
M A N N I N G

IN ACTION

Nilanjan Raychaudhuri

FOREWORD BY Chad Fowler

Covers Scala 2.10

www.allitebooks.com

http://www.allitebooks.org

Scala in Action

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Scala in Action
NILANJAN RAYCHAUDHURI

M A N N I N G

SHELTER ISLAND

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical Proofreaders: Ivan Kirkpatrick, Clint Combs
PO Box 261 Copyeditor: Corbin Collins
Shelter Island, NY 11964 Proofreader: Elizabeth Martin

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781935182757
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

www.allitebooks.com

www.manning.com
http://www.allitebooks.org

v

brief contents
PART 1 SCALA: THE BASICS ..1

1 ■ Why Scala? 3

2 ■ Getting started 20

3 ■ OOP in Scala 55

4 ■ Having fun with functional data structures 93

5 ■ Functional programming 132

PART 2 WORKING WITH SCALA167

6 ■ Building web applications in functional style 169

7 ■ Connecting to a database 193

8 ■ Building scalable and extensible components 224

9 ■ Concurrency programming in Scala 255

10 ■ Building confidence with testing 283

PART 3 ADVANCED STEPS. ..321

11 ■ Interoperability between Scala and Java 323

12 ■ Scalable and distributed applications using Akka 344

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

contents
foreword xiii
preface xv
acknowledgments xvi
about this book xvii
about the cover illustration xxi

PART 1 SCALA: THE BASICS...1

1 Why Scala? 3

1.1 What’s Scala? 4
Scala as an object-oriented language 4 ■ Scala as a functional
language 6 ■ Scala as a multi-paradigm language 8
Scala as a scalable and extensible language 9 ■ Scala runs on
the JVM 10

1.2 The current crisis 11
End of Moore’s law 11 ■ Programming for multicores 11

1.3 Transitioning from Java to Scala 13
Scala improves productivity 13 ■ Scala does more with less
code 13

1.4 Coming from a dynamic language 15
Case for static typing, the right way 16

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii

1.5 For the programming language enthusiast 18
1.6 Summary 18

2 Getting started 20

2.1 REPL with Scala interpreter 21
2.2 Scala basics 22

Basic types 23 ■ Defining variables 28 ■ Defining
functions 30

2.3 Working with Array and List 36
2.4 Controlling flow with loops and ifs 38
2.5 For-comprehensions 39
2.6 Pattern matching 42
2.7 Exception handling 45
2.8 Command-line REST client: building a working

example 46
Introducing HttpClient library 48 ■ Building the client,
step by step 49

2.9 Summary 54

3 OOP in Scala 55

3.1 Building a Scala MongoDB driver: user stories 56
3.2 Classes and constructors 57
3.3 Packaging 61
3.4 Scala imports 63
3.5 Objects and companion objects 65
3.6 Mixin with Scala traits 69

Class linearization 75 ■ Stackable traits 77

3.7 Case class 78
3.8 Named and default arguments and copy constructors 83
3.9 Modifiers 86

3.10 Value classes: objects on a diet 87
3.11 Implicit conversion with implicit classes 88
3.12 Scala class hierarchy 91
3.13 Summary 92

www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix

4 Having fun with functional data structures 93

4.1 Introducing type parameterization 94
4.2 Type variance with covariance and contravariance 95
4.3 Lower and upper type bounds 99
4.4 Higher-order functions, including map,

flatMap, and friends 101
4.5 Using foldLeft and foldRight 106
4.6 Building your own function objects 108
4.7 Scala collection hierarchy 110
4.8 Mutable and immutable collections 113
4.9 Working with List and ListBuffer 114

Working with Set and SortedSet 115 ■ Working with Map
and Tuple 117 ■ Under the hood of for-comprehension 118
Use Option not Null 121

4.10 Working with lazy collections: views and streams 122
Convert a strict collection to a nonstrict collection with views 123
Working with Streams 125

4.11 Divide and conquer with parallel collections 127
Parallel collection hierarchy 129 ■ Switching between sequential
and parallel collections 130

4.12 Summary 131

5 Functional programming 132

5.1 What is functional programming? 133
The benefits of referential transparency 134 ■ A pure functional
program 135

5.2 Moving from OOP to functional programming 135
Pure vs. impure programming 136 ■ Object-oriented patterns
in functional programming 137 ■ Modeling purely functional
programs 138

5.3 Functions in all shapes and forms 140
Methods vs. functions 141 ■ Higher-order functions 141
Function currying 144 ■ Function composition and partial
functions 145 ■ Recursion 148

5.4 Thinking recursively 149
Tail recursion 150

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

5.5 Algebraic data types 152
5.6 Why does functional programming matter? 153
5.7 Building higher abstractions with monads 156

Managing state using monads 157 ■ Building blocks for
monads 163

5.8 Summary 165

PART 2 WORKING WITH SCALA.167

6 Building web applications in functional style 169

6.1 Building weKanban: a simple web-based Kanban
board 170

6.2 Building Scala applications using Simple Build Tool 171
Setting up SBT 172 ■ Understanding the basics of SBT 173
Setting up the weKanban project with SBT 181

6.3 Introducing the Scalaz HTTP module 183
How the Scalaz HTTP library works 183 ■ Configuring Scalaz
with SBT 187 ■ Building your first web page using Scalaz 189

6.4 Summary 192

7 Connecting to a database 193

7.1 Adding a new story to a weKanban board 194
Connecting to a database using Squeryl 194 ■ Saving a new story
to the database 200 ■ Building the Create Story web page 204

7.2 Building the Kanban board page 212
Creating the view for the Kanban board 214 ■ Moving cards in
the Kanban board 218

7.3 Summary 223

8 Building scalable and extensible components 224

8.1 Building your first component in Scala 225
Abstract type members 226 ■ Self type members 228
 Building a scalable component 229 ■ Building an
extensible component 232

8.2 Types of types in Scala 238
Structural types 238 ■ Higher-kinded types 240
Phantom types 243

CONTENTS xi

8.3 Ad hoc polymorphism with type classes 246
Modeling orthogonal concerns using type classes 246 ■ Solving the
expression problem using type classes 250

8.4 Summary 254

9 Concurrency programming in Scala 255

9.1 What is concurrent programming? 256
9.2 Challenges with concurrent programming 258

Difficulties of shared-state concurrency with threads 258
New trends in concurrency 259

9.3 Implementing message-passing concurrency
with actors 260
What is ActorSystem? 262 ■ How do Scala actors work? 264
Divide and conquer using actors 266 ■ Fault tolerance
made easy with a supervisor 274

9.4 Composing concurrent programs with Future
and Promise 276
Divide and conquer with Future 277 ■ Mixing Future
with actors 280

9.5 When should you not use actors? 281
9.6 Summary 281

10 Building confidence with testing 283

10.1 Importance of automated testing 284
10.2 Automated test generation using ScalaCheck 286

Testing the behavior of a string with ScalaCheck 287
ScalaCheck generators 289 ■ Working with ScalaCheck 290

10.3 Test-driven development cycle 294
Setting up your environment for TDD 296 ■ Using JUnit
to test Scala code 296

10.4 Better tests with dependency injection 297
Techniques to implement DI 299 ■ Cake pattern 301
Structural typing 303 ■ Implicit parameters 305
Dependency injection in functional style 306 ■ Using a
dependency injection framework: Spring 307

10.5 Behavior-driven development using Specs2 312
Getting started with Specs2 313 ■ Working with
specifications 315

CONTENTSxii

10.6 Testing asynchronous messaging systems 317
10.7 Summary 318

PART 3 ADVANCED STEPS . ..321

11 Interoperability between Scala and Java 323

11.1 Using Java classes in Scala 324
Working with Java static members 325 ■ Working with Java
checked exceptions 326 ■ Working with Java generics using
existential types 327

11.2 Using Scala classes in Java 329
Using Scala annotations 330

11.3 Building web applications in Scala using Java
frameworks 332
Building the model, view, and controller 334
Configuring and running the application 340

11.4 Summary 343

12 Scalable and distributed applications using Akka 344

12.1 The philosophy behind Akka 345
12.2 Simple concurrency with Akka 346

Remote actors 347 ■ Making mutable data safe with STM 351
Agents 354 ■ Dataflow 355

12.3 Building a real-time pricing system: Akkaoogle 356
The high-level architecture of Akkaoogle 357 ■ Setting up the
project for Akkaoogle 359 ■ Implementing the domain
models 360 ■ Implementing the core with actors 364
Increase scalability with remote actors, dispatchers, and routers 368
Handling shared resources with Agent 374

12.4 Adding asynchronous HTTP support with
Play2-mini 375
Setting up Play2-mini 376 ■ Running with Play2-mini 377

12.5 Summary 379

index 381

xiii

foreword
You’re standing in front of a huge, steep wall of rock. Your neck is straining as you
bend your head back as far as it will go to take it all in. If you squint, you can barely see
something moving around at the top. There’s probably some really good stuff up
there. You’ve heard from people you trust that it’s worth climbing this wall. But,
you’re damned sure going to hurt yourself on the way up. You can already see some of
the jagged edges jutting out. And what if it turns out that you don’t like what you see
when you get there?

 Learning difficult things is like this—and make no mistake: Scala is difficult to
learn. And you may very well not like what you see when you get to the top. I’d guess
that only a small fraction of developers learning a language like Scala ever put it to
use. But it’s almost always the climb that makes a challenge worth the effort. Scala is a
lot to chew on. It’s got what seems way too many features. It’s going to appear, at least
initially, overdesigned. You’re going to hurt yourself on the way.

 By the time you reach the top, you’ll understand why those features exist, how they
make your Scala programs better, and, more important, how they make you a more
effective programmer. You’ll still be sore from the bumps along the way but that pain
will help you remember the lessons learned. You may even find yourself happily and
productively working full-time in Scala for years to come!

 As worthwhile as a journey like this may be, you don’t want to climb a mountain
this high alone, if you can help it. When covering unfamiliar—even alien—territory
you want a guide who can make it look easy. That’s Nilanjan Raychaudhuri. He has a
way of putting people at ease when describing complex subjects. Scala itself isn’t that
complex—it’s really just a bunch of simple pieces that join to form a deceptively

FOREWORDxiv

capable whole. Nilanjan has a talent for making us believe that those pieces really are

simple and are there for unearthing the underlying principles that bind them
together. Indeed, even for the nuts and bolts of installation, configuration, and proj-
ect compilation, reading this book is like having an experienced mentor accompany
you every step of the way.

 Some of the concepts in Scala in Action are going to be more foreign than others.
When you hit these bumps, take your time. Musicians don’t become great by playing
the songs they know over and over. Elite athletes don’t consistently stay in their com-
fort zones. It’s the jagged edges that improve us.

 If you approach this climb properly, you’ll reach the top sharper, more open-
minded, and, best of all, less afraid.

CHAD FOWLER

AUTHOR, SPEAKER, AND

PROGRAMMING LIFESTYLE ENGINEER

xv

preface
Why write Scala in Action when there are plenty of other Scala books on the market?
What sets this book apart?

Scala in Action targets developers who not only want to learn the language but also
want to build real-world applications using Scala. This book, in other words, covers
not only the language and its latest features but also its ecosystem. My goal was to pack
a sufficient number of real-world examples along with the right mix of theory so read-
ers can easily become comfortable with the language.

 Scala is a feature-rich language and it is not possible to cover all of its features in
one book, at least one of a reasonable size. For that reason, I deliberately avoided
some of the more advanced features of Scala. I encourage you to think of this book as
your first on Scala, a foundation on which to build, before you dive into the more
advanced features Scala has to offer.

 I had a great time writing this book and I hope you have a great time learning this
new and exciting language. I know you had a choice when it comes to Scala books;
thank you for choosing this one.

xvi

acknowledgments
First I thank Martin Ordesky, the creator of Scala, for his thoughtful creation, which
takes language design to the next level. Without his work, this book would not exist.

 I also thank all of the members of the Scala community. Without their help and
comments, I never could have imagined writing this book.

 At Manning, I give my thanks to Marjan Bace, Mike Stephens, my editors Cynthia
Kane and Katharine Osborne for helping me improve my writing, and the production
team of Corbin Collins, Elizabeth Martin, Dottie Marsico, Mary Piergies, Toma Mulli-
gan, and Janet Vail. Special thanks go to Ivan Kirkpatrick and Clint Combs, my techni-
cal proofreaders, for their in-depth feedback on the text and the code.

 Numerous reviewers read the book at various stages of its development and
offered helpful comments and criticisms, and I acknowledge them here: Alexandre
Alves, Andrew Rhine, Andy Dingley, Ben Hall, Cheryl Jerozal, Dan Dobrin, Daniel
Bretoi, Dave Pawson, David Greco, Dennis Leung, Edmon Begoli, Eric Weinberg,
Marco Ughetti, Mark Needham, Michael Smolyak, Peter Crosbie, Peter Thomas, Rob-
ert MacGregor, and Tom Belunis.

 Thanks also to the readers of Manning’s Early Access Program (MEAP). Their cor-
rections and comments on the manuscript as it was being written were invaluable.

 I extend a special thanks to Lutz Hankewitz for his help during the writing process.
Without his thoughtful feedback, this book would have been incomplete. Special
thanks also to Chad Fowler for contributing the foreword and for endorsing my work.

 Last but definitely not least, I would like to thank my wife Manisha for her support
and patience as I spent countless weekends working on this book while she took care
of the family without any complaints.

xvii

about this book
If I were to pick a language to use today other than Java, it would be Scala.

 —JAMES GOSLING

Congratulations for picking Scala as your next language. And if you are still undecided,
please read the first chapter in this book, and I am sure that will change your mind.

 The programming languages we use shape the way we think and how we solve pro-
gramming issues. And when faced with new programming languages and paradigms
we try to map them to the languages we know. I would discourage you from doing that
when reading Scala in Action. Scala is a new programming language that brings myriad
new ideas to the Java virtual machine platform.

 Scala is unique. It is a multi-paradigm programming language that combines both
functional and object-oriented languages. It has its own set of best practices and idi-
oms and by the end of this book what you have learned will also be helpful in other
programming languages.

Scala in Action has been updated to reflect the newest changes in Scala version 2.10.

Who should read this book?

This book is for all developers and hobbyists who like programming. Most of the con-
cepts discussed can be easily absorbed without any knowledge of Java, but having a
basic knowledge of Java is a definite plus. The book assumes that you are at least famil-
iar with the JVM and its ecosystem. There are plenty of available resources for the JVM
and its toolset that augment this book.

ABOUT THIS BOOKxviii

Roadmap

This book is divided into three parts. Part 1 introduces the language and its features.
Part 2 makes use of the concepts and shows how to use them in real world. Part 3,
updated to reflect the introduction of Scala 2.10, continues with real-world examples
of building large-scale applications using Java and Akka.

 It is recommended that you read the book from beginning to end. Having said
that, if some chapters interest you more than others, feel free to jump ahead, but
make certain you are familiar with the concepts introduced in the first five chapters
(part 1). Chapter 6 is also important because it introduces the build tool used to com-
pile and build the accompanying code samples.

 When reading this book, and working with its examples, I recommend that you
keep the Scala interpreter (REPL) open at all times. This is a programming book so
keep programming as you read.

Part 1: Introducing Scala

Part 1 introduces Scala and the programming paradigms it supports.
 Chapter 1 explores why Scala should be your next programming language. The

chapter explores features of the language and compares them to other popular pro-
gramming languages on the market. Picking up and learning a new language is a lot
of work and you should read this chapter to understand what Scala has to offer and
why Scala should be your next programming language.

 Chapter 2 introduces basic Scala features you need to get started with the lan-
guage. This chapter also introduces one of the most important Scala tools, the Scala
REPL. If you have never used the REPL, this chapter will prepare you.

 Chapter 3 explores the object-oriented programming side of things in Scala. It
introduces traits, case classes, and companion objects, all new innovations in OOP.

 Chapter 4 focuses on the Scala collection library, one of the most powerful fea-
tures of Scala. The collection is one of the things that attracted me to this language.
This chapter will introduce new concepts gently so that you can start using Scala col-
lection classes as soon as possible. I promise once you get used to them there is no
going back.

 Chapter 5 introduces functional programming. This is the logical extension of the
previous chapter. This chapter introduces what and why functional programming is
important to learn. Even if you don’t use Scala in your projects, some of the concepts
introduced here can be used in any programming language.

Part 2: Working with Scala

Chapter 6 takes the first stab at building a large web application using Scala. This
chapter will show you how to build and organize a Scala project and it introduces the
popular Simple Build Tool (SBT).

 Chapter 7, a continuation of the previous chapter, introduces Scala frameworks
you can use to connect to the database.

ABOUT THIS BOOK xix

 Chapter 8 is about Scala’s type system. No Scala book could be complete without
exploration of Scala’s type system. But it’s no fun to talk about types unless you learn
their value in design applications in the real world. This chapter introduces types
available in Scala and how you can use them to build reusable components.

 Chapter 9, extensively reworked after the release of Scala 2.10, introduces actors,
one of the most popular aspects of Scala. An actor is a high-level abstraction over
threads, allowing you to build and design concurrent applications.

 Chapter 10 focuses on testing Scala applications and how you can use patterns to
make your code more testable. If you are thinking of taking your Scala application to
production you need to learn to write automated tests and to understand dependency
injections.

Part 3: Advanced steps

Chapter 11 demonstrates integration with Java, one of the core features of Scala.
Using Scala doesn’t necessarily mean you have to use only Scala frameworks. In this
chapter you will take Java frameworks like Spring, Hibernate, and Maven and use
them with Scala

 Chapter 12, also reworked after the release of Scala 2.10, introduces Akka, the
most popular framework written in Scala. At the end of the chapter you will build a
large distributed and scalable application using Akka. If you are interested in concur-
rent and parallel programming, this chapter is for you.

Code convention and downloads

This book contains numerous code examples. All the code is in a fixed-width font
like this to separate it from ordinary text. Code members such as method names,
class names, and so on are also in a fixed-width font.

 Source code examples in this book are fairly close to the samples that you’ll find
online, but for the sake of brevity, we may have removed material such as comments
from the code to fit it well within the text.

 Code annotations accompany many of the source code listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

 The source code for the examples in the book is available for download from the
publisher’s website at www.manning.com/ScalainAction. To run the samples, you’ll
need to download some of the tools and languages used in this book. Links in the text
point you to places where you can get the relevant files.

Software requirements

You can use any platform of your choice as long as you have a Java runtime version 1.5
or later running. I have used Java 6 on Mac OS X for running and building all the
code examples.

www.allitebooks.com

http://www.manning.com/ScalainAction
http://www.allitebooks.org

ABOUT THIS BOOKxx

Author Online forum

The purchase of Scala in Action includes free access to a private web forum run by Man-
ning Publications, where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum and
subscribe to it, point your web browser at www.manning.com/ScalainAction. This page
provides information on how to get on the forum once you are registered, what kind of
help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and authors can take place.
It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions, lest his interest stray! The
Author Online forum and archives of previous discussions will be accessible from the
publisher’s website as long as the book is in print.

www.manning.com/ScalainAction

xxi

about the cover illustration
The figure on the cover of Scala in Action is captioned “A woman from Senj, Family
Vukasovic, Croatian Coast.” The illustration is taken from a reproduction of an album
of Croatian traditional costumes from the mid-nineteenth century by Nikola Arsen-
ovic, published by the Ethnographic Museum in Split, Croatia, in 2003. The illustra-
tions were obtained from a helpful librarian at the Ethnographic Museum in Split,
itself situated in the Roman core of the medieval center of the town: the ruins of
Emperor Diocletian’s retirement palace from around AD 304. The book includes
finely colored illustrations of figures from different regions of Croatia, accompanied
by descriptions of the costumes and of everyday life.

 Senj is the oldest town on the upper Adriatic coast, founded in the time before the
Romans, some 3,000 years ago, on the hill Kuk, overlooking the sea. Through the cen-
turies, Senj was a prosperous seaport which was ruled by many different tribes and
nation states in its long history. In the eighteenth and nineteenth centuries, dress cus-
toms in the town indicated not only the social standing of a person, but also the family
to which he or she belonged. The colors and embroidery patterns would tell the story
of a person’s class and family affiliation. The woman on the cover is wearing a richly
embroidered blue dress and vest and a fancy lace apron and headscarf, which would
have signaled both her status and her family ties.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, town, or family, so rich at the time, has faded away. It is now hard to tell apart
the inhabitants of different continents, let alone of different hamlets or towns sepa-
rated by only a few miles. Perhaps we have traded cultural diversity for a more varied
personal life—certainly for a more varied and fast-paced technological life.

ABOUT THE COVER ILLUSTRATIONxxii

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.

Part 1

Scala: the basics

First things first.
 In Scala in Action, chapter 1 focuses on Scala and why you should pick it as

your next language. You’ll learn how Scala’s high-level features compare with
programming languages you may be very familiar with. If you’re an object-
oriented programmer, you’ll quickly get comfortable with Scala; if you’ve used a
functional programming language, Scala won’t look much different because
Scala supports both programming paradigms.

 Scala is one of those rare languages that successfully integrates both object-
oriented and functional language features. This makes it powerful because it
gives you more in your toolbox to solve programming problems. If you have
existing Java applications and are looking for a language that will improve your
productivity and at the same time reuse your existing Java codebase, you’ll like
Scala’s Java integration and the fact that Scala runs on the JVM platform.

 It’s important, when learning something new, to become comfortable in the
heretofore unknown environment. Chapter 2 stays within the middle of the
road, helping you become comfortable with the basics of Scala and its environ-
ment so you can start working with it and writing Scala programs. Early on, the
focus is on only the Scala interpreter and its REPL environment to keep things
simple, but you’ll also learn about the basic Scala types, functions, for-compre-
hension, pattern matching, among other things.

 Chapter 3 introduces the object-oriented features of Scala, including some
not available in other statically typed languages.

 You’ll build a Scala driver for MongoDB, a scalable document-oriented data-
base. You’ll build this driver incrementally using the object-oriented constructs

2 CHAPTER

provided by Scala. You’ll explore how to use traits when building Scala applications,
and learn about the importance of Scala case classes.

 In chapter 4 you’ll learn Scala collections, which broadly support two categories of
data structures—immutable and mutable.

 To understand and benefit from Scala collections, you need to know two concepts:
type parameterization and higher-order functions. Type parameterization allows you
to create types that take another type as a parameter (similar to Java generics).
Higher-order functions let you create functions that take other functions as parame-
ters. These two concepts allow you to create generic and reusable components, like
Scala collections.

 The Scala collection is one of Scala’s most powerful features. The library imple-
ments all the common data structures you need, making it essential for every Scala
developer. A recent addition to the collection library is parallel collections. Scala par-
allel collections allow you to solve data parallelism problems in Scala with ease.

 Chapter 5, the end of part 1, focuses on functional programming, although you’ve
been doing functional programming if you’ve been following the examples in the
book. In some cases functional programming is obvious; other times it is mixed with
object-oriented constructs of Scala. The chapter also touches on monads and practi-
cal examples.

3

Why Scala?

Scala is a general-purpose programming language that runs on Java Virtual
Machine (JVM) and .NET platforms. But the recent explosion of programming lan-
guages on JVM, .NET, and other platforms raises a question that every developer
faces today: which programming language to learn next? Which languages are
ready for mainstream development? Among the heap of programming languages
like Groovy, Ruby, Clojure, Erlang, and F#, why should you learn Scala?

 Learning a new language is merely a beginning. To become a useful and pro-
ductive developer, you also need to be familiar with all the toggles and gizmos that
make up the language infrastructure.

 Before I make the case for why Scala should be your next programming lan-
guage, it’s important to understand what Scala is. It’s a feature-rich language
that’s used in various types of applications, starting with building a large messag-
ing layer for social networking sites such as Twitter1 to creating an application

This chapter covers

 What Scala is

 High-level features of the Scala language

 Why you should pick Scala as your next

language

1 “Twitter on Scala: A Conversation with Steve Jenson, Alex Payne, and Robey Pointer,” Scalazine, April 3,
2009, www.artima.com/scalazine/articles/twitter_on_scala.html.

www.artima.com/scalazine/articles/twitter_on_scala.html

4 CHAPTER 1 Why Scala?

build tool like SBT2 (Simple Build Tool). Because of this scala-bility, the name of the
language is Scala.

 This chapter explores the high-level features of the language and shows how they
compare to the programming languages you may be very familiar with. This will help
you to choose Scala as your next programming language.

 If you’re an object-oriented programmer, you’ll quickly get comfortable with the
language; if you’ve used a functional programming language, Scala won’t look much
different because Scala supports both programming paradigms. Scala is one of those
rare languages that successfully integrates both object-oriented and functional lan-
guage features. This makes Scala powerful because it gives you more in your toolbox
to solve programming problems. If you have existing Java applications and are looking
for a language that will improve your productivity and at the same time reuse your
existing Java codebase, you’ll like Scala’s Java integration and the fact that Scala runs
on the JVM platform.

 Now let’s explore Scala a bit more.

1.1 What’s Scala?

Scala is a general-purpose programming language designed to express common pro-
gramming patterns in a concise, elegant, and type-safe way. It smoothly integrates fea-
tures of object-oriented and functional programming languages, enabling
programmers to be more productive. Martin Odersky (the creator of Scala) and his
team started development on Scala in 2001 in the programming methods laboratory
at EPFL (École Polytechnique Fédérale de Lausanne). Scala made its public debut in
January 2004 on the JVM platform and a few months later on the .NET platform.

 Even though Scala is fairly new in the language space, it has gained the support of
the programming community, which is growing every day. Scala is a rich language in
terms of features available to programmers, so without wasting time let’s dive into
some of them.

SCALA ON .NET At present Scala’s support for .NET isn’t stable. According to
the Scala language website (www.scala-lang.org), the current Scala distribu-
tion can compile programs for the .NET platform, but a few libraries aren’t
supported. The main difficulty to overcome is that Scala programs make
heavy use of the Java JDK, which is not available out of the box in the .Net plat-
form. To overcome this issue, the current strategy is to use IKVM
(www.ikvm.net), which allows Java programs to convert to MSIL and the .NET
library.3 In this book I mainly focus on Scala for the JVM. The examples in this
book are tested only on a JVM.

1.1.1 Scala as an object-oriented language

The popularity of programming languages such as Java, C#, and Ruby has made object-
oriented programming (OOP) widely acceptable to the majority of programmers. OOP,

2 Mark Harrah, “SBT, a Build Tool for Scala,” 2012, https://github.com/harrah/xsbt/.
3 “Scala comes to .Net,” July 22, 2011, www.scala-lang.org/node/10299.

http://www.scala-lang.org/
http://www.scala-lang.org/
http://www.scala-lang.org/
www.scala-lang.org/node/10299
https://github.com/harrah/xsbt/

5What’s Scala?

as its name implies, is a programming paradigm that uses objects. Think of objects as
data structures that consist of fields and methods. Object orientation helps to provide
structure to your application using classes and objects. It also facilitates composition so
you can create large applications from smaller building blocks. There are many OOP
languages in the wild, but only a few are fit to be defined as pure object-oriented lan-
guages.

 What makes a language purely object-oriented? Although the exact definition of
the term depends on whom you ask, most will agree a pure object-oriented language
should have the following characteristics:

 Encapsulation/information hiding.
 Inheritance.
 Polymorphism/dynamic binding.
 All predefined types are objects.
 All operations are performed by sending messages to objects.
 All user-defined types are objects.

Scala supports all these qualities and uses a pure object-oriented model similar to that
of Smalltalk4 (a pure object-oriented language created by Alan Kay around 1980),
where every value is an object, and every operation is a message send. Here’s a simple
expression:

1 + 2

In Scala this expression is interpreted as 1.+(2) by the Scala compiler. That means
you’re invoking a + operation on an integer object (in this case, 1) by passing 2 as a
parameter. Scala treats operator names like ordinary identifiers. An identifier in Scala is
either a sequence of letters and digits starting with a letter or a sequence of operator
characters. In addition to +, it’s possible to define methods like <=, -, or *.

 Along with the pure object-oriented features, Scala has made some innovations on
OOP space:

 Modular mixin composition—This feature of Scala has traits in common with
both Java interfaces and abstract classes. You can define contracts using one or
more traits and provide implementations for some or all of the methods.

 Self-type—A mixin doesn’t depend on any methods or fields of the class that it’s
mixed into, but sometimes it’s useful to use fields or methods of the class it’s
mixed into, and this feature of Scala is called self-type.

 Type abstraction—There are two principle forms of abstraction in programming
languages: parameterization and abstract members. Scala supports both forms
of abstraction uniformly for types and values.

I cover these areas in detail in chapters 3 and 8.

4 “Smalltalk,” Wikipedia, http://en.wikipedia.org/wiki/Smalltalk.

http://en.wikipedia.org/wiki/Smalltalk

6 CHAPTER 1 Why Scala?

DEFINITION A mixin is a class that provides certain functionality to be inher-
ited by a subclass and isn’t meant for instantiation by itself. A mixin could also
be viewed as an interface with implemented methods.

1.1.2 Scala as a functional language

Before I describe Scala as a functional language, I’ll define functional programming
in case you’re not familiar with it. Functional programming is a programming paradigm
that treats computation as the evaluation of mathematical functions and avoids state
and mutable data.

Functional programming takes more of a mathematical view of the world, where pro-
grams are composed of functions that take certain input and produce values and pos-
sibly other functions. The building blocks of functional programming are neither
objects nor procedures (C programming style) but functions. The simple definition of
functional programming is programming with functions.

 It’s important to understand what is meant by function here. A function relates
every value of the domain (the input) to exactly one value of the codomain (the out-
put). Figure 1.1 depicts a function that maps values of type X to exactly one value of Y.

 Another aspect of functional program-
ming is that it doesn’t have side effects or
mutability. The benefits of not having
mutability and side effects in functional
programs are that the programs are much
easier to understand (it has no side
effects), reason about, and test because the
activity of the function is completely local
and it has no external effects. Another
huge benefit of functional programming is
ease of concurrent programming. Concur-
rency becomes a nonissue because there’s
no change (immutability) to coordinate

Mutable vs. immutable data

An object is called mutable when you can alter the contents of the object if you have

a reference to it. In the case of an immutable object, the contents of the object can’t

be altered if you have a reference to it.

It’s easy to create a mutable object; all you have to do is provide access to the muta-

ble state of the object. The disadvantage of mutable objects is keeping track of the

changes. In a multithreaded environment you need lock/synchronization techniques

to avoid concurrent access. For immutable objects, you don’t have to worry about

these situations.

Figure 1.1 A pure function that maps values of

X to exactly one value of Y

7What’s Scala?

between processes or threads. You’ll learn about the
functional programming side of Scala throughout
the book, particularly in chapter 10.

 Now let’s talk about functional programming lan-
guages. Functional programming languages that
support this style of programming provide at least
some of the following features:

 Higher-order functions (chapter 4)
 Lexical closures (chapter 3)
 Pattern matching (chapters 2 and 3)
 Single assignment (chapter 2)
 Lazy evaluation (chapter 2)
 Type inference (chapter 2)
 Tail call optimization (chapter 5)
 List comprehensions (chapters 2 and 4)
 Mondadic effects (chapter 5)

Some of these features are probably unfamiliar if
you haven’t done functional programming before.

How do mathematical functions relate to functions in programming?

In mathematics, a function is a relation between a given set of elements called the

domain (in programming we call this input) and a set of elements called the codomain

(in programming we call this output). The function associates each element in the

domain with exactly one element in the codomain. For example, f(x) = y could be

interpreted as

x has a relationship f with y or x maps to y via f

If you write your functions keeping in mind the definition of the mathematical function,

then for a given input your function should always return the same output.

Let’s see this in a programming context. Say you have the following function that

takes two input parameters and produces the sum of them:

def addFunction(a: Int, b: Int) = a + b

For a given input set (2, 3) this function always returns 5, but the following function

currentTime doesn’t fit the definition:

def currentTime(timezone: TimeZone) =

Calendar.getInstance(timezone).getTime

For the given timezone GMT, it returns different results based on the time of day.

One other interesting property of a mathematical function is referential transparency,

which means that an expression can be replaced with its result. In the case of add-
Function, we could replace all the calls made to it with the output value, and the

behavior of the program wouldn’t change.

Side effects

A function or expression

is said to have a side

effect if, in addition to pro-

ducing a value, it modifies

some state or has an

observable interaction

with calling functions or

the outside world. A func-

tion might modify a global

or a static variable, modify

one of its arguments,

raise an exception, write

data to a display or file,

read data, or call other

functions having side

effects. In the presence of

side effects, a program’s

behavior depends on its

history of execution.

www.allitebooks.com

http://www.allitebooks.org

8 CHAPTER 1 Why Scala?

Scala supports most of them, but to keep it simple Scala is a functional language in the
sense that functions are first-class values. That means that in Scala, every function is a
value (like some integer value 1 or some string value "foo"), and like any values, you
can pass them as parameters and return them from other functions. In Scala you can
assign a function (x: Int) => x + 1 to a val inc and use that to invoke that function:

val inc = (x : Int) => x + 1

inc(1)

Here val represents a single assignment variable (like Java final variables) with a value
that can’t be changed after the assignment. The output of the function call is 2.
In the following example you’ll see how to pass functions as parameters to another
function and get the result:

List(1, 2, 3).map((x: Int) => x + 1)

In this case you’re passing an increment function to another function called map, and
the output produced by the invocation of the map function will be List(2, 3, 4).
Based on the output you can see that map is invoking the given function for each ele-
ment in the list. Don’t worry about the syntax right now; you’ll learn about it in detail
in later chapters.

1.1.3 Scala as a multi-paradigm language

Scala is a multi-paradigm language because it supports both functional and OOP pro-
gramming. Scala is the first to unify functional programming and OOP in a statically
typed language for the JVM. The obvious question is why we need more than one style
of programming.

 The goal of multi-paradigm computing is to provide a number of problem-solving
styles so a programmer can select the solution that best matches the characteristics of
the problem to be solved. This provides a framework where you can work in a variety of

Is Scala a pure functional language?

Scala, put simply, is not a pure functional language. In a pure functional language

modifications are excluded, and variables are used in a mathematical sense, with

identifiers referring to immutable and persistent values. An example of a pure func-

tional language is Haskell.

Scala supports both types of variables: single-assignment variables (also called val-

ues) that don’t change their value throughout their lifetime and variables that point

to a mutable state or could be reassigned to other objects. Even though you should

use immutable objects whenever possible, Scala as a language doesn’t provide any

restrictions. The restriction is purely conventional. A good rule of thumb is to always

default to val and use variables when it’s absolutely necessary.

To me, the fundamental property of a functional language is treating functions as val-

ues, and Scala does that well.

9What’s Scala?

styles and mix the constructs from different ones. Functional programming makes it
easy to build interesting things from simple parts (functions), and OOP makes it easy to
adopt and extend complex systems using inheritance, classes, and so on.

 According to researcher Timothy Budd,5 “Research results from the psychology of
programming indicate that expertise in programming is far more strongly related to
the number of different programming styles understood by an individual than it is the
number of years of experience in programming.”

 How can Scala combine these two different and almost opposite paradigms into
one programming language? In the case of OOP, building blocks are objects, and in
functional programming building blocks are functions. In Scala, functions are treated
as objects.

FUNCTIONS AS OBJECTS

One of the benefits of combining functional programming with object-oriented pro-
gramming in Scala is treating functions as objects.

 Scala, being a functional language, treats functions as values, and you saw one
example of assigning a function to a variable. Because all values in Scala are objects, it
follows that functions are objects too. Look at the previous example again:

List(1, 2, 3).map((x: Int) => x + 1)

You’re passing the function (x:Int) => x + 1 to the method map as a parameter.
When the compiler encounters such a call, it replaces the function parameter with an
object, as in the following:

List(1, 2, 3).map(new Function1[Int, Int]{ def apply(x:Int): Int = x + 1})

What’s going on here? Without diving in too deeply for now, when the Scala compiler
encounters functions with one parameter, it replaces that call with an instance of class
scala.Function1, which implements a method called apply. If you look carefully,
you’ll see that the body of the function is translated into the apply method. Likewise,
Scala has Function objects for functions with more than one parameter.

 As the popularity of multi-paradigm programming increases, the line between
functional and object-oriented programming will fade away.6 As we continue to
explore Scala, you will see how we blend both functional programming and OOP to
solve problems.

1.1.4 Scala as a scalable and extensible language

Scala stands for scalable language.7 One of the design goals of Scala is to create a lan-
guage that will grow and scale with your demand. Scala is suitable for use as a scripting
language, as well as for large enterprise applications. Scala’s component abstraction,

5 Timothy A. Budd’s personal web page, http://web.engr.oregonstate.edu/~budd/.
6 “A Postfunctional Language,” www.scala-lang.org/node/4960.
7 “Scala: A Scalable Language” by Martin Odersky, Lex Spoon, and Bill Venners, Scalazine, May 6, 2008,

www.artima.com/scalazine/articles/scalable-language.html.

http://web.engr.oregonstate.edu/~budd/
www.scala-lang.org/node/4960
www.artima.com/scalazine/articles/scalable-language.html

10 CHAPTER 1 Why Scala?

succinct syntax, and support for both object-oriented and functional programming
make the language scalable.

 Scala also provides a unique combination of language mechanisms that makes it
easy to add new language constructs in the form of libraries. You could use any
method as an infix or postfix operator, and closures in Scala can be passed as “pass by
name” arguments to other functions (see the next listing). These features make it eas-
ier for developers to define new constructs.

 Let’s create a new looping construct called loopTill, which is similar to the while
loop in the following listing.

def loopTill(cond: => Boolean)(body: => Unit): Unit = {
 if (cond) {

 body

 loopTill(cond)(body)
 }

}

var i = 10

loopTill (i > 0) {
 println(i)

 i -= 1

}

In this code you’re creating a new loopTill construct by declaring a method called
loopTill that takes two parameters. The first parameter is the condition (i > 0) and
the second parameter is a closure. As long as the condition evaluates to true, the
loopTill function will execute the given closure.

DEFINITION Closure is a first-class function with free variables that are bound
in the lexical environment. In the loopTill example, the free variable is i.
Even though it’s defined outside the closure, you could still use it inside. The
second parameter in the loopTill example is a closure, and in Scala that’s
represented as an object of type scala.Function0.

Extending a language with a library is much easier than extending the language itself
because you don’t have to worry about backward compatibility. For example, Scala
actor implementation (defined in section 1.2.2) is provided as a library and isn’t part
of the Scala language. When the first actor implementation didn’t scale that well,
another actor implementation was added to Scala without breaking anything.

1.1.5 Scala runs on the JVM

The best thing about Java is not the language but the JVM. A JVM is a fine piece of
machinery, and the Hotspot team has done a good job in improving its performance
over the years. Being a JVM language, Scala integrates well with Java and its ecosystem,
including tools, libraries, and IDEs. Now most of the IDEs ship with the Scala plug-in
so that you can build, run, and test Scala applications inside the IDE. To use Scala you

Listing 1.1 Creating the loop construct loopTill in Scala

11The current crisis

don’t have to get rid of all the investments you’ve made in Java so far. Instead you can
reuse them and keep your ROI coming.

 Scala compiles to Java byte code, and at the byte-code level you can’t distinguish
between Java code and Scala code. They’re the same. You could use the Java class file
disassembler javap to disassemble Scala byte code (chapter 11 looks into this in more
detail) as you could for Java classes.

 Another advantage of running Scala on a JVM is that it can harness all the benefits
of JVM-like performance and stability out of the box. And being a statically typed lan-
guage, Scala programs run as fast as Java programs.

 I go through all these features of Scala in more detail throughout the book, but I
still haven’t answered the question—why Scala?

1.2 The current crisis

An interesting phenomenon known as “Andy giveth, and Bill taketh away” comes from
the fact that no matter how fast processors become, we software people find a way to
use up that speed. There’s a reason for that. With software you’re solving more and
more complex problems, and this trend will keep growing. The key question is
whether processor manufacturers will be able to keep up with the demand for speed
and processor power. When will this cycle end?

1.2.1 End of Moore’s law

According to Moore’s law, the number of transistors per square inch on a chip will
double every 18 months. Unfortunately, Intel and other CPU manufacturers are finally
hitting the wall8 with Moore’s law and instead are taking the route of multicore pro-
cessors. The good news is that processors are going to continue to become more pow-
erful, but the bad news is that our current applications and programming
environments need to change to take advantage of multicore CPUs.

1.2.2 Programming for multicores

How can you take advantage of the new multicore processor revolution?
 Concurrency. Concurrency will be, if it isn’t already, the way we can write software

to solve our large, distributed, complex enterprise problems if we want to exploit the
CPU throughputs. Who doesn’t want efficient and good performance from their appli-
cations? We all do.

 A few people have been doing parallel and concurrent programming for a long
time, but it still isn’t mainstream or common among enterprise developers. One rea-
son is that concurrent programming has its own set of challenges. In the traditional
thread-based concurrency model, the execution of the program is split into multiple
concurrently running tasks (threads), and each operates on shared memory. This
leads to hard-to-find race conditions and deadlock issues that can take weeks and

8 “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software,” by Herb Sutter, originally
published in Dr. Dobb’s Journal, March 2005, www.gotw.ca/publications/concurrency-ddj.htm.

www.gotw.ca/publications/concurrency-ddj.htm

12 CHAPTER 1 Why Scala?

months to isolate, reproduce, and fix. It’s not the threads but the shared memory
that’s the root of all the concurrency problems. The current concurrency model is too
hard for developers to grok, and we need a better concurrent programming model
that will help developers easily write and maintain concurrent programs.

 Scala takes a totally different approach to concurrency: the Actor model. An actor9

is a mathematical model of concurrent computation that encapsulates data, code, and
its own thread of control and communicates asynchronously using immutable (no
side effects) message-passing techniques. The basic Actor architecture relies on a
shared-nothing policy and is lightweight in nature. It’s not analogous to a Java thread;
it’s more like an event object that gets scheduled and executed by a thread. The Scala
Actor model is a better way to handle concurrency issues. Its shared-nothing architec-
ture and asynchronous message-passing techniques make it an easy alternative to
existing thread-based solutions.

Traditionally, programming multicore processors is more complex than programming
uniprocessors and it requires platform-specific knowledge. It’s also harder to maintain
and manage these codebases. To make parallel programming easier, Scala provides
higher abstractions in the form of a parallel collections library that hides parallel algo-
rithms. For example, to square up each element of a List in parallel, you can use par-
allel collections like the following:

List(1, 2, 3).par.map(x => x * x)

In this case the .par transforms the List into a parallel collection that implements the
map method using a parallel algorithm. Behind the scenes a parallel collections library
will fork threads necessary to execute the map method using all the cores available in
a given host machine. The parallel collections library is a new addition to Scala and
provides parallel versions of most collection types. I explore more about parallel col-
lections in chapter 4.

9 “Actor model,” Wikipedia, http://en.wikipedia.org/wiki/Actor_model.

History of the Actor model

The Actor model was first proposed by Carl Hewitt in 1973 in his paper “A Universal

Modular ACTOR Formalism for Artificial Intelligence” and was later on improved by Gul

Agha (“ACTORS: A Model of Concurrent Computation in Distributed Systems”).

Erlang was the first programming language to implement the Actor model. Erlang is

a general-purpose concurrent programming language with dynamic typing. After the

success of the Erlang Actor model at Ericsson, Facebook, and Yahoo!, it became a

good alternative for handling concurrency problems, and Scala inherited it. In Scala,

actors are implemented as a library that allows developers to have their own imple-

mentation. In chapters 7 and 12 you’ll look into various Scala actor implementations.

http://en.wikipedia.org/wiki/Actor_model

13Transitioning from Java to Scala

1.3 Transitioning from Java to Scala

“If I were to pick a language to use today other than Java, it would be Scala.”
 —James Gosling

When Java, released in May 1995 by Sun Microsystems, arrived on the programming
language scene, it brought some good ideas, such as a platform-independent pro-
gramming environment (write once, run anywhere), automated garbage collection,
and OOP. Java made object-oriented programming easier for developers, compared
with C/C++, and was quickly adopted into the industry.

 Over the years Java has become bloated. Every new feature added to the language
brings with it more boilerplate code for the programmer; even small programs can
become bloated with annotations, templates, and type information. Java developers
are always looking for new ways to improve productivity using third-party libraries and
tools. But is that the answer to the problem? Why not have a more productive pro-
gramming language?

1.3.1 Scala improves productivity

Adding libraries and tools to solve the productivity problem sometimes backfires, add-
ing complexity to applications and reducing productivity. I’m not saying that you
shouldn’t rely on libraries; you should whenever it makes sense. But what if you had a
language built from the ground up from ideas like flexibility, extensibility, scalabil-
ity—a language that grows with you?

 Developers’ needs today are much different than they used to be. In the world of
Web 2.0 and agile development, flexibility and extensibility in the programming envi-
ronment are important. Developers need a language that can scale and grow with
them. If you’re from Java, then Scala is that language. It will make you productive, and
it will allow you to do more with less code and without the boilerplate code.

1.3.2 Scala does more with less code

To see the succinctness of Scala, you have to dive into the code. The next two listings
provide a simple example of finding an uppercase character in a given string, compar-
ing Scala and Java code.

boolean hasUpperCase = false;
for(int i = 0; i < name.length(); i++) {

 if(Character.isUpperCase(name.charAt(i))) {

 hasUpperCase = true;
 break;

 }

}

In this code you’re iterating through each character in the given string name and
checking whether the character is uppercase. If it’s uppercase, you set the hasUpper-
Case flag to true and exit the loop. Now let’s see how we could do it in Scala.

Listing 1.2 Finding an uppercase character in a string using Java

14 CHAPTER 1 Why Scala?

val hasUpperCase = name.exists(_.isUpper)

In Scala you can solve this problem with one line of code. Even though it’s doing the
same amount of work, most of the boilerplate code is taken out of the programmer’s
hands. In this case you’re calling a function called exists on name, which is a string,
by passing a predicate that checks whether the character is true, and that character is
represented by _. This demonstrates the brevity of the Scala language and its read-
ability. Now let’s look at the following listing, where you create a class called Program-
mer with the properties name, language, and favDrink.

public class Programmer {

 private String name;
 private String language;
 private String favDrink;

 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public String getLanguage() {
 return language;
 }
 public void setLanguage(String language) {
 this.language = language;
 }
 public String getFavDrink() {
 return favDrink;
 }
 public void setFavDrink(String favDrink) {
 this.favDrink = favDrink;
 }
}

This is a simple POJO (plain old Java object) with three properties—nothing much to
it. In Scala you could create a similar class in one line, as in the following listing.

class Programmer(var name:String,var language:String,var favDrink:String

In this example you’re creating a similar class called Programmer in Scala but with
something called a primary constructor (similar to a default constructor in Java) that takes
three arguments. Yes, you can define a constructor along with the class declaration—
another example of succinctness in Scala. The var prefix to each parameter makes
the Scala compiler generate a getter and setter for each field in the class. That’s
impressive, right? You’ll look into more interesting examples throughout the book

Listing 1.3 Finding an uppercase character in a string using Scala

Listing 1.4 Defining a Programmer class in Java

Listing 1.5 Defining a Programmer class in Scala

15Coming from a dynamic language

when you go deeper into Scala. For now, it’s clear that with Scala you can do more
with fewer lines of code. You could argue that the IDE will automatically generate
some of this boilerplate code, and that’s not a problem. But I’d argue that you’d still
have to maintain the generated code. Scala’s succinctness will be more apparent when
you look into much more involved examples. In Java and Scala code comparisons, the
same feature requires 3 to 10 times more lines in Java than Scala.

1.4 Coming from a dynamic language

It’s hard to find developers these days who haven’t heard of or played with Ruby,
Groovy, or Python. The biggest complaint from the dynamic language camp about
statically typed languages is that they don’t help the productivity of the programmer
and they reduce productivity by forcing programmers to write boilerplate code. And
when dynamically typed languages are compared with Java, obvious things like clo-
sures and extensibility of the language are cited everywhere. The obvious question
here is how Scala is different.

 Before going into the issue of static versus dynamically typed languages, let’s look
into Scala’s support for closures and mixin. The following listing shows how to count
the number of lines in a given file in Ruby.

count = 0

File.open "someFile.txt" do |file|

 file.each { |line| count += 1 }
end

You’re opening the file someFile.txt and for each line incrementing the count with 1.
Simple! The following listing shows how you can do this in Scala.

val src = scala.io.Source.fromFile(“someFile.txt”)
val count = src.getLines().map(x => 1).sum

The Scala code looks similar to the Ruby code. You could solve this in many ways in
Scala; here you’re using the map method to return 1 for each line, then using the sum
method to calculate the total count.

 Scala supports mixin composition with something called traits, which are similar to
an abstract class with partial implementation. For example, you can create a new type
of collection which allows users to access file contents as iterable, by mixing the Scala
Iterable trait. The only contract is to implement an iterator method:

class FileAsIterable {

 def iterator = scala.io.Source.fromFile("someFile.txt").getLines()

}

Now if you mix in the Scala Iterable, your new FileAsIterable will become a Scala
Iterable and will start supporting all the Iterable methods:

Listing 1.6 Counting the number of lines in a file in Ruby

Listing 1.7 Counting the number of lines in a file in Scala

16 CHAPTER 1 Why Scala?

val newIterator = new FileAsIterable with Iterable[String]
newIterator.foreach { line => println(line) }

In this case you’re using the foreach method defined in the Iterable trait and print-
ing each line in the file.

 Scala version 2.10 adds support for a Dynamic10 type. Using this feature you can
dynamically add methods and fields to a type at runtime. This is very similar to the
method_missing feature of Ruby and is quite useful if you’re building a domain-specific
language (DSL). For example, Scala map is a collection of key value pairs and if you
want to access the value associated with a key you can do something like the following:

val someMap = Map("foo" -> 1, "bar" -> 2)
someMap.get("foo")

Here someMap is a collection of two key value pairs and someMap.get("foo") will
return 1. Using Dynamic we can easily change that so that we can access the keys as if
they were part of a type:

class MyMap extends Dynamic {

 ...

 def selectDynamic(fieldName: String) = map.get(fieldName)
 private val map = Map("foo" -> "1", "bar" -> 2)

}

val someMap = new MyMap
someMap.foo

someMap.bar

The magic ingredient in this case is the selectDynamic method. (Scala methods are
defined using the def keyword.) When the Scala compiler checks that foo is not part
of the type it doesn’t give up immediately. If the type is a subtype of Dynamic it looks
for the selectDynamic method and invokes it. If the method is not provided, you will
get a compilation error.

 Scala also supports something called implicit conversion, which is similar to Ruby
open classes but scoped and compile time checked. Examples of implicit conversions
are available throughout the book.

1.4.1 Case for static typing, the right way

With all that said and done, Scala is still a statically typed language. But if you’ve gone
through the examples in the previous section, you’ve probably already figured out
that Scala’s static typing doesn’t get in your face, and it almost feels like a dynamically
typed language. But still, why should you care about static typing?

DEFINITION Static typing is a typing system where the values and the variables
have types. A number variable can’t hold anything other than a number.
Types are determined and enforced at compile time or declaration time.

10 “SIP-17 Type Dynamic,” http://docs.scala-lang.org/sips/pending/type-dynamic.html.

http://docs.scala-lang.org/sips/pending/type-dynamic.html

17Coming from a dynamic language

DEFINITION Dynamic typing is a typing system where values have types but the
variables don’t. It’s possible to successively put a number and a string inside
the same variable.

The size and the complexity of the software you’re building are growing every day, and
having a compiler do the type checking for you is great. It reduces the time you need
to spend fixing and debugging type errors. In a statically typed language like Scala, if
you try to invoke a length method on a number field, the Scala compiler will give you
a compilation error. In a dynamically typed language you’ll get a runtime error.

 Another benefit of a statically typed language is that it allows you to have powerful
tools like refactoring and IDEs. Having an IDE might not interest you because of pow-
erful editing tools like Emacs and TextMate, but having refactoring support is great
when working on large codebases.

 All these benefits do come with a price. Statically typed languages are more con-
straining than dynamically typed languages, and some force you to provide additional
type information when you declare or call a function. But having constraints is useful
when building a large application because they allow you to enforce a certain set of
rules across the codebase. Scala, being a type-inferred language, takes care of most of
the boilerplate code for the programmer (that’s what compilers are good for, right?)
and takes you close to a dynamically typed language, but with all the benefits of a stat-
ically typed language.

DEFINITION Type inference is a technique by which the compiler determines
the type of a variable or function without the help of a programmer. The
compiler can deduce that the variable s in s="Hello" will have the
type string because "hello" is a string. The type inference ensures the
absence of any runtime type errors without putting a declaration burden on
the programmer.

To demonstrate how type inference works, create an array of maps in Scala:

val computers = Array(

 Map("name" -> "Macbook", "color" -> "white"),
 Map("name" -> "HP Pavillion", "color" -> "black")

)

If you run this Scala code in the Scala REPL, you’ll see the following output:
computers:

Array[scala.collection.immutable.Map[java.lang.String,java.lang.String]]

= Array(Map(name -> Macbook, color -> white), Map(name -> HP Pavillion,
color -> black))

Even though you only specified an array of maps with key and value, the Scala com-
piler was smart enough to deduce the type of the array and the map. And the best part
is that now if you try to assign the value of name to some integer type variable some-
where in your codebase, the compiler will complain about the type mismatch, saying
that you can’t assign String to an integer-type variable.

www.allitebooks.com

http://www.allitebooks.org

18 CHAPTER 1 Why Scala?

1.5 For the programming language enthusiast

One of the main design goals for Scala was to integrate functional and OOP into one
language (see section 1.1.4 for details). Scala is the first statically typed language to fuse
functional and OOP into one language for the JVM. Scala has made some innovations
in OOP (mentioned previously) so that you can create better component abstractions.

 Scala inherits lots of ideas from various programming languages of the past and
present. To start with, Scala adopts its syntax from Java/C# and supports both JVM and
Common Language Runtime (CLR). Some would argue that Scala’s syntax is more dis-
similar than similar to that of Java/C#. You saw some Scala code in previous sections,
so you can be the judge of that. In Scala every value is an object, and every operation is
a method call. Smalltalk influences this pure object-oriented model. Scala also sup-
ports universal nesting and uniform access principles (see the following listing), and
these are borrowed from Algol/Simula and Eiffel, respectively. In Scala variables and
functions without parameters are accessed the same way.

class UAPExample {

 val someField = "hi"

 def someMethod = "there"
}

val o = new UAPExample

o.someField
o.someMethod

Here you’re accessing a field and a method of the instance of the UAPExample class,
and to the caller of the class it’s transparent.

 Scala’s functional programming constructs are similar to those of the metalan-
guage (ML) family of languages, and Scala’s Actor library is influenced by Erlang’s
Actor model.

COMPILE MACROS The Scala 2.10 release adds experimental support for
compile-time macros.11 This allows programmers to write macro defs: func-
tions that are transparently loaded by the compiler and executed during com-
pilation. This realizes the notion of compile-time metaprogramming for Scala.

Based on this list you may realize that Scala is a rich language in terms of features and
functionality. You won’t be disappointed by Scala and will enjoy learning this language.

1.6 Summary

In this chapter I quickly covered many concepts, but don’t worry because I’m going to
reiterate these concepts throughout the book with plenty of examples so that you can
relate them to real-world problems.

Listing 1.8 Universal access principles in Scala

11 Eugene Burmako, "Def Macros," http://docs.scala-lang.org/overviews/macros/overview.html.

http://docs.scala-lang.org/overviews/macros/overview.html

19Summary

 You learned what Scala is and why you should consider learning Scala as your next
programming language. Scala’s extensible and scalable features make it a language
that you can use for small to large programming problems. Its multi-paradigm model
provides programmers with the power of abstractions from both functional and OOP
models. Functional programming and actors will make your concurrent program-
ming easy and maintainable. Scala’s type inference takes care of the pain of boiler-
plate code so that you can focus on solving problems.

 In the next chapter you’ll set up your development environment and get your
hands dirty with Scala code and syntax.

20

Getting started

In chapter 1 you learned what Scala is and how it compares to other programming
languages. I described the concepts at a high level, and in the next few chapters
you’re going to revisit those concepts and explore them in detail using examples. In
this chapter you learn about the basic Scala types, functions, for-comprehensions,
pattern matching, and the other usual suspects.

 Some of the concepts in this chapter, like pattern matching and for-
comprehensions, are functional programming concepts. But because Scala is a
multi-paradigm language, I cover them with the rest of the nonfunctional program-
ming concepts. The objective of this chapter is for you to become comfortable with
the basics of the Scala language and its environment so you can start writing Scala
programs. Early on, I focus on only the Scala interpreter and its REPL environment
(you’ll see it in the next section) to keep things simple.

This chapter covers

 Working with the Scala REPL

 Scala basics

 For-comprehensions and pattern matching

 Building a complete REST client in Scala

21REPL with Scala interpreter

 Before going any farther, make sure your Scala installation is working. Throughout
the chapter you’re going to work with various Scala examples, and it would be better if
you tried them in the Scala interpreter at the same time. Now let’s have some fun with
the Scala interpreter.

2.1 REPL with Scala interpreter

The easiest way to get started with Scala is by using the Scala interpreter, an interactive
shell for writing Scala expressions and programs. To start the Scala interpreter in
interactive mode, type scala at the command prompt. If everything goes fine with
your installation, you’ll see something like the following:

Welcome to Scala version 2.10.0.final (Java ...).

Type in expressions to have them evaluated.

Type :help for more information.

scala>

This means your Scala installation is successful. I’m running Scala version 2.10.0, and
all the code examples should work for this version and above. At the Scala prompt
type 42 and press Enter, and you should see something like this:

scala> 42

res0: Int = 42

The first line is what you typed. The Scala interpreter reads the input 42, evaluates it
as an integer literal, creates an Int type object representing the number 42, and prints
it back to the console. res0 is the name of the variable created by the Scala interpreter
(the name of the variable could be different for you because the variable name is gen-
erated by the Scala interpreter at runtime) and it holds the value 42. If you type the
variable name, in this case res0, at the prompt, you’ll get similar output:

scala> res0
res1: Int = 42

These steps together are called read-evaluate-print loop (REPL). You could loop read-
evaluate-print steps repeatedly inside the Scala interpreter. Now you’ll write your first
“Hello world” program in Scala:

scala> println("Hello world")

Hello world

You’re evaluating the println function by passing the "Hello world" string as a
parameter, and Scala outputs the same string.

DEFINITION println is a function defined in scala.Console, which in turn
uses System.out.println to print messages to the console. Scala Predef
(part of the standard library) maps println to Console.println for you so
you don’t have to prefix it with Console when using it.

In chapter 1, I mentioned that Scala integrates well with Java but didn’t provide an
example. I’ll fix that now:

22 CHAPTER 2 Getting started

scala> val myList = new java.util.ArrayList[String]()
myList: java.util.ArrayList[String] = []

In this case you’re creating an instance of java.util.ArrayList that will hold
String-type objects. If you don’t remember all the methods that you could possibly
invoke on myList, don’t worry because the Scala interpreter will help you with that.
Type in myList, followed by a period, and press Tab; the Scala interpreter lists all the
methods you can invoke. Not only does it list all the methods associated with a data
type, it also autocompletes variable names and class names that are known to the
interpreter. I encourage you to spend some time with the Scala interpreter, explore
the available options, and keep it handy when working through the examples in this
book. Consider REPL as an essential part of learning a new language because it gives
quick feedback. Table 2.1 explains the REPL options available to you.

2.2 Scala basics

In this section I round out basic Scala information with examples so you can gradually
get comfortable with the language. You’ll use the Scala REPL to try out the examples,
but you can use any of the development environments mentioned in the previous sec-
tion that suit you.

 In the following sections you’ll explore basic Scala types, including String and the
value types Byte, Short, Int, Long, Float, Double, Boolean, and Char. You’ll learn
about two types of Scala variables, var and val, how they’re used, and how they’re dif-
ferent. You’ll also learn about the Scala functions, how to define them, and ways you
can invoke them. Let’s start with the basic data types in Scala.

Table 2.1 Important Scala interpreter commands

Command Description

:help This command prints the help message with all the commands available in the Scala

interpreter.

:cp Use this command to add a JAR file to the classpath for the Scala interpreter.

For example, :cp tools/junit.jar will try to find a JUnit JAR file relative to your

current location and, if found, it will add the JAR file to your classpath so that you can

refer to the classes inside the JAR file.

:load or :l Allows you to load Scala files into the interpreter. If you want to investigate existing

Scala code, you could load the file into the Scala interpreter, and all the definitions will

be accessible to you.

:replay or :r Resets the interpreter and replays all the previous commands.

:quit or :q Exits the interpreter.

:type Displays the type of an expression without evaluating it. For example, :type 1 + 2 will

determine the type of the expression to Int without performing the add operation.

23Scala basics

2.2.1 Basic types

If you’re a Java programmer, you’ll be glad to know that Scala supports all the basic
value types (primitives): Byte, Short, Int, Float, Double, Boolean, and Char. Table 2.2
shows all eight basic value types supported by Scala. In Scala all the basic types are
objects, and they’re defined under the scala package.

In Scala all the basic types are declared
using initial caps. Instead of declaring
something as int, in Scala it’s declared as
Int. In earlier versions of Scala, pro-
grammers could use lowercase and
uppercase interchangeably, but from ver-
sion 2.8 on, if you declare any variable
with int, you’ll get a compiler error:

scala> val x:int = 1
<console>:4: error: not found: type

int

val x:int = 1

The following is fine with the compiler:

scala> val x:Int = 1

x: Int = 1

Even though the full qualifying name of
Int is scala.Int, you can use only Int

Table 2.2 Scala basic types

Value type Description and range

Byte 8-bit signed 2’s complement integer. It has minimum value of –128 and a maximum

value of 127 (inclusive).

Short 16-bit signed 2’s complement integer. It has a minimum value of –32,768 and maxi-

mum of 32,767 (inclusive).

Int 32-bit signed 2’s complement integer. It has a minimum value of –2,147,483,648 and

a maximum value of 2,147,483,647 (inclusive).

Long 64-bit signed 2’s complement integer. It has a minimum value of

-9,223,372,036,854,775,808 and a maximum value of 9,223,372,036,854,775,807

(inclusive).

Float A single-precision 32-bit IEEE 754 floating point.

Double A double-precision 64-bit IEEE 754 floating point.

Boolean Two possible values: true and false.

Char A single 16-bit Unicode character. It has a minimum value of ‘\u0000’ (or 0) and a max-

imum value of ‘\uffff’ (or 65,535 inclusive).

A small fact about

Scala Predef

The Scala compiler implicitly

imports java.lang, the scala
package, and an object called

scala.Predef to every compilation

unit or Scala program. In the case of

.NET instead of java.lang, it

imports the system package. The

Predef object defines standard

functions and type aliases for Scala

programs. Because this object is

imported automatically, all mem-

bers of this object are available to

you. Predef is interesting, and you

can learn a lot about Scala by look-

ing at the scaladoc or source of the

scala.Predef object.

24 CHAPTER 2 Getting started

because the scala package is automatically imported into every Scala source, so you
don’t have to fully qualify the basic types.1

 To see all packages that are automatically imported, use the :imports command
inside REPL:

scala> :imports

 1) import java.lang._ (153 types, 158 terms)

 2) import scala._ (798 types, 806 terms)
 3) import scala.Predef._ (16 types, 167 terms, 96 are implicit)

In this case, java.lang, scala, and scala.Predef packages are automatically
imported when you start a REPL session.

INTEGER LITERALS

Of the basic types defined in table 2.2, Byte, Short, Int, Long, and Char are collec-
tively called integral types. The integer literals can represent decimal, hexadecimal, and
octal numbers. They’re determined by the way the literal is defined. If the literal is 0
or any nonzero digits, it’s a decimal number:
scala> val decimal = 11235

decimal: Int = 11235

DEFINITION A literal is a shorthand way to describe an object. The shorthand
expression matches the structure of the project. You could create a string
object by using the string literal "one" and also using the new keyword, as in
new String("one").

Because integer literals are usually integers, Scala infers the type as integer, but if you
want a Long type, you could add the suffix L or l:

scala> val decimal = 11235L
decimal: Long = 11235

Hexadecimal numbers start with 0x, and octal numbers should be prefixed with 0:

scala> val hexa = 0x23
hexa: Int = 35

scala> val octa = 023

hexa: Int = 19

One thing to note while using hexadecimal and octal numbers is that the Scala inter-
preter always evaluates the result as a decimal number. You can specify the type of vari-
able (sometimes called only value; more on this later) that you want when you think
Scala type inference isn’t producing the result you are seeking. If you declare a vari-
able with an integer literal, for example, Scala creates a variable of type integer unless
it can’t fit the value within the range of integer values. In that case the Scala compiler
throws an error. What do you do if you want a Byte type variable? You declare the type
Byte when creating the variable:

1 Documentation for the Scala standard library, www.scala-lang.org/docu/files/api/index.html.

www.scala-lang.org/docu/files/api/index.html

25Scala basics

scala> val i = 1
i: Int = 1

scala> val i2: Byte = 1

i2: Byte = 1

FLOATING-POINT LITERALS

Floating-point literals are composed of digits with a decimal point and an exponent
part. But both the decimal point and the exponent part are optional. Floating-point
literals are of type Float when they’re suffixed with F or f and are Double otherwise:

scala> val d = 0.0

d: Double = 0.0

scala> val f = 0.0f

f: Float = 0.0

You can also create a Double variable with an exponent part. To declare a variable with
the value of 1 times 10 to the power of 30 (1 times 10^30), it would look like this:

scala>val exponent = 1e30

exponent: Double = 1.0E30

CHARACTER LITERALS

A character literal is a single character enclosed in quotes. The character can be a
printable Unicode character or an escape sequence:

scala> val capB = '\102'

capB: Char = B

scala> val capB = 'B'

capB: Char = B

You can also assign special character literal escape sequences to Char type variables:

scala> val new_line = '\n'

new_line: Char =

Because the new_line character is nonprintable, unlike others, the value of the
new_line variable doesn’t show up in the Scala interpreter. All the character escapes

A corner case with floating literals

In floating literals you could define a Double value as 1.0 or as 1, without the trailing

zero or digits. In Scala you can invoke a method with a decimal point (.) followed by

a method name, because all basic types (primitives) are objects in Scala, and like all

other Scala objects they have a toString method. This raises an interesting corner

case when invoking methods on floating literals. To invoke a toString method on

the 1. floating literal, what should you do? You have to put a space between the dot

and the toString method, like this: 1. toString. If you try it as 1.toString with-

out the space, it invokes the toString method defined in the Int object. This is nec-

essary only when the method name starts with a letter. For example, 1.+1 works fine

and produces the desired output, 2.0.

26 CHAPTER 2 Getting started

in Java and .NET are supported. Scala takes programming with Unicode characters to
the next level. You can use not only literals but also printable Unicode characters as
variable and method names. To create a variable name ans with the value 42 using
Unicode characters, you would do something like the following:

scala> val \u0061\u006e\u0073 = 42
ans: Int = 42

Using Unicode characters for naming variables or functions in a program is a way to
get yelled at by your peers, but in some contexts it improves the readability of the
code.2 In the following example Unicode characters are used in the variable and
method name:

val ? = scala.math.Pi

def ?(x:Double) = scala.math.sqrt(x)

Before trying out these examples, make sure your editor supports Unicode encoding.

STRING LITERALS

A string literal is a sequence of characters in double quotes. The characters are either
printable Unicode characters or escape sequences. If the string literal contains a
double-quote character, it must be escaped with a slash (\):

scala> val bookName = "Scala in \"Action\""
bookName: java.lang.String = Scala in "Action"

The value of the string literal is of type String. Unlike other basic types, String is an
instance of java.lang.String. As mentioned earlier, it’s automatically imported for
you. Scala also supports a special multiline string literal that’s enclosed in triple
quotes ("""). The sequence of characters is arbitrary, except that it may not contain a
triple quote, and it doesn’t even necessarily have to be printable:

scala> val multiLine = """This is a
 | multi line
 | string"""
multiLine: java.lang.String =
This is a
 multi line
 string

The output of the multiLine variable has leading whitespaces, and maybe you don’t
want that. There’s an easy fix—invoking a method called stripMargin strips out the
margin for you:

scala> val multiLine = """This is a
 | |multi line
 | |string""".stripMargin
multiLine: String =
This is a
multi line

string

2 “Boolean Algebra Internal DSL in Scala,” Gabriel’s software development blog, June 2, 2009, http://mng.bz/
w2V3.

http://mng.bz/w2V3
http://mng.bz/w2V3

27Scala basics

This code may seem a little confusing. The first | (vertical bar) or margin is added by
the interpreter when you press Enter without completing the expression, and the sec-
ond one is the one that you added as a margin for the multiline string. When the
stripMargin method finds those margin characters, it strips out the leading
whitespaces. I find multiline strings helpful when creating data sets for unit tests.

As a careful reader, you’re probably a little surprised by this stripMargin method
because I said that a Scala String object is nothing but a representative of a
java.lang.String object; where did we get this new stripMargin method? There’s
no method called stripMargin in java.lang.String. Again Predef is doing a little
bit of magic by wrapping java.lang.String to another type called scala.collection
.immutable.StringLike. If you look up the Scala documentation,3 you’ll see the
stripMargin method with many other useful methods that Scala provides to string
objects, along with the ones defined in the java.lang.String class.

3 Documentation for the Scala standard library, www.scala-lang.org/api/current/index.html.

String interpolation

Scala 2.10 has support for String interpolation. You can use the feature like this:

 scala> val name = "Nilanjan"

 name: String = Nilanjan

 scala> s"My name $name"
 res0: String = My name Nilanjan

Here is a method invoked on a class StringContext by passing the string literal con-

tained within the double quotes. Any token prefixed with $ or wrapped with ${...}
within the string will be replaced with its corresponding values. Similarly prepending

f to any string literal allows the creation of simple formatted strings, similar to printf

in other languages:

 scala> val height = 1.9d

 height: Double = 1.9
 scala> val name = "James"

 name: String = James

 scala> println(f"$name%s is $height%2.2f meters tall")
 James is 1.90 meters tall

RichString vs. StringLike

If you’ve used previous versions of Scala, you’ll recall an earlier class called

scala.RichString that provided additional methods to Scala string objects, but

from Scala 2.8 it’s called scala.collection.immutable.StringLike. Treating a

string as an immutable collection makes sense because it’s a collection of charac-

ters, and a string is an immutable object. Scala still has Rich type wrappers for other

basic types like RichInt, RichBoolean, RichDouble, and so on.

www.allitebooks.com

www.scala-lang.org/api/current/index.html
http://www.allitebooks.org

28 CHAPTER 2 Getting started

XML LITERALS

Typically, working with XML means using third-party parsers and libraries, but in Scala
it’s part of the language. Scala supports XML literals, where you can have XML frag-
ments as part of the code:

val book = <book>

 <title>Scala in Action</title>

 <author>Nilanjan Raychaudhuri</author>
 </book>

When you type this expression into the Scala interpreter, you’ll get the following:

book: scala.xml.Elem =
 <book>

 <title>Scala in Action</title>

 <author>Nilanjan Raychaudhuri</author>
 </book>

Scala converts the XML literal to a scala.xml.Elem type object. It doesn’t stop here.
You can put valid Scala code inside curly braces, {}, within the XML tags, and it works
out great when you have to generate the XML dynamically:

scala> val message = "I didn't know xml could be so much fun"

scala> val code = “1”

scala> val alert = <alert>
 <message priority={code}>{message}</message>

 <date>{new java.util.Date()}</date>

 </alert>

alert: scala.xml.Elem =

<alert>

 <message priority=”1”>
 I didn't know xml could be so much fun

 </message>

 <date>Fri Feb 19 19:18:08 EST 2010</date>
 </alert>

As you can see, Scala executes the code inside the curly braces and replaces it with the
output of the code. The code defined within curly braces is called Scala code blocks.

 When using Scala code to generate attribute values, make sure you don’t put dou-
ble quotes around it (priority={code}) because if you do, Scala will ignore it and
treat it as a string value. Throughout the book you’ll look into various uses of XML lit-
erals and other XML goodies supported by Scala.

2.2.2 Defining variables

You’ve already seen many examples about defining variables. In Scala there are two
ways you can define variables: val and var. A val is a single assignment variable, some-
times called value. Once initialized a val can’t be changed or reassigned to some
other value (similar to final variables in Java). On the other hand, var is reassignable;
you can change the value of the variable over and over again after initial assignment:

29Scala basics

scala> val constant = 87
constant: Int = 87

scala> constant = 88

<console>:5: error: reassignment to val
 constant = 88

 ^

scala> var variable = 87
variable: Int = 87

scala> variable = 88

variable: Int = 88

The Scala interpreter does a good job of inferring the type of variable based on the
value, but there are times when you’d like to, or have to, specify the type. You can
specify the type of variable after the variable name, separating it by a colon (:).

 There’ll be situations where you want to declare a variable without assigning a
value because you don’t yet know the value. In cases like these you can use the Scala
placeholder character (_) to assign a default value:

scala> var willKnowLater:String = _

willKnowLater: String = null

Because the default value for String is null, in this example the value of willKnow-
Later is null. As an exercise, try using Scala placeholder characters with other basic
types and see what values you get back. One point to note here is that when declaring
variables (both val and var), you have to specify the value or _ (Scala placeholder);
otherwise, the Scala interpreter will complain. The only case where you can have vari-
ables (only vars because val always needs a value when declared) without values
assigned to them is when the variables are declared inside a class.

 Sometimes you may want to declare a type whose value gets calculated based on
some time-consuming operation, and you don’t want to do that when you declare
the variable; you want to initialize it lazily because by default Scala evaluates the
value assigned to var or val when it’s declared. To change this default behavior, use
lazy val:

scala> lazy val forLater = someTimeConsumingOperation()

forLater: Unit = <lazy>

The someTimeConsumingOperation() will be called when the variable forLater is
used in any expression. Here’s another example that demonstrates the laziness:

scala> var a = 1
a: Int = 1

scala> lazy val b = a + 1

b: Int = <lazy>

scala> a = 5

a: Int = 5

scala> b
res1: Int = 6

30 CHAPTER 2 Getting started

In the last line, typing b forces the evaluation of the b, and because it wasn’t evaluated
when b was declared, it uses the latest value of a. The lazy keyword is allowed only
with val; you can’t declare lazy var variables in Scala.

 The variable declaration can sometimes have a pattern on the left side. Say you
want to extract the first element of a List and assign it to a variable. You can do that
using a pattern on the left side along with the variable declaration:

scala> val first :: rest = List(1, 2, 3)
first: Int = 1

rest: List[Int] = List(2, 3)

List is an immutable sequence type of collection (similar to List in Java and C#) in
Scala, and in this case it holds a collection of integers from 1 to 3. The pattern on the
left side matches the first element of the List, in this case 1, to the variable first and
the rest to the tail of the list, 2 and 3. The :: (called cons) is a method defined in
List. I cover more about pattern matching later in this chapter.

 Earlier I made the argument for immutability and why you should always prefer
immutability to mutability. Keeping that in mind, always start with val when declaring
variables in Scala and change to var when it’s absolutely necessary.

2.2.3 Defining functions

Functions are building blocks in Scala, and in this section you’re going to explore that
topic. To define a function in Scala, use the def keyword followed by the method
name, parameters, optional return type, =, and the method body. Figure 2.1 shows the
syntax of the Scala function declaration.

 Use a colon (:) to separate the parameter list from the return type. Multiple
parameters are separated by commas (,). The equals sign (=) is used as a separator
between the method signature and the method body.

 Let’s drop the parameter for the time being; you’ll come back to parameters later.
You’ll create your first Scala function without parameters:

scala> def myFirstMethod():String = { "exciting times ahead" }

myFirstMethod: ()String

def welcome(name: String) :String = {"Exciting times ahead" + name }

def keyword
function name

method parameter

return type

end of method signatureature

method body within curly braces

Figure 2.1 The syntax of the Scala function declaration

31Scala basics

The return type of a Scala function is optional because Scala infers the return type of
a function automatically. There are situations where it doesn’t work, but don’t worry
about that until later. Improve the myFirstMethod method by removing the return type:

scala> def myFirstMethod() = { "exciting times ahead" }
myFirstMethod: ()java.lang.String

scala> myFirstMethod()

res6: java.lang.String = exciting times ahead

The significance of = after the method signature isn’t only to separate the signature
from the method body but also to tell the Scala compiler to infer the return type of
your function. If you omit that, Scala won’t infer your return type:

scala> def myFirstMethod(){ "exciting times ahead" }

myFirstMethod: ()Unit

scala> myFirstMethod()

In this case when you invoke the function using the function name and (), you’ll get
no result. In the REPL output, notice that the return type of your function is no longer
java.lang.String; it’s Unit. Unit in Scala is like void in Java, and it means that the
method doesn’t return anything.

TIP Scala type inference is powerful, but use it carefully. If you’re creating a
library and plan to expose your functions as a public API, it’s a good practice to
specify the return type for the users of the library. In any case, if you think it’s
not clear from the function what its return type is, either try to improve the
name so that it communicates its purpose better or specify the return type.

Your myFirstMethod is simple: it returns the string "exciting times ahead" and when
you have a function like that, you also drop the curly braces from the method body:

scala> def myFirstMethod() = "exciting times ahead"

myFirstMethod: ()java.lang.String

If you invoke the function, you’ll get the same result. In Scala it’s always possible to
take out unnecessary syntax noise from the code. Because you aren’t passing any
parameters, you can take out the unused () from the declaration, and it almost looks
like a variable declaration, except that instead of using var or val you’re using def:

scala> def myFirstMethod = "exciting times ahead"

myFirstMethod: java.lang.String

When calling the function you can also leave out the parentheses:

scala> myFirstMethod

res17: java.lang.String = exciting times ahead

If the function has side effects, the common convention is to use “()” even though it
isn’t required.

 Returning to function parameters, the following function called max takes two
parameters and returns the one that’s the greater of the two:

32 CHAPTER 2 Getting started

scala> def max(a: Int, b: Int) = if(a > b) a else b
max: (a: Int,b: Int)Int

scala> max(5, 4)

res8: Int = 5

scala> max(5, 7)

res9: Int = 7

By now you probably have figured out that specifying return is optional in Scala. You
don’t have to specify the return keyword to return anything from the function. It will
return the value of the last expression. In the previous case, if the if condition evaluates
to true, then a is the last expression that is executed, so a is returned; otherwise b is
returned. Even though the return type is optional, you do have to specify the type of the
parameters when defining functions. Scala type inference will figure out the type of
parameters when you invoke the function but not during the function declaration.4,5

Sometimes it becomes necessary to create a function that will take an input and create
a List from it. But the problem is you can’t determine the type of input yet. Someone
could use your function to create a List of Int, and another person could use it to
create a List of String. In cases like this you create a function in Scala by parameter-
ized type. The parameter type will be decided when you invoke the function:

scala> def toList[A](value:A) = List(value)
toList: [A](value: A)List[A]

scala> toList(1)

res16: List[Int] = List(1)

scala> toList("Scala rocks")

res15: List[java.lang.String] = List(Scala rocks)

When declaring the function, you denote the unknown parameterized type as A. Now
when your toList is invoked, it replaces the A with the parameter type of the given
parameter. In the method body you create an instance of immutable List by passing
the parameter, and from the REPL output it’s clear that List is also using a parameter-
ized type.

4 “Type inference,” Wikipedia, http://mng.bz/32jw.
5 Daniel Spiewak, posted at Code Commit, “What is Hindley-Milner? (and why is it cool?),” undated, http://

mng.bz/H4ip.

Type inference

If you have a background in Haskell, OCaml, or any other type of inferred programming

language, the way Scala parameters are defined could feel a bit weird. The reason is

that Scala doesn’t use the Hindley-Milner algorithm to infer type; instead Scala’s type

inference is based on declaration-local information, also known as local type infer-

ence. Type inference is out of the scope of this book, but if you’re interested you can

read about the Hindley-Milner type inference algorithm and why it’s useful.

http://mng.bz/H4ip
http://mng.bz/H4ip
http://mng.bz/32jw

33Scala basics

NOTE If you’re a Java programmer, you’ll find lots of similarities between
Java generics and Scala parameterized types. The only difference to remem-
ber for now is that Java uses angle brackets (<>) and Scala uses square brack-
ets ([]). Another Scala convention for naming the parameterized types is that
they normally start at A and go up to Z as necessary. This contrasts with the
Java convention of using T, K, V, and E.

FUNCTION LITERALS

In Scala you can also pass a function as a parameter to another function, and most of
the time in those cases I provide an inline definition of the function. This passing of
functions as a parameter is sometimes loosely called closure (passing a function isn’t
always necessarily closure; you’ll look into that in chapter 4). Scala provides a short-
hand way to create a function in which you write only the function body, called func-

tion literals. Put that to a test. In this test you want to add all the elements of a List
using function literals. This demonstrates a simple use of function literals in Scala.
Here you’re creating a List of even numbers:

scala> val evenNumbers = List(2, 4, 6, 8, 10)

evenNumbers: List[Int] = List(2, 4, 6, 8, 10)

To add all the elements of List (scala.collection.immutable.List), you can use
the foldLeft method defined in List. The foldLeft method takes two parameters:
an initial value and a binary operation. It applies the binary operation to the given ini-
tial value and all the elements of the list. It expects the binary operation as a function
that takes two parameters of its own to perform the operation, which in our case will
be addition. If you can create a function that will take two parameters and add them,
you’re finished with the test. The foldLeft function will call your function for every
element in the List, starting with the initial value:

scala> evenNumbers.foldLeft(0) { (a: Int, b:Int) => a + b }

res19: Int = 30

In this case the function (a: Int, b:Int) => a + b is called an anonymous function, or a
function without a predefined name. You can improve your function by taking advan-
tage of Scala’s type inference:

scala> evenNumbers.foldLeft(0) { (a, b) => a + b }

res20: Int = 30

Usually you have to specify the type of the parameter for top-level functions because
Scala can’t infer the parameter types when declared, but for anonymous functions
Scala inference can figure out the type from the context. In this case you’re using a list
of integers and 0 as your initial value, and based on that Scala can easily infer the type
of a and b as an integer. Scala allows you to go even further with your anonymous
function: you can drop the parameters and only have the method body to make it a
function literal. But in this case the parameters will be replaced with underscores (_).
An underscore has a special meaning in Scala, and in this context it’s a placeholder
for a parameter; in your case, use two underscores:

34 CHAPTER 2 Getting started

scala> evenNumbers.foldLeft(0) { _ + _ }
res21: Int = 30

Each underscore represents a parameter in your function literal. You’ve already seen
another use of the underscore when assigning a default value to variables. In Scala you
can use underscores in various places, and their meaning is determined solely by the
context and where they’re used. Sometimes it gets a little confusing, so always remem-
ber that the value of the underscore is based on where it’s being used. You’ll see other
uses of underscores throughout the book. Function literals are a common idiom in
Scala, and you’ll find occurrences of them in Scala libraries and codebases.

 In chapter 1 you saw the following example but without enough explanation of
what’s going on with the code. Now, with your new knowledge of function literals, it
should be pretty obvious that _.isUpper is a function literal:

val hasUpperCase = name.exists(_.isUpper)

In this case you’re invoking the given function literals for each character in the name
string; when it finds an uppercase character, it will exit. The underscore in this con-
text represents a character of name string.

USING SCALA CLOSURE AND FIRST-CLASS FUNCTIONS: AN EXAMPLE

Before moving to the next section, leaving the “defining function” section without a
small working example of closure would be unfair. A closure is any function that closes
over the environment in which it’s defined. For example, closure will keep track of any
variable changes outside the function that are being referred to inside the function.

 In the example you’ll try to add support for the word break. I haven’t talked about
Scala keywords yet, but Scala doesn’t have break or continue. Once you get comfort-
able with Scala, you won’t miss them because Scala’s support of functional program-
ming style reduces the need for break or continue. But assume you have a situation
where you think having break would be helpful. Scala is an extensible programming
language, so you can extend it to support break.

 Use the Scala exception-handling mechanism to implement break in Scala.
Throwing an exception will help you break the sequence of execution, and the catch
block will help you reach the end of the call. Because break isn’t a keyword, you can
use it to define your function so that it will throw an exception:

def break = new RuntimeException("break exception")

Another subject not yet covered is exception handling, but if you’ve used it in Java,
C#, or Ruby, it should be easy to follow. In any case, you’ll read about exception han-
dling in a later part of the chapter. Now create the main function that will take the
operation that needs a breakable feature. Make it obvious and call it breakable:

def breakable(op: => Unit) { ... }

What’s this op: => Unit? The special right arrow (=>) lets Scala know that the
breakable function expects a function as a parameter. The right side of the => defines
the return type of the function—in this case it’s Unit (similar to Java void)—and op is

35Scala basics

the name of the parameter. Because you haven’t specified anything on the left side of
the arrow, it means that the function you’re expecting as a parameter doesn’t take any
parameter for itself. But if you expect a function parameter that takes two parameters,
such as foldLeft, you have to define it as follows:

def foldLeft(initialValue: Int, operator: (Int, Int) => Int)= { ... }

The breakable function that you declared takes a no-parameter function and returns
Unit. Now, using these two functions, you could simulate the break. Let’s look at an
example function that needs to break when the environment variable SCALA_HOME
isn’t set; otherwise, it must do the work:

def install = {
 val env = System.getenv("SCALA_HOME")

 if(env == null) break

 println("found scala home lets do the real work")
}

Now inside the breakable function we need to catch the exception that will get raised
when break is called from the install function:

try {
 op

} catch { case _ => }

That’s it. The following listing holds the complete code.

val breakException = new RuntimeException("break exception")

def breakable(op: => Unit) {

 try {
 op

 } catch { case _ => }

}

def break = throw breakException

def install = {

 val env = System.getenv("SCALA_HOME")
 if(env == null) break

 println("found scala home lets do the real work")

}

To invoke the breakable function, pass the method name that needs a breakable fea-
ture, like breakable(install)—or you can inline the install function and pass it as
a closure:

breakable {

 val env = System.getenv("SCALA_HOME")

 if(env == null) break
 println("found scala home lets do the real work")

}

Listing 2.1 breakable, break, and install functions

36 CHAPTER 2 Getting started

In Scala if the last argument of a function is of function type, you can pass it as clo-
sure. This syntax sugar is useful in creating DSLs. In the next chapter you’ll look into
how closures are converted into objects; remember, everything in Scala is an object.

NOTE Scala already provides breakable as part of the library. Look for
scala.util.control.Breaks. You should use Breaks if you have a need for
break. Again, I’d argue that once you look into functional programming with
Scala in detail, you’ll probably never have a need for break.

2.3 Working with Array and List

Chapter 4 is dedicated to data structures, but until then I’ll introduce List and Array
so you can start writing useful Scala scripts.

 In Scala, array is an instance of the scala.Array class and is similar to the Java
array:

scala> val array = new Array[String](3)

array: Array[String] = Array(null, null, null)

scala> array(0) = "This"

scala> array(1) = "is"

scala> array(2) = "mutable"

scala> array
res37: Array[String] = Array(This, is, mutable)

Always remember that in Scala the type information or parameterization is provided
using square brackets. The type parameterization is a way to configure an instance
with type information when creating the instance.

 Now iterating through each element in the array is easy; call the foreach method:

scala> array.foreach(println)
This

is

mutable

You’re passing a function literal to the foreach method to print all the elements in
the array. There are other useful methods defined for Array objects; for a complete
list look in Scaladoc for scala.collection.mutable.ArrayLike. The most obvious
question in your mind right now is probably why we have to check ArrayLike, which is
a different class than the Array used to check methods that are available for an Array
instance in Scala. The answer is Predef. Scala Predef provides additional array func-
tionality dynamically using ArrayLike when you create an instance of an Array. Again,
Predef is a great place to start to understand the Scala Library.

NOTE Predef implicitly converts Array to scala.collection.mutable

.ArrayOps. ArrayOps is the subclass of ArrayLike, so ArrayLike is more like
the interface for all the additional methods available to Array type collections.

37Working with Array and List

When writing Scala scripts, you sometimes have to take command-like arguments. You
can do that implicitly as a val type variable called args. In the following example
you’ll create a Scala script that takes input from a user and prints it to the console:

args.foreach(println)

Open your favorite editor and save this line in a file called myfirstScript.scala. Open
a command prompt to the location where the file is saved and run the following
command:

scala myfirstScript.scala my first script

You’ll see the following output:

my
first

script

You executed your first script. You’re using the same command you used to start the
Scala REPL environment. But in this case you’re executing a Scala script by specifying
the script filename and three parameters: my, first, and script. You’ll see another
script example at the end of this chapter.

 The Array is a mutable data structure; by adding each element to the array, you’re
mutating the array instance and producing a side effect. In functional programming,
methods should not have side effects. The only effect a method is allowed to have is to
compute a value and return that value without mutating the instance. An immutable
and more functional alternative to a sequence of objects like Array is List. In Scala,
List is immutable and makes functional-style programming easy. Creating a list of ele-
ments is as easy as the following:

scala> val myList = List("This", "is", "immutable")

myList: List[java.lang.String] = List(This, is, immutable)

The List is shorthand for scala.collection.immutable.List, and again Predef
automatically makes it available to you:

scala> val myList = scala.collection.immutable.List("This", "is",

"immutable")
myList: List[java.lang.String] = List(This, is, immutable)

What is this scala.collection.immutable.$colon$colon?

If you call the getClass method on myList to see what type of object it is, you might

be surprised. Instead of scala.collection.immutable.List, you’ll see

scala> myList.getClass

res42: java.lang.Class[_] = class

scala.collection.immutable.$colon$colon

That’s because scala.collection.immutable.List is an abstract class, and it

comes with two implementations: the scala.Nil class and scala.::. In Scala, ::
is a valid identifier, and you could use it to name a class. Nil represents an empty

list, and scala.:: represents any nonempty list.

www.allitebooks.com

http://www.allitebooks.org

38 CHAPTER 2 Getting started

Most of us are used to mutable collections where, when we add or remove elements,
the collection instance expands or shrinks (mutates), but immutable collections never
change. Instead, adding or removing an element from an immutable collection cre-
ates a new modified collection instance without modifying the existing one. The fol-
lowing example adds an element to an existing List:

scala> val oldList = List(1, 2)

oldList: List[Int] = List(1, 2)

scala> val newList = 3 :: oldList

newList: List[Int] = List(3, 1, 2)

scala> oldList
res45: List[Int] = List(1, 2)

In this example you’re adding 3 to an existing List containing elements 1 and 2 using
the :: method. The job of the :: method is to create a new List with all the existing
elements plus the new element added at the front of the List. To add at the end of
the List, invoke the :+ method:

scala> val newList = oldList :+ 3

newList: List[Int] = List(1, 2, 3)

Scala provides a special object called Nil to represent an empty List, and you can use
it to create new lists easily:

scala> val myList = "This" :: "is" :: "immutable" :: Nil
myList: List[java.lang.String] = List(This, is, immutable)

In this example you’re using a new instance of List every time you add an element.
To delete an element from a List, you could use the - method, but it’s deprecated. A
better way would be to use the filterNot method, which takes a predicate and selects
all the elements that don’t satisfy the predicate. To delete 3 from the newList, you can
do something like the following:

scala> val afterDelete = newList.filterNot(_ == 3)

afterDelete: List[Int] = List(1, 2)

You’ll delve deeper into Scala collections in chapter 4, section 4.3, but for now you
know enough to play with Scala and script a few things. In the meantime I encourage
you to look into methods defined for List and play with them.

2.4 Controlling flow with loops and ifs

It’s a little hard to get into useful programming or scripting with Scala without the
loops and ifs. Well, your wait is over. In Scala, if and else blocks work as they do in
any other programming language. If the expression inside the if evaluates to true,
then the if block gets executed; otherwise, the else block is executed. The interest-
ing part about Scala is that every statement is an expression, and its value is deter-
mined by the last expression within the statement. Assigning a value depending on
some condition in Scala could look like this:

39For-comprehensions

val someValue = if(some condition) value1 else value2

scala> val useDefault = false

useDefault: Boolean = false

scala> val configFile = if(useDefault) "custom.txt" else "default.txt"
configFile: java.lang.String = default.txt

Scala doesn’t support the ? operator as Java does, but I don’t think you’ll miss it in
Scala. You can nest if/else blocks, and you can combine multiple if/else blocks
using else if.

 Loops in Scala have all the usual suspects like the while loop and do-while, but
the most interesting looping construct is for or for-comprehensions. The while and
do-while loops are pretty standard, and in Scala they aren’t any different from Java or
C#. The next section looks at Scala for-comprehensions.

2.5 For-comprehensions

A for-comprehension in Scala is like a Swiss Army knife: you can do many things with
it using basic simple elements. The for expression in Scala consists of a for keyword
followed by one or more enumerators surrounded by parentheses and followed by an
expression block or yield expression (see figure 2.2).

 Before I go into yield expression, let’s look into the more traditional form of the
for loop. The common pattern used in a for loop is to iterate through a collection.
To print all the files in a directory that end with the .scala extension, for example, you
have to do something like the following:

val files = new java.io.File(".").listFiles
for(file <- files) {

 val filename = file.getName

 if(fileName.endsWith(".scala")) println(file)
}

The only thing that looks different from for loops in Java or C# is the expression file
<- files. In Scala this is called a generator, and the job of a generator is to iterate
through a collection. The right side of the <- represents the collection—in this case,
files. For each element in the collection (file in this case) it executes the for block.
This is similar to the way you define a for loop in Java:

‘for’ (‘(’ Enumerators ‘)’ | ‘{’ Enumerators ‘}’) {nl} [‘yield’] Expr

One or more generators, guards, or de�nitions

Figure 2.2 The syntax of a for-comprehension

40 CHAPTER 2 Getting started

for(File file: files) {
 String filename = file.getName();

 if(filename.endsWith(".scala")) System.out.println(file);

}

In the case of Scala, you don’t have to specify the type of file object because Scala type
inference will take care of it.

 Apart from the generator, you can use other ingredients in a Scala for loop to sim-
plify the previous example.

for(
 file <- files;
 fileName = file.getName;
 if(fileName.endsWith(".scala"))
) println(file)

Scala for loops allow you to specify definitions and guard clauses inside the loop. In
this case you’re defining a filename variable and checking whether the filename ends
with .scala. The loop will execute when the given guard clause is true, so you’ll get the
same result as the previous example. Note that all the variables created inside a for
expression are of the val type, so they can’t be modified and hence reduce the possi-
bility of side effects.

 As mentioned earlier, it’s possible to specify more than one generator in a Scala
for loop control. The following example executes the loop for each generator and
adds them:

scala> val aList = List(1, 2, 3)
aList: List[Int] = List(1, 2, 3)

scala> val bList = List(4, 5, 6)
bList: List[Int] = List(4, 5, 6)

scala> for { a <- aList; b <- bList } println(a + b)
5
6
7
6
7
8
7
8
9

The generators in this case are aList and bList, and when you have multiple genera-
tors, each generator is repeated for the other generator. When a = 1 for each value of
b, that is, b = 4, b = 5, b = 6, the loop will be executed, and so on. I used curly braces to
surround the for expression, but you don’t have to; you could use (). I tend to use
curly braces when I have more than one generator and guard clause.

 The for-comprehension in Scala comes in two flavors. You’ve already seen one
form in the previous examples: the imperative form. In this form you specify the state-
ments that will get executed by the loop, and it doesn’t return anything. The other
form of for-comprehension is called the functional form (sometimes it’s also called

41For-comprehensions

sequence comprehension). In the functional form, you tend to work with values rather
than execute statements, and it does return a value. Look at the same example in
functional form:

scala> for { a <- aList; b <- bList } yield a + b
res27: List[Int] = List(5, 6, 7, 6, 7, 8, 7, 8, 9)

Instead of printing the value of a + b, you’re returning the value of the addition from
the loop using the yield keyword. You’re using the same aList and bList instances
in the loop control, and it returns the result as a List. Now if you want to print the
result, as in the previous example, you have to loop through the result List:

scala> val result = for { a <- aList; b <- bList } yield a + b
result: List[Int] = List(5, 6, 7, 6, 7, 8, 7, 8, 9)

scala> for(r <- result) println(r)

5
6

7

6

7
8

7

8
9

It does look like the functional form is more verbose than the imperative form, but
think about it. You’ve separated the computation (the adding of two numbers) from
how you’re using it—in this case, printing the result. This improves the reusability and
compatibility of functions or computations, which is one of the benefits of functional
programming. In the following example you reuse the result produced by the for-
yield loop to create an XML node:

scala> val xmlNode = <result>{result.mkString(",")}</result>

xmlNode: scala.xml.Elem = <result>5,6,7,6,7,8,7,8,9</result>

The mkString is a method defined in scala.collection.immutable.List. It takes
each element in the List and concatenates each element with whatever separator you
provide—in this case, a comma. Even though it doesn’t make sense, what if you try to
print inside the yield expression? What will happen? Remember, everything in Scala is
an expression and has a return value. If you try the following, you’ll still get a result,
but the result won’t be useful because it will be a collection of units. A unit is the equiv-
alent of void in Java, and it’s the result value of a println function used inside the
yield expression:

scala> for { a <- aList; b <- bList } yield { println(a+b)}
5

6

7
6

7

8

42 CHAPTER 2 Getting started

7
8

9

res32: List[Unit] = List((), (), (), (), (), (), (), (), ())

You’ve only scratched the surface of for-comprehension, and I come back to this in
chapter 4 to examine functional data structures, so hold on to your inquisitiveness
until chapter 4 (or jump to that chapter). The next section moves into another func-
tional concept: pattern matching.

2.6 Pattern matching

Pattern matching is another functional programming concept introduced in Scala. To
start with, Scala pattern matching looks similar to switch case in Java. The example in
the following listing, showing the similarity between Scala and Java, takes an integer
and prints its ordinal number.

public class Ordinal {

 public static void main(String[] args) {

 ordinal(Integer.parseInt(args[0]));

 }

 public static void ordinal(int number) {

 switch(number) {

 case 1: System.out.println("1st"); break;
 case 2: System.out.println("2nd"); break;

 case 3: System.out.println("3rd"); break;

 case 4: System.out.println("4th"); break;
 case 5: System.out.println("5th"); break;

 case 6: System.out.println("6th"); break;

 case 7: System.out.println("7th"); break;
 case 8: System.out.println("8th"); break;

 case 9: System.out.println("9th"); break;

 case 10: System.out.println("10th"); break;
 default : System.out.println("Cannot do beyond 10");

 }

 }
}

Here the argument of the program is parsed to the integer value, and the ordinal
method returns the ordinal text of a given number. Right now, it only knows how to
handle numbers from 1 to 10. The following listing shows the same example in Scala.

ordinal(args(0).toInt)

def ordinal(number:Int) = number match {

 case 1 => println("1st")
 case 2 => println("2nd")

 case 3 => println("3rd")

Listing 2.2 An ordinal class written in Java

Listing 2.3 An ordinal class in Scala

Call ordinal method

Go through cases for
given integer value

Match cases
from 1 to 10

43Pattern matching

 case 4 => println("4th")
 case 5 => println("5th")

 case 6 => println("6th")

 case 7 => println("7th")
 case 8 => println("8th")

 case 9 => println("9th")

 case 10 => println("10th")
 case _ => println("Cannot do beyond 10")

}

Here you’re doing something similar to the previous Java example: taking an input
integer value from a command like args and determining the ordinal value of the
number. Because Scala can also be used as a scripting language, you don’t have to
define an entry point like the main method. And you no longer need to provide a
break for each case because in Scala you can’t overflow into other case clauses (caus-
ing multiple matches) as in Java, and there’s no default statement. In Scala, default
is replaced with case _ to match everything else. To run the Ordinal.scala script, exe-
cute the following command from a command prompt:

scala Ordinal.scala <your input>

The wildcard case is optional and works like a safe fallback option. If you remove it,
and none of the existing cases match, you get a match error:

scala> 2 match { case 1 => "One" }

scala.MatchError: 2

 at .<init>(<console>:5)
 at .<clinit>(<console>)

 ...

This is great because it tells you that you’re missing a case clause, unlike in Java,
where if you remove the default and none of the existing cases match, it ignores it
without providing any sort of feedback.

 The similarity between Java and Scala pattern matching ends here because Scala
takes pattern matching to the next level. In Java you can only use a switch statement
with primitives and enums, but in Scala you can pattern match strings and complex
values, types, variables, constants, and constructors. More pattern-matching concepts
are in the next chapter, particularly constructor matching, but look at an example of a
type match. The following example defines a method that takes an input and checks
the type of the given object:

def printType(obj: AnyRef) = obj match {

 case s: String => println("This is string")

 case l: List[_] => println("This is List")
 case a: Array[_] => println("This is an array")

 case d: java.util.Date => println("This is a date")

}

In this example you’re using a Scala type pattern consisting of a variable and a type.
This pattern matches any value matched by the type pattern—in this case, String,
List[AnyRef], Array[AnyRef], and java.util.Date. When the pattern matches with

Default case
for > 10 and < 1

44 CHAPTER 2 Getting started

the type, it binds the variable name to the value. You could do that in Java using the
instanceof operator and casting, but this is a more elegant solution. Save this
method into the file printType.scala and load the file into the Scala REPL:

scala> :load printType.scala
Loading printType.scala...
printType: (obj: AnyRef)Unit

Now try a printType function with various types of input:

scala> printType("Hello")
This is string

scala> printType(List(1, 2, 3))
This is List

scala> printType(new Array[String](2))
This is an array

scala> printType(new java.util.Date())
This is a date

Scala also allows the infix operation pattern, in which you can specify an infix opera-
tor in your pattern. In the infix style, operators are written between the operands—for
example, 2 + 2. In the following example, you’re extracting the first and the second
elements from the List:

scala> List(1, 2, 3, 4) match {
 case f :: s :: rest => List(f, s)
 case _ => Nil
 }
res7: List[Int] = List(1, 2)

Here you’re matching 1 to f, 2 to s, and 3 and 4 to the rest of the variables. Think of it
as what it will take to create a List of 1, 2 ,3, and 4 from the expression f :: s :: rest,
and then this will make more sense.

 Sometimes you need to have a guard clause along with the case statement to have
more flexibility during pattern matching. In the following example you’re determin-
ing the range in which the given number belongs:

def rangeMatcher(num:Int) = num match {

 case within10 if within10 <= 10 => println("with in 0 to 10")

 case within100 if within100 <= 100 => println("with in 11 to 100")
 case beyond100 if beyond100 < Integer.MAX_VALUE => println("beyond 100")

}

With this new information, revisit the ordinal problem. The previous Scala ordinal
example supported only 1 to 10, but the following listing implements that for all
integers.

val suffixes = List(
 "th", "st", "nd", "rd", "th", "th", "th", "th", "th",

th")

Listing 2.4 Ordinal2.scala reimplemented

45Exception handling

println(ordinal(args(0).toInt))

def ordinal(number:Int) = number match {

 case tenTo20 if 10 to 20 contains tenTo20 => number + "th"

 case rest => rest + suffixes(number % 10)
}

Here in the new implementation of ordinal you’re using range, which is a collection
of integer values between a given start and end. The expression 10 to 20 is 10.to(20)
(remember that methods can be used as infix operators). You’re calling the to
method in RichInt, and it creates an inclusive range (scala.collection.immutable
.Inclusive). You’re calling the contains method on the range to check whether the
number belongs to the range. In the last case you’re mapping all the numbers below
10 and beyond 20 to a new variable called rest. This is called variable pattern matching

in Scala. You can access elements of a List like array using index positions in the
List. You’ll revisit pattern matching in chapter 3 after looking at case classes. It’s time
to move on to the last topic of this chapter: exception handling.

2.7 Exception handling

You caught a glimpse of Scala exception handling in the breakable example. Scala’s
exception handling is little different from Java’s. Scala allows you a single try/catch
block, and in the single catch block you can use pattern matching to catch excep-
tions. The catch block is a match block under the surface, so all the pattern-matching
techniques that you learned in the previous section are applicable to a catch block.
Modify the rangeMatcher example to throw an exception when it’s beyond 100:

def rangeMatcher(num:Int) = num match {
 case within10 if within10 <= 10 => println("with in 0 to 10")
 case within100 if within100 <= 100 => println("with in 11 to 100")
 case _ => throw new IllegalArgumentException(
 "Only values between 0 and 100 are allowed")
}

Now when calling this method you can surround it with a try/catch block and catch
the exception:

scala> try {
 rangeMatcher1(1000)
 } catch { case e: IllegalArgumentException => e.getMessage }
res19: Any = Only values between 0 and 100 are allowed

The case statement isn’t any different from the type pattern matching used in the
printType example.

 Scala doesn’t have any concept like a checked exception; all exceptions are
unchecked. This way is more powerful and flexible because as a programmer you’re
free to decide whether or not you want to catch an exception. Even though Scala
exception handling is implemented differently, it behaves exactly like Java, with
exceptions being unchecked, and it allows Scala to easily interoperate with existing
Java libraries. You’ll see the use of Scala exception handling in examples throughout
the book.

46 CHAPTER 2 Getting started

2.8 Command-line REST client:
building a working example

You’ve looked into a number of interesting concepts about Scala in this chapter, and
it’ll be nice to see some of these concepts in action together. In this section you’ll
build a command-line-based REST client in Scala script. You’re going to use the
Apache HttpClient6 library to handle HTTP connections and various HTTP methods.78

To make a REST call to a RESTful service, you have to be aware of the operations sup-
ported by the service. To test your client you need a RESTful web service. You could
use free public web services to test the client, but to have better control of the opera-
tions on the service you’ll create one. You could use any REST tool or a framework to
build the REST service. I’ll use a Java servlet (Java developers are familiar with it) to
build the service to test the REST client. Understanding how the service is imple-
mented isn’t important for this example.

 The simple way to create a RESTful service for now is to use a Java servlet, as shown
in the following listing.

package restservice;
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

6 “HttpClient Overview,” July 3, 2012, http://mng.bz/Q4Bf.
7 Roy Thomas Fielding, “Architectural Styles and the Design of Network-based Software Architectures,” doc-

toral dissertation, University of California, Irvine, 2000. http://mng.bz/2Xa4.
8 Roy T. Fielding and Richard N. Taylor, “Principled Design of the Modern Web Architecture,” University of

California, Irvine, 2000, http://mng.bz/188g.

Listing 2.5 Java servlet as a RESTful service

What is REST?

REST stands for REpresentational State Transfer. It’s software architectural style for

distributed hypermedia systems like the World Wide Web. The term first appeared in

“Architectural Styles and the Design of Network based Software Architectures,”7 the

doctoral dissertation paper by Roy Fielding, one of the principal authors of the HTTP

specification.

REST strictly refers to the collection of architectural principles8 mentioned here. Sys-

tems that follow Fielding’s REST principles are often referred to as RESTful.

 Application state and functionality are divided into resources.

 Every resource is uniquely addressable using a universal syntax.

 All resources share a uniform interface for transfer of state between client

and resource, consisting of well-defined operations (GET, POST, PUT, DELETE,

OPTIONS, and so on, for RESTful web services) and content types.

 A protocol that’s client/server, stateless cacheable, and layered.

http://mng.bz/Q4Bf
http://mng.bz/2Xa4
http://mng.bz/188g

47Command-line REST client: building a working example

import java.util.*;

public class TestRestService extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)
 throws ServletException, IOException {

 PrintWriter out = response.getWriter();

 out.println("Get method called");
 out.println("parameters: " + parameters(request));

 out.println("headers: " + headers(request));

 }

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {
 PrintWriter out = response.getWriter();

 out.println("Post method called");

 out.println("parameters: " + paramaters(request));
 out.println("headers: " + headers(request));

 }

 public void doDelete(HttpServletRequest request,

 HttpServletResponse response)
 throws ServletException, IOException {

 PrintWriter out = response.getWriter();

 out.println("Delete method called");
 }

 private String parameters(HttpServletRequest request) {

 StringBuilder builder = new StringBuilder();
 for (Enumeration e = request.getParameterNames() ; e.hasMoreElements();)

{

 String name = (String)e.nextElement();
 builder.append("|" + name + "->" + request.getParameter(name));

 }

 return builder.toString();
 }

 private String headers(HttpServletRequest request) {

 StringBuilder builder = new StringBuilder();
 for (Enumeration e = request.getHeaderNames() ; e.hasMoreElements();) {

 String name = (String)e.nextElement();

 builder.append("|" + name + "->" + request.getHeader(name));
 }

 return builder.toString();

 }
}

In the servlet you’re supporting three HTTP methods: GET, POST, and DELETE. These
methods are simple and return the request parameters and headers in response,
which is perfect when testing your REST client. The two helper methods I added are
parameters and headers. The parameters method is responsible for parsing the
HTTP request object for parameters that are passed from the client; in this case, it’s
the REST client. The headers method retrieves all the header values from the request
object. Once the servlet is built, you must deploy the WAR file to a Java web container.

Handle HTTP GET

Handle HTTP POST

Handle HTTP DELETE

Build
response
String

Build response
String from
headers

www.allitebooks.com

http://www.allitebooks.org

48 CHAPTER 2 Getting started

I’ve used Maven and Jetty9 to build and run10 the Java servlet, but you’re free to use
any Java web container.

2.8.1 Introducing HttpClient library

HttpClient is a client-side HTTP transport library. The purpose of HttpClient is to
transmit and receive HTTP messages. It’s not a browser, and it doesn’t execute
JavaScript or try to guess the content type or other functionality unrelated to the
HTTP transport. The most essential function of HttpClient is to execute HTTP meth-
ods. Users are supposed to provide a request object like HttpPost or HttpGet, and the
HttpClient is expected to transmit the request to the target server and return the cor-
responding response object, or throw an exception if the execution is unsuccessful.

 HttpClient encapsulates each HTTP method type in an object, and they’re avail-
able under the org.apache.http.client.methods package. In this script you’re
going to use four types of requests: GET, POST, DELETE, and OPTIONS.11 The previous
example implemented only GET, POST, and DELETE because the web container will
automatically implement the OPTIONS method. HttpClient provides a default client
and is good enough for our purpose. To execute an HTTP DELETE method you have to
do the following:

val httpDelete = new HttpDelete(url)

val httpResponse = new DefaultHttpClient().execute(httpDelete)

The HTTP POST method is a little different because, according to the HTTP specifica-
tion, it’s one of the two entity-enclosing methods. The other one is PUT. To work with
entities HttpClient provides multiple options, but in the example you’re going to use
the URL-encoded form entity. It’s similar to what happens when you POST a form sub-
mission. Now you can dive into building the client.

 To use the HttpClient in your script, you have to import all the necessary classes. I
haven’t talked about import, but for now think of it as similar to Java import except
that Scala uses _ for importing all classes in a package, as in the following:

import org.apache.http._
import org.apache.http.client.entity._

import org.apache.http.client.methods._

import org.apache.http.impl.client._
import org.apache.http.client.utils._

import org.apache.http.message._

import org.apache.http.params._

You can do other interesting things with Scala imports, but that’s in the next chapter.

9 Getting started with Jetty: http://wiki.eclipse.org/Jetty/Howto.
10 Jan Bartel, editor, “Maven Jetty Plugin Configuration Guide,” Nov. 30, 2011, http://mng.bz/3ubj.
11 HTTP method definitions, http://mng.bz/9qso.

http://wiki.eclipse.org/Jetty/Howto
http://mng.bz/3ubj
http://mng.bz/9qso

49Command-line REST client: building a working example

2.8.2 Building the client, step by step

Now, because the service is up and running, you can focus on the client script. To
make the script useful, you have to know the type of operation (GET or POST), request
parameters, header parameters, and the URL to the service. The request parameters
and header parameters are optional, but you need an operation and a URL to make
any successful REST call:

require(args.size >= 2,

"at minimum you should specify action(post, get, delete, options) and url")

val command = args.head
val params = parseArgs(args)

val url = args.last

You’re using a require function defined in Predef to check the size of the input.
Remember that the command-line inputs are represented by an args array. The
require function throws an exception when the predicate evaluates to false. In this
case, because you expect at least two parameters, anything less than that will result in
an exception. The first parameter to the script is the command, and the next ones are
the request and header parameters. The last parameter is the URL. The input to the
script will look something like the following:

post -d <comma separated name value pair>
 -h <comma separated name value pair> <url>

The request parameters and header parameters are determined by a prefix parame-
ter, –d or –h. One way to define a parseArgs method to parse request and header
parameters is shown in the following listing.

def parseArgs(args: Array[String]): Map[String, List[String]] = {

 def nameValuePair(paramName: String) = {

 def values(commaSeparatedValues: String) =
 commaSeparatedValues.split(",").toList

 val index = args.findIndexOf(_ == paramName)

 (paramName, if(index == -1) Nil else values(args(index + 1)))
 }

 Map(nameValuePair("-d"), nameValuePair("-h"))

}

This listing has defined a function inside another function. Scala allows nested func-
tions, and nested functions can access variables defined in the outer scope function—
in this case, the args parameter of the parseArgs function. Nested functions allow you
to encapsulate smaller methods and break computation in interesting ways. Here the
nested function nameValuePair takes the parameter name, –d or –h, and creates a list
of name-value pairs of request or header parameters. The next interesting thing about
the nameValuePair function is the return type. The return type is a scala.Tuple2, a tuple

Listing 2.6 Parsing headers and parameters passed to the program

50 CHAPTER 2 Getting started

of two elements. Tuple is immutable like List, but unlike List it can contain different
types of elements; in this case, it contains a String and a List. Scala provides syntax
sugar for creating a Tuple by wrapping elements with parentheses ():

scala> val tuple2 = ("list of one element", List(1))
tuple2: (java.lang.String, List[Int]) = (list of one element,List(1))

This is similar to:

scala> val tuple2 = new scala.Tuple2("list of one element", List(1))
tuple2: (java.lang.String, List[Int]) = (list of one element,List(1))

Here’s how to create a tuple of three elements:

scala> val tuple3 = (1, "one", List(1))
tuple3: (Int, java.lang.String, List[Int]) = (1,one,List(1))

The last interesting thing I’d like to mention about the parseArgs method is the Map.
A Map is an immutable collection of keys and values. Chapter 4 discusses Map in detail.
In this example you’re creating a Map of parameter name(-d or –h) and listing all the
parameters as values. When you pass a tuple of two elements to Map, it takes the first
element of the tuple as the key and the second element as the value:

scala> val m = Map(("key1", "value1"), ("key2", "value2"))
m: scala.collection.immutable.Map[java.lang.String,java.lang.String] =

Map(key1 -> value1, key2 -> value2)

scala> m("key1")
res8: java.lang.String = value1

For now you’ll support only four types of REST operations: POST, GET, DELETE, and
OPTIONS, but I encourage you to implement other HTTP methods like PUT and HEAD.
To check what type of operation is requested, you can use simple pattern matching:

command match {

 case "post" => handlePostRequest
 case "get" => handleGetRequest

 case "delete" => handleDeleteRequest

 case "options" => handleOptionsRequest
}

Here handlePostRequest, handleGetRequest, handleDeleteRequest, and handle-
OptionRequest are functions defined in the script. Each needs to be implemented a
little differently. For example, in the case of a GET call, you’ll pass the request parame-
ters as query parameters to the URL. POST will use a URL-encoded form entity to pass
the request parameters. DELETE and OPTIONS won’t use any request parameters. Look
at the handleGetRequest method, shown in the following listing.

def headers = for(nameValue <- params("-h")) yield {

 def tokens = splitByEqual(nameValue)
 new BasicHeader(tokens(0), tokens(1))

}

Listing 2.7 Preparing a GET request and invoking the REST service

51Command-line REST client: building a working example

def handleGetRequest = {
 val query = params("-d").mkString("&")

 val httpget = new HttpGet(s"${url}?${query}")
 headers.foreach { httpget.addHeader(_) }
 val responseBody =

 new DefaultHttpClient().execute(httpget,

new BasicResponseHandler())
 println(responseBody)

}

In this method you’re retrieving all the request parameters from the Map params and
creating the query string. Then you create the HttpGet method with the given URL
and query string. The DefaultHttpClient is executing the httpget request and giv-
ing the response. The handlePostRequest method is a little more involved because it
needs to create a form entity object, as shown in the following listing.

def formEntity = {

 def toJavaList(scalaList: List[BasicNameValuePair]) = {

 java.util.Arrays.asList(scalaList.toArray:_*)
 }

 def formParams = for(nameValue <- params("-d")) yield {

 def tokens = splitByEqual(nameValue)
 new BasicNameValuePair(tokens(0), tokens(1))

 }

 def formEntity =
 new UrlEncodedFormEntity(toJavaList(formParams), "UTF-8")

 formEntity

}

def handlePostRequest = {

 val httppost = new HttpPost(url)

 headers.foreach { httppost.addHeader(_) }
 httppost.setEntity(formEntity)

 val responseBody = new DefaultHttpClient().execute(httppost, new

BasicResponseHandler())
 println(responseBody)

}

Something interesting and unusual is going on here. First is the toJavaList method.
The Scala List and the Java List are two different types of objects and aren’t directly
compatible with each other. Because HttpClient is a Java library, you have to convert it
to a Java type collection before calling the UrlEncodedFormEntity. The special :_*
tells the Scala compiler to send the result of toArray as a variable argument to the
Arrays.asList method; otherwise, asList will create a Java List with one element.
The following example demonstrates that fact:

scala> val scalaList = List(1, 2, 3)

scalaList: List[Int] = List(1, 2, 3)

Listing 2.8 Preparing a POST request and invoking the REST service

Encode
POST
request
parameters

52 CHAPTER 2 Getting started

scala> val javaList = java.util.Arrays.asList(scalaList.toArray)
javaList: java.util.List[Array[Int]] = [[I@67826710]

scala> val javaList = java.util.Arrays.asList(scalaList.toArray:_*)

javaList: java.util.List[Int] = [1, 2, 3]

The following listing contains the complete RestClient.scala script.

import org.apache.http._

import org.apache.http.client.entity._

import org.apache.http.client.methods._
import org.apache.http.impl.client._

import org.apache.http.client.utils._

import org.apache.http.message._
import org.apache.http.params._

def parseArgs(args: Array[String]): Map[String, List[String]] = {

 def nameValuePair(paramName: String) = {
 def values(commaSeparatedValues: String) =

 commaSeparatedValues.split(",").toList

 val index = args.findIndexOf(_ == paramName)

 (paramName, if(index == -1) Nil else values(args(index + 1)))
 }

 Map(nameValuePair("-d"), nameValuePair("-h"))

}

def splitByEqual(nameValue:String): Array[String] = nameValue.split('=')

def headers = for(nameValue <- params("-h")) yield {

 def tokens = splitByEqual(nameValue)
 new BasicHeader(tokens(0), tokens(1))

}

def formEntity = {
 def toJavaList(scalaList: List[BasicNameValuePair]) = {

 java.util.Arrays.asList(scalaList.toArray:_*)

 }

 def formParams = for(nameValue <- params("-d")) yield {

 def tokens = splitByEqual(nameValue)

 new BasicNameValuePair(tokens(0), tokens(1))
 }

 def formEntity =

new UrlEncodedFormEntity(toJavaList(formParams), "UTF-8")
 formEntity

}

def handlePostRequest = {
 val httppost = new HttpPost(url)

 headers.foreach { httppost.addHeader(_) }

 httppost.setEntity(formEntity)
 val responseBody =

new DefaultHttpClient().execute(httppost, new BasicResponseHandler())

Listing 2.9 RestClient.scala

Parse
request
parameters
and headers

Create BasicHeader
for each header
name/value pair

Create
URL-encoded
form entity

53Command-line REST client: building a working example

 println(responseBody)
}

def handleGetRequest = {

 val query = params("-d").mkString("&")
 val httpget = new HttpGet(s"${url}?${query}")

 headers.foreach { httpget.addHeader(_) }

 val responseBody =
new DefaultHttpClient().execute(httpget, new BasicResponseHandler())

 println(responseBody)

}

def handleDeleteRequest = {

 val httpDelete = new HttpDelete(url)

 val httpResponse = new DefaultHttpClient().execute(httpDelete)
 println(httpResponse.getStatusLine())

}

def handleOptionsRequest = {
 val httpOptions = new HttpOptions(url)

 headers.foreach { httpOptions.addHeader(_) }

 val httpResponse = new DefaultHttpClient().execute(httpOptions)

 println(httpOptions.getAllowedMethods(httpResponse))
}

require(args.size >= 2, "at minmum you should specify

 action(post, get, delete, options) and url")
val command = args.head

val params = parseArgs(args)

val url = args.last

command match {

 case "post" => handlePostRequest

 case "get" => handleGetRequest
 case "delete" => handleDeleteRequest

 case "options" => handleOptionsRequest

}

In this complete example you implemented the support for four types of HTTP
requests: POST, GET, DELETE, and OPTIONS. The require function call B ensures that
your script is invoked with at least two parameters: the action type and the URL of the
REST service. The pattern-matching block at the end of the script C selects the appro-
priate action handler for a given action name. The parseArgs function handles the
additional arguments provided to the script, such as request parameters or headers,
and returns a Map containing all the name-value pairs. The formEntity function is
interesting because the URL encodes the request parameters when the http request
type is POST, because in POST request parameters are sent as part of the request body
and they need to be encoded.

 To run the REST client you can use any build tool that can build Scala code. This
example uses a build tool called simple build tool (SBT). You’ll learn about this tool in
detail in chapter 6, but for now go ahead and install the tool following the instructions
from the SBT wiki (http://www.scala-sbt.org). Take a look at the codebase for this
chapter for an example.

Validate the
number of
argumentsB

Pattern match
command argumentsC

http://www.scala-sbt.org

54 CHAPTER 2 Getting started

2.9 Summary

This chapter covered most of the basic Scala concepts like data types, variables, and
functions. You saw how to install and configure Scala. Most importantly, you learned
how to define functions, an important building block in Scala, and functional con-
cepts including pattern matching and for-comprehension. You also learned about
exception handling and how Scala uses the same pattern-matching techniques for
exception handling. This chapter also provided a basic introduction to List and
Array collection types so you can start building useful Scala scripts. Chapter 4 cov-
ers Scala collections in detail. You worked with the Scala REPL throughout the chap-
ter when trying out examples. The Scala REPL is an important and handy tool, and
you’ll use it throughout the book. The chapter finished by building a complete REST
client using most of the concepts you learned in it. The example also demonstrated
the flexibility Scala provides when building scripts. It’s now time to move on to Scala
classes and objects.

55

OOP in Scala

Up to this point the book has been focusing on Scala’s fundamentals. This chapter
introduces the object-oriented features of Scala. Object-oriented programming
isn’t new, but Scala has added a few new features that aren’t available in other stati-
cally typed languages.

 In this chapter you’ll build a Scala driver for MongoDB (www.mongodb.org/
display/DOCS/Home). MongoDB is a scalable, document-oriented database. You’ll
build this driver incrementally using the object-oriented constructs provided by
Scala, and along the way I’ll explain each concept in detail. Scala has made some
object-oriented innovations, and one of them is the trait. Traits are similar to
abstract classes with partial implementation. You’ll explore how to use traits when
building Scala applications. As you move through the chapter, you’ll learn about
Scala case classes. Case classes are useful when it comes to building immutable
classes, particularly in the context of concurrency and data transfer objects. Case

This chapter covers

 Building a MongoDB driver using Scala

classes and traits

 Pattern matching with case classes

 Looking into named and default arguments

www.mongodb.org/display/DOCS/Home
www.mongodb.org/display/DOCS/Home

56 CHAPTER 3 OOP in Scala

classes also allow Scala to bridge the gap between functional programming and OOP
in terms of pattern matching. Without wasting any more time, let’s learn OOP pro-
gramming in Scala by building a MongoDB driver.

3.1 Building a Scala MongoDB driver: user stories

To explore Scala’s object-oriented constructs and use, let’s build a MongoDB driver.
While building this example driver, you’ll dive deep into concepts for a thorough
understanding. You won’t need to start from scratch because you’ll use an existing
Java driver for MongoDB. You’ll build a Scala wrapper over the Java MongoDB driver.
That way, you don’t have to deal with the low-level MongoDB API and can focus on
your objective of learning Scala.

 The user stories you’ll be implementing in your Scala wrapper driver are as follows:

As a developer, I want an easier way to connect to my MongoDB server and access
document databases.

As a developer, I want to query and manage documents.

WHAT’S A USER STORY? A good way to think about a user story is as a
reminder to have a conversation with your customer (in Agile, project stake-
holders are called customers), which is another way to say it’s a reminder to do
some just-in-time analysis. In short, user stories are slim and high-level
requirements artifacts.

MongoDB is a scalable, high-performance, open source, schema-free, document-
oriented database written in C++.1 MongoDB is a document-based database that uses
JSON (JavaScript Object Notation). The schema-free feature lets MongoDB store any
kind of data of any structure. You don’t have to define your database tables and attri-
butes up front. You can add or remove attributes whenever you need them. This flexi-
bility is achieved through the document-based model. Unlike relational databases, in
a document-based model records are stored as documents in which any number of
fields of any length can be stored. For example, you could have the following JSON
documents in a single collection (a collection in MongoDB is like a table in a tradi-
tional RDBMS):

{ name : "Joe", x : 3.3, y : [1,2,3] }

{ name : "Kate", x : "abc" }

{ q : 456 }

In a schema-free environment, the concept of schema moves more toward the applica-
tion than to the database. Like any other tool, there are pros and cons for using a
schema-free database, and it depends on the solution you’re trying to solve.

 The format of the document in which the information is stored in MongoDB is
BSON (binary JSON). Other document-based databases like Lotus Notes (IBM) and
SimpleDB (Amazon.com) use XML for information storage. JSON has an added

1 “What is the Right Data Model?,” July 16, 2009, http://mng.bz/1iT0.

http://mng.bz/1iT0

57Classes and constructors

advantage when working with web-based applications because JSON content can be
easily consumed with little transformation. A great place to get a feel for MongoDB is
http://try.mongodb.org. Go ahead and download MongoDB (www.mongodb.org/
display/DOCS/Downloads). Then, unpack it and run the following command to start
the MongoDB server:

$ bin/mongod

To connect to the MongoDB server, use the client shell that ships with the distribution
of MongoDB:

$ bin/mongo

MongoDB shell version: 1.2.4
url: test

connecting to: test

type "help" for help
>

At this point you should be ready to start building the Scala wrapper driver. If you’re
interested in learning more about MongoDB, look at the MongoDB tutorial
(www.mongodb.org/display/DOCS/Tutorial).

3.2 Classes and constructors

To connect to the already running MongoDB server, create a Mongo client class with a
hostname and port number:

<scala> class MongoClient(val host:String, val port:Int)

The class declaration looks different from the way you declare in Java or C#—you’re
not only declaring the class, but also its primary constructor.

 The primary constructor is a constructor that needs to be called directly or indirectly
from overloaded constructors when creating the instance MongoClient. You’ll look
into overloaded constructors shortly. In Scala, the primary constructor for a class is
coded inline with the class definition. In this case, the constructor takes two parame-
ters: host and port. The host parameter specifies the address of the server, and port
specifies the port in which the MongoDB server is waiting for the connection.

 Because all the constructor parameters are preceded by val, Scala will create
immutable instance values for each of them. The following example creates an
instance of a Mongo client and accesses its properties:

scala> val client = new MongoClient("127.0.0.1", 123)

client: MongoClient = MongoClient@561279c8

scala> client.port

res0: Int = 123

scala> client.host
res1: String = 127.0.0.1

Like Java or C#, Scala also uses the new keyword for creating instances of a class. But
wait a minute—where’s the body of the MongoClient class? In Scala that’s optional.

http://try.mongodb.org
www.mongodb.org/display/DOCS/Downloads
www.mongodb.org/display/DOCS/Downloads
www.mongodb.org/display/DOCS/Tutorial

58 CHAPTER 3 OOP in Scala

You can create classes without any class body. Creating a class like a JavaBean with only
a getter and setter would be easy in Scala, as in the following:

scala> class AddressBean(

 var address1:String,
 var address2:String,

 var city:String,

 var zipCode:Int)
defined class AddressBean

scala> var localAddress = new AddressBean("230 43rd street", "", "Columbus",

43233)
localAddress: (java.lang.String, java.lang.String, java.lang.String, Int) =

(230 43rd street,,Columbus,43233)

When parameters are prefixed with var, Scala creates mutable instance variables. The
val and var prefixes are optional, and when both of them are missing, they’re treated
as private instance values, not accessible to anyone outside the class:

scala> class MongoClient(host:String, port:Int)
defined class MongoClient

scala> val client = new MongoClient("localhost", 123)

client: MongoClient = MongoClient@4089f3e5

scala> client.host
<console>:7: error: value host is not a member of MongoClient

 client.host

Note that when Scala creates instance values or variables, it also creates accessors for
them. At no point in time are you accessing the field directly. The following Mongo-
Client definition is equivalent to the class MongoClient(val host:String, val
port:Int) definition.

class MongoClient(private val _host:String, private val _port:Int) {

 def host = _host

 def port = _port
}

The reason I’m using private (you’ll learn about access levels later in this chapter) is
so the Scala compiler doesn’t generate accessors by default. What val and var do is
define a field and a getter for that field, and in the case of var an additional setter
method is also created.

 Most of the time you’ll have MongoDB running on the localhost with default port
27017. Wouldn’t it be nice to have an additional zero-argument constructor that
defaults the host and port number so you don’t have to specify them every time? How
about this:

class MongoClient(val host:String, val port:Int) {

 def this() = this("127.0.0.1", 27017)

}

To overload a constructor, name it this followed by the parameters. Constructor defi-
nition is similar to method definition except that you use the name this. Also, you

59Classes and constructors

can’t specify a return type as you can with other methods. The first statement in the
overloaded constructors has to invoke either other overloaded constructors or the pri-
mary constructor. The following definition will throw a compilation error:

class MongoClient(val host:String, val port:Int) {
 def this() = {
 val defaultHost = "127.0.0.1"
 val defaultPort = 27017
 this(defaultHost, defaultPort)
 }
}

When you compile this with scalac, you get the following compilation errors:

MongoClient.scala:3: error: 'this' expected but 'val' found.
 val defaultHost = "127.0.0.1"
 ^
MongoClient.scala:4: error: '(' expected but ';' found.
 val defaultPort = 27017
^
two errors found

This poses an interesting challenge when you have to do some operation before you
can invoke the other constructor. Later in this chapter, you’ll look into a companion
object and see how it addresses this limitation.

 To make a connection to the MongoDB you’ll use the com.mongodb.Mongo class
provided by the Mongo Java driver:

class MongoClient(val host:String, val port:Int) {
 private val underlying = new Mongo(host, port)
 def this() = this("127.0.0.1", 27017)
}

How do you add a setter method to a class?

To add a setter, you have to suffix your setter method with _=. In the following Person
class, age is private so I’ll add both a getter and a setter:

class Person(var firstName:String, var lastName:String,

 private var _age:Int) {

 def age = _age
 def age_=(newAge: Int) = _age = newAge

}

Now you can use the Person class and change its age value:

val p = new Person("Nima", "Raychaudhuri", 2)
p.age = 3

The assignment p.age = 3 could be replaced by p.age_=(3). When Scala encoun-

ters an assignment like x = e, it checks whether there’s any method defined like x_=
and if so, it invokes the method. The assignment interpretation is interesting in

Scala, and it can mean different things based on context. For example, assignment

to a function application like f(args) = e is interpreted as f.update(args). You’ll

read more about function assignments later.

60 CHAPTER 3 OOP in Scala

NOTE I have used the Mongo Java driver version 2.10.1 for all the code in this
chapter. To run the Scala Mongo wrapper code you’re going to develop in
this chapter, you need to have the Java driver .jar file available in the class-
path. For more information on the Java driver, visit www.mongodb.org/dis-
play/DOCS/Java+Language+Center. To compile the previous code, you have
to import com.mongdb.Mongo above the class definition. You’ll learn about
importing in the next section.

The underlying instance value will hold the connection to MongoDB. When Scala gen-
erates the constructor, it instantiates the underlying instance value too. Because of
Scala’s scripting nature, you can write code inside the class like a script, which will get
executed when the instance of the class is created (kind of like Ruby). The following
example creates a class called MyScript that validates and prints the constructor input:

class MyScript(host:String) {
 require(host != null, "Have to provide host name")
 if(host == "127.0.0.1") println("host = localhost")
 else println("host = " + host)
}

And now load MyScript into Scala REPL:

scala> :load MyScript.scala
Loading MyScript.scala...
defined class MyScript

scala> val s = new MyScript("127.0.0.1")
host = localhost
s: MyScript = MyScript@401e9c3f

scala> val s = new MyScript(null)
java.lang.IllegalArgumentException: requirement failed:
 Have to provide host name
 at scala.Predef$.require(Predef.scala:117)
 at MyScript.<init>(<console>:5)

How is Scala doing this? Scala puts any inline code defined inside the class into the
primary constructor of the class. If you want to validate constructor parameters, you
could do that inside the class (usually at the top of the class). Let’s validate the host in
the MongoClient:

class MongoClient(val host:String, val port:Int) {

 require(host != null, "You have to provide a host name")

 private val underlying = new Mongo(host, port)
 def this() = this("127.0.0.1", 27017)

}

Right now the MongoClient is using an underlying instance to hold the connection to
MongoDB. Another approach would be to inherit from the com.mongodb.Mongo class,
and in this case you don’t have to have any instance value to hold the connection to
MongoDB. To extend or inherit from a superclass, you have to use the extends key-
word. The following code demonstrates how it would look if you extended from the
Mongo class provided by the Java driver:

www.mongodb.org/display/DOCS/Java+Language+Center
www.mongodb.org/display/DOCS/Java+Language+Center

61Packaging

class MongoClientV2(val host:String, val port:Int)
 extends Mongo(host, port){

 require(host != null, "You have to provide a host name")

 def this() = this("127.0.0.1", 27017)
}

As shown in the previous example, you can also inline the definition of the primary
constructor of a superclass. One drawback of this approach is that you can no longer
validate the parameters of the primary constructor before handing it over to the
superclass.

NOTE When you don’t explicitly extend any class, by default that class
extends the scala.AnyRef class. scala.AnyRef is the base class for all refer-
ence types (see section 3.1).

Even though extending Mongo as a superclass is a completely valid way to implement
this driver, you’ll continue to use the earlier implementation because that will give you
more control over what you want to expose from the Scala driver wrapper, which will
be a trimmed-down version of the complete Mongo Java API. Before going any further,
I’ll talk about Scala imports and packages. This will help you to work with the Mongo
library and structure your code.

3.3 Packaging

A package is a special object that defines a set of member classes and objects. The Scala
package lets you segregate code into logical groupings or namespaces so that they
don’t conflict with each other. In Java you’re only allowed to have package at the top
of the .java file, and the declaration defines the scope across the file. Scala takes a dif-
ferent approach for packaging. It combines Java’s declaration approach with C#’s
scoped approach. You can still use the traditional Java approach and define package
at the top of the Scala file, or use a scoping approach, as demonstrated in the follow-
ing listing.

package com {
 package scalainaction {

 package mongo {

 import com.mongodb.Mongo
 class MongoClient(val host:String, val port:Int) {

 require(host != null, "You have to provide a host name")

 private val underlying = new Mongo(host, port)
 def this() = this("127.0.0.1", 27017)

 }

 }
 }

}

Listing 3.1 Declaring packages using the scoping approach

62 CHAPTER 3 OOP in Scala

Here you’re creating the com.scalainaction.mongo package for the MongoClient
class. The previous code is exactly equivalent to the following code, where you’re
declaring the package in traditional Java style:

package com.scalainaction.mongo
import com.mongodb.Mongo

class MongoClient(val host:String, val port:Int) {

 require(host != null, "You have to provide a host name")
 private val underlying = new Mongo(host, port)

 def this() = this("127.0.0.1", 27017)

}

You can also use curly braces with top-level package declarations like the following:

package com.scalainaction.mongo {

 import com.mongodb.Mongo
 class MongoClient(val host:String, val port:Int) {

 require(host != null, "You have to provide a host name")

 private val underlying = new Mongo(host, port)
 def this() = this("127.0.0.1", 27017)

 }

}

It’s a matter of style; you can use either one of them. The scoping approach shown in
listing 3.1 provides more flexibility and a concise way to lay out your code in different
packages. But it might quickly become confusing if you start to define multiple pack-
ages in the same file. The most widely used way in Scala code bases is the traditional
way of declaring a package at the top of the Scala file. The only large, open source
project I know of that uses the package-scoping approach is the Lift web framework
(http://liftweb.net).

 One more interesting point to note here is that Scala package declaration doesn’t
have to match the folder structure of your filesystem. You’re free to declare multiple
packages in the same file:

package com.persistence {

 package mongo {

 class MongoClient
 }

 package riak {

 class RiakClient
 }

 package hadoop {

 class HadoopClient
 }

}

If you save this code in a file called Packages.scala and compile it using the Scala com-
piler (scalac Packages.scala), you’ll notice that the Scala compiler generates class
files in appropriate folders to match your package declaration. This ensures that your
classes are compatible with the JVM, where package declaration has to match the
folder structure in the filesystem.2 3

http://liftweb.net

63Scala imports

3.4 Scala imports

You’ve already seen some examples of import in previous chapters, but I haven’t dis-
cussed it. At first glance, the Scala import looks similar to Java imports, and it’s true
they’re similar, but Scala adds some coolness to it. To import all the classes under the
package com.mongodb, you have to declare the import as follows:

import com.mongodb._

Here’s another use for _, and in this context it means you’re importing all the classes
under the com.mongodb package. In Scala, import doesn’t have to be declared at the
top of the file; you could use import almost anywhere:

scala> val randomValue = { import scala.util.Random
 new Random().nextInt

 }

randomValue: Int = 1453407425

In this case you’re importing the Random class defined in the scala.util package in
the Scala code block, and it’s lexically scoped inside the block and won’t be available
outside it. Because the Scala package is automatically imported to all Scala programs,
you could rewrite the block by relatively importing the util.Random class:

scala> val randomValue = { import util.Random

 new Random().nextInt

 }
randomValue: Int = 619602925

In Scala, when you import a package, Scala makes its members, including subpack-
ages, available to you. To import members of a class, you have to put ._ after the
class name:

2 “Scalac user commands,” www.scala-lang.org/docu/files/tools/scalac.html.
3 Mark Harrah, “SBT, a Build Tool for Scala,” 2012, https://github.com/harrah/xsbt/.

Building Scala code

Scalac2 is the compiler that comes bundled with the Scala distribution. If you’ve

installed Scala as specified in chapter 2, you should have it available in your path.

The Scala compiler provides lots of standard options, like deprecation, verbose, and

classpath, and additional advanced options. For example, to compile the Mongo-
Client you have to do the following:

scalac -classpath mongo/mongo-2.10.1.jar MongoClient.scala

Invoking the Scala compiler directly for smaller examples is okay, but for larger proj-

ects I tend to use build tools like Ant, Maven, or SBT. Ant and Maven are standard

tools for building Java projects. You can easily use them to build Scala projects too,

but the standard build tool for Scala projects is SBT3. Chapter 5 discusses how to

use build tools to build Scala projects. For now, let’s stick to scalac.

www.scala-lang.org/docu/files/tools/scalac.html
https://github.com/harrah/xsbt/

64 CHAPTER 3 OOP in Scala

scala> import java.lang.System._
import java.lang.System._

scala> nanoTime

res0: Long = 1268518636387441000

Here you’re invoking the nanoTime method defined in the System class without a pre-
fix because you’ve imported the members of the System class. This is similar to static
imports in Java (Scala doesn’t have the static keyword). Because imports are rela-
tively loaded, you could import the System class in the following way as well:

scala> import java.lang._

import java.lang._

scala> import System._

import System._

scala> nanoTime
res0: Long = 1268519178151003000

You could also list multiple imports separated by commas. Scala also lets you map a
class name to another class name while importing—you’ll see an example of that soon.

There’s one handy feature of Scala import: it allows you to control the names that you
import in your namespace, and in some cases it improves readability. In Java, for exam-
ple, working with both java.util.Date and java.sql.Date in the same file becomes
confusing; in Scala you could easily remap java.sql.Date to solve the problem:

import java.util.Date
import java.sql.{Date => SqlDate}

import RichConsole._

The _root_ package in Scala

Consider the following example:

package monads { class IOMonad }
package io {
 package monads {
 class Console { val m = new monads.IOMonad }
 }
}

If you try to compile this code, you’ll get an error saying that type IOMonad isn’t avail-

able. That’s because Scala is looking for the IOMonad type in the io.monads pack-

age, not in another top-level package called monads. To specify a top-level package

you have to use _root_:

val m = new _root_.monads.IOMonad

Another point to note here is that if you create classes or objects without a package

declaration, they belong to an empty package. You can’t import an empty package,

but the members of an empty package can see each other.

65Objects and companion objects

val now = new Date
p(now)

val sqlDate = new SqlDate(now.getTime)

p(sqlDate)

The java.sql.Date is imported as SqlDate to reduce confusion with java.util
.Date. You can also hide a class using import with the help of the underscore:

import java.sql.{Date => _ }

The Date class from the java.sql package is no longer visible for use.
 To finish the functionality required for the first user story, you still need to add

methods for creating and dropping the database. To achieve that you’ll add the meth-
ods shown in the following listing.

package com.scalainaction.mongo

class MongoClient(val host:String, val port:Int) {

 require(host != null, "You have to provide a host name")
 private val underlying = new Mongo(host, port)

 def this() = this("127.0.0.1", 27017)

 def version = underlying.getVersion

 def dropDB(name:String) = underlying.dropDatabase(name)

 def createDB(name:String) = DB(underlying.getDB(name))

 def db(name:String) = DB(underlying.getDB(name))
}

Everything in this code should be familiar to you except the createDB and db meth-
ods. I haven’t yet introduced DB objects (I do that in the next section). The createDB
and db method implementations are identical because the getDB method defined in
the Java driver creates a db if one isn’t found, but I wanted to create two separate
methods for readability.

3.5 Objects and companion objects

Before I show you the DB class used in the previous example, let’s explore Scala
objects. Scala doesn’t provide any static modifier, and that has to do with the design
goal of building a pure object-oriented language where every value is an object, every
operation is a method call, and every variable is a member of some object. Having
static doesn’t fit well with that goal, and along with that there are plenty of down-
sides4 to using static in the code. Instead, Scala supports something called singleton

objects. A singleton object allows you to restrict the instantiation of a class to one
object.5 Implementing a singleton pattern in Scala is as simple as the following:

Listing 3.2 Completed MongoClient

4 “Cutting out Static,” Gilad Bracha blog, Room 101, Feb. 17, 2008, http://gbracha.blogspot.com/2008/02/
cutting-out-static.html.

5 “Singleton pattern,” Wikipedia, http://en.wikipedia.org/wiki/Singleton_pattern.

http://gbracha.blogspot.com/2008/02/cutting-out-static.html
http://gbracha.blogspot.com/2008/02/cutting-out-static.html
http://en.wikipedia.org/wiki/Singleton_pattern

66 CHAPTER 3 OOP in Scala

object RichConsole {
 def p(x: Any) = println(x)
}

Here RichConsole is a singleton object. The object declaration is similar to a class dec-
laration except instead of class you’re using the object keyword. To invoke the new
p method, you have to prefix it with the class name, as you’d invoke static methods in
Java or C#:

scala> :l RichConsole.scala
Loading RichConsole.scala...
defined module RichConsole

scala> RichConsole.p("rich console")
rich console

You can import and use all the members of the RichConsole object as follows:

scala> import RichConsole._
import RichConsole._

scala> p("this is cool")
this is cool

The DB object introduced in listing 3.2 is nothing but a factory to create DB instances
representing a database in MongoDB:

object DB {
 def apply(underlying: MongDB) = new DB(underlying)
}

What’s interesting here is that when you use a DB object as a factory, you’re calling it as
if it’s a function, DB(underlying.getDB(name)), whereas you’d expect something like
DB.apply(underlying.getDB(name)). Scala provides syntactic sugar that allows you to
use objects as function calls. Scala achieves this by translating these calls into the
apply method, which matches the given parameters defined in the object or class. If
there’s no matching apply method, it will result in a compilation error. Even though
calling an apply method explicitly is valid, a more common practice is the one I’m
using in the example. Note also that an object is always evaluated lazily, which means
that an object will be created when its first member is accessed. In this case, it’s apply.

The Factory pattern in Scala

When discussing constructors I mentioned that sometimes working with constructors

could create some limitations like processing or validating parameters because in

overloaded constructors the first line has to be a call to another constructor or the

primary constructor. Using Scala objects we could easily address that problem

because the apply method has no such limitation. For example, let’s implement a

Factory pattern in Scala. Here you’ll create multiple Role classes, and based on the

role name you’ll create an appropriate role instance:

67Objects and companion objects

Inside the apply method you’re creating an instance of the DB class. In Scala, both a
class and an object can share the same name. When an object shares a name with a
class, it’s called a companion object, and the class is called a companion class. Now the
DB.scala file looks like the following:

package com.scalainaction.mongo
import com.mongodb.{DB => MongoDB}

class DB private(val underlying: MongoDB) {
}

object DB {
 def apply(underlying: MongoDB) = new DB(underlying)
}

First, the DB class constructor is marked as private so that nothing other than a com-
panion object can use it. In Scala, companion objects can access private members of
the companion class, which otherwise aren’t accessible to anything outside the class.
In the example, this might look like overkill, but there are times when creating an
instance of classes through a companion object is helpful (look at the sidebar for the
factory pattern). The second interesting thing in the previous code is the mongodb
import statement. Because of the name conflict, you’re remapping the DB class
defined by the Java driver to MongoDB.

(continued)

abstract class Role { def canAccess(page: String): Boolean }
class Root extends Role {
 override def canAccess(page:String) = true
}
class SuperAnalyst extends Role {
 override def canAccess(page:String) = page != "Admin"
}
class Analyst extends Role {
override def canAccess(page:String) = false }
object Role {
 def apply(roleName:String) = roleName match {
 case "root" => new Root
 case "superAnalyst" => new SuperAnalyst
 case "analyst" => new Analyst
 }
}

Now you can use the role object as a factory to create instances of various roles:

val root = Role("root")
val analyst = Role("analyst")

68 CHAPTER 3 OOP in Scala

In MongoDB, a database is divided into multiple collections of documents. Shortly
you’ll see how you can create a new collection inside a database, but for now add a
method to retrieve all the collection names to the DB class:

package com.scalainaction.mongo

import com.mongodb.{DB => MongoDB}
import scala.collection.convert.Wrappers._

class DB private(val underlying: MongoDB) {

 def collectionNames = for(name <- new
 JSetWrapper(underlying.getCollectionNames)) yield name

}

The only thing that looks somewhat new is the Wrappers object. You’re using utility
objects provided by Wrappers to convert a java.util.Set to a Scala set so you can use
a Scala for-comprehension. Wrappers provides conversions between Scala and Java
collections. To try out the mongodb driver, write this sample client code:

import com.scalainaction.mongo._

def client = new MongoClient

def db = client.createDB("mydb")

for(name <- db.collectionNames) println(name)

Package object

The only things you can put in a package are classes, traits, and objects. But with

the help of the package object, you can put any kind of definition in a package,

such as a class. For example, you can add a helper method in a package object

that will be available to all members of the package. Each package is allowed to

have one package object. Normally you would put your package object in a separate

file, called package.scala, in the package that it corresponds to. You can also use

the nested package syntax, but that’s unusual:

package object bar {
 val minimumAge = 18
 def verifyAge = {}
}

minimumAge and verifyAge will be available to all members of the package bar. The

following example uses verifyAge defined inside the package object:

package bar
class BarTender {
 def serveDrinks = { verifyAge; ... }
}

The main use case for package objects is when you need definitions in various places

inside your package, as well as outside the package when you use the API defined

by the package.

69Mixin with Scala traits

This sample client creates a database called mydb and prints the names of all the col-
lections under the database. If you run the code, it will print test and system
.indexes, because by default MongoDB creates these two collections for you.

 Now you’re going to expose CRUD (create, read, update, delete) operations in the
Scala driver so that users of your driver can work with documents. The following list-
ing shows the Scala driver code you’ve written so far.

package com.scalainaction.mongo

import com.mongodb._

class MongoClient(val host:String, val port:Int) {

 require(host != null, "You have to provide a host name")

 private val underlying = new Mongo(host, port)
 def this() = this("127.0.0.1", 27017)

 def version = underlying.getVersion

 def dropDB(name:String) = underlying.dropDatabase(name)

 def createDB(name:String) = DB(underlying.getDB(name))
 def db(name:String) = DB(underlying.getDB(name))

}

Using MongoClient, your driver will be able to connect to the running MongoDB
server, to a given host and port, or to the local MongoDB server. You also added meth-
ods like dropDB, createDB, and db to manage MongoDB databases. The following list-
ing shows the DB class you created to wrap the underlying MongoDB database.

package com.scalainaction.mongo

import com.mongodb.{DB => MongoDB}

import scala.collection.convert.Wrappers._

class DB private(val underlying: MongoDB) {
 def collectionNames = for(name <- new

 JSetWrapper(underlying.getCollectionNames)) yield name

}

object DB {

 def apply(underlying: MongoDB) = new DB(underlying)

}

So far, you haven’t added much functionality to the DB class. The only thing it provides
is an easier way to access names of the collections of a given database. But that’s about
to change with Scala traits.

3.6 Mixin with Scala traits

A trait is like an abstract class meant to be added to other classes as a mixin. Traits can
be used in all contexts where other abstract classes could appear, but only traits can be
used as mixin. In OOP languages, a mixin is a class that provides certain functionality

Listing 3.3 Completed MongoClient.scala

Listing 3.4 DB.scala

70 CHAPTER 3 OOP in Scala

that could be used by other classes. You can also view a trait as an interface with imple-
mented methods. You’ll see shortly how Scala traits will help you in implementing the
second user story.

NOTE Another difference between traits and abstract classes in Scala is that an
abstract class can have constructor parameters, but traits can’t take any param-
eters. Both can take type parameters, which I discuss in the next chapter.

The second user story you need to implement in your driver is an ability to create,
delete, and find documents in a MongoDB database. MongoDB stores documents in a
collection, and a database could contain multiple collections. You need to create a
component that will represent a MongoDB collection. The common use case is to
retrieve documents from a collection; another use case would be to perform adminis-
trative functions like creating and deleting documents. The Java Mongo driver pro-
vides a DBCollection class that exposes all the methods to operate on the collection,
but you’re going to take it and slice it into multiple views. In Scala, you could do that
using a trait. You’ll use different traits for different types of jobs.

 In this implementation you’ll wrap the existing DBCollection and provide three
kinds of interfaces: a read-only collection, an administrable collection, and an updatable
collection. The following listing shows how the read-only collection interface will look.

import com.mongodb.{DBCollection => MongoDBCollection }
import com.mongodb.DBObject

trait ReadOnly {

 val underlying: MongoDBCollection

 def name = underlying getName

 def fullName = underlying getFullName

 def find(doc: DBObject) = underlying find doc
 def findOne(doc: DBObject) = underlying findOne doc

 def findOne = underlying findOne

 def getCount(doc: DBObject) = underlying getCount doc
}

The only abstract member defined in this trait is underlying, which is an abstract
value. In Scala, it’s possible to declare abstract fields like abstract methods that need
to be inherited by subclasses.

NOTE The difference between def and val is that val gets evaluated when an
object is created, but def is evaluated every time a method is called.

It’s not necessary to have an abstract member in a trait, but usually traits contain one
or more abstract members. Note that you’re invoking the findOne or getCount
method on the underlying collection without using the . operator. Scala allows you to
treat any method as you would the infix operator (+, -, and so on).

Listing 3.5 ReadOnly collection trait

71Mixin with Scala traits

 The DBObject parameter is nothing but a key-value map provided by the Mongo
Java driver, and you’re going to use the class directly. In the full-blown driver imple-
mentation, you’ll probably want to wrap that class too, but for the toy driver you can
live with this bit of leaky abstraction. I’ll talk about the details of these methods shortly
when you test the methods.

 The next two traits you’re going to look at are Administrable and Updatable. In
the Administrable trait, you’ll expose methods for drop collection and indexes; and
in the Updatable trait you’ll allow create and remove operations on documents—see
the following listing.

trait Administrable extends ReadOnly {

 def drop: Unit = underlying drop

 def dropIndexes: Unit = underlying dropIndexes
}

trait Updatable extends ReadOnly {

 def -=(doc: DBObject): Unit = underlying remove doc
 def +=(doc: DBObject): Unit = underlying save doc

}

Both traits extend the ReadOnly trait because you also want to provide all the features
of a read-only collection. If your trait extends another trait or class, then that trait can
only be mixed into a class that also extends the same superclass or trait. This makes
sense because you want to make sure that someone else implements the abstract mem-
bers that your trait depends on. As with abstract classes, you can’t create an instance of
a trait; you need to mix it with other concrete classes. Here’s a concrete implementa-
tion of the read-only collection:

class DBCollection(override val underlying: MongoDBCollection)

 extends ReadOnly

You’re overriding the underlying abstract value with whatever value will be passed to
the primary constructor when creating the instance of DBCollection. Note that the
override modifier is mandatory when overriding members of a superclass. The fol-
lowing adds three methods that return different flavors of the collection:

private def collection(name: String) = underlying.getCollection(name)

def readOnlyCollection(name: String) = new DBCollection(collection(name))
def administrableCollection(name: String) = new

 DBCollection(collection(name)) with Administrable

def updatableCollection(name: String) = new
 DBCollection(collection(name)) with Updatable

Here you’re getting the underlying collection by name and wrapping it into a
DBCollection instance. When building the administrable and updatable collection,
you’re mixing in the corresponding traits using a with clause. Using the with keyword,
you can mix one or more traits into an existing concrete class. Another way of thinking
about Scala mixins is as decorators. Like decorators, mixins add more functionality to

Listing 3.6 Administrable and Updatable traits

72 CHAPTER 3 OOP in Scala

existing classes. That allows you to widen a thin interface with additional traits when
needed, as you did with the ReadOnly, Administrable, and Updatable traits. The next
two listings show what the DB class (listing 3.7) and DBCollection class (listing 3.8) look
like so far.

package com.scalainaction.mongo

import com.mongodb.{DB => MongoDB}

import scala.collection.convert.Wrappers._

class DB private(val underlying: MongoDB) {
 private def collection(name: String) = underlying.getCollection(name)

 def readOnlyCollection(name: String) = new DBCollection(collection(name))

 def administrableCollection(name: String) = new
 DBCollection(collection(name)) with Administrable

 def updatableCollection(name: String) = new

 DBCollection(collection(name)) with Updatable
 def collectionNames = for(name <- new

 JSetWrapper(underlying.getCollectionNames)) yield name

}

object DB {
 def apply(underlying: MongoDB) = new DB(underlying)

}

package com.scalainaction.mongo

import com.mongodb.{DBCollection => MongoDBCollection }
import com.mongodb.DBObject

class DBCollection(override val underlying: MongoDBCollection)

 extends ReadOnly

trait ReadOnly {

 val underlying: MongoDBCollection

 def name = underlying getName
 def fullName = underlying getFullName

 def find(doc: DBObject) = underlying find doc

 def findOne(doc: DBObject) = underlying findOne doc
 def findOne = underlying findOne

 def getCount(doc: DBObject) = underlying getCount doc

}

trait Administrable extends ReadOnly {

 def drop: Unit = underlying drop

 def dropIndexes: Unit = underlying dropIndexes
}

trait Updatable extends ReadOnly {

 def -=(doc: DBObject): Unit = underlying remove doc
 def +=(doc: DBObject): Unit = underlying save doc

}

Listing 3.7 Completed DB.scala

Listing 3.8 DBCollection.scala

Create ReadOnly view

Create Administrable view

Create Updatable view

73Mixin with Scala traits

If you’ve done any Ruby programming, you’ll find lots of similarity with Ruby mod-
ules. One advantage of traits compared to module systems available in other lan-
guages is that the trait mixin is checked at compile time. If you make mistakes while
stacking traits, the compiler will complain.

 Now you’ll build a client to demonstrate that the driver works. Ideally, you should
always write unit tests to make sure your code works. Chapter 8 explores testing in
Scala land. For now, the following listing shows the small client that validates your
driver.

import com.scalainaction.mongo._

import com.mongodb.BasicDBObject

def client = new MongoClient
def db = client.db("mydb")

for(name <- db.collectionNames) println(name)

val col = db.readOnlyCollection("test")

println(col.name)

val adminCol = db.administrableCollection("test")

adminCol.drop

val updatableCol = db.updatableCollection("test")

val doc = new BasicDBObject()

doc.put("name", "MongoDB")

doc.put("type", "database")
doc.put("count", 1)

val info = new BasicDBObject()

info.put("x", 203)
info.put("y", 102)

doc.put("info", info)

updatableCol += doc

println(updatableCol.findOne)

updatableCol -= doc

println(updatableCol.findOne)

for(i <- 1 to 100) updatableCol += new BasicDBObject("i", i)

val query = new BasicDBObject

query.put("i", 71);
val cursor = col.find(query)

while(cursor.hasNext()) {

 println(cursor.next());
}

In the test client you’re creating collections using the methods exposed by the DB
class. You’re using BasicDBObject provided by the underlying MongoDB driver to test
the find method. BasicDBObject is nothing but a wrapper around a Java map.
MongoDB being a schema-free database, you can put any key-value pair on it and save

Listing 3.9 Test client for driver QuickTour.scala

Create updatable
view of underlying
collection “test”

Add document
to collection

B

Add 100
documents
to “test”
collection

Query for 71st
document in
collectionC

74 CHAPTER 3 OOP in Scala

it to the database B. At the end of the test, you’re using the same BasicDBObject to
query the database C.

 To run the test client, make sure you have the Mongo Java driver .jar file in the
classpath. To specify the classpath to the Scala interpreter, use the –cp option.

 After the release of your driver, all the users are happy. But it turns out that the
driver is slow in fetching documents, and users are asking whether there’s any way we
could improve the performance. One way to solve this problem immediately is by
memoization.6 To speed things up, you’ll remember the calls made to the find method
and avoid making the same call to the underlying collection again. The easiest way to
implement the solution is to create another trait and mix it in with the other traits. By
nature Scala traits are stackable, meaning one trait can modify or decorate the behav-
ior of another trait down the stack. Here’s how to implement the Memoizer trait:

trait Memoizer extends ReadOnly {
 val history = scala.collection.mutable.Map[Int, DBObject]()

 override def findOne = {

 history.getOrElseUpdate(-1, { super.findOne })

 }
 override def findOne(doc: DBObject) = {

 history.getOrElseUpdate(doc.hashCode, { super.findOne(doc) })

 }
}

You’re keeping track of all the resulting DBObjects, and when the same request is
made a second time, you’re not going to make a call to MongoDB—instead, you’ll
return from the map. The getOrElseUpdate method is interesting; it allows you to get
the value for the given key, and if it doesn’t exist, it invokes the function provided in
the second parameter. Then it stores the value with the key in the map and returns the
result. You saved a complete if and else block with a single method. In the case of
the parameterless findOne method, you’re using -1 as the key because the method
doesn’t take a parameter. To use this memoizer trait, you have to modify the existing
DB class as follows:

 def readOnlyCollection(name: String) =

 new DBCollection(collection(name)) with Memoizer
 def administrableCollection(name: String) =

 new DBCollection(collection(name)) with Administrable with Memoizer

 def updatableCollection(name: String) =
 new DBCollection(collection(name)) with Updatable with Memoizer

Now whenever the findOne method is invoked, the overridden version will be called,
and the result will be cached.

 There’s a little problem with this Memoizer approach, though. If you remove docu-
ments from a collection, the Memoizer will still have them and return them. You could
solve this by extending the UpdatableCollection trait and overriding the remove
method. The next section discusses how stackable traits are implemented in Scala.

6 “Memoization,” Wikipedia, http://en.wikipedia.org/wiki/Memoization.

http://en.wikipedia.org/wiki/Memoization

75Mixin with Scala traits

3.6.1 Class linearization

If you’ve worked with C++ or Common Lisp, then the mixin of traits will look like mul-
tiple inheritance. The next question is how Scala handles the infamous diamond
problem (http://en.wikipedia.org/wiki/Diamond_problem). See figure 3.1. Before I
answer that question, let’s see how your hierarchy will look if you have a diamond
problem for the following UpdatableCollection:

Class UpdatableCollection

 extends DBCollection(collection(name)) with Updatable

The problem with this hierarchy is that
trying to invoke one of the find methods
on UpdatableCollection will result in an
ambiguous call because you could reach
the ReadOnly trait from two different
paths. Scala solves this problem using a
something called class linearization. Linear-
ization specifies a single linear path for all
the ancestors of a class, including both the
regular superclass chain and the traits.
This is a two-step process in which it
resolves method invocation by first using
right-first, depth-first search and then
removing all but the last occurrence of
each class in the hierarchy. Let’s look at
this in more detail. First, all classes in Scala
extend scala.AnyRef, which in turn inher-
its from the scala.Any class. (I explain
Scala class hierarchy later in this chapter.)
The linearization of the ReadOnly trait is
simple because it doesn’t involve multiple
inheritance:

ReadOnly –> AnyRef –> Any

Similarly, Updatable and DBCollection also don’t have that issue:

Updatable –> ReadOnly –> AnyRef –> Any

DBCollection –> ReadOnly –> AnyRef –> Any

When class linearization is applied to your UpdatableCollection, it puts the trait first
after the class because it’s the rightmost element and then removes duplication. After
linearization, your UpdatableCollection looks like the following:

UpdatableCollection –> Updatable –> DBCollection –> ReadOnly –> AnyRef –> Any

Now if you add the Memoizer trait into the mix, it will show up before Updatable
because it’s the rightmost element:

Figure 3.1 Class hierarchy of

UpdatableCollection before class

linearization

http://en.wikipedia.org/wiki/Diamond_problem

76 CHAPTER 3 OOP in Scala

UpdatableCollection –> Memoizer –> Updatable –> DBCollection –> ReadOnly –>
AnyRef –> Any

Figure 3.2 illustrates how classes and traits are laid out for the UpdatableCollection
class. The figure shows traits in a separate place because I want you to think differ-
ently about them. When traits have methods implemented, they work as a façade.
Check the sidebar “Trait class files on JVM” for more details. The dotted lines show
the hierarchy, and the solid lines with arrowheads show how methods will be resolved
after linearization.

Trait class files on JVM

Depending on how you define a trait, the Scala compiler generates class files differ-

ently. When you define a trait with only a method declaration and without any method

body, it produces a Java interface. You could use javap –c <class file name> to

inspect class files generated by Scala. For example, trait Empty { def e: Int } will

produce the following class file:

public interface Empty{
 public abstract int e();
}

When a trait declares concrete methods or code, Scala generates two class files: one

for the interface (as shown in the previous code) and a new class file that contains

the code. When a class extends a trait, the variables declared in the trait are copied

to the class file, and the method defined in the trait becomes a façade method in the

class. These façade methods in the class will call the methods defined in the trait

code class.

Any

AnyRef

DBCollection

UpdatableCollection

Memoizer

Updatable

traits

ReadOnly

Figure 3.2 Class linearization of

UpdatableCollection

77Mixin with Scala traits

3.6.2 Stackable traits

You’ve seen multiple uses for Scala traits. To recap, you’ve used a Scala trait as an
interface using ReadOnly. You’ve used it as a decorator to expand the functionality of
DBCollection using the Updatable and Administrable traits. And you’ve used traits
as a stack where you’ve overridden the functionality of a ReadOnly trait with Memoizer.
The stackable feature of a trait is useful when it comes to modifying the behavior of
existing components or building reusable components. Chapter 7 explores abstrac-
tions provided by Scala in building reusable components. For now, let’s look at
another example and explore stackable traits in more detail.

 You have another requirement for your driver; this time it’s related to locale. The
Scala Mongo driver is so successful that it’s now used internationally. But the docu-
ments that you’re returning aren’t locale-aware. The requirement is to make your
read-only interface locale-aware. Luckily, all the non-English documents have a field
called locale. Now if only you could change your find to use that, you could address
this problem.

 You could change your find method in the ReadOnly trait to find by locale, but
that would break all your users looking for English documents. If you build another
trait and mix it with ReadOnly, you could create a new kind of Collection that will
find documents using locale:

trait LocaleAware extends ReadOnly {

 override def findOne(doc: DBObject) = {

 doc.put("locale", java.util.Locale.getDefault.getLanguage)
 super.findOne(doc)

 }

 override def find(doc: DBObject) = {
 doc.put("locale", java.util.Locale.getDefault.getLanguage)

 super.find(doc)

 }
}

Now when creating a new Collection, you could mix in this trait:

new DBCollection(collection(name)) with Memoizer with LocaleAware

The traits could be reordered as follows, with the same result:

new DBCollection(collection(name)) with LocaleAware with Memoizer

As you can see, it’s easy to use traits in a stack to add or modify the behavior of exist-
ing classes or traits. This kind of use is common in Scala code bases, and you’ll see
more on them throughout the second part of the book. Before we leave traits, there’s
one more thing I’d like to mention: the use of super. As you can see, when creating a
trait you can’t tell how your trait will get used and who will be above you. All you
know is that it has to be of a type that your trait extends. In the previous code, you
could mix in the LocaleAware trait before or after Memoizer, and in each case super
would mean something different. The interpretation of super in traits is dynamically
resolved in Scala.

78 CHAPTER 3 OOP in Scala

3.7 Case class

Case classes are a special kind of class created using the keyword case. When the Scala
compiler sees a case class, it automatically generates boilerplate code so you don’t
have to do it. Here’s an example of a Person class:

scala> case class Person(firstName:String, lastName:String)
defined class Person

In this code example, you’re creating a Person case class with firstName and last-
Name parameters. But when you prefix a class with case, the following things will hap-
pen automatically:

 Scala prefixes all the parameters with val, and that will make them public value.
But remember that you still never access the value directly; you always access
through accessors.

 Both equals and hashCode are implemented for you based on the given
parameters.

 The compiler implements the toString method that returns the class name
and its parameters.

 Every case class has a method named copy that allows you to easily create a mod-
ified copy of the class’s instance. You’ll learn about this later in this chapter.

 A companion object is created with the appropriate apply method, which takes
the same arguments as declared in the class.

 The compiler adds a method called unapply, which allows the class name to be
used as an extractor for pattern matching (more on this later).

 A default implementation is provided for serialization:
scala> val me = Person("Nilanjan", "Raychaudhuri")
me: Person = Person(Nilanjan,Raychaudhuri)

scala> val myself = Person("Nilanjan", "Raychaudhuri")
myself: Person = Person(Nilanjan,Raychaudhuri)

scala> me.equals(myself)
res1: Boolean = true

scala> me.hashCode
res2: Int = 1688656232
scala> myself.hashCode
res4: Int = 1688656232

ScalaObject trait

When discussing class linearization, I didn’t give you the complete picture. Scala

always inserts a trait called scala.ScalaObject as a last mixin in all the classes

you create in Scala. The complete linearization of UpdatableCollection is as follows:

UpdatableCollection -> Memoizer -> Updatable -> DBCollection ->
ReadOnly -> ScalaObject -> AnyRef -> Any

Prior to Scala 2.8, ScalaObject used to provide methods like $tag to help with pat-

tern matching, but from Scala 2.8 on, the ScalaObject trait is a marker (empty) trait.

79Case class

Now think about how many times you’ve created a data transfer object (DTO) with
only accessors for the purpose of wrapping some data. Scala’s case classes will make
that easier for you the next time. Both equals and hashCode implementations also
make it safer to use with collections.

NOTE You’re allowed to prefix the parameters to the case class with var if
you want both accessors and mutators. Scala defaults it to val because it
encourages immutability.

Like any other class, a case class can extend other classes, including trait and case
classes. When you declare an abstract case class, Scala won’t generate the apply
method in the companion object. That makes sense because you can’t create an
instance of an abstract class. You can also create case objects that are singleton and
serializable:

trait Boolean

case object Yes extends Boolean

case object No extends Boolean

Scala case classes and objects make it easy to send serializable messages over the net-
work. You’ll see a lot of them when you learn about Scala actors.

NOTE From Scala 2.8 on, case classes without a parameter list are depre-
cated. If you have a need, you can declare your case class without a parameter.
Use () as a parameter list or use the case object.

Let’s put your recently gained knowledge of case classes to use in the MongoDB
driver. So far, you’ve implemented basic find methods in your driver. It’s great, but
you could do one more thing to the driver to make it more useful. MongoDB supports
multiple query options like Sort, Skip, and Limit that you don’t support in your
driver. Using case classes and a little pattern matching, you could do this easily. You’ll
add a new finder method to the collection to find by query and query options. But
first, let’s define the query options you’re going to support:

sealed trait QueryOption

case object NoOption extends QueryOption

case class Sort(sorting: DBObject, anotherOption: QueryOption)
 extends QueryOption

case class Skip(number: Int, anotherOption: QueryOption)

 extends QueryOption

case class Limit(limit: Int, anotherOption: QueryOption)

 extends QueryOption

Here you’re creating four options: Sort, Skip, Limit, and NoOption. The NoOption
case is used when no option is provided for the query. Each query option could have
another query option because you’ll support multiple query options at the same time.
The Sort option takes another DBObject in which users can specify sorting criteria.

80 CHAPTER 3 OOP in Scala

Note that all the option case classes extend an empty trait, and it’s marked as sealed.
I’ll talk about modifiers in detail later in the chapter, but for now a sealed modifier
stops everyone from extending the trait, with a small exception. To extend a sealed
trait, all the classes need to be in the same source file. In this case, I’ve defined all the
previous classes in the DBCollection.scala file.

 For the Query class, you’ll wrap your good old friend DBObject and expose meth-
ods like sort, skip, and limit so that users can specify query options:

case class Query(q: DBObject, option: QueryOption = NoOption) {

 def sort(sorting: DBObject) = Query(q, Sort(sorting, option))

 def skip(skip: Int) = Query(q, Skip(skip, option))
 def limit(limit: Int) = Query(q, Limit(limit, option))

}

Here each method creates a new instance of a query object with an appropriate query
option so that, like a fluent interface (http://martinfowler.com/bliki/Fluent
Interface.html), you can chain the methods together as in the following:

var rangeQuery = new BasicDBObject("i", new BasicDBObject("$gt", 20))

var richQuery = Query(rangeQuery).skip(20).limit(10)

Here you’re searching documents for which the i > 20 condition is true. From the
result set you skip 20 documents and limit your result set to 10 documents. The most
extraordinary part of the code is the last parameter of the Query class: option: Query-
Option = NoOption. Here you’re assigning a default value to the parameter so that
when the second parameter isn’t specified, as in the previous snippet, the default
value will be used. You’ll look at default parameters in the next section. I’m sure that,
as a focused reader, you’ve already spotted the use of the companion object that Scala
generates for case classes. When creating an instance of a case class, you don’t have to
use new because of the companion object. To use the new query class, add the follow-
ing new method to the ReadOnly trait:

def find (query: Query) = { "..." }

Before discussing implementation of the find-by-query method, let’s see how case
classes help in pattern matching. You’ll be using pattern matching to implement the
method.

 You learned about pattern matching in chapter 2, but I haven’t discussed case
classes and how they could be used with pattern matching. One of the most common
reasons for creating case classes is the pattern-matching feature that comes free with
case classes. Let’s take the Person case class once again, but this time you’ll extract
firstName and lastName from the object using pattern matching:

scala> case class Person(firstName:String, lastName: String)

defined class Person

scala> val p = Person("Matt", "vanvleet")

p: Person = Person(Matt,vanvleet)

scala> p match {

http://martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/bliki/FluentInterface.html

81Case class

 case Person(first, last) => println(">>>> " + first + ", " + last)
 }

>>>> Matt, vanvleet

Look how you extracted the first and last names from the object using pattern match-
ing. The case clause should be familiar to you; here you’re using a variable pattern in
which the matching values get assigned to the first and last variables. Under the hood,
Scala handles this pattern matching using a method called unapply. If you have to hand-
code the companion object that gets generated for Person, it will look like following:

object Person {

 def apply(firstName:String, lastName:String) = {
 new Person(firstName, lastName)

 }

 def unapply(p:Person): Option[(String, String)] =
 Some((p.firstName, p.lastName))

}

The apply method is simple; it returns an instance of the Person class and it is called
when you create an instance of a case class. The unapply method gets called when the
case instance is used for pattern matching. Typically, the unapply method is supposed
to unwrap the case instance and return the elements (parameters used to create the
instance) of the case class. I’ll talk about the Option type in Scala in detail in the next
chapter, but for now think of it as a container that holds a value. If a case class has one
element, the Option container holds that value. But because you have more than one,
you have to return a tuple of two elements.

NOTE Sometimes instead of unapply, another method called unapplySeq
could get generated if the case class parameters end with a repeated parame-
ter (variable argument). I’ll discuss that in a later chapter.

In the discussion of for-comprehensions in chapter 2, I didn’t mention that the gener-
ator part of for-comprehensions uses pattern matching. I can best describe this with
an example. Here you’re creating a list of persons and looping through them using
pattern matching:

scala> val people = List(
 | Person("Simon", "kish"),

 | Person("Phil", "Marzullo"),

 | Person("Eric", "Weimer")
 |)

people: List[Person] = List(Person(Simon,kish), Person(Phil,Marzullo),

Person(Eric,Weimer))

scala> for(Person(first, last) <- people) yield first + "," + last

res12: List[java.lang.String] =

 List(Simon,kish, Phil,Marzullo, Eric,Weimer)

You’ll see more examples of extractors and pattern matching throughout the book.
Before we leave this section, I still owe you the implementation of the find-by-query
method, so here you go (see the following listing).

82 CHAPTER 3 OOP in Scala

trait ReadOnly {

 val underlying: MongoDBCollection

 def name = underlying getName
 def fullName = underlying getFullName

 def find(query: Query): DBCursor = {

 def applyOptions(cursor:DBCursor, option: QueryOption): DBCursor = {
 option match {

 case Skip(skip, next) => applyOptions(cursor.skip(skip), next)

 case Sort(sorting, next)=> applyOptions(cursor.sort(sorting), next)
 case Limit(limit, next) => applyOptions(cursor.limit(limit), next)

 case NoOption => cursor

 }
 }

 applyOptions(find(query.q), query.option)

 }

 def find(doc: DBObject): DBCursor = underlying find doc

 def findOne(doc: DBObject) = underlying findOne doc

 def findOne = underlying findOne

 def getCount(doc: DBObject) = underlying getCount doc
}

Here you’re using pattern matching to apply each query option to the result returned
by the find method—in this case, DBCursor. The nested applyOptions function is
applied recursively because each query option could wrap another query option iden-
tified by the next variable, and you bail out when it matches NoOption.

 When it comes to overload methods (methods with the same name), you have to
specify the return type; otherwise, the code won’t compile. You have a similar limita-
tion for recursive method calls. Scala type inference can’t infer the type of recursive
methods or functions. In case of type errors, it’s always helpful to add type informa-
tion. Using the test client in the following listing, you could test your new finder
method.

import com.scalainaction.mongo._
import com.mongodb.BasicDBObject

def client = new MongoClient

def db = client.db("mydb")
val col = db.readOnlyCollection("test")

val updatableCol = db.updatableCollection("test")

for(i <- 1 to 100) updatableCol += new BasicDBObject("i", i)

val rangeQuery = new BasicDBObject("i", new BasicDBObject("$gt", 20))

val richQuery = Query(rangeQuery).skip(20).limit(10)

val cursor = col.find(richQuery)
while(cursor.hasNext()) {

 println(cursor.next());

}

Listing 3.10 ReadOnly trait

Listing 3.11 TestFindByQuery.scala

Find method
takes query
object

Explicitly
specify
return type

Search for
where
i > 20

Skip first
20 docs,
return
10 docs

83Named and default arguments and copy constructors

When you run this client, you’ll see output similar to the following:

{ "_id" : "4ba0df2c2771d753375f4aa7" , "i" : 41}

{ "_id" : "4ba0df2c2771d753385f4aa7" , "i" : 42}

{ "_id" : "4ba0df2c2771d753395f4aa7" , "i" : 43}
{ "_id" : "4ba0df2c2771d7533a5f4aa7" , "i" : 44}

{ "_id" : "4ba0df2c2771d7533b5f4aa7" , "i" : 45}

{ "_id" : "4ba0df2c2771d7533c5f4aa7" , "i" : 46}
{ "_id" : "4ba0df2c2771d7533d5f4aa7" , "i" : 47}

{ "_id" : "4ba0df2c2771d7533e5f4aa7" , "i" : 48}

{ "_id" : "4ba0df2c2771d7533f5f4aa7" , "i" : 49}
{ "_id" : "4ba0df2c2771d753405f4aa7" , "i" : 50}

The id values in the output might be different for you because they’re autogenerated
by MongoDB.

3.8 Named and default arguments and copy constructors

Scala lets you specify method arguments using a named style. When you have methods
or class constructors taking similar types of arguments, it becomes difficult to detect
errors if you swap them by mistake. Let’s take the example of Person again. Instead of
passing in an order of first name, last name, if we swap the order, Scala won’t complain:

scala> case class Person(firstName:String, lastName:String)

defined class Person

scala> val p = Person("lastname", "firstname")

p: Person = Person(lastname,firstname)

Unfortunately, both parameters are of the same type, and the compiler can’t detect
the mistake at compile time. But now, using named style arguments, you can avoid the
problem:

scala> val p = Person(lastName = "lastname", firstName = "firstname")
p: Person = Person(firstname,lastname)

Common arguments against pattern matching

Pattern matching is common in functional programming languages, but not in the

world of OOP languages. Common arguments against pattern matching by object-

oriented developers are that pattern matching could be replaced by a Visitor pattern,

pattern matching isn’t extensible, and pattern matching breaks encapsulation.

First, pattern matching reduces lots of boilerplate code when compared to the Visitor

pattern. The extensibility argument enters the picture when pattern matching is sup-

ported only for basic datatypes like Int, Long, or String. But Scala takes pattern

matching much further and beyond basic datatypes with case classes. Pattern match-

ing implemented for case classes matches only the constructor parameters provided

for the case classes. This way, you don’t have to expose hidden fields of the class,

and you ensure encapsulation.

84 CHAPTER 3 OOP in Scala

The named arguments use the same syntax as a variable assignment, and when you
use named arguments, the order doesn’t matter. You can mix the named arguments
with positional arguments, but that’s usually a bad idea. When going for named argu-
ments, always try to use a named style for all the arguments. The following example
uses a named style for the first argument but not for the second. As mentioned earlier,
it’s good practice to avoid this:

scala> val p = Person(firstName = "firstname", "lastname")
p: Person = Person(firstname,lastname)

When using a named style, if the parameter name doesn’t match, the Scala compiler
will complain about the value not being found. But when you override a method from
a superclass, the parameters’ names don’t have to match the names in the superclass
method. In this case, the static type of the method determines which names have to be
used. Consider this example, where you have the Person trait and SalesPerson over-
riding the grade method and changing the parameter name in the process from
years to yrs:

scala> trait Person { def grade(years: Int): String }

defined trait Person
scala> class SalesPerson extends Person { def grade(yrs: Int) = "Senior" }

defined class SalesPerson

scala> val s = new SalesPerson
s: SalesPerson = SalesPerson@42a6cdf5

scala> s.grade(yrs=1)

res17: java.lang.String = Senior

scala> s.grade(years=1)

<console>:12: error: not found: value years

 s.grade(years=1)
 ^

Here years won’t work because the type of the s instance is SalesPerson. If you force
the type variable to Person, then you can use years as a named argument. I know this
is a little tricky to remember, so watch out for errors like this:

scala> val s: Person = new SalesPerson

s: Person = SalesPerson@5418f143

scala> s.grade(years=1)

res19: String = Senior

The value of the named argument could be an expression like a method or block of
code, and every time the method is called, the expression is evaluated:

scala> s.grade(years={val x = 10; x + 1})

res20: String = Senior

The complementing feature to named arguments is default arguments. You’ve already
seen one example of a default argument in the query example, where the last argu-
ment of the case class defaulted to NoOption:

85Named and default arguments and copy constructors

case class Query(q: DBObject, option: QueryOption = NoOption) {
 def sort(sorting: DBObject) = Query(q, Sort(sorting, option))

 def skip(skip: Int) = Query(q, Skip(skip, option))

 def limit(limit: Int) = Query(q, Limit(limit, option))
}

The default argument has the form arg: Type = expression, and the expression
part is evaluated every time the method uses the default parameter. If you create a
Query instance using Skip, the default won’t be used:

val skipOption = Skip (10, NoOption)

val newQuery = Query(new BasicDBObject(), skipOption)

One of the interesting uses of default arguments in Scala is in the copy method of case
classes. Starting from Scala 2.8 on, along with the usual goodies, every case class has an
additional method called copy to create a modified instance of the class. This method
isn’t generated if any member exists with the same name in the class or in one of its
parent classes. The following example uses the copy method to create another
instance of the skip query option, but with a Limit option instead of NoOption:

scala> val skipOption = Skip(10, NoOption)
skipOption: Skip = Skip(10,NoOption())

scala> val skipWithLimit = skipOption.copy(anotherOption = Limit(10,

 NoOption))
skipWithLimit: Skip = Skip(10,Limit(10,NoOption))

The copy method is using a named argument to specify the parameter that you’d like
to change. The copy method generated by the Scala compiler for the Skip case class
looks like the following:

case class Skip(number: Int, anotherOption: QueryOption)

 extends QueryOption {
 def copy(number: Int = number,

 anotherOption: QueryOption = anotherOption) = {

 Skip(number, anotherOption)
 }

}

As you can see, in the generated method all the parameters are defaulted to the value
provided to the constructor of the class, and you can pick and choose the parameter
value you want to change during the copy. If no parameters are specified, copy will
create another instance with the same values:

scala> Skip(10, NoOption) == Skip(10, NoOption).copy()

res22: Boolean = true

In Scala, invoking the == method is the same as calling the equals method. The ==
method is defined in the scala.Any class, which is the parent class for all classes in
Scala.

86 CHAPTER 3 OOP in Scala

3.9 Modifiers

You’ve already seen a few modifiers in action, but let’s look deeper into them. Along
with standard modifiers like private and protected, Scala has more modifiers and
new abilities.

 The private modifier can be used with any definition, which means it’s only acces-
sible in an enclosed class, its companion object, or a companion class. In Scala, you
can qualify a modifier with a class or a package name. In the following example, the
private modifier is qualified by class and package name:

package outerpkg.innerpkg

class Outer {

 class Inner {

 private[Outer] def f() = "This is f"
 private[innerpkg] def g() = "This is g"

 private[outerpkg] def h() = "This is h"

 }
}

Here, access to the f method can appear anywhere within the Outer class, but not out-
side it. The method g is accessible anywhere within outerpkg.innerpkg. It’s like the
package private in Java. You could use it to make your methods available for unit
tests in the same package. Because the h method is qualified with outerpkg, it can
appear anywhere within outerpkg and its subpackages.

 Scala also lets you qualify the private modifier with this: private[this]. In this
case, it means object private. And object private is only accessible to the object in
which it’s defined. When members are marked with private without a qualifier,
they’re called class-private.

 The protected modifier is applicable to class member definitions. It’s accessible to
the defining class and its subclasses. It’s also accessible to a companion object of the
defining class and companion objects of all the subclasses. Like the private modifier,
you can also qualify the protected modifier with class, package, and this. By
default, when you don’t specify any modifier, everything is public. Scala doesn’t pro-
vide any modifier to mark members as public.

 Like Java, Scala also provides an override modifier, but the main difference is that
in Scala the override modifier is mandatory when you override a concrete member
definition from the parent class. The override modifier can be combined with an
abstract modifier, and the combination is allowed only for members of traits. This
modifier means that the member in question must be mixed with a class that provides
the concrete implementation. An example will demonstrate this fact. The following
creates a DogMood trait (dogs are moody, you know) with an abstract greet method
and an AngryMood trait that overrides it:

trait DogMood {
 def greet

}

87Value classes: objects on a diet

trait AngryMood extends DogMood {
 override def greet = {

 println("bark")

 super.greet
 }

}

The problem with this code is the super.greet line. You can’t invoke the super
greet method because it’s abstract. But super calls are important if you want your
trait to be stackable so that it can get mixed in with other traits. In cases like this, you
can mark the method with abstract override, which means it should be mixed in
with some class that has the concrete definition of the greet method. To make this
code compile, you have to add abstract along with override, as in the following:

trait AngryMood extends DogMood {
 abstract override def greet = {

 println("bark")

 super.greet
 }

}

Scala has introduced a new modifier called sealed, which applies only to class defini-
tions. It’s a little different from the final modifier; classes marked final in Scala
can’t be overridden by subclasses. But classes marked sealed can be overridden as
long as the subclasses belong to the same source file. You used sealed in a previous
section when you created QueryOption case classes:

sealed trait QueryOption

This is a common pattern when you want to create a defined set of subclasses but
don’t want others to subclass it.

3.10 Value classes: objects on a diet

Starting with version 2.10, Scala allows user-defined value classes (which could be case
classes as well) that extend AnyVal. Value classes are a new mechanism to avoid run-
time allocation of the objects. To create a value class you need to abide by some
important rules, including:

 The class must have exactly one val parameter (vars are not allowed).
 The parameter type may not be a value class.
 The class can not have any auxiliary constructors.
 The class can only have def members, no vals or vars.
 The class cannot extend any traits, only universal traits (we will see them

shortly).

These are big constraints, so why bother? Value classes allow you to add extension
methods to a type without the runtime overhead of creating instances. Look at the fol-
lowing example:

88 CHAPTER 3 OOP in Scala

class Wrapper(val name: String) extends AnyVal {
def up() = name.toUpperCase

}

Here Wrapper is a custom value class that wraps the name parameter and exposes an
up() method. To invoke the up method create the instance of the Wrapper class as in
the following:

val w = new Wrapper("hey")
w.up()

This is only true at compile time. At runtime the expression will be optimized to the
equivalent of a method class on a static object: Wrapper.up$extension("hey"). So
what is going on? Behind the scenes the Scala compiler has generated a companion
object for the value class and rerouted the w.up() calls to the up$extension method
in the companion object. The "$extension" is the suffix added to all the methods
extracted from the companion class. The contents of the up$extension method are
the same as the up() method except all the references to name are changed to use the
parameter. Here is an equivalent implementation of a Wrapper companion object:

object Wrapper {
 def up$extension(_name: String) = _name.toUpperCase

}

A value class can only extend a universal trait, one that extends Any (normally traits by
default extend AnyRef). Universal traits can only have def members and no initializa-
tion code:

trait Printable extends Any {
 def p() = println(this)

}

case class Wrapper(val name: String) extends AnyVal with Printable {
 def up() = name.toUpperCase

}

...
val w = Wrapper("Hey")

w.p()

Even though now you can invoke the p method on a Wrapper instance at runtime an
instance will also be created because the implementation of the p method prints the
type. There are limitations when allocation is necessary; if you assign a value class to
an array, the optimization will fail.

 Nonetheless this is a very nice way to add extension methods to an existing type.
We will see examples of value classes later in the book. For now let’s explore the rest of
the Scala type hierarchy.

3.11 Implicit conversion with implicit classes

Implicit conversion is a method that takes one type of parameter and returns another
type. Here is an example of a conversion from Double to Int:

89Implicit conversion with implicit classes

scala> val someInt: Int = 2.3
<console>:7: error: type mismatch;

 found : Double(2.3)

 required: Int
 val someInt: Int = 2.3

 ^

scala> def double2Int(d: Double): Int = d.toInt
double2Int: (d: Double)Int

scala> val someInt: Int = double2Int(2.3)

someInt: Int = 2

Usually you cannot assign a Double value to an Int type, but here we are explicitly
converting Double to Int using the double2Int method before then assigning it to
someInt. We can make the conversion implicit by using the implicit keyword:

implicit double2Int(d: Double): Int = d.toInt

The advantage of implicit conversion is that the compiler will find the appropriate
implicit conversion and invoke it for you:

scala> val someInt: Int = 2.3

<console>:7: error: type mismatch;

 found : Double(2.3)
 required: Int

 val someInt: Int = 2.3

 ^

scala> implicit def double2Int(d: Double): Int = d.toInt

warning: there were 1 feature warnings; re-run with -feature for details

double2Int: (d: Double)Int

scala> val someInt: Int = 2.3

someInt: Int = 2

What is going on here? The first time we assigned a Double value to an Int type vari-
able it failed, but it succeeds the second time. When the compiler encounters a type
error, it doesn’t immediately give up; instead, it looks for any implicit conversions that
might fix the error. In this case, double2Int is used to convert Double to Int. The last
line will be rewritten by the compiler:

val someInt: Int = double2Int(2.3)

This conversion happens at compile time, and, if no appropriate conversion method
is found, the compiler throws a compilation error. The compiler will also throw an
error if there is ambiguity in an implicit resolution; for example, more than one
implicit conversion is found that matches the given criteria. It is quite safe compared
to the runtime extension available in some dynamically typed languages. For now,
ignore the warning. We will learn more about this later.

 One of the common uses of implicit conversion is to add extension methods to
existing types. For example, we know we can create a range by using the to method:

val oneTo10 = 1 to 10

90 CHAPTER 3 OOP in Scala

But what if we want to create a range of numbers using the --> method?

val oneTo10 = 1 --> 10

This will fail because there is no --> method defined for Int. We can easily fix this by
following two simple steps:

 Create a type that has a --> method defined for the Int type
 Provide an implicit conversion

Let’s create a class that defines a --> method for Int and creates a Range of integers:

scala> class RangeMaker(left: Int) {

 | def -->(right: Int) = left to right
 | }

defined class RangeMaker

scala> val range: Range = new RangeMaker(1).-->(10)
range: Range = Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Here the left operand becomes the constructor parameter and the right operand the
parameter to the --> method. The implicit conversion method takes Int and returns
RangeMaker:

scala> implicit def int2RangeMaker(left: Int): Range = new RangeMaker(left)

To understand why we designed our type this way, we need to understand how the com-
piler will parse the 1 --> 10 expression. By default, the Scala compiler always evaluates
expressions from left to right. So the expression is translated to 1.-->(10). Since there
is no --> method defined for Int, the Scala compiler will look for an implicit conver-
sion that can convert Int to some type that defines the --> method. In this case, the
compiler will use the int2RangeMaker method by passing 1 as a parameter, then 10 as
a parameter, to the --> method. After the implicit conversion, the 1 --> 10 expression
will be converted to int2RangeMaker(1).-->(10).

 Since implicit conversion is so commonly used by libraries and applications, Scala
provides implicit classes. Implicit classes reduce boilerplate code by combining the
steps required for implicit conversion. We can combine the RangeMaker and conver-
sion methods by making the class implicit:

implicit class RangeMaker(left: Int) {
 def -->(right: Int): Range = left to right

}

Behind the scenes, the compiler will “desugar” the implicit class into a simple class
and an implicit conversion method, as we did earlier. Note that implicit classes must
have a primary constructor with one argument.

 Looking up an appropriate implicit conversion takes time, but it’s not much of an
issue because it happens at compile time. The only runtime cost comes from creating
an additional instance of RangeMaker for each implicit conversion. The good news is
that we can avoid the runtime cost by turning our implicit classes into value classes:

91Scala class hierarchy

implicit class RangeMaker(val left: Int) extends AnyVal {
 def -->(right: Int): Range = left to right

}

Implicit conversion is a very powerful language feature, but overusing it can reduce
the readability and maintenance of the code base.

3.12 Scala class hierarchy

Figure 3.3 illustrates the Scala class hierarchy. The root class in the hierarchy is the
class scala.Any. Every class in Scala inherits directly or indirectly from this class. The
Scala Any class defines two subclasses: AnyVal and AnyRef. All the values that are
represented by an object in the underlying host system (JVM or CLR) are a subclass of
AnyRef. Every user-defined Scala class also inherits from a trait called scala.Scala-
Object (see section 3.6 for more details). AnyRef is mapped to java.lang.Object in
the JVM and to system.Object in .NET.

 The subclasses for AnyVal aren’t represented as objects in the underlying host sys-
tem. This is interesting because all this while I’ve been saying that everything in Scala
is an object. It’s still true that everything in Scala is an object, but not at the host sys-
tem level. When Scala compiles to Java bytecode, it takes advantage of the Java primi-
tive types for efficiency, but converts them to objects when required by the Scala
application.

 In figure 3.3, along with the subtypes, you have views. Views are implicit type con-
verters that allow Scala to convert from Char to Int to Long and so on. You’ll look into
implicit functions later in the book.

 Type Scala.Null is the subtype of all reference types, and its only instance is the
null reference. The following code creates an instance of scala.Null, and the only
way to create an instance of Null is by assigning null to an instance:

scala> val x: Null = null
x: Null = null

You’ll still get an exception when you try to access any method on a Null object.
Because it’s subclassed from AnyRef, you can’t assign null to any value type in Scala:

scala> val x: Int = null

<console>:8: error: type mismatch;

 found : Null(null)
 required: Int

 val x: Int = null

On the other hand, scala.Nothing is at the bottom of the Scala hierarchy, and it’s a
subtype of everything in Scala. But you can’t create an instance of Nothing, and
there’s no instance of this type in Scala. You’ll learn about Nothing in more detail in
chapter 4 because it does solve some interesting problems for Scala.

92 CHAPTER 3 OOP in Scala

3.13 Summary

This chapter covered a lot of ground, including how Scala empowers traditional OOP.
You learned about new features introduced in Scala 2.8, like named and default argu-
ments. On the one hand, you worked with traits and classes that provide interesting
ways to structure your code in Scala; on the other hand, I introduced you to case
classes that are handy and useful for building immutable data objects. You’ll work with
case classes again when you learn about Actors and concurrency. You also learned
about singleton objects and companion objects and how they’re used in Scala.

 For the first time you also explored the Scala hierarchy and some of the important
base classes. This knowledge will help you easily browse scaladoc when looking for
library classes and how they fit into the Scala hierarchy.

 This chapter provided a foundation for the things that will follow in consecutive
chapters. You’ll revisit object-oriented concepts in Scala in chapter 7, where you’ll
explore other abstraction techniques provided by Scala. Remember, a great way to
familiarize yourself with Scala concepts is to load up the Scala REPL and try out all the
features for yourself. The interactive approach is a good way to learn Scala and under-
stand its concepts. The next chapter should be interesting, because you begin to
tackle the various functional data structures in Scala.

scala.Any

scala.AnyVal

scala.Double

scala.Float

scala.Long

scala.Int

scala.Short

scala.Byte

scala.Unit

scala.Boolean

scala.Char

scala.Nothing

scala.Null

other Scala classes

scala.collection.immutable.List

scala.ScalaObject

scala.collection.Seq

scala.AnyRef

(java.Lang.Object)

java/lang.String

other Java classes

SubType

View

Figure 3.3 Class hierarchy of Scala

with subtypes and views

93

Having fun with
functional data structures

In this chapter you’ll switch gears to begin a fun and interesting part of the Scala
language: Scala collections which broadly support two categories of data struc-
tures—immutable and mutable.

 To understand and benefit from Scala collections, you need to know two con-
cepts: type parameterization and higher-order functions. Type parameterization
allows you to create types that take another type as a parameter (similar to Java
generics). Higher-order functions let you create functions that take other functions
as parameters. These two concepts allow you to create generic and reusable compo-
nents, like Scala collections.

This chapter covers

 Introducing type parameterization with

covariance and contravariance

 Having fun with higher-order functions

 Creating your own function objects in Scala

 Introducing the Scala collection hierarchy

and parallel collections

94 CHAPTER 4 Having fun with functional data structures

 The Scala collection is one of Scala’s most powerful features. The library imple-
ments all the common data structures you need, making it essential for every Scala
developer. A recent addition to the collections library is parallel collections. Scala par-
allel collections allow you to solve data parallelism problems in Scala with ease. You’ll
see how the Scala parallel collections library helps when working with large datasets,
so buckle up! This will be a fun and exciting ride.

4.1 Introducing type parameterization

In programming, type parameterization allows you to define methods or classes in
terms of a type that will be specified later. It’s like creating a placeholder for the type.
Parameterized types should not be a new concept to you if you’ve worked with Java or
C# generics. Scala provides additional extensions to generics because of its sound and
powerful type system.

 In chapter 3 you implemented the query interface to the MongoDB driver, and
one of the methods you exposed was findOne, which retrieves a single document from
the collection. The problem with that method is that it returns null when the collec-
tion is empty, but this little fact isn’t clear from the method declaration. One way to
solve the problem would be to add a comment, although adding a comment to a
method is the weakest form of documentation. Wouldn’t it be better if you could
explicitly communicate that sometimes the method might not work as intended?

 In a situation like this, Scala developers use something called an Option. Option is
a collection type in Scala. Unlike other collection types, an Option contains a maxi-
mum of one element. It represents one of two possible values: None and Some. None
means “no value” and Some represents “some value.” By returning Option from a
method, you can communicate that the method might not return a value at all times.

 For this section, forget that Scala provides an Option type so that you can build
something similar on your own. You’ll create a function that will return the index
position of an element in a list. It also needs to work for all kinds of lists. The list could
contain integers, longs, or strings. How can you build a function that works for all
types of lists? Using type parameterization, you can make the type information config-
urable. Here’s how the position function looks with type parameterization:

def position[A](xs: List[A], value: A): Int = {
 xs.indexOf(value)

}

Here A denotes a type that could only be determined when the function is invoked.
Both List and the value you’re looking for need to be of the same type. Unlike Java
and C#, Scala uses square brackets ([]) to declare the type parameter. When this func-
tion is invoked with a list of integers, A represents the type Int. Similarly if you invoke
it with a list of strings, the type parameter A is replaced with String. Now test your
position method with different types of parameters:

scala> val xs = List("one", "two", "three")
xs: List[java.lang.String] = List(one, two, three)

Find index of first element occurrence

95Type variance with covariance and contravariance

scala> position(xs, "two")
res2: Int = 1

scala> val ys = List(20, 30, 40)

ys: List[Int] = List(20, 30, 40)

scala> position(ys, 40)

res6: Int = 2

scala> position[Int](ys, 300)
res11: Int = -1

Even though you can explicitly specify the type value for the type parameter as in the
last example, it’s optional. Scala type inference determines the value of the type
parameter based on the arguments passed to the function.

 Currently your position function returns -1 when there’s no matching element.
Here, instead of returning the Int result, you’ll return a new type that clearly
expresses the behavior of the method. You’ll create a container called Maybe that will
wrap the result. Your position method will look like this:

def position[A](xs: List[A], value: A): Maybe[Int] = {

 val index = xs.indexOf(value)
 if(index != -1) Just(index) else Nil

}

In the case of a valid index (not -1), the position method returns Just (you’ll see it
shortly); otherwise Nil. Just and Nil are two implementations of the Maybe container,
and the following listing shows how they’re implemented.

sealed abstract class Maybe[+A] {

 def isEmpty: Boolean
 def get: A

}

final case class Just[A](value: A) extends Maybe[A] {
 def isEmpty = false

 def get = value

}

case object Nil extends Maybe[Nothing] {

 def isEmpty = true

 def get = throw new NoSuchElementException("Nil.get")
}

Most of this code should be familiar to you, except the type parameter part. The
Maybe class is declared as a covariant on type A. The next section explores type vari-
ance in detail.

4.2 Type variance with covariance and contravariance

Type variance complements type parameterization with a mechanism to specify con-
straints like covariant and contravariant to the type system. The subtyping relationship

Listing 4.1 Version 1 of Maybe.scala

96 CHAPTER 4 Having fun with functional data structures

gives rise to the question of variance—how do two types with a subtype relationship
relate in type parameterization with each other? In Scala, you can use type parameters
with classes and traits, as demonstrated previously. When using type parameters for
classes or traits, you can use a + sign along with the type parameter to make it covari-
ant (like the Maybe class in the previous example). Covariance allows subclasses to
override and use narrower types than their superclass in covariant positions such as
the return value. Here the Nil object is a subclass of Maybe with scala.Nothing as a
type parameter. The reason you’re using scala.Nothing here is that the get method
in the Nil object throws an exception. Because the A type of Maybe is covariant, you
can return a narrower type from its subclasses. There’s no narrower type than Nothing
in Scala because it’s at the bottom of the hierarchy.

In Scala, an immutable List is covariant in its type parameter, so List[String] is a
subtype of List[Any]. You can take an instance, List[String], and assign it to a List
of Any:

scala> val everything: List[Any] = List("one", "two", "three")

everything: List[Any] = List(one, two, three)

Covariance has lots of useful advantages. Look at the following method:

def ++(that: GenTraversableOnce [A]): List[A]

That method takes a type of iterator (GenTraversableOnce is a template trait for all
objects that could be iterated once) and returns a concatenated collection. Similarly
the collection.Seq, collection.Iterable and collecton.Traversable also pro-
vide the same method:

def ++(that: GenTraversableOnce[A]): Traversable[A]
def ++(that: GenTraversableOnce[A]): Iterable[A]

def ++(that: GenTraversableOnce [A]: Seq[A]

Usefulness of Nothing in Scala

In Scala all methods and functions need to have a return type. There’s no void in

Scala. In situations where you have methods that don’t return anything, you use

scala.Unit as a return type of the method. Scala uses scala.Nothing as a return

type in situations where the return type isn’t clear, such as when an exception is

thrown:

scala> def throwException = throw new RuntimeException(

 "Always throws exception")
throwException: Nothing

When you see a method returning Nothing, that means that method won’t return suc-

cessfully. Here’s another example of invoking exit (System.exit) to terminate the

runtime:

scala> def kill = sys.exit(1)

kill: Nothing

97Type variance with covariance and contravariance

Traversable is the parent trait for all the collection types in Scala, and the ++ method is
only defined in this trait. In the preceding example Seq, Iterable, and List inherit
the definition from Traversable. Still, depending on the type of collection you’re
dealing with, it returns the same type of collection back, because Traversable is
defined with a covariant parameter. You’ll explore Scala collection hierarchy later in
this chapter.

 The opposite of covariance is contravariance. In the case of covariance, subtyping
can go downward, as you saw in the example of List, but in contravariance it’s the
opposite: subtypes go upward. Contravariance comes in handy when you have a muta-
ble data structure.

Mutable objects need to be invariant

A type parameter is invariant when it’s neither covariant nor contravariant. All Scala

mutable collection classes are invariant. An example can explain why mutable

objects need to be invariant. By now, you should be comfortable using collection
.immutable.List; the mutable counterpart of List is collection.mutable.List-
Buffer. Because ListBuffer is mutable, it’s declared as invariant as follows:

final class ListBuffer[A] ...{ ... }

Notice that when you declare an invariant type, you drop the - or + sign. Because it’s

declared as invariant, you can’t assign ListBuffer from one type to another. The

following code will throw a compilation error:

scala> val mxs: ListBuffer[String] = ListBuffer("pants")

mxs: scala.collection.mutable.ListBuffer[String] =
ListBuffer(pants)

scala> val everything: ListBuffer[Any] = mxs

<console>:6: error: type mismatch;
 found : scala.collection.mutable.ListBuffer[String]

 required: scala.collection.mutable.ListBuffer[Any]

 val everything: ListBuffer[Any] = mxs

Even though String is a subtype of scala.Any, Scala still doesn’t let you assign mxs
to everything. To understand why, assume ListBuffer is covariant and the following

code snippet works without any compilation problem:

scala> val mxs: ListBuffer[String] = ListBuffer("pants")

mxs: scala.collection.mutable.ListBuffer[String] =

ListBuffer(pants)
scala> val everything: ListBuffer[Any] = mxs

scala> everything += 1

res4: everything.type = ListBuffer(1, pants)

Can you spot the problem? Because everything is of the type Any, you can store an

integer value into a collection of strings. This is a disaster waiting to happen. It’s

exactly what happens to Java arrays. To avoid these kinds of problems, it’s always a

good idea to make mutable objects invariant. The next question is what happens in

case of an immutable object for collections. It turns out that for immutable objects,

covariance isn’t a problem at all. If you replace ListBuffer with the immutable

List, you can take an instance of List[String] and assign it to List[Any] with-

out a problem.

98 CHAPTER 4 Having fun with functional data structures

The best way to understand contravariance is to see the problem that comes when it’s
absent. Try to spot the problem in the following Java code example:

Object[] arr = new int[1];

arr[0] = "Hello, there!";

You end up assigning the string to an integer array. Java fortunately catches this error
at runtime by throwing an ArrayStoreException. Scala stops these kinds of errors at
compile time by forcing parameter types to be either contravariant or invariant. A
type parameter is invariant when it’s neither covariant nor contravariant. A good
example of contravariance in action is the Function1 trait defined in Scala:

trait Function1[-P, +R] { ... }

Scala uses the minus sign (-) to denote contravariance and the plus sign (+) for cova-
riance. In this case, Function1 is contravariant in P and covariant in R. In Scala, func-
tions are also values and have type. For example, Function1 type represents any
function that takes one parameter. The important question is why the Function1 trait
is contravariant for the parameter and covariant for the return type.

 To answer, consider what will happen when the opposite is the case—for instance,
covariant for parameter and contravariant for return value. Now imagine you have a
covariant parameter, as in the following example:

val addOne: Function1[Any, Int] = { x: Int => x + 1 }

Because Int is a subtype of scala.Any, the covariant parameter should allow the pre-
ceding code to compile. But the loophole in this code is that you can now invoke
addOne with any type of parameter as long as it’s a subtype of scala.Any. Doing so could
cause all sorts of problems for a function that expects only Int. Scala, being a type-safe
language, doesn’t allow you to do that. The only other option you have is to declare the
parameter type as invariant, but that would make the Function1 trait inflexible. A con-
travariant parameter type is the only viable option to create a type-safe function.

(continued)

scala> val xs: List[String] = List("pants")

xs: List[String] = List(pants)

scala> val everything: List[Any] = xs
everything: List[Any] = List(pants)

The only reason this assignment is safe is because List is immutable. You can add

1 to xs List, and it will return a new List of type Any.

scala> 1 :: xs
res5: List[Any] = List(1, pants)

Again, this addition is safe because the cons(::) method always returns a new

List, and its type is determined by the type of elements in the List. The only type

that could store an integer value and reference value is scala.Any. This is an

important property to remember about type variance when dealing with mutable/

immutable objects.

99Lower and upper type bounds

 You can’t use a contravariant return type because you again get into a problem.
Consider the following example:

val asString: Int => Int = { x: Int => (x.toString: Any) }

This code is not valid because Any is a super type of Int, and a contravariant allows
you to go from a narrower type to a more generic type. The following piece of code
should also be valid then, right?

asString(10) + 20

But you end up adding 20 to a string value, and that could be problematic. Scala’s
strong type system implementation stops you from making these kinds of mistakes
when dealing with parameter types and return types. To have a flexible and type-safe
Function1 trait, the only possible implementation would be to have the parameter con-
travariant and the return type covariant. In the next section you’ll learn to set bounds
for type parameters—another important concept associated with type parameters.

4.3 Lower and upper type bounds

In Scala, type parameters may be constrained by type bound. Such type bounds limit
the concrete values of the type variables. An example will illustrate this concept more
clearly. The position function in the following listing throws an exception if you
invoke get method on the Nil object:

scala> val xs = List("one", "two", "three")

xs: List[java.lang.String] = List(one, two, three)

scala> position(xs, "two").get

res3: Int = 1

scala> position(List(), "two").get
java.util.NoSuchElementException: Nil.get

 at Nil$.get(<console>:7)

 at Nil$.get(<console>:5)
 at .<init>(<console>:10)

Wouldn’t it better to pass a default value in case the element isn’t found? That way you
can control the outcome in case of error. You can add a new method to the Maybe
abstract class that will take a default callback:

sealed abstract class Maybe[+A] {

 def isEmpty: Boolean
 def get: A

 def getOrElse(default: A): A = {

 if(isEmpty) default else get

 }
}

Here getOrElse returns the default value if the isEmpty method returns true. In case
of a Nil instance, isEmpty will always return true. But if you try to compile this code,
you’ll get the following compiler error:

covariant type A occurs in contravariant position in type => A of value default

100 CHAPTER 4 Having fun with functional data structures

Because A is a covariant type, Scala doesn’t allow the covariant type as an input param-
eter. You’ll also get the following compilation error if A is contravariant because it’s
used as a return type for get:

contravariant type A occurs in covariant position in type => A of method get

You could solve this problem in two ways: make the Maybe class an invariant and lose
all the subtyping with Just and Nil, or use type bound. I’m not willing to give up nice
subtyping, so let’s go with the local type bound.

 Scala provides two types of type bound: lower and upper. An upper type bound T <:
A declares that type variable T is a subtype of a type A, and A is the upper bound. To
create a function that can only take subclasses of Maybe, you can write something like
the following:

def defaultToNull[A <: Maybe[_]](p: A) = {

 p.getOrElse(null)
}

The function defaultToNull takes parameter A, and it’s constrained to one of the
subtypes of Maybe.

 Because Maybe takes a type parameter, you have to declare the type parameter
when defining the upper type bound. If you don’t care about the type parameter, you
can use the _ placeholder as in the last example.

 A lower bound sets the lower limit of the type parameter. The lower bound T >: A
declares that the type parameter T is constrained to some super type of type A. You can
use the lower type bounds to implement the getOrElse method. The lower bound
helps you restrict the type of the parameter to A to some super type. The following list-
ing shows the complete Maybe classes.

sealed abstract class Maybe[+A] {
 def isEmpty: Boolean

 def get: A

 def getOrElse[B >: A](default: B): B = {
 if(isEmpty) default else get

 }

}

final case class Just[A](value: A) extends Maybe[A] {

 def isEmpty = false

 def get = value
}

case object Nil extends Maybe[scala.Nothing] {

 def isEmpty = true
 def get = throw new NoSuchElementException("Nil.get")

}

The Maybe class is defined with a covariant parameter type A so that its subclasses can
return more specialized types. The getOrElse method returns the value contained by

Listing 4.2 Complete Maybe.scala

Maybe class defined
with a covariant
parameter type A

The Just subclass
holds the success
value of an operation

Nil is opposite of Just
and denotes an error
condition

101Higher-order functions, including map, flatMap, and friends

Just or the default value when it’s empty. Because the default value is taken as a
parameter, you have to set the lower bound to A to satisfy the contravariant rule.

Just and Nil are the two subclasses that represent success and error situations.
The sealed modifier restricts anyone else from creating a subclass of Maybe (modifi-
ers are covered in chapter 3).

 When getting the index, you can always invoke the getOrElse method and avoid
any unnecessary exceptions:

scala> position(List(), "something").getOrElse(-1)
res6: Int = -1

scala> position(List("one", "two", "three"), "three").getOrElse(-1)
res8: Int = 2

Scala’s type system prevents you from making mistakes that could be easily caught dur-
ing the compilation phase. You’ve learned the important role that covariance and
contravariance play in building nice, type-safe applications. But remember that the
approaches discussed here work only for immutable objects. When it comes to muta-
ble objects, it’s always safer to make them invariant.

 You’ve only scratched the surface of Scala’s type system. But I think you have
enough to understand the data structures discussed in this chapter. You’ll see more
examples and explanations of Scala’s type system throughout the book.

4.4 Higher-order functions, including map,
flatMap, and friends

A function is called higher order if it takes a function as an argument or returns a
function as a result. You’ve already seen some examples of Scala immutable.List.
Now consider one of its methods called map. This method allows you to build a new list
by applying a function to all elements of a given List:

class List[+A] ... {

 def map[B](f: A => B) : List[B]
}

Here A represents the type of List in which the map is defined, and B is the type of the
new List. To define a function argument, you have to use the => sign. In this case, f is
a function that takes a single parameter of type A and returns a result of type B. In the
following examples you’re creating a new List by adding 1 to all the elements of a
given list in various ways:

scala> List(1, 2, 3) map { (x: Int) => x + 1 }
res12: List[Int] = List(2, 3, 4)

scala> List(1, 2, 3) map { _ + 1 }
res13: List[Int] = List(2, 3, 4)

scala> def addOne(num:Int) = num + 1
addOne: (num: Int)Int

scala> List(1, 2, 3) map addOne
res11: List[Int] = List(2, 3, 4)

102 CHAPTER 4 Having fun with functional data structures

In the first case you’re passing an anonymous function that takes x as a parameter and
adds 1 to it. In the second case you’re using a function literal, where a placeholder
represents the parameter. In the last example, you’re passing an existing function
without referring to the parameters that are passed between the map function and the
addOne function. This is a good example of pointfree-style1 programming and func-
tional composition. It’s also an example of a call-by-name invocation, where the
parameters of the function are wrapped inside another function. The function addOne
is invoked every time map accesses the function.

 You haven’t looked at an example where a function returns another function. Let’s
fix that by refactoring the addOne function to add a nested function that abstracts our
increment to 1 operation:

def addOne(num: Int) = {
 def ++ = (x:Int) => x + 1
 ++(num)
}
scala> List(1, 2, 3) map addOne
res15: List[Int] = List(2, 3, 4)

1 “Pointfree,” June 5, 2011 (last modified), www.haskell.org/haskellwiki/Pointfree.

Call-by-value, call-by-reference, and call-by-name method invocation

Java supports two types of method invocation: call-by-reference and call-by-value. In

call-by-reference invocation, a function is invoked with a reference to an object. In the

case of Scala, it’s any subtype of AnyRef. In the case of call-by-value invocation, the

function is invoked with a value type. In Scala these are value types like Int or Float.

Remember, Scala unboxes and boxes value types from and to an object depending

on how it’s used in the code. Along with these standard ones, Scala also provides

additional method invocation mechanisms called call-by-name and call-by-need. In

call-by-name method invocation, Scala passes a method parameter as a function.

Let’s look at an example that demonstrates this feature. In the following example,

you have a log function, which logs a message when log is enabled:

def log(m: String) = if(logEnabled) println(m)

But to retrieve a log message, you have to look it up in the error queue—a time-

consuming operation:

def popErrorMessage = { popMessageFromASlowQueue() }

log("The error message is " + popErrorMessage).

Here the parameter will always be evaluated even if log isn’t enabled, and maybe

you don’t want that. You can use call-by-name to avoid the unnecessary computation:

def log(m: => String) = if(logEnabled) println(m)

Now by using =>, you’ve made the parameter a call-by-name, and it won’t affect the

way you’re invoking the log function. But Scala will pass the parameter as a function

that will be evaluated every time the parameter is accessed. If the log isn’t enabled,

the parameter will never be evaluated. Later in this chapter you’ll see how lazy col-

lections like Stream use the call-by-name method invocation pattern.

www.haskell.org/haskellwiki/Pointfree

103Higher-order functions, including map, flatMap, and friends

Here the nested function ++ returns another function that takes Int as a parameter
and returns Int. If you evaluate the ++ function in REPL, you’ll see that the return
type of the function is Int => Int:

scala> def ++ = (x:Int) => x + 1
$plus$plus: (Int) => Int

How can you implement a function like map that works for any type of list? You have a
couple of ways to implement the map function—one uses recursion and the other uses
a for-comprehension. The following is the implementation based on recursion, where
using pattern matching you’re extracting elements from the list and applying the sup-
plied function:

def map[A, B](xs: List[A], f: A => B): List[B] = {
 xs match {
 case List() => Nil
 case head :: tail => f(head) :: map(tail, f)
 }
}

You’re returning Nil (empty List) when the List is empty, and when the List isn’t
empty you’re using pattern matching to separate List into head and tail. The head is
assigned to the first element in the List, and the tail is the remaining list. You’re
using cons (::) to append the result of the f function recursively.

 If you try the map function with List(1, 2, 3) and the addOne function as parame-
ters, the execution steps look like this:

case 1 :: List(2, 3) => addOne(1) :: map(List(2, 3), addOne)
case 2 :: List(3) => 2 :: addOne(2) :: map(List(3), addOne)
case 3 :: List() => 2 :: 3 :: addOne(3) :: map(List(), addOne)

At this point the empty list will match the first case, and the final expression will look
like this:

2 :: 3 :: 4 :: Nil

Now the result of the each function f will be prepended to the empty list, resulting in
a new list:

scala> map(List(1, 2, 3), addOne)
res0: List[Int] = List(2, 3, 4)

How does head :: tail work?

This pattern is called the Infix Operation pattern, where the expression head :: tail
is shorthand for the constructor pattern ::(head, tail). The immutable List in

Scala is defined as an abstract sealed class, and its only two subclasses are Nil
and ::. Both are case classes. As you already know, one of the biggest benefits of

Scala case classes is that they can participate in pattern matching. So ::(head,
tail) matches the constructor of the :: case class that takes head as the first ele-

ment and the list as the second element, which in this case is tail.

104 CHAPTER 4 Having fun with functional data structures

The associativity of the cons (::) is right instead of left. In the expression 2 :: 3 :: 4
:: Nil you’re invoking :: (cons) on Nil first, and then on the result you return by
the first cons operation, and so on. You could write the expression the following way
too: Nil.::(2).::(3).::(4). In Scala, the associativity of an operator is determined
by the operator’s last character. If the operator ends with :, then it’s right-associative.
All other operators are left-associative. The associativity of the operator confuses many
Scala newcomers. Always remember that associativity is determined by the last charac-
ter of the operator.

 Another simple way to implement the map function is to use a for-comprehension;
here’s the implementation:

def map1[A, B](f: A => B, xs: List[A]): List[B] = for(x <- xs) yield f(x)

Another interesting method defined for List is flatMap. This method builds a new
collection by applying a function to all elements of this list and concatenating the
result. The following shows how the flatMap method is declared in the List class:

class List[+A] { ...

 def flatMap[B](f: A => GenTraversableOnce[B]): List[B]

}

GenTraversableOnce represents all collection types that could be iterated either
sequentially or in parallel. All the traits that start with Gen are introduced to the collec-
tion library to implement operations that are applicable to both sequential and paral-
lel collections. Here you’re focusing on sequential collections—later you’ll learn
about parallel collections.

 The flatMap method works similarly to the map method with the added ability to
flatten a collection of collections into a single collection. In the following example
you’re creating a list of characters from a list of strings:

scala> List("one","two", "three", "") flatMap { _.toList }
res5: List[Char] = List(o, n, e, t, w, o, t, h, r, e, e)

As mentioned earlier, String is treated as a Seq-like collection in Scala, and it exposes
a method called toList to convert to a List. In the previous example you invoked
toList on each element in the list. If you use map instead of flatMap, you get the fol-
lowing result:

scala> List("one","two", "three", "") map { _.toList }
res7: List[List[Char]] = List(List(o, n, e), List(t, w, o), List(t, h, r, e,

e), List())

As you can see, flatMap takes the result of the map and flattens it to a single list. Here’s
how you could implement the flatMap function for List:

def flatten[B](xss: List[List[B]]): List[B] = {

 xss match {
 case List() => Nil

 case head :: tail => head ::: flatten(tail)

 }
}

105Higher-order functions, including map, flatMap, and friends

def flatMap[A, B](xs: List[A])(f: A => List[B]) : List[B] = {
 flatten(map(xs, f))

}

Here flatMap is implemented by combining map with a new function called flatten
that takes a List of List and flattens it to a single List. The ::: is another method
defined for List that appends the contents of one List to another. Let’s try the flat-
Map function:

scala> flatMap(List("one", "two", "three")) { _.toList }

res9: List[Char] = List(o, n, e, t, w, o, t, h, r, e, e)

The flatMap function in that example is declared a little differently, as if it has two
sets of parameters, one for the List and another for the f parameter:

def flatMap[A, B](xs: List[A])(f: A => List[B]) : List[B]

This is called currying.2 Currying allows you to chain functions one after another with
a single parameter. You’ll explore currying in detail in chapter 5. An additional bene-
fit of separating parameters of functions is that it allows you to pass functions as clo-
sures {_.toList }.

2 Daniel Spiewak (blog), “Function Currying in Scala,” March 2008, http://mng.bz/u0sJ.

What’s the difference between a lambda and a closure?

A lambda is an anonymous function—a function without a name. You’ve already seen

some examples of it. Closure is any function that closes over the environment in

which it’s defined. Let’s use an example to explore this fact, applying a percentage

to a list of amounts:

scala> List(100, 200, 300) map { _ * 10/100 }

res34: List[Int] = List(10, 20, 30)

In this case the function you’re passing to the map function is a lambda. Now assume

that the percentage value could change over time, so save the current percentage

value in a variable.

scala> var percentage = 10

percentage: Int = 10

scala> val applyPercentage = (amount: Int) =>
amount * percentage/100

applyPercentage: (Int) => Int = <function1>

In this case applyPercentage is a closure because it keeps track of the environ-

ment in which it’s created, like a percentage variable:

scala> percentage = 20

percentage: Int = 20

scala> List(100, 200, 300) map applyPercentage
res33: List[Int] = List(20, 40, 60)

Lambdas and closures are different concepts, but they’re closely related.

http://mng.bz/u0sJ

106 CHAPTER 4 Having fun with functional data structures

 The downside of using a recursive solution is that it can throw a stack overflow
error on large datasets. An alternative is to implement the function using tail recur-
sion so that the Scala compiler could do tail call optimization and transform the
recursion into a loop. In tail recursion you perform your calculation first and then
execute the recursive call by passing the result of the current step to the next step.
Here’s the implementation of the flatten function using tail recursion:

def flatten3[B](xss: List[List[B]]): List[B] = {
def _flatten3(oldList: List[List[B]], newList: List[B]): List[B] =

oldList match {

 case List() => newList
 case head :: tail => _flatten3(tail, newList ::: head)

}

_flatten3(xss, Nil)
}

In this case the flatten function is implemented using a nested function that uses the
tail recursion pattern. The result of newList ::: head is passed as a parameter to the
function so that the Scala compiler can optimize it. You’ll learn more about tail call
recursion in the next chapter. In the next section you’ll explore another new concept
called fold that allows you to process a data structure in some order and build a return
value.

4.5 Using foldLeft and foldRight

Two other interesting methods defined in List are foldLeft and foldRight. These
two operations allow you to perform binary operations on all the elements of the
List. Both of these methods in List are declared as follows:

class List[+A] {
 ...

 def foldLeft[B](z: B)(f: (B, A) => B): B

 def foldRight[B](z: B)(f: (A, B) => B): B
}

The main difference between these methods is the way the parameters are passed to
the function f. In foldLeft, z represents the start value, and it’s passed as the first
parameter to f. For foldRight the start value is passed as the second parameter. The
function f is a combining function that takes two parameters and produces a single
result value. To understand how fold works, look at the previous flatten implementa-
tion one more time. Notice that it’s similar to the recursive implementation of map:

def map[A, B](xs: List[A], f: A => B): List[B] = {

 xs match {
 case List() => Nil

 case head :: tail => f(head) :: map(tail, f)

 }
}

def flatten[B](xss: List[List[B]]): List[B] = {

107Using foldLeft and foldRight

 xss match {
 case List() => Nil

 case head :: tail => head ::: flatten(tail)

 }
}

There’s a common pattern in these functions: you do one thing when List is empty
and something else when List isn’t empty. The only thing that’s different between
these functions is the binary operation. You can avoid this duplication by using fold-
Right:

def map2[A, B](xs: List[A])(f: A => B): List[B] = {
 val startValue = List.empty[B]

 xs.foldRight(startValue) { f(_) :: _ }

}

def flatten2[B](xss: List[List[B]]): List[B] = {

 val startValue = List.empty[B]

 xss.foldRight(startValue) { _ ::: _ }
}

The startValue is set to an empty List, and the combining function lets you apply the
binary operator to all elements. The reason for using foldRight here is the right-
associativeness of the :: and ::: operators. Both the cases start with an empty List
and invoke either :: or ::: on the parameters. I’m sure by now you’re familiar with the
underscore (_) as a placeholder for parameters. This is a good example of how having
higher-order functions helps libraries build common operations that can be used in
many different ways without duplicating code.

 Avoid foldRight as much as possible as it uses recursion and can potentially throw
a stack overflow error. In some cases the Scala compiler transforms recursive functions
to loops—you’ll learn about them in the next chapter. One alternative approach is to
use foldLeft and reverse the result. For example, you can implement map2 using
foldLeft and reverse the result:

def map3[A, B](xs: List[A])(f: A => B): List[B] = {

 val startValue = List.empty[B]

 xs.foldLeft(startValue)((a, x) => f(x) :: a).reverse
}

The foldLeft method applies a binary operator to a start value and all elements of a
List going from left to right. Here’s how to use foldLeft to calculate the sum and
length of a List:

scala> List(1, 2, 3, 4).foldLeft(0) { _ + _ }

res25: Int = 10

scala> List(1, 2, 3, 4).foldLeft(0) { (a, b) => a + 1 }

res27: Int = 4

The first example calculates the sum of all the elements, and the second calculates the
length of the List. The second example can’t use underscore because you aren’t
using all the function parameters to compute the length of the List.

108 CHAPTER 4 Having fun with functional data structures

 Both foldLeft and foldRight have an alias version, /: (foldLeft) and :\ (fold-
Right), that you can use instead. But Scala programmers tend to prefer foldLeft and
foldRight to symbolic versions.

 Folding is a great way to process collections of data to build a return value. Where
map and flatMap allow you to transform contents of a collection, folding allows you
to do structural transformations. You can use folding in many interesting ways to solve
your day-to-day programming problems. The following example uses foldLeft to
determine whether an element exists in a List:

def exists[A](xs: List[A], e: A) =

xs.foldLeft(false)((a, x) => a || (x == e))

It must be obvious by now that higher-order functions provide a nice way to encode
common programming idioms as a part of the library. Using foldLeft and fold-
Right, you can perform any type of binary operation without creating additional func-
tions. Next time you feel the need to create a loop, step back and think about ways you
could use higher abstractions like maps or folds.

 Just because the Scala List collection is used for all the examples doesn’t mean it
should be your go-to collection type. For a given problem, always try to choose the
right collection type. Later in this chapter I introduce you to other Scala collection
types.

 All the goodness of higher-order functions is possible in Scala because of its func-
tion objects. The next section explores how function objects work in Scala.

4.6 Building your own function objects

A function object is an object that you can use as a function. That doesn’t help you
much, so why don’t I show you an example? Here you create a function object that
wraps the foldLeft method you saw in the previous example:

object foldl {

 def apply[A, B](xs: Traversable[A], defaultValue: B)(op: (B, A) => B) =

 (defaultValue /: xs)(op)
}

Now you can use the foldl function object like any function you’ve used before:

scala> foldl(List("1", "2", "3"), "0") { _ + _ }
res0: java.lang.String = 0123

scala> foldl(IndexedSeq("1", "2", "3"), "0") { _ + _ }

res24: java.lang.String = 0123

scala> foldl(Set("1", "2", "3"), "0") { _ + _ }

res25: java.lang.String = 0123

You’ve already seen a few examples of apply and how to use them. It’s no different
when creating a function object. To treat an object as a function object, all you have to
do is declare an apply method. In Scala, <object>(<arguments>) is syntactic sugar
for <object>.apply(<arguments>). You can also have multiple sets of arguments.

109Building your own function objects

Because you’ve defined the parameter Traversable, the parent trait for all collection
types in Scala, you can pass any collection type as a parameter.

 The expression (defaultValue /: xs)(op) might look a little cryptic, but the idea
is to demonstrate the alternative syntax for foldLeft, /:. Remember that when an
operator ends with :, the right associativeness kicks in.

 When declaring function objects, it’s a good idea to extend one of the Function
traits defined in the Scala library. In Scala, the Functon1 trait is declared as follows:

trait Function1[-T1, +R] extends AnyRef {

 def apply(v: T1): R

}

Here 1 stands for “function with one parameter.” Similarly, Scala defines a function
trait for two or more parameters. In the following example, you’re building an incre-
ment function that takes an integer parameter and increments its value by 1:

object ++ extends Function1[Int, Int]{

 def apply(p: Int): Int = p + 1

}

The shorthand and equivalent implementation of this function would be:

val ++ = (x: Int) => x + 1

There’s one more way you could define your function object: using the alternative
notation of function =>.

object ++ extends (Int => Int) {

 def apply(p: Int): Int = p + 1

}

In the last case you’re using the shorthand notation of Function1; that is, Int => Int.
You use a similar syntactic notation when declaring higher-order functions. You can
use function objects anywhere you’ve used lambdas or closures before. Here you’re
invoking your map function with your new ++ function:

scala> map(List(10, 20, 30), ++)

res1: List[Int] = List(11, 21, 31)

This is the same as invoking it with an anonymous function:

scala> map(List(10, 20, 30), (x: Int) => x + 1)

res2: List[Int] = List(11, 21, 31)

It’s also the same as passing the Function trait:

scala> map(List(10, 20, 30), new Function1[Int, Int] {

 def apply(p: Int) = p + 1
 })

res3: List[Int] = List(11, 21, 31)

When passing an existing function (not a function object) as a parameter, Scala cre-
ates a new anonymous function object with an apply method, which invokes the origi-
nal function. This is called eta-expansion.

110 CHAPTER 4 Having fun with functional data structures

 One interesting subtrait of the Function1[-P, +R] trait is PartialFunction, which
allows you to define a function that’s not defined for all P and allows you to compose
with other partial functions to create a complete function that’s defined for all values
of input parameter(s). You’ll explore PartialFunction in the next chapter, where
you’ll have a good use case for it.

Function traits also let you compose two functions to create a new function. This is
important because in functional programming you tend to solve problem by combin-
ing functions. The following example composes the same function twice to create a
new one:

val addOne: Int => Int = x => x + 1

val addTwo: Int => Int = x => x + 2

val addThree = addOne compose addTwo

Composing the addOne and addTwo functions together creates the addThree function.
This is similar to the following implementation:

val addThree: Int => Int = x => addOne(addTwo(x))

The compose method allows you to chain functions together to create new functions.
You’ll look into function composition in much more detail in the next chapter. Now
it’s time for you to explore the Scala collection hierarchy.

4.7 Scala collection hierarchy

One of the major features of the new Scala 2.8 release is its new, improved collection
library.3, 4 You’re going to explore Scala collections in detail in this section.

 The Scala collection classes are part of the scala.collection package and its sub-
packages. The scala.collection.mutable package defines collection classes that

3 Martin Odersky, SID#3 “New collection classes,” revised, July 2010,www.scala-lang.org/sid/3.
4 Martin Odersky, A. Moors, “Fighting Bit Rot with Types,” 2009, http://mng.bz/104f.

Function1 is also defined as Function

Because the Function1 trait is used so often, Scala defines a type alias called

Function. You won’t find any reference to this trait in scaladoc because this type

alias is defined inside the Predef class as follows:

type Function[-A, +B] = Function1[A, B]

type is a keyword in Scala, and it’s used to create type aliases. It’s similar to

typedef in C. I discuss type variables at length in chapter 6, where we’ll explore

using them to create abstract members in Scala.

Another helpful use of type variables is as a representation of a complicated type:

type MILS = Map[Int, List[String]]

val mapping: MILS = Map(
 1 -> List("one", "uno"), 2 -> List("two", "dos"))

www.scala-lang.org/sid/3
http://mng.bz/104f

111Scala collection hierarchy

provide side-effect operations that could change the state of the collection in place.
On the other hand, scala.collection.immutable is guaranteed to be immutable for
everyone. The immutable collections are sometimes called persistent data structures

because you can be certain that accessing the same collection will yield the same result
over time. Here persistent has nothing to do with a database or anything like that, but
over time an immutable collection stays unchanged during the current program exe-
cution. Any change in an immutable collection produces a new collection without
touching the existing collection.

 The generic subpackage provides building blocks for implementing various collec-
tions. Typically, collection classes in mutable and immutable packages use the classes
in the generic package for implementation of some of their operations. Normally you
don’t have to deal with the classes in the generic package unless you’re planning to
create custom collection classes on your own.

 A collection class defined in the package scala.collection can be either mutable
or immutable. For example, scala.collection.Map[A, +B] is a super class for both
collection.mutable.Map[A, B] and collection.immutable.Map[A, +B]. Generally,
the root collections in the package scala.collection define the same interface as
the immutable collections, and the mutable collections add additional methods on
top of the immutable collections that allow mutation of the collection. In the case of
mutable map, it provides methods like += and -= that add and remove elements from
the collection and hence change the collection in the process. Even though you can
use a root collection type as a reference to an immutable collection, it’s always better
to be explicit about the type of collection (mutable or immutable) when dealing with
collections so that users can figure out the code easily. Here you’re assigning both
mutable and immutable collections to the collection.Map type value, and it’s not
clear from the type of the mapping whether or not the map it refers to can be changed
by others:

scala> val mapping: collection.Map[String, String] = Map("Ron" -> "admin",

"Sam" -> "Analyst")
mapping: scala.collection.Map[String,String] =

Map(Ron -> admin, Sam -> Analyst)

scala> val mapping: collection.Map[String, String] =
collection.mutable.Map("Ron" -> "admin", "Sam" -> "Analyst")

mapping: scala.collection.Map[String,String] = Map(Sam -> Analyst, Ron ->

admin)

Scala automatically imports immutable collections, but you have to explicitly import
mutable collection types, as you did for collection.mutable.Map. Figure 4.1 shows a
simplified version of the Scala collection library.

 The root of the hierarchy is the trait Traversable. This base trait implements the
behavior common to all collection types in Scala (see table 4.1). The only abstract
method defined in the Traversable trait is foreach:

def foreach[U](f: Elem => U)

112 CHAPTER 4 Having fun with functional data structures

Let’s see an example where you can use this knowledge. You’ve already seen examples
of how to use Java collections with Scala, but here’s another simple example where you
could wrap any Java collection to Traversable so that you could use it in Scala freely:

Table 4.1 Useful methods defined in the Traversable trait

Methods Description

xs.size The number of elements in the collection.

xs ++ ys A collection consisting of the elements of both xs and ys.

xs map f The collection obtained from applying the function f to every element in xs.

xs flatMap f The collection obtained from applying the collection valued function f to every

element in xs and concatenating the results.

xs filter p The collection consisting of those elements of xs that satisfy the predicate p.

xs find p An option containing the first element in xs that satisfies p, or None if no ele-

ment qualifies.

(z /: xs)(op) Apply binary operation op between successive elements of xs, going left to right

and starting with z. /: is alias for foldLeft.

(xs :\ z)(op) Apply binary operation op between successive elements of xs, going right to left

and starting with z. :\ is alias for foldRight.

xs.head The first element of the collection (or some element, if no order is defined).

xs.tail The rest of the collection except xs.head.

xs mkString sep Produces a string that shows all elements of xs between separators sep.

Figure 4.1 Scala collection hierarchy

with three main types of collections: Set,

Seq, and Map

113Mutable and immutable collections

import java.util.{Collection => JCollection, ArrayList }

class JavaToTraversable[E](javaCollection: JCollection[E]) extends
 Traversable[E] {
 def foreach[U](f : E => U): Unit = {
 val iterator = javaCollection.iterator
 while(iterator.hasNext) {
 f(iterator.next)
 }
 }
}

You’re providing a concrete implementation of only an abstract method in the
Traversable trait, foreach. Now with just one concrete method, you can use all the
methods defined in the Traversable trait, such as map, foldLeft, or filter:

scala> val jCol = new ArrayList[Int]
jCol: java.util.ArrayList[Int] = []

scala> (1 to 5) foreach { jCol.add(_) }

scala> jCol
res3: java.util.ArrayList[Int] = [1, 2, 3, 4, 5]

scala> val jtoT = new JavaToTraversable(jCol)
jtoT: JavaToTraversable[Int] = line3(1, 2, 3, 4, 5)

scala> jtoT map { _ * 10 } filter { _ > 20 }
res10: Traversable[Int] = List(30, 40, 50)

In Scala you can define a traversable object as finite or infinite; hasDefiniteSize
determines whether a collection is finite or infinite. You’ll see examples of an infinite
collection later in this chapter.

4.8 Mutable and immutable collections

A collection in a scala.collection can be both mutable and immutable. You read
about the difference between mutable and immutable collection classes in the previ-
ous section. Here you’ll focus on both mutable and immutable collections. But before
I start looking into specific collection classes, let’s peek at the Iterable trait. This trait
comes after Traversable. It provides the implementation of foreach that you learned
in the last section and it exposes a new abstract method called iterator. It also adds
methods like takeRight and dropRight along with the methods defined in the
Traversable trait. takeRight returns a collection consisting of the last n elements for
a given n, and dropRight does the opposite:

scala> Iterable(1, 2, 3, 4, 5) dropRight 2
res0: Iterable[Int] = List(1, 2, 3)

scala> Iterable(1, 2, 3, 4, 5) takeRight 2
res1: Iterable[Int] = List(4, 5)

The most interesting things about the Iterable trait are its three base classes: Seq,
Set, and Map. One thing common among these subclasses is that they all implement
the PartialFunction trait, and that means that all of them have the apply method.
You’ll now explore these base classes and their subclasses in detail.

114 CHAPTER 4 Having fun with functional data structures

4.9 Working with List and ListBuffer

The elements in a sequence are indexed, and they’re indexed from 0 to length – 1,
where length is the number of elements in the sequence collection. Because Seq also
implements PartialFunction, it has an apply method (the Function trait defines an
apply method), and it’s a partial function from Int to an element. The reason it’s par-
tial is because for all values of Int you may not have elements in the collection. In the
following example you’re trying to access an element that exists in the sequence and
one that doesn’t:

scala> val languages = Seq("Scala", "Haskell", "OCaml", "ML")
languages: Seq[java.lang.String] = List(Scala, Haskell, OCaml, ML)

scala> languages(1)

res11: java.lang.String = Haskell

scala> languages(10)

java.lang.IndexOutOfBoundsException

 at scala.collection.LinearSeqLike$class.apply(LinearSeqLike.scala:78)
 at scala.collection.immutable.List.apply(List.scala:46)

If the sequence is mutable like ListBuffer, then along with the apply method it
offers an update method. An assignment is turned into an update method call. In the
following code snippet you’re creating a ListBuffer and updating it:

scala> import scala.collection.mutable.ListBuffer

import scala.collection.mutable.ListBuffer

scala> val buf = ListBuffer(1.2, 3.4, 5.6)

buf: scala.collection.mutable.ListBuffer[Double] =

ListBuffer(1.2, 3.4, 5.6)

scala> buf(2) = 10

Using a collection as PartialFunction

Along with the standard apply method, the PartialFunction trait in Scala defines

a couple of interesting methods, including andThen and orElse. For example, to

avoid situations where your Seq doesn’t have elements, you could use orElse, which

works as a fallback when the partial function isn’t defined for a given value. Here’s

how to use orElse:

val default: PartialFunction[Int, String] = {
 case _ => "Is it a functional language?" }

val languagesWithDefault = languages orElse default

Now if you try to access an index that doesn’t exist, your default is used instead.

languagesWithDefault(10) will produce "Is it a functional language?"

This is a good example of function composition and how to use it in Scala. You’ll

explore PartialFunction and other function composition parts and their usage

throughout the book.

Storing 10 as 3rd
buf element

B

115Working with List and ListBuffer

scala> buf
res30: scala.collection.mutable.ListBuffer[Double] =

ListBuffer(1.2, 3.4, 10.0)

scala> buf.update(2, 20)

scala> buf

res32: scala.collection.mutable.ListBuffer[Double] =

ListBuffer(1.2, 3.4, 20.0)

The assignment at B and the update method called at C are identical. The two main
subclasses for Seq are LinearSeq and Vector. These classes provide different perfor-
mance characteristics. Vector provides efficient apply and length operations, whereas
LinearSeq has efficient head and tail operations. The most common subclasses of
LinearSeq are List and Stream. You’ve already seen examples of List. You’ll explore
Stream shortly.

One interesting subcategory of Sequences in Scala is Buffers. Buffers are always
mutable, and most of the collections I talk about here are internally built using
Buffers. The two common subclasses of Buffers are mutable.ListBuffer and
mutable.ArrayBuffer.

4.9.1 Working with Set and SortedSet

Set is an iterable collection type that contains no duplicate elements. Set provides the
contains method to check whether the given element exists in the Set, and the apply
method that does the same thing. Here’s how to use them:

scala> val frameworks = Set("Lift", "Akka", "Playframework", "Scalaz")
frameworks: scala.collection.mutable.Set[java.lang.String] =

Set(Lift, Playframework, Akka, Scalaz)

scala> frameworks contains "Lift"
res36: Boolean = true

scala> frameworks contains "Scalacheck"

res37: Boolean = false

scala> frameworks("Lift")

res38: Boolean = true

To add or remove elements to or from an immutable Set, use + and –, respectively.
Using these methods for a mutable Set isn’t a good idea because it will create a new

Storing 20 as 3rd
buf element

C

What type of collection should I use?

Scala collections provide various types of collections, and every collection type has

different performance characteristics. Making sure that you select the appropriate

collection type to solve your problem is important. In case you’re not sure what type

of collection to use, always reach out for Vector. Overall, Vector has better perfor-

mance characteristics compared to other collection types.

116 CHAPTER 4 Having fun with functional data structures

Set. It will not update itself. A better way to change mutable Sets is using the += and
-= methods (for other useful methods available for Set, see table 4.2). Here are some
examples of adding and removing elements from both immutable and mutable Sets:

scala> val frameworks = Set() + "Akka" + "Lift" + "Scalaz"

frameworks: scala.collection.immutable.Set[java.lang.String] = Set(Akka,

Lift, Scalaz)

scala> val frameworks = Set("Akka", "Lift", "Scalaz") - "Lift"

frameworks: scala.collection.immutable.Set[java.lang.String] = Set(Akka,

Scalaz)

scala> val mFrameworks = collection.mutable.Set[String]()

mFrameworks: scala.collection.mutable.Set[String] = Set()

scala> mFrameworks += "Akka" += "Lift"
res5: mFrameworks.type = Set(Lift, Akka)

scala> mFrameworks += "Scalacheck"

res12: mFrameworks.type = Set(Lift, Akka, Scalacheck)

Along with the add and remove methods, you can perform other Set operations, such
as union, intersect, and diff. One interesting subtrait of Set is SortedSet. When
iterator or foreach is called on SortedSet, it produces its elements in a certain order.
In the following code snippet you’re adding two sets, one using Set and the other using
SortedSet. In the case of SortedSet, the order of the elements is maintained:

scala> Set(1, 2, 3) ++ Set(3, 4, 5)
res15: scala.collection.immutable.Set[Int] = Set(5, 1, 2, 3, 4)

scala> import collection.immutable.SortedSet

import collection.immutable.SortedSet

scala> SortedSet (1, 2, 3) ++ SortedSet(3, 5, 4)

res18: scala.collection.immutable.SortedSet [Int] = TreeSet(1, 2, 3, 4, 5)

Table 4.2 Useful methods defined in immutable and mutable Sets

Methods Description

xs contains x Test whether x is an element of xs.

xs ++ ys Set containing all elements of xs and additional elements from

ys. It won’t add the duplicate entries from ys.

xs & ys, xs intersect ys The set intersection of xs and ys.

xs | ys, xs union ys The set union of xs and ys.

xs &~ ys, xs diff ys The set difference of xs and ys.

xs ++= ys Add elements from ys to set xs as a side effect and return xs
itself. Only for mutable Set.

xs(x) = b, xs.update(x, b) If Boolean argument b is true, add x to xs; otherwise remove

x from xs.

xs.clear() Remove all elements from xs.

117Working with List and ListBuffer

4.9.2 Working with Map and Tuple

Maps are iterable pairs of keys and values. The key-value pair is represented by
scala.Tuple2, a tuple of two elements. Unlike other collections, a Tuple is a hetero-
geneous collection where you can store various types of elements. Here’s how you can
create an instance of an immutable Map with two key-value pairs:

scala> val m = Map((1, "1st"), (2, "2nd"))
m: scala.collection.immutable.Map[Int,java.lang.String] =

 Map(1 -> 1st, 2 -> 2nd)

An alternative way to create a similar Map would be to use the key -> value syntax:

scala> val m = Map(1 -> "1st", 2 -> "2nd")

m: scala.collection.immutable.Map[Int,java.lang.String] =

 Map(1 -> 1st, 2 -> 2nd)

Most of the operations of Map are similar to those of Set. In the case of Map, the apply
method returns the value of a given key, and if the value doesn’t exist, it throws an
exception. Here’s an example of how to use the apply method:

scala> m(1)
res20: java.lang.String = 1st

scala> m(3)

java.util.NoSuchElementException: key not found: 3
 at scala.collection.MapLike$class.default(MapLike.scala:226)

 at scala.collection.immutable.Map$Map2.default(Map.scala:88)

The better way to retrieve a value associated with a key is to use the get method
defined in Map. Instead of returning the value, it wraps the value in a container called
Option:

def get(key: A): Option[B]

Option is similar to the Maybe construct you created at the beginning of the chapter.
The Scala Option provides more features than you built for the Maybe. You can think
of Option as a List of one element. When an element exists in the Map, it returns Some
of the elements; otherwise, it returns None. In the following example you’re using get
to retrieve the value for a key:

scala> m.get(1)
res22: Option[java.lang.String] = Some(1st)

scala> m.get(3)

res23: Option[java.lang.String] = None

You can use get to extract the element from Option or use getOrElse to retrieve a value
from Option. To get all the keys and values from the Map, you can use m.keys and
m.values (table 4.3 lists some of the useful methods defined in mutable and immutable
maps), and both of them return Iterator. Scala Map also defines methods like filter,
which takes a predicate and returns a Map of all the key values for which the predicate
was true. In the following code snippet, you’re filtering out all the rock artists:

118 CHAPTER 4 Having fun with functional data structures

scala> val artists = Map(
"Pink Floyd" -> "Rock", "Led Zeppelin" -> "Rock",

"Michael Jackson" -> "Pop", "Above & Beyond" -> "Trance")

artists: scala.collection.immutable.Map[java.lang.String,java.lang.String] =
Map(Pink Floyd -> Rock, Led Zeppelin -> Rock, Michael Jackson -> Pop,

Above & Beyond -> Trance)

scala> artists filter { (t) => t._2 == "Rock" }
res26: scala.collection.immutable.Map[java.lang.String,java.lang.String] =

Map(Pink Floyd -> Rock, Led Zeppelin -> Rock)

The filter method in Map calls the predicate by passing the key-value pair as an
instance of scala.Tuple2. The Scala Tuple2 defines the methods _1 and _2 to
retrieve the first and second elements from the Tuple. Another way you could filter
out all the rock artists would be to use for-comprehension, like so:

scala> for(t <- artists; if(t._2 == "Rock")) yield t
res31: scala.collection.immutable.Map[java.lang.String,java.lang.String] =

Map(Pink Floyd -> Rock, Led Zeppelin -> Rock)

This brings up an interesting point of how a for-comprehension is similar to the map,
filter, and foreach methods you’ve learned about so far. In the next section you’ll
see how a for-comprehension is translated in Scala.

4.9.3 Under the hood of for-comprehension

You’ve learned that for-comprehensions are made up of generators, value definitions,
and guards. But I haven’t talked about the under-the-hood translation that happens

Table 4.3 Useful methods defined in immutable and mutable Map

Methods Description

ms getOrElse (k, d) The value associated with key k in map ms, or the default value d

if not found.

ms + (k -> v) The map containing all mappings of ms as well as the mapping k

-> v from key k to value v.

ms ++ kvs The map containing all mappings of ms as well as all key-value

pairs of kvs.

ms filterKeys p A map view containing only those mappings in ms where the key

satisfies predicate p.

ms mapValues f A map view resulting from applying function f to each value asso-

ciated with a key in ms.

ms(k) = v, ms.update(k, v) Adds mapping from key k to value v to map ms as a side effect,

overwriting any previous mapping of k.

ms getOrElseUpdate(k, d) If key k is defined in map ms, return its associated value. Other-

wise, update ms with the mapping k -> d and return d.

xs.clear() Removes all mappings from ms.

119Working with List and ListBuffer

and how a for-comprehension combines pattern matching with filter, map, flatMap,
and foreach. This knowledge will help you understand how to combine simple func-
tions to create something powerful. As always, a better way is to look at what’s going
on underneath. This time you’ll create a case class to represent the artists and use a
for-comprehension to create a list of rock artists. Here’s the code snippet:

case class Artist(name: String, genre: String)

val artists = List(Artist("Pink Floyd", "Rock"),
 Artist("Led Zeppelin", "Rock"),

 Artist("Michael Jackson", "Pop"),

 Artist("Above & Beyond", "trance")
)

for(Artist(name, genre) <- artists; if(genre == "Rock"))

yield name

Under the hood, this for-comprehension will get translated to something like the
following:

artists withFilter {

 case Artist(name, genre) => genre == "Rock"
} map {

 case Artist(name, genre) => name

}

How does this translation work? Every generator p <- e gets translated to a call to
withFilter on e like e.withFilter { case p => true; case _ => false }. In the gen-
erator, the first part of Artist(name, genre) is nothing but pattern matching, and
because you can use case classes in pattern matching, you used them for the Artist
example. The withFilter method returns an instance of class List.WithFilter that
supports all the filtering operations. The yield part of the for-comprehension is
turned into a call to the map method on the output of the filter. For example,
for(Artist(name, genre) <- artists) yield name gets translated into something
like the following:

artists withFilter {

 case Artist(name, genre) => true; case _ => false

} map {
 case Artist(name, genre) => name

}

For-comprehensions without yield (imperative version) are translated into a foreach
method call on the output of the filter. Here’s an example:

for(Artist(name, genre) <- artists) println(name + "," + genre)

artists withFilter {
 case Artist(name, genre) => true; case _ => false

} foreach {

 case Artist(name, genre) => println(name + "," + genre)}

When you have multiple generators in the for-comprehension, things become a little
more involved and interesting. Let’s say that along with the artists you also like to store

120 CHAPTER 4 Having fun with functional data structures

albums produced by those artists, and you’re only interested in rock albums. Create
another case class to store the artists with their albums, and using a for-comprehension
you can easily filter out all the rock albums. Here’s the code:

case class Artist(name: String, genre: String)

case class ArtistWithAlbums(artist: Artist, albums: List[String])

val artistsWithAlbums = List(

 ArtistWithAlbums(Artist("Pink Floyd", "Rock"),

 List("Dark side of the moon", "Wall")),
 ArtistWithAlbums(Artist("Led Zeppelin", "Rock"),

 List("Led Zeppelin IV", "Presence")),

 ArtistWithAlbums(Artist("Michael Jackson", "Pop"),
 List("Bad", "Thriller")),

 ArtistWithAlbums(Artist("Above & Beyond", "trance"),

 List("Tri-State", "Sirens of the Sea"))
)

Why use withFilter but not filter?

The answer lies in strict versus nonstrict processing of the filter. The filter method

processes all the elements of the list and selects only those elements that satisfy

the predicate/condition, whereas nonstrict processing means that computation is

done on a need-to basis. Starting with Scala 2.8, for-comprehensions are nonstrict.

In this example you have a list of numbers, and you want to control the processing

based on a flag:

val list = List(1, 2, 3)
var go = true

val x = for(i <- list; if(go)) yield {

 go = false
 i

}

println(x)

You’d expect that x would be List(1), but if you run the same code in Scala 2.7.*,

you’ll see that x is List(1, 2, 3). The reason is that prior to Scala 2.8, for-

comprehensions were translated into something like the following:

val y = list filter {

 case i => go

} map {

 case i => {
 go = false

 i

 }
}

println(y)

As you can see, when the filter processes the elements, go is true; hence it returns

all the elements. The fact that you’re making the go flag false has no effect on the

filter because the filter is already done. In Scala 2.8 this problem is fixed using with-
Filter. When withFilter is used, the condition is evaluated every time an element

is accessed inside a map method.

121Working with List and ListBuffer

for { ArtistWithAlbums(artist, albums) <- artistsWithAlbums
 album <- albums

 if(artist.genre == "Rock")

 } yield album

For each artist you’re iterating through all the albums and checking to see if the genre
is Rock. When you have multiple generators, Scala uses flatMap instead of map. The
preceding code gets translated to the following:

artistsWithAlbums flatMap {

 case ArtistWithAlbums(artist, albums) => albums withFilter {

 album => artist.genre == "Rock"
 } map { case album => album }

}

The reason you use flatMap here is because you have to flatten the output of map for
each generator. Using flatMap you get List(Dark side of the moon, Wall, Led
Zeppelin IV, Presence) as the result, and with map you get List(List(Dark side of
the moon, Wall), List(Led Zeppelin IV, Presence), List(), List()) as output.

 Before leaving Scala collections, I’d like to discuss one more thing, and that’s the
usage of Scala Option. You’ve already seen some of the methods defined in Scala col-
lections that return Option, and it’s time to see what they are.

4.9.4 Use Option not Null

If you’ve worked with Java or a Ruby-like language, then you understand the pain of
working with null or nil (in the case of Ruby) in code. In Ruby, things are a little bet-
ter in the sense that Nil is a singleton object, and you can invoke methods on Nil. But
in Java if a variable reference is null, you get a NullPointerException. To avoid the
issue many programmers clutter their codebase with null checks and make the code
difficult to read.

 Scala takes a different approach to solving this problem, using something called
Option.5 Option implements the Null Object pattern. Option is also a Monad. I talk
about Monads at length in the next chapter, but for now think of a Monad as a simple
container. Option is an abstract class in Scala and defines two subclasses, Some and
None. You implemented something similar in listing 4.2. Every now and then you
encounter a situation where a method needs to return a value or nothing. In Java or
Ruby you typically do this by returning null or nil. But in the case of Scala, Option is
the recommended way to go when you have a function return an instance of Some or
otherwise return None. The get method in Scala map does exactly that. When the
given key exists, it returns the value wrapped in Some or returns None when the key
doesn’t exist. Here’s an example:

val artists = Map("Pink Floyd" -> "Rock", "Led Zeppelin" -> "Rock", "Michael

Jackson" -> "Pop", "Above & Beyond" -> "Trance")

5 Daniel Spiewak (blog), “The ‘Option’ Pattern,” 2008, http://mng.bz/AsUQ.

http://mng.bz/AsUQ

122 CHAPTER 4 Having fun with functional data structures

artists: scala.collection.immutable.Map[java.lang.String,java.lang.String] =
Map(Pink Floyd -> Rock, Led Zeppelin -> Rock, Michael Jackson -> Pop,
Above & Beyond -> Trance)

scala> artists.get("Pink Floyd")
res33: Option[java.lang.String] = Some(Rock)

scala> artists.get("Abba")
res34: Option[java.lang.String] = None

You can use Option with pattern matching in Scala, and it also defines methods like
map, filter, and flatMap so that you can easily use it in a for-comprehension.

4.10 Working with lazy collections: views and streams

To understand lazy collections, step back and examine their opposite—strict collections.
So far you’ve looked at collections that are strict, meaning they evaluate their ele-
ments eagerly. The following example adds 1 to all the elements of the List but only
returns the head from the List:

scala> List(1, 2, 3, 4, 5).map(_ + 1).head

res43: Int = 2

When should you use Either rather than Option?

scala.Either represents one of the two possible meaningful results, unlike

Option, which returns a single meaningful result or Nothing. Either provides two

subclasses: Left and Right. By convention, Left represents failure and Right is

akin to Some. In the following code you’re trying to make a socket connection, and as

you know, it might fail or return a connection based on whether a server is available

to accept it. You could easily wrap these kinds of operations in a function called

throwableToLeft:

def throwableToLeft[T](block: => T):Either[Throwable, T] =

 try {
 Right(block)

 } catch {

 case ex Throwable => Left(ex)
 }

When creating a new Socket connection, you can wrap using throwableToLeft as

in the following:

scala> val r = throwableToLeft {
 new java.net.Socket("localhost", 4444)

}

scala> r match {
 case Left(e) => e.printStackTrace

 case Right(e) => println(e)

 }

When an exception occurs, you create an instance of Left otherwise Right. Most

programmers are used to throwing exceptions, and using Either could take some

getting used to. In particular, throwing an exception isn’t a good idea in concurrent

programming, and using Either like a pattern is a good way to send and receive fail-

ures between processes and threads.

123Working with lazy collections: views and streams

The problem with this code is that even though you’re looking for only the head ele-
ment of the output (another instance of List) produced by map, you’re still process-
ing all the elements from 1 to 5 in the List. To make it clearer, break the previous line
like this:

scala> val newList = List(1, 2, 3, 4, 5).map(_ + 1)

newList: List[Int] = List(2, 3, 4, 5, 6)

scala> newList.head
res44: Int = 2

Sometimes this isn’t a big issue, but other times you may want to save space and time
by not creating intermediate collections and operations unless required. Scala offers a
couple of interesting and useful ways to create more on-demand collections using
View and Stream. Let’s start with views.

4.10.1 Convert a strict collection to a nonstrict collection with views

The more technical term for on-demand collections is nonstrict collections. You’ll see an
example shortly. Sometimes nonstrict collections are called lazy collections, but lazy usu-
ally refers to nonstrict functions that cache results.

TIP Prior to Scala 2.8, Views were called Projections. This is one of the
migration issues you may face when moving to Views from Projections.

Almost all collections expose a method called view, which returns a nonstrict view of
the collection you’re working on. To process the previous List example on demand,
you could do the following:

scala> List(1, 2, 3, 4, 5).view.map(_ + 1).head

res46: Int = 2

In this case, a call to map produces another view without doing the calculation, and the
calculation is deferred until you invoke head on it. Another interesting way to look at
laziness is how sometimes you can avoid errors with lazy processing.6 The following
example processes elements of List by using each element as a divisor of 2. But one
of the elements will result in a divide-by-zero error:

scala> def strictProcessing = List(-2, -1, 0, 1, 2) map { 2 / _ }
strictProcessing: List[Int]

scala> strictProcessing(0)

java.lang.ArithmeticException: / by zero
 at $anonfun$strictProcessing$1.apply(<console>:6)

Even though you’re interested in only the first element of the list, the entire collec-
tion is processed, causing the exception for the third element. Using View would
avoid the exception when accessing the first element:

scala> def nonStrictProcessing = List(-2, -1, 0, 1, 2).view map { 2 / _ }

nonStrictProcessing: scala.collection.SeqView[Int,Seq[_]]

6 Daniel Sobral (blog), “Strict Ranges?,” October 2009, http://mng.bz/nM4s.

http://mng.bz/nM4s

124 CHAPTER 4 Having fun with functional data structures

scala> nonStrictProcessing(0)
res50: Int = -1

You can skip the error element and process the other elements, but the moment you
access the error element you’ll get an exception:

scala> nonStrictProcessing(3)

res52: Int = 2

scala> nonStrictProcessing(2)
java.lang.ArithmeticException: / by zero

 at $anonfun$nonStrictProcessing$1.apply(<console>:6)

To force strict processing on a view, invoke the force method on it, which, like the
strict version, will throw ArithmeticException:

scala> nonStrictProcessing.force

java.lang.ArithmeticException: / by zero
...

The nonstrict method of processing collection elements is a useful and handy way to
improve performance, especially when the operation is time-consuming. In lazy func-
tional languages like Haskell and Clean, almost every construct is evaluated lazily. But
because Scala isn’t a lazy functional programming language, you have to take extra
steps to simulate the equivalent type of laziness by using call-by-name functions or par-
tial functions. An example will demonstrate this idea. The following code snippet has
a time-consuming operation called tweets, which takes a handle and searches for
Twitter messages that have the handle name:

import scala.io._
import scala.xml.XML

def tweets(handle: String) = {

 println("processing tweets for " + handle)

 val source = Source.fromURL(new

 java.net.URL("http://search.twitter.com/search.atom?q=" + handle))

 val iterator = source.getLines()
 val builder = new StringBuilder

 for(line <- iterator) builder.append(line)

 XML.loadString(builder.toString)
}

Using Source you get the Twitter search result in XML and create an XML node
instance from it. Even though it doesn’t take that much time, for argument’s sake let’s
consider this operation to be expensive and time-consuming. Now you need to pro-
cess these Twitter search results for multiple users. The most obvious solution would
be to create a Map that stores the tweets with the handle name, as in the following:

scala> val allTweets = Map("nraychaudhuri" -> tweets("nraychaudhuri"),

 "ManningBooks" -> tweets("ManningBooks"),

 "bubbl_scala" -> tweets("bubbl_scala")
)

processing tweets for nraychaudhuri

125Working with lazy collections: views and streams

processing tweets for ManningBooks
processing tweets for bubbl_scala

The problem with this approach is that while creating the Map, you’re invoking the
tweets function for all users. But because the tweets function is time-consuming,
you’d like to invoke it only when you need it for a user. An alternative way to solve the
problem would be to use a partial function, as discussed previously:

scala> val allTweets = Map(
"nraychaudhuri" -> tweets _ , "ManningBooks" -> tweets _,

"bubbl_scala" -> tweets _)

allTweets: scala.collection.immutable.Map[java.lang.String,(String) =>
scala.xml.Elem] = Map(nraychaudhuri -> <function1>, ManningBooks ->

<function1>, bubbl_scala -> <function1>)

In this case you’ve created the map using a partial function. A function becomes a par-
tial function when you don’t specify all the arguments it needs. For example, if you
invoke tweets with an argument you get messages, but if you omit the argument you
get a function back:

scala> tweets("ManningBooks")
processing tweets for ManningBooks

scala> tweets _

res73: (String) => scala.xml.Elem = <function1>

To omit an argument you have to specify _; otherwise, you’ll get an error from Scala:

scala> tweets

<console>:19: error: missing arguments for method tweets in object $iw;
follow this method with '_' if you want to treat it as a partially applied

function

 tweets

In the example if you use view, you can achieve the laziness you’re looking for, and
your tweets function will get called when you need the value:

scala> allTweets.view.map{ t => t._2(t._1)}.head
processing tweets for nraychaudhuri

Inside a Map, values are stored as Tuple2, a tuple of two elements. _1 is the handle and
_2 is the value, and in this case it’s a partial function. You’re invoking the tweets func-
tion by passing the handle name. If you want to process the messages for Manning
Books, you can use a for-comprehension, as in the following:

for(t <- allTweets; if(t._1 == "ManningBooks")) t._2(t._1)

Note that starting with Scala 2.8, for-comprehensions are now nonstrict for standard
operations.

4.10.2 Working with Streams

The class Stream implements lazy lists in Scala where elements are evaluated only when
they’re needed. Stream is like List, in which elements are stored in two parts, head and

126 CHAPTER 4 Having fun with functional data structures

tail. The tail for Stream isn’t computed until it’s needed. If you want, you can build
an infinite list in Scala using Stream, and it will consume memory based on your use.
Because Stream extends from LinearSeq, you have almost all the List methods avail-
able to you. The following example zips each element of the List with its index:

scala> List("zero", "one", "two", "three", "four",

 "five").zip(Stream.from(0))

res88: List[(java.lang.String, Int)] = List((zero,0), (one,1), (two,2),
(three,3), (four,4), (five,5))

Here the from method defined in the Stream object creates an infinite stream starting
at 0 and incrementing by 1. Scala Streams also enjoy the same benefits as views when it
comes to memory consumption and performance. Let’s look at an example to dem-
onstrate that, using the Fibonacci sequence.7 In mathematics, the Fibonacci numbers
are the numbers in the following sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ...

By definition, the first two numbers are 0 and 1, and each remaining number is the
sum of the previous two. The most common way to implement the Fibonacci
sequence is to use recursion; here’s the code:

def fib(n: Int): Int = n match {

 case 0 => 0

 case 1 => 1
 case n => fib(n - 1) + fib(n - 2)

}

This function will return the Fibonacci number for a given n value. To see the effi-
ciency problem of this implementation, you have to try the function for a value of n
greater than 20. To clearly understand why it’s not an efficient solution, look at what
happens for fib 8:

fib(8)

fib(7) + fib(6)

(fib(6) + fib(5)) + (fib(5) + fib(4))
((fib(5) + fib(4)) + (fib(4) + fib(3)) + ((fib(4) + fib(3)) + (fib(3) +

fib(2))

...

As you can see, the calculation is growing exponentially, and unfortunately many of
the steps are computed repeatedly. One way to implement the Fibonacci sequence is
to build it using an infinite stream. If you take a Fibonacci sequence starting from 0
(0, 1, 1, 2, 3...) and zip with its tail, you get a sequence of pairs (tuples): ((0, 1), (1,
2), (2, 3)...). If you use map to sum the two parts of the pair, you get a number in the
Fibonacci series. To implement this, use recursive streams. Here’s the code snippet:

val fib: Stream[Int] = Stream.cons(0, Stream.cons(1,

 fib.zip(fib.tail).map(t => t._1 + t._2)))

7 The Fibonacci sequence example is taken from www.haskell.org/soe/.

www.haskell.org/soe/

127Divide and conquer with parallel collections

You’re using the apply method of the cons object with a head of 0 and another
Stream as a tail. Now if you compare the timing of both implementations, you’ll see
that the stream-based solution performs better than the previous one.

 The question that remains is how Stream can manage to evaluate the tail when it’s
required and not eagerly evaluated. The answer is a call-by-name parameter. A close
look at the signature of the apply method in the cons object will show that the second
parameter is declared as a function that takes no arguments and returns a stream:

def apply[A](hd: A, tl: => Stream[A]) = new Cons(hd, tl)

Here t1 is a call-by-name parameter, which is encoded by turning it into a no-arg func-
tion. Note that when pattern matching a Stream, the usual cons(::) doesn’t work;
you have to use #::.

4.11 Divide and conquer with parallel collections

So far you’ve looked at collections that use either an eager or lazy evaluation strategy,
and the elements of the collection are processed sequentially. Now you’ll learn about
Scala parallel collections, in which elements of a collection are evaluated in parallel.

 The Scala parallel collections are implemented in terms of split and combine oper-
ations. The split operation divides parallel collections into small Iterable collections
until it hits some threshold defined for a given collection. Then a set of tasks is cre-
ated to perform the operation in parallel on small Iterable collections. These tasks
are implemented in terms of a Fork/Join framework.8 The Fork/Join framework fig-
ures out the number of CPU cores available to perform the operation and uses threads
to execute the task. At the end, the output of the each task combines to produce the
final result. Figure 4.2 shows how a map operation is performed on ParVector, a paral-
lel version of Vector collection.

 In figure 4.2 the ParVector(10, 20, 30, 40, 50, 60, 70, 80, 90) is split into
smaller Iterable collections, and each small Iterable collection implements the
scala.collection.parallel.Splitter trait. The threshold operation defined for
each parallel collection provides an estimate on the minimum number of elements
the collection has before the splitting stops. Once the split operation is over, each col-
lection is handed over to a task to perform the operation. For example TaskA takes
10, 20 as an input and performs a map operation on them to produce 5, 10. At the
end, the output of each task is combined into the final result. Each parallel collection
type provides a combiner that knows how to combine smaller collections to produce
the output. To figure how many workers are used to perform the operation, you could
try the following snippet inside the REPL:

scala> import scala.collection.parallel.immutable._

import scala.collection.parallel.immutable._

scala> ParVector(10, 20, 30, 40, 50, 60, 70, 80, 90).map {x =>

println(Thread.currentThread.getName); x / 2 }

8 Java Tutorials, “Fork/Join,” http://mng.bz/0dnU.

http://mng.bz/0dnU

128 CHAPTER 4 Having fun with functional data structures

ForkJoinPool-1-worker-2
ForkJoinPool-1-worker-2
ForkJoinPool-1-worker-3
ForkJoinPool-1-worker-3
ForkJoinPool-1-worker-3
ForkJoinPool-1-worker-3
ForkJoinPool-1-worker-1
ForkJoinPool-1-worker-0
ForkJoinPool-1-worker-0
res2: scala.collection.parallel.immutable.ParVector[Int] = ParVector(5, 10,

15, 20, 25, 30, 35, 40, 45)

I’ve changed the map method a little bit to print out the name of the thread executing
the operation. Because I’m running on a quad-core Macbook Pro, the Fork/Join
framework used four different worker threads to execute the map operation in paral-
lel. The details of Fork/Join are completely taken care of for you so you can focus on
solving problems.

Figure 4.2 Parallel collections implemented in terms of split and combine operations using the

Fork/Join framework

Configuring parallel collections

The engine responsible for scheduling the parallel collection operations is called

TaskSupport. Each parallel collection is configured with a task support object that is

responsible for keeping track of the thread pool, load-balancing, and scheduling of

tasks.

Scala provides a few implementations of task support out of the box:

 "ForkJoinTaskSupport—This uses the fork-join thread pool used by JVM 1.6.

 "ThreadPoolTaskSupport—Less efficient than ForkJoinTaskSupport; it uses

the normal thread pool to execute tasks.

129Divide and conquer with parallel collections

Parallel collections are well-suited for data parallel problems and improve the perfor-
mance of the overall operation considerably without your worrying about concur-
rency. The map operation is a perfect example of an operation that you could
parallelize because it doesn’t depend on the order in which elements of a collection
are processed. Scala parallel collections don’t guarantee any order of execution. On
the other hand, foldLeft isn’t suited for parallel collections because the elements
need to be processed in a certain order. The following example demonstrates that
foldLeft is executed by a single thread even if performed on ParVector:

scala> ParVector(10, 20, 30, 40, 50, 60, 70, 80, 90).foldLeft(0) {(a,x) =>
println(Thread.currentThread.getName); a + x }

Thread-14
Thread-14
Thread-14
Thread-14
Thread-14
Thread-14
Thread-14
Thread-14
Thread-14
res3: Int = 450

Note that in the absence of side effects, parallel
collections have the same semantics as the
sequential collections. The next section explores
the types of available parallel collections.

4.11.1 Parallel collection hierarchy

Parallel collections were added to the collec-
tions library in Scala 2.9. All the parallel col-
lection classes are implemented in a separate
class hierarchy (see figure 4.3). At the top of
the parallel collection library is ParIterable.
This trait implements the common behavior
of all the parallel collections.

 "ExecutionContextTaskSupport—This is the default task support for all the par-

allel collection types in Scala. This is implemented in the scala.concurrent
package and uses the fork-join thread pool behind the scene.

To change the task support associated with a given collection, simply change the

taskSupport property as in the following:

import scala.collection.parallel._

val pv = immutable.ParVector(1, 2, 3)

pv.tasksupport = new ForkJoinTaskSupport(new
scala.concurrent.forkjoin.ForkJoinPool(4))

In this case tasksupport is changed to ForkJoinTask with four working threads.

Why there are

Gen* classes in the

scala.collection package

The Gen* classes implement

operations that could be imple-

mented both in a sequential

and parallel collections library.

These classes form a hierarchy

similar to the class hierarchy

in figure 4.1. If you want your

code to not care whether it

receives a parallel or sequen-

tial collection, you should prefix

it with Gen: GenTraversable,

GenIterable, GenSeq, and so

on. These can be either parallel

or sequential.

130 CHAPTER 4 Having fun with functional data structures

The Scala parallel collections library implements parallel versions of almost all the col-
lection types available in the scala.collection package, both mutable and immuta-
ble types. I say almost because you won’t find parallel implementation of LinearSeq
type collections like List because they aren’t well-suited for parallel execution.

 To use any of these collection types you have to import the scala.collection
.parallel.immutable or scala.collection.parallel.mutable package:

scala> import scala.collection.parallel.mutable._

import scala.collection.parallel.mutable._

scala> ParArray(1, 2, 3, 4).sum

res4: Int = 10

You don’t always have to start with a parallel collection implementation; you can easily
switch between sequential and parallel as you need them.

4.11.2 Switching between sequential and parallel collections

Scala collections provide the par method to all sequential collection types to create a
parallel version of the collection. And on the other side, all the parallel collection
types implement the seq method to create sequential versions of the collection. The
following example filters out all the odd numbers by converting the sequential version
of Vector to ParVector using the par method:

val vs = Vector.range(1, 100000)
vs.par.filter(_ % 2 == 0)

In this case the output will be an instance of ParVector of even numbers. To get back
the sequential version of Vector, you have to invoke the seq method. The following
example converts Vector to its parallel counterpart to perform a filter operation and
then converts back to Vector again:

Vector.range(1, 100000).par.filter(_ % 2 == 0).seq

This kind of conversion has the additional benefit that you can optimize part of a
codebase to use parallel collections without changing the type of the collection used
across the code.

Figure 4.3 Scala parallel

collection hierarchy

131Summary

 But parallel collections aren’t a silver bullet. You shouldn’t expect that everything
will perform better by switching to parallel collections. In fact, in some cases it might
perform worse than the sequential version. Consider two points before switching to
parallel collections:

 Type of operation
 Overhead of conversion

First, not all operations are parallelizable, so switching to parallel collection won’t
improve the performance of these operations. An ideal candidate would be the one
that doesn’t assume any order of execution and doesn’t have any side effects. Opera-
tions like map, flatMap, filter, and forall are good examples of methods that
would be easily parallelized.

 Second, there’s an overhead of creating a parallel version of a sequential collection
and using the Fork/Join framework. If it takes less time to perform the operation than
to create a parallel collection, then using the parallel version will reduce your perfor-
mance. It also depends on the type of collection you’re using. Converting Seq to
ParSeq is much faster than converting List to Vector because there’s no parallel List
implementation, so when you invoke par on List you get Vector back.

4.12 Summary

You’ve learned a few important concepts in this chapter. The knowledge of type
parameterization helped in exploring type-variance concepts and the type-safety fea-
tures of Scala. Understanding this concept is important for building generic, type-
safe, reusable components in Scala. The chapter also explored the use and impor-
tance of higher-order functions such as map and filter and how they help users of
the Scala library—in particular the collection library that provides rich and useful
APIs. Using higher-order functions, you can easily encapsulate common program-
ming idioms.

 This chapter also introduced the Scala collections library and the new changes
made to the API starting with Scala 2.8. The Scala collections library is a vast set of
APIs, and you saw only the most important and commonly used ones. You need to
explore the scaladoc for other Collection classes and APIs, because almost all com-
mon, useful functions are already encoded in the library.

 When working with collections it’s also important to understand the performance
and memory requirements of individual collection types. Knowing the difference
between strict and nonstrict processing will help you decide which type of collection
would be useful and when.

 The next chapter explores functional programming. You’ll learn what functional
programming is and how to do functional programming in Scala. Understanding
functional programming will help you build functional, immutable, and simple
solutions.

132

Functional programming

You’re already doing functional programming using Scala if you’ve been following
the examples in the book. In some cases it’s explicitly mentioned or visible and in
other cases it’s mixed with object-oriented constructs of the Scala language. This
chapter focuses on functional programming concepts and how they can be imple-
mented in Scala. The goal of the chapter is to make you comfortable with func-
tional programming and help you to write code in functional programming style.

Functional programming is a programming paradigm that models computation as
the evaluation of expressions. And expressions are built using functions that don’t
have mutable state and side effects. Exploring the roots of functional programming
is valuable.1 Believe it or not, functional programming started around 1930 when
Alonzo Church introduced lambda calculus.2 A lambda calculus (λ calculus) is a

This chapter covers

 Why functional programming matters

 Mixing functional programming with OOP

 Functions in various forms

 Monads and their practical examples

1 Slava Akhmechet, “Functional Programming for the Rest of Us,” June 19, 2006, www.defmacro.org/
ramblings/fp.html.

2 Lloyd Anderson, “Lambda Calculus,” http://mng.bz/tWaV.

www.defmacro.org/ramblings/fp.html
www.defmacro.org/ramblings/fp.html
http://mng.bz/tWaV

133What is functional programming?

formal mathematical system to investigate functions, function application, and func-
tion recursion. In lambda calculus functions are first-class values; functions can take
other functions as a parameter and return functions as an output (higher-order func-
tions). A function that adds two input parameters could be written like the following
in lambda calculus:

λx. λy. x + y

Here λx. λy. x + y represents an anonymous function that takes x as a parameter
and returns the new anonymous function λy. x + y that takes y as a parameter and
returns the result of x + y. In lambda calculus all the functions are anonymous and
represented by the symbol λ (hence the name lambda).

 Lambda calculus is the main inspiration behind functional programming. Func-
tional programming languages implement lambda calculus with some constraints and
types. Not all programming languages have features like first-class functions, pattern
matching, and so on, but it’s possible to do functional programming in almost all pro-
gramming languages. The next section explains functional programming in detail.

5.1 What is functional programming?

Functional programming is programming with
functions. There’s nothing much to it except
understanding what’s meant by function in this
context. A function relates every value of type X
to exactly one value of Y (see figure 5.1). A type is
associated with a set of values. Here type X repre-
sents the set of values (1, 2, 3) and Y represents
the set of values (a, b, c).

 In Scala you could write the signature of such
a function as follows:

def f: X => Y

A function provides the predictability that for a given input you will always get the
same output. The following function is an example of that:

scala> def add(a: Int, b: Int): Int = a + b

add: (a: Int,b: Int)Int

scala> add(10, 10)

res0: Int = 20

Here the function add: (Int, Int) => Int fits the definition of the function because
for a given input, it’s always going to return the same result.

 But what about the functions that depend on some external state and don’t return
the same result all the time? They’re functions but they’re not pure functions. A pure
function doesn’t have side effects. Any observable behavior change after the function
finishes is considered a side effect. Updating global or static variables, writing data to

Figure 5.1 A pure function where each

value of X is mapped to exactly one

value of Y

134 CHAPTER 5 Functional programming

the filesystem, displays on screen, calling other “side-effecting” functions, and throw-
ing exceptions are all examples of side effects. The behavior of a pure function doesn’t
depend on any external behavior or state. You’re also not allowed to mutate the argu-
ments to the function or invoke a function that has side effects. The add function is a
perfect example of a pure function, but the following weather function isn’t a pure
function because the weather will change based on when you invoke the function:

def weather(zipCode: String) = {
 val url =

 "http://api.wunderground.com/auto/wui/geo/GeoLookupXML/index.xml?query="

 Source.fromURL(url + zipCode)
}

Here I use the Weather Underground API3 to get the weather information for a given
ZIP code. Why care about pure functions? What’s the value of programming with pure
functions?

 The value is referential transparency. Referential transparency is a property whereby
an expression could be replaced by its value without affecting the program. Let’s see
an example of how referential transparency works. Assume the following is a part of a
functional program:

...

val v = add(10, 10) + add(5, 5)
...

Because add is a pure function, I can replace the function call add(10, 10) with its
result, which is 20, without changing the behavior of the program. And similarly I
could replace add(5, 5) with 10 without affecting the behavior of the program. Why
should you care about referential transparency? What advantage does it give you?

5.1.1 The benefits of referential transparency

Referential transparency provides the ability to reason about your code. You can pro-
vide proof that your program works correctly by replacing pure functions with their
values and reducing a complex expression to a simpler expression. Sometimes you
can even compute the result of a program in your head. This ability to reason about
code helps programmers to debug and solve complex problems easily. And therein
lies the essence of functional programming. With varying difficulty you can do func-
tional programming in any programming language. The essence of functional pro-
gramming is referential transparency, and its benefit is referential transparency—the
safety net that allows you to easily find and fix problems. When you add that to the fact
that Scala is a type-safe language, you can catch lots of problem ahead of time during
compilation.

 In Scala, functional programming is baked in with Scala’s object-oriented features,
so sometimes it’s difficult to distinguish it when you have a language that allows you to
define both methods and functions. You will explore this in detail, but for now

3 Weather Underground, “A Weather API Designed for Developers,” http://mng.bz/VtC8.

http://mng.bz/VtC8

135Moving from OOP to functional programming

remember that methods in Scala don’t have any type; type is only associated with the
enclosing class, whereas functions are represented by a type and object.

 Unfortunately, coming up with a definition of a functional programming lan-
guage4 is still hard. Everyone has his or her own definition, and I’m sure you’ll also
come up with your own one day. But even if functional programming is possible in all
languages, it doesn’t necessarily mean you should use it. It can be like trying to do
OOP in a procedural language—it’s possible, but probably hard and painful. There is
good news: writing functional programs in Scala is easy. The next section builds one
from scratch.

5.1.2 A pure functional program

A pure functional program is a single referentially transparent expression. An expres-
sion is constructed with a combination of subexpressions created using the language.
An expression always evaluates to a result. The following is an example of a pure func-
tional program:

object PureFunctionalProgram {

 def main(args: Array[String]):Unit = singleExpression(args.toList)

 def singleExpression: List[String] => (List[Int], List[Int]) = { a =>

 a map (_.toInt) partition (_ < 30)

 }
}

Here the main method is the entry point to our purely functional program, and the
rest of the program is defined by a single expression that takes a collection of strings
and returns a Tuple of two collections based on some partition criteria. The single
expression is in turn built on two subexpressions: a map (_.toInt) and <result of
first sub expression> partition (_ < 30). If you can start thinking about your pro-
gram as a collection of subexpressions combined into one single referentially trans-
parent expression, you have achieved a purely functional program. Yes, you still may
have to read inputs from the console or from the filesystem, but think of those as
implementation details. It doesn’t matter how the inputs are read—the behavior of
your purely functional program should not change.

5.2 Moving from OOP to functional programming

Programmers in Java and C# as well as C++ are already familiar with the concepts of
classes and objects and are probably comfortable with OOP. But how can one transi-
tion to a more functional programming style from a more OOP experience? Scala is a
great language for this because it allows you to combine the styles in an elegant and
well-engineered fashion. It’s perfectly okay to start with Scala and focus on only its
object-oriented features, but as you become more comfortable with the language and
its library, you may slowly transition to a more functional programming style as dis-
cussed in the previous section. In this section I highlight a few techniques that you can

4 David R. Maclver, “A Problem of Language,” May 15, 2009, http://mng.bz/nsi2.

http://mng.bz/nsi2

136 CHAPTER 5 Functional programming

use to move to a more functional programming style and yet retain OO techniques
and style as appropriate.

5.2.1 Pure vs. impure programming

At first glance it may seem odd to compare object-oriented and functional program-
ming at a pure versus impure level. Although it’s true that you can write object-oriented
code without side effects, in practice OOP easily becomes riddled with undesirable side
effects. Typically, OO-style applications are built around the idea of mutable state (pro-
duces side effects) managed by various objects inside the application.

 Object-oriented solutions are modeled around classes and objects where data
tends to carry collections of methods, and these methods share and at times mutate
the data. A functional programming style only deals with values where problems are
solved by the application of functions to data. Because data is only represented by
value, each application of a function results in a new value without any side effects.

 Another way to differentiate them is that functional programming raises the
abstraction level over OOP. Object-oriented programming sometimes feels machine-
dependent—concepts like pass by value, pass by reference, equality, and identity are
defined based on how the program is interpreted or executed at runtime. If you only
work with values, then how your functional program is interpreted and executed
becomes irrelevant. Remember, you can compute the result of a purely functional pro-
gram using paper and pen; running it using a machine is an implementation detail.

 In languages where you have only functions, such as Haskell and Clojure, you
don’t have to worry about impurity. But Scala bakes both object-oriented and func-
tional programming into one language, so you have to be extra careful about side
effects. In Scala you still have to define classes (or traits) and objects to group your
methods and function values. And it’s your responsibility as a developer to make sure
you don’t rely on mutable data defined inside the class.

 Take the following example, where you have a class that represents a square with
one method that computes the area:

class Square(var side: Int) {

 def area = side * side

}

The problem with this class is that the side property is mutable, and the area method
depends on the value of the side to compute the area of the square. It’s clearly not a
pure solution because the result of the area method depends on some external
state—in this case, the value of the side property. It’s also hard to reason about the
area method because now you have to keep track of the value of the side property at a
given point in time. To implement Square in a pure functional way, you’ll use a Suc-
cessor Value pattern5 (sometimes called a functional object), where each change of
state returns a copy of itself with the new state:

5 Michael Feathers, “The Successor Value Pattern, March 22, 2009, http://mng.bz/b27e.

http://mng.bz/b27e

137Moving from OOP to functional programming

class PureSquare(val side: Int) {
 def newSide(s: Int): PureSquare = new PureSquare(s)
 def area = side * side
}

In this new solution, every time the side property is modified, a new copy of Pure-
Square is returned, so you don’t have to worry about a mutable state and the result of
the area method because now it’s associated with a new object, PureSquare. This com-
mon pattern is used when you have to model a state that could change over time. The
Java String class we’ve been using throughout the book is an example of a Functional
Object pattern. Now your challenge is to design all your objects in a similar fashion
because it’s easy to introduce side effects unintentionally. Watch out for all the vars
and setters that your methods depend on and make them as pure as possible. Remem-
ber going forward: referential transparency is a criterion of a good design.

5.2.2 Object-oriented patterns in functional programming

Design patterns are just as useful in functional programming as they are in OOP as
tools for communication. Some design patterns like Singleton, Factory, and Visitor are
already implemented as part of the language. You can easily implement Singleton and
Factory patterns using Scala objects. You could implement the Visitor pattern using
the pattern-matching feature of Scala. Take a look at the Strategy pattern.6 This pat-
tern allows you to select algorithms at runtime and can easily be implemented using a
higher-order function:

def calculatePrice(product: String, taxingStrategy: String => Double) = {
 ...
 ...
 val tax = taxingStrategy(product)
 ...
}

Because taxingStrategy is defined as a function, you can pass different implementa-
tions of the strategy. Similarly you can also implement the template method pattern
using the higher-order functions.

 Higher-order functions are also useful when dealing with dependency injection
(DI). You can use function currying to inject dependencies. For example, you can
define a type for tax strategy and have a function that calculates a tax based on strat-
egy and the product code:

trait TaxStrategy {def taxIt(product: String): Double }
class ATaxStrategy extends TaxStrategy {
 def taxIt(product: String): Double = ...
}
class BTaxStrategy extends TaxStrategy {
 def taxIt(product: String): Double = ...
}

def taxIt: TaxStrategy => String => Double = s => p => s.taxIt(p)

6 “Strategy pattern,” February 2011, http://en.wikipedia.org/wiki/Strategy_pattern.

http://www.manning.com/suereth/
http://www.manning.com/suereth/
http://en.wikipedia.org/wiki/Strategy_pattern

138 CHAPTER 5 Functional programming

Here I have two implementations of the TaxStrategy trait, ATaxStrategy and BTax-
Strategy. The interesting code here is the taxIt function. This function takes an
instance of TaxStrategy and returns a function of type String => Double, which
encapsulates the taxing strategy. With this setup you can easily create new functions by
injecting different types of tax strategy:

def taxIt_a: String => Double = taxIt(new ATaxStrategy)

def taxIt_b: String => Double = taxIt(new BTaxStrategy)

Your knowledge of OO design patterns is still valuable in Scala, but its style of imple-
mentation has changed. Functional programming brings new sets of patterns that you
haven’t encountered before, and those are mainly related to recursive programming.

5.2.3 Modeling purely functional programs

So far, I’ve been focusing on implementing pure functional solutions, but what if you
have to deal with side effects like writing to a socket or to a database? You can’t avoid
that, and in fact any useful program you write for an enterprise probably has a side
effect. Are you doomed? No! The trick is to push the side effects as far down as possi-
ble. You can create an impure layer, as shown in figure 5.2, and keep the rest of your
application as pure and functional as possible. In section 5.5 you’ll learn how to build
abstractions around code that by necessity include side effects.

 To demonstrate how this works, you’re going to build a simple HTTP server that
only serves files from a directory in which the server is started. You’re going to imple-
ment the HTTP GET command. Like any server, this HTTP server is full of side effects,
like writing to a socket, reading files from the filesystem, and so on. Here are your
design goals for the server you’re building:

 Separate the code into different layers, pure code from the side-effecting code.
 Respond with the contents of a file for a given HTTP GET request.
 Respond with a 404 message when the file requested is missing.

The essence of the problem is to parse the request to figure out the name of the
requested file, locate the resource, and return the response. Let’s represent them
with appropriate types and functions. The HTTP request is nothing but a stream of

Figure 5.2 Separating pure and side-effecting

(impure) code. The side-effecting code should

form a thin layer around the application.

139Moving from OOP to functional programming

characters received from the client, and when building the pure model you don’t
have to worry about how we receive them—all you care about is that it’s a collection
of characters:

type Request = Iterator[Char]

Similarly the response could also be represented as a collection of characters. For sim-
plicity, represent that using List[String]:

type Response = List[String]

The resource locator type should be able to check whether the file exists, retrieve the
file contents, and check the content length. The first one would be used to determine
whether to return the 200 response code or 404 error code. Here’s how the
ResourceLocator type looks:

 type ResourceLocator = String => Resource

 trait Resource {
 def exists: Boolean

 def contents: List[String]

 def contentLength: Int

 }

The ResourceLocator is a function type that takes the name of a resource and returns
the resource. The resource is represented by a trait Resource and provides all
the methods you need to create the appropriate HTTP response. The important point
here is that you’re building an abstract layer that will allow you to design your applica-
tion using values and pure functions. The following listing gives the complete imple-
mentation of the pure side of things, where the GET method returns success
(HTTP 200) or failure (HTTP 404) response.

object Pure {

 trait Resource {

 def exists: Boolean
 def contents: List[String]

 def contentLength: Int

 }
 type ResourceLocator = String => Resource

 type Request = Iterator[Char]

 type Response = List[String]

 def get(req: Request)(implicit locator: ResourceLocator): Response = {

 val requestedResource = req.takeWhile(x => x != '\n')

 .mkString.split(" ")(1).drop(1)
 (_200 orElse _404)(locator(requestedResource))

 }

 private def _200: PartialFunction[Resource, Response] = {
 case resource if(resource.exists) =>

 "HTTP/1.1 200 OK" ::

 ("Date " + new java.util.Date) ::

Listing 5.1 A pure implementation of an HTTP server

Parse HTTP
request for

filename

Return
success/
failure
based
on file
existence

Create
HTTP 200
response

140 CHAPTER 5 Functional programming

 "Content-Type: text/html" ::
 ("Content-Length: " + resource.contentLength) ::

 System.getProperty("line.separator") ::

 resource.contents
 }

 private def _404: PartialFunction[Resource, Response] = {

 case _ => List("HTTP/1.1 404 Not Found")
 }

}

The GET method first retrieves the requested filename, then locates the file based on
the given locator. The _200 and _404 are partial functions and are defined for success
and failure cases respectively. The _200 function is invoked if the file exists; otherwise,
the _404 function is invoked.

 Now that the core of the server is implemented, you need to hook it to the real
world so it can be useful and practical. First you have to open a server socket at an
appropriate port and listen for requests. You also have to handle each request in a sep-
arate thread so that you can listen for a new request while you’re processing the old
one. You can find the complete working copy in the code base for the chapter as
NanoHttpServer.scala. Here let’s focus on the implementation of Resource and
ResourceLocator:

import Pure._

case class IOResource(name: String) extends Resource {

 def exists = new File(name).exists
 def contents = Source.fromFile(name).getLines.toList

 def contentLength = Source.fromFile(name).count(x => true)

}
implicit val ioResourceLocator: ResourceLocator =

 name => IOResource(name)

The IOResource reads files from the local filesystem using the scala.io.Source, and
the ResourceLocator is a function that takes the name of the file and creates an
instance of IOResource. The only thing left now is reading and writing to the socket.
You’ve successfully separated the side effects from pure functional code. This is an
important technique to remember when designing your application: push the side
effects to the edge of the world. You can refer to the nano-http-server project in the
code base of this chapter for the complete implementation. To run the example, you
need to install the simple build tool covered in the next chapter. In the next section
you’ll explore various types of functions and their applications.

5.3 Functions in all shapes and forms

Functional programming is all about functions, and Scala lets you create functions in
various forms. Functions in Scala are first-class values. That means you can treat func-
tions like Int or String as type values in Scala. You can create them as a value, pass
them to functions as parameters, and compose them to create new functions.

Create
HTTP 404
response

141Functions in all shapes and forms

5.3.1 Methods vs. functions

The common form of a function in Scala is defined as a member of a class. It’s called a
method:

class UseResource {

 def use(r: Resource): Boolean = {...}

}

Here use is a method defined in the class UseResource. One downside of using meth-
ods is that it’s easy to depend on the state defined by the enclosing class without
explicitly passing the dependencies as parameters—be careful about that because that
will take you away from having pure methods. Unlike functions, methods don’t have
any type associated with them. Scala infuses functional programming with OOP by
transforming functions into objects. For example, you can assign a function literal
(anonymous function) to a value like the following:

val succ = (x: Int) => x + 1

Here succ is associated with a function Int => Int and it’s nothing but a shorthand
definition of the following:

val succFunction = new Function1[Int, Int] {

 def apply(x:Int) : Int = x + 1

}

Both of those definitions are equivalent. Functions in Scala are represented by a type
and object, but methods aren’t. Methods are only associated with the enclosing class.
The good news is that Scala lets you convert methods to functions using a transform
process called Eta expansion. You can take any existing method and append _ (under-
score) to create the function. The following code creates a function version of the use
method from the previous example:

val use_func: Resource => Boolean = (new UseResource).use _

It’s common in Scala to convert methods into functions and pass them around to
other functions. In the next section you’ll look into examples of higher-order func-
tions and how they help you in solving problems.

5.3.2 Higher-order functions

Higher-order functions are those that take functions as parameters or return func-
tions as a return value. You’ve already seen plenty of examples of higher-order
functions throughout the book. In the Scala collections you’ll notice the use of
higher-order functions everywhere. For example, to filter out all the even numbers
from a List, you write something like the following:

scala> val l = List(1, 2, 3, 5, 7, 10, 15)
l: List[Int] = List(1, 2, 3, 5, 7, 10, 15)

scala> l.filter(_ % 2 == 0)

res0: List[Int] = List(2, 10)

142 CHAPTER 5 Functional programming

Here % 2 == 0 is a function literal (I’m sure you already knew that). Now let’s see how
you can use higher-order functions to solve a day-to-day problem. One of the most
common programming problems is managing resources. For example, to send data
over a TCP connection, you have to open a socket, send data, and, hopefully, remem-
ber to close the socket. Similarly, to read data from a file in a filesystem, you have to
open the file, read data, and then close the file handle. The typical way to manage
these resources is to wrap them in a try-finally block like the following:

val r: Resource = getResource()

try {

 useResourceToDoUsefulStuff(r)
} finally {

 r.dispose()

}

You get a handle to the resource (socket or file) and use the resource in the try-
finally (sometimes catch) block to dispose of the resource once you’re done using
it. Now let’s see how you can easily separate the resource-management part (try-
finally) from the use:

def use[A, B <: Resource](r: Resource)(f: Resource => A): A = {

 try {

 f(r)
 } finally {

 r.dispose()

 }
}

Here the use function is taking care of the resource management, and the function
parameter f allows you to use the resource without worrying about releasing or dispos-
ing of it. Now the code for sending data through a socket will be like the following:

use(socketResource) { r=>

 sendData(r)
}

This abstraction for managing resources will remove duplication from your code and
centralize the way you manage and dispose of resources after use, without cluttering
the code base with try-finally blocks. To make this work you have to define a com-
mon type like Resource so you can create abstraction around the implementation.
This is a common pattern in Scala known as the Loan pattern7 (the object-oriented
counterpart is called the Template Method pattern).

 Another example will demonstrate the power of higher-order functions in terms of
the design flexibility it provides to programmers. One of the common pieces of logic
that you’ll see across code bases goes something like the following:

7 Kevin Wright (added), “Loan pattern,” last edited May 25, 2011, https://wiki.scala-lang.org/display/SYGN/
Loan.

http://scala.sygneca.com/patterns/loan
http://scala.sygneca.com/patterns/loan

143Functions in all shapes and forms

1 Create or find some existing instance.
2 Perform some side-effect-inducing operation for the instance.
3 Use the instance in the other parts of the code.

You have to perform steps 1 and 2 before you can start using the instance. The prob-
lem is, there’s structure to isolate the side-effect-inducing code, and it gets mixed with
steps 1 and 3. Let’s take a look at the following pseudo Scala code:

val x = Person(firstName, lastName)

x.setInfo(someInfo)

println("log: new person is created")
mailer.mail("new person joined " + x)

x.firstName

Because steps 1 and 2 need to be done together before you can start using the
instance, it would be nice if you could do it all as part of step 1 when you create an
instance (like inside the constructor). But the problem with that approach is that you
might not have everything that’s accessible to the context of the caller namespace. For
example, the reference to mailer in the previous code snippet is only available to the
context of the caller and not available inside the Person instance. One way you can
address this problem is to use higher-order functions. I will define a function called
tap that will take an instance and a side-effect-inducing function. This function will
apply the side-effecting function to the instance and return the instance. Here’s how
you could write it:

def tap[A](a: A)(sideEffect: A => Unit): A = {
 sideEffect(a)

 a

}

With this new tap function, your code will get some structure:

val x = Person(firstName, lastName)

tap(x) { p =>
 import p._

 setInfo(someInfo)

 println("log: new person is created")
 mailer.mail("new person joined " + x)

}.firstName

This is better than what you had, but you can still improve on it using Scala’s implicit
conversion. Because this is so common, you’ll make this function available to all the
types. The following listing gives the complete working example.

package chap10.fp.examples

object Combinators {
 implicit def kestrel[A](a: A) = new {

 def tap(sideEffect: A => Unit): A = {

 sideEffect(a)

Listing 5.2 Kestrel combinator

Defines tap method
for all types

144 CHAPTER 5 Functional programming

 a
 }

 }

}

case class Person(firstName: String, lastName: String)

case class Mailer(mailAddress: String) {

 def mail(body: String) = {println("send mail here...") }
}

object Main {

 import Combinators._
 def main(args: Array[String]): Unit = {

 Person("Nilanjan", "Raychaudhuri").tap(p => {

 println("First name " + p.firstName)
 Mailer("some address")

 }).lastName

 }
}

Compare the code inside the main method B with the pseudo code you started with,
and you should see the difference. Now the code is more concise and well-structured,
and the side effects are not leaking through. The best part of this pattern is that it lets
you compose without relying on sequences of instructions. This is also a common
combinator (higher-order function) in functional programming called Kestrel.8 Kes-
trel is one of the many combinators defined in Raymond Smullyan’s book To Mock a

Mockingbird (Knopf, 1985). The combinatory logic is beyond the scope of this book,
but I highly recommend To Mock a Mockingbird. I’d like to highlight that once you start
thinking in higher-order functions, you’ll see opportunities for extracting reusable
code that you never thought possible. Think, for example, about foldRight and
foldLeft defined in the Scala collection library, which let you apply any binary func-
tion. The application of higher-order functions lets you write don’t-repeat-yourself
(DRY) code and you should use it as much as possible. The next section discusses par-
tial functions and how they help in the composition of functions.

5.3.3 Function currying

Function currying is a technique for transforming a function that takes multiple param-
eters into a function that takes a single parameter. Look at the following function def-
inition that takes two parameters:

scala> trait TaxStrategy { def taxIt(product: String): Double }

defined trait TaxStrategy

scala> val taxIt: (TaxStrategy, String) => Double = (s, p) => s.taxIt(p)

taxIt: (TaxStrategy, String) => Double = <function2>

The taxIt function takes TaxStrategy and String parameters and returns Double
value. To turn this function into a curried function, you can invoke the built-in curried
method defined for function types:

8 Reg Braithwaite, “Kestrels,” http://mng.bz/WKns.

Code keeps side
effects from
leaking throughB

http://mng.bz/WKns

145Functions in all shapes and forms

scala> taxIt.curried
res2: TaxStrategy => String => Double = <function1>

It turned the taxIt function into a function that takes one parameter and returns
another function that takes the second parameter:

scala> class TaxFree extends TaxStrategy { override def taxIt(product:

String) = 0.0 }

defined class TaxFree

scala> val taxFree = taxIt.curried(new TaxFree)

taxFree: String => Double = <function1>

scala> taxFree("someProduct")
res3: Double = 0.0

What’s the benefit of using function currying? It allows you to turn generalized func-
tions into specialized ones. For example, turning the taxIt function to function cur-
rying allows you to create a more specialized function like taxFree. This is similar to
how DI works in OOP. Here I injected the taxStrategy as a dependency to the curried
function to create a new function that uses the dependency. You can also turn existing
methods to curried functions using an underscore (_). The following code example
redefines the taxIt function as a method and then converts it to a curried function:

scala> def taxIt(s: TaxStrategy, product: String) = { s.taxIt(product) }

taxIt: (s: TaxStrategy, product: String)Double

scala> val taxItF = taxIt _

taxItF: (TaxStrategy, String) => Double = <function2>

scala> taxItF.curried
res4: TaxStrategy => String => Double = <function1>

You can also define methods in currying style using multiple parameters set:

scala> def taxIt(s: TaxStrategy)(product: String) = { s.taxIt(product) }
taxIt: (s: TaxStrategy)(product: String)Double

scala> val taxFree = taxIt(new TaxFree) _

taxFree: String => Double = <function1>

You’ve used multiple parameters set for higher-
order functions to pass anonymous function like
closures, but now you’ve learned another bene-
fit of function currying: dependency injection.

5.3.4 Function composition and partial functions

A partial function is a function that’s only defined
for a subset of input values. This is different
from the definition of a pure function (see sec-
tion 5.1), which is defined for all input parame-
ters. Figure 5.3 shows a partial function f: X -> Y
which is only defined for X=1 and X=3, not X=2.

Figure 5.3 A partial function that’s only

defined for a subset of parameter values,

in this case only for 1 and 3. Compare

this figure with figure 5.1.

146 CHAPTER 5 Functional programming

 In Scala partial functions are defined by trait PartialFunction[-A, +B] and
extend scala.Function1 trait. Like all function types, PartialFunction declares the
apply method and an additional method called def isDefinedAt(a: A):Boolean.
This isDefinedAt method determines whether the given partial function is defined
for a given parameter.

 The easiest way to create a partial function is by defining an anonymous function
with pattern matching. The following code example defines the partial function
shown in figure 5.3:

def intToChar: PartialFunction[Int, Char] = {

 case 1 => 'a'
 case 3 => 'c'

}

In this case the Scala compiler will translate the preceding code snippet to something
like the following:

new PartialFunction[Int, Char] {

 def apply(i: Int) = i match {

 case 1 => 'a'
 case 3 => 'c'

 }

 def isDefinedAt(i: Int): Boolean = i match {
 case 1 => true

 case 3 => true

 case _ => false
 }

 }

The PartialFunction trait provides two interesting combinatory methods called
orElse and andThen. The orElse method lets you combine this partial function with
another partial function. It’s much like if-else, where if the current partial function
isn’t defined for a given case, then the other is invoked. You can chain multiples of them
to create if-else if patterns. On the other hand, andThen lets you compose transfor-
mation functions with a partial function that works on the result produced by the par-
tial function. An example will demonstrate the power of functional composition.

NOTE It’s important to understand the usefulness of partial functions. They
let you write smaller functions, keeping in mind the single responsibility prin-
ciple, and then compose them together to create a complete function that
provides the solution. Be aware of the performance penalty. When compos-
ing partial functions, always remember that the isDefinedAt method of each
composing partial function might get invoked multiple times.9

Assume you’re building a pricing system for all the patient claims for which you need
to invoice your providers. Typically these systems are complicated, so I’ll simplify
things a little. The pricing depends on the type of the claim and location. Further-

9 Vassil Dichev, “Speaking My (Programming) Language?,” July 31, 2011, http://mng.bz/9yOx.

http://mng.bz/9yOx

147Functions in all shapes and forms

more, the location is divided by state codes or ZIP codes. Each of these factors could
influence the final price you’ll charge your providers. Also, not all claims have specific
pricing logic associated with them, so you have to have a catch-all default so that you
can always calculate the price. I’m sure this sounds similar to some of the business
rules you implement for your enterprise. Let’s implement this small problem using
partial functions. First define the claim types you’re going to work with:

sealed trait Claim { val claimId: Int }
case class Full(val claimId: Int) extends Claim

case class Partial(val claimId: Int, percentage: Double) extends Claim

case class Generic(val claimId: Int) extends Claim

Each claim takes a claimId that uniquely identifies it in the system and optionally
some additional properties associated with the claim. Understanding how each claim
is different isn’t important for this exercise, but remember that they’re different.

 To request a price, the requestor has to provide the claim information, the loca-
tion, and the product identifier. In this application you can easily represent that using
case classes:

case class Location(stateCode: Option[String], zipCode: Option[String])
case class Req(productId: String, location: Location, claim: Claim)

Except for Generic claim, the pricing for each claim is determined by specific busi-
ness logic, and all the calculations start with some base prices associated with the prod-
uct. To determine the final price of a product and the claim, you have to provide the
request information and the base price. You can capture that with a type variable
called PC (Pricing Criteria):

type PC = Tuple2[Req, Option[Double]]

Here the Option[Double] represents the base price of the product. The following
code example implements the business logic associated with each Full and Partial
claim:

def handleFullClaim: PartialFunction[PC, PC] = {

 case (c@Req(id, l, Full(claimId)), basePrice) =>
 ...

}

 def handlePartialClaim: PartialFunction[PC, PC] = {
 case (c@Req(id, l, Partial(claimId, percentage)), basePrice) =>

 ...

}

Similarly, the final price to the provider is also influenced by the location of the claim.
Both state code and ZIP code could change the price. The separate location-based
logic could also be implemented as separate partial functions, as in the following:

def handleZipCode: PartialFunction[PC, PC] = {

 case (c@Req(id, Location(_, Some(zipCode)), _), price) =>

 ...
}

148 CHAPTER 5 Functional programming

 def handleStateCode: PartialFunction[PC, PC] = {
 case (c@Req(id, Location(Some(stateCode), _), _), price) =>

 ...

}

To create the final solution to calculate the price for a provider, you can combine
these smaller partial functions and be done with it. According to the business rules,
you should first determine the price based on the claim and further refine the calcu-
lated price based on location. You can easily combine these functions with the orElse
and andThen combinators you learned at the beginning of this section:

def claimHandlers = handleFullClaim orElse handlePartialClaim
def locationHandlers = handleZipCode orElse handleStateCode

def priceCalculator: PartialFunction[PC, PC] =

 claimHandlers andThen locationHandlers

The preceding code implements the business rules the way they’ve been described.
Calculate the price using the claim, then refine it based on location. As the business
rules or new claim types get added to the system, you can easily modify the combina-
tions and add new partial functions. For example, you aren’t handling the Generic
claim type yet. You can easily add it to the final solution by adding another orElse
block to the claimHandlers.

 The partial functions are applicable to more situations than you might think. For
example, throwing exceptions from a function or a method could be considered a
partial function. The function that’s throwing an exception isn’t defined for the case
that raises the exception. Instead of throwing an exception, you could consider mak-
ing the function partial and combining it with some other function that knows how to
handle the exception case. In Scala, partial functions are powerful when it comes to
function composition. Keep that in mind when you write your code.

5.3.5 Recursion

Recursion is where a function calls itself. Recursion is a useful tool in your functional
programming toolbox. It lets you break problems into subproblems and subproblems
further down into sub-subproblems.10 This allows for solving these smaller subprob-
lems and then combining them together to produce the final solution. Think of
recursion as the assembly language of functional programming.

 One of the main benefits of recursion is that it lets you create solutions without
mutation. In the next small exercise, you have to calculate the sum of all the elements
of a List without using any mutation. You can solve the problem in many ways using
library functions, but let’s try to build it from scratch. The imperative solution to this
problem looks something like the following:

scala> var sum = 0

scala> for(e <- List(1,2,3)) { sum += e }

10 James O. Coplien, “To Iterate is Human, to Recurse, Divine,” C++ Report 10(7), July/August 1988, pp 43-51,
http://mng.bz/wXr4.

http://mng.bz/wXr4

149Thinking recursively

You declare a mutating variable and accumulate the result by iterating through all the
elements of the collection. And the recursion-based solution would look something
like the following:

def sum(xs: List[Int]): Int = xs match {
 case Nil => 0
 case x :: ys => x + sum(ys)
}

The difference is that a recursion-based solution doesn’t use any mutable temporary
variables and it lets you break the problem into smaller pieces. A typical way to imple-
ment recursive functions in Scala is to use pattern matching. Pattern matching helps
you break the problem into subproblems where each case potentially represents a sub-
problem. Recursion always looks easy when someone else is doing it, but it can be
hard when you have to do it. The next section explains how you can start thinking
recursively by following simple steps.

5.4 Thinking recursively

Suppose you’re given a list of elements, and your job is to remove the duplicates. For
example, if you’re given List(0,1,2,3,2,1,0), the output should be List(0, 1,
2, 3). I’m going to show you a step-by-step process to come up with a recursion-based
solution.11

 The first step is to identify the type. Thinking in terms of type will help you think
about the input parameter and the return value of the function. Don’t generalize yet,
but think about what you have and what you want to achieve. Sometimes using a con-
crete example helps. The type of the removeDups function will look like the following:

removeDups: List[Int] => List[Int]

The next step is to declare all the cases that you need to handle. In the case of
removeDups, you have to handle the following cases:

 case Nil =>
 case x :: ys if(ys.contains(x)) =>
 case x :: ys =>

The first case checks for an empty list, the second case is for a duplicate element in
the list, and the third case is for a nonduplicate element. Depending on the type of
the problem you’re trying to solve, you might end up with many cases. Don’t worry—
you’ll refactor the solution later into a more elegant solution after it’s working.

 The next step is to implement the simple cases. Here you have only one simple
case, and that’s case Nil. Because empty lists can’t have any duplicates, you can safely
return an empty list back:

case Nil => Nil
case x :: ys if(ys.contains(x)) =>
case x :: ys =>

11 Graham Hutton, Programming in Haskell (Cambridge University Press, 2007), www.cs.nott.ac.uk/~gmh/
book.html.

www.cs.nott.ac.uk/~gmh/book.html
www.cs.nott.ac.uk/~gmh/book.html

150 CHAPTER 5 Functional programming

The next step is to implement the other case(s) when you have a nonempty list. For
this step, it’s useful to consider which constructs and functions you have that you
could use to implement these cases. For the second case, you want to throw out the x
because it’s a duplicate and continue with the processing for the rest of the elements
in the list. The easiest way to do that is to invoke removeDups again by passing the ys as
a parameter.

case Nil => Nil
case x :: ys if(ys.contains(x)) => removeDups(ys)

case x :: ys =>

For the last case you want to continue with the rest of the list and append the non-
duplicate element to the list:

case Nil => Nil

case x :: ys if(ys.contains(x)) => removeDups(ys)
case x :: ys => removeDups(ys) :+ x

The final step is to generalize and simplify the solution. Start with your type signature
and see whether you can generalize the solution. In this case, you started with
List[Int] => List[Int], but do you need to specify Int here? Are you using anything
that’s specific to the Int?

 In the removeDups solution, you don’t care about the type of List as long as there
is a way to compare two elements. You can generalize the type signature of
removeDups as in the following:

 def removeDups[A](xs: List[A]): List[A] = xs match {

 case Nil => Nil
 case x :: ys if(ys.contains(x)) => removeDups(ys)

 case x :: ys => removeDups(ys) :+ x

 }

Next comes the refactoring. Let’s see whether you can simplify the implementation.
In this case, it looks simple so you don’t need to go any farther. But sometimes foldl
or foldr could simplify the solution.

 The best way to get better at recursion is practice. Once you become comfortable,
these steps will come naturally to you, but until then let them guide you in how to
implement recursive solutions.

5.4.1 Tail recursion

Before I talk about tail recursion, let me explain how head recursion works. Head recur-

sion is the more traditional way of doing recursion, where you perform the recursive call
first and then take the return value from the recursive function and calculate the result.

 In tail recursion you perform your calculation first and then execute the recursive
call by passing the result of the current step to the next step. I’ll provide an example
shortly to demonstrate how you can write recursive functions, keeping tail recursion
in mind. But first it’s useful to consider why recursion is avoided in Java and other sim-
ilar languages.

151Thinking recursively

 Generally when you call a function an entry is added to the call stack of the currently
running thread. The downside is that the call stack has a defined size, and once you vio-
late that boundary you get a StackOverflowError exception. This is why Java develop-
ers prefer to iterate rather than recurse. Because Scala runs on the JVM, Scala programs
also suffer from this problem. But the good news is that starting with Scala 2.8.1, Scala
overcomes this limitation by doing tail call optimization. Here’s a tail call optimization
example. In the following code snippet you’re calculating the length of a given List:

def length[A](xs: List[A]): Int = xs match {
 case Nil => 0
 case x :: ys => 1 + length(ys)
}

This is a classic example of head recursion where you call length recursively and then
add all the ones at the end. If you try to execute this function with a large List
(100,000 elements, for example), you will get a StackOverflowError. Now rewrite the
preceding function in tail recursion:

def length2[A](xs: List[A]): Int = {
 def _length(xs: List[A], currentLength: Int): Int = xs match {
 case Nil => currentLength
 case x :: ys => _length(ys, currentLength + 1)
 }
 _length(xs, 0)
}

In this version you aren’t doing any calculation after the recursive call. You do the cal-
culation at each step and pass the result to the next step of the recursion. The ques-
tion is, which one should you prefer? For Scala, you should always prefer the version
that uses tail recursion because Scala tries to optimize tail recursive functions. Scala
does tail call optimization at compile time, and the compiler transforms a tail recur-
sive function into a loop. This way tail recursive functions don’t add additional entries
to the call stack and don’t blow up. Scala can’t optimize every tail recursion—it can
optimize functions but not nonfinal methods. The best way to know whether the Scala
compiler can optimize your tail recursion is to use the @tailrec annotation because
that way you’ll get a compiler warning if the Scala compiler fails to optimize your tail
recursive functions or methods. The following listing has the complete length func-
tion with the @tailrec annotation.

import scala.annotation.tailrec

def length2[A](xs: List[A]): Int = {
 @tailrec
 def _length(xs: List[A], currentLength: Int): Int = xs match {
 case Nil => currentLength
 case x :: ys => _length(ys, currentLength + 1)
 }
 _length(xs, 0)
 }

Listing 5.3 Tail recursive function with @tailrec annotation

Marker to
optimize tail
recursion

152 CHAPTER 5 Functional programming

The common pattern for implementing a tail recursive function is to use a local func-
tion like _length. This local function approach allows you to have an additional
parameter by which you can pass the result of the current step to the next step. Always
remember when going for tailrec optimization that your recursion should be the last
step in your function or final method.

5.5 Algebraic data types

Algebraic data type (ADT) is a classification. A data type in general is a set of values
(think of Int as a type that identifies all the integer values). You can define an alge-
braic type by enumerating all the values of the set, except each value could have its
own constructor. It also allows you to decompose the type using pattern matching. If
that sounds like an abstract concept, let’s look at an example. So far you’ve learned
that ADT is a kind of type that represents a set of values. ADTs could represent a finite
or an infinite set of values. First, look at an example of a closed ADT (finite set of val-
ues) that explores why they’re valuable.

 The easiest way to define an algebraic type in Scala is to use case classes. The fol-
lowing example code defines an Account type and its possible values:

object ADT {

 sealed trait Account

 case class CheckingAccount(accountId: String) extends Account
 case class SavingAccount(accountId: String, limit: Double)

 extends Account

 case class PremiumAccount(corporateId: String, accountHolder: String)
 extends Account

}

Here you’ve defined three account types, each with its own constructor taking various
numbers of parameters. It also declares Account trait as sealed, and that means no
one else can extend the trait and create a new type of Account unless it’s defined in
the same source file. You’ve managed to create a finite ADT, but why case classes are a
good implementation choice for ADTs is still not clear. The reason is pattern match-
ing. Once you’ve created ADTs, you use them in functions. ADTs become much easier
to deal with if they’re implemented as case classes because pattern matching works
out of the box. In the following snippet printAccountDetails prints the details of
each account:

object ADT {
 ...

 def printAccountDetails(account: Account): Unit = account match {

 case CheckingAccount(accountId) =>
 println("Account id " + accountId)

 case SavingAccount(accountId, limit) =>

 println("Account id " + accountId + " , " + limit)
 }

}

153Why does functional programming matter?

Along with the values and constructors, ADTs also come with a way to decompose the
type through pattern matching so that you can easily use them in your functions. A
powerful concept: once you create an algebraic data type, you get pattern matching
support to readily use them in functions.

 In the printAccountDetails function I intentionally left out the case for Premium-
Account in order to show you what happens when you compile the previous code.
You’ll see the following warning for the missing case:

[warn] missing combination PremiumAccount

[warn] def printAccountDetails(account: Account): Unit = account match {

Another advantage of using the finite algebraic data type is that it provides hints to the
Scala compiler to check whether the functions are handling all possible values of alge-
braic data types. There are two ways you can get rid of the warning: provide the case
for the PremiumAccount or make the Account type nonsealed. The downside of
removing the sealed keyword is that anybody can extend Account trait and create a
new account type. In that case, how can you write functions that handle all possible
account types like printAccountDetails? I’m fond of finite (closed) algebraic types
and always prefer to use them because I can get a lot of mileage from Scala at compila-
tion time.

 One of the biggest benefits is writing total functions. A total function is one that
knows how to handle all the values of an algebraic data type and always produces a
result. That means you know at compile time that the function will work for all inputs.
You’ve been using ADT types in this book for a while now without knowing it. A couple
of well-known examples of ADT in Scala are scala.Either and scala.Option.

5.6 Why does functional programming matter?

You’ve explored quite a bit of theory and seen many examples of functional program-
ming in this chapter. Functional programming, as I’ve mentioned, is different from
imperative programming. It’s another way of thinking about programming. Why
bother to learn this new technique? What will this buy you?

 First, it’s good to learn a new programming paradigm because it makes you a bet-
ter programmer (see section 1.1.4). But this reason alone isn’t good enough—what
other benefits does functional programming provide? The popular answer is concur-
rency and multicore programming. Functional programming helps you write concur-
rent applications more effectively and easily. Enterprise software developers have to
deal with complex business problems and large-scale software development, and
although concurrency is an important part of it, it’s not enough to convince all devel-
opers. In the rest of the section I make a case for why functional programming mat-
ters and how it can help you better handle complexity.

 John Hughes, a renowned computer scientist, in his excellent paper on why func-
tional programming matters12 describes how functional programming helps in

12 John Hughes, “Why Functional Programming Matters,” 1990, http://mng.bz/8KxU.

http://mng.bz/8KxU

154 CHAPTER 5 Functional programming

handling complexity. In fact, the content and the title of this section were influenced
by this paper.

 Take the example of Unix pipes. Unix pipes are analogous to a pipeline where pro-
cesses are chained together (by their input/output streams) to form a pipeline. For
example, the following command retrieves the size of the file identified by the URL
www.manning.com/raychaudhuri/:

 curl -s "http://www.manning.com/raychaudhuri/" | wc –c

Here I combine the curl process to get data from the server and the wc process to
count the bytes I get back from the server. The | is the Unix pipe command, which
indicates the output from one process is to be “piped” as input to the next one. I’m
pretty sure the authors of curl and wc would have never thought that someone would
combine these processes to perform an action. In fact, you can almost take any num-
ber of Unix processes and combine them to create new commands. This is one of the
most useful and powerful ideas of the Unix-like OSs. What’s the design philosophy
behind all these Unix processes?13 All Unix processes follow two simple rules:

 Write programs that do one thing and do it well.
 Write programs to work together.

So what do you gain by following these simple rules? The answer is composability. Unix
processes show us the power of composability. Unix processes are like LEGO blocks.
You can pick them in any order, combine them to create new processes, name these
processes, build new processes on top of them, and so on. How does all of this map to
functional programming? A Unix pipe is like a functional programming language. If
you think of each process as a function, a Unix pipe lets you compose these functions
using | notation; in Scala it’s functional composition. Similarly, let’s say the following
set of functions is available to you in Scala:

 def even: Int => Boolean = _ % 2 == 0

 def not: Boolean => Boolean = !_

 def filter[A](criteria: A => Boolean)(col: Traversable[A])=
 col.filter(criteria)

 def map[A, B](f: A => B)(col: Traversable[A]) = col.map(f)

These functions are like Unix processes in that each one does exactly one thing. The
even function returns true if the given element is an even integer value. The not
function toggles the input Boolean parameter. The filter function, on the other
hand, takes a Traversable type collection (super trait for all traversable collection
types in Scala) and additional criteria function to return a collection with all the ele-
ments that match the criteria. The map function traverses the collection and applies
the given function f. Now, suppose you have a problem where you have to find all
the even numbers in a given collection and double them. With the functions at your
disposal, you can easily build the solution by composing them into a multistep

13 Eric S. Raymond, The Art of Unix Programming, Addison-Wesley, 2008, www.catb.org/esr/writings/taoup/.

www.catb.org/esr/writings/taoup/

155Why does functional programming matter?

process. First build a filter that knows how to find even elements and a function that
can double a value:

def evenFilter = filter(even) _

def double: Int => Int = _ * 2

In the case of evenFilter I’m using function currying to create a specific version of
the filter that knows how to filter even numbers. To compose the two functions
together, Scala provides a method called andThen, available to all function types
except those with zero arguments. This andThen method behaves similarly to Unix
pipes—it combines two functions in sequence and creates one function. Because all
Scala functions get compiled to a scala.Function trait, you’ll use this compose
method to join two functions. To filter out odd elements and double them, create the
following function:

def doubleAllEven = evenFilter andThen map(double)

Here evenFilter creates a collection of even elements, and the map function invokes
the double function for each element in the collection. Job done. But what if you have
to double all the odd numbers? You have all the ingredients you need, just compose
them slightly differently:

def odd: Int => Boolean = not compose even

def oddFilter = filter(odd) _

def doubleAllOdd = oddFilter andThen map(double)

Here for the odd function I use another combinatory method defined for function
types, called compose. The only difference between andThen and compose is that the
order of evaluation for compose is right to left. odd will find all the even elements and
negate them.

 The example in hand is naïve and simple, but one point is clear: composability
allows you to build solutions from smaller building blocks, which is important because
that’s how you solve complex problems. When you design a solution for a large, com-
plex problem, you break the problem into smaller problems and further break them
down into even smaller problems until you get to a point where comprehension is
easy. Solving these individual pieces and then gluing them together to build the final
piece is a centuries-old technique.

 This breaking down of problems into smaller digestible pieces happens across all
the layers of software development. Functional composability lets you build these
mathematical microworlds in your application. In these microworlds you can be cer-
tain about things because they’re all made of pure functions, and you can easily build
them using function composition. The good news is that you can implement most of
the application complexity in these microworlds, and functional composability gives
you a clear, well-defined path to break the problem into smaller functions and com-
pose them later.

 In today’s enterprises, delivering software is not enough. You have to deliver as fast
as possible. And therein lies the benefits of abstraction and composability. You as a

156 CHAPTER 5 Functional programming

developer can save time by composing smaller functions without reinventing and
duplicating implementations.

 Another benefit of this pure functional world is debugging. You no longer have to
worry about the sequence of events that happened before the problem occurred
because there’s no side effect. You also don’t have to worry about the sequence in
which the functions are executed because the behavior of the function is only driven
by the set of input parameters. It’s much easier to find defects in the functional pro-
gramming world than in the imperative programming world. To make all this possi-
ble, follow the Unix design philosophy:

 Write pure functions that do one thing and do it well.
 Write functions that can compose with other functions.

The first rule is the Single Responsibility Principle. The second rule is a by-product of
following the first rule. Keeping functions small and pure automatically helps you
compose them together with other functions, as you saw in the previous example.
One way to keep functions small is to have them only take one parameter (although
the reality is you’re going to have functions that take multiple parameters and do a
combination of things).

 The second rule is to write functions while keeping function currying in mind, or
use partial functions. When declaring functions, make sure you order your parame-
ters from most specific to most generic. It will help others to use functions in more
places and to replace the generic parameters—or even better, have functions that take
only a single parameter.

 As an object functional language, Scala offers the benefits of both object-oriented
and functional programming. Functional programming gives you the additional ben-
efit of composition that makes the core and more complex parts of your application
easier to write and maintain.

 So what about those functions with side effects? Are they hopeless in terms of com-
position? No. In the next section I show how you can build abstractions around them
so that they can participate in composition.

5.7 Building higher abstractions with monads

If you come from an OOP background you’ve probably encountered design patterns.
In this section I describe a functional programming design pattern called monads.
The problem with monads is the mysticism that comes along with them. The general
misconceptions about monads are that they’re hard to understand and that you need
a good mathematical background to fully appreciate them. It’s true that monads orig-
inated from tenets of category theory,14 a branch of mathematics that formalizes
abstract mathematical concepts into collections and arrows. But they provide a nice
abstraction layer (like design patterns) to help structure your code.

14 “Category Theory,” http://en.wikipedia.org/wiki/Category_theory.

http://en.wikipedia.org/wiki/Category_theory

157Building higher abstractions with monads

 Many implementations of monads exist, and each solves a specific kind of prob-
lem. You’ve already used monads, in fact—the two common ones so far are List and
Option. The List monad abstracts out the computation that might return 0, 1, or
more possible results. The Option monad abstracts out the computation that may not
return anything (Some or None). Monads are usually considered an advanced func-
tional programming concept, but I feel strongly enough about them to put them in
this book because they have enough practical benefits that you as an application
developer should know them. The two most important benefits are

1 Monads let you compose functions that don’t compose well, such as functions
that have side effects.

2 Monads let you order computation within functional programming so that you
can model sequences of actions.

Both of these are critical and powerful properties to be aware of when designing
applications using functional programming techniques. First I’ll explore the second
benefit because it’s commonly used even if you’re building smaller mathematical
microworlds without side effects. In the later part of this section I show you how to
compose side-effecting functions in functional programming style.

5.7.1 Managing state using monads

When I introduced functional programming I mentioned that it doesn’t care about
the sequencing of functions or operations, because functions are pure. Let’s chal-
lenge that with another retail pricing example. This application needs to calculate a
price for a product by following a sequence of steps:

1 Find the base price of the product.
2 Apply a state code-specific discount to the base price.
3 Apply a product-specific discount to the result of the previous step.
4 Apply tax to the result of the previous step to get the final price.

This pattern should be common in enterprise software. It’s clear that you have to
maintain the price generated by each action and pass it to the next action in the
sequence. How will you do that? The imperative answer is to use a mutable variable
shared by each action—bad idea, for all the reasons I’ve mentioned throughout the
book. What about implementing all these actions in one function? Yikes! That could
result in a large function, because each step could potentially be 10–20 lines of code.
A better answer would be to implement each step as a function and pipe the result of
the current action to the next action. The following listing shows how the implemen-
tation would look.

object PriceCalculatorWithoutMonad {

 import Stubs._

 case class PriceState(productId: String, stateCode: String,price: Double)

Listing 5.4 Sequencing methods by passing back the state

Import stub
implementations

158 CHAPTER 5 Functional programming

 def findBasePrice(productId: String, stateCode: String): PriceState = {
 val basePrice = findTheBasePrice(productId: String)

 PriceState(productId, stateCode, basePrice)

 }

 def applyStateSpecificDiscount(ps: PriceState): PriceState = {

 val discount = findStateSpecificDiscount(ps.productId, ps.stateCode)

 ps.copy(price = ps.price - discount)
 }

 def applyProductSpecificDiscount(ps: PriceState): PriceState = {

 val discount = findProductSpecificDiscount(ps.productId)
 ps.copy(price = ps.price - discount)

 }

 def applyTax(ps: PriceState): PriceState = {
 val tax = calculateTax(ps.productId, ps.price)

 ps.copy(price = ps.price + tax)

 }

 def calculatePrice(productId: String, stateCode: String): Double = {

 val a = findBasePrice(productId, stateCode)

 val b = applyStateSpecificDiscount(a)

 val c = applyProductSpecificDiscount(b)
 val d = applyTax(c)

 d.price

 }
}

I stubbed out the uninteresting parts of the code into a file called Stubs so that it
doesn’t clutter the code example. Here’s the implementation with some hardcoded
values:

object Stubs {

 def findTheBasePrice(productId: String) = 10.0
 def findStateSpecificDiscount(productId: String, stateCode: String) = 0.5

 def findProductSpecificDiscount(productId: String) = 0.5

 def calculateTax(productId: String, price: Double) = 5.0
}

The most interesting feature in listing 5.4 is the calculate price method B. It invokes
each individual function and wires them together in a sequence by passing the result
of one function to the next. Naming variables with a, b, and c is not a good idea, but it
nicely shows how the instance of PriceState is passed around. This solution works
and is implemented using a functional programming style, but the API of each individ-
ual function looks ugly. Instead of returning only the price, the applyStateSpecific-
Discount, applyProductSpecificDiscount, and applyTax methods now have to
return an instance of PriceState. The last line of each apply method in listing 5.4
shows the problem.

 The next problem is in the calculatePrice method. It’s easy to get something
wrong while managing PriceState on your own, while wiring each individual
method. In more complicated problems, this kind of approach becomes messy. Surely
a higher abstraction that takes care of this state management would be helpful. Here

Find base
price of
product

State-
specific

logic

Product-
specific

discount Apply tax to
calculated
price

Sequence
functions B

159Building higher abstractions with monads

comes the State monad. It is called a State monad because it threads the changing state
across multiple operations transparently. In this case, you’ll implement a State monad
so that you don’t have to manage the PriceState across multiple method calls. But
you’ll have enough of a generic implementation so that you can use it in other places
where you have similar problems.

 The Scalaz15 library provides implementations of lots of monads—consider using
them without reinventing the wheel. Here you’ll implement the State monad.

 Before I show you how to implement your State monad, let us change the signa-
ture of the findBasePrice, applyStateSpecificDiscount, applyProductSpecific-
Discount, and applyTax methods so that the API looks cleaner:

def findBasePrice(ps: PriceState): Double

def applyStateSpecificDiscount(ps: PriceState): Double

def applyProductSpecificDiscount(ps: PriceState): Double
def applyTax(ps: PriceState): Double

All these methods now take an instance of PriceState and return the calculated
price. Your job is to implement a State monad so you can sequence these methods or
actions to calculate the final price.

 The State monad encapsulates a transition function from an initial state to a
(newState, value) pair. It could be easily represented as a trait in Scala, as in the
following:

trait State[S, +A] {

 def apply(s: S): (S, A)

}

The apply method represents that transition function. To implement this trait all you
have to do is provide a function that takes S and returns (S,A). You could easily imple-
ment that as the following:

object State {

 def state[S, A](f: S => (S, A)) = new State[S, A] {

 def apply(s: S) = f(s)
 }

}

You’ll use this object as a place to keep all the handy methods you need to work with
your State monad. While you’re there, add a couple of methods to the State object to
make life easier:

object State {
 def state[S, A](f: S => (S, A)) = new State[S, A] {

 def apply(s: S) = f(s)

 }
 def init[S]: State[S, S] = state[S, S](s => (s, s))

 def modify[S](f: S => S) =

 init[S] flatMap (s => state(_ => (f(s), ())))
}

15 “Type Classes and Pure Functional Data Structures for Scala,” http://github.com/scalaz/scalaz.

http://github.com/scalaz/scalaz

160 CHAPTER 5 Functional programming

The init method lets you create State monads with a skeleton implementation of a
transition function (s => (s, s)). Think of it as a default constructor of the State
monad. The modify method is a bit more interesting. It lets you modify the current
state inside the monad with a new state and return the given function and value part
of the (S, A) pair with Unit. You’ll use this method to implement your solution.

 To treat the State trait as a first-class monad you also have to implement map and
flatMap methods. Why will be clear once you’re done with it, but for now remember
that map and flatMap are critical parts of the monad interface—without them, no
function can become a monad in Scala.

 Implementing map and flatMap is easy because you know how to create an
instance of the State monad. The following listing shows the trait that represents the
State monad.

object StateMonad {
 import State._
 trait State[S, +A] {
 def apply(s: S): (S, A)
 def map[B](f: A => B): State[S, B] = state(apply(_) match {
 case (s, a) => (s, f(a))
 })
 def flatMap[B](f: A => State[S, B]): State[S, B] =
 state(apply(_) match {
 case (s, a) => f(a)(s)
 })
 }

 object State {
 def state[S, A](f: S => (S, A)) = new State[S, A] {

 def apply(s: S) = f(s)
 }
 def init[S]: State[S, S] = state[S, S](s => (s, s))
 def modify[S](f: S => S) =

 init[S] flatMap (s => state(_ => (f(s), ())))
 }
 }

The map method of the State monad helps transform the value inside the State
monad. On the other hand, flatMap helps transition from one state to another. If all
this feels a little abstract, don’t worry—it will make sense when you use these con-
structs to implement the solution. Let’s do that right now.

 So far you’ve learned that State monads take care of threading the changing state
across method calls without your being worried about it. But you still have to invoke
individual pricing methods in sequence as specified by the business rules. The best
place to sequence a series of method calls is in a for-comprehension. This guarantees
that the steps you specify inside them will execute in sequence; it’s also a great way to
isolate things that need to be run in a sequence. In this case it will be something like
the following:

Listing 5.5 StateMonad in Scala

Abstract method
represents state
transition

Modifies
value part
of the pair

Creates new
state and
value pair

161Building higher abstractions with monads

import StateMonad.State._

 def modifyPriceState(f: PriceState => Double) =

 modify[PriceState](s => s.copy(price = f(s)))
val stateMonad = for {

 _ <- modifyPriceState(findBasePrice)
 _ <- modifyPriceState(applyStateSpecificDiscount)

 _ <- modifyPriceState(applyProductSpecificDiscount)

 _ <- modifyPriceState(applyTax)
} yield ()

Lots of things are going on in this small code example, so let me take it from the top.
The modifyPriceState method is a handy method that takes one of the pricing meth-
ods and lifts it to a function so that you can invoke the modify method inside the
State object.

 Each modifyPriceState method creates an instance of a State monad. When you
invoke them inside the for-comprehension, you get a State monad back that encapsu-
lates this sequence of method calls and knows how to create a price state with a final
price. Note that now stateMonad holds a transition function that’s a composition of
all the pricing methods defined inside the for-comprehension. And the benefit of this
approach is that the threading of state is almost invisible from the application code
and is hidden inside the monad. You can pass around this instance of a State monad,
and when the time comes you can calculate the final price by passing the initial state:

val initialPriceState = PriceState(productId, stateCode, 0.0)

val finalPriceState = stateMonad.apply(initialPriceState)._1

val finalPrice = finalPriceState.price

How does this work? The magic is in map and flatMap. The for-comprehension is
nothing but syntactic sugar for map/flatMap. You’ve used for-comprehensions for
List and Option—because they both implement map and flatMap. Chapter 4 looked
into this in great detail, and in this section I’ll dissect the previous for-comprehension
and show you how it gets translated to the map/flatMap combination.

 Note in the previous code example those underscores on the left side of the for-
comprehension. They represent the value part of the pair, and you don’t need to
worry about them for this example. I’ll show you another example where this value
would be used effectively—the following listing shows the complete reimplementation
of the retail pricing using StateMonad.

package chap10.monads.example

object StateMonad {
 import State._

 trait State[S, +A] {

 def apply(s: S): (S, A)
 def map[B](f: A => B): State[S, B] = state(apply(_) match {

 case (s, a) => (s, f(a))

 })

Listing 5.6 Sequencing methods using StateMonad

Interface for
State monad

162 CHAPTER 5 Functional programming

 def flatMap[B](f: A => State[S, B]): State[S, B] =
 state(apply(_) match {
 case (s, a) => f(a)(s)
 })
 }

 object State {
 def state[S, A](f: S => (S, A)) = new State[S, A] {
 def apply(s: S) = f(s)
 }
 def init[S]: State[S, S] = state[S, S](s => (s, s))
 def modify[S](f: S => S) =
 init[S] flatMap (s => state(_ => (f(s), ())))
 }
}

object PriceCalculator {
 import Stubs._
 import StateMonad.State._
 case class PriceState(productId: String, stateCode: String,price: Double)

 def findBasePrice(ps: PriceState): Double = {
 val basePrice = findTheBasePrice(ps.productId)
 basePrice
 }

 def applyStateSpecificDiscount(ps: PriceState): Double = {
 val discount = findStateSpecificDiscount(ps.productId, ps.stateCode)
 ps.price - discount
 }

 def applyProductSpecificDiscount(ps: PriceState): Double = {
 val discount = findProductSpecificDiscount(ps.productId)
 ps.price - discount
 }
 def applyTax(ps: PriceState): Double = {
 val tax = calculateTax(ps.productId, ps.price)
 ps.price + tax
 }

 def calculatePrice(productId: String, stateCode: String): Double = {
 def modifyPriceState(
 f: PriceState => Double) = modify[PriceState](s =>
 s.copy(price = f(s)))
 val stateMonad = for {
 _ <- modifyPriceState(findBasePrice)
 _ <- modifyPriceState(applyStateSpecificDiscount)
 _ <- modifyPriceState(applyProductSpecificDiscount)
 _ <- modifyPriceState(applyTax)
 } yield ()
 val initialPriceState = PriceState(productId, stateCode, 0.0)
 val finalPriceState = stateMonad.apply(initialPriceState)._1
 val finalPrice = finalPriceState.price
 finalPrice
 }
}

State monad is a general abstraction layer that allows you to build computations for
sequences of actions that require a shared state.

Chaining
state using
stateMonad

163Building higher abstractions with monads

 You’ve yet to see the relevance of having the pair of state and value in your State
monad implementation. Although it’s true that you don’t always need them, if you
have a computation that relies on the current state of the monad, you can use the
state and value pair to do your computation. Suppose you need to implement logging
for the retail-pricing example and log the result of each step.

 To implement logging, you need to expose one more method to the State object,
called gets. This method lets you access the current state so you can create the log
message and save it as a value inside the monad. Here’s how it’s implemented:

def gets[S,A](f: S => A): State[S, A] =

 init[S] flatMap (s => state(_ => (s, f(s))))

It’s similar to the modify method but allows you to provide a function that takes S and
returns A. The gets method also creates a new instance of State monad with the value
returned from the given function f. Now you can sequence the log steps after each
pricing action inside the for-comprehension, as shown in the following listing, to log
all the steps.

def calculatePriceWithLog(productId: String, stateCode: String): Double = {
 def modifyPriceState f: PriceState => Double) =

 modify[PriceState](s => s.copy(price = f(s)))

 def logStep(f: PriceState => String) = gets(f)

 val stateMonad = for {

 _ <- modifyPriceState(findBasePrice)

 a <- logStep(s => "Base Price " + s)
 _ <- modifyPriceState(applyStateSpecificDiscount)

 b <- logStep(s => "After state discount " + s)

 _ <- modifyPriceState(applyProductSpecificDiscount)
 c <- logStep(s => "After product discount " + s)

 _ <- modifyPriceState(applyTax)

 d <- logStep(s => "After tax " + s)
 } yield a :: b :: c :: d :: Nil

 val (finalPriceState, log) = stateMonad.apply(PriceState(productId,

 stateCode, 0.0))
 finalPriceState.price

 }

First you create a logStep method to wrap the gets method to provide a little more
readability. Secondly you’ve sequenced the logStep after each state modification so
you can track the state changes. Finally you’re combining the log of each step as part
of the yield to create a list of log messages. See how easy it is to add behavior that relies
on changing state using State monad?

5.7.2 Building blocks for monads

The building blocks for monads in Scala are the flatMap and map combination. If you
think of a monad as a container, then flatMap and map are the only two possible ways
to get into the value currently stored inside the container. Both flatMap and map take
a function as a parameter and create a new instance of a monad by applying the

Listing 5.7 Calculating price and logging each step

Helper
improves
readability
over gets

Access
current

state, log
it as List

Produce final price

164 CHAPTER 5 Functional programming

function to allow composability. But in both cases you end up with another instance of
a monad. To retrieve the value from the monad, you have to use a different technique.
For our example I used the apply method defined inside the StateMonad. For some
types of monads, you use pattern matching. For example, scala.Option is a monad,
and you use pattern matching to retrieve the value from the Some instance.

 The important part is to understand why you need both flatMap and map methods.
They seem to have a similar kind of behavior. To clearly understand why both are
important, reimplement the calculatePrice method from listing 5.6 without the for-
comprehension:

def calculatePrice2(productId: String, stateCode: String): Double = {

 def modifyPriceState(f: PriceState => Double) =

 modify[PriceState](s => s.copy(price = f(s)))

 val stateMonad = modifyPriceState(findBasePrice) flatMap {a =>

 modifyPriceState(applyStateSpecificDiscount) flatMap {b =>

 modifyPriceState (applyProductSpecificDiscount) flatMap {c =>
 modifyPriceState (applyTax) map {d =>() }

 }

 }
 }

 val initialPriceState = PriceState(productId, stateCode, 0.0)

 val finalPriceState = stateMonad.apply(initialPriceState)._1
 val finalPrice = finalPriceState.price

 finalPrice

}

Here price state is chained together using flatMap without the syntactic sugar of for-
comprehension. As you can see, I used both flatMap and map together. This is exactly
how Scala will also translate the for-comprehension from listing 5.6. Now compare the
previous code using the following signature of map and flatMap:

def map[B](f: A => B): State[S, B]

def flatMap[B](f: A => State[S, B]): State[S, B]

The map method lets you create an instance of State monad, and flatMap lets you flat-
ten the nested state. Without flatMap you end up with a nested instance of State
monad because each invocation of modifyPriceState returns back an instance of
State monad. Try to change the previous code to use map instead of flatMap to see the
difference.

 Here’s the recipe for building a monad on your own:

1 Define both flatMap and map for the interface.
2 Decide on a way to get the value of the monad (pattern matching or apply).
3 Conform to the monadic laws.16

Monads are almost everywhere—you’ve been using them without knowing it. One
common monad you haven’t seen here is the I/O monad. This one lets you compose

16 Tony Morris, “Monad Laws using Reductio (Scala)”, June 26, 2008, http://mng.bz/59P5.

http://mng.bz/59P5

165Summary

functions with side effects. Explore the Scalaz library for its implementation. Now you
know how to create monads on your own and identify them if you see them in the
wild. Monads are a great way to raise the abstraction level that is composable. You
could have invented monads17 (and maybe you already have).

5.8 Summary

This chapter explored the functional programming side of Scala. Even though you’ve
been using functional programming constructs provided by Scala, for the first time I
explained functional programming in detail in this chapter. You looked into the roots
of functional programming and into the example of a purely functional program.

 Enterprise developers find it hard to not worry about side effects because any
interesting program out there somehow has to talk to the outside world. You learned
how you could still build pure functional modules and push the side effects as far as
possible from the core code, which will help build the confidence in and correctness
of your applications. Now no more hours of debugging will be required to isolate the
mutable state that’s causing your application to misbehave.

 The critical benefit of functional programming is composition, the fundamental
property that you apply when you construct large programs. And with the power of
type abstractions available in Scala, you can finally build reusable functions and
components.

 You also learned about a functional programming design pattern called Monad.
Monads let you compose in the face of side effects. At first they appear to be complex,
but once you start using them you’ll see this pattern in many places, including the
standard Scala library. Using Monads you’ve merely scratched the surface of func-
tional programming design patterns and concepts. I highly recommend exploring
advanced functional programming concepts. A great place to start is Scala in Depth

(www.manning.com/suereth/) by Joshua D. Suereth (Manning, 2012).
 Functional programming isn’t restricted to Scala. You can use the concepts you’ve

learned here in any programming language. Always remember the key is to create a
referentially transparent expression, and if that’s possible in your language then go
for it. Functional programming languages should also enable functional composition.
In short, one language is more functional than another if it makes composing func-
tions easier.

 Chapter 6 explores how you can start taking advantage of the benefits of your Java
code bases by integrating them with Scala.

17 Dan Piponi (sigfpe), “You Could Have Invented Monads! (And Maybe You Already Have.),” August 7, 2006,
http://mng.bz/96E6.

www.manning.com/suereth/
http://mng.bz/96E6

Part 2

Working with Scala

These five chapters in part 2 focus on working with Scala. You’ll build appli-
cations using the Simple Build Tool (SBT), connect to a database using Squeryl,
build scalable and reusable components in Scala, and use actors to make concur-
rent programming easy.

 Chapters 6 and 7 are companions, or rather, chapter 7 is an extension of
chapter 6. In chapter 6 you’ll learn how to create a simple web application using
the SBT and the Scalaz HTTP module. But the application you set out to build in
chapter 6 won’t be complete by chapter’s end because to build a functional Kan-
ban application, your application needs to store information such as stories and
its status information into persistent storage. In chapter 7 you will complete the
weKanban application and learn how to retrieve and store information in a rela-
tional database.

 In chapter 8, in which you will learn how to build simple and reusable com-
ponents, your focus will be on the type system—types of types. You’ll also learn
about a new kind of polymorphism using type classes that allows you to express
and create abstractions that are easy to extend and scale—a powerful construct
to help you solve your day-to-day programming problems.

 In chapter 9 Scala’s actor library takes center stage. Think of an actor as an
object that processes a message (your request) and encapsulates state (state is
not shared with other actors). The ability to perform action in response to an
incoming message is what makes an object an actor. At a high level, actors are
the way you should do OOP. The important thing to remember is that the actor
model encourages no shared state architecture. I explain why that’s an impor-
tant property to have for any concurrent program.

 The goal in chapter 10 is to make you comfortable writing automated tests in Scala
so that you can build production-quality software. The path to writing well-crafted
code is the path where you write tests for your code. Another goal is to dispel the com-
mon perception that writing tests is hard. Your first steps will be getting started with
practices like test-driven development (TDD) and continuous integration for your
Scala project.

169

Building web applications
in functional style

This second part of the book switches focus to more real-world applications of the
Scala programming language, and what could be more practical than building a
web application in Scala? There are already web frameworks like Lift (http://
liftweb.net) and Playframework (www.playframework.org) that Scala developers
can use to build web applications. But this chapter introduces you to an interesting
library called Scalaz (http://code.google.com/p/scalaz/). (The source code for
Scalaz is hosted at http://github.com/scalaz/scalaz.) This simple library will allow
you to focus on building a web application in functional style without worrying
about the complexity of a full-stack web framework.

 There are quite a few similarities between web applications and functional pro-
gramming. Think of a web application as a collection of functions that takes an

This chapter covers

 Building Scala projects with SBT (Simple

Build Tool)

 Introduction to the Scalaz HTTP module

 Creating a web application in Scala called

weKanban

http://liftweb.net
http://liftweb.net
http://code.google.com/p/scalaz/
www.playframework.org
http://github.com/scalaz/scalaz

170 CHAPTER 6 Building web applications in functional style

HTTP request and produces an HTTP response. Each URL endpoint is mapped to a
function that knows how to handle the request. Because you’re building in functional
programming style, the web application state (like user sessions) is explicitly specified
in each request. The benefit of thinking in this style is that you can build web applica-
tions by composing functions or using higher-order combinators. Frameworks built
using this strategy usually are stateless and scalable. In this chapter you’ll learn to use
functional programming to build a web application.

 You’re also quickly reaching a point where you have to start thinking about a build
tool to compile and run Scala applications. Even though you could use almost any
existing build tool for Scala applications, the de facto standard is SBT (introduced in
chapter 1). This chapter will explore this tool and will show you how to configure and
build Scala web projects using SBT. Get yourself a nice coffee and a sandwich before
diving in to build your first web application in Scala.

6.1 Building weKanban: a simple web-based Kanban board

You’re going to build a simple web-based Kanban1 board. The word Kanban is derived
from the Japanese language and it means “card-signal.” In Kanban, the card-signaling
is used to trigger action for new work. This mechanism is also known as a pull system

because new work is pulled in only when there’s available capacity to handle the work.
 The essential idea behind the Kanban system is limiting the work in progress.2 Stop

starting and start finishing is an important mantra aimed at reducing the amount of
work in progress and, ultimately, waste. Thanks to Agile software development meth-
odology, the card wall (or notice board or whiteboard with index cards) has become
popular, and you’ll use it to visualize the work in progress for user stories and backlog,
and to determine who is working on what. But card walls aren’t necessarily a Kanban
system unless there’s an explicit limit on work in progress and a signaling system to
pull new work.

 The Kanban board you’ll build (figure 6.1) has this limit in place for the ready,
dev, and test phases. In figure 6.1 the number 3 at the top of the ready phase means
that you can’t have more than three stories in the ready state; similarly, you can have 2
stories at the most in the dev phase.

 According to figure 6.1, you can move one more story from the ready phase to the
dev phase. A pair of developers looking for new work can select a card from the ready
phase and move that card to the dev phase. Once the development work is done, the
card moves to the test phase where, in this stage, a tester, business analyst, or other
members of the team will verify the work against the user story. When the story is
approved or verified, it’s moved to the deploy phase, which means it’s ready for pro-
duction deployment. This is how a card (work) flows through the system.

1 “Kanban,” http://en.wikipedia.org/wiki/Kanban.
2 David J. Anderson, Kanban: Successful Evolutionary Change for Your Technology Business, Blue Hole Press, April 7,

2010.

http://en.wikipedia.org/wiki/Kanban

171Building Scala applications using Simple Build Tool

You’ll name your Kanban application weKanban, and here are the user stories you’ll
implement:

As a customer, I want to create a new user story so I can add stories to the ready phase.

As a developer, I want to move cards (stories) from one phase to another so I can signal
progress.

In this chapter and the next, you’ll implement these stories and build a full, working
web application in Scala. But first you’ll learn about SBT so you can compile and test
your application.

6.2 Building Scala applications using Simple Build Tool

SBT3 is a build tool for Scala and Java projects. It is entirely written in Scala, and you
can write Scala code or use SBT’s built-in DSL to configure your project and its depen-
dencies. The benefit of using Scala for configuring your build definition is that you
have the full power and type-safety of the language. This situation is quite different
from Maven (http://maven.apache.org) or Ant (http://ant.apache.org), where the
project build configuration is written in XML.

SBT provides support for continuous compilation and testing, meaning SBT will
compile and run your tests automatically whenever there’s a change in project source
files. You’re going to use this feature to your advantage to autodeploy changes to the
web server.

3 Install, features, and getting started, SBT 0.12.1, http://scala-sbt.org.

As user I want to
use kanban to

improve
productivity

As user I want to
use kanban to

improve
productivity

As user I want to
use kanban to

improve
productivity

As user I want to
use kanban to

improve
productivity

As user I want to
use kanban to

improve
productivity

As user I want to
use kanban to

improve
productivity

As user I want to
use kanban to

improve
productivity

Figure 6.1 Kanban board with four phases.

https://github.com/harrah/xsbt/
http://maven.apache.org
http://ant.apache.org

172 CHAPTER 6 Building web applications in functional style

The following few sections introduce you to SBT, starting with installing to your envi-
ronment. Then you’ll explore the basics of SBT and learn how SBT projects are struc-
tured. I focus on creating and building web projects with SBT for your weKanban
application. Because SBT is configured using Scala code, you’ll see examples of how
that works and gradually build a project definition for your weKanban application,
including creating new tasks. Let’s start with setting up SBT for your environment. Fol-
low along!

6.2.1 Setting up SBT

The easiest way to get up and running with SBT is to download4 the latest version of
the SBT .jar file from the website and create the script file, depending upon your OS.

UNIX

Create a file called sbt with the following line:

java -Xms512M -Xmx1536M -Xss1M -XX:+CMSClassUnloadingEnabled
-XX:MaxPermSize=384M -jar `dirname $0`/sbt-launch.jar "$@"

To run SBT from any directory, put the sbt file in the ~/bin folder along with the
downloaded .jar file and configure it in the PATH variable. You might have to set the
permission to make the file executable using the following command:

Chmod u+x ~/bin/sbt

The CMSClassUnloadingEnabled flag allows the garbage collector (GC) to remove
classes that are no longer used from PermGen memory.

WINDOWS

Create a batch file, sbt.bat, with the following lines:

Set SCRIPT_DIR=%~dp0

Java –Xmx512M –jar "%SCRIPT_DIR%sbt-launch.jar" %*

Put the downloaded .jar file and the batch file in the same directory and alter your
path so that it’s accessible from any directory.

MAC

For Mac users it’s simple—use either Homebrew or MacPorts to install SBT:

brew install sbt

sudo port install sbt

You don’t have to download a .jar file. If you’re behind an HTTP proxy, you can set
that by passing the http.proxyUser and http.proxyPassword properties:

java -Dhttp.proxyUser=username -Dhttp.proxyPassword=mypassword -Xmx512M

 -jar `dirname $0`/sbt-launch.jar "$@"

4 SBT download, http://mng.bz/1E7x.

http://mng.bz/1E7x

173Building Scala applications using Simple Build Tool

SBT will pick up the HTTP proxy settings from the http.proxy environment variable.
SBT needs access to the internet to download the dependencies from external reposi-
tories (more on this in the next section). It’s also at times useful to have the encoding
of the terminal set to UTF-8 so that you can work with Unicode method names inside
the SBT console (REPL).

 To verify that your setup is working properly, type sbt in the command prompt and
click Enter. If the setup is working, you’ll see the sbt prompt and something similar to
the following line as an output:

[info] Set current project to default-afcdbe (in build file:/Users/n/mybook/

code/chap06/test/)
>

You can start SBT on any empty folder and you don’t need a project structure to get
up and running. In this case SBT created a new project called default-afcdbe under
the /Users/n/mybook/code/chap06/test/ folder. In your case the project name and
the location could be different. To make sure you’re in an SBT prompt, type in the
following command to print the version of SBT you’re using:

> sbt-version
[info] 0.12.0

If you see an output, you know your installation is working correctly. SBT 0.7+ versions
used to prompt you to create a New Project if one is not already defined. The defini-
tion of the project has changed in SBT 0.11+ so that any folder can be a root folder of
the project. The benefit of the new approach is that now you can use SBT to build your
Scala scripts without worrying about creating full-blown projects. Any folder with one
Scala file can be treated as an SBT project. For now type exit to exit the SBT prompt.
The next section explores the project structure and fundamentals of SBT.

6.2.2 Understanding the basics of SBT

It’s important to understand the basics of SBT before you start using it. SBT is a fea-
ture-rich build tool, and I can’t cover all its possible features. The goal of this section
is make you aware of the basics so you can set up your Scala projects to use SBT. For
more details on SBT, go to http://scala-sbt.org.

 There are three ways to configure projects with SBT:

 Use the .sbt file to configure the build definition of the project.
 Use the .scala file for the build definition. This allows you to write Scala code to

configure the build.
 Use both .sbt and .scala files to configure the project.

The first option is the easiest way to get started with SBT. It’s a DSL to declare the build
definition for the project. For a more complex build, you need to use .scala build files.
That’s why it’s common to see both .sbt and .scala build files in typical Scala projects.
Later I’ll explain when to use the .scala version of the build file. For now let’s start
your journey with SBT with a simple build file.

http://scala-sbt.org
http://scala-sbt.org

174 CHAPTER 6 Building web applications in functional style

BUILDING THE FIRST SBT BUILD FILE

SBT works purely by convention. It looks for Scala source files in the base directory,
inside the src/main/scala and src/main/java folders. The minimum requirement
for a valid SBT project is a source file under the base directory. Let’s create a simple
Hello world! program to play with SBT. The following snippet creates an empty folder
called test and creates a hello world application:

$ mkdir test
$ cd test

$ echo 'object HW { def main(args: Array[String]): Unit = println("Hello

world!") }' > hw.scala

Now fire up SBT to compile and run the application. Once in the SBT prompt, you can
invoke the compile task to compile the source code. And once the source code is com-
piled, invoke the run task to run the hello world example. You should get output like
the following:

> run

[info] Running HW

Hello world!
[success] Total time: 0 s, completed ...

SBT is smart enough to pick the source file from the base directory of the project, and
the run task looks for classes in the classpath that define the main method. All the
compiled classes are generated under the target directory. To see all the available SBT
tasks, invoke the tasks task from the SBT prompt.

 By default, SBT will use the Scala version that shipped with SBT to compile the
source code of the project. In this case it is 2.10.2.

> scala-version

[info] 2.10.0
[info] Reapplying settings ...

[info] Set current project to default-afcdbe...

You can easily change the default Scala version to some other version by using the set
command. The following commands will change the name and version of the project
from within the SBT prompt:

> set name := "Testing SBT"
[info] Reapplying settings...

[info] Set current project to Testing SBT

> set version := "1.0"
[info] Reapplying settings...

[info] Set current project to Testing SBT

Each time you call set, it changes the settings of the project. To learn more about SBT
settings, check the “Settings in SBT” sidebar; but in short: scalaVersion, name, and
version are predefined keys in SBT that contain String type values associated with the
build. The type of each of these keys is SettingKey[T], where T is the type of the value
it can accept.

175Building Scala applications using Simple Build Tool

To persist these changes in the settings, invoke the session save task from the SBT
prompt. This will take the settings changes and save them into the build.sbt file under
the base directory:

$ cat build.sbt

scalaVersion := "2.10.0"

name := "Testing SBT"

version := "1.0"
$

Congratulations! You’ve created your first SBT build configuration file. Each line in
the build file is an expression, and each needs to be separated by a blank line—other-
wise, SBT can’t distinguish them. The expressions in the build file create a list of set-
tings for SBT. A build definition in SBT is nothing but a list of settings represented by
Setting[T] (refer to the sidebar “Settings in SBT”). When all the settings are evalu-
ated, SBT creates an immutable Map of key value pairs. And that’s your build defini-
tion. The following expression will create a Setting[String] setting:

name := "Testing SBT"

Here := is a method call on a key called name. You could have written that preceding
line like this as well:

name.:=("Testing SBT")

All the available keys are defined in the sbt.Keys object, and it’s automatically
imported for you in the build.sbt file. You can also specify import statements inside
build.sbt, but they should go at the top of the file. The build.sbt file is a great place to
configure build settings. For example, you can enable unchecked and deprecation
warnings for the Scala compiler by adding -unchecked and -deprecation values to
the scalacOptions key:

scalacOptions ++= Seq("-unchecked", "-deprecation")

Settings in SBT

Settings are the way SBT stores the build definition. A build definition defines a list

of Setting[T] where Setting[T] is a transformation affecting SBT’s key value pair.

A Setting is created assigning value to SettingKey. There are three kinds of keys

in the SBT:

 SettingKey[T] is a key with a value computed only once. Examples are

name or scalaVersion.

 TaskKey[T] is a key with a value that has to be recomputed each time.

TaskKey is used to create tasks. Examples are compile and package.

 InputTask[T] is a task key which takes command-line arguments as input.

All predefined keys are defined in the sbt.Keys object.

176 CHAPTER 6 Building web applications in functional style

The ++= method lets you append multiple values to scalacOptions. One more impor-
tant thing to note here is that SBT build files are type-safe. The type of key determines
the type of the value. For example, organizationHomePage lets you set the homepage
of the organization, and it expects Option[URL] as a value:

> set organizationHomepage := "22"
<set>:1: error: type mismatch;
 found : java.lang.String("22")
 required: Option[java.net.URL]
organizationHomepage := "22"

Some argue about the benefits of type-safe build tools, but I say if type-safety is good
for your code then surely it’s also good for build files. In any medium or large project,
you will write a considerable amount of code for your build system, and SBT can pro-
vide type-safety for faster feedback. In the next section you’ll learn to build a more for-
mal project structure for SBT.

BUILDING A PROJECT STRUCTURE FOR SBT

If you’ve used SBT 0.7+ before, you might be a little surprised to know that SBT doesn’t
create a Maven-style project structure for you. But don’t worry, because now you have
multiple ways to create your project structure. You can use the following snippet to
create all the folders typically found in an SBT project:

$ mkdir -p src/{main,test}/{scala,java,resources} lib project

This will create all the folders you need for a typical Scala application. As a second
option, you can use an SBT plug-in to create a new project. An SBT plug-in extends the
build definition by adding new tasks and settings. Since the plug-in creates new SBT
projects it makes sense to add it as a global plug-in. Global plug-ins are automatically
added to all SBT projects; adding a plug-in to a project confines it to that project. To
add a global plug-in create the following files:

$ touch <home-directory>/.sbt/plugins.sbt
$ touch <home-directory>/.sbt/build.sbt

You’re going to use the np plug-in (https://github.com/softprops/np) to generate
the new project. To use it, add the following lines to the plugins.sbt:

addSbtPlugin("me.lessis" % "np" % "0.2.0")

resolvers += Resolver.url("sbt-plugin-releases",

 url("http://scalasbt.artifactoryonline.com/scalasbt/sbt-plugin-releases/"))(
 Resolver.ivyStylePatterns)

The resolvers key tells SBT of the locations to find the dependencies. The += lets you
append new resolvers to existing ones. The addSbtPlugin function adds a new plug-in
to the SBT build system. Now add the following line to the build.sbt file:

seq(npSettings: _*)

The plug-in provides npSettings and by adding the above line to build.sbt this setting
will be available to all the SBT projects. We’ll explore SBT settings in detail shortly.
Now to create a new project just execute the following commands:

https://github.com/softprops/np

177Building Scala applications using Simple Build Tool

$ mkdir <your project name>
$ cd <your project name>
$ sbt np

The np plug-in also generates a default build.sbt file that you can modify to add your
settings.

 The third option is to use giter8 (https://github.com/n8han/giter8). It’s a com-
mand-line tool to generate files and directories from templates published in Github.
This is slowly becoming a standard way of creating projects in Scala. Once giter8 is
installed, you can choose a template to generate the project structure.

NOTE You don’t have to go to the SBT prompt to execute SBT tasks—you can
execute them from the command line. For example, the sbt compile run
command will execute both compile and run.

It doesn’t matter how you’ve created the project structure; the structure should look
familiar if you’ve used the Maven build tool previously because SBT uses the Maven
project directory structure (figure 6.2). In fact, if you use Maven with a Scala plug-in
(http://scala-tools.org/mvnsites/maven-scala-plugin/) to create a project, you’ll end
up with almost the same project directory structure as SBT. If your project has Java
source files along with Scala source files, you need to have a folder called java under
src/main and src/test.

 Figure 6.2 shows a complete SBT project with all the possible build configurations.
You’ve already seen build.sbt in action. It’s a simple build configuration that allows
you to set various build-related settings and dependencies. You haven’t configured
dependencies yet but you’ll learn how to shortly.

NOTE The convention is to name the build files build, like build.sbt or
build.scala, but you can use any name. This also means you can have multiple
.sbt and .scala build files in one project.

The build.scala file gives you the full power of SBT. Instead of using the DSL, you can
write Scala code to configure your build using build.scala. In the old SBT world, this
was the only way to configure build. But in the “new” SBT it’s recommended that you
start with the simple build definition (build.sbt file) and only when needed create the
build.scala file. For your weKanban project, you’ll use both of them together.

 The build.properties file allows you to set the version of SBT used to build the proj-
ect. For example, the contents of my build.properties are as follows:

sbt.version=0.12.0

This sets the version of SBT used by the project. The project/plugins.sbt is typically
used to configure SBT plug-ins for the project. Please note that you don’t need the
build.scala and plugin.sbt files to build projects with SBT. Only add them to the
project when the need arises. The target folder is used to store generated classes, .jars,
and other artifacts produced by the build.

https://github.com/n8han/giter8
http://scala-tools.org/mvnsites/maven-scala-plugin/

178 CHAPTER 6 Building web applications in functional style

NOTE Always start with the .sbt file and only add the .scala file when needed.
The rule of thumb is to define all the settings in the .sbt file and use .scala
files when you need to factor out a val or object or method definition. For
multiproject setup, the build.scala file is used to define common settings and
tasks for multiple projects.

SBT project structure is recursive. The project directory is another project inside your
project that knows how to build your project. And the project/project knows how to
build the parent project. The .scala build configuration is an SBT project.

ADDING DEPENDENCIES AND CUSTOM TASKS

There are two ways you can manage dependencies with SBT: manual and automatic.
To manually manage dependencies, copy the .jar files you want to the lib folder. SBT
will put these .jar files on the classpath when compiling, running, and testing. The
downside is now you’re responsible for managing those .jars, updating them, or add-
ing them. The most common and recommended way to manage dependencies in SBT
projects is to allow SBT to do it for you. In automatic dependencies management, you
specify the dependency in your build definition file, and SBT handles the rest. For
example, the following build.sbt file adds a jetty server as a dependency:

libraryDependencies += "org.eclipse.jetty" % "jetty-server" %
"7.3.0v20110203"

The libraryDependencies is setting a key to add dependencies to the project so that
SBT can handle them automatically. This key holds the sequence of all the dependen-
cies for a given project. The following is how you define dependency in SBT:

groupID % artifactID % version

Figure 6.2 SBT project

structure

179Building Scala applications using Simple Build Tool

This way of referring to dependencies is exactly how dependencies are resolved in
Maven using Project Object Model (POM) files. Any dependency can be uniquely
found using the three properties in the preceding code.

NOTE If you use %% after groupID, SBT will add the Scala version of the proj-
ect to the artifact ID.

SBT uses a set of resolvers to locate project dependencies and download them. In SBT,
a resolver is mapped to a URL that hosts dependencies (like Maven repositories). By
default, SBT uses Maven2 and Typesafe ivy releases5 to resolve dependencies. You can
also easily add new resolvers to the list of existing resolvers using the resolvers key.

SBT automatically picks up the build configuration changes, but you can also explicitly
run the reload and update tasks to recompile and resolve dependencies.

NOTE SBT uses Apache Ivy to implement and manage dependencies. Apache
Ivy is a dependency manager with flexibility and configurability.

You can also declare dependencies for a specific configuration (scope) by specifying
an additional value after the version in the dependency declaration. The following
line declares the dependency to specs (unit testing framework for Scala) but only for
a test configuration:

libraryDependencies += "org.scala-tools.testing" % "specs" % "1.6.2" % "test"

Now this dependency is only available for classes under src/main/test. Here’s how
the build.sbt looks after all the changes:

scalaVersion := "2.10.0"

name := "Testing SBT"

version := "1.0"

scalacOptions ++= Seq("-unchecked", "-deprecation")

libraryDependencies ++= Seq(

5 Index of ivy-releases, http://repo.typesafe.com/typesafe/ivy-releases.

Using SBT on existing Maven Scala projects

Because SBT follows Maven project structure and uses Maven dependencies, setting

up SBT for a Maven project is easy. SBT can read the dependencies defined in the

POM file if you use the externalPom() method in your build file. Note you still have

to specify the repositories.

Alternatively, you can create a project definition file configured to use a local Maven

repository:

resolvers += "Local Maven Repository" at
"file://"+Path.userHome+"/.m2/repository"

http://repo.typesafe.com/typesafe/ivy-releases

180 CHAPTER 6 Building web applications in functional style

 "org.eclipse.jetty" % "jetty-server" % "7.0.0.RC2",
 "org.scala-tools.testing" % "specs" % "1.6.2" % "test")

Another common thing you can do with SBT is create custom tasks for the project. For
custom tasks, the .scala build definition file is used because the .sbt build file doesn’t
support it. To create custom tasks follow these steps:

1 Create a TaskKey.
2 Provide a value for the TaskKey.
3 Put the task in the .scala build file under project.

TaskKey is similar to SettingKey, but it’s used to define tasks. The main difference is
the value of SettingKey is evaluated only once, but the value of TaskKey is evaluated
every time the key is accessed. It makes sense because you want to execute the task
over and over again. But both SettingKey and TaskKey produce settings (key-value
pairs) for the build. The following shows a simple Build.scala file that defines a hello
world task:

import sbt._
import Keys._

object ExampleBuild extends Build {
 val hello = TaskKey [Unit]("hello", "Prints 'Hello World'")

 val helloTask: Setting[Task[Unit]] = hello := {
 println("Hello World")
 }

 val project = Project (
 "example",
 file (".")).settings(helloTask)
}

If the name of the project is example, the Build.scala file should go under the exam-
ple/project folder. B creates a new TaskKey by passing the name and the description
of the task. The name part will be used to invoke the task from the SBT prompt. C
defines the task by assigning a closure that implements the task, and this creates a set-
ting that you can use in your project.

 The build definition of the project should extend sbt.Build, and it gives access to
default build settings. Each build definition should also define one or more projects.
In this case you have only one project, but multiproject builds will declare all the sub-
projects here. Multiproject build definitions are beyond the scope of this book, but
you can always check out http://scala-sbt.org for details. Because you want to add the
hello task to the project, you set it by calling the settings method on the project. Now
you have a new task available for the project:

> reload

[info] Loading project definition from ...

[info] Set current project to Testing SBT ...
> hello
Hello World
[success] Total time: 0 s, ...

Create the
TaskKey

B

Define
the taskC

181Building Scala applications using Simple Build Tool

You should have all the basics you need to know about SBT to use it to build a web
application. In the next section, you’ll build the weKanban project structure and learn
how to build web applications using SBT.

6.2.3 Setting up the weKanban project with SBT

To set up the weKanban project, first create the project structure as shown in
figure 6.3. This structure will look similar to the structure in figure 6.2 with additional
folders for web projects. As you build the project,
you’ll fill up these folders and build files.

 Start by setting the SBT version you’re going to
use for the weKanban project in the project/
build.properties file:

sbt.version=0.12.0

The only purpose of the build.properties file is to set
the value of the sbt.version key. In this case, it’s set to
version 0.12.0. SBT will automatically download the
version specified in the properties file if it’s not avail-
able locally. Next, add project-related build informa-
tion inside the build.sbt file:

name := "weKanban"

organization := "scalainaction"

version := "0.1"

Debugging project definition in interactive mode

Depending on the size of the Scala project you’re working on, the build definition
could become quite big. To troubleshoot any problems with a project definition, SBT
provides a task called console-project. If you execute this build command inside
the SBT console, SBT will load the Scala interpreter with your build definition. If you
run console-project it will load all your build and plug-in definitions from your proj-
ect and make them accessible. If you run the console-project task on your exam-
ple project, you can access its settings and run tasks:

scala> get(name)
res2: String = Testing SBT
scala> get(scalaVersion)
res3: String = 2.10.0
scala> runTask(hello, currentState)
Hello World
res11: (sbt.State, Unit) = (sbt.State@4fae46d5,())

runTask runs any task defined in the build. In this case, you have the hello task. The
currentState tracks SBT commands.

Similarly, you can launch the Scala interpreter with your project classes using the
console build command.

Figure 6.3 WeKanban project

structure

182 CHAPTER 6 Building web applications in functional style

scalaVersion := "2.10.0"

scalacOptions ++= Seq("-unchecked", "-deprecation")

Remember to separate each setting expression with an empty new line so that SBT can
parse each expression .sbt file. When SBT loads a .sbt file, it creates a Seq[Setting[T]]
of all the expressions defined in the .sbt file.

 To add web support for your project, you’ll use the SBT web plug-in (https://
github.com/siasia/xsbt-web-plugin) that uses the Jetty web server (http://jetty
.codehaus.org/jetty/). This plug-in adds tasks to the SBT build to start and stop the
web server. Add the following line to the project/plugins.sbt file:

libraryDependencies <+= sbtVersion {v =>
 "com.github.siasia" %% "xsbt-web-plugin" % (v+"-0.2.11.1")

}

This adds the web plug-in as a dependency to the project. Adding the plug-in is noth-
ing more than adding a library dependency to the build definition. The <+= method
allows you to compute a new list element from other keys. Here the sbtVersion key is
used to determine the exact version number for the plug-in. In fact, the apply
method of the sbtVersion is used to compute the version of the plug-in:

libraryDependencies <+= sbtVersion.apply {v =>

 "com.github.siasia" %% "xsbt-web-plugin" % (v+"-0.2.11.1")

}

Before using the plug-in to start and stop the project, you have to add Jetty dependen-
cies to the build definition inside build.sbt:

libraryDependencies ++= Seq(
 "org.eclipse.jetty" % "jetty-servlet" % "7.3.0.v20110203" % "container",

 "org.eclipse.jetty" % "jetty-webapp" % "7.3.0.v20110203" % "test,

container",
 "org.eclipse.jetty" % "jetty-server" % "7.3.0.v20110203" % "container"

)

Note that the Jetty dependencies are added into the container scope. Additionally,
jetty-web is added into test scope. The scope (http//scala-sbt.org) allows SBT keys to
have values in more than one context. Think of scope as a name-spacing mechanism
that allows a key to have different values in different scopes. For example, in a multi-
project build, you could have the sbtVersion key value set to a different version of
Scala for each project. This is useful for plug-ins because scoping allows plug-ins to
create tasks that don’t conflict with other task names. To include all the tasks from the
plug-in to your project, you have to import the settings from the plug-in project into
your build.sbt file as follows:

seq(com.github.siasia.WebPlugin.webSettings :_*)

If everything goes well in your SBT prompt, you should see additional tasks under the
container scope (you might have to invoke the reload task):

https://github.com/siasia/xsbt-web-plugin
https://github.com/siasia/xsbt-web-plugin
http://jetty.codehaus.org/jetty/
http://jetty.codehaus.org/jetty/

183Introducing the Scalaz HTTP module

> container:
apps classpath-types configuration

configuration-files configuration-xml custom-configuration

discovered-contexts full-classpath managed-classpath port
reload start

state stop streams this-

project-ref update

To start the web server, run the container:start task, and it will start the Jetty server
at port number 8080. Because SBT forks a new process to run the Jetty server, you can
execute other build actions in the SBT console while the server is running. In http://
localhost:8080/ you should see the directory listing of the webapp folder. At this point
you’re done with your build setup. You’ll add more dependencies when you need
them. Now let’s switch gears and talk about Scalaz, a framework for building web
applications in Scala.

6.3 Introducing the Scalaz HTTP module

Scalaz (pronounced “Scala-zed”) is a library written in the Scala programming lan-
guage. The idea behind Scalaz is to provide general functions that aren’t provided by
the standard Scala API. This section introduces you to the HTTP module that comes
with the core Scalaz distribution. And while you’re using the HTTP module, I’ll touch
on some of the Scalaz core APIs that are used by the Scalaz HTTP module. Let me first
introduce you to the Scalaz HTTP module and how you’ll use it for your weKanban
application.

6.3.1 How the Scalaz HTTP library works

In a nutshell, the Scalaz HTTP library is a wrapper over Java Servlet APIs. What the
Scalaz HTTP library exposes is a way to write functions that transforms an HTTP
request into a response. This exactly matches what was discussed in section 6.1, where
I talked about mapping HTTP URLs to functions that take requests and return
responses. The following is an example of what a web Application trait looks like in
Scalaz:

trait Application[IN[_], OUT[_]] {
 def apply(implicit req: Request[IN]): Response[OUT]

}

The Application trait defines a single apply method that takes an instance of
request and returns an instance of response. The easiest way to implement this
method would be to create a factory method that takes a function to transform
request to response. Here’s how that would look:

object Application {

 def application[IN[_], OUT[_]](f: Request[IN] => Response[OUT])

 = new Application[IN,OUT] {
 def apply(implicit req: Request[IN]) = f(req)

 }

}

184 CHAPTER 6 Building web applications in functional style

The application method creates a new instance of the Application trait by passing
the function that takes a request and returns an instance of response. The type param-
eters used by the Application trait look quite different than what you saw in
section 4.1—they’re called higher-kinded types in Scala. Think of higher-kinded types as
a way to specify a type of a parameter type (type of types). I know this is little confus-
ing, so let’s break it down a bit.

Another example of higher-kinded types

You’ve already seen an application for higher-kinded types in the Scalaz library, so

now let’s study an example to understand why higher-kinded types are so powerful.

You’ve learned that higher-kinded types are nothing but a group of types, and when

you have to write a function that could operate on a group of types, higher-kinded

types are a common way to implement it. How would you implement a sum function

that could operate on various types of Scala collections? One way would be to imple-

ment sum for all the collection types:

def sumList(xs: List[Int]): Int = xs.foldLeft(0)(_ + _)

def sumArray(xs: Array[Int]): Int = xs.foldLeft(0)(_ + _)

This isn’t an effective way to implement a sum function, but if you create an abstrac-

tion for all the collections as a type, then you could write a generic sum function that

works with that type. Let me show you what I mean here. First make your sum function

work with all types that implement the + function. To achieve that, create a trait called

Summable that’s parameterized for type A:

trait Summable[A] {

 def plus(a1: A, a2: A): A

 def init: A
}

Now for each type that supports the + function, I’ll implement this trait. The following

is the implementation for Int and String types:

object IntSummable extends Summable[Int] {
 def plus(a1: Int, a2: Int): Int = a1 + a2

 def init: Int = 0

}
object StringSummable extends Summable[String] {

 def plus(a1: String, a2: String): String = a1 + a2

 def init: String = ""
}

Similarly you can implement this for other types. Now, to implement the logic to sum

all the elements of a collection, use the foldLeft function, but this time you’ll create

a trait to abstract the foldLeft function for any higher-kinded type:

trait Foldable[F[_]] {

 def foldLeft[A](xs: F[A], m: Summable[A]) : A
}

Note that you’re using the Summable trait created a minute ago. Now, for each type

of Scala collection, implement this trait:

185Introducing the Scalaz HTTP module

Both request and response objects need to talk to the input stream and output
stream to read and write HTTP parameters. But wouldn’t it be nice if we could think of
this input or output stream as a collection? The request and response would have a
collection of bytes, and we could use all the collection API methods. Scalaz allows
exactly that, using type parameters. Out of the box, you can parameterize Request or
Response using scala.collection.Stream or scala.collection.Iterator. Here’s
one way to use the application method:

Application.application { req: Request[Stream] =>

 new Response[Stream] {
 ...

 }

}

The advantage of this is that now you can use all the collection methods to read and
write without worrying too much about the input and output stream. And because Scala
Stream is a nonstrict collection (see section 4.5), you only read from the input stream
when you need it. Why do you need a higher-kinded type again? Because Stream is a col-
lection and has its own parameter type, you have to say Stream of something. In this case
it’s Stream of bytes. The IN[_] and OUT[_] type parameters will get evaluated to
Stream[Byte] and Stream[Byte] during runtime. You’ll shortly see this Application
trait in action.

object ListFoldLeft extends Foldable[List] {
 def foldLeft[A](xs:List[A],m:Summable[A]) =

xs.foldLeft(m.init)(m.plus)
}
object ArrayFoldLeft extends Foldable[Array] {
 def foldLeft[A](xs:Array[A],m:Summable[A]) =

xs.foldLeft(m.init)(m.plus)
}

Using these traits you’ll implement your generic sum function. Your generic sum func-

tion will take three parameters: the collection, the appropriate implementation of the

Foldable trait, and the Summable trait for a given type:

def sum[F[_], A](xs: F[A], f: Foldable[F], m: Summable[A]): A =

f.foldLeft(xs, m)

Here you’re parameterizing the sum function for the type of collection and the type of

the objects the collection holds. Now to sum the list of integers and array of strings,

you can use the previous sum function as follows:

sum(List(1, 2, 3), ListFoldLeft, IntSummable)
sum(Array("one", "two", "three"), ArrayFoldLeft, StringSummable)

Admittedly, a sum function like that is a little verbose and not as clean as invoking

sum(List(1, 2, 3)) and sum(Array("one", "two", "three")), but let’s defer this

for the next chapter, where you’ll see how you can improve your sum function. In a

smaller context, this approach might look like a lot of work, but in a large context this

is a powerful way to create abstractions, and you’ll see some real-world examples of

it in the next chapter.

186 CHAPTER 6 Building web applications in functional style

NOTE The conversion from inputStream to Request[Stream] happens
through a class called scalaz.http.InputStreamer defined in the Scalaz
HTTP module. This class in turn uses the Scalaz core library to convert input-
Stream to Scala Stream.

To deploy your web application in Jetty or any Java web container, you have to con-
form to the Java Servlet API. I mentioned earlier that Scalaz provides a wrapper
around Java servlets, so you don’t have to worry about that too much. Figure 6.4 shows
how HTTP requests are handled in Scalaz when deployed in a web container.

 Like a standard Java web application, Scalaz is configured using web.xml. Typically
you map all the URLs to any of the subclasses of scalaz.http.servlet.Scalaz-
Servlet. In this application you’ll use scalaz.http.servlet.StreamStreamServlet.
Usually this servlet is configured with the name of the application class (similar to
the Application trait we saw earlier) that will handle all the request and response.
You have to write this application class for your weKanban application. The main
responsibility of the servlet class is to instantiate the application class and trans-
form between the HTTP servlet request and servlet response to Scalaz’s
scalaz.http.request.Request and scalaz.http.response.Response objects.

 When the web server (we’re using Jetty) receives an HTTP request (see figure 6.4)
it calls the service method of ScalazServlet. Inside the service method it trans-
forms the HTTP servlet request to the Scalaz Request object and then invokes the
application method of the Application trait configured in web.xml. Once the
application method returns the Scalaz response, it transforms that response object
back to the HTTP servlet response so that the web server can send the response back
to the caller. With this new knowledge, let’s move on and configure Scalaz to your SBT
build. After this, you’ll be ready to implement stories for your weKanban application.

(Jetty)

Figure 6.4 The way HTTP requests

are handled by Scalaz

187Introducing the Scalaz HTTP module

6.3.2 Configuring Scalaz with SBT

In order to configure Scalaz with SBT, Scalaz must be added as a dependency to your
WeKanbanProjectDefinition.scala file. The following listing shows how it will look like
after adding the Scalaz dependency.

name := "weKanban"

organization := "scalainaction"

version := "0.1"

scalaVersion := "2.10.0"

scalacOptions ++= Seq("-unchecked", "-deprecation")

libraryDependencies ++= Seq(

 "org.scalaz" %% "scalaz-core" % "6.0.3",

 "org.scalaz" %% "scalaz-http" % "6.0.3",
 "org.eclipse.jetty" % "jetty-servlet" % "7.3.0.v20110203" % "container",

 "org.eclipse.jetty" % "jetty-webapp" % "7.3.0.v20110203" % "test,

container",
 "org.eclipse.jetty" % "jetty-server" % "7.3.0.v20110203" % "container"

)

seq(com.github.siasia.WebPlugin.webSettings :_*)

After adding Scalaz dependencies, if you reload and update your project from the SBT
console, SBT will download the necessary Scalaz .jar files from the Scala snapshot

Listing 6.1 build.sbt with Scalaz dependencies

Servlet lifecycle

The lifecycle of the servlet is controlled by the web container (in this case, Jetty) in

which the servlet is deployed. When the container receives a request that maps to a

servlet, the container performs the following steps:

 If the instance of the servlet doesn’t exist, it creates one.

 Initializes the servlet instance by calling the init method. You can override

this init method to initialize anything you need before serving any request.

You can also pass parameters to this init method. ScalazServlet over-

rides this init method to initialize the application class from the init
parameter.

 Servlet’s service method is invoked by passing a request and response
object. Typically servlet-based frameworks override this service method

to invoke framework-specific classes. In the case of ScalazServlet, the

service method transforms the HTTP request and response to Scalaz-

specific request and response instances and invokes the application class

to handle the request. Each Scalaz-based web application will provide the

implementation of this application. (You’ll see this class shortly.)

188 CHAPTER 6 Building web applications in functional style

repository. SBT will automatically look for dependencies that are compatible with the
version of Scala your project is configured for. In the preceding project definition,
notice that for scalaz-core and scalaz-http I’m using double %% rather than single
%. This tells SBT to look for dependencies matching the Scala version of the project. If
multiple Scala versions are configured, it will download dependencies for each config-
ured version. Ideally you should use this pattern for declaring dependencies, but not
all libraries in the Maven repository support the naming convention required by SBT
to make the pattern work.

 In the previous section you learned about Scalaz and how it works in the Java web
server environment, but you haven’t configured one. Let’s do that right now. Start by
creating web.xml. I’m not going to explain the entire web.xml file here, only the parts
that are interesting for our purposes. The two most important things you need to con-
figure in the web.xml file are the Scalaz servlet and the application class. The follow-
ing listing shows what web.xml would look like.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <servlet>
 <servlet-name>Scalaz</servlet-name>
 <servlet-class>
 scalaz.http.servlet.StreamStreamServlet
 </servlet-class>
 <init-param>
 <param-name>application</param-name>
 <param-value>
 com.kanban.application.WeKanbanApplication
 </param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>Scalaz</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

Here you’re using StreamStreamServlet as your servlet class. This servlet will create
both a request and response of type scala.collection.Stream (discussed in the pre-
vious section). The application class you’re going to use is com.kanban.applica-
tion.WeKanbanApplication. When the Scalaz servlet is initialized, the application
class that’s passed as an init-param will be instantiated. Let’s save this web.xml in the
src/webapp/WEB-INF folder per the Java servlet convention.

 Before you start the application, you have to create the missing application class
WeKanbanApplication.

Listing 6.2 Configuring web.xml for weKanban

Stream-based servlet
to handle all HTTP
servlet request

The
application
class

189Introducing the Scalaz HTTP module

6.3.3 Building your first web page using Scalaz

Your application class needs to extend the scalaz.http.servlet.StreamStream-
ServletApplication trait. This trait declares an abstract value of type scalaz.http
.servlet.ServletApplication, which needs to be implemented, and then you’re
done with the setup.

The only abstract method defined in the ServletApplication trait is this:

def application(implicit servlet: HttpServlet,

 servletRequest: HttpServletRequest,
 request: Request[IN]) : Response[OUT]

This application method isn’t that much different from the one I started this discus-
sion with (section 6.4.1). Because you’re using a servlet to handle the HTTP request
and response, Scalaz is providing access to the underlying HttpServlet and
HttpServletRequest. But for this application we’ll stick to Scalaz Request.

 The only thing that will look new to you is the implicit keyword before the servlet
parameter. The beauty of declaring the implicit parameter6 is that, if such a method
misses its arguments for implicit parameters, the compiler will automatically provide
such an argument by looking up the implicit value matching the type of the argument
in the enclosing scope. Implicits are a powerful concept in Scala. Chapter 7 looks into
implicit in detail.

 I think you’re ready to implement your Scalaz application class. Here’s how it
looks right now:

final class WeKanbanApplication extends StreamStreamServletApplication {

 val application = new ServletApplication[Stream, Stream] {

 def application(implicit servlet: HttpServlet,

 servletRequest: HttpServletRequest,

6 David R. MacIver, “An Introduction to Implicit Arguments,” March 3, 2008, http://mng.bz/TqwD.

What if I want to roll out my own servlet?

It’s somewhat easy to create a servlet that extends ScalazServlet. The only thing

you have to do is provide parameter type values for the request, response, and type

of application class you’re going to use. For example, the StreamStreamServlet
you’re using looks like the following in the Scalaz codebase:

final class StreamStreamServlet extends

 ScalazServlet[Stream,Stream,StreamStreamServletApplication]
(classOf[StreamStreamServletApplication])

Because StreamStreamServletApplication is used for the application class,

you have to extend that for your application class. The only requirement for the

application class or trait is to provide a method or value called application that

is of type ServletApplication.

http://mng.bz/TqwD

190 CHAPTER 6 Building web applications in functional style

 request: Request[Stream]) = {
 }

 }

}

You’re extending the StreamStreamServletApplication to create your application
class because it’s enforced by the Scalaz servlet you’re using to handle all the HTTP
request and response. The only abstract value you have to implement is application,
and the preceding code does that by providing an implementation of the application
method. Right now the method isn’t doing anything. The quickest way to verify your
configuration and setup is to add a static HTML file that you’ll load using your
application class. This way you’ll know that your environment is working properly.

 To load any static resource from the web context (in this case, src/main/webapp),
Scalaz provides a useful method called resource. Using this method, you can load any
existing resource requested:

HttpServlet.resource(x => OK << x.toStream, NotFound.xhtml)

Here the resource method will try to load the resource from the filesystem relative to
your web context path and, if found, invoke the first parameter passed to it. The first
parameter is a function that takes Iterator[Byte] and returns a Response[Stream].
You can invoke the resource method in the following way as well:

def found(x: Iterator[Byte]) : Response[Stream] = OK << x.toStream

resource(found, NotFound.xhtml)

OK (scalaz.http.response.OK) is one of the case classes created for HTTP status
code, and it corresponds to status code 200. Now when you invoke the << method on
a Scalaz status code object, it converts that to an empty Scalaz Response object. Once
it’s converted to a Response object, << appends the stream to the body of the
response. With OK << x.toStream, you create a Scalaz Response object with the con-
tents of the requested resource. Similarly, NotFound is a case class representing HTTP
status code 404; when calling the xhtml method, it implicitly gets converted to a Scalaz
Response object with an HTTP header value for a content-type of "application/
xhtml+xml." This is a good example of how you can use higher-order functions and
combine functions to create nice APIs like the preceding example. Chapter 4 talks
about higher-order functions and functional compositions at length. After putting all
these pieces together, your application looks like the following listing.

package com.kanban.application

import scalaz._

import Scalaz._
import scalaz.http._

import response._

import request._
import servlet._

Listing 6.3 WeKanban application so far

191Introducing the Scalaz HTTP module

import HttpServlet._
import Slinky._

final class WeKanbanApplication extends StreamStreamServletApplication {

 val application = new ServletApplication[Stream, Stream] {
 def application(implicit servlet: HttpServlet, servletRequest:

HttpServletRequest, request: Request[Stream]) = {

 def found(x: Iterator[Byte]) : Response[Stream] = OK << x.toStream
 HttpServlet.resource(found, NotFound.xhtml)

 }

 }
}

WeKanbanApplication is the application class that you created by extending the
StreamStreamServletApplication trait. To create a valid Scalaz application class,
you have extended this trait.

 The StreamStreamServletApplication trait defines a single abstract value called
application of type ServletApplication that you’ve overridden with the new Serv-
letApplication.

The ServletApplication trait also defines an abstract method called application
that takes servlet, HTTP request, and Scalaz request as parameters. This method is the
core of the Scalaz-based web application and is invoked for each HTTP request that’s
mapped to ScalazServlet.

 So far, your application can only handle static content (you’ll change this little fact
in the next chapter), and to load static content you’re using the Scalaz library method
called resource that takes two parameters. The first parameter to the method is the
function Iterator[Byte] => A (here A is Stream) that looks for the static content for
the path specified in the request and loads the content as bytes. In the nested found
function, you’re transforming the Iterator of bytes to a Scalaz response. The second
parameter is another function that gets called when no static content is found. Not-
Found is a status case class defined in Scalaz that represents the 404 HTTP status code,
and xhtml will create a 404 Scalaz response.

 Let’s create a simple index.html file under src/main/webapp as a placeholder for
your weKanban application, as follows:

<html>

 <body>

 <h1>weKanban board will come shortly</h1>
 </body>

</html>

Now go into your SBT console (you can always start the SBT console by typing sbt
under the project folder) and run the jetty-run build action. This will start the Jetty
server in the background, and your application should be deployed automatically pro-
vided all the steps have been followed properly. Point your browser at http://local-
host:8080/index.html, and you’ll see the placeholder page.

 Go ahead and pat yourself on the back, because you’re done with the Scalaz and
SBT setup and are ready to implement your weKanban application.

192 CHAPTER 6 Building web applications in functional style

6.4 Summary

This chapter was your first step in building a medium-sized Scala application. For the
first time you moved outside the RPEL to build a Scala application. You used SBT. You
learned how to work with it, configure it, and manage dependencies, which is impor-
tant when it comes to building large Scala applications. You used Scalaz’s HTTP mod-
ule to build your web application. You also learned how functional programming
concepts could be used in web applications. And you saw how Scalaz is using Scala’s
higher-order functions and pattern matching to expose nice APIs.

 This chapter has provided enough background for you to work with various Scala
tools to build your next application. In this chapter, you spent most of your time lay-
ing the groundwork for your weKanban application, and you haven’t finished any of
the stories you started with. To complete any of the stories mentioned in section 6.2,
you have to figure out a way to talk to persistence storage. The next chapter explores
some of the tools available for talking to databases from Scala and completing your
application.

193

Connecting to a database

In chapter 6 you learned how to create a simple web application using the Simple
Build Tool (SBT) and the Scalaz HTTP module. But the application you set out to
build in the previous chapter wasn’t complete. The reason: to build a functional
Kanban application, your application needs to store information such as stories
and its status into persistent storage.

NOTE This chapter is an extension of chapter 6, so if you haven’t read that
chapter, some parts in this chapter related to Scalaz and SBT could be
hard to follow.

In this chapter you’ll complete the weKanban application started in chapter 6.
You’ll learn how to retrieve and store information in a relational database. I intro-
duce a Scala Object Relational Mapping (ORM) tool called Squeryl to communi-
cate with the database. You’ll also explore how to model database tables in a type-
safe manner. You’ll build a new screen for adding new stories to the application

This chapter covers

 Setting up a database from SBT

 Connecting to a database from weKanban

using Squeryl

 Finishing the weKanban application

http://localhost:8080/card/create
http://localhost:8080/card/create
http://localhost:8080/card/create

194 CHAPTER 7 Connecting to a database

and a screen that displays all the stories added to the Kanban board. In the process of
building these screens, you’ll explore how to work with databases from Scala applica-
tions. Even though the focus of the chapter is working with a database, I will show you
bits of Scalaz and SBT that are required to connect all the pieces. Before building
our application, let’s recap all the stories you need to implement the complete
weKanban application:

As a customer I want to create a new user story so that I can add stories to the ready phase.

As a developer I want to move cards (stories) from one phase to another to signal progress.

Let’s start by building a screen that will allow users to add a new story to the weKanban
board.

7.1 Adding a new story to a weKanban board

The first thing to work on is adding a new story to the board, because without that it
would be difficult to do anything with the board. Adding a story means you have to
worry about the persistence store. Enterprise developers use relational databases to
persist information in tables, and I suggest using the open source Java SQL database
called H2 (www.h2database.com/html/main.html). Actually, you’re free to pick any
of the following databases: Postgres, Oracle, MySQL, and DB2. The reason I restrict
you to this predefined list is because the Scala Object Relational Mapping (ORM)
library you’ll use for your application, called Squeryl (http://squeryl.org/
index.html), can only support those databases at the time of writing.

NOTE Using a schema-free database like MongoDB could be argued for this
application, but I want to focus on a more traditional relational database solu-
tion to help you see how to work with the relational database management sys-
tem (RDBMS) in Scala. You’re free to experiment with other types of databases.

7.1.1 Connecting to a database using Squeryl

So why use Squeryl to access a database? First it’s popular in the Scala community. It
also provides a nice, simple DSL to talk to a database. Even though it’s fine to use JDBC
directly from Scala, you’ll use Squeryl to learn an ORM tool that’s completely written
in Scala. Scala’s strong type system is perfect for creating a type-safe ORM tool. I
encourage you to play with other Scala ORM tools like ScalaQuery1 and Querulous2 to
know your options.

 For now, add Squeryl as an SBT dependency to WeKanbanProjectDefinition
.scala—and while you’re there, add H2 as well, as shown in the following listing.

1 A fork of SLICK to keep old links to the ScalaQuery repository alive, http://github.com/szeiger/scala-query.
2 Querulous, an agreeable way to talk to your database, http://github.com/nkallen/querulous.

www.h2database.com/html/main.html
http://squeryl.org/index.html
http://squeryl.org/index.html
http://localhost:8080/card/create
http://localhost:8080/card/create
http://github.com/szeiger/scala-query
http://github.com/nkallen/querulous

195Adding a new story to a weKanban board

name := "weKanban"

organization := "scalainaction"

version := "0.2"

scalaVersion := "2.10.0"

scalacOptions ++= Seq("-unchecked", "-deprecation")

libraryDependencies ++= Seq(
 "org.scalaz" %% "scalaz-core" % "6.0.3",

 "org.scalaz" %% "scalaz-http" % "6.0.3",

 "org.eclipse.jetty" % "jetty-servlet" % "7.3.0.v20110203" % "container",
 "org.eclipse.jetty" % "jetty-webapp" % "7.3.0.v20110203" % "test,

container",

 "org.eclipse.jetty" % "jetty-server" % "7.3.0.v20110203" % "container",
 "com.h2database" % "h2" % "1.2.137",

 "org.squeryl" % "squeryl_2.10" % "0.9.5-6"

)

seq(com.github.siasia.WebPlugin.webSettings :_*)

By now you know what you have to do to update your SBT dependencies. For your
Kanban board the story should have three attributes: a story number that identifies
the story uniquely, a title describing the story, and the phase the story is in. The follow-
ing is how you represent a story class in Scala:

class Story(val number: String, val title: String, val phase: String)

To make this class work with Squeryl, you have to do a couple of simple setups. First
you have to tell Squeryl you need a table that will store all the stories for you in the
database. The way to do that in Squeryl is to create a subclass of org.squeryl.Schema.
Think of this class as equivalent to a database schema where you’ll keep all the data
definitions of an application. The following code defines the schema with a table
called “STORIES” for your Story class:

package com.kanban.models

import org.squeryl._

object KanbanSchema extends Schema {

 val stories = table[Story]("STORIES")
}

Save this as the file KanbanSchema.scala under src/main/scala/com/kanban/models.
One thing to note here is I’m defining the table in a type-safe manner. The stories
value now represents the database table “STORIES,” and you can invoke various types of
queries on the stories object without worrying about type and always get back story
type objects.

Listing 7.1 Complete weKanban build.sbt project definition

Add H2
dependencyAdd Squeryl

dependency

196 CHAPTER 7 Connecting to a database

NOTE Most ORM tools use some kind of external configuration file to specify
schema and domain model mapping information. But because Scala is a DSL-
friendly and expressive language, it’s common for Scala tools to use the Scala
language itself for configuration. You’ve already seen examples of this in SBT
and now in Squeryl. The next time you think you need to have an external con-
figuration/properties file, think how you can express that in the Scala language.

Next, configure Squeryl to use the H2 database. Before connecting to the database,
make sure that the H2 database server is running. It’s simple to start the H2 server—all
you have to do is provide the h2 .jar files in the path:

java -cp ~/.ivy2/cache/com.h2database/h2/jars/h2*.jar org.h2.tools.Server

This is a little ugly because you have to dig into the location where SBT stores all your
runtime dependencies (ivy cache). It would be better if you could start and stop the
H2 server as you can for the Jetty server. Unfortunately SBT doesn’t come with built-in
support for H2, so you have to create new tasks for H2. The good news is that it’s easy
to add new build tasks to SBT, but for that we have to make changes to the build.scala
file. SBT provides lots of helper methods to create custom tasks, but here the tasks are
implemented by methods in build.scala. Copy the code from the following listing into
your build.scala file.

import sbt._
import Keys._

object H2TaskManager {

 var process: Option[Process] = None
 lazy val H2 = config("h2") extend(Compile)

 val startH2 = TaskKey[Unit]("start", "Starts H2 database")

 val startH2Task = startH2 in H2 <<= (fullClasspath in Compile) map {
 cp =>

 startDatabase {

 cp.map(_.data)
 .map(_.getAbsolutePath())

 .filter(_.contains("h2database"))

 }
 }

 def startDatabase(paths: Seq[String]) = {

 process match {
 case None =>

 val cp = paths.mkString(System.getProperty("path.separator"))

 val command = "java -cp " + cp + " org.h2.tools.Server"
 println("Starting Database with command: " + command)

 process = Some(Process(command).run())

 println("Database started ! ")
 case Some(_) =>

 println("H2 Database already started")

 }
 }

Listing 7.2 build.scala file to define a custom task

Explanation is in
the following
sidebar

197Adding a new story to a weKanban board

 val stopH2 = TaskKey[Unit]("stop", "Stops H2 database")
 val stopH2Task = stopH2 in H2 :={

 process match {

 case None => println("Database already stopped")
 case Some(_) =>

 println("Stopping database...")

 process.foreach{_.destroy()}
 process = None

 println("Database stopped...")

 }
 }

}

object MainBuild extends Build {
 import H2TaskManager._

 lazy val scalazVersion = "6.0.3"

 lazy val jettyVersion = "7.3.0.v20110203"

 lazy val wekanban = Project(

 "wekanban",

 file(".")).settings(startH2Task, stopH2Task)
}

The build.scala file is doing a couple of things here. First it defines the project B by
providing name, locations, and settings. The project inherits settings from the build
definition by default and along with that I’ve added two new tasks: startH2Task and
stopH2Task. These tasks are now part of the project settings and can be used to start
and stop the H2 database.

 The second thing is the versions of the scalazVersion and jettyVersion are
declared as a lazy val. The benefit of this is you don’t have to repeat the version num-
ber multiple times when declaring dependencies in the build.sbt file:

libraryDependencies ++= Seq(
 "org.scalaz" %% "scalaz-core" % scalazVersion,

 "org.scalaz" %% "scalaz-http" % scalazVersion,

 "org.eclipse.jetty" % "jetty-servlet" % jettyVersion % "container",
 "org.eclipse.jetty" % "jetty-webapp" % jettyVersion % "test, container",

 "org.eclipse.jetty" % "jetty-server" % jettyVersion % "container",

 "com.h2database" % "h2" % "1.2.137",
 "org.squeryl" % "squeryl_2.10" % "0.9.5-6"

)

Yes, you can share the settings and vals from the build.scala file to build.sbt files. In
fact it’s a common practice to declare common things in build.scala files and use them
in build.sbt files. In the end, all the settings from various files are combined into one
sequence of settings.

 After the build definitions are reloaded, you’ll see two new tasks, h2:start and
h2:stop:

> h2:st
start stop

Build
definition of
weKanban

Project
definition
with tasks

B

198 CHAPTER 7 Connecting to a database

This will help you in working with
H2 without leaving the comfort of
the SBT console. When you run
h2:start, it will automatically start
the H2 database server at port 8082
and open your default browser
with a login screen, as shown in
figure 7.1.

 (If the browser doesn’t open, try
going to http://localhost:8082
directly from the browser.) Because
the H2 server is running, let’s switch
focus to make Squeryl connect to
this running server. To connect to
the H2 server, use the following
driver and database URL:

How h2:start and h2:stop tasks are implemented

Creating new tasks in SBT is simple: create a TaskKey and assign a closure that

implements the task. Because you want to play nice with other custom tasks and

plug-ins, a new scope is created for H2 tasks:

lazy val H2 = config("h2") extend(Compile)

This line creates a new config name “h2” and extends the Compile config. The

Compile config will provide the necessary classpath setting you need to run the

tasks. The new config will create a new scope for you, and the tasks will be available

under it.

The startH2 task is implemented by the startDatabase method. This method

expects a sequence of paths that point to the H2 database .jar files you need to start

the database. Because the H2 config extends Compile config, you can easily use the

fullClasspath setting at Compile scope to tap into the classpath. And the <<=
method in SBT helps to create a new setting that depends on other settings. The fol-

lowing code snippet maps the path information from fullClasspath in Compile

scope and creates a new function that will get executed for the start task:

val startH2Task = startH2 in H2 <<= (fullClasspath in Compile) map {

cp =>
 startDatabase {

 cp.map(_.data)

 .map(_.getAbsolutePath())
 .filter(_.contains("h2database"))

 }

 }

The startDatabase method stores the reference of the process object so that it can

be used in the stopDatabase method. The stopDatabase method is associated

with the h2:stop task.

Figure 7.1 The H2 console

https://github.com/nraychaudhuri/scalainaction
https://github.com/nraychaudhuri/scalainaction

199Adding a new story to a weKanban board

 JDBC Driver class: org.h2.Driver
 Database URL: jdbc:h2:tcp://localhost/~/test
 User name: sa

All this information and more is available in the H2 documentation
(www.h2database.com/html/quickstart.html). The following listing adds an init
method to the KanbanSchema class to connect to the H2 database.

package com.kanban.models

import org.squeryl._

import org.squeryl.adapters._
import org.squeryl.PrimitiveTypeMode._

import java.sql.DriverManager

object KanbanSchema extends Schema {
 val stories = table[Story]("STORIES")

 def init = {

 import org.squeryl.SessionFactory

 Class.forName("org.h2.Driver")
 if(SessionFactory.concreteFactory.isEmpty) {

 SessionFactory.concreteFactory = Some(()=>

 Session.create(
 DriverManager.getConnection("jdbc:h2:tcp://localhost/~/test",

 "sa", ""), new H2Adapter))

 }
 }

}

The KanbanSchema represents the schema definition of the weKanban application.
The first thing to do is map the Story DOM with the STORIES table in the database
using the table method defined in the Squeryl Schema class.

 The init method is responsible for establishing a connection with the running H2
database. In the init method, import org.squeryl.SessionFactory. Session-
Factory is similar to the database connection factory and is used in Squeryl to create
new connections. Next, load the Java Database Connectivity (JDBC) driver for the H2
database using Class.forName("org.h2.Driver"). This driver will be used when you
create a new database connection.

 Creating a new connection in Squeryl means creating a new Session. This
approach is similar to the popular ORM mapping tool in Java called Hibernate
(www.hibernate.org), where the connection is encapsulated as Session. Think of a
Squeryl session as a wrapper to a database-based connection with which you can con-
trol database transactions. The Squeryl Session instance provides additional methods
like log and methods for binding/unbinding the session to the current thread. Note
that Session saves the database connection to a thread local3 variable so that each

Listing 7.3 KanbanSchema with init method for database connection

3 “Class ThreadLocal<T>,” Java Platform Standard Ed. 6, http://mng.bz/cqt0.

H2Adapter
provided by
SQueryl

www.h2database.com/html/quickstart.html
http://mng.bz/cqt0

200 CHAPTER 7 Connecting to a database

thread in the application gets its own connection. This is useful in web applications
where you can have multiple users accessing your application at any point.

 In Squeryl, the mechanism for creating new sessions needs to be defined in a vari-
able called concreteFactory, defined in the SessionFactory object. By default the
value of this variable is None. If the value of the concreteFactory is something other
than None, you know it’s initialized. And Squeryl expects concreteFactory to be a
function that will create new sessions. In this case the function looks like the following:

 ()=>
 Session.create(
 DriverManager.getConnection("jdbc:h2:tcp://localhost/~/test",
 "sa", ""), new H2Adapter))

Here you’re calling the utility method defined in the Session object called create by
passing a database connection and the adapter. The Java DriverManager takes the con-
nection URL to the H2 database, username, and password to create a new connection.
Squeryl defines adapter classes for each supported database type, and in this case you’re
using H2Adapter for the H2 database. Because the type of the concreteFactory is
Option[()=>Session], you need to wrap your function with the Option value Some.

 Because you’ve defined the stories object to represent the "STORIES" table, this
won’t create tables in the database. You have to explicitly do that. In some cases you’d
rather create database tables using SQL scripts, but here you’ll use Squeryl to create
the schema for you. Do that by adding a main method to your KanbanSchema class so
that you can use SBT to run it whenever you need it:

def main(args: Array[String]) {
 println("initializing the weKanban schema")
 init
 inTransaction { drop ; create }
}

The inTransaction method defined by Squeryl runs the given closure in a database
transaction. It creates a new transaction if none is in progress. Here in the transaction
block, you’re dropping all the tables and creating them back again. Right now the
only table defined is "STORIES." Now when you execute the SBT run build action, it
will invoke the main method and will create a fresh schema for you. Before running
this action, make sure your H2 database is running (you can use h2:start to launch
the H2 server). Now let’s move on to saving a new story to the database.

7.1.2 Saving a new story to the database

To insert a row into the database using Squeryl, you have to call the insert method
defined in the org.squeryl.Table class, which takes an instance of a model and saves
it to the database. You already have a table object called stories in your WeKanban-
Schema object that points to the “STORIES” table in the database. If you create an
instance of Story and pass it to the insert method, you can save a Story to the data-
base. So far the Story class looks like the following:

class Story(val number: String, val title: String, val phase: String)

Drop, create
tables in weKanban
schema

201Adding a new story to a weKanban board

Before saving an instance of Story to the database, you have to add validation. For
example, both the number and title properties of Story should be nonempty, and
because the story number should uniquely identify a story, you have to make sure that
the number value is unique too. Checking whether a field is empty is simple; here’s
how it’s implemented:

class ValidationException(message: String) extends RuntimeException(message)

private[this] def validate = {
 if(number.isEmpty || title.isEmpty) {

 throw new ValidateException("Both number and title are required")

 }
}

Add this validate method to the Story class and invoke it before saving it to the data-
base. Here you’ve created a custom exception called ValidatationException that
you’ll use for all the validation failures.

NOTE You didn’t define any primary key for your Story class but instead
used number as a unique key. This is okay for the small application you’re
building here, but in the real world you should have a surrogate key as pri-
mary key for your model classes. To add an autoincrement id field to your
domain class, you can extend the KeyedEntity[A] trait. You can also use
KeyedEntity to create composite keys. For more information, see the Squeryl
documentation.

To check the uniqueness of the number field, you have to query the "STORIES" table
to make sure there’s no other story with the same number. Squeryl provides a nice
method called where in table objects that you can easily use to achieve that. The where
method takes a predicate function to filter out rows from the result. Here’s how to
check the uniqueness of a story number using the where method:

if(!stories.where(a => a.number === number).isEmpty) {

 throw new ValidationException ("The story number is not unique")

}

Here using the function a => a.number === number (=== is the equality operator defined
by Squeryl), you’re only selecting the stories that match the given story number. If that
results in anything other than an empty collection, then the given number isn’t unique.
Note that the where method returns a lazy iterable called Query defined by the class
org.squeryl.Query. The query is only sent to the database when you start the iteration.
After adding this validation, the validate method now looks like the following:

private[this] def validate = {

 if(number.isEmpty || title.isEmpty) {

 throw new ValidationException ("Both number and title are required")
 }

 if(!stories.where(a => a.number === number).isEmpty) {

 throw new ValidationException ("The story number is not unique")
 }

}

202 CHAPTER 7 Connecting to a database

Now, before inserting the new story into the database, you’ll invoke this validate
method to make sure the story is valid. You also have to run under a database transac-
tion so you can commit or roll back your changes when saving the story instance
(more on this later). For now, let’s add a method called save to our Story class. But
what should you return from the method? Well, you could return a success message
that the story is created successfully, but what if something goes wrong while saving to
the database? In those cases I prefer scala.Either (discussed in chapter 4), which
allows you to return both success and error responses. This will also help the caller of
the save method to handle both scenarios gracefully (you’ll see that shortly). Here’s
the complete Story class after adding both the validate and save methods.

package com.kanban.models

import org.squeryl._

import org.squeryl.PrimitiveTypeMode._
import org.squeryl.annotations._

import KanbanSchema._

class Story(val number: String, val title: String, val phase: String){

 private[this] def validate = {
 if(number.isEmpty || title.isEmpty) {

 throw new ValidationException ("Both number and title are required")

 }
 if(!stories.where(a => a.number === number).isEmpty) {

 throw new ValidationException ("The story number is not unique")

 }
 }

 def save(): Either[Throwable, String] = {

 tx {
 try {

 validate

 stories.insert(this)
 Right("Story is created successfully")

 } catch {

 case exception: Throwable => Left(exception)
 }

 }

 }
}

object Story {

 def apply(number: String, title: String) =
 new Story(number, title, "ready")

}

class ValidationException(message: String) extends
 RuntimeException(message)

Here in the Story class you added two new methods, validate and save. Inside the
validate method you do a couple of validation checks. First you’re checking whether

Listing 7.4 Story class with validate and save methods

Validate story
number, title B

Validate,
insert new
story

Companion
object for
Story

Extend
RuntimeException

203Adding a new story to a weKanban board

the story number or title is empty because neither can be empty. If either is empty, you
throw the ValidationException created in B. The second validation involves going
to the database and making sure that the given story number is unique. Here you’re
using the built-in method called where, available to all table objects. The where
method takes a function that filters out stories based on a Boolean expression (similar
to the filter method defined in the Scala collection library). In your function you’re
matching on story number a => a.number === number, where a represents a story saved
in the database. If the where method results in a nonempty collection, you throw
ValidationException for a nonunique story number.

 The save method first calls the validate method to make sure the story is valid
and then invokes the insert method defined in the stories table object to save it to
the database. Both method calls are wrapped in a closure of the tx method. The tx
method is responsible for initiating SessionFactory.concrete and the database
transaction. This method is defined in KanbanSchema, and you’ll see it shortly.
Because save could result in both success and failure, I’m using scala.Either as a
return type of the save method. This helps to communicate to the caller of the
method that expects both success and failure. In Scala, using scala.Either is a more
common idiom than throwing exceptions from public methods. Additionally, you cre-
ated a companion object for Story to create new story instances. The default phase
for a new story is “Ready,” because that’s the first phase in the Kanban board.

 The tx method in the previous code snippet makes sure that the Squeryl Session-
Factory is initialized properly and starts a new transaction if no transaction exists.
The tx method takes a function as a parameter and returns the response of the func-
tion. This function could be any closure or block of code that you want to run within a
transaction boundary. The following listing shows the complete KanbanSchema object.

package com.kanban.models

import org.squeryl._

import org.squeryl.adapters._

import org.squeryl.PrimitiveTypeMode._
import java.sql.DriverManager

object KanbanSchema extends Schema {

 val stories = table[Story]("STORIES")

 def init = {

 import org.squeryl.SessionFactory

 Class.forName("org.h2.Driver")
 if(SessionFactory.concreteFactory.isEmpty) {

 SessionFactory.concreteFactory = Some(()=>

 Session.create(
 DriverManager.getConnection("jdbc:h2:tcp://localhost/~/test",

 "sa", ""),

 new H2Adapter))
 }

 }

Listing 7.5 Complete KanbanSchema object

204 CHAPTER 7 Connecting to a database

 def tx[A](a: =>A): A = {
 init

 inTransaction(a)

 }

 def main(args: Array[String]) {

 println("initializing the weKanban schema")

 init
 inTransaction { drop ; create }

 }

}

The tx method takes a function and runs that function in the transaction. The
inTransaction method defined by Squeryl checks whether there’s any transaction in
progress and, if so, it participates in the in-progress transaction—otherwise it creates a
new one. The tx method first invokes the init method to make sure that Session-
Factory.concreteFactory is initialized properly before initiating the transaction.
The inTransaction will roll back if the given function throws an exception—other-
wise the transaction is committed if there’s no in-progress transaction. In case of an
in-progress transaction, the given function will be executed and the result returned.
The init method is explained in listing 7.2.

7.1.3 Building the Create Story web page

In this section you’ll build the screen with which the user will create a new story and
add it to the Kanban board. You’ll also hook your Story model object with the input
from the screen and complete the following feature of the weKanban application:

 As a customer, I want to create a new user story so I can add stories to the ready phase.

You can create dynamic web pages in Scala in many ways. You can use JSP, the Scala tem-
plate engine (Scalate4), or Scala’s built-in support for XML to generate XHTML. Here
you’ll use Scala’s XML support to your advan-
tage to generate XHTML web pages. It’s simple
and testable and will demonstrate some of
Scala’s XML capabilities (covered in chapter 2).
For complex and large applications, this
approach doesn’t scale. In chapter 12 you’ll
explore Scala web frameworks that make build-
ing large web applications easy.

 To represent each screen as XML, you’ll
create a view object that will be used by your
WeKanbanApplication (see listing 5.3) class
when sending the response. Figure 7.2 shows
what the Create a new Story screen looks like.

4 “Scalate: Scala Template Engine,” Scalate 1.5.3, http://scalate.fusesource.org.

Initializes
SessionFactory, starts
transaction if required

Figure 7.2 The Create a new Story screen

http://scalate.fusesource.org

205Adding a new story to a weKanban board

 To create the screen in figure 7.2, see the following listing to create a CreateStory
object under src/main/com/kanban/views.

package com.kanban.views

object CreateStory {
 def apply(message: String = "") =
 <html>
 <head>
 <title>Create new Story</title>
 <link rel="stylesheet" href="/css/main.css" type="text/css"
 media="screen" charset="utf-8"/>
 </head>
 <body>
 {message}
 <div class="createStory">
 <form action="/card/save" method="post" accept-charset="utf-8">
 <fieldset>
 <legend>Create a new Story</legend>
 <div class="section">
 <label for="storyNumber">Story Number

 (uniquely identifies a story)

 </label>
 <input type="text" size="10" maxlength="10" minlength="3"
 name="storyNumber" id="storyNumber"/>
 </div>
 <div class="section">
 <label for="title">Title

 (describe the story)

 </label>
 <textarea rows="5" cols="30" name="title"
 id="title"></textarea>
 </div>
 <div class="section">
 <button type="submit">Save</button>
 </div>
 </fieldset>
 </form>

 Go to Kanban board

 </div>
 </body>
 </html>
}

Here, in the apply method of the view object, you have the necessary HTML that when
rendered will create a view like figure 7.2. Even though it’s HTML, it’s also valid XML
or XHTML and can be used easily as an XML fragment inside Scala code. The return

Listing 7.6 CreateStory view object

Success/error
message

206 CHAPTER 7 Connecting to a database

type of the apply method is scala.xml.NodeSeq, which is a sequence of XML nodes,
and when rendering the string representation of the NodeSeq will return exact HTML
code. Now let’s tie this view to a URL so you can render this view. Copy all the static
resources like CSS and JavaScript files from the accompanying code base of this book.
The main.css file should go in the webapp/css folder, and JavaScript files should go in
the webapp/js folder.

NOTE To save typing, you can copy view objects from the code available for
download at https://github.com/nraychaudhuri/scalainaction.

So far in your Scalaz application class you’ve handled static resources using the
resource method:

def application(implicit servlet: HttpServlet, servletRequest:
HttpServletRequest, request: Request[Stream]) = {

 def found(x: Iterator[Byte]) : Response[Stream] = OK << x.toStream

 resource(found, NotFound.xhtml)
}

To handle dynamic resources like view objects, create a method called handle in the
application class. This method will take the same parameters as the application
method but will match on the URL on the request object. Typically web frameworks use
a separate configuration file to map a URL to a resource or function. In convention-
based frameworks like Rails, the playframework URL contains enough information to
map to the appropriate function or action. Scalaz takes a different approach—it uses
Scala’s powerful pattern matching, where the URL is broken into an HTTP method and
URL parts as List. For example, a request object with the URL http://localhost:8080/
card/create can be matched like this:

request match {

 case MethodParts(GET, "card" :: "create" :: Nil) => ...

 ...
}

The MethodParts is an extractor object (see section 3.7.1) that takes a Scalaz Request
and returns Option with the HTTP method and URL parts as List. In the previous code
snippet, GET is the HTTP method used to request the resource, and the second param-
eter is the URL broken into the List.

How an Extractor object works

In chapter 3 you learned how to use case classes for pattern matching, but pattern

matching isn’t restricted to case classes. You can use almost any object for pattern

matching as long as it defines a method called unapply. Any object with the unapply
method is called an Extractor object. For example, MethodParts in Scalaz is defined

as the following:

https://github.com/nraychaudhuri/scalainaction

207Adding a new story to a weKanban board

Sometimes you’ll request this resource by passing a request parameter. For example,
when a story is created successfully, you’ll come back to the same “Create story” page
but with a success message. To read a request parameter from a URL, use the !
method defined in the Scalaz Request object. Let’s create a private method called
param in your application class that will return a string value of the parameter or an
empty string if the parameter isn’t specified:

def param(name: String)(implicit request: Request[Stream]) =

 (request ! name).getOrElse(List[Char]()).mkString("")

The ! method of Scalaz Request returns Option[List[Char]] and you’re converting
that to a string. Now let’s create the handle method by combining these pieces:

def handle(implicit request: Request[Stream],

 servletRequest: HttpServletRequest): Option[Response[Stream]] = {

 request match {
 case MethodParts(GET, "card" :: "create" :: Nil) =>

 Some(OK(ContentType, "text/html") << strict <<

 CreateStory(param("message")))

 case _ => None

 }

}

Here, when the request matches both the HTTP method type and the URL, you’re cre-
ating a response by invoking the CreateStory view object by passing the value of the
request parameter message. OK(ContentType, "text/html") creates an empty Scalaz
Response with the HTTP response header content-type represented by the Content-
Type object. The << method allows you to add additional information to the response

 object MethodParts {

 def unapply[IN[_]](r : Request[IN]) : Option[(Method,
 List[String])] = {

 Some(r.method, r.parts)

 }
 }

Here the unapply method takes an instance of the Scalaz request and returns a

Some value of method and URL parts. The parts method returns all URL path ele-

ments separated by /.

When Scala encounters the pattern case MethodParts(...), it translates that to an

invocation of MethodParts.unapply by passing the reference to the object that’s

used to match the pattern (in this case it’s an instance of Scalaz request). Note that

the apply method isn’t necessary for pattern matching. It’s typically used to mimic

constructor calls. For example, you’re using the apply method in the Story object to

create a new instance of the Story class.

One rule to notice here is if you want to return some value from unapply, it then

needs to be wrapped around the scala.Option type.

208 CHAPTER 7 Connecting to a database

object. And because Scala encourages creating immutable objects, every time you call
the << method, a new response object is created.

NOTE The strict used in the handle method is called the doctype. The doc-
type declaration isn’t an HTML tag. It’s an instruction to the web browser
about what version of the markup language the page is written in. To adhere
to strict HTML standards, the example is using the strict doctype.

In the application method (your entry point for all URLs) you’ll invoke your new
handle method. You can still keep the existing resource method so you can load
static resources. The Scalaz core provides a method called | for the Option class and
using it you can combine both handle and resource methods so that when the han-
dle method returns None you can invoke the resource method as a fallback to load
resources. Here’s how the application method looks after changes:

def application(implicit servlet: HttpServlet,
 servletRequest: HttpServletRequest, request: Request[Stream]) = {

 def found(x: Iterator[Byte]) : Response[Stream] = OK << x.toStream

 handle | resource(found, NotFound.xhtml)

}

Because all the parameters to the handle method are implicit, you don’t have to
explicitly pass them, but you can. If the handle method returns None as a response,
the resource method will be called, and you do that with the | method. If no resource
is found matching the URL, then NotFound.xhtml is returned.

NOTE Scalaz uses Scala’s implicit method conversion to add the | method to
the Option class. If you’re used to metaprogramming in Ruby, Groovy, or
other programming languages, implicit conversions are Scala’s way of doing
metaprogramming but in a more controlled way. You’ll explore implicit con-
version in detail in the next chapter.

Now before going ahead with running the application, take a look at the following list-
ing, showing the WeKanbanApplication class you have so far.

import scalaz._

import Scalaz._
import scalaz.http._

import response._

import request._
import servlet._

import HttpServlet._

import Slinky._
import com.kanban.views._

import com.kanban.models._

final class WeKanbanApplication extends StreamStreamServletApplication {
 import Request._

Listing 7.7 WeKanbanApplication with the handle method for creating a story

209Adding a new story to a weKanban board

 import Response._
 implicit val charset = UTF8

 def param(name: String)(implicit request: Request[Stream]) =

 (request ! name).getOrElse(List[Char]()).mkString("")

 def handle(implicit request: Request[Stream],

 servletRequest: HttpServletRequest): Option[Response[Stream]] = {

 request match {
 case MethodParts(GET, "card" :: "create" :: Nil) =>

 Some(OK(ContentType, "text/html") << strict <<

 CreateStory(param("message")))
 case _ => None

 }

 }

val application = new ServletApplication[Stream, Stream] {

 def application(implicit servlet: HttpServlet,

 servletRequest: HttpServletRequest, request: Request[Stream]) = {
 def found(x: Iterator[Byte]) : Response[Stream] = OK << x.toStream

 handle | resource(found, NotFound.xhtml)

 }

 }
}

Here you added two new methods to the existing WeKanbanApplication class to handle
a new story request from the browser. The handle method matches the HTTP request
to a function. So far, it only knows how to handle the create story request. Here you’re
using the Scalaz Extractor object called MethodParts, which breaks the Scalaz request
into request type and URL parts. The HTTP GET request to the http://localhost:8080/
card/create URL will be matched to MethodParts(GET, "card" :: "create" :: Nil),
where GET is the method type and "card" :: "create" :: Nil are the parts of the URL.
And when it matches, it creates a new Scalaz response to render the create story
screen using Some(OK(ContentType, "text/html") << strict << CreateStory(param
("message"))). CreateStory is the name of the view object, and OK(ContentType,
"text/html") << strict creates an empty Scalaz response with a strict HTML doctype.

 The param method retrieves the parameter value for a given parameter name.
You’re using the ! method defined in the Scalaz request to retrieve the parameter
value and transform into a String. Scalaz by default uses List[Char] to represent a
parameter value.

 When the requested URL doesn’t match the cases defined in the handle method, it
returns None (default case). In case of None, the application method calls the
resource method B to load any static resource that matches the requested URL.

 Now go to your SBT console and start the Jetty server using the jetty-run build
action if it’s not already running. This will start the server at port 8080. If you go to
the http://localhost:8080/card/create URL, you’ll see a screen similar to figure 7.2.
That’s great, but you still have to tie the Save button with the save method of the
model object.

Implicit charset value
used by << method

Return
parameter
value as string

Handle
creates

new story
request

Invoke
handle
methodB

210 CHAPTER 7 Connecting to a database

 Clicking Save will result in an ugly error because you haven’t linked the URL to any
function in your application class. Fix that by adding a MethodParts to your handle
method, which will match the URL ending with /card/save to the saveStory method
defined in the application class:

def handle(implicit request: Request[Stream],

 servletRequest: HttpServletRequest): Option[Response[Stream]] = {

 request match {

 case MethodParts(GET, "card" :: "create" :: Nil) =>

 Some(OK(ContentType, "text/html") << strict <<

 CreateStory(param("message")))

 case MethodParts(POST, "card" :: "save" :: Nil) =>

 Some(saveStory)

 case _ => None
 }

}

The saveStory method will read the HTTP POST parameters from the request, instan-
tiate an instance of the Story model class, and invoke the save method (see
listing 7.3) on it. To read POST parameters from the request, add another utility
method like the param method to your application class, but this time with a ! because
POST generally means a side-effect (section 5.1):

def param_!(name: String)(implicit request: Request[Stream]) =

 (request | name).getOrElse(List[Char]()).mkString("")

You know that the save method (see listing 7.3) in the Story class returns
scala.Either[Throwable, String], and in case of error it returns Left with the
exception; otherwise Right with the success message. Left and Right are the only
two subtypes of Either. You can easily use pattern matching and take appropriate
actions. When save is successful, you’ll redirect to the “Create story” screen with a suc-
cess message so the user can create another story; in case of error you return to the
“Create story” page, but this time with an error message. The following is how to
implement the saveStory method:

private def saveStory(implicit request: Request[Stream],

 servletRequest: HttpServletRequest) = {
 val title = param_!("title")

 val number = param_!("storyNumber")

 Story(number, title).save match {
 case Right(message) =>

 redirects[Stream, Stream]("/card/create", ("message", message))

 case Left(error) => OK(ContentType, "text/html") << transitional <<
 CreateStory(error.toString)

 }

 }

The redirects method is defined in the Scalaz Response object, which is already
imported for the application class. The redirects method takes the relative URL
and the parameters to the URL as a tuple.

Match URL
to saveStory
method

To create
screen with

success

To create
screen with

error

211Adding a new story to a weKanban board

NOTE It’s always a good idea to redirect after a POST form submission to
avoid double submission.

Before testing the save method, make sure the H2 database server is running (you can
start H2 server using h2:start task). The next listing shows the complete application
class you have so far.

final class WeKanbanApplication extends StreamStreamServletApplication {

 import Request._
 import Response._

 implicit val charset = UTF8

 def param_!(name: String)(implicit request: Request[Stream]) =
 (request | name).getOrElse(List[Char]()).mkString("")

 def param(name: String)(implicit request: Request[Stream]) =

 (request ! name).getOrElse(List[Char]()).mkString("")

 def handle(implicit request: Request[Stream],

 servletRequest: HttpServletRequest): Option[Response[Stream]] = {

 request match {

 case MethodParts(GET, "card" :: "create" :: Nil) =>
 Some(OK(ContentType, "text/html") << strict <<

 CreateStory(param("message")))

 case MethodParts(POST, "card" :: "save" :: Nil) =>
 Some(saveStory)

 case _ => None

 }
 }

 private def saveStory(implicit request: Request[Stream],

 servletRequest: HttpServletRequest) = {
 val title = param_!("title")

 val number = param_!("storyNumber")

 Story(number, title).save match {
 case Right(message) =>

 redirects[Stream, Stream]("/card/create", ("message", message))

 case Left(error) => OK(ContentType, "text/html") << strict <<
 CreateStory(error.toString)

 }

 }

 val application = new ServletApplication[Stream, Stream] {

 def application(implicit servlet: HttpServlet,

 servletRequest: HttpServletRequest, request: Request[Stream]) = {
 def found(x: Iterator[Byte]) : Response[Stream] = OK << x.toStream

 handle | resource(found, NotFound.xhtml)

 }
 }

}

Here you’re extending the application class to handle the save story POST request.
To handle the save story request, you added a new pattern matching expression to the
handle method. Now the POST request made to /card/save will be matched by

Listing 7.8 Complete save story in WeKanbanApplication

POST
request to
/card/save

Handle
save new
story
request

212 CHAPTER 7 Connecting to a database

MethodParts(POST, "card" :: "save" :: Nil), and when it matches it invokes the
saveStory method defined in the application class.

 The saveStory method extracts the story number and title parameters from the
Scalaz request and creates a new instance of the Story model object. The save method
defined in the Story model object will validate and save the story in the database. In
case of error, the saveStory method renders the CreateStory view object with the
error message. When the save is successful it redirects to a new “Create story” screen.
Here using the scala.Either type allows you to easily handle the error condition.

 You’re done adding new stories to the Kanban board. Next you’ll build the Kanban
board where all the stories will be displayed.

7.2 Building the Kanban board page

Now the focus will move to building the Kanban board. Your next user story:

As a developer I want to move cards (stories) from one phase to another so that I can
signal progress.

Figure 6.1 shows the prototype of the Kanban board you’re supposed to build. To
implement this story, you have to provide an ability to move cards from one phase to
another. For example, a user of your Kanban board should be able to move a card
from ready phase to development phase and vice versa. To implement drag-and-drop,
use the jQuery-ui plug-in (http://jqueryui.com) for jQuery (http://jquery.com), a
JavaScript framework that simplifies HTML, document traversing, event handling, and
Ajax interactions for web development.

 I don’t focus on the jQuery library in detail here, but if you haven’t used jQuery I
encourage you to check the links. After you download the jquery-ui library, copy the
JavaScript files to the js folder under the webapp folder of the weKanban project, as
shown in figure 7.3. The main.js file is something you’ll create shortly.

NOTE You can also copy the JavaScript files from the code that accompa-
nies this book.

The draggable plug-in of jQuery adds draggable functionality to any DOM element,
and all you have to do is invoke a draggable method to it. For example, if you want to
make your stories draggable, invoke the draggable method on each DOM element
that represents a story in the board. For now, you’ll add a css class called story to
each story to easily find them and make them draggable.

 To make DOM elements droppable, call the droppable method by passing a func-
tion that can handle the drop event. In your board all the elements that represent
phases (ready, dev, and so on) will be droppable.

 But only implementing drag-and-drop in the web page isn’t enough—you also
have to update the database when a story moves from one phase to another so that
when you come back to the board you can see the updated version. Because you’ve
already decided to use jQuery, you’ll use its Ajax features to make an HTTP POST call
when a story moves from one phase to another. The next listing shows the completed
main.js file that implements drag-and-drop for the Kanban board.

http://jqueryui.com
http://jquery.com

213Building the Kanban board page

function moveCard(storyNumber, phase) {

 $.post("/card/move",{storyNumber: storyNumber, phase: phase},

 function(message) {
 $('#message').html(message)
 });
 }

 function init() {
 $(function() {
 $(".story").each(function() {
 $(this).draggable();
 });
 $("#readyPhase").droppable({
 drop: function(event, ui) {
 moveCard(ui.draggable.attr("id"), "ready") }
 });
 $("#devPhase").droppable({
 drop: function(event, ui) {
 moveCard(ui.draggable.attr("id"), "dev") }
 });
 $("#testPhase").droppable({
 drop: function(event, ui) {
 moveCard(ui.draggable.attr("id"), "test") }
 });
 $("#deployPhase").droppable({
 drop: function(event, ui) {
 moveCard(ui.draggable.attr("id"), "deploy") }
 });
 });
 }

Listing 7.9 Implementing drag-and-drop for the weKanban board in the main.js file

Figure 7.3 The weKanban project

with JavaScript files for drag-and-drop

Make POST
request

Add
draggable
feature

Add
droppable
feature

214 CHAPTER 7 Connecting to a database

In the init function you’re making the element with the story class draggable and
adding droppable functionality to all the phases identified by their ids. To implement
droppable you’ve implemented the drop function, which gets invoked when an ele-
ment is dropped. Inside the drop function you’re calling the moveCard function by
passing the id of the story that’s dropped and the target phase. The job of moveCard is
to make an Ajax POST call to the /card/move URL by passing both the story number
and target phase. Now you’ll create the view object for the Kanban board and the
JavaScript code.

7.2.1 Creating the view for the Kanban board

To create the Kanban board view you have to retrieve all the stories from the database
by phase. You have to show all the stories that are in the ready state, all the stories at
dev state, and so on. At first all the stories that you create using the “Create story” view
will be in the ready state. But once you implement the drag-and-drop features, you’ll
have stories in various phases.

 At first, to select stories by phase, add a findAllStoriesByPhase method to the
Story model object which will return a list of stories which you’d use to render the
view. To implement the findAllStoriesByPhase method, use Squeryl’s query DSL,
which looks similar to SQL. First use Squeryl to find all the stories from the database
and then apply a filter to the result to find stories matching a particular phase. To find
all the stories from the database using Squeryl, you have to do the following:

from(stories)(s => select(s))

Here the from method returns an instance of Query, which takes a function that takes
an instance of the story object and returns the same story object as select. But this
isn’t helpful because you want to filter the stories by phase; to do that, add a where
method that will check for the phase, as in the following:

from(stories)(s => where(s.phase === phase) select(s))

The === method is added by an implicit method conversion to a String class so that
the DSL looks like SQL’s where clause. The Squeryl query returns an immutable
instance of Query that’s a lazy Iterable collection. At this point Squeryl has only cre-
ated the query—it hasn’t executed it in the database. It will execute the query the
moment you try to access the first element in the collection. But because you’re going
to use this collection to render stories in your Kanban board view, let’s change this to
strict collection from lazy collection (covered in chapter 4) by invoking the map
method, so that you access these instances of Story objects outside the transaction:

def findAllByPhase(phase: String) = tx {

 from(stories)(s => where(s.phase === phase) select(s)) map(s => s)

}

Here you’re calling map on the Query object to create a collection of stories. But because
you don’t need to transform your story objects, the map is returning the parameter.

215Building the Kanban board page

NOTE You could use a different method toXXX methods defined in the Scala
Iterable trait to transform to various types of collections. Here I’m using map
to demonstrate that you can take the response from Squeryl and transform it
if necessary.

Now in your view object you can invoke the findAllByPhase method by passing vari-
ous phases to render the stories in the Kanban board. To create the view for the Kan-
ban board, add a new view object under src/main/scala/com/kanban/views/
KanbanBoard.scala.

package com.kanban.views

import com.kanban.models._

object KanbanBoard {

}

The first thing you’ll do is add a header method that will include all the JavaScript
files you need to enable the drag-and-drop feature to your board:

private def header =

 <head>
 <meta charset="UTF-8" />

 <title>weKanban: A simple Kanban board</title>

 <script type="text/javascript" src="/js/jquery-1.4.2.js"/>
 <script type="text/javascript" src="/js/jquery.ui.core.js"/>

 <script type="text/javascript" src="/js/jquery.ui.widget.js"/>

 <script type="text/javascript" src="/js/jquery.ui.mouse.js"/>
 <script type="text/javascript" src="/js/jquery.ui.draggable.js"/>

 <script type="text/javascript" src="/js/jquery.ui.droppable.js"/>

 <script type="text/javascript" src="/js/main.js"/>
 <link type="text/css" href="/css/main.css" rel="stylesheet" />

 <script type="text/javascript">

 init()
 </script>

 </head>

This header method, apart from adding all the JavaScript, also invokes the init
method that’s defined in the main.js to initialize the drag-and-drop functionality using
jQuery. To render the stories you get back from the findAllByPhase method, add
another method that will loop through the stories and create an html div element:

private def stories(phase: String) =

 for(story <- Story.findAllByPhase(phase)) yield

 <div id={story.number} class="story">
 <fieldset>

 <legend>{story.number}</legend>

 <div class="section">
 <label>{story.title}</label>

 </div>

 </fieldset>
 </div>

Invoke init method
for drag-and-drop

216 CHAPTER 7 Connecting to a database

Here you’re using a for-comprehension to loop through all the stories and creating a
story html div element. This method returns a list of scala.xml.NodeSeq objects that
you can easily insert into the body of HTML you’re going to generate for the Kanban
board. To tie all these pieces together, add the apply method to the KanbanBoard view
object, which will create the Kanban board view, shown in the following listing.

package com.kanban.views

import com.kanban.models._

object KanbanBoard {
 def apply()=

 <html>

 <head>{header}</head>
 <body>

 <h2 class="header">weKanban: Simple Kanban board</h2>

 [Add new story

to Ready Phase]

 <div class="phase" id="readyPhase">
 <h3 class="message" title="Stories ready for development. Limit is set

to 3">Ready [3]</h3>

 {stories("ready")}
 </div>

 <div class="phase" id="devPhase">

 <h3 class="message" title="Stories in progress. Limit is set to 2">Dev
[2]</h3>

 {stories("dev")}

 </div>
 <div class="phase" id="testPhase">

 <h3 class="message" title="Stories that are tested. Limit is set to

2">Test [2]</h3>
 {stories("test")}

 </div>

 <div class="phase" id="deployPhase" title="Ready for production
deployment">

 <h3 class="message">Deploy</h3>

 {stories("deploy")}
 </div>

 </body>

 </html>

 private def stories(phase: String) =

 for(story <- Story.findAllByPhase(phase)) yield

 <div id={story.number} class="story">
 <fieldset>

 <legend>{story.number}</legend>

 <div class="section">
 <label>{story.title}</label>

 </div>

 </fieldset>
 </div>

Listing 7.10 Kanban board view

Add contents of
header method

Render stories in
ready phase

Create HTML to
render stories

217Building the Kanban board page

 private def header =
 <head>
 <meta charset="UTF-8" />
 <title>weKanban: A simple Kanban board</title>
 <script type="text/javascript" src="/js/jquery-1.4.2.js"/>
 <script type="text/javascript" src="/js/jquery.ui.core.js"/>
 <script type="text/javascript" src="/js/jquery.ui.widget.js"/>
 <script type="text/javascript" src="/js/jquery.ui.mouse.js"/>
 <script type="text/javascript" src="/js/jquery.ui.draggable.js"/>
 <script type="text/javascript" src="/js/jquery.ui.droppable.js"/>
 <script type="text/javascript" src="/js/main.js"/>
 <link type="text/css" href="/css/main.css" rel="stylesheet" />
 <script type="text/javascript">
 init()
 </script>
 </head>
}

The KanbanBoard view object is used to render the Kanban board in figure 7.4. Like
the CreateStory view object, the apply method is responsible for rendering the Kan-
ban board. The apply method calls the header method to add all the JavaScript files
you need to add drag-and-drop functionality to your Kanban board. The contents of
the header method get inserted in between the HTML head tags.

 To render stories in each phase, the apply method invokes the stories method by
passing the phase. The stories method is invoked for each phase in the Kanban
board. The stories method uses a for-comprehension to generate the HTML
required to render the result. The findAllByPhase method in the Story model class
returns all the stories in a given phase from the database.

 The last missing piece is to modify the handle method in the WeKanbanApplication
class to handle the /kanban/board URL. Add the following case to the handle method:

case MethodParts(GET, "kanban" :: "board" :: Nil) =>
 Some(OK(ContentType, "text/html") << transitional << KanbanBoard())

If you rebuild and run the application again (if you’re running ~prepare-webapp, the
changes will be available to you automatically), the link “Go to Kanban board” will
take you to the Kanban board screen displaying all the stories you created (figure 7.4).

Include JavaScript
for drag-and-drop

Figure 7.4 Kanban board with stories in ready phase

218 CHAPTER 7 Connecting to a database

Even though you haven’t implemented the move card functionality on the server side,
in the UI you should be able to drag and drop cards from one phase to another.
Because the server side logic isn’t implemented, when you refresh the page all the sto-
ries will show up in ready phase again. To complete the move card story, you have to
implement the move card logic in the server side.

7.2.2 Moving cards in the Kanban board

To implement moving cards from one phase to another, you have to update the phase
of the story. For example, to move a story from the ready to the dev phase, you have to
get the story number (the story number uniquely identifies a story) to find the story
and update the phase. But the problem is, you aren’t allowed to cross the limit set for
the phase, so before updating the phase you have to check whether you’re crossing
the threshold of the phase you’re moving to. The limit for ready is 3, for dev it’s 2, and
for test phase it’s 2 stories. To validate that you aren’t crossing the limit, add a vali-
date method to the Story class; doing so will compute the total number of stories in a
phase and throw an exception if you exceed the limit. For now, hardcode the limits
for each phase inside the Story class:

private def phaseLimits = Map("ready" -> Some(3),

 "dev" -> Some(2), "test" -> Some(2), "deploy" -> None)

private[this] def validateLimit(phase: String) = {
 val currentSize:Long =

 from(stories)(s => where(s.phase === phase) compute(count))

 if(currentSize == phaseLimits(phase).getOrElse(-1)) {
 throw new ValidationException("You cannot exceed the limit set for

 the phase.")

 }}

Here you’re selecting the number of stories in a given phase and checking with the
hardcoded values in the phaseLimits. If the values match, you throw the validation
exception. The compute(count) is a way to invoke a count function on the result of
the where function. The compute Squeryl function is similar to the Squeryl select
function except compute can invoke other aggregate functions like count. Check the
Squeryl documentation5 for all the available functions and operators.

 Now, to move a story to a different phase, add another method, called moveTo, to
the Story class. This method will take the target phase and validate whether you’re
crossing the limit. If everything is okay it will update the phase value of the story. This
method will also return Either[Throwable, String] so that your Scalaz application
class responds accordingly. To update a given row in the database, Squeryl provides an
update method, which takes an instance of table (in this case it’s the stories object
defined in the Schema class) and a function that will update the row. To update a story
identified by this, you can use the Squeryl update function like this:

5 “Group and Aggregate Queries,” http://squeryl.org/group-and-aggregate.html.

Set up
limits for

each phase

Compute
number of

rows

http://squeryl.org/group-and-aggregate.html

219Building the Kanban board page

update(stories)(s =>
 where(s.number === this.number)
 set(s.phase := phase)
)

Here, inside the function passed to update, you’re first identifying the story you need
to update using the where method and then invoking the set method by passing the
target phase value. Here’s the completed moveTo method defined in the Story class:

def moveTo(phase: String): Either[Throwable, String] = {
 tx {
 try {
 validateLimit(phase)
 update(stories)(s =>
 where(s.number === this.number)
 set(s.phase := phase)
)
 Right("Card " + this.number + " is moved to " + phase + " phase
 successfully.")
 } catch {
 case exception: Throwable => Left(exception)
 }
 }
 }

To invoke this moveTo method from the application class you have to first find the
story object using the story number. To find a story by its number, add a method called
findByNumber to your singleton Story object. This method will query the "STORIES"
table and find the one that matches the given story number. Here’s how the method is
implemented:

def findByNumber(number: String) =
tx { stories.where(s => s.number === number).single }

Here you’re using the single method defined in the Squeryl Query object that
returns the first row from the query. At this point you’re all done with your model
changes. Before you hook this new method to your application class, look at the fol-
lowing listing, which shows the complete implementation of the Story class.

package com.kanban.models

import org.squeryl._
import org.squeryl.PrimitiveTypeMode._
import org.squeryl.annotations._
import KanbanSchema._

class Story(val number: String, val title: String, val phase: String){

 private def phaseLimits = Map("ready" -> Some(3), "dev" -> Some(2),
 "test" -> Some(2), "deploy" -> None)

 private[this] def validate = {
 if(number.isEmpty || title.isEmpty) {
 throw new ValidationException ("Both number and title are required")

Listing 7.11 Complete Story model implementation

Validate limit
for target phase

Update phase of
story using set

Add limit
per phase

Validate
story

number
and title

220 CHAPTER 7 Connecting to a database

 }
 if(!stories.where(a => a.number === number).isEmpty) {

 throw new ValidationException ("The story number is not unique")

 }
 }

 private[this] def validateLimit(phase: String) = {

 val currentSize:Long =
 from(stories)(s => where(s.phase === phase) compute(count))

 if(currentSize == phaseLimits(phase).getOrElse(-1)) {

 throw new ValidationException ("You cannot exceed the limit set for
 the phase.")

 }

 }

 def moveTo(phase: String): Either[Throwable, String] = {

 tx {

 try {
 validateLimit(phase)

 update(stories)(s =>

 where(s.number === this.number)
 set(s.phase := phase)

)

 Right("Card " + this.number + " is moved to " + phase + " phase

 successfully.")
 } catch {

 case exception: Throwable =>

 exception.printStackTrace ;
 Left(exception)

 }

 }
 }

 def save(): Either[Throwable, String] = {

 tx {
 try {

 validate

 stories.insert(this)
 Right("Story is created successfully")

 } catch {

 case exception: Throwable => Left(exception)
 }

 }

 }
}

object Story {

 def apply(number: String, title: String) =
 new Story(number, title, "ready")

 def findAllByPhase(phase: String): Iterable[Story] =

 tx { from(stories)(s => where(s.phase === phase) select(s)) map { s:
 Story => s } }

 def findByNumber(number: String) =

 tx { stories.where(s => s.number === number).single }}

class ValidationException(message: String) extends

 RuntimeException(message)

Validate limit
set for a phase

Move card
between
phases

Save new
story to
table

Companion
object for Story

Find all stories
from table

Find story from database

Signal validation failure

221Building the Kanban board page

Now the only thing remaining is to handle the Ajax call in your application class so
you can update the database when the card is moved in the UI. You do this with an
Ajax call using the moveCard function defined in the main.js file (see listing 7.10):

function moveCard(storyNumber, phase) {
 $.post("/card/move", {storyNumber: storyNumber, phase: phase},

 function(message) {

 $('#message').html(message)
 });

}

This method gets called when you drop a card in a phase from the drop method (see
listing 7.8). This function makes an HTTP POST call to the /card/move URL by pass-
ing the storyNumber and the target phase of the story that moved—and handles the
response by appending the message to the DOM element identified by the id message.

 In the application class add a moveCard function to handle the /card/move POST
request. This function first finds an instance of the Story class by its number and then
calls the moveCard method you added to the Story class. Based on whether the move
failed or succeeded, you’ll return a response message. Add the following moveCard
method to the WeKanbanApplication class:

private def moveCard(implicit request: Request[Stream],

 servletRequest: HttpServletRequest) = {
 val number = param_!("storyNumber")

 val toPhase = param_!("phase")

 val story = Story.findByNumber(number)
 story.moveTo(toPhase) match {

 case Right(message) => OK(ContentType, "text/html") <<

 strict << message
 case Left(error) => OK(ContentType, "text/html") <<

 strict << error.getMessage

 }
}

The first thing you do in the moveCard method is retrieve both story number and
phase from the Scalaz request. Here you’re using the param_! method already
defined in the application class. Next, using the story number, you retrieve the
Story model object associated with it and invoke the moveTo method to update the
phase. Listing 7.11 shows how these methods are implemented inside the Story
model class. Based on the response from the moveTo method, you show either a suc-
cess message or an error message.

 To invoke this moveCard method, let’s add another pattern matching case to the
handle method to match the POST request to move a card:

case MethodParts(POST, "card" :: "move" :: Nil) =>

 Some(moveCard)

That’s it. Now if you run the weKanban application with all the changes, you’ll be able
to move a card between phases, and your changes will persist. The following listing
shows the complete WeKanbanApplication class.

222 CHAPTER 7 Connecting to a database

package com.kanban.application

import scalaz._

import Scalaz._
import scalaz.http._

import response._

import request._
import servlet._

import HttpServlet._

import Slinky._
import com.kanban.views._

import com.kanban.models._

final class WeKanbanApplication extends StreamStreamServletApplication {
 import Request._

 import Response._

 implicit val charset = UTF8

 def param_!(name: String)(implicit request: Request[Stream]) = (request |

name).getOrElse(List[Char]()).mkString("")

 def param(name: String)(implicit request: Request[Stream]) = (request !

name).getOrElse(List[Char]()).mkString("")

 def handle(implicit request: Request[Stream], servletRequest:

 HttpServletRequest): Option[Response[Stream]] = {

 request match {
 case MethodParts(GET, "card" :: "create" :: Nil) =>

 Some(OK(ContentType, "text/html") << strict <<

CreateStory(param("message")))
 case MethodParts(POST, "card" :: "save" :: Nil) =>

 Some(saveStory)

 case MethodParts(GET, "kanban" :: "board" :: Nil) =>
 Some(OK(ContentType, "text/html") << strict << KanbanBoard())

 case MethodParts(POST, "card" :: "move" :: Nil) =>

 Some(moveCard)
 case _ => None

 }

 }

 private def moveCard(implicit request: Request[Stream], servletRequest:

 HttpServletRequest) = {

 val number = param_!("storyNumber")
 val toPhase = param_!("phase")

 val story = Story.findByNumber(number)

 story.moveTo(toPhase) match {
 case Right(message) => OK(ContentType, "text/html") << strict <<

 message

 case Left(error) => OK(ContentType, "text/html") << strict <<
 error.getMessage

 }

 }

 private def saveStory(implicit request: Request[Stream], servletRequest:

 HttpServletRequest) = {

Listing 7.12 Completed WeKanbanApplication class

Retrieve
value from

POST
request

Retrieve
value from

GET request
Transform
Scalaz
request to
response

Move card from
phase to phase

Create
new story,

save to
database

223Summary

 val title = param_!("title")
 val number = param_!("storyNumber")

 Story(number, title).save match {

 case Right(message) => redirects[Stream, Stream]("/card/create",
 ("message", message))

 case Left(error) => OK(ContentType, "text/html") << strict <<

 CreateStory(error.toString)
 }

 }

 val application = new ServletApplication[Stream, Stream] {
 def application(implicit servlet: HttpServlet, servletRequest:

 HttpServletRequest, request: Request[Stream]) = {

 def found(x: Iterator[Byte]) : Response[Stream] = OK << x.toStream
 handle | resource(found, NotFound.xhtml)

 }

 }
}

At this point I think we’re done with the second story, and your application is ready to
ship. You can use the package build action to create a WAR file deployable to any web
container. You’ve implemented the most basic features of a web-based Kanban board.
You can easily extend the application to make it more sophisticated.

7.3 Summary

In chapters 6 and 7 you took your first step in building medium-sized Scala applica-
tions. For the first time you moved outside the RPEL to build your Scala application.
You used the SBT. You learned how to work with SBT, configure it, and manage depen-
dencies—which is important when it comes to building enterprise-level Scala applica-
tions. You used Scalaz’s HTTP module to build your web application and also learned
how functional programming concepts can be used in web applications. You saw how
Scalaz uses Scala’s higher-order functions and pattern matching to expose nice APIs.
Building enterprise-level applications most of the time means you have to work with
relational databases. You looked into Squeryl, the Scala ORM tool, to understand how
a relational database can be used and modeled in your Scala application.

 This chapter has provided enough of a foundation to work with various Scala tools
to build your next application. I encourage you to try different Scala ORM tools, view
template engines, and web frameworks to build or extend this application. I hope the
concepts and the tools you’ve learned in these two chapters will make you comfort-
able working with the various Scala tools available in the market.

 In this chapter you got a glimpse of implicit conversion and implicit parameters. In
the next chapter we’ll take a deep dive into the Scala type system and see how we can
build abstraction layers using types.

Handle
requests

for
resources

224

Building scalable
and extensible components

So far we’ve been working with Scala without paying any serious attention to its type

system. The type system is a tractable syntactic method for proving the absence of
certain program behaviors by classifying phrases according to the kinds of values
they compute.1

 The challenge of learning about a type system is understanding the theory
behind it. It’s always helpful to learn the fundamentals behind a good type system,
but in this chapter my focus is on the practical benefits of a good type system with-
out going too much into theory. In the process I explore various types of the types

This chapter covers

 Building components in Scala

 A tour of various types of types in Scala

 Ad hoc polymorphism with type classes

 Solving expression problems in Scala

1 Benjamin C. Pierce, Types and Programming Languages, 2002, The MIT Press, www.cis.upenn.edu/
~bcpierce/tapl/.

www.cis.upenn.edu/~bcpierce/tapl/
www.cis.upenn.edu/~bcpierce/tapl/

225Building your first component in Scala

Scala provides you, with examples so you can understand their applications. Why is
the type system so important? It provides the following features:

 Error detection—Think of the compiler as a suite of test cases that can detect
common type and other program errors.

 Abstractions—This is the focus of this chapter. You’ll learn how the type system
provides abstractions to build components.

 Documentation—The signature of a function or method tells you a lot about
what it’s doing.

 Efficiency—The type system helps the compiler generate optimized binary code.

My goal for this chapter is to show you how you can use Scala’s type system to build
reusable components. I’m using component as an umbrella term to refer to reusable
libraries, classes, modules, frameworks, or web services.

 Building reusable components is not easy. The goal of building software by assem-
bling components is still a dream and isn’t possible to the extent we’d like. The chal-
lenge of building something reusable is to make the components refer to the context
in which they are built. Typically, you modify your component to suit the current need
and end up with multiple versions of the same component. This results in a mainte-
nance problem. In the first section of this chapter, you’ll learn about building simple,
reusable components using Scala’s type system.

 Next you’ll learn about different kinds of types provided by Scala so that you’re
aware of all the building blocks you have to make your code more expressive and
reusable.

 You’ll also learn about a new kind of polymorphism using type classes that allows
you to express and create abstractions that are easy to extend and scale—a powerful
construct to help you solve your day-to-day programming problems.

 It’s important to understand that a good type system doesn’t work against you.
Rather, it provides you with enough flexibility to be as creative as possible. Settle in
with your coffee and don’t worry if the ride feels a little bumpy. I promise, by the end
of this chapter the results will be valuable.

8.1 Building your first component in Scala

As I mentioned, building scalable and reusable components is hard. By scalable I mean
small or large components—particularly when you’re trying to build one using a type-
safe, object-oriented language. Table 8.1 explores three abstraction techniques pro-
vided by Scala.

 I covered mixin composition in detail in chapter 3. Remember that Scala traits
allow you to build small components and combine them to build larger components.
Let’s explore abstract type members and self type before you start building your com-
ponent, because they’re important building blocks.

226 CHAPTER 8 Building scalable and extensible components

8.1.1 Abstract type members

Scala takes the idea of abstract beyond methods and fields. You can also declare
abstract type members inside a class or trait. Abstract types are those whose identity is
unknown at the time of declaration. Unlike concrete types, the type of an abstract type
member is specified during the concrete implementation of the enclosing class. The
following example declares an abstract type member S inside a trait called Calculator:

trait Calculator { type S }

Any concrete class that mixes in this trait has to now provide a type for an S type
member:

class SomeCalculator extends Calculator { type S = String }

The benefit of abstract type members is they can hide the internal information of a
component. I’ll use an example to demonstrate that fact. You’re going to build a price
calculator that can take a product ID and return the price of the product. There can
be many ways to calculate the price, and each way could use a different type of data
source to retrieve the price. You’re building this for a retail company that sells various
types of products from a number of manufacturers. The common steps across all the
calculators are the following:

1 Connect to a data source (could be of many types)
2 Calculate the price using the data source
3 Close the connection to the data source

A fairly successful way to encode common steps and program skeletons is a Template
Method pattern, which lets you follow a common algorithm across multiple sub-
classes. Here’s how you could implement your parent Calculator trait using the Tem-
plate Method pattern:

trait Calculator {
 def initialize: DbConnection

 def close(s: DbConnection): Unit

 def calculate(productId: String): Double = {

Table 8.1 Scala abstraction techniques

Technique Description

Modular mixin

composition

This feature of Scala provides a mechanism for composing traits for designing

reusable components without the problems of multiple inheritance. You could

define contracts using it and have multiples of them (such as interfaces), or you

could have concrete method implementations.

Abstract type

members

Scala lets you declare abstract type members to class, trait, and subclasses that

can provide concrete types. Similar to abstract methods and fields.

Self type A mixin doesn’t depend on any methods or fields of the class that it’s mixed into.

But sometimes it’s useful to use fields or methods of the class it’s mixed into. This

feature of Scala is called self type.

227Building your first component in Scala

 val s = initialize
 val price = calculate(s, productId)

 close(s)

 price
 }

 def calculate(s: DbConnection, productId: String): Double

 }

In this example, DbConnection is a component that knows how to retrieve data from a
database. Because all the necessary steps are implemented, each calculator can imple-
ment the overloaded calculate(s: DAO, productId: String) method. The prob-
lem with the current implementation is that it’s hard-wired to a DAO, and a calculator
that uses a different kind of data source won’t be able to use the calculator.

 You can easily fix the problem of the hard link to DbConnection by creating an
abstract type member that hides the type of component you use to retrieve the price
from the data source. The following listing shows the Calculator trait with the
abstract type member.

package abstractMember {
 trait Calculator {

 type S

 def initialize: S
 def close(s: S): Unit

 def calculate(productId: String): Double = {

 val s = initialize
 val price = calculate(s, productId)

 close(s)

 price
 }

 def calculate(s: S, productId: String): Double

 }
}

The Calculator trait abstracts out the type that knows how to connect to the data
source. The initialize method makes the connection to a data source, and the
close method closes the connection. Now any concrete calculator implementation,
along with implementing all the abstract methods, needs to provide type information
for S. Here’s one implementation of a calculator that uses MongoDB as a data source:

class CostPlusCalculator extends Calculator {
 type S = MongoClient
 def initialize = new MongoClient
 def close(dao: MongoClient) = dao.close

 def calculate(source: MongoClient, productId: String) = {
 ...
 }
 }
 class MongoClient {
 def close = ...
 }

Listing 8.1 Calculator trait with abstract type member

228 CHAPTER 8 Building scalable and extensible components

The abstract type member concept is particularly useful to model a family of types that
varies covariantly. The next section talks about self type, which helps in building com-
ponents from smaller components.

8.1.2 Self type members

The self type annotation allows you to access members of a mixin trait or class, and
the Scala compiler ensures that all the dependencies are correctly wired before you’re
allowed to instantiate the class. Self type makes mixin composition more powerful
because it allows you to statically define dependencies defined by other classes and
traits. In the following example, trait A is defining a dependency to trait B:

trait B {

 def b:Unit = ...

}
trait A { self: B =>

 def a:Unit = b

}

Trait A can’t be mixed in with a concrete class unless that class also extends B. And
because of that type-safety, you can access members of B as if it’s defined in A, as shown
in the preceding example. Also note that self is a name—it could be any valid param-
eter name. The most common names used for self type annotation are this and self.

 I’ll use an example to demonstrate how self type can work in a real-world applica-
tion. In this example, you’ll try to build a product finder that depends on a couple of
required services: a way to access the database and a logger to log the result. Because
traits let you easily compose features, separate the required services and the logic to
find products into separate traits. Here are the required service traits:

trait Connection {
 def query(q: String): String

}

trait Logger {
 def log(l: String): Unit

}

trait RequiredServices {
 def makeDatabaseConnection: Connection

 def logger: Logger

}

The RequiredServices trait declares all the services that could be used by the prod-
uct finder:

 trait ProductFinder { this: RequiredServices =>
 def findProduct(productId: String) = {

 val c = makeDatabaseConnection

 c.query("find the lowest price")
 logger.log("querying database...")

 }

 }

self: B declares
the self type
annotation

229Building your first component in Scala

Because the required services are annotated with self type this, you can still access
those services, and the Scala compiler will ensure that the final class gets mixed with a
trait or a class that implements RequiredServices. The following listing shows the
complete example with test services.

package selfTypeAnnotation {
 trait Connection {

 def query(q: String): String

 }
 trait Logger {

 def log(l: String): Unit

 }

 trait RequiredServices {

 def makeDatabaseConnection: Connection

 def logger: Logger
 }

 trait TestServices extends RequiredServices {

 def makeDatabaseConnection =

 new Connection { def query(q: String) = "test" }
 def logger = new Logger { def log(l: String) = println(l) }

 }

 trait ProductFinder { this: RequiredServices =>
 def findProduct(productId: String) = {

 val c = makeDatabaseConnection

 c.query(productId)
 logger.log("querying database...")

 }

 }
 object FinderSystem extends ProductFinder with TestServices

}

This example shows how to build large components by combining smaller compo-
nents in Scala using self type annotation and mixin composition. We will explore self
type once again in chapter 10 to help in unit testing. Now let’s move on to build your
first reusable component—a generic ordering system.

8.1.3 Building a scalable component

To see how to build a reusable component,
let’s build a generic product ordering sys-
tem. It will be reusable in that a user can
order any kind of product. A general
ordering system is built using the following
components (see figure 8.1):

 An order component that represents
the order placed by the customer.

Listing 8.2 Product finder with self type annotation

Implement
required services
for test

Final object
that composes
all the traits

Figure 8.1 Ordering system with three compo-

nents: order, inventory, and shipping

230 CHAPTER 8 Building scalable and extensible components

 An inventory component that stores the products. You need to check the inven-
tory to make sure you have the product before you place the order.

 A shipping component that knows how to ship an order to customer.

A real-world ordering system is more complex than this, but let’s stick to this simple
system because you can easily scale it to fit into a larger context.

 You can use abstract type members to abstract out the components your ordering
system requires:

trait OrderingSystem {
 type O <: Order
 type I <: Inventory
 type S <: Shipping
}

The OrderingSystem declares three abstract members—O, I, and S—and at the same
time sets the upper bounds for each type. The type O denotes a type that is a subtype
of the Order type. Similarly I and S should be a subtype of Inventory and Shipping.
And Order, Inventory, and Shipping define the contracts for each component:

trait OrderingSystem {
 type O <: Order
 type I <: Inventory
 type S <: Shipping

 trait Order {def placeOrder (i: I):Unit }
 trait Inventory { def itemExists(order: O): Boolean }
 trait Shipping {def scheduleShipping(order: O): Long }
}

The benefit of nesting all these components under a trait is that they’re all aggregated
and encapsulated in one place. So far you have the interfaces for each component,
but you still need to implement the steps for placing the order. Here they are:

1 Check whether that item exists in inventory.
2 Place the order against the inventory. (Inventory will reduce the count by the

amount of product in the inventory.)
3 Schedule the order for shipping.
4 If the item doesn’t exist in inventory, return without placing the order and pos-

sibly notify Inventory to replenish the product.

Let’s implement these steps as part of an Ordering trait that is defined inside the
OrderingSystem:

trait Ordering {this: I with S =>
 def placeOrder(o: O): Option[Long] = {
 if(itemExists(o)) {
 o.placeOrder (this)
 Some(scheduleShipping(o))
 }
 else None
 }
}

Self type
annotation for
two mixin traits

231Building your first component in Scala

The placeOrder method implements all the steps mentioned with the help of the self
type annotation. Ordering now relies on Inventory for itemExists and Shipping for
the scheduleShipping method. Note that you can specify multiple self type annota-
tions using the with keyword, similar to the way you mix in traits. All these pieces
together make up the ordering system component. The following listing shows the
complete code.

trait OrderingSystem {

 type O <: Order
 type I <: Inventory

 type S <: Shipping

 trait Ordering {this: I with S =>
 def placeOrder(o: O): Option[Long] = {

 if(itemExists(o)) {

 o.placeOrder(this)
 Some(scheduleShipping(o))

 }

 else None

 }
 }

 trait Order {def placeOrder(i: I):Unit }

 trait Inventory { def itemExists(order: O): Boolean }
 trait Shipping { def scheduleShipping(order: O): Long }

}

The abstract type members of the OrderingSystem represent the required services
that this component relies on without providing concrete implementation. This
allows it to be reusable in various contexts. The mixin feature allows it to build the
Ordering trait by composing Inventory and Shipping traits. And finally self type
allows the Ordering trait to use services provided by the mixed in traits. As you can
see, all these abstracts provide a building block to build scalable and reusable compo-
nents in Scala. If you want to implement an ordering system for books, you could eas-
ily use the OrderingSystem as follows:

object BookOrderingSystem extends OrderingSystem {

 type O = BookOrder
 type I = AmazonBookStore

 type S = UPS

 class BookOrder extends Order {
 def placeOrder(i: AmazonBookStore): Unit = ...

 }

 trait AmazonBookStore extends Inventory {
 def itemExists(o: BookOrder) = ...

 }

 trait UPS extends Shipping {
 def scheduleShipping(order: BookOrder): Long = ...

 }

Listing 8.3 Generic ordering system with abstract type members and self type

Declares all the
required services

Logic to
place order

232 CHAPTER 8 Building scalable and extensible components

 object BookOrdering extends Ordering with AmazonBookStore with UPS
}

The BookOrderingSystem provides all the concrete implementations and creates the
BookOrdering object to place orders for books. Now all you have to do to use the
BookOrderingSystem is import it:

import BookOrderingSystem._

BookOrdering.placeOrder(new BookOrder)

The next section shows you how to use the concepts you learned here to solve the
expression problem.

8.1.4 Building an extensible component

The ability to extend a software component and integrate it into an existing software
system without changing existing source code is a fundamental challenge in software
engineering. Many people have used the expression problem to demonstrate that object-
oriented inheritance fails in terms of extensibility of a software component. The
expression problem is one in which the challenge is to define a data type with cases,
and in which one can add new cases of the type, and operations for the types, without
recompiling and maintaining static type-safety. Usually this challenge is used to dem-
onstrate strength and weakness of programming languages. Next I’ll show you how to
solve the expression problem in Scala with the constructs you’ve learned so far. But
first lets look at the expression problem in detail.

THE EXPRESSION PROBLEM AND THE EXTENSIBILITY CHALLENGE

The goal is to define a data type and operations on that data type in which one can
add new data types and operations without recompiling existing code, but while
retaining static type safety.

 Any implementation of the expression problem should satisfy the following
requirements:

 Extensibility in both dimensions. You should be able to add new types and oper-
ations that work on all the types. (I look into this in detail in this section.)

 Strong static type-safety. Type casting and reflection are out of the question.
 No modification of the existing code and no duplication.
 Separate compilation.

Let’s explore this problem with a practical example. You have a payroll system that
processes salaries for full-time employees in the United States and Canada:

case class Employee(name: String, id: Long)

trait Payroll {
 def processEmployees(

 employees: Vector[Employee]): Either[String, Throwable]

}

class USPayroll extends Payroll {

 def processEmployees(employees: Vector[Employee]) = ...

233Building your first component in Scala

}

class CanadaPayroll extends Payroll {

 def processEmployees(employees: Vector[Employee]) = ...

}

The Payroll trait declares the processEmployees method that takes a collection of
employees and processes their salaries. It returns Either because it could succeed or
fail. Both USPayroll and CanadaPayroll implement the processEmployees method
based on the way the salary is processed in the individual country.

 With current changes in the business, you also have to process salaries of full-time
employees in Japan. That’s easy—all you have to do is add another class that extends
the Payroll trait:

class JapanPayroll extends Payroll {

 def processEmployees(employees: Vector[Employee]) = ...
}

This is one type of extension the expression problem talks about. The solution is type-
safe, and you can add JapanPayroll as an extension and plug it in to an existing pay-
roll system with a separate compilation.

 What happens when you try to add a new operation? In this case the business has
decided to hire contractors, and you also have to process their monthly pay. The new
Payroll interface should look like the following:

case class Employee(name: String, id: Long)

case class Contractor(name: String)

trait Payroll extends super.Payroll {
 def processEmployees(

 employees: Vector[Employee]): Either[String, Throwable]

 def processContractors(
 contractors: Vector[Contractor]): Either[String, Throwable]

}

The problem is you can’t go back and modify the trait because that will force you to
rebuild everything—which you can’t do because of the constraint put on you by the
expression problem. This is a practical problem: how to add features to an existing sys-
tem incrementally without doing modifications. To understand the difficulty of solv-
ing the expression problem, let’s try another route: using the Visitor pattern to solve
this problem. You’ll have one Visitor to process salaries for employees:

case class USPayroll {
 def accept(v: PayrollVisitor) = v.visit(this)

}

case class CanadaPayroll {
 def accept(v: PayrollVisitor) = v.visit(this)

}

trait PayrollVisitor {
 def visit(payroll: USPayroll): Either[String, Throwable]

 def visit(payroll: CanadaPayroll): Either[String, Throwable]

}

234 CHAPTER 8 Building scalable and extensible components

class EmployeePayrollVisitor extends PayrollVisitor {
 def visit(payroll: USPayroll): Either[String, Throwable] = ...

 def visit(payroll: CanadaPayroll): Either[String, Throwable] = ...

}

Both the USPayroll and CanadaPayroll types accept a payroll visitor. To process sala-
ries for employees, you’ll use an instance of EmployeePayrollVisitor. To process
monthly pay for contractors, you can easily create a new class called Contractor-
PayrollVisitor, as in the following:

class ContractorPayrollVisitor extends PayrollVisitor {

 def visit(payroll: USPayroll): Either[String, Throwable] = ...
 def visit(payroll: CanadaPayroll): Either[String, Throwable] = ...

}

Using the Visitor pattern, it’s easy to add new operations, but what about type? If you
try to add a new type called JapanPayroll, you have a problem. You have to go back
and change all the visitors to accept a JapanPayroll type. In the first solution it was
easy to add a new type, and in the second solution it’s easy to add an operation. But
you want a solution that lets you change in both dimensions. In the next section you’ll
learn how to solve this problem in Scala using abstract type members and trait mixins.

SOLVING THE EXPRESSION PROBLEM

You’ll use Scala traits and abstract type members to solve the expression problem.
Using the same payroll system, I’ll show you how to easily add new operations to the
payroll system without breaking type-safety and at the same time add a new type.

 Start by defining the base payroll system as a trait with an abstract type member for
payroll:

trait PayrollSystem {

 case class Employee(name: String, id: Long)

 type P <: Payroll
 trait Payroll {

 def processEmployees(

 employees: Vector[Employee]): Either[String, Throwable]
 }

 def processPayroll(p: P): Either[String, Throwable]

}

Again you’ll nest everything inside a trait so that you can treat it as a module. The type
P denotes some subtype of the Payroll trait, which declares an abstract method to
process salaries for employees. The processPayroll method needs to be imple-
mented to process payrolls for a given Payroll type. Here’s how the trait could be
extended for U.S. and Canada payrolls:

trait USPayrollSystem extends PayrollSystem {
 class USPayroll extends Payroll {

 def processEmployees(employees: Vector[Employee]) =

 Left("US payroll")
 }

}

Abstract
type member
for payroll

235Building your first component in Scala

trait CanadaPayrollSystem extends PayrollSystem {
 class CanadaPayroll extends Payroll {

 def processEmployees(employees: Vector[Employee]) =

 Left("Canada payroll") }
}

I’ve omitted the details of processing a payroll because it’s not important in this con-
text. To process the payroll for U.S. employees, you can implement a USPayroll-
System by providing an implementation of the processPayroll method:

object USPayrollInstance extends USPayrollSystem {

 type P = USPayroll
 def processPayroll(p: USPayroll) = {

 val employees: Vector[Employee] = ...

 val result = p.processEmployees(employees)
 ...

 }

}

In these settings it will be easy to add a new Payroll type for Japan. Create a trait that
extends the PayrollSystem:

trait JapanPayrollSystem extends PayrollSystem {

 class JapanPayroll extends Payroll {
 def processEmployees(employees: Vector[Employee]) = ...

 }

}

Now add a new method to the Payroll trait without recompiling everything, using the
shadowing feature of Scala:

trait ContractorPayrollSystem extends PayrollSystem {
 type P <: Payroll

 case class Contractor(name: String)

 trait Payroll extends super.Payroll {
 def processContractors(

 contractors: Vector[Contractor]): Either[String, Throwable]

 }
}

The Payroll trait defined inside the ContractorPayrollSystem doesn’t override but
instead shadows the former definition of Payroll type from PayrollSystem. The
former definition of Payroll is accessible in the context of ContractPayrollSystem
using the super keyword. Shadowing can introduce unintended errors in your code,
but in this context it lets you extend the old definition of Payroll without overrid-
ing it.

 Another thing to notice is that you’re redefining the abstract type member P. P
needs to be any subtype of Payroll that understands both the processEmployees and
processContractors methods. To process contractors for both the U.S. and Canada,
extend the ContractPayrollSystem trait:

Shadowing the
Payroll trait defined
in PayrollSystem

236 CHAPTER 8 Building scalable and extensible components

trait USContractorPayrollSystem extends USPayrollSystem with
 ContractorPayrollSystem {

 class USPayroll extends super.USPayroll with Payroll {

 def processContractors(contractors: Vector[Contractor]) =
 Left("US contract payroll")

 }

}

trait CanadaContractorPayrollSystem extends CanadaPayrollSystem with

 ContractorPayrollSystem {

 class CanadaPayroll extends super.CanadaPayroll with Payroll {
 def processContractors(contractors: Vector[Contractor]) =

 Left("Canada contract payroll")

 }
}

You’re shadowing the former definition of USPayroll and CanadaPayroll. Also note
that you’re mixing in the new definition of the Payroll trait to implement the pro-
cessContractors method. Keep type-safety requirements in mind: if you don’t mix in
the Payroll trait, you’ll get an error when you try to create a concrete implementa-
tion of the USContractorPayrollSystem or CanadaContractorPayrollSystem. Simi-
larly you can add the processContractors operation to JapanPayrollSystem:

trait JapanContractorPayrollSystem extends JapanPayrollSystem with

 ContractorPayrollSystem {

 class JapanPayroll extends super.JapanPayroll with Payroll {
 def processContractors(contractors: Vector[Contractor]) =

 Left("Japan contract payroll")

 }
}

At this point you’ve successfully solved the expression problem. The following listing
shows the complete example.

package chap08.payroll

trait PayrollSystem {

 case class Employee(name: String, id: Long)
 type P <: Payroll

 trait Payroll {

 def processEmployees(
 employees: Vector[Employee]): Either[String, Throwable]

 }

 def processPayroll(p: P): Either[String, Throwable]
}

trait USPayrollSystem extends PayrollSystem {

 class USPayroll extends Payroll {
 def processEmployees(employees: Vector[Employee]) = Left("US payroll")

 }

}

Listing 8.4 Solution to the expression problem using PayrollSystem

Initial interface of
the PayrollSystem

237Building your first component in Scala

trait CanadaPayrollSystem extends PayrollSystem {
 class CanadaPayroll extends Payroll {

 def processEmployees(employees: Vector[Employee]) =

 Left("Canada payroll")
 }

}

trait JapanPayrollSystem extends PayrollSystem {
 class JapanPayroll extends Payroll {

 def processEmployees(employees: Vector[Employee]) =

 Left("Japan payroll")
 }

}

trait ContractorPayrollSystem extends PayrollSystem {
 type P <: Payroll

 case class Contractor(name: String)

 trait Payroll extends super.Payroll {
 def processContractors(

 contractors: Vector[Contractor]): Either[String, Throwable]

 }

}

trait USContractorPayrollSystem extends USPayrollSystem with

 ContractorPayrollSystem {

 class USPayroll extends super.USPayroll with Payroll {
 def processContractors(

 contractors: Vector[Contractor]) = Left("US contract payroll")

 }
}

trait CanadaContractorPayrollSystem extends CanadaPayrollSystem with

 ContractorPayrollSystem {

 class CanadaPayroll extends super.CanadaPayroll with Payroll {

 def processContractors(

 contractors: Vector[Contractor]) = Left("Canada contract payroll")
 }

}

trait JapanContractorPayrollSystem extends JapanPayrollSystem with
 ContractorPayrollSystem {

 class JapanPayroll extends super.JapanPayroll with Payroll {

 def processContractors(
 contractors: Vector[Contractor]) = Left("Japan contract payroll")

 }

}

Using Scala first-class module support, you can wrap all the traits and classes inside an
object and extend an existing software component without forcing everything to
recompile and at the same time maintain type-safety. Note that both old and new
interfaces of the Payroll are available, and the behavior is driven by what traits you
compose. To use the new Payroll so you can process both employees and contrac-
tors, you have to mix in one of the ContractorPayrollSystem traits. The following

Interface of
PayrollSystem
after changes

238 CHAPTER 8 Building scalable and extensible components

example demonstrates how you can create an instance of USContractorPayroll-
System and use it:

object RunNewPayroll {

 object USNewPayrollInstance extends USContractorPayrollSystem {
 type P = USPayroll

 def processPayroll(p: USPayroll) = {

 p.processEmployees(Vector(Employee("a", 1)))
 p.processContractors(Vector(Contractor("b")))

 Left("payroll processed successfully")

 }
 }

 def main(args: Array[String]): Unit = run

 def run = {
 val usPayroll = new USPayroll

 USNewPayrollInstance.processPayroll(usPayroll)

 }
}

The processPayroll method invokes both the processEmployees and process-
Contractors methods of the Payroll trait, but you could instead have easily used an
existing payroll system that knows how to process salaries for U.S. employees, because
you’re still confirming the USPayroll trait. All that remains is to implement the addi-
tional processContractors part.

 This is a good example that demonstrates the power of Scala’s type system and the
abstractions available to build both scalable and extensible components. We solved
this problem using the object-oriented abstractions available in Scala. In section 8.3,
I’ll show you how to solve this problem using the functional programming side of
things. But first I’ll go over another powerful type of abstraction available in Scala.

8.2 Types of types in Scala

One of Scala’s unique features is its rich type system. Like any good type system, it
doesn’t work against you but rather provides the abstractions necessary to build reus-
able components. This section explores various types offered by the Scala type system.

8.2.1 Structural types

Structural typing in Scala is the way to describe types by their structure, not by their
names, as with other typing. If you’ve used dynamically typed languages, a structural
type may give you the feel of duck typing (a style of dynamic typing) in a type-safe
manner. Let’s say you want to close any resource after use as long as it’s closable. One
way to do that would be to define a trait that declares a close method and have all the
resources implement the trait. But using a structural type, you can easily define a new
type by specifying its structure, like the following:

def close(closable: { def close: Unit }) = {

 closable.close

}

Create
instance of
new payroll
system

Process payroll
for employees
and contractors

239Types of types in Scala

The type of the parameter is defined by the { def close: Unit } structure. The flexi-
bility of this approach is that now you can pass instances of any type to this function as
long as it implements the def close: Unit method. Currently this new type doesn’t
have any name, but using the type keyword you can easily provide a name (type alias):

type Closable = { def close: Unit }

def close(closable: { def close: Unit }) = {

 closable.close
}

Structural types aren’t limited to a single method, but when defining multiple meth-
ods make sure you use the type keyword to give it a name—otherwise, your function
signatures will look confusing:

type Profile = {

 def name: String
 def address: String

}

You can also create new values of a structural type using the new keyword. For example:

val nilanjanProfile = new {
 def name = “Nilanjan”

 def address = “Boulder, CO”

}

You can use a structural type to reduce class hierarchies and simplify a code base. Let’s
say you have the following class hierarchies to represent various types of workers for a
department store:

trait Worker {

 def salary: BigDecimal

 def bonusPercentage: Double
}

trait HourlyWorker {

 def hours: Int
 def salary: BigDecimal

}

case class FullTimeWorker(val salary: BigDecimal, ...)
 extends Worker

case class PartTimeWorker(val hours: Int, val salary: BigDecimal, ...)

 extends HourlyWorker
case class StudentWorker(val hours: Int, val salary: BigDecimal, ...)

 extends HourlyWorker

This is a small hierarchy, but you get the idea. Each type of worker is different; there
are hourly and full-time workers. The only thing they have in common is they all get
paid. If you have to calculate the money spent on paying salaries to workers in a given
month, you have to define another common type that represents salaried workers:

trait SalariedWorker {

 def salary: BigDecimal

}

240 CHAPTER 8 Building scalable and extensible components

trait Worker extends SalariedWorker {
 def bonusPercentage: Double

}

trait HourlyWorker extends SalariedWorker {
 def hours: Int

}

def amountPaidAsSalary(workers: Vector[SalariedWorker]) = {
 ...

}

The benefit of duck typing is that it lets you abstract out commonalities without being
part of the same type. Using a structural type you can easily rewrite a function like the
following without defining new types:

def amountPaidAsSalary2(workers: Vector[{def salary: BigDecimal }]) = {
}

Now you can pass instances of any worker to the previous function without conform-
ing to some common type. Structural type is a good technique to get rid of unneces-
sary class hierarchies, but the downside is that it’s comparatively slow because it uses
reflection under the hood.

8.2.2 Higher-kinded types

Higher-kinded types are types that know how to create a
new type from the type argument. That’s why higher-
kinded types are also known as type constructors—they
accept other types as a parameter and create a new
type. The scala.collections.immutable.List[+A] is
an example of a higher-kinded type. It takes a type
parameter and creates a new concrete type.
List[String] and List[Int] are examples of types you
can create from the List kind. Kinds are to types as
types are to values (see figure 8.2).

MODULARIZING LANGUAGE FEATURES

Scala defines large sets of powerful features but not every programmer needs to use

all of them.

Starting with Scala 2.10 you must first enable the advanced features of the language.

This is part of the effort to modularize Scala’s language features.

The scala.language object controls the language features available to the program-

mer. Take a look at the scaladoc of scala.language to find all the language features

that you can control. For large projects, for example, you can disable some advanced

Scala features so that they don't get abused. If a disabled feature is used, the

compiler generates a warning (using a -feature compiler flag to display the warning

Figure 8.2 Types classify

values, and kinds classify types.

241Types of types in Scala

Most of the collections classes are good examples of why kinds are such a powerful
abstraction tool. You saw examples using higher-kinded types in chapter 5. Let’s look
at more examples to understand their usefulness. You’ll try to build a function that
takes another function as a parameter and applies that function to elements of a given
type. For example, you have a vector of elements and want to apply a function to each
element of the vector:

def fmap[A, B](xs: Vector[A], f: A => B): Vector[B] = xs map f

fmap applies the given f function to all the elements of vector. Similarly, if you want to
apply the function to Option, you have to create another function:

def fmap[A, B](r: Option[A], f: A => B): Option[B] = r map f

Both functions look similar and only differ by the first parameter. The question is: how
can you define a common fmap function signature for various types? Using a higher-
kinded type, you can abstract out the type of the first parameter, as in the following:

trait Mapper[F[_]] {

 def fmap[A, B](xs: F[A], f: A => B): F[B]
 }

The Mapper trait is parameterized by the F[_] type. F is a higher-kinded type because it
takes another type parameter denoted by _. If you have to implement fmap for Vector,
you’ll do something like the following:

def VectorMapper = new Mapper[Vector] {

 def fmap[A, B](xs: Vector[A], f: A => B): Vector[B] = xs map f
}

Similarly, you can define one for Option:

def OptionMapper = new Mapper[Option] {
 def fmap[A, B](r: Option[A], f: A => B): Option[B] = r map f

}

Using higher-kinded types, you can raise the abstraction level higher and define inter-
faces that work across various types. For instance, you can use the Mapper trait to
implement fmap for the Function0 as follows:

def Function0Mapper = new Mapper[Function0] {
 def fmap[A, B](r: Function0[A], f: A => B) = new Function0[B] {

 def apply = f(r.apply)

 }
}

message). For example, a higher-kinded type is an advanced feature and you must

explicitly import scala.language.higherKinds to enable it. You can also use the

-language:higherKinds compiler flag to accomplish the same thing.

To enable all the advanced features pass -language:_ parameter to the Scala

compiler.

242 CHAPTER 8 Building scalable and extensible components

Function0 represents a function that doesn’t take any parameters. For example,
you can use the preceding Function0Mapper to compose two functions and create a
new one:

Val newFunction = Function0Mapper.fmap(() => "one",
 (s: String) => s.toUpperCase)

The newFunction.apply will result in "ONE." The first parameter defines a function
that takes zero parameters and returns "one." And the second parameter defines
another function that takes a String parameter and makes it uppercase. Remember
that calling apply on a Function type invokes the function.

Type projection

Before leaving this example, I want to explain one trick called type projection that

comes in handy at times. Type projection T#x references the type member x of type

T. The type projection allows for accessing members of the given type. You could do

something like the following:

trait X {

 type E

}
type EE = X#E

That creates a new type alias of type member E defined inside the trait X. How could

this be useful in the real world? Take the example of Either. Either is a type con-

structor (higher-kinded type) that takes two type parameters, one for Left and

another for Right. You could create an instance of Left or Right like the following:

scala> Either.cond(true, "one", new RuntimeException)

res4: Either[java.lang.RuntimeException,java.lang.String] = Right(one)

Depending on whether the first parameter returns true or false, it creates either an

instance of Right or Left. Can you use your fmap over Either type? Not easily

because fmap only accepts types that take one type parameter, and Either takes

two type parameters. But you can use type projection to hide one type parameter and

make it constant.

First, you’ll only apply the function if it’s Right, because Right by convention implies

success and Left implies failure. The fmap implementation would look something

like the following:

def fmap[A, B](r: Either[X, A], f: A => B): Either[X, B] = r match {

 case Left(a) => Left(a)
 case Right(a) => Right(f(a))

 }

The interesting part of the implementation is type parameter X. Here X is specified

by the function that creates Mapper, and using type projection you’ll hide the X to the

Mapper trait:

def EitherMapper[X] = new Mapper[({type E[A] = Either[X, A]})#E] {
 def fmap[A, B](r: Either[X, A], f: A => B): Either[X, B] = r match

{

243Types of types in Scala

It’s a little hard to come up with generic functions like fmap on your first try. I recom-
mend always starting with specific implementations (even if you see duplications) to
understand the pattern before creating abstractions. Once you understand the pat-
tern, higher-kinded types help to create abstractions. I encourage you to look into
Scala collections2 to see various usages of higher-kinded types.

8.2.3 Phantom types

Phantom types are types that don’t provide any constructors to create values. You only
need these types during compile time to enforce constraints. It’s hard to understand
their application without an example. Again, let’s consider an ordering system. An
order is represented by an item and a shipping address:

case class Order(itemId: Option[Item], address: Option[String])

To place an order, you have to specify both item and shipping address. The client of
the ordering system provides an item, specifies the shipping address, then places an
order:

def addItem(item: String, o: Order) =
 Order (Some(item), o.shippingAddress)

def addShipping(address: String, o: Order) =

 Order (o.itemId, Some(address))
def placeOrder (o: Order) = { ... }

The problem with this approach is that the methods could get called out of order. For
example, some clients could by mistake call placeOrder without specifying the ship-
ping address. Well, you could implement necessary validations inside the placeOrder
function, but using the type system to enforce an order would be even better. This is
where you could use phantom types to enforce some constraints on the order object
and the way it’s used by various functions. First let’s look into the following phantom
types to represent states of order:

sealed trait OrderCompleted
sealed trait InCompleteOrder

2 Martin Odersky and Lex Spoon, “The Architecture of Scala Collections,” adapted from Programming in Scala,
second edition, Odersky, Spoon and Venners, Artima Inc., 2011, http://mng.bz/Bso8.

 case Left(a) => Left(a)
 case Right(a) => Right(f(a))

 }

 }

The ({type E[A] = Either[X, A]})#E type projection references the type alias type

E[A] = Either[X, A]. In the example, X denotes the type of Left, and you decided

to not worry about Left—that’s why you’re hiding it and exposing the type of Right
denoted by A. The type projection looks a little unusual, but it’s helpful when you

need one.

http://mng.bz/Bso8

244 CHAPTER 8 Building scalable and extensible components

sealed trait ItemProvided
sealed trait NoItem

sealed trait AddressProvided

sealed trait NoAddress

Each of these types represents a certain order state, and you’ll use them as you progress
through the ordering process. When the order is first initialized, it has no item and no
address, and it’s incomplete. You can easily represent that using the phantom types:

case class Order[A, B, C](itemId: Option[String],

 shippingAddress: Option[String])

def emptyOrder = Order[InCompleteOrder, NoItem, NoAddress](None, None)

The Order type now takes three type parameters, and an empty order is initialized
with InCompleteOrder, NoItem, and NoAddress types. To enforce some constraints on
each operation performed on the order, you’ll use combinations of these types. For
example, you can only add an item to an order when it doesn’t have any items, and
once an item is added its type parameter changes from NoItem to ItemProvided:

def addItem[A, B](item: String, o: Order[A, NoItem, B]) =

 o.copy[A, ItemProvided, B](itemId = Some(item))

addItem creates a new order by adding the item and changing the second type param-
eter from NoItem to ItemProvided. Similarly, addShipping creates a new order by
updating the address:

def addShipping[A, B](address: String, o: Order[A, B, NoAddress]) =

 o.copy[A, B, AddressProvided](shippingAddress = Some(address))

To place an order, it needs to have both item and address, and you can easily verify
that at compile time using types:

def placeOrder (o: Order[InCompleteOrder, ItemProvided, AddressProvided]) ={

 ...
 o.copy[OrderCompleted, ItemProvided, AddressProvided]()

}

placeOrder only accepts an order that’s complete with item and address. If you try to
invoke placeOrder without an item or address, you’ll get a compile error. If I invoke
placeOrder without specifying a shipping address, I get the following error:

[error] found :
phantomtypes.Order[phantomtypes.InCompleteOrder,phantomtypes.ItemProvide

d,phantomtypes.NoAddress]

[error] required:
phantomtypes.Order[phantomtypes.InCompleteOrder,phantomtypes.ItemProvide

d,phantomtypes.AddressProvided]

The following listing shows the complete ordering system example with phantom
types.

245Types of types in Scala

package phantomtypes

sealed trait OrderCompleted

sealed trait InCompleteOrder

sealed trait ItemProvided
sealed trait NoItem

sealed trait AddressProvided

sealed trait NoAddress

case class Order[A, B, C](itemId: Option[String],

 shippingAddress: Option[String])

object Order {
 def emptyOrder = Order[InCompleteOrder, NoItem, NoAddress](None, None)

}

object OrderingSystem {
 def addItem[A, B](item: String, o: Order[A, NoItem, B]) =

 o.copy[A, ItemProvided, B](itemId = Some(item))

 def addShipping[A, B](address: String, o: Order[A, B, NoAddress]) =

 o.copy[A, B, AddressProvided](shippingAddress = Some(address))
 def placeOrder (o: Order[InCompleteOrder, ItemProvided, AddressProvided])=

 {

 o.copy[OrderCompleted, ItemProvided, AddressProvided]()
 }

}

To use this ordering system, you can create an empty order and then add the details as
follows:

val o = Order.emptyOrder

val o1 = addItem("some book", o)
val o2 = addShipping("some address", o1)

placeOrder (o2)

This time you know that if the client of the ordering system doesn’t properly populate
the order, it will get a compilation error. You can also use this technique to implement
the type-safe Builder pattern where, using phantom types, you can ensure all the
required values are populated. In the next section, you’ll use phantom types to imple-
ment type classes.

 Scala isn’t limited to only these types. It comes with many more varieties than I’ve
covered here. There’s a type called the method dependent type3 that allows you to specify
the return type based on the type of the parameter, path-dependent types that allow
you to constrain types by objects, and many more. My advice is to keep playing with
the language, and I am sure you’ll become comfortable with Scala types.

Listing 8.5 Ordering system with phantom types

3 “What are some compelling use cases for dependent method types?” Answered by Miles Sabin on stackover-
flow, Oct 22, 2011, http://mng.bz/uCj3.

Various order states

http://mng.bz/uCj3

246 CHAPTER 8 Building scalable and extensible components

8.3 Ad hoc polymorphism with type classes

A type class is a type system construct that supports ad hoc polymorphism. Ad hoc poly-
morphism is a kind of polymorphism in which polymorphic functions can be applied
to arguments of different types. Ad hoc polymorphism lets you add features to a type
any time you want. Don’t think of type classes as classes in OOP; think of them as a cat-
egory. Type classes are a way to define commonalities among sets of types. In this sec-
tion you’ll learn how type classes can help in building abstractions.

8.3.1 Modeling orthogonal concerns using type classes

A simple example can demonstrate how to implement type classes in Scala. The fol-
lowing example implements an adapter pattern using type classes. In an object
adapter pattern, the adapter (the wrapper object) contains an instance of the class it
wraps. The adapter pattern is a great way to add functionality to a type through com-
position. Here’s the problem you’re trying to solve: you have a Movie type represented
by a case class and you want to convert it to XML:

case class Movie(name: String, year: Int, rating: Double)

One quick and dirty solution could be to add a toXml method inside the case class.
But in most cases that would be inappropriate because converting to XML is a com-
pletely orthogonal responsibility for the Movie class and should not be part of the
Movie type.

 The second solution is to use the object adapter pattern. Define a generic inter-
face for XmlConverter and parameterize it with a type so you can use it for multiple
types:

trait XmlConverter [A] {

 def toXml(a: A): String
}

And provide an object adapter for the Movie instance like the following:

object MovieXmlConverter extends XmlConverter[Movie] {
 def toXml(a: Movie) =

 <movie>

 <name>{a.name}</name>
 <year>{a.year}</year>

 <rating>{a.rating}</rating>

 </movie>.toString
}

MovieXmlConverter implements the toXml method for the Movie type. To convert an
instance of Movie to XML, all you have to do from client code is the following:

val p = Movie("Inception", 2010, 10)

MovieXmlConverter.toXml(p)

The problem with the following implementation is the incidental complexity intro-
duced by the MovieXmlConverter. The converter is hiding the object you’re dealing

247Ad hoc polymorphism with type classes

with, which is movie. Going to a toXml method inside the Movie class almost feels like
an elegant solution. The second problem with that implementation is the rigidity of
the design. It’s going to be hard to provide a separate XML converter for the Movie
type. Let’s see how you can improve the solution with type classes.

 The first role of a type class is to define a concept. The concept is XML conversion
and could be easily represented by the XmlConverter trait:

trait XmlConverter [A] {
 def toXml(a: A): String

}

The trait is generalized for any type A. You don’t have any constraints yet. The second
role of a type class is to propagate constraints automatically to a generic algorithm.
For example, you can create a new method called toXml that takes an instance of a
type and a converter to convert it to XML:

def toXml[A](a: A)(converter: XmlConverter [A]) = converter.toXml(a)

But this isn’t much of an improvement because you still have to create an instance of a
converter and pass it to the method. What makes type classes practical in Scala is the
implicit keyword. Making the converter parameter implicit allows the Scala compiler
to jump in and provide the parameter when it’s missing:

def toXml[A](a: A)(implicit converter: XmlConverter[A]) =

 converter.toXml(a)

Now you can invoke toXml by passing an instance of Movie, and the Scala compiler
will automatically provide the converter for you. In fact, you can pass in an instance of
any type as long as you have an implicit definition of an XmlConverter that knows how
to convert that type. The following listing shows the complete example.

package chap08.typeclasses

trait XmlConverter[A] {

 def toXml(a: A): String
}

case class Movie(name: String, year: Int, rating: Double)

object Converters {
 implicit object MovieConverter extends XmlConverter[Movie] {

 def toXml(a: Movie) = <movie>

 <name>{a.name}</name>
 <year>{a.year}</year>

 <rating>{a.rating}</rating>

 </movie>.toString
 }

}

object Main {
 import Converters._

Listing 8.6 Type class to convert a type to XML

Type class for
XmlConverter

Implicit
converter
for Movie

B

Import implicit
converters

248 CHAPTER 8 Building scalable and extensible components

 def toXml[A](a: A)(implicit converter: XmlConverter[A]) =
 converter.toXml(a)

 def main(args: Array[String]) = {

 val p = Movie("Inception", 2010, 10)
 toXml(p)

 }

}

You created a type class called XmlConverter and then provided an implicit definition
of it B. When using the toXml C method, you have to make sure the implicit defini-
tion is available in the compiler scope, and the Scala compiler will do the rest. The
flexibility of this implementation is that now if you want to provide a different XML
conversion for Movie, you could do that and pass it to the toXml method as a parame-
ter explicitly:

object MovieConverterWithoutRating extends XmlConverter [Movie] {

 def toXml(a: Movie) = <movie>

 <name>{a.name}</name>
 <year>{a.year}</year>

 </movie>.toString

}

val p = Movie("Inception", 2010, 10)
toXml(p)(MovieConverterWithoutRating)

In fact, you can also make a MovieConverterWithoutRating implicit definition like
the other converter. But make sure both definitions aren’t in the compiler scope at
the same time—otherwise, you’ll get an “ambiguous implicit values” compile error.
One way to use multiple implicit definitions for a given type is to import them in a
much narrower scope, such as inside a method. The following two methods use a dif-
ferent XML converter for the Movie type:

def toXmlDefault(a: Movie) = {
 import Converters._
 toXml(a)
}

def toXmlSpecial[A](a: Movie) = {
 import SpecialConverters._
 toXml(a)
}

The MovieConverterWithoutRating is defined as an implicit object inside the
SpecialConverter object.

 Type classes are so useful that they’re used in many places across the standard
library. For example, look at the sum method available for List:

def sum [B >: A] (implicit num: Numeric[B]): B

The Numeric[B] trait is nothing but a type class. Let’s see it in action:

scala> val l = List(1, 2, 3)
l: List[Int] = List(1, 2, 3)

Method
that
converts
to XMLC

249Ad hoc polymorphism with type classes

scala> l.sum
res0: Int = 6

scala> val ll = List("a", "b", "c")
ll: List[java.lang.String] = List(a, b, c)

scala> ll.sum
<console>:9: error: could not find implicit value for parameter num:

Numeric[java.lang.String]
 ll.sum
 ^

The Scala library provides implicit definitions for Numeric[Int] but not for
Numeric[String], and that’s why you get the implicit missing compilation error.
Similarly, the following min method defined in the Scala collection library also uses
Ordering[B] as a type class:

def min[B >: A](implicit cmp: Ordering[B]): A

The common confusion about type classes is that people tend to think of them as an
interface. But the key difference between an interface and a type class is that with
interface your focus is on subtype polymorphism, and with a type class your focus is on
parametric polymorphism. In the Java world you might know parametric polymor-
phism as generics, but a more appropriate name is parametric polymorphism. Another way
to understand the difference is that subtyping is common in the OOP world, and para-
metric polymorphism is common in the functional programming world. In fact, the
type-class concept is first found in the Haskell programming language, which is a
purely functional language.

 Type classes are a flexible way to model orthogonal concerns of an abstraction
without hardwiring to the abstraction. Type classes are also useful in retroactive mod-
eling because you can add a type class for a type anytime you want. The only limitation

New syntax for declaring implicit parameters

Beginning with Scala 2.8, there’s a succinct way of declaring implicit parameters for

methods and functions that makes the implicit parameter name anonymous:

def toXml[A: XmlConverter](a: A) =
implicitly[XmlConverter[A]].toXml(a)

Using A: XmlConverter, you’re declaring that the toXml method takes an implicit

parameter of type XmlConverter[A]. Because the implicit parameter name isn’t

available, you can use the implicitly method defined by scala.Predef to get ref-

erence to the implicit parameter. Here’s how that method is defined inside

scala.Predef:

def implicitly[T](implicit e: T) = e

To describe code easily I still declare implicit parameters explicitly. But in cases

where adding an additional implicit parameter doesn’t help in readability, you can

start using the new syntax.

250 CHAPTER 8 Building scalable and extensible components

of type-class implementation is that everything happens statically—there’s no dynamic
dispatch. The upside of this limitation is that all the implicit resolution happens dur-
ing compile time, and there’s no runtime cost associated with it. Type classes have
everything you need to solve the expression problem, so let’s see how.

8.3.2 Solving the expression problem using type classes

The payroll process is driven by two abstractions. One is the country for which you
have to process the payroll, and the other is the payee. The USPayroll class will look
something like this:

case class USPayroll[A](payees: Seq[A]) {
 def processPayroll = ...

}

The A type represents a type of payee; it could represent an employee or contractor.
Similarly, the payroll class for Canada would look something like the following:

case class CanadaPayroll[A](payees: Seq[A]){

 def processPayroll = ...

}

To represent the type class for a family of payroll processors, you could define the fol-
lowing trait by parameterizing both country and the type of payee:

import scala.language.higherKinds
trait PayrollProcessor[C[_], A] {

 def processPayroll(payees: Seq[A]): Either[String, Throwable]

}

C is a higher-kinded type that represents a payroll type. The reason it’s a higher-kinded
type is because both USPayroll and CanadaPayroll take a type parameter. And A rep-
resents the type of payee. Note that you aren’t using C anywhere except as a parameter-
ized type, like a phantom type. It will make sense once I introduce the second building
block of type class, the implicit definitions of the PayrollProcessor trait:

case class Employee(name: String, id: Long)
implicit object USPayrollProcessor

 extends PayrollProcessor[USPayroll, Employee] {

 def processPayroll(
 payees: Seq[Employee]) = Left("us employees are processed")

}

implicit object CanadaPayrollProcessor
 extends PayrollProcessor[CanadaPayroll, Employee] {

 def processPayroll(

 payees: Seq[Employee]) = Left("canada employees are processed")
}

Notice how you’re using the first type parameter of PayrollProcessor to identify the
appropriate definition of PayrollProcessor based on the country. To use these

251Ad hoc polymorphism with type classes

implicit definitions, you could use implicit class parameters for both USPayroll and
CanadaPayroll types:

case class USPayroll[A](

 payees: Seq[A])(implicit processor: PayrollProcessor[USPayroll, A]) {

 def processPayroll = processor.processPayroll(payees)

}

case class CanadaPayroll[A](
 payees: Seq[A])(implicit processor: PayrollProcessor[CanadaPayroll, A]){

 def processPayroll = processor.processPayroll(payees)

}

The preceding code snippet also demonstrates another important point: you can use
implicit parameters in class definitions as well. Now when you create an instance of
USPayroll or CanadaPayroll, the Scala compiler will try to provide values for implicit
parameters. Here’s what you have so far.

package chap08.payroll.typeclass
import scala.langage.higherkinds

object PayrollSystemWithTypeclass {

 case class Employee(name: String, id: Long)

 trait PayrollProcessor[C[_], A] {

 def processPayroll(payees: Seq[A]): Either[String, Throwable]

 }

 case class USPayroll[A](

 payees: Seq[A])(implicit processor: PayrollProcessor[USPayroll, A]) {

 def processPayroll = processor.processPayroll(payees)
 }

 case class CanadaPayroll[A](

 payees: Seq[A])(implicit processor: PayrollProcessor[CanadaPayroll, A])
 {

 def processPayroll = processor.processPayroll(payees)

 }
}

object PayrollProcessors {
 import PayrollSystemWithTypeclass._

 implicit object USPayrollProcessor
 extends PayrollProcessor[USPayroll, Employee] {

 def processPayroll(
 payees: Seq[Employee]) = Left("us employees are processed")
 }

 implicit object CanadaPayrollProcessor
 extends PayrollProcessor[CanadaPayroll, Employee] {
 def processPayroll(
 payees: Seq[Employee]) = Left("canada employees are processed")

Listing 8.7 Payroll system implemented with type class

Type class for
payroll
processor

Provide all
the implicit
definitions

B

U.S. payroll
processor

Canada payroll
processor

252 CHAPTER 8 Building scalable and extensible components

 }
}

object RunPayroll {
 import PayrollSystemWithTypeclass._
 import PayrollProcessors._

 def main(args: Array[String]): Unit = run
 def run = {
 val r = USPayroll(Vector(Employee("a", 1))).processPayroll
 println(r)
 }
}

Again, all the implicit definitions are grouped together B to help you import them, as
inside the RunPayroll object. Notice when you’re instantiating USPayroll that you’re
providing a collection of employees, and the implicit processor will be provided by the
Scala compiler. In this case, that’s USPayrollProcessor. Now assert that you also have
type-safety. Create a new type called Contractor:

case class Contractor(name: String)

Because there’s no restriction on the type of payee (it’s denoted by A without any
bounds), you could easily create a collection of contractors and pass it to USPayroll:

USPayroll(Vector(Contractor("a"))).processPayroll

But the moment you try to compile the preceding line, you’ll get a compilation error,
because there’s no implicit definition for USPayroll and Contractor type yet. You’re
still protected by the type system—it’s all good.

NOTE You can annotate your type classes with @implicitnotfound to get
helpful error messages when the compiler can’t find an implicit value of the
annotated type.

Let’s move on with the quest of solving the expression problem using type classes.
Adding a new type in the current settings is trivial; add a new class and the implicit
definition of the payroll processor:

object PayrollSystemWithTypeclassExtension {
 import PayrollSystemWithTypeclass._

 case class JapanPayroll[A](payees: Vector[A])(
 implicit processor: PayrollProcessor[JapanPayroll, A]) {

 def processPayroll = processor.processPayroll(payees)

 }

 case class Contractor(name: String)
}

object PayrollProcessorsExtension {

 import PayrollSystemWithTypeclassExtension._
 import PayrollSystemWithTypeclass._

 implicit object JapanPayrollProcessor

 extends PayrollProcessor[JapanPayroll, Employee] {

Create
instance of
USPayroll

Case class for
Contractor type

B

253Ad hoc polymorphism with type classes

 def processPayroll(payees: Seq[Employee]) =
 Left("japan employees are processed")

 }

}

Adding a new operation to process pay for contractors B is also trivial because all you
have to do is provide implicit definitions of payroll processors for contractors, as in
the following:

implicit object USContractorPayrollProcessor

 extends PayrollProcessor[USPayroll, Contractor] {

 def processPayroll(payees: Seq[Contractor]) =
 Left("us contractors are processed")

}

implicit object CanadaContractorPayrollProcessor
 extends PayrollProcessor[CanadaPayroll, Contractor] {

 def processPayroll(payees: Seq[Contractor]) =

 Left("canada contractors are processed")
}

implicit object JapanContractorPayrollProcessor

 extends PayrollProcessor[JapanPayroll, Contractor] {

 def processPayroll(payees: Seq[Contractor]) =
 Left("japan contractors are processed")

 }

Add the preceding implicit definitions inside the PayrollProcessorsExtension
object so that you can group them all together. The following code snippet shows how
to use the preceding code to process the payroll of both employees and contractors:

object RunNewPayroll {
 import PayrollSystemWithTypeclass._

 import PayrollProcessors._

 import PayrollSystemWithTypeclassExtension._
 import PayrollProcessorsExtension._

 def main(args: Array[String]): Unit = run

 def run = {
 val r1 = JapanPayroll(Vector(Employee("a", 1))).processPayroll

 val r2 = JapanPayroll(Vector(Contractor("a"))).processPayroll

 }
}

You import all the necessary classes and implicit definition and process the payroll for
Japan. You again successfully solved the expression problem, this time using a func-
tional programming technique.

 If you’re a Java programmer, type classes might take a little while to get used to, but
once you get comfortable with them they’ll provide the power of retroactive model-
ing, which in turn will allow you to respond to change quickly.

254 CHAPTER 8 Building scalable and extensible components

8.4 Summary

This chapter is an important milestone in understanding the various applications of
Scala’s type system. Once understood and explored, Scala’s type system helps in build-
ing reusable and scalable components. And a good type system not only provides type-
safety, it also provides enough abstraction to build components or libraries much more
quickly. You learned about abstract type members and self-type annotation and how to
build components using them. You also explored various types of types provided by
Scala and saw how they can be used to build applications and create abstractions.

 One of the most common ways to identify the weakness and strengths of program-
ming languages is the expression problem. You implemented the expression problem
in two different ways, clearly demonstrating the power of Scala’s type system. Scala
being multiparadigm, you solved this problem using both object-oriented and func-
tional paradigms. The object-oriented solution is implemented using abstract type
members and traits. To solve this using functional programming, you learned about
type classes. Type classes are a powerful way to provide polymorphic behavior at run-
time, which is an important design technique for programmers. But I’ve only
scratched the surface of Scala’s type system. It has more things to offer than I could
possibly cover in this chapter, but I’m certain that your curiosity will entice you to
explore this subject further.

 The next chapter covers one of the Scala’s most popular features: actors. Scala
actors make building concurrent applications easy and hassle-free.

255

Concurrency
programming

in Scala

In this chapter I introduce the most exciting feature of Scala: its actor library.
Think of an actor as an object that processes a message (your request) and encap-
sulates state (state is not shared with other actors). The ability to perform an action
in response to an incoming message is what makes an object an actor. At the high
level, actors are the way you should do OOP. Remember that the actor model
encourages no shared state architecture. In this chapter, I explain why that’s an
important property to have for any concurrent program.

This chapter covers

 Challenges with concurrent programming

 The actor programming model

 Handling faults in actors

 Composing concurrent programs with

Future and Promise

256 CHAPTER 9 Concurrency programming in Scala

Future and Promise provide abstractions to perform concurrent operations in a
nonblocking fashion. They are a great way to create multiple concurrent and parallel
computations and join them to complete your job. This is very similar to how you
compose functions, but, in this case, functions are executed concurrently or in paral-
lel. Think of Future as a proxy object that you can create for a result that will be avail-
able at some later time. You can use Promise to complete a Future by providing the
result. We will explore Promise and Future as this chapter progresses. First let’s
understand what I mean by concurrent and parallel programming.

9.1 What is concurrent programming?

Concurrency is when more than one task can start and complete in overlapping time
periods. It doesn’t matter whether they’re running at the same instant. You can write
concurrent programs on a single CPU (single execution core) machine where only
one task can execute at a given point of time. Typically multiple tasks are executed in
a time-slice manner, where a scheduler (such as the JVM) will guarantee each process
a regular “slice” of operating time. This gives the illusion of parallelism to the users.
And the common de facto standard way to implement a multitasking application is to
use threads. Figure 9.1 shows how a multitasking application shares a single CPU.

 As you can see in figure 9.1, two threads are executing instructions generated by
the application in a time-sliced manner. The group of instructions varies in size
because you don’t know how much code will be executed before the scheduler
decides to take the running thread out and give another thread the opportunity to
execute. Remember that other processes running at the same time might need some
CPU time—you can see it’s pretty unpredictable. Sometimes schedulers use a priority
mechanism to schedule a thread to run when there’s more than one thread in a ready-
to-run state.1 Things become more interesting when you have code that blocks for

1 Java thread states (download), http://mng.bz/w1VH.

Figure 9.1 A concurrent

application running in a single

CPU core with two threads

http://mng.bz/w1VH

257What is concurrent programming?

resources, such as reading data from a socket or reading from the filesystem. In this
case, even though the thread has the opportunity to use the CPU, it can’t because it’s
waiting for the data, and the CPU is sitting idle. I’ll revisit this topic in section 9.4.

 Most people use concurrency and parallel programming interchangeably, but there’s a
difference. In parallel programming (figure 9.2), you can literally run multiple tasks
at the same time, and it’s possible with multicore processors.

 A concurrent program sometimes (in the next section I will explain why not
always) becomes a parallel program when it’s running in a multicore environment.
This sounds great, because all the CPU vendors are moving toward manufacturing
CPUs with multiple cores. But it poses a problem for software developers because writ-
ing concurrent, parallel applications is hard. Imagine that, while executing the multi-
tasking application in parallel mode (figure 9.2), Thread 1 needs data from Thread 2
before proceeding further, but the data isn’t available. In this case, Thread 1 will wait
until it gets the data, and the application is no longer parallel. The more data and
state sharing you have among threads, the more difficult it’ll be for the scheduler to
run threads in parallel. Throughout this chapter you’ll try to make your concurrent
program run in parallel mode as much as you can.

 Another term that’s used often with concurrency is distributed computing. The way I
define distributed computing is multiple computing nodes (computers, virtual
machines) spanned across the network, working together on a given problem. A paral-
lel process could be a distributed process when it’s running on multiple network
nodes. You’ll see an example of this in chapter 12 when we deploy actors in remote
nodes so they can communicate across the network. But now let’s look at the tools you
can use to solve concurrency issues and the challenges associated with it.

Figure 9.2 A concurrent and

parallel application running in

a two-CPU core with two

threads. Both threads are

running at the same time.

258 CHAPTER 9 Concurrency programming in Scala

9.2 Challenges with concurrent programming

Chapter 1 discusses the current crisis2 we’re facing with the end of Moore’s law. As a
software engineer, I don’t think we have a choice but to support multicore processors.
The CPU manufacturers are already moving toward building multicore CPUs.3 The
future will see machines with 16, 32, and 64 cores. And the types of problems we’re
solving in enterprise software development are getting bigger and bigger. As the
demand for processing power increases, we have to figure out a way to take advantage
of these multicore processors—otherwise, our programs will become slower and
slower.

 But it’s hard to write a correct and bug-free concurrent program. Here are some
reasons why:

 Only a handful of programmers know how to write a correct, concurrent appli-
cation or program. The correctness of the program is important.

 Debugging multithreaded programs is difficult. The same program that causes
deadlock in production might not have any locking issues when debugging
locally. Sometimes threading issues show up after years of running in production.

 Threading encourages shared state concurrency, and it’s hard to make pro-
grams run in parallel because of locks, semaphores, and dependencies between
threads.

Even though multithreading comes up as the main reason why writing concurrent pro-
grams is difficult, the main culprit is mutable state. Threading encourages shared-state
concurrency. The next section explores the difficulties of shared-state concurrency.

9.2.1 Difficulties of shared-state concurrency with threads

The issue with using threads is it’s a low level of abstraction for concurrency. Threads
are too close to hardware and represent the way work is scheduled or executed by the
CPU. You need something that can encapsulate threads and give you something that’s
easier to program with. Take the example of Scala collections: the Traversable trait
defines an abstract method called def foreach[U](f: Elem => U), which other collec-
tion library classes and traits implement. Imagine you have to use only foreach to do
any sort of manipulation on the collection without using other useful methods like map,
fold, filters, and so on. Well, in that case programming in Scala will become a little
more difficult. This is exactly what I think about threads: they’re too low-level for pro-
grammers. For example, in Java, before the introduction of the java.util.concurrent
package, we had only java.lang.Thread and a handful of other classes to implement
concurrent applications. After the introduction of the java.util.concurrent pack-
age, things improved. The new java.util.concurrent package provides a number of

2 Herb Sutter, “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software,” December
2004, CPU trends graph updated August 2009, www.gotw.ca/publications/concurrency-ddj.htm.

3 Multicore CPU trend (graphic), www.gotw.ca/images/CPU.png.

www.gotw.ca/publications/concurrency-ddj.htm
www.gotw.ca/images/CPU.png

259Challenges with concurrent programming

nice utilities and implements popular concurrent design patterns, but it’s still hard to
avoid the fact that the main complexity behind using threads comes from using muta-
ble shared data. It’s a design issue that we programmers have to deal with when working
with threads. To protect against data corruption and have consistency across many
threads, we use locks. Using locks, we control the way the shared data is modified and
accessed, but locks introduce problems to the program (see table 9.1).

Last but not least, shared mutable data makes it hard to run programs in parallel, as
discussed in section 9.1. The bigger question is: if threads are so hard to use, why are
so many programs written using them? Almost all multithreaded programs have bugs,
but this hasn’t been a huge problem until recently. As multicore architectures become
more popular, these bugs will be more apparent.

 Threading should be left to only a few experts; the rest of us need to find a much
higher level of abstraction that will hide the complexity of the multithreading and pro-
vide an easy-to-use API. Although there will be situations where threading may be your
only option, for 99 percent of the cases you should be falling back to other alternatives.
This change will come with a price, and the price is that we all have to start learning a
new way to write and design concurrent applications. This chapter explores one of
these new techniques.

9.2.2 New trends in concurrency

Enough talking about problems with threads and locks—let’s turn our attention to
the solutions. Table 9.2 lists the three most popular trends in implementing concur-
rent applications.

Table 9.1 Challenges with shared state concurrency

Problem Description

Locks don’t

compose

You can’t implement a higher-level, thread-safe behavior by composing smaller

thread-safe operations.

Using too many

or too few locks

You don’t know until you hit a problem. The problem might not show until in

production (sometimes after years).a Acquiring and releasing locks are expensive

operations.

a. Edward A. Lee, “The Problem with Threads,” Jan. 10, 2006, http://mng.bz/Y4Co.

Deadlocks and

race conditions

This goes to the nondeterministic nature of the threads. It’s almost impossible to

make any deterministic reasoning of multithreaded code. You can use design pat-

terns, such as always acquiring locks in a certain order, to avoid deadlocks, but this

mechanism adds more responsibility to the developer.

Error recovery is

hard

This is more of a threading issue than the shared-state issue, but it’s a huge issue

nonetheless. There’s no clear mechanism to recover from errors in multithreaded pro-

grams. Usually a feedback loop is looking at the stack trace inside a log file.

http://mng.bz/Y4Co

260 CHAPTER 9 Concurrency programming in Scala

The remainder of this chapter focuses on message-passing concurrency using Scala
actors. Let’s jump right in.

9.3 Implementing message-passing concurrency
with actors

In this concurrency model, actors communicate with each other through sending and
receiving messages. An actor processes incoming messages and executes the actions
associated with it. Typically, these messages are immutable because you shouldn’t
share state between them for reasons discussed previously.

 There are two main communication abstractions in actor: send and receive. To
send a message to an actor, you can use the following expression:

a ! msg

You’re sending the msg message to actor a by invoking the ! method. When you
send a message to an actor, it’s an asynchronous operation, and the call immediately
returns. The messages are stored in a queue and are processed in first-in, first-out
fashion. Think of this queue as a mailbox where messages get stored for an actor.
Each actor gets its own mailbox. The receive operation is defined as a set of pat-
terns matching messages to actions:

Table 9.2 Three most popular trends in concurrency

Name Description

Software

transactional

memory (STM)

STM is a concurrency control mechanism similar to database transactions. Instead

of working with tables and rows, STM controls the access to shared memory. An STM

transaction executes a piece of code that reads and writes a shared memory. This is

typically implemented in a lock-free way and is composable. I talk about STM in chap-

ter 12 in more detail.

Dataflow

concurrency

The principle behind the dataflow concurrency is to share variables across multiple

tasks or threads. These variables can only be assigned a value once in its lifetime.

But the values from these variables can be read multiple times, even when the value

isn’t assigned to the variable. This gives you programs that are more deterministic,

with no race conditions and deterministic deadlocks. Chapter 12 covers dataflow

concurrency constructs available in the Akka framework.

Message-

passing

concurrency

This is where you’ll spend most of your time in this chapter. In this concurrency

model, components communicate by sending messages. Messages can be sent

both synchronously and asynchronously, but asynchronously sending messages to

other components is more common. These messages are immutable and are sepa-

rated from the state of individual components. You don’t have to worry about shared

state—in fact, message-passing concurrency encourages shared nothing (SN) archi-

tecture. The most successful implementation of message passing concurrency is the

actor model, and it became popular after the Erlang programming language demon-

strated the success of using the actor model as a concurrency model for building

large-scale, distributed, parallel telecom applications. The Scala actor library is

another implementation of the message passing concurrency model.

261Implementing message-passing concurrency with actors

receive {
 case pattern1 =>

 ...

 case pattern =>
}

What differentiates an actor from any other object is the ability to perform actions in
response to an incoming message.

 The default actor library that ships with Scala, starting with Scala 2.10, is Akka
(http://akka.io/) actors. There are many actor libraries but Akka is the most popular
and powerful.

NOTE Beginning with the Scala 2.10.1 release, the Scala actor library is dep-
recated and may be removed in a future release. To help with the migration
Scala provides an Actor Migration Kit (AMK) and migration guide4 so old
Scala actor code can be easily migrated to the Akka actor library.

To create an actor, extend the Actor trait provided by the Akka library and imple-
ment the receive method. The following example creates a simple actor that prints
a greeting message to the console when it receives a Name message:

 import akka.actor.Actor

 case class Name(name: String)

 class GreetingsActor extends Actor {
 def receive = {

 case Name(n) => println("Hello " + n)

 }
 }

The GreetingsActor can only process messages of type Name, and I will cover what will
happen when you send messages that don’t match any pattern in a moment. Please
note that you don’t necessarily have to create messages from case classes—you can
send strings, lists, or whatever you can match using Scala’s pattern matching. For
example, to match string type messages, you could do something like the following:

case name: String => println("Hello " + name)

Before sending any messages to the GreetingsActor actor, the actor needs to be
instantiated by creating an ActorSystem. Think of an ActorSystem as the manager of
one or more actors. (ActorSystem is covered in the next section.) The actor system
provides a method called actorOf that takes the configuration object (akka
.actor.Props) and, optionally, the name of the actor:

import akka.actor.Props

import akka.actor.ActorSystem

val system = ActorSystem("greetings")

4 See “The Scala Actors Migration Guide,” http://docs.scala-lang.org/overviews/core/actors-migration-
guide.html.

http://akka.io/
http://docs.scala-lang.org/overviews/core/actors-migration-guide.html
http://docs.scala-lang.org/overviews/core/actors-migration-guide.html

262 CHAPTER 9 Concurrency programming in Scala

val a = system.actorOf(Props[GreetingsActor], name = "greetings-actor")

a ! Name("Nilanjan")

system.shutdown()

The actor system will create the infrastructure required for the actor to run. When
you are done, system.shutdown() shuts down the infrastructure and all its actors.
Messages are processed asynchronously so system.shutdown() might stop actors that
still have unprocessed messages. Before running the previous snippet, make sure you
add the following dependency in your build file:

libraryDependencies += "com.typesafe.akka" %% "akka-actor" % "2.1.0"

The following listing shows the complete code for GreetingsActor.

object GreetingsActor extends App {

 import akka.actor.Props

 import akka.actor.ActorSystem

 import akka.actor.Actor

 case class Name(name: String)

 class GreetingsActor extends Actor {

 def receive = {
 case Name(n) => println("Hello " + n)

 }

 }

 val system = ActorSystem("greetings")

 val a = system.actorOf(Props[GreetingsActor], name = "greetings-actor")

 a ! Name("Nilanjan")

 Thread.sleep(50)

 system.shutdown()

}

If everything works as planned you should see the “Hello Nilanjan” message in the
console. Congratulations! You have written your first Scala actors. Now let’s step back
to understand why we need an actor system.

9.3.1 What is ActorSystem?

An actor system is a hierarchical group of actors that share a common configuration.
It’s also the entry point for creating and looking up actors. Typically a design of an
actor-based application resembles the way an organization works in the real world. In
an organization the work is divided among departments. Each department may fur-
ther divide the work until it becomes a size manageable by an employee. Similarly
actors form a hierarchy where parent actors spawn child actors to delegate work until
it is small enough to be handled by an individual actor.

Listing 9.1 GreetingsActor

Wait for message to be
processed before shutdown

Wait to make sure
message is processed

263Implementing message-passing concurrency with actors

NOTE An ActorSystem is a heavyweight structure that will allocate 1. . .N
threads, so create one per logical subsystem of your application. For example,
you can have one actor system to handle the backend database, another to
handle all the web service calls, and so forth. Actors are very cheap. A given
actor consumes only 300 bytes so you can easily create millions of them.

At the top of the hierarchy is the guardian actor, created automatically with each actor
system. All other actors created by the given actor system become the child of the
guardian actor. In the actor system, each actor has one supervisor (the parent actor)
that automatically takes care of the fault handling. So if an actor crashes, its parent
will automatically restart that actor (more about this later).

 The simplest way to create an actor is to create an ActorSystem and use its actorOf
method:

val system = ActorSystem(name = "word-count")
val m: ActorRef = system.actorOf(Props[SomeActor],

 name = "someActor")

The preceding snippet creates an ActorSystem named "word-count", and the
actorOf method is used to create an actor instance for the SomeActor class. Props is
an ActorRef configuration object that’s thread-safe and shareable. Props has a lot of
utility methods to create actors.

 Note here that when you create an actor in Akka, you never get the direct refer-
ence to the actor. Instead you get back a handle to the actor called ActorRef (actor
reference). The foremost purpose of ActorRef is to send messages to the actor it rep-
resents. It also acts as a protection layer so you can’t access the actor directly and
mutate its state. ActorRef is also serializable, so if an actor crashes, as a fault-handling
mechanism, you can possibly serialize the ActorRef, send it to another node, and start
the actor there. Clients of the actor will not notice. There are different types of actor
references. In this chapter we will look
into local actor reference (meaning all
the actors are running locally in a single
JVM); chapter 12 will look into remote
actor references (actors running on
another remote JVM).

 The second part of the actor system
is actor path. An actor path uniquely
identifies an actor in the actor system.
Because actors are created in a hierar-
chical structure, they form a similar
structure to a filesystem. As a path in a
filesystem points to an individual
resource, an actor path identifies an
actor reference in an actor system. Note
that these actors don’t have to be in a Figure 0.1 Actor system with hierarchy of actors

264 CHAPTER 9 Concurrency programming in Scala

single machine—they can be distributed to multiple nodes. Using the methods
defined in ActorSystem, you can look up an actor reference of an existing actor in the
actor system. The following example uses the system / method to retrieve the actor
reference of the WordCountWorker actor:

class WordCountWorker extends Actor { ... }

...

val system = ActorSystem(name = "word-count")
system.actorOf(Props[WordCountWorker], name = "wordCountWorker")

...

val path: ActorPath = system / "WordCountWorker"
val actorRef: ActorRef = system.actorFor(path)

actorRef ! “some message”

The system / method returns the actor path, and the actorFor method returns the
actor reference mapped to the given path. If the actorFor fails to find an actor
pointed to by the path, it returns a reference to the dead-letter mailbox of the actor
system. It’s a synthetic actor where all the undelivered messages are delivered.

 You can also create the actor path from scratch and look up actors. See the Akka
documentation for more details on the actor path.5

 To shut down all the actors in the actor system, invoke the shutdown method,
which gracefully stops all the actors in the system. The parent actor first stops all the
child actors and sends all unprocessed messages to the dead-letter mailbox before ter-
minating itself. The last important part of the actor system is message dispatcher. The
MessageDispatcher is the engine that makes all the actors work. The next section
explains how actors work.

9.3.2 How do Scala actors work?

Every actor system comes with a default MessageDispatcher component. Its responsi-
bility is to send a message to the actor’s mailbox and execute the actor by invoking the
receive block. Every MessageDispatcher is backed by a thread pool, which is easily
configured using the configuration file (more about this in chapter 12). You can also
configure various types of dispatchers for your actor system or specific actors. For this
chapter we are going to use the default dispatcher (a.k.a event-based dispatcher). Fig-
ure 9.4 shows how sending and receiving messages works inside actors.

 Sending a message to an actor is quite simple. To send a message to an actor mail-
box the ActorRef first sends the message to the MessageDispatcher associated with
the actor (which in most cases is the MessageDispatcher configured for the actor sys-
tem). The MessageDispatcher immediately queues the message in the mailbox of the
actor. The control is immediately returned to the sender of the message. This is
exactly how it worked when we sent a message to our greetings actor.

5 See “Actor References, Paths, and Addresses,” version 2.1.0, http://doc.akka.io/docs/akka/2.1.0/general/
addressing.html.

http://doc.akka.io/docs/akka/2.1.0/general/addressing.html
http://doc.akka.io/docs/akka/2.1.0/general/addressing.html

265Implementing message-passing concurrency with actors

Handling a message is a bit more involved so let’s follow the steps in figure 9.4:

1 When an actor receives a message in its mailbox, MessageDispatcher schedules
the actor for execution. Sending and handling messages happens in two differ-
ent threads. If a free thread is available in the thread pool that thread is
selected for execution of the actor. If all the threads are busy, the actor will be
executed when threads becomes available.

2 The available thread reads the messages from the mailbox.
3 The receive method of the actor is invoked by passing one message at a time.

The message dispatcher always makes sure that a single thread always executes a given
actor. It might not be the same thread all the time but it is always going to be one. This
is a huge guarantee to have in the concurrent world because now you can safely use
mutable state inside an actor as long as it’s not shared. Now I think we are ready to
build an application using actors.

Handling message

Thread pool

Thread pool

Figure 9.4 Showing step by step

how a new actor is started and

how an already running actor

bides its time

266 CHAPTER 9 Concurrency programming in Scala

9.3.3 Divide and conquer using actors

In the following example, the challenge is to count the number of words in each file
in a given directory and sort them in ascending order. One way of doing it would be to
loop through all the files in a given directory in a single thread, count the words in
each file, and sort them all together. But that’s sequential. To make it concurrent, we
will implement the divide-and-conquer6 (also called a fork-join) pattern with actors. We
will have a set of worker actors handling individual files and a master actor sorting and
accumulating the result.

6 Brian Goetz, “Java theory and practice: Stick a fork in it, Part 1,” developerWorks, Nov. 13, 2007, http://
mng.bz/aNZn.

Actor API

The akka.actor.Actor trait defines only one abstract method receive to imple-

ment the behavior of the actor. Additionally the Actor trait defines methods that are

useful for lifecycle hooks and fault handling. Here is the list of some of the important

methods. (Please check the scaladoc for a complete list of methods.)

def unhandled(message: Any): Unit

If a given message doesn’t match any pattern inside the receive method then the

unhandled method is called with the akka.actor.UnhandledMessage message. The

default behavior of this method is to publish the message to an actor system’s event

stream. You can configure the event stream to log these unhandled messages in the

log file.

val self: ActorRef

This field holds the actor reference of this actor. You can use self to send a mes-

sage to itself.

final def sender: ActorRef

This is the ActorRef of the actor that sent the last received message. It is very useful

when you want to reply to the sender of the message.

val context: ActorContext

This provides the contextual information for the actor, the current message, and the

factory methods to create child actors. The context also provides access to the actor

system and lifecycle hooks to monitor other actors.

def supervisorStrategy: SupervisorStrategy

This supervisor strategy defines what will happen when a failure is detected in an

actor. You can override to define your own supervisor strategy. We will cover this topic

later in this chapter.

def preStart()

This method is called when an actor is started for the first time. This method will be

called before any message is handled. This method could be used to initialize any

resources the actor needs to function properly.

def preRestart()

http://mng.bz/aNZn
http://mng.bz/aNZn

267Implementing message-passing concurrency with actors

To solve the word count problem with actors, you’ll create two actor classes: one that
will scan the directory for all the files and accumulate results, called WordCount-
Master, and another one called WordCountWorker to count words in each file. It’s
always a good idea to start thinking about the messages that these actors will use to
communicate with each other. First you need a message that will initiate the counting
by passing in the directory location and the number of worker actors:

case class StartCounting(docRoot: String, numActors: Int)

The docRoot will specify the location of the files and numActors will create the num-
ber of worker actors. The main program will start the counting process by passing this
message to the main actor. WordCountMaster and WordCountWorker will communi-
cate with each other via messages. The WordCountMaster needs a message that will
send the filename to the worker actor to count, and in return WordCountWorker needs
a message that will send the word count information with the filename back to the
master actor. Here are those messages:

case class FileToCount(fileName:String)

case class WordCount(fileName:String, count: Int)

To understand how these messages are consumed, look at figure 9.5. The figure shows
only one worker actor, but the number of worker actors will depend upon the number
you send through the StartCounting message.

 Let’s start with the WordCountWorker actor because it’s the easiest one. This actor
processes only FileToCount type messages, and the action associated with the message
is to open the file and count all the words in it. Counting words in a file is exactly the
same as the threading example you saw previously:

def countWords(fileName:String) = {
 val dataFile = new File(fileName)

 Source.fromFile(dataFile).getLines.foldRight(0)(_.split(" ").size + _)

 }

You’re using scala.io.Source to open the file and count all the words in it—pretty
straightforward. Now comes the most interesting part: the receive method. You

Actors might be restarted in case of an exception thrown while handling a message.

This method is called on the current instance of the actor. This is a great place to

clean up. The default implementation is to stop all the child actors and then invoke

the postStop method.

def postStop()

This method is called after the current actor instance is stopped.

def postRestart()

When an actor is restarted, the old instance of an actor is discarded and a fresh new

instance of an actor is created using the actorOf method. Then the postRestart is

invoked on the fresh instance. The default implementation is to invoke the preStart
method.

268 CHAPTER 9 Concurrency programming in Scala

already know the message you need to handle, but one new thing you have to worry
about is sending the reply to the WordCountMaster actor when you’re done counting
words for a given file.

 The good news is, the Akka actor runtime sends the actor reference of sender
implicitly with every message:

def receive {

 case FileToCount(fileName:String) =>
 val count = countWords(fileName)

 sender ! WordCount (fileName, count)

}

In reply you’re sending the WordCount message back to the WordCountMaster actor.

Figure 9.5 WordCountMaster and WordCountWorker actors are communicating by

sending messages. The main program in the figure starts the word count process.

What if an actor performs a blocking operation?

Usually it’s recommended that you don’t perform any blocking operation from actors.

When you make a blocking call from an actor you are also blocking a thread. As men-

tioned earlier, a thread is a limited resource. So if you end up with many of these

blocking actors you will soon run out of threads and halt the actor system.

At times you will not have any option other than blocking. In that case the recom-

mended approach is to separate blocking actors from nonblocking actors by assign-

ing different message dispatchers. This provides the flexibility to configure the

blocking dispatcher with additional threads, throughput, and so on. An added benefit

of this approach is if a part of the system is overloaded with messages (all the

threads are busy in a message dispatcher) other parts can still function.

269Implementing message-passing concurrency with actors

Here’s the complete WordCountWorker class:

class WordCountWorker extends Actor {

 def countWords(fileName:String) = {

 val dataFile = new File(fileName)
 Source.fromFile(dataFile).getLines.foldRight(0)(_.split(" ").size + _)

 }

 def receive = {
 case FileToCount(fileName:String) =>

 val count = countWords(fileName)

 sender ! WordCount(fileName, count)
 }

 override def postStop(): Unit = {

 println(s"Worker actor is stopped: ${self}")
 }

}

In this case the postStop method is overridden to print a message in the console
when the actor is stopped. This is not necessary. We will instead use this as a debug
message to ensure that the actor is stopped correctly. Currently the WordCountWorker
actor responds only to the FileToCount message. When it receives the message, it will
count words inside the file and reply to the master actor to sort the response. Any
other message will be discarded and handled by the unhandled method as described
in the following side note.

What is ActorDSL?

If you are familiar with old Scala actors, ActorDSL will look quite similar to Scala

actors. This is a new addition to the Akka actor library to help create one-off workers

or even try in the REPL. To bring in all the DSL goodies into the scope import:

import akka.actor.ActorDSL._

To create a simple actor use the actor method defined in ActorDSL by passing an

instance of the Act trait:

 val testActor = actor(new Act {

 become {
 case "ping" => sender ! "pong"

 }

 })

The become method adds the message patterns the actor needs to handle. Behind

the scene Act extends the Actor trait and become adds the behavior of the receive

block. Using this DSL syntax you no longer have to create a class. Here is an example

of two actors communicating with each other by sending ping-pong messages:

object ActorDSLExample extends App {
 import akka.actor.ActorDSL._

 import akka.actor.ActorSystem

 implicit val system = ActorSystem("actor-dsl")

270 CHAPTER 9 Concurrency programming in Scala

The WordCountMaster actor will start counting when it receives a StartCounting mes-
sage. This message will contain the directory name that needs to be processed and the
number of worker actors that could be used for the job. To scan the directory, use the
list method defined in the java.io.File class that lists all the files in the directory:

private def scanFiles(docRoot: String) =
 new File(docRoot).list.map(docRoot + _)

The map method is used to create a list of all the filenames with a complete file path.
At this point, don’t worry about subdirectories. To create work actors, we use the
numActors value passed to the StartCounting message and create that many actors:

private def createWorkers(numActors: Int) = {

 for (i <- 0 until numActors) yield

 context.actorOf(Props[WordCountWorker], name = s"worker-${i}")
}

Since the worker actors will be the children of the WordCountMaster, the actor
context.actorOf factory method is used.

 To begin sorting, we need a method that will loop through all the filenames and
send a FileToCount message to these worker actors. Because the number of files to
process could be higher than the number of actors available, files are sent to each
actor in a round-robin fashion:

 private[this] def beginSorting(fileNames: Seq[String],
 workers: Seq[ActorRef]) {

 fileNames.zipWithIndex.foreach(e => {

 workers(e._2 % workers.size) ! FileToCount(e._1)
 })

 }

(continued)

 val testActor = actor(new Act {

 become {

 case "ping" => sender ! "pong"
 }

 })

 actor(new Act {
 whenStarting { testActor ! "ping"}

 become {

 case x =>
 println(x)

 context.system.shutdown()

 }
 })

}

The actor system is assigned to an implicit value so we don’t have to pass it explicitly

to the actor method. The whenStarting is the DSL for a lifecycle hook of the

prestart method of the actor.

271Implementing message-passing concurrency with actors

The zipWithIndex method pairs each element with its index. Here’s one example:

scala> List("a", "b", "c").zipWithIndex
res2: List[(java.lang.String, Int)] = List((a,0), (b,1), (c,2))

When the WordCountMaster actor receives the StartCounting message it will create
the worker actors and scan the files, then send these files to each worker. Here is how
the WordCountMaster looks so far:

class WordCountMaster extends Actor {

 var fileNames: Seq[String] = Nil
 var sortedCount : Seq[(String, Int)] = Nil

 def receive = {
 case StartCounting(docRoot, numActors) =>
 val workers = createWorkers(numActors)
 fileNames = scanFiles(docRoot)
 beginSorting(fileNames, workers)
 }

 private def createWorkers(numActors: Int) = {
 for (i <- 0 until numActors) yield
 context.actorOf(Props[WordCountWorker], name = s"worker-${i}")
 }

 private def scanFiles(docRoot: String) =
 new File(docRoot).list.map(docRoot + _)

 private[this] def beginSorting(fileNames: Seq[String],
 workers: Seq[ActorRef]) {
 fileNames.zipWithIndex.foreach(e => {
 workers(e._2 % workers.size) ! FileToCount(e._1)
 })
 }
}

The fileNames field stores all the files we need to process. We will use this field later
on to ensure we have received all the replies. The sortedCount field is used to store
the result. An important point to note here is that it is safe to use mutable state inside
an actor because the actor system will ensure that no two threads will execute an
instance of an actor at the same time. You must make sure you don’t leak the state out-
side the actor.

 Next the WordCountMaster actor needs to handle the WordCount message sent
from the WordCountWorker actor. This message will have the filename and the word
count. This information is stored in sortedCount and sorted:

case WordCount(fileName, count) =>
 sortedCount ::= (fileName, count)

 sortedCount = sortedCount.sortWith(_._2 < _._2)

The last step is to determine when all the files are processed. One way to do that is to
compare the size of sortedCount with the number of files to determine whether all
the responses from the worker actors are received. When that happens we need to
print the result in the console and terminate all the actors:

272 CHAPTER 9 Concurrency programming in Scala

if(sortedCount.size == fileNames.size) {
 println("final result " + sortedCount)

 finishSorting()

}

We could use context.children to access all the worker actors and stop them like the
following:

context.children.foreach(context.stop(_))

The simplest way to shut down an actor system is to use the shutdown method of the
actor system. We can access the actor system from context using context.system like
the following:

 private[this] def finishSorting() {

 context.system.shutdown()

 }

The following listing shows the complete implementation of WordCountWorker and
WordCountMaster actors.

import akka.actor.Actor

import akka.actor.Props
import akka.actor.ActorRef

import java.io._

import scala.io._

case class FileToCount(fileName:String)

case class WordCount(fileName:String, count: Int)

case class StartCounting(docRoot: String, numActors: Int)

class WordCountWorker extends Actor {

 def countWords(fileName:String) = {

 val dataFile = new File(fileName)
 Source.fromFile(dataFile).getLines.foldRight(0)(_.split(" ").size + _)

 }

 def receive = {
 case FileToCount(fileName:String) =>

 val count = countWords(fileName)

 sender ! WordCount(fileName, count)
 }

 override def postStop(): Unit = {

 println(s"Worker actor is stopped: ${self}")
 }

}

class WordCountMaster extends Actor {

 var fileNames: Seq[String] = Nil

 var sortedCount : Seq[(String, Int)] = Nil

 def receive = {

Listing 9.2 WordCount implementation using actors

273Implementing message-passing concurrency with actors

 case StartCounting(docRoot, numActors) =>
 val workers = createWorkers(numActors)

 fileNames = scanFiles(docRoot)

 beginSorting(fileNames, workers)

 case WordCount(fileName, count) =>

 sortedCount = sortedCount :+ (fileName, count)

 sortedCount = sortedCount.sortWith(_._2 < _._2)
 if(sortedCount.size == fileNames.size) {

 println("final result " + sortedCount)

 finishSorting()
 }

 }

 override def postStop(): Unit = {
 println(s"Master actor is stopped: ${self}")

 }

 private def createWorkers(numActors: Int) = {
 for (i <- 0 until numActors) yield context.actorOf(Props[WordCount-

Worker], name = s"worker-${i}")

 }

 private def scanFiles(docRoot: String) =
 new File(docRoot).list.map(docRoot + _)

 private[this] def beginSorting(fileNames: Seq[String], workers: Seq[Actor-

Ref]) {
 fileNames.zipWithIndex.foreach(e => {

 workers(e._2 % workers.size) ! FileToCount(e._1)

 })
 }

 private[this] def finishSorting() {

 context.system.shutdown()
 }

}

WordCountWorker and WordCountMaster are both defined as actors. The communica-
tion between them is happening through immutable messages. When the WordCount-
Master actor receives the StartCounting message, it creates worker actors based on
the number passed in by the message. Once the actors are started, the WordCount-
Master actor sends FileToCount messages to all the worker actors in round-robin
fashion. When the worker actor is done counting the words inside the file, it sends the
WordCount message back to the master actor. If the size of the sortedCount matches
the number of files, it kills all the worker actors including the master actor.

 The final piece missing from the preceding code is the main actor you saw in fig-
ure 9.4. For that, you’re not going to create a new actor but instead create an object
with the Main method.

import akka.actor.ActorSystem

import akka.actor.Props

Listing 9.3 Main program to start counting process

274 CHAPTER 9 Concurrency programming in Scala

object Main {
 def main(args: Array[String]) {

 val system = ActorSystem("word-count-system")

 val m = system.actorOf(Props[WordCountMaster], name="master")
 m ! StartCounting("src/main/resources/", 2)

 }

}

You’ve learned lots of interesting things about actors in this section. And you learned
how to design your applications using actors. Creating self-contained immutable mes-
sages and determining the communication between actors are important steps when
working with actors. It’s also important to understand that when working with actors,
all the communication happens through messages, and only through messages. This
brings up a similarity between actors and OOP. When Alan Kay7 first thought about
OOP, his big idea was “message passing.”8 In fact, working with actors is more object-
oriented than you think.

 What happens if something fails? So many things can go wrong in the concurrent/
parallel programming world. What if we get an IOException while reading the file?
Let’s learn how to handle faults in an actor-based application.

9.3.4 Fault tolerance made easy with a supervisor

Akka encourages nondefensive programming in which failure is a valid state in the
lifecycle of an application. As a programmer you know you can’t prevent every error,
so it’s better to prepare your application for the errors. You can easily do this through
fault-tolerance support provided by Akka through the supervisor hierarchy.

 Think of this supervisor as an actor that links to supervised actors and restarts
them when one dies. The respon-
sibility of a supervisor is to start,
stop, and monitor child actors. It’s
the same mechanism as linking,
but Akka provides better abstrac-
tions, called supervision strategies.

 Figure 9.6 shows an example
of supervisor hierarchy.

 You aren’t limited to one
supervisor. You can have one
supervisor linked to another
supervisor. That way you can
supervise a supervisor in case of a
crash. It’s hard to build a fault-tol-
erant system with one box, so I

7 Alan Curtis Kay, http://en.wikipedia.org/wiki/Alan_Kay.
8 Alan Kay, “Prototypes vs. classes was: Re: Sun’s HotSpot,” Oct 10, 1998, http://mng.bz/L12u.

Node 3

Node 1 Node 2

Supervisor

Actor

Figure 9.6 Supervisor hierarchy in Akka

http://en.wikipedia.org/wiki/Alan_Kay
http://mng.bz/L12u

275Implementing message-passing concurrency with actors

recommend having your supervisor hierarchy spread across multiple machines. That
way, if a node (machine) is down, you can restart an actor in a different box. Always
remember to delegate the work so that if a crash occurs, another supervisor can
recover. Now let’s look into the fault-tolerant strategies available in Akka.

SUPERVISION STRATEGIES IN AKKA

Akka comes with two restarting strategies: One-for-One and All-for-One. In the One-
for-One strategy (see figure 9.7), if one actor dies, it’s recreated. This is a great strat-
egy if actors are independent in the system. It doesn’t require other actors to function
properly.

If you have multiple actors that participate in one workflow, restarting a single actor
might not work. In that case, use the All-for-One restart strategy (see figure 9.8), in
which all actors supervised by a supervisor are restarted when one of the actors dies.

So how do these look in code? In Akka, by default, each actor has one supervisor, and
the parent actor becomes the supervisor for the child actors. When no supervisor
strategy is defined, it uses the default strategy (OneForOne), which restarts the failing
child actor in case of Exception. The following example configures the WordCount-
Worker with OneForOneStrategy with retries:

import akka.actor.SupervisorStrategy._
class WordCountWorker extends Actor {

 . . .

New

Old
Figure 9.7 One-for-One restart strategy

New

Old Figure 9.8 All-for-One strategy

276 CHAPTER 9 Concurrency programming in Scala

 override val supervisorStrategy = OneForOneStrategy(maxNrOfRetries = 3,
withinTimeRange = 5 seconds) {

 case _: Exception => Restart

 }
. . .

}

You’re overriding the supervisorStrategy property of the actor with your own fault
handler. For example, in the case of java.lang.Exception your pattern will match
and give a restart directive to the parent to discard the old instance of the actor and
replace it with a new instance. If no pattern matches, the fault is escalated to the par-
ent. Similarly, the following example configures the WordCountMaster actor with All-
ForOneStrategy:

class WordCountMaster extends Actor {
. . .

 override val supervisorStrategy = AllForOneStrategy() {

 case _: Exception =>
 println("Restarting...")

 Restart

 }

. . .
}

A working example of a supervisor with the word-count example is in this chapter’s
code base. The next section talks about working with mutable data in a concurrent
world.

9.4 Composing concurrent programs with Future
and Promise

A Future is an object that can hold a value that may become available, as its name sug-
gests, at a later time. It essentially acts as proxy to an actual value that does not yet
exist. Usually this value is produced by some computation performed asynchronously.
The simplest way to create a Future is to use the apply method:

def someFuture[T]: Future[T] = Future {

 someComputation()
}

In this case someFuture will hold the result of the computation and T represents the
type of the result. Since the Future is executed asynchronously we need to specify the
scala.concurrent.ExecutionContext. ExecutionContext is an abstraction over a
thread pool that is responsible for executing all the tasks submitted to it. Here the task
is the computation performed by the Future. There are many ways to configure and
create ExecutionContext but in this chapter we will use the default global execution
context available in the Scala library.

import ExecutionContext.Implicits.global

277Composing concurrent programs with Future and Promise

When the Future has the value it is considered completed. A Future could also be
completed with an exception. To do an operation after the Future is completed we
can use the onComplete callback method as in following:

someFuture.onComplete {
 case Success(result) => println(result)

 case Failure(t) => t.printStackTrace

}

Since a Future could be a success or failed state, the onComplete allows you to handle
both conditions. (Check the scala.concurrent.Future scaladoc for more details.)

Futures can also be created using Promise. Consider Promise as a writable, single
assignment container. You can use Promise to create a Future, which will be com-
pleted when Promise is fulfilled with a value:

val promise: Promise[String] = Promise[String]()
val future = promise.future

...

val anotherFuture = Future {

 ...
 promise.success("Done")

 doSomethingElse()

}
...

future.onSuccess { case msg => startTheNextStep() }

Here we have created two Futures, one using the future method and the other from
Promise. anotherFuture completes the promise by invoking the success method
(you can also complete promise with the failure method). Once the promise is com-
pleted you cannot invoke success again. If you do, it will throw an exception. And
promise will automatically complete the future and the onSuccess callback will be
invoked automatically. Please note that callbacks registered with Future will only be
executed once the future is completed. The Scala Future and Promise APIs have
many useful methods so please check the scaladoc for details.

 By now you might be wondering when to use Future and when to use actors. A
common use case of Future is to perform some computation concurrently without
needing the extra utility of an actor. The most compelling feature of the Scala Future
library is it allows us to compose concurrent operations, which is hard to achieve with
actors. To see them in action let’s implement the word count problem using Future
and Promise.

9.4.1 Divide and conquer with Future

You are going to reimplement the word count problem using Future. First let’s break
down the word count problem into small steps so that we can solve them individually.
Since Future allows functional composition we should be able to combine small steps
to solve our problem. We can find a solution in four steps:

278 CHAPTER 9 Concurrency programming in Scala

 Scan for all the files in a given directory
 Count words in a given file
 Accumulate and sort the result
 Produce the result

We already know how to scan the files in a given directory but this time we will per-
form it asynchronously:

 private def scanFiles(docRoot: String): Future[Seq[String]] = Future {

 new File(docRoot).list.map(docRoot + _)
 }

Similarly we can count words for a given file inside a Future. If something goes wrong
we can use the recover method to register a fallback:

 private def processFile(fileName: String): Future[(String, Int)] =

 Future {

 val dataFile = new File(fileName)
 val wordCount =

 Source

 .fromFile(dataFile).getLines.foldRight(0)(_.split(" ").size + _)

 (fileName, wordCount)
 } recover {

 case e: java.io.IOException =>

 println("Something went wrong " + e)
 (fileName, 0)

 }

The recover callback will be invoked if IOException is thrown inside the Future.
Since each file is processed inside a Future we will end up with a collection of futures
like the following:

val futures: Seq[Future[(String, Int)]] =
 fileNames.map(name => processFile(name))

Now this is a problem. How will we know when all the futures will complete? We can-
not possibly register callbacks with each future since each one is independent and
can complete at a different time. Rather than Seq[Future[(String, Int)]], we need
Future[Seq[(String, Int)]] so we can accumulate the results and sort them. This is
exactly what Future.sequence is designed for. It takes collections of futures and
reduces them to one Future:

val singleFuture: Future[Seq[(String, Int)]] = Future.sequence(futures)

You can invoke the map method on future to sort the result:

 private def processFiles(

 fileNames: Seq[String]): Future[Seq[(String, Int)]] = {

 val futures: Seq[Future[(String, Int)]] =
 fileNames.map(name => processFile(name))

 val singleFuture: Future[Seq[(String, Int)]] = Future.sequence(futures)

 singleFuture.map(r => r.sortWith(_._2 < _._2))
 }

279Composing concurrent programs with Future and Promise

If you haven’t guessed, Future is an example of a monad. It implements map, flatMap,
and filter operations, necessary ingredients of functional composition. Now you can
compose scanFiles and processFiles to produce the sorted result:

 val path = "src/main/resources/"

 val futureWithResult: Future[Seq[(String, Int)]] = for {

 files <- scanFiles(path)

 result <- processFiles(files)
 } yield {

 result

 }

The for-comprehensions here are composing scanFiles and processFiles opera-
tions together to produce another future. Note here that each operation is per-
formed asynchronously and we are composing futures in a nonblocking fashion. The
for-comprehensions are creating another future that only completes when both the
scanFiles and processFiles future complete. It is also acting as the pipe between
two operations where the output of the scanFiles is sent to processFiles.

 For the last step we can use a Promise that will be fulfilled when futureWith-
Result completes. Here is the complete implementation of the word count example
using Future:

import scala.concurrent._
import ExecutionContext.Implicits.global

import scala.util.{Success, Failure}

import java.io.File
import scala.io.Source

object Main {

 def main(args: Array[String]) {
 val promiseOfFinalResult = Promise[Seq[(String, Int)]]()

 val path = "src/main/resources/"

 val futureWithResult: Future[Seq[(String, Int)]] = for {
 files <- scanFiles(path)

 result <- processFiles(files)

 } yield {
 result

 }

 futureWithResult.onSuccess {
 case r => promiseOfFinalResult.success(r)

 } promiseOfFinalResult.future.onComplete {

 case Success(result) => println(result)
 case Failure(t) => t.printStackTrace

 }

 }

 private def processFiles(fileNames: Seq[String]): Future[Seq[(String,

Int)]] = {

Listing 9.4 Word count example using Future

Promise that
holds the
final result

Promise is
fulfilled with
the result

280 CHAPTER 9 Concurrency programming in Scala

 val futures: Seq[Future[(String, Int)]] = fileNames.map(name =>
processFile(name))

 val singleFuture: Future[Seq[(String, Int)]] =

 Future.sequence(futures)
 singleFuture.map(r => r.sortWith(_._2 < _._2))

 }

 private def processFile(fileName: String): Future[(String, Int)] =
 Future {

 val dataFile = new File(fileName)

 val wordCount = Source.fromFile(dataFile).getLines.foldRight(0)(_.split("
").size + _)

 (fileName, wordCount)

 } recover {
 case e: java.io.IOException =>

 println("Something went wrong " + e)

 (fileName, 0)
 }

 private def scanFiles(docRoot: String):Future[Seq[String]] = Future { new

File(docRoot).list.map(docRoot + _) }

}

As you can see it’s very easy to get started with Future and it is very powerful because it
allows you to do functional composition. On the other hand, actors allow you to struc-
ture your application and provide fault-handling strategies. You don’t have to choose
between them. You can have your application broken down into actors and then have
actors use futures as building blocks to perform asynchronous operations. In the
next section we will see how we can use futures inside actors.

9.4.2 Mixing Future with actors

As you work your way through Akka actors two common patterns will evolve:

 Send a message to an actor and receive a response from it. So far we have only
used fire-and-forget using the ! method. But getting a response is also a very
common use case (a.k.a ask pattern).

 Reply to sender when some concurrent task (Future) completes (a.k.a pipe
pattern).

Let’s take an example to demonstrate these two patterns in action. In the following
code snippet we have two actors, parent and the child:

 import akka.pattern.{ask, pipe}
 implicit val timeout = Timeout(5 seconds)

 class GreetingsActor extends Actor {

 val messageActor = context.actorOf(Props[GreetingsChildActor])
 def receive = {

 case name =>

 val f: Future[String] = (messageActor ask name).mapTo[String]
 f pipeTo sender

 }

 }

Converting sequence of
future to single future

281Summary

 class GreetingsChildActor extends Actor {
 def receive = { ...

 }

 }

GreetingsActor accepts name and sends the message to a child actor to generate a
greeting message. In this case we are using the ask method (you can use ? as well) of
the ActorRef to send and receive a response. Since messages are processed asynchro-
nously the ask method returns a Future. The mapTo message allows us to transform
the message from Future[Any] to Future[String]. The challenge is we don’t know
when the message will be ready so that we can send the reply to the sender. The
pipeTo pattern solves that problem by hooking up with the Future so that when the
future completes it can take the response inside the future and send it to the sender.
To see the complete working example please look at the chapter codebase.

9.5 When should you not use actors?

This chapter has highlighted the benefits of actors in building message-oriented con-
current applications. It’s also discussed why shared mutable data is the root cause of
most of the concurrency problems, and how actors eliminate that using shared nothing
architecture. But what if you have to have a shared state across multiple components?

 Shared state—A classic example is where you want to transfer money from one
account to another, and you want to have a consistent view across the applica-
tion. You need more than actors. You need transaction support. Alternatives
like STM would be a great fit for this kind of problem, or you have to build
transactions over message passing. (You’ll see an example of this in chapter 12.)

 Cost of asynchronous programming—For many programmers, it’s a paradigm shift
to get used to asynchronous programming. It takes time and effort to get com-
fortable if you are not used to it. Debugging and testing large message-oriented
applications is hard. At times, asynchronous message passing makes it difficult to
track and isolate a problem (knowing the starting point of the message helps).
This has nothing to do with the actor model specifically, but more to do with the
inherited complexity of messaging-based applications. Lately Akka TestKit9 and
Typesafe console10 are helping to mitigate the testing and debugging issues.

 Performance—If your application has to have the highest performance, then
because actors may add an overhead, you may be better off using a much lower
level of abstraction, like threads. But again, for 99.9 percent of applications, I
think the performance of actors is good enough.

9.6 Summary

In this chapter you learned about new concurrency trends and the problems with
shared-state concurrency. It became clear that if you raise the level of abstraction

9 “Testing Actor Systems (Scala), TestKit Example,” http://doc.akka.io/docs/akka/2.1.0/scala/testing.html.
10 “Typesafe Console,” http://typesafe.com/products/console.

http://doc.akka.io/docs/akka/2.1.0/scala/testing.html
http://typesafe.com/products/console

282 CHAPTER 9 Concurrency programming in Scala

higher, you can easily build concurrent applications. This chapter focused on
message-passing concurrency and how to use actors to implement it.

 We also learned about the Future and Promise APIs and how we can use functional
composition to construct larger programs by combining small concurrent operations.
One of the big challenges with building fault-tolerant applications is handling errors
effectively and recovering from them. You learned how the supervisor strategy works
to handle errors in actor-based applications. This makes it easy to build long-running
applications that can automatically recover from errors and exceptions.

 The next chapter focuses on writing automated tests for Scala applications and
explores how Scala helps with writing tests and the various tools available to you for
testing. It’s not as hard as you may think. It also shows you how to write tests around
actors.

283

Building confidence
with testing

So far, I’ve been showing you code without writing tests—so why worry about that
right now? The answer is, I wrote tests around the code but didn’t mention doing
so because I wanted you to focus more on the Scala language. Now that’s going to
change. My goal for this chapter is to make you comfortable writing automated
tests in Scala so that you can build production-quality software.

 The path to writing well-crafted code1 is the path where you write tests for
your code. The common perception about writing tests is that it’s hard, but this
chapter will change that mindset. I’m going to show you how you can get started

This chapter covers

 Automated testing using ScalaCheck

 Using JUnit to test Scala code

 Writing better tests with dependency injection

 Behavior-driven development using Specs

 Testing actor-based systems

1 “Manifesto for Software Craftsmanship,” http://manifesto.softwarecraftsmanship.org.

http://manifesto.softwarecraftsmanship.org

284 CHAPTER 10 Building confidence with testing

with practices like test-driven development and continuous integration for your Scala
project. The idea of test-driven development (TDD) is to write the test before you
write code. I know this seems backward, but I promise you that by the end of this chap-
ter it will make sense. You’ll learn that writing tests is more like doing a design exer-
cise than testing, and it makes sense to design your software. Your design tool will be
code—more specifically, test code.

 I’ll start by introducing automated testing and how developers use it in real-world
projects. There are two kinds of automated tests: ones you write (the most common)
and ones you generate for your code. First I discuss how you can generate tests for
your code using the ScalaCheck tool, because it’s easy. Scala, being a statically typed
language, enjoys a unique position where tools like ScalaCheck can generate tests for
your functions or classes based on types. ScalaCheck is a great way to get started with
automated tests. But to truly get the benefit of automated tests, you also have to write
them manually.

 The majority of this chapter focuses on writing automated tests. Many testing tools
are available for writing tests for your Scala code but this chapter walks you through
using two tools: JUnit (www.junit.org) and Specs (http://etorreborre.github.com/
specs2/).

 If you’re a Java developer and have used JUnit before, using it to test your Scala
code is easy. Specs is a testing tool written in Scala for Scala and provides more expres-
siveness in your tests. I’ll take you through the process of writing tests, the tools avail-
able to you, and design techniques you can use to make your design testable. The
testability property of your design determines how easy it is to write tests. I’ll show you
how to implement dependency injection in Scala.

 Dependency injection is a design pattern used by developers to make their code
more testable (read more about this in section 10.5). As a hybrid language, Scala pro-
vides a number of abstraction techniques you can use to implement dependency
injection. This chapter explores all of them. I’ll also show you how to use a framework
like Spring (www.springsource.org), a popular dependency injection framework in
Java, in your Scala project.

 Writing automated tests is commonly said to be hard, but the reality is if you use
the right tools and techniques it’s easy. Without any further delay, let’s get started by
asking: what are automated tests? And how do they fit into the software development
process?

10.1 Importance of automated testing

I don’t care how good you think your design is, if I can’t walk in and write a
test for an arbitrary method of yours in five minutes it’s not as good as you
think it is, and whether you know it or not, you’re paying a price for it.

 —Michael Feathers

Automated tests are tests that are recorded or prewritten and can be run by a machine
without any manual intervention. The tool that allows you to run these tests is called an

http://etorreborre.github.com/specs2/
http://etorreborre.github.com/specs2/

285Importance of automated testing

automated testing tool. As mentioned earlier, there are two kinds of automated tests: ones
you write and ones generated by a tool. Regardless of how the automated tests are cre-
ated, it’s important to understand the value of having them around and running them
as often as you can. To grasp their benefits, let’s explore how automated tests fit into the
agile software development process. Chances are you’re already doing agile software
development,2 but if you aren’t, having these tests available is still valuable.

 In the agile software development process, teams don’t analyze and design the
application up front; they build it using an evolutionary design.3 In this process devel-
opers only design for today, not tomorrow. They design an application based on what
they know today, understanding that some of the design decisions made today might
be wrong tomorrow. They also implement functionality of the application incremen-
tally. In this model, application design evolves and goes through lots of changes. Two
important questions need to be answered:

 What does evolving design have to do with automated testing?
 Why is evolving the design better than designing the application up front?

The first question is more important in the context of this chapter. Automated tests
are important because your application goes through lots of changes and you might
break existing functionality. In this ever-changing environment, you won’t be able to
keep up using manual testing. You need automated tests that can run repeatedly to
ensure that your application is behaving as expected and that nothing unexpected has
changed.

 The next question asks why evolutionary design is better. Why not design the appli-
cation up front so you don’t have to change so frequently? In some cases you have to
do an upfront design, like integrating with an external commercial product, and you
don’t have control over its source code.

 But most of the time you have to cope with requirements that change over time.
Agile software development tries to reduce the cost of change, and getting a correct
upfront design is hard in the face of changing requirements. It becomes costly to
maintain and change a big upfront design.4

 You can’t think of all the features your application will implement or how the vari-
ous components of your application will work with each other. The larger the applica-
tion becomes, the harder it becomes to design up front. Agile processes embrace
more of an incremental approach to software development, where you build a little,
test a little, and review the application features with users to get their feedback. In this
process it’s vital to have automated tests that give you feedback to assure you that your
application is working.

 Automated tests not only help you find problems, they also work as documentation
for the application. If you want to understand the behavior of a class or component,

2 “Agile software development,” http://en.wikipedia.org/wiki/Agile_software_development.
3 Martin Fowler, “Is Design Dead?,” May 2004, http://martinfowler.com/articles/designDead.html.
4 “Waterfall model,” http://en.wikipedia.org/wiki/Waterfall_model.

http://en.wikipedia.org/wiki/Agile_software_development
http://martinfowler.com/articles/designDead.html
http://en.wikipedia.org/wiki/Waterfall_model

286 CHAPTER 10 Building confidence with testing

you can look at the associated tests. Section 10.6 shows you how to develop executable
documentation in Scala using Specs. The problem with the traditional way of docu-
menting code is that the documentation goes stale quickly because most of us forget
to keep it up-to-date with code changes. But if you have tests that act as documenta-
tion, you’ll keep them up to date with code changes because every code change is pre-
ceded by or is the result of a test change.

 There are varied types of automated tests: specification-based, unit, integration,
functional, and regression, to name a few. This chapter focuses on specification-based
tests and test-driving software using unit tests. Other types of tests also play an important
role in software development but are beyond the scope of this chapter. In specification-
based testing you express the behavior of your application in an executable description,
and the tool generates tests to break it. On the other hand, unit tests are something you
write to design and verify your application.

 If you haven’t done any sort of automated testing, it might take a while to get used
to it. Don’t worry too much at the beginning, and don’t give up, because the benefits
mentioned earlier will pay you back. You’ll be able to respond to change quickly
because now you have tests to provide feedback.

 I begin by discussing how to generate automated tests using ScalaCheck so that you
can start getting the benefits of automated tests while you learn how to write them for
your Scala project.

10.2 Automated test generation using ScalaCheck

ScalaCheck is a tool for testing Scala and Java programs by generating test data based
on property specifications. The basic idea is that you define a property that specifies
the behavior of a piece of code, and ScalaCheck automatically generates random test
data to check whether the property holds true. Don’t confuse the ScalaCheck prop-
erty with a JavaBean property. In ScalaCheck, a property is a testable unit. To create a
new property in ScalaCheck, you have to make a statement that describes the behavior
you want to test. For example, I’m making the following claim about the reverse
method defined in the String class:

val anyString = "some string value"

anyString.reverse.reverse == anyString

My claim is that if the reverse method is invoked twice on an instance of a String, I
get the same value back. The job of ScalaCheck would be to falsify this statement by
generating random test data. Without going any further, let’s try a little example with
ScalaCheck. Create a new directory called scalacheck and add the following build.sbt
file to the root of the directory:

name := "ScalaCheckExample"

version := "1.0"

organization := "Scala in Action"

scalaVersion := "2.10.0"

287Automated test generation using ScalaCheck

resolvers ++= Seq(
 "Sonatype Snapshots" at "http://oss.sonatype.org/content/repositories/

snapshots",

 "Sonatype Releases" at "http://oss.sonatype.org/content/repositories/
releases"

)

libraryDependencies ++= Seq (
 "org.scalacheck" %% "scalacheck" % "1.10.0" % "test"

)

// append options passed to the Scala compiler
scalacOptions ++= Seq("-deprecation", "-unchecked", "-feature")

This project file will download and add the ScalaCheck dependency to your project
(don’t forget to do a reload and an update). You can also download the latest
ScalaCheck (http://code.google.com/p/scalacheck/downloads/list) and play with it
using Scala REPL. In this chapter I show all the examples using the SBT project
because it’s more convenient to build and compile. In the next section, you’ll create
your first ScalaCheck test to verify the claim about the reverse method.

10.2.1 Testing the behavior of a string with ScalaCheck

To create a new property in ScalaCheck, you have to use the org.scalacheck.Prop
trait. The property in ScalaCheck is represented by instances of the Prop trait. There
are several ways to create an instance of a property in ScalaCheck but the one you’re
going to use here is org.scalacheck.Prop.forAll.

forAll is a factory method that creates a property that can be tested by
ScalaCheck. This method takes a function as an argument that should return a Bool-
ean and can take any type of parameter as long as there’s a generator. Generators are
components used by ScalaCheck to generate test data. (You’ll read more about gener-
ators later in this section.) Here’s how the property would look for the statement I
made about reverse in the previous section:

Prop.forAll((a: String) => a.reverse.reverse == a)

The way to read the preceding property is this: for all strings, the expression (a:
String) => a.reverse.reverse == a should hold true (this matches with the claim in
the previous section). ScalaCheck will use the generator for String type to generate
random string data to validate the statement. To run this property with SBT, you need
to wrap it inside the Properties class (later I show you how to use ScalaCheck with
your tests). The org.scalacheck.Properties represents a collection of ScalaCheck
properties, and SBT has built-in support for running Properties:

package checks
import org.scalacheck._

object StringSpecification extends Properties("String") {

 property("reverse of reverse gives you same string back") =
 Prop.forAll((a: String) => a.reverse.reverse == a)

}

http://code.google.com/p/scalacheck/downloads/list

288 CHAPTER 10 Building confidence with testing

Save the preceding code in a StringSpecification.scala file under the src/test/scala
folder of your project, and run the test action from the SBT prompt. If the setup is
correct so far, you’ll notice that ScalaCheck has tried 100 times to falsify your property
but failed (see figure 10.1).
After 100 tests it should be safe to say that the property does hold true. Let’s add
another property that will check for any two strings x and y, where the expression
x.startsWith(y) should be equivalent to x.reverse.endsWith(y.reverse). The
ScalaCheck property should look like the following:

property("startsWith") = Prop.forAll {(x: String, y: String) =>
 x.startsWith(y) == x.reverse.endsWith(y.reverse)

}

Does this hold true? Go ahead and try this and see whether ScalaCheck can prove the
property to be wrong. Again this property holds true after 100 tests. Let’s try to create
a property that’s not always true and see whether ScalaCheck is able to catch it. The
statement is this: for any two strings x and y, the expression x > y is equivalent to
x.reverse > y.reverse. The ScalaCheck property looks like the following:

property("string comparison") = Prop.forAll {(x: String, y: String) =>

 x > y == x.reverse > y.reverse
}

In this case ScalaCheck will fail and show the arguments for which the expression
doesn’t hold true. The output may not always be visible to you because ScalaCheck
uses character values from Char.MIN_VALUE to Char.MAX_VALUE. The following listing
shows the complete String specification class.

package checks

import org.scalacheck._

object StringSpecification extends Properties("String") {

 property("reverse of reverse gives you same string back") =
 Prop.forAll((a: String) => a.reverse.reverse == a)

Listing 10.1 String specification for ScalaCheck

Figure 10.1 The output from running ScalaCheck from the SBT prompt

Define new
specification

Property
for reverse

method

289Automated test generation using ScalaCheck

 property("startsWith") = Prop.forAll {(x: String, y: String) =>
 x.startsWith(y) == x.reverse.endsWith(y.reverse)

 }

 property("string comparison - WILL FAIL") =
 Prop.forAll {(x: String, y: String) =>

 x > y == x.reverse > y.reverse

 }
}

In listing 10.1 you create a specification for the String class. Granted, you haven’t
specified the complete behavior of the class, but you can see how ScalaCheck specifi-
cations work. You extend the Properties trait to make your specification runnable by
SBT. Each statement that you want to verify is wrapped around a ScalaCheck property.
You’re using the Prop.forAll factory method to create a new property by passing a
function that captures the statement that needs to be verified by ScalaCheck.
ScalaCheck executes this function by passing random test data generated by built-in
generators.

 I hope by now you get the idea of how ScalaCheck properties are created and can
be used to test the behavior of Scala code.

NOTE The idea of automated testing didn’t originate with ScalaCheck, but
from a tool called QuickCheck,5 a testing tool for the Haskell language.
Sometime these tools are also called specification-based unit testing tools. You
provide a specification of a class or method in terms of properties. This kind
of specification-based testing tool relies heavily on the correctness of the type
system. Because Scala and Java are both statically typed languages, ScalaCheck
would be a great way to create specifications and add them to your project.

The next section discusses ScalaCheck generators so that when the time comes, you
can create your own custom generator for a new type you create.

10.2.2 ScalaCheck generators

In the previous section you wrote your first ScalaCheck specification without worrying
about generators, so why bother now? The reason you didn’t worry about generators
was that ScalaCheck knows how to generate test data for the String type (it knows
about other types too6)—but how about a new type that you created? In this case
you’re on your own. The good news is ScalaCheck provides all the building blocks you
need to roll your own generator.

 The ScalaCheck generators are responsible for generating test data, and the
org.scalacheck.Gen class represents them. Think of generators as functions that take
some generation parameters and return a generated value sometimes. For some com-
binations of parameters, the generator may not generate any value. A generator for

5 “Introduction to QuickCheck,” modified Oct 25, 2012, www.haskell.org/haskellwiki/Introduction_to
_QuickCheck.

6 “ScalaCheck user guide,” updated April 12, 2012, http://code.google.com/p/scalacheck/wiki/UserGuide.

Property for
startsWith
method

Property
for string
comparison

www.haskell.org/haskellwiki/Introduction_to_QuickCheck
www.haskell.org/haskellwiki/Introduction_to_QuickCheck
http://code.google.com/p/scalacheck/wiki/UserGuide

290 CHAPTER 10 Building confidence with testing

type T could be represented by a function of type Gen.Params => T. The ScalaCheck
library already ships with various kinds of generators, but one in particular is quite
important: the arbitrary generator. This is a special generator that generates arbi-
trary values for any supported type. It’s the generator ScalaCheck used when testing
the String specification you created in the previous section. To run any specification,
ScalaCheck needs a generator to generate test data, so generators play an important
role in ScalaCheck. The next section shows you how to create a custom generator in
ScalaCheck.

10.2.3 Working with ScalaCheck

In this section I show you how to use ScalaCheck with a simple real-world use case. In
the real world, you don’t write specifications for the String class but rather for types
(classes and traits) that you’ll create. Instead of creating a new type on your own, let’s
take a look at the scala.Either class. This will be close, in terms of complexity, to the
types you create or deal with in your project. In Scala, the Either type allows you to
represent a value for one of two possible types: Left and Right. Usually, by conven-
tion, Left represents failure and Right represents success.

NOTE Take a look at the scaladoc7 of the Either type to get a feel for what
you can do with this type.

In this section you’ll add specification tests for some of its API methods. First I list the
specifications you want to test. This is clearly not an exhaustive list, but it’s a good
starting point:

1 Either will have value on either Left or Right, but not both at any point
in time.

2 fold on the Left should produce the value contained by Left.
3 fold on the Right should produce the value contained by Right.
4 swap returns the Left value to the Right and vice versa.
5 getOrElse on Left returns the value from Left or the given argument if this is

Right.
6 forAll on Right returns true if Left or returns the result of the application of

the given function to the Right value.

The complexity of the specifications grows as you go down the list, but you’ll see how
easy it is to implement them.

 First, create a custom ScalaCheck generator for the Either type, because there’s
no built-in generator for this type. Creating new generators in ScalaCheck is as easy as
combining the existing generators. To keep things simple, only create generators that
can generate Int values for Left and Right (later I show you how to parameterize the
generator). To create a new generator for Left, use the existing generator for the Int
value to create instances for Left:

7 Scala Either, http://mng.bz/106L.

http://mng.bz/106L

291Automated test generation using ScalaCheck

import Gen._
import Arbitrary.arbitrary

val leftValueGenerator = arbitrary[Int].map(Left(_))

The preceding code snippet creates a new instance of the Int type generator and
maps it to create values for Left. Similarly, for creating instances of Right, use the fol-
lowing code:

val rightValueGenerator = arbitrary[Int].map(Right(_))

To successfully generate instances of the Either type, you have to randomly generate
instances of Left or Right. To solve these kinds of problems, the ScalaCheck Gen object
ships with helper methods like oneOf or frequency, called combinators. They allow you
to combine multiple generators. For example, you could use Gen.oneOf to combine
leftValueGenerator and rightValueGenerator to create a generator for the Either
type. And oneOf ensures that Left and Right values are generated randomly:

implicit val eitherGenerator =

 oneOf(leftValueGenerator, rightValueGenerator)

By defining the generator as an implicit val, you don’t have to pass it to ScalaCheck
properties—ScalaCheck will pick it up. The generator you’ve defined here only gener-
ates Int values, but if you wanted to play with different types of values, you’d also
define the generator like this:

implicit def arbitraryEither[X, Y](implicit xa: Arbitrary[X],
 ya: Arbitrary[Y]): Arbitrary[Either[X, Y]] =

 Arbitrary[Either[X, Y]](

 oneOf(arbitrary[X].map(Left(_)), arbitrary[Y].map(Right(_)))
)

The generators for both Left and Right are type-parameterized so they’ll take any
type of parameter for which the arbitrary generator is defined in ScalaCheck.

 You can also use Gen.frequency to get more control over each individual genera-
tor and its uses. If you wanted to use leftValueGenerator 75% of the time compared
to the rightValueGenerator, you could use Gen.frequency like this:

implicit val eitherGenerator =

 frequency((3, leftValueGenerator), (1, rightValueGenerator))

The generator is created. Let’s move on with your first specification. This specifica-
tion is easy to implement—all you have to do is check that both Left and Right
aren’t present at the same time. In this case you’ll use the isLeft and the isRight
methods available in the Either type that return true or false based on whether it
contains a value:

property("isLeft or isRight not both") = Prop.forAll((e: Either[Int, Int])

 => e.isLeft != e.isRight)

If isLeft and isRight are equal, your specification fails because it clearly states that
both Left and Right can’t have values at the same time.

292 CHAPTER 10 Building confidence with testing

 For the second specification (“fold on the Left should produce the value
contained by Left”) and the third (“fold on the Right should produce the value con-
tained by Right”), use the fold method defined in the Either type:

property("left value") = Prop.forAll{(n: Int) =>
 Left(n).fold(x => x, b => error("fail")) == n }

property("Right value") = Prop.forAll{(n: Int) =>

 Right(n).fold(b => error("fail"), x => x) == n }

Both cases will error out if they try to access the wrong value. The contract of the fold
is like the following, where it only applies the appropriate function parameter:

def fold[X](fa: A => X, fb: B => X) = this match {
 case Left(a) => fa(a)

 case Right(b) => fb(b)

}

Go ahead and add these properties to a specification class and run them (see listing
10.2 for the complete specification).

The fourth specification (“swap returns the Left value to Right and vice versa”) is a
little harder but nothing that can’t be fixed. According to this specification, the swap
method of the Either type could swap the value from Left to Right and vice versa.
Here you can use pattern matching to check whether the value corresponds to Left
or Right. For example, if it’s Left, then after swap the value should be available on
the Right side and vice versa for the Right value:

property("swap values") = Prop.forAll{(e: Either[Int, Int]) => e match {

 case Left(a) => e.swap.right.get == a

 case Right(b) => e.swap.left.get == b
 }

}

Customizing the number of tests generated by ScalaCheck

ScalaCheck provides configurable options which allow you to control how ScalaCheck

verifies your property. If you want to generate more than 100 successful tests before

a property is declared successful, you can pass ScalaCheck arguments to your test

through SBT. The trick is to use the SBT test-only action. This action allows you to

provide test names as arguments and pass additional test arguments. If you don’t

specify any test names, it will run all the tests like the SBT test action. You can

change the default setting for the minimum successful (-s) tests from 100 to 500

by passing test arguments to SBT like the following:

>test-only -- -s 500

By passing –s (ScalaCheck-specific configuration), you’ve configured the minimum

successful tests that will be generated by ScalaCheck before a property is pro-

nounced successful. Check the ScalaCheck documentation to learn about all the con-

figuration options.

293Automated test generation using ScalaCheck

The following listing shows the complete specification for the Either type, including
specification numbers 5 and 6.

object EitherSpecification extends Properties("Either") {

 import Gen._
 import Arbitrary.arbitrary

 val leftValueGenerator = arbitrary[Int].map(Left(_))

 val rightValueGenerator = arbitrary[Int].map(Right(_))
 implicit val eitherGenerator = oneOf(leftValueGenerator,

 rightValueGenerator)

 property("isLeft or isRight not both") =
 Prop.forAll((e: Either[Int, Int]) => e.isLeft != e.isRight)

 property("left value") =

 Prop.forAll{(n: Int) => Left(n).fold(x => x, b => error("fail")) == n }

 property("Right value") =

 Prop.forAll{(n: Int) =>

 Right(n).fold(b => error("fail"), x => x) == n }

 property("swap values") = Prop.forAll{(e: Either[Int, Int]) => e match {
 case Left(a) => e.swap.right.get == a

 case Right(b) => e.swap.left.get == b

 }
 }

 property("getOrElse") =

 Prop.forAll{(e: Either[Int, Int], or: Int) =>
 e.left.getOrElse(or) == (e match {

 case Left(a) => a

 case Right(_) => or
 })

 }

 property("forall") = Prop.forAll {(e: Either[Int, Int]) =>
 e.right.forall(_ % 2 == 0) == (e.isLeft || e.right.get % 2 == 0)

 }

}

The previous listing creates a generator for the Either type by using the building
blocks provided by ScalaCheck. Arbitrary.arbitrary is one of those building blocks
that lets you create new custom generators. Using it, you create generators for both
Left and Right values of the Either type. Then, using the combinators available in
the Gen object, you create a generator for the Either type. The rest of the code is
defining ScalaCheck properties for all the specifications declared at the beginning of
the section.

 There are plenty of Scala open source libraries, like Scalaz (https://github.com/
scalaz/scalaz) and Lift (https://github.com/lift/framework), that use ScalaCheck for
testing their classes. You can always download them and go through their ScalaCheck
tests to see various ways you can use them.

Listing 10.2 Complete EitherSpecification

Define
specification by
extending PropertiesGenerator for

Either.Left

Generator for
Either.Right

Generator for
Either by using
oneOf combinator

https://github.com/scalaz/scalaz
https://github.com/scalaz/scalaz
https://github.com/lift/framework

294 CHAPTER 10 Building confidence with testing

 It’s also easy to use ScalaCheck to test Java codebases. Because Scala and Java inter-
operate, you don’t have to do anything special to test java codebases. ScalaCheck also
supports the generation of Java collection classes.

 As you’ve already figured out, ScalaCheck is a powerful framework. For example,
with 20–25 lines of code, you managed to generate 600 tests. With the ability to create
custom generators, I’m sure you can think of places in your project where ScalaCheck
will be valuable.

 What about the new functionality you’ve yet to implement? You aren’t sure how it
should look yet—the classes, traits, and functions you’d need to implement the func-
tionality. The next section introduces you to a design technique called test-driven
development, which might solve your problem.

10.3 Test-driven development cycle

Test-driven development 8 (TDD) is a technique of using tests to drive the design of soft-
ware (see figure 10.2). At first it sounds misleading because you usually associate tests
with a verification of the software. You test your software to make sure it’s working as
expected. It’s more like the last thing you do before releasing your software. TDD com-
pletely reverses that and makes testing a central part of the software development life-
cycle. In agile software development, TDD is one of the most, if not the most,
important practice. But you don’t have to buy in to agile to reap the benefits of TDD—
you can use it with any process. Remember: TDD is a design tool. In the end you get a
test suite, but that’s more of a secondary effect. Let’s go through and understand how
TDD works, and then I’ll explain why it works.

 The figure outlines how TDD works as a development practice. You always start
with a failing end-to-end test. An end-to-end test (sometimes called an integration test)
exercises your application from top to bottom. This could mean the test is making an
HTTP request through a browser and checking the response back. Then you write a
bunch of unit tests to break the problem into smaller pieces and make them pass. You
only write production code when you have a failing test, and you only refactor when
your tests are passing. One way to think about it is to take one of the acceptance crite-
ria of the feature you’re supposed to implement and write it as an executable test.

8 “Test-driven Development,” http://en.wikipedia.org/wiki/Test-driven_development.

- -

Figure 10.2 Test-driven

development cycle

http://en.wikipedia.org/wiki/Test-driven_development

295Test-driven development cycle

Let’s consider the following feature request. As a pricing analyst, you want to calculate
a price for products so you can bill customers correctly:

Acceptance criteria:

 A 100 product code should use cost plus the percent amount.
 Example: 150 (cost) + 20% = $180
All products whose ID starts with B should use an external price source to get
the price.

In this case, if you pick the first acceptance criterion, your job would be to implement
that criterion as a test. When you start to implement the acceptance criterion as a test,
the following are the some of the questions that might pop into your head:

 Where should you implement the pricing logic?
 Should you create a trait or start with a simple function?
 What parameters will the function take?
 How should you test the output?
 Should it hit the database or filesystem to pull up the cost?

If this is the case, you have already started to think about the design. But at this point
your focus should be only on the unit of work at hand. That means the acceptance cri-
terion you’re working on. The most common theme of TDD is to pick the simplest
solution that could possibly work. In this case the simplest solution would be to create
a function that takes a product code, looks it up in a Map, and returns the price using
the formula specified in the acceptance criterion. Probably, using Map to look up the
cost design decision you made might not hold true on the next test. When that hap-
pens, you’ll make the necessary code changes and look up the cost from some persis-
tence store—you get the idea. Do the simplest thing that could possibly work, and
then incrementally design and build your application.

 Once your test is running, you have the opportunity to refactor or clean up.
Refactoring (www.refactoring.com) is a technique you can use to improve the design of
existing code without changing the behavior. This test-code-refactor cycle repeats for
each feature or step that you implement. Sometimes this cycle is called the red-green-

refactor cycle. When a test is failing, you’re in the red state; then you make the test pass
and move to the green state. TDD is a development practice, and it takes some time to
get used to it. As you go through some examples, it will become clearer.

 The good news is that the Scala community is blessed with lots of testing tools to
use. I’m going to focus on two of the most popular: JUnit and Specs. JUnit is more
popular among Java developers and can be easily used to test Scala code. But most
Scala programmers use Specs to test their Scala code.

 As you start writing tests, you’re also building a test suite. If you don’t run them
often, then you’re not extracting the benefits from them. The next section discusses set-
ting up a continuous integration9 environment to get continuous benefits from them.

9 Martin Fowler, “Continuous Integration,” May 1, 2006, http://martinfowler.com/articles/continuous
Integration.html.

www.refactoring.com
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html

296 CHAPTER 10 Building confidence with testing

10.3.1 Setting up your environment for TDD

Once you and your team get comfortable with TDD, you need a tool that checks out
the latest code from your source code repository and runs all the tests after every
check-in of the source control system. This ensures that you always have a working
software application. A continuous integration (CI) tool does that automatically for
you. Almost all the existing CI tools will work for Scala projects. Table 10.1 shows some
Scala tools that you could use in your Scala project.

TIP SBT is still fairly new compared to other build tools available in the mar-
ket. If you have a testing tool or CI environment that doesn’t work well with
SBT, you can use Maven (http://maven.apache.org) as your build tool.
There’s a Maven Scala plug-in10 that makes your Maven project Scala-aware
and allows you to compile and run your Scala tests. You can also generate a
.POM file (Maven build file) from your SBT project using the make-pom action.

I’ve mentioned only a handful of tools you can include in your project to have a con-
tinuous feedback cycle. The toolset around Scala is always evolving, so try out a few
tools and pick the one that best fits your project. The next section explains how you
can use JUnit to test your Scala code.

10.3.2 Using JUnit to test Scala code

JUnit (www.junit.org) is a simple testing framework written in Java that allows you to
write automated tests. This is a popular framework used in many Java projects. If
you’ve used the JUnit testing tool previously to write tests for Java code, I’m happy to

Table 10.1 Tools to set up your TDD environment

Name Description

Jenkins CIa

a. Jenkins home page, http://jenkins-ci.org.

Open source continuous integration tool that could build and test your project continu-

ously. You can configure it to point to your source control and run builds every time the

repository is updated. In essence, almost all the CI tools have these features. You

could also use any other popular CI tool for your Scala project.

Jenkins SBT

pluginb

b. sbt plug-in, edited on Aug. 27, 2011, http://wiki.jenkins-ci.org/display/JENKINS/sbt+plugin.

Allows you to run SBT build actions from Jenkins and lets you configure SBT using Jen-

kins. For CI tools that don’t have native support for SBT but support Maven, you can

easily generate a POM file for your SBT project using the make-pom SBT command.

Code

coveragec

c. jacoco4sbt, https://bitbucket.org/jmhofer/jacoco4sbt/wiki/Home.

Code coverage is a measurement of source code that’s under automated tests. Code

coverage tools help you to identify the area of the code that’s not tested. Almost all

Java code coverage tools will work for Scala projects, but using tools that work with

your build tool, like SBT, is always better.

10 maven-scala-plugin, version 2.14.2, Aug. 4, 2010, http://scala-tools.org/mvnsites/maven-scala-plugin/.

https://bitbucket.org/jmhofer/jacoco4sbt/wiki/Home
http://jenkins-ci.org
http://wiki.jenkins-ci.org/display/JENKINS/sbt+plugin
http://maven.apache.org
http://scala-tools.org/mvnsites/maven-scala-plugin/

297Better tests with dependency injection

inform you that you can use it to test Scala code too. To use JUnit inside your SBT proj-
ect, add the following dependency to your project file:

libraryDependencies += "junit" % "junit" % "4.10" % "test"

By default, SBT doesn’t recognize JUnit-style test cases, so you have to add another
dependency to your project to make SBT aware of JUnit test cases:

libraryDependencies += "com.novocode" % "junit-interface" % "0.8" % "test"

The junit-interface11 tool implemented the test interface of SBT so that SBT can run
JUnit test cases. After you reload and update your SBT project, you’re ready to add JUnit
test cases and run them using the test action from SBT console. This works out great if
you have legacy JUnit tests that you want to retain while porting your application from
Java to Scala, or you have both Java and Scala projects12 that you’re building with SBT.

 JUnit is a good way to get started writing automated tests, but it’s not an appropri-
ate testing tool for Scala projects because it still doesn’t understand Scala natively.
There are multiple open source Scala testing tools you can use to write more expres-
sive tests. Section 10.6 looks into a Scala testing tool called Specs that most Scala devel-
opers use, but for now let’s try to understand an important concept called
dependency injection, which helps in designing more testable applications.

10.4 Better tests with dependency injection

Dependency injection (DI) is a design pattern that separates behavior from dependency
resolution (the way your components find other dependent components). This pat-
tern also helps to design programs that are highly decoupled in nature. Let’s look at a
naïve example to understand how DI works (see figure 10.3).

 This example is about calculating the price of a product based on various pricing
rules. Typically any pricing system will have hundreds of rules, but to keep things sim-
ple I will only talk about two:

 The cost-plus rule determines the price by adding a percentage of the cost.
 Getting the price from an external pricing source.

With these rules in place, the calculate price service would look something like the
next listing.

11 Stefan Zeiger, szeiger/junit-interface, https://github.com/szeiger/junit-interface.
12 SBT, https://github.com/harrah/xsbt.

Figure 10.3 CalculatePriceService and its calculators

https://github.com/harrah/xsbt
https://github.com/szeiger/junit-interface

298 CHAPTER 10 Building confidence with testing

sealed class CalculatePriceService {
 val costPlusCalculator = new CostPlusCalculator()

 val externalPriceSourceCalculator = new ExternalPriceSourceCalculator()

 val calculators = Map(

 "costPlus" -> calculate(costPlusCalculator) _ ,

 "externalPriceSource" -> calculate(externalPriceSourceCalculator) _)

 def calculate(priceType: String, productId: String): Double = {

 calculators(priceType)(productId)
 }

 private[this] def calculate(c: Calculator)(productId: String):Double =

 c.calculate(productId)
}

trait Calculator {

 def calculate(productId: String): Double

}

class CostPlusCalculator extends Calculator {

 def calculate(productId: String) = {

 ...
 }

}

class ExternalPriceSourceCalculator extends Calculator {
 def calculate(productId: String) = {

 ...

 }
}

The cost-plus rule is implemented by the costPlusCalculator B, and the external
price source is handled by the externalPriceSourceCalculator C. Both calculators
extend the Calculator trait. The CalculatePriceService class uses these calculators
based on the parameter priceType. Right now the two possible values for priceType
are "costPlus" and "externalPriceSource". Let’s relate this example to the defini-
tion of DI. The behavior of the CalculatePriceService is to use the appropriate
price calculator to determine the price for a given product. At the same time this class
is also resolving its dependencies. Is there anything wrong with managing your own
dependencies?

NOTE Dependency injection is a specific form of inversion of control where the
concern being inverted is the process of obtaining the needed dependencies.

Yes, there are some potential problems with this, in particular when your software is
evolving. What if your client decides to use a different external pricing source to cal-
culate the price or redefines the cost-plus calculation logic for some customers? In

Listing 10.3 Basic CalculatePriceService

Create cost-
plus calculator

B

Create price
calculator

for external
source C

Map of all calculators as
partial function

Calculates
the price
based on

price type

Base trait for
all calculators

299Better tests with dependency injection

these cases you have to come up with different implementations of calculators and
change the CalculatePriceService accordingly. This might be okay in some situa-
tions, but if you’re planning to build this as a component that will be shared by proj-
ects, you have a problem.

 Using DI, you can easily solve this problem. If the dependent calculators could be
passed in (injected) to the CalculatePriceService, then the service could be easily
configured with various implementations of calculators. In its simplest form, you
could pass these calculators through the constructor:

sealed class CalculatePriceService(

 val costPlusCalculator: Calculator,
 val externalPriceSourceCalculator: Calculator) {

 val calculators = Map(

 "costPlus" -> calculate(costPlusCalculator) _ ,
 "externalPriceSource" -> calculate(externalPriceSourceCalculator) _)

 def calculate(priceType: String, productId: String): Double = {

 calculators(priceType)(productId)
 }

 private[this] def calculate(c: Calculator)(productId: String):Double =

 c.calculate(productId)

 }

The only thing that’s changed compared to the previous code listing is that now the
instances of two calculators are passed in as constructor arguments. In this case, the
caller of the service takes the responsibility to determine the dependent price calcula-
tors and inject them into the service. This makes the service highly decoupled because
it doesn’t care how the costPlusCalculator or externalPriceSourceCalculator is
created or implemented. This also gives you flexibility in terms of design because now
you can easily incorporate the changes your customer is talking about and come up
with different implementations of pricing rules.

10.4.1 Techniques to implement DI

What does DI have to do with testing? In unit testing it’s important to understand the
unit you’re testing. When you’re testing the calculate method of CalculatePrice-
Service, your system under test is the CalculatePriceService, not the costPlus-
Calculator or the externalPriceSourceCalculator. But if you don’t isolate the
calculators, your test will end up testing them as well. This is okay when you’re testing
your system end to end using an integration test, but not when you want to test only
the behavior of the CalculatePriceService. In this small example, it might be hard
to see the difference, but in a large application without isolation of dependencies,
you’ll end up initializing the system over and over again for each component you test.
Isolation is important if you want to write simple and manageable unit tests.

 The second problem with a closely coupled system is the speed of testing. It’s
important to have your tests run faster. Remember that your tests are your feedback
mechanism, so if they run slowly you won’t get faster feedback. In this example, each

Calculators passed in as
constructor arguments

300 CHAPTER 10 Building confidence with testing

of your calculators might access the database or an external web service, and these will
slow down your tests.

DEFINITION Test double is a common umbrella term for a test-specific equiva-
lent of a component that your system under test depends on.

Ideally you’ll create a test version for each calculator so that you can focus your testing
to verify only the system under test, which in this case is CalculatePriceService. In
the test version of the calculator, you can return a hardcoded price or use an in-
memory database to speed things up. This will also give you more control over the test
data. One key aspect of TDD is rerunnable tests. If your tests are heavily dependent on
the external data, they will become brittle because the external data could change and
break your tests.

NOTE A measure of a good unit test is that it should be free of side effects,
the same as writing a pure function in functional programming.

If you follow TDD as a driver for your design, you don’t have to worry too much about
the coupling problem—your tests will force you to come up with a decoupled design.
You’ll notice that your functions, classes, and methods follow a DI pattern.

 The following sections discuss ways you can implement dependency injection in
Scala. Table 10.2 shows the list.

These techniques can help to write more testable code and provide a scalable solution
in Scala. Let’s take our favorite CalculatePriceService and apply each of the tech-
niques mentioned in the table.

Table 10.2 Techniques to implement dependency injection

Technique Description

Cake pattern Handles dependency using trait mixins and abstract members.

Structural

typing

Uses structural typing to manage dependencies. The Scala structural typing feature

provides duck typinga in a type-safe manner. Duck typing is a style of dynamic typing in

which the object’s current behavior is determined by the methods and properties cur-

rently associated with the object.

a. Duck typing, http://en.wikipedia.org/wiki/Duck_typing.

Implicit

parameters

Manages dependencies using implicit parameters so that as a caller you don’t have

to pass them. In this case, dependencies could be easily controlled using scope.

Functional

programming

style

Uses function currying to control dependencies. Function currying is a technique by

which you can transform a function with multiple arguments into multiple functions

that take a single argument and chain them together.

Using a DI

framework

Most of the techniques mentioned here will be home-grown. I show you how to use a

DI framework in your Scala project.

http://en.wikipedia.org/wiki/Duck_typing

301Better tests with dependency injection

10.4.2 Cake pattern

A cake pattern13 is a technique to build multiple layers of indirection in your applica-
tion to help with managing dependencies. The cake pattern is built on the three
abstraction techniques described in Table 10.3.

These concepts were covered in detail in chapter 7, so let’s see how the cake pattern
can help you decouple the CalculatePriceService from its calculators and make it
more testable. The first thing you can do is extract the calculator instances from the
service to its own namespace called Calculators:

trait Calculators {
 val costPlusCalculator: CostPlusCalculator

 val externalPriceSourceCalculator: ExternalPriceSourceCalculator

 trait Calculator {

 def calculate(productId: String): Double

 }

 class CostPlusCalculator extends Calculator {
 def calculate(productId: String) = {

 ...

 }
 }

 class ExternalPriceSourceCalculator extends Calculator {

 def calculate(productId: String) = {
 ...

 }

 }
}

13 Martin Odersky and Matthias Zenger, “Scalable Component Abstractions,” presented at OOPSLA’05, Oct.
16-20, 2005, http://lamp.epfl.ch/~odersky/papers/ScalableComponent.pdf

Table 10.3 Abstractions used in the cake pattern

Name Description

Abstract

members

Provides a way to abstract the concrete types of components. Using abstract types you

can create components that don’t depend on concrete types, and the type information

could be provided by other components that use them. (See this chapter’s codebase for

an example.)

Self type

annotation

Allows you to redefine this and is a way to declare the dependencies required by a

component. Using a trait mixin, you can inject various implementations of dependen-

cies. (See this chapter’s codebase for an example.)

Mixin

composition

You’ve already seen this in chapter 4. A mixin allows you to use Scala traits to override

and add new functionality.

Define namespace for all
calculators by wrapping them

Base calculator trait

Cost-plus calculator

External price
source
calculator

http://lamp.epfl.ch/~odersky/papers/ScalableComponent.pdf

302 CHAPTER 10 Building confidence with testing

The idea behind this Calculator trait is to have a component namespace that has all
the calculators in your application. Similarly, let’s create a component namespace for
the CalculatePriceService and declare its dependency to Calculators by self type:

trait CalculatePriceServiceComponent {this: Calculators =>
 class CalculatePriceService {
 val calculators = Map(
 "costPlus" -> calculate(costPlusCalculator) _
 "externalPriceSource" -> calculate(externalPriceSourceCalculator) _)

 def calculate(priceType: String, productId: String): Double = {
 calculators(priceType)(productId)
 }
 private[this] def calculate(c: Calculator)(productId: String):Double =
 c.calculate(productId)
 }
}

You’re using the self type this: Calculators to redefine this. That will also allow
you to statically ensure that no one can create CalculatePriceService without mix-
ing in the Calculators trait. The benefit is that now you can reference both
costPlusCalculator and externalPriceSourceCalculator freely. The self type will
ensure that they’re available during runtime.

 You must be wondering why both calculators are declared as abstract inside the
Calculators trait. It’s because you want to control how these calculators are created.
Remember from the tests, you don’t want to use the calculators; instead you want to
use a fake or TestDouble version of the calculators. At the same time, you want to use
the real version of the calculators in production mode. This is where the trait mixin
comes in handy. For production mode you could create a pricing system by compos-
ing all the real versions of these components, as in the following:

object PricingSystem extends CalculatePriceServiceComponent
 with Calculators {
 val costPlusCalculator = new CostPlusCalculator
 val externalPriceSourceCalculator = new ExternalPriceSourceCalculator
}

The pricing system is initialized with the real implementation of costPlusCalculator
and externalPriceSourceCalculator, and for testing the pricing could be created
using the fake implementation:

trait TestPricingSystem extends CalculatePriceServiceComponent
 with Calculators {
 class StubCostPlusCalculator extends CostPlusCalculator {
 override def calculate(productId: String) = 0.0
 }
 class StubExternalPriceSourceCalculator extends
 ExternalPriceSourceCalculator {
 override def calculate(productId: String) = 0.0
 }
 val costPlusCalculator = new StubCostPlusCalculator
 val externalPriceSourceCalculator = new StubExternalPriceSourceCalculator
}

Create new
namespace for
CalculatePriceServiceMap all the

calculators with
unique name

Fake
implementation
for cost-plus
calculator

Fake
implementation

of external
price source

calculator

303Better tests with dependency injection

In the case of the TestPricingSystem, the calculators are implemented using
TestDouble so that it helps to write tests around the calculate price service. In your
tests you’ll use the TestPricingSystem shown in the following listing.

package scala.book.cakepatterntest {
 import junit.framework.Assert._
 import org.junit.Test
 import cakepattern._

 class CalculatePriceServiceTest extends TestPricingSystem {

 @Test
 def shouldUseCostPlusCalculatorWhenPriceTypeIsCostPlus() {
 val calculatePriceService = new CalculatePriceService
 val price = calculatePriceService.calculate("costPlus",
 "some product")
 assertEquals(5.0D, price)
 }

 @Test
 def shouldUseExternalPriceSourceCalculator () {
 val calculatePriceService = new CalculatePriceService
 val price = calculatePriceService.calculate("externalPriceSource",
 "dummy")
 assertEquals(10.0D, price)
 }
 }
}

You mix the test version of the pricing system into your test class. This will automati-
cally make the fake implementation of the calculators available inside the test. That
simplifies your test and lets you focus testing on the CalculatePriceService. The two
tests are testing whether the CalculatePriceService is using the right type of calcula-
tor when invoked with the name of the calculator.

 This is a common technique used by Scala developers to manage dependencies. In
smaller projects, it’s reasonable to have the wiring of dependencies implemented like
the PricingSystem and the TestPricingSystem, but for large projects it may become
difficult to manage them. For large projects it makes more sense to use a DI frame-
work (section 10.5.2 shows how to use off-the-shelf DI) that allows you to completely
separate object creation and injection from business logic.

10.4.3 Structural typing

Structural typing in Scala is the way to describe types by their structure. The previous
section created the Calculators trait as a namespace for all the calculators, and
CalculatePriceService used it to get to individual calculators. The contract between
these two traits is the two abstract vals: costPlusCalculator and externalPrice-
SourceCalculator, because CalculatePriceService doesn’t care about anything
else. To create a structure that captures this information, make Scala treat that as a
new type:

Listing 10.4 JUnit test case for calculating price service (cake pattern)

Test case mixed
in with test
version of pricing

Test to
assert

cost-plus
calculator

used
Test to assert
external price
source
calculator
used

304 CHAPTER 10 Building confidence with testing

type Calculators = {
 val costPlusCalculator: Calculator

 val externalPriceSourceCalculator: Calculator

}

The code creates a new type called Calculators by specifying the structure. type is a
keyword in Scala used to create new types or a type alias. Now you can use this type to
inject various implementations of calculators into the CalculatePriceService:

class CalculatePriceService(c: Calculators) {

 val calculators = Map(

 "costPlus" -> calculate(c.costPlusCalculator) _ ,
 "externalPriceSource" -> calculate(c.externalPriceSourceCalculator) _)

 def calculate(priceType: String, productId: String): Double = {

 calculators(priceType)(productId)
 }

 private[this] def calculate(c: Calculator)(productId: String):Double =

 c.calculate(productId)
}

When using a structural type, you don’t necessarily have to name your type—you can
use it inline, as in the following:

import scala.language.reflectiveCalls
class CalculatePriceService(c: {

 val costPlusCalculator: Calculator

 val externalPriceSourceCalculator: Calculator
 }) {

 val calculators = Map(

 "costPlus" -> calculate(c.costPlusCalculator) _ ,
 "externalPriceSource" -> calculate(c.externalPriceSourceCalculator)_)

 def calculate(priceType: String, productId: String): Double = {

 calculators(priceType)(productId)
 }

 private[this] def calculate(c: Calculator)(productId: String):Double =

 c.calculate(productId)
 }

In this case, the type of the constructor parameter is defined as inlined B. The advan-
tage of structural typing in Scala is that it’s immutable and type-safe. The Scala com-
piler will ensure that the constructor parameter of CalculatePriceService

implements both the abstract vals costPlusCalculator and externalPriceSource-
Calculator. Again, you could create two types of configuration—one for testing and
another for production:

object ProductionConfig {

 val costPlusCalculator = new CostPlusCalculator
 val externalPriceSourceCalculator = new ExternalPriceSourceCalculator

 val priceService = new CalculatePriceService(this)

}

object TestConfig {

 val costPlusCalculator = new CostPlusCalculator {

Enabling
reflective
access of

structural
type member

Inline structural
type passed as
argument to
constructorB

Define test
configuration

with fake
implementations

Define production
configuration
with real
implementation

305Better tests with dependency injection

 override def calculate(productId: String) = 0.0
 }

 val externalPriceSourceCalculator = new ExternalPriceSourceCalculator {

 override def calculate(productId: String) = 0.0
 }

 val priceService = new CalculatePriceService(this)

}

Based on what you’re doing, you have the flexibility to pick the appropriate configura-
tion. This is one of my favorite ways to handle dependencies because it’s easy and sim-
ple. Yet it does come with a price. Internally, structural typing is implemented using
reflection, so it’s slower compared to other approaches. Sometimes that’s acceptable,
but be aware of it when using structural typing.

10.4.4 Implicit parameters

Implicit parameters provide a way to allow parameters to be found. Using this tech-
nique you can have the Scala compiler inject appropriate dependencies into your
code. (You’ve already seen implicit parameters in action [section 10.2.2].) ScalaCheck
uses implicit parameters to decide an appropriate generator to use for a given prop-
erty. To declare a parameter implicit, you have to mark the parameter with the
implicit keyword.

 The following example injects the calculators as a parameter to CalculatePrice-
Service and marks them as implicit:

class CalculatePriceService(
 implicit val costPlusCalculator: CostPlusCalculator,

 implicit val externalPriceSourceCalculator:

 ExternalPriceSourceCalculator
)

The beauty of implicit parameters is that if you don’t supply them when creating the
instance of CalculatePriceService, the Scala compiler will search for “implicit” val-
ues that match your parameter in the compilation scope. If the compiler fails to find
an appropriate implicit value, it fails the compilation.

 Create an object called ProductionServices that defines these implicit values for
production code:

object ProductionServices {

 implicit val costPlusCalculator = new CostPlusCalculator
 implicit val externalPriceSourceCalculator =

 new ExternalPriceSourceCalculator

}

To provide values for implicit parameters, you also have to mark each value with
implicit—otherwise the compiler won’t recognize it. You have to import this object
when running in production mode, and the easiest way to do that is use a configura-
tion object like the following:

306 CHAPTER 10 Building confidence with testing

 object ProductionConfig {
 import ProductionServices._

 val priceService = new CalculatePriceService

 }

Similarly, for testing, create a separate configuration object and provide a test imple-
mentation of the services:

object TestServices {
 implicit val costPlusCalculator = new CostPlusCalculator {

 override def calculate(productId: String) = 0.0
 }

 implicit val externalPriceSourceCalculator =
 new ExternalPriceSourceCalculator {
 override def calculate(productId: String) = 0.0
 }
 }

 object TestConfig {
 import TestServices._
 val priceService = new CalculatePriceService
 }

You don’t necessarily have to always use implicit values for implicit parameters
because you can always explicitly pass parameters the old-fashioned way. Using
implicit to handle dependencies can easily get out of hand as your application grows
in size, unless they’re grouped together like the preceding configuration objects. Oth-
erwise, your implicit declaration and imports will be scattered around the code and
will make it hard to debug compilation issues. Note that implicit parameter resolution
depends on types. Instead of defining both costPlusCalculator and external-
PriceSourceCalculator as a type of Calculator, you had to provide more specific
types. Sometimes this constraint can be too restrictive to build a scalable design.

10.4.5 Dependency injection in functional style

The general idea behind DI is inversion of control.14 Instead of a component control-
ling its dependencies, it’s passed from outside (usually by some container or frame-
work). When you work with functions, then, DI is already happening automatically. If
you consider a function as a component, then its dependencies are its parameters.
This makes functions inherently testable. If you create function currying, you can also
hide the dependencies as you did with other patterns. Function currying is a technique
of transforming functions that takes multiple arguments into a chain of functions
each with a single argument. The following is the new interface of Calculators that
only uses functions:

trait Calculators {
 type Calculator = String => Double

 protected val findCalculator: String => Calculator

14 Martin Fowler, “Inversion of Control Containers and the Dependency Injection Pattern,” Jan. 23, 2004,
http://martinfowler.com/articles/injection.html.

http://martinfowler.com/articles/injection.html

307Better tests with dependency injection

 protected val calculate: (Calculator, String) => Double =
 (calculator, productId) => calculator(productId)

}

The type Calculator is an alias of function that takes product ID and returns the price.
The findCalculator function determines the calculator for a given price type. And
finally calculate is a function that takes an instance of Calculator and productId to
calculate the price of the product. This is quite similar to the interfaces you designed
earlier, but this time with only functions.

 You can turn the calculate function into a curried function by invoking the
curried method defined for all function types in Scala:

val f: Calculator => String => Double = calculate.curried

The curried method takes a function of n parameters and transforms it to n functions
with one parameter. In this case it created a function that takes Calculator and
returns a function that calculates the price for a productid. The benefit of doing this
now is you have a function that knows how to calculate price but hides the Calculator
from the users. The following is the example test implementation of the Calculators:

 object TestCalculators extends Calculators {
 val costPlusCalculator: String => Double = productId => 0.0

 val externalPriceSource: String => Double = productId => 0.0

 override protected val findCalculator = Map(
 "costPlus" -> costPlusCalculator,

 "externalPriceSource" -> externalPriceSource

)

 def priceCalculator(priceType: String): String => Double = {

 val f: Calculator => String => Double = calculate.curried

 f(findCalculator(priceType))
 }

 }

The priceCalculator method returns a function that takes the productId and
returns the price of the product that encapsulates the dependencies used to compute
the price. This is an example of how you can do dependency injection using func-
tional programming.

10.4.6 Using a dependency injection framework: Spring

Scala’s abstract members, self type and mixin provide more abstraction techniques
than are available in Java, but DI frameworks provide the following additional services
that aren’t available in these abstraction techniques:

 They create a clean separation between object initialization and creation from
the business logic. These frameworks provide a separate lifecycle to create
dependencies as part of the application initialization. This way, your wiring
between components becomes transparent from the code.

Map already
extends
Function1

308 CHAPTER 10 Building confidence with testing

 These frameworks help you to work with various other frameworks. For exam-
ple, if you’re planning to use existing Java web frameworks, then a DI frame-
work will help to inject your Scala objects as dependencies.

 Most of the DI frameworks, like Spring (www.springsource.org) and Guice
(http://code.google.com/p/google-guice/), provide aspect-oriented program-
ming (AOP)15 support to handle cross-cutting behaviors like transaction and
logging out of the box.

The good news is you can use any Java DI framework with your Scala project. This sec-
tion shows you how to use the Spring framework as a DI framework in your Scala proj-
ect. (I won’t explain how the Spring dependency injection framework works, but if
you’re new to it read the tutorials16 available on the Spring framework website.)

 The Spring framework allows you to configure dependencies in multiple ways. I’ll
show you how to configure it using the external XML configuration file. In the Spring
world, all the dependencies are called beans, because all the objects follow the Java-
Bean17 convention. According to this convention a class should provide a default con-
structor, and class properties should be accessible using get, set, and is methods.

 To make a property a bean property, Scala provides a handy annotation called
@BeanProperty. This annotation tells the Scala compiler to generate getter and setter
methods automatically so you don’t have to worry about it. The following listing shows
the beanified version of the CalculatePriceService.

 package scala.book

 import scala.reflect._

 sealed class CalculatePriceService {
 @BeanProperty var costPlusCalculator: Calculator = _1

 @BeanProperty var externalPriceSourceCalculator: Calculator = _

 def calculators = Map(
 "costPlus" -> calculate(costPlusCalculator) _ ,

 "externalPriceSource" -> calculate(externalPriceSourceCalculator) _)

 def calculate(priceType: String, productId: String): Double = {
 calculators(priceType)(productId)

 }

 private[this] def calculate(c: Calculator)(productId: String):Double =
 c.calculate(productId)

 }

This version of CalculatePriceService looks almost identical to the version from
section 10.3, except here both the costPlusCalculator B and externalPrice-
SourceCalculator C are declared as bean properties using @BeanProperty annota-

15 “Aspect-oriented programming,” http://en.wikipedia.org/wiki/Aspect-oriented_programming.
16 “The IoC container,” Spring Framework, http://static.springsource.org/spring/docs/2.5.x/reference/

beans.html.
17 “JavaBeans,” http://en.wikipedia.org/wiki/JavaBean.

Listing 10.5 Bean version of CalculatePriceService

Annotate
costPlusCalculator

as bean property

B

Annotate
externalPriceSourceCalculator

as bean property

C

http://code.google.com/p/google-guice/
http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html
http://en.wikipedia.org/wiki/JavaBean

309Better tests with dependency injection

tions. The @BeanProperty annotations will generate the following getters and setters
for costPlusCalculator and externalPriceSourceCalculator properties:

def getCostPlusCalculator: Calculator = this.costPlusCalculator

def setCostPlusCalculator(c: Calculator) { this.costPlusCalculator = c }

def getExternalPriceSourceCalculator: Calculator =

 this.externalPriceSourceCalculator

def setExternalPriceSourceCalculator (c: Calculator) {
 this. externalPriceSourceCalculator = c

}

Both price calculators are already beans because they provide a default constructor.
The only missing piece is to wire up dependencies to the service, and in Spring you
can do this by specifying a configuration file, as shown in the next listing.

 <?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=

 "http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

 <bean id="costPlusCalculator" class="scala.book.CostPlusCalculator"/>

 <bean id="externalPriceSourceCalculator"

 class="scala.book.ExternalPriceSourceCalculator"/>

 <bean id="calculatePriceService"

 class="scala.book.CalculatePriceService">

 <property name="costPlusCalculator" ref="costPlusCalculator" />
 <property name="externalPriceSourceCalculator"

 ref="externalPriceSourceCalculator" />

 </bean>
</beans>

This is a standard version of a Spring configuration file, where the calculators and the
CalculatePriceService are defined by setting up the dependencies B. Save this
Spring application-context.xml file in your src/main/resources folder in your SBT
project. This is the main configuration file for the pricing application. This file will be
used to initialize the application beans. Similarly, you also have a test version of the
configuration file under src/test/resources that refers to the fake implementation of
calculators. You could also create fake instances inside the test and inject them. You’ll
use the latter one to see how you could inject fake versions of the calculators. But first
add the following dependencies to your SBT project file:

val spring = "org.springframework" % "spring" % "2.5.6"
val springTest = "org.springframework" % "spring-test" % "2.5.6"

val junit = "junit" % "junit" % "4.4" % "test"

val junitInterface = "com.novocode" % "junit-interface" % "0.5" % "test"

Listing 10.6 Spring application context file

Define bean
for cost-plus

calculator

Define bean
for external
price source

calculator

Define bean
for service
by setting
dependencies

B

310 CHAPTER 10 Building confidence with testing

Both the Spring framework and the Spring test framework are added as dependencies.
Because you haven’t learned about Specs yet, let’s use JUnit as the testing tool. Again,
junitInterface is the testing interface for SBT so that it can run the JUnit tests.

 To test CalculatePriceService, you can use Spring to configure the beans and
override the appropriate calculator inside the test. To use Spring with the JUnit test,
add the following annotations along with the test class declaration:

@RunWith(classOf[SpringJUnit4ClassRunner])
@ContextConfiguration(

 locations = Array("classpath:/application-context.xml"))

The RunWith annotation allows JUnit tests to get access to instantiated beans as defined
in the application context file. The ContextConfiguration lets you specify which con-
figuration file to use to initialize beans. If you have a test version of the configuration
file, specify that. Inside the test, if you declare a variable of CalculatePriceService
with the @Resource annotation, Spring will create and inject an instance of it into the
test. Here’s the skeleton JUnit test with Spring configuration:

@RunWith(classOf[SpringJUnit4ClassRunner])

@ContextConfiguration(locations =
 Array("classpath:/application-context.xml"))

class CalculatePriceServiceTest {

 @Resource
 var calculatePriceService: CalculatePriceService = _

}

The instance of CalculatePriceService will be created by the Spring framework and
injected inside the test for you. At this point, this test class is set up for testing the cal-
culate price service. The following is the JUnit test to check that the calculate price
service uses the cost-plus calculator to calculate price:

@Test

def shouldUseCostPlusCalculatorWhenPriceTypeIsCostPlus() {

 val fakeCostPlusCalculator = new Calculator {
 def calculate(productId: String) = 2.0D

 }

 calculatePriceService.setCostPlusCalculator(fakeCostPlusCalculator)
 val price = calculatePriceService.calculate("costPlus", "some product")

 assertEquals(2.0D, price)

}

The real implementation of the costPlusCalculator is replaced by a fake implemen-
tation. The test is passing "costPlus" as a price type, and according to the logic (see
listing 10.5) it will use the cost-plus calculator. Similarly, the following is the test for an
external price source calculator:

@Test

def testShouldReturnExternalPrice() {
 val fakeExternalPriceSourceCalculator = new Calculator {

 def calculate(productId: String) = 5.0D

 }

311Better tests with dependency injection

 calculatePriceService.setExternalPriceSourceCalculator(
 fakeExternalPriceSourceCalculator)

 val price = calculatePriceService.calculate("externalPriceSource",

 "dummy")
 assertEquals(5.0D, price)

}

In a similar fashion, the real implementation is swapped with a fake version before
invoking the service. The following listing shows the complete JUnit test.

import javax.annotation.Resource

 import junit.framework.Assert._

 import org.junit.Test
 import org.junit.runner.RunWith

 import org.springframework.test.context.ContextConfiguration

 import org.springframework.test.context.junit4.SpringJUnit4ClassRunner

 @RunWith(classOf[SpringJUnit4ClassRunner])

 @ContextConfiguration(locations = Array("classpath:/application-

context.xml"))

 class CalculatePriceServiceTest {

 @Resource

 var calculatePriceService: CalculatePriceService = _

 @Test
 def shouldUseCostPlusCalculatorWhenPriceTypeIsCostPlus() {

 val fakeCostPlusCalculator = new Calculator {

 def calculate(productId: String) = 2.0D
 }

 calculatePriceService.setCostPlusCalculator(fakeCostPlusCalculator)

 val price = calculatePriceService.calculate("costPlus",
 "some product")

 assertEquals(2.0D, price)

 }

 @Test

 def testShouldReturnExternalPrice() {

 val fakeExternalPriceSourceCalculator = new Calculator {
 def calculate(productId: String) = 5.0D

 }

 calculatePriceService.setExternalPriceSourceCalculator(
 fakeExternalPriceSourceCalculator)

 val price = calculatePriceService.calculate("externalPriceSource",

 "dummy")
 assertEquals(5.0D, price)

 }

 }

You annotate your JUnit test to allow it to see all the Spring beans using RunWith and
specify the configuration file used to create the beans. Note that if you have a test ver-
sion of the configuration, you should specify it here—that way you don’t have to cre-
ate a fake implementation per test. In large projects it’s recommended to have a test

Listing 10.7 Complete unit testing using Spring dependency injection

Allow
JUnit

test to
access
Spring
beans

Configuration
file used to
initialize beans

Resource
annotation
lets Spring set
bean value

312 CHAPTER 10 Building confidence with testing

version of a configuration file where you can configure all your beans with fake imple-
mentations of their dependencies. As you can see, there’s nothing much to change to
use Scala classes and traits with the Spring framework. And this is true for all other
dependency injection frameworks available in Java. There’s some up-front work to use
a DI framework, but for large projects it’s worth it—unless you’re using some Scala
framework that provides native support for managing dependencies.

 I covered a lot of ground in this section, and I’m sure the techniques you’ve
learned here will help you to write more decoupled and testable systems in Scala.

 The next section covers another testing tool, called Specs. JUnit was great to get
quickly up and running with testing Scala code, but now it’s time to get used to the
Scala-based testing framework, which is more expressive and easier to use.

10.5 Behavior-driven development using Specs2

Behavior-driven development (BDD) is about implementing an application by describ-
ing the behavior from the point of view of stakeholders. So far I’ve been talking about
test-driven development in this chapter, so why bother discussing BBD? How is it dif-
ferent from TDD?

 The answer is that it isn’t different. BDD18 is doing TDD the right way. The first
thing to notice is that the definition of BDD doesn’t talk about testing at all. This is on
purpose, because one pitfall of doing TDD is that some people put more emphasis on
testing than solving the business problem. And BDD puts more emphasis on solving
business problems. In fact, it recommends looking at the application from the stake-
holder’s perspective. The end result of doing BDD in a project has the following two
important outcomes:

 Delivering value quickly—Because you’re focused on viewing the application
from the stakeholder’s point of view, you understand and deliver value quickly.
It helps you to understand the problem and recommend appropriate solutions.

 Focus on behavior—This is the most important improvement because at the end
of the day, behaviors that you implement are the ones your stakeholders want.
Having a focus on behavior also reduces the effort spent on up-front design,
analysis, and documentation, which rarely adds value to the project.

To get developers and stakeholders on the same page, you need the Ubiquitous19 lan-
guage, a common language everybody speaks when describing the behavior of an
application. And you also need a tool so you can express these behaviors and write
automated specifications that assert the behavior.

NOTE I’ve been using test and specification synonymously, but specification is a
better way to talk about behavior with stakeholders. Think of a specification
as a list of examples.

18 David Chelimsky, et al., The RSpec Book: Behaviour-Driven Development with RSpec, Cucumber, and Friends, Prag-
matic Bookshelf, 2010, www.pragprog.com/book/achbd/the-rspec-book.

19 “UbiquitousLanguage,” http://martinfowler.com/bliki/UbiquitousLanguage.html.

www.pragprog.com/book/achbd/the-rspec-book
http://martinfowler.com/bliki/UbiquitousLanguage.html

313Behavior-driven development using Specs2

In BDD, you still follow the red-green-refactor cycle during your development. The
only thing that changes is the way you look at these tests or specifications. It’s time to
see some BDD in action, and the next section introduces you to the BDD tool that most
Scala developers use: Specs2.

10.5.1 Getting started with Specs2

Specs220 is the BDD library for Scala, and it’s written in Scala. At the time of this writ-
ing it’s the de facto BDD library used by Scala developers. The easiest way to get started
with Specs is to add it as a dependency to your SBT project. Add the following to your
SBT build.sbt file:

scalaVersion := "2.10.0"
libraryDependencies += "org.specs2" %% "specs2" % "1.13" % "test"

If you’re planning to use some other version of Specs, make sure it’s compatible with
the Scala version set in your SBT project. Once you reload and update your project,
you’re ready to use Specs. The best part is that SBT knows how to run the Specs speci-
fication natively. Write the first Specs specification using the same calculate price ser-
vice you saw in the previous section. Create the empty specification for
CalculatePriceService:

package scala.book
import org.specs._
class CalculatePriceServiceSpecification extends Specification

To declare a Specs specification, you always have to import org.specs2.mutable._
and extend the Specification trait. Next, specify the behaviors of the calculate
price service:

package scala.book
import org.specs2.mutable._
class CalculatePriceServiceSpecification extends Specification {
 "Calculate price service" should {
 "calculate price for cost plus price type" in {}
 "calculate price for external price source type" in {}
 }
}

You’ve added a structure to the specification. First you use the should method to
define the system, followed by the description of two behaviors of the service. The
Specs framework adds methods like should and in to the String class using implicit
conversion so that your specification can become more expressive and readable.
When you run this specification using the SBT test action, you’ll see the output shown
in figure 10.4.

 If you have a color-enabled terminal window, Specs will show the test output in
different colors. Because I haven’t implemented the specification, in figure 10.4, it’s
yellow. (If I had implemented the specification, green would indicate a passed test,
red a failure.)

20 Specs 2, http://etorreborre.github.com/specs2/.

http://etorreborre.github.com/specs2/

314 CHAPTER 10 Building confidence with testing

Implement these pending specifications using the cake pattern implementation of the
service. In section 10.5.1, you created two versions of CalculatePriceService—one
that uses the real calculators and another using the fake implementation of the calcu-
lators for testing. Here’s the test version of CalculatePriceService:

trait TestPricingSystem

 extends CalculatePriceServiceComponent with Calculators {
 class StubCostPlusCalculator extends CostPlusCalculator {

 override def calculate(productId: String) = 5.0D

 }
 class StubExternalPriceSourceCalculator

 extends ExternalPriceSourceCalculator {

 override def calculate(productId: String) = 10.0D
 }

 val costPlusCalculator = new StubCostPlusCalculator

 val externalPriceSourceCalculator = new StubExternalPriceSourceCalculator
}

Both calculators return a hardcoded price. This is perfectly fine because the focus
right now is on CalculatePriceService, and the assumption is that both calculators
work correctly. To use this version of the pricing system, you need to mix this in with
the specification, as shown in the following listing.

import org.specs2.mutable._
import cakepattern._

class CalculatePriceServiceSpecification

 extends Specification with TestPricingSystem {

 "Calculate price service" should {

 "calculate price for cost plus price type" in {

 val service = new CalculatePriceService
 val price: Double = service.calculate("costPlus", "some product")

 price must

beEqualTo(5.0D)
 }

 "calculate price for external price source type" in {

 val service = new CalculatePriceService
 val price: Double = service.calculate("externalPriceSource",

 "some product")

Listing 10.8 Specification for CalculatePriceService

Figure 10.4 Specs output of running a specification

Using specs2
beEqualTo matcherB

315Behavior-driven development using Specs2

 price must be_==(10.0D)
 }

 }

}

The TestPricingSystem is mixed in with the CalculatePriceService using the fake
implementation of calculators. B uses the Specs’ built-in matcher called beEqualTo,
and C uses an overloaded version of it. The must method is again added by Specs
using implicit conversions to almost all the types to make the specification more read-
able. This example demonstrates how easy it is to write a good expressive specification
with Specs. The next section explores Specs features available to you for writing
expressive specifications.

10.5.2 Working with specifications

To effectively work with Specs, you need to get comfortable with specifications and the
available matchers. The matchers are the way you add expectations in your specifica-
tion. beEqualTo and must be_== are examples of matchers. Specs ships with many
built-in matchers, and you can find the complete list in the Specs documentation.21

 You saw a sample specification in the previous section. Now I’ll show you a varia-
tion of that. Depending on the kind of behavior you’re describing, pick the appropri-
ate one.

 The basic format of the Specs specification is that you extend the Specification
trait and then provide examples:

package variousspecs
import org.specs2.mutable._

object MySpec extends Specification {

 "example1" in {}
 "example2" in {}

}

One way to look at a specification is as a group of examples that describe the behavior
of your application. But typically, when writing specifications you’ll have a component
for which you’re describing the behavior; this is your system under specification. You
can organize the examples as a group for a system under specification:

object SUSSpec extends Specification {

 "my system" should {

 "do this" in {}
 "do that" in {}

 }

}

You can also nest examples if you want to refine your examples. You may want to add
an example to describe the behavior of a cost-plus calculator when the product ID is

21 Specs, MatchersGuide, “How to add expectations to your examples,” http://code.google.com/p/specs/
wiki/MatchersGuide.

Using specs2
be_== matcherC

http://code.google.com/p/specs/wiki/MatchersGuide
http://code.google.com/p/specs/wiki/MatchersGuide

316 CHAPTER 10 Building confidence with testing

empty. According to the stakeholder, the price in this case should be 0.0. Here’s how
the example looks:

"calculate price for cost plus price type" in {

 val service = new CalculatePriceService
 val price: Double = service.calculate("costPlus", "some product")

 price must beEqualTo(5.0D)

 "for empty product id return 0.0" in {
 val service = new CalculatePriceService

 service.calculate("costPlus", "") must beEqualTo(0.0D)

 }
 }

You’re nesting the example for the special case when the product is empty. By default,
examples are run in isolation, and they don’t share any state. What that means is that
you have to take extra measures to share the variables and state. Because having
shared state between examples is a bad idea, I’m not going to cover that here.

 Another interesting way to declare specifications in Specs is to use data tables.22

Data tables allow you to execute your example with a set of test data. For example, if
you have to describe an example of how the cost-plus rule calculates price, having one
example with one sample data isn’t enough. To describe its behavior properly, you
need a set of data that evaluates the rule. Specs data tables come in handy in these
cases. They let you specify your sample data in a table format like the following:

"cost plus price is calculated using 'cost + 20% of cost + given service

 charge' rule" in {

 "cost" | "service charge" | "price" |>

 100.0 ! 4 ! 124 |

 200.0 ! 4 ! 244 |
 0.0 ! 2 ! 2 | {

 (cost, serviceCharge, expected) =>

 applyCostPlusBusinessRule(cost, serviceCharge) must be_==(expected)
 }

}

The example describes the rule, and the data table helps capture the data you need to
verify the applyCostPlusBusinessRule method. The first row of the table is the
header and is used for readability purposes. The second and following rows have sam-
ple data followed by a closure that’s invoked for each row of data. Inside the closure
you’re evaluating the applyCostPlusBusinessRule method and checking the
expected result. To use data tables in your specification, you have to mix in the Data-
Tables trait. And the > at the beginning of the table is also required—think of it as a
play command. The > makes the table executable as part of the example.

 Specs data tables are a great way to create examples with sets of example data. You
can also use ScalaCheck with Specs and have it generate sample data for your example.

22 Specs, “How to use Data Tables,” updated March 30, 2010, http://code.google.com/p/specs/wiki/
AdvancedSpecifications.

http://code.google.com/p/specs/wiki/AdvancedSpecifications
http://code.google.com/p/specs/wiki/AdvancedSpecifications

317Testing asynchronous messaging systems

 The next section explores how automated testing fits into the asynchronous mes-
saging world. In chapter 9 you learned about actors as a specific example of messaging
systems. Now let’s see how to write tests around them.

10.6 Testing asynchronous messaging systems

So far this chapter has talked about testing or created examples for systems that are
synchronous, where the test invokes the system and control comes back to the test
when the system is done performing an action. But in asynchronous fire-and-forget
systems, the control will come back to the test while the system is executing. From the
test, you don’t get the feedback you’re looking for. To overcome this challenge, devel-
opers sometimes extract the business logic outside of the messaging layer (always a
good idea) and test it separately. One drawback with this kind of approach is that
you’re no longer testing your system end to end. For example, to verify that one actor
is sending a message to another actor after some action, you need to write an integra-
tion test that sends a message to one actor and waits for the reply. The general rule for
writing integration tests around asynchronous systems is to detect invalid system state
or wait for some expected notification with a timeout.

 Writing automated tests around asynchronous systems is quite new, and the tools
for it are still maturing. One tool worth mentioning here is Awaitility,23 which provides
a nice testing DSL for testing asynchronous systems. Let’s see Awaitility work in a sim-
ple example. Imagine that you have an order-placing service that saves orders to the
database asynchronously, and you place an order by sending a PlaceOrder message.
Here’s the dummy ordering service implemented as an actor:

package example.actors

case class PlaceOrder(productId: String, quantity: Int, customerId: String)

class OrderingService extends Actor {
 def act = {

 react {

 case PlaceOrder(productId, quantity, customer) =>
 }

 }

 }

Inside the specification you’ll use Awaitility’s await method to wait until the order is
saved into the database. If the order isn’t saved in the database, then you know that
something went wrong while processing the message. Here’s the specification for the
ordering service:

import org.specs2.mutable._

import example.actors._
import com.jayway.awaitility.scala._

import com.jayway.awaitility.Awaitility._

class OrderServiceSpecification extends Specification
 with AwaitilitySupport {

23 Awaitility, http://code.google.com/p/awaitility/.

http://code.google.com/p/awaitility/

318 CHAPTER 10 Building confidence with testing

 "Ordering system" should {
 "place order asynchronously" in {

 val s = new OrderingService().start

 s ! PlaceOrder("product id", 1, "some customer id")
 await until {orderSavedInDatabase("some customer id") }

 1 must_== 1

 }
 def orderSavedInDatabase(customerId: String) = ...

 }

}

The preceding example sends an asynchronous message to the ordering service B
and waits until the order is saved into the database. The default timeout for Awaitility
is 10 seconds, and you can easily set your timeout by invoking the overloaded version
of await. Inside the orderSavedInDatabase, you could go to the data source and
check whether the order is saved for a given customer ID.

 Awaitility doesn’t provide any infrastructure to help you test asynchronous systems,
but it does make your examples readable.

10.7 Summary

This chapter covered an important topic that is critical to developing high-quality soft-
ware. Picking up a new programming language and trying to use it to build a large
application is difficult. And one of the common hurdles is to find a way to write auto-
mated tests in the new language or programming environment. This chapter gave you
that introduction and introduced tools you can use in Scala projects.

 First I introduced you to automated testing and how you can generate automated
tests using ScalaCheck. You learned how to define specifications in ScalaCheck and
create custom test data generators. ScalaCheck is a great way to get test protection for
your Scala project.

 You learned about agile software development and the role test-driven develop-
ment plays inside it. You also explored how TDD is beneficial to building reliable soft-
ware and how it helps in evolving design. To use TDD as a practice in a Scala project,
you need tool support. I explained how to set up a continuous environment and use
SBT as a build tool. I listed some of the common tools used by Scala developers.

 Building applications using automated tests requires that your design be testable.
One of the critical properties for a testable design is inversion of control, used in Java,
Ruby, and other languages. Scala, being both object-oriented and functional, has
more options to create abstractions. Section 10.5 showed you ways of doing depen-
dency injection in Scala. Concepts like self type and abstract members aren’t only
restricted to dependency injection—in fact, you can take these abstract ideas and
build reusable components in Scala.

 The most common mistake made by developers when doing TDD is putting focus
on testing, whereas the most important thing is the behavior of the application. BDD
fixes that confusion by putting the focus back on behavior and customer collabora-
tion. I introduced you to a tool called Specs that allows you to write expressive specifi-

Send
message
to actor

B

Wait until
data is saved
in database

319Summary

cations. I mentioned that you can use JUnit to test your Scala code, but noted that it
isn’t recommended. Using Scala specification/testing tools will improve the readabil-
ity of your tests and will provide better integration with other Scala tools.

 On the surface, writing automated tests looks difficult, but I’m confident you don’t
feel that way anymore. With Scala’s rich ecosystem of tools, it’s easy to get started with
automated tests or specifications, and you don’t have any excuse not to use them.

 The next chapter discusses functional programming. You’ve seen some functional
programming features of Scala in previous chapters and examples, but chapter 11 ties
them together with functional programming concepts so you can write more reliable
and correct Scala programs.

Part 3

Advanced steps

These last 2 chapters lead you through advanced steps in Scala.
 One of the most exciting features of Scala is that it runs on the JVM. The ben-

efit of running on a JVM, as you know by this point, is that you can integrate with
other languages on it and take advantage of all the frameworks and tools built
into other JVM languages. Chapter 11, while it encourages you to think Scala
first, covers the interoperability between Scala and Java.

 Chapter 12 introduces Akka, a Scala toolkit that allows you to build next-
generation, event-based, fault-tolerant, scalable, and distributed applications
for the JVM.

 To understand how the individual pieces of Akka fit together, you’re going to
build a large real-time product search application using Akka called Akkaoogle.
This application is similar to what used to be called Froogle.

323

Interoperability between
Scala and Java

One of the most exciting features of Scala is that it runs on the JVM. The benefit of
running on a JVM is that you can take advantage of all the frameworks and tools built
into other JVM languages. More companies are moving to the JVM even if they don’t
use Java as their primary programming language. I strongly believe that any lan-
guage that doesn’t have support for the JVM is almost a nonstarter, for most of the
software projects in the enterprise.

 One of the main design goals of Scala is to run on a JVM and provide interoper-
ability with Java. Scala is compiled to Java bytecodes, and you can use tools like
javap (Java class file disassembler) to disassemble bytecodes generated by the Scala
compiler. In most cases, Scala features are translated to Java features so that Scala

This chapter covers

 Using Java classes in Scala

 Working with Java generics and collections

 Solving integration challenges

 Building web applications using Java

frameworks

324 CHAPTER 11 Interoperability between Scala and Java

can easily integrate with Java. For example, Scala uses type erasure1 to be compatible
with Java. Type erasure also allows Scala to be easily integrated with dynamically typed
languages for the JVM. Some Scala features (such as traits) don’t directly map to Java,
and in those cases you have to use workarounds (more about this in section 11.3).

 Even though integration with Java is easy for the most part, I encourage you to use
pure Scala as much as possible. When I’m working with the Java library or framework,
I try to find something equivalent in Scala first, and use Java if there’s no equivalent
Scala library available. The downside of using the Java library is that you have to deal
with mutability, exceptions, and nulls that are absolutely discouraged in the Scala
world. Be extra careful when choosing a Java library or framework before using it in
Scala. A good example of a well-written Java library is Joda-Time (http://joda-
time.sourceforge.net).

 The most common integration of Scala and Java has part of the project written in
Scala. Section 11.4 shows how to use Scala with existing Java frameworks such as
Hibernate and Spring to build a web application.

 In most cases, the integration between Scala and Java is seamless, but be aware of
some corner cases because they will occur when you’re integrating Java code with
Scala and vice versa. The goal of this chapter is to show you how easily you can inte-
grate Scala with Java and which practices to follow to avoid integration problems.
You’ve been integrating with Java classes and frameworks throughout the book with-
out my pointing them out, but here you’ll focus on integration so you can take advan-
tage of both worlds.

 The easiest way to introduce Scala in an existing Java project is to write some part
of it in Scala and demonstrate the benefits the language has to offer over Java—and
then gradually rewrite the Java parts to Scala. I’ve seen this transition path work suc-
cessfully many times.

 Let’s kick off the chapter with some integration examples between Java and Scala.
You’ll learn how to handle features that are available in Java but not in Scala, such as
static members and checked exceptions, and how to use Scala features like traits in
Java code. You’ll also learn how Scala annotations help in integration—for example,
generating JavaBean-style get and set. At the end of the chapter you’ll build a web
application using Java frameworks.

11.1 Using Java classes in Scala

It’s easy to integrate Java classes with Scala. Because working with dates in Java is
always a painful process, the following Java code snippet uses the Joda-Time library to
calculate the number of days between two dates:

package chap11.java;

import org.joda.time.DateTime;

import org.joda.time.Days;

import java.util.Date;

1 Java Tutorials: Type erasure, http://download.oracle.com/javase/tutorial/java/generics/erasure.html.

http://joda-time.sourceforge.net
http://joda-time.sourceforge.net
http://download.oracle.com/javase/tutorial/java/generics/erasure.html

325Using Java classes in Scala

public class DateCalculator {
 public int daysBetween(Date start, Date end) {

 Days d = Days.daysBetween(new DateTime(start.getTime()),

 new DateTime(end.getTime()));
 return d.getDays();

 }

 }

In a new SBT project, save the preceding code snippet to DateCalculator.java in the
src/main/java/chap11/java folder. SBT knows how to cross-compile Java and Scala
code. To use this class in Scala, extend the Java class as follows:

package chap11.scala

import chap11.java._

import java.util.Date

class PaymentCalculator(val payPerDay: Int = 100) extends DateCalculator {

 def calculatePayment(start: Date, end: Date) = {

 daysBetween(start, end) * payPerDay
 }

}

The Scala class is calculating the payment using
the daysBetween method defined in the Date-
Calculator Java class. The integration is so
seamless, you won’t even notice the difference.

 In the next section you’ll learn how to use
Java static members in Scala.

11.1.1 Working with Java static members

When working with Java classes that declare
static members, you need to understand how
they’re interpreted in Scala.

 Scala doesn’t have any static keywords, and
Scala interprets Java static methods by think-
ing of them as methods of a companion
object. Take a look at the following example to
see how it works. This code adds a static
method that returns the chronology (chrono-
logical calendar system) used by Joda-Time to
represent time:

package chap11.java;

import org.joda.time.DateTime;

import org.joda.time.Days;

import org.joda.time.Chronology;
import java.util.Date;

public class DateCalculator {

 public int daysBetween(Date start, Date end) {

Compiling Java

and Scala together

SBT knows how to build mixed

Scala and Java projects out of

the box. The Scala compiler

allows you to build against both

Java classes and Java source

code. That way, if you have bidi-

rectional dependency between

Java and Scala, you can build

them together without worrying

about order.

You can also use the Maven build

tool to build mixed Java and

Scala projects. To do so, you

have to add an additional Maven

plug-in. In this chapter’s final

example you’ll use Maven to

build an example project.

326 CHAPTER 11 Interoperability between Scala and Java

 Days d = Days.daysBetween(new DateTime(start.getTime()), new
 DateTime(end.getTime()));

 return d.getDays();

 }

 public static Chronology getChronologyUsed() {

 return DateTime.now().getChronology();

 }
}

To access the static member, you have to refer it as if it’s defined in a companion
object, like the following:

class PaymentCalculator(val payPerDay: Int = 100) extends DateCalculator {

 ...

 def chronologyUsed = DateCalculator.getChronologyUsed
}

You’re accessing the static method defined in DateCalculator by using the class
name like you access a companion object.

Up next, you’ll see how to work with Java checked exceptions, because Scala doesn’t
have them.

11.1.2 Working with Java checked exceptions

Scala’s lack of checked exceptions at times creates confusion when working with Java
codebases where the compiler enforces checked exceptions. If you invoke the follow-
ing Java method in Scala, you don’t have to wrap the call in a try/catch block:

package chap11.java;

import java.io.*;

public class Writer {
 public void writeToFile(String content) throws IOException {

 File f = File.createTempFile("tmpFile", ".tmp");

 new FileWriter(f).write(content);
 }

}

Public static method
to return chronology

Visibility issues between Scala and Java

Scala and Java implement visibility differently.

Scala enforces visibility at compile time but makes everything public at runtime.

There’s a reason for that: in Scala, companion objects are allowed to access pro-

tected members of companion classes, and that can’t be encoded at the bytecode

level without making everything public.

Java enforces visibility rules both at compile time and runtime. This brings up some

interesting corner cases. For example, if you have a protected static member defined

in a Java class, there’s no way to access that member in Scala. The only workaround

is to wrap it in a public member so that can be accessed.

327Using Java classes in Scala

In Scala, you can invoke the method without a try/catch block:

scala> def write(content: String) = {

 | val w = new Writer

 | w.writeToFile(content)
 | }

write: (content: String)Unit

scala> write("This is a test")

As a programmer, it’s your responsibility to determine whether you need to catch the
exception. The Scala compiler won’t force you. In cases where you think you should
catch the exception, don’t rethrow the exception from Scala. It’s a bad practice. A bet-
ter way is to create an instance of the Either or Option type. The following code snip-
pet invokes the writeToFile method and returns an instance of Either[Exception,
Boolean]:

def write(content: String): Either[Exception, Boolean] = {

 val w = new Writer

 try {

 w.writeToFile(content)
 Right(true)

 }catch {

 case e: java.io.IOException => Left(e)
 }

}

The benefit is now you can compose with the result. Always remember that exceptions
don’t compose. But there may be cases where you have to throw an exception because
some framework or client code expects it, and in these cases you can use Scala annota-
tions to generate bytecodes that throw an exception (section 11.2.1 has more on this).
For now, let’s move on to Java generics. Understanding how Java generics work is
important because they’re used in Java collections.

11.1.3 Working with Java generics using existential types

Java generics translate straightforwardly to Scala type parameters. For example,
Comparator<T> translates to Comparator[T], and ArrayList<T> to ArrayList[T]. But
things become interesting when you have classes defined in Java with wildcard types.
Here are two examples of Java collections with wildcard types:

Vector<?> names = new Vector<?>()
List numbers = new ArrayList()

In both cases, the type parameter is unknown. These are called raw types in Scala, and
existential types let you handle these raw types in Scala. Vector<?> could be repre-
sented as Vector[T] forSome { type T } in Scala. Reading from left to right, this type
expression represents a vector of T for some type of T. This type T is unknown and
could be anything. But T is fixed to some type for this vector.

 Let’s look at an example to see how to use Java raw types in Scala. The following
creates a Java vector with a wildcard type:

328 CHAPTER 11 Interoperability between Scala and Java

import java.util.*;

class JavaRawType {
 public static Vector<?> languages() {
 Vector languages = new Vector();
 languages.add("Scala");
 languages.add("Java");
 languages.add("Haskell");
 return languages;
 }
}

JavaRawType.languages returns a vector of three languages, but with wildcard type ?.
To use the languages method in Scala, you have to use the existential type. The type
signature will be Vector[T] forSome { type T}, as in the following:

import java.util.{Vector => JVector }

def printLanguages[C <: JVector[T] forSome { type T}](langs: C):Unit = {
 for(i <- 0 until langs.size) println(langs.get(i))
}

Working with Java collections

Working with Java collection classes in Scala is painful once you get used to the

power of the Scala collections library. Ideally, you should work with Scala collections

in Scala code and transform them into the Java collection equivalent when crossing

into Java code, and vice versa. That way, you can use the power of the Scala collec-

tions library when needed and easily integrate with Java codebases that only under-

stand Java collection classes. The Scala library ships with two utility classes that do

exactly that for you:

scala.collection.JavaConversions
scala.collection.JavaConverters

Both of these classes provide the same set of features, but they’re implemented dif-

ferently. JavaConversions provides a series of implicit conversions that convert

between a Java collection and the closest corresponding Scala collection, and vice

versa. JavaConverters uses a “Pimp my Library” pattern to add the asScala
method to Java collection and asJava method to Scala collection types. My recom-

mendation would be to use JavaConverters because it makes the conversion

explicit. The following example uses JavaConverters to convert java.util.List to

Scala and back:

scala> import java.util.{ArrayList => JList }
import java.util.{ArrayList => JList}
scala> val jList = new JList[Int]()
jList: java.util.ArrayList[Int] = []
scala> jList.add(1)
res1: Boolean = true
scala> jList.add(2)
res2: Boolean = true
scala> import scala.collection.JavaConverters._
import scala.collection.JavaConverters._

scala> jList.asScala foreach println

329Using Scala classes in Java

The existential type sets the upper bound of the type C and prints all the elements of
the Java vector.

 There’s placeholder syntax for existential type JVector[_]. It means the same
thing as JVector[T] forSome { type T }. The preceding printLanguages method
could also be written as follows:

def printLanguages[C <: JVector[_]](langs: C):Unit = {

 for(i <- 0 until langs.size) println(langs.get(i))

 }

11.2 Using Scala classes in Java

One of the most interesting language features of Scala is traits, which are used a lot in
Scala codebases. If you define a trait with only abstract methods, it gets compiled in
the Java interface, and you can use it in Java without any issues. But if you have a trait
with concrete methods, things become interesting. Let’s take an example where you’ll
have a trait with concrete methods and see how that’s compiled into Java bytecode.

 The following example has a Scala trait that makes objects persistable to a database
when mixed in:

package chap11.scala

trait Persistable[T]{

 def getEntity: T

 def save(): T = {
 persistToDb(getEntity)

 getEntity

 }
 private def persistToDb(t: T) = {...}

}

You have an abstract method called getEntity and two concrete methods, save and
persistToDb. When this code is compiled, the Scala compiler generates two class files,
Persistable.class and Persistable$class. To verify the content of each class file,
you can use the :javap option in the SBT console:

scala> :javap chap11.scala.Persistable

Compiled from "ScalaJavaMash.scala"

public interface chap11.scala.Persistable extends scala.ScalaObject{
 public abstract java.lang.Object getEntity();

 public abstract java.lang.Object save();

}

The asScala on jList transforms the java.util.ArrayList to scala.collection
.mutable.Buffer so that you can invoke foreach on it. The following transforms

scala List to java.util.List:

scala> List(1, 2).asJava
res4: java.util.List[Int] = [1, 2]

330 CHAPTER 11 Interoperability between Scala and Java

scala> :javap chap11.scala.Persistable$class
Compiled from "ScalaJavaMash.scala"

public abstract class chap11.scala.Persistable$class extends

 java.lang.Object{
 public static java.lang.Object save(chap11.scala.Persistable);

 public static void $init$(chap11.scala.Persistable);

}

The Persistable.class file represents the Java interface, with all the public methods
declared in the Persistable trait, and extends scala.ScalaObject. Every user-defined
class in Scala extends scala.ScalaObject. On the other hand, the Persistable
$class file defines an abstract class that defines all the concrete methods of the trait.
Think of this abstract class as a façade to all the concrete methods defined in the trait.

 On the Java side, take the help of both classes. You’ll extend the interface and use
the abstract class as a façade to access the concrete methods of the trait. The following
example has an Account type that implements the Persistable interface and uses the
static methods in Persistable$class to access concrete methods of the Persistable
trait:

package chap11.java;

import chap11.scala.*;

public class Account implements Persistable<Account> {
 public Account getEntity() { return this; }

 public Account save() {

 return (Account)Persistable$class.save(this);
 }

}

The implementation of the Persistable interface is straightforward. getEntity
returns an instance of the Account object, and the save method delegates to the static
save method of the Persistable$class class to access the implementation-defined
trait. Note that when working with stackable traits, it’s much better to create a con-
crete class in Scala and then directly use it or extend it in Java. (This chapter’s accom-
panying codebase has an example of that.)

 One of the first hurdles people face when integrating Scala with Java frameworks is
that Scala classes don’t have JavaBean-style get and set methods. Scala annotations
provide the flexibility to specify how you want the Scala compiler to generate byte-
codes and are helpful in cases like these.

11.2.1 Using Scala annotations

Scala doesn’t follow the standard Java getter and setter pattern. In Scala, getters and
setters look different. For example, to create a Scala class with a Scala-style getter and
setter, all you have to do is declare members as var, as in the following:

class ScalaBean(var name: String)

Access save
method
from trait

331Using Scala classes in Java

When compiled, this class generates the following bytecode:

scala> :javap chap11.scala.ScalaBean

Compiled from "ScalaJavaMash.scala"

public class chap11.scala.ScalaBean extends java.lang.Object
 implements scala.ScalaObject{

 public java.lang.String name();

 public void name_$eq(java.lang.String);
 public chap11.scala.ScalaBean(java.lang.String);

}

If you compare the following code with the code generated in the preceding snippet,
it will make sense:

scala> val s = new chap11.scala.ScalaBean("Nima")

s: chap11.scala.ScalaBean = chap11.scala.ScalaBean@6cd4be25

scala> s.name

res0: String = Nima

scala> s.name = "Paul"
s.name: String = Paul

If you add the scala.reflect.BeanProperty annotation to a property, the Scala com-
piler will generate corresponding get and set methods. In the case of name, it will
generate getName and setName methods:

class ScalaBean(@scala.reflect.BeanProperty var name: String)

Here’s how it looks when inspected using javap:

scala> :javap chap11.scala.ScalaBean
Compiled from "ScalaJavaMash.scala"

public class chap11.scala.ScalaBean extends java.lang.Object implements

scala.ScalaObject{
 public java.lang.String name();

 public void name_$eq(java.lang.String);

 public void setName(java.lang.String);
 public java.lang.String getName();

 public chap11.scala.ScalaBean(java.lang.String);

}

Note here that when using the BeanProperty annotation, the Scala compiler will gen-
erate both Scala and Java-style get and set methods. Using BeanProperty does
increase the size of the class file generated, but that’s a small price to pay for the
interoperability with Java. Now if you want to generate JavaBean-compliant BeanInfo,
you can use scala.reflect.BeanInfo.

 Section 11.1 showed that Scala doesn’t have checked exceptions, and Scala doesn’t
have a throws keywords to declare methods that throw exceptions. This at times
causes problems. For example, if you want to use Scala to declare a java.rmi.Remote
interface, you’ll have trouble because each method declared in the Remote interface
needs to throw RemoteException. Again, using annotations you could instruct the

get method
set method

JavaBean-style
set method

JavaBean-style
get method

332 CHAPTER 11 Interoperability between Scala and Java

Scala compiler to generate methods with a throws clause. The following code defines
an RMI interface in Scala:

trait RemoteLogger extends java.rmi.Remote {
 @throws(classOf[java.rmi.RemoteException])
 def log(m: String)
}

The RemoteLogger trait extends the standard java.rmi.Remote to mark the interface
as an RMI remote interface; to generate the throws clause it’s using the scala.throws
annotation defined in the Scala standard library. Look into the generated bytecode,
and you’ll see the throws clause:

scala> :javap chap11.scala.RemoteLogger
Compiled from "ScalaJavaMash.scala"
public interface chap11.scala.RemoteLogger extends java.rmi.Remote{
 public abstract void log(java.lang.String) throws
 java.rmi.RemoteException;
}

You can also use Scala’s target meta annotation to control where annotations on fields
and class parameters are copied. In the following code the Id annotation will only be
added to the Bean getter getX:

import javax.persistence.Id
class A { @(Id @beanGetter) @BeanProperty val x = 0 }

Otherwise, by default, annotations on fields end up on the fields. This becomes
important when you’re dealing with Java frameworks that are particular about where
the annotation is defined. In the next section you’ll see some usage of the target anno-
tation and how to use popular frameworks like Spring and Hibernate in the Scala
codebase.

11.3 Building web applications in
Scala using Java frameworks

In this section you’ll build a web application using Scala classes with Java frameworks.
This example will show how you can use Scala in a Java-heavy environment, so when
adopting or migrating to Scala you don’t have to throw away all your investment in
Java frameworks and infrastructure. Obviously, some of the boilerplate code goes away
when you use frameworks built for Scala. Nonetheless, learning to work with Java
frameworks is important for cases where you don’t have the option to select Scala-
based frameworks. In this section you’re going to build a web application using the
Spring framework (www.springsource.org) and Hibernate (www.hibernate.org). You’ll
also let go of your favorite build tool, SBT, and use Maven to build your Java because
it’s the most common build tool used in Java projects.

NOTE This section assumes that you’ve previously used Spring, Hibernate,
and Maven to build Java web applications. If you haven’t, it may become hard
to follow. It’s also safe to skip this section if you aren’t interested in working
with Java frameworks.

333Building web applications in Scala using Java frameworks

Before going any further, let’s identify the type of application you’re going to build.
You’ll build a small web application called topArtists that displays top artists from
Last.fm (www.last.fm). Last.fm is a popular music website that lets visitors access inter-
net radio stations. Last.fm also provides an API you can use to retrieve various charts
about songs and artists. You’ll be using its chart.getTopArtists REST API to retrieve
all the current top artists and save them in your local database. You’ll also display all
the artists stored in your local database to the user. Let’s move on and set up the
Maven build.

NOTE You first need to get an API key from Last.fm. Make sure you have it
before you run this example. You can acquire an API key at the Last.fm web-
site (www.last.fm/api/authentication).

If you’ve done Java development, then most likely you’ve already used Maven. But if
Maven isn’t set up, download the latest version of the Maven build tool (http://
maven.apache.org/download.html). Maven knows how to compile Java source files,
but to make it compile Scala source files you need to add the Maven Scala plug-in.2 To
create an empty web application using Maven, execute the following command:

mvn archetype:generate -DgroupId=scala.in.action -DartifactId=top.artists

 -DarchetypeArtifactId=maven-archetype-webapp

That command will create an empty web project for you. The structure of the project
should be familiar because it’s exactly the same as an SBT project (SBT follows Maven
conventions). Once you have the pom.xml file (the Maven build file generated by the
preceding command), you can configure all the dependencies. As mentioned, you’ll
use the Hibernate and Spring frameworks to build the application. To save time, you
can copy the pom.xml file from the codebase associated with the project.

 There’s no need to explain how Maven works because once you configure all the
dependencies, it gets out of your way. But if you’ve never used Maven, remember that
pom.xml is the build file you use to configure Maven and specify all the dependencies.

 For the topArtists application you’ll use Spring to build the web layer and also
use it as a dependency injection framework. Hibernate will be your ORM layer and will
save all the artists retrieved from Last.fm to the database. For your toy application,
you’ll be using the database HSQLDB (http://hsqldb.org). But to make a REST
request to Last.fm, you’ll use a pure Scala library called dispatch.3 Dispatch is a Scala
library, built on top of the Async Http Client library, that makes it easy to work with
web services.4

NOTE The complete version of the topArtists web application is available in
the code that accompanies this chapter.

Let’s move on and write the code necessary to build the application.

2 Maven Scala plug-in download, http://scala-tools.org/mvnsites/maven-scala-plugin/.
3 Dispatch Scala library: http://dispatch.databinder.net/Dispatch.html.
4 See “AsyncHttpClient/async-http-client,” https:/github.com/AsyncHttpClient/async-http-client.

www.last.fm/api/authentication
http://maven.apache.org/download.html
http://maven.apache.org/download.html
https:/github.com/AsyncHttpClient/async-http-client
http://dispatch.databinder.net/Dispatch.html
http://hsqldb.org
http://scala-tools.org/mvnsites/maven-scala-plugin/

334 CHAPTER 11 Interoperability between Scala and Java

11.3.1 Building the model, view, and controller

The topArtists application displays artists retrieved from the REST API call from
Last.fm. To see what information you can retrieve from Last.fm, invoke the following
URL from any web browser window:

http://ws.audioscrobbler.com/2.0/?method=chart.gettopartists&api_key=
<your api key>

Make sure you use your Last.fm API key before invoking the URL. If the request is suc-
cessful, you’ll see information about artists, including name, number of times the
songs have been played, listeners, URL, and other attributes. To keep things simple,
use only the result from the first page and store the name of the artist, play count, and
listeners. Your simple domain object will look like the following:

package chap11.top.artists.model

class Artist {

 var name: String = ""
 var playCount: Long = 0

 var listeners: Long = 0

}

This model class represents an artist by name, number of times songs by the artist have
been played, and number of listeners. You’ll retrieve all this data from the Last.fm feed.

 Because you’re using Hibernate as your ORM tool, you need to make your domain
object compatible with Hibernate. First use @BeanProperty to generate JavaBean-style
get/set methods. Then use necessary javax.persistence annotations so that Hiber-
nate knows how to retrieve and save Artist domain objects into the database. The fol-
lowing listing shows the complete Artist domain object.

Compiling Scala code with Maven

By default, Maven knows how to compile Java code. If you take a look at the pom.xml

file associated with the codebase of this chapter, you’ll notice the following snippet:

...

<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>

<version>2.15.2</version>

...

This adds the Maven Scala plug-in. As you can see, this code calls for the 2.15.2

version of the plug-in, but make sure you always use the latest version. Once you add

the plug-in, it will create goals (tasks) to compile and run Scala classes. For example,

you can use Maven’s scala:compile to compile Scala code and scala:cc to have

a continuous compilation (similar to ~compile in SBT). You can find more options at

the Maven Scala plug-in documentation page.

335Building web applications in Scala using Java frameworks

package chap11.top.artists.model

import reflect.BeanProperty

import javax.persistence._
import scala.annotation.target.field

@Entity

class Artist {
 @(Id @field) @(GeneratedValue @field) @BeanProperty

 var id: Long = 0

 @BeanProperty
 var name: String = ""

 @BeanProperty

 var playCount: Long = 0
 @BeanProperty

 var listeners: Long = 0

}

object Artist {

 def apply(name: String, playCount: Long, listeners: Long) = {

 val a = new Artist

 a.name = name
 a.playCount = playCount

 a.listeners = listeners

 a
 }

}

Hibernate implements the Java Persistence API (JPA), and by using the JPA annotation
Entity you’re specifying Hibernate to persist the object to the database. You’re using
the Id annotation to specify the ID field of the class and scala.annotation.target to
generate the Id and GeneratedValue annotation at the field level.

 Now, to save and retrieve the artist from the database, you have to work with the
Hibernate session factory. Create a new class to encapsulate that and call it ArtistDb.
This class will help you hide Hibernate-specific details from the rest of the code.
Think of this class as a data access object. Because you’re using Spring, you can easily
inject the necessary Hibernate dependencies into this new class. The following listing
shows the complete implementation of the ArtistDb class.

package chap11.top.artists.db

import org.springframework.stereotype.Repository

import org.springframework.transaction.annotation.Transactional
import org.springframework.beans.factory.annotation.Autowired

import org.hibernate.{Session, SessionFactory}

import java.util.{List => JList }
import chap11.top.artists.model.Artist

trait ArtistDb {

 def findAll: JList[Artist]

Listing 11.1 Artist Hibernate domain object

Listing 11.2 ArtistDb.scala database access with Hibernate

Specify
that class
is JPA entity

Specify Id
field of entity

Companion
object to
create artist

Interface
of data access
layer

336 CHAPTER 11 Interoperability between Scala and Java

 def save(artist: Artist): Long
}

@Repository

class ArtistRepository extends ArtistDb {
 @Autowired

 var sessionFactory: SessionFactory = null

 @Transactional
 def save(artist: Artist): Long =

currentSession.save(artist).asInstanceOf[Long]

 @Transactional(readOnly = true)
 def findAll: JList[Artist] =

 currentSession.createCriteria(classOf[Artist]).

 list().asInstanceOf[JList[Artist]]

 private def currentSession = sessionFactory.getCurrentSession

}

The ArtistRepository class is marked with the Spring stereotype annotation
Repository so that the Spring framework can automatically scan and load the compo-
nent from the classpath. When Spring loads the class, it also sets the sessionFactory
dependency. In the next section, you’ll see how all these components are configured.
For now, assume that the sessionFactory will be available in the ArtistRepository
class to make database calls using Hibernate. The save method is straightforward:
using the current Hibernate session, it saves an instance of Artist to the database.
asInstanceOf[Long] typecasts the return value of the save to Long. In this case, you
know that the save operation will return the Id value of the object saved. findAll que-
ries the database and returns all the artists stored in the database. You typecast using
asInstanceOf because by default the Hibernate list method returns a List of
objects. At this point, you have enough code to save and retrieve domain objects from
the database. Let’s move on to build the controller.

 As discussed earlier, you’re going to use Spring to build your web tier. Again, you’ll
use Spring’s stereotype annotation @Controller to mark a class as a controller. The
job of the controller you’ll build will be to get the top artists from Last.fm and display
artists stored in the local database. Start off with the action that retrieves the list from
the local database and sends it to the view to render. You already have an ArtistDb
that knows how to retrieve artists from the database, and you’ll use Spring to inject an
instance of ArtistDb to the controller:

@Controller

class ArtistsController {

 @Autowired
 val db: ArtistDb = null

}

Add a method in the controller that maps to a URL and returns a list of artists to the
view:

Spring stereotype
to mark as a data
access component

Save artist
to database

Find all
artists from
database

Return
current

Hibernate
session

337Building web applications in Scala using Java frameworks

@RequestMapping(value = Array("/artists"), method = Array(GET))
def loadArtists() =

 new ModelAndView("artists", "topArtists", db.findAll)

The @RequestMapping annotation maps the "/artists" URI to the method load-
Artists. And in the method it uses db.findAll to find all the artists from the data-
base. The first parameter to ModelAndView is the name of the view that will be
rendered as a result of the method. The topArtists parameter is a handy way to
name the response of db.findAll. Using the topArtists name inside the view, you
can access all artists returned from the findAll call. But before you can return a list of
artists successfully, you have to first get the list from Last.fm. Allow the user to refresh
the artists saved in the local database. To implement refresh, invoke the REST API
specified by Last.fm. Use the Dispatch library to make a REST call to Last.fm. Dispatch
provides a nice DSL or wrapper over the Apache HttpClient library. The following
code snippet creates an Http request object from the URL:

val rootUrl = "http://ws.audioscrobbler.com/2.0/"

val apiMethod = "chart.gettopartists"

val apiKey = sys.props("api.key")
val req = url(rootUrl + "?method=" + apiMethod + "&api_key=" + apiKey)

The API key is retrieved from the system property. When running the application, you
have to specify the API as a system property. The url method takes a string URL as an
input and returns an instance of Http request. But creating an Http request won’t do
much unless you tell Dispatch how to process the response received from the request.
You can easily do that by specifying a handler. In this case we will use the built-in
handler as.xml.Elem to handle the XHTML response:

Http(req OK as.xml.Elem).map {resp => ...}

Http returns the Promise of scala.xml.Elem (since every HTTP request is handled
asynchronously) and we are using map to access the contents of the Promise object.
Since we are not using Spring’s asynchronous support, we will wait for the Promise (by
invoking the apply method) to finish before rendering the result. The response from
Last.fm consists of an XML with a list of artists and looks something like the following:

<lfm status="ok">

 <artists page="1" perPage="50" totalPages="20"
 total="1000">

 <artist>

 ...
 </artist>

 <artist>

 ...
 </artist>

 ...

 </artists>
</lfm>

You’ll use Scala’s awesome native XML support to parse the result. Dispatch already
converted the response to an instance of NodeSeq, and now you have to extract all the

338 CHAPTER 11 Interoperability between Scala and Java

artists from the response, create a Hibernate Artist object, and save it to the data-
base. Here’s the method that does exactly that:

 private def retrieveAndLoadArtists() {

 val rootUrl = "http://ws.audioscrobbler.com/2.0/"
 val apiMethod = "chart.gettopartists"

 val apiKey = sys.props("api.key")

 val req = url(rootUrl +
 "?method=" + apiMethod + "&api_key=" + apiKey)

 Http(req OK as.xml.Elem).map {resp =>

 val artists = resp \\ "artist"
 artists.foreach {node =>

 val artist = makeArtist(node)

 println(artist.name)
 db.save(artist)

 }

 }()
 }

 private def makeArtist(n: Node) = {

 val name = (n \ "name").text

 val playCount = (n \ "playcount").text.toLong
 val listeners = (n \ "listeners").text.toLong

 Artist(name = name, playCount = playCount, listeners = listeners)

 }

The refresh action of the controller needs to use the retrieveAndLoad method to
load and save the artists to the database and display the artists view. The following list-
ing shows the complete controller implementation.

package chap11.top.artists.controller

import org.springframework.stereotype.Controller

import org.springframework.beans.factory.annotation.Autowired
import org.springframework.web.bind.annotation.RequestMapping

import org.springframework.web.bind.annotation.RequestMethod._

import chap11.top.artists.db.ArtistDb
import chap11.top.artists.model.Artist

import org.springframework.web.servlet.ModelAndView

import dispatch._
import scala.xml.Node

@Controller

class ArtistsController {
 @Autowired

 val db: ArtistDb = null

 @RequestMapping(value = Array("/artists"), method = Array(GET))
 def loadArtists() =

 new ModelAndView("artists", "topArtists", db.findAll)

 @RequestMapping(value = Array("/refresh"), method = Array(GET))
 def refresh() = {

 retrieveAndLoadArtists()

Listing 11.3 Completed ArtistsController.scala

Request
to get
top artists

Make HTTP
request and
receive response

Applying the Promise
to get the result

Parse XML
response

Find all
artists and

render
artists view

Refresh
artists from

Last.fm

339Building web applications in Scala using Java frameworks

 new ModelAndView("artists", "topArtists", db.findAll)
 }

 private def retrieveAndLoadArtists() {

 val rootUrl = "http://ws.audioscrobbler.com/2.0/"
 val apiMethod = "chart.gettopartists"

 val apiKey = sys.props("api.key")

 val req = url(rootUrl + "?method=" + apiMethod + "&api_key=" + apiKey)
 Http(req </> { resp =>

 val artists = resp \\ "artist"

 artists.foreach {node =>
 val artist = makeArtist(node)

 println(artist.name)

 db.save(artist)
 }

 }() //applying the Promise

 }

 private def makeArtist(n: Node) = {

 val name = (n \ "name").text

 val playCount = (n \ "playcount").text.toLong
 val listeners = (n \ "listeners").text.toLong

 Artist(name = name, playCount = playCount, listeners = listeners)

 }

}

Now that you have the code for the model and controller, it’s time to turn to the view.
This simple view will take the response from the controller and render that using Java-
Server Pages (JSP). The example uses a pure Java solution for the view, but you can
experiment with template libraries written in Java, like Scalate (http://scalate
.fusesource.org). Your JSP view will take the topArtists parameter returned from the
controller and iterate through it to render the response. The following listing shows
what the view looks like.

<%@page contentType="text/html;charset=utf-8"%>

<%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix="fn" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://

www.w3.org/TR/html4/loose.dtd">

<html>
<head>

 <title>Top Artists from Last.fm</title>

</head>
<body>

 <p>

 <a href="<c:url value="/refresh.html"/>">Refresh from Last.fm
 </p>

<h2>Top artists</h2>

<p>
 <c:if test="${fn:length(topArtists) == 0}">

 <h3>No artists found in database. Refresh from Last.fm</h3>

 </c:if>

Listing 11.4 artists.jsp to render all the artists

http://scalate.fusesource.org
http://scalate.fusesource.org

340 CHAPTER 11 Interoperability between Scala and Java

 <table>
 <tr>

 <th>Name</th>

 <th>Play count</th>
 <th>Listeners</th>

 </tr>

 <c:forEach items="${topArtists}" var="artist">
 <tr>

 <td>${artist.name}</td>

 <td>${artist.playCount}</td>
 <td>${artist.listeners}</td>

 </tr>

 </c:forEach>
 </table>

</p>

</body>
</html>

You use the topArtists to access the list of artists returned from the controller and
display them. In the next section you’ll integrate all the pieces using Spring configura-
tion files.

11.3.2 Configuring and running the application

You’ll use the Spring configuration to configure both Spring MVC and Hibernate.
This way Spring will ensure that all the necessary dependencies you need for your
model and controller objects are properly initialized and injected. Because you fol-
lowed all the conventions using Scala and Java annotations at the Spring configura-
tion level, you won’t have any problem configuring Scala classes. This is a great benefit
of smooth interoperability between Scala and Java. In the following listing’s spring-
context-data.xml file, you’re configuring the model and controller objects.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:tx="http://www.springframework.org/schema/tx"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

➥http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/context

➥http://www.springframework.org/schema/context/spring-context-3.0.xsd
 http://www.springframework.org/schema/tx

➥http://www.springframework.org/schema/tx/spring-tx-3.0.xsd">

 <tx:annotation-driven/>

 <context:component-scan base-package="chap11.top.artists.db"/>

 <bean id="transactionManager" class=

➥"org.springframework.jdbc.datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>

Listing 11.5 Configuring the model and Hibernate using Spring

Iterate through
topArtists list

Look for
data

access
objects

341Building web applications in Scala using Java frameworks

 </bean>

 <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource"

➥destroy-method="close">
 <property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
 <property name="url" value="jdbc:hsqldb:mem:scala-spring-

➥hibernate"/>
 <property name="username" value="sa"/>
 <property name="password" value=""/>
 </bean>

 <bean id="sessionFactory" class=

➥"org.springframework.orm.hibernate3.annotation.

➥AnnotationSessionFactoryBean">
 <property name="dataSource" ref="dataSource"/>
 <property name="annotatedClasses">
 <list>
 <value>chap11.top.artists.model.Artist</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key=

➥"hibernate.dialect">org.hibernate.dialect.HSQLDialect</prop>
 <prop key="hibernate.show_sql">true</prop>
 <prop key="hibernate.hbm2ddl.auto">create</prop>
 </props>
 </property>
 </bean>
</beans>

Using this file, you’re configuring Hibernate with HSQLDB and the domain objects
that are used with Hibernate. You’re also using Spring’s component scan to look for
ArtistDb so that it gets initialized with the necessary Hibernate dependencies. Check
Spring’s documentation for more about the tags used in the configuration file. In the
following listing’s spring-context-web.xml file, you’re configuring the controller and
the Spring servlets you’re going to use to intercept HTTP requests.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans

➥http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/context

➥http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <context:component-scan base-package="chap11.top.artists.controller"/>

 <bean id="viewResolver"

 class="org.springframework.web.servlet.view.UrlBasedViewResolver">

 <property name="viewClass" value=

Listing 11.6 Configuring the controller and web using Spring

Configure
Hibernate

Specify
domain
object for
Hibernate

Configure
controller

Main
HTTP

request
handler B

342 CHAPTER 11 Interoperability between Scala and Java

➥"org.springframework.web.servlet.view.JstlView"/>
 <property name="prefix" value="/WEB-INF/jsp/"/>

 <property name="suffix" value=".jsp"/>

 </bean>

 <bean id="openSessionInViewInterceptor"

 class=

➥"org.springframework.orm.hibernate3.support.

➥OpenSessionInViewInterceptor">

 <property name="sessionFactory" ref="sessionFactory"/>

 </bean>

 <bean class=

➥"org.springframework.web.servlet.mvc.annotation.

➥DefaultAnnotationHandlerMapping">
 <property name="interceptors">

 <list><ref bean="openSessionInViewInterceptor"/></list>

 </property>
 </bean>

</beans>

The UrlBasedViewResolver class from Spring is used to intercept the HTTP
requestB and forward the request to the appropriate controller. In this case, it’s Art-
istsController. You also configure suffix with .jsp C so that when you return
ModelAndView with "artists" from the controller, it can look for the artists.jsp file in
the WEB-INF/jsp folder. To load these configuration files when the application starts,
add them to the web.xml file. The following listing shows the complete web.xml.

 <?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

➥http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

 id="scala-spring-hibernate"
 version="2.5">

 <context-param>

 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/spring-context-data.xml</param-value>

 </context-param>

 <listener>
 <listener-class>

➥org.springframework.web.context.ContextLoaderListener

➥</listener-class>
 </listener>

 <servlet>

 <servlet-name>dispatcher</servlet-name>
 <servlet-class>

➥org.springframework.web.servlet.DispatcherServlet</servlet-class>

 <init-param>
 <param-name>contextConfigLocation</param-name>

 <param-value>/WEB-INF/spring-context-web.xml</param-value>

 </init-param>

Listing 11.7 web.xml of the topArtists web application

Suffix for all
the pagesC

Spring
configuration
file

B

Listener that
configures
Spring

C

Handle
all HTTP
requests

343Summary

 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>

 <servlet-name>dispatcher</servlet-name>
 <url-pattern>*.html</url-pattern>

 </servlet-mapping>

 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>

 </welcome-file-list>

</web-app>

Most of the content of this file should be familiar to you if you’ve built a web applica-
tion for the JVM. All the Java web containers read the web.xml to initialize Java-based
web applications. The listener attribute C allows applications to listen to events gen-
erated by containers, such as when an application is loaded or unloaded. In this case,
the listener configured is ContextLoaderListener, and this class knows how to config-
ure Spring by reading context-param B. To run the application, you can use the
already configured Jetty web server using the following command:

mvn -Dapi.key=<your-last.fm-pai-key> jetty:run

As you can see, setting up and creating web applications using Scala and Java frame-
works is easy. Some of the boilerplate configuration is unavoidable when working with
Java frameworks, but you can still have fun writing Scala code.

11.4 Summary

One thing that should be clear from this chapter is that Scala’s interoperability with Java
is pain-free. There are a few places where you have to take extra precautions, but for the
most part you can integrate with existing Java codebases without thinking too much.
The extra carefulness comes when you have to integrate some features of Scala that
aren’t supported in Java and vice versa. You learned how to deal with situations like that
throughout this chapter. Because Scala is designed from the ground up to interoperate
with Java, most of the workarounds are also simple to implement and learn.

 The benefit of simple integration with Java means you can easily get started with
Scala in existing codebases. As the final example demonstrates, you can use Scala with
existing popular Java frameworks without rewriting entire applications.

 The next chapter looks into one of the most exciting Scala frameworks: Akka. This
framework lets you build large, scalable, and distributed applications using various
concurrency models. I know you’ve been waiting for this for a long time—so without
further delay, let’s jump into the exciting world of Akka.

344

Scalable and distributed
applications using Akka

This chapter introduces an exciting Scala toolkit called Akka, which allows you to
build next-generation, event-based, fault-tolerant, scalable, and distributed appli-
cations for the JVM. Akka provides multiple concurrency abstractions (mentioned
in section 9.2.3), and this chapter explores each one of them. So far, you’ve only
seen how actors can be used to build message-oriented concurrency. Here we’ll
go beyond actors and look into concurrency abstractions like STM, Agent, and
Dataflow.

 To understand how the pieces of Akka fit together, you’re going to build a real-
time product search application using Akka called Akkaoogle. This application is
similar to Froogle (www.google.com/products), Google’s service that finds the

This chapter covers

 The philosophy behind Akka

 Simpler concurrency with actors, STM,

agents, and dataflow

 Building a large scalable application with

Akka called Akkaoogle

345The philosophy behind Akka

lowest price on products you search for. You’ll build this product incrementally so
you can see which Akka features you can use in which situations.

NOTE All of the Akka features covered in this chapter are also available as a
Java API. I can’t cover the Java side of things in this chapter, but you can check
out the latest documentation at http://akka.io/docs/ for details.

Akka is written in Scala but exposes all its features through both the Java and Scala
APIs. Because this is a Scala book, in this chapter I mainly discuss the Scala API, but I
include Java examples as well. You can build the Akkaoogle application in Java by fol-
lowing the Scala examples because both APIs look almost the same. First I’ll talk about
the philosophy behind Akka so you understand the goal behind the Akka project and
the problems it tries to solve.

12.1 The philosophy behind Akka

The philosophy behind Akka is simple: make it easier for developers to build correct,
concurrent, scalable, and fault-tolerant applications. To that end, Akka provides a
higher level of abstractions to deal with concurrency, scalability, and faults. Figure 12.1
shows the three core modules provided by Akka for concurrency, scalability, and fault
tolerance.

 The concurrency module provides options to solve concurrency-related problems.
By now I’m sure you’re comfortable with actors (message-oriented concurrency). But
actors aren’t a be-all-end-all solution for concurrency. You need to understand alterna-
tive concurrency models available in Akka, and in the next section you’ll explore all of

Figure 12.1 Akka core modules

http://akka.io/docs/ for details

346 CHAPTER 12 Scalable and distributed applications using Akka

them. At the core, Akka is an event-based platform and relies on actors for message
passing and scalability. Akka puts both local and remote actors at your disposal. Using
local actors with routing (the ability to send work with multiple instances of an actor)
you can scale up and you can use remote actors to help you scale out. We’ll look into
this in more detail when you build a sample application at the end of the chapter.

12.2 Simple concurrency with Akka

To scale up your applications, use concurrency. In chapter 9 you learned that threads
are a difficult and error-prone way to implement concurrency and should be the tool
you choose last. The question then becomes what are your first, second, or third
options? This section introduces you to those options and helps you decide which are
appropriate. Table 12.1 describes all the concurrency techniques available in Akka.
The good news is you can combine all these concurrency techniques, which is what
most Akka developers end up doing.

These options provide the flexibility you need to design your concurrency applica-
tions correctly. For example, you can model an application using actors, handle muta-
ble state with STM or agents, and use dataflow concurrency to compose multiple
concurrent processes. The possibilities are endless.

NOTE Akka no longer includes the STM module but instead supports Scala
STM.1

Let’s begin the journey into the world of Akka concurrency—it will be a fun ride.

Table 12.1 Concurrency alternatives available in Akka

Name Description

Actors An actor is an object that processes messages asynchronously and encapsulates

state. Actors implement message-passing concurrency. We explored actors in

chapter 9.

Software transac-

tional memory

(STM)

Software transactional memory is a concurrency model analogous to database

transactions for controlling access to a shared state. It’s a better alternative to

locks and provides composability.

Agents Agents provide abstraction over mutable data. They only allow you to mutate the

data through an asynchronous write action.

Dataflow Dataflow concurrency is deterministic. This means that it behaves the same every

time you execute it. So if your problem deadlocks the first time, it will always dead-

lock, helping you to debug the problem. Akka implements Oz-stylea dataflow con-

currency using Future.

a. “Concurrency,” Oz documentation, www.mozart-oz.org/documentation/tutorial/node8.html.

1 Information on Scala STM, http://nbronson.github.com/scala-stm/.

http://nbronson.github.com/scala-stm/

347Simple concurrency with Akka

12.2.1 Remote actors

In chapter 9 we explored actors in detail. Actor programming is not restricted to only
a single JVM, so actors can communicate with each other across multiple JVMs
(figure 12.2). Akka remote actors allow you to deploy actors in remote machines and
send messages back and forth transparently. Remote actors are a great way to make
your application scalable and distributed. The messages are automatically serialized
using the Google protocol buffer (http://code.google.com/p/protobuf/), and com-
munication between the two nodes is handled using JBoss Netty (www.jboss.org/
netty). Think of the Google protocol buffer as XML but smaller and faster, and Netty
as a non-blocking I/O (NIO) implementation, which allows Akka to efficiently use
threads for I/O operations.

 Akka implements transparent remoting, where the remoteness of the actor is com-
pletely configured at deployment time. You can work with local actors while building
the solution and configure remote details of each individual actor during deployment.

NOTE In a future version of Akka, Netty will be replaced with an actor-based
I/O library called Actor I/O.

Before we proceed further let’s add dependencies for remote actors. Akka is modular,
so instead of pulling in the entire Akka library, you’re only depending on the Akka
actors. You can find the complete build.sbt file in the accompanying codebase for this
chapter.

resolvers ++= Seq(
 "Akka Repo" at "http://akka.io/repository",
 "Typesafe Repo" at "http://repo.typesafe.com/typesafe/repo"
)

libraryDependencies ++= Seq(
 "com.typesafe.akka" %% "akka-actor" % "2.1.0",
 "com.typesafe.akka" %% "akka-remote % "2.1.0"
)

The resolvers define the location of the dependencies, and the library-

Dependencies add remote actors.
 We will take the same word count example we built in chapter 9 and change the

worker actor to implement it in Java and, instead of files, we will work with a list of

Figure 12.2 Two actor

systems running in two

different nodes

http://code.google.com/p/protobuf/
www.jboss.org/netty
www.jboss.org/netty

348 CHAPTER 12 Scalable and distributed applications using Akka

URLs. The goal is to connect to the URL and count all the words on the page. To cre-
ate an Akka actor in Java you have to extend the akka.actor.UntypedActor class and
override the onReceive method:

import akka.actor.UntypedActor;
public class WordCountWorker extends UntypedActor {

 @Override

 public void onReceive(Object message) {
 }

}

The class is called UntypedActor because Akka includes the concept of a TypedActor.
The typed actors implement the active object2 pattern, which turns any POJO interface
into an asynchronous API using actors.

NOTE Akka typed actors are an implementation of the active object pattern.
It turns synchronous method invocations into asynchronous dispatches. The
one advantage using typed actors has over untyped actors is that you can have
a static compile-type contract and you don’t have to define messages. Read
more about Akka typed actors in the Akka documentation.

Because your WordCountWorker needs to handle the FileToCount message, you need
to typecast the message received as a parameter to FileToCount:

if (message instanceof FileToCount) {

 FileToCount c = (FileToCount)message;
} else {

 throw new IllegalArgumentException("Unknown message: " + message);

}

The code is checking the type of message received using the instanceof operator, and
if the message isn’t of type FileToCount, an exception is thrown. Because you want to
write most, if not all, of your code in Scala, add the countWords method to the File-
ToCount case class that counts all the words in a resource, to which the URL points:

case class FileToCount(url:String) {

 def countWords = {
 Source.fromURL(new URL(url))

 .getLines.foldRight(0)(_.split(" ").size + _)

 }
}

The countWords method counts the number of words in a resource using the
scala.io.Source class provided in the Scala library. From the WordCountWorker
actor, you can invoke the countWords method to count words:

FileToCount c = (FileToCount)message;

Integer count = c.countWords();

2 “Active object,” http://en.wikipedia.org/wiki/Active_object.

http://en.wikipedia.org/wiki/Active_object

349Simple concurrency with Akka

To reply with a response to the sender, use the getSender().tell(...) method. The
tell method allows actors to reply to the sender. To reply to the master, the worker
actor needs to construct the WordCount message by passing the filename and the
word count:

FileToCount c = (FileToCount)message;

Integer count = c.countWords();

getSender().tell(new WordCount(c.url(), count));

The getSelf method returns the actor reference to the current actor. The following
listing shows the complete WordCountWorker actor in Java. Save this in the src/main/
java folder of your SBT project.

package countwords;

import akka.actor.UntypedActor;

public class WordCountWorker extends UntypedActor {

 @Override

 public void onReceive(Object message) {
 if (message instanceof FileToCount) {

 FileToCount c = (FileToCount)message;

 Integer count = c.countWords();
 getSender().tell(new WordCount (c.url(), count),

 getSelf());

 }
 else {

 throw new IllegalArgumentException(

 "Unknown message: " + message);
 }

 }

}

To take advantage of the remote actors, we run all the worker actors in a JVM separate
from the master actor. To achieve that, let’s create two actor systems with different
properties. The easiest way to configure Akka actors is by providing a configuration
file in the classpath. You can find the details of all the configuration properties in the
Akka documentation.3 The following example defines two actor systems: the main
actor system and the worker actor system:

workersystem {

 akka {

 actor.provider = "akka.remote.RemoteActorRefProvider"
 remote.netty.hostname = "127.0.0.1"

 remote.netty.port = 2560

 }
}

mainsystem {

akka {

Listing 12.1 WordCountWorker Akka actor in Java

3 Configuration version 2.0.3, http://mng.bz/vmsQ.

Send reply
to sender

Configuration
for worker

Set actor
provider for
remotingB

C

Host
name of
the
machine
for actor
system

http://mng.bz/vmsQ

350 CHAPTER 12 Scalable and distributed applications using Akka

 actor.provider = "akka.remote.RemoteActorRefProvider"
 remote.netty.hostname = "127.0.0.1"

 actor {

 deployment {
 /wordCountMaster {

 remote = "akka://workersystem@127.0.0.1:2560"

 }
 }

 }

 }
}

Separating the configuration by actor systems provides the flexibility to define settings
for each actor system. The following elements add remoteness to your actor system:

 Change the actor provider to akka.remote.RemoteActorRefProvider B.
 Add the host name of the machine in which the actor system will be running C.

Make sure this IP address is reachable.
 The port number which the remote actor system should listen on.
 Map the actor name to the actor system in which it will be deployed D.

Now save the preceding configuration into the application.conf file under the src/
main/resources folder of the project. This will make the application.conf file available
in the classpath. To make the workersystem run on a different JVM, run the following
code in a different terminal:

package countwords

import akka.actor._
import com.typesafe.config.ConfigFactory

object WorkerSystem extends App {

 val workerSystem = ActorSystem("workersystem",
 ConfigFactory.load.getConfig("workersystem"))

}

This will start the "workersystem" running and listening for messages on port num-
ber 2560. Now let’s create a new actor that will tie all the pieces together. It will run on
the main actor system:

package countwords

import akka.actor._

import com.typesafe.config.ConfigFactory

import scala.io.Source

import java.net.URL

case class FileToCount(url:String) {

 def countWords = {

 Source.fromURL(
 new URL(url)).getLines.foldRight(0)(_.split(" ").size + _)

 }

Listing 12.2 MainActor running on a main actor system

Deployment
location for the
accumulatorActor
actorD

Start “workersystem”
actor system

351Simple concurrency with Akka

}
case class WordCount(url:String, count: Int)

case class StartCounting(urls: Seq[String], numActors: Int)

object MainSystem {
 class MainActor(accumulator: ActorRef) extends Actor {

 def receive = {

 case "start" =>
 val urls = List("http://www.infoq.com/",

 "http://www.dzone.com/links/index.html",

 "http://www.manning.com/",
 "http://www.reddit.com/")

 accumulator ! StartCounting(urls, 2)

 }
 }

 def main(args: Array[String]) = run

 private def run = {
 val mainSystem = ActorSystem("main",

 ConfigFactory.load.getConfig("mainsystem"))

 val accumulator = mainSystem.actorOf(Props[WordCountMaster],

 name ="wordCountMaster")
 val m = mainSystem.actorOf(Props(new MainActor(accumulator)))

 m ! "start"

 }
}

Now if you start the WorkerSystem and the MainSystem in two different JVM instances
you will have the workers running on one JVM and the main actor running on
another. This opens up myriad possibilities to scale, because now you can distribute
work to multiple machines.

12.2.2 Making mutable data safe with STM

Software transactional memory (STM) turns a Java heap into a transactional dataset.
STM is similar to database transactions, but is used for memory instead. Because mem-
ory isn’t durable with STM, you only get the first three properties of ACID (atomicity,
consistency, isolation, durability):

 Atomicity—This property states that all modifications should follow the “all or
nothing” rule. In STM, all the modification is done through an atomic transac-
tion, and if one change fails all the other changes are rolled back.

 Consistency—This property ensures that an STM transaction takes the system
from one consistent state to another. If you want to delete one element from a
Map and insert into another Map, then at the end of the STM transaction both
Maps will be modified appropriately.

 Isolation—This property requires that no other STM transaction sees partial
changes from other transactions.

The best part of STM is freedom from locks. It rolls back from exceptions and is com-
posable. You can also take two smaller STM operations and combine them to create

Loading the
mainsystem
configuration

352 CHAPTER 12 Scalable and distributed applications using Akka

bigger STM operations. Before I show you STM examples, let’s step back in order to
understand what state is and how it’s represented in STM.

HOW STATE IS DEFINED IN STM

Let’s look at how state is handled in imperative pro-
gramming. Figure 12.3 shows how state is handled in an
imperative world. You directly access the data in mem-
ory and mutate it. In the figure, an object, A, is directly
accessing the data represented by B and C. The prob-
lem with this approach is that it doesn’t work in the con-
current world. What will happen when some other
thread or process tries to access the data residing in B or
C when A is trying to mutate that data? The result is
unexpected behavior.

 To solve the problem with this approach, STM defines mutable state differently. In
STM, state is defined as the value that an entity with a specific identity has at a particu-
lar point. A value is something that doesn’t change (it’s immutable). And identity is a
stable reference to a value at a given point in time. Figure 12.4 shows how the previ-
ous structure would be represented in STM. The mutable part here is the identity,
which gets associated with a series of values. And STM makes the mutation of refer-
ence from one value to another atomic. What will happen in this case when some
other thread or process tries to
access the data residing in B or C
when A is trying to mutate it? You’ll
see the value associated with B or C,
because STM transactions are iso-
lated and no partial change is visible
outside the transaction.

 This idea of defining state in
terms of identities and values is
derived from the programming lan-
guage Clojure (http://clojure.org).
Now let’s see how STM works in Akka
through examples.

HANDLING MUTABLE DATA IN AKKA USING STM

Akka uses the Scala STM library for its STM. To add the library to your SBT project use
the following snippet:

resolvers += ("Typesafe Repository" at "http://repo.typesafe.com/typesafe/

releases/")

libraryDependencies ++= Seq(
 "org.scala-stm" %% "scala-stm" % "0.7",

 "org.specs2" %% "specs2" % "1.13" % "test"

)

Figure 12.3 State represented

in imperative programming

Value

Value

Value

Value

C

B

Figure 12.4 State represented in STM

http://clojure.org

353Simple concurrency with Akka

To demonstrate how STM works let’s take a simple example in which you create
atomic operations for deleting and inserting elements into an immutable Map. To
manage this mutability, wrap the value (in this case, the immutable HashMap) in the
scala.concurrent.stm.Ref object as follows:

val ref1 = Ref(HashMap[String, Any](
 "service1" -> "10",
 "service2" -> "20",
 "service3" -> null))
val ref2 = Ref(HashMap[String, Int]())

Refs are nothing but mutable references to values that you can share safely with multi-
ple concurrent participants. The preceding snippet creates two refs pointing to the
immutable HashMap. To perform any operation on Ref you have to use the atomic
method defined in the STM package by passing an in-transaction parameter. The Scala
STM library creates the transaction object and grants the caller permission to perform
transactional reads and writes. Any refs you change in the closure will be done in an
STM transaction. For example, in the following code you’re trying to add a new ele-
ment to the Map managed by ref2:

def atomicInsert(key: String, value: Int) = atomic { implicit txn =>
 val oldMap = ref2.get
 val newMap = oldMap + (key -> value)
 ref2.swap(newMap)
}

By invoking ref2.get you’re getting the value currently associated with the Ref and
using swap to replace the old value with the new value. If the operation fails, the
changes will be rolled back. The transaction parameter is marked as implicit so you
don’t have to pass it around.

 To implement atomic deletion of key from ref1, you can use the transform
method defined in Ref. The transform method allows you to transform the value ref-
erenced by Ref by applying the given function:

def atomicDelete(key: String): Option[Any] = atomic {
 val oldMap = ref1.get
 val value = oldMap.get(key)
 ref1.transform(_ - key)
 value
}

The atomicDelete function returns the value that’s deleted. Why return the old value
from the function? I have a plan to use it later, so hang in there.

 I keep talking about the composability of STM, but haven’t yet shown you an
example. Your wait is over. Imagine you have to build an atomic swap function that
moves one item from one Map to another. With STM, it’s easy: all you have to do is
wrap both the atomicDelete and atomicInsert functions in an atomic function, as
in the following:

def atomicSwap(key: String) = atomic { implicit txn =>

 val value: Option[Any] = atomicDelete(key)

354 CHAPTER 12 Scalable and distributed applications using Akka

 atomicInsert(key, Integer.parseInt(value.get.toString))
}

Because ref2 only holds an Int type value, you have to parse it to Int before insertion.
To fully understand the beauty of the swap function, look at the following specification:

"Atomic operations in composition" should {
 "rollback on exception" in {
 swap("service3")
 ref1.single().contains("service3") must beEqualTo(true)
 ref2.single().contains("service3") must beEqualTo(false)
 }
}

The single method of STM lets you access the contents of Ref without requiring a trans-
action. When you try to swap "service3" (which maps to a null value), the Integer
.parseInt will throw an exception. At that point the delete is already successful, but
thanks to STM it will roll back the entire transaction. Can your locks do that? No.

STM is a great way to build smaller atomic operations and large ones by composi-
tion, similar to how functions are composed in functional programming. To learn
more about STM, consult the Scala STM documentation.4 Let’s move our attention to
another concurrency abstraction called Agent.

12.2.3 Agents

Agents provide asynchronous changes to any individual storage location bound to it.
An agent only lets you mutate the location by applying an action. Actions in this case
are functions that asynchronously are applied to the state of Agent and in which the
return value of the function becomes the new value of Agent. However, reading a
value from Agent is synchronous and instantaneous. The difference between Ref and
Agent is that Ref is a synchronous read and write; Agent is reactive. To apply any
action asynchronously, Akka provides two methods: send and sendOff. The send
method uses the reactive thread pool allocated for agents, and sendOff uses a dedi-
cated thread, ideal for a long-running processes. Here’s an example of Agent associ-
ated with a file writer that logs messages to the log file through send actions:

import akka.agent.Agent
implicit val system = ActorSystem("agentExample")
val writer = new FileWriter("src/test/resources/log.txt")
val a = Agent(writer)
a.send { w => w.write("This is a log message"); w}
a.close
writer.close

Agent will be running until you invoke the close method B. An actor system is cre-
ated for the agent because, behind the scenes, agents are implemented using actors. If
you have to do more than logging to a file, something that will take time, use the
sendOff method:

a.sendOff { someLongRunningProcess }

4 Scala STM Expert Group, http://nbronson.github.com/scala-stm/index.html.

Shut Agent downB

http://nbronson.github.com/scala-stm/index.html

355Simple concurrency with Akka

Note that at any time, only one send action is invoked. Even if actions are sent from
multiple concurrent processes, the actions will be executed in sequential order. Note
that actions might get interleaved between multiple threads.

 To use Agents in your project you must add the following to your SBT library-
Dependencies:

libraryDependencies ++= Seq(

 "com.typesafe.akka" %% "akka-actor" % "2.1.0",
 "com.typesafe.akka" %% "akka-agent" % "2.1.0",

 "org.specs2" %% "specs2" % "1.13" % "test"

)

Agents also participant in STM transactions when used in the atomic block and mes-
sages are held until the transaction is completed. This is important because if you
have a side-effect action, like logging to a file, you don’t want to do that with STM.
Why? Because if STM transactions fail, they retry automatically, meaning your side-
effecting operation is executed multiple times. This might not be what you want, so
combining agents with STM is a great pattern to execute side-effecting actions along
with STM transactions. Sometimes the asynchronous nature of Agent confuses people
into thinking that agents are similar to actors, but they’re completely different in the
way you design them. Agent is associated with data, and you send behavior to Agent
from outside, in the form of a function. In the case of actors, the behavior is defined
inside the actor, and you send data in the form of a message.

 You’ll revisit agents when using Akkaoogle to log transactions, but now let’s con-
tinue with our next concurrency model: dataflow. Dataflow is a great way to encapsu-
late concurrency from a program. It can be read sequentially.

12.2.4 Dataflow

Dataflow concurrency is a deterministic concurrency model. If you run it and it works,
it will always work without deadlock. Alternatively, if it deadlocks the first time, it will
always deadlock. This is a powerful guarantee to have in a concurrent application
because you can easily understand the code. The dataflow concurrency allows you to
write sequential code that performs parallel operations. The limitation is that your
code should be completely side-effect free. You can’t have deterministic behavior if
your code is performing side-effecting operations.

 Dataflow is implemented in Akka using Scala’s delimited continuations compiler
plug-in. To enable the plug-in within your SBT project, add the following lines to the
build.sbt file:

autoCompilerPlugins := true

libraryDependencies <+= scalaVersion { v => compilerPlugin(
"org.scala-lang.plugins" % "continuations" % v) }

scalacOptions += "-P:continuations:enable"

libraryDependencies += "com.typesafe.akka." %% " akka-dataflow" % "2.1.0"

To work with dataflow concurrency, you have to work with dataflow variables. A data-
flow variable is like a single-assignment variable. Once the value is bound, it won’t

356 CHAPTER 12 Scalable and distributed applications using Akka

change, and any subsequent attempt to bind a new value will be ignored. The follow-
ing example defines a dataflow variable:

val messageFromFuture = Promise[String]()

Here Akka Promise is used to create a dataflow variable. A Promise is a read handle to
a value that will be available at some point in the future. Any dataflow operation is per-
formed in the Future.flow block:

Future.flow {
 messageFromFuture()

}

The preceding call will wait in a thread unless a value is bound to messageFromFuture.
Future.flow returns a Future so you can perform other operations without blocking
the main thread of execution. Think of a Future as a data structure to retrieve the
result of some concurrent operation. To assign a value to a dataflow variable, use the
<< method as in the following:

Future.flow {

 messsageFromFuture << "Future looks very cool"

}

Once a value is bound to a dataflow variable, all the Futures that are waiting on the
value will be unblocked and able to continue with execution. The following listing
shows a complete example of using the dataflow variable.

import akka.actor._
import akka.dispatch._

import Future.flow

object Main extends App {
 implicit val system = ActorSystem("dataflow")

 val messageFromFuture, rawMessage, parsedMessage = Promise[String]()

 flow {
 messageFromFuture << parsedMessage()

 println("z = " + messageFromFuture())

 }
 flow { rawMessage << "olleh" }

 flow { parsedMessage << toPresentFormat(rawMessage()) }

 def toPresentFormat (s: String) = s.reverse
}

The next section dives into building an application using some of the Akka concepts
you have learned so that you can see practical use cases of Akka concurrency.

12.3 Building a real-time pricing system: Akkaoogle

You’ve covered a lot of ground so far in this chapter, you’ve learned new concepts, and
you’ve seen several examples. But now it’s time to see how these concepts are applied

Listing 12.3 Complete dataflow concurrency example

357Building a real-time pricing system: Akkaoogle

in a large application. In this section you’ll build a large web-based product search site
called Akkaoogle (see figure 12.4). It will be similar to Google’s product search appli-
cation (www.google.com/products) except that, instead of returning all products
matching your criteria, your application will only return the cheapest deal found on
the web.

 So how does this application work? It gets the product price from two types of ven-
dors that are offering the product. You can pay money to Akkaoogle and become an
internal vendor. In this case, the product information is stored in Akkaoogle, and you
pay a small service charge. You can also sign up as external vendor, in which case
Akkaoogle makes a RESTful web service call to fetch the price—but the downside is
you pay a bigger service charge. When the user is looking for the cheapest deal, Akka-
oogle checks with all the vendors (internal and external) and finds the lowest price
for the user. Because this all has to be done in real time and you want your Akkaoogle
users to have a good experience, you have to find the cheapest deal in no more than
200 to 300 milliseconds. That’s a challenge if you have to implement it using primitive
concurrency constructs. But with Akka? Let’s see how you could implement this.

12.3.1 The high-level architecture of Akkaoogle

Figure 12.5 shows you the high-level view of how Akkaoogle will be implemented. At
first glance it may look complicated, but don’t worry—you’re going to build it in small
pieces. Keep this figure in mind when building the application so you know where
you’re heading.

 Here are the descriptions for each important component in figure 12.5 that you’ll
now start building:

 Request handler—This is an actor that handles HTTP requests from the user.
You’ll use an asynchronous HTTP library called Mist, provided by Akka, to
implement this actor.

 Search cheapest product—This is the main entry point to execute a search to find
the cheapest deal. This actor will search both internal and external vendors.

Figure 12.4 Homepage of the Akkaoogle application

358 CHAPTER 12 Scalable and distributed applications using Akka

 Internal load balancer—This is a load-balancing actor that sends messages to
worker actors to find the cheapest product available in the internal database.

 External load balancer—This actor invokes all the external vendor services and
finds the cheapest price among them.

 Find product price and find vendor price—The worker actors do the work of finding
the price.

 Monitor—A simple monitor actor logs the failures that happen in external ven-
dor services.

 Data loader—An actor that loads data to the database. This could be used to
load product data for internal vendors.

You’re also going to build a supervisor hierarchy to handle failures. You don’t want
Akkaoogle going down because you’ll lose new business and money. Let’s begin the
fun by setting up the product with all the dependencies you need.

product

Figure 12.5 Akkaoogle architecture

359Building a real-time pricing system: Akkaoogle

12.3.2 Setting up the project for Akkaoogle

Create an SBT project as shown in figure 12.6. Use
the Build.scala file as your definition file and
build.properties to configure the version of SBT.
This project uses SBT 0.11.2, but you can easily
upgrade to a newer version by modifying the
build.properties file.

 The first thing to configure is the database, and
for that you’ll use our old friends Squeryl (http://
squeryl.org) and H2 (www.h2database.com). You
used them extensively in chapter 7. To make your
life easier, use the custom tasks in the following list-
ing to start and stop the H2 database.

object H2TaskManager {
 var process: Option[Process] = None

 lazy val H2 = config("h2") extend(Compile)

 val startH2 = TaskKey[Unit]("start", "Starts H2 database")
 val startH2Task =

 startH2 in H2 <<= (fullClasspath in Compile) map { cp =>

startDatabase(cp.map(_.data).map(_.getAbsolutePath()).filter(_.contains(
"h2database")))}

 def startDatabase(paths: Seq[String]) = {

 process match {
 case None =>

 val cp = paths.mkString(System.getProperty("path.seperator"))

 val command = "java -cp " + cp + " org.h2.tools.Server"
 println("Starting Database with command: " + command)

 process = Some(Process(command).run())

 println("Database started ! ")
 case Some(_) =>

 println("H2 Database already started")

 }
 }

 val stopH2 = TaskKey[Unit]("stop", "Stops H2 database")

 val stopH2Task = stopH2 in H2 :={
 process match {

 case None => println("Database already stopped")

 case Some(_) =>
 println("Stopping database...")

 process.foreach{_.destroy()}

 process = None
 println("Database stopped...")

 }

 }
}

Listing 12.4 H2 start and stop actions

Figure 12.6 Akkaoogle project

structure

http://squeryl.org
http://squeryl.org
www.h2database.com

360 CHAPTER 12 Scalable and distributed applications using Akka

The detailed explanation of how these tasks are implemented is in chapter 7, but in a
nutshell, the h2-start and h2-stop tasks allow you to start and stop the H2 in-memory
database from the SBT command prompt. The following listing shows the complete
project definition file with all the dependencies you need for the Akkaoogle project.

object AkkaoogleBuild extends Build with ConfigureScalaBuild {

 import H2TaskManager._

 lazy val root = project(id = "akkaoogle", base = file("."))

 .settings(startH2Task, stopH2Task)
 .settings(

 organization := "scalainaction",

 scalaVersion := "2.10.0",
 scalacOptions ++= Seq("-unchecked", "-deprecation"),

 resolvers +=

 "Typesafe Repo" at "http://repo.typesafe.com/typesafe/repo",
 parallelExecution in Test := false

)

 .settings(

 libraryDependencies ++= Seq(
 "com.typesafe.akka" % "akka-actor" % "2.1.0",

 "com.typesafe.akka" % "akka-remote" % "2.1.0",

 "com.typesafe.akka" % "akka-agent" % "2.1.0",
 "org.specs2" %% "specs2" % "1.13" % "test",

 "com.h2database" % "h2" % "1.2.127",

 "org.squery1" % "squery1_2.10.0-RC5" % "0.9.5-5",
 "org.eclipse.jetty" % "jetty-distribution" % "8.0.0.M2"

))

}

The build.scala file declares all the dependences and settings you need to start work-
ing on the Akkaoogle project. Once all the dependencies are downloaded you’re
ready to implement the Akkaoogle application. The next section builds the domain
models you need to implement the internal vendor service. I test drove most of the
application, but I won’t show you test cases here. I encourage you to go through the
test cases in this chapter’s accompanying codebase. Even better, write tests for the
code used throughout the rest of the chapter.

12.3.3 Implementing the domain models

You need a way to implement the products provided by internal vendors and also a
model that represents external vendors. To reduce duplication between domain mod-
els, create a common trait called Model that extends the KeyedEntity trait provided
by Squeryl. This trait provides an id field that acts as a primary key in the database for
all the domain models:

trait Model[A] extends KeyedEntity[Long] { this: A =>
 val id: Long = 0

}

Listing 12.5 Akkaoogle build.scala file

Add
H2-related
tasks to
project

Add library
dependencies

361Building a real-time pricing system: Akkaoogle

Here the Model also declares that it will get mixed in with a type represented by A.
You’re declaring a self type here because later on it will let you add generic methods
that work on all the model objects (more about this later). Now you can create model
classes that represent products and external vendors by extending the Model trait:

class Product(val description: String,

 val vendorName: String,

 val basePrice: Double,
 val plusPercent: Double)

 extends Model[Product]

class ExternalVendor(val name: String, val url: String)
 extends Model[ExternalVendor]

You’re keeping these models simple so you can focus more on the Akka-related fea-
tures you’ll implement. The url property of the external vendor specifies the url
you’ll use to invoke the remote RESTful service. Add a method to the Product class to
calculate the price using the basePrice and the plusPercentage fields:

def calculatePrice = basePrice + (basePrice * plusPercent / 100)

You’ll need this method to determine the price of products offered by internal ven-
dors. Because Akkaoogle cares about quality, you need to track the service availability
of all the external vendors so you can rate them quarterly. You’ll log (to the database)
every time a call to an external vendor service fails and you’ll need a domain model to
represent it:

class TransactionFailure(val vendorId: String,

 val message: String,

 val timestamp: Date)
 extends Model[TransactionFailure]

The following listing creates an Akkaoogle schema object that will create the necessary
tables in the database and provide helper methods to work with domain models.

package com.akkaoogle.db

import org.squeryl._
import org.squeryl.adapters._

import org.squeryl.PrimitiveTypeMode._

import java.sql.DriverManager
import com.akkaoogle.db.models._

object AkkaoogleSchema extends Schema {

 val products = table[Product]("PRODUCTS")

 val vendors = table[ExternalVendor]("VENDORS")
 val transactionFailures = table[TransactionFailure]("TRANSACTION_LOG")

 def init = {

 import org.squeryl.SessionFactory
 Class.forName("org.h2.Driver")

 if(SessionFactory.concreteFactory.isEmpty) {

 SessionFactory.concreteFactory = Some(()=>

Listing 12.6 Akkaoogle schema

Create table
called
PRODUCTS

B

C

Create
table

called
VENDORS

Create table called
TRANSACTION_LOG

D

362 CHAPTER 12 Scalable and distributed applications using Akka

 Session.create(
 DriverManager.getConnection(
 "jdbc:h2:tcp://localhost/~/test", "sa", ""),
 new H2Adapter))
 }
 }

 def tx[A](a: =>A): A = {
 init
 inTransaction(a)
 }

 def createSchema() {
 tx { drop ; create }
 }
}

The listing defines the schema you’ll use for Akkaoogle. The schema defines three
tables of products B, vendors C, and transactionFailures D. The init method
makes the database connection (in this case to the H2 database) and is used by the tx
method E to make sure the application is connected before initiating the transaction.

 To fetch values back from the database, you can define finder methods in the com-
panion objects of the domain models:

object TransactionFailure {
 def findAll = tx {
 from(transactionFailures)(s => select(s)) map(s => s)
 }
}

object Product {
 def findByDescription(description: String): Option[Product] =
 tx {
 products.where(p => p.description like description).headOption
 }
}

object ExternalVendor {
 def findAll = tx {
 from(vendors)(s => select(s)) map(s => s)
 }
}

The TransactionFailure, Product, and ExternalVendor companion objects define
finder methods to help fetch the values from the database. TransactionFailure
.findAll B returns all the transaction failures stored in the database (for large
database tables, you should define finders that take some criteria to filter data).
The findByDescription C returns the first matching product from the database,
and the ExternalVendor.findAll D returns all the vendors that are registered with
Akkaoogle.

 Using the same technique you used in chapter 7, you’ll add a save method to each
domain model. The save method for all the domain objects is almost identical, except
for the Squeryl table object. Create a generalized version of the save method that
works with all the domain models that extend the Model trait:

Execute function
within transaction

E

Create new schema

Find all
transaction
failuresB

C

Find first
product

matched
with

description Find all
external vendors

D

363Building a real-time pricing system: Akkaoogle

trait Model[A] extends KeyedEntity[Long] { this: A =>
 val id: Long = 0

 def save(implicit table: Table[A]): Either[Throwable, String] = {

 tx {
 try {

 table.insert(this)

 Right("Domain object is saved successfully")
 } catch {

 case exception => Left(exception)

 }
 }

 }

 }

The save method takes an implicit parameter that’s of type org.squeryl.Table,
which can handle type A. For example, when the Model is an instance of Product,
then A is going to be of type Product, and Table[A] is going to be a table that knows
how to save Product, which is the products property defined in the AkkaoogleSchema
object. Because the parameter is defined as an implicit parameter, the compiler will
now look for a value that matches the parameter type within the scope. This way, the
caller won’t have to specify the parameter when saving an instance of a domain
model. The following listing shows the complete models package.

package com.akkaoogle.db

import AkkaoogleSchema._
import org.squeryl._

import org.squeryl.PrimitiveTypeMode._

import java.util.Date

package models {

 implicit val transactionFailures: Table[TransactionFailure] =

 AkkaoogleSchema.transactionFailures
 implicit val vendors: Table[ExternalVendor] = AkkaoogleSchema.vendors

 implicit val products: Table[Product] = AkkaoogleSchema.products

 trait Model[A] extends KeyedEntity[Long] { this: A =>
 val id: Long = 0

 def save[T[A] <: Table[A]](

 implicit table: T[A]): Either[Throwable, String] = {
 tx {

 try {

 table.insert(this)
 Right("Domain object is saved successfully")

 } catch {

 case exception => Left(exception)
 }

 }

 }
 }

Listing 12.7 Complete models package of Akkaoogle

Implicit
TransactionFailure
table for save

B

CImplicit
ExternalVendor

table for save
Implicit
Products
table for
save

D

Insert row
into databaseE

364 CHAPTER 12 Scalable and distributed applications using Akka

 class TransactionFailure(val vendorId: String,
 val message: String,

 val timestamp: Date) extends

 Model[TransactionFailure]

 object TransactionFailure {

 def findAll = tx {

 from(transactionFailures)(s => select(s)) map(s => s) }
 }

 class ExternalVendor(

 val name: String, val url: String) extends Model[ExternalVendor]

 object ExternalVendor {

 def findAll = tx { from(vendors)(s => select(s)) map(s => s) }

 }

 class Product(val description: String,

 val vendorName: String,

 val basePrice: Double,
 val plusPercent: Double)

 extends Model[Product] {

 def calculatePrice = basePrice + (basePrice * plusPercent / 100)

 }

 object Product {

 def findByDescription(description: String): Option[Product] =

 tx {
 products.where(p => p.description like description).headOption

 }

 }
}

The models package defines all the classes you need to make Akkaoogle work with the
database. It defines a parameterized version of save E that works with all the table
objects created inside the package. To make save work for all these table types, you
have defined implicit values (B C D) for each table so that the Scala compiler picks
the appropriate one when saving your domain objects.

 It’s time to move to the core of the application: implementing the price lookup
actors for both the internal and external vendors.

12.3.4 Implementing the core with actors

The core of Akkaoogle is to find the cheapest deal on the web and track the availability
of the external services for quality purposes. To support these functionalities, the
Akkaoogle application needs to handle the message types shown in the following
listing.

package com.akkaoogle.calculators

object messages {
 case class FindPrice(productDescription: String, quantity: Int)

 case class LowestPrice(vendorName: String,

Listing 12.8 List of message types supported by Akkaoogle (messages.scala)

365Building a real-time pricing system: Akkaoogle

 productDescription: String,
 price: Double)

 case class LogTimeout(actorId: String, msg: String)

 case class FindStats(actorId: String)
 case class Stats(actorId: String, timeouts: Int)

}

The FindPrice message type represents a request triggered by a user looking for the
cheapest deal. Needless to say, it’s the most important message type in the application.
The response of the FindPrice message is represented by the LowestPrice message,
and it contains all the information the user needs about the cheapest deal. Akkaoogle
internally uses the rest of the message types to track the availability of external ser-
vices. Every time an external service times out, the LogTimeout message is sent to an
actor to log the details. The FindStats and Stats messages are used for administra-
tion purposes.

 First, implement a way to find the cheapest price for the products offered by the
internal providers. Remember: products offered by internal providers are stored in a
database. The InternalPriceCalculator actor calculates the lowest price by looking
up the product by description, shown in the following listing.

package com.akkaoogle.calculators

import messages._

import com.akkaoogle.db.models._
import akka.actor._

class InternalPriceCalculator extends Actor {

 def receive = {
 case FindPrice(productDescription, quantity) =>

 val price = calculatePrice(productDescription, quantity)

 sender ! price
 }

 def calculatePrice(productDescription: String, qty: Int):

Option[LowestPrice] = {
 Product.findByDescription(productDescription) map { product =>

 Some(LowestPrice(product.vendorName,

 product.description,
 product.calculatePrice * qty))

 } getOrElse Option.empty[LowestPrice]

 }
}

This actor is simple. When it receives the FindPrice message, it uses the product
description provided to find the product in the database and calculate the price using
the calculatePrice method, as defined in the Product domain class. At the end it
returns the LowestPrice response. The current implementation only considers the
first matching product, which in some cases isn’t the right behavior. It should match

Listing 12.9 Actor that calculates lowest price for internal products

366 CHAPTER 12 Scalable and distributed applications using Akka

all the products with a description (even a partial description) and derive the lowest
price. I leave it to you to make the necessary changes to the calculation. For now, let’s
move on to the external providers.

 Because you can have many external vendors for your application, you can’t make
the remote service calls sequentially because it would increase the response time and
affect your users. You have to invoke the service calls in parallel and find a way to set a
timeout for each service so you can respond to the user within a reasonable time.
Actors are a nice and easy way to achieve parallelism. You’ll next create an actor for
each external vendor and broadcast the FindPrice message to these actors. These
actors will act as a proxy client to the remote service. The following listing shows how
the proxy actor for each external vendor is implemented.

class ExternalVendorProxyActor(val v: ExternalVendor) extends Actor {

 def receive = {

 case fp: FindPrice =>

 var result: Option[LowestPrice] = Option.empty[LowestPrice]
 val f = Future({

 val params = "?pd=" + fp.productDescription + "&q=" + fp.quantity

 val price = Source.fromURL(v.url + params).mkString.toDouble
 Some(LowestPrice(v.name,

 fp.productDescription, price * fp.quantity))

 }) recover { case t => Option.empty[LowestPrice] }
 f pipeTo sender

 }

}

Source.fromURL makes the REST call to the vendor web service B. Because the web
service might take some time to respond, it’s wrapped in a Future. A Future is a data
structure to retrieve the result of some concurrent operation without blocking. Typi-
cally, some other actor does the work and completes the Future so you aren’t blocked.
Future is a great and easy way to execute code asynchronously. Akka Future can also
monadically (using map and flatMap) compose with other Futures.

 The reference of the Future is then piped to a sender D. This is a common pat-
tern in Akka, called the pipeTo pattern. Instead of waiting for the Future to complete
and send the result to the sender, you’re piping Future to the sender. pipeTo adds an
onComplete callback to the Future so that when it completes, its output can be sent to
the sender. If the Future fails with an exception, the recover C method returns the
empty option. The Future construct in Akka is powerful. Make sure you explore it in
the Akka documentation(http://mng.bz/wc7D).

 You need the actor in the following listing to broadcast the FindPrice message to
each proxy actor and, at the end, find the lowest price out of all the responses.

Listing 12.10 The external vendor proxy actor

BMake web
service call

Send
message to
sender on
Future
complete

C

DReply to sender
when future

completes

http://mng.bz/wc7D
http://mng.bz/wc7D

367Building a real-time pricing system: Akkaoogle

class ExternalPriceCalculator(val proxies: Iterable[ActorRef])
 extends Actor {

 def receive = {

 case FindPrice(productId, quantity) =>
 val futures = proxies map { proxy =>

 val fp = FindPrice(productId, quantity)

 (proxy ? fp).mapTo[Option[LowestPrice]] recover {
 case e: AskTimeoutException =>

 AkkaoogleActorServer.lookup("monitor") !

 LogTimeout(proxy.path.name, "Timeout for " + fp)
 Option.empty[LowestPrice]

 }

 }
 val lowestPrice: Future[Option[LowestPrice]] =

 findLowestPrice(futures)

 val totalPrice: Future[Option[LowestPrice]] = lowestPrice.map {
 l =>

 l.map(p => p.copy(price = p.price + (p.price * .02)))

 }

 totalPrice pipeTo sender
 }

}

The ExternalPriceCalculator actor is created with references to ExternalVendor-
ProxyActor. The FindPrice message is broadcast to all the proxy actors using the ?
method (ask pattern). The ask method implements the Request Reply pattern. But
instead of waiting for the reply, it returns a Future. This way you’re even-handed in
terms of dispatching messages to each proxy so that all the external vendors get their
fair share of time to respond with prices. The findLowestPrice method at line B
determines the lowest price out of all the responses, and here’s how it’s implemented:

def findLowestPrice(

 futures: Iterable[Future[Option[LowestPrice]]]):

 Future[Option[LowestPrice]] = {
 val f: Future[Option[LowestPrice]] =

 Future.fold(futures)(Option.empty[LowestPrice]) {

 (lowestPrice: Option[LowestPrice], currentPrice: Option[LowestPrice])
 => {

 currentPrice match {

 case Some(first) if (lowestPrice.isEmpty) => Some(first)
 case Some(c) if (c.price < lowestPrice.get.price) => Some(c)

 case _ => lowestPrice

 }

 }

 }
 f

 }

Listing 12.11 External vendor lowest price calculator

Log failure
when Future

times out

Find lowest price
from all external
vendors

B

Add 2
percent
to price

Match
first

price

Compare
and set
lowest

price No current
price, return
previous price

368 CHAPTER 12 Scalable and distributed applications using Akka

The findLowestPrice method uses the fold operation over all the Futures to find
the lowest price. The beauty of this fold is it’s performed in a nonblocking fashion.
This is an important criterion—otherwise, the entire operation would take more time.
The fold method creates a new Future that wraps the entire operation and is per-
formed on the thread of the Future that completes last. If any of the Futures throws
an exception, the result of the fold becomes that exception.

 So far, you’ve implemented actors to get both the internal and external lowest
price. The following listing shows one more actor you need; it can find the lowest
price from both internal and external vendors and return the result.

class CheapestDealFinder extends Actor {
 def receive = {
 case req: FindPrice =>
 val internalPrice =
 (AkkaoogleActorServer.lookup("internal-load-balancer") ?
 req).mapTo[Option[LowestPrice]]
 val externalPrice =
 (AkkaoogleActorServer.lookup("external-load-balancer") ?
 req).mapTo[Option[LowestPrice]] recover {
 case e: AskTimeoutException =>
 Option.empty[LowestPrice]
 }
 val lowestPrice: Future[Option[LowestPrice]] =
 findLowestPrice(internalPrice :: externalPrice :: Nil)
 lowestPrice pipeTo sender
 }
}

The actor uses AkkaoogleActorServer (you’ll implement this in section 12.3.6) to
look up the "internal-load-balancer" actor in order to calculate the internal price.
This actor acts as a router for InternalPriceCalculator (you’ll learn about Akka
routers in the next section). Similarly, "external-load-balancer" finds the router
actor for the ExternalPriceCalculator actor. The CheapestDealFinder actor finds
the lowest price from both internal and external vendors and then finds the cheapest
price among them.

 You use the router actors to increase the scalability of the application because they
help in routing messages to multiple instances of actors, based on an algorithm. The
next section discusses routers and dispatchers, two of the neat features of Akka.

12.3.5 Increase scalability with remote actors, dispatchers, and routers

I haven’t discussed Akka dispatchers and message routing on purpose, because to
truly understand them you need a context where they’re valuable—like our current
example. What will happen if you deploy the current application in production?

Listing 12.12 Cheapest deal finder actor

Send
message to
internal load
balancer

Send message
to external
load balancer

369Building a real-time pricing system: Akkaoogle

SETTING UP MESSAGE ROUTING

For one user at a time, the current setup would work fine, but with multiple concurrent
users it won’t scale. When the CheapestDealFinder actor is processing a message,
other messages are waiting in the mailbox for processing. In some cases you may want
that behavior, but in this case you can’t do that. If you could create multiple instances
of the CheapestDealFinder actor, you could process messages in parallel. Then you’d
have to route messages to these actors effectively so you don’t overload some actors.
But how will the caller know which actor instance has the fewest messages to process?
The good news is Akka comes with special kinds of actors called routers, which can
effectively route messages between multiple instances of actors. The router actor acts
as a gateway to a collection of actors. You send a message to the router actor, and the
router actor forwards the message to one of the actors, based on some routing policy.
For example, the SmallestMailboxRouter router routes messages based on the mail-
box. The actor with the least number of messages in the mailbox wins. The following
code snippet creates 10 instances of CheapestDealFinder actors and creates a
SmallestMailboxRouter to route messages to them:

val cheapestDealFinderLoadBalancer = system.actorOf(

 Props[CheapestDealFinder]
 .withRouter(SmallestMailboxRouter(nrOfInstances = 10)),

 name = "cheapest-deal-finder-balancer")

Here the CheapestDealFinder actor is created with SmallestMailboxRouter by pass-
ing the number of instances that this router will manage. Note that the router will
automatically create CheapestDealFinder actors. To create your own routing logic,
you need to extend RouterConfig.

 Similarly, the following code example creates routers for both InternalPrice-
Calculator and ExternalPriceCalculator using RoundRobinRouter:

val internalPriceCalculators: List[ActorRef] =
 createInternalPriceCalculators(10)

val internalLoadBalancer = system.actorOf(

 Props[InternalPriceCalculator]
 .withRouter(RoundRobinRouter (routees = internalPriceCalculators)),

 name = "internal-load-balancer")

val proxies = createExternalProxyActors(ExternalVendor.findAll)

val externalPriceCalculators: List[ActorRef] =

 createExternalPriceCalculators(10, proxies)

val externalLoadBalancer = system.actorOf(

 Props [ExternalPriceCalculator]
 .withRouter(RoundRobinRouter(routees = externalPriceCalculators)),

 name="external-load-balancer")

RoundRobinRouter routes messages to actors in round-robin fashion. Instead of allow-
ing the router to create the actor instances, the instances are passed as a parameter
(they are called routees). The reason is that you want to specify additional parameters
to customize them further (discussed in the next section).

370 CHAPTER 12 Scalable and distributed applications using Akka

 These routers let you scale and handle multiple users at a time. But what about
performance? You still need the underlying threads to run all the event-based actors
you’ve created. The next section explores how to customize Akka to allocate dedi-
cated threads for each actor type.

IMPROVE PERFORMANCE WITH DISPATCHERS

Every actor system has a default dispatcher that’s used if nothing is configured. In
Akka, message dispatchers are the engine behind the actors that makes Actor run.
Think of a dispatcher as a service with a thread pool that knows how to execute actors
when a message is received. In most scenarios, the default settings work best. In fact,
when you’re building an Akka application, I recommend starting with that—don’t cre-
ate a special configuration.

 But if you notice some contention on a single dispatcher, you can start creating
dedicated dispatchers for a group of actors. Assume you’re in that situation. You
notice that your InternalPriceCalculatorActor and ExternalVendorProxyActor
actors aren’t getting executed as quickly as you want, and it’s because of the conten-
tion in the default dispatcher. Remember, all the actors are created from the same
actor system. You can easily configure the default dispatcher by adding more threads
to it, but for learning purposes you’re going to use different dispatchers. Akka comes
with four types of message dispatchers:

 Dispatcher—The default dispatcher used by the actor system. It’s an event-based
dispatcher that binds actors to a thread pool. It creates one mailbox per actor.

 PinnedDispatcher—Dedicates one thread per actor. It’s like creating thread-
based actors.

 BalancingDispatcher—This event-driven dispatcher redistributes work from busy
actors to idle actors. All the actors of the same type share one mailbox.

 CallingThreadDispatcher—It runs the actor on the calling thread. It doesn’t cre-
ate any new thread. Great for unit testing purposes.

Using dispatchers in Akka is a simple two-step process: first, specify them in the config-
uration file, then set up the actor with the dispatcher. The following configuration
snippet declares the dispatcher you’ll use for the ExternalPriceCalculator actor:

akkaoogle {
 dispatchers {

 external-price-calculator-actor-dispatcher {

 # Dispatcher is the name of the event-based dispatcher
 type = Dispatcher

 # What kind of ExecutionService to use

 executor = "fork-join-executor"

 # Configuration for the fork-join pool
 fork-join-executor {
 # Min number of threads to cap factor-based parallelism number to
 parallelism-min = 2
 # Parallelism (threads) ... ceil(available processors * factor)
 parallelism-factor = 2.0
 # Max number of threads to cap factor-based parallelism number to

371Building a real-time pricing system: Akkaoogle

 parallelism-max = 100
 }
 # Throughput defines the maximum number of messages to be
 # processed per actor before the thread jumps to the next actor.
 # Set to 1 for as fair as possible.
 throughput = 100
 }
 }
}

The external-price-calculator-actor-dispatcher uses a Dispatcher (the default
event-based dispatcher) with a fork-join thread pool. The fork-join thread pool is con-
figured with additional properties. Akka dispatchers are configurable (read the Akka
documentation for details). Similarly, the following dispatcher could be used for the
InternalPriceCalculator actor:

akkaoogle {
 dispatchers {
 ...
 ...
 internal-price-calculator-actor-dispatcher {
 # Dispatcher is the name of the event-based dispatcher
 type = BalancingDispatcher
 # What kind of ExecutionService to use
 executor = "thread-pool-executor"
 thread-pool-executor {
 # Min number of threads to cap factor-based core number to
 core-pool-size-min = 5
 }
 }
 ...
 }
}

This time the internal-price-calculator-actor-dispatcher uses Balancing-
Dispatcher with the thread pool executor, with the minimum number of threads set
to 5. In the real world, you should do performance testing before choosing a configu-
ration that works for everybody.

 To use these dispatchers you will use the withDispatcher method of Props, as in
the following:

private def createInternalPriceCalculators(initialLoad: Int)(
 implicit system: ActorSystem) = {

 (for (i <- 0 until initialLoad) yield

 system.actorOf(Props[InternalPriceCalculator]
 .withDispatcher

 ("dispatchers.internal-price-calculator-actor-dispatcher"),

 name=("internal-price-calculator" + i))).toList

 }

 private def createExternalPriceCalculators(initialLoad: Int,

 proxies: List[ActorRef])(implicit system: ActorSystem) = {

 (for (i <- 0 until initialLoad) yield system.actorOf(
 Props(new ExternalPriceCalculator(proxies))

372 CHAPTER 12 Scalable and distributed applications using Akka

 .withDispatcher(
 "dispatchers.external-price-calculator-actor-dispatcher"),

 name = ("external-price-calculator" + i))).toList

 }

The createInternalPriceCalculators method creates all the InternalPrice-
Calculator actors and configures the dispatchers.internal-price-calculator-
actor-dispatcher. Now these actors will no longer use the default dispatcher that
comes with ActorSystem but rather the one that’s configured. Similarly, create-
ExternalPriceCalculators configures the ExternalPriceCalculator actors. The
following listing shows the completed AkkaoogleActorServer which creates and con-
figures all the actors used in the Akkaoogle application.

package com.akkaoogle.infrastructure

import com.akkaoogle.calculators._

import akka.actor._

import com.akkaoogle.db.models._
import akka.actor.{ActorRef, Actor}

import akka.routing._

import com.typesafe.config.ConfigFactory

object AkkaoogleActorServer {

 var system: Option[ActorSystem] = None

 def run(): Unit = {
 println("starting the remote server...")

 system = Some(ActorSystem("akkaoogle",

 ConfigFactory.load.getConfig("akkaoogle")))
 system.foreach(s => register(s))

 }

 private def register(implicit system: ActorSystem) {
 val monitor = system.actorOf(Props[MonitorActor], name = "monitor")

 val cheapestDealFinderLoadBalancer = system.actorOf(

 Props[CheapestDealFinder]
 .withRouter(SmallestMailboxRouter(nrOfInstances = 10)),

 name = "cheapest-deal-finder-balancer")

 val internalPriceCalculators: List[ActorRef] =
 createInternalPriceCalculators(10)

 val internalLoadBalancer = system.actorOf(

 Props[InternalPriceCalculator]
 .withRouter(RoundRobinRouter(routees = internalPriceCalculators)),

 name = "internal-load-balancer")

 val proxies = createExternalProxyActors(ExternalVendor.findAll)
 val externalPriceCalculators: List[ActorRef] =

 createExternalPriceCalculators(10, proxies)

 val externalLoadBalancer = system.actorOf(
 Props [ExternalPriceCalculator]

Listing 12.13 Akkaoogle actor server

Initialize
all actors

373Building a real-time pricing system: Akkaoogle

 .withRouter(RoundRobinRouter(routees = externalPriceCalculators)),
 name="external-load-balancer")

 }

 def lookup(name: String): ActorRef = {
 system map { s =>

 val path = s / name

 s.actorFor(path)
 } getOrElse(throw new RuntimeException("No actor found"))

 }

 def stop(){
 system.foreach(_.shutdown())

 }

 private def createExternalProxyActors(vendors:
 Iterable[ExternalVendor])(implicit system: ActorSystem) = {

 val proxies = for(v <- vendors) yield {

 println("Creating vendor proxies for " + v.name)
 val ref = system.actorOf(Props(new ExternalVendorProxyActor(v))

 .withDispatcher("dispatchers.proxy-actor-dispatcher"), name=v.name)

 ref

 }
 proxies.toList

 }

 private def createInternalPriceCalculators(
 initialLoad: Int)(implicit system: ActorSystem) = {

 (for (i <- 0 until initialLoad) yield

 system.actorOf(Props [InternalPriceCalculator]
 .withDispatcher("dispatchers.internal-price-calculator-actor-

dispatcher"),

 name=("internal-price-calculator" + i))).toList
 }

 private def createExternalPriceCalculators(

 initialLoad: Int, proxies: List[ActorRef])(
 implicit system: ActorSystem) = {

 (for (i <- 0 until initialLoad) yield system.actorOf(

 Props(new ExternalPriceCalculator(proxies))
 .withDispatcher(

 "dispatchers.external-price-calculator-actor-dispatcher"),

 name = ("external-price-calculator" + i))).toList
 }

}

Where do the remote actors fit in? Making an actor remote is a matter of changing the
configuration at deployment time. There’s no special API for remote actors. This lets
you scale further by deploying them into multiple remote machines, if required. Refer
to the codebase for this chapter for an example. So far, you’ve implemented the Find-
Price message. The next section implements the LogTimeout message using Agents.

Look up
ActorRef
by name

Stop actor system
and actors

374 CHAPTER 12 Scalable and distributed applications using Akka

12.3.6 Handling shared resources with Agent

To build the monitoring piece for the Akkaoogle application, you have to rely on a
shared mutable state, and this section shows you how to put Agent to use.

 The monitor actor needs to log any transaction failure with external vendors. You
can always extend its functionality for internal use, but for now it needs to handle the
following two message types:

case class LogTimeout(actorId: String, msg: String)

case class FindStats(actorId: String)

On receiving a LogTimeout message, it needs to save the transaction failure informa-
tion to the database and also keep track of the number of times a particular service
failed. Agent fits the requirement well. It can store shared data and, if required, partic-
ipate in the STM transaction.

 To keep things simple you’ll use the Map provided by Akka. The side effect that’s
saving information to the database can’t be done safely within an STM transaction,
because an STM transaction could retry the operations in a transaction multiple times
if there’s any read/write inconsistency. If you try to save information to the database
within the transaction, it may get saved more than once. If you use Agent, it can partic-
ipate in the STM transaction and get executed only when the STM transaction com-
pletes successfully. Here’s how to increment the failure counter and save the
information in the database in an atomic operation:
 val errorLogger = Agent(Map.empty[String, Int])

...

...

 private def logTimeout(actorId: String, msg: String): Unit = {

 errorLogger send { errorLog =>
 val current = errorLog.getOrElse(actorId, 0)

 val newErrorLog = errorLog + (actorId -> (current + 1))

 val l = new TransactionFailure(actorId, msg,
 new Date(System.currentTimeMillis))

 l.save

 newErrorLog
 }

 }

The logTimeout method first gets the actorId and the message that needs to be
logged in the database. The send method of Agent takes a function that increments
the failure counts and saves the message into the database. With this setup, imple-
menting the FindStats message is easy:

case FindStats(actorId) =>

 val timeouts = errorLogger().getOrElse(actorId, 0)

 sender ! Stats(actorId, timeouts = timeouts)

Get the latest count from the map and return it. In the real world, you’ll monitor other
information, but as of now you’re done with the monitor actor. The following is the
complete code.

375Adding asynchronous HTTP support with Play2-mini

package com.akkaoogle.infrastructure

import akka.agent.Agent

import akka.actor.Actor
import com.akkaoogle.calculators.messages.{Stats, FindStats, LogTimeout}

import java.util.Date

import com.akkaoogle.db.models._

class MonitorActor extends Actor {

 import context._

 val errorLogger = Agent(Map.empty[String, Int])

 def preRestart = errorLogger send { old => Map.empty[String, Int] }

 def receive = {

 case LogTimeout(actorId, msg) =>
 logTimeout(actorId, msg)

 case FindStats(actorId) =>

 val timeouts = errorLogger().getOrElse(actorId, 0)
 sender ! Stats(actorId, timeouts = timeouts)

 }

 private def logTimeout(actorId: String, msg: String): Unit = {

 errorLogger send { errorLog =>
 val current = errorLog.getOrElse(actorId, 0)

 val newErrorLog = errorLog + (actorId -> (current + 1))

 val l = new TransactionFailure(actorId, msg,
 new Date(System.currentTimeMillis))

 l.save

 newErrorLog
 }

 }

}

MonitorActor checks the health of external vendor services and provides stats. The
preRestart B is a callback method defined by the Akka actor trait, which is invoked
when the actor is about to be restarted. In the preRestart you’re clearing up the log
count but ideally you may want to save the existing error count in some persistence
storage so you can fetch the errors for later use. Now let’s hook all these actors with a
simple UI.

12.4 Adding asynchronous HTTP support with Play2-mini

Play2-mini is a lightweight REST framework on top of the Play2 framework. It maps an
HTTP request to a function that takes an HTTP request and returns a response.
Behind the scenes, all the requests are handled using actors. It also provides support
for nonblocking, asynchronous HTTP support of the Play2 framework. Behind the
scenes, the Play2 framework uses the Netty server that implements the Java NIO API.
The next section sets up the Akkaoogle project to use the Play2-mini framework.

Listing 12.14 Complete monitor actor

B

Clear out
logs

before
restart

Message handler

376 CHAPTER 12 Scalable and distributed applications using Akka

12.4.1 Setting up Play2-mini

To make your Akkaoogle project aware of the Play2-mini project, you need to add the
necessary libraryDependencies to the SBT build definition. Because you’re also
going to use the Netty server built into Play2-mini as your web server, you’ll configure
play.core.server.NettyServer as the main entry point. To run the Akkaoogle appli-
cation, all you have to do is enter "sbt run". The following trait captures the necessary
settings to convert the Akkaoogle project to Play2-mini:

trait ConfigureScalaBuild {
 lazy val typesafe = "Typesafe Repository" at "http://repo.typesafe.com/

typesafe/releases/"

 lazy val typesafeSnapshot = "Typesafe Snapshots Repository" at "http://
repo.typesafe.com/typesafe/snapshots/"

 val netty = Some("play.core.server.NettyServer")

 def scalaMiniProject(org: String, name: String, buildVersion: String,
baseFile: java.io.File = file(".")) = Project(id = name, base =
baseFile, settings = Project.defaultSettings).settings(

 version := buildVersion,
 organization := org,
 resolvers += typesafe,
 resolvers += typesafeSnapshot,
 libraryDependencies += "com.typesafe" %% "play-mini" % "2.1=RC2",
 mainClass in (Compile, run) := netty,
 ivyXML := <dependencies> <exclude org="org.springframework"/>
</dependencies>
)
}

The scalaMiniProject method creates an SBT project with all the Play2-mini depen-
dencies. For Akkaoogle, you’ll mix in this trait and use the scalaMiniProject method
to create the project, as in the following listing.

import sbt._
import Keys._

object AkkaoogleBuild extends Build with ConfigureScalaBuild {

 import H2TaskManager._
 lazy val root = scalaMiniProject("com.akkaoogle","akkaoogle","1.0")

 .settings(startH2Task, stopH2Task)

 .settings(
 organization := "scalainaction",

 scalaVersion := "2.10.0",

 scalacOptions ++= Seq("-unchecked", "-deprecation"),
 resolvers += "Typesafe Repo" at "http://repo.typesafe.com/typesafe/

repo",

 parallelExecution in Test := false
)

 .settings(

 libraryDependencies ++= Seq(

Listing 12.15 Akkaoogle SBT project with Play2-mini

377Adding asynchronous HTTP support with Play2-mini

 "com.typesafe.akka" %% "akka-actor" % "2.1.0",
 "com.typesafe.akka" %% "akka-remote" % "2.1.0",

 "com.typesafe.akka" %% "akka-agent" % "2.1.0",

 "com.h2database" % "h2" % "1.2.127",
 "org.squeryl" % "squery1_2.10-RC5" % "0.9.5-5",

 "org.specs2" %% "specs2" % "1.13" % "test",

 "org.eclipse.jetty" % "jetty-distribution" % "8.0.0.M2" % "test"
))

}

After you save and reload the build definition, you should have everything you need
to give a UI look to your application. In the next section, you’ll build your first Play2-
mini action, which can take the HTTP request and send messages to the actors.

12.4.2 Running with Play2-mini

When you start a Play2-mini–based application, the first thing it does is look for an
implementation of com.typesafe.play.mini.Setup. Every Play2-mini–based applica-
tion needs to implement this class:

package com.typesafe.play.mini

 class Setup(a: Application) extends GlobalSettings {

...
 }

This class takes an instance of Application as a parameter. Think of Application as a
controller of the MVC model that handles all the requests. In the case of Play2-mini,
the only abstract method you have to implement is the routes method:

package com.typesafe.play.mini

trait Application {

 def route: PartialFunction[RequestHeader, Handler]
}

For your application to work with Play2-mini, you need to implement the Setup by
passing a concrete implementation of the Application trait. Here’s the implementa-
tion of the Setup:

import com.akkaoogle.infrastructure._
import org.h2.tools.Server
import com.akkaoogle.db.AkkaoogleSchema._

object Global extends com.typesafe.play.mini.Setup(com.akkaoogle.http.App)
{
 println("initializing the Akkaoogle schema")
 createSchema()
 AkkaoogleActorServer.run()
}

The Global object extends the Setup class by passing com.akkaoogle.http.App as an
implementation of the Application trait. com.akkaoogle.http.App will handle all
the HTTP requests for the Akkaoogle application. Global is also a great place to initial-
ize the various parts of the system. In this case, you’re creating the schema, and
AkkaoogleActorServer starts all the actors. Here’s the complete implementation of
the com.akkaoogle.http.App Play2-mini Application:

378 CHAPTER 12 Scalable and distributed applications using Akka

package com.akkaoogle.http

import com.typesafe.play.mini._

import play.api.mvc._
import play.api.mvc.Results._

import com.akkaoogle.infrastructure._

import akka.pattern.{ ask, pipe, AskTimeoutException }
import com.akkaoogle.calculators.messages._

import play.api.libs.concurrent._

import scala.collection.JavaConverters._

/**

 * this application is registered via Global

 */
object App extends Application {

 def route = {

 case GET(Path("/")) => Action { request =>
 Ok(views.index()).as("text/html")

 }

 case GET(Path("/akkaoogle/search")) & QueryString(qs) =>

 Action { request =>
 val desc = QueryString(qs, "productDescription").get.asScala

 val f =

 (AkkaoogleActorServer
 .lookup("cheapest-deal-finder-balancer") ? FindPrice(

 desc.head, 1)).mapTo[Option[LowestPrice]]

 val result = f.map({
 case Some(lowestPrice)=>

 Ok(lowestPrice.toString).as("text/html")

 case _ =>
 Ok("No price found").as("text/html")

 })

 AsyncResult(result.asPromise)
 }

 }

}

The routes method is a partial function that matches the HTTP URL to an action.
Action is nothing but a function object that takes an HTTP request and returns a
Result. For example, case GET(Path("/")) matches the HTTP GET to "/" URL. The
Play2-mini framework provides a nice DSL to parse the HTTP URL and verb. The fol-
lowing action returns Ok(HTTP 200 response code) with the output of the
views.index() method:

Action { request =>

 Ok(views.index()).as("text/html")

}

views.index returns the HTML code to render the Akkaoogle homepage shown in
figure 12.4. The following GET pattern match for product search is more interesting:

GET(Path("/akkaoogle/search")) & QueryString(qs)

Listing 12.16 Akkaoogle Play2-mini Application

Get homepage
of Akkaoogle

Get
cheapest
price for

given
description

Return
asynchronous
result

379Summary

In this case, you’re using the QueryString helper of Play2-mini to parse the query
parameters and give you a value mapped to a parameter. In the action, you extract
the description given by the user to create the FindPrice message, which in turn is
sent to cheapest-deal-finder-balancer to find the cheapest price available for the
product. You can find the complete working version of the Akkaoogle project in the
chapter’s codebase. The Akkaoogle application isn’t completed yet, so you can take
over and add more features to make it better. That’s the best way to learn and
explore Akka.

12.5 Summary

Akka is a powerful toolkit that you can use to build frameworks or applications. Akka
makes concurrency easy for programmers by raising the abstraction level. Akka is a
concurrency framework built on actors, but it provides all the popular concurrency
abstractions available on the market. It provides the flexibility you need to build your
next enterprise application. Akka’s STM support lets you safely operate on mutable
data structures without leaving the comfort of actor-based concurrency. Most impor-
tantly, you learned that STM composes, so you can build smaller atomic operations
and compose them to solve problems. You also explored agents as another concur-
rency model that lets you send behavior from outside to manipulate data in a safe
manner. Exploring dataflow concurrency was also interesting because it lets you write
sequential programs without worrying about concurrency. And dataflow concurrency
code is very easy to understand and follow.

 By building Akkaoogle, you explored various considerations, constraints, and
design decisions that typically arise when building large concurrent applications. I’m
sure that the insights you gained will enable you to build your next Akka application.
Always remember that Akka provides lots of options and configuration flexibility, and
you should pick the features and options that work best for your application require-
ments. Akka is already used in various real-world applications,5 and now you can use it
too. From here on, let’s keep all our CPU cores busy.

5 Akka use cases, http://akka.io/docs/akka/1.1.2/intro/use-cases.html.

http://akka.io/docs/akka/1.1.2/intro/use-cases.html

381

Symbols

_200 function 140
_404 function 140
. operator 70
.jar files 178
+ function 184
++ function 103, 109
++= method 176
== method 85
=> sign 101
~/bin folder 172

A

abstract members 301
Abstract method 160
abstract modifier 86
abstract type annotation 226–228
abstraction techniques 225–226
access principles 18
Account type 152, 330
ACID (atomicity, consistency, isolation,

durability) 351
Active object 348
Actor API 266
Actor class 260
actor library

migrating to Akka 261
Actor model 12
actor path 263
actor system

actor path 263
guardian actor 263
shutting down all actors 264
threads executing 271
See also ActorSystem

actor, and blocking operation 268

ActorDSL 269
ActorRef 263
actors 260

divide-and-conquer pattern 266
guardian 263
handling a message 265
how they work 264
in Akka 347–350

defining 348–349
remote actors 347–350

in Akkaoogle application example 364–368
no direct reference 263
sending message to 264
separating blocking and nonblocking 268
vs using Future 277
when not to use 281

ActorSystem 262
creating an actor 263

ad hoc polymorphism, with type classes
modeling orthogonal concerns using 246–

250
solving expression problem using 250–253

add function 134
addOne function 102–103
addThree function 110
Administrable trait 71
ADTs (algebraic data types) 152–153
advantages, of functional programming 134–

135, 153–156
Agent, handling shared resources with 374–375
Agha, Gul 12
Akka 344–379

actors in 347–350
defining 348–349

agents in 354–355
Akkaoogle application example 356–375

adding asynchronous HTTP support with
Play2-mini 375–379

index

382 INDEX

Akka, Akkaoogle application example (continued)
architecture of 357–358
handling shared resources with Agent

374–375
implementing core with actors 364–368
implementing domain models 360–364
improve performance with dispatchers

370–373
setting up message routing 369–370
setting up project 359–360

and STM 351–354
handling mutable data 352–354
state in 352

dataflow concurrency 355–356
nondefensive programming 274
overview 345–346
restarting strategies 275
supervisor hierarchy 274

Akkaoogle 360, 362–365, 374, 378
actor server 372
and Play2-mini project 376
architecture of 357–358
building 356
home page 357
project structure 359
SBT project with Play2-mini 376
schema 361
setting up 359

AkkaoogleActorServer 368, 372, 377
AkkaoogleSchema object 363
algebraic data types. See ADTs
All-for-One 275
andThen method 114, 155
AngryMood trait 86
annotations, Scala classes in Java 330–332
AnyRef 91
AnyVal 91
application class 187, 210

and Ajax call 221
and web.xml file 188
extending ScalazServlet 189
handling dynamic resources 206
param method 207
servlet configured with name 186

Application trait 377
application.conf file 350
application-context.xml file 309
applications 169–192

connecting to databases 193–223
saving to 200–204
using Squeryl 194–200

creating web pages for 204–212
Kanban boards

creating views for 214–218
defined 170–171

moving cards in 218–221
setting up project with SBT 181–183

SBT 171–183
adding dependencies 178–181
build file for 174–176
for Mac 172–173
for Unix 172
for Windows 172
project structure for 176

Scalaz HTTP module
configuring with SBT 187–188
overview 183–186
setting up servlet 189–191

apply method 66–67, 78–79, 114–115, 164, 206
and cons method 127
in Map 117
treat object as a function object 108

applyCostPlusBusinessRule method 316
applyOptions function 82
applyPercentage 105
arbitrary generator 290
arguments 83–85
ArithmeticException 123–124
Array class 36
ArrayList() method 327
arrays 36–38
Arrays.asList method 51
Artist object 337
ArtistDb class 335
ArtistDb.scala database 335
ArtistRepository class 336
Ask pattern 367
asynchronous HTTP, with Play2-mini 375–379
asynchronous messaging systems, testing 317–318
ATaxStrategy 137–138
atomic method 353
atomicDelete function 353
atomicInsert function 353
atomicity 351
atomicity, consistency, isolation, durability.

See ACID
Awaitility 317–318

B

BalancingDispatcher 370–371
BasicDBObject() method 73, 85
BasicResponseHandler() method 51–53
Bean property 308
@BeanProperty annotation 308–309
beEqualTo matcher 315
behavior-driven development 312–317

specifications for 315–317
using Specs2 313–315

383INDEX

board example, Kanban
creating view for 214–218
moving cards in 218–221

BookOrdering object 232
Boolean parameter 154
BTaxStrategy 137–138
Budd, Timothy 9
build file, for SBT 174–176
build.properties file 177, 181, 359
build.sbt file 175, 286, 313, 355
build.scala file 177–178, 180, 359
builder.toString() method 47
byte code, Java 11
Byte type 24

C

c.countWords() method 348–349
cake pattern, dependency injection 301–303
calculatePrice method 158, 164, 365
CalculatePriceService class 297–298, 303
Calculator trait 226–227
calculus 132
call-by-name 102
call-by-reference 102
call-by-value 102
CallingThreadDispatcher 370
CanadaContractorPayrollSystem 236
CanadaPayroll method 233
case classes 55, 78–83

and pattern matching 83
companion object 80
option 80
See also value classes

case keyword 78
catch block 142
challenges, of concurrent programming 258–260

new trends in concurrency 259–260
shared-state concurrency with threads 258–259

Char type 25
Char.MAX_VALUE 288
Char.MIN_VALUE 288
character types 25–26
CheapestDealFinder 368–369
checked exceptions, Java classes in Scala 326–327
CI (continuous integration) 296
claimHandlers 148
claimId 147
class linearization 75–76, 78
classes

and constructors 57–61
case classes 55, 78–83
hierarchy of 91–92

close method 354

closure function 10, 105
CLR (Common Language Runtime) 18
CMSClassUnloadingEnabled flag 172
codomain 7
collection.immutable.List 97, 114
collection.mutable.ListBuffer 97, 114–115
collection.mutable.Map package 111
collection.mutable.Set[String]() method 116
collections

and Option 121–122
hierarchy of 110–113
in MongoDB 56
lazy collections 122–127

and Stream class 125–127
converting strict collections to 123–125

List 114–115
ListBuffer 114–115
Map 117–118
mutable and immutable 113
parallel collections 127–131

hierarchy of 129–130
switching between sequential and 130–131

Set 115–116
SortedSet 115–116
Tuple 117–118
using for-comprehension with 118–121

com.akkaoogle.http.App 377
com.kanban.application.WeKanbanApplication

188
com.mongodb package 63
com.mongodb.Mongo class 59
com.scalainaction.mongo package 62
com.typesafe.play.mini.Setup 377
Common Language Runtime. See CLR
companion objects, overview 65–69
components 224–254

abstract type annotation 226–228
and type classes 246–253

modeling orthogonal concerns using
246–250

solving expression problem using 250–253
and types in Scala 238–245

higher-kinded types 240–243
phantom types 243–245
structural types 238–240

extensible components 232–238
challenge of 232–234
solving expression problem 234–238

scalable components 229–232
self type annotation 228–229

composability 154–155, 164
composition, of functions 145–148
compute function 218
computing nodes 257
concreteFactory variable 200

384 INDEX

concurrent programming 255–282
challenges of 258–260

new trends in concurrency 259–260
shared-state concurrency with threads

258–259
defined 256–257
using actors 260
with actors, when not to use 281

Configuration file 311
cons(::) method 98
consistency 351
console-project task 181
constructors

and classes 57–61
copy constructors 83–85
overloading 58

container:start task 183
ContentType object 207
continuous integration. See CI
Contractor type 252
ContractorPayrollVisitor 234
contravariant 95, 97–101
copy constructors 83–85
copy method 78, 85
core modules, Akka 345
CostPlusCalculator() method 298
countWords method 348
covariance 95–99
CPU core 256–257
create a new Story screen 204
create, read, update, delete. See CRUD operations
createDB method 65
createSchema() method 362, 377
CreateStory view object 205, 207, 212, 217
CRUD (create, read, update, delete) operations 69
currentTime function 7
currying functions 144–145
cursor.hasNext() method 73, 82
cursor.next() method 73, 82

D

d.getDays() method 325–326
data loader 358
data structures 93–131

arrays 36–38
collections

and Option 121–122
hierarchy of 110–113
lazy collections 122–127
List and ListBuffer 114–115
Map and Tuple 117–118
mutable and immutable 113
parallel collections 127–131
Set and SortedSet 115–116

using for-comprehension with 118–121
foldLeft and foldRight methods for 106–108
function objects 108–110
higher-order functions 101–106
lists 36–38
type bounds for 99–101
type parameterization for 94–95
type variance for 95–99

data transfer object. See DTO
databases, for web applications 193–223

saving to 200–204
using Squeryl 194–200

dataflow concurrency 355–356
dataflow variables 355
DataTables trait 316
Date class 65
DateTime.now() method 326
DB class 65, 67–69, 72–74
db method 65
DB.apply(underlying.getDB(name)) function 66
DB.scala file 67
DB(underlying.getDB(name)) function 66
DBCollection class 70, 72
DBCollection.scala file 80
DbConnection 227
DBObject parameter 71
declaring packages 61
decorators 71
def keyword 16
default arguments 83–85
default constructor 14
default-afcdbe project 173
DefaultHttpClient() method 48, 51–53
DELETE method 48
Delete method 47
dependencies, in SBT 178–181
DI (dependency injection) 137, 297–312

cake pattern 301–303
implicit parameters 305–306
in functional style 306–307
structural typing 303–305
using Spring framework 307–312

dispatchers, in Akkaoogle application
example 370–373

distributed computing 257
divide and conquer 277
doctype 208
documentation 225
DogMood trait 86
domain models, in Akkaoogle application

example 360–364
domains 7
domain-specific language See DSL
don’t-repeat-yourself code. See DRY
draggable method 212

385INDEX

Driver class 199
DRY (don’t-repeat-yourself) code 144
DSL 16
DTO (data transfer object) 79
dynamic languages, transitioning from 15–17
Dynamic type 16
dynamic typing 17

E

e.hasMoreElements() method 47
e.withFilter 119
efficiency 225
Elem type 28
EmployeePayrollVisitor 234
end-to-end test 294
environment, for test-driven development 296
equals method 85
Erlang 12
error detection 225
errorLogger() method 374–375
eta-expansion 109
evenFilter 155
event-based actors 257
exception handling

overview 45
expression problem

and extensible components 234–238
and payroll system 236
implementation 232
solving 234
solving using type classes 250–253

extensible components
challenge of 232–234
solving expression problem 234–238

extensible languages, Scala as 9–10
external load balancer 358
ExternalPriceCalculator 367, 370, 372
external-price-calculator-actor-dispatcher 371
externalPriceSource 298
externalPriceSourceCalculator 298–299, 303
ExternalVendor 361–364, 366
ExternalVendor.findAll 362
ExternalVendorProxyActor 366–367, 370
Extractor object 206, 209

F

F[_] type 241
factory pattern 66–67
fault tolerance 274
File class 270
file.getName() method 40
FileToCount type 267, 348–349

filter method 120, 154
find method 77
findAllByPhase method 215, 217
findAllStoriesByPhase method 214
findByDescription 362, 364–365
findCalculator function 307
finder method 79, 82
findLowestPrice method 367–368
findOne method 70, 74
FindPrice message 365–367, 373, 379
firstName parameter 78
flatMap function 104–105, 161–164
floating-point types 25
foldLeft method 106–108, 144, 184
foldRight method 106–108, 144
forAll method 287
for-comprehensions

overview 39–42
using with collections 118–121

fork-join 266
fullClasspath 198
Function type 242
Function1 trait 110
functional languages, Scala as 6–8
Functional Object pattern 137
functional objects 136
functional programming 6, 132–165

ADTs 152–153
advantages of 134–135, 153–156
defined 134
function composition 145–148
function currying 144–145
higher-order functions 141–144
methods vs. functions 141
monads 156–165

managing state using 157–163
methods used with 163–165

moving from OOP to 135–140
modeling purely functional programs

138–140
object-oriented patterns 137–138
pure vs. impure programming 136–137

partial functions 145–148
pure functional programs 135
recursion in 148–152

functional style, dependency injection 306–307
functions

assignments 59
composition of 145–148
currying 144–145, 306
example of 34–36
function literals 33–34
objects 108–110
overview 30–33
vs. methods, in functional programming 141

386 INDEX

Future 276
divide and conquer 277
mixing with actors 280
vs using actors 277

G

Gen class 289, 291, 293
generators

for ScalaCheck 289–290
overview 287

generics
Java classes in Scala 327–329
overview 249

GenTraversableOnce 96, 104
GET method 138–140
Get method 47
getChronologyUsed() method 326
getCount method 70
getEntity() method 329–330
getName() method 331
getOrElse method 100–101
getOrElseUpdate method 74
getResource() method 142
gets method 163
getSender() method 349
Global object 377
greet method 86–87
GreetingsActor 261

H

handle method 208
head :: tail 103
head recursion 150
Hewitt, Carl 12
hierarchy

of classes 91–92
of collections 110–113
of parallel collections 129–130

higher-kinded types 184, 240–243
higher-order functions 101–106, 141–144
Hindley-Milner type 32
host parameter 57
HTTP method 46–48, 50, 206–207
HTTP module, Scalaz

configuring with SBT 187–188
overview 183–186
setting up servlet 189–191

http.proxy environment variable 173
HttpClient library 48
HttpGet method 51
HttpServlet 189
HttpServletRequest 189
Hughes, John 153

I

I/O monad 164
identifiers 5
immutable collections 113
immutable data, vs. mutable 6
immutable objects 6
implicit conversion 88
implicit keyword 189
implicit parameters 249

dependency injection 305–306
overview 249, 251

implicits 16
import statements 63–65
importance, of testing 284–286
impure programming, vs. pure

programming 136–137
InCompleteOrder 244
Infix Operation pattern 103
init() method 187, 199, 217, 362
input 7
Int object 25
Int type 21, 291, 354
integer types 24
Integer.parseInt 354
integration test 294, 299, 317
interactive mode 181
internal load balancer 358
InternalPriceCalculator 365, 368, 371–372
InternalPriceCalculatorActor 370
internal-price-calculator-actor-dispatcher 372
interoperability with Java 323–343

Java classes in Scala 324–329
checked exceptions 326–327
generics 327–329
static members 325–326

Scala classes in Java 329–332
Scala web applications using Java

frameworks 332–343
model, view, controller 334–340
using Spring configuration 340–343

inTransaction method 200, 204
invariant 97–98, 100–101
io.monads package 64
IOMonad type 64
IOResource 140
isDefinedAt method 146
isEmpty method 99
isLeft method 291
isolation 351
isRight method 291
Iterable trait 113

387INDEX

J

JapanPayroll method 233–234
JAR file 22
Java

classes in Scala 324–329
checked exceptions 326–327
generics 327–329
static members 325–326

transitioning from 13–15
productivity improvements 13
succint code 13–15

Java byte code 11
Java class 323–326
Java Database Connectivity. See JDBC
Java driver 60, 65, 71, 74
Java interface 76, 329–330
Java Virtual Machine. See JVM
java.io.File class 270
java.lang.Thread class 258
java.sql package 65
java.sql.Date 64
java.util.concurrent package 258
java.util.Date() method 44, 64
JavaConversions object 68
JavaScript Object Notation. See JSON
JDBC (Java Database Connectivity) 199
jetty-run build action 191
jettyVersion 197
jquery-ui library 212
JSON (JavaScript Object Notation) 56
JUnit, test-driven development using 296–297
junitInterface 310
JVM (Java Virtual Machine)

and Scala 10–11
overview 3

K

Kanban boards
board

defined 170–171
setting up project with SBT 181–183

example
creating view for 214–218
moving cards in 218–221

view object 217
KanbanBoard() method 217
KanbanSchema class 199–200, 203
KanbanSchema.scala file 195
Kay, Alan 5
Kestrel 143–144
KeyedEntity trait 360

L

lambda calculus 132–133
lambda function 105
languages() method 328
lastName parameter 78
lazy collections 122–127

and Stream class 125–127
converting strict collections to 123–125

leftValueGenerator 291, 293
libraryDependencies 347, 355, 360, 376
Limit option 85
linearization 75
LinearSeq type 130
List class 104
List collection, overview 114–115
List.WithFilter 119
List() method 42
ListBuffer, overview 114–115
lists 36–38
load balancers 358
loadArtists() method 337–338
loan pattern 142
locale field 77
LocaleAware trait 77
logStep method 163
LogTimeout message 365, 374
logTimeout method 374
Long type 24
loopTill construct 10
Lotus Notes, IBM 56

M

m.keys 117
m.values 117
Mac, SBT on 172–173
main.js file 212–213, 221
Map collection, overview 117–118
map function 102–105, 109
Map type 111
Mapper trait 241–242
mathematical functions 7
Maybe class 95–96, 100
Maybe construct 117
Maybe.scala 95, 100
memoization 74
Memoizer trait 74–75
message passing concurrency with actors 260
message routing, in Akkaoogle application

example 369–370
MessageDispatcher 264
messageFromFuture() method 356
message-oriented concurrency 345
method dependent type 245

388 INDEX

method invocations, overview 102
MethodParts.unapply 207
methods

for monads 163–165
vs. functions, in functional programming 141

microworlds 155, 157
minus sign 98
Mixin composition 6, 301
modeling, pure functional programs 138–140
modifiers 86–87
modify method 160–161, 163
modifyPriceState 161, 164
modular mixin composition 5
monadic laws 164
monads 156–165

managing state using 157–163
methods used with 163–165

Mongo class 60
Mongo driver 70, 77
MongoClient class 57, 60, 62
MongoClient.scala 69
MongoDB database

driver for in Scala 56–57
overview 69–70, 194, 227

monitor actor 358, 374–375
Moore's law 11
moveCard function 214, 221
moveTo method 219, 221
Movie class 246–247
MovieConverterWithoutRating 248
msg message 260
multicore processors

and Moore's law 11
programming for 11–12

multi-paradigm languages, Scala as 8–9
mutable collections 113
mutable data, vs. immutable data 6
mutable.ArrayBuffer 115
mutable.ListBuffer 115
mydb database 69
myFirstMethod() method 31
MyScript class 60

N

name() method 331
named arguments 83–85
nano-http-server project 140
NanoHttpServer.scala 140
nanoTime method 64
new keyword 239

newFunction.apply 242
Nil class 37, 96, 99
NoAddress 244
NoItem 244
nonduplicate element 149–150
NoOption() method 79, 84–85
NotFound class 191
Null object 91
NullPointerException 121

O

<object>.apply() method 108
<object>(<arguments>) 108
Object Relational Mapping. See ORM
object-oriented languages, Scala as 4–5
object-oriented programming. See OOP
objects, overview 65–69
Odersky, Martin 4
One-for-One 275
OOP (object-oriented programming) 135–140

modeling purely functional programs 138–140
object-oriented patterns 137–138
pure vs. impure programming 136–137

operations, CRUD 69
Option class 208

overview 208
using with collections 121–122

Option type 81, 94, 327
OPTIONS method 48
Order type 244
OrderingService() method 318
OrderingSystem 230–231
orderSavedInDatabase 318
orElse block 148
orElse method 114
org.scalacheck.Gen class 289
org.scalacheck.Prop trait 287
org.scalacheck.Prop.forAll 287
org.scalacheck.Properties 287
org.squeryl.Query class 201
org.squeryl.Schema 195
org.squeryl.Table class 200, 363
organizationHomePage 176
ORM (Object Relational Mapping) 193–194
OUT[_] type 185
Outer class 86
output 7
overloading constructors 58
override modifier 71, 86

P

package object 68
package.scala file 68

389INDEX

packages
declaring 61
overview 61–62

parallel collections 127–131
hierarchy of 127–130
switching between sequential and 130–131

parallel programming 257
param method 207
parameters, implicit 249, 305–306
parametric polymorphism 249
parsedMessage() method 356
PartialFunction 113–114, 139–140, 146–148
PATH variable 172
pattern matching 42–45, 83
Payroll interface 233
Payroll type, adding for Japan 235
PayrollProcessorsExtension object 253
PC (Pricing Criteria) 147
Persistable interface 330
Persistable.class file 330
persistence data structures 111
Person class 59, 78, 81
phantom types 243–245
PinnedDispatcher 370
pipeTo pattern 366
placeOrder 243–244
plain old Java object. See POJO
play.core.server.NettyServer 376
Play2-mini, asynchronous HTTP with 375–379
plus sign 98
POJO (plain old Java object) 14
POM (Project Object Model) files 179
pom.xml file 179
popMessageFromASlowQueue() method 102
port parameter 57
position function 94–95, 99
POST method 48
Post method 47
Predef class 23, 110
priceCalculator method 307
Pricing Criteria. See PC
primary constructors 14, 57, 59–61, 66, 71
printAccountDetails 152–153
private modifier 86
processContractors method 236, 238
processEmployees method 233, 238
processPayroll method 238
Product class 361
productivity, improvements to when transitioning

from Java 13
Products table 363
Programmer class 14
programming

ADTs 152–153
advantages of 134–135, 153–156

challenges of 258–260
new trends in concurrency 259–260
shared-state concurrency with threads 258–

259
defined 133–134, 256–257
for multicore processors 11–12
function composition 145–148
function currying 144–145
higher-order functions 141–144
methods vs. functions 141
monads 156–165

managing state using 157–163
methods used with 163–165

moving from OOP to 135–140
modeling purely functional programs 138–

140
object-oriented patterns 137–138
pure vs. impure programming 136–137

partial functions 145–148
pure functional programs 135
recursion in 148–152
using actors 260
with actors, when not to use 281

project definition, debugging 181
Project Object Model files. See POM
project structure, for SBT 176–178
Promise

create a Future 277
Prop.forAll method 289
Properties class 287
protected modifier 86
pure functional languages 8
pure functional programs

modeling 138–140
overview 135

pure functions 6
pure programming, vs. impure

programming 136–137
PureSquare object 137

Q

Querulous 194
Query class 80, 214, 219

R

r.dispose() method 142
Random class 63
Random() method 63
read-evaluate-print loop. See REPL
ReadOnly trait 70–71, 82
recursion, in functional programming 148–152
red-green-refactor cycle 295, 313

390 INDEX

redirects method 210
Ref object 353
refactoring 295
referential transparency 7, 134, 137
refresh() method 338
remote actors, in Akka 347–350
Remote interface 331
removeDups function 149–150
REPL (read-evaluate-print loop), in Scala

interpreter 21–22
Representational State Transfer. See REST
request handler 357
Request object 186, 207
request.getHeaderNames() method 47
request.getParameterNames() method 47
RequiredServices trait 229
resolvers key 179
@Resource annotation 310
ResourceLocator type 139
Response object 186, 190, 210
response.getWriter() method 47
REST (Representational State Transfer) client

example 46–53
retrieveAndLoadArtists() method 338
Return parameter 209
Rich type 27
RichConsole object 64, 66
rightValueGenerator 291, 293
RMI interface 332
root_ package 64
RoundRobinRouter 369
routees 369
run() method 359
RunPayroll object 252
RunWith annotation 310

S

SalesPerson trait 84
save() method 329–330
saveStory method

implementing 210
overview 212

SBT (Simple Build Tool) 53, 171–183
adding dependencies 178–181
build file for 174–176
command 296, 360
for Mac 172–173
for Unix 172
for Windows 172
project structure for 176–178

sbt compile run command 177
sbt file

adding jetty server 178
put in ~/bin folder 172
vs. .scala file 173

sbt.Keys object 175
sbt.version key 181
sbtVersion key 182
Scala

and JVM 10–11
class 325, 329–330, 332, 334, 340
code, building 63
driver 55, 61, 69
extensible language 9–10
file 61–62, 173
functional language 6–8
fusion of programming language types 18
immutable.List 101
interpreter, REPL in 21–22
multi-paradigm language 8–9
object-oriented language 4–5
on .NET 4
scalable language 9–10
static typing in 16–17
transitioning from dynamic language 15–17
transitioning from Java

productivity improvements 13
succint code 13–15

type 22, 24, 32, 82, 95, 223, 238, 327
scala.Any class 75, 85, 97
scala.AnyRef class 61
scala.collection package 110–111, 129–130
scala.collection.immutable package

immutable for everyone 111
overview 117–118

scala.collection.Iterator 185
scala.collection.mutable package 110
scala.collection.parallel.Splitter trait 127
scala.collection.Stream 185, 188
scala.Either class 122, 212, 290
scala.Function1 class 9
scala.Function1 trait 146
scala.io.Source package 140, 267
scala.Nothing type 91, 96, 100
scala.Null type 91
scala.Option type 207
scala.ScalaObject trait 78, 91
scala.util package 63
scala.xml.NodeSeq object 206, 216
scalable components 229–232
scalable languages, Scala as 9–10
ScalaCheck 286–294

example of 290–294
generators for 289–290
testing string behavior 287–289

scalacOptions 176
scalaMiniProject method 376
ScalaObject trait 78
ScalaQuery 194
scala-version command 174

391INDEX

Scalaz HTTP module
configuring with SBT 187–188
overview 183–186
setting up servlet 189–191

scalaz.http.InputStreamer 186
scalaz.http.response.OK class 190
scalaz.http.servlet.ScalazServlet 186
scalaz.http.servlet.ServletApplication 189
scalaz.http.servlet.StreamStreamServlet 186
scalaz.http.servlet.StreamStreamServlet-

Application trait 189
ScalazServlet 186–187, 189, 191
scalazVersion 197
scheduleShipping method 231
Schema class 199, 218
schemas, in MongoDB 56
scoping approach 61–62
search cheapest product 357
select function 218
selectDynamic 16
self type annotation 225–226

and placeOrder method 231
and product finder 229
common annotation names 228

sendOff method 354
sequential collections, switching between parallel

and 130–131
servlet parameter 189
servlets, lifecycle of 187
Session object 200
SessionFactory object 200
SessionFactory.concrete 203
SessionFactory.concreteFactory 204
Set() method 116
setter methods 59
SettingKey 174, 180
Setup class 377
shared resources, handling with Agent 374–375
shared-state concurrency with threads 258–259
should method 313
shouldUseCostPlusCalculatorWhenPriceTypeIs-

CostPlus() method 303, 310–311
side-effecting functions 134
Simple Build Tool. See SBT
SimpleDB, Amazon 56
single execution core 256
Single Responsibility Principle 156
single() method 354
singleton objects 65, 92
SmallestMailboxRouter 369
Smalltalk 5
software transactional memory. See STM
someMap 16
someTimeConsumingOperation() method 29
Sort option 79
SortedSet 115–116

Source class 348
Source.fromURL 348, 366
source.getLines() method 124
specification-based unit testing tools 289
specifications, for behavior-driven

development 315–317
Specs2, behavior-driven development using

313–315
Spring framework, dependency injection

using 307–312
SQL database 194
Squeryl 194–200, 362
src/main/java folder 174
src/main/scala folder 174
stackable traits 77
StackOverflowError 151
startDatabase method 198
startH2Task 197
State monad

and init method 160
and map method 160
why named 159

State object 161, 163
StateMonad 160–161
states

in STM 352
managing with monads 157–163

static keyword 64
static members, Java classes in Scala 325–326
static typing, in Scala 16–17
STM (software transactional memory) 346,

351–354
handling mutable data 352–354
state in 352

stopH2Task 197
STORIES table 199
Story class 200–202, 207, 218–219, 221
Stream class, and lazy collections 125–127
StreamStreamServletApplication 189–191
strict collections, converting to lazy

collections 123–125
String class 137, 214, 286, 289–290, 313
String parameter 242
String type 287, 289
StringBuilder() method 47
strings

testing behavior of 287–289
types 26–27

StringSpecification.scala file 288
structural types 238–240
structural typing, dependency injection 303–305
structures, data 93–131

collections
and Option 121–122
hierarchy of 110–113
lazy collections 122–127

392 INDEX

structures, data, collections (continued)
List and ListBuffer 114–115
Map and Tuple 117–118
mutable and immutable 113
parallel collections 127–131
Set and SortedSet 115–116
using for-comprehension with 118–121

foldLeft and foldRight methods for 106–108
function objects 108–110
higher-order functions 101–106
type bounds for 99–101
type parameterization for 94–95
type variance for 95–99

subexpressions 135
subpackages 63
subproblems 148–149
subtype polymorphism 249
Successor Value pattern 136
succint code, in Scala 13–15
Suereth, Joshua 165
sum method 15, 184
Summable trait 184
Sun Microsystems 13
supervision strategies 274

All-for-One 275
One-for-One 275

supervisors, responsibility 274
System class 64

T

tail recursion, in functional programming
150–152

@tailrec annotation 151
TaskKey, defines tasks 180
taxFree function 145
taxingStrategy function 137
taxIt function 138, 144–145
TaxStrategy trait 138
TDD (test-driven development) 284, 294–297,

312, 318
setting up environment 296
using JUnit 296–297

tell method 349
template method pattern 142
test double 300
test-code-refactor cycle 295
test-driven development. See TDD
TestFindByQuery.scala 82
testing 283–319

asynchronous messaging systems 317–318
behavior-driven development 312–317

specifications for 315–317
using Specs2 313–315

dependency injection 297–312

cake pattern 301–303
implicit parameters 305–306
in functional style 306–307
structural typing 303–305
using Spring framework 307–312

importance of 284–286
test-driven development 294–297

setting up environment 296
using JUnit 296–297

using ScalaCheck 286–294
example of 290–294
generators for 289–290
testing string behavior 287–289

TestPricingSystem 315
testShouldReturnExternalPrice() 310–311
this() method 58–62, 65, 69
threads, concurrent programming using, chal-

lenges of 258–259
throwableToLeft 122
toString method 78
total function 153
toXml method 246–249
Trait class 76
traits 15, 69–77, 201

and class linearization 75–76
stackable 77

transaction parameter 353
TransactionFailure 361–364
Traversable

parameter 109
trait 154, 258

try-finally block 142
Tuple, overview 117–118
tx method 203, 362
type

abstraction 5
bounds 99–101
inference 17
parameterization 94–95
parameters 70
projection 242–243
variance 95–99

type classes, ad hoc polymorphism with 246–253
modeling orthogonal concerns using 246–250
solving expression problem using 250–253

TypedActor 348
types 23–28, 238–245

character 25–26
floating-point 25
higher-kinded types 240–243
integer 24
phantom types 243–245
string 26–27
structural types 238–240
XML 28

393INDEX

U

unapply method 78, 81, 206–207
unapplySeq method 81
Unicode method 173
Unit method 239
universal traits 88
Unix

pipes 154–155
SBT on 172

UntypedActor 348–349
up$extension method 88
Updatable trait 71
UpdatableCollection class 74, 76
uppercase characters, finding 13
url property 361
UrlBasedViewResolver class 342
USContractorPayrollSystem 236
user story 56
UseResource class 141
USPayroll class 250
USPayroll method 233
util.Random class 63

V

validate method 201–203, 218
ValidationException 202–203, 218
value classes

rules 87
var prefixes 58
variables, overview 28–30
Vector collection 127
Vector() method 328
views 91
views.index() method 378

W

WAR file 47
weather function 134
web applications 169–192

connecting to databases 193–223
saving to 200–204
using Squeryl 194–200

creating web pages for 204–212

Kanban boards
creating view for 214–218
defined 170–171
moving cards in 218–221
setting up project with SBT 181–183

SBT 171–183
adding dependencies 178–181
build file for 174–176
for Mac 172–173
for Unix 172
for Windows 172
project structure for 176–178

Scalaz HTTP module 183–191
configuring with SBT 187–188
overview 183–186
setting up servlet 189–191

using Java frameworks 332–343
model, view, controller 334–340
using Spring configuration 340–343

web.xml file 188
weKanban application 170, 186, 191

setting up project 181
user stories 171

WeKanbanApplication 204, 208–209, 211, 221
WeKanbanProjectDefinition.scala file 187, 194
WeKanbanSchema object 200
while loop 10
Windows, SBT on 172
with keyword 71
withDispatcher method 371
withFilter 119–121
WordCount

implementation using actors 272
WordCount type 349
WordCountMaster class 267
WordCountWorker class 267, 348–349

X

XML types 28
XmlConverter 246–249
xs.clear() method 116, 118

Z

zipWithIndex 271

Nilanjan Raychaudhuri

S
cala runs on the JVM and combines object-orientation with
functional programming. It’s designed to produce succinct,
type-safe code, which is crucial for enterprise applications.

Scala implements Actor-based concurrency through the amazing
Akka framework, so you can avoid Java’s messy threading while
interacting seamlessly with Java.

Scala in Action is a comprehensive tutorial that introduces the
language through clear explanations and numerous hands-on
examples. It takes a “how-to” approach, explaining language
concepts as you explore familiar programming tasks. You’ll
tackle concurrent programming in Akka, learn to work with
Scala and Spring, and learn how to build DSLs and other pro-
ductivity tools. You’ll learn both the language and how to use it.

What’s Inside
● A Scala tutorial
● How to use Java and Scala open source libraries
● How to use SBT

● Test-driven development
● Debugging

Experience with Java is helpful but not required. Ruby and
Python programmers will also � nd this book accessible.

Nilanjan Raychaudhuri is a skilled developer, speaker, and
an avid polyglot programmer who works with Scala on
production systems.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit manning.com/ScalainAction

$44.99 / Can $47.99 [INCLUDING eBOOK]

Scala IN ACTION

SCALA/JAVA

M A N N I N G

“A great way to get started
on building real-world

 applications using Scala and
 its tools and frameworks.”—Martin Odersky, Creator of Scala

“Makes one wonder why
functional programming

isn’t more widely used
in the industry!”—Alexandre Alves, Oracle Corp.

“A must for any forward-
looking Java developer.”—Michael Smolyak

Next Century Corp.

“Like having an
 experienced mentor.”

—From the Foreword by
Chad Fowler, Author,
Speaker, and Engineer

SEE INSERT

	Scala in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	Part 1: Introducing Scala
	Part 2: Working with Scala
	Part 3: Advanced steps

	Code convention and downloads
	Software requirements
	Author Online forum

	about the cover illustration
	Part 1 Scala: the basics
	1 Why Scala?
	1.1 What’s Scala?
	1.1.1 Scala as an object-oriented language
	1.1.2 Scala as a functional language
	1.1.3 Scala as a multi-paradigm language
	1.1.4 Scala as a scalable and extensible language
	1.1.5 Scala runs on the JVM

	1.2 The current crisis
	1.2.1 End of Moore’s law
	1.2.2 Programming for multicores

	1.3 Transitioning from Java to Scala
	1.3.1 Scala improves productivity
	1.3.2 Scala does more with less code

	1.4 Coming from a dynamic language
	1.4.1 Case for static typing, the right way

	1.5 For the programming language enthusiast
	1.6 Summary

	2 Getting started
	2.1 REPL with Scala interpreter
	2.2 Scala basics
	2.2.1 Basic types
	2.2.2 Defining variables
	2.2.3 Defining functions

	2.3 Working with Array and List
	2.4 Controlling flow with loops and ifs
	2.5 For-comprehensions
	2.6 Pattern matching
	2.7 Exception handling
	2.8 Command-line REST client: building a working example
	2.8.1 Introducing HttpClient library
	2.8.2 Building the client, step by step

	2.9 Summary

	3 OOP in Scala
	3.1 Building a Scala MongoDB driver: user stories
	3.2 Classes and constructors
	3.3 Packaging
	3.4 Scala imports
	3.5 Objects and companion objects
	3.6 Mixin with Scala traits
	3.6.1 Class linearization
	3.6.2 Stackable traits

	3.7 Case class
	3.8 Named and default arguments and copy constructors
	3.9 Modifiers
	3.10 Value classes: objects on a diet
	3.11 Implicit conversion with implicit classes
	3.12 Scala class hierarchy
	3.13 Summary

	4 functional data structures
	4.1 Introducing type parameterization
	4.2 Type variance with covariance and contravariance
	4.3 Lower and upper type bounds
	4.4 Higher-order functions, including map, flatMap, and friends
	4.5 Using foldLeft and foldRight
	4.6 Building your own function objects
	4.7 Scala collection hierarchy
	4.8 Mutable and immutable collections
	4.9 Working with List and ListBuffer
	4.9.1 Working with Set and SortedSet
	4.9.2 Working with Map and Tuple
	4.9.3 Under the hood of for-comprehension
	4.9.4 Use Option not Null

	4.10 Working with lazy collections: views and streams
	4.10.1 Convert a strict collection to a nonstrict collection with views
	4.10.2 Working with Streams

	4.11 Divide and conquer with parallel collections
	4.11.1 Parallel collection hierarchy
	4.11.2 Switching between sequential and parallel collections

	4.12 Summary

	5 Functional programming
	5.1 What is functional programming?
	5.1.1 The benefits of referential transparency
	5.1.2 A pure functional program

	5.2 Moving from OOP to functional programming
	5.2.1 Pure vs. impure programming
	5.2.2 Object-oriented patterns in functional programming
	5.2.3 Modeling purely functional programs

	5.3 Functions in all shapes and forms
	5.3.1 Methods vs. functions
	5.3.2 Higher-order functions
	5.3.3 Function currying
	5.3.4 Function composition and partial functions
	5.3.5 Recursion

	5.4 Thinking recursively
	5.4.1 Tail recursion

	5.5 Algebraic data types
	5.6 Why does functional programming matter?
	5.7 Building higher abstractions with monads
	5.7.1 Managing state using monads
	5.7.2 Building blocks for monads

	5.8 Summary

	Part 2 Working with Scala
	6 Building web applications in functional style
	6.1 Building weKanban: a simple web-based Kanban board
	6.2 Building Scala applications using Simple Build Tool
	6.2.1 Setting up SBT
	6.2.2 Understanding the basics of SBT
	6.2.3 Setting up the weKanban project with SBT

	6.3 Introducing the Scalaz HTTP module
	6.3.1 How the Scalaz HTTP library works
	6.3.2 Configuring Scalaz with SBT
	6.3.3 Building your first web page using Scalaz

	6.4 Summary

	7 Connecting to a database
	7.1 Adding a new story to a weKanban board
	7.1.1 Connecting to a database using Squeryl
	7.1.2 Saving a new story to the database
	7.1.3 Building the Create Story web page

	7.2 Building the Kanban board page
	7.2.1 Creating the view for the Kanban board
	7.2.2 Moving cards in the Kanban board

	7.3 Summary

	8 Building scalable and extensible components
	8.1 Building your first component in Scala
	8.1.1 Abstract type members
	8.1.2 Self type members
	8.1.3 Building a scalable component
	8.1.4 Building an extensible component

	8.2 Types of types in Scala
	8.2.1 Structural types
	8.2.2 Higher-kinded types
	8.2.3 Phantom types

	8.3 Ad hoc polymorphism with type classes
	8.3.1 Modeling orthogonal concerns using type classes
	8.3.2 Solving the expression problem using type classes

	8.4 Summary

	9 Making concurrent programming easy with actors
	9.1 What is concurrent programming?
	9.2 Challenges with concurrent programming
	9.2.1 Difficulties of shared-state concurrency with threads
	9.2.2 New trends in concurrency

	9.3 Implementing message-passing concurrency with actors
	9.3.1 What is ActorSystem?
	9.3.2 How do Scala actors work?
	9.3.3 Divide and conquer using actors
	9.3.4 Fault tolerance made easy with a supervisor

	9.4 Composing concurrent programs with Future and Promise
	9.4.1 Divide and conquer with Future
	9.4.2 Mixing Future with actors

	9.5 When should you not use actors?
	9.6 Summary

	10 Building confidence with testing
	10.1 Importance of automated testing
	10.2 Automated test generation using ScalaCheck
	10.2.1 Testing the behavior of a string with ScalaCheck
	10.2.2 ScalaCheck generators
	10.2.3 Working with ScalaCheck

	10.3 Test-driven development cycle
	10.3.1 Setting up your environment for TDD
	10.3.2 Using JUnit to test Scala code

	10.4 Better tests with dependency injection
	10.4.1 Techniques to implement DI
	10.4.2 Cake pattern
	10.4.3 Structural typing
	10.4.4 Implicit parameters
	10.4.5 Dependency injection in functional style
	10.4.6 Using a dependency injection framework: Spring

	10.5 Behavior-driven development using Specs2
	10.5.1 Getting started with Specs2
	10.5.2 Working with specifications

	10.6 Testing asynchronous messaging systems
	10.7 Summary

	Part 3 Advanced steps
	11 Interoperability between Scala and Java
	11.1 Using Java classes in Scala
	11.1.1 Working with Java static members
	11.1.2 Working with Java checked exceptions
	11.1.3 Working with Java generics using existential types

	11.2 Using Scala classes in Java
	11.2.1 Using Scala annotations

	11.3 Building web applications in Scala using Java frameworks
	11.3.1 Building the model, view, and controller
	11.3.2 Configuring and running the application

	11.4 Summary

	12 Scalable and distributed applications using Akka
	12.1 The philosophy behind Akka
	12.2 Simple concurrency with Akka
	12.2.1 Remote actors
	12.2.2 Making mutable data safe with STM
	12.2.3 Agents
	12.2.4 Dataflow

	12.3 Building a real-time pricing system: Akkaoogle
	12.3.1 The high-level architecture of Akkaoogle
	12.3.2 Setting up the project for Akkaoogle
	12.3.3 Implementing the domain models
	12.3.4 Implementing the core with actors
	12.3.5 Increase scalability with remote actors, dispatchers, and routers
	12.3.6 Handling shared resources with Agent

	12.4 Adding asynchronous HTTP support with Play2-mini
	12.4.1 Setting up Play2-mini
	12.4.2 Running with Play2-mini

	12.5 Summary

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

