description Logic Syntax

 SubObjectPropertyOf(ObjectPropertyChain
(OPE1 ... OPEn) OPE)

OPE1 o ... o OPE n OPE

 SubObjectPropertyOf(OPE1 OPE2) OPE1 OPE2

 EquivalentObjectProperties(OPE1 ... OPEn) OPE1 ≡ ... ≡ OPEn

 DisjointObjectProperties(OPE1 ... OPEn) OPE1 ... OPEn ≡ ⊥
 InverseObjectProperties(OPE1 OPE2) OPE1 ≡ OPE2

 −

 ObjectPropertyDomain(OPE CE) OPE . CE

 ObjectPropertyRange(OPE CE) ∀OPE . CE

 FunctionalObjectProperty(OPE) ≤ 1 OPE

 E InverseFunctionalObjectProperty(OPE) ≤ 1 OPE −

 Refl exiveObjectProperty(OPE) OPE . Self

 E.Self Irrefl exiveObjectProperty(OPE) OPE . Self ⊥
 SymmetricObjectProperty(OPE) OPE OPE −

 AsymmetricObjectProperty(OPE) OPE ¬OPE −

 TransitiveObjectProperty(OPE) OPE +

 TABLE 3.3 Syntax of Data Property Axioms.

 OWL 2 Syntax Description Logic Syntax

 SubDataPropertyOf(DPE1 DPE2) DPE1 DPE2

 EquivalentDataProperties(DPE1 ... DPEn) DPE1 ≡ ... ≡ DPEn

 DisjointDataProperties(DPE1 ... DPEn) DPE1 ... DPEn ≡ ⊥
 DataPropertyDomain(DPE CE) DPE . Literal DR

 DataPropertyRange(DPE DR) Literal ∀DPE . DR

 FunctionalDataProperty(DPE) Literal ≤ 1 DPE

 DatatypeDefi nition(DT DR) DT ≡ DR

 • CE indicates a class expression;

 • DT indicates a datatype;

 • DR indicates a data range;

 • a indicates an individual (named or anonymous);

 • lt indicates a literal.

26 CHAPTER 3 ONTOLOGY FOUNDATIONS

 TABLE 3.5 Syntax of Class Expressions.

 OWL 2 Syntax Description Logic Syntax

 ObjectIntersectionOf(CE1 ... CEn) CE1 ... CEn

 ObjectUnionOf(CE1 ... CEn) CE1 ... CEn

 ObjectComplementOf(CE) ¬CE

 ObjectOneOf(a1 ... an) { a1 , ... , an }

 ObjectSomeValuesFrom(OPE CE) OPE . CE

 ObjectAllValuesFrom(OPE CE) ∀OPE . CE

 ObjectHasValue(OPE a) OPE .{ a }

 ObjectHasSelf(OPE) OPE.Self

 ObjectMinCardinality(n OPE) ≥n OPE

 ObjectMaxCardinality(n OPE) ≤n OPE

 ObjectExactCardinality(n OPE) =n OPE

 ObjectMinCardinality(n OPE CE) ≥n OPE.CE

 ObjectMaxCardinality(n OPE CE) ≤n OPE.CE

 ObjectExactCardinality(n OPE CE) =n OPE.CE

 DataSomeValuesFrom(DPE1 ... DPEn DR) { DPE1 .DR } … { DPEn .DR }

 DataAllValuesFrom(DPE1 ... DPEn DR) { ∀DPE1 .DR } … { ∀DPEn .DR }

 DataHasValue(DPE lt) DPE .{ lt }

 DataMinCardinality(n DPE) ≥n DPE

 DataMaxCardinality(n DPE) ≤DPE

 DataExactCardinality(n DPE) =n DPE

 DataMinCardinality(n DPE DR) ≥n DPE.DR

 DataMaxCardinality(n DPE DR) ≤n DPE.DR

 DataExactCardinality(n DPE DR) =n DPE.DR

 In order to illustrate the equivalences between OWL 2 and description logics,
we present a list of OWL 2 axioms with their corresponding representation in
description logics. Tables 3.1 , 3.2 , and 3.3 present lists of axioms for class expres-
sions, object properties, and data properties. Table 3.4 presents the list of assertions,
Table 3.5 the list of class expressions, and Table 3.6 shows the syntax of data ranges.

 TABLE 3.4 Syntax of Assertions.

 OWL 2 Syntax Description Logic Syntax

 SameIndividual(a1 ... an) a1 ... an

 DifferentIndividuals(a1 ... an) a1 ≠ ... ≠ an

 ClassAssertion(CE a) CE (a)

 ObjectPropertyAssertion(OPE a1 a2) OPE (a1 , a2)

 NegativeObjectPropertyAssertion(OPE a1 a2) ¬OPE (a1 , a2)

 DataPropertyAssertion(DPE a lt) DPE (a1 , lt)

 NegativeDataPropertyAssertion(DPE a lt) ¬DPE (a1 , lt)

www.allitebooks.com

http://www.allitebooks.org

3.3 THE ONTOLOGY WEB LANGUAGE 27

 3.3.2 OWL 2 Semantics

 OWL 2 corresponds to the description logic SROIQ(D) [75] and has a model -
 theoretic semantics defi ned by interpretations [105] . Model - theoretic semantics
allows for interpreting unambiguously the legitimate expressions of a given lan-
guage; for evaluating the truth of a language statement under a particular interpreta-
tion; and for carrying out automated reasoning with these statements [43] .

 An interpretation is a pair I = (ΔI , · I), where ΔI is the domain and · I is the
interpretation function that satisfi es the conditions described in Tables 3.7 – 3.11 . We
say an interpretation I satisfi es an ontology O if and only if it satisfi es every axiom
in O .

 3.3.3 World Assumption and Name Assumption

 Analyzing the semantics of OWL, we can see that OWL does not assume unique
names for individuals. For example, according to the defi nition of functional proper-
ties in Table 3.8 (∀x , y1 , y2 : (x , y1) ∈ (OPE) I and (x , y2) ∈ (OPE) I implies y1 = y2),
for the two pairs of functional object property assertions p (x , y1) and p (x , y2), it is
inferred that y1 and y2 are the same individual. The knowledge base becomes incon-
sistent only if it is asserted that y1 and y2 are different individuals (y1 ≠ y2).

 In contrast, according to the semantics of UML class - based modeling, the
model would be inconsistent since it is assumed by default that y1 and y2 are different
individuals.

 Another important assumption is whether the set of instances is considered
complete or not (world assumption). The underlying semantics of UML class - based

 TABLE 3.6 Syntax of Data Ranges.

 OWL 2 Syntax Description Logic Syntax

 DataIntersectionOf(DR1 ... DRn) DR1 ... DRn

 DataUnionOf(DR1 ... DRn) DR1 ... DRn

 DataComplementOf(DR) ¬DR

 DataOneOf(lt1 ... ltn) { lt1 , ... , ltn }

 TABLE 3.7 Semantics of Class Expression Axioms.

 Description Logic Syntax Semantics

CE1 CE2 (CE1) I ⊆ (CE2) I

CE1 ≡ ... ≡ CEn (CEj) I = (CEk) I for each 1 ≤ j ≤ n and each 1 ≤ k ≤ n

CE1 ... CEn ≡ ⊥ () ()CE CEj k∩ = /0 for each 1 ≤ j ≤ n and each
1 ≤ k ≤ n such that j ≠ k

CE1 ... CEn ≡ C and
CE1 ... CEn ≡ ⊥

 (CE1) I ∪ ... ∪ (CEn) I = (C) I and () ()CE CEj k∩ = /0 for
each 1 ≤ j ≤ n and each 1 ≤ k ≤ n such that j ≠ k

28 CHAPTER 3 ONTOLOGY FOUNDATIONS

 TABLE 3.9 Semantics of Data Property Axioms.

 Description Logic Syntax Semantics

DPE1 DPE2 (DPE1) I ⊆ (DPE2) I

DPE1 ≡ ... ≡ DPEn (DPEj) I = (DPEk) I for each 1 ≤ j ≤ n and each 1 ≤ k ≤ n

DPE1 ... DPEn ≡ ⊥ () ()DPE DPEj k∩ = /0 for each 1 ≤ j ≤ n and each 1 ≤ k ≤ n
such that j ≠ k

DPE . Literal DR ∀x , y : (x , y) ∈ (DPE) I implies x ∈ (DR) I

Literal ∀DPE . DR ∀x , y : (x , y) ∈ (DPE) I implies y ∈ (DR) I

Literal ≤ 1 DPE ∀x , y1 , y2 : (x , y1) ∈ (DPE) I and (x , y2) ∈ (OPE) I implies y1 = y2

DT ≡ DR (DT) I = (DR) I

 TABLE 3.10 Semantics of Assertions.

 Description Logic Syntax Semantics

a1 ... an (aj) I = (ak) I for each 1 ≤ j ≤ n and each 1 ≤ k ≤ n

a1 ≠ ... ≠ an (aj) I ≠ (ak) I for each 1 ≤ j ≤ n and each 1 ≤ k ≤ n such that j ≠ k

CE (a) (a) I ∈ (CE) I

OPE (a1 , a2) ((a1) I , (a2) I) ∈ (OPE) I

¬OPE (a1 , a2) ((a1) I , (a2) I) ∉ (OPE) I

DPE (a1 , lt) ((a1) I , (lt) I) ∈ (DPE) I

¬DPE (a1 , lt) ((a1) I , (lt) I) ∉ (DPE) I

 TABLE 3.8 Semantics of Object Property Axioms.

 Description Logic Syntax Semantics

OPE1 o ... o OPE n OPE ∀y0 , ... , yn : (y0 , y1) ∈ (OPE1) I and ... and (yn − 1, yn)
∈ (OPEn) I implies (y0 , yn) ⊆ (OPE) I

OPE1 OPE2 (OPE1) I ⊆ (OPE2) I

OPE1 ≡ ... ≡ OPEn (OPEj) I = (OPEk) I for each 1 ≤ j ≤ n and each 1 ≤ k ≤ n

OPE1 ... OPEn ≡ ⊥ () ()OPE OPEj k∩ = /0 for each 1 ≤ j ≤ n and each
1 ≤ k ≤ n such that j ≠ k

OPE . CE ∀x,y : (x,y) ∈ (OPE) I implies x ∈ (CE) I

 ∀OPE . CE ∀x,y : (x,y) ∈ (OPE) I implies y ∈ (CE) I

 ≤ 1 OPE ∀x,y1 , y2 : (x,y1) ∈ (OPE) I and (x,y2) ∈ (OPE) I implies
y1 = y2

 ≤ 1 OPE − ∀x1 , x2 , y , : (x1 , y) ∈ (OPE) I and (x2 , y) ∈ (OPE) I implies
x1 = x2

 OPE . Self ∀x : x ∈ ΔI implies (x , x) ∈ (OPE) I

OPE . Self ⊥ ∀x : x ∈ ΔI implies (x , x) ∉ (OPE) I

OPE OPE − ∀x , y : (x , y) ∈ (OPE) I implies (y , x) ∈ (CE) I

OPE ¬OPE − ∀x , y : (x , y) ∈ (OPE) I implies (y , x) ∉ (CE) I

OPE + ∀x , y , z : (x , y) ∈ (OPE) I and (y , z) ∈ (OPE) I implies
(x , z) ∈ (CE) I

3.3 THE ONTOLOGY WEB LANGUAGE 29

modeling assumes that the set of instances of a given model is complete, i.e., the
set of instances has exactly one interpretation. In this one interpretation, the classes
and relations in the model are interpreted by the objects and tuples in the instance.
Therefore, the lack of information in the set of objects and values that are an instance
of a UML based - class model is interpreted as negative information, since there is
only one interpretation and everything that does not belong to this interpretation
belongs to its complement (closed - world assumption).

 In contrast, OWL assumes incomplete knowledge by default. The set of indi-
viduals, literals, and property assertions has many different interpretations. There-
fore, the absence of information in this set is only the evidence of lack of knowledge
(open - world assumption).

 Each of these approaches (OWA and CWA) has its proper place. OWA serves
to describe knowledge in an extensible way, since OWL is monotonic. The OWA is
suitable to represent the core knowledge of a domain.

 TABLE 3.11 Semantics of Class Expression.

 Description Logic Syntax Semantics

CE1 ... CEn (CE1) I ∩ ... ∩ (CEn) I

CE1 ... CEn (CE1) I ∪ ... ∪ (CEn) I

¬CE ΔI (CE) I

 { a1 , ... , an } {(a1) I , ... , (an) I }

OPE . CE { x| y : (x , y) ∈ (OPE) I and y ∈ (CE) I }

∀OPE.CE {x |∀y : (x , y) ∈ (OPE) I implies y ∈ (CE) I }

OPE .{ a } { x| (x , (a) I) ∈ (OPE) I }

OPE.Self { x| (x , x) ∈ (OPE) I }

≥n OPE { x|# { y| (x , y) ∈ (OPE) I } ≥ n }

≤n OPE { x|# { y| (x , y) ∈ (OPE) I } ≤ n }

=n OPE { x|# { y| (x , y) ∈ (OPE) I } = n }

≥n OPE.CE { x|# { y| (x , y) ∈ (OPE) I and y ∈ (CE) I } ≥ n }

≤n OPE.CE { x|# { y| (x , y) ∈ (OPE) I and y ∈ (CE) I } ≤ n }

=n OPE.CE { x|# { y| (x , y) ∈ (OPE) I and y ∈ (CE) I } = n }

 { DPE1 . DR } … { DPEn .DR } { x| y1 , ... , yn : (x, y k) ∈ (DPEk) I for each
1 ≤ k ≤ n and (y1 , ... , yn) ∈ (DR) I }

 { ∀DPE1 . DR } … { ∀DPEn . DR } { x|∀y1 , ... , yn : (x , yk) ∈ (DPEk) I for each
1 ≤ k ≤ n and (y1 , ... , yn) ∈ (DR) I }

DPE .{ lt } { x| (x , (lt) I) ∈ (DPE) I }

≥n DPE { x|# { y| (x , y) ∈ (DPE) I } ≥ n }

≤n DPE { x|# { y| (x , y) ∈ (DPE) I } ≤ n }

=n DPE { x|# { y| (x , y) ∈ (DPE) I } = n }

≥n DPE.DR { x|# { y| (x , y) ∈ (DPE) I and y ∈ (DR) I } ≥ n }

≤n DPE.DR { x|# { y| (x , y) ∈ (DPE) I and y ∈ (DR) I } ≤ n}

=n DPE.DR { x|# { y| (x , y) ∈ (DPE) I and y ∈ (DR) I } = n }

30 CHAPTER 3 ONTOLOGY FOUNDATIONS

 Figure 3.3 Closing the Domain of E - Shop with OWL Axioms.

 Closed - world assumption is appropriate for defi ning integrity constraints and
validation based on negation as failure (NAF). The negation as failure inference
allows for deriving the negation of a proposition if it is not possible to obtain the
affi rmation of this proposition.

 Let us use the example depicted in Table 3.2 . We consider the following
instances and property assertions: country (JOHN , USA), country (HANS , CANADA).
Under the CWA, querying the ontology for customers who are not American (Cus-
tomer ¬ country.{ USA }?) produces HANS . Since there is no fact about HANS being
American, it is derived that he is not. The same query under OWA would produce
no results, since there are no facts asserting that HANS is not American. To achieve
the same result, we need to close the domain.

 There are OWL constructs that can be used to constrain the interpretation to
a defi ned set of individuals, i.e., to close the domain (closed - domain assumption).
Figure 3.3 shows axioms used to close the domain of the ontology presented in the
Figure 3.2 . One may declare that the set of all existing individuals comprises { HANS ,
JOHN , ORDER1 , USA , CANADA } (Line 3.16). Moreover, because of the non - unique
name assumption, we have to assert that all individuals are different from each other
(Line 3.17). Additionally, we declare that the classes SalesOrder , Customer and
Country are disjoint from each other (Line 3.18) as well as the subclasses of Sale-
sOrder are (Line 3.19).

 By adding these axioms, we can also deliver the same results of CWA using
OWA in the query aforementioned. We can infer that HANS does not live in USA ,
since HANS is a Customer , a Customer must live in exactly one country (3.2), HANS
lives in CANADA , and CANADA is different from USA .

 However, closing the domain does not imply CWA because NAF is not in
place. For example, if we remove the object property assertion Country (HANS ,
CANADA) and ask the same query, using CWA, the result is still HANS because the
lack of information about HANS . By using OWA, there are no results, since the lack
of information about HANS is not enough to infer that he is not American.

 Research in the fi eld of combining description logics and logic programming
 [103] provides solutions to support OWL reasoning with CWA. Different strategies
have been explored like adopting an epistemic operator [35, 87] or extending OWL
with the specifi cation of external predicates that implements the idea of negation as
failure [131] .

 The CWA and OWA are not contradictory. Recent results [104] show that it
is possible to control the degree of incompleteness in an ontology obtaining a more
versatile formalism. Such “ under - specifi cation ” can be used to allow reuse and

3.4 ONTOLOGY SERVICES 31

extension and does not mean insuffi ciency. Again using our example, suppose we
defi ne an incomplete list of countries part of the North American Free Trade Agree-
ment (NAFTA) comprising only Canada and USA, because these are the countries
the store ships to, and we do not need to know the others. If the store starts shipping
to Mexico at some point in time, a query about whether Mexico is a member of
NAFTA returns undefi ned , which is reasonable, providing that our list of NAFTA
countries is incomplete and does not include Mexico.

 3.4 ONTOLOGY SERVICES

 Ontology - Based Information Systems [170] provide users with a set of functional-
ities to manage ontologies — ontology services.

 Tran et al . [170] described a set of ontology services for supporting ontology
engineering. In this book, we concentrate on the following services: reasoning and
querying.

 3.4.1 Reasoning Services

 Reasoning services are services provided by reasoning systems with respect to the
ontology. Standard reasoning services are services available in all reasoning systems,
whereas non - standard reasoning services are extensions of basic reasoning
services.

 The standard reasoning services for TBox are satisfi ability and subsumption.
A class C is unsatisfi able (C ⊥) with respect to an ontology O if C is empty (does
not have any instances) in all models of O . Satisfi ability checking is useful for veri-
fying whether an ontology is meaningful, i.e., whether all classes are instantiable.

 Subsumption is useful to hierarchically organize classes according to their
generality. A class C is subsumed by another class D with respect to an ontology O if
the set denoted by C is a subset of the subset denoted by D for every model of O .

 The standard reasoning services for ABox are instance checking, consistency,
realization, and retrieval. Instance checking proves whether a given individual i
belongs to the set described by the class C . An ontology is consistent if every indi-
vidual i is an instance of only satisfi able classes. The realization service identifi es
the most specifi c class a given individual belongs to. Finally, the retrieval service
identifi es the individuals that belong to a given concept.

 3.4.2 Querying

 Querying ontologies is a research fi eld that comprises multiple techniques and lan-
guages. We limit the scope of our analysis to two languages, conjunctive query and
the SPARQL - like language SPARQL - DL. We address conjunctive queries because
they have been the querying mechanism for description logic - based knowledge
bases. The reason for using SPARQL is that it is a W3C standard query language
 [69] , and it includes the defi nition of graph pattern matching for OWL 2 Entailment
Regime [55] .

32 CHAPTER 3 ONTOLOGY FOUNDATIONS

 3.4.2.1 Conjunctive Query Conjunctive queries correspond to the conjunc-
tive existential subset of fi rst - order logic formulas, i.e., disjunction (), negation
(¬), or universal quantifi cation (∀) are not allowed. The body of a conjunctive query
consists of one or more atoms binding variables or literal values to class expressions
or property expressions in the ontology [77] .

 For example, the query

Q x y Customer x hasOrder x y(,) : () (,)− ∧

 is a query for any instance of the concept Customer (x is a distinguished variable)
that have some order (y is a non - distinguished variable).

 Let VO = (Vcls , Vop , Vdp , Vind , VD , Vlit) be an OWL vocabulary. Let
x ≡ { y1 , . . . , yn } and y ≡ { x1 , . . . , xn } be sets of distinguished and non - distinguished
variables. A conjunctive query Q (si) is a conjunction of atoms in the form:

Q s P s P ci i i i i() () ()← � �∪
 where

 • P ∈ Vcls ∪ Vop ∪ Vdp ∪ VD

 • s ≡ y ∪ x

 • c ∈ Vind ∪ Vlit

 An answer of a conjunctive query Q w.r.t. ontology is an assignment σ of
individuals to distinguished variables, such that I |= Q (xσ , y).

 3.4.2.2 SPARQL SPARQL 1.0 [69] is the triple - based W3C standard query
language for RDF graphs. The semantics of SPARQL 1.0 is based on graph pattern
matching and does not take into account OWL, although the specifi cation allows for
extending the SPARQL basic graph matching. SPARQL 1.1 [69] will address this
problem by specifying an OWL entailment regime for SPARQL [55] .

 Sirin and Parsia [154] have done preliminary work on answering full SPARQL
queries on top of OWL ontologies on SPARQL - DL. Next, we describe the abstract
syntax of SPARQL - DL and its semantics.

SPARQL-DL Abstract Syntax. The abstract syntax of SPARQL - DL com-
prises basically the extension of the OWL abstract syntax to cover the usage of vari-
ables and blank nodes for classes, properties, individuals, and literals. Let VO = (Vcls ,
Vop , Vdp , Vap , Vind , VD , Vlit) be an OWL vocabulary. Let Vbnode and Vvar be the set
of blank nodes and set of variables. A SPARQL - DL query atom q is of the form:

q ← Type(a, C) | PropertyValue(a, p, v) | SameAs(a, b) |

DifferentFrom(a, b) |

ClassExpressionAxioms(CE1, . . . , CEn) |

ObjectPropertyAxioms(OPE1, . . . , OPEn) |

DataPropertyAxioms(DPE) | Annotation(s, p a,o)

where a , b ∈ Vind ∪ Vbnode ∪ Vvar , v ∈ Vind ∪ Vlit ∪ Vbnode ∪ Vvar ,
p ∈ Vop ∪ Vdp ∪ Vvar , CE ∈ Vcls ∪ Vvar , s ∈ Vcls ∪ Vop ∪ Vdp ∪ Vap ∪ Vind ∪ VD ,

3.5 ONTOLOGY ENGINEERING SERVICES 33

pa ∈ Vap , o ∈ Vcls ∪ Vop ∪ Vdp ∪ Vap ∪ Vind ∪ VD ∪ Vlit . A SPARQL - DL query Q is
a fi nite set of SPARQL - DL query atoms and the query is interpreted as the conjunc-
tion of the elements in the set.

 For example, the query

Type(?x, ObjectHasValue(country, USA))

returns all individuals that have the individual USA as value of the property
country .

 The semantics of SPARQL - DL extends the semantics of OWL to provide
query evaluation. We say that there is a model of the query Q = q1 . . . qn

(I |= σ Q) with respect to an evaluation σ iff I |= σ q i for every i = 1, . . . , n .
 A solution to a SPARQL - DL query Q with respect to an OWL ontology O is

a variable mapping μ : Vvar → Vuri ∪ Vlit such that O |= μ (Q).

 3.5 ONTOLOGY ENGINEERING SERVICES

 On top of core ontology services, ontology engineers count on functionalities to
support the ontology development life cycle [170] . Two ontology engineering ser-
vices are particular useful for application in UML class - based modeling: explanation
and ontology matching.

 3.5.1 Explanation

 Users rely on reasoning services for classifi cation and consistency checking.
However, in case of inconsistencies in ontologies with a large amount of classes,
users need to identify which constructs are causing the inconsistencies. Therefore,
research on explanations of inferred assertions is gaining attention.

 Explanations can be seen as a form of debugging ontologies. It consists of
identifying and computing justifi cations, i.e., the set of axioms causing the
subsumption.

 There are distinguishing methods for computing a simple justifi cation or all
justifi cations [83, 84] .

 3.5.1.1 Black Box Method for Single Justifi cation The algorithm of a black -
 box technique for computing a justifi cation comprises two steps. Firstly, axioms of
an ontology O are inserted into a new ontology O′ until a class C becomes unsatisfi -
able with regard to O′ . Secondly, irrelevant axioms are pruned until concept C
becomes satisfi able, i.e., a single minimal justifi cation is achieved.

 3.5.1.2 Computing All Justifi cations Once a single justifi cation is achieved,
one requires other techniques to compute the remaining justifi cations. Please refer
to Kalyanpur et al. [84] for a description of a variation of the Hitting Set Tree (HST)
algorithm [129] for fi nding all justifi cations.

34 CHAPTER 3 ONTOLOGY FOUNDATIONS

 3.5.2 Ontology Matching

 Ontology matching is the discipline responsible for studying techniques for reconcil-
ing multiple resources on the web. It comprises two steps: matching and determining
alignments and the generation of a processor for merging and transforming [38] .
Matching identifi es the correspondences. A correspondence for two ontologies A and
B is a quintuple, including an id, an entity of ontology A , an entity of ontology B , a
relation (equivalence, more general, disjointness), and a confi dence measure. A set
of correspondences forms an alignment. Correspondences can be done at the schema -
 level (metamodel) and at the instance - level (model).

 Matchings can be based on different criteria: name of entities, structure (rela-
tions between entities, cardinality), or background knowledge like existing ontolo-
gies or wordnet. Techniques can be string - based or rely on linguistic resources like
wordnet.

 Furthermore, matchings are established according to the different structures
that are compared. There are three techniques for comparing structures: internal
structure comparison, relational structure comparison, and extensional techniques.
Internal structure comparison includes the comparison of property, key, datatype,
domain, and multiplicities. Relational structure comparison comprises the compari-
son of the taxonomic structure between the ontologies.

 Finally, the extensional techniques cover the usage of extensional information,
e.g., formal concept analysis for comparison.

 3.6 RULES

 Efforts in extending the expressiveness of the OWL language has led to the combi-
nation of OWL with the unary/binary Datalog sublanguages of RuleML [18] : The
Semantic Web Rule Language (SWRL) [76] .

 A drawback of SWRL rules is that they are undecidable in general. Never-
theless, Motik et al. have identifi ed the decidable subset of OWL, usually called
description logic safe rules [107] . Although a syntax for description logic safe
rules is not part of the OWL 2, standard existing work [54] defi nes such a syntax
which is supported by the de facto standard OWL application program interface
(OWL API) [72] . Thus, engineers can use description logic safe rules over reasoners
that implement the tableau algorithm for description logic safe rules extension
to OWL.

 A rule comprises an antecedent and a consequent. Antecedents and conse-
quents are composed by a set of atoms. An atom has the form P (x) where P can be
a class expression, data range, object property expression, data property expression,
sameAs construct, differentFrom construct, or built - ins and x are variables or
named individuals.

 The model - theoretic semantics for SWRL extends the semantics of OWL [105]
to defi ne extensions of OWL interpretations that map variables to elements of the
ontology (bindings). Hence, an interpretation satisfi es a rule iff every binding that
satisfi es the antecedent also satisfi es the consequent [76] .

3.7 METAMODELS FOR ONTOLOGY TECHNOLOGIES 35

 3.7 METAMODELS FOR ONTOLOGY TECHNOLOGIES

 The defi nition of metamodel for ontology technologies enables the specifi cation of
model transformations of software engineering artifacts into OWL - related lan-
guages. For example, the transformation of UML class diagrams into OWL uses
transformation rules based on the metamodel of both languages. In the next subsec-
tions, we give an overview of existing metamodels for OWL - related specifi cations.

 3.7.1 OWL Metamodels

 The following section presents a short description of the most prominent OWL
metamodels, namely the OMG OWL Metamodel [114] , the NeOn OWL Metamodel
 [23] , and the W3C OWL 2 Metamodel [106] .

 We do not to describe these metamodels completely. Instead, we concentrate
on two central constructs: classes and properties. Please refer to the citations for
more details.

OMG OWL Metamodel. The OMG OWL Metamodel is part of the OMG
Ontology Defi nition Metamodel [114] . It has a large number of classes, since it
imports the OMG RDFS Metamodel . Thus, some relations between classes are
described in the RDFS Metamodel and reused in the OWL Metamodel.

 For example, Figures 3.4 and 3.5 depict the class description diagram and the
properties diagram, respectively. The domain and range of properties are specifi ed
in the RDFS Metamodel, depicted in Figure 3.6 .

 Figure 3.4 OWL Class Descriptions of the OMG OWL Metamodel [114] .

36 CHAPTER 3 ONTOLOGY FOUNDATIONS

 The OMG Metamodel has public acceptance as standard and popularity. Nev-
ertheless, the OMG Metamodel introduces unnecessary complexity in dealing with
RDF without any gain. Furthermore, the OMG Metamodel does not provide support
for OWL 2.

NeOn OWL Metamodel. The NeOn Metamodel [23] is a concise metamodel
able to cover the OWL - DL functional syntax. Figures 3.7 and 3.8 depict the OWL
class hierarchy and the property diagram, respectively. The relationship between
Class and Property is direct, since the NeOn OWL Metamodel does not provide
support for RDFS.

 Figure 3.6 RDFS Properties of the OMG OWL Metamodel [114] .

 Figure 3.5 OWL Properties of the OMG OWL Metamodel [114] .

www.allitebooks.com

http://www.allitebooks.org

3.7 METAMODELS FOR ONTOLOGY TECHNOLOGIES 37

 Figure 3.7 OWL Class Descriptions of the NeOn Metamodel.

 Figure 3.8 OWL Properties of the NeOn Metamodel.

38 CHAPTER 3 ONTOLOGY FOUNDATIONS

 Figure 3.9 OWL Class Descriptions of the OWL 2 Metamodel.

 The NeOn OWL Metamodel is smaller on the number of classes and simpler,
since it is not attached to the RDF Metamodel. However, the NeOn Metamodel does
not cover OWL 2 constructs.

W3C OWL 2 Metamodel. Improvements in the OWL language led the
W3C OWL Working Group to publish working drafts of a new version of OWL:
OWL 2 [106] . OWL 2 is fully compatible with OWL - DL and extends the latter with
limited complex role inclusion axioms, refl exivity and irrefl exivity, role disjointness,
and qualifi ed cardinality restrictions.

 The OWL 2 Metamodel is considerably different from the aforementioned
metamodels for OWL. Constructs like Axiom and OWLEntity play central roles and
associations between classes and properties are done by axioms. Figures 3.9 and
 3.10 exemplify such constructs.

SWRL Metamodel. The SRWL Metamodel (Figure 3.11) is an extension of
the OWL 2 Metamodel to provide support for OWL Rules. Brockmans et al . [21]
have defi ned a Metamodel for SWRL rules.

 In the SWRL Metamodel, a Rule is a subclass of OWLAxiom , which is defi ned
as an element of an Ontology . A Rule contains an Antecedent and a Conse-
quent , and those contain atoms. An Atom factors out OWL 2 axioms that can be
used in SWRL rules like OWLClass and ObjectProperty.

3.7 METAMODELS FOR ONTOLOGY TECHNOLOGIES 39

 Figure 3.10 OWL Properties of the OWL 2 Metamodel.

 Figure 3.11 Snippets of the SWRL Metamodel and the Connections with the OWL
Metamodel.

40 CHAPTER 3 ONTOLOGY FOUNDATIONS

 Figure 3.12 Snippets of the SPARQL Metamodel.

 3.7.2 SPARQL Metamodel

 In addition to OWL and SWRL, we capture the structure of the SPARQL language
using a metamodel. Since the SPARQL specifi cation does not recommend a struc-
tural specifi cation of the SPARQL language, we have designed the SPARQL
Metamodel based on the SPARQL EBNF Syntax.

 Figure 3.12 presents the main classes of the SPARQL Metamodel. A SPARQL
query comprises a prologue, where namespaces are declared, and the query body.
There are multiple types of SPARQL queries: DESCRIBE, CONSTRUCT, SELECT,
and ASK.

3.8 ONTOLOGICAL TECHNICAL SPACES 41

 SPARQL queries have a WHERE clause, where the conditions are defi ned in
the form of graph pattern. A graph pattern contains a triple block of subjects, proper-
ties, and objects. In SPARQL queries, variables and blank nodes may occur in any
position of the triples.

 3.8 ONTOLOGICAL TECHNICAL SPACES

 In order to organize the concepts presented in this chapter, we use the notion of
technical spaces presented in Chapter 2 . Figure 3.13 presents the description logics
technical space.

 The description logics technical space uses the description logic terminology
as schema for defi ning knowledge bases as well as the SPARQL - DL or the conjunc-
tive query vocabulary for defi ning queries. Query models are representations of
evaluation functions that map variables into elements of a knowledge base.

 The description logics technical space is an abstract technical space which
is realized by the serialization of text fi les. OWL includes a set of concrete
syntax notations for modeling OWL ontologies underpinned by description logics.
Figure 3.14 depicts the relationships between OWL and description logics under the

 Figure 3.13 The Description Logics Technical Space.

42 CHAPTER 3 ONTOLOGY FOUNDATIONS

 Figure 3.15 Model - Driven Viewpoint of Ontology Technologies.

 Figure 3.14 Relation between the EBNF Technical Space and the Description Logics
Technical Space.

3.9 CONCLUSION 43

model - driven structure. The Java language is used to create Java programs that
realize the idea of a reasoner and of a query engine. OWL reasoners take as input
an OWL ontology written using, e.g., the OWL 2 Functional Syntax and generate a
knowledge base in memory for applying description logic algorithms. The same
principles apply to query engines.

 As defi ned in Section 3.7 , there exist multiple MOF Metamodels for ontology
technologies and these are the main artifacts for model - driven engineering. Figure
 3.15 depicts ontology technologies defi ned based on three technical spaces: MOF,
EBNF, and description logics technical space. MOF - based models of OWL ontolo-
gies and queries are defi ned using ontology - related MOF Metamodels. These models
are serialized using projectors that generate textual representations of ontologies and
queries. The textual fi le is the input artifact for reasoners, query engines, and ontol-
ogy services.

 3.9 CONCLUSION

 This chapter describes the main technologies of the semantic web stack related to
ontology technologies. Additionally, we group languages and techniques according
to the model - driven engineering structure. The contribution is a model - driven view-
point of ontology technologies. We refer to these concepts and techniques later as
we describe the integration with model - driven engineering.

 CHAPTER 4
MARRYING ONTOLOGY AND
MODEL- DRIVEN ENGINEERING

 In this chapter, we present a literature review and describe a domain analysis of
ontological technical spaces and MOF technical space, explaining the features of
the different paradigms. We analyze their similarities and describe frequently used
patterns for transformations between instantiations of metamodeling technical spaces
and ontological technical spaces. 1

 4.1 INTRODUCTION

 Ontology technologies and model - driven engineering have distinct foci. For example,
MOF targets automating the management and interchange of metadata, whereas
knowledge representation focuses on semantics of the content and on automated
reasoning over that content [49] .

 While the focus of these communities is somewhat different, the following
question arises: What are the commonalities and variations around ontology tech-
nologies and model - driven engineering?

 MDE can be based on the MOF Technical Space (MMTS) (cf. Section 2.3) as
well as on the Ontological Technical Space (OTS) (cf. Section 3.8). Figure 4.1
illustrates an example indicating the use of OTSs in the MDE process. The classical
MDE transformations, residing in the MOF technical space, are extended by further
transformations, making use of OTSs.

 Further transformation into other technical spaces may provide additional
analysis and implementation support that is not as effi ciently available in metamod-
eling technical spaces. Current MDE uses semi - formal metamodels instead of formal
specifi cation languages as support for describing models [168] . In Figure 4.1 , EMOF
is transformed into an ontological representation in OWL, e.g., for model checking.
The resulting ontology describes a submodel of EMOF that enables logic - based
model analysis and serves as knowledge base for a reasoner.

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

 1 This chapter contains work from the paper “ On Marrying Ontological and Metamodeling Technical
Spaces ” presented at ESEC - FSE ’ 07 [150] and EU STReP MOST Deliverable D1.1 “ Report on Transfor-
mation Patterns ” [152] .

44

4.2 SIMILARITIES BETWEEN OWL MODELING AND UML CLASS-BASED MODELING 45

 In order to improve the understanding of the space composed by MMTS and
OTS (MMTS + OTS), we compare MMTS + OTS approaches using a feature model
and validate the model offering a survey and categorization of a number of existing
approaches.

 The chapter is organized as follows: Section 4.2 defi nes basic similar concepts
between UML class - based modeling and OWL modeling. Section 4.3 presents an
understanding of the domain in the form of a feature model. In Section 4.4 , the
model categorizing related approaches is applied.

 4.2 SIMILARITIES BETWEEN OWL MODELING
AND UML CLASS - BASED MODELING

 Despite having distinct purposes, OTS and MMTS share similar constructs. Recent
approaches presented similarities between MOF and RDF [53] , between OWL/RDF
and Object - Oriented Languages [92] , and between UML and OWL [114, 42] . The
features are summarized in Table 4.1 . For the subtleties, please refer to the cited
papers.

 These similarities allow for translating UML class - based modeling into
description logics, which gives UML class - based modeling a model - theoretic seman-
tics. For example, the work of Berardi et al. [12] investigates the translation of UML
class diagrams into D Rifd , an expressive yet decidable description logic.

 Figure 4.1 Marrying MMTS and OTS.

 TABLE 4.1 OTS and MMTS : Comparable Features.

 UML Class - Based Modeling OWL

 Package Ontology

 Class Class

 Instances and attribute values Individuals and data values

 Association, attribute Property

 Datatypes Datatypes

 Subclass, generalization Subclass, sub - property

 Enumeration Enumeration

 Navigable, non - navigable Domain, range

 Disjointness, cover Disjointness, disjoint union

 Multiplicity Cardinality

46 CHAPTER 4 MARRYING ONTOLOGY AND MODEL-DRIVEN ENGINEERING

 Figure 4.2 depicts distinguishing features of UML class diagrams (D Rifd),
OWL - DL (S OIQ (D)), OWL 2 (SROIQ (D)), and A CQI , a fragment sup-
ported by state - of - the - art reasoning services that D Rifd has in common with
SROIQ (D). Considering Figure 4.2 , UML class diagrams (D Rifd) differentiate
from OWL - DL (S OIQ (D)) by representing n - ary relations, functional dependen-
cies on n - ary relations, identifi cation constraints on concepts [27, 26] , limited
complex role inclusion axioms, and role disjointness.

 State - of - the - art automated reasoning systems do not support all constructs of
UML class diagrams (D Rifd). However, by dropping functional dependencies and
identifi cation constraints, one achieves A CQI . A CQI is the most expressive
fragment in common between UML class diagrams (D Rifd) and OWL 2
(SROIQ (D)). Automated reasoning systems [155] support constructs of OWL - DL
(S OIN (D)), OWL 2(SROIQ (D)), and, consequently, A CQI .

 Notice that we compare the language constructs and we do not consider OCL.
Rahmani et al. [127] described an adjustable transformation from OWL to Ecore
and identifi ed that it is possible to represent most OWL constructs with Ecore and
OCL invariants. However, such a transformation has the purpose of aligning OWL
constraints with OCL invariants and does not cover OWL reasoning services like
realization and instance checking.

 4.3 COMMONALITIES AND VARIATIONS

 In this section, we present a domain analysis of MMTS + OTS approaches. Domain
analysis is concerned with analyzing and modeling the variabilities and commonali-
ties of systems or concepts in a domain [32] .

 Figure 4.2 Comparing UML Class Diagrams, OWL - DL, OWL 2, and DL - Lite.

limited complex role inclusion,

reflexivity and irreflexivity,

role disjointness

n-ary relations,

functional dependencies on n-ary relations,

and identification constraints on concepts

transitive properties

nominals

SROIQ(D)
(OWL 2)

DLRifd
(UML Class Diagrams)

SHOIN(D)
(OWL-DL)

role hierarchy

role inclusion,

reflexivity,

s qualified cardinality

restrictions

ALCQI

cardinality restrictions DL-Lite

www.allitebooks.com

http://www.allitebooks.org

4.3 COMMONALITIES AND VARIATIONS 47

 The product of such analysis is a feature model, described in this section. A
feature model comprises a feature diagram, depicted in the Figure 4.3 , the descrip-
tion of the features, and examples. The feature model reveals the possible choices
for a MMTS + OTS approach and also serves as a taxonomy to categorize approaches
involving both paradigms. We describe the features in Figure 4.3 in the next
sections.

 4.3.1 Language

 The choice of a language shapes the message exchange between agents. A language
is defi ned based on:

1. A concrete syntax describing the way in which the language elements appear
in a human - readable form. Extended BNF is frequently used to describe the
concrete syntax of lexical notations. In the case of graphical notations, natural
language and symbols are used to describe how graphical symbols represent
information, and how these symbols are laid out. A particular case of concrete
syntax is a serialization syntax, which allows the language expressions to be
made persistent or interchanged between tools. XML can be used as serializa-
tion syntax. Syntactical variations may co - exist for one given language.

2. An abstract syntax of a language portraying the elements that compose the
language, and the possible combination of these elements. Abstract syntax
graphs, metamodels, and Extended BNF are commonly used to represent the
abstract syntax of a language.

3. The semantics of a language attributes meaning to the language primitives and
its vocabulary. This attribution can be done by means of a formal language,
using mathematics, or an informal language, using natural language. The
relevant formal semantics for MMTS + OTS are [156] :

 • Model - theoretic semantics. Model - theoretic semantics assigns meaning to
a set of logical sentences by considering all possible interpretations that may
be given to its atomic elements. Such a set of logical sentences is then sat-
isfi able if there is an interpretation that will render all the sentences to
become true (refer to Section 3.3.2).

 • Axiomatic semantics. Axiomatic semantics is based on methods of logical
deduction from predicate logic. The semantic meaning of a program is based
on assertions about relationships that remain the same each time the program
executes.

 • Translational semantics. Another way of giving a semantics to a language
is translating expressions from one language into another language that has
a defi ned semantics.

 The abstract syntax characterizes the primitives of a language. The concrete
syntax realizes the primitives by a concrete notation. The semantics assigns meaning
to the primitives, and the models constructed using these primitives.

 Let us consider three examples: UML is a modeling language with a
graphical notation, an informal semantics described in natural language (there exist

 Fi
gu

re
 4

.3

 Sn
ip

pe
t

of
 t

he
 F

ea
tu

re
 M

od
el

 o
f

B
ri

dg
in

g
O

T
S

an
d

M
M

T
S.

M
a
rr

y
in

g
 M

e
ta

m
o
d
e
lin

ga
n
d
 O

n
to

lo
g
ie

s

S
y
n

ta
x

L
a

n
g

u
a

g
e

D
a

ta
 M

o
d

e
l

Q
u

e
ry

in
g

S
e

m
a

n
ti
c
s

R
u

le
s

M
e
d
ia

ti
o
n

M
o
d
e
lli

n
g
 L

e
v
e
l

R
e

a
s
o

n
in

g

F
o
rm

a
l

G
ra

p
h

ic
a
l

C
o

n
c
re

te
A

b
s
tr

a
c
t

N
o
ta

ti
o
n

F
o
rm

a
lis

m

T
ra

n
s
fo

rm
a
ti
o
n

M
a

p
p

in
g

L
e
x
ic

a
l

In
fo

rm
a
l

M
o
d
e
l-t

h
e
o
re

ti
c

s
e
m

a
n
ti
c
s

T
ra

n
s
la

ti
o
n
a
l

G
ra

p
h

O
b

je
c
t-b

a
s
e

d

L
o
g
ic

a
l

c
o

n
s
is

te
n

c
y

N
a

tu
ra

l
L

a
n

g
u

a
g

e

F
ra

m
e
 L

o
g
ic

D
e
s
c
ri
p
ti
o
n

L
o

g
ic

s

L
o
g
ic

a
l

Im
p
lic

a
ti
o
n

E
x
te

n
s
io

n
 T

e
s
t

In
fe

re
n

c
e

S
u

p
p

o
rt

C
lo

s
u
re

S
a

fe
ty

S
u
b
s
u
m

p
ti
o
n

M
e
ta

m
o
d
e
l

M
o

d
e

l In
te

g
ra

ti
o

n

M
e

rg
in

g
A

lig
n

in
g

M
e
ta

m
e
ta

m
o
d
e
l

S
e
m

a
n
ti
c
a
l S

y
n

ta
c
ti
c
a

l

D
ir
e
c
ti
o
n
a
lit

y

D
e
ri
v
a
ti
o
n

R
u

le
s

R
e

a
c
ti
o

n
R

u
le

s

P
re

c
is

e

D
e
c
la

ra
ti
v
e

Im
p
e
ra

ti
v
e

E
x
e

c
u

ta
b

le
 L

o
g

ic

B
id

ir
e

c
ti
o

n
a

l

T
S

O
T

S
M

M
T

S

H
o
rn

F
O

L

T
re

e
R

e
la

ti
o
n
a
l

L
e

g
e

n
d

A
n

d

O
p

ti
o

n
a

l
M

a
n

d
a

to
ry

A
lt
e
rn

a
ti
v
e

O
r

In
te

g
ri
ty

R
u

le
s

L
o

g
ic

a
l

R
u

le
s

48

4.3 COMMONALITIES AND VARIATIONS 49

translational semantics approaches for UML) that uses a metamodeling approach to
describe its abstract syntax, as well as natural language and symbols to describe the
concrete syntax.

 OWL is an ontology modeling language with a lexical notation, formalized by
description logics. It is a subset of fi rst - order predicate logics with a model - theoretic
semantics. OWL ’ s concrete and abstract syntax are specifi ed by Extended BNF.

 RDF(S) is a language based on triples as the abstract syntax graph, with a
concrete lexical notation and a formal axiomatic semantics [47] .

 4.3.2 Formalism

 We defi ne the term “ formalism ” as formal language used to precisely defi ne concepts
of the world. A formalism is the basis for reasoning over models. We distinguish
between four formalisms applicable to MMTS + OTS:

 • First - Order Logic. First - order logic is a logical language able to express rela-
tions between individuals using predicates and quantifi ers [157] .

 • Description Logics. Description logics is a family of knowledge representa-
tion formalisms aimed at unifying and giving a logical basis to frame - based
systems, semantic networks, object - oriented representations, semantic data
models, and type systems [9] . Core to each language from this family is its
capability to express class defi nitions by restrictions on relationships to other
classes and by inheritance relations. Though the exact expressiveness varies,
all description logic languages are subsets of fi rst - order predicate logics.

 • Horn Rules. Horn rules restrict fi rst - order predicate logics to axioms of a
particular form. Though horn rules are in general Turing powerful, in a practi-
cal situation it is possible to oversee deductive consequences and to reason
effi ciently with terms (i.e., kind of objects).

 While horn rules can be given a model - theoretic semantics, e.g., fi rst - order
predicate logics, in order to handle negation effi ciently, most approaches select
specifi c interpretation functions in order to decide upon satisfi ability (or
inconsistency).

 • Frame Logic. Frame logic is a syntactically more expressive variant of horn
rules. It constitutes a deductive, object - oriented database language combining
declarative semantics and the expressiveness of deductive database languages
with the data modeling capabilities supported by the object - oriented data
model [2] .

 Ontologies and models written in a given language, e.g., OWL, are usually
translated to one or more formalisms, e.g., S OIN (D), a member of the family
of description logic languages, to realize reasoning.

 4.3.3 Data Model

 A data model is an underlying structure mandating how data is represented. The data
model provides a basis for organizing the primitive elements of a language. This

50 CHAPTER 4 MARRYING ONTOLOGY AND MODEL-DRIVEN ENGINEERING

organization is used by the abstract syntax of the language to relate the primitives.
We differentiate four data models:

1. Graph : consisting of (hyper -)edges and nodes.

2. Tree : constituting a restricted graph data model having a hierarchical organiza-
tion of the data.

3. Object - based : organizing data according to the object - oriented paradigm.

4. Relational : organizing data in relations.

 A modeling approach can be seen from the point of view of data models. For
instance, the UML class diagram is commonly seen either as a graph data model or
as an object data model.

 OWL is primarily based on unary relations (i.e., logically defi ned classes) and
binary relations (i.e., relationships between objects), but there are alternative access
methods, e.g., via Java object APIs or querying through the SPARQL graph data
model query language.

 RDF(S) constitutes a graph data model, but it can also be seen as a kind of
object model or a constrained relational model.

 4.3.4 Reasoning

 Each type of reasoning is based on a formalism, typically a logical language, to
deduce (infer) conclusions from a given set of facts (also called assertions) encoded
in a model. Standard reasoning services include:

1. Logical consistency. Logical consistency checks whether a set of logical sen-
tences, i.e., a logical theory, has an interpretation, i.e., admits a model.

2. Logical implication. Given a set of logical sentences as a premise (i.e., a
 “ theory ”), another set of logical sentences may be implied as a conclusion
because every model of the premise is also a model of the conclusion.

3. Subsumption. Subsumption is a special case of checking logical implications.
Subsumption tests whether one class defi nition is more specifi c than another
one — given a set of logical sentences as background theory. Subsumption tests
can be used to generate a sound and complete classifi cation of a set of class
defi nitions.

4. Extension test. An extension test checks whether a tuple is contained in a
logical relation. Specifi cally, it tests whether an instance belongs to the exten-
sion of a class, which is a unary relation.

 Indeed, all standard reasoning services in fi rst - order predicate logics (and in
description logics, specifi cally) that are illustrated here can be based on consistency
checking.

 In horn rules formalisms, reasoning is defi ned either based on resolution or on
na ï ve bottom - up evaluation.

4.3 COMMONALITIES AND VARIATIONS 51

 4.3.5 Querying

 Querying plays an important role for accessing and bridging between technical
spaces. The work by Haase et al. [64] comparing aspects of query languages for
ontologies has been used to identify features of querying:

1. Inference support. A query engine may access only explicitly available data
(e.g., SPARQL [69]), or it may include facts derived by using a reasoner (e.g.,
OWL - QL [46] or SAIQL [93]).

2. Closure. A query language may represent the results of a query on a
model (i.e., a kind of database) either in the same format as the model itself
(usual) or in a different paradigm. For instance, the earliest RDF query
languages returned results as variable bindings, i.e., as relations rather
than graphs, while SPARQL may return results in its native paradigm, i.e., as
a graph.

3. Safety. A query language is considered safe, iff a syntactically correct query
returns a fi nite set of results.

 Queries are expressed in a language, over a data model, in a modeling level,
and can use a reasoning service. For example, OCL can be used as a query language
with lexical notation over a UML object data model.

 SPARQL is a query language with lexical notation over RDF graph data model
without reasoning support (according to the version 1.0 of SPARQL specifi cation
 [126]) and with results being either represented as relations or as graphs.

 4.3.6 Rules

 Rules are present inside technical spaces as well as in transformations between them.
Rule languages can be considered to include a querying mechanism over a data
model. The term “ rules ” is ambiguous and includes in its range:

1. Integrity constraints. Integrity constraints restrict the number of possible
interpretations. They do not add inferences, but they signal exceptions.

2. Derivation rules. Integrity constraints comprise one or more conditions from
which a fact is derived as conclusion iff the rule holds.

3. Reaction rules. Reaction rules have as a core feature their reactivity. They
comprise a triggering event and a condition that carries out a triggered action
iff the rule holds.

4. Logical rules. Logical rules describe a logical axiom that holds.

 For example, OCL is a language with lexical notation, uses metamodeling to
represent its abstract syntax, and has translational semantics into fi rst - order logics.
It serves to write integrity constraints and derivation rules as well. Part of the UML
specifi cation called action semantics can be used to specify reaction rules.

 F - logic rules [2] are logical rules can be considered to constitute derivation
rules and can be confi gured to model integrity constraints.

52 CHAPTER 4 MARRYING ONTOLOGY AND MODEL-DRIVEN ENGINEERING

 DL - safe rules [107] are a logical rule mechanism for a subset of OWL allow-
ing for sound and complete reasoning with class defi nitions and a restricted rule
language that defi nes specifi c logical axioms.

 ATL [82] and QVT [113] are languages with lexical notation, metamodeling
abstract syntax and they can be used to write transformation rules.

 4.3.7 Transformation

 A transformation defi nition is a set of transformation rules that together describe the
conversion of one model in the source language into another related model in the
target language [90] . Concerning MMTS + OTS, we distinguish between three aspects
of transformations:

1. Semantic. The semantic aspect of a transformation differs between precise
transformation and approximative transformations. Approximative transfor-
mations give up on soundness (rarely) or completeness (more often) in order
to speed up subsequent querying or reasoning. Precise transformations are
sound and complete.

2. Syntactic. We distinguish between (i) graph - based syntactic transformation,
which draws on the theoretical work on graph transformations, operating on
typed, attributed, labeled graphs (e.g., UMLX [179] and GReTL [71]); and (ii)
hybrid syntactic transformations, which involve declarative and prescriptive
notations. ATL [82] is an example of a hybrid language.

3. Directionality. Directionality concerns the generation of models in different
directions based on the defi nition of a transformation. Bidirectional transfor-
mations are suffi cient to transform forward and backward between source and
target models. Examples include QVT and UMLX [179] . Unidirectional trans-
formations allow for transformations in exactly one direction, such as ATL,
in general.

 A transformation language requires querying over a data model and transformation
rules to manipulate the source and target metamodels. For example, an ATL transforma-
tion has a lexical notation, precise semantics, and hybrid syntax, and is composed by
transformation rules using OCL as a query language over UML object models.

 4.3.8 Mediation

 Mediation is the process of reconciling differences between heterogeneous models.
Mediation plays a central role in MMTS + OTS, as models in different languages
must coexist. A mediation consists of:

1. Integration. Integration focuses on interoperability between models so that
they work together effectively. It comprises:

 • Aligning . Aligning preserves the source models and produces a new model
containing additional axioms to describe the relationship between the con-
cepts from the source models.

 • Merging . Merging refers to the creation of one new merged model from two
or more source models. The merging process can involve aligning as a step.

4.3 COMMONALITIES AND VARIATIONS 53

2. Mapping. Mappings are declarative specifi cations of the correspondences
between elements of the two models. In the transformation process, the
mapping specifi cation precedes the transformation defi nition.

3. Composition. Composition comprises the combination of elements that
conform to overlapping concepts in different source models. Usually, each
source model handles a different dimension of the overlapping elements. A
weaving process does not necessarily produce a merged mediation, but it can
produce a model with new knowledge based on the source models.

 Both integration and composition make use of mappings to specify overlaps.
A transformation usually takes as input the source models and the mappings to
generate the target models.

 4.3.9 Modeling Level

 Considering that “ everything is a model ” in model - driven engineering, these models
are organized according to their conformance. Such an organization is defi ned by
 [13] as follows:

1. System : corresponding to the executable system, the runtime instances.

2. Model : defi ning the circumstances under which a system operates and evolves.

3. Metamodel : defi ning the constructs to design models.

4. Metametamodel : defi ning the constructs to design metamodels.

 This organization corresponds to the OMG layered metamodel architecture:
the metametamodel level (M3), the metamodel level (M2), the model level (M1),
and the runtime instances (M0). Each modeling level is described using a language
and is organized according to a data model (refer to Section 11.3.2 for an example
of the OMG layered metamodel architecture).

 Figure 4.4 shows a layered architecture of the features presented in this section
according to the abstraction level. Each layer exploits facilities of the layers below.
It shows how the features are organized to realize each of the technical spaces.

 Figure 4.4 Organization of Features According to Technical Space.

Datamodel

Data Model

Formalism

Querying

Rule

Transformation

Reasoning

Querying

Rule

Mediation

Ontological

Technical Spaces

Metamodeling

Technical Spaces

L
a

n
g

u
a

g
e

s

A
b
s
tr

a
c
ti
o
n

E
n

g
in

e
e

ri
n

g

S
e

rv
ic

e
s

C
o

re
 S

e
rv

ic
e

s

54 CHAPTER 4 MARRYING ONTOLOGY AND MODEL-DRIVEN ENGINEERING

 4.4 THE STATE OF THE ART OF
INTEGRATED APPROACHES

 In this section, we apply the model presented in Section 4.3 to MMTS + OTS
approaches found in the literature. As an example, we identify major categories that
group related work. Each category corresponds to one confi guration of our feature
model.

 4.4.1 Model Validation

 This category assembles the works that use automated reasoning techniques for
checking and validation of models in formal languages. It implies aligning the source
model and the target model by a mapping. A unidirectional transformation approach
takes the mapping and uses transformation rules to generate the models. Queries
against a reasoner serve to verify the models.

 Approaches for validating models verify specifi cation against design. The
description logics technical spaces, however, have specifi cally been defi ned to vali-
date the internal consistency of a set of class defi nitions. To exploit this model of
validation, one may transform a part of a given MDE - based model, e.g., a UML
class diagram, into a set of OWL class defi nitions (cf. [12]) and one may check class
hierarchy relationships, property hierarchies and the logical consistency of instantiat-
ing classes.

 Berardi et al. [12] provide automated reasoning support for detecting relevant
properties of UML class diagrams, e.g., implicit consequences, refi nement of proper-
ties, and class equivalence. This work consists of aligning a UML class diagram
(independent of modeling level) and a DL A CQI knowledge base. A precise
automatic unidirectional transformation generates an A CQI knowledge base that
corresponds to the UML class diagram.

 We illustrate this process using the simple diagram depicted in the Figure 4.5 .
The diagram shows that a WebPortalAccount is a particular kind of
UserAccount and that each UserAccount is owned by one and only one User.
Additionally, there exist two types of users: Researcher and Student . A
Researcher can have only one WebPortalAccount . The association class Uses
specializes the association class Owns.

 Figure 4.5 Checking Consistency of UML Models.

UserAccount User
0..n 10..n 1

Owns

Student

Uses

WebPortalAccount Researcher
1 1..n1 1..n

4.4 THE STATE OF THE ART OF INTEGRATED APPROACHES 55

 After applying the transformation from UML into a description logic model,
such as OWL (more specifi cally, Berardi et al. [12] mapped it into A CQI), we
ask the reasoner to verify the model. By reasoning over such a diagram, we discover
undesirable characteristics. For instance, the class Researcher must be empty and,
hence, cannot be instantiated. The reason is that the disjointness constraint asserts
that there is no Researcher that is also Student . Furthermore, since the class
User is made up by the union of classes Researcher and Student , and since
Researcher is empty, the classes User and Student are equivalent, implying
redundancy.

 By dropping the generalization Student-Researcher , we arrive at a valid
model. If we invoke the reasoner one more time, we can refi ne the multiplicity of
the role Researcher in the association uses to 1 . Owns is a generalization of Uses ,
hence every link of Uses is a linkof Owns , and because Account is owned by
exactly one User , necessarily every WebPortalAccount is used by at most one
Researcher , since WebPortalAccount is a subclass of Account .

 Straeten [165] proposes an approach to detect and resolve inconsistencies
between versions of UML models, specifi ed as a collection of class diagrams,
sequence diagrams, and state diagrams. She presents a UML profi le able to describe
the evolution of the models.

 Ren et al. [130] propose an approach for validating refi nements of BPMN
diagrams with OWL based on the execution set semantics. The OWL ontology
serves to identify the invalid execution set in the refi ned BPMN diagram according
to the abstract BPMN diagram.

 The confi guration of this category uses the following features (Figure 4.6): (i)
a model at a given modeling level (model, metamodel, or metametamodel), written

 Figure 4.6 Feature Model Confi guration for Model Checking.

Model Checking

Syntax

Language

Data Model

Semantics

Rules

Mediation

Modeling Level

Reasoning

Formal

Graphical

Notation

Formalism

Transformation

Mapping

Lexical

Model-theoretic
semantics

Object-based
Description

Logics

MetamodelModel

Semantical

Syntactical

Directionality

Transformation
Rules

Declarative

Precise

Unidirectional

Executable Logic

Metametamodel

Querying

Inference
Support

Closure

Safety

56 CHAPTER 4 MARRYING ONTOLOGY AND MODEL-DRIVEN ENGINEERING

in a graphical language, using an object data model; (ii) a target model, written in
a language with model - theoretic semantics and lexical notation, including one for-
malism, reasoning capability, querying with closure, inference support, and safety;
(iii) a mapping specifi cation describing the links between the models; (iv) a unidi-
rectional, declarative, and precise transformation defi nition, which includes trans-
formation rules and querying.

 4.4.2 Model Enrichment

 This category comprises the approaches that make use of ontologies to infer knowl-
edge from the MMTS models and convert these inferences back as facts in the new
MMTS models. The main difference between this category and the former is the
bidirectional transformation and the application of transformation rules and reason-
ing on the OTS side. First, the MMTS model is transformed into an OTS model. On
the OTS side, inference services and transformation rules are used to make explicit
the assertions that are implicit in the MMTS. Then, the resulting OTS model is
transformed back.

 Let us illustrate this process with an example of mappings between two MMTS
models, depicted in the Figure 4.7 . Let us assume that we have two models capturing
bibliographical references. On the left side, we have the model Ma with the class
Publication , which generalizes Article and Thesis , which generalizes MSc-
Thesis and PhDThesis . On the right side, we have the model Mb with the classes
Entry and Thesis . At the center, we have the mapping Mab with the association

 Figure 4.7 Mapping between Two Models Ma and Mb.

}

Publication

Article

Entry

MScThesis Thesis

PhDThesis

MScThesis2Thesis

PhDThesis2Thesis

Thesis

Thesis

MScThesis

PhDThesis

M0

M1

Ma Mb

Mab

instanceOf

4.4 THE STATE OF THE ART OF INTEGRATED APPROACHES 57

class MScThesis2Thesis , mapping a MScThesis onto a Thesis , and the associa-
tion class PhDThesis2Thesis , mapping a PhDThesis onto a Thesis .

 After translating both models into RDF models, we can use TRIPLE [33] , a
RDF query, inference, and transformation language, to apply the transformation
rules depicted in Figure 4.7 , corresponding to the MScThesis2Thesis and
PhDThesis2Thesis labels. This resulting query is translated back into MMTS
model Mb.

 The works that fi t in this category have different facets. Billig et al. [15]
use TRIPLE to generate mappings between a PIM and a PSM using a feature model
that describes user requirements as input. It comprises a transformation from
MMTS into OTS (TRIPLE), the generation of the mappings, the transformation into
a PSM under OTS, and the transformation OTS to MMTS of the PSM. Roser and
Bauer [135] propose a framework to automatically generate model transformations
inside a MMTS using the OTS; Kappel et al. [86] provide an approach for model -
 based tool integration; it consists of transforming two MMTS metamodels into
ontologies, using reasoning services and generating mapping between the two
MMTS.

 The confi guration of features in this category includes (Figure 4.8): (i) a model
at a given modeling level (model, metamodel, or metametamodel), written in a given
language, using an object data model; (ii) a target model, written in a given logical
language, reasoning capability, querying with closure, inference support, and safety;
(iii) a mapping specifi cation describing the links between the models; (iv) a bidirec-
tional declarative transformation defi nition, which includes transformation rules and
querying; and (v) logical rules and reasoning to make the knowledge explicit on the
OTS side.

 Figure 4.8 Feature Model Confi guration for Model Enrichment.

Model Enrichment

Syntax

Language

Data Model

Semantics

Rules

Mediation

Modeling Level

Reasoning

Formal

Graphical

Notation

Formalism
Transformation

Mapping

Lexical

Fix-point
semantics

Object-based
Horn Logic

MetamodelModel

Semantical

Syntactical

Directionality

Transformation
Rules

Declarative

Precise

Bidirectional

Executable Logic

Metametamodel

Querying

Inference
Support

Closure

Safety

Logical
Rules

Legend

And

Optional Mandatory

AlternativeOr

58 CHAPTER 4 MARRYING ONTOLOGY AND MODEL-DRIVEN ENGINEERING

 4.4.3 Ontology Modeling

 This category assembles the efforts into giving a graphical notation to ontology
modeling. Referring to our feature model, this category embraces the usage of
MMTS graphical notations to design OTS ontologies. It requires integration, bidi-
rectional transformation, the model level, transformation rules, and querying. It is
the only one that does not involve reasoning.

 Cranefi eld and Purvis [31] and Falkovych et al. [42] advocate the usage of
UML without extensions as Ontology Representation Language capable of repre-
senting ontologies.

 Extensions of the Unifi ed Modeling Language for ontology development were
proposed [10] , culminating in a new metamodel into the MDA family of modeling
languages – the Ontology Defi nition Metamodel [23, 114, 34] . These approaches
use UML extension mechanisms (UML profi le) to represent the ontology, a mapping
onto the ODM, and a transformation from the ODM into the serialization syntax of
the OWL ontology language. Figure 4.9 depicts the example of a UML class diagram
representing an OWL ontology using the ODM UML profi le for OWL.

 The confi guration of this category includes (Figure 4.10): (i) a model written
in a given language with graphical notation from MMTS; (ii) a target model written
in a given language and including one formalism from OTS; and (iii) a mapping
specifi cation describing the links between the models.

 4.5 EXISTING WORK ON CLASSIFYING
INTEGRATED APPROACHES

 Research on the understanding of the large number of possible relations between
OTS and MMTS is not new. Uschold and Jasper [171] propose a framework for
understanding the ontology application scenarios outside the artifi cial intelligence

 Figure 4.9 Ontology Modeling with UML Profi le.

CanSalesOrder

«owlClass»

USSalesOrder

«owlClass»

SalesOrder
«owlClass»

Customer

«owlClass»10..n

+customer+order

10..n

+country

+customer

USCustomer
«owlRestriction»

« »

«owlRestriction»

«owlValue»

CanadianCustomer
«owlRestriction»

«owlRestriction»

«owlValue»

«equivalentClass»

«equivalentClass»

Country

«owlClass»

4.6 CONCLUSION 59

community. Despite presenting application scenarios of ontologies in software
development, the work does not explore the domain modeling community within
software engineering.

 Tetlow et al. [168] propose ideas based on how semantic web technologies
can be applied in systems and software engineering and examples of these ideas.
Such work does not present a framework pointing out ways of integration. It serves
as a research agenda instead, involving applications in the software engineering
process.

 Happel et al. [66] categorize ontologies in software engineering, distinguishing
between four groups: ontology - driven development (ODD), ontology - enabled devel-
opment (OED), ontology - based architectures (OBA), and ontology - enabled architec-
tures (OEA). Our work takes a more detailed look at the ODD and OBA groups.

 B é zivin et al. [14] bridge model engineering and ontology engineering using
a M3 - neutral infrastructure. They consider software engineering and ontology engi-
neering as two similarly organized areas, based on different metametamodels
(M3 - level).

 4.6 CONCLUSION

 In this chapter, we have illustrated commonalities and variations of using metamod-
eling technical spaces (MMTS) with ontological technical spaces (OTS). The basic
pattern is that, next to existing technical spaces of established metamodeling frame-
works, new technical spaces are positioned that either enrich or exploit the software
engineering capabilities by or for ontology technologies. We have identifi ed the main
characteristics of such approaches and designed a feature model to enlighten the
possible conceptual choices. We have applied our model illustrating the usage of
ontology technologies.

 Figure 4.10 Feature Model Confi guration for Ontology Modeling.

Ontology Modeling

Syntax

Language
Data Model

Rules

Mediation

Modelling Level

Graphical

Notation

Formalism
Transformation

Mapping

Lexical

Object-based

Description
Logics

Model

Semantical

Syntactical

Directionality

Transformation
Rules

Declarative

Precise

Bidirectional

Executable Logic

Querying

 CONCLUSION
OF PART I

 In this part, we have used the concept of megamodeling to provide a descriptive
model for specifying the structure of MDE approaches (research question I). We use
this model to describe the relationship between concepts of MDE and ontologies.
Moreover, we use the approach to specify the relations between metamodeling
technical spaces and ontological technical spaces.

 Additionally, we propose a classifi cation for existing approaches that use MDE
and ontologies and identify patterns for transformations between both paradigms,
addressing the Research Questions I.A and I.B from Section 1.2 . The analysis of
existing work resulted in the identifi cation of requirements for the integration of
MDE and ontology technologies.

 PART II
THE TWOUSE
APPROACH

 CHAPTER 5
THE TWO U SE CONCEPTUAL
ARCHITECTURE

 The next software engineering era will rely on the synergy between both model -
 driven engineering and ontology technologies. However, an approach that allows
for exploiting the uniqueness of each paradigm has been missing so far. This chapter
defi nes an integration between OWL and UML class - based modeling. It comprises
an integration of existing metamodels and UML profi les, including relevant (sub)
standards such as OCL. The result is a model - driven architecture for specifying
integrated systems 1 .

 5.1 INTRODUCTION

 UML class - based modeling and OWL comprise similar constituents: classes, asso-
ciations, properties, packages, types, generalization, and instances [114] . Despite the
similarities, both approaches come with restrictions that may be overcome by an
integration.

 On the one hand, a key limitation of UML class - based modeling is that it
allows only for static specifi cation of specialization and generalization of classes
and relationships, whereas OWL provides mechanisms to defi ne these in a dynamic
fashion. In other words, OWL allows for recognition of generalization and special-
ization between classes as well as class membership of objects based on conditions
imposed on the properties of class defi nitions.

 On the other hand, UML provides means to specify dynamic behavior, whereas
OWL does not. The Object Constraint Language (OCL) [116] complements UML
by allowing the specifi cation of query operations, derived values, constraints, and
pre and post conditions.

 Since both approaches provide complementary benefi ts, contemporary soft-
ware development should make use of both. The benefi ts of an integration are
twofold. Firstly, it provides software developers with additional modeling facilities.

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

 1 This chapter contains work from the paper “ Using Ontologies with UML Class - based Modeling: The
TwoUse Approach ” published in the Journal Data & Knowledge Engineering [122] .

65

66 CHAPTER 5 THE TWOUSE CONCEPTUAL ARCHITECTURE

Secondly, it enables semantic software developers to use object - oriented concepts
like operation and polymorphism together with ontologies in a platform independent
way. These considerations have led us to investigate the following challenge: How
can we develop and denote models that benefi t from advantages of the two modeling
paradigms?

 We present TwoUse in this chapter as follows: Section 5.2 describes the
requirements for integrating ontology technologies and model - driven engineering.
Section 5.3 presents and explains the building blocks of TwoUse. In Section 5.4 we
present the metamodeling infrastructure for UML class - based models and OWL. In
Section 5.5 , we describe the notations for designing TwoUse models.

 5.2 REQUIREMENTS FOR INTEGRATING ONTOLOGY
TECHNOLOGIES AND MODEL - DRIVEN ENGINEERING

 Section 4.4 presents in the state - of - the - art research and MDE approaches that use
OWL technologies and vice versa . However, the relationships between the two para-
digms are still under exploration. In this section, we present the requirements for an
integrated framework. These requirements are extended and refi ned in Part III and
Part IV, where we present the case studies.

 5.2.1 Usage of Ontology Services in MDE

 In addition to model validation and model enrichment, ontology technologies have
more to offer. The integration between MDE and ontology technologies enables
extending UML class - based modeling with OWL constructs and using ontology
services to support the MDE process.

 5.2.1.1 Integrate OWL Constructs in UML Class - Based Modeling While
mappings from one modeling paradigm to the other one were established a while
ago (see Section 4.4.1), the task of an integrated language for UML class - based
modeling and OWL models is missing so far.

 Such an approach simplifi es the modeling task by introducing intuitive con-
structs that require complex OCL expressions otherwise, and it enables the defi nition
of domain models enriched by formal class descriptions. Moreover, the usage of
OWL class expressions allows decoupling class selection from the defi nition of
query operations in client classes.

 Such an integration is not only intriguing because of the heterogeneity of the
two modeling approaches, but it is now a strict requirement to allow for the develop-
ment of software with thousands of ontology classes and multiple dozens of complex
software modules in the realms of medical informatics [108] , multimedia [159] , or
engineering applications [160] .

 5.2.1.2 Usage of Ontology Services in UML Class - Based Modeling In
addition to integrating OWL constructs in UML class - based modeling, the usage of
ontology services (see Section 3.4) is essential for realizing the potential of ontology

5.2 INTEGRATING ONTOLOGY TECHNOLOGIES AND MODEL-DRIVEN ENGINEERING 67

technologies. Therefore, one requires model transformations that transform inte-
grated models into OWL ontologies.

 Moreover, the integration between UML class - based modeling and OWL
needs to cover the usage of ontology services at runtime as well as in design time.
Thus, developers specify queries that use ontology services over the OWL represen-
tation. These queries are the interface between users and ontology services. The
results generated by ontology services should be compatible with existing languages
used to operate UML class - based models, e.g., OCL.

 The intended benefi t is that developers will not have to program by having to
enumerate actions class - by - class. Instead they will rely on the ontology engine to
perform generic operations to retrieve classes that satisfy ontological relationships
with other classes, so that developers can focus only on the application specifi c
actions.

 5.2.2 Usage of MDE Techniques in
 OWL Ontology Engineering

 5.2.2.1 MDE Support for Ontology Modeling Research on ontology engi-
neering has been inspired by the advances in software engineering over the years.
For example, current approaches (see 4.4.3) use the graphical notation of UML to
design OWL ontologies to support the ontology development life cycle. Moreover,
as in software engineering, the usage of design patterns in ontology engineering is
an established practice [52] .

 As new modeling techniques in model - driven engineering emerge, it is desir-
able to analyze the application of MDE techniques in ontology modeling. For
example, the usage of domain - specifi c modeling is a promising approach for improv-
ing the usability of the OWL language by providing users with syntactical shortcuts.
Moreover, the usage of templates in UML class - based modeling for reusing pieces
of models is an accepted practice for improving reusability.

 5.2.2.2 Usage of Domain Specifi c Modeling for Ontology Engineering
Services Currently, the development of ontology engineering services needs to
manage multiple languages for defi ning services. For example, modelers of ontology
matching services need to manage different languages: (1) an ontology translation
language to specify translation rules and (2) a programming language to specify
built - ins, when the ontology translation language does not provide constructs to
completely specify a given translation rule. This intricate and disintegrated manner
draws their attention away from the alignment task proper down into diverging
technical details of the translation model.

 Addressing this issue allows developers to concentrate on constructs related
to the problem domain, raising the abstraction level. Moreover, by defi ning domain
concepts as fi rst - class citizens, developers may reuse these domain concepts in dif-
ferent situations. This helps to improve productivity, since modelers will not have
to be aware of platform - specifi c details and will be able to exchange translation
models even when they use different ontology translation platforms.

68 CHAPTER 5 THE TWOUSE CONCEPTUAL ARCHITECTURE

 5.3 ADDRESSING THE REQUIREMENTS
WITH THE TWO U SE APPROACH

 We build the TwoUse approach based on four core ideas:

1. As abstract syntax, it provides an integrated MOF - based metamodel as a
common backbone for UML class - based modeling and OWL modeling
(Section 5.4).

2. As concrete syntax, it uses pure UML, Ecore, a UML profi le supporting stan-
dard UML2 extension mechanisms, and a textual concrete syntax to write
integrated models (Section 5.5).

3. It provides a canonical set of transformation rules in order to deal with inte-
gration at the semantic level.

4. It provides a novel SPARQL - like language to write queries and constraints
over OWL ontologies, SPARQLAS (Chapter 6).

 To give an idea of the target integration, let us consider the simple example
of E - Shop (see Figure 2.8). Instead of defi ning the operation getTypes () in the class
SalesOrder using OCL, a more transparent and maintainable solution will use the
expressiveness of the OWL language. Using the querying service, a query retrieves
the OWL subclasses of SalesOrder according to the logical requirements of a
given instance. The body of the getTypes () operation will then be specifi ed by:

context SalesOrder

def getTypes(): Set(Class)

?self type ?T

?T subClassOf SalesOrder

 As specifi ed above, to identify which subclasses are applicable, we use the
variable ?T to get all types of ?self that are subclasses of SalesOrder . We explain
these and other expressions in Section 6.3 .

 The usage of the variable ?self means that at the implementation level, we
consistently correlate class instances with individuals in the ontology. That is, for
every object in the system, we generate a corresponding individual in the ontology.
As the classifi cation of these individuals depends on structural relationships between
objects, we need to update the individual information whenever changes in the object
state occur.

 The advantage of this integrated formulation of getTypes() lies in separating
two sources of specifi cation complexity. First, the classifi cation of complex classes
remains in an OWL model. The classifi cation is re - useable for specifying other
operations, and it may be maintained using diagram visualizations as well as decid-
able, yet rigorous reasoning models. Second, the specifi cation of the business logic
itself remains in OCL specifi cations. It becomes smaller, more understandable, and
easier to maintain.

 Figure 5.1 presents a model - driven view of the TwoUse approach. TwoUse
uses UML profi les for class diagrams and textual notations for designing combined

5.3 ADDRESSING THE REQUIREMENTS WITH THE TWOUSE APPROACH 69

 Figure 5.1 The TwoUse Conceptual Architecture.

models (Syntax). These notations are input for model transformations that generate
TwoUse models conforming to the TwoUse metamodel (Structure). The TwoUse
metamodel provides the abstract syntax for the TwoUse approach. Further model
transformations take TwoUse models and generate the OWL ontology and Java code
(Platform-Specific Artifacts and the Semantic Web Stack).

 We correlate the building blocks in Figure 5.1 with the requirements presented
in Section 5.2 to show how TwoUse realizes the integration of MDE and ontology
technologies. Table 5.1 depicts a traceability matrix and correlates the requirements
(columns) with the building blocks (rows).

 Extended languages for MDE (syntax and structure) and the TwoUse adapter
allow for using OWL constructs in UML class - based modeling, whereas the SPAR-
QLAS language enables the usage of ontology services. Domain - specifi c languages
and the TwoUse adapter realizes the usage of MDE techniques for supporting ontol-
ogy engineering.

70 CHAPTER 5 THE TWOUSE CONCEPTUAL ARCHITECTURE

 5.4 METAMODELING ARCHITECTURE

 In this section, we describe the concepts with respect to the integration of UML
class - based modeling and OWL in the form of metamodels. The advantages of
having an integrated metamodel are threefold:

 • It enables the verifi cation of well - formed models integrating both
paradigms.

 • It provides a common structure for supporting multiple notations.

 • It realizes the mapping between UML class - based constructs and OWL
constructs.

 5.4.1 The Two U se Metamodel

 The TwoUse metamodel provides the abstract syntax integrating UML class - based
modeling, OWL, and a SPARQL - like query language. The abstract syntax provides
an abstraction over the concrete syntax notations used in TwoUse.

 The TwoUse metamodel provides the integration between common constructs
in OWL and UML class - based modeling: package, class, property, instance, and
datatype. Basically, we compose classes from the Ecore metamodel with classes
from the OWL metamodel.

 We use model adaptation as a composition technique to integrate the OWL
metamodel and the Ecore metamodel. This consists of applying the Object Adapter

 TABLE 5.1 Correlating Building Blocks with Requirements.

 Requirements vs. Building Blocks OWL
Constructs in

UML
Class - Based

Modeling
(5.2.1.1)

 Ontology
Services in

UML
Class- based
Modeling
(5.2.1.2)

 MDE
Support

for
Ontology
Modeling
(5.2.2.1)

 Domain
Modeling for

Ontology
Engineering

Services
(5.2.2.2)

 Notations for MDE X

 Domain - Specifi c Notations for
Ontology Engineering

 X

 SPARQLAS X

 SPARQLAS4TwoUse X

 TwoUseAdapter X X X X

 TwoUse4OntoEng X X

 TwoUse4MDE X X

 SPARQLAS - MM X X

 SPARQLAS4TwoUse - MM X X

5.4 METAMODELING ARCHITECTURE 71

Pattern [51] to adapt classes of the OWL metamodel to corresponding classes of the
Ecore metamodel (see Table 4.2 for common features between UML class - based
modeling and OWL). The Object Adapter Pattern allows us to compose objects
within Adapters , called TwoUse classes.

 Following the nomenclature of Gamma et al. [51] , Target classes represent
the interfaces from the Ecore metamodel (EPackage, EClass, EDatatype,

EAttribute, EReference, EEnum, EEnumLiteral, and EObject). Adapter
classes are prefi xed with TU and suffi xed with Adapter (TUPackageAdapter,

TUClassAdapter, TU-DatatypeAdapter, TUAttributeAdapter, TURefer-

enceAdapter, TUEnumAdapter, TUEnumLiteralAdapter , and TUObjectA-
dapter). Adaptee classes are classes of the OWL 2 metamodel.

 Figure 5.2 illustrates the principle of model adaptation. We adapt the class
Class from the OWL 2 metamodel for the class EClass from the Ecore metamodel.
In the class TUClassAdapter, we implement the operations defi ned in the class
Ecore::EClass .

 For example, the class Ecore::EClass defi nes the operation addAttribute
for inserting attributes into a class. The class TUClassAdapter implements this

 Figure 5.2 Adapting the OWL Class for UML Class - Based Modeling.

72 CHAPTER 5 THE TWOUSE CONCEPTUAL ARCHITECTURE

 LISTING 5.1 Implementing the Operation addAttribute in the Class TUClassAdapter .

1 public Void addAttribute(Attribute attribute) {

// DataPropertyDomain

DataPropertyDomain dpd = owl2fsFactory
.createDataPropertyDomain();

5 dpd.setDataPropertyExpression(attribute.getName());

dpd.setDomain(eclass.getName());

...

// DataPropertyRange

10 DataPropertyRange dpr = owl2fsFactory
.createDataPropertyRange();

dpr.setDataPropertyExpression(attribute.getName());

dpr.setRange(attribute.getEAttributeType().getName());

...

15

attributes.add(attribute);

}

operation as described in Listing 5.1 . The implementation creates instances of
the OWL 2 metamodel corresponding to the mappings between UML class -
based modeling and OWL. In this example, for the addition of an attribute in a
class in UML class - based modeling, we need to create two OWL axioms: one
assert ing the domain of the dataproperty and another asserting the range of the
dataproperty.

 Figure 5.3 depicts the mappings for the TwoUse metamodel using a simplifi ed
notation that associates the interfaces in the UML class - based metamodel to the
corresponding concepts in the OWL 2 metamodel. As we have mentioned, this
integration is independent of metamodeling level, i.e., it works for MOF, UML, and
any UML - class based modeling systems.

 5.5 SYNTAX

 5.5.1 UML Profi le for OWL

 The TwoUse approach provides developers with UML profi ling as concrete syntax
for simultaneous design of UML models and OWL ontologies, exploiting the full
expressiveness of OWL (SROIQ (D)) and allowing usage of existing UML2 tools.
We reuse the UML profi le for OWL proposed by OMG [114] and introduce stereo-
types to label integrated classes.

 We use the UML profi le for OWL proposed by OMG [114] for designing OWL
ontologies using UML notation. We call the UML class diagram with elements

5.5 SYNTAX 73

 Figure 5.3 The OWL 2 Metamodel Adapted for the UML Class - Based Metamodel — the
TwoUse Metamodel.

74 CHAPTER 5 THE TWOUSE CONCEPTUAL ARCHITECTURE

stereotyped by a UML profi le for OWL a hybrid diagram . The hybrid diagram
comprises three viewpoints, illustrated in the Figure 5.4 : (1) the UML view, includ-
ing OCL, (2) the OWL view and its logical class defi nitions, and (3) the TwoUse
view, which integrates UML classes and OWL classes and, relying on SPARQLAS,
defi nes query operations that use ontology services (Chapter 6).

 Considering the example of E - Shop (Figure 5.4), the OWL view consists of
nine classes, fi ve of which are named classes and four are unnamed classes. The
restriction classes are required for reasoning on the subclasses USSalesOrder and
CanSalesOrder . The UML View comprises six classes. The TwoUse view will
contain fi ve classes and the SPARQLAS query operation.

 A TwoUse class is the bridge that links OWL elements with SPARQLAS
expressions. To be compatible with tools that support UML2 extension mechanisms,
developers annotate the UML element OpaqueBehavior with the stereotype

SPARQLASQuery and defi ne the SPARQLAS query as the body of the opaque
behavior.

 Table 5.2 illustrates the mappings between the UML profi le for OWL (hybrid
diagram) and the TwoUse metamodel. Any class that has the stereotype owl-

Class in the hybrid diagram is mapped onto a TwoUse class. Any class with the
stereotype owlRestriction and its properties datatypeProperty or

objectProperty are mapped onto OWL classes and properties. Any class
without any stereotype results in a regular class (Ecore::EClass). A TwoUse package
is any package that has TwoUse classes. The UML Opaque behaviors stereotyped
as SPARQLASQuery are mapped onto SPARQLAS.

 Figure 5.4 UML Class Diagram Profi led with UML Profi le for OWL and TwoUse Profi le.

«owlClass» Customer

«owlClass»
10..n

+customer+order

10..n

+country

+customer

«owlRestriction»

« »owlValue {hasValue = USA} country:Country

«owlRestriction» {someValuesFrom} customer«owlValue»

«owlRestriction»

«owlValue» {hasValue = Canada} country:Country«owlRestriction»

{someValuesFrom} customer«owlValue»

CanSalesOrder

«owlClass»

USSalesOrder

«owlClass»

«equivalentClass»

«equivalentClass»

TaskCtrl

salesOrder : SalesOrder
customer : Customer

getSalesOrder()

SalesOrder
« »owlClass

price

total()
taxes()
freight()

Country

«owlClass»
process()

« »
context SalesOrder::getTypes(): Set(Class)
 body:
 ?self type ?T ?T subClassOf SalesOrder

SPARQLASQuery

UML

TwoUse

OWL

5.5 SYNTAX 75

 TABLE 5.2 Mapping between the UML Profi le for OWL (Hybrid Diagram) and the
TwoUse Metamodel.

 UML Class Diagram TwoUse Metamodel

UML Package TUPackageAdapter

UML Class Ecore::Class

(owlClass)UMLClass TUClassAdapter

(owlRestriction)UMLClass OWL::Class

(owlRestriction)UMLClass.(datatypePropert)

UMLProperty

OWL::DataProperty

(owlRestriction)UMLClass.(objectProperty)

UMLProperty

OWL::ObjectProperty

(owlClass)UMLClass.(owlDataProperty)UMLProperty TUAttributeAdapter

(owlClass)UMLClass.(owlObjectProperty)

UMLProperty

TUReferenceAdapter

(owlIndividual)InstanceSpecification TUObjectAdapter

(dataRange)Enumeration TUEnumAdapter

 2 In this case, the expressiveness of the generated OWL ontology is limited to the description logic
ALCOIQ (D), since DLRifd is not supported by state - of - the - art DL - based reasoning systems [12] .

 5.5.2 Pure UML Class Diagrams

 We have explored additional notations with increasing expressiveness, presented
next. In addition to the UML Profi le for TwoUse, one may use the pure UML class
diagram notation to model OWL ontologies with SPARQLAS expressions at class
operations or use a textual syntax to design class - based models with OWL
descriptions.

 To let UML2 users develop ontology - based information systems, pure UML
class diagrams may be used. Developers who do not need the full expressiveness of
OWL can use this approach without having to handle the OWL syntax.

 Model transformations transform the UML class diagram into a TwoUse
model to support SPARQLAS expressions over the OWL translation of the UML
class diagram. In this case, developers attach SPARQLAS expressions to the body
of opaque behavior of class operations. Each UML class will be a TUClassAdapter.
For transforming UML class diagrams into ontologies, we follow the rules defi ned
in [114] . 2

 5.5.3 Textual Notation

 As an alternative to graphical languages, we have defi ned a textual notation for
specifying UML class - based models together with OWL. This approach is useful

76 CHAPTER 5 THE TWOUSE CONCEPTUAL ARCHITECTURE

for experienced developers who work more productively with textual languages than
visual languages.

 In the following, we illustrate the textual notation with our running example.
Again, each class is a TUClassAdapter. In this case, the textual notation allows for
exploring the full expressiveness of OWL. The textual notation is a combination of
the Java - like syntax and the OWL Manchester Syntax [74] (see Appendix A.1 for
the EBNF grammar).

1 package PurchaseOrder // package name

PurchaseOrder // namespace prefix

"http://org.example/PurchaseOrder. ecore " //

namespace URI

{

5

class TaskCtrl {

reference SalesOrder salesOrder (0.. −1);
reference Customer customer (0.. −1);

10 operation process();

}

class SalesOrder {

attribute EFloat price (0..1);

15

reference Customer customer (1..1) opposite orders;

operation EClass (0.. −1) getTypes();
operation EFloat total();

20 operation EFloat taxes();

operation EFloat freight();

}

class CanSalesOrder extends SalesOrder [equivalentTo

[SalesOrder and [customer some [country value CANADA]]]]

{}

25

class USSalesOrder extends SalesOrder [equivalentTo

[SalesOrder and [customer some [country value USA]]]] {}

class Customer {

reference SalesOrder orders (0.. −1) opposite
customer;

30 reference Country country (1..1);

}

enum Country {

1 : USA = "USA";

35 2 : Canada = "Canada";

}

}

5.6 CONCLUSION 77

 The textual notation uses constructs familiar to programmers and enables
developers to write class descriptions in a human readable way.

 5.6 CONCLUSION

 In this chapter, we have introduced a technique for integrating existing UML class -
 based metamodels and OWL metamodels. We describe the usage of the adapter
design pattern to compose similar constructs between the OWL 2 metamodel and
the Ecore metamodel. Moreover, we have defi ned notations for creating integrated
models. As we apply our approach in Parts III and IV, we will extend the integrated
metamodel according to application requirements.

 CHAPTER 6
QUERY LANGUAGES FOR
INTEGRATED MODELS

 After providing a unifi ed view of metamodels and addressing the integration of model-
ing languages in the previous chapter, this chapter describes a querying approach to
support developers in querying integrated models. We examine a combination of exist-
ing approaches and introduce our solution for querying integrated models. 1

 6.1 INTRODUCTION

 To exploit integrated models, it is important to enable engineers with the proper
tools to manage and understand models. An important service for developers to gain
insight into their models and to manage models is integrated querying.

 In order to be able to query integrated models, a query framework needs to
be integrated on the metamodeling level. A querying framework provides engineers
with support for using existing approaches and for addressing modeling decisions.

 In this chapter, we investigate the possibilities for querying elements of the
combined metamodel in a fl exible manner using or combining existing languages.

 The chapter is structured as follows: in Section 6.2 , we analyze the combina-
tion of existing query languages for UML class - based modeling and OWL. In
Section 6.3 , we present a concise query language for querying OWL ontologies:
SPARQLAS. We extend SPARQLAS for supporting integrated models in Section
 6.4 : SPARQLAS4TwoUse.

 6.2 COMBINING EXISTING APPROACHES

 The OCL language provides the defi nition of functions and the usage of built - in
functions for defi ning query operations in UML class diagrams, whereas SPAR-
QLDL provides a powerful language to query resources in OWL ontologies, allow-
ing for retrieval of concepts, properties, and individuals. While OCL assumes
Unique Name Assumption (UNA) OWL may mimic it using constructs like
owl:AllDifferent and owl:distinctMembers .

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

 1 This chapter contains work from EU STReP MOST Deliverable D1.2 “ Report on Querying the Com-
bined Metamodel ” [81] and of the paper “ Using Ontologies with UML Class - Based Modeling: The
TwoUse Approach ” published in the Data & Knowledge Engineering Journal [122] .

78

6.2 COMBINING EXISTING APPROACHES 79

 A combination of existing languages refl ects confi gurations for querying inte-
grated models. Figure 6.1 presents an architecture for querying integrated models.
These confi gurations can be realized by adopting current approaches or combining
different assumptions and reasoning services. We describe these confi gurations in
the following sections.

Using SPARQL over OWL with OWA. Among existing RDF - based query
languages for the semantic web, SPARQL is the W3C recommendation. It is based
on triples patterns and allows for querying the vocabulary and the assertions of a
given domain.

 Restrictions on the SPARQL language, i.e., entailment regimes, allow for
querying OWL ontologies, including TBox, RBox, and ABox. One implementation
is SPARQL - DL [154] (see Section 3.4.2.2 for a description of SPARQL - DL).

 SPARQL - DL enables querying OWL ontologies using the Open World
Assumption. It is currently available with the Pellet Reasoner [155] .

Using SPARQL over OWL with CWA. Polleres et al. [124] have explored
the usage of the SPARQL language in combination with closed - world reasoning in
SPARQL ++ . SPARQL ++ extends SPARQL by supporting aggregate functions and
built - ins. SPARQL ++ queries can be formalized in HEX Programs or description
logic programs. However, SPARQL ++ covers only a subset of RDF(S) and how it
can be extended towards OWL is still an open issue.

Using OCL over UML Class -Based Modeling with CWA. This is the
standard application of OCL as a query language. Query operations may be defi ned
and used as helpers for OCL queries and constraints. Default values as well as initial
and derived values can be defi ned by using UML and OCL.

Using OCL and SPARQL over OWA and UML Class -Based Modeling. In
some cases, a combination of UML class - based modeling and OWL is desired, e.g.,
for defi ning complex class descriptions or reusing existing ones. To make use of
behavioral features like query operations, helpers, and built - ins, UML class - based
modeling comes into play.

 In the next section, we present our approach for such a combination. Our
approach allows for describing query operations using SPARQL - like syntax. Query

 Figure 6.1 Existing Approaches for Querying Models.

OWA CWA

OWL
UML Class-Based

Modeling

SPARQLAS OCL

Domain Models

World Assumption

Reasoning

Querying

80 CHAPTER 6 QUERY LANGUAGES FOR INTEGRATED MODELS

operations are written in SPARQL - like notation and are translated into SPARQL and
executed against an OWL knowledge base. The results are used as input for OCL
query operations that allows the usage of helpers, query operations and built - ins
defi ned in OCL.

 6.3 QUERYING ONTOLOGIES USING
 OWL SYNTAX: SPARQLAS

 Writing SPARQL queries for OWL can be time - consuming for those who work with
OWL ontologies, since OWL is not triple - based and requires reifi cation of axioms
when using a triple - based language.

 Therefore, we propose SPARQLAS, a language that allows for specifying
queries over OWL ontologies with the OWL syntax [143] . SPARQLAS uses the
OWL Functional Syntax as well as OWL 2 Manchester Syntax and allows using
variables wherever an entity (Class, ObjectProperty, DataProperty,
NamedIndividual) or a literal is allowed.

 We will illustrate the SPARQLAS concrete syntax with examples in Section
 6.3.1 , present the main classes of the SPARQLAS metamodel in Section 6.3.2 , and
exemplify the transformation of SPARQLAS into SPARQL in Section 6.3.3 .

 6.3.1 SPARQLAS Concrete Syntax

 For creating SPARQLAS queries, we adopt the existing standard concrete syntax
notations for OWL 2. Users can write SPARQLAS queries using the OWL 2 Func-
tional Syntax [106] or the OWL 2 Manchester - like Syntax [74] . Appendix A.3 and
Appendix A.2 specify the EBNF grammar for both notations.

 Listing 6.1 and Listing 6.2 present the same query using the two different
notations. The query results in all subclasses of a class that have, as the value of the
property customer , a customer who lives in USA .

 LISTING 6.1 Example of SPARQLAS Query with Functional Syntax.

1 Namespace (= <http://www.example.org/customer#>)
Select ?x

Where (

SubClassOf (

5 ?x

ObjectSomeValuesFrom(

customer

ObjectIntersectionOf(

Customer

10 ObjectHasValue(country USA)

)

)

)

)

6.3 QUERYING ONTOLOGIES USING OWL SYNTAX: SPARQLAS 81

 Since SPARQLAS copes with the OWL 2 syntax, it does not provide support
for SPARQL solution sequences and modifi ers (ORDER BY, OFFSET) or optional
values (OPTIONAL). Schneider [143] presents an analysis of these constructs and the
details about the mappings between SPARQLAS and SPARQL.

 6.3.2 SPARQLAS Metamodel

 The SPARQLAS metamodel extends the OWL 2 metamodel [106] for including
support for variables. Figure 6.2 depicts the additional classes in the SPARQLAS
metamodel used for supporting the usage of variables. In the appendix, Figure A.1
depicts the complete SPARQLAS metamodel.

 The class Variable is a term that has a symbol as property, which represents
the variable (e.g., ?x). Specializations of the class Variable defi ne the existing
variable types: ClassVariable , ObjectPropertyVariable , DataProper-
tyVariable , IndividualVariable and LiteralVariable . All these classes
extend the class Variable and the corresponding class in the OWL 2 metamodel.
For example, the class ClassVariable extends the class Variable as well as the
class ClassExpression . Therefore, users can use variables whenever class expres-
sions fi t.

 6.3.3 Transformation from SPARQLAS to SPARQL

 SPARQLAS queries are translated into SPARQL queries to be executed by SPARQL
engines that support graph pattern matching for OWL 2 entailment regime [55] . The

 LISTING 6.2 Example of SPARQLAS Query with Manchester - like Syntax.

1 Namespace: <http://www.example.org/customer#>
Select ?x

Where: ?x subClassOf (customer some (Customer and (country value

USA)))

 Figure 6.2 Variables in the
SPARQLAS Metamodel.

82 CHAPTER 6 QUERY LANGUAGES FOR INTEGRATED MODELS

model transformation comprises the implementation of the mappings from the OWL
2 structural specifi cation to RDF Graphs (please consult [123] for the list of
mappings).

 For the sake of illustration, Listing 6.3 presents the corresponding SPARQL
query for the SPARQLAS query defi ned in Listing 6.1 and 6.2 . The SPARQL syntax
uses triples to reify class expressions defi ned in the SPARQLAS queries.

 6.4 QUERYING INTEGRATED MODELS:
 SPARQLAS 4 T WO U SE

 An adaptation of SPARQLAS allows for defi ning the body of query operations in
integrated models using an OWL - like language. Such an approach enables users to
use ontology services integrated with UML class - based modeling, as depicted in the
Figure 5.4 .

 LISTING 6.3 SPARQL Query Generated from the SPARQLAS Query.

1 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

5 PREFIX : <http: //www.example.org/customer#>
SELECT DISTINCT ?x

WHERE {

?x rdfs:subClassOf [

10 rdf:type owl:Restriction ;

owl:onProperty :customer ;

owl:someValuesFrom [

rdf:type owl:Class ;

owl:intersectionOf [

15 rdf:first :Customer ;

rdf:rest [

rdf:first [

rdf:type owl:Restriction ;

owl:onProperty :country ;

20 owl:hasValue :USA

];

rdf:rest rdf:nil

]

]

25]

]

}

6.4 QUERYING INTEGRATED MODELS: SPARQLAS4TWOUSE 83

 Figure 6.3 Composing the SPARQLAS Metamodel and the TwoUse Metamodel.

 LISTING 6.4 Example of SPARQLAS Query with Manchester - like Syntax.

1 context SalesOrder::getCustomer() : Customer

Namespace: <http://www.example.org/customer#>
Select ?c

Where: ?self :customer ?c

 For this purpose, we need fi rst to compose the TwoUse metamodel with the
SPARQLAS metamodel. Figure 6.3 depicts the navigation from the class TU-
AdapterClass to the query defi nition SPARQLAS::Query . The TUAdapterClass
extends the EClass, which contains operations. An operation extends a model
element that contains constraints. A constraint contains a body as an expression. The
ExpressionInSPARQLAS defi nes a SPARQLAS Query.

The Variable ?self. Unlike in SPARQLAS, the expressions are written in
the context of an instance of a specifi c class in SPARQLAS4TwoUse. We use the
same rationale as OCL and reserve the variable ?self for referring to the contextual
instance. For example, the SPARQLAS4TwoUse query in Listing 6.4 evaluates to
John if the contextual instance of the class SalesOrder is ORDER1 (see Table 3.2
for the running example).

84 CHAPTER 6 QUERY LANGUAGES FOR INTEGRATED MODELS

 SPARQLAS queries operate on the modeling layer (M) as well as on the
snapshot layer (M - 1). In the Figure 6.4 , we present an object diagram representing
a possible snapshot for the running example.

 The result of SPARQLAS queries is mapped from OWL onto UML class -
 based modeling, i.e., although all OWL expressions like property chains and uni-
versal quantifi cation can be used to write SPARQLAS queries, only classes, instances,
and literals can be delivered as the result.

 Table 6.1 presents results of evaluating SPARQLAS expressions considering
the snapshot depicted in Figure 6.4 . We take two objects of the snapshot (ORDER1 ,
ORDER2) and bind them to the predefi ned variable self . For example, for the
expression ?self type SalesOrder where ?self is bound to ORDER1 , the result
is true.

 Since the results of SPARQLAS4TwoUse queries are transformed back from
OWL into UML class - based modeling, the results can be used by OCL expressions
that utilize query operations defi ned in SPARQLAS4TwoUse. For example, the
OCL expression self.getTypes().size(); evaluates to 3 if the contextual
instances are ORDER1 (Thing, SalesOrder, USSalesOrder). Consequently,
OCL expressions can use query operations defi ned in SPARQLAS4TwoUse as input
(see Figure 6.5).

 6.5 CONCLUSION

 This chapter analyzes how current approaches can serve to query UML class - based
modeling and OWL and possible combinations. The query languages SPARQLAS

 Figure 6.4 Snapshot of the Running Example.

 TABLE 6.1 Evaluation of SPARQLAS Expressions According to the Running Example
Snapshot.

 ORDER1 ORDER2

?self type SalesOrder true true

?self type

USSalesOrder

true false

?self type ?C SalesOrder, USSalesOrder SalesOrder, CanSalesOrder

?self inverse order

?c

John Hans

?self directType ?C USSalesOrder CanSalesOrder

6.5 CONCLUSION 85

and OCL may be used according to different requirements to query OWL and UML
class - based modeling, respectively.

 The adaptation of SPARQLAS, SPARQLAS4TwoUse, allows the defi nition
of query operations for TwoUse classes that rely on ontology reasoning services.
The combination of OCL and SPARQLAS4TwoUse allows for using the results of
ontology reasoning services as input of OCL queries.

 Figure 6.5 Positioning SPARQLAS4TwoUse among Existing Approaches.

OWA CWA

OWL
UML Class-Based

Modeling

SPARQLAS OCLSPARQLAS4TwoUse

Domain Models

World Assumption

Reasoning

Querying

 CHAPTER 7
THE TWOUSE TOOLKIT

 The gap between the specifi cation of standards and the implementation of standards
in a programming language leads to adaptation penalties when new versions are
available. Among the possible solutions for raising the level of abstraction from code
to standard specifi cation, a framework that allows the integration of multiple stan-
dards at the design level is so far lacking. This chapter presents a generic architecture
for designing artifacts using multiple standard languages, turning the focus from
code - centric to transformation - centric. We test this architecture by instantiating its
conceptual blocks in an integrated development environment — the TwoUse Toolkit. 1

 7.1 INTRODUCTION

 Although integrating ontology technologies and software engineering has gained
more attention, practitioners still lack tool support. And though guidelines for model
transformations and implementations of these transformations exist, these still is not
a comprehensive framework dedicated to fi ll the gap between model - driven engi-
neering and ontology technologies. Ontology engineering environments [101] exclu-
sively support ontology development and do not provide support for OMG
standards.

 Providing a framework for integrating MDE and ontology technologies
requires dealing with the following challenges:

 • Seamless integration between UML class - based modeling languages and
OWL. Developers should be able to design models seamlessly in different
formats like Ecore, UML, XML, and OWL.

 • Modeling design patterns. Integrated frameworks should provide developers
with capabilities for reusing existing knowledge from other projects in the
form of design patterns.

 • Integration with existing standard and recommendations such as SWRL [76]
and OCL [116] . Developers should be able to work with semantic web lan-
guages (OWL, SWRL, and SPARQL) as well as with software languages
(UML and OCL).

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

 1 This chapter contains work from the tool demonstration “ Filling the Gap between the Semantic Web and
Model - Driven Engineering: The TwoUse Toolkit ” at ECMFA2010 [147] .

86

7.3 A GENERIC ARCHITECTURE FOR MDE AND ONTOLOGY ENGINEERING 87

 In this chapter, we present a generic architecture to implement OWL - related
standard specifi cations and model - driven techniques in an integrated engineering
tool, turning the focus from code - centric to transformation - centric. It comprises
a set of model transformations, graphical and textual editors, and reasoning
services.

 We organize this chapter as follows. In Section 7.2 , we describe the use cases
for such an architecture based on the requirements specifi ed in Section 5.2 and cor-
relate use cases and requirements in Section B.2. We describe the generic architec-
ture in Section 7.3 . In Section 7.4 , we describe an instantiation of the generic
architecture for development of model - driven applications and ontology - based infor-
mation systems — the TwoUse Toolkit.

 7.2 USE CASE DESCRIPTIONS

 In Section 5.2 , we present the requirements for an integrated approach. Figure 7.1
depicts the use cases (UC) to address those requirements. It gives an overview of
actors and their relation to the use cases. Appendix B.1 presents the description of
these use - cases.

 Designing integrated UML class diagrams or integrated Ecore models (UC
Design Integrated Model) enables the integration of OWL constructs in UML
class - based modeling. By specifying SPARQLAS4TwoUse query operations at
classes (UC Specify Query Operations), software engineers can defi ne queries
over ontologies and thus use classifi cation and realization to improve software
quality (see case studies 8 and 9). Moreover, when ontology engineers transform
Ecore - based models and metamodels into OWL (UC Transform to OWL), it allows
the usage of explanation (UC Explain Axiom), querying (UC Query UML class -
based models) and ontology matching (UC Compute Alignments) for support-
ing software engineers in debugging and maintenance.

 The Usage of SPARQLAS for querying OWL ontologies applies the principles
of MDE (domain - specifi c modeling and model transformation) to enable ontology
engineers to write SPARQL queries without having to deal with the reifi cation of
OWL axiom in RDF triples (UC Query OWL ontologies). Moreover, the design
and generation of ontology engineering services (UC Design Ontology Engi-

neering Service) counts on domain - specifi c modeling and model transformation
to generate platform - specifi c artifacts and raises the level of abstraction (see case
studies 11, 12, and 13).

 7.3 A GENERIC ARCHITECTURE FOR MDE
AND ONTOLOGY ENGINEERING

 The architecture of an integrated environment for OWL modeling and UML class -
 based modeling serves as a guideline for the development of artifacts for ontology
engineering that use model - driven technologies and artifacts for model - driven engi-
neering that use ontology technologies. It comprises a layered view according to the

88 CHAPTER 7 THE TWOUSE TOOLKIT

degree of abstraction of the components. Components of higher layers invoke com-
ponents of lower layers.

 Figure 7.2 depicts the generic architecture for developing integrated artifacts.
It comprises a set of core services, services for ontology engineering, services for
MDE, and a front - end layer.

 7.3.1 Core Services

 The core services comprise the core ontology services and the model management
services. The core ontology services correspond to the ontology services described
in Section 3.4 and cover querying and reasoning.

 Figure 7.1 Use Case for a Generic Architecture for MDE and Ontology Engineering.

Services for MDE

Specify Query Operations

Compute Alignments

Design Integrated Model

Transform to OWLSoftware Engineer

Browse

Design Ecore Metamodel Design UML Model

Explain Axiom

Query UML class-based models

Query OWL ontologies

Generate Service

Design Ontology Engineering Service

Ontology Engineer

Design Ontology API

Design Ontology Translation

Design Ontology Template

...

...

<<include>>

<<extend>>

<<extend>>

7.3 A GENERIC ARCHITECTURE FOR MDE AND ONTOLOGY ENGINEERING 89

 The model management services involve model transformations and the syn-
chronization of the source and target model. For example, when transforming a UML
class diagram into OWL, one requires that the generated OWL ontology remains
synchronized with changes on the source model.

 7.3.2 Engineering Services

Services for Ontology Engineering. Engineering services assemble the ser-
vices for ontology engineering and the services for MDE. Among the services for
ontology engineering, we highlight three services that use model - driven technolo-
gies to support ontology engineering: ontology translation, ontology modeling, and
ontology API specifi cation. Further ontology engineering services are described in
 [170] .

 The ontology modeling service provides the structure for designing ontologies.
It covers the support for ontology design patterns and the validation and verifi cation
of well - formedness constraints.

 Ontology translation enables the translation of a source ontology into target
formalisms. It adopts a dedicated language for defi ning mappings of multiple natures:
semantic, syntactic, and lexical.

 Ontologies require dedicated APIs to encapsulate the complexity of concepts
and relations. Therefore, to facilitate the adoption of these ontologies, ontology
engineers specify which ontological concepts and roles require operations for cre-
ation, update, and deletion. The ontology API service supports this task.

Services for Model -Driven Engineering. Among the services for MDE, we
have identifi ed the following services that use ontology technologies to support

 Figure 7.2 A Generic Architecture for MDE and Ontology Engineering.

Core Services

Services for Ontology Engineering Services for MDE

Debugging Matching
Ontology

Translation

Ontology API

Specification

Front-End

Editors Views

Ontology

Modeling

Core Ontology Services

Querying Reasoning

Model Management Services

Model

Transformation
Synchronization

Model

Extension

Perspectives

… …

Commands

Validation

90 CHAPTER 7 THE TWOUSE TOOLKIT

MDE: debugging, matching, validation, and extension. Debugging allows for sup-
porting software engineers in identifying the model elements that underpin a logical
conclusion. For example, it consists of pointing out the assertions that support a
given statement.

 The matching services consist of applying ontology matching techniques [38]
to identify similar concepts or relations in multiple models (see Section 3.5.2 for
ontology matching techniques).

 Finally, the model extension service controls the integration between OWL
and UML class - based modeling. It manages the extension of UML class diagrams
and textual Ecore notation with OWL axioms and the specifi cation of a SPAR-
QLAS4TwoUse query as the body of query operations.

 7.3.3 Front - End

 The layer Front-End is the interface between services and ontology engineers /
software engineers. It comprises editors, views, commands, and perspectives.

 The editors enable engineers to create and update artifacts written in ontology
languages as well as in software languages. For example, the OWL2FS editor
enables ontology engineers to create OWL ontologies using the OWL 2 functional
syntax.

 Commands comprise the actions that engineers execute to manipulate artifacts.
For example, to evaluate a given query operation, ontology engineers execute the
command evaluate that requests the instance specifi cations to be used as the
snapshot and invokes the model extension to control the applicable model
transformations.

 The component View provides engineers with multiple types of visualizations
of artifacts. For example, engineers require the visualization of classes in a class
hierarchy or the results of a query in a grid.

 Perspectives arrange views and editors in the workbench. It consists of sup-
porting the organization of the front - end services according to engineers needs.

 7.4 INSTANTIATING THE GENERIC MODEL - DRIVEN
ARCHITECTURE: THE TWOUSE TOOLKIT

 TwoUse toolkit is an open source tool that implements the research presented in this
book. It is an instantiation of the generic architecture and an implementation of
current OMG and W3C standards for designing ontology - based information systems
and model - based OWL ontologies. It is a model - driven tool to bridge the gap
between semantic web and model - driven engineering.

 TwoUse toolkit building blocks are (Figure 7.3):

 • A set of textual and graphical editors. TwoUse relies on textual and graphical
editors for editing and parsing W3C standard languages (OWL 2 and SPARQL),
OMG standards (UML, MOF and OCL), and other domain - specifi c
languages.

7.4 INSTANTIATING THE GENERIC MODEL-DRIVEN ARCHITECTURE: THE TWOUSE TOOLKIT 91

 • A set of model transformations. Generic transformations like “ Ecore to OWL ”
allow developers to transform any software language into OWL. Specifi c
transformations like “ UML to OWL ” and “ BPMN to OWL ” allow developers
to create ad hoc OWL representations of software models.

 • A set of ontology services like reasoning, query answering and explanation.

 Figure 7.4 depicts the TwoUse instantiation of the generic architecture depicted
previously in Figure 7.2 . It comprises core services, services for ontology engineer-
ing and model - driven engineering, and a front - end.

Core Services. The TwoUse toolkit uses the implementation of SPARQL -
 DL and the OWL 2 reasoner provided by the Pellet reasoner [155] as components
for realizing the core ontology services. The model transformation component con-
sists of a set of model transformations implemented using the Java language [56] as
well as the model transformation language ATL [82] . The synchronization service
maintains the dependencies between the source artifacts and the target artifacts. For
example, when engineers use a SPARQLAS query, a corresponding SPARQL query
is generated and executed. The synchronization service maintains the generated
SPARQL query updated in case of changes on the SPARQLAS query. It basically
implements the observer pattern [51] to notify state changes on the source model.

Services for Engineering. The services for ontology engineering cover
concrete applications of the TwoUse toolkit. We detail each of these applications in
Part IV.

 The services for model - driven engineering cover explanation, ontology match-
ing, and the TwoUse metamodel. The explanation service uses ontology services to
help software engineers in pinpointing statements. The TwoUse toolkit covers the
following types of explanation: unsatisfi ability, class subsumption, instantiation, and
property assertion. The matching service uses the Ontology Alignment API [40] to
support engineers in identifying similar constructs over multiple metamodels. We
illustrate the application of these services in Chapter 10 .

 Figure 7.3 The TwoUse
Toolkit.

TwoUse
Toolkit

92 CHAPTER 7 THE TWOUSE TOOLKIT

 Figure 7.5 depicts a snapshot of the TwoUse Toolkit showing the view Expla-
nation. The result of the explanation is showed in the console with links to the class
on the UML class diagram.

Front-End. The front - end is the interface of the TwoUse toolkit to engineers.
It comprises multiple editors that implement W3C standard languages and OMG
standards as well as other domain - specifi c languages. We defi ne three views to help
engineers in visualizing models: a hierarchy of the inferred classes (Figure 7.6), a
user interface for explanation and an interface for query results. The commands
involve transforming models into OWL, executing queries, and generating services
and code. We group the editors, views, and commands under two perspectives:
ontology - based model design and model - driven ontology development.

 We implement the TwoUse toolkit on top of the Eclipse Rich Client Platform
 [97] as an open - source tool under the eclipse public license. It is available for down-
load on the Project Website. 2

 2 http://twouse.googlecode.com/ .

 Figure 7.4 Instantiation of the Generic Architecture: The TwoUse Toolkit.

Core Services

Services for Ontology Engineering Services for MDE

Debugging MatchingOntology Translation

Ontology API

Specification

Front-End
Editors

Views

Ontology Modeling

Core Ontology Services

Querying Reasoning

Model Management Services

Model Transformation Synchronization

Model Extension

Perspectives

SPARQL-DL OWL 2 Reasoner

SPARQLAS2SPARQL

UML2OWL2UML

Ecore2OWL2Ecore

OntologyTemplate2OWL

Class Hierarchy

Query Results

Explanation

Commands

MBOTL Ontology Templates

Agogo TwoUse Modeling

Explanation Alignment API

OWL 2 FS
SPARQL

SPARQLAS
UML

Text Ecore
Model-Driven

Ontology Development

Ontology-Based

Model Design

SPARQLAS4Ecore

SPARQLAS4UML

UML-OWL Ecore-OWL

OWLTemplates-OWL

MBOTL Agogo OWL2 Graphical

Editor Transform to OWL

Execute Query

Generate Service

SPARQLAS-SPARQLAgogo2Java MBOTL2Java+SPARQL

Ontology Querying

TwoUse Querying

Compute Alignment

7.5 CONCLUSION 93

 7.5 CONCLUSION

 In this chapter, we have specifi ed a generic architecture for integrated approaches.
The architecture fulfi lls the requirements defi ned in Section 5.2 . We validated the
architecture by instantiating it as an implementation of the conceptual architecture —
 the TwoUse Toolkit.

 Figure 7.5 TwoUse Toolkit Snapshot: Explanation Service.

 Figure 7.6 TwoUse Toolkit Snapshot: View Inferred Class Hierarchy.

 CONCLUSION
OF PART II

 This part presented TwoUse as a solution for developing and denoting models that
benefi t from the advantages of UML class - based modeling and OWL modeling
(Research Question II from Section 1.2). We described the main building blocks of
a conceptual architecture covering an integration of UML class - based modeling,
OWL, and a query language for OWL. Moreover, we specify a generic architecture
for implementing the conceptual architecture and describe an instantiation of the
generic architecture — the TwoUse Toolkit.

 PART III
APPLICATIONS IN
MODEL - DRIVEN
ENGINEERING

 CHAPTER 8
IMPROVING SOFTWARE
DESIGN PATTERNS WITH OWL

 This chapter tackles problems in common design patterns and proposes OWL model-
ing to remedy these issues. We exploit the TwoUse approach and integrate OWL
with UML class - based modeling to overcome drawbacks of the strategy pattern,
which are also extensible to the abstract factory pattern. The results are ontology -
 based software design patterns to be used with software design patterns. 1

 8.1 INTRODUCTION

 Design patterns [51] provide elaborated, best practice solutions for commonly occur-
ring problems in software development. During the last years, design patterns were
established as general means to ensure quality of software systems by applying refer-
ence templates containing software models and their appropriate implementation to
describe and realize software systems.

 In addition to their advantages, Gamma et al. [51] characterize software design
patterns by their consequences including side effects and disadvantages caused by
their use. In this chapter, we address the drawbacks associated with pattern - based
solutions for variant management [169] . Design patterns rely on basic principles of
reusable object design like manipulation of objects through the interface defi ned by
abstract classes, and by favoring delegation and object composition over direct class
inheritance in order to deal with variation in the problem domain.

 However, the decision of what variation to choose typically needs to be speci-
fi ed at a client class. For example, solutions based on the strategy design pattern
embed the treatment of variants into the client ’ s code, leading to an unnecessarily
tight coupling of classes. Gamma [51] identifi es this issue as a drawback of pattern -
 based solutions, e.g., when discussing the strategy pattern and its combination with
the abstract factory pattern. Hence, the question arises of how the selection of spe-
cifi c classes could be determined using only their descriptions rather than by weaving
the descriptions into client classes.

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

 1 This chapter contains work from the paper “ Improving Design Patterns by Description Logics: A Use
Case with Abstract Factory and Strategy ” presented at Modellierung ’ 08 [151] .

99

100 CHAPTER 8 IMPROVING SOFTWARE DESIGN PATTERNS WITH OWL

 Here, description logics come into play. Description logics, in general, and
OWL as a specifi c expressive yet pragmatically usable W3C recommendation [61]
allow for specifying classes by rich, precise logical defi nitions [9] . Based on these
defi nitions, OWL reasoners dynamically infer class subsumption and object
classifi cation.

 The basic idea of this chapter lies in decoupling class selection from the defi ni-
tion of client classes at runtime by exploiting OWL modeling and reasoning. We
explore a slight modifi cation of the strategy pattern and the abstract factory pattern
that includes OWL modeling and leads to a minor, but powerful variation of existing
practices: the Selector Pattern . To realize the Selector Pattern , we apply the TwoUse
approach.

 This chapter is organized as follows. Section 8.2 presents an example demon-
strating the application of the strategy and abstract factory patterns to solve a typical
implementation problem. The example illustrates the known drawbacks of the state -
 of - the - art straightforward adoption of these patterns. Section 8.3 presents a solution
extending the existing patterns by OWL modeling. We explain how our revision
modifi es the prior example and how it addresses the issues raised in the example.
Section 8.4 describes an abstraction of the modifi ed example, i.e., the selector
pattern. We present its structure, guidelines for adoption, consequences, and related
works. A short discussion of open issues concludes this chapter in Section 8.6 .

 8.2 CASE STUDY

 This section presents a typical case study of design patterns involving the strategy
and abstract factory patterns. To illustrate an application of such patterns, we take
the example of an order - processing system for an international e - commerce company
in the United States [146] . This system must be able to process sales orders in dif-
ferent countries, e.g., the US and Germany, and handle different tax calculations.

 Design patterns rely on principles of reusable object - oriented design [51] . In
order to isolate variations , we identify the concepts (commonalities) and concrete
implementations (variants) present in the problem domain. The concept generalizes
common aspects of variants by an abstract class. If several variations are required,
the variations are subsumed to contextual classes, which delegate behavior to the
appropriate variants. These variants are used by clients .

 8.2.1 Applying the Strategy Pattern

 Considering the principles above, we identify the class SalesOrder as a context ,
Tax as a concept , and the classes USTax and GermanTax as the variants of tax
calculation. Since tax calculation varies according to the country, the strategy pattern
allows for encapsulating the tax calculation and letting them vary independently of
the context . The resulting class diagram is depicted in the Figure 8.1 .

 To specify operations, we use the Object Constraint Language (OCL) [116] .
The TaskController requires the operation getRulesForCountry , which
returns the concrete strategy to be used. The specifi cation must include criteria to

8.2 CASE STUDY 101

select from the strategies. In our example, the criterion is the country where the
customer of a sales order lives.

 The drawback of this solution is that, at runtime, the client TaskController
must decide on the variant of the concept Tax to be used, achieved by the operation
getRulesForCountry . Nevertheless, it requires the client to understand the dif-
ferences between the variants, which increases the coupling between these classes.

 Indeed, the decision of whether a given object of SalesOrder will use the
class GermanTax to calculate the tax depends on whether the corresponding Cus-
tomer lives in Germany. Although this condition refers to the class GermanTax , it
is specifi ed in the class TaskController . Any change in this condition will require
a change in the specifi cation of the class TaskController , which is not intuitive
and implies an undesirably tight coupling between the classes GermanTax , Country ,
and TaskController (Figure 8.2).

 8.2.2 Extending to the Abstract Factory

 When the company additionally needs to calculate the freight, new requirements
must be handled. Therefore, we apply again the strategy pattern for freight calcula-
tion. As for the tax calculation, the context SalesOrder aggregates the variation
of freight calculation, USFreight and GermanFreight generalized by the concept
Freight (Figure 8.3).

 Figure 8.1 Application of the Strategy Pattern in the Running Example.

TaskController

so : SalesOrder

getRulesForCountry() : OclType
process()

USTax GermanTax

Country

name : String

Tax

taxAmount()

Customer +country

SalesOrder

process(tax : Tax)

+customer

Client
Concept

Context

Variants

context TaskController::getRulesForCountry():OclType
 body:
 if so.customer.country.name = 'USA' then
 USTax
 else
 if so.customer.country.name = 'GERMANY' then
 GermanTax
 endif
 endif

Variation

102 CHAPTER 8 IMPROVING SOFTWARE DESIGN PATTERNS WITH OWL

 Figure 8.3 Strategy and Abstract Factory Patterns with Confi guration Object.

GermanTaxUSTax GermanFreightUSFreight

AbstractFactory
makeCalcFreight() : Freight
makeCalcTax() : Tax

USAbsFact GermanAbsFact

 TaskController

so : SalesOrder

process()

Configuration

so : SalesOrder

getRulesForCountry() : OclType

Tax
taxAmount()

Freight
freight()

SalesOrder

 process()

Customer

+customer

Country

name : String

+country

context Configuration::getRulesForCountry():OclType
 body:
 if so.customer.country.name = 'USA' then
 USAbsFact
 else
 if so.country.name = 'GERMANY' then
 GermanAbsFact
 endif
 endif

 Figure 8.2 Drawbacks of the Strategy Pattern.

8.2 CASE STUDY 103

 As we now have families of objects related to the US and Germany, we apply
the abstract factory pattern to handle these families. The abstract factory pattern
provides an interface for creating groups of related variants [51] .

 As one possible adaptation of the design patterns, the client (TaskCon-
troller) remains responsible for selecting the variants of the concept Abstract-
Factory to be used, i.e., the family of strategies, and passes the concrete factory
as a parameter to the class SalesOrder . The class SalesOrder is associated with
the class AbstractFactory , which interfaces the creation of the strategies Tax
and Freight . The concrete factories USAbsFact and GermanAbsFact implement
the operations to create concrete strategies USFreight , GermanFreight , German-
Tax , and USTax .

 The adaptation of the design patterns used as the example introduces a Con-
fi guration object [146] to shift the responsibility for selecting variants from one or
several clients to a Configuration class, as depicted in the Figure 8.3 . The class
Configuration decides which variant to use. The class SalesOrder invokes the
operation getRulesForCountry in the class Configuration to get the variant.
These interactions are also depicted in a sequence chart in Figure 8.4 .

 8.2.3 Drawbacks

 In general, the strategy pattern solves the problem of dealing with variations.
However, as documented by Gamma [51] , the strategy pattern has a drawback. The
clients must be aware of variations and of the criteria to select between them at
runtime, as described at the end of Section 8.2.1 .

 Figure 8.4 UML Sequence Diagram of Strategy and Abstract Factory Patterns with
Confi guration Object.

: TaskController : AbstractFactory

104 CHAPTER 8 IMPROVING SOFTWARE DESIGN PATTERNS WITH OWL

 When combining the strategy and abstract factory patterns, the problem of
choosing among the variants of the AbstractFactory remains almost the same.
Indeed, the abstract factory pattern assembles the families of strategies. Hence, the
client must still be aware of variations.

 The solution using the class Configuration does not solve this problem
either, i.e., the coupling migrates. As the Configuration must understand how the
variants differ, the selection is transferred from the client TaskController to the
class Configuration .

 Furthermore, each occurrence of the strategy and the abstract factory patterns
increases the number of operations that the class Configuration must be able to
handle. It makes the specifi cation of such a class complex, decreasing class
cohesion.

 Thus, a solution that reuses the understanding of the variations without increas-
ing the complexity is desirable. Furthermore, such a solution should allow one to
decide on the appropriate variants as late as possible. Separating the base of the
decision from the decision itself will provide an evolvable and more modular soft-
ware design. In the next section, we describe how TwoUse provides such a
mechanism.

 8.3 APPLICATION OF THE TWOUSE APPROACH

 A solution for the drawbacks presented at the end of Section 8.2 is to dynamically
classify the context , and verify whether it satisfi es the set of requirements of a given
variant . To do so, one requires a logical class defi nition language that is more
expressive than UML, e.g., the Web Ontology Language (OWL) [61] .

 To benefi t from the expressiveness of OWL and UML modeling it is necessary
to weave both paradigms into an integrated model - based approach, e.g., by using
the TwoUse modeling approach (see Chapter 5).

 8.3.1 OWL for Conceptual Modeling

 OWL provides various means for expressing classes, which may also be nested into
each other. One may denote a class by a class identifi er, an exhaustive enumeration
of individuals, a property restriction, an intersection of class descriptions, a union
of class descriptions, or the complement of a class description.

 For the sake of illustration, an incomplete specifi cation of the E - Shop example
using a description logic syntaxs repeated here. The identifi er Customer is used
to declare the corresponding class (8.1) as a specialization of Thing (), since
all classes in OWL are specializations of the reserved class Thing . The class
Country contains the individuals USA and GERMANY (8.2). The class USCustomer
is defi ned by a restriction on the property hasCountry ; the value range must
include the country USA (8.3). The description of the class GermanCustomer
is analogous (8.5). USSalesOrder is defi ned as a subclass of a SalesOrder with
at least one USCustomer (8.4). The intersection of both classes is empty (⊥),
i.e., they are disjoint (8.7). The class SalesOrder is equal to the union of

8.3 APPLICATION OF THE TWOUSE APPROACH 105

GermanSalesOrder and USSalesOrder , i.e., it is a complete generalization of
both classes (8.8).

 Customer (8.1)

 { , }USA GERMANY Country (8.2)

 USCustomer Customer hasCountry USA� � ∃ { } (8.3)

 USSalesOrder SalesOrder hasCustomer USCustomer� � ∃ . (8.4)

 GermanCustomer Customer hasCountry GERMANY� � ∃ { } (8.5)

 GermanSalesOrder SalesOrder hasCustomer GermanCustomer� � ∃ . (8.6)

 GermanSalesOrder USSalesOrder� � ⊥ (8.7)

 SalesOrder GermanSalesOrder USSalesOrder≡ (8.8)

 Notations for OWL modeling have been developed, resulting in lexical nota-
tions (cf. [73, 61]) and in UML as visual notation (cf. [21, 34, 114]). When modeling
the problem domain of our running example using a UML profi le for OWL [114] ,
the diagram looks as depicted in the Figure 8.5 . The number relates the list of DL
statements above to the corresponding visual notation.

 8.3.2 TwoUse for Software Design Patterns:
The Selector Pattern

 To integrate the UML class diagram with patterns (Figure 8.3) and the OWL profi led
class diagram (Figure 8.5), we rely on the TwoUse approach. We use UML profi les

 Figure 8.5 Domain Design by a UML Class Diagram Using a UML Profi le for OWL.

GermanSalesOrder
<<owlClass>>

USSalesOrder
<<owlClass>>

Country
<<owlClass>>

Customer
<<owlClass>>

+hasCountry

SalesOrder
<<owlClass>>

<<rdfSubClassOf>> <<rdfSubClassOf>>

+hasCustomer+hasOrder

USCustomer
<<owlRestriction>>

<<owlRestriction>>

<<equivalentClass>>

GermanCustomer
<<owlRestriction>>

<<owlRestriction>>

<<equivalentClass>>

<<rdfSubClassOf>><<rdfSubClassOf>>

34

5

7,8

6

106 CHAPTER 8 IMPROVING SOFTWARE DESIGN PATTERNS WITH OWL

as concrete syntax, and allow for specifying UML entities and OWL entities using
one hybrid diagram. These entities are connected using the UML profi le and SPAR-
QLAS queries. This hybrid diagram, i.e., a UML class diagram with profi les for
OWL and TwoUse, is mapped later onto the TwoUse abstract syntax.

 The approach enables the modeler to use SPARQLAS4TwoUse expressions
to describe the query operations of classes that have both semantics of an OWL class
and a UML class in the same diagram. Moreover, this operation can query the OWL
model, i.e., invoke a reasoning service at runtime that uses the same OWL model.

 Hence, we can achieve dynamic classifi cation writing SPARQLAS4TwoUse
query operations in the context to classify the variation in the OWL model in
runtime. The result is returned as a common object - oriented class.

 8.3.2.1 Structure The hybrid diagram is depicted in Figure 8.6 and in Figure
 8.7 . The classes Customer and Country are OWL classes and UML classes, i.e.,

 Figure 8.6 Profi led UML Class Diagram of an Ontology - Based Solution.

UML

Package

OWL

TwoUse

GermanTaxUSTax
GermanFreightUSFreight

AbstractFactory
makeCalcFreight() : Freight
makeCalcTax() : Tax

 TaskController

so : SalesOrder

process()

GermanSalesOrder
<<owlClass>>

USSalesOrder
<<owlClass>>

Country
<<owlClass>>

Customer
<<owlClass>>

+hasCountry

SalesOrder
<<owlClass>>

getRulesForCountry() : OclType
process()

+hasOrder

+hasCustomer

Tax
taxAmount() Freight

freight()

<<owlRestriction>>

<<equivalentClass>>

USCustomer
<<owlRestriction>>

<<owlValue>> {hasValue = USA} country : Country

«owlValue» {someValuesFrom=USCustomer} hasCustomer

<<owlRestriction>>

<<equivalentClass>>

GermanCustomer
<<owlRestriction>>

<<owlValue>> {hasValue = GERMANY} hasCountry : Country

«owlValue» {someValuesFrom=GermanCustomer} hasCustomer

<<rdfSubClassOf>><<rdfSubClassOf>>

context SalesOrder::getRulesForCountry():OclType
 body:
 Select ?T where ?self directType ?T

{disjoint, complete}

Customer
<<owlClass>>

8.3 APPLICATION OF THE TWOUSE APPROACH 107

 Figure 8.7 Profi led UML Class Diagram with the Strategy Pattern.

they are hybrid TwoUse classes. They are used in the OWL part of the model to
describe the variations of the context SalesOrder . The TwoUse profi le provides a
mapping between the names in OWL and in UML in such a way that class names
in both OWL and UML are preserved.

 The concrete factories, i.e., the variants to be instantiated by the client Task-
Controller are TwoUse classes as well. The concrete factories are described based
on the restrictions on the class SalesOrder which must also exist in both para-
digms. In the OWL part of the model, the concrete factories specialize the Sales-
Order , but in UML, they specialize the class AbstractFactory . Hence, they do
not inherit the methods of the class SalesOrder , because the associations between
the variants and the context happen only in OWL part of the model.

 8.3.2.2 Participants and Collaborations The TwoUse approach preserves
the signature and behavior of existing pattern implementations, as only the body of
the operation getRulesForCountry is affected. The class Configuration is no
longer needed, as the selection is moved to querying the OWL part of the model (cf.
the query in Figure 8.6).

 As depicted in Figure 8.8 , the class TaskController invokes the operation
process in the class SalesOrder (2), which invokes the operation getRulesFor-
Country (3). This operation calls SPARQLAS4TwoUse query operations. The
SPARQLAS4TwoUse operations use reasoning services to classify dynamically
the object SalesOrder to the appropriate subclass. The resulting OWL class, i.e.,

108 CHAPTER 8 IMPROVING SOFTWARE DESIGN PATTERNS WITH OWL

US-SalesOrder or GermanSalesOrder , is mapped onto a UML class and is
returned. The remaining sequence (5 - 12) remains unchanged.

 For instance, let ORDER1 be a SalesOrder with the property customer being
HANS with the property country being GERMANY . The call ORDER1.getRules-
ForCountry () results in an object of type GermanSalesOrder .

 8.3.2.3 Comparison In the strategy and abstract factory solution, the decision
of which variant to use is left to the client or to the Configuration object. It requires
associations from these classes (TaskController and Configuration , respec-
tively) with the concepts (Tax and AbstractFactory , respectively). Furthermore,
the conditions are hard - coded in the client ’ s operations.

 The TwoUse - based solution cuts these couplings, as the selection is done at
the OWL concept level, without any impact on the UML level, allowing the OWL
part of the model to be extended independently.

 The descriptions of the classes USSalesOrder and GermanSalesOrder are
used for the Reasoner to classify the object dynamically. As the classifi cation occurs
at the OWL level, resulting OWL classes are transformed into UML classes. Hence,
the conditions are specifi ed as logical descriptions.

 When evolving from Figure 8.1 to Figure 8.3 , the OWL part of the model does
not change. Thus, new patterns can be applied without additional effort in modeling
the OWL domain.

 Figure 8.8 Sequence Diagram of an OWL - Based Solution.

 : TaskController : AbstractFactory

 : Tax

 : Freight

2: process()

3: getRulesForCountry()

5: makeCalcTax()

12: freight()

8: taxAmount()

9: makeCalcFreight()

10: «create»
11: «return»

6: «create»

7: «return»

1: «create»

 Select ?T where ?self directType ?T

 : SalesOrder

8.4 VALIDATION 109

 8.4 VALIDATION

 After analyzing the case study of composing OWL and design patterns in Section
 8.3 , we abstract repeatable arrangements of entities and propose a design pattern
supported by OWL to address decision of variations — the selector pattern .

 The selector pattern provides an interface for handling variations of context.
It enables the context to select the appropriated variants based on their descriptions.
Selections in the selector pattern are encapsulated in appropriate SPARQLAS -
 queries against the concept, facilitating a clear separation between the base of the
decision and the decision itself.

 8.4.1 Participants and Collaborations

 The selector pattern is composed by a context (e.g., SalesOrder in Figure 8.6), the
specifi c variants (e.g., USAbsFact and GermanAbsFact in Figure 8.6) of this
context and their respective descriptions, and the concept (e.g., AbstractFactory
in Figure 8.6), which provides a common interface for the variations (Figure 8.9).
Its participants are:

 • Context maintains a reference to the Concept object.

 • Concept declares an abstract method behavior common to all variants.

 • Variants implement the method behavior of the class Concept .

 The Context has the operation select , which uses SPARQLAS operations
to call the reasoner and dynamically classify the object according to the logical
descriptions of the variants. A Variant is returned as the result (Figure 8.9). Then,
the Context establishes an association with the Concept , which interfaces the
variation.

 Figure 8.9 Structure, Participants, and Collaborations in the Selector Pattern.

 : Concept : Context

1: selector()

2: behavior()

Context
<<owlClass>>

selector()

VariantA
<<owlClass>>

VariantB
<<owlClass>>

Concept

behavior()

<<rdfSubClassOf>><<rdfSubClassOf>>

{disjoint, complete}

context Context::selector():OclType
 body:
 Select ?T where ?self directType ?T

110 CHAPTER 8 IMPROVING SOFTWARE DESIGN PATTERNS WITH OWL

 8.4.2 Applicability

 The selector pattern is applicable:

 • when the strategy pattern is applicable (cf. [51]);

 • when the decision of what variant to use appears as multiple conditional state-
ments in the operations;

 • when exposing complex and case - specifi c data structures must be avoided.

 The selector pattern preserves the interactions of the strategy and abstract
factory patterns, studied in this chapter. The following steps guide the application
of the selector pattern:

1. Design the OWL part of the model using a UML profi le for OWL, identifying
the concept and logically describing the variations;

2. Map the overlapping classes in UML and in OWL using a UML profi le;

3. Write the operation in the Context class corresponding to the operation selec-
tor using SPARQLAS expressions.

 8.4.3 Drawbacks

 The proposed solution may seem complex for practitioners. Indeed, applying the
selector pattern requires suffi ciently deep understanding by developers of topics like
open and closed world assumption, class expressions, and satisfi ability, in addition
to knowledge of SPARQLAS4TwoUse. Moreover, the diagram presented by Figure
 8.6 is visibly more complex than the corresponding version without patterns,
although applying aspect - oriented techniques can minimize this problem.

 Further, calls from OCL to SPARQLAS4TwoUse may return OWL classes
that are not part of the TwoUse model. This implies a dynamic diffusion of OWL
classes into the UML model and either they must be accommodated dynamically
into it or an exception needs to be raised.

 Therefore, class descriptions must be suffi cient for the reasoner to classify the
variant, i.e., classes and properties needed to describe the variants must also exist
at the OWL level. When this is not possible, the reasoner cannot classify the variants
correctly.

 8.4.4 Advantages

 The application of the selector pattern presents the following consequences:

Reuse. The knowledge represented in OWL can be reused independently of
platform or programming language.

Flexibility . The knowledge encoded in OWL can be modeled and evolved
independently of the execution logic.

Testability . The OWL part of the model can be automatically tested by logical
unit tests, independently of the UML development.

8.6 CONCLUSION 111

Easy Adoption . Expanding Figure 8.3 with Figure 8.6 and Figure 8.4 with
Figure 8.8 in the motivating example, shows that the changes required by
applying the selector pattern in existing practices are indeed minor.

UML Paradigm Dominance . The concrete cases are bound to the context
only in OWL. It has no impact on the UML part of the model. The program-
mer freely specifi es the SPARQLAS operation calls when applicable.

 8.5 RELATED WORK

 State - of - the - art approaches require hard - coding the conditions of selecting a particu-
lar variant [146] . Our approach relies on OWL modeling and reasoning to dynami-
cally subclassify an object when required.

 The composition of OWL with object - oriented software has been addressed
by [91] and [119] . We address this composition at the modeling level in a platform -
 independent manner [90] .

 8.6 CONCLUSION

 We have proposed a novel way of reducing coupling in important design patterns
by including OWL modeling. We have proposed an ontology - based software design
pattern called selector pattern and discuss the impact of adopting the new approach.

 The application of TwoUse can be extended to other design patterns concern-
ing variant management and control of execution and method selection. Software
design patterns that factor out commonality of related objects, e.g., prototype, factory
method and template method, are good candidates.

 CHAPTER 9
MODELING ONTOLOGY -
 BASED INFORMATION
SYSTEMS

 Developers of ontology - based information systems have to deal with domain knowl-
edge represented in ontologies and domain logic represented by algorithms. An
approach that allows developers to reuse knowledge embedded in ontologies for
modeling algorithms is lacking so far. In this chapter, we apply the TwoUse approach
for enabling developers of ontology - based information systems to reuse domain
knowledge for modeling domain logic. This results in improvements in maintain-
ability, reusability, and extensibility. 1

 9.1 INTRODUCTION

 The development of ontology - based information systems has gained momentum as
users increasingly consume applications relying on semantic web technologies. For
example, a core ontology - based information system for the Semantic Web is the
semantic annotation of formulas, text, or image, which transforms human -
 understandable content into a machine - understandable form.

 The development of these applications requires software engineers to handle
software artifacts and the ontologies separately. For instance, software engineers
cannot use OWL class expressions in the body of operations that rely on information
contained in the ontology. Therefore, software engineers have to defi ne the condi-
tions for selecting classes twice, fi rst in the ontology and second in the body of
operations. This process is error prone and requires the synchronization of both
defi nitions in case of changes.

 In this chapter, we analyze the application of the TwoUse approach for inte-
grating the ontologies in the development of ontology - based information systems.
TwoUse enables ontology engineers to specify conditions reusing the knowledge
encoded in the ontology.

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

 1 This chapter contains work from the paper “ Using Ontologies with UML Class - based Modeling: The
TwoUse Approach ” published in the Data & Knowledge Engineering Journal [122] .

112

9.2 CASE STUDY 113

 This chapter is structured as follows: Section 9.2 describes the domain of the
case study and analyzes current modeling techniques. In Section 9.3 , we apply the
TwoUse approach for integrating domain ontologies and software specifi cation.
Section 9.4 analyzes the application of the TwoUse approach according to ISO 9126
non - functional software requirements, and it describes the limitations.

 9.2 CASE STUDY

 We describe the case study in the context of the semantic multimedia tools in this
chapter. The K - Space Annotation Tool (KAT) [138] is a framework for semi -
 automatic and effi cient annotation of multimedia content that provides a plug - in
infrastructure (analysis plug - ins and visual plug - ins) and a formal model based on
the Core Ontology for Multimedia (COMM) [6] .

 Analysis plug - ins provide functionalities to analyze content, e.g., to semi -
 automatically annotate multimedia data like images or videos, or to detect structure
within multimedia data. However, as the number of available plug - ins increases, it
becomes diffi cult for KAT end - users to choose appropriate plug - ins.

 For example, semantic multimedia developers provide machine learning –
 based classifi es, e.g., support vector machines (SVM), for pattern recognition. There
are different recognizers (object recognizers, face detectors, and speaker identifi ers)
for different themes (sport, politics, and art), for different types of multimedia data
(image, audio, and video), and for different formats (JPEG, GIF, and MPEG). More-
over, the list of recognizers is continuously extended and, like the list of multimedia
formats, it is not closed but, by sheer principle, it needs to be open.

 Therefore, the objective is to provide KAT end - users with the functionality of
automatically selecting and running the most appropriate plug - in(s) according to the
multimedia data captured by the ontology. Such improvement enhances user satis-
faction, since it prevents KAT end - users from employing unsuitable recognizers over
multimedia data.

 In the following, we consider three recognizers that work over soccer videos:
highlight recognizer, jubilation recognizer, and goal shots detector. A highlight rec-
ognizer works on detecting sets of frames in videos with high changing rates, e.g.,
intervals where the camera view changes frequently in a soccer game. A jubilation
recognizer analyzes the video and audio, searching for shouts of jubilation. Finally,
a goal shots detector works on matching shouts of jubilation with changes in camera
view to characterize goal shots.

 9.2.1 UML Class - Based Software Development

 We apply an extensible approach to model recognizer variations, namely an adapta-
tion of the strategy pattern [51] . The strategy pattern allows for encapsulating rec-
ognizers uniformly, as depicted in Figure 9.1 .

 Figure 9.1 depicts the KAT domain in the UML class diagram. It is a complex
domain since KAT uses the COMM ontology that comprises multiple occurrences
of ontology design patterns, e.g., semantic annotation used in the running example.

114 CHAPTER 9 MODELING ONTOLOGY-BASED INFORMATION SYSTEMS

 Users select KAT algorithms for SVM recognition and, consequently, the class
controller invokes the method run() in the class kat_algorithm (Figure 9.1).
The method run() invokes the method getRecognizers() , which uses refl ection
to get a collection (rNames()) of the recognizers (_r) applicable to a given multi-
media content (multimedia_data). Then, the method recognize() of each recog-
nizer is invoked, which adds further annotations to multimedia data to refi ne the
description.

 Nevertheless, applying the strategy design pattern opens the problem of strat-
egy selection. To solve it, one needs to model how to select the appropriate
recognizer(s) for a given item of multimedia content. Listing 9.1 illustrates a solution
using OCL. It shows the description of the query operation rNames() in OCL. This
operation is used in the guard expression of the loop combined fragment in the
sequence diagram (Figure 9.1).

 The operation rNames() collects the classes of recognizers to be created. The
OCL expression Set(OclType) (Line 4) is used here as a refl ection mechanism to
get a list of the classes to be created. This is required to iterate through the instances
of kat_algorithm (Line 4) and test whether it satisfi es the requirements of a given
recognizer. If it does, the recognizer is added into a collection of recognizers to be
created (Line 17).

 In fact, the OCL expressions in Listing 9.1 contain class descriptions in some
sense. For example, the classes highlight_recognizer and jubilation_
recognizer need a kat_algorithm with some annotated_data_role with
some video_data (Lines 19 – 24). The description of a goal_shots_detector is
complicated (Lines 7 – 15), since it needs a soccer_video , that is a subclass of
video_data , with some semantic_annotation with some highlight , and
with some semantic_annotation with some jubilation .

 Figure 9.1 UML Class Diagram and Sequence Diagram of KAT Algorithms.

jubilation_recognizer

highlight_recognizer

controller

multimedia_data

recognizer

recognize()

kat_algorithm

_recognizers : ArrayList

run()
getRecognizers() : Set(r)ecognizer

goal_shots_detector

: controller : algorithm

: recognizer

1: run()
2: getRecognizers()

4: recognize()

3: createInstance()rNames(i)

loop (0, rNames->size())

loop (0, _recognizers->size())

9.2 CASE STUDY 115

 Indeed, the UML/OCL approach has limitations:

 • It restricts information that can be known about objects to object types, i.e.,
known information about objects is limited by information in object types (or
in object states when using OCL).

 • Class descriptions, e.g., goal_shots_detector (Lines 7 – 16), are embedded
within conditional statements that are hard to maintain and reuse. In scenarios
with thousands of classes, it becomes diffi cult to fi nd those descriptions,
achievable only by text search.

 • OCL lacks of support for transitive closure of relations [165, 17] . It makes
expressions including properties like part-of more complex.

 LISTING 9.1 OCL Expressions for the UML Sequence Diagram of Figure 9.1 .

1 context kat_algorithm

def rNames() : Set(OclType)

= kat_algorithm. allInstances ()
−>iterate (_i : kat_algorithm;

5 _r : Set(OclType) = Set{} |
if

_i.annotated_data_role−>exists (adr |
adr.video_data−>exists (v |

v.oclIsTypeOf (soccer_video) and

10 v.semantic_annotation−>exists (sa |
sa.kat_thing−>exists (g |

g.oclIsTypeOf (highlight))) and

v.semantic_annotation−>exists (sa |
sa.kat_thing−>exists (j |

15 j.oclIsTypeOf (jubilation)))

))

then

_r−>including(goal_shots_detector)
else if

20 _i.annotated_data_role−>exists (adr |
adr.video_data−>exists (v |
v.oclIsTypeOf(video_data)))

then

_r −>including(highlight_recognizer)−>union(
25 _r−>including(jubilation_recognizer))

else

_r

endif

endif)−>asSet()

116 CHAPTER 9 MODELING ONTOLOGY-BASED INFORMATION SYSTEMS

 9.2.2 Ontology - Based Software Development

OWL Modeling. Instead of hard - coding class descriptions using OCL
expressions, a more expressive and extensible manner of modeling data provides
fl exible ways to describe classes and, based on such descriptions, it enables type
inference.

 Therefore, one requires a logical class defi nition language that is more expres-
sive than UML class - based modeling. Indeed, OWL provides various means for
describing classes. One may denote a class by a class identifi er, an exhaustive enu-
meration of individuals, property restrictions, an intersection of class descriptions,
a union of class descriptions, or the complement of a class description.

 For the sake of illustration, we use description logic syntax to specify the KAT
domain as follows (Table 9.1). KAT uses the COMM ontology [6] as a conceptually
sound model of MPEG - 7 and as a common but extensible denominator for different
plug - ins exchanging data.

 For example, the classes jubilation and highlight are subclasses of
kat_thing (1). A soccer_video is a subclass of video_data (2). A highlight_annota-
tion is a semantic_annotation that setting_for some highlight (3). A
highlight_video is equivalent to a video_data that setting some high-
light_annotation (4). A jubilation_video is similarly described (5). A
highlight_recognizer is a subclass of a kat_algorithm and is equivalent to
a kat_algorithm that defines some annotated_data_role that is played_by
some video_data (7).

 OWL is compositional, i.e., OWL allows for reusing class descriptions
to create new ones. A look at the class soccer_jub_hl_video (6) shows that it
is equivalent to an intersection of soccer_video , highlight_video , and
jubilation_video , i.e., a soccer video with highlight and jubilation. Thus, it
becomes easier to describe the class goal_shots_detector (8), which is a sub-
class of a kat_algorithm and is equivalent to a kat_algorithm that defines

 TABLE 9.1 Specifying KAT with Description Logic Syntax.

jubilation highlight kat thing, _ (9.1)
 soccer video video data_ _ (9.2)
 highlight annotation semantic annotation setting for high_ _ _≡ ∃ . llight (9.3)
 highlight video video data setting highlight annotation_ _ _≡ ∃ . (9.4)
 jubilation video video data setting jubilation annotation_ _ _≡ ∃ . (9.5)
 soccer jub hl video soccer video highlight video jubilatio_ _ _ _ _≡ nn video_ (9.6)

highlight recognizer kat algorithm

defines annotated data

_ _

_

≡
∃ (__ _ _role played by video data∃ .) (9.7)

goal shots detector kat algorithm

defines annotated data

_ _ _

_ _

≡
∃ (rrole played by soccer jub hl video∃ _ _ _ _.)

 (9.8)

9.3 APPLICATION OF THE TWOUSE APPROACH 117

some annotated_data_role that is played_by some soccer_jub_hl_video .
Moreover, OWL allows for defi ning properties as transitive, simplifying query
expressions. The reader may compare these reusable class defi nitions against
the involved and useable implicit defi nition of distinctions provided in Listing 9.1
(Lines 6 – 25).

OWL Reasoning. OWL ontologies can be operated on by reasoners provid-
ing consistency checking, concept satisfi ability, instance classifi cation, and concept
classifi cation. The reasoner performs model checking to the extent that entailments
of the Tarski - style model theory of OWL are fulfi lled. For instance, it is possible to
verify whether it is possible to apply goal_shots_detector to images (consis-
tency checking) (the answer is “ no ” if goal_shots_detector is disjoint from
image recognizers) or whether a given instance is a soccer_jub_hl_video

(instance classifi cation). It is possible to ask a reasoner to classify the concepts of
the ontology and fi nd that highlight_video and jubilation_video are both
superclasses of soccer_jub_hl_video (concept classifi cation).

 More specifi cally, given that we know an object to be an instance of high-
light_video , we can infer that this object has the property setting and the value
of setting is an individual of highlight_annotation . Conversely, if we have
an object of video_data , which has the property setting and the value of
setting associated with such an individual is a highlight_annotation , we can
infer that the prior individual is an instance of highlight_video . This example
illustrates how to defi ne OWL classes like highlight_video by necessary and
suffi cient conditions.

 To sum up, OWL provides important features complementary to UML and
OCL that improve software modeling: it provides multiple ways of describing
classes; it handles these descriptions as fi rst - class entities; it provides additional
constructs like transitive closure for properties; and it enables dynamic classifi cation
of objects based upon class descriptions.

 The need for an integration emerges since OWL is a purely declarative and
logical language and not suitable to describe, e.g., dynamic aspects of software
systems such as states or message passing. Thus, to benefi t from inference, one must
decide at which state or given which trigger one should call the reasoner. In the next
section, we address this issue among others, proposing ways of integrating both
paradigms using the TwoUse approach.

 9.3 APPLICATION OF THE TWOUSE APPROACH

 We apply the TwoUse approach described in Part II to enable engineers to design
and integrate UML models and OWL ontologies, exploiting the full expressiveness
of OWL(SROIQ (D)) and allowing usage of existing UML2 tools.

 To give an idea of the integration, we use the example of the E - Shop domain.
Instead of defi ning the query operation rNames using UML/OCL expressions, we
use the expressiveness of the OWL language together with SPARQLAS4TwoUse.
Querying an OWL reasoning service , it is possible to ask which OWL subclasses of

118 CHAPTER 9 MODELING ONTOLOGY-BASED INFORMATION SYSTEMS

kat_algorithm describe a given instance, enabling dynamic classifi cation. Such
expression will then be specifi ed by:

1 context kat_algorithm

def rNames(): Set(Class)

?self type ?T

?T subClassOf kat_algorithm

 As specifi ed above, to identify which subclasses are applicable, we use the
variable ?T to get all types of ?self that are subclasses of kat_algorithm .

 The advantage of this integrated formulation of rNames lies in separating two
sources of specifi cation complexity. First, the classifi cation of complex classes
remains in an OWL model. The classifi cation reuses the COMM model and it is
reuseable for specifying other operations; it is maintainable using graphical nota-
tions; and it is a decidable, yet rigorous reasoning model (see Figure 9.2). Second,
the specifi cation of the execution logic remains in the UML specifi cation (sequence
diagram in the Figure 9.1).

 9.3.1 Concrete Syntax

 Figure 9.2 shows a snippet of the UML class diagram for the case study. In this
snippet, the OWL view consists of fi ve classes. The UML view comprises the seven
classes depicted in the Figure 2.8 and the TwoUse view contains six classes and a
SPARQLAS query expression.

 Figure 9.2 UML Class Diagram of KAT.

9.3 APPLICATION OF THE TWOUSE APPROACH 119

 LISTING 9.2 Modeling KAT Using the Textual Language.

1 class controller {}

class kat_algorithm extends core:algorithm {

attribute recognizer recognizers (0.. −1);
operation void run();

5 operation recognizer (0.. −1) getRecognizers ();
operation rNames(): Set(OclType)

Select ?T where ?self type ?T ?T subClassOf kat_algorithm;

}

. . .

10 abstract class recognizer{

operation void recognize();

}

 class highlight_annotation [equivalentTo [core:semantic_annotation

and [dsn:setting_for some highlight]]] {}

class highlight_video [equivalentTo [core:video_data and

[dsn:setting some highlight_annotation]]] {}

15 class jubilation_video [equivalentTo [core:video_data and

[dsn:setting some jubilation_annotation]]] {}

class soccer_jub_hl_video [equivalentTo [soccer_video and

highlight_video and jubilation_video]] {}

class highlight_recognizer extends kat_algorithm, [subClassOf

[dns:defines some [core:annotated_data_role and [played_by some

core:video data]]]] {}

class jubilation_recognizer extends kat_algorithm, [subClassOf

[dns:defines some [core:annotated_data_role and [dns:played_by

some core:video_data]]]] {}

class goal_shots_detector extends kat_algorithm, [subClassOf

[dns:defines some [core:annotated_data_role and [dns:played_

by some soccer_jub_hl_video]]]] {}

 Another way or integrating ontologies in the development of ontology - based
information systems is using the textual syntax. Listing 9.2 presents the equivalent
of the UML class diagram defi ned using the textual syntax for Ecore and includes
the OWL class expressions (between brackets).

 9.3.2 Abstract Syntax

 The TwoUse abstract model is generated as output of model transformations that
take as input models defi ned using any of the notations supported by TwoUse. Figure
 9.3 depicts an excerpt of the abstract model for the running example.

 Fi
gu

re
 9

.3

 E
xc

er
pt

 o
f

a
K

A
T

 M
od

el
 (

M
1)

.

120

9.4 VALIDATION 121

 9.3.3 Querying

 Table 9.2 lists results of evaluating SPARQLAS expressions considering the snap-
shot depicted in the Figure 9.4 . We take two objects of the snapshot (alg1,alg2)
and bind them to the predefi ned variable self . For example, for the expression
self.owlIsInstanceOf(highlight_recognizer) where self is bound to
alg1 , the result is true .

 9.4 VALIDATION

 Based on the case study, we analyze how TwoUse features refl ect development -
 oriented non - functional requirements according to a quality model covering the
following quality factors: maintainability, effi ciency (ISO 9126 [80]), reusability,
and extensibility [37] . The decision to use UML with OWL does not affect other
ISO 9126 quality factors.

Maintainability. We analyze maintainability with regard to analyzability,
changeability, and testability as follows.

Analyzability. In case of failure in the software, developers have the possibility
of checking the consistency of the domain and then use axiom explanation
to track down failure, which helps to improve failure analysis effi ciency.

 TABLE 9.2 Evaluation of SPARQLAS Expressions According to the KAT Snapshot.

 Context object alg1 alg2

 SPARQLAS expression

?self directType

highlight_recognizer

true true

?self directType goal_

shots_detector

false true

?self type ?T algorithm, description,

highlight_recognizer,

jubilation_recognizer,

method

algorithm, description,

highlight_recognizer,

jubilation_

recognizer, goal_

shots_detector,

method

?self type ?T ?T

subClassOf algorithm

highlight_recognizer,

jubilation_recognizer

highlight_recognizer,

jubilation_

recognizer, goal_

shots_detector

?self directType _:t

?a type _:t

alg1, alg2 alg1, alg2

?self directType ?T highlight_recognizer goal_shots_detector

122 CHAPTER 9 MODELING ONTOLOGY-BASED INFORMATION SYSTEMS

Changeability. The knowledge encoded in OWL evolves independently of
the execution logic, i.e., developers maintain class descriptions in the ontol-
ogy and not in the software. Since the software does not need recompilation
and redistribution, the work time spent to change decreases.

Testability. Developers used queries declared in unit tests to test ontology
axioms, enabling test suites to be more declarative.

Reusability. Extending the COMM core ontology allows developers to reuse
available knowledge about multimedia content, semantic annotation, and algorithm.
Furthermore, developers can reuse the knowledge represented in OWL indepen-
dently of platform or programming language.

 Moreover, developers rely on usage of class descriptions to semantically query
the domain. Semantic query plays an important role in large domains like KAT
(approx. 750 classes). For example, it is possible to reuse algorithm descriptions
applicable to videos. By executing the query

 Figure 9.4 Snapshot of KAT (M0).

9.5 CONCLUSION 123

1 ?T subClassOf (defines some (annotated_data_role and

(played_by some video)))

 using SPARQLAS, developers see that the classes highlight_recognizer,
jubilation_recognizer , and goal_shots_detector are candidates to reuse.
Such a semantic query is not possible with UML/OCL.

Extensibility. When the application requires it, developers can be more spe-
cifi c by extending existing concepts and adding statements. By adding new state-
ments, developers update the OWL ontology, which does not require generating code
if the UML model is not affected. For example, if developers identify that an algo-
rithm works better with certain types of videos, developers extend the algorithm
description.

 9.4.1 Limitations

 By weaving UML and OWL ontologies, TwoUse requires suffi cient understanding
of developers about class expressions and satisfi ability. There is a trade - off between
a concise and clear defi nition of syntax that is unknown to many people as in Table
 9.1 versus an involved syntax that people know. From past experiences, we conclude
that, in the long term, the higher level expressivity will prevail, as developers are
willing to learn a more expressive approach.

 Indeed, we have defi ned multiple notations according to different developers ’
needs, but this does not prevent them from understanding the semantics of OWL
constructs. This shortcoming is minimized in case of ontology - based information
systems, since software developers are familiar with OWL.

 9.5 CONCLUSION

 In this chapter, we show how our approach yields improvements on the maintain-
ability, reusability, and extensibility for designing ontology - based information
systems, which corroborates literature on description logics [98] . TwoUse allows
developers to raise the level of abstraction of business rules until now embedded in
OCL expressions.

 CHAPTER 10
ENABLING LINKED DATA
CAPABILITIES TO MOF
COMPLIANT MODELS

 In the software development process, there are standards for general - purpose model-
ing languages and domain - specifi c languages, capable of capturing information
about different views of systems like static structure and dynamic behavior. In a
networked and federated development environment, modeling artifacts need to be
linked, adapted, and analyzed to meet information requirements of multiple stake-
holders. In this chapter, we present an approach for linking, transforming, and query-
ing MOF - compliant modeling languages on the web of data. We propose the usage
of semantic web technologies for linking and querying software models. We apply
the proposed framework in a model - driven software.

 10.1 INTRODUCTION

 In a model - driven architecture, software engineers rely on a variety of languages for
designing software systems. As different stakeholders need different views of infor-
mation, the software development environment needs to encompass a myriad of
general - purpose and domain - specifi c languages with complementary and overlap-
ping applications.

 Since it is not feasible to capture all aspects of software into only one single
model, contemporary model - driven architectures include numerous notations to
serve according to the software development task. The inevitable usage of multiple
languages leads to unmanageable redundancy in developing and managing the same
information across multiple artifacts and, eventually, information inconsistency.
With the growing demand for networked and federated environments, the question
arises about what and how existing web standards can help existing modeling stan-
dards in fulfi lling the requirements of a web of models .

 Semantic web technologies [4] and linked open data (LOD) principles [16]
enable any kind of data to be represented, identifi ed, linked, and formalized on the
web. The same data can be adapted for use according to the software engineer ’ s
perspective.

 The interest in this topic motivated the Object Management Group (OMG) to
issue a request for proposals aimed at defi ning a structural mapping between Meta

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

124

10.2 CASE STUDY 125

Object Facility (MOF) models and Resource Description Framework (RDF) repre-
sentations [115] . This mapping should make possible to apply LOD principles to
MOF compliant models and to publish MOF compliant models as LOD resources.

 In a collaborative environment, developers need to be able to create architec-
tures with information expressed in multiple modeling languages. According to the
development phase, developers rely on multiple languages for modeling distinct
aspects of the system.

 OWL [61] provides a powerful solution for formally describing domain
concepts in networked environments. OWL is part of the semantic web stack
and is compatible with RDF and with LOD principles. OWL ’ s objective is
to provide evolution, interoperability, and inconsistency detection of shared
conceptualizations.

 Although transformations from the MOF metamodel to OWL have been pro-
posed before, addressing the aforementioned problems requires a coherent frame-
work comprising techniques not only for transforming but for extending, linking,
and querying MOF compliant models.

 In this chapter, we propose TwoUse as a framework for supporting interrelation-
ships of modeling languages in distributed software modeling environments. We
present this chapter as follows: Section 10.2 describes the running example used
through the chapter and analyzes the requirements to be addressed. Section 10.3
describes the application of the TwoUse approach. We analyze the approach on Section
 10.4 and the related work in Section 10.5 . Section 10.6 concludes the chapter.

 10.2 CASE STUDY

 As a case study, we use the development of the TwoUse toolkit, i.e., “ we eat our
own dog food. ” As described in Chapter 7 , the TwoUse Toolkit is a model - driven
implementation of current OMG and W3C standards for designing ontology - based
information systems and model - based OWL ontologies.

 TwoUse ’ s development life cycle comprises fi ve phases: requirement specifi ca-
tion, analysis, design, code, and management. Figure 10.1 depicts these phases and

 Figure 10.1 Development Life Cycle of the TwoUse Toolkit.

User Requirements Analysis Design Code

Use Case
Diagram

Component
Diagram

Class
Diagram

Source
Code

BPMN
Diagram

Package
Diagram

126 CHAPTER 10 ENABLING LINKED DATA CAPABILITIES TO MOF COMPLIANT MODELS

the artifacts generated in each phase. In the requirement specifi cation phase, develop-
ers use UML use case diagrams and a domain - specifi c language for specifying require-
ments. These requirements are realized by Business Process Model Notation (BPMN)
and UML component diagrams in the analysis phase. During the design phase, devel-
opers specify metamodels, generations for those metamodels, model transformations,
and, in the case of editors, the grammar specifi cation. At the end of the development
life cycle, these artifacts are transformed to source code and the dependencies between
TwoUse plug - ins are captured by eclipse manifest fi les. Finally, the management phase
controls the development life cycle and provides versioning.

 Figures 10.2 , 10.3 and 10.4 depict three concrete diagrams and show how
they depend on each other. The UML use case diagram depicts use cases from the
perspective of two actors: software engineer and ontology engineer (Figure 10.3).

 Figure 10.2 Snippets of Use Case Diagram from TwoUse Toolkit.

Software Engineer

Extend with

OWL...

Extend UML

with OWL Extend Ecore

with OWL

Design OWL

Ontology

Querying

<<extend>>

<<extend>>

<<extend>>

<<include>>

Reasoning

Services

Transform

UML to OWL

OWLizer

Transform to

OWL

Transform Ecore to OWL

Ontology Engineer

 Figure 10.3 Snippets of BPMN Diagram from TwoUse Toolkit.

Perspective

Ontology

Development

UML Profile

for OWL

Edit Ecore

Metamodel

S
o
ft
w

a
re

 E
n
g
in

e
e
r

Ecore to OWL

UML to OWL

Consistency Checking

Inferred

Class Hierarchy

SPARQLAS Query

Explanation

OWL2 Functional

Textual Syntax

10.2 CASE STUDY 127

Software engineers use the TwoUse toolkit to extend UML or Ecore models with
OWL annotations, to transform either of these metamodels into OWL, and subse-
quently to query them. Ontology engineers use a textual or graphical editor to design
an OWL ontology to be queried afterwards.

 The BPMN diagram shows the realization of these use cases from the perspec-
tive of the software engineer (Figure 10.3). Concretely, software engineers open the
perspective “ ontology development ” to start editing and querying models and
metamodels in OWL format.

 The component diagram shows the internal structure and dependencies of
component in the TwoUse architecture (Figure 10.4).

 The TwoUse toolkit development life cycle relies on multiple models to
provide viewpoints according to the development phase. For example, testers are
interested in the information fl ow to realize functionalities provided by the system.
Software engineers are interested in the impact of changing a given component or
task. Other software engineers are interested in a modular view of the system for
coordinating deliverables.

 10.2.1 Requirements

 Based on demand identifi ed in developing the TwoUse toolkit, we identify three
fundamental requirements for realizing a linked - open data environment in model -
 driven engineering:

 RQ 1: Model and metamodel interoperability . Multiple metamodels may
defi ne the same concepts in different ways. Therefore, one needs to extend
existing metamodeling frameworks (e.g., EMOF) to include support for
primitives for relating different representations, thus allowing for integrated
models that conform to heterogeneous metamodels.

 Figure 10.4 Snippets of Component Diagram from TwoUse Toolkit.

<<component>>

org.mindswap.pellet

<<component>>

west.twouse.backend

IReasoner

IOntologyProvider

IOWLizer

ITransformer

IOntolotyData

<<component>>

west.twouse.ui.contextmenus.owlizer

<<component>>

west.twouse.ui.views.explanation

<<component>>

west.twouse.ui.views.inferredclasshierarchy

<<component>>

west.twouse.ui.menus.transform2owlfs

128 CHAPTER 10 ENABLING LINKED DATA CAPABILITIES TO MOF COMPLIANT MODELS

 RQ 2: Techniques for composition of models and metamodels . For semi -
 automatically integrating modeling languages, one requires alignment tech-
niques that allow for identifying equivalences over multiple languages and
represent these equivalences (linking).

 RQ 3: Integration management . To achieve interoperability of modeling
languages, one needs to control all stages of linking modeling languages.
Models and metamodels must be transformed into the same representation.
After the composition takes place developers can create or execute queries
over artifacts.

 Addressing these requirements allows for achieving the following features:

Consistent view over multiple MOF models : Based on an integration of
multiple (MOF - based) languages, it is possible to have a consistent view
over multiple artifacts.

Query answering : Based on underlying formal semantics and constraints, it
is possible to defi ne queries over multiple artifacts. For example, it is pos-
sible to answer questions like: What is the effect of updating the plug - in
pellet? Which case tests must be executed if this plug - in is updated? More-
over, it enables the identifi cation of the impact of some model components
upon others (impact analysis) and thus the identifi cation of cyclic depen-
dencies or other unexpected consequences.

 10.3 APPLICATION OF THE T WO U SE APPROACH

 In this section, we describe how we exploit the TwoUse approach to address the
requirements described in the previous section. We present how to extend and trans-
form modeling languages into OWL. We illustrate how to query and manage links
between modeling languages.

 In the next subsections, we show how we apply the TwoUse components
described in Chapter 7 to realize linked data capabilities to MOF languages. The
approach consists of the following components: (1) model extension, (2) model
transformation, (3) matching, and (4) querying (please refer to Section 7.3 for the
components of the generic architecture).

 10.3.1 Model Extension

 OWL specifi es class expression axioms, object property axioms, and individual
axioms that serve to link similar classes and individuals over multiple metamodels
and models. Because of OWL 2 expressiveness, it is possible to combine class
expressions and axioms to express equivalencies between classes.

 Figure 10.5 shows snippets of the UML and BPMN metamodels. From the
UML metamodel, it depicts classes of the Use Case package and the Activity
package. From the BPMN metamodel, it depicts classes that describe tasks and
message edges. A look at both metamodels shows correspondences between the

10.3 APPLICATION OF THE TWOUSE APPROACH 129

 Figure 10.5 Snippet of BPMN Metamodel and UML Metamodel for Use Cases.

activity package and the BPMN metamodel. For example, the UML class Activity
is equivalent to BPMN class BpmnDiagram .

 In Listing 10.1 , we present examples using OWL 2 syntax of constructs that
can serve to link Ecore metamodels with OWL. In Line 1, we describe the equiva-
lence ofa UML Activity and BpmnDiagram . The equivalence of the set of

 LISTING 10.1 Linking Ecore Metamodels with OWL .

1 EquivalentClasses (uml:Activity bpmn:BpmnDiagram)

 EquivalentClasses (uml:OpaqueAction ObjectSomeValuesFrom

 (bpmn:activityType bpmn:Task))

 TransitiveObjectProperty (uml:general)

 SubObjectPropertyOf(ObjectPropertyChain (bpmn:outgoingEdges bpmn:target)

 bpmn:sucessorActivities)

5 SubObjectPropertyOf(ObjectPropertyChain (uml:outgoing uml:target)

 uml: sucessorNodes)

 SubObjectPropertyOf(ObjectPropertyChain (uml:include uml:addition)

 uml:includeUseCases)

 SubObjectPropertyOf(ObjectPropertyChain

 (ObjectInverseOf(uml:addition) uml:includingCase)

 uml:includingUseCases)

 EquivalentObjectProperties (uml:sucessorNodes

 bpmn:sucessorActivities)

130 CHAPTER 10 ENABLING LINKED DATA CAPABILITIES TO MOF COMPLIANT MODELS

individuals of the class OpaqueAction and the set of individuals of the class
Activity where the property activityType is set to Task in the BPMN
metamodel is defi ned in Line 2. Lines 3 and 4 characterize the property general
of the UML metamodel as transitive. In Line 5, we derive a new property in the
BPMN metamodel based on a property chain, i.e., a composition of the properties
outgoingEdges and target are properties of sucessorActivities . For
instance, outgoingEdges (x , y), target (y , z) → successor Activities (x , z). Similarly, a
property chain ancestorNodes for the UML metamodel is defi ned in Line 6. The
equivalence of the defi ned property chains is expressed in Line 7.

 At the model level, developers can link models elements (metamodel instances)
using OWL constructs. The SameIndividual axioms allow to defi ne the equality
of individuals in order to assert that instances of different metamodels are the same.
For example, if we have a UML package called west.twouse.backend , we can
assert that this package is the same as the Java package with the same name —
SameIndividual(uml:west.twouse.backend java:west.twouse.backend) .

 Additionally, OWL 2 provides constructs to enrich Ecore metamodels and
extend its expressiveness. For example, object property axioms aim at characterizing
object properties like the defi nition of sub - property relations and the expression of
refl exive, irrefl exive, symmetric, asymmetric, and transitive properties.

 Another benefi t of extending Ecore with OWL is monotonicity, i.e., adding
further axioms to a model does not negate existing entailments. We can extend Ecore
metamodels with OWL without invalidating any existing assertions. Thus, OWL
provides a non - invasive way to integrate the same or similar concepts of different
modeling languages.

 In order to extend the expressiveness of Ecore metamodels, we use the textual
notation defi ned in the TwoUse approach (Chapter 5).

 By extending the Ecore metamodel with OWL, we enable developers with
primitives for connecting metamodels like property equivalence, class equivalence,
and individual equality, addressing the requirement RQ1 .

 10.3.2 Model Transformation

 Based on the mappings between UML class - based modeling and OWL ontology, we
develop a generic transformation to transform any Ecore Metamodel/Model into
OWL TBox/ABox — OWLizer [163] . Figure 10.6 depicts the conceptual schema of
transforming Ecore into OWL.

 A model transformation takes a language metamodel and the annotations as
input and generates an OWL ontology where the concepts, enumerations, properties,
and datatypes (terms) correspond to classes, enumerations, attributes/references, and
datatypes in the language metamodel. Additionally, the transformation takes the
language model created by the language user and generates assertions in the OWL
ontology.

 The structural mapping from Ecore - based metamodels and models to OWL
makes Ecore models in general data available as federated, accessible, and query -
 ready LOD resources. Multiple UML models can be transformed into a common
representation in OWL ontologies according to this structural mapping. Having

10.3 APPLICATION OF THE TWOUSE APPROACH 131

 Figure 10.6 Mapping Ecore and OWL.

models represented in OWL ontologies, one might connect these ontologies and
process these ontologies in a federated way.

 Thus, the resulting OWL representations address the requirement RQ3 defi ned
in Section 10.2.1 .

 10.3.3 Matching

 In a model - driven paradigm, resources that are expressed using different modeling
languages must be reconciled before being used. As described previously (see
Section 3.5 in Chapter on Ontology Foundations), ontology matching allows for
identifying correspondences of elements between two ontologies.

 The quality of the correspondences depends on the applied criteria and tech-
nique. For example, if we apply only string matching, it generates a false positive
correspondence between the UML Activity and the BPMN Activity . However,
if we apply structure - based techniques and analyze the structure of the UML class
Action and the BPMN class Activity, we see that both have similar structures (both
have one superclass with two associations with the same cardinalities). However,
the UML class Action is abstract and the BPMN class Activity is concrete. So, we
could assert that the class Activity is a subclass of class Action.

 Automatic matching techniques can be seen as support but should be assisted
by domain experts, because of false positive matches. For example, the correspon-
dence between BpmnDiagram and UML Activity is hard to catch automatically.

 Ontology matching capabilities address the requirement RQ2 by identifying
correspondences in order to link between (meta) models.

 10.3.4 Querying with SPARQLAS

 As described in Section 6.3 , SPARQLAS allows for specifying queries using the
OWL syntax for querying OWL ontologies. Listing 10.2 shows a SPARQLAS query
about use cases that include other use cases. In this example, we ask about the

132 CHAPTER 10 ENABLING LINKED DATA CAPABILITIES TO MOF COMPLIANT MODELS

individuals ?x whose type is an anonym class where the transitive property inclu-
deUseCase has as a value some use case.

 With SPARQLAS, we cover the requirement RQ3 by providing distributed
query facilities for models and metamodels that are represented in OWL.

 10.4 VALIDATION

 In order to validate our approach, we applied it in the TwoUse Toolkit. Table 10.1
presents the list of artifacts that are part of the development process of TwoUse
Toolkit and the corresponding metrics. TwoUse Toolkit is a model - driven approach,
i.e., each artifact listed below has an Ecore metamodel. For each artifact, we present
the number of classes on the metamodel and the number of instances.

 Using our approach, we are able to extract information about the Ecore
metamodels and models listed in Table 10.1 , partially fulfi lling requirement RQ3.
Our approach for transforming Ecore - compliant metamodels and models captures
all Ecore constructs. Thus, transformations from OWL back to Ecore can be done
lossless.

 After extracting metamodel/model information from TwoUse artifacts, we
used ontology matching techniques to identify correspondences between metamod-
els, fulfi lling the requirement RQ2. For Ecore metamodels and models, we have

 LISTING 10.2 Use cases That Includes Some Other Use Case.

1 Namespace: uml = <http://www.eclipse.org/uml2/3.0.0/UML#>
Select ?x

Where:

?x type (UseCase and includeUseCase some UseCase)

 TABLE 10.1 T wo U se Measurement.

 Phase Artifact Classes Instances

 User Requirements Requirements specifi cation 24 212

 UML diagrams 261 174

 Analysis BPMN diagram 24 754

 Design Metamode 23 5370

 Generator specifi cation 20 3374

 Grammar specifi cation 38 7611

 Model transformation 46 8043

 Code Manifest specifi cation 53 2824

 Management Versioning and
development life cycle

 22 7032

10.4 VALIDATION 133

used string distance method that analyzes the similarities between names of ele-
ments. Additionally, we have used the class structure alignment method for establish-
ing alignments based on the comparison of class properties.

 Ontology matching techniques still generate false positives. Thus, it is neces-
sary that domain experts assist the ontology matching process at the metamodel level
(M2) by manually determining which of the identifi ed correspondences should be
implemented. At the modeling level (M1), this problem is minimized by alignment
rules that query the metamodels. For example, if an instance x of UML metaclass
OpaqueAction has the same name as an instance of the BPMN metaclass Activity,
then they are the same activity.

 Once that domain experts have acknowledged which correspondences should
take place, the axioms for realizing the correspondences are generated, fulfi lling the
requirement RQ2. Listing 10.3 presents sample axioms for linking model and
metamodel. Equivalent classes or class expressions are connected by the construct
EquivalentClasses , whereas individuals with the same name are connected by
the construct SameIndividual .

 Finally, we present the specifi cation of queries mentioned at the beginning of
this section, fulfi lling the requirement RQ3. Listing 10.4 presents the SPARQLAS
query for determining which tasks realize the use case Querying . The usage of the
transitive property and property chain for includeUseCases simplifi es the query.

 LISTING 10.3 Sample of Linking Ecore Metamodels with OWL .

1 EquivalentClasses (uml:Activity bpmn:BpmnDiagram)

EquivalentClasses (uml:ActivityNode bpmn:Vertex)

EquivalentClasses (uml:OpaqueAction ObjectSomeValuesFrom

(bpmn:activityType bpmn:Task))

EquivalentDataProperties (uml:name bpmn:name)

5 SameIndividual (uml:west.twouse.reasoner srs:west.twouse.reasoner)

SameIndividual (mf:west.twouse.reasoner srs:west.twouse.reasoner)

SameIndividual (uml:ReasoningServices srs:ReasoningServices)

 LISTING 10.4 Which Tasks Realize Use Case Querying?

1 Namespace : = <http://www.eclipse.org/uml2/3.0.0/UML#>
Select ?name

Where: _:u name "Querying" xsd:string

_:u includeUseCases ?uc

5 ?uc ownedBehavior ?act

?act node ?node

?node type OpaqueAction

?node name ?name

134 CHAPTER 10 ENABLING LINKED DATA CAPABILITIES TO MOF COMPLIANT MODELS

Moreover, the query works for Activity Diagrams and BPMN Diagrams, since both
are integrated.

 Listing 10.5 presents an example of querying involving both levels (metamodel
M2 and model M1) at the same time. It uses the alignments presented above, i.e.,
individuals of class UseCase and class Component are the same as individuals of
classes UseCase and Component with the same name. Moreover, it uses an anonym
property that corresponds to a property chain of the property uml:includingCase

and the inverse of the property uml:addition .

 10.4.1 Limitations

 Since there exist multiple strategies for matching and aligning ontologies, it is pos-
sible that false positive matches occur. For example, OWL classes with the same
name are matched as equivalent, if one uses a string - based matching technique,
although the two concepts are semantically different. Thus, domain experts must be
involved to validate the results of matching and alignments.

 10.5 RELATED WORK

 The integration of software artifacts has been the topic of works including [3, 102] .
However, these approaches presented dedicated extractors for specifi c systems like
bug tracking and version control but not for software models. Moreover, neither of
these approaches presents formats for publishing data suitable to the linked - data
approach, i.e., they do not share the principles of interoperability for connecting
federated software models across the web.

 Kiefer et al. [89] and Iqbal et al. [79] explore semantic web approaches for
transforming software artifacts such as data from version control systems, bug track-
ing tools, and source code into linked data. Both approaches use artifact - specifi c

 LISTING 10.5 What Use Cases to Test If the Component west.twouse.reasoner Is
Updated

1 Namespace: uml = <http://www.eclipse.org/uml2/3.0.0/UML#>
Namespace: srs = <http://west.uni−koblenz.de/SRS#>
Namespace: mf = <http://west.uni−koblenz.de/EclipseManifest#>
Select ?name

5 Where: ?component mf:name "west.twouse.reasoner" xsd: string

?component srs:requirement ?requirement

?requirement srs:useCase ?uc

?uc uml:name ?name

Union:

10 ?uc (inverse uml:addition o uml:includingCase) ?iuc

?iuc uml:name ?name

10.6 CONCLUSION 135

extractors and thus work only for a fi xed number of software artifacts. We propose
a generic approach for transforming and managing any MOF metamodel in a web
format.

 The OMG ontology defi nition metamodel [114] specifi es mappings between
OWL and UML. In this chapter, we present a general approach for mapping arbitrary
Ecore models into OWL. We provide the means to express any MOF metamodel in
its equivalent OWL.

 The OMG Request For Proposal for MOF to RDF Structural Mapping in
support of Linked Open Data [115] aims at defi ning a structural mapping between
OMG - MOF models and RDF. This work can be seen as a response to this request.
We propose an approach that can serve as a benchmark for future proposals.

 10.6 CONCLUSION

 In this chapter, we propose an approach to enable analysis, federation, and querying
of models expressed in MOF compliant languages, including OMG standards and
domain - specifi c languages. The contribution in this chapter shows that the usage of
the Ontology Web Language for specifying metamodels is a viable solution to
achieve interoperability and shared conceptualizations. The role of OWL is not to
replace MOF or the Object Constraint Language, since OWL addresses distinct
requirements, specially concerning networked environments. OWL should comple-
ment the spectrum of software modeling languages in a unifi ed architecture.

 CONCLUSION
OF PART III

 In this part, we have analyzed the impact of using OWL constructs and OWL ontol-
ogy services in software modeling languages (addressing Research Problem III from
Section 1.2).

 We used class expressions to decouple class selection from OCL expressions
embedded in query operations (addressing Research Problem III.A) and improve
software design patterns that address variant management.

 When applying it in ontology - based information systems, the usage of SPAR-
QLAS4TwoUse for integrating queries over ontologies with operations impacts on
maintainability, reusability, and extensibility (addressing Research Problem III.B).

 Moreover, the transformation of MOF - based software languages into OWL
supports software development by allowing developers to extract software engineer-
ing data using SPARQL - like queries over multiple software artifacts (addressing
Research Problem III.C).

 PART IV
APPLICATIONS IN
THE SEMANTIC WEB

 CHAPTER 11
MODEL- DRIVEN
SPECIFICATION OF
ONTOLOGY TRANSLATIONS

 The alignment of different ontologies requires the specifi cation, representation, and
execution of translation rules. The rules need to integrate translations at the lexical,
the syntactic, and the semantic layer requiring semantic reasoning as well as low -
 level specifi cation of ad - hoc conversions of data. Existing formalisms for represent-
ing translation rules cannot cover the requirements of these three layers in one
model. We propose a metamodel - based representation of ontology alignments that
integrate semantic translations using description logics and lower - level translation
specifi cations into one model of representation for ontology alignments. 1

 11.1 INTRODUCTION

 The reconciliation of data and concepts from ontologies and data repositories in the
Semantic Web requires the discovery, representation, and execution of ontology
translation rules. Although research attention is now devoted to the discovery of
alignments between ontologies, a shallow inspection of ontology alignment chal-
lenges reveals that there does not exist one accessible way of representing such
alignments as translation rules [41] .

 The reason is that alignments must address ontology translation problems at
different layers [30, 39] :

1. At the lexical layer , it is necessary to arrange character sets, handling token
transformations.

2. At the syntactic layer , it is necessary to shape language statements according
to the appropriate ontology language grammar.

3. At the semantic layer , it is necessary to reason over existing ontological speci-
fi cations and data in both the source and the target ontologies.

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

 1 This chapter contains work from the paper “ Model - Driven Specifi cation of Ontology Translations ”
presented at ER ’ 08 [149] .

141

142 CHAPTER 11 MODEL-DRIVEN SPECIFICATION OF ONTOLOGY TRANSLATIONS

 For addressing ontology translation problems at the semantic layer, existing
frameworks provide reasoning in one or several logical paradigms, such as descrip-
tion logics [19, 65] or logic programming [28, 36, 96] . For addressing ontology
translation problems at lexical and syntactic layers, alignment frameworks take
advantage of platform - specifi c implementations, sometimes abstracted into transla-
tion patterns [109, 95] or into logical built - ins [96] .

 Such hybrid approaches, however, fail to provide clarity and accessibility to
the modelers that need to see and understand translation problems at semantic,
lexical, and syntactic layers. Indeed, modelers need to manage different languages:
(1) an ontology translation language to specify translation rules and (2) a program-
ming language to specify built - ins, when the ontology translation language does not
provide constructs to completely specify a given translation rule. This intricate and
disintegrated manner draws their attention away from the alignment task proper
down into diverging technical details of the translation model.

 Filling the gap in the ontology translation domain between ontology mapping
languages and general purpose programming languages helps to improve productiv-
ity, since modelers will not have to be aware of platform - specifi c details and will be
able to exchange translation models, even if they use different ontology translation
platforms. Moreover, maintenance and traceability are facilitated because knowl-
edge about mappings is no longer embedded in the source code of programming
languages.

 We propose a platform - independent approach for ontology translations, based
on model - driven engineering (MDE) of ontology alignments. The framework
includes a language to specify ontology translations — the Model - Based Ontology
Translation Language (MBOTL). In order to reconcile semantic reasoning with
idiosyncratic lexical and syntactic translations, we integrate these three translation
problems into a representation based on a joint metamodel. The joint metamodel
comprises, among others, the OWL 2 metamodel and the OCL metamodel to support
specifi cation, representation, and execution of ontology translations.

 The chapter is organized as follows: The running example and the requirements
for ontology translation approaches are explained in Section 11.2 . Our solution is
described in Section 11.3 , followed by examples in Section 11.4 . In Section 11.5 we
discuss the requirements evaluation, and in Section 11.6 we present related work. The
conclusion, Section 11.7 , fi nishes the chapter with an outlook to future work.

 11.2 CASE STUDY

 We consider two ontologies of bibliographic references from the test library of the
Ontology Alignment Evaluation Initiative (OAEI) [41] to demonstrate the solution
presented in this chapter: the reference ontology (#101) and the Karlsruhe ontology
(#303). Canonical mappings covered by examples in this chapter and snippets of the
source and target ontologies using the Manchester OWL Syntax [73] are shown in
Figure 11.1 . Please refer to OAEI for complete ontologies.

 By examining the mapping between ontology #101 and ontology #303, it
becomes clear that translations are required in order to realize the mapping. Individu-

11.2 CASE STUDY 143

als of the classes Chapter and InBook in ontology #101 are translated into indi-
viduals of the class InBook in the ontology #303. Values of the object property
month having a Gregorian month, e.g., “–01” , are translated into the equivalent
unabbreviated form, e.g., “January” . Values of the data property pages in ontol-
ogy #303 can be calculated by subtracting the value of the data property initial-

Page from the value of the property endPage in ontology #101.
 We defi ne the translation rules explained above by the following logical rules.

All variables are treated as universally quantifi ed and prefi xed with a question mark.
Let builtin : notShortened be a built - in function that returns the unabbreviated month,
builtin : toUpper be a built - in function to capitalize strings, builtin : — be a subtractor
function, s be the namespace prefi x of the source ontology #101, and t be the namespace
prefi x of the target ontology #303, the translation rules can be written as follows:

t InBook x t month x m t title x n t pages x p: (?) : (? , ?) : (? , ?) : (? , ?)∧ ∧ ∧ ←
((: (?) : (?)) : (? , ?)

:

s InBook x s Chapter x s month x y

builtin notSh

∨ ∧ ∧
oortened y m s title x z

builtin toUpper z n s pa

(? , ?) : (? , ?)

: (? , ?) :

∧ ∧
∧ gges x w s startP age w a

s endPage w e builtin

(? , ?) : (? , ?)

: (? , ?) :

∧ ∧
∧ − ((? , ? , ?).e a p

 (11.1)

 The translation rule of authors is not trivial either. While in ontology #101 the
authors are collected by recursively matching the property first of the class Per-
sonList , in ontology #303 it is a matter of cardinality of the object property
author . Let list:contains be the built - in able to fi lter a list structure into object
properties, the referred rule can be written as follows:

t Book x t author x u

s Book x s author x y list

: (?) : (? , ?)

: (?) : (? , ?)

∧ ←
∧ ∧ :: (? , ?).contains y u

 (11.2)

 Figure 11.1 Ontology Mapping Challenge for the Running Example.

Input PageRange
TranslationendPage : Integer

startPage : Integer

year : gYear

title : String

title : String

month : String

pages : Integer

day : gDay

month : gMonth

Output

Date

+ pages

+ date

Part

InBook Chapter

InBook

Publication

Semantic

Syntactic, Lexical

Lexical

Semantic

144 CHAPTER 11 MODEL-DRIVEN SPECIFICATION OF ONTOLOGY TRANSLATIONS

 However, built - ins are black boxes that conceal knowledge about algorithms,
compromising traceability and maintenance. Therefore, an approach able to specify
rules and built - ins without code specifi cs is required.

 From inspecting these examples, we illustrate requirements for a platform -
 independent ontology translation approach addressing translation problems at the
following ontology translation layers proposed by Corcho and G ó mez - P é rez [30]
based on Euzenat [39] : the lexical layer, the syntactic layer, the semantic layer, and
the pragmatic layer. Since the pragmatic layer addresses the meaning of representa-
tion in a given context, it is similar to the semantic layer from the point of translation
decisions. In this chapter, we refer to both layers as semantic layer.

1. The lexical layer deals with distinguishing character arrangements,
including:

 (a) Transformations of element identifi ers . These are required when different
principles are applied to named objects, for example, when transforming
the value of the data property title into capital letters.

 (b) Transformations of values . These are necessary when source and target
ontologies use different date formats, for example, when transforming a
Gregorian month into an unabbreviated form.

2. The syntactic layer covers the anatomy of the ontology elements according to
a defi ned grammar. The syntactic layer embraces:

 (a) Transformations of ontology element defi nitions . These are needed when
the syntax of source and target ontologies are different, e.g., when trans-
forming from OWL RDF syntax into OWL XML syntax.

 (b) Transformations of datatypes . These involve the conversion of primitive
datatypes, e.g., converting string datatype to date datatype.

3. The semantic layer comprises transformations dealing with the denotation of
concepts. We consider the following aspects:

 (a) Inferred knowledge . Reasoning services are applied to deduce new knowl-
edge, e.g., inferring properties from class restrictions.

 (b) Transformations of concepts . This takes place when translating ontology
elements using the same formalism, e.g., translating a concept from Karl-
sruhe ’ s OWL ontology for bibliographic references into one or more
concepts in the INRIA ’ s OWL ontology.

 The translation problems are classifi ed in non - strict layers, e.g., one rule com-
monly addresses more than one translation problem. For example, in Rule 2, the
built - in toUpper solves a translation problem at the lexical layer, the translation of
months happens at the syntactical layer and is achieved by the built - in notShort-
ened and, fi nally, the translation of the union of individuals of the classes Chapter
and InBook in ontology #101 into individuals of the class InBook in ontology #303
appears at the semantic layer.

 An orthogonal classifi cation of ontology translation problems is given by Dou
et al. [36] . From their point of view, ontology translation problems comprise dataset
translation, ontology - extension generation, and querying. This chapter concentrates

11.3 APPLICATION OF THE TWOUSE APPROACH 145

on dataset translation, i.e., translation of instances, leaving the model - driven engi-
neering of the remaining problems for future work.

 11.3 APPLICATION OF THE TWOUSE APPROACH

 The proposed ontology translation approach relies on advances in model - driven
engineering (MDE) with support for ontology reasoning services [20] . We defi ne
here the Model - Based Ontology Translation Language (MBOTL) comprising (1) a
textual concrete syntax used to write translation rules, (2) an integrated metamodel
as abstract syntax to represent the translation rules as models, (3) an extensible
model library to provide built - in constructs, and (4) model transformations yielding
translational semantics.

 Figure 11.2 relates MBOTL with existing approach with respect to abstraction
and expressiveness. Languages for specifying translation rules like F - logic and RDF
abstract from platform details, but they are not as powerful as programming lan-
guages. The usage of a domain specifi c language for ontology translation (MBOTL)
provides the right trade - off between abstraction and expressiveness.

 11.3.1 Concrete Syntax

 While visual notations are effective in communicating models, textual notations are
preferable to express more complex structures. The following subsections present
the anatomy of the translation rules, alluding to the requirements presented in
Section 11.2 .

 11.3.1.1 Dealing with Translation Problems at Semantic Layer In order
to extract information from the source ontology, we need a query language able to
determine which datasets are to be translated. We use OCL expressions [116] to
formulate queries. Indeed, OCL has been used in MDE for specifying constraints
and queries that are side effect free operations. As OCL is originally designed for
UML or MOF, we provide a transformation from OCL to SPARQL.

 Figure 11.2 Abstraction vs.
Expressiveness.

Specification
Language Model Driven

Specification

Programming
Language

A
bs

tr
ac

tio
n

JavaPrologC++

F-Logic
RDF

Expressiveness

Transformation

146 CHAPTER 11 MODEL-DRIVEN SPECIFICATION OF ONTOLOGY TRANSLATIONS

 Ontology translation problems at the semantic layer are treated by querying
individuals of the source ontology using OCL queries and matching target individu-
als. These assumptions have been used by model transformation languages like
OMG MOF Query/View/Transformation (QVT) [113] and the Atlas Transformation
Language (ATL) [82] . We base MBOTL upon the ATL concrete syntax to specify
ontology translations.

 The example depicted in the Figure 11.3 illustrates the concrete syntax. A rule
Conference2Conference is defi ned for translating individuals of the class Confer-
ence in ontology #101 into individuals of the class Conference in ontology #303.

 In OCL, a dot - notation is used to navigate through properties. In the scope of
our extension of OCL, a property can be an OWL data property, an OWL object
property, a predefi ned operation, or a helper. A helper is a user defi ned side effect
free query operation belonging to a defi ned class in one of the given ontologies.

 For example, in the expression s.location, s is a reference to an individual of
the class Conference with location resulting in a value of the class Address . The
navigation can also end with an operation evaluation, as depicted in the Figure 11.3 ,
where the operation concat is used to concatenate the properties city and country .

 11.3.1.2 Addressing Translation Problems at Lexical and Syntactic
Layers Ontology translation problems at lexical and syntactic layers are supported
by employing operations or helpers. For example, for the type string , the operation
toUpper() returning a string object with capital letters is available. Thus, the evalu-
ation of s.title.toUpper() capitalizes the value of the property title .

 The operation toUpper() is an example of predefi ned operation. The set of
predefi ned operations is available in the OCL library (M1 layer). These operations
are applicable to any type in OCL. Additionally, it is possible to specify ad hoc
operations, the so - called helpers.

 11.3.2 Metamodels

 The textual concrete syntax for ontology translation specifi cation presented in the
previous section has an integrated metamodel as equivalent abstract syntax. The
integrated metamodel consists of the following metamodels: MOF metamodel [111] ,
OCL metamodel [116] , OWL metamodel [114] , and part of the ATL metamodel [82] .

 Figure 11.3 Example of a Translation Rule.

Conference2Conference

.concat(s.location.country),
...

),

from

to

<-

}

Variables

1

3

5

7

9

11

11.3 APPLICATION OF THE TWOUSE APPROACH 147

 The translation metamodel (Figure 11.4) allows for describing translations
between two ontologies by a model. A translation is characterized as a Module
relating source ontologies (inModels) and target ontologies (outModels). A
MatchedRule is a specifi c translation rule that has a pattern for the input model
(inPattern) and a pattern for the output model (outPattern). The InPattern
has one or more elements that are OCL variables (Variable). Variables are bound
to model elements (OclModelElement). The InPattern has an OclExpression
acting as query to refi ne individuals of the OclModelElement .

 Since each expression in OCL has a type, we need a type metamodel (Figure
 11.5). The expression evaluation produces a value of type of the expression. The

 Figure 11.4 Fragment of the ATL Metamodel.

Variable

InPatternElement

OutPatternElement

PatternElement

OutPattern +elements

OclModelElement

MatchedRule

OclModel 0..* +elements0..*
Module

1
+inModels

+outModels
Library

Helper
InPattern +elements

OclExpression

+filter

Unit

1..*

1..*1

10..1

0..1

1

1

*

*

*

 Figure 11.5 Snippet of the Package Type and Package Expressions of the OCL
Metamodel.

Type

InvalidType

TUClass

(from TwoUse)

DataType

(from TwoUse)

CollectionType
PrimitiveType

(from TwoUse)

OclExpression

CallExp

+source

+appliedElement

PropertyPropertyCallExp

+referredProperty

+referringExp

Operation

OperationCallExp

+referredOperation

+referringExp

VariableExp

Parameter

Variable
+referredVariable

+referringExp

+representedParameter

+variable

*

0..1

*

*

*

0..1

0..1

148 CHAPTER 11 MODEL-DRIVEN SPECIFICATION OF ONTOLOGY TRANSLATIONS

type TUClassAdapter is the particular composition of the OWL class with the
MOF class. This composition allows for applying side effect - free operations into
individuals of OWL classes.

 Figure 11.5 depicts additionally another part of the integrated metamodel,
namely the package Expressions of the extended OCL metamodel. The class
OclExpression enables MBOTL to defi ne the abstract syntax for OCL expres-
sions. The integration with the OWL metamodel is accomplished by expressions of
the type PropertyCallExp . Such expression allows for navigating through OWL
properties, as explained in Section 11.3.1 .

 The operation call expressions (OperationCallExp) support the declaration
of built - in operations and helpers. An operation call expression evaluates to the result
of a class operation, providing that such operation is side effect free. This resource
is particularly relevant in the scope of ontology translation, i.e., it enables queries
to invoke built - in reasoning operations or helpers.

 11.3.3 Model Libraries

 The model libraries defi ne a number of datatypes, class identifi ers, and operations
that must be included in the implementation of MBOTL. These constructs are
instances of an abstract syntax class. The foundation library exists at the M1 level,
where the abstract syntax (metamodel) exists at M2 level. The foundation library is
composed of the XML Schema Datatypes library, the RDF library, the OWL library,
and the OCL library.

 An example of M1 object of the extended OCL library is the construct oclAny .
All types inherit the properties and operations of oclAny , except collection types.
This invariant allows for attributing predefi ned operations to classes. The OCL
library is based on the standard OMG OCL library [116] .

 11.3.4 Semantics

 The semantics of MBOTL is defi ned by the semantics of the languages comprising
the integrated metamodel (Section 11.3.2).

 MBOTL is translated into a target language (SPARQL and Java). Regarding
the target languages, the semantics of SPARQL is described by entailment regimes,
whereas the semantics of Java can be defi ned by providing an Abstract State Machine
 [63] . More specifi cally, the SPARQL basic graph pattern is described according to
an entailment regime. Indeed, SPARQL - DL [154] provides an entailment regime for
OWL - DL.

 11.3.5 Ontology Translation Process

 In order to guide the user from the ontology translation specifi cation until the running
code, the ontology translation process covers the following steps:

1. Specifi cation of Ontology Translation . The ontology translation rules and
helpers are specifi ed by the user using MBOTL.

11.3 APPLICATION OF THE TWOUSE APPROACH 149

2. Specifi cation of Model Transformations . In order to have a running implemen-
tation of ontology translation, the ontology translation specifi cation model is
transformed into models for a given platform. The model transformation
specifi cation mapping the MOBTL model onto platform - specifi c models must
be specifi ed here. Our framework provides model transformations from
MOBTL into SPARQL and Java as target platforms. Notice that other target
platforms like F - Logic and Java can be considered.

3. Transformation into Target Platform . Three transformations take place at this
step. Firstly, the ontology translation specifi cation in the concrete syntax
(MOBTL fi le) is injected into a model conforming with the integrated
metamodel, i.e., the ontology translation specifi cation model. The second
transformation is responsible for generating models according to the target
metamodels, e.g., SPARQL and Java metamodels. Thirdly, SPARQL queries
in the SPARQL concrete syntax and Java code are extracted from the SPARQL
and Java MOF - based models.

 11.3.6 Implementation

 The implementation comprises (1) the environment to specify ontology translations
and (2) transformations into ontology translation engines in order to realize ontology
translation. Figure 11.7 depicts a screen shot of the MBOTL implementation on
TwoUse toolkit.

 Taking the ontology translation specifi cation model as a source model, we use
the Atlas Transformation Language [82] framework to defi ne model transformations
into models for an ontology translation platform (2). We use SPARQL and Java as
target languages and the Jena framework as a ontology translation solution. The Jena
framework includes an API for OWL ontologies and reasoners, as well as a SPARQL
engine.

 Elements of the ontology translation specifi cation model concerning transla-
tion problems at the semantic layer are transformed by ATL into SPARQL CON-
STRUCT queries. The SPARQL engine can be extended using custom SPARQL

 Figure 11.6 Ontology Translation Process.

Source

Ontology

Target

Ontology

Platform

Specific Model

java.ecore

sparql.ecore

Platform

Independent Model

mbotl.ecore

Code

query.java

builtins.java

Jena

Framework

ATL Model

Transformation

ATL Model

Transformation

150 CHAPTER 11 MODEL-DRIVEN SPECIFICATION OF ONTOLOGY TRANSLATIONS

fi lter functions — as foreseen as an extension hook in the SPARQL standard, but also
using so - called predicate functions . Predicate functions are not matched against the
knowledge base like normal RDF predicates, but evaluated in Java code. Filter and
predicate functions are used to handle translation problems at the lexical and syn-
tactic layer. These functions are defi ned in the ontology translation specifi cation
model and have the Java code automatically generated by the ATL transformation.

 The next section illustrates our approach by addressing the translation prob-
lems presented in Section 11.4 , specifying the translation rules and transforming the
ontology translation specifi cation into SPARQL and Java code.

 11.4 EXAMPLES

 This section presents rules integrating translation problems at semantic, syntactic,
and lexical layers, according to the problems presented in Section 11.2 .

Example 1: Semantic, Syntactic, and Lexical Translations. The classes
Chapter and InBook in ontology #101 are translated into the class InBook in the
ontology #303. The translation rule uses a helper to transform a Gregorian month,
e.g., “–01” , into its equivalent unabbreviated form, e.g., “January” . This helper
is applicable only to the gMonth datatype. Using MBOTL, we can specify both the
rule and the helper — and hence lexical, syntactical and semantical translations —

 Figure 11.7 Screenshot of MBOTL.

11.4 EXAMPLES 151

 using an integrated framework. The helper is shown on top of Listing 11.1 , followed
by the translation rule.

 After specifying mappings with MBOTL, we transform MBOTL specifi cation
into suitable languages for execution. Our implementation uses SPARQL queries for
semantic mappings and Java code for syntactic translations.

 In this example, the rule ChapterInBook2Inbook is transformed into a
SPARQL query (Listing 11.2), whereas the helper notShortened is transformed
into Java code (Listing 11.3). The Java code extends a suitable SPARQL engine, in
this case Jena.

 LISTING 11.1 Semantic, Syntactic, and Lexical Translations with MBOTL .

1 helper context _101 ! gMonth

def: notShortened() : String =
Sequence{’January’,’February’,’March’}−>at (

Sequence{’–01’,’–02’,’–03’}−>indexOf(self.toString()))
5

rule ChapterInBook2Inbook {

from

s : _101!Part (s.owlIsInstanceOf (Chapter) or

s.owlIsInstanceOf(Inbook))

10 to

t : _303!Inbook (

title <− s.title. toUpper(),
pages <− s.pages.endPage − s.pages.startPage,

month <− s.date.month.notShortened(),
15)

}

 LISTING 11.2 SPARQL Query Corresponding to ChapterInBook2Inbook .

1CONSTRUCT {?x rdf:type _303:Inbook. ?x _303:title ?y.

?x _303:pages ?z. ?x _303:month ?w}

WHERE {

?x rdf:type _101:Part.

5 {?x rdf:type _101:Chapter UNION ?x rdf:type _101:Inbook}

?x _101:title ?u. ?u userdef: toUpper ?y.

?x _101:pages [rdf:type _101:Page;

_101:startPage ?w; _101:endPage ?u].

?z userdef:difference (?u ?w).

10 ?x _101:date [rdf:type _101:Date; _101:month ?m].

?m userdef:notShortened ?w.

}

152 CHAPTER 11 MODEL-DRIVEN SPECIFICATION OF ONTOLOGY TRANSLATIONS

 In Lines 1 and 2 of Listing 11.2 , the pattern in the target ontology is specifi ed.
It is fi lled with variable bindings obtained from the pattern in Lines 4 – 11. Variables
in SPARQL are denoted with a question mark. In Line 5 we see the disjunction of
chapter and book. In Lines 7 – 8, the start and end page properties of the complex
 “ Page ” concept in the source ontology is matched. They are used to compute the
simpler page length in the target ontology using a predicate function in Line 9.
Analogously, the abbreviated date is matched and mapped in Lines 10 – 11.

 As an example of the translation of a helper, we show a part of the Java code
resulting from transforming notShortened into a Jena predicate function in
Listing 11.3 .

Example 2: Semantic and Syntactic Translation of Complex Structures. In
the ontology #101, the class Article has the property author with the range of
type PersonList . PersonList has a property first with the range of type Person
and a property rest with the range of type PersonList .

 LISTING 11.3 Automatically Generated Java Code for the Function notShortened .

1 public class NotShortened extends PFuncSimple {

/** Implements Sequence { ’January’, ’February’, ’March’} */

private List colLit1() {

List /*(String)*/ myList = new ArrayList(/*String*/);

5 myList.add ("January");

myList.add ("February");

myList.add ("March");

return myList;

}

10

/** Implements Sequence { ’−−01’, ’−−02’, ’−−03’} */

private List colLit2() {

List /*(String)*/ myList = new ArrayList(/*String*/);

myList.add ("–01");

15 myList.add ("–02");

myList.add ("–03");

return myList;

}

20 private QueryIterator execFixedSubj(Node subject,

Node object, Binding binding,

ExecutionContext execCxt) {

/** Implements the built−in notShortened() : String */

25 return new QueryIterSingleton (

colLit1().size() > colLit2().indexOf(this.toString())

?((String)colLit1().get(colLit2().indexOf(this.toString())))

: "", execCxt);

}

30 }

11.5 ANALYSIS 153

 This rule relies on a helper, able to match elements recursively. In this case,
the helper algorithm must add the current value of the property first to the collec-
tion of authors and verify whether the value of the property rest is nil , returning
in this case the collection. Otherwise, the helper is invoked until value nil is found.

 As we can see from the examples, helpers are used for lexical and syntactical
translations (Example 1) and semantic translations (Example 2).

 11.5 ANALYSIS

 In response to the requirements deduced in Section 11.2 , Table 11.1 shows use cases
according to each requirement and where to fi nd the corresponding examples in this
chapter.

 Translation problems of lexical nature, e.g., converting a string to an uppercase
string, are managed by using predefi ned OCL operations applied to specifi c types
of objects, in this example a string type. It is also possible to write functions, i.e.,
helpers, to perform ad hoc operations. For example, the helper notShortened
(Listing 11.1) allows for converting date formats, i.e., replacing a value of gMonth
type to the unabbreviated form.

 Translation problems inherent in the syntactic layer are handled distinctly. For
example, datatype conversions are achieved by invoking predefi ned operations, e.g.,
toString() (Listing 11.1).

 Translation problems at the semantic layer, regarding datasets of ontologies
with different vocabularies but the same formalism, is demonstrated by the running
example. In Listing 11.1 , the individuals of the class Chapter in ontology #101 and
the individuals of the class InBook are translated into individuals of the class
InBook in ontology #303.

Limitations. Our approach has restrictions refl ected by the ATL metamodel.
With ATL, it is possible to realize only unidirectional translations. A bidirectional
translation must be accomplished by two unidirectional translations.

 Moreover, at the current state of development, it is not possible to validate or
to reason over translation models. In other words, it is not possible to test the transla-
tion model without transforming it into the target platform (SPARQL and Java).

 TABLE 11.1 Satisfying Ontology Translation Requirements.

 Requirement (Section 11.2) Use Case Implementation

 1.(a) Converting to capital letters Listing 11.1, Line 12

 1.(b) Converting date formats Listing 11.1, Line 14

 2.(b) Converting gMonth to String Listing 11.1, Line 14

 3.(a)(b) Union of Chapter and InBook Listing 11.1, Line 8 – 9

154 CHAPTER 11 MODEL-DRIVEN SPECIFICATION OF ONTOLOGY TRANSLATIONS

 11.6 RELATED WORK

 Since related work has been done in the fi eld of ontology alignment, we group works
according to semantic, syntactic, and lexical layers.

 Among works covering lexical and syntactic translations, Model transforma-
tion languages like OMG Query/View/Transformation (QVT) [113] and Atlas Trans-
formation Language (ATL) [82] allow for defi ning how to transform MOF - based
models using declarative and imperative constructs. Nevertheless, they do not
support the OWL metamodel and do not provide description logic constructs. Our
contribution extends the ATL solution by integrating with the OWL metamodel and
providing such constructs.

 The work of Atzeni et al. [8] is based on a metamodel approach with models
described in terms of the constructs they involve, taken from a given set of pre-
defi ned ones. However, the work is in the scope of databases and does not support
reasoning at the semantic layer.

 Among works covering semantic reasoning capabilities, C - OWL [19] and the
ontology mapping system proposed by Haase and Motik [65] are formal solutions
for ontology mapping with description logic expressiveness. The mappings are based
on subsumption relationships of concepts between ontologies. Notwithstanding, the
usage of built - ins to express lexical and syntactic translation problems is not pos-
sible. A metamodeling - based approach of Haase and Motik [65] is provided by
Brockmans et al. [22] . Although the usage of built - ins in mapping rules is allowed,
the latter approach does not provide the means do specify built - ins without recourse
to programming languages, whereas MBOTL allows for specifying ad hoc functions
by helpers.

 Among works covering lexical, syntactic, and semantic translations, MAFRA
 [109] and RDFT [95] are frameworks enabling dataset translations. Nonetheless,
both are based on RDF schema and neither provide the expressiveness of OWL nor
support reasoning capabilities of description logic inference engines.

 OntoMorph [28] and the framework proposed by Dou [36] for ontology trans-
lation rely on fi rst - order logic (FOL) expressiveness to specify translation rules. Our
approach counts on the decidable subset of FOL, the description logic SHOIN (D),
with complete and sound automated reasoning services for addressing semantic
translation problems. Moreover, while the fi rst solution relies on PowerLoom and
the latter on Web - PDDL, we propose a platform independent model - based transla-
tion language, fl exible enough to cope with different knowledge representation
systems.

 OntoMap [96] is a mapping solution allowing for visual specifi cation of map-
pings, with a limited number of translation functions. Snoogle [133] is an ontology
translation tool that enables the use of SWRL rules to express translations and align-
ments between geospatial ontologies. While in both approaches it is possible to use
custom plug - ins, the user has to write functions using Java and the Jena framework.
In contrast, our approach allows for specifying mapping rules and functions in a
platform - independent and integrated way.

 Corcho and G ó mez - P é rez [29] propose ODEDialect, a set of declarative lan-
guages to specify ontology translations. However, it is a platform - specifi c approach

11.7 CONCLUSION 155

based on Java that exposes users to the complexity of programming languages,
whereas MBOTL allows modelers to concentrate on business logics instead.

 11.7 CONCLUSION

 This chapter presents a solution for ontology translation specifi cation that aims at
being more expressive than ontology mapping languages and less complex and fi ne -
 grained than programming languages. The solution is comprised of a concrete
syntax, an integration metamodel covering OWL, MOF, OCL, and ATL metamodels,
and model transformations from MOBTL into SPARQL and Java. We validate our
solution against canonical ontology translation problems organized in three layers —
 lexical, syntactic, and semantic.

 CHAPTER 12
AUTOMATIC GENERATION
OF ONTOLOGY APIS

 When developing application programming interfaces of ontologies that include
instances of ontology design patterns, developers of ontology - based information
systems usually have to handle complex mappings between descriptions of informa-
tion given by ontologies and object - oriented representations of the same information.
In current approaches, annotations on API source code handle these mappings,
leading to problems with reuse and maintenance. We propose a domain - specifi c
language to tackle these mappings in a platform - independent way — agogo . Agogo
provides improvements on software engineering quality attributes like usability,
reusability, maintainability, and portability. 1

 12.1 INTRODUCTION

 Upper level ontologies and domain ontologies comprise occurrences of a variety of
ontology design patterns (OPs) [52] . These ontologies are generally large and
densely axiomatized. Therefore, in comparison with generic solutions like RDF or
OWL APIs, the development of dedicated application programming interfaces
(APIs) eases the adoption of this kind of ontologies.

 When developing such dedicated APIs, developers of ontology - based informa-
tion systems face the challenge of mapping descriptions of complex relations or
entities to object - oriented (OO) representations thereof. For example, core ontolo-
gies such as COMM [6] , X - COSIMO [50] , or Event - Model - F [140] represent
complex objects, e.g., a multimedia annotation, a conversation among participants,
or an event decomposition. Such objects are not represented by a single instance of
a class but by ontology design patterns involving a number of connected (linked)
instances.

 The task of implementing object manipulation functionality becomes complex
as well. For example, the specifi cation of creation or deletion of multimedia objects
is spread out in a number of connected (linked) data instances using decompositions,
descriptions, and segments.

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

 1 This chapter contains work from the paper “ APIs a gogo : Automatic Generation of Ontology APIs ”
presented at ICSC ’ 09 [153] .

156

12.1 INTRODUCTION 157

 Specifying interfaces for manipulating ontologies should provide constructs
that enable handling of complex structures defi ned by ontologies. Accordingly, such
constructs need to map from a single programming object to multiple RDF
statements.

 Current approaches store annotations as plain text on API source code to handle
these mappings. These approaches have the following disadvantages (Figure 12.1):

 • Low level of abstraction. When it comes to complex mappings between ontol-
ogy classes and OO classes, current approaches require developers to deal with
platform - specifi c details like database connection, data validation, and deviat-
ing attention from the mappings.

 • No portability. The APIs are tightly coupled to programming languages and
cannot be easily ported to other programming platforms.

 • Low reuse rate. Mappings between ontology classes and OO classes are in the
form of annotations. These annotations are stored as plain text, and to be
reused, they have to be copied instead of being referred.

 • Hard maintenance. Changes of mappings on the ontology usually imply chang-
ing all occurrences of a given Java annotation, since mappings are stored as
annotations and must be copied to be reused.

 Indeed, addressing these issues has been one of the objectives of the fi eld of
model - driven engineering (MDE) [88] , i.e., to develop and manage abstractions of
the solution domain towards the problem domain in software design. Considering
the expansion and usage of MDE techniques, we investigate the following problems
in this chapter: What MDE techniques address the aforementioned issues? What are
the results of applying these techniques in ontology API development?

 Figure 12.1 Limitations of Current Approaches.

Platform Specific

Mappings as Annotations

Annotations as Strings

one java class for

each ontology class

158 CHAPTER 12 AUTOMATIC GENERATION OF ONTOLOGY APIS

 Tackling the aforementioned problems results in improving the usability,
maintainability, and portability of ontology API specifi cations. This enables develop-
ers to concentrate on the mappings instead of taking care of problems inherent in
programming. By considering mappings as fi rst - order objects rather than as annota-
tions, developers can keep track of mapping ontology elements like classes and
properties. Finally, introducing an abstraction from the programming language
allows developers to generate APIs for different programming languages or domain -
 specifi c APIs.

 We extend the TwoUse approach and introduce agogo , an approach that pro-
vides a development environment for API developers to handle complex mappings,
to defi ne and to reuse complex OPs, and to automatically generate ontology API
code. Moreover, we present results of comparing agogo with existing ontology API
code, showing drastic reduction in size.

 We organize this chapter as follows: After introducing the challenges and
benefi ts of agogo , we analyze current approaches in Section 12.5 . We derive require-
ments based on our experience in developing APIs for core ontologies (COMM [6] ,
X - COSIMO [50] , and Event - Model - F [140]) in Section 12.2 . Section 12.3 presents
the techniques and artifacts used by agogo to tackle these requirements. We describe
how agogo uses these techniques and artifacts by example in Section 12.3.2 . In
Section 12.4 , we analyze how the agogo approach allows for improving quality of
ontology APIs based on the quality characteristics introduced in this section. Finally,
Section 12.6 concludes this chapter.

 12.2 CASE STUDY

 From the set of ontology design patterns found in the COMM ontology, we use the
Semantic Annotation Pattern to illustrate the solution presented in this chapter. The
basic rationale applies to any other pattern used in COMM, X - COSIMO [50] , and
Event - Model - F [140] . Figure 12.2 illustrates the semantic annotation pattern as

 Figure 12.2 Ontology and API for the Semantic Annotation Pattern.

multimedia-data

processing-role

input-roleoutput-role semantic-annotation

method satisfies

semantic-label-role

particular / Thing

plays

setting-for

plays

situation
defines

algorithm

annotated-data-role

Ontology: Semantic Annotation Pattern

annotation

SemanticAnnotation() : SemanticAnnotation
addLabel(ein label)
removeLabel(ein id)
save()
delete()

SemanticAnnotation

MultimediaData() : MultimediaData
addAnnotation()
removeAnnotation(ein id)
save()
delete()

MultimediaData

Mapping

Programming Model

+semantic_annotation*

+multimedia_data *

12.2 CASE STUDY 159

defi ned by the COMM ontology and the desired classes of the API in the program-
ming model.

 The pattern describes the annotation of a multimedia item with some label,
e.g., the annotation of a part of a photo with a label pointing to a person — Carsten
(not included in the Figure 12.2). This association is embodied through a semantic-
annotation that satisfi es a method (e.g., algorithms for image recognition) that
defi nes a semantic-label-role as well as an annotated-data-role . The
multimedia-data has to play the annotated-data-role , which identifi es the
part of the image that is annotated. The depicted particular has to play the semantic-
label-role , e.g., the instance Carsten .

 The COMM API comprises mappings between such patterns and Java objects.
For instance, objects of the class SemanticAnnotation represent instantiations of
the pattern semantic-annotation . The mapping is achieved by implementing the
intended behavior for create, read, update, and delete operations (CRUD) that affect
the knowledge base accordingly:

Create : The construction of a new object, i.e., an object representing data that
is not yet present in the knowledge base, needs to result in the correct and
complete instantiation of an ontology pattern.

Read : The construction of an object based on existing data in the knowledge
base. Although similar from an application programming interface point of
view, the underlying operation in the knowledge base is fundamentally
different. In this case, the knowledge base is queried for the instance of a
pattern, and all involved resources and statements required to fully instanti-
ate the object.

Update : The update of an object needs to result in the replacement of infor-
mation in the knowledge base. Thereby, developers need to implement
distinct update behaviors. For example, the class MultimediaData imple-
ments a method to add a SemanticAnnotation . This method either adds
a semantic label to an existing SemanticAnnotation for the image or
creates a new instance of a SemanticAnnotation .

Delete: The deletion of an object has different implications. For instance, the
deletion of SemanticAnnotation results in the deletion of the relation
between the image and Carsten as expressed by the instance of the pattern.
In another scenario, developers may want to delete the image and Carsten
as well or to delete the representation of Carsten.

 Based on our experience in developing the core ontologies COMM,
X - COSIMO, and Event - F and their APIs, we have identifi ed problems and derived
the following requirements:

RQ1. Emphasis on domain concepts . When programming ontology APIs,
developers have to deal with aspects inherent in programming languages
like database access coding or data validation coding. For example, for each
mapping, developers have to write code for handling access to the knowl-
edge base. These tasks divert developers ’ attention from the specifi cation
of ontology APIs.

160 CHAPTER 12 AUTOMATIC GENERATION OF ONTOLOGY APIS

 Moreover, currently, developers have to redundantly implement programming
code for validating the correct instantiation of objects, e.g., code that checks whether
all required information is available in an object. In our example, the Java class
SemanticAnnotation needs to provide code that checks whether all information
for a correct instantiation of the Semantic Annotation Pattern is available. The
instantiation of this pattern without both the part of the image and the depicted
person makes no sense.

RQ2. Patterns as fi rst - class citizens . Currently, when specifying standard
behaviors for CRUD operations, developers have no choice but tangling
the specifi cation over the classes that implement the pattern. Thus, develop-
ers cannot reuse these operations across software projects or programming
languages.

RQ3. Support for debugging . The ontology API code consists of complex
queries. Such queries are typically represented as strings and are not always
recognized by programming languages or programming environments
during compile time. This makes debugging particularly hard for two
reasons: First, the programming environment gives no hints for syntax
errors during compile time. Accordingly, developers can track syntax
errors only at runtime. Second, even at runtime, semantic errors are hard
to recognize. For instance, the following SPARQL - query has the correct
syntax but does not return any results due to the mistyped concept
name semantic - an(n)otation : “ select ?s where { ?s a comm: semantic -
anotation } ”

RQ4. Change management . As the programming code references ontology
concepts that the programming environment ignores, refactoring code in
case of ontology changes is diffi cult. For instance, if a developer changes
the ontology concept semantic-annotation to Annotation , associa-
tions in the programming code (e.g. annotations, query strings, URI strings)
need to be updated manually.

RQ5. Generation of APIs for the same ontology or for different
platforms . Currently, mappings cannot be reused in other programm-
ing languages, since they are implemented by programming code
and specifi c means provided by a programming language, e.g., Java
annotations.

 The problems that motivate these requirements impair the development of
ontology APIs by retarding their availability, affecting the adoption of the respective
ontologies. Moreover, having families of APIs for a given ontology or APIs for dif-
ferent platforms is implausible due to the effort needed.

 To enforce the importance of these requirements, we analyze the current
COMM API. The current COMM ontology has 702 classes while its API has 34
packages, 294 classes, 1823 functions, and 11597 non - commenting source state-
ments (NCSSs).

12.3 APPLICATION OF THE TWOUSE APPROACH 161

 12.3 APPLICATION OF THE TWOUSE APPROACH

agogo is an application of the TwoUse approach for automatically generating OWL
APIs on demand. To tackle the problems presented in the previous section, agogo
relies on technologies regularly applied in model - driven development: metamodel-
ing, concrete syntax, and model transformations.

 Agogo ’ s metamodel and concrete syntax constitute a domain - specifi c lan-
guage (DSL) that provides an abstraction layer over programming languages, encap-
sulating redundant data validation, or implementation behavior. The DSL simplifi es
the process of specifying ontology APIs by focusing on domain concepts (RQ1).

 Moreover, the usage of metamodels allows for defi ning concepts in a structured
way, improving maintainability (RQ4). For example, elements of the ontology API
specifi cation are maintained as single units instead of being stored in annotations.

 The defi nition of constraints on concepts in the agogo metamodel improves
design time checking, i.e., it enables API developers to validate API specifi cations
against these constraints, minimizing errors at runtime (RQ3).

 The concrete syntax for ontology API specifi cation enables users to model
patterns as fi rst - class citizens (RQ2). For example, developers specify CRUD opera-
tions and patterns using SPARQL syntax independently from the class defi nition.
Furthermore, the concrete syntax allows for identifying missing references and for
helping to fi nd errors before code generation.

 Model transformations allow for code generation to eventually more than one
platform, overcoming the restriction on programming language (RQ5). Additionally,
model transformations ease the creation of families of APIs. It enables developers
to release a subset of the COMM API for lightweight applications, if required.

 12.3.1 Key Domain Concepts

 The agogo metamodel extends the TwoUse metamodel and defi nes the concepts of
an ontology API specifi cation and corresponds to the abstract syntax of agogo DSL.
The defi nition of the concepts of an ontology API specifi cation in a metamodel raises
the abstraction level and allows API developers to work exclusively with relevant
constructs. For example, developers handle mappings, patterns, and operations
without considering implementation issues.

 In the following, we describe agogo key concepts. Figure 12.3 depicts how
these concepts are related in the agogo metamodel.

Classes. The construct Class defi nes the associations between platform spe-
cifi c classes and ontology classes. The property ontoElement associates
classes to patterns or ontology classes.

Patterns . When a platform specifi c class does not correspond directly to a
single ontology class but to an occurrence of an ontology design pattern
(OP), the concept of pattern applies. The construct QueryPattern
describes OPs using SPARQL queries [126] . It is possible to defi ne patterns
for classes, properties and operations.

162 CHAPTER 12 AUTOMATIC GENERATION OF ONTOLOGY APIS

Operations . CRUD operations (Create, Read, Update, and Delete) are defi ned
in ontology APIs to enable manipulation of ontology classes. Using
SPARQL - like syntax, these operations as well as patterns are defi ned in a
platform independent way.

Imports . Developers may group patterns for classes, properties, and opera-
tions into packages and make them available or reuse them in another API
specifi cation.

 The agogo metamodel extends the TwoUse metamodel that and reuses existing
metamodels for SPARQL, OWL 2, and Ecore.

Metamodel Constraints. Together with the agogo metamodel, we defi ne
constraints used by the syntax checker to enforce valid ontology API specifi cations.
This functionality allows for identifying errors before generating ontology APIs.

 In Listing 12.1 , we exemplify these constraints with two OCL constraints. In
the fi rst constraint, we enforce that all variables passed as parameter to an operation
are used in the body of the query.

 In the second constraint, we enforce that every pattern associated to a property
must include the variable ?obj in the select statement. The predefi ned variable ?obj
points to the range of a property in the OO representation.

 Figure 12.3 Snippet of the agogo Metamodel.

12.3 APPLICATION OF THE TWOUSE APPROACH 163

 LISTING 12.1 Constraints on the agogo Metamodel.

1 context Operation

inv inv1:self.ontoElement.SPARQLQuery.whereClause

.variables.includesAll(self.parameters);

5 context Property

inv inv2: self.ontoElement.SPARQLQuery

.variables.varname. includes ("obj");

 12.3.2 agogo Concrete Syntax by Example

 In this section, we demonstrate the main components of the agogo textual syntax
and exemplify them with the running example. In this chapter, we concentrate on
how agogo supports patterns as fi rst - class citizens, CRUD operations, support for
debugging, and change management.

 To improve user experience, we have based the defi nition of the agogo textual
syntax on the SPARQL syntax [126] . For example, for prefi x declaration and speci-
fi cation of patterns, we use the SPARQL constructs.

 Listing 12.2 presents the basic constructs of the agogo syntax like PACKAGE ,
IMPORT , CLASS , and PROPERTY in exemplary fashion. We group API specifi cations
into packages, which contain all model elements. The construct IMPORT allows for
reusing classes and patterns defi nitions.

 The construct CLASS specifi es the mappings between ontology concepts and
OO representations. The reserved word TO points to a pattern declaration or directly
to a SPARQL query that represents a pattern. The construct PROPERTY follows the
same rationale. In Listing 12.2 , the property label is of type dvl:particular and
points to the pattern prop label , defi ned in Listing 12.3 .

 LISTING 12.2 An Example of Using agogo Basic Constructs.

1 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX core: <http://comm/core.owl#>
PREFIX dvl: <http://comm/dolce−very−lite.owl#>
PREFIX edns: <http://comm/extended−dns−very−lite.owl#>

5 PREFIX agogo: <http://uni−koblenz/agogo#>

PACKAGE <http://comm.agogo#> {

IMPORT <http://comm−lite.agogo#>;
10

CLASS SemanticAnnotation TO core:semantic −annotation {
PROPERTY label ̂ˆdvl:particular TO prop_label;

. . .

164 CHAPTER 12 AUTOMATIC GENERATION OF ONTOLOGY APIS

 To detach pattern specifi cations from class specifi cations, patterns must
be fi rst - class citizens, i.e., their declarations must not be associated to class
declarations.

 The defi nition of patterns is an essential point in our approach. To represent a
pattern, we need to represent how ontology classes and relations compose this
pattern. A user - friendly way of doing it is by using the SPARQL syntax. By using
the SPARQL SELECT construct, developers describe the pattern structure.

 In Listing 12.2 , we declare that the OO class SemanticAnnotation maps
onto the ontology class core:semantic-annotation and that the OO class
SemanticAnnotation has a property of name label of type dvl:particular .
Next, we specify how the values of the property label are matched. To have the
labels of a semantic annotation, we need to navigate through the structure of the
Semantic Annotation Pattern (Figure 12.2).

 Listing 12.3 shows the declaration of a query pattern for the property label .
The pattern is a SPARQL query that describes the structure of the Semantic Annota-
tion Pattern. In the clause WHERE , the structure of the pattern is represented. In the
clause WHERE , we have all classes and relations that need to be created, read,
updated, and deleted when dealing with the property label . The SPARQL query in
Listing 12.3 is comparable with the classes and relations composing the pattern in
the Figure 12.2 .

 The defi nition of patterns includes the usage of two predefi ned variables:
?subj and ?obj . The variable ?subj identifi es the OO class, i.e., in this case, the
class SemanticAnnotation , while the variable ?obj refers to the values or the
property label.

 For example, this pattern will match the labels associated to the class
semantic-annotation , e.g., the particular Carsten (see Section 12.2). In other

 LISTING 12.3 Patterns as First - Class Citizens.

1 PATTERN prop_label {

SELECT ?obj

WHERE

{ ?subj edns:satisfies ?method .

5 ?method rdf:type edns:method ;

edns:defines ?slr ;

edns:defines ?adr .

?slr rdf:type core:semantic−label−role .
?adr rdf:type core:annotated−data−role .

10 ?obj edns:plays ?slr .

?data edns:plays ?adr ;

rdf:type core:multimedia−data .
?subj edns:setting–for ?obj ;

edns:setting–for ?data .

15 }

}

12.3 APPLICATION OF THE TWOUSE APPROACH 165

words, the domain of the pattern prop_label is the ontology class semantic-
annotation and the range is the class particular (see declaration in
Listing 12.2).

 Model transformations are responsible for generating automatically CRUD
(Create/Read/Update/Delete) operations for each OO property based on the pattern
specifi cation. Although CRUD operations are generated automatically, in some
cases, developers may want to customize operations. For example, developers may
want to customize an insert operation to use existing individuals.

 To specify Read operations, we use the standard construct SELECT , and to
specify custom CRUD operations, we use SPARQL Update [144] syntax 2 . Listing
 12.4 shows the defi nition of the customized operation addLabel . The operation
uses an existing instance of the class method—:method1 . For each variable in
the INSERT clause, one new individual is created in the ontology (except variables
?subj and ?obj).

 Model transformations take specifi cations of CUD and generate corresponding
programming language code. For example, the usage of variables (Listing 12.4 ,
Lines 4 – 6) leads to the generation of statements to create a new instance of the class
semantic-annotation-role (?slr) .

 Developers may declare patterns anonymously, i.e., developers may associate
patterns directly with properties or classes. Listing 12.5 shows the specifi cation of
a pattern associated with the property semantic annotation .

 The defi nition of the SPARQL syntax together with the SPARQL metamodel
allows for identifying non - well - formed SPARQL statements. Consequently,

 LISTING 12.4 Defi nition of an Operation Using SPARQL Update Syntax.

1 OPERATION addLabel (? obj) {

INSERT DATA

{

:method1 edns:defines ?slr.

5 ?slr a core:semantic −label−role.
?obj edns:plays ?slr .

?subj edns:setting−for ?obj.

}

WHERE

10 {

?subj edns:satisfies :method1.

}

};

 2 agogo does not require a SPARQL Update engine. We use the SPARQL Update syntax only to generate
appropriate code.

166 CHAPTER 12 AUTOMATIC GENERATION OF ONTOLOGY APIS

developers may check for syntax errors at design time. Moreover, by integrating the
OWL 2 metamodel into the agogo metamodel, agogo allows for enforcing the ontol-
ogy as schema for the specifi cation. If developers mistype names of classes or
individuals, the syntax checker identifi es that there is no corresponding element in
the ontology for that name. This functionally helps to identify typos at design time.

 12.3.3 Implementation

agogo consists of a model - driven process composed of model transformations,
models, and metamodels. Figure 12.4 depicts the agogo architecture and the embed-

 Figure 12.4 Architecture of the
agogo Approach.

transformed to

describes

extracted to

API Developer
API Developer

Ontology API
Java Code

uses
Query
Engine Reasoner

Repository Abstraction Layer

Ontology API
Specification

PIM

Ontology API
Specification
for Java

PSM

Configuration
File

 LISTING 12.5 Mapping a Property onto a Pattern.

1 CLASS MultimediaData TO core:multimedia −data {
PROPERTY semantic −annotation ˆˆ core:semantic −annotation TO {

SELECT ?obj

WHERE

5 {?obj edns:setting−for ?subj ;

rdf:type core:semantic −annotation ;
edns:satisfies ?method .

?method rdf:type edns:method ;

edns:defines ?adr .

10 ?adr rdf:type core:annotated −data−role .
?subj edns:plays ?adr .

}

};

12.4 ANALYSIS 167

ded MDA process. Developers use agogo textual syntax to specify ontology API
specifi cations. These specifi cations are injected to platform - independent models
(PIMs). We use EFMText [70] for defi ning agogo textual syntax and Ecore [164]
for defi ning the agogo metamodel.

 Model transformations take the PIM and a confi guration fi le as input. The
confi guration fi le contains directives for code generation like names of classes and
identifi ers. Consequently, model transformations produce platform - specifi c models
(PSMs) as output, which are then extracted to programming code. To specify model
transformations, we use the Atlas Transformation Language (ATL) [82] .

 The usage of a PIM enables developers to detach the ontology API specifi ca-
tion from programming code. Consequently, model transformations for different
programming platforms may be specifi ed, allowing code generation for multiple
platforms.

 We have implemented agogo as part of the TwoUse Toolkit. Figure 12.5 shows
a screen shot of the semantic annotation example design using the agogo DSL. By
referring to non - existing classes or using misspelled reserve words, the editor raises
an error.

 12.4 ANALYSIS

 In this section, we analyze how agogo ’ s functionalities affect the quality of ontology
API specifi cations. In the following, we consider four quality characteristics of
ontology API specifi cation according to ISO 9126 [80] .

 Figure 12.5 Screenshot of agogo Implementation.

168 CHAPTER 12 AUTOMATIC GENERATION OF ONTOLOGY APIS

Q1. Usability . One cognitive dimension of usability analysis is the abstraction
level [58] . With agogo , developers concentrate on constructs related to the
problem domain, e.g., map and pattern , raising the abstraction level.

 Raising the abstraction level infl uences productivity. To demonstrate this
impact, we have conducted an exploratory evaluation of the size of both agogo API
specifi cations and Java API specifi cations of the running example based on the
current COMM API.

 As metric for size, we consider the number of non - commenting source state-
ments (NCSSs) [121] . Table 12.1 summarizes the comparison of size between agogo
and the current COMM API in two cases.

 In Case1 , we consider a specifi cation with only two classes: SemanticAn-
notation and SemanticLabel . The current COMM API requires coding 19 Java
Classes and more than 400 NCSSs. With agogo , developers concentrate on coding
50 NCSSs in two classes.

 To have an idea of the effort of extending or taking a subset of the COMM
API, we consider the addition of the class MultimediaData in Case2 . Although
including the class MultimediaData implies implementing another OP — the object
decomposition — the size of the ontology API increases drastically to approximately.
nine times the original size.

 Based on this exploratory analysis, even if developers have in agogo half of
the productivity ratio they have in Java, because the agogo specifi cation is smaller
than the Java specifi cation, the effort for producing NCSSs in Java is still higher. In
other words, developers are more productive with agogo , with benefi ts increasing
as the API grows due to the possibilities for reuse and improved maintenance.

Q2. Reusability . By defi ning patterns as fi rst - class citizens, developers may
reuse patterns on further mappings. Moreover, complete libraries can be
reused to generate derived APIs. For example, API developers may want
to have multiple ontology APIs according to the complexity, e.g., COMM
lite and COMM full.

Q3. Maintainability . agogo defi nes constructs as metamodel concepts instead
of parsing strings of text. Consequently, structured models are easier to
maintain than plain text.

 TABLE 12.1 Comparison of Size between agogo and the Current COMM API
in Two Cases.

agogo Current COMM API

 Case 1 Case 2 Case 1 Case 2

 Packages 1 1 4 15

 Classes 2 5 19 101

 NCSS 50 70 461 3928

12.5 RELATED WORK 169

 When the ontology changes, developers change the ontolgy API specifi cation
and automatically regenerate the ontology API. The syntax checker assists develop-
ers with tasks like renaming and raises errors for missing references.

 Moreover, constraint validation and syntax checking take place at design time,
and not only at runtime as by existing approaches. The developer counts on a syntax
checker for pattern specifi cations.

Q4. Portability . Providing that model transformations are available, it is pos-
sible to generate APIs for multiple programming languages. Developers
describe ontology APIs once and model transformations use the specifi ca-
tion to generate ontology APIs for multiple platforms.

agogo may be seen as an abstraction layer over existing approaches for gen-
erating ontology APIs (Section 12.5). As agogo does not mandate a specifi c pro-
gramming language, developers may specify model transformations for transforming
agogo API specifi cations into programming code for the platform of choice.

 Nevertheless, developers need to bear in mind the effort of specifying the
model transformations. To achieve abstraction from programming code, the model
transformations have to handle the gap between the agogo API specifi cation and the
programming language. The initial effort in developing these model transformations
needs to be considered when deciding to provide ontology APIs in a given program-
ming language.

 To track how the agogo approach addresses the requirements of Section 12.2
and affects ontology API quality characteristics, we present a traceability matrix in
Table 12.2 . It relates agogo requirements, the artifacts that tackle these requirements
(metamodel (MM), concrete syntax (CS), and transformations (T)), examples, and
their relations to quality attributes. As one may notice, by establishing a domain -
 specifi c notation for designing ontology APIs, we improve the quality characteristics
above, corroborating the literature on domain - specifi c languages [99] .

 12.5 RELATED WORK

 Ontology engineers count on a variety of solutions for specifying ontology
APIs. In the following, we analyze these approaches according to the abstraction
level.

 TABLE 12.2 Correlating agogo Requirements with Quality Attributes.

 Requirement Artifact Example Quality Attribute

 RQ1 MM, CS Figure 12.3 , List. 12.2 Q1

 RQ2 MM, CS List. 12.2, List. 12.3 Q2

 RQ3 MM, CS Figure 12.3 , List. 12.1 Q3

 RQ4 MM, CS List. 12.5 Q3

 RQ5 T — Q4

170 CHAPTER 12 AUTOMATIC GENERATION OF ONTOLOGY APIS

 Generic solutions for developing ontology APIs are the Jena API [178] and
the Sesame API [24] . However, these approaches are triple - based, i.e., developers
have to work with methods such as getSubject and getObject . Low abstraction
level and high complexity are aggravated when dealing with big ontologies.

 RDFReactor [172] and [85] are “ plain ” RDFS — Java/OO mapping approaches.
These approaches do not provide support for complex mappings implied by ontology
design patterns, i.e., developers have to program one java class for each ontology
class. Moreover, when the ontology changes, developers have to manually change
ontology API code.

 A solution with higher abstraction level is ActiveRDF [118] . ActiveRDF relies
on annotations to specify mappings for Ruby programs. As we have seen, annota-
tions are hard to maintain and to debug. Moreover, these applications force API
developers to commit to one programming language.

 12.6 CONCLUSION

 This chapter presents an application of TwoUse for designing mappings between
complex ontology descriptions and object oriented representations — agogo . The
solution comprises a domain - specifi c language and model transformations to gener-
ate API programming code.

agogo improves productivity on ontology API specifi cation and enables devel-
opers with functionalities infeasible until now. Additionally, agogo accomplishes
improvements in reusability and maintainability.

 CHAPTER 13
USING TEMPLATES IN
 OWL ONTOLOGIES

 Integrating model - driven development and semantic web resulted in metamodels
and model - driven tools for the semantic web. However, these metamodels or tools
do not provide dedicated support for dealing with templates in ontology engineering.
Templates are useful for encapsulating knowledge and modeling recurrent sets of
axioms. We propose an extension of existing metamodels and tools to support ontol-
ogy engineers in modeling ontology templates. Our approach allows ontology engi-
neers to keep template specifi cations as fi rst - class citizens, reducing complexity and
increasing reusability in ontology engineering. We demonstrate our approach with
templates for ontology design patterns. 1

 13.1 INTRODUCTION

 As OWL ontologies becomes more complex, approaches that use abstraction to
encapsulate complexity emerge. For example, ontology engineers may use macros
and annotations to represent ontology design patterns (ODPs) [52] , key artifacts for
reuse in ontology engineering.

 Nevertheless, these approaches do not consider abstraction mechanisms as
fi rst - class citizens to encapsulate complexity. For instance, the development of ODPs
relies on the usage of macros [173] or annotations [78] to represent the structure of
these patterns. Ontology engineers should be able to encapsulate reusable sets of
axioms that capture modeling practices in templates. In other words, ontology engi-
neers need declarative specifi cations of templates and tools to test these specifi ca-
tions and realizations.

 The usage of templates is a well - known technique to encapsulate complexity
in generative programming, leading OMG to add support for templates in UML
 [117] . For ontology engineers, the main advantages of using templates are increase
in productivity, since ontology engineers rely on well - known reusable pieces to
design the ontology; and increase in reliability, since templates comprise reliable
sets of axioms developed by domain experts.

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

 1 This chapter contains work from the paper “ A Model - Driven Approach for Supporting Ontology Design
Patterns ” [148] .

171

172 CHAPTER 13 USING TEMPLATES IN OWL ONTOLOGIES

 Providing declarative specifi cations of templates and support for template
realization enables ontology engineers to handle templates as fi rst - class citizens
instead of having template descriptions embedded in ontologies as annotations or
using preprocessing macros. Moreover, a dedicated approach for handling templates
enables ontology engineers to explore the full expressiveness of template declara-
tions and to analyze template realization scenarios.

 Current approaches [78, 173, 158] have limited expressiveness and are tool -
 oriented instead of generic, i.e., they do not allow ontology engineers to choose
freely tools and representation notations for templates. Moreover, current ontology
metamodels and model - driven tools do not provide these constructs [114, 23, 106] .

 Templates should be fi rst - class citizens in a higher abstract level than annota-
tions, i.e., in the ontology metamodel. Such an approach allows the following: (1)
to extend the usage of templates to other OWL - related languages like SWRL [76] ,
SAIQL [93] , or SPARQL - DL [154] ; (2) to use different modeling notations, includ-
ing graphical languages; and (3) to extend the usage of templates beyond individuals,
classes, and properties to literals and class expressions.

 The contribution of this chapter is twofold: (1) we present an approach for
modeling ontology templates applicable to different OWL metamodels and exten-
sible to SWRL, SPARQL - DL, and SAIQL; (2) we introduce graphical notations
containing dedicated constructs to specify templates and to bind them with domain
ontologies, enabling ontology engineers to design and test templates as fi rst - class
citizens.

 We present our approach in this chapter as follows. Section 13.2 gives a
scenario motivating template design. We give an example of our approach and
describe the graphical notations and the main constructs of our approach in
Section 13.3 . Section 13.4 presents application scenarios of ontology templates.
Section 13.5 presents an analysis of existing approaches, and Section 13.6 concludes
the chapter.

 13.2 CASE STUDY

 As a running example, we consider an ontology for capturing music records as
domain ontology. For this domain ontology, we want to reuse existing knowledge
from three resources: ontology design patterns (ODP), SWRL rules, and domain
closure.

 To represent the role of performers, we use the AgentRole ontology design
pattern [52] from the ontology design pattern collection. The intention of this ODP
is to represent agents and their roles. A Role is a subclass of the class Concept ,
i.e., a Role is a specialization of Concept . An Agent is a specialization of the class
Object . The property hasRole assigns Roles to Objects , whereas the inverse
property isRoleOf assigns Objects to Roles .

 Additionally, we want to propagate the genre of a musical group to a record,
i.e., we want to assert that the style of the record is the same as the style of the
group. Thus, we reuse a SWRL rule (in this case a description logic rule) to move
the property values from one individual to a related individual.

13.2 CASE STUDY 173

 Furthermore, we want to consider the knowledge about genres as complete.
In general, OWL models realize the open - world assumption (OWA), i.e., the repre-
sented knowledge base is considered as incomplete. However, in certain applica-
tions, it is more appropriate to consider a knowledge base as complete. If complete
knowledge is assumed, the set of all individuals in the knowledge base must be
equivalent to the set of individuals declared.

 The following knowledge base (TBox and ABox) describes a simple domain
ontology about music records. Beatles and RollingStones are instances of Group . A
Group has Per former as a member. A Per former plays a role in a Group . The Group
belongs to a Genre and produces Records . In our knowledge base, there are only
four genres: Rock , Blues , Country , and Samba .

Group hasMember Performer hasStyle Genre

creatorOf Reco

� �
�

∃ ∃
∃

. .

. rrd
 (13.1)

 Record stylePeriod Style∃ . (13.2)

 Performer hasRole Position∃ . (13.3)

 Genre Rock Blues Country Samba Record LetItBleed(, , ,), () (13.4)

 Group RollingStones Performer Mick Position Vocalist(), (), () (13.5)

 hasRole Mick Vocalist creatorOf RollingStones LetItBleed(,), (,) (13.6)

 hasMember RollingStones Mick(,) (13.7)

 hasStyle RollingStones Rock Group Beatles(,), () (13.8)

 hasStyle Beatles Blues hasStyle Beatles Country(,), (,)¬ ¬ (13.9)

 hasStyle Beatles Samba(,)¬ (13.10)

 Based on this knowledge base, a user may be looking for all rock bands as
described by the following description logic query: hasStyle .{ Rock }. If we con-
sider an incomplete knowledge base, the result of this query contains only the
individual RollingStones . If we assume a complete knowledge base though, the result
also includes the group Beatles .

 There are multiple strategies for closing the domain of a class. In this chapter,
we only make the class Genre equivalent to the set of existing individuals of the
class Genre , i.e., Rock, Blues, Country, Samba .

 Additionally, we want to assert that the genre of a record is the same as the
genre of the group:

Performer a Genre s Record c hasStyle a s

creatorO

(?) (?) (?) (? ?)∧ ∧ ∧
→ ff a c stylePeriod c s(? , ?) (? , ?)→

 (13.11)

 For other ontologies, ontology engineers want to reuse these resources, since
these resources represent modeling guidelines and best practices identifi ed by
domain experts. Thus, it makes sense to encapsulate these axioms, identifying
generic pieces, i.e., to create a template . We consider templates as parameterized
generic sets of axioms that can be combined with different specifi cations to produce
a variety of artifacts like domain ontologies and queries.

174 CHAPTER 13 USING TEMPLATES IN OWL ONTOLOGIES

 A possibility is to use inheritance to encapsulate reusable axioms and defi ne
a super class of Genre that is equivalent to a list of existing individuals of this type,
and the SWRL rule to propagate the genre to records. However, this super class and
rule are reusable for other types of art like poetry, painting, and acting and work
only for music.

 In summary, the usage of a template has the following advantages:

 • Templates work as interfaces to encapsulate axioms and expose only the con-
structs to be used as parameters. Thus, ontology engineers know exactly which
concepts and roles are needed for applying the ontology design pattern.

 • Ontology engineers can reuse repeatedly templates in other ontologies or in
other pieces of the same ontology.

 • Ontology engineers bind and unbind templates to exploit different results, e.g.,
using the open world or closed domain assumption.

 • Templates are reliable, since ontology experts derive templates from well -
 known sets of axioms.

 • Templates realize macros when inheritance is not enough.

 13.3 APPLICATION OF THE TWOUSE APPROACH

 In this section, we describe the application of TwoUse and the main constructs of
our metamodel extension and the different notations.

 Figure 13.1 depicts the result of applying TwoUse into the running example
to add support for templates in OWL ontologies. It uses the UML profi le for OWL
with package templates. A template agent-role represents the agent role ODP.
This template has the two parameters — Agent and Role — to be bound in order to
adopt this pattern.

 A template closed-domain defi nes a class X that is equivalent to a list of
individuals {}. Class X and class expression {} are template parameters and are
bound to the class Genre and to the class expression { Rock Blues Country

Samba }of the ontology music records .
 Finally, the third template shows an ontology with a SWRL rule asserting that

the genre of an artist is the same as the genre of a record. When realizing these
template bindings, the result is set of axioms (1 – 11) presented in Section 13.2 .

 13.3.1 Extending the OWL Metamodel with Templates

 In this section, we use the TwoUse integration and apply the idea of package tem-
plates of UML into OWL and extend it to different OWL - related languages like
SWRL [76] and query languages like SPARQL - DL Abstract Syntax [154] and
SAIQL [93] .

 UML [117] allows software developers to design templates of packages and
classes. With templates, software developers describe reusable structures with
unbound parameters. In order to use these templates, developers have to bind

 Fi
gu

re
 1

3.
1

 M
od

el
in

g
th

e
R

un
ni

ng
 E

xa
m

pl
e

w
ith

 O
M

G
 U

M
L

 P
ro

fi l
e

fo
r

O
W

L
 a

nd
 U

M
L

 P
ro

fi l
e

fo
r

SW
R

L
.

175

176 CHAPTER 13 USING TEMPLATES IN OWL ONTOLOGIES

package templates to actual classes or properties to create real structures. By binding
template parameters to actual values, developers apply, for example, software design
patterns to a software model.

 While UML package templates allow classes, interfaces, and datatypes as
parameterable elements, we defi ne ontology templates as templateable elements and
allow classes, properties, datatypes, literals, and class expressions as parameterable
elements.

 In the following, we explain each of these metamodel elements as addressed
in our solution and present the relationships between them in Figure 13.2 .

 • TemplateableElement: A templateable element is an element that can option-
ally be defi ned as a template. When a template is used, a template binding is
created describing the replacement of template parameters with actual param-
eters. Examples of templateable elements are ontologies and queries.

 • Ontology: The class Ontology specializes TemplateableElement to
specify an ontology template. We apply the same rationale to queries
(SPARQLDL::Query and SAIQL::Query). For example, in Figure 13.1 ,
closed-domain , artist , and agent-role are ontology templates.

 • TemplateSignature: A template signature wraps the set of template parameters
for a templateable element. In Figure 13.1 , the signature of closed-domain
is a bundle containing the parameters X , and {}.

 Figure 13.2 Metamodel for Ontology Templates.

13.3 APPLICATION OF THE TWOUSE APPROACH 177

 • TemplateParameter: A template parameter exposes a parameterable element
as a template parameter of a template. For example, in the template signature
closed-domain , X , and {} are representations of the parameterable elements
with the same names.

 • ParameterableElement: A parameterable element is an element that can be
exposed as a template parameter for a template or be specifi ed as an actual
parameter in a binding of a template. In Figure 13.2 , we show only some
parameterable elements like ObjectProperty, Class, and Individual. Other
parameterable elements include DataProperty, ClassExpression, and Literal.
For example, in Figure 13.1 , the class X and the class expression {} are tem-
plate parameters while the class Genre and the class expression { Rock Blues
Country Samba } are actual parameters in the template binding.

 • TemplateBinding: A template binding represents a relationship between a
templateable element and template parameters. A template binding specifi es
the substitutions of actual parameters for the template parameters of the tem-
plate. In Figure 13.1 , the template binding is represented on top of the ontology
music-record ontology by the symbol –> .

 • TemplateParameterSubstitution: A template parameter substitution relates the
actual parameter(s) to a template parameter as part of a template binding.

 The metamodel for ontology templates depicted in Figure 13.2 is independent
of the ontology metamodel. Although we have considered the OWL 2 metamodel
for our implementation, implementers can use any OWL metamodel of choice or
other ontology metamodels like RDF. Implementers must then specialize the class
ParameterableElement with the elements that can be used as parameters, e.g.,
RDFClass .

 To write description logic rules, ontology engineers rely on the structure pro-
vided by the SWRL metamodel, which connects with the OWL metamodel through
the class Rule .

 In order to have query templates, we specialize the class TemplateableEle-
ment with the class Query and the class ParameterableElement with variables.
Thus, we can specify templates of queries and give variables as parameters. We
discuss query templates in Section 13.3.4 .

 13.3.2 Semantics of Templates

 We treat templates as generators, i.e., templates for generating axioms. Thus, reason-
ers cannot inspect the contents of templates until a transformation realizes the
template bindings by generating an effective OWL ontology.

 One issue when creating templates is to ensure that they are consistent, i.e.,
that there exists at least one possible valid binding. A mechanism for doing this is
to realize the template by automatically generating an ontology and the respective
bindings. Thus, the effective OWL ontology can be tested with any standard reason-
ing for satisfi ability and consistency.

 The template mechanics do not add to the complexity of the OWL ontology.
The complexity of the effective OWL ontology is composed of the complexity of

178 CHAPTER 13 USING TEMPLATES IN OWL ONTOLOGIES

the template and the complexity of the ontology bound to the template. For example,
if the template defi nition has expressivity S ON and the ontology bound to the
template has expressivity A CIQ , the effective ontology would have expressivity
S OINQ .

 The outcome of realizing the template bindings is an effective OWL ontology
that can be normally checked by reasoners. When realizing template bindings, actual
parameters replace template parameters, and the remaining elements are copied.
Consequently, the template defi nition is not part of the effective ontology document
(the generated one), but of the implicit ontology document based on our approach.
The implicit ontology document contains all axioms defi ned by the ontology engi-
neers and the template defi nitions.

 The realization of template bindings takes place when transforming the implicit
ontology document into an effective ontology document. Figure 13.3 depicts in
abstract language the transformation realizing the template bindings of actual param-
eters of a templateable element (ontology or query) and the template parameters of
at least one template.

 The recursive algorithm RecursiveBinding (Figure 13.3) guarantees that
all binds of an eventual template chain take place, since templates can be connected
to other templates. The input of the algorithm is a templateable element E , e.g., the
music record ontology. The second input parameter is the set of all templates that
generate the output element (ontology or query). For the templates, the type list is
used, since in case of multiple connected templates, the ordering of the binding of
the template parameters is signifi cant.

 The fi rst case (line 1,2) occurs if no template is given. The second case (line
3,4) is the end of the recursion. In the third case, the binding and generation is real-
ized. The next template (fi rst element of the template list) is bound with the previous

 Figure 13.3 The Template Binding Realization Algorithm.

13.3 APPLICATION OF THE TWOUSE APPROACH 179

 Figure 13.4 Modeling the Running Example with OWL 2 Graphical Syntax.

(recursive) template bindings and generations, which is templateable element Recur-
siveResult . The binding and generation is in lines 9 – 14. The template parameters are
substituted by the actual parameter of RecursiveResult according to the parameter
substitution (lines 9 – 11). After the binding, the RecursiveResult (ontology or query)
is imported or included to the bound template (Result). The result, i.e., the effective
ontology is a set of axioms, like axioms (1 – 7) presented in Section 13.2 .

 13.3.3 Notations for Templates in OWL

 TwoUse provides an abstraction independent of concrete syntax, i.e., it is possible to
provide multiple notations for modeling ontology templates. In Figure 13.1 , we show
the running example modeled using the OMG UML Profi le for OWL and the UML
Profi le for SWRL [21] . It relies on package templates natively supported by UML.

 Figure 13.4 shows the same example using the OWL 2 graphical notation. We
have implemented a graphical notation based on [1] that uses the OWL 2 metamodel
as concrete syntax.

180 CHAPTER 13 USING TEMPLATES IN OWL ONTOLOGIES

 A model transformation takes a diagram in one of the supported notations
(OWL 2 graphical syntax or UML Profi le for OWL/SWRL) and parses it into an
implicit ontology document model based on our approach. The realization step takes
the output and generates the effective ontology document model, which is later
parsed into OWL standard syntax. Figure 13.5 describes these steps.

 13.3.4 Query Templates

 In this section, we show how ontology engineers can benefi t from query templates.
Taking the running example, we analyze a simple query about artists belonging to
a set of genres.

 Since there exist different types of Artists (musician, painter, actor), it is useful
to write the query once and set artist and style as parameters. Listing 13.1 depicts
this query using SPARQLAS with templates.

 Lines 4 – 5 of Listing 13.1 show the declaration of two parameters for the query
template: ?artist and ?style . Each of these parameters has a specifi c type associ-
ated to it: owl:Class and owl:oneOf (from the default namespace).

 It is possible to reuse this query for search for music groups popular in the
USA. Thus, Users need to bind the parameter ?artist to the class Group of ontol-
ogy Ontology1261152793434 and the parameter ?style to the list { Rock Blues
Country }. Listing 13.2 depicts these bindings.

 LISTING 13.1 Artists of a Given Style.

1 Prefix: owl = <http://www.w3.org/2002/07/owl#>

IRI <http://ArtistsStyle#>
Parameters: ?artist type owl:Class, ?style owl: oneOf

Select ?x

5 Where (

?x type (?artist and (hasStyle some ?style))

)

 Figure 13.5 Ontology Development with Templates.

Implicit Query
Document in SAIQL
or SPARQL-DL Syntax

Implicit Ontology
Document
in Graphical Syntax

Implicit Ontology
Document in
UML Profile for
OWL/SWRL

Implicit Ontology/Query
Document Model
(Our Approach)

Parsing Concrete
Syntaxes

Realization Parsing to OWL Standard
Concrete Syntax

OWL File
(RDF, XML,
Manchester)

Effective Ontology/Query
Document Model
(ODM, Neon, OWL2,
SAIQL, SPARQL-DL)

Reasoning

13.4 ANALYSIS 181

 Realizing these bindings produce the query presented in Listing 13.3 .
 It is clear here that abstraction plays an important role. Users can reuse knowl-

edge encoded in query templates and combine the results. We apply the same ratio-
nale illustrated with SPARQLAS into SAIQL queries [93] .

 13.4 ANALYSIS

 The requirements of using templates in OWL ontologies and SPARQLAS are based
in our experience in building core ontologies in the past years [6, 140, 139] and in
modeling software artifacts with OWL. In this section, we analyze the application
of our approach.

Many Versions of Ontologies. We can, at the low maintenance cost of a
template binding, generate many versions of an ontology. For example, it is possible
to have two versions of the artist ontology: one with the open - world assumption and
another with the closed - domain assumption on class Genre . In some domains like
software engineering, it is usual to assume complete knowledge. We can generate
variations of ontologies simply by changing the bindings.

Ontology Design Patterns. Ontology design patterns (ODPs) are key arti-
facts for reuse in ontology engineering. Applying templates in ODPs demands
specialized support for ODP constructs.

 We have applied our approach in the development of domain ontologies that
use core ontologies: the COMM ontology [6] , the Event - Model - F ontology [140] ,
and the M3O ontology [139] . We are able to model all ODPs of these ontologies
(three of COMM, six of Event - Model - F, four of M3O), which pointed at advantages
and limitations of our approach.

 LISTING 13.2 Groups and Styles Popular in the USA .

1 Prefix: = <http://Ontology1261152793434.owl#>
Prefix: q = <http://ArtistsStyleInUSA#>
Bind: (q:artist Group) (q:style {Rock Blues Country})

 LISTING 13.3 Effective Query.

1 Prefix: = <http://Ontology1261152793434.owl#>
Select ?x

Where (

?x type (Group and (hasStyle some {Rock Blues Country}))

5)

182 CHAPTER 13 USING TEMPLATES IN OWL ONTOLOGIES

 Introducing templates raises the level of abstraction by allowing ontology
engineers to identify the requirements for using a given ODP. For example, in the
COMM ontology, the semantic annotation design pattern involves at least 12 con-
cepts and six roles to represent that a multimedia data is annotated with a label. The
concepts are grounded by upper - level ontologies like DOLCE. In this case, we use
templates for creating an interface for semantic annotations, i.e., we expose only
two classes — label and multimedia - data — as parameters. In comparison with textual
templating systems, the main advantage of our approach is portability. Because we
handle templates and macros at the platform - independent level, it is possible to
develop plug - ins for multiple ontology editors like Prot é g é or NeOn Toolkit.

 13.4.1 Limitations

 The usability of the tool is a fact to consider when working with templates. Although
we used existing standards for UML profi les for OWL and SWRL created to popu-
larize OWL among software developers, there is limited tool support for these.

 Another issue is transparency. Because templates work as generators, their
results are not always apparent. Therefore, using templates requires attention about
possible unsatisfi ability or inconsistency caused by properties or concepts added to
the effective ontology.

 13.5 RELATED WORK

 Relevant works related to this chapter cover mainly the engineering of ontology
design patterns from three perspectives: macros, annotations, and language
dependency.

 Multiple works cover the engineering of ontology design patterns [78, 173,
158] . Iannone [78] uses a pre - processor language to specify knowledge patterns to
allow modeling on a more general pattern level than directly in the OWL ontology.
This is a tool - oriented application with procedural constructs like ADD and
REMOVE. Our approach is declarative and provides support for multiple
notations.

 Vrandecic analyzes the usage of macros in ontologies in [173] . These macros
allow the specifi cation of design patterns for OWL ontologies. In a preprocessing
step, a macro is transformed to a set of axioms in the OWL ontology. However, the
authors do not provide a concrete specifi cation language for macros.

 In [158] semantic patterns are described in RDF. These semantic patterns are
transformed into the target language. The target language is not restricted to a certain
language; therefore, the semantic patterns are more general. Although general, this
approach does not provide constructs to handle patterns as fi rst - class citizens as our
approach does.

 Presutti [125] considers the creation of ontology design patterns from existing
ontologies. The creation methods that are similar to our approach are the re -
 engineering from other (conceptual) data models and the extraction method from
reference ontologies.

13.6 CONCLUSION 183

 In comparison with related work, we provide an approach that is fl exible, since
it supports multiple notations (including UML), extensible, as it comprises metamod-
els for OWL and related languages like SWRL, SPARQL, and SAIQL, and platform
independent, since templates are tackled at the modeling level and not at the
language - specifi c level.

 13.6 CONCLUSION

 In this chapter, we present an approach that raises the level of abstraction in the
ontology development process by providing platform - independent specifi cations of
templates. The prime benefi t of this approach is that it is based on pre - existing
metamodels and profi les and, therefore, enhances the utility of previous work. More-
over, our approach is generic enough to enable model - driven tools to support
metamodels of multiple OWL - related languages.

 CONCLUSION
OF PART IV

 In this part, we investigate the support of generative techniques in ontology engineer-
ing services and address the abstraction gap between specifi cation languages and
programming languages for ontology engineering tasks (Research Question IV from
Section 1.2).

 Applying the TwoUse approach raises the abstraction level and consequently,
infl uences productivity. With the TwoUse approach, ontology engineers concentrate
on domain problems instead of implementation problems. Moreover, the usage of
domain - specifi c languages enables ontology engineers to handle domain concepts
as fi rst - class citizens, improving maintainability (and addressing Research Questions
IV.A and IV.B).

 We use the integration between UML class - based modeling and OWL model-
ing to extend techniques used in model - driven engineering to ontology engineering
to declaratively specify artifacts (Research Question IV.C).

 CHAPTER 14
CONCLUSION

 This book addresses challenges in composing model - driven engineering and OWL
technologies. This work comprises multiple facets of this challenge, namely: (1)
classifi cation of existing approaches integrating both paradigms; (2) the specifi cation
of a coherent framework for integrated usage of both modeling approaches, compris-
ing the benefi ts of UML class - based modeling and OWL; and applications of the
proposed framework to improve (3) model - driven engineering and (4) ontology
engineering.

 14.1 CONTRIBUTIONS

 This work present contributions of different natures. In the following, we summarize
the contributions of this book.

Classifi cation of Approaches Involving MDE and OWL Ontologies. We
outline state - of - the - art research on model - driven engineering and ontology technolo-
gies. Then, we describe a domain analysis of both paradigms and identify their
commonalities and variations. The contribution is a taxonomy to categorize
approaches involving ontology technologies and model - driven engineering.

Integration of UML Class -Based Modeling and OWL Ontologies. We
propose an integrated use of both modeling approaches in a coherent framework —
 TwoUse. We present a framework involving multiple notations for developing inte-
grated models and use a SPARQL - like approach for writing query operations. We
validate TwoUse ’ s applicability with case studies and conclude that TwoUse achieves
enhancements of non - functional software requirements like maintainability, reus-
ability, and extensibility. The contribution is a method for applying ontology tech-
nologies in model - driven engineering and for applying model - driven engineering in
ontology engineering.

Ontology-Based Software Design Patterns. We deal with problems in
common design patterns and propose ontology - based modeling to overcome draw-
backs of the strategy pattern, that are also extensible to the abstract factory pattern
and other patterns that deal with variant management. The result is an ontology -
 based software design pattern to be used with design patterns: the Selector Pattern.

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

187

188 CHAPTER 14 CONCLUSION

Transformation of Modeling Languages into OWL. In a networked and
federated development environment, modeling artifacts need to be linked, adapted,
and analyzed to meet the information requirements of multiple stakeholders. We
present an approach for linking, transforming, and querying MOF - compliant model-
ing languages on the web of data. We use the defi nition of structural mappings
between MOF and OWL and propose the usage of semantic web technologies for
linking and querying software models.

Framework for Designing Ontology -Based Domain Specifi c Lan-
guages. We address major challenges in the fi eld of domain specifi c languages
with OWL ontologies and automated reasoning in [175] . We applied the TwoUse
approach to enable applications of reasoning to help DSL designers and DSL users
through the development and usage of DSLs. DSL designers profi t by formal rep-
resentations, an expressive language, and constraint analysis. DSL users profi t by
progressive verifi cation, debugging support, and assisted programming.

A Language for Specifying Ontology Translations. We address the balance
between abstraction and expressiveness that causes ontology mapping frameworks
to turn to programming languages when built - in constructs fail in specifying complex
rules for dataset translation. The contribution is a platform - independent language
that allows modelers to abstract from implementation details while providing expres-
siveness to address translation problems at the semantic as well as at the syntactical
and lexical layer.

Automatic Generation of Ontology APIs. We address the complex map-
pings between descriptions of information given by ontologies and object - oriented
representations of the same information for developing application programming
interfaces of ontologies that include instances of ontology design patterns. The
contribution is a domain - specifi c language to tackle these mappings in a platform
independent way — agogo . Agogo provides improvements on software engineering
quality attributes like usability, reusability, maintainability, and portability.

Templates for OWL Ontologies. Metamodels for the semantic web do not
provide dedicated support for dealing with templates in ontology engineering. Our
contribution is an extension of existing metamodels and tools to support ontology
engineers in modeling ontology templates. Our approach allows ontology engineers
to keep template specifi cations as fi rst - class citizens, reducing complexity and
increasing reusability in ontology engineering.

The TwoUse Toolkit. The result of implementing the approach is a free
open source tool available for use — the TwoUse Toolkit. We address the lack of a
framework that allows the integration of multiple W3C and OMG standards at the
designing level. The contribution is the implementation of an architecture for design-
ing artifacts using multiple standard languages, turning the focus from code - centric
to transformation - centric.

14.2 OUTLOOK 189

 14.2 OUTLOOK

 This research has been made possible by intensive work in the last 10 years in the
fi elds of MDE and ontology technologies. There remains a considerable body of
research problems that are currently being tackled or that are open for future work.

 14.2.1 Ongoing Research

Integrating Linguistic Metamodeling and Ontological Metamodeling. The
integration between OWL modeling and UML class - based modeling covered in this
book involves the usage of OWL ontologies for linguistic metamodeling [7] . The
alignment between UML class - based modeling and OWL in the metamodeling level
requires the transformation of elements of the metamodel into OWL classes and
properties and the transformation of elements of the model into OWL individuals
and assertions.

 In this book, we do not address the usage of OWL for ontological metamodel-
ing as described by Atkinson and K ü hne [7] . An integration of both linguistic
metamodeling and ontological metamodeling involves the usage of MOF for
metamodeling as a language defi nition tool (linguistic metamodeling) and the usage
of OWL for modeling the relationships between concepts and domain types at the
same linguistic modeling level.

 Walter investigates such an integration with preliminary results in [176, 174] .

Modeling and Querying Patterns for MDE in OWL. In this book, we align
constructs of UML class - based modeling and OWL modeling and allow the integra-
tion of UML class - based modeling and OWL modeling independently of the model-
ing level, i.e., at the metamodeling level (language bridge) or at the modeling level
(model bridge) [163] .

 Nevertheless, some modeling approaches require a dedicated transformation of
model constructs into OWL. For example, the transformation of business process
models into OWL handles the mappings of tasks and gateways into OWL classes
 [177] , whereas the transformation of feature models handles mappings of features and
relationships between parent feature and its child features onto OWL classes [130] .

 Gr ö ner investigates patterns of modeling, querying, and reasoning for MDE
in OWL in his ongoing research, with preliminary results in [60, 59] .

Linked Data in Software Engineering. The advent of the semantic web has
given a new perspective to aspects of software engineering like collaboration, rep-
resentation, and interoperability. For example, existing works present the impact of
semantic web technologies like RDF(S) and SPARQL on programmer ’ s assistance
 [79, 180] .

 Semantic web technologies and Linked Data principles [16] are paving the
way for the Web of Data, a global data space that relies on a stack of technologies
like URIs, HTTP, and RDF to empower information retrieval. In this context, there
is a need for investigation of the impact of applying Linked Data principles and
techniques for mining, collecting, and analyzing software engineering data.

190 CHAPTER 14 CONCLUSION

Scalability of Ontological Reasoning Technology. The scalability of onto-
logical reasoning technology has matured over the last 10 years and current imple-
mentations point to the assumption that reasoners will scale to higher effi ciency by
one or several orders of magnitude. Research on techniques for semantic transforma-
tions between OWL profi les [132, 120] is in place to benefi t from the most appropri-
ate and most effi cient technique at each given point in the software development
process.

 APPENDIX A

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

191

 A.1 EBNF DEFINITION OF THE CONCRETE
TEXTUAL SYNTAX FOR TWOUSE

 LISTING A.1 EBNF Syntax for Concrete Syntax.

1

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

nonnulldigit = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

integer = ["-"] nonnulldigit { digit }| "0" ;
5 nonnegativeinteger = "0" | nonnulldigit { digit } ;

name = (letter | "_") { letter | digit | "_" } ;
letter = "a" .. "z" | "A" .. "Z" ;

EPackage = { EAnnotation } " package " name [EDataType] ["\"" EDataType
"\""] "{" { EClass }{EPackage } "}" ;

10EClass = ["abstract"]("interface" | "class")["<" EClass { ","
EClass } ">"] name ["\"" name "\""]["extends" EClass { ","
EClass }] { classAnnotation } "{" { EClass | EOperation } "}" ;

EAttribute = { EAnnotation }{("derived" | "volatile" | "unique"|
"ordered" | "unsettable" | "changeable" | "transient" | "iD") }

"attribute " (EClass | EGenericType) name ["=" "\"" name "\""]

["("integer".."integer")"] ";" ;

EParameter = { EAnnotation }{(" ordered " | " unique ") } EClass name
["(" integer ".." integer ")"];

EReference =
{("containment" | "derived" | "transient" | "volatile" | "unique"

| "ordered" | "unsettable" | "changeable" | "resolveProxies") }

15 { frontReferenceAnnotation } " reference " (EClass | EGenericType)

name ["=" "\"" name "\""]["(" integer ".." integer ")"]

["opposite" EReference] { endReferenceAnnotation } ";" ;

EOperation = { EAnnotation }{("ordered" | "unique") } " operation "
("void" | EClass) ["(" integer ".." integer ")"]["<"
ETypeParameter { "," ETypeParameter } ">"] name "(" [EParameter
{"," EParameter }] ")" ["throws " EClass { "," EClass }] ";" ;

EEnum = { EAnnotation } [" serializable "] "enum"name"\"" name "\""
"{" { EEnumLiteral } "}" ;

EEnumLiteral = { EAnnotation } EDataType ":" name "=" "\""

EEnumLiteral "\"" ";" ;

EAnnotation = "(" { "eAnnotations" ":" EAnnotation | "source" ":"

"\"" name "\"" | "details" ":" "\"" name "\"" "=" "\"" name

"\"" | "contents" ":" EObject | "references" ":" EReference |

"eModelElement" ":" EObject } ")" ;
(Continued)

192 APPENDIX A

20 EObject = "EObject" ;

EFactory = "EFactory ";

EStringToStringMapEntry = "cardinality" integer ;

EDataType = { EAnnotation } ["serializable"] " datatype " name "\"" name
"\"" ;

ETypeParameter = { EAnnotation } name ;
25 EGenericType = "typed" ["<" (ETypeParameter | "?" "extends"

EGenericType | "?" "super" EGenericType) ">"] EClass ["<"
(EGenericType | "?") { "," (EGenericType | "?") } ">"];

frontReferenceAnnotation = "(" ("functional" | "inversefunctional" |

"symmetric" | "asymmetric" | "reflexive" | "irreflexive" |

"transitive ") ")" ;

endReferenceAnnotation = "(" ("equivalentTo" OPE | "subPropertyOf"

OPE | " domain " CE | "range" CE | "disjointWith" OPE | "inverseOf"

name | "subPropertyChain" OPE "o" OPE { "o" OPE}) ")" ;

classAnnotation = "(" (

30 ("equivalentTo" | "disjointWith") CE {CE}|

"subClassOf" CE |

"disjointUnionOf" CE CE {CE}

) ")" ;

35 CE = "(" (["not"] name |

"not" CE |

CE "and " CE { "and" CE }|

CE "or" CE { "or" CE}|

OPE ("some" | "only") CE |

40 OPE "Self" |

OPE ("min" | "max" | "exactly") "cardinality"

nonnegativeinteger CE)

")" ;

OPE = name | "(" "inverse" name ")" ;

 A.2 EBNF GRAMMAR OF SPARQLAS
FUNCTIONAL SYNTAX

 LISTING A.2 EBNF Grammar of SPARQLAS Functional Syntax.

1

cardinality = "a nonempty finite sequence of digits between 0 and 9 " ;

lexical = "a nonempty finite sequence of alphanumeric characters

enclosed in a pair of \ " (U +22) characters " ;
variable = "a nonempty finite sequence of alphanumeric characters

starting with either a ? (U +3F) character or a $ (U +24)
character " ;

5 nodeID = "a finite sequence of characters matching the

BLANK _NODE_LABEL production of SPARQL " ;

prefix = "a finite sequence of characters matching the PNAME _NS

production of SPARQL " ;

LISTING A.1 (Continued)

A.2 EBNF GRAMMAR OF SPARQLAS FUNCTIONAL SYNTAX 193

LISTING A.2 (Continued)

fullIRI = "an IRI as defined in RFC3987 , enclosed in a pair of <
(U+3C) and > (U+3E) characters " ;

abbreviatedIRI = "a finite sequence of characters matching the

PNAME_LN production of SPARQL " ;

10 IRI = fullIRI | abbreviatedIRI ;

OntologyDocument = [QueryIRI] { Import }{ PrefixDefinition }
Query ;

QueryIRI = "IRI" "(" fullIRI ")" ;

Import = "Import" "(" fullIRI ")" ;

15 PrefixDefinition = "Namespace" "(" [prefix] "=" fullIRI ")" ;

Query = SelectQuery | ConstructQuery | AskQuery | DescribeQuery ;

SelectQuery = "Select" [variable { variable }| "*"] "Where" "(" {

Atom } ")" ;

20 ConstructQuery = "Construct" "(" { ConstructAtom } ")" "Where" "(" {

WhereAtom } ")" ;

AskQuery = "Ask" "Where" "(" { Atom } ")" ;

DescribeQuery = " Describe " DescribeIRI | "Describe" "Where" "(" {

Atom } ")" ;

ConstructAtom = Atom ;
25 WhereAtom = Atom ;
DescribeIRI = fullIRI ;

ClassVariable = variable ;
ObjectPropertyVariable = variable ;

30 DataPropertyVariable = variable ;
IndividualVariable = variable ;
LiteralVariable = variable ;

Class = IRI ;
35 Datatype = IRI ;
ObjectProperty = IRI ;
DataProperty = IRI ;
NamedIndividual = IRI ;
ConstrainingFacet = IRI ;

40 AnonymousIndividual = nodeID ;
NamedLiteral = lexical " " Datatype ;

Atom = Assertion | ClassAtom | ObjectPropertyAtom | DataPropertyAtom
| HasKey | Declaration ;

45 Assertion = ClassAssertion | DirectType | ObjectPropertyAssertion |
DataPropertyAssertion | NegativeObjectPropertyAssertion |

NegativeDataPropertyAssertion | SameIndividual |

DifferentIndividuals ;

ClassAssertion = ("ClassAssertion" | "Type") "(" Individual
ClassExpression ")" ;

DirectType = "DirectType" "(" Individual ClassExpression ")" ;

(Continued)

194 APPENDIX A

ObjectPropertyAssertion = (" ObjectPropertyAssertion " |
"PropertyValue") "(" SourceIndividual ObjectPropertyExpression

TargetIndividual ")" ;

50 DataPropertyAssertion = ("DataPropertyAssertion" | "PropertyValue"
) "(" SourceIndividual DataPropertyExpression TargetValue ")" ;

NegativeObjectPropertyAssertion = (
" NegativeObjectPropertyAssertion " | "NegativePropertyValue")

"(" SourceIndividual ObjectPropertyExpression TargetIndividual

")" ;

NegativeDataPropertyAssertion = ("NegativeDataPropertyAssertion" |
"NegativePropertyValue") "(" SourceIndividual

DataPropertyExpression TargetValue ")" ;

SameIndividual = ("SameIndividual" | "SameAs") "(" Individual
Individual { Individual } ")" ;

DifferentIndividuals = ("DifferentIndividuals" | "DifferentFrom")
"(" Individual Individual { Individual } ")" ;

55 SourceIndividual = Individual ;
TargetIndividual = Individual ;
Individual = NamedIndividual | IndividualVariable |

AnonymousIndividual ;

TargetValue = Literal ;
Literal = LiteralVariable | NamedLiteral ;

60

ClassAtom = SubClassOf | DirectSubClassOf | StrictSubClassOf |
EquivalentClasses | DisjointClasses | DisjointUnion ;

SubClassOf = "SubClassOf" "(" SubClassExpression

SuperClassExpression ")" ;

DirectSubClassOf = "DirectSubClassOf" "(" SubClassExpression

SuperClassExpression ")" ;

65 StrictSubClassOf = "StrictSubClassOf" "(" SubClassExpression

SuperClassExpression ")" ;

EquivalentClasses = ("EquivalentClasses" | "EquivalentTo") "("
ClassExpression ClassExpression { ClassExpression } ")" ;

DisjointClasses = ("DisjointClasses" | "DisjointWith") "("
ClassExpression ClassExpression { ClassExpression } ")" ;

DisjointUnion = "DisjointUnion" "(" DisjointClass

DisjointClassExpression DisjointClassExpression {

DisjointClassExpression } ")" ;

SubClassExpression = ClassExpression ;
70 SuperClassExpression = ClassExpression ;
DisjointClass = ClassVariable | Class ;
DisjointClassExpression = ClassExpression ;

ClassExpression = ClassVariable | Class | ObjectUnionOf |
ObjectComplementOf | ObjectOneOf | ObjectIntersectionOf |

ObjectAllValuesFrom | ObjectSomeValuesFrom | ObjectHasValue |

ObjectMinCardinality | ObjectMaxCardinality |

ObjectExactCardinality | DataAllValuesFrom | DataSomeValuesFrom

| DataHasValue | DataMinCardinality | DataMaxCardinality |

DataExactCardinality ;

LISTING A.2 (Continued)

A.2 EBNF GRAMMAR OF SPARQLAS FUNCTIONAL SYNTAX 195

75

ObjectUnionOf = ("ObjectUnionOf" | "Or") "(" ClassExpression
ClassExpression { ClassExpression } ")" ;

ObjectComplementOf = ("ObjectComplementOf " | "Not") "("

ClassExpression ")" ;

ObjectOneOf = ("ObjectOneOf" | "One") "(" Individual { Individual
} ")" ;

ObjectIntersectionOf = (" ObjectIntersectionOf " | "And ") "("

ClassExpression ClassExpression { ClassExpression } ")" ;

80 ObjectAllValuesFrom = ("ObjectAllValuesFrom" | " All ") "("
ObjectPropertyExpression ClassExpression ")" ;

ObjectSomeValuesFrom = ("ObjectSomeValuesFrom" | "Some") "("
ObjectPropertyExpression ClassExpression ")" ;

ObjectHasValue = ("ObjectHasValue" | "Has") "("
ObjectPropertyExpression Individual ")" ;

ObjectMinCardinality = ("ObjectMinCardinality" | "Min ") "("

cardinality ObjectPropertyExpression [ClassExpression] ")" ;

ObjectMaxCardinality = ("ObjectMaxCardinality" | "Max ") "("

cardinality ObjectPropertyExpression [ClassExpression] ")" ;

85 ObjectExactCardinality = ("ObjectExactCardinality" | " Exact ") "("
cardinality ObjectPropertyExpression [ClassExpression] ")" ;

DataAllValuesFrom = (" DataAllValuesFrom " | "All") "("
DataPropertyExpression DataRange ")" ;

DataSomeValuesFrom = ("DataSomeValuesFrom" | "Some") "("
DataPropertyExpression DataRange ")" ;

DataHasValue = ("DataHasValue" | "Has") "(" DataPropertyExpression
Literal ")" ;

DataMinCardinality = ("DataMinCardinality" | "Min") "("
cardinality DataPropertyExpression [DataRange] ")" ;

90 DataMaxCardinality = ("DataMaxCardinality" | "Max") "("
cardinality DataPropertyExpression [DataRange] ")" ;

DataExactCardinality = ("DataExactCardinality" | " Exact ") "("
cardinality DataPropertyExpression [DataRange] ")" ;

DataRange = Datatype | DataUnionOf | DataComplementOf | DataOneOf |
DataIntersectionOf | DatatypeRestriction ;

95 DataUnionOf = ("DataUnionOf " | "Or") "(" DataRange DataRange {

DataRange } ")" ;

DataComplementOf = (" DataComplementOf " | "Not ") "(" DataRange ")" ;

DataOneOf = (" DataOneOf " | "One") "(" Literal { Literal } ")" ;
DataIntersectionOf = ("DataIntersectionOf" | "And") "(" DataRange

DataRange { DataRange } ")" ;

DatatypeRestriction = "DatatypeRestriction" "(" Datatype

FacetRestriction { FacetRestriction } ")" ;

100FacetRestriction = ConstrainingFacet Literal;

ObjectPropertyAtom = SubObjectPropertyOf |
EquivalentObjectProperties | DisjointObjectProperties |

ObjectPropertyDomain | ObjectPropertyRange |

InverseObjectPropertyAtom | FunctionalObjectProperty |

(Continued)

LISTING A.2 (Continued)

196 APPENDIX A

InverseFunctionalObjectProperty | ReflexiveObjectProperty |

IrreflexiveObjectProperty | SymmetricObjectProperty |

AsymmetricObjectProperty | TransitiveObjectProperty ;

SubObjectPropertyOf = ("SubObjectPropertyOf" | "SubPropertyOf")
"(" SubObjectPropertyExpression SuperObjectPropertyExpression

")" ;

105 EquivalentObjectProperties = ("EquivalentObjectProperties " |

"EquivalentProperty") "(" ObjectPropertyExpression

ObjectPropertyExpression { ObjectPropertyExpression } ")" ;

DisjointObjectProperties = ("DisjointObjectProperties" |
"DisjointProperty") "(" ObjectPropertyExpression

ObjectPropertyExpression { ObjectPropertyExpression } ")" ;

ObjectPropertyDomain = ("ObjectPropertyDomain" | "Domain") "("
ObjectPropertyExpression ClassExpression ")" ;

ObjectPropertyRange = ("ObjectPropertyRange" | "Range") "("
ObjectPropertyExpression ClassExpression ")" ;

InverseObjectPropertyAtom = ("InverseObjectProperties" |
"InverseOf") "(" ObjectPropertyExpression

ObjectPropertyExpression ")" ;

110 FunctionalObjectProperty = "FunctionalObjectProperty" "("

ObjectPropertyExpression ")" ;

InverseFunctionalObjectProperty = (
"InverseFunctionalObjectProperty" | "InverseFunctional") "("

ObjectPropertyExpression ")" ;

ReflexiveObjectProperty = ("ReflexiveObjectProperty" | "Reflexive"
) "(" ObjectPropertyExpression ")" ;

IrreflexiveObjectProperty = ("IrreflexiveObjectProperty" |
"Irreflexive") "(" ObjectPropertyExpression ")" ;

SymmetricObjectProperty = ("SymmetricObjectProperty" | "Symmetric"
) "(" ObjectPropertyExpression ")" ;

115 AsymmetricObjectProperty = ("AsymmetricObjectProperty" |
"Asymmetric") "(" ObjectPropertyExpression ")" ;

TransitiveObjectProperty = (" TransitiveObjectProperty " |
" Transitive ") "(" ObjectPropertyExpression ")" ;

SubObjectPropertyExpression = ObjectPropertyExpression |
ObjectPropertyChain ;

SuperObjectPropertyExpression = ObjectPropertyExpression ;
ObjectPropertyChain = ("ObjectPropertyChain " | "Chain") "("

ObjectPropertyExpression ObjectPropertyExpression {

ObjectPropertyExpression } ")" ;

120

ObjectPropertyExpression = ObjectPropertyVariable | ObjectProperty |
InverseObjectProperty ;

InverseObjectProperty = ("ObjectInverseOf" | "InverseOf") "("
ObjectPropertyExpression ")" ;

125 DataPropertyAtom = SubDataPropertyOf | EquivalentDataProperties |
DisjointDataProperties | DataPropertyDomain | DataPropertyRange

| FunctionalDataProperty ;

LISTING A.2 (Continued)

A.3 EBNF GRAMMAR OF SPARQLAS MANCHESTER SYNTAX 197

SubDataPropertyOf = ("SubDataPropertyOf" | "SubPropertyOf") "("
SubDataPropertyExpression SuperDataPropertyExpression ")" ;

EquivalentDataProperties = ("EquivalentDataProperties" |
"EquivalentProperty") "(" DataPropertyExpression

DataPropertyExpression { DataPropertyExpression } ")" ;

DisjointDataProperties = ("DisjointDataProperties" |
" DisjointProperty ") "(" DataPropertyExpression

DataPropertyExpression { DataPropertyExpression } ")" ;

130 DataPropertyDomain = ("DataPropertyDomain" | "Domain ") "("

DataPropertyExpression ClassExpression ")" ;

DataPropertyRange = ("DataPropertyRange" | "Range") "("
DataPropertyExpression DataRange ")" ;

FunctionalDataProperty = "FunctionalDataProperty" "("

DataPropertyExpression ")" ;

SubDataPropertyExpression = DataPropertyExpression ;
SuperDataPropertyExpression = DataPropertyExpression ;

135

DataPropertyExpression = DataPropertyVariable | DataProperty ;

HasKey = "HasKey" "(" ClassExpression "(" { ObjectPropertyExpression

} ")" "(" { DataPropertyExpression } ")" ")" ;

140 Declaration = ObjectPropertyDeclaration | DataPropertyDeclaration |
NamedIndividualDeclaration | ClassDeclaration ;

ObjectPropertyDeclaration = "ObjectProperty" "(" ObjectProperty |

ObjectPropertyVariable ")" ;

DataPropertyDeclaration = "DataProperty" "(" DataProperty |

DataPropertyVariable ")" ;

NamedIndividualDeclaration = "NamedIndividual" "(" NamedIndividual |

IndividualVariable ")" ;

145 ClassDeclaration = "Class" "(" Class | ClassVariable ")" ;

 A.3 EBNF GRAMMAR OF SPARQLAS
MANCHESTER SYNTAX

 LISTING A.3 EBNF Grammar of SPARQLAS Manchester Syntax.

1

cardinality = "a nonempty finite sequence of digits between 0 and 9 " ;

lexical = "a nonempty finite sequence of alphanumeric characters

enclosed in a pair of \ " (U +22) characters " ;
variable = "a nonempty finite sequence of alphanumeric characters

starting with either a ? (U +3F) character or a $ (U +24)
character " ;

5 nodeID = "a finite sequence of characters matching the

BLANK _NODE_LABEL production of SPARQL " ;

prefix = "a finite sequence of characters matching the PNAME _NS

production of SPARQL " ;

fullIRI = "an IRI as defined in RFC3987 , enclosed in a pair of <
(U+3C) and > (U+3E) characters " ;

LISTING A.2 (Continued)

(Continued)

198 APPENDIX A

abbreviatedIRI = "a finite sequence of characters matching the

PNAME_LN production of SPARQL " ;

10 IRI = fullIRI | abbreviatedIRI ;

OntologyDocument = [QueryIRI] { Import }{ PrefixDefinition }
Query ;

QueryIRI = "IRI" "(" fullIRI ")" ;

Import = "Import : " fullIRI ;

15 PrefixDefinition = "Namespace:" [prefix] fullIRI ;

Query = SelectQuery | ConstructQuery | AskQuery | DescribeQuery ;
SelectQuery = " Select " [variable { variable }| "*"] "Where:" {

Atom } ;

20 ConstructQuery = "Construct:" { ConstructAtom } "Where:" { WhereAtom

};

AskQuery = "Ask" "Where:" { Atom };

DescribeQuery = " Describe " DescribeIRI | "Describe" "Where:" { Atom

};

ConstructAtom = Atom;
25 WhereAtom = Atom ;
DescribeIRI = fullIRI ;

ClassVariable = variable ;
ObjectPropertyVariable = variable ;

30 DataPropertyVariable = variable ;
IndividualVariable = variable ;
LiteralVariable = variable ;

Class = IRI ;
35 Datatype = IRI ;
ObjectProperty = IRI ;
DataProperty = IRI ;
NamedIndividual = IRI ;
ConstrainingFacet = IRI ;

40 AnonymousIndividual = nodeID ;
NamedLiteral = lexical " " Datatype ;

Atom = Assertion | ClassAtom | ObjectPropertyAtom | DataPropertyAtom
| HasKey | Declaration ;

45 Assertion = ClassAssertion | DirectType | ObjectPropertyAssertion |
DataPropertyAssertion | NegativeObjectPropertyAssertion |

NegativeDataPropertyAssertion | SameIndividual |

DifferentIndividuals ;

ClassAssertion = Individual "type" ClassExpression ;
DirectType = Individual " directType " ClassExpression ;
ObjectPropertyAssertion = SourceIndividual ObjectPropertyExpression

TargetIndividual ;

LISTING A.3 (Continued)

A.3 EBNF GRAMMAR OF SPARQLAS MANCHESTER SYNTAX 199

50 DataPropertyAssertion = SourceIndividual DataPropertyExpression
TargetValue ;

NegativeObjectPropertyAssertion = SourceIndividual "not"
ObjectPropertyExpression TargetIndividual ;

NegativeDataPropertyAssertion = SourceIndividual "not"
DataPropertyExpression TargetValue ;

SameIndividual = Individual "sameAs" Individual | "SameIndividuals"
"(" Individual Individual { Individual } ")" ;

DifferentIndividuals = Individual "differentFrom" Individual |
"DifferentIndividuals" "(" Individual Individual { Individual }

")" ;

55 SourceIndividual = Individual ;
TargetIndividual = Individual ;
Individual = NamedIndividual | IndividualVariable |

AnonymousIndividual ;

TargetValue = Literal ;
Literal = LiteralVariable | NamedLiteral ;

60

ClassAtom = SubClassOf | DirectSubClassOf | StrictSubClassOf |
EquivalentClasses | DisjointClasses | DisjointUnion ;

SubClassOf = SubClassExpression " subClassOf " SuperClassExpression ;
DirectSubClassOf = SubClassExpression " directSubClassOf "

SuperClassExpression ;

65 StrictSubClassOf = SubClassExpression "strictSubClassOf"
SuperClassExpression ;

EquivalentClasses = "EquivalentClasses:" ClassExpression ","

ClassExpression { "," ClassExpression }| ClassExpression

" equivalentClasses " ClassExpression { "," ClassExpression }|

ClassExpression " equivalentTo " ClassExpression { ","

ClassExpression };

DisjointClasses = " DisjointClasses : " ClassExpression ","

ClassExpression { "," ClassExpression }| ClassExpression

" disjointClasses " ClassExpression { "," ClassExpression }|

ClassExpression " disjointWith " ClassExpression { ","

ClassExpression };

DisjointUnion = DisjointClass " DisjointUnionOf : "
DisjointClassExpression DisjointClassExpression {

DisjointClassExpression } ;

SubClassExpression = ClassExpression ;
70 SuperClassExpression = ClassExpression ;
DisjointClass = ClassVariable | Class ;
DisjointClassExpression = ClassExpression ;

ClassExpression = ClassVariable | Class | ObjectUnionOf |
ObjectComplementOf | ObjectOneOf | ObjectIntersectionOf |

ObjectAllValuesFrom | ObjectSomeValuesFrom | ObjectHasValue |

ObjectMinCardinality | ObjectMaxCardinality |

ObjectExactCardinality | DataAllValuesFrom | DataSomeValuesFrom

| DataHasValue | DataMinCardinality | DataMaxCardinality |

DataExactCardinality ;

LISTING A.3 (Continued)

(Continued)

200 APPENDIX A

75

ObjectUnionOf = "(" ClassExpression "or" ClassExpression { "or"

ClassExpression } ")" ;

ObjectComplementOf = " not " ClassExpression ;

ObjectOneOf = "{" Individual { "," Individual } "}" ;

ObjectIntersectionOf = "(" ClassExpression "and " ClassExpression {

" and " ClassExpression } ")" ;

80 ObjectAllValuesFrom = ObjectPropertyExpression "only"
ClassExpression | "(" ObjectPropertyExpression "only"

ClassExpression ")" ;

ObjectSomeValuesFrom = ObjectPropertyExpression "some"
ClassExpression | "(" ObjectPropertyExpression "some"

ClassExpression ")" ;

ObjectHasValue = ObjectPropertyExpression "value" Individual | "("
ObjectPropertyExpression "vaule " Individual ")" ;

ObjectMinCardinality = ObjectPropertyExpression "min" cardinality [
ClassExpression] | "(" ObjectPropertyExpression "min"

cardinality [ClassExpression] ")" ;

ObjectMaxCardinality = ObjectPropertyExpression "max" cardinality [
ClassExpression] | "(" ObjectPropertyExpression "max"

cardinality [ClassExpression] ")" ;

85 ObjectExactCardinality = ObjectPropertyExpression "exactly "

cardinality [ClassExpression] | "(" ObjectPropertyExpression

" exactly " cardinality [ClassExpression] ")" ;

DataAllValuesFrom = DataPropertyExpression "only" DataRange | "("
DataPropertyExpression "only" DataRange ")" ;

DataSomeValuesFrom = DataPropertyExpression " some " DataRange | "("
DataPropertyExpression "some" DataRange ")" ;

DataHasValue = DataPropertyExpression " value " Literal | "("
DataPropertyExpression "value " Literal ")" ;

DataMinCardinality = cardinality "min " DataPropertyExpression [

DataRange] | "(" cardinality "min" DataPropertyExpression [

DataRange] ")" ;

90 DataMaxCardinality = cardinality "max" DataPropertyExpression [
DataRange] | "(" cardinality "max" DataPropertyExpression [

DataRange] ")" ;

DataExactCardinality = cardinality "exactly" DataPropertyExpression
[DataRange] | "(" cardinality "exactly" DataPropertyExpression

[DataRange] ")" ;

DataRange = Datatype | DataUnionOf | DataComplementOf | DataOneOf |
DataIntersectionOf | DatatypeRestriction ;

95 DataUnionOf = "(" DataRange "or" DataRange { "or" DataRange } ")" ;

DataComplementOf = " DataComplementOf " DataRange | "not" DataRange ;

DataOneOf = "{" Literal { Literal } "}" ;

DataIntersectionOf = "(" DataRange "and" DataRange { "and " DataRange

} ")" ;

DatatypeRestriction = Datatype "[" FacetRestriction {
FacetRestriction } "]" ;

100 FacetRestriction = ConstrainingFacet Literal;

LISTING A.3 (Continued)

A.3 EBNF GRAMMAR OF SPARQLAS MANCHESTER SYNTAX 201

ObjectPropertyAtom = SubObjectPropertyOf |
EquivalentObjectProperties | DisjointObjectProperties |

ObjectPropertyDomain | ObjectPropertyRange |

InverseObjectPropertyAtom | FunctionalObjectProperty |

InverseFunctionalObjectProperty | ReflexiveObjectProperty |

IrreflexiveObjectProperty | SymmetricObjectProperty |

AsymmetricObjectProperty | TransitiveObjectProperty ;

SubObjectPropertyOf = SubObjectPropertyExpression (
" subObjectPropertyOf " | " subPropertyOf ")

SuperObjectPropertyExpression ;

105 EquivalentObjectProperties = ("EquivalentObjectProperties:" |
"EquivalentProperties:") ObjectPropertyExpression ","

ObjectPropertyExpression { "," ObjectPropertyExpression }|

ObjectPropertyExpression ("equivalentObjectProperties "|

"equivalentTo") ObjectPropertyExpression { ","

ObjectPropertyExpression } ;

DisjointObjectProperties = ("DisjointObjectProperties:" |
"DisjointProperties:") ObjectPropertyExpression ","

ObjectPropertyExpression { "," ObjectPropertyExpression }|

ObjectPropertyExpression ("disjointObjectProperties" |

"disjointWith") ObjectPropertyExpression { ","

ObjectPropertyExpression } ;

ObjectPropertyDomain = ObjectPropertyExpression (
"objectPropertyDomain" | "domain") ClassExpression ;

ObjectPropertyRange = ObjectPropertyExpression (
"objectPropertyRange" | "range") ClassExpression ;

InverseObjectPropertyAtom = ObjectPropertyExpression (
"inverseObjectProperties" | "inverseOf")

ObjectPropertyExpression ;

110 FunctionalObjectProperty = ("FunctionalObjectProperty" |
"Functional") ObjectPropertyExpression ;

InverseFunctionalObjectProperty = (
"InverseFunctionalObjectProperty" | "InverseFunctional")

ObjectPropertyExpression ;

ReflexiveObjectProperty = ("ReflexiveObjectProperty" | "Reflexive"
) ObjectPropertyExpression ;

IrreflexiveObjectProperty = ("IrreflexiveObjectProperty" |
" Irreflexive ") ObjectPropertyExpression ;

SymmetricObjectProperty = (" SymmetricObjectProperty " | "Symmetric"
) ObjectPropertyExpression ;

115AsymmetricObjectProperty = ("AsymmetricObjectProperty" |
"Asymmetric") ObjectPropertyExpression ;

TransitiveObjectProperty = ("TransitiveObjectProperty" |
"Transitive") ObjectPropertyExpression ;

SubObjectPropertyExpression = ObjectPropertyExpression |
ObjectPropertyChain ;

SuperObjectPropertyExpression = ObjectPropertyExpression ;
ObjectPropertyChain = "SubPropertyChain:" ObjectPropertyExpression

"o" ObjectPropertyExpression { "o" ObjectPropertyExpression } ;

LISTING A.3 (Continued)

(Continued)

202 APPENDIX A

120

ObjectPropertyExpression = ObjectPropertyVariable | ObjectProperty |
InverseObjectProperty ;

InverseObjectProperty = (" ObjectInverseOf " | " inverseOf ")
ObjectPropertyExpression ;

125 DataPropertyAtom = SubDataPropertyOf | EquivalentDataProperties |
DisjointDataProperties | DataPropertyDomain | DataPropertyRange

| FunctionalDataProperty ;

SubDataPropertyOf = SubDataPropertyExpression ("subDataPropertyOf"
| "subPropertyOf") SuperDataPropertyExpression ;

EquivalentDataProperties = ("EquivalentDataProperties:" |
"EquivalentProperties:") ObjectPropertyExpression ","

ObjectPropertyExpression { "," ObjectPropertyExpression }|

ObjectPropertyExpression ("equivalentDataProperties" |

"equivalentTo") ObjectPropertyExpression { ","

ObjectPropertyExpression } ;

DisjointDataProperties = ("DisjointDataProperties:" |
"DisjointProperties:") ObjectPropertyExpression ","

ObjectPropertyExpression { "," ObjectPropertyExpression }|

ObjectPropertyExpression (" disjointDataProperties " |

" disjointWith ") ObjectPropertyExpression { ","

ObjectPropertyExpression } ;

130 DataPropertyDomain = DataPropertyExpression (" dataPropertyDomain " |
"domain") ClassExpression ;

DataPropertyRange = DataPropertyExpression (" dataPropertyRange : " |
"range") DataRange ;

FunctionalDataProperty = ("FunctionalDataProperty" | "Functional")
DataPropertyExpression ;

SubDataPropertyExpression = DataPropertyExpression ;
SuperDataPropertyExpression = DataPropertyExpression ;

135

DataPropertyExpression = DataPropertyVariable | DataProperty ;

HasKey = "HasKey" "(" ClassExpression "(" { ObjectPropertyExpression

} ")" "(" { DataPropertyExpression } ")" ")" ;

140 Declaration = ObjectPropertyDeclaration | DataPropertyDeclaration |
NamedIndividualDeclaration | ClassDeclaration ;

ObjectPropertyDeclaration = "ObjectProperty:" "(" ObjectProperty |

ObjectPropertyVariable ")" ;

DataPropertyDeclaration = "DataProperty:" "(" DataProperty |

DataPropertyVariable ")" ;

NamedIndividualDeclaration = "NamedIndividual:" "(" NamedIndividual

| IndividualVariable ")" ;

145 ClassDeclaration = "Class:" "(" Class | ClassVariable ")" ;

 A.4 SPARQLAS METAMODEL

 See Figure A.1 .

LISTING A.3 (Continued)

 Fi
gu

re
 A

.1

 SP
A

R
Q

L
A

S
M

et
am

od
el

.

203

204 APPENDIX A

 A.5 ECORE TO OWL : TRANSLATION RULES

 In this section, we describe the transformation rule for generating OWL ontologies
based on the Ecore metamodel.

OWL::ClassDeclaration(?x) ← Ecore::EClass(?x)

OWL::Class(?x) ← Ecore::EClass(?x)

iri(?x,?y) ← name(?x,?y)

OWL::SubClassOf(?x,?y) ← Ecore::EClass(?x) Ecore::EClass(?y)

superClass(?x,?y)

OWL::Class(?x) ← Ecore::EClass(?x)

OWL::Class(?y) ← Ecore::EClass(?y)

iri(?x,?z1) ← name(?x,?z1)

iri(?y,?z2) ← name(?y,?z2)

OWL::DataPropertyDeclaration(?y) ← Ecore::EClass(?x)

Ecore::EAttribute(?y)

 Ecore::EPrimitiveType(?z) eAttributes(?x,?y)

eAttributeType(?y,?z)

OWL::DataProperty(?y) ← Ecore::EAttribute(?y)

iri(?y,?z) ← name(?y,?z)

OWL::ObjectPropertyDeclaration(?y) ← Ecore::EClass(?x)

 Ecore::EAttribute(?y) Ecore::EEnum(?z) eAttributes(?x,?y)

eAttributeType(?y,?z)

OWL::ObjectProperty(?y) ← Ecore::EAttribute(?y)

iri(?y,?z) ← name(?y,?z)

OWL::ObjectPropertyDeclaration(?y) ← Ecore::EClass(?x)

Ecore::EReference(?y)

 Ecore::EClass(?z) eReferences(?x,?y) eReferenceType(?y,?z)

OWL::ObjectProperty(?y) ← Ecore::EReference(?y)

iri(?y,?z) ← name(?y,?z)

OWL::EquivalentClasses(?v) ← Ecore::EEnum(?v)

OWL::Class(?w) ← Ecore::EEnum(?v)

iri(?w,?x) ← name(?v,?x)

equivalentClass(?v,?w) ←.

OWL::ObjectOneOf(?y) ← Ecore::EEnum(?v)

OWL::NamedIndividual(?z) ← Ecore::EEnumLiteral(?z)

oneOfIndividual(?y,?z) ← eLiterals(?v,?z)

equivalentClass(?v,?y) ←.

A.5 ECORE TO OWL: TRANSLATION RULES 205

OWL::ClassAssertion(?x,?y) ← Ecore::EClass(?x)

Ecore::EObject(?y) eClass(?y,?x)

OWL::Class(?x) ← Ecore::EClass(?x)

iri(?x,?z1) ← name(?x,?z1)

OWL::NamedIndividual(?y) ← Ecore::EObject(?y)

iri(?y,?z2) ← name(?y,?z2)

OWL::ObjectPropertyAssertion(?x,?y,?z) ← Ecore::EObject(?s)

 Ecore::EObject(?o) Ecore::EReference(?r) eGet(?r, ?s,?o)

OWL:ObjectProperty(?r) ← Ecore::EReference(?r)

iri(?r,?n1) ← name(?r,?n1)

OWL::NamedIndividual(?s) ← Ecore::EObject(?s)

iri(?s,?n2) ← name(?s,?n2)

OWL::NamedIndividual(?o) ← Ecore::EObject(?o)

iri(?o,?n3) ← name(?o,?n3)

OWL::DataPropertyAssertion(?x,?y,?z) ← Ecore::EObject(?s)

 Ecore::Literal(?l) Ecore::EAttribute(?r) eGet(?a, ?s,?l)

OWL:ObjectProperty(?r) ← Ecore::EAttribute(?a)

iri(?a,?n1) ← name(?r,?n1)

OWL::NamedIndividual(?s) ← Ecore::EObject(?s)

iri(?s,?n2) ← name(?s,?n2)

OWL::Literal(?l) ← Ecore::Literal(?l)

 APPENDIX B

 B.1 USE CASES

 In the following subsections we describe the use cases of the TwoUse approach.
After describing the use cases, we map these use cases onto the requirements in the
traceability matrix presented in Section B.2 .

 B.1.1 Design Integrated Models

Brief Description : This use case covers the creation and visualization of
OWL constructs with UML class - based modeling.

Preconditions : None.

Postconditions : An OWL ontology is generated.

Basic Flow:

1. Software engineer Design Integrated models .

2. Software engineer saves integrated model.

3. System transforms TwoUse model into OWL.

4. Use case terminates.

Sub fl ow : Abstract Design Integrated models .

 B.1.2 Design Integrated UML Class Diagram

Brief Description : This use case covers the creation and visualization of
hybrid models using UML as concrete syntax.

Sub fl ow : Design Integrated models

1. Software engineer creates a new UML class diagram.

2. Software engineer use stereotypes of the UML profi le for OWL to anno-
tate UML elements.

3. System transforms the hybrid class diagram into a TwoUse model.

Alternate Flows:

1. Software engineer imports existing UML class diagram.

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

206

B.1 USE CASES 207

 B.1.3 Design Integrated Ecore Model

Brief Description : This use case covers the creation and visualization of
Ecore models using the textual syntax.

Sub fl ow : Design Integrated models

1. Software engineer creates a new Ecore model.

2. Software engineer creates annotations with OWL axioms to Ecore
elements.

3. System transforms Ecore model with annotations for OWL into a
TwoUse model.

Alternate Flows:

1. Software engineer imports existing Ecore model.

 B.1.4 Specify SPARQLAS4T wo U se Query Operations

Brief Description : This use case covers the specifi cation of query operations
for classes using SPARQLAS4TwoUse for usage of ontology services in
UML class - based modeling.

Preconditions : Integrated model exists.

Postconditions : None.

Basic Flow:

1. Software engineer creates query operations at classes.

2. Software engineer specifi es the body of query operations using
SPARQLAS4TwoUse.

3. System transforms the hybrid class diagram into a TwoUse model.

4. System generates an OWL ontology from the TwoUse model.

5. System generates a SPARQL query from the SPARQLAS4TwoUse query.

6. Use case terminates.

Alternate Flows : None.

 B.1.5 Transform to OWL

Brief Description : This use case covers the transformation of Ecore - based
modeling languages. It consists of transforming model and metamodel into
individuals and classes in an OWL ontology for usage of ontology services
in UML class - based modeling.

Preconditions : A model and its metamodel designed using Ecore technolo-
gies exist.

Postconditions : An OWL ontology is generated including elements of the
model as individuals and property assertions and the elements of the
metamodel as classes and properties.

208 APPENDIX B

Basic Flows:

1. Software engineer selects a model for transformation.

2. System creates an OWL ontology.

3. System reads selected model ’ s metamodel and transform it into OWL
classes and properties.

4. System reads selected model and transforms it into OWL individuals,
class assertions, and property assertions.

5. Use case terminates.

Alternate Flows : None.

 B.1.6 Compute Alignments

Brief Description : This use case covers the computation of alignments
between two UML class - based models. It consists of transforming models
into OWL and applying matching techniques to identify similarities between
two models.

Preconditions : Two models exist.

Postconditions : Results of alignments are displayed.

Basic Flows:

1. Software engineer selects two UML class - based models for comparison.

2. System reads the two corresponding OWL ontologies.

3. System computes the alignment between these ontologies.

4. System displays the result.

5. Use case terminates.

Alternate Flows : None.

 B.1.7 Browse

Brief Description : This covers the usage of queries and fi lters for extrating
data.

Preconditions : UML class - based modeling exists.

Postconditions : Results are presented.

Basic Flows:

1. Engineer creates new SPARQLAS query.

2. Engineer saves SPARQLAS query.

3. Engineer executes SPARQLAS query.

4. Engineer Select Model .

5. System transforms UML class - based model into OWL.

6. System transforms SPARQLAS query into SPARQL query.

7. System uses reasoning systems to classify and realize the ontology and
to execute the SPARQL query.

B.1 USE CASES 209

8. System shows query results.

9. Use case terminates.

Alternate Flows : Engineer visualizes inferred class hierarchy.

1. System shows the inferred class hierarchy.

 B.1.8 Explain Axioms

Brief Description : This covers the usage of explanation services.

Preconditions : OWL exists.

Postconditions : None.

Basic Flows:

1. Engineer selects axioms for explanation.

2. System generates an explanation for the selected axioms.

3. Use case terminates.

Alternate Flows : None.

Sub fl ow : Abstract Select Model .

 B.1.9 Query UML Class - Based Models

Brief Description : This covers the usage of queries over UML class - based
modeling.

Sub fl ow : Select Model

1. Software Engineer selects UML class - based model.

2. System transforms UML class - based model into OWL.

 B.1.10 Query OWL Ontologies

Brief Description : It extends use case Query.

Sub fl ow : Select Model

1. Software Engineer selects OWL ontology.

 B.1.11 Design Ontology Engineering Services

Brief Description : This involves the specifi cation of Ontology Engineering
Service.

Preconditions : OWL ontology exists.

Postconditions : None.

Basic Flows:

1. Ontology Engineer Design Services .

2. System Generate Service .

3. Use case terminates.

210 APPENDIX B

Alternate Flows : None.

Extension Point : Generate Service .

Sub fl ow : Abstract Design Services .

 B.1.12 Design Ontology API

Brief Description : This involves the specifi cation of OWL ontology API.

Sub fl ow : Design Services .

1. Ontology engineer creates OWL ontology API specifi cation.

2. Ontology engineer specifi es API using a domain - specifi c textual language.

3. Ontology engineer saves OWL Ontology API specifi cation.

Alternate Flows : None.

Preconditions : OWL ontology exists.

Postconditions : None.

 B.1.13 Design Ontology Translation

Brief Description : This outlines the design of OWL ontology dataset
translations.

Sub fl ow : Design Services .

1. Ontology engineer creates OWL ontology dataset translation
specifi cation.

2. Ontology engineer specifi es OWL ontology dataset translation using a
domain - specifi c textual language.

3. Ontology engineer saves OWL ontology dataset translation
specifi cation.

Alternate Flows : None.

Preconditions : Source OWL ontology and Target OWL ontology exist.

Postconditions : None.

 B.1.14 Design Ontology Template

Brief Description : This covers the usage of templates in OWL ontologies.

Sub fl ow : Design Services .

1. Ontology engineer imports domain ontology.

2. Ontology engineer specifi es ontology templates.

3. Ontology engineer binds templates to domain ontology.

Alternate Flows

1. Ontology engineer uses UML class diagrams for creating templates.

2. Ontology engineer uses the OWL 2 graphical notation for creating
templates.

B.2 CONNECTING USE CASES WITH REQUIREMENTS 211

Preconditions : Domain ontology exists.

Postconditions : OWL ontology generated.

 B.1.15 Generate Service

Brief Description : This covers the transformation of specifi cation into plat-
form specifi c artifacts.

Extension Flows : Generate Service .

1. System generates platform specifi c artifacts for the ontology engineering
service.

 B.2 CONNECTING USE CASES WITH REQUIREMENTS

 Having described the use cases in Section B.1 , we have mapped them onto the
requirements presented in Section 5.2 in Table B.1 , which depicts a traceability
matrix and correlates the requirements with the use cases.

 TABLE B.1 Mapping Use Cases and Requirements.

 Requirements Use Cases OWL
Constructs

in UML
class - based
modeling
(5.2.1.1)

 Ontology
services in

UML
class- based
modeling
(5.2.1.2)

 MDE
support for
ontology
modeling
(5.2.2.1)

 Domain
modeling for

ontology
engineering

Services
(5.2.2.2)

 Design integrated models (B.1.1) X

 Design integrated UML class diagram
(B.1.2)

 X

 Design integrated Ecore model (B.1.3) X

 Specify SPARQLAS4TwoUse query
operations (B.1.4)

 X

 Transform to OWL (B.1.5) X

 Compute alignments (B.1.6) X

 Browse (B.1.7) X X X

 Query UML class - based models (B.1.9) X

 Query OWL ontologies (B.1.10) X X

 Explain axioms (B.1.8) X

 Design ontology engineering services
(B.1.11)

 X X

 Design ontology API (B.1.12) X

 Design ontology translation (B.1.13) X

 Design ontology template (B.1.14) X

 Generate service (B.1.15) X

 REFERENCES

 1. Dean Allemang and James Hendler . Semantic Web for the Working Ontologist:
Effective Modeling in RDFS and OWL . Morgan Kaufmann Publishers Inc. , San
Francisco, CA, USA , 2008 .

 2. J ü rgen Angele and Georg Lausen . Ontologies in F - logic . In Handbook on Ontologies ,
International Handbooks on Information Systems, pages 29 – 50 . Springer , 2004 .

 3. Giuliano Antoniol , Massimiliano Di Penta , Harald Gall , and Martin Pinzger . Towards
the Integration of Versioning Systems, Bug Reports and Source Code Meta - Models .
Electr. Notes Theor. Comput. Sci. , 127 (3): 87 – 99 , 2005 .

 4. Grigoris Antoniou and Frank van Harmelen . A Semantic Web Primer, 2nd Edition .
 The MIT Press , Cambridge, MA, USA , 2008 .

 5. L. Apostel . Towards the formal study of models in a non formal science . Synthese ,
 12 : 125 – 161 , 1960 .

 6. Richard Arndt , Rapha ë l Troncy , Steffen Staab , Lynda Hardman , and Miroslav Vacura .
 COMM: Designing a Well - Founded Multimedia Ontology for the Web . In Proceed-
ings of the 6th International Semantic Web Conference and 2nd Asian Semantic Web
Conference (ISWC/ASWC 2007), Busan, South Korea, 11 – 15th November, 2007 ,
volume 4825 of Lecture Notes in Computer Science , pages 30 – 43 . Springer, 2007 .

 7. C. Atkinson and T. Kuhne . Model - driven development: a metamodeling foundation .
Software, IEEE , 20 (5): 36 – 41 , Sept. – Oct. 2003 .

 8. Paolo Atzeni , Paolo Cappellari , and Philip A. Bernstein . Model - Independent Schema
and Data Translation . In Proceedings of 10th International Conference on Extending
Database Technology (EDBT 2006), Munich, Germany, March 26 – 31, 2006 , volume
3896 of Lecture Notes in Computer Science , pages 368 – 385 . Springer, 2006 .

 9. Franz Baader , Diego Calvanese , Deborah L. McGuinness , Daniele Nardi , and Peter F.
 Patel - Schneider , editors. The Description Logic Handbook . Cambridge University
Press, Cambridge, UK , 2003 .

 10. Kenneth Baclawski , Mieczyslaw M. Kokar , Paul A. Kogut , Lewis Hart , Jeffrey E.
 Smith , Jerzy Letkowski , and Pat Emery . Extending the Unifi ed Modeling Language
for ontology development . Software and System Modeling , 1 (2): 142 – 156 , 2002 .

 11. Bernhard Beckert , Uwe Keller , and Peter H. Schmitt . Translating the Object Con-
straint Language into First - order Predicate Logic . In Proceedings of the Second
Verifi cation Workshop (VERIFY 2002), July 25 – 26, 2002, Copenhagen, Denmark ,
volume 02 – 07 of DIKU technical report . DIKU, 2002 .

 12. Daniela Berardi , Diego Calvanese , and Giuseppe De Giacomo . Reasoning on UML
class diagrams . Artif. Intell. , 168 (1): 70 – 118 , 2005 .

 13. Jean B é zivin . On the unifi cation power of models . Software and System Modeling ,
 4 (2): 171 – 188 , 2005 .

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

212

REFERENCES 213

 14. Jean B é zivin , V. Devedzic , D. Djuric , J.M. Favreau , D. Gasevic , and Fr é d é ric Jouault .
 An M3 - Neutral Infrastructure for Bridging Model Engineering and Ontology
Engineering. In Interoperability of Enterprise Software and Applications , pages
 159 – 171 . Springer , 2005 .

 15. Andreas Billig , Susanne Busse , Andreas Leicher , and J ö rn Guy S ü ss. Platform
independent model transformation based on TRIPLE . In Proceedings of the ACM/
IFIP/USENIX International Middleware Conference, Middleware 2004, Toronto,
Canada, October 18 – 20, 2004 , volume 3231 of Lecture Notes in Computer Science ,
pages 493 – 511 . Springer, 2004 .

 16. Christian Bizer , Tom Heath , and Tim Berners - Lee . Linked Data — The Story So Far .
International Journal on Semantic Web and Information Systems , 5 (3): 1 – 22 , 2009 .

 17. Jean - Paul Bodeveix , Thierry Millan , Christian Percebois , Christophe Le Camus , Pierre
 Bazex , and Louis Feraud . Extending OCL for verifying UML models consistency . In
Proceedings of the Workshop on Consistency Problems in UML - based Software
Development, Workshop at UML 2002, Dresden, Germany, October 1, 2002 , volume
2002:06 of Research Report , pages 75 – 90 . Blekinge Institute of Technology, 2002 .

 18. Harold Boley , Said Tabet , and Gerd Wagner . Design Rationale for RuleML: A
Markup Language for Semantic Web Rules . In Proceedings of the fi rst Semantic Web
Working Symposium (SWWS 2001), Stanford University, CA, USA, July 30 - August 1,
2001 , pages 381 – 401 , 2001 .

 19. Paolo Bouquet , Fausto Giunchiglia , Frank van Harmelen , Luciano Serafi ni , and
 Heiner Stuckenschmidt . C - OWL: Contextualizing Ontologies . In Proceedings of
Second International Semantic Web Conference (ISWC 2003), Sanibel Island, FL,
USA, October 20 – 23, 2003 , volume 2870 of Lecture Notes in Computer Science ,
pages 164 – 179 . Springer, 2003 .

 20. Saartje Brockmans , Robert M. Colomb , Elisa F. Kendall , Evan Wallace , Christopher
 Welty , Guo Tong Xie , and Peter Haase . A Model Driven Approach for Building OWL
DL and OWL Full Ontologies . In Proceedings of 5th International Semantic Web
Conference (ISWC), Athens, GA, USA, November 5 – 9, 2006 , volume 4273 of Lecture
Notes in Computer Science , pages 187 – 200 . Springer, November 2006 .

 21. Saartje Brockmans , Peter Haase , Pascal Hitzler , and Rudi Studer . A Metamodel and UML
Profi le for Rule - Extended OWL DL Ontologies . In Proceedings of the 3rd European
Semantic Web Conference, ESWC 2006, Budva, Montenegro, June 11 – 14, 2006 , volume
4011 of Lecture Notes in Computer Science , pages 303 – 316 . Springer, 2006 .

 22. Saartje Brockmans , Peter Haase , and Heiner Stuckenschmidt . Formalism - Independent
Specifi cation of Ontology Mappings — A Metamodeling Approach . In Proceedings of
On the Move to Meaningful Internet Systems (OTM 2006), Montpellier, France,
October 29 – November 3, 2006 , volume 4275 of Lecture Notes in Computer Science ,
pages 901 – 908 . Springer, 2006 .

 23. Sara Brockmans , Raphael Volz , Andreas Eberhart , and Peter L ö ffl er . Visual Modeling
of OWL DL Ontologies Using UML . In Proceedings of the Third International
Semantic Web Conference, ISWC 2004, Hiroshima, Japan, November 7 – 11, 2004 ,
volume 3298 of Lecture Notes in Computer Science , pages 198 – 213 . Springer, 2004 .

 24. Jeen Broekstra , Arjohn Kampman , and Frank van Harmelen . Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema . In Proceedings of the
First International Semantic Web Conference (ISWC 2002), Sardinia, Italy, June
9 – 12, 2002 , volume 2342 of Lecture Notes in Computer Science , pages 54 – 68 .
Springer, 2002 .

214 REFERENCES

 25. Achim D. Brucker and Burkhart Wolff . A Proposal for a Formal OCL Semantics in
Isabelle/HOL. In Proceedings of the 15th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs 2002), Hampton, VA, USA, August 20 – 23,
2002 , volume 2410 of Lecture Notes in Computer Science , pages 99 – 114 . Springer -
 Verlag, 2002 .

 26. Diego Calvanese , Giuseppe De Giacomo , and Maurizio Lenzerini . On the decidability
of query containment under constraints . In Proceedings of the 17th ACM SIGACT -
 SIGMOD - SIGART Symposium on Principles of Database Systems, PODS 1998,
Seattle, WA, USA, June 1 – 3, 1998 , pages 149 – 158 . ACM Press, 1998 .

 27. Diego Calvanese , Giuseppe De Giacomo , and Maurizio Lenzerini . Identifi cation
constraints and functional dependencies in description logics . In Proceedings of the
17th International Joint Conference on Artifi cial Intelligence, IJCAI 2001, Seattle,
WA, USA, August 4 – 10, 2001 , pages 155 – 160 . Morgan Kaufmann Publishers Inc.,
2001.

 28. H. Chalupsky . OntoMorph: A Translation System for Symbolic Knowledge . In
Principles of Knowledge Representation and Reasoning Proceedings of the Seventh
International Conference (KR 2000), Breckenridge, CO, USA, April 11 – 15, 2000 ,
pages 471 – 482 . Morgan Kaufmann, 2000 .

 29. O. Corcho and A. G ó mez - P é rez . ODEDialect: A Set of Declarative Languages for
Implementing Ontology Translation Systems . Journal of Universal Computer Science ,
 13 (12): 1805 – 1834 , 2007 .

 30. Ó scar Corcho and Asunci ó n G ó mez - P é rez . A Layered Model for Building Ontology
Translation Systems . Int ’ l Journal on Semantic Web & Information Systems , 1 (2): 22 –
 48 , 2005 .

 31. Stephen Cranefi eld and Martin K. Purvis . UML as an Ontology Modelling Language .
In Proceedings of the IJCAI - 99 Workshop on Intelligent Information Integration,
Intelligent Information Integration 1999, Stockholm, Sweden, July 31, 1999 , volume
23 of CEUR Workshop Proceedings . CEUR - WS.org, 1999 .

 32. Krzysztof Czarnecki . Domain Engineering . In John J. Marciniak , editor, Encyclopedia
of Software Engineering . John Wiley & Sons, Inc ., 2002 .

 33. Stefan Decker , Michael Sintek , Andreas Billig , Nicola Henze , Peter Dolog , Wolfgang
 Nejdl , Andreas Harth , Andreas Leicher , Susanne Busse , Jos é Luis Ambite , Matthew
 Weathers , Gustaf Neumann , and Uwe Zdun . TRIPLE — an RDF Rule Language with
Context and Use Cases . In Proceedings of the W3C Workshop on Rule Languages for
Interoperability (2005), Washington, DC, USA, April 27 – 28, 2005 . W3C, 2005 .

 34. Dragan Djuri ć , Dragan Ga š evi ć , Vladan Deved ž i ć , and Violeta Damjanovic . A UML
Profi le for OWL Ontologies . In Proceedings of the Model Driven Architecture,
European MDA Workshops: Foundations and Applications, MDAFA 2003 and
MDAFA 2004, Twente, The Netherlands, June 26 – 27, 2003 and Link ö ping, Sweden,
June 10 – 11, 2004 , volume 3599 of Lecture Notes in Computer Science , pages
 204 – 219 . Springer, 2005 .

 35. Francesco M. Donini , Daniele Nardi , and Riccardo Rosati . Description logics of
minimal knowledge and negation as failure . ACM Trans. Comput. Logic , 3 (2): 177 –
 225 , 2002 .

 36. Dejinj Dou , Drew Macdermot , and Peishen Qi . Ontology translation on the semantic
web. Journal of Data Semantics , 2 (3360): 35 – 57 , 2004 .

 37. Christof Ebert . Dealing with nonfunctional requirements in large software systems .
Ann. Softw. Eng. , 3 : 367 – 395 , 1997 .

REFERENCES 215

 38. J. Euzenat and P. Shvaiko . Ontology Matching . Springer , 2007 .

 39. J é r ô me Euzenat . Towards a Principled Approach to Semantic Interoperability . In
Workshop on Ontologies and Information Sharing at International Joint Conferences
on Artifi cial Intelligence (IJCAI 2001), Seattle, WA, USA, August 4 – 10, 2001 , pages
 19 – 25 , 2001 .

 40. J é r ô me Euzenat . An API for Ontology Alignment . In The Semantic Web — ISWC 2004:
Third International Semantic Web Conference, Hiroshima, Japan, November 7 – 11,
2004. Proceedings , volume 3298 of Lecture Notes in Computer Science , pages
 698 – 712 . Springer, 2004 .

 41. J é r ô me Euzenat , Alfi o Ferrara , Laura Hollink , Antoine Isaac , Cliff Joslyn , V é ronique
 Malais é , Christian Meilicke , Andriy Nikolov , Juan Pane , Marta Sabou , Francois
 Scharffe , Pavel Shvaiko , Vassilis Spiliopoulos , Heiner Stuckenschmidt , Ondrej
 Sv á b - Zamazal , Vojtech Sv á tek , C á ssia Trojahn dos Santos , George A. Vouros , and
 Shenghui Wang . Results of the Ontology Alignment Evaluation Initiative 2009 . In
Proceedings of the 4th International Workshop on Ontology Matching (OM - 2009)
collocated with the 8th International Semantic Web Conference (ISWC - 2009)
Chantilly, VA, USA, October 25, 2009 , volume 551 of CEUR Workshop Proceedings .
CEUR- WS.org, 2009 .

 42. Kateryna Falkovych , Marta Sabou , and Heiner Stuckenschmidt . UML for the
Semantic Web: Transformation - Based Approaches . In Knowledge Transformation for
the Semantic Web , volume 95 of Frontiers in Artifi cial Intelligence and Applications ,
pages 92 – 106 . IOS Press, 2003 .

 43. James Farrugia . Model - theoretic semantics for the web . In Proceedings of the
International World Wide Web Conference (WWW 2003), Budapest, Hungary, 20 – 24
May, 2003 , pages 29 – 38 . ACM, 2003 .

 44. Jean - Marie Favre and Tam Nguyen . Towards a Megamodel to Model Software Evolution
Through Transformations . Electr. Notes Theor. Comput. Sci. , 127 (3): 59 – 74 , 2005 .

 45. Norman E. Fenton and Shari Lawrence Pfl eeger . Software Metrics: A Rigorous and
Practical Approach . PWS Publishing Co. , Boston, MA, USA , 1998 .

 46. Richard Fikes , Pat Hayes , and Ian Horrocks . OWL - QL: A Language for Deductive
Query Answering on the Semantic Web . Technical Report KSL 03 – 14, Stanford
University, Stanford, CA, 2003 .

 47. Richard Fikes and Deborah L McGuinness . An Axiomatic Semantics for RDF,
RDF - S, and DAML + OIL . KSL Technical Report KSL - 01 – 01, Stanford University,
 2001 .

 48. R. France , A. Evans , K. Lano , and B. Rumpe . The UML as a formal modeling
notation . Computer Standards & Interfaces , 19 (7): 325 – 334 , 1998 .

 49. David Frankel , Patrick Hayes , Elisa Kendall , and Deborah McGuinness . The Model
Driven Semantic Web . In Proceedings of the 1st International Workshop on the
Model - Driven Semantic Web (MDSW2004), Monterey, CA, USA, September 21, 2004 ,
 2004 .

 50. Thomas Franz , Steffen Staab , and Richard Arndt . The X - COSIM integration frame-
work for a seamless semantic desktop . In Proceedings of the 4th International
Conference on Knowledge Capture (K - CAP 2007), October 28 – 31, 2007, Whistler,
BC, Canada , pages 143 – 150 . ACM, 2007 .

 51. Erich Gamma , Richard Helm , Ralph Johnson , and John Vlissides . Design patterns:
elements of reusable object - oriented software . Addison - Wesley Professional , Boston,
MA, USA , 1995 .

216 REFERENCES

 52. Aldo Gangemi and Valentina Presutti . Ontology Design Patterns . In Handbook on
Ontologies , International Handbooks Information System, pages 221 – 243 . Springer , 2009 .

 53. Dragan Ga š evi ć , Dragan Djuri ć , and Vladan Deved ž i ć . MDA - based Automatic OWL
Ontology Development . Int. J. Softw. Tools Technol. Transf. , 9 (2): 103 – 117 , 2007 .

 54. Birte Glimm , Matthew Horridge , Bijan Parsia , and Peter F. Patel - Schneider . A Syntax
for Rules in OWL 2 . In Proceedings of the 6th International Workshop on OWL:
Experiences and Directions (OWLED 2009), Chantilly, VA, USA October 23 – 24,
2009 , volume 529 of CEUR Workshop Proceedings . CEUR - WS.org, 2009 .

 55. Birte Glimm and Chimezie Ogbuji . SPARQL 1.1 Entailment Regimes . W3C Working
Draft 1 June 2010, 2010 .

 56. James Gosling , Bill Joy , Guy Steele , and Gilad Bracha . Java(TM) Language Specifi -
cation, The (3rd Edition) . Addison - Wesley Professional , 2005 .

 57. Jeff Gray , Kathleen Fisher , Charles Consel , Gabor Karsai , Marjan Mernik , and
 Juha - Pekka Tolvanen . DSLs: the good, the bad, and the ugly . In Companion to the
23rd Annual ACM SIGPLAN Conference on Object - Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2008, October 19 – 13, 2007, Nashville, TN,
USA , pages 791 – 794 . ACM, 2008 .

 58. T. R. G. Green and Marian Petre . Usability analysis of visual programming environ-
ments: a “ cognitive dimensions ” framework . J. Visual Languages and Computing ,
 7 (2): 131 – 174 , 1996 .

 59. Gerd Gr ö ner , Fernando Silva Parreiras , and Steffen Staab . Semantic Recognition of
Ontology Refactoring . In The Semantic Web — ISWC 2010, 9th International Semantic
Web Conference, ISWC 2010, Shanghai, China, November 7 – 11, 2010. Proceedings ,
volume 6414 of Lecture Notes in Computer Science . Springer, 2010 .

 60. Gerd Gr ö ner and Steffen Staab . Modeling and Query Patterns for Process Retrieval in
OWL. In The Semantic Web — ISWC 2009, 8th International Semantic Web Confer-
ence, ISWC 2009, Chantilly, VA, USA, October 25 – 29, 2009. Proceedings , volume
5823 of Lecture Notes in Computer Science , pages 243 – 259 . Springer, 2009 .

 61. W3C OWL Working Group . OWL 2 Web Ontology Language Document Overview .
W3C Working Draft 27 March 2009 .

 62. T. R. Gruber . A translation approach to portable ontology specifi cations . Knowledge
Acquisition , 5 (2): 199 – 220 , 1993 .

 63. Yuri Gurevich . Sequential abstract - state machines capture sequential algorithms . ACM
Trans. Comput. Logic , 1 (1): 77 – 111 , 2000 .

 64. Peter Haase , Jeen Broekstra , Andreas Eberhart , and Raphael Volz . A Comparison of
RDF Query Languages . In Proceedings of the Third International Semantic Web
Conference, ISWC 2004, Hiroshima, Japan, November 7 – 11, 2004 , volume 3298 of
Lecture Notes in Computer Science , pages 502 – 517 . Springer, 2004 .

 65. Peter Haase and Boris Motik . A Mapping System for the Integration of OWL - DL
Ontologies . In Proceedings of the First International ACM Workshop on Interoper-
ability of Heterogeneous Information Systems (IHIS ’ 05), CIKM Conference, Bremen,
Germany, November 4, 2005 , pages 9 – 16 . ACM Press, 2005 .

 66. Hans - J ö rg Happel and Stefan Seedorf . Applications of Ontologies in Software
Engineering . In Proceedings of the 2nd International Workshop on Semantic Web Enabled
Software Engineering, SWESE 2006, Athens, GA, USA, November 6, 2006 , 2006 .

 67. D. Harel and B. Rumpe . Modeling Languages: Syntax, Semantics and All That Stuff,
Part I: The Basic Stuff . Technical report, Jerusalem, Israel, 2000 .

REFERENCES 217

 68. D. Harel and B. Rumpe . Meaningful modeling: what ’ s the semantics of “ semantics ” ?
Computer , 37 (10): 64 – 72 , Oct. 2004 .

 69. Steve Harris and Andy Seaborne . SPARQL 1.1 Query Language . W3C Working Draft
1 June 2010 .

 70. Florian Heidenreich , Jendrik Johannes , Sven Karol , Mirko Seifert , and Christian
 Wende . Derivation and Refi nement of Textual Syntax for Models . In Model Driven
Architecture — Foundations and Applications, 5th European Conference, ECMDA - FA
2009, Enschede, The Netherlands, June 23 – 26, 2009. Proceedings , volume 5562 of
Lecture Notes in Computer Science , pages 114 – 129 . Springer, 2009 .

 71. Tassilo Horn . Model Migration with GReTL . In Proceedings of Transformation Tool
Contest (TTC 2010), Malaga, Spain, 1 – 2 July, 2010 , volume WP 10 - 03 of CTIT
Workshop Proceedings Series . University of Twente, 2010 .

 72. Matthew Horridge and Sean Bechhofer . The OWL API: A Java API for Working with
OWL 2 Ontologies . In Rinke Hoekstra and Peter F. Patel - Schneider , editors, Proceed-
ings of the 6th International Workshop on OWL: Experiences and Directions
(OWLED 2009), Chantilly, VA, USA, October 23 – 24, 2009 , volume 529 of CEUR
Workshop Proceedings . CEUR - WS.org, 2009 .

 73. Matthew Horridge , Nick Drummond , John Goodwin , Alan Rector , Robert Stevens ,
and Hai Wang . The Manchester OWL Syntax . In Proceedings of the Workshop on
OWL: Experiences and Directions, OWLED 2006, Athens, GA, USA, November
10 – 11, 2006 , volume 216 of CEUR Workshop Proceedings . CEUR - WS.org, 2006 .

 74. Matthew Horridge and Peter F. Patel - Schneider . OWL 2 Web Ontology Language
Manchester Syntax . W3C Working Group Note 27 October 2009 .

 75. Ian Horrocks , Oliver Kutz , and Ulrike Sattler . The Even More Irresistible SROIQ . In
Proceedings, Tenth International Conference on Principles of Knowledge Representa-
tion and Reasoning, Lake District of the United Kingdom, June 2 – 5, 2006 , pages
 57 – 67 . AAAI Press, 2006 .

 76. Ian Horrocks , Peter F. Patel - Schneider , Harold Boley , Said Tabet , Benjamin Grosof ,
and Mike Dean . SWRL: A semantic web rule language combining OWL and
RuleML . W3C Member submission 21 May 2004 .

 77. Ian Horrocks and Sergio Tessaris . A Conjunctive Query Language for Description
Logic Aboxes . In Proceedings of the Seventeenth National Conference on Artifi cial
Intelligence and Twelfth Conference on Innovative Applications of Artifi cial Intelli-
gence, July 30 – August 3, 2000, Austin, TX, USA , pages 399 – 404 . AAAI Press/The
MIT Press, 2000 .

 78. Luigi Iannone , Alan L. Rector , and Robert Stevens . Embedding Knowledge Patterns
into OWL . In The Semantic Web: Research and Applications, 6th European Semantic
Web Conference, ESWC 2009, Heraklion, Crete, Greece, May 31 – June 4, 2009,
Proceedings , volume 5554 of Lecture Notes in Computer Science , pages 218 – 232 .
Springer, 2009 .

 79. Aftab Iqbal , Oana Ureche , Michael Hausenblas , and Giovanni Tummarello . LD2SD:
Linked Data Driven Software Development . In Proceedings of the 21st International
Conference on Software Engineering & Knowledge Engineering (SEKE ’ 2009),
Boston, MA, USA, July 1 – 3, 2009 , pages 240 – 245 . Knowledge Systems Institute
Graduate School, 2009 .

 80. ISO/IEC . ISO/IEC 9126. Software engineering — Product quality . ISO/IEC , 2001 .

 81. Nophadol Jekjantuk , Jeff. Z. Pan , Yuting Zhao , Fernando Silva Parreiras , Gerd
 Gr ö ner , and Tobias Walter . Report on Querying the Combined Metamodel .

218 REFERENCES

Deliverable EU FP7 STREP MOST ICT216691/UoKL/WP1 - D1.2/D/PU/a1, Univer-
sity of Koblenz Landau, January 2009 .

 82. Fr é d é ric Jouault and Ivan Kurtev . Transforming Models with ATL . In Proceedings of
the Satellite Events at the MoDELS 2005 Conference, MoDELS 2005 International
Workshops, Montego Bay, Jamaica, October 2 – 7, 2005 , volume 3844 of Lecture
Notes in Computer Science , pages 128 – 138 . Springer, 2006 .

 83. A. Kalyanpur , B. Parsia , E. Sirin , and J. Hendler . Debugging unsatisfi able classes in
OWL ontologies . Web Semantics: Science, Services and Agents on the World Wide
Web , 3 (4): 268 – 293 , 2005 .

 84. Aditya Kalyanpur , Bijan Parsia , Matthew Horridge , and Evren Sirin . Finding All
Justifi cations of OWL DL Entailments . In Proceedings of the 6th International
Semantic Web Conference and 2nd Asian Semantic Web Conference (ISWC/ASWC
2007), Busan, South Korea, 11 – 15th November, 2007 , volume 4825 of Lecture Notes
in Computer Science , pages 267 – 280 . Springer, 2007 .

 85. Aditya Kalyanpur , Daniel Jim é nez Pastor , Steve Battle , and Julian A. Padget .
 Automatic Mapping of OWL Ontologies into Java . In Frank Maurer and G ü nther
 Ruhe , editors, Proceedings of the Sixteenth International Conference on Software
Engineering & Knowledge Engineering (SEKE ’ 2004), Banff, Alberta, Canada, June
20 – 24, 2004 , pages 98 – 103 , 2004 .

 86. Gerti Kappel , Elisabeth Kapsammer , Horst Kargl , Gerhard Kramler , Thomas Reiter ,
 Werner Retschitzegger , Wieland Schwinger , and Manuel Wimmer . Lifting Metamod-
els to Ontologies: A Step to the Semantic Integration of Modeling Languages . In
Proceedings of the 9th International Conference of Model Driven Engineering
Languages and Systems, MoDELS 2006, Genova, Italy, October 1 – 6, 2006 , volume
4199 of Lecture Notes in Computer Science , pages 528 – 542 . Springer, 2006 .

 87. Yarden Katz and Bijan Parsia . Towards a Nonmonotonic Extension to OWL . In
Proceedings of the OWLED * 05 Workshop on OWL, Experiences and Directions,
Galway, Ireland, November 11 – 12, 2005 , volume 188 of CEUR Workshop Proceed-
ings . CEUR - WS.org, 2005 .

 88. Stuart Kent . Model Driven Engineering . In Proceedings of the Third International
Conference on Integrated Formal Methods (IFM 2002), Turku, Finland, May 1518,
2002 , volume 2335 of Lecture Notes in Computer Science , pages 286 – 298 . Springer,
 2002 .

 89. Christoph Kiefer , Abraham Bernstein , and Jonas Tappolet . Mining Software Reposito-
ries with iSPARQL and a Software Evolution Ontology . In Proceedings of the 29th
International Conference on Software Engineering Workshops (ICSEW ‘ 07), Minne-
apolis, MN, USA, May 20 – 26, 2007 .

 90. A. G. Kleppe , J. B. Warmer , and W. Bast . MDA Explained, The Model Driven
Architecture: Practice and Promise . Addison - Wesley , Boston, MA, USA , 2002 .

 91. Holger Knublauch . Ontology - Driven Software Development in the Context of the
Semantic Web: An Example Scenario with Protege/OWL . In Proceedings of the 1st
International Workshop on the Model - Driven Semantic Web (MDSW2004), Monterey,
CA, USA, September 21, 2004 .

 92. Holger Knublauch , Daniel Oberle , Phil Tetlow , and Evan Wallace . A Semantic Web
Primer for Object - Oriented Software Developers . W3c working group note, W3C,
Mar. 2006 .

 93. Alexander Kubias , Simon Schenk , Steffen Staab , and Jeff Z. Pan . OWL SAIQL — An
OWL DL Query Language for Ontology Extraction . In Proceedings of the OWLED

REFERENCES 219

2007 Workshop on OWL: Experiences and Directions, Innsbruck, Austria, June 6 – 7,
2007 , volume 258 of CEUR Workshop Proceedings . CEUR - WS.org, 2007 .

 94. Ivan Kurtev , Jean B é d é zivin , Fr é ric Jouault , and Patrick Valduriez . Model - based DSL
frameworks. In Proceedings of Object - Oriented Programming Systems, Languages
and Applications (OOPSLA 2006), Portland, OR, USA, October 22 – 26, 2006 , pages
 602 – 616 . ACM, 2006 .

 95. Alexander Maedche , Boris Motik , Nuno Silva , and Raphael Volz . MAFRA — A Mapping
Framework for Distributed Ontologies . In Proceedings of the 13th International Confer-
ence on Knowledge Engineering and Knowledge Management (EKAW), Siguenza, Spain,
October 1 – 4, 2002 , volume 2473 of LNAI , pages 235 – 250 . Springer, 2002 .

 96. Andreas Maier , Hans - Peter Schnurr , and York Sure . Ontology - based Information
Integration in the Automotive Industry . In Proceedings of Second International
Semantic Web Conference (ISWC 2003), Sanibel Island, FL, USA, October 20 – 23,
2003 , volume 2870 of Lecture Notes in Computer Science , pages 897 – 912 . Springer,
October 2003 .

 97. Jeff McAffer and Jean - Michel Lemieux . Eclipse Rich Client Platform: Designing,
Coding, and Packaging Java(TM) Applications . Addison - Wesley Professional , 2005 .

 98. Deborah L. McGuinness and Jon R. Wright . Conceptual modelling for confi guration:
A description logic - based approach . AI EDAM , 12 (4): 333 – 344 , 1998 .

 99. Marjan Mernik , Jan Heering , and Anthony M. Sloane . When and how to develop
domain - specifi c languages . ACM Comput. Surv. , 37 (4): 316 – 344 , 2005 .

100. J. Miller and J. Mukerji . MDA Guide Version 1.0.1 . Technical report, OMG, 2003 .

101. Riichiro Mizoguchi and Kouji Kozaki . Ontology engineering environments . In Steffen
 Staab and Rudi Studer , editors, Handbook on Ontologies , International Handbooks
Information System, pages 315 – 336 . Springer Berlin Heidelberg , 2009 .

102. Audris Mockus and James D. Herbsleb . Expertise browser: a quantitative approach to
identifying expertise . In Proceedings of the 22rd International Conference on
Software Engineering, ICSE 2002, 19 – 25 May 2002, Orlando, FL, USA , pages
 503 – 512 . ACM, 2002 .

103. Boris Motik , Ian Horrocks , Riccardo Rosati , and Ulrike Sattler . Can OWL and logic
programming live together happily ever after? In Proceedings of the International
Semantic Web Conference (ISWC 2006), Athens, GA, USA, November 5 – 9, 2006 ,
volume 4273 of Lecture Notes in Computer Science , pages 501 – 514 . Springer, 2006 .

104. Boris Motik , Ian Horrocks , and Ulrike Sattler . Bridging the gap between OWL
and relational databases . In Proceedings of the International World Wide Web
Conference (WWW 2007), Banff, Canada, May 8 – 12, 2007 , pages 807 – 816 . ACM
Press, 2007 .

105. Boris Motik , Peter F. Patel - Schneider , and Bernardo Cuenca Grau . OWL 2 Web
Ontology Language: Direct Semantics . W3C Working Draft 02 December 2008 .

106. Boris Motik , Peter F. Patel - Schneider , and Ian Horrocks . OWL 2 Web Ontology
Language: Structural Specifi cation and Functional - Style Syntax . W3C Recommenda-
tion 27 October 2009 .

107. Boris Motik , Ulrike Sattler , and Rudi Studer . Query Answering for OWL - DL with
rules. Web Semantics: Science, Services and Agents on the World Wide Web , 3 (1): 41 –
 60 , 2005 .

108. Martin J. O ’ Connor , Ravi Shankar , Samson W. Tu , Csongor Nyulas , Dave Parrish ,
 Mark A. Musen , and Amar K. Das . Using Semantic Web Technologies for

220 REFERENCES

Knowledge- Driven Querying of Biomedical Data . In Proceedings of the 11th
Conference on Artifi cial Intelligence in Medicine, AIME 2007, Amsterdam, The
Netherlands, July 7 – 11, 2007 , volume 4594 of Lecture Notes in Computer Science ,
pages 267 – 276 . Springer, 2007 .

109. Borys Omelayenko . RDFT: A Mapping Meta - Ontology for Business Integration . In
Proceedings of the Workshop on Knowledge Transformation for the Semantic Web
(KTSW 2002) at the 15 - th European Conference on Artifi cial Intelligence (ECAI
2002), Lyon, France, 23 July, 2002 , pages 77 – 84 , 2002 .

110. OMG . Human - Usable Textual Notation (HUTN) Specifi cation . OMG Document
Number: formal/04 - 08 - 01, April 2004 .

111. OMG . Meta Object Facility (MOF) Core Specifi cation Version 2.0 . OMG Document
Number: formal/2006 - 01 - 01, January 2006 .

112. OMG . Business Process Model and Notation (BPMN) Version 1.2 . OMG Document
Number: formal/2009 - 01 - 03, January 2009 .

113. OMG . Meta Object Facility (MOF) 2.0 Query/View/Transformation Specifi cation
Version 1.1 . Final Adopted Specifi cation ptc/09 - 12 - 05, December 2009 .

114. OMG . Ontology Defi nition Metamodel Version 1.0 . OMG Document Number:
formal/2009 - 05 - 01, May 2009 .

115. OMG . Request for Proposal MOF to RDF Structural Mapping in Support of Linked
Open Data . OMG document AD/2009 - 12 - 09, December 2009 .

116. OMG . Object Constraint Language Version 2.2 . OMG Document Number:
formal/2010 - 02 - 01, February 2010 .

117. OMG . OMG Unifi ed Modeling Language (OMG UML), Superstructure Version 2.3 .
OMG Document Number: formal/2010 - 05 - 05, May 2010 .

118. Eyal Oren , Renaud Delbru , Sebastian Gerke , Armin Haller , and Stefan Decker .
 ActiveRDF: Object - oriented semantic web programming . In Proceedings of the 16th
International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada,
May 8 – 12, 2007 , pages 817 – 824 . ACM, 2007 .

119. Alexander Paar and Walter F. Tichy . Zhi#: Programming Language Inherent Support
for XML Schema Defi nition . In Proceedings of The Ninth IASTED International
Conference on Software Engineering and Applications, SEA 2005, Phoenix, AZ, USA,
November 14 – 16, 2005 , volume 467 . ACTA Press, 2005 .

120. Jeff Z. Pan , Edward Thomas , and Yuting Zhao . Completeness Guaranteed Approxima-
tions for OWL - DL Query Answering . In Proceedings of the DL Home 22nd Interna-
tional Workshop on Description Logics (DL 2009), Oxford, UK, July 27 – 30, 2009 ,
volume 477 of CEUR Workshop Proceedings . CEUR - WS.org, 2009 .

121. Robert E. Park . Software Size Measurement: A Framework for Counting Source
Statements . Technical Report CMU/SEI - 92 - TR - 20, ESC - TR - 92 – 20, Software
Engineering Institute, Carnegie Mellon University, September 1992 .

122. Fernando Silva Parreiras and Steffen Staab . Using ontologies with UML class - based
modeling: The Twouse approach . Data & Knowledge Engineering , 69 (11): 1194 – 1207 ,
 2010 .

123. Peter F. Patel - Schneider and Boris Motik . OWL 2 Web Ontology Language Mapping
to RDF Graphs . W3C Recommendation 27 October 2009, 2009 .

124. Axel Polleres , Fran ç ois Scharffe , and Roman Schindlauer . SPARQL ++ for Mapping
Between RDF Vocabularies . In Proceedings of 6th International Conference on
Ontologies, DataBases, and Applications of Semantics, ODBASE 2007, Vilamoura,

REFERENCES 221

Portugal, November 25 – 30, 2007 , volume 4803 of Lecture Notes in Computer
Science , pages 878 – 896 . Springer, 2007 .

125. Valentina Presutti and Aldo Gangemi . Content Ontology Design Patterns as Practical
Building Blocks for Web Ontologies . In ER 2008, Barcelona, Spain, October 20 – 24,
2008. Proceedings , volume 5231 of Lecture Notes in Computer Science , pages
 128 – 141 . Springer, 2008 .

126. Eric Prud ’ hommeaux and Andy Seaborne . SPARQL Query Language for RDF . W3C
Recommendation, Jan 2008 .

127. Tirdad Rahmani , Daniel Oberle , and Marco Dahms . An Adjustable Transformation
from OWL to Ecore . In Model Driven Engineering Languages and Systems — 13th
International Conference, MODELS 2010, Oslo, Norway, October 3 – 8, 2010,
Proceedings, Part II , volume 6395 of Lecture Notes in Computer Science , pages
 243 – 257 . Springer, 2010 .

128. Alan L. Rector , Nick Drummond , Matthew Horridge , Jeremy Rogers , Holger
 Knublauch , Robert Stevens , Hai Wang , and Chris Wroe . OWL Pizzas: Practical
Experience of Teaching OWL - DL: Common Errors & Common Patterns . In Proceed-
ings of Knowledge Engineering and Knowledge Management (EKAW 2004),
Northamptonshire, UK, 5 – 8th October, 2004 , volume 3257 of Lecture Notes in
Computer Science , pages 63 – 81 . Springer, 2004 .

129. R. Reiter . A theory of diagnosis from fi rst principles . Artifi cial Intelligence , 32 (1): 57 –
 95 , 1987 .

130. Yuan Ren , Gerd Gr ö ner , Jens Lemcke , Tirdad Rahmani , Andreas Friesen , Yuting
 Zhao , Jeff Z. Pan , and Steffen Staab . Validating Process Refi nement with Ontologies .
In Proceedings of the DL Home 22nd International Workshop on Description Logics
(DL 2009), Oxford, UK, July 27 – 30, 2009 , volume 477 of CEUR Workshop Proceed-
ings . CEUR - WS.org, 2009 .

131. Yuan Ren , Jeff Z. Pan , and Yuting Zhao . Closed World Reasoning for OWL 2 with
Negation as Failure . In Proceedings of the 4th Chinese Semantic Web Symposium
(CSWS 2010), August 19 – 21, Beijing, China, 2010 , 2010 .

132. Yuan Ren , Jeff Z. Pan , and Yuting Zhao . Soundness Preserving Approximation for TBox
Reasoning . In Proceedings of the Twenty - Fourth AAAI Conference on Artifi cial Intelligence,
AAAI 2010, Atlanta, GA, USA, July 11 – 15, 2010 , pages 351 – 356 . AAAI Press, 2010 .

133. James Ressler , Mike Dean , Edward Benson , Eric Dorner , and Chuck Morris .
 Application of Ontology Translation . In Proceedings of the 6th International Semantic
Web Conference and 2nd Asian Semantic Web Conference (ISWC 2007 + ASWC
2007), Busan, Korea, November 11 – 15, 2007 , volume 4825 of Lecture Notes in
Computer Science , pages 830 – 842 . Springer, 2007 .

134. Mark Richters . A Precise Approach to Validating UML Models and OCL Constraints .
PhD thesis, Universit ä t Bremen, 2002 .

135. Stephan Roser and Bernhard Bauer . An Approach to Automatically Generated Model
Transformations Using Ontology Engineering Space . In Proceedings of the 2nd
International Workshop on Semantic Web Enabled Software Engineering, SWESE
2006, Athens, GA, USA, November 6, 2006 .

136. J. Rothenberg . The nature of modeling . In Artifi cial Intelligence, Simulation &
Modeling , pages 75 – 92 . John Wiley & Sons, Inc. , New York, NY, USA , 1989 .

137. James Rumbaugh , Ivar Jacobson , and Grady Booch . Unifi ed Modeling Language
Reference Manual, The (2nd Edition) . Addison - Wesley , Boston, MA, USA , 2004 .

222 REFERENCES

138. Carsten Saathoff , Simon Schenk , and Ansgar Scherp . KAT: The K - Space Annotation
Tool . In Proceedings of the Third International Conference on Semantic and Digital
Media Technologies, SAMT 2008, Koblenz, Germany, December 3 – 5, 2008 .

139. Carsten Saathoff and Ansgar Scherp . Unlocking the Semantics of Multimedia
Presentations in the Web with the Multimedia Metadata Ontology . In Proceedings of
the 19th International Conference on World Wide Web (WWW 2010), Raleigh, NC,
USA, April 26 – 30, 2010 , pages 831 – 840 . ACM, 2010 .

140. Ansgar Scherp , Thomas Franz , Carsten Saathoff , and Steffen Staab . F – a model of
events based on the foundational ontology dolce + DnS ultralight . In Proceedings of
the 5th International Conference on Knowledge Capture (K - CAP 2009), September
1 – 4, 2009, Redondo Beach, CA, USA , pages 137 – 144 . ACM, 2009 .

141. David A. Schmidt . Denotational Semantics: A Methodology for Language Develop-
ment . William C. Brown Publishers , Dubuque, IA, USA , 1986 .

142. Douglas C. Schmidt . Guest Editor ’ s Introduction: Model - Driven Engineering .
Computer , 39 (2): 25 , 2006 .

143. Mark Schneider . SPARQLAS — Implementing SPARQL Queries with OWL Syntax . In
Proceedings of the 3rd Workshop on Transforming and Weaving Ontologies in Model
Driven Engineering (TWOMDE 2010). Malaga, Spain, June 30, 2010 ., volume 604 of
CEUR Workshop Proceedings . CEUR - WS.org, 2010 .

144. Andy Seaborne and Geetha Manjunath . SPARQL Update: A language for updating
RDF graphs . W3c member submission 15 july 2008, W3C, 2008 .

145. E. Seidewitz . What models mean . Software, IEEE , 20 (5): 26 – 32 , sep. 2003 .

146. Alan Shalloway and James Trott . Design Patterns Explained: A New Perspective on
Object- Oriented Design . Addison - Wesley , Boston, MA, USA , 2002 .

147. Fernando Silva Parreiras , Gerd Gr ö ner , and Tobias Walter . Filling the Gap between
Semantic Web and Model Driven Engineering: The TwoUse Toolkit . In Proceedings
of the Tools Demonstrations and Consultancy Presentations at 6th European
Conference on Modelling Foundations and Applications, ECMFA 2010, Paris,
France, June 15 – 18, 2010 , 2010 .

148. Fernando Silva Parreiras , Gerd Gr ö ner , Tobias Walter , and Steffen Staab . A Model -
 Driven Approach for Using Templates in OWL Ontologies . In Knowledge Engineer-
ing and Knowledge Management by the Masses, 17th International Conference,
EKAW 2010, Lisbon, Portugal, October 11 – 15, 2010. Proceedings , volume 6317 of
Lecture Notes in Computer Science . Springer, 2010 .

149. Fernando Silva Parreiras , Steffen Staab , Simon Schenk , and Andreas Winter . Model
Driven Specifi cation of Ontology Translations . In Qing Lia , Stefano Spaccapietra , and
 Eric Yu , editors, Proceedings of Conceptual Modeling — ER 2008, 27th International
Conference on Conceptual Modeling, Barcelona, Spain, October 20 – 24, 2008 ,
number 5231 in Lecture Notes in Computer Science, pages 484 – 497 . Springer, 2008 .

150. Fernando Silva Parreiras , Steffen Staab , and Andreas Winter . On Marrying Ontologi-
cal and Metamodeling Technical Spaces . In Proceedings of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 2007), Dubrovnik, Croatia, September 3 – 7, 2007 ,
pages 439 – 448 . ACM, 2007 .

151. Fernando Silva Parreiras , Steffen Staab , and Andreas Winter . Improving Design
Patterns by Description Logics: A Use Case with Abstract Factory and Strategy . In
Proceedings of Modellierung 2008, Berlin, Germany, March 12 – 14, 2008 , volume
127 of LNI , pages 89 – 104 . GI, 2008 .

REFERENCES 223

152. Fernando Silva Parreiras and Tobias Walter . Report on the Combined Metamodel .
Deliverable EU FP7 STREP MOST ICT216691/UoKL/WP1 - D1.1/D/PU/a1, Univer-
sity of Koblenz Landau, July 2008 .

153. Fernando Silva Parreiras , Tobias Walter , Steffen Staab , Carsten Saathoff , and Thomas
 Franz . APIs agogo: Automatic Generation of Ontology APIs . In Proceedings of the
3rd IEEE International Conference on Semantic Computing (ICSC 2009), Santa
Clara, CA, USA, September 14 – 16, 2009 , pages 342 – 348 . IEEE Computer Society,
 2009 .

154. Evren Sirin and Bijan Parsia . SPARQL - DL: SPARQL Query for OWL - DL . In
Proceedings of the OWLED 2007 Workshop on OWL: Experiences and Directions,
Innsbruck, Austria, June 6 – 7, 2007 , volume 258 of CEUR Workshop Proceedings .
CEUR- WS.org, 2007 .

155. Evren Sirin , Bijan Parsia , Bernardo Cuenca Grau , Aditya Kalyanpur , and Yarden
 Katz . Pellet: A practical OWL - DL reasoner . Journal of Web Semantics , 5 (2): 51 – 53 ,
 2007 .

156. Ken Slonneger , Kenneth Slonneger , and Barry Kurtz . Formal Syntax and Semantics
of Programming Languages: A Laboratory Based Approach . Addison - Wesley
Longman Publishing Co., Inc. , Boston , MA, USA, 1995 .

157. Raymond M. Smullyan . First- Order Logic . Dover Publications , 1994 .

158. S. Staab , M. Erdmann , and A. Maedche . Engineering Ontologies Using Semantic
Patterns . In 17th International Joint Conference on Artifi cial Intelligence (IJCAI
2001) Workshop on E - business and the Intelligent Web, Seattle, WA, USA, August 4,
2001 , 2001 .

159. S. Staab , A. Scherp , R. Arndt , R. Troncy , M. Gregorzek , C. Saathoff , S. Schenk , and
 L. Hardman . Semantic Multimedia . In Tutorial Lectures of the 4th International
Summer School 2008, Reasoning Web, Venice, Italy, September 7 – 11, 2008 , volume
5224 of Lecture Notes in Computer Science , pages 125 – 170 . Springer, 2008 .

160. Steffen Staab , Thomas Franz , Olaf G ö rlitz , Carsten Saathoff , Simon Schenk , and
 Sergej Sizov . Lifecycle Knowledge Management: Getting the Semantics Across in
X - Media . In Proceedings of The 16th International Symposium on Methodologies for
Intelligent Systems, ISMIS 2006, Bari, Italy, September 27 – 29, 2006 , volume 4203 of
Lecture Notes in Computer Science , pages 1 – 10 . Springer, 2006 .

161. Steffen Staab and Rudi Studer , editors. Handbook on Ontologies . International
Handbooks on Information Systems. Springer , 2004 .

162. Steffen Staab , Rudi Studer , Hans - Peter Schnurr , and York Sure . Knowledge Processes
and Ontologies . IEEE Intelligent Systems , 16 (1): 26 – 34 , 2001 .

163. Steffen Staab , Tobias Walter , Gerd Gr ö ner , and Fernando Silva Parreiras . Model
Driven Engineering with Ontology Technologies . In Reasoning Web. Semantic
Technologies for Software Engineering, 6th International Summer School 2010,
Dresden, Germany, August 30 - September 3, 2010. Tutorial Lectures , volume 6325 of
Lecture Notes in Computer Science , pages 62 – 98 . Springer, 2010 .

164. David Steinberg , Frank Budinsky , Marcelo Paternostro , and Ed Merks . EMF: Eclipse
Modeling Framework 2.0, 2nd edition . Addison - Wesley Professional , Boston, MA,
USA, 2009 .

165. Ragnhild Van Der Straeten , Tom Mens , Jocelyn Simmonds , and Viviane Jonckers .
 Using Description Logic to Maintain Consistency between UML Models . In Proceed-
ings of the 6th International Conference of The Unifi ed Modeling Language,
Modeling Languages and Applications, UML 2003, San Francisco, CA, USA, October

224 REFERENCES

20 – 24, 2003 , volume 2863 of Lecture Notes in Computer Science , pages 326 – 340 .
Springer, 2003 .

166. Rudi Studer , V. Richard Benjamins , and Dieter Fensel . Knowledge engineering:
principles and methods . Data Knowl. Eng. , 25 (1 – 2): 161 – 197 , 1998 .

167. G. Taentzer . AGG: A graph transformation environment for modeling and validation
of software . In Proceedings of Applications of Graph Transformations with Industrial
Relevance (AGTIVE 2003), Charlottesville, VA, USA, September 27 — October 1,
2003 , volume 3062 of Lecture Notes in Computer Science , pages 446 – 453 . Springer,
 2004 .

168. Phil Tetlow , Jeff Z. Pan , Daniel Oberle , Evan Wallace , Michael Uschold , and Elisa
 Kendall . Ontology Driven Architectures and Potential Uses of the Semantic Web in
Systems and Software Engineering . W3C Working Draft Working Group Note
2006/02/11, W3C, 03 2006 .

169. W. F. Tichy . A Catalogue of General - Purpose Software Design Patterns . In Proceed-
ings of the 23rd International Conference on Technology of Object - Oriented Lan-
guages and Systems, TOOLS 1997, Santa Barbara, CA, USA, July 28 – August 1,
1997 , pages 330 – 339 . IEEE Computer Society, 1997 .

170. Thanh Tran , Peter Haase , Holger Lewen , Ó scar Mu ñ oz - Garc í a , Asunc í on G ó mez -
 P é rez , and Rudi Studer . Lifecycle - Support in Architectures for Ontology - Based
Information Systems . In Proceedings of the 6th International Semantic Web Confer-
ence and 2nd Asian Semantic Web Conference (ISWC/ASWC 2007), Busan, South
Korea, 11 – 15th November, 2007 , volume 4825 of Lecture Notes in Computer Science ,
pages 508 – 522 . Springer, 2007 .

171. Michael Uschold and Robert Jasper . A Framework for Understanding and Classifying
Ontology Applications . In IJCAI - 99 Workshop on Ontologies and Problem - Solving
Methods: Lessons Learned and Future Trends, Stockholm, Sweden, August 2, 1999 ,
volume 18 of CEUR Workshop Proceedings . CEUR - WS.org, 1999 .

172. Max V ö lkel and York Sure . RDFReactor — From Ontologies to Programmatic Data
Access. In Poster Proceedings of the Fourth International Semantic Web Conference ,
 2005 .

173. D. Vrandecic . Explicit Knowledge Engineering Patterns with Macros . In Workshop on
Ontology Patterns for the Semantic Web at ISWC 2005, 4th International Semantic
Web Conference, ISWC 2005, Galway, Ireland, November 6 – 10, 2005 , 2005 .

174. Tobias Walter . Combining Domain - Specifi c Languages and Ontology Technologies . In
Proceedings of the Doctoral Symposium at the 12th International Conference on
Model Driven Engineering Languages and Systems, MODELS 2009, Denver, CO,
USA, October 5, 2009 , volume 2009 - 566 of Technical Report , pages 34 – 39 . School of
Computing, Queen ’ s University, 2009 .

175. Tobias Walter , Fernando Silva Parreiras , and Steffen Staab . OntoDSL: An Ontology -
 Based Framework for Domain - Specifi c Languages . In Proceedings of the 12th
International Conference on Model Driven Engineering Languages and Systems,
MODELS 2009, Denver, CO, USA, October 4 – 9, 2009 , volume 5795 of Lecture Notes
in Computer Science , pages 408 – 422 . Springer, 2009 .

176. Tobias Walter , Fernando Silva Parreiras , Steffen Staab , and Juergen Ebert . Joint
Language and Domain Engineering . In Proceedings of the 6th European Conference
on Modelling Foundations and Applications, ECMFA 2010, Paris, France, June
15 – 18, 2010 , volume 6138 of Lecture Notes in Computer Science , pages 321 – 336 .
Springer, 2010 .

REFERENCES 225

177. Hai H. Wang , Yuan Fang Li , Jing Sun , Hongyu Zhang , and Jeff Pan . Verifying feature
models using OWL . Web Semantics: Science, Services and Agents on the World Wide
Web , 5 (2): 117 – 129 , 2007 .

178. Kevin Wilkinson , Craig Sayers , Harumi Kuno , and Dave Reynolds . Effi cient RDF
Storage and Retrieval in Jena2 . In Proceedings of the 1st Workshop on Semantic Web
and Databases, Co - located with VLDB 2003, Berlin, Germany, September 7 – 8, 2003 .

179. Edward D. Willink . UMLX: A graphical transformation language for MDA . In
Proceedings of the Workshop on Model Driven Architecture: Foundations and
Application MDAFA 2003, Enschede, The Netherlands, June 26 – 27, 2003 , volume
TR - CTIT - 03 - 27 of Technical Report , pages 13 – 24 . CTIT Technology University of
Twente, 2003 .

180. Michael W ü rsch , Giacomo Ghezzi , Gerald Reif , and Harald Gall . Supporting
developers with natural language queries . In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering — Volume 1, ICSE 2010, Cape
Town, South Africa, 1 – 8 May 2010 , pages 165 – 174 . ACM, 2010 .

181. Yuting Zhao , Jeff Z. Pan , Nophadol Jekjantuk , Jakob Henriksson , Gerd Gr ö ner , and
 Yuan Ren . Classifi cation of Language Hierarchy and Complexity . Deliverable EU FP7
STREP MOST ICT216691/UNIABDN/WP3 - D3.1/D/PU/b1, University of Aberdeen,
July 2008 .

INDEX

ABox. See Assertional box (ABox)
Abstract Factory pattern, 101–103

compared to TwoUse-based solution, 108
drawbacks, 103–104

Abstraction
expressiveness vs., 145
software engineering and raising level of, 9

Abstract syntax, 14, 15, 47
TwoUse, 68, 70, 119–120

ActiveRDF, 170
Adaptee classes, 71
Adapter classes, 71
ADD, 182
addAttribute, implementing in class

TUClassAdapter, 72–73
Adoption, of Selector pattern, 111
AgentRole ontology design pattern, 172
AGG, 17
Agogo, 156, 158, 188

analysis of ontology API specifi cations, 167–169
architecture of, 166–167
concrete syntax by example, 163–166
correlating requirements with quality attributes,

169
implementation, 166–167
key concepts, 161–163
metamodel constraints, 162–163
snippet, 162

Aligning, 52
Alignments, compute, 208
Analysis plug-ins, 113
Analyzability, 121
Annotations, 182
APIs. See Application programming interfaces

(APIs)
Applicability, Selector pattern, 110
Application programming interfaces (APIs), 156.

See also Ontology APIs
OWL, 34

Approximative transformations, 52
Artifacts

OWL constructs and, 7
semantic web approaches for transforming,

134–135
semantic web technologies and, 112
TwoUse, 132–133

Semantic Web and Model-Driven Engineering, First Edition. Fernando Silva Parreiras.
© 2012 Institute of Electrical and Electronics Engineers. Published 2012 by John Wiley & Sons, Inc.

226

Artifi cial intelligence, ontologies and, 21
ASK, 40
Assertional box (ABox), 24, 31, 173
Assertions

semantics of, 28
syntax of, 26

ATL. See Atlas Transformation Language (ATL)
Atlas Transformation Language (ATL), 17, 52,

91, 146, 154
model transformations using, 167
ontology translation platform and, 149–150

Atlas Transformation Language (ATL)
metamodel, 146–147

limitations of, 153
Attributes, 13
Axiomatic semantics, 47
Axioms

explain, 209
templates for generating, 177

Bidirectional transformations, 52
Bindings, 180–181
Black box method for single justifi cation, 33
BPMN. See Business Process Modeling Notation

(BPMN)
Browse, 208–209
Built-ins, 144
Business Process Modeling Notation (BPMN),

15, 126, 127
Business Process Modeling Notation (BPMN)

metamodel
model extension, 128–129

Case studies
automatic generation of ontology APIs,

158–160
enabling linked data capabilities for MOF

compliant models, 124–135
improving software design patterns with OWL,

100–104
model-driven specifi cation of ontology

translations, 142–145
modeling ontology-based information systems,

113–117
using templates in OWL ontologies, 172–174

Changeability, 122

INDEX 227

Change management, 160
CLASS, in agogo, 163
Class-based modeling languages, 10, 12
Class Confi guration, 104, 107, 108
Class description diagram

NeOn OWL metamodel, 36, 37
OMG OWL metamodel, 35
OWL 2 metamodel, 38

Class descriptions, 114
Class diagrams, 100, 101. See also Unifi ed

Modeling Language (UML) class diagram
comparing UML, OWL-DL, OWL 2, and

DL-Lite, 46
Class(es), 13

in agogo, 161, 163
templates of, 174–175
TwoUse metamodel, 70

Class expression
semantics of, 29
syntax of, 26

Class expression axioms
semantics of, 27
syntax of, 25

Class identifi er, OWL and, 116
Classifi er, 13
Class Ontology, 176
Class structure alignment method, 133
Class TaskController, 100–101, 103, 104, 107,

108
Client class, 99, 100
Clients, in software design patterns, 100–101,

103
Closed-domain assumption, 30
Closed-domain template, 174
Closed-world assumption (CWA), 29–31

using OCL over UML class-based modeling
with, 79

using SPARQL over OWL with, 79
Closure, 51
Collaborations, Selector pattern, 107–108, 109
COMM. See Core Ontology for Multimedia

(COMM)
Component diagram, from TwoUse toolkit, 127
Composition, 53
Compute alignments, 208
Computing all justifi cations, 33
Concept

Selector pattern, 109
in software design patterns, 100, 101, 103
transformations of, 144

Concept hierarchies, OWL and, 3–4
Conceptual modeling, OWL for, 104–105
Concrete factories, 107
Concrete syntax, 14, 47

agogo, 163–166
EBNF defi nition of, 191–192
MBOTL, 145–146
SPARQLAS, 80–81
TwoUse, 68, 118–119

Confi guration object, 103
Conjunctive query, 31, 32

Consistency, 31
Constraints, 13
CONSTRUCT, 40
Context

in Selector pattern, 109
in software design patterns, 100, 101

Core Ontology for Multimedia (COMM),
113–114, 116, 118, 122

templates and, 181–182
Core Ontology for Multimedia (COMM) APIs,

156, 158–159, 160
comparison of size between agogo and, 168

Core ontology services, 88
Core services, 88–89

TwoUse toolkit, 91
C-OWL, 154
Create, in COMM API, 159
Create, read, update, and delete operations

(CRUD), 159, 161, 165
CRUD. See Create, read, update, and delete

operations (CRUD)
CWA. See Closed-world assumption (CWA)

Data model, MMTS+OTS, 49–50
Data property axioms

semantics of, 28
syntax of, 25

Data ranges, syntax of, 27
Datatype, 13

transformations of, 144
TwoUse metamodel, 70

Debugging, 90
Debugging ontologies, 33
Debugging support, 160
Delete, in COMM API, 159
Derivation rules, 51
DESCRIBE, 40
Description logics, 22, 49, 100

semantics of, 27–29
Description logic safe rules, 34
Description logics dialects, xxi
Description logic SROIQ(D), OWL 2 and, 27
Description logics technical space, 41–43
Description logic syntax

E-shop with, 23
KAT domain specifi cation and, 116–117
OWL 2 and, 25–26

Design integrated Ecore model, 207
Design integrated models, 206
Design integrated UML class diagram, 206
Design ontology API, 210
Design ontology engineering services, 209–210
Design ontology template, 210
Design ontology translation, 210
Diagrammatic syntax, 15
Directionality, 52
Disjunction, 32
DL-Lite class diagram, 46
DL-safe rules, 52
Domain analysis, 5

of MMTS+OTS, 46–53

228 INDEX

Domain closure, 172, 173
Domain concepts, core ontologies and emphasis

on, 159
Domain design, by UML class diagram using

UML profi le for OWL, 105
Domain models, 85
Domain-specifi c language (DSL), 3, 161
Domain-specifi c language (DSL) designers and

users, 188
Domain specifi c modeling, for ontology

engineering services, 67, 70
Domain-specifi c modeling languages (DSML),

13, 14
DSL. See Domain-specifi c language (DSL)
DSML. See Domain-specifi c modeling languages

(DSML)

EAttribute, 13
EBNF defi nition of concrete syntax for TwoUse,

191–192
EBNF grammar

of SPARQLAS functional syntax, 192–197
of SPARQLAS Manchester syntax, 197–202

EBNF technical space, description logics
technical space and, 42, 43

Eclipse Modeling Framework, 13
Eclipse Rich Client Platform, 92
Ecore, 13, 86

classes/structure of, 13, 14
defi ning agogo and, 167
design integrated Ecore model, 207
mapping, 131
translation rules to OWL, 204–205

Ecore Metamodel/Model, 70–72
linking with OWL, 129–130, 133
transformations of, 132–133
transforming into OWL TBox/ABox-OWLizer,

130–131
EDatatype, 13
Element identifi ers, transformations of, 144
EMOF. See Essential constructs of MOF (EMOF)
Engineering services, 89–90
EPackage, 13
EReference, 13
E-Shop, 11

with description logic syntax, 23
TwoUse approach and, 68
UML class diagram profi le with UML profi le

for OWL and TwoUse profi le, 74
E-Shop domain

closing with OWL axioms, 30
integrating UML and OWL in, 117–118

Essential constructs of MOF (EMOF), 12–13, 44,
45, 127

classes of, 13
Event-Model-F, APIs for, 158, 159
Event-Model-F ontology, 181
Existing metamodeling frameworks, 127
Explain axioms, 209
Explanation, 33, 91
Explanation Service, TwoUse toolkit, 92, 93

Expressiveness, abstraction vs., 145
Extended BNF, 47
Extensibility, 123
Extensible Markup Language (XML), 13, 15, 86

as serialization syntax, 47
Extension, 90
Extensional techniques, 34
Extension test, 50

Face detectors, 113
Feature diagram, 47
Feature model, 47

confi guration for model checking, 55
confi guration for model enrichment, 57
confi guration for ontology modeling, 59
snippet of MMTS+OTS, 48

First-order logic (FOL), 15, 49
First-order logic (FOL) expressiveness, 154
Flexibility, Selector pattern and, 110
F-logic rules, 51
FOL. See First-order logic (FOL) expressiveness
Formalism, MMTS+OTS, 49
Fragment description logics, 15
Frame logic, 49
Front-end, 90

TwoUse toolkit, 92–93
Functional Syntax, 24

General-purpose modeling languages (GPML), 13
Generic architecture for MDE and ontology

engineering, 87–90
Generic model-driven architecture, 90–93
GIF, 113
GPML. See General-purpose modeling languages

(GPML)
Graph, 50
Graph-based syntactic transformation, 52
Graphical editor, 90
Graphical notation, 47
GReTL, 17
Gröner, Gerd, xxii

Hitting Set Tree (HST), 33
Horn rules, 49, 50
HST. See Hitting Set Tree (HST)
HTML. See HyperText Markup Language

(HTML)
HTTP, 189
Human-Usable Textual Notation (HUTN), 15
HUTN. See Human-Usable Textual Notation

(HUTN)
Hybrid diagram, 74
Hybrid syntactic transformations, 52
HyperText Markup Language (HTML), 14, 15

Implementation, of ontology translations,
149–150

IMPORT, in agogo, 162, 163
Inference support, 51
Inferred class hierarchy, TwoUse toolkit, 92, 93
Inferred knowledge, 144

INDEX 229

Instance, TwoUse metamodel, 70
Instance checking, 31
Instance-schemametaschema dimension (ISM-

dimension), 15
Integrated approaches. See also MOF Technical

Space (MMTS)+OTS
classifying, 58–59

Integrated models
querying, 82–84
query languages for, 78–85

Integration, 52
Integrity constraints, 51
Interface, 182
Internal consistency, 54
Internal structure comparison, 34
ISM-dimension. See Instance-schemametaschema

dimension (ISM-dimension)
ISO 9126, 121, 167

Java, 43, 151, 152
core services and, 91
MBOTL translated to, 148, 149
model, 11
as target language for ontology translation, 149

Jena API, 170
Jena framework, 149, 151–152
JPEG, 113
Justifi cation

black box method for single, 33
computing all, 33

Karlsruhe ontology, 142
KAT. See K-Space Annotation Tool (KAT)
Knowledge engineering, 21
K-Space Annotation Tool (KAT), 113–114, 116

evaluation of SPARQLAS expressions
according to, 121

modeling using textual language, 119
snapshot of, 122
specifying with description logic syntax,

116–117
UML class diagram of, 118

K-Space Annotation Tool (KAT) model, 120

Language dependency, 182
Languages. See Modeling languages; Query

languages
Layered architecture, 12
Lexical layer, 141, 142, 144

translation problems at, 146, 153
Lexical notation, 47
Lexical translations, 150–152, 154
Linguistic metamodeling, integrating ontological

metamodeling with, 189
Linked data capabilities, enabling for MOF

compliant models, 124–135
case study, 125–128
related work, 134–135
TwoUse approach, 128–132
validation, 132–134

Linked data in software engineering, 189

Linked Data principles, 189
Linked open data (LOD), 124
LOD. See Linked open data (LOD)
Logical consistency, 50
Logical implication, 50
Logical rules, 51
Logic programming-based ontologies, 22

Machine learning-based classifi ers, 113
Macros, use in ontologies, 182
MAFRA, 154
Maintainability, 121–122

agogo and, 168–169
Manchester OWL syntax, 142
Manchester Syntax, 24
Mapping, 53

between two models Ma and Mb, 56–57
between the UML profi le for OWL and

TwoUse metamodel, 74–75
Matching, 90, 131, 133

ontology, 34
MBOTL. See Model-Based Ontology Translation

Language (MBOTL)
MDA. See Model-Driven Architecture (MDA)
MDE. See Model-driven engineering (MDE)
Mediation, MMTS+OTS, 52–54
Medical informatics, 66
Megamodel, 9

concepts of, 10
notion of conform to in, 12
notion of representation of in, 11

Merging, 52
Metametamodel (M3), 19, 53
Metamodeling architecture, 70–72
Metamodel (M2), 11–13, 53, 146–148

ATL, 146–147
EMOF, 12–13
MDE, 9–10
MOF, 146
OCL, 146, 147
for ontology technologies, 35–41
for ontology templates, 176
OWL, 35–39, 146
SPARQL, 40–41
SPARQLAS, 202–203

Meta Object Facility (MOF), 10, 12, 15, 90
essential constructs of (EMOF), 12–13

Meta Object Facility (MOF)-based metamodel, 68
Meta Object Facility (MOF) compliant models,

enabling linked data capabilities to,
124–135

case study, 125–128
related work, 134–135
TwoUse approach, 128–132
validation, 132–134

Meta Object Facility (MOF) metamodels for
ontology technologies, 43

Meta Object Facility (MOF) model, 124–125
Meta Object Facility (MOF) Technical Space, 19, 43
MMTS. See MOF Technical Space (MMTS)
M3-neural infrastructure, 59

230 INDEX

Model adaptation, 71–72
Model-Based Ontology Translation Language

(MBOTL), 142, 145–150
screenshot, 150
semantic, syntactic, and lexical translations

with, 150–152
Model-Driven Architecture (MDA), 10
Model-Driven Architecture (MDA) family of

modeling languages, 58
Model-driven engineering (MDE), 3–5, 44

automatic generation of ontology APIs, 157
challenges facing, 3
Ecore, 13
extended languages for, 69
generic architecture for, 87–90
integrating ontology techniques with, 86
integrating ontology technologies with, 66–67
metamodels, 11–13
modeling languages, 13–16
models, 11
model transformations, 17
objectives of, 4
of ontology alignments, 142
querying patterns for, 189
query languages for, 17–18
requirements for linked-open data environment

in, 127–128
services for, 89–90, 91–92
structure of, 9–18
technical spaces, 19
TwoUse and, 6–7, 8
use of ontology services in, 66–67

Model-driven engineering (MDE) ontologies,
classifi cation of approaches, 187

Model-driven engineering (MDE) techniques, xxiii
use in OWL ontology engineering, 67, 70

Model-driven software development, xxi, xxiii
Model-driven specifi cation of ontology

translations, 141–155
analysis, 153
case study, 142–145
examples, 150–153
related work, 154–155
TwoUse approach, 145–150

Model enrichment, MMTS+OTS and, 56–57
Model extension, 128–130
Modeling design patterns, 86
Modeling languages, 13–16

abstract syntax, 15
extending into OWL, 128–132
semantics, 15, 16
syntax, 15, 16
transformation into OWL, 188

Modeling level, 53
Model libraries, 148
Model (M1), 11, 53. See also Megamodel;

Metamodel (M2)
Model management services, 88–89
Model-theoretic semantics, 47
Model transformations, 17, 91, 130–131
Model validation, MMTS+OTS and, 54–56

MOF. See under Meta Object Facility (MOF)
MOF Technical Space (MMTS), 44

compared to OTS, 45
MOF Technical Space (MMTS)+OTS, 44–45,

59
commonalities and variations, 46–53
data model, 49–50
formalism, 49
language, 47–49
mediation, 52–53
model enrichment, 56–57
modeling level, 53
model validation, 54–56
ontology modeling, 58
querying, 51
reasoning, 50
rules, 51–52
similarities between OWL and UML

class-based modeling, 45–46
snippet of feature model, 48
transformation, 52

M3O ontology, 181
MOST (Marrying Ontology and Software

Technologies), xxii
MPEG, 113
Multiple MOF models, 128

NAF. See Negation as failure (NAF)
Name assumption, 27–31
Natural-language processing, 21
NCSSs. See Non-commenting source statements

(NCSSs)
Negation, 32
Negation as failure (NAF), 30
NeOn OWL metamodel, 36–38
NeOn Toolkit, 182
NExpTime-Complete (OWL DL), 24
NLogSpace-Complete (OWL 2 QL), 24
Non-commenting source statements (NCSSs),

160, 168
Notations for templates in OWL, 179–180

OBA. See Ontology-based architecture (OBA)
Object Adapter Pattern, 70–71
Object-based data model, 50
Object Constraint Language (OCL), 17–18, 51,

65, 86, 90
extension of, 146
semantics of, 18
in strategy pattern, 100–101
UML class-based software development and,

114–115
using over OWA and UML class-based

modeling with SPARQL, 79–80
using over UML class-based modeling with

CWA, 79
Object Constraint Language (OCL) expressions,

145
Object Constraint Language (OCL) library, 148
Object Constraint Language (OCL) metamodel,

146, 147

INDEX 231

Object Management Group (OMG), 124
defi nition of model transformation language,

17
MOF Query/View/Transformation, 146
Ontology Defi nition Metamodel, 35, 135
OWL metamodel, 35–36
Query/View/Transformation (QVT), 17, 52,

146, 154
RDFS Metamodel, 35
Request for Proposal for MOF to RDF

Structural Mapping, 135
UML Profi le for OWL, 175, 179, 180

Object-oriented (OO) representations, 156
Object property axioms

semantics of, 28
syntax of, 25

Object recognizers, 113
OCL. See Object Constraint Language (OCL)
ODD. See Ontology-driven development (ODD)
ODEDialect, 154–155
ODPs. See Ontology design patterns (ODPs)
OEA. See Ontology-enabled architecture (OEA)
OED. See Ontology-enabled development (OED)
OMG. See Object Management Group (OMG)
Ontological metamodeling, integrating with

linguistic metamodeling, 189
Ontological reasoning technology, scalability of,

190
Ontological Technical Space (OTS), 41–43, 44.

See also MOF Technical Space
(MMTS)+OTS

compared to MMTS, 45
Ontology, 3–5

debugging, 33
defi ned, 22
ontology modeling, 22–23
role of, 21
as templateable elements, 176
templates and versions of, 181

Ontology Alignment Evaluation Initiative, 142
Ontology APIs, 5

automatic generation of, 8, 156–170, 188
analysis, 167–169
case study, 158–160
limitations of current approaches, 157
related work, 169–170
TwoUse approach, 161–167

design, 210
specifi cation of, 89

Ontology-based architecture (OBA), 59
Ontology-based domain specifi c languages,

188
Ontology-Based Information Services, 31–33

querying, 31–33
reasoning services, 31

Ontology-based information systems, modeling,
112–123

case study, 113–117
limitations, 123
ontology-based software development,

116–117

TwoUse approach, 117–121
UML class-based software development,

113–115
validation, 121–123

Ontology-based software design patterns, 187
Ontology-based software development,

116–117
Ontology Defi nition Metamodel, 58
Ontology design patterns (ODPs), 156, 171,

172
in agogo, 161
templates and, 181–182

Ontology development, with templates, 180
Ontology-driven development (ODD), 59
Ontology element defi nitions, transformations of,

144
Ontology-enabled architecture (OEA), 59
Ontology-enabled development (OED), 59
Ontology engineering, 4–5

generic architecture for, 87–90
services for, 89
TwoUse applications in, 7–8
UML use case diagram and, 126

Ontology engineering services, 33–34
design, 209–210
explanation, 33
ontology matching, 34

Ontology mapping challenge, 143
Ontology matching techniques, 131, 133
Ontology modeling, 8, 89

MDE support for, 67, 70
MMTS+OTS and, 58, 59

Ontology Representation Language, 58
Ontology techniques, integrating MDE with,

86
Ontology technologies, xxi, 4

integrating with model-driven engineering,
66–67

metamodels for, 35–41
OWL, 35–39
SPARQL, 40–41

model-driven viewpoint of, 42
TwoUse and, 6

Ontology templates. See also Templates
defi ned, 176
design, 210

Ontology translation, 89
design, 210
model-driven specifi cation of, 141–155

analysis, 153
case study, 142–145
examples, 150–153
related work, 154–155
TwoUse approach, 145–150

process, 148–149
satisfying requirements of, 153
specifying, 188

Ontology translation languages, 4–5
Ontology web languages, 3. See also Web

Ontology Language (OWL)
OntoMap, 154

232 INDEX

OntoMorph, 154
OO. See Object-oriented (OO) representations
Open-world assumption (OWA), 29–31, 173

using OCL and SPARQL over, 79–80
using SPARQL over OWL with, 79

Operation, 13
in agogo, 162
defi ned using SPARQL update syntax, 165

Operation call expressions, 148
OTS. See Ontological Technical Space (OTS)
OWA. See Open-world assumption (OWA)
OWL. See under Web Ontology Language (OWL)

Package, 13
templates of, 174–175
TwoUse metamodel, 70

PACKAGE, in agogo, 163
ParameterableElement, 177
Parameters, 13
Participants, Selector pattern, 107–108, 109
Pattern

in agogo, 161
defi ning, 164
as fi rst-class citizen, 160, 164
mapping property onto, 165, 166

PIM. See Platform-independent model (PIM)
Platform-independent model (PIM), 10, 167
Platform-specifi c model (PSM), 10, 167
Plug-ins, 182
Portability, agogo and, 169
Pragmatic layer, 144
Precise transformations, 52
Predicate function, 150, 152
Profi led UML class diagram

of ontology-based solution, 106
with Strategy pattern, 106–107

Properties diagram
NeOn OWL metamodel, 36, 37
OMG OWL metamodel, 36
OWL 2 metamodel, 38, 39

Property
mapping onto pattern, 165, 166
TwoUse metamodel, 70

PROPERTY, in agogo, 163
Protégé, 182
PSM. See Platform-specifi c model (PSM)
PTime-Complete (OWL 2 EL, OWL 2 RL), 24

Queries, as templateable elements, 176
Query answering, 91, 128
Querying, 31–33

MMTS+OTS, 51
SPARQLAS, 131–132, 133–134
use case, 133–134

Querying ontologies, using OWL syntax, 80–82
Querying patterns, for MDE in OWL, 189
Query languages, 17–18

for integrated models, 78–85
combining existing approaches, 78–80
SPARQLAS, 80–82
SPARQLAS4TwoUse, 82–84

Query OWL ontologies, 209
Query templates, 180–181
Query UML class-based models, 209
Query/View/Transformation (QVT), 17, 52, 146,

154

RDF. See under Resource Description
Framework (RDF)

RDFS, 50, 189
metamodel, 35, 36
overview, 49

RDFS-Java/OO mapping approaches, 170
RDFT, 154
RDF/XML syntax, 24
Reaction rules, 51
Read, in COMM API, 159
Realization, 31
Reasoning, 85, 91

MMTS+OTS, 50
OWL, 117

Reasoning services, 31
Recognizers, 113–114, 115, 117
Recursive algorithm, 178–179
RecursiveResult, 179
Reference ontology, 142
References, 13
Relational data model, 50
Relational structure comparison, 34
REMOVE, 182
Representation, in megamodel, 11
Resource Description Framework (RDF), 125,

189
semantic patterns in, 182

Resource Description Framework (RDF) library,
148

Resource Description Framework (RDF) models,
57

Resource Description Framework (RDF)Reactor,
170

Restriction on programming language, 161
Retrieval, 31
Reusability

agogo and, 168
of algorithm descriptions, 122–123

Reuse, Selector pattern and, 110
RQ1, 159, 161
RQ2, 128, 160, 161
RQ3, 128, 160, 161
RQ4, 160, 161
RQ5, 160, 161
Ruby programs, 170
RuleML, OWL and, 34
Rules, 34

derivation, 51
DL-safe, 52
F-logic, 51
horn, 49, 50
logical, 51
MMTS+OTS, 51
reaction, 51

Runtime instances (M0), 53

INDEX 233

Safety, 51
SAIQL, 174

templates and, 172
Satisfi ability, 31
Scalability of ontological reasoning technology,

190
Schema management, 5
SELECT, 40
Selector pattern, 100, 105–108, 187

advantages, 110–111
applicability, 110
comparison, 108
drawbacks, 110
participants and collaborations, 107–108,

109
structure, 106–107
validation, 109–111

Semantic annotation, 113–114
interface for, 182

Semantic annotation pattern, 160
ontology and API for, 158–159

Semantic layer, 141, 142, 144
translation problems at, 145–146, 153

Semantic patterns, in RDF, 182
Semantic reasoning capabilities, 154
Semantics, 14, 15

axiomatic, 47
MBOTL, 148
model-theoretic, 47
2NExpTimeComplete (OWL 2), 27–29
of OCL, 18
for SWRL, 34
of templates, 177–179
translational, 47
of UML, 16

Semantic transformation, 52
Semantic translation, 150–152, 154

of complex structures, 152–153
Semantic web approaches, for transforming

software artifacts, 134–135
Semantic Web Rule Language (SWRL), 34, 86

metamodel, 38–39
rules, 172, 173, 174
templates and, 172
UML Profi le for, 175, 179, 180

Semantic web stack, 21, 22
Semantic web technologies, 124, 189

ontology-based information systems and, 112
Sequence diagram, of OWL-based solution, 108
Serialization syntax, 47
Sesame API, 170
Snapshot, 15
Snoogle, 154
Software design patterns, improving with OWL,

99–111
case study, 100–104
related work, 111
TwoUse approach and, 104–108
validation, 109–111

Software engineer, UML use case diagram and,
126

Software modeling, xxi
SPARQL, 17, 32–33, 90, 189

EBNF syntax, 40
MBOTL translated to, 148, 149
metamodel, 40–41
queries, 40–41, 51, 88, 151, 164
syntax

in agogo, 164–166
CRUD operations using, 161

as target language for ontology translation,
149–150

transformation from OCL to, 145
transformation from SPARQLAS to, 81–82
update syntax, defi nition of operation using,

165
using over OWA and UML class-based

modeling with OCL, 79–80
using over OWL with CWA, 79
using over OWL with OWA, 79

SPARQLAS, 68, 80–82
concrete syntax, 80–81
EBNF grammar of SPARQLAS functional

syntax, 192–197
evaluating expressions, 121
metamodel, 81, 202–203
ontology services and, 69
querying with, 131–132, 133–134
query templates, 180–181
transformation to SPARQL, 81–82

SPARQLAS Manchester syntax, EBFN grammar
of, 197–202

SPARQLAS4TwoUse, 82–84
expressions in software design patterns,

106
positioning among existing approaches, 84,

85
query operations, 107, 207

SPARQL-like language (SPARQL-DL), 31,
32–33, 78

abstract syntax, 32–33, 174
templates and, 172
TwoUse toolkit and, 91

Speaker identifi ers, 113
SQL, 17
Strategy pattern, 100–103

compared to TwoUse-based solution, 108
drawbacks, 102, 103–104
profi led UML class diagrams with, 106–107

String distance method, 133
Structure, Selector pattern, 106–107
Structure comparison techniques, 34
Subsumption, 31, 50
Support vector machines (SVM), 113, 114
SVM. See Support vector machines (SVM)
SWRL. See under Semantic Web Rule Language

(SWRL)
Syntactic layer, 141, 142, 144

translation problems at, 146, 153
Syntactic transformation, 52
Syntactic translation, 150–152, 154

of complex structures, 152–153

234 INDEX

Syntax, 15
abstract, 14, 15, 47, 68, 70

TwoUse, 119–120
concrete (See Concrete syntax)
diagrammatic, 15
2NExpTimeComplete (OWL 2), 24–26, 179
OWL, 80–82
serialization, 47
SPARQLAS functional, 192–197
SPARQLAS Manchester, 197–202
SPARQL EBNF, 40
SPARQL-like language abstract, 32–33
textual, 15
TwoUse approach, 72–77

pure UML class diagrams, 75
textual notation, 75–77
UML profi le for OWL, 72–75

UML, 16
System, 53

Target classes, 71
Target platform, transformation into, 149
Tarski-style model theory of OWL, 117
TBox. See Terminological box (TBox)
Technical space, 19, 41–43, 44, 45

organization of features according to, 53
TemplateableElement, 176
Template binding, 176, 177
Template binding realization algorithm, 178
TemplateParameter, 177
TemplateParameterSubstitution, 177
Templates

advantages of, 174
as fi rst-class citizens, 172
ontology design patterns and, 181–182
in OWL ontologies, 171–183, 188

analysis, 181–182
case study, 172–174
limitations, 182
notations for, 179–180
related work, 182–183
TwoUse approach, 174–181

query, 180–181
semantics of, 177–179

TemplateSignature, 176
Terminological box (TBox), 24, 31, 173
Testability, 122

Selector pattern and, 110
Textual editor, 90
Textual language, modeling KAT using,

119
Textual notation, 75–77
Textual syntax, 15
Traceability matrix, 69

agogo, 169
Transformation

MDE and, 10
MMTS+OTS, 52

Transformation rules, 17
for TwoUse approach, 68

Translational semantics, 47
Translation metamodel, 146, 147

Translation rules, 143
Ecore to OWL, 204–205
example, 146

Transparency, templates and, 182
Tree, 50
TUClassAdapter, 76

implementing operation addAttribute in class,
72–73

Turtle, 24
Tutorials, xxv–xxvi
2NExpTimeComplete (OWL 2), 24
TwoUse (Transforming and Weaving Ontologies

and UML for Software Engineering)
approach, xxi, 6

applications in ontology engineering, 7–8
application to software design patterns, 104–108

OWL for conceptual modeling, 104–105
Selector pattern, 105–108

for automatic generation of ontology APIs,
161–167

development life cycle, 125–126
EBNF defi nition of concrete textual syntax for,

191–192
limitations of, 123
matching, 131
model-drive specifi cation of ontology

translations and, 145–150
model extension, 128–130
for modeling ontology-based information

systems, 117–121
model transformation, 130–131
querying with SPARQLAS, 131–132
templates in OWL ontologies, 174–182
use cases, 206–210

TwoUse (Transforming and Weaving Ontologies
and UML for Software Engineering)
approach syntax, 72–77

pure UML class diagrams, 75
textual notation, 75–77
UML profi le for OWL, 72–75

TwoUse (Transforming and Weaving Ontologies
and UML for Software Engineering)
conceptual architecture, 65–77

metamodeling architecture, 70–72
requirements for integrating ontology technologies

and model-driven engineering, 66–67
requirements of TwoUse approach, 68–70
syntax, 72–77

TwoUse (Transforming and Weaving Ontologies
and UML for Software Engineering)
measurement, 132

TwoUse (Transforming and Weaving Ontologies
and UML for Software Engineering)
metamodel, 69, 70–72, 73

mapping between UML profi le for OWL and,
74–75

TwoUse (Transforming and Weaving Ontologies
and UML for Software Engineering)
toolkit, 86–93, 188

core services, 88–89
engineering services, 89–90
front-end, 90

INDEX 235

generic architecture for MDE and ontology
engineering, 87–90

instantiating generic model-driven architecture,
90–93

use case descriptions, 87
validation, 132–134

Type metamodel, 147–148
Types, 13

UML. See under Unifi ed Modeling Language (UML)
UNA. See Unique Name Assumption (UNA)
Unidirectional transformations, 52, 54
Unifi ed Modeling Language (UML), 3, 4, 13, 86, 90

as diagrammatic notation, 15
as metamodeling language, 11
model, 11
as modeling language, 10
overview, 47, 49
semantics of, 15, 16
structure, semantics, and syntax of, 16
templates of packages and classes, 174–175

Unifi ed Modeling Language (UML) class-based
metamodel, OWL 2 metamodel adapted
for, 72, 73

Unifi ed Modeling Language (UML) class-based
modeling, 5–6

adapting OWL class for, 70–72
integrating OWL constructs in, 66, 70
integrating OWL ontologies in, 187
OWL and, 65–66
similarities with OWL modeling, 45–46
TwoUse and, 6–7
use of ontology services in, 66–67, 70
using OCL and SPARQL over, 79–80
using OCL over with CWA, 79

Unifi ed Modeling Language (UML) class-based
modeling languages, 10

integration between OWL and, 86, 87
Unifi ed Modeling Language (UML) class-based

model query, 209
Unifi ed Modeling Language (UML) class-based

software development, 113–115
Unifi ed Modeling Language (UML) class

diagram, 15, 17, 18, 50, 54
design integrated, 206
domain design by, 105
of KAT, 114, 118
pure, 75

Unifi ed Modeling Language (UML) component
diagrams, 126

Unifi ed Modeling Language (UML) metamodel, 15
model extension, 128–129

Unifi ed Modeling Language (UML) models,
checking consistency of, 54–56

Unifi ed Modeling Language (UML) paradigm
dominance, Selector pattern and, 111

Unifi ed Modeling Language (UML) profi le, 68
ontology modeling with, 58
for OWL, 72–75

mapping between TwoUse metamodel and,
74–75

for SWRL, 175, 179, 180

Unifi ed Modeling Language (UML) sequence
diagram

of KAT algorithms, 114, 115
of strategy and abstract factory patterns,

103
Unifi ed Modeling Language (UML) use case

diagrams, 126
Unique Name Assumption (UNA), 78
Universal quantifi cation, 32
Update, in COMM API, 159
URIs, 189
Usability

agogo and, 168
templates and, 182

Use case descriptions, 87, 88
Use case querying, 133
Use cases, 131, 132

BPMN and UML metamodels for, 128–129
of TwoUse approach, 206–210

Validation, 90
of Selector pattern, 109–111
TwoUse approach, 121–123
TwoUse toolkit, 132–134

Valid binding, 177
Values, transformations of, 144
Variable mapping, 33
Variable ?self, 83–84
Variants

in Selector pattern, 109
in software design patterns, 100–101, 103,

104, 108

Walter, Tobias, xxii
Web of models, 124
Web Ontology Language (OWL), xxiii, 3–4, 22,

24–31
for conceptual modeling, 104–105
for domain concepts in networked

environments, 125
extending modeling languages into, 128–132
integration between UML class-based

modeling languages and, 86, 87
linking Ecore metamodels with, 129–130,

133
modeling and querying patterns for MDE in,

189
overview, 49
RuleML and, 34
software design patterns and (See Software

design patterns, improving with OWL)
sub-languages, 24
syntax of, querying ontologies using, 80–82
transformation of modeling languages into,

188
transformation to, 207–208
translation rules from Ecore, 204–205
UML class-based modeling and, 5–6, 65–66
UML profi le for, 72–75
using SPARQL over with CWA, 79
using SPARQL over with OWA, 79
world assumption and name assumption, 27–31

236 INDEX

Web Ontology Language 2 (OWL 2), 90, 130
class diagram, 46
Functional Syntax, 43
graphical syntax, 179
semantics of, 27–29
syntax of, 24–26
Vocabulary V0, 24–25

Web Ontology Language (OWL) application
program interface (OWL API), 34

Web Ontology Language (OWL)-based solution,
sequence diagram of, 108

Web Ontology Language (OWL) class, adapting
for UML class-based modeling, 70–72

Web Ontology Language (OWL) constructs,
integrating in UML class-based modeling,
66, 70

Web Ontology Language (OWL)-DL, class
diagram, 46

Web Ontology Language 2 (OWL 2)FS editor, 90
Web Ontology Language (OWL) Functional

Syntax, SPARQLAS query using, 80
Web Ontology Language (OWL) library, 148
Web Ontology Language (OWL) Manchester

Syntax, 76
Web Ontology Language 2 (OWL 2) Manchester

Syntax
SPARQLAS query using, 80, 81, 83

Web Ontology Language (OWL) metamodel,
35–39

extending with templates, 174–177
NeOn OWL metamodel, 36–38
OMG OWL metamodel, 35–36
SWRL, 38–39

Web Ontology Language 2 (OWL 2) metamodel,
38, 39

adapted for UML class-based metamodel, 72, 73

Web Ontology Language (OWL) modeling,
116–117

similarities with UML class-based modeling,
45–46

TwoUse and, 7
Web Ontology Language (OWL) ontologies

classifi cation of approaches, 187
integration with UML class-based modeling,

187
query, 209
template mechanics and, 177–178
templates in (See under Templates)

Web Ontology Language (OWL) ontology
engineering, use of MDE techniques in,
67, 70

Web Ontology Language (OWL) profi led class
diagram, 105–106

Web Ontology Language 2 (OWL 2) reasoner,
91

Web Ontology Language (OWL) reasoning, 117
Web Ontology Language (OWL) reasoning

service, 117–118
Web Ontology Language (OWL) TBox/ABox-

OWLizer, 130–131
Web Ontology Language (OWL)/XML syntax,

24
Well-formedness, of language, 14
WHERE clause, SPARQL queries, 41
World assumption, 27–31, 85
World Wide Web Consortium standard Web

Ontology Language. See Web Ontology
Language (OWL)

X-COSIMO, APIs for, 156, 158, 159
XML. See Extensible Markup Language (XML)
XML Schema Datatypes library, 148

