
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Alvin Alexander

Scala Cookbook

www.allitebooks.com

http://www.allitebooks.org

Scala Cookbook

by Alvin Alexander

Copyright © 2013 Alvin Alexander. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Courtney Nash

Production Editor: Rachel Steely

Copyeditor: Kim Cofer

Proofreader: Linley Dolby

Indexer: Ellen Troutman

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrator: Rebecca Demarest

August 2013: First Edition

Revision History for the First Edition:

2013-07-30: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449339616 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Scala Cookbook, the image of a long-beaked echidna, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-33961-6

[LSI]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449339616
http://www.allitebooks.org

For my mom, who loves cookbooks.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface. xiii

1. Strings. 1
1.1. Testing String Equality 4
1.2. Creating Multiline Strings 6
1.3. Splitting Strings 8
1.4. Substituting Variables into Strings 9
1.5. Processing a String One Character at a Time 13
1.6. Finding Patterns in Strings 18
1.7. Replacing Patterns in Strings 21
1.8. Extracting Parts of a String That Match Patterns 22
1.9. Accessing a Character in a String 24
1.10. Add Your Own Methods to the String Class 25

2. Numbers. 31
2.1. Parsing a Number from a String 32
2.2. Converting Between Numeric Types (Casting) 36
2.3. Overriding the Default Numeric Type 37
2.4. Replacements for ++ and −− 39
2.5. Comparing Floating-Point Numbers 41
2.6. Handling Very Large Numbers 43
2.7. Generating Random Numbers 45
2.8. Creating a Range, List, or Array of Numbers 47
2.9. Formatting Numbers and Currency 49

3. Control Structures. 53
3.1. Looping with for and foreach 54
3.2. Using for Loops with Multiple Counters 60
3.3. Using a for Loop with Embedded if Statements (Guards) 62
3.4. Creating a for Comprehension (for/yield Combination) 63

v

www.allitebooks.com

http://www.allitebooks.org

3.5. Implementing break and continue 65
3.6. Using the if Construct Like a Ternary Operator 71
3.7. Using a Match Expression Like a switch Statement 72
3.8. Matching Multiple Conditions with One Case Statement 76
3.9. Assigning the Result of a Match Expression to a Variable 77
3.10. Accessing the Value of the Default Case in a Match Expression 78
3.11. Using Pattern Matching in Match Expressions 79
3.12. Using Case Classes in Match Expressions 86
3.13. Adding if Expressions (Guards) to Case Statements 87
3.14. Using a Match Expression Instead of isInstanceOf 88
3.15. Working with a List in a Match Expression 89
3.16. Matching One or More Exceptions with try/catch 91
3.17. Declaring a Variable Before Using It in a try/catch/finally Block 92
3.18. Creating Your Own Control Structures 95

4. Classes and Properties. 99
4.1. Creating a Primary Constructor 100
4.2. Controlling the Visibility of Constructor Fields 104
4.3. Defining Auxiliary Constructors 108
4.4. Defining a Private Primary Constructor 112
4.5. Providing Default Values for Constructor Parameters 114
4.6. Overriding Default Accessors and Mutators 116
4.7. Preventing Getter and Setter Methods from Being Generated 119
4.8. Assigning a Field to a Block or Function 121
4.9. Setting Uninitialized var Field Types 122
4.10. Handling Constructor Parameters When Extending a Class 124
4.11. Calling a Superclass Constructor 127
4.12. When to Use an Abstract Class 129
4.13. Defining Properties in an Abstract Base Class (or Trait) 131
4.14. Generating Boilerplate Code with Case Classes 136
4.15. Defining an equals Method (Object Equality) 140
4.16. Creating Inner Classes 143

5. Methods. 147
5.1. Controlling Method Scope 148
5.2. Calling a Method on a Superclass 152
5.3. Setting Default Values for Method Parameters 154
5.4. Using Parameter Names When Calling a Method 157
5.5. Defining a Method That Returns Multiple Items (Tuples) 159
5.6. Forcing Callers to Leave Parentheses off Accessor Methods 161
5.7. Creating Methods That Take Variable-Argument Fields 163
5.8. Declaring That a Method Can Throw an Exception 165

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

5.9. Supporting a Fluent Style of Programming 167

6. Objects. 171
6.1. Object Casting 172
6.2. The Scala Equivalent of Java’s .class 174
6.3. Determining the Class of an Object 174
6.4. Launching an Application with an Object 176
6.5. Creating Singletons with object 178
6.6. Creating Static Members with Companion Objects 180
6.7. Putting Common Code in Package Objects 182
6.8. Creating Object Instances Without Using the new Keyword 185
6.9. Implement the Factory Method in Scala with apply 189

7. Packaging and Imports. 191
7.1. Packaging with the Curly Braces Style Notation 192
7.2. Importing One or More Members 193
7.3. Renaming Members on Import 195
7.4. Hiding a Class During the Import Process 196
7.5. Using Static Imports 197
7.6. Using Import Statements Anywhere 199

8. Traits. 203
8.1. Using a Trait as an Interface 203
8.2. Using Abstract and Concrete Fields in Traits 206
8.3. Using a Trait Like an Abstract Class 207
8.4. Using Traits as Simple Mixins 208
8.5. Limiting Which Classes Can Use a Trait by Inheritance 209
8.6. Marking Traits So They Can Only Be Used by Subclasses of a Certain
Type 211
8.7. Ensuring a Trait Can Only Be Added to a Type That Has a Specific
Method 213
8.8. Adding a Trait to an Object Instance 215
8.9. Extending a Java Interface Like a Trait 216

9. Functional Programming. 217
9.1. Using Function Literals (Anonymous Functions) 218
9.2. Using Functions as Variables 219
9.3. Defining a Method That Accepts a Simple Function Parameter 223
9.4. More Complex Functions 226
9.5. Using Closures 229
9.6. Using Partially Applied Functions 234
9.7. Creating a Function That Returns a Function 236

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

9.8. Creating Partial Functions 238
9.9. A Real-World Example 242

10. Collections. 245
10.1. Understanding the Collections Hierarchy 246
10.2. Choosing a Collection Class 250
10.3. Choosing a Collection Method to Solve a Problem 255
10.4. Understanding the Performance of Collections 261
10.5. Declaring a Type When Creating a Collection 264
10.6. Understanding Mutable Variables with Immutable Collections 265
10.7. Make Vector Your “Go To” Immutable Sequence 266
10.8. Make ArrayBuffer Your “Go To” Mutable Sequence 268
10.9. Looping over a Collection with foreach 270
10.10. Looping over a Collection with a for Loop 272
10.11. Using zipWithIndex or zip to Create Loop Counters 276
10.12. Using Iterators 278
10.13. Transforming One Collection to Another with for/yield 279
10.14. Transforming One Collection to Another with map 282
10.15. Flattening a List of Lists with flatten 285
10.16. Combining map and flatten with flatMap 286
10.17. Using filter to Filter a Collection 289
10.18. Extracting a Sequence of Elements from a Collection 291
10.19. Splitting Sequences into Subsets (groupBy, partition, etc.) 293
10.20. Walking Through a Collection with the reduce and fold Methods 295
10.21. Extracting Unique Elements from a Sequence 300
10.22. Merging Sequential Collections 302
10.23. Merging Two Sequential Collections into Pairs with zip 304
10.24. Creating a Lazy View on a Collection 306
10.25. Populating a Collection with a Range 309
10.26. Creating and Using Enumerations 311
10.27. Tuples, for When You Just Need a Bag of Things 312
10.28. Sorting a Collection 315
10.29. Converting a Collection to a String with mkString 318

11. List, Array, Map, Set (and More). 321
11.1. Different Ways to Create and Populate a List 322
11.2. Creating a Mutable List 324
11.3. Adding Elements to a List 325
11.4. Deleting Elements from a List (or ListBuffer) 328
11.5. Merging (Concatenating) Lists 330
11.6. Using Stream, a Lazy Version of a List 331
11.7. Different Ways to Create and Update an Array 333

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

11.8. Creating an Array Whose Size Can Change (ArrayBuffer) 335
11.9. Deleting Array and ArrayBuffer Elements 335
11.10. Sorting Arrays 337
11.11. Creating Multidimensional Arrays 338
11.12. Creating Maps 341
11.13. Choosing a Map Implementation 343
11.14. Adding, Updating, and Removing Elements with a Mutable Map 345
11.15. Adding, Updating, and Removing Elements with Immutable Maps 347
11.16. Accessing Map Values 349
11.17. Traversing a Map 350
11.18. Getting the Keys or Values from a Map 352
11.19. Reversing Keys and Values 352
11.20. Testing for the Existence of a Key or Value in a Map 353
11.21. Filtering a Map 354
11.22. Sorting an Existing Map by Key or Value 357
11.23. Finding the Largest Key or Value in a Map 360
11.24. Adding Elements to a Set 361
11.25. Deleting Elements from Sets 363
11.26. Using Sortable Sets 365
11.27. Using a Queue 367
11.28. Using a Stack 369
11.29. Using a Range 371

12. Files and Processes. 375
12.1. How to Open and Read a Text File 375
12.2. Writing Text Files 381
12.3. Reading and Writing Binary Files 382
12.4. How to Process Every Character in a Text File 383
12.5. How to Process a CSV File 384
12.6. Pretending that a String Is a File 387
12.7. Using Serialization 389
12.8. Listing Files in a Directory 391
12.9. Listing Subdirectories Beneath a Directory 392
12.10. Executing External Commands 394
12.11. Executing External Commands and Using STDOUT 397
12.12. Handling STDOUT and STDERR for External Commands 399
12.13. Building a Pipeline of Commands 401
12.14. Redirecting the STDOUT and STDIN of External Commands 402
12.15. Using AND (&&) and OR (||) with Processes 404
12.16. Handling Wildcard Characters in External Commands 405
12.17. How to Run a Process in a Different Directory 406
12.18. Setting Environment Variables When Running Commands 407

Table of Contents | ix

12.19. An Index of Methods to Execute External Commands 408

13. Actors and Concurrency. 411
13.1. Getting Started with a Simple Actor 414
13.2. Creating an Actor Whose Class Constructor Requires Arguments 418
13.3. How to Communicate Between Actors 419
13.4. Understanding the Methods in the Akka Actor Lifecycle 422
13.5. Starting an Actor 425
13.6. Stopping Actors 427
13.7. Shutting Down the Akka Actor System 432
13.8. Monitoring the Death of an Actor with watch 433
13.9. Simple Concurrency with Futures 436
13.10. Sending a Message to an Actor and Waiting for a Reply 445
13.11. Switching Between Different States with become 446
13.12. Using Parallel Collections 448

14. Command-Line Tasks. 453
14.1. Getting Started with the Scala REPL 454
14.2. Pasting and Loading Blocks of Code into the REPL 459
14.3. Adding JAR Files and Classes to the REPL Classpath 461
14.4. Running a Shell Command from the REPL 462
14.5. Compiling with scalac and Running with scala 465
14.6. Disassembling and Decompiling Scala Code 466
14.7. Finding Scala Libraries 471
14.8. Generating Documentation with scaladoc 472
14.9. Faster Command-Line Compiling with fsc 479
14.10. Using Scala as a Scripting Language 480
14.11. Accessing Command-Line Arguments from a Script 483
14.12. Prompting for Input from a Scala Shell Script 485
14.13. Make Your Scala Scripts Run Faster 489

15. Web Services. 491
15.1. Creating a JSON String from a Scala Object 491
15.2. Creating a JSON String from Classes That Have Collections 495
15.3. Creating a Simple Scala Object from a JSON String 500
15.4. Parsing JSON Data into an Array of Objects 501
15.5. Creating Web Services with Scalatra 503
15.6. Replacing XML Servlet Mappings with Scalatra Mounts 507
15.7. Accessing Scalatra Web Service GET Parameters 509
15.8. Accessing POST Request Data with Scalatra 510
15.9. Creating a Simple GET Request Client 514
15.10. Sending JSON Data to a POST URL 518

x | Table of Contents

15.11. Getting URL Headers 519
15.12. Setting URL Headers When Sending a Request 520
15.13. Creating a GET Request Web Service with the Play Framework 521
15.14. POSTing JSON Data to a Play Framework Web Service 524

16. Databases and Persistence. 527
16.1. Connecting to MySQL with JDBC 528
16.2. Connecting to a Database with the Spring Framework 530
16.3. Connecting to MongoDB and Inserting Data 533
16.4. Inserting Documents into MongoDB with insert, save, or += 537
16.5. Searching a MongoDB Collection 539
16.6. Updating Documents in a MongoDB Collection 542
16.7. Accessing the MongoDB Document ID Field 544
16.8. Deleting Documents in a MongoDB Collection 545
16.9. A Quick Look at Slick 547

17. Interacting with Java. 549
17.1. Going to and from Java Collections 549
17.2. Add Exception Annotations to Scala Methods to Work with Java 554
17.3. Using @SerialVersionUID and Other Annotations 556
17.4. Using the Spring Framework 557
17.5. Annotating varargs Methods 560
17.6. When Java Code Requires JavaBeans 562
17.7. Wrapping Traits with Implementations 565

18. The Simple Build Tool (SBT). 569
18.1. Creating a Project Directory Structure for SBT 570
18.2. Compiling, Running, and Packaging a Scala Project with SBT 574
18.3. Running Tests with SBT and ScalaTest 579
18.4. Managing Dependencies with SBT 581
18.5. Controlling Which Version of a Managed Dependency Is Used 584
18.6. Creating a Project with Subprojects 586
18.7. Using SBT with Eclipse 588
18.8. Generating Project API Documentation 590
18.9. Specifying a Main Class to Run 591
18.10. Using GitHub Projects as Project Dependencies 593
18.11. Telling SBT How to Find a Repository (Working with Resolvers) 595
18.12. Resolving Problems by Getting an SBT Stack Trace 596
18.13. Setting the SBT Log Level 597
18.14. Deploying a Single, Executable JAR File 597
18.15. Publishing Your Library 601
18.16. Using Build.scala Instead of build.sbt 602

Table of Contents | xi

18.17. Using a Maven Repository Library with SBT 604
18.18. Building a Scala Project with Ant 606

19. Types. 611
19.1. Creating Classes That Use Generic Types 614
19.2. Creating a Method That Takes a Simple Generic Type 617
19.3. Using Duck Typing (Structural Types) 618
19.4. Make Mutable Collections Invariant 620
19.5. Make Immutable Collections Covariant 622
19.6. Create a Collection Whose Elements Are All of Some Base Type 624
19.7. Selectively Adding New Behavior to a Closed Model 627
19.8. Building Functionality with Types 630

20. Idioms. 635
20.1. Create Methods with No Side Effects (Pure Functions) 636
20.2. Prefer Immutable Objects 644
20.3. Think “Expression-Oriented Programming” 647
20.4. Use Match Expressions and Pattern Matching 650
20.5. Eliminate null Values from Your Code 654
20.6. Using the Option/Some/None Pattern 658

Index. 667

xii | Table of Contents

Preface

This is a cookbook of problem-solving recipes about Scala, the most interesting pro‐
gramming language I’ve ever used. The book contains solutions to more than 250 com‐
mon problems, shown with possibly more than 700 examples. (I haven’t counted, but I
suspect that’s true.)

There are a few unique things about this book:

• As a cookbook, it’s intended to save you time by providing solutions to the most
common problems you’ll encounter.

• Almost all of the examples are shown in the Scala interpreter. As a result, whether
you’re sitting by a computer, on a plane, or reading in your favorite recliner, you
get the benefit of seeing their exact output. (Which often leads to, “Ah, so that’s how
that works.”)

• The book covers not only the Scala language, but also has large chapters on Scala
tools and libraries, including SBT, actors, the collections library (more than 100
pages), and JSON processing.

Just prior to its release, the book was updated to cover Scala 2.10.x and SBT 0.12.3.

The Scala Language
My (oversimplified) Scala elevator pitch is that it’s a child of Ruby and Java: it’s light,
concise, and readable like Ruby, but it compiles to class files that you package as JAR
files that run on the JVM; it uses traits and mixins, and feels dynamic, but it’s statically
typed. It uses the Actor model to simplify concurrent programming so you can keep
those multicore processors humming. The name Scala comes from the word scalable,
and true to that name, it’s used to power the busiest websites in the world, including
Twitter, Netflix, Tumblr, LinkedIn, Foursquare, and many more.

xiii

In my opinion, Scala is not a good language for teaching a Programming 101 class.
Instead, it’s a power language created for the professional programmer. Don’t let that
scare you, though. If you were my own brother and about to start a new project and
could choose any programming language available, without hesitation I’d say, “Use
Scala.”

Here are a few more nuggets about Scala:

• It’s a modern programming language created by Martin Odersky (the father of
javac), influenced by Java, Ruby, Smalltalk, ML, Haskell, Erlang, and others.

• It’s a pure object-oriented programming (OOP) language. Every variable is an ob‐
ject, and every “operator” is a method.

• It’s also a functional programming (FP) language, so you can pass functions around
as variables. You can write your code using OOP, FP, or both.

• Scala code runs on the JVM and lets you use the wealth of Java libraries that have
been developed over the years.

• You can be productive on Day 1, but the language is deep, so as you go along you’ll
keep learning and finding newer, better ways to write code. Scala will change the
way you think about programming—and that’s a good thing.

Of all of Scala’s benefits, what I like best is that it lets you write concise, readable code.
The time a programmer spends reading code compared to the time spent writing code
is said to be at least a 10:1 ratio, so writing code that’s concise and readable is a big deal.
Because Scala has these attributes, programmers say that it’s expressive.

Solutions
I’ve always bought O’Reilly cookbooks for the solutions, and that’s what this book is
about: solving problems.

When using a cookbook, I usually think, “I have this problem, I need to iterate over the
elements in an Array, what’s the best way to do that?” I like to look at the table of contents,
find a recipe, implement the solution, and move on. I tried to write each recipe with
this use case in mind.

However, with a modern language like Scala, it may end up that I phrased my question
wrong. Because of my prior programming experience I may have thought, “I need to
iterate over the elements in an Array,” but in reality my deeper intent was to loop over
those elements for a reason, such as to transform them into a new collection. So it’s nice
when a recipe says, “Hey, I know you’re here to read about how to loop over the elements
in an Array, here’s how you do that”:

for (i <- Array(1,2,3)) println(i)

xiv | Preface

“But, if what you’re really trying to do is transform those elements into a new collection,
what you want is a for/yield expression or map method”:

// for/yield

scala> for (i <- Array(1,2,3)) yield i * 2

res0: Array[Int] = Array(2, 4, 6)

// map

scala> Array(1,2,3).map(_ * 2)

res1: Array[Int] = Array(2, 4, 6)

(More on that _ character shortly.)

To create the list of problems and solutions, I followed the “Eat your own dog food”
philosophy. The recipes come from my own experience of creating Scala scripts, web
applications, web services, Swing applications, and actor-based systems. As I developed
the applications I needed, I encountered problems like these:

• Scala files tend to be very small; what’s the proper way to organize an application?

• It looks like SBT is the best build tool for Scala, but it’s different than Ant or Maven;
how do I compile and package applications, and work with dependencies?

• Constructors are really different than Java; how do I create them? What code is
generated when I declare constructor parameters and class fields?

• Actors are cool; how do I write a complete actor-based application?

• What, I shouldn’t use null values anymore? Why not? How do I code without them?

• I can pass a function around like any other variable? How do I do that, and what’s
the benefit?

• Why are there so many collections classes, and why does each collection class have
so many methods?

• I have all of this legacy Java code; can I still use it in Scala? If so, how?

• I’m starting to grok this. Now I need to know, what are the top five or ten “best
practices” of writing Scala code?

Truthfully, I fell fast in love with everything about Scala except for one thing: the col‐
lections library seemed large and intimidating. I really enjoyed using Scala so I kept
using the language, but whenever I needed a collection, I used a trusty old Java collection.

Then one day I got up the courage to dive into the collections library. I thought I’d hate
it, but after struggling with it for a while, I suddenly “got” it. The light bulb went on over
my head, and I suddenly understood not only the collections, but several other concepts
I had been struggling with as well. I realized the collections library writers aren’t crazy;
they’re brilliant.

Preface | xv

http://bit.ly/18gySAa

Once I understood the collections library, I quit writing so many for loops, and started
using collection methods like filter, foreach, and map. They made coding easier, and
made my code more concise. These days I can’t imagine a better way to write code like
this:

// filter the items in a list

scala> val nums = List(1,2,3,4,5).filter(_ < 4)

nums: List[Int] = List(1, 2, 3)

The _ wildcard character is discussed in several recipes, but as you can infer from that
example, it’s a placeholder for each element in the collection. The filter method loops
through each element in the list, calling your _ < 4 function on each iteration. That
Scala one-liner is the equivalent of this Java code:

Integer[] intArray = {1,2,3,4,5};

List<Integer> nums = Arrays.asList(intArray);

List<Integer> filteredNums = new LinkedList<Integer>();

for (int n: nums) {

 if (n < 4) filteredNums.add(n);

}

The next example takes this a step further. It filters the elements as in the previous
example, and then multiplies each element by the number 2 using the map method:

// filter the items, then double them

scala> val nums = List(1,2,3,4,5).filter(_ < 4).map(_ * 2)

nums: List[Int] = List(2, 4, 6)

If you think about how much code would be required to write this expression in another
language, I think you’ll agree that Scala is expressive.

(If you’re new to Scala, examples like this are broken down into smaller chunks in the
recipes.)

Audience
This book is intended for programmers who want to be able to quickly find solutions
to problems they’ll encounter when using Scala and its libraries and tools. I hope it will
also be a good tool for developers who want to learn Scala. I’m a big believer in “learning
by example,” and this book is chock full of examples.

I generally assume that you have some experience with another programming language
like C, C++, Java, Ruby, C#, PHP, Python, or similar. My own experience is with those
languages, so I’m sure my writing is influenced by that background.

Another way to describe the audience for this book involves looking at different levels
of software developers. In the article at scala-lang.org, Martin Odersky defines the fol‐
lowing levels of computer programmers:

xvi | Preface

http://bit.ly/13KwDa4

• Level A1: Beginning application programmer

• Level A2: Intermediate application programmer

• Level A3: Expert application programmer

• Level L1: Junior library designer

• Level L2: Senior library designer

• Level L3: Expert library designer

This book is primarily aimed at the application developers in the A1, A2, A3, and L1
categories. While helping those developers is my primary goal, I hope that L2 and L3
developers can also benefit from the many examples in this book—especially if they
have no prior experience with functional programming, or they want to quickly get up
to speed with Scala and its tools and libraries.

Contents of This Book
The first three chapters in this book cover some of the nuts and bolts of the Scala lan‐
guage.

Chapter 1, Strings, provides recipes for working with strings. Scala gets its basic String
functionality from Java, but with the power of implicit conversions, Scala adds new
functionality to strings through classes like StringLike and StringOps, which let Scala
treat a String as a sequence of Char. The last recipe in the chapter shows how to add
your own behavior to a String (or any other class) by creating an implicit conversion.

Chapter 2, Numbers, provides recipes for working with Scala’s numeric types. There are
no ++ and −− operators for working with numbers, and this chapter explains why, and
demonstrates the other methods you can use. It also shows how to handle large numbers,
currency, and how to compare floating-point numbers.

Chapter 3, Control Structures, demonstrates Scala’s built-in control structures, starting
with if/then statements and for loops, and then provides solutions for working with
for/yield loops (for comprehensions) and for expressions with embedded if statements
(guards). Because match expressions are so important to Scala, several recipes show
how to use them to solve a variety of problems.

The next five chapters continue to cover the Scala syntax, with an emphasis on organ‐
izing your projects with classes, methods, objects, traits, and packaging. Recipes on
classes, methods, objects, and traits place an emphasis on object-oriented programming
techniques.

Chapter 4, Classes and Properties, provides examples related to Scala classes and fields.
Because Scala constructors are very different than Java constructors, several recipes
show the ins and outs of writing both primary and auxiliary constructors. The chapter

Preface | xvii

also shows how to override the accessor and mutator methods that Scala automatically
generates for your val and var variables. Several recipes show what case classes are and
how to use them, and how to write equals methods.

Chapter 5, Methods, shows how to define methods to accept parameters, return values,
use parameter names when calling methods, set default values for method parameters,
create varargs fields, and write methods to support a fluent style of programming.

Chapter 6, Objects, covers “all things object.” Like Java, Scala uses the word object to
refer to an instance of a class, but Scala also has an object keyword. This chapter covers
topics like class casting, how to launch an application with an object, how to create the
equivalent of Java’s static members, and how to write a class with a companion object
so you can create new instances of a class without using the new keyword.

Chapter 7, Packaging and Imports, provides examples of Scala’s package and import
statements, which provide more capabilities than the same Java keywords. This includes
how to use the curly brace style for packaging, how to hide and rename members when
you import them, and more.

Chapter 8, Traits, provides examples of the Scala trait. It begins by showing how to use
a trait like a Java interface, and then gets into more advanced topics, such as how to use
traits as “mixins,” and limit which members a trait can be mixed into using a variety of
methods.

Although much of the book demonstrates functional programming (FP) techniques,
Chapter 9, Functional Programming, combines many FP recipes into one location. Sol‐
utions show how to define anonymous functions (function literals) and use them in a
variety of situations. Recipes demonstrate how to define a method that accepts a func‐
tion argument, how to return a function from a function, and how to use closures and
partially applied functions.

The Scala collections library is rich and deep, so Chapter 10, Collections, and Chapter 11,
List, Array, Map, Set (and More), provide more than 100 pages of collection-related
solutions.

Recipes in Chapter 10, Collections, help you choose collection classes for specific needs,
and then help you choose and use methods within a collection to solve specific problems,
such as transforming one collection into a new collection, filtering a collection, and
creating subgroups of a collection. More than 60 pages of recipes demonstrate solutions
for writing for loops, for/yield expressions, using methods like filter, foreach,
groupBy, map, and many more.

Chapter 11, List, Array, Map, Set (and More), continues where Chapter 10, Collections,
leaves off, providing solutions for those specific collection types, as well as recipes for
the Queue, Stack, and Range classes.

xviii | Preface

www.allitebooks.com

http://www.allitebooks.org

Chapter 12, Files and Processes, begins by providing solutions about reading and writing
files with Scala, including CSV. After that, because the Scala library makes it much
(much!) easier to work with external processes than Java, a collection of recipes dem‐
onstrates how to execute external commands and work with their I/O.

Chapter 13, Actors and Concurrency, provides solutions for the wonderful world of
building concurrent applications (and engaging those multicore CPUs) with the Scala
Actors library. Recipes in this chapter show solutions to common problems using the
industrial-strength Akka Actors library that was integrated into the 2.10.x Scala release.
Examples show how to build actor-based applications from the ground up, how to send
messages to actors, how to receive and work with messages in actors, and how to kill
actors and shut down the system. It also shows easy ways to run concurrent tasks with
a Future, a terrific way to run simple computations in parallel.

Chapter 14, Command-Line Tasks, combines a collection of recipes centered around
using Scala at the command line. It begins by showing tips on how to use the Scala REPL,
and then shows how to use command-line tools like scalac, scala, scaladoc, and
fsc. It also provides recipes showing how to use Scala as a scripting language, including
how to precompile your Scala scripts to make them run faster.

Chapter 15, Web Services, shows how to use Scala on both the client and server sides of
web services. On the server side, it shows how to use Scalatra and the Play Framework
to develop RESTful web services, including how to use Scalatra with MongoDB. For
both client and server code, it shows how to serialize and deserialize JSON and how to
work with HTTP headers.

Chapter 16, Databases and Persistence, provides examples of how to interact with da‐
tabases from Scala, including working with traditional SQL databases using JDBC and
Spring JDBC, along with extensive coverage of how to work with MongoDB, a popular
“NoSQL” database.

Chapter 17, Interacting with Java, shows how to solve the few problems you’ll encounter
when working with Java code. While Scala code often just works when interacting with
Java, there are a few gotchas. This chapter shows how to resolve problems related to the
differences in the collections libraries, as well as problems you can run into when calling
Scala code from Java.

Chapter 18, The Simple Build Tool (SBT), is a comprehensive guide to the de-facto build
tool for Scala applications. It starts by showing several ways to create an SBT project
directory structure, and then shows how to include managed and unmanaged depen‐
dencies, build your projects, generate Scaladoc for your projects, deploy your projects,
and more. Though I strongly recommend learning SBT, a recipe also shows how to use
Ant to compile Scala projects.

Chapter 19, Types, provides recipes for working with Scala’s powerful type system.
Starting right from the introduction, concepts such as type variance, bounds, and

Preface | xix

constraints are demonstrated by example. Recipes demonstrate how to declare generics
in class and method definitions, implement “duck typing,” and how to control which
types your traits can be mixed into.

Chapter 20, Idioms, is unique for a cookbook, but because this is a book of solutions, I
think it’s important to have a section dedicated to showing the best practices, i.e., how
to write code “the Scala way.” Recipes show how to create methods with no side effects,
how to work with immutable objects and collection types, how to think in terms of
expressions (rather than statements), how to use pattern matching, and how to eliminate
null values in your code.

Online Bonus Chapters
Because Scala is an incredibly rich and deep language, an additional three chapters
consisting of more than 130 pages of Scala Cookbook content are available for readers
who wish to explore Scala further. These bonus chapters are:

• XML and XPath

• Testing and Debugging

• The Play Framework

These chapters are available in PDF format, and can be downloaded at http://exam
ples.oreilly.com/9781449339616-files/.

Installing the Software
Installing Scala is simple and should just take a few minutes.

On Unix systems (including Mac OS X), download the software from the Scala down‐
load page to a directory on your computer like $HOME/scala, and then add these lines
to your $HOME/.bash_profile file (or its equivalent, depending on which login shell
you’re using):

export SCALA_HOME=/Users/Al/scala

PATH=$PATH:/Users/Al/scala/bin

Once you’ve done this, when you open a new terminal window, you should have access
to the scala and scalac commands at your command line.

You can follow a similar process if you’re using Microsoft Windows, or you can use an
MSI installer. See the Scala download page for more information.

xx | Preface

http://examples.oreilly.com/9781449339616-files/
http://examples.oreilly.com/9781449339616-files/
http://bit.ly/10WFP7t
http://bit.ly/10WFP7t
http://www.scala-lang.org/downloads

How the Code Listings Work
Most of the code listings in the book are shown in the Scala “Read-Eval-Print-Loop,” or
REPL. If you’ve used irb with Ruby, the concept is the same: you type an expression,
and the REPL evaluates the expression and prints the resulting output.

In the REPL examples, the code that’s shown in a bold font is what you type, and all the
text that isn’t bold is output from the REPL.

You start the REPL from your operating system command line by executing the scala
command:

$ scala

Welcome to Scala version 2.10.1

Type in expressions to have them evaluated.

Type :help for more information.

scala> _

Once the REPL has started, just type your expressions as input, and the REPL will
evaluate them and show their output:

scala> val hello = "Hello, world"

hello: String = Hello, world

scala> Array(1,2,3).foreach(println)

1

2

3

The REPL is demonstrated more in the Chapter 1 introduction and Recipe 14.1, “Getting
Started with the Scala REPL”. Recipe 14.4 takes this a step further and shows how to
customize the REPL environment.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Preface | xxi

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/alvinj.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Scala Cookbook by Alvin Alexander (O’Reil‐
ly). Copyright 2013 Alvin Alexander, 978-1-449-33961-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-
demand digital library that delivers expert content in both book and
video form from the world’s leading authors in technology and busi‐
ness.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

xxii | Preface

https://github.com/alvinj
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/Scala_CB.

To comment or ask technical questions about this book, send an email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Writing a book this large takes a lot of work, and I’d like to thank my editor, Courtney
Nash, for keeping me sane during the speed bumps and generally being encouraging
throughout the process.

Kim Cofer was the copy editor for this book, and I’d like to thank her for helping whip
the book into shape, correcting my grammar issues regardless of how many times I
repeated them, and for having good discussions about how to handle several issues in
this book.

Preface | xxiii

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/Scala_CB
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

This book grew from about 540 pages during the first review to roughly 700 pages in
its final release, and much of that was due to reviewers. All of the reviewers were helpful
in different ways, but I’d especially like to thank Eric Torreborre and Ryan LeCompte
for making it all the way through different versions of the book. Additional thanks go
out to Rudi Farkas, Rahul Phulore, Jason Swartz, Hugo Sereno Ferreira, and Dean
Wampler.

I’d also like to thank my friends and family members who encouraged me throughout
the process. A special thanks goes to my sister Melissa, who helped bring my initial
plain, wiki-style text into Microsoft Word, and styled everything correctly.

Finally, I’d like to thank Martin Odersky and his team for creating such an interesting
programming language. I also owe his Programming Methods Laboratory at EFPL a
special thank you for letting me use the Scala collections performance tables shown in
Recipe 10.4.

xxiv | Preface

http://etorreborre.blogspot.com/
https://twitter.com/ryanlecompte

CHAPTER 1

Strings

Introduction
At first glance, a Scala String appears to be just a Java String. For instance, when you
work in the Scala Read-Evaluate-Print-Loop (REPL) environment (see Figure 1-1) and
print the name of a String literal, the REPL feedback tells you the type is
java.lang.String:

scala> "Hello, world".getClass.getName

res0: String = java.lang.String

Figure 1-1. The Scala REPL is an interactive environment where you can test Scala
statements

1

Indeed, a Scala String is a Java String, so you can use all the normal Java string methods.
You can create a string variable, albeit in the Scala way:

val s = "Hello, world"

You can get the length of a string:

s.length // 12

You can concatenate strings:

val s = "Hello" + " world"

These are all familiar operations. But because Scala offers the magic of implicit conver‐
sions, String instances also have access to all the methods of the StringOps class, so
you can do many other things with them, such as treating a String instance as a sequence
of characters. As a result, you can iterate over every character in the string using the
foreach method:

scala> "hello".foreach(println)

h

e

l

l

o

You can treat a String as a sequence of characters in a for loop:

scala> for (c <- "hello") println(c)

h

e

l

l

o

You can also treat it as a sequence of bytes:

scala> s.getBytes.foreach(println)

104

101

108

108

111

Because there are many methods available on sequential collections, you can also use
other functional methods like filter:

scala> val result = "hello world".filter(_ != 'l')

result: String = heo word

2 | Chapter 1: Strings

It’s an oversimplification to say that this functionality comes from the StringOps class,
but it’s a useful illusion. The reality is that some of this functionality comes from
StringOps, some comes from StringLike, some from WrappedString, and so on. If
you dig into the Scala source code, you’ll see that the rabbit hole goes deep, but it begins
with the implicit conversion from String to StringOps in the Predef object.

When first learning Scala, take a look at the source code for the Predef
object. It provides nice examples of many Scala programming features.

Figure 1-2, taken from the StringOps class Scaladoc page, shows the supertypes and
type hierarchy for the StringOps class.

Figure 1-2. Supertypes and type hierarchy information for the StringOps class

Add Methods to Closed Classes
Even though the String class is declared as final in Java, you’ve seen that Scala some‐
how adds new functionality to it. This happens through the power of implicit conver‐
sions. Recipe 1.9, “Accessing a Character in a String”, demonstrates how to add your
own methods to the String class using this technique.

As one more example of how this pattern helps a Scala String have both string and
collection features, the following code uses the drop and take methods that are available
on Scala sequences, along with the capitalize method from the StringOps class:

scala> "scala".drop(2).take(2).capitalize

res0: String = Al

Introduction | 3

In this chapter you’ll see examples like this, and many more.

How Did the Preceding Example Work?

The drop and take methods are demonstrated in Chapter 10, but in short, drop is a
collection method that drops (discards) the number of elements that are specified from
the beginning of the collection and keeps the remaining elements. When it’s called on
your string as drop(2), it drops the first two characters from the string (sc), and returns
the remaining elements:

scala> "scala".drop(2)

res0: String = ala

Next, the take(2) method retains the first two elements from the collection it’s given,and
discards the rest:

scala> "scala".drop(2).take(2)

res1: String = al

Finally, you treat the output from the take(2) method call like a String once again and
call the capitalize method to get what you want:

scala> "scala".drop(2).take(2).capitalize

res2: String = Al

The capitalize method is in the StringOps class, but as a practical matter, you generally
don’t have to worry about that. When you’re writing code in an IDE like Eclipse or IntelliJ
and invoke the code assist keystroke, the capitalize method will appear in the list along
with all the other methods that are available on a String.

If you’re not familiar with chaining methods together like this, it’s known as a fluent
style of programming. See Recipe 5.9, “Supporting a Fluent Style of Programming”, for
more information.

1.1. Testing String Equality

Problem
You want to compare two strings to see if they’re equal, i.e., whether they contain the
same sequence of characters.

Solution
In Scala, you compare two String instances with the == operator. Given these strings:

scala> val s1 = "Hello"

s1: String = Hello

4 | Chapter 1: Strings

www.allitebooks.com

http://www.allitebooks.org

scala> val s2 = "Hello"

s2: String = Hello

scala> val s3 = "H" + "ello"

s3: String = Hello

You can test their equality like this:

scala> s1 == s2

res0: Boolean = true

scala> s1 == s3

res1: Boolean = true

A pleasant benefit of the == method is that it doesn’t throw a NullPointerException
on a basic test if a String is null:

scala> val s4: String = null

s4: String = null

scala> s3 == s4

res2: Boolean = false

scala> s4 == s3

res3: Boolean = false

If you want to compare two strings in a case-insensitive manner, you can convert both
strings to uppercase or lowercase and compare them with the == method:

scala> val s1 = "Hello"

s1: String = Hello

scala> val s2 = "hello"

s2: String = hello

scala> s1.toUpperCase == s2.toUpperCase

res0: Boolean = true

However, be aware that calling a method on a null string can throw a
NullPointerException:

scala> val s1: String = null

s1: String = null

scala> val s2: String = null

s2: String = null

scala> s1.toUpperCase == s2.toUpperCase

java.lang.NullPointerException // more output here ...

To compare two strings while ignoring their case, you can also fall back and use the
equalsIgnoreCase of the Java String class:

1.1. Testing String Equality | 5

scala> val a = "Marisa"

a: String = Marisa

scala> val b = "marisa"

b: String = marisa

scala> a.equalsIgnoreCase(b)

res0: Boolean = true

Discussion
In Scala, you test object equality with the == method. This is different than Java, where
you use the equals method to compare two objects.

In Scala, the == method defined in the AnyRef class first checks for null values, and then
calls the equals method on the first object (i.e., this) to see if the two objects are equal.
As a result, you don’t have to check for null values when comparing strings.

In idiomatic Scala, you never use null values. The discussion in this
recipe is intended to help you understand how == works if you en‐
counter a null value, presumably from working with a Java library, or
some other library where null values were used.

If you’re coming from a language like Java, any time you feel like using
a null, use an Option instead. (I find it helpful to imagine that Scala
doesn’t even have a null keyword.) See Recipe 20.6, “Using the Option/
Some/None Pattern”, for more information and examples.

For more information on defining equals methods, see Recipe 4.15, “Defining an equals
Method (Object Equality)”.

1.2. Creating Multiline Strings

Problem
You want to create multiline strings within your Scala source code, like you can with
the “heredoc” syntax of other languages.

Solution
In Scala, you create multiline strings by surrounding your text with three double quotes:

val foo = """This is

a multiline

String"""

6 | Chapter 1: Strings

Discussion
Although this works, the second and third lines in this example will end up with white‐
space at the beginning of their lines. If you print the string, it looks like this:

This is

 a multiline

 String

You can solve this problem in several different ways. First, you can left-justify every line
after the first line of your string:

val foo = """This is

a multiline

String"""

A cleaner approach is to add the stripMargin method to the end of your multiline string
and begin all lines after the first line with the pipe symbol (|):

val speech = """Four score and

|seven years ago""".stripMargin

If you don’t like using the | symbol, you can use any character you like with the
stripMargin method:

val speech = """Four score and

#seven years ago""".stripMargin('#')

All of these approaches yield the same result, a multiline string with each line of the
string left justified:

Four score and

seven years ago

This results in a true multiline string, with a hidden \n character after the word “and”
in the first line. To convert this multiline string into one continuous line you can add a
replaceAll method after the stripMargin call, replacing all newline characters with
blank spaces:

val speech = """Four score and

|seven years ago

|our fathers""".stripMargin.replaceAll("\n", " ")

This yields:

Four score and seven years ago our fathers

Another nice feature of Scala’s multiline string syntax is that you can include single- and
double-quotes without having to escape them:

val s = """This is known as a

|"multiline" string

|or 'heredoc' syntax.""". stripMargin.replaceAll("\n", " ")

This results in this string:

1.2. Creating Multiline Strings | 7

This is known as a "multiline" string or 'heredoc' syntax.

1.3. Splitting Strings

Problem
You want to split a string into parts based on a field separator, such as a string you get
from a comma-separated value (CSV) or pipe-delimited file.

Solution
Use one of the split methods that are available on String objects:

scala> "hello world".split(" ")

res0: Array[java.lang.String] = Array(hello, world)

The split method returns an array of String elements, which you can then treat as a
normal Scala Array:

scala> "hello world".split(" ").foreach(println)

hello

world

Discussion
The string that the split method takes can be a regular expression, so you can split a
string on simple characters like a comma in a CSV file:

scala> val s = "eggs, milk, butter, Coco Puffs"

s: java.lang.String = eggs, milk, butter, Coco Puffs

// 1st attempt

scala> s.split(",")

res0: Array[java.lang.String] = Array(eggs, " milk", " butter", " Coco Puffs")

Using this approach, it’s best to trim each string. Use the map method to call trim on
each string before returning the array:

// 2nd attempt, cleaned up

scala> s.split(",").map(_.trim)

res1: Array[java.lang.String] = Array(eggs, milk, butter, Coco Puffs)

You can also split a string based on a regular expression. This example shows how to
split a string on whitespace characters:

scala> "hello world, this is Al".split("\\s+")

res0: Array[java.lang.String] = Array(hello, world,, this, is, Al)

8 | Chapter 1: Strings

About that split method...

The split method is overloaded, with some versions of the method coming from the
Java String class and some coming from the Scala StringLike class. For instance, if
you call split with a Char argument instead of a String argument, you’re using the
split method from StringLike:

// split with a String argument

scala> "hello world".split(" ")

res0: Array[java.lang.String] = Array(hello, world)

// split with a Char argument

scala> "hello world".split(' ')

res1: Array[String] = Array(hello, world)

The subtle difference in that output—Array[java.lang.String] versus
Array[String]—is a hint that something is different, but as a practical matter, this isn’t
important. Also, with the Scala IDE project integrated into Eclipse, you can see where
each method comes from when the Eclipse “code assist” dialog is displayed. (IntelliJ
IDEA and NetBeans may show similar information.)

1.4. Substituting Variables into Strings

Problem
You want to perform variable substitution into a string, like you can do with other
languages, such as Perl, PHP, and Ruby.

Solution
Beginning with Scala 2.10 you can use string interpolation in a manner similar to other
languages like Perl, PHP, and Ruby.

To use basic string interpolation in Scala, precede your string with the letter s and
include your variables inside the string, with each variable name preceded by a $ char‐
acter. This is shown in the println statement in the following example:

scala> val name = "Fred"

name: String = Fred

scala> val age = 33

age: Int = 33

scala> val weight = 200.00

weight: Double = 200.0

scala> println(s"$name is $age years old, and weighs $weight pounds.")

Fred is 33 years old, and weighs 200.0 pounds.

1.4. Substituting Variables into Strings | 9

According to the official Scala string interpolation documentation, when you precede
your string with the letter s, you’re creating a processed string literal. This example uses
the “s string interpolator,” which lets you embed variables inside a string, where they’re
replaced by their values. As stated in the documentation, “Prepending s to any string
literal allows the usage of variables directly in the string.”

Using expressions in string literals

In addition to putting variables inside strings, you can include expressions inside a string
by placing the expression inside curly braces. According to the official string interpo‐
lation documentation, “Any arbitrary expression can be embedded in ${}.”

In the following example, the value 1 is added to the variable age inside the string:

scala> println(s"Age next year: ${age + 1}")

Age next year: 34

This example shows that you can use an equality expression inside the curly braces:

scala> println(s"You are 33 years old: ${age == 33}")

You are 33 years old: true

You’ll also need to use curly braces when printing object fields. The following example
shows the correct approach:

scala> case class Student(name: String, score: Int)

defined class Student

scala> val hannah = Student("Hannah", 95)

hannah: Student = Student(Hannah,95)

scala> println(s"${hannah.name} has a score of ${hannah.score}")

Hannah has a score of 95

Attempting to print the values of the object fields without wrapping them in curly braces
results in the wrong information being printed out:

// error: this is intentionally wrong

scala> println(s"$hannah.name has a score of $hannah.score")

Student(Hannah,95).name has a score of Student(Hannah,95).score

Because $hannah.name wasn’t wrapped in curly braces, the wrong information was
printed; in this case, the toString output of the hannah variable.

s is a method

The s that’s placed before each string literal is actually a method. Though this seems
slightly less convenient than just putting variables inside of strings, there are at least two
benefits to this approach:

10 | Chapter 1: Strings

http://bit.ly/1ahuxxB
http://bit.ly/1ahuxxB
http://bit.ly/1ahuxxB

• Scala provides other off-the-shelf interpolation functions to give you more power.

• You can define your own string interpolation functions.

To see why this is a good thing, let’s look at another string interpolation function.

The f string interpolator (printf style formatting)

In the example in the Solution, the weight was printed as 200.0. This is okay, but what
can you do if you want to add more decimal places to the weight, or remove them
entirely?

This simple desire leads to the “f string interpolator,” which lets you use printf style
formatting specifiers inside strings. The following examples show how to print the
weight, first with two decimal places:

scala> println(f"$name is $age years old, and weighs $weight%.2f pounds.")

Fred is 33 years old, and weighs 200.00 pounds.

and then with no decimal places:

scala> println(f"$name is $age years old, and weighs $weight%.0f pounds.")

Fred is 33 years old, and weighs 200 pounds.

As demonstrated, to use this approach, just follow these steps:

1. Precede your string with the letter f.

2. Use printf style formatting specifiers immediately after your variables.

The most common printf format specifiers are shown in Table 1-1 in
the Discussion.

Though these examples used the println method, it’s important to note that you can
use string interpolation in other ways. For instance, you can assign the result of a variable
substitution to a new variable, similar to calling sprintf in other languages:

scala> val out = f"$name, you weigh $weight%.0f pounds."

out: String = Fred, you weigh 200 pounds.

The raw interpolator

In addition to the s and f string interpolators, Scala 2.10 includes another interpolator
named raw. The raw interpolator “performs no escaping of literals within the string.”
The following example shows how raw compares to the s interpolator:

scala> s"foo\nbar"

res0: String =

foo

1.4. Substituting Variables into Strings | 11

bar

scala> raw"foo\nbar"

res1: String = foo\nbar

The raw interpolator is useful when you want to avoid having a sequence of characters
like \n turn into a newline character.

Create your own interpolator

In addition to the s, f, and raw interpolators that are built into Scala 2.10, you can define
your own interpolators. See the official Scala String Interpolation documentation for an
example of how to create your own interpolator.

String interpolation does not work with pattern-matching statements
in Scala 2.10. This feature is planned for inclusion in Scala 2.11.

Discussion
Prior to version 2.10, Scala didn’t include the string interpolation functionality just
described. If you need to use a release prior to Scala 2.10 for some reason, the solution
is to call the format method on a string, as shown in the following examples:

scala> val name = "Fred"

name: java.lang.String = Fred

scala> val age = 33

age: Int = 33

scala> val s = "%s is %d years old".format(name, age)

s: String = Fred is 33 years old

scala> println("%s is %d years old".format(name, age))

Fred is 33 years old

Just as with the string interpolation capability shown in the Solution, you can use this
approach anywhere you want to format a string, such as a toString method:

override def toString: String =

 "%s %s, age %d".format(firstName, lastName, age)

With either of these approaches, you can format your variables using all the usual printf
specifiers. The most common format specifiers are shown in Table 1-1.

12 | Chapter 1: Strings

http://bit.ly/1ahuxxB

Table 1-1. Common printf style format specifiers

Format specifier Description

%c Character

%d Decimal number (integer, base 10)

%e Exponential floating-point number

%f Floating-point number

%i Integer (base 10)

%o Octal number (base 8)

%s A string of characters

%u Unsigned decimal (integer) number

%x Hexadecimal number (base 16)

%% Print a “percent” character

\% Print a “percent” character

See Also

• This printf cheat sheet shows more format specifiers and examples

• This Oracle Formatter page shows examples and details

• The official Scala String Interpolation documentation

1.5. Processing a String One Character at a Time

Problem
You want to iterate through each character in a string, performing an operation on each
character as you traverse the string.

Solution
Depending on your needs and preferences, you can use the map or foreach methods, a
for loop, or other approaches. Here’s a simple example of how to create an uppercase
string from an input string, using map:

scala> val upper = "hello, world".map(c => c.toUpper)

upper: String = HELLO, WORLD

As you’ll see in many examples throughout this book, you can shorten that code using
the magic of Scala’s underscore character:

scala> val upper = "hello, world".map(_.toUpper)

upper: String = HELLO, WORLD

1.5. Processing a String One Character at a Time | 13

http://bit.ly/16EPKxn
http://bit.ly/1azIsTh
http://bit.ly/1ahuxxB

With any collection—such as a sequence of characters in a string—you can also chain
collection methods together to achieve a desired result. In the following example, the
filter method is called on the original String to create a new String with all occur‐
rences of the lowercase letter “L” removed. That String is then used as input to the map
method to convert the remaining characters to uppercase:

scala> val upper = "hello, world".filter(_ != 'l').map(_.toUpper)

upper: String = HEO, WORD

When you first start with Scala, you may not be comfortable with the map method, in
which case you can use Scala’s for loop to achieve the same result. This example shows
another way to print each character:

scala> for (c <- "hello") println(c)

h

e

l

l

o

To write a for loop to work like a map method, add a yield statement to the end of the
loop. This for/yield loop is equivalent to the first two map examples:

scala> val upper = for (c <- "hello, world") yield c.toUpper

upper: String = HELLO, WORLD

Adding yield to a for loop essentially places the result from each loop iteration into a
temporary holding area. When the loop completes, all of the elements in the holding
area are returned as a single collection.

This for/yield loop achieves the same result as the third map example:

val result = for {

 c <- "hello, world"

 if c != 'l'

} yield c.toUpper

Whereas the map or for/yield approaches are used to transform one collection into an‐
other, the foreach method is typically used to operate on each element without return‐
ing a result. This is useful for situations like printing:

scala> "hello".foreach(println)

h

e

l

l

o

Discussion
Because Scala treats a string as a sequence of characters—and because of Scala’s back‐
ground as both an object-oriented and functional programming language—you can

14 | Chapter 1: Strings

www.allitebooks.com

http://www.allitebooks.org

iterate over the characters in a string with the approaches shown. Compare those ex‐
amples with a common Java approach:

String s = "Hello";

StringBuilder sb = new StringBuilder();

for (int i = 0; i < s.length(); i++) {

 char c = s.charAt(i);

 // do something with the character ...

 // sb.append ...

}

String result = sb.toString();

You’ll see that the Scala approach is more concise, but still very readable. This combi‐
nation of conciseness and readability lets you focus on solving the problem at hand.
Once you get comfortable with Scala, it feels like the imperative code in the Java example
obscures your business logic.

Wikipedia describes imperative programming like this:

Imperative programming is a programming paradigm that
describes computation in terms of statements that change a
program state ... imperative programs define sequences of
commands for the computer to perform.

This is shown in the Java example, which defines a series of explicit
statements that tell a computer how to achieve a desired result.

Understanding how map works

Depending on your coding preferences, you can pass large blocks of code to a map
method. These two examples demonstrate the syntax for passing an algorithm to a map
method:

// first example

"HELLO".map(c => (c.toByte+32).toChar)

// second example

"HELLO".map{ c =>

 (c.toByte+32).toChar

}

Notice that the algorithm operates on one Char at a time. This is because the map method
in this example is called on a String, and map treats a String as a sequential collection
of Char elements. The map method has an implicit loop, and in that loop, it passes one
Char at a time to the algorithm it’s given.

Although this algorithm it still short, imagine for a moment that it is longer. In this case,
to keep your code clear, you might want to write it as a method (or function) that you
can pass into the map method.

1.5. Processing a String One Character at a Time | 15

To write a method that you can pass into map to operate on the characters in a String,
define it to take a single Char as input, then perform the logic on that Char inside the
method. When the logic is complete, return whatever it is that your algorithm returns.
Though the following algorithm is still short, it demonstrates how to create a custom
method and pass that method into map:

// write your own method that operates on a character

scala> def toLower(c: Char): Char = (c.toByte+32).toChar

toLower: (c: Char)Char

// use that method with map

scala> "HELLO".map(toLower)

res0: String = hello

As an added benefit, the same method also works with the for/yield approach:

scala> val s = "HELLO"

s: java.lang.String = HELLO

scala> for (c <- s) yield toLower(c)

res1: String = hello

I’ve used the word “method” in this discussion, but you can also use
functions here instead of methods. What’s the difference between a
method and a function?

Here’s a quick look at a function equivalent to this toLower method:

val toLower = (c: Char) => (c.toByte+32).toChar

This function can be passed into map in the same way the previous
toLower method was used:

scala> "HELLO".map(toLower)

res0: String = hello

For more information on functions and the differences between meth‐
ods and functions, see Chapter 9, Functional Programming.

A complete example

The following example demonstrates how to call the getBytes method on a String,
and then pass a block of code into a foreach method to help calculate an Adler-32
checksum value on a String:

package tests

/**

* Calculate the Adler-32 checksum using Scala.

* @see http://en.wikipedia.org/wiki/Adler-32

*/

object Adler32Checksum {

16 | Chapter 1: Strings

 val MOD_ADLER = 65521

 def main(args: Array[String]) {

 val sum = adler32sum("Wikipedia")

 printf("checksum (int) = %d\n", sum)

 printf("checksum (hex) = %s\n", sum.toHexString)

 }

 def adler32sum(s: String): Int = {

 var a = 1

 var b = 0

 s.getBytes.foreach{char =>

 a = (char + a) % MOD_ADLER

 b = (b + a) % MOD_ADLER

 }

 // note: Int is 32 bits, which this requires

 b * 65536 + a // or (b << 16) + a

 }

}

The getBytes method returns a sequential collection of bytes from a String as follows:

scala> "hello".getBytes

res0: Array[Byte] = Array(104, 101, 108, 108, 111)

Adding the foreach method call after getBytes lets you operate on each Byte value:

scala> "hello".getBytes.foreach(println)

104

101

108

108

111

You use foreach in this example instead of map, because the goal is to loop over each
Byte in the String, and do something with each Byte, but you don’t want to return
anything from the loop.

See Also

• Under the covers, the Scala compiler translates a for loop into a foreach method
call. This gets more complicated if the loop has one or more if statements (guards)
or a yield expression. This is discussed in detail in Recipe 3.1, “Looping with for
and foreach” and I also provide examples on my website at alvinalexander.com. The
full details are presented in Section 6.19 of the current Scala Language Specification.

• The Adler-32 checksum algorithm

1.5. Processing a String One Character at a Time | 17

http://bit.ly/1bvk82T
http://bit.ly/158qP62
http://en.wikipedia.org/wiki/Adler-32

1.6. Finding Patterns in Strings

Problem
You need to determine whether a String contains a regular expression pattern.

Solution
Create a Regex object by invoking the .r method on a String, and then use that pattern
with findFirstIn when you’re looking for one match, and findAllIn when looking
for all matches.

To demonstrate this, first create a Regex for the pattern you want to search for, in this
case, a sequence of one or more numeric characters:

scala> val numPattern = "[0-9]+".r

numPattern: scala.util.matching.Regex = [0-9]+

Next, create a sample String you can search:

scala> val address = "123 Main Street Suite 101"

address: java.lang.String = 123 Main Street Suite 101

The findFirstIn method finds the first match:

scala> val match1 = numPattern.findFirstIn(address)

match1: Option[String] = Some(123)

(Notice that this method returns an Option[String]. I’ll dig into that in the Discussion.)

When looking for multiple matches, use the findAllIn method:

scala> val matches = numPattern.findAllIn(address)

matches: scala.util.matching.Regex.MatchIterator = non-empty iterator

As you can see, findAllIn returns an iterator, which lets you loop over the results:

scala> matches.foreach(println)

123

101

If findAllIn doesn’t find any results, an empty iterator is returned, so you can still write
your code just like that—you don’t need to check to see if the result is null. If you’d
rather have the results as an Array, add the toArray method after the findAllIn call:

scala> val matches = numPattern.findAllIn(address).toArray

matches: Array[String] = Array(123, 101)

If there are no matches, this approach yields an empty Array. Other methods like
toList, toSeq, and toVector are also available.

18 | Chapter 1: Strings

Discussion
Using the .r method on a String is the easiest way to create a Regex object. Another
approach is to import the Regex class, create a Regex instance, and then use the instance
in the same way:

scala> import scala.util.matching.Regex

import scala.util.matching.Regex

scala> val numPattern = new Regex("[0-9]+")

numPattern: scala.util.matching.Regex = [0-9]+

scala> val address = "123 Main Street Suite 101"

address: java.lang.String = 123 Main Street Suite 101

scala> val match1 = numPattern.findFirstIn(address)

match1: Option[String] = Some(123)

Although this is a bit more work, it’s also more obvious. I’ve found that it can be easy
to overlook the .r at the end of a String (and then spend a few minutes wondering how
the code I saw could possibly work).

Handling the Option returned by findFirstIn

As mentioned in the Solution, the findFirstIn method finds the first match in the
String and returns an Option[String]:

scala> val match1 = numPattern.findFirstIn(address)

match1: Option[String] = Some(123)

The Option/Some/None pattern is discussed in detail in Recipe 20.6, but the simple way
to think about an Option is that it’s a container that holds either zero or one values. In
the case of findFirstIn, if it succeeds, it returns the string “123” as a Some(123), as
shown in this example. However, if it fails to find the pattern in the string it’s searching,
it will return a None, as shown here:

scala> val address = "No address given"

address: String = No address given

scala> val match1 = numPattern.findFirstIn(address)

match1: Option[String] = None

To summarize, a method defined to return an Option[String] will either return a
Some(String), or a None.

The normal way to work with an Option is to use one of these approaches:

• Call getOrElse on the value.

• Use the Option in a match expression.

• Use the Option in a foreach loop.

1.6. Finding Patterns in Strings | 19

Recipe 20.6 describes those approaches in detail, but they’re demonstrated here for your
convenience.

With the getOrElse approach, you attempt to “get” the result, while also specifying a
default value that should be used if the method failed:

scala> val result = numPattern.findFirstIn(address).getOrElse("no match")

result: String = 123

Because an Option is a collection of zero or one elements, an experienced Scala developer
will also use a foreach loop in this situation:

numPattern.findFirstIn(address).foreach { e =>

 // perform the next step in your algorithm,

 // operating on the value 'e'

}

A match expression also provides a very readable solution to the problem:

match1 match {

 case Some(s) => println(s"Found: $s")

 case None =>

}

See Recipe 20.6 for more information.

To summarize this approach, the following REPL example shows the complete process
of creating a Regex, searching a String with findFirstIn, and then using a foreach
loop on the resulting match:

scala> val numPattern = "[0-9]+".r

numPattern: scala.util.matching.Regex = [0-9]+

scala> val address = "123 Main Street Suite 101"

address: String = 123 Main Street Suite 101

scala> val match1 = numPattern.findFirstIn(address)

match1: Option[String] = Some(123)

scala> match1.foreach { e =>

 | println(s"Found a match: $e")

 | }

Found a match: 123

See Also

• The StringOps class

• The Regex class

20 | Chapter 1: Strings

http://bit.ly/1bvlHxv
http://bit.ly/18eabYK

• Recipe 20.6, “Using the Option/Some/None Pattern” provides more information
on Option

1.7. Replacing Patterns in Strings

Problem
You want to search for regular-expression patterns in a string, and replace them.

Solution
Because a String is immutable, you can’t perform find-and-replace operations directly
on it, but you can create a new String that contains the replaced contents. There are
several ways to do this.

You can call replaceAll on a String, remembering to assign the result to a new variable:

scala> val address = "123 Main Street".replaceAll("[0-9]", "x")

address: java.lang.String = xxx Main Street

You can create a regular expression and then call replaceAllIn on that expression,
again remembering to assign the result to a new string:

scala> val regex = "[0-9]".r

regex: scala.util.matching.Regex = [0-9]

scala> val newAddress = regex.replaceAllIn("123 Main Street", "x")

newAddress: String = xxx Main Street

To replace only the first occurrence of a pattern, use the replaceFirst method:

scala> val result = "123".replaceFirst("[0-9]", "x")

result: java.lang.String = x23

You can also use replaceFirstIn with a Regex:

scala> val regex = "H".r

regex: scala.util.matching.Regex = H

scala> val result = regex.replaceFirstIn("Hello world", "J")

result: String = Jello world

See Also

Recipe 1.6, “Finding Patterns in Strings” for examples of how to find patterns in
strings

1.7. Replacing Patterns in Strings | 21

1.8. Extracting Parts of a String That Match Patterns

Problem
You want to extract one or more parts of a string that match the regular-expression
patterns you specify.

Solution
Define the regular-expression patterns you want to extract, placing parentheses around
them so you can extract them as “regular-expression groups.” First, define the desired
pattern:

val pattern = "([0-9]+) ([A-Za-z]+)".r

Next, extract the regex groups from the target string:

val pattern(count, fruit) = "100 Bananas"

This code extracts the numeric field and the alphabetic field from the given string as
two separate variables, count and fruit, as shown in the Scala REPL:

scala> val pattern = "([0-9]+) ([A-Za-z]+)".r

pattern: scala.util.matching.Regex = ([0-9]+) ([A-Za-z]+)

scala> val pattern(count, fruit) = "100 Bananas"

count: String = 100

fruit: String = Bananas

Discussion
The syntax shown here may feel a little unusual because it seems like you’re defining
pattern as a val field twice, but this syntax is more convenient and readable in a real-
world example.

Imagine you’re writing the code for a search engine like Google, and you want to let
people search for movies using a wide variety of phrases. To be really convenient, you’ll
let them type any of these phrases to get a listing of movies near Boulder, Colorado:

"movies near 80301"

"movies 80301"

"80301 movies"

"movie: 80301"

"movies: 80301"

"movies near boulder, co"

"movies near boulder, colorado"

22 | Chapter 1: Strings

One way you can allow all these phrases to be used is to define a series of regular-
expression patterns to match against them. Just define your expressions, and then at‐
tempt to match whatever the user types against all the possible expressions you’re willing
to allow.

For example purposes, you’ll just allow these two simplified patterns:

// match "movies 80301"

val MoviesZipRE = "movies (\\d{5})".r

// match "movies near boulder, co"

val MoviesNearCityStateRE = "movies near ([a-z]+), ([a-z]{2})".r

Once you’ve defined the patterns you want to allow, you can match them against what‐
ever text the user enters, using a match expression. In this example, you’ll call a fictional
method named getSearchResults when a match occurs:

textUserTyped match {

 case MoviesZipRE(zip) => getSearchResults(zip)

 case MoviesNearCityStateRE(city, state) => getSearchResults(city, state)

 case _ => println("did not match a regex")

}

As you can see, this syntax makes your match expressions very readable. For both pat‐
terns you’re matching, you call an overloaded version of the getSearchResults method,
passing it the zip field in the first case, and the city and state fields in the second case.

The two regular expressions shown in this example will match strings like this:

"movies 80301"

"movies 99676"

"movies near boulder, co"

"movies near talkeetna, ak"

It’s important to note that with this technique, the regular expressions must match the
entire user input. With the regex patterns shown, the following strings will fail because
they have a blank space at the end of the line:

"movies 80301 "

"movies near boulder, co "

You can solve this particular problem by trimming the input string or using a more
complicated regular expression, which you’ll want to do anyway in the “real world.”

As you can imagine, you can use this same pattern-matching technique in many dif‐
ferent circumstances, including matching date and time formats, street addresses, peo‐
ple’s names, and many other situations.

1.8. Extracting Parts of a String That Match Patterns | 23

See Also

• Recipe 3.7, “Using a Match Expression Like a switch Statement” for more match
expression examples

• Recipe 14.12, “Prompting for Input from a Scala Shell Script” shows another ex‐
ample of this technique

1.9. Accessing a Character in a String

Problem
You want to get a character at a specific position in a string.

Solution
You could use the Java charAt method:

scala> "hello".charAt(0)

res0: Char = h

However, the preferred approach is to use Scala’s Array notation:

scala> "hello"(0)

res1: Char = h

scala> "hello"(1)

res2: Char = e

Discussion
When looping over the characters in a string, you’ll normally use the map or foreach
methods, but if for some reason those approaches won’t work for your situation, you
can treat a String as an Array, and access each character with the array notation shown.

The Scala array notation is different than Java because in Scala it’s really a method call,
with some nice syntactic sugar added. You write your code like this, which is convenient
and easy to read:

scala> "hello"(1)

res0: Char = e

But behind the scenes, Scala converts your code into this:

scala> "hello".apply(1)

res1: Char = e

24 | Chapter 1: Strings

www.allitebooks.com

http://www.allitebooks.org

This little bit of syntactic sugar is explained in detail in Recipe 6.8, “Creating Object
Instances Without Using the new Keyword”.

1.10. Add Your Own Methods to the String Class

Problem
Rather than create a separate library of String utility methods, like a StringUtilities
class, you want to add your own behavior(s) to the String class, so you can write code
like this:

"HAL".increment

Instead of this:

StringUtilities.increment("HAL")

Solution
In Scala 2.10, you define an implicit class, and then define methods within that class to
implement the behavior you want.

You can see this in the REPL. First, define your implicit class and method(s):

scala> implicit class StringImprovements(s: String) {

 | def increment = s.map(c => (c + 1).toChar)

 | }

defined class StringImprovements

Then invoke your method on any String:

scala> val result = "HAL".increment

result: String = IBM

In real-world code, this is just slightly more complicated. According to SIP-13, Implicit
Classes, “An implicit class must be defined in a scope where method definitions are
allowed (not at the top level).” This means that your implicit class must be defined inside
a class, object, or package object.

Put the implicit class in an object

One way to satisfy this condition is to put the implicit class inside an object. For instance,
you can place the StringImprovements implicit class in an object such as a StringUtils
object, as shown here:

package com.alvinalexander.utils

object StringUtils {

 implicit class StringImprovements(val s: String) {

 def increment = s.map(c => (c + 1).toChar)

1.10. Add Your Own Methods to the String Class | 25

http://bit.ly/10WqdRi
http://bit.ly/10WqdRi

 }

}

You can then use the increment method somewhere else in your code, after adding the
proper import statement:

package foo.bar

import com.alvinalexander.utils.StringUtils._

object Main extends App {

 println("HAL".increment)

}

Put the implicit class in a package object

Another way to satisfy the requirement is to put the implicit class in a package object.
With this approach, place the following code in a file named package.scala, in the ap‐
propriate directory. If you’re using SBT, you should place the file in the
src/main/scala/com/alvinalexander directory of your project, containing the following
code:

package com.alvinalexander

package object utils {

 implicit class StringImprovements(val s: String) {

 def increment = s.map(c => (c + 1).toChar)

 }

}

When you need to use the increment method in some other code, use a slightly different
import statement from the previous example:

package foo.bar

import com.alvinalexander.utils._

object MainDriver extends App {

 println("HAL".increment)

}

See Recipe 6.7, “Putting Common Code in Package Objects” for more
information about package objects.

26 | Chapter 1: Strings

Using versions of Scala prior to version 2.10

If for some reason you need to use a version of Scala prior to version 2.10, you’ll need
to take a slightly different approach. In this case, define a method named increment in
a normal Scala class:

class StringImprovements(val s: String) {

 def increment = s.map(c => (c + 1).toChar)

}

Next, define another method to handle the implicit conversion:

implicit def stringToString(s: String) = new StringImprovements(s)

The String parameter in the stringToString method essentially links the String class
to the StringImprovements class.

Now you can use increment as in the earlier examples:

"HAL".increment

Here’s what this looks like in the REPL:

scala> class StringImprovements(val s: String) {

 | def increment = s.map(c => (c + 1).toChar)

 | }

defined class StringImprovements

scala> implicit def stringToString(s: String) = new StringImprovements(s)

stringToString: (s: String)StringImprovements

scala> "HAL".increment

res0: String = IBM

Discussion
As you just saw, in Scala, you can add new functionality to closed classes by writing
implicit conversions and bringing them into scope when you need them. A major benefit
of this approach is that you don’t have to extend existing classes to add the new func‐
tionality. For instance, there’s no need to create a new class named MyString that extends
String, and then use MyString throughout your code instead of String; instead, you
define the behavior you want, and then add that behavior to all String objects in the
current scope when you add the import statement.

Note that you can define as many methods as you need in your implicit class. The
following code shows both increment and decrement methods, along with a method
named hideAll that returns a String with all characters replaced by the * character:

implicit class StringImprovements(val s: String) {

 def increment = s.map(c => (c + 1).toChar)

 def decrement = s.map(c => (c − 1).toChar)

1.10. Add Your Own Methods to the String Class | 27

 def hideAll = s.replaceAll(".", "*")

}

Notice that except for the implicit keyword before the class name, the
StringImprovements class and its methods are written as usual.

By simply bringing the code into scope with an import statement, you can use these
methods, as shown here in the REPL:

scala> "HAL".increment

res0: String = IBM

Here’s a simplified description of how this works:

1. The compiler sees a string literal “HAL.”

2. The compiler sees that you’re attempting to invoke a method named increment on
the String.

3. Because the compiler can’t find that method on the String class, it begins looking
around for implicit conversion methods that are in scope and accepts a String
argument.

4. This leads the compiler to the StringImprovements class, where it finds the
increment method.

That’s an oversimplification of what happens, but it gives you the general idea of how
implicit conversions work.

For more details on what’s happening here, see SIP-13, Implicit Classes.

Annotate your method return type

It’s recommended that the return type of implicit method definitions should be anno‐
tated. If you run into a situation where the compiler can’t find your implicit methods,
or you just want to be explicit when declaring your methods, add the return type to your
method definitions.

In the increment, decrement, and hideAll methods shown here, the return type of
String is made explicit:

implicit class StringImprovements(val s: String) {

 // being explicit that each method returns a String

 def increment: String = s.map(c => (c + 1).toChar)

 def decrement: String = s.map(c => (c − 1).toChar)

 def hideAll: String = s.replaceAll(".", "*")

}

28 | Chapter 1: Strings

http://bit.ly/10WqdRi

Returning other types

Although all of the methods shown so far have returned a String, you can return any
type from your methods that you need. The following class demonstrates several dif‐
ferent types of string conversion methods:

implicit class StringImprovements(val s: String) {

 def increment = s.map(c => (c + 1).toChar)

 def decrement = s.map(c => (c − 1).toChar)

 def hideAll: String = s.replaceAll(".", "*")

 def plusOne = s.toInt + 1

 def asBoolean = s match {

 case "0" | "zero" | "" | " " => false

 case _ => true

 }

}

With these new methods you can now perform Int and Boolean conversions, in addi‐
tion to the String conversions shown earlier:

scala> "4".plusOne

res0: Int = 5

scala> "0".asBoolean

res1: Boolean = false

scala> "1".asBoolean

res2: Boolean = true

Note that all of these methods have been simplified to keep them short and readable. In
the real world, you’ll want to add some error-checking.

1.10. Add Your Own Methods to the String Class | 29

CHAPTER 2

Numbers

Introduction
In Scala, all the numeric types are objects, including Byte, Char, Double, Float, Int,
Long, and Short. These seven numeric types extend the AnyVal trait, as do the Unit and
Boolean classes, which are considered to be “nonnumeric value types.”

As shown in Table 2-1, the seven built-in numeric types have the same data ranges as
their Java primitive equivalents.

Table 2-1. Data ranges of Scala’s built-in numeric types

Data type Range

Char 16-bit unsigned Unicode character

Byte 8-bit signed value

Short 16-bit signed value

Int 32-bit signed value

Long 64-bit signed value

Float 32-bit IEEE 754 single precision float

Double 64-bit IEEE 754 single precision float

In addition to those types, Boolean can have the values true or false.

If you ever need to know the exact values of the data ranges, you can find them in the
Scala REPL:

scala> Short.MinValue

res0: Short = −32768

scala> Short.MaxValue

res1: Short = 32767

31

scala> Int.MinValue

res2: Int = −2147483648

scala> Float.MinValue

res3: Float = −3.4028235E38

In addition to these basic numeric types, it’s helpful to understand the BigInt and
BigDecimal classes, as well as the methods in the scala.math package. These are all
covered in this chapter.

Complex Numbers and Dates
If you need more powerful math classes than those that are included with the standard
Scala distribution, check out the Spire project, which includes classes like Rational,
Complex, Real, and more; and ScalaLab, which offers Matlab-like scientific computing
in Scala.

For processing dates, the Java Joda Time project is popular and well documented. A
project named nscala-time implements a Scala wrapper around Joda Time, and lets you
write date expressions in a more Scala-like way, including these examples:

DateTime.now // returns org.joda.time.DateTime

DateTime.now + 2.months

DateTime.nextMonth < DateTime.now + 2.months

(2.hours + 45.minutes + 10.seconds).millis

2.1. Parsing a Number from a String

Problem
You want to convert a String to one of Scala’s numeric types.

Solution
Use the to* methods that are available on a String (courtesy of the StringLike trait):

scala> "100".toInt

res0: Int = 100

scala> "100".toDouble

res1: Double = 100.0

scala> "100".toFloat

res2: Float = 100.0

scala> "1".toLong

res3: Long = 1

scala> "1".toShort

32 | Chapter 2: Numbers

https://github.com/non/spire
http://code.google.com/p/scalalab/
http://joda-time.sourceforge.net/
https://github.com/nscala-time/nscala-time

res4: Short = 1

scala> "1".toByte

res5: Byte = 1

Be careful, because these methods can throw the usual Java NumberFormatException:

scala> "foo".toInt

java.lang.NumberFormatException: For input string: "foo"

 at java.lang.NumberFormatException.forInputString(NumberFormatException.java)

 at java.lang.Integer.parseInt(Integer.java:449)

 ... more output here ...

BigInt and BigDecimal instances can also be created directly from strings (and can also
throw a NumberFormatException):

scala> val b = BigInt("1")

b: scala.math.BigInt = 1

scala> val b = BigDecimal("3.14159")

b: scala.math.BigDecimal = 3.14159

Handling a base and radix

If you need to perform calculations using bases other than 10, you’ll find the toInt
method in the Scala Int class doesn’t have a method that lets you pass in a base and
radix. To solve this problem, use the parseInt method in the java.lang.Integer class,
as shown in these examples:

scala> Integer.parseInt("1", 2)

res0: Int = 1

scala> Integer.parseInt("10", 2)

res1: Int = 2

scala> Integer.parseInt("100", 2)

res2: Int = 4

scala> Integer.parseInt("1", 8)

res3: Int = 1

scala> Integer.parseInt("10", 8)

res4: Int = 8

If you’re a fan of implicit conversions, you can create an implicit class and method to
help solve the problem. As described in Recipe 1.10, “Add Your Own Methods to the
String Class” create the implicit conversion as follows:

implicit class StringToInt(s: String) {

 def toInt(radix: Int) = Integer.parseInt(s, radix)

}

2.1. Parsing a Number from a String | 33

Defining this implicit class (and bringing it into scope) adds a toInt method that takes
a radix argument to the String class, which you can now call instead of calling
Integer.parseInt:

scala> implicit class StringToInt(s: String) {

 | def toInt(radix: Int) = Integer.parseInt(s, radix)

 | }

defined class StringToInt

scala> "1".toInt(2)

res0: Int = 1

scala> "10".toInt(2)

res1: Int = 2

scala> "100".toInt(2)

res2: Int = 4

scala> "100".toInt(8)

res3: Int = 64

scala> "100".toInt(16)

res4: Int = 256

See Recipe 1.10 for more details on how to implement this solution outside of the REPL.

Discussion
If you’ve used Java to convert a String to a numeric data type, then the
NumberFormatException is familiar. However, Scala doesn’t have checked exceptions,
so you’ll probably want to handle this situation differently.

First, you don’t have to declare that Scala methods can throw an exception, so it’s per‐
fectly legal to declare a Scala method like this:

// not required to declare "throws NumberFormatException"

def toInt(s: String) = s.toInt

If you’re going to allow an exception to be thrown like this, callers of your method might
appreciate knowing that this can happen. Consider adding a Scaladoc comment to your
method in this case.

If you prefer to declare that your method can throw an exception, mark it with the
@throws annotation, as shown here:

@throws(classOf[NumberFormatException])

def toInt(s: String) = s.toInt

This approach is required if the method will be called from Java code, as described in
Recipe 17.2, “Add Exception Annotations to Scala Methods to Work with Java”.

34 | Chapter 2: Numbers

www.allitebooks.com

http://www.allitebooks.org

However, in Scala, situations like this are often handled with the Option/Some/None
pattern, as described in Recipe 20.6, “Using the Option/Some/None Pattern”. With this
approach, define the toInt method like this:

def toInt(s: String):Option[Int] = {

 try {

 Some(s.toInt)

 } catch {

 case e: NumberFormatException => None

 }

}

Now you can call the toInt method in several different ways, depending on your needs.
One way is with getOrElse:

println(toInt("1").getOrElse(0)) // 1

println(toInt("a").getOrElse(0)) // 0

// assign the result to x

val x = toInt(aString).getOrElse(0)

Another approach is to use a match expression. You can write a match expression to
print the toInt result like this:

toInt(aString) match {

 case Some(n) => println(n)

 case None => println("Boom! That wasn't a number.")

}

You can also write a match expression as follows to assign the result to a variable:

val result = toInt(aString) match {

 case Some(x) => x

 case None => 0 // however you want to handle this

}

If these examples haven’t yet sold you on the Option/Some/None approach, you’ll see in
Chapter 10 and Chapter 11 that this pattern is incredibly helpful and convenient when
working with collections.

Alternatives to Option

If you like the Option/Some/None concept, but need access to the exception information,
there are several additional possibilities:

• Try, Success, and Failure (introduced in Scala 2.10)

• Either, Left, and Right

These alternate approaches are discussed in Recipe 20.6, “Using the Option/Some/None
Pattern”. (The new Try/Success/Failure approach is especially appealing.)

2.1. Parsing a Number from a String | 35

See Also

• Recipe 20.6, “Using the Option/Some/None Pattern”

• The StringLike trait

2.2. Converting Between Numeric Types (Casting)

Problem
You want to convert from one numeric type to another, such as from an Int to a
Double.

Solution
Instead of using the “cast” approach in Java, use the to* methods that are available on
all numeric types. These methods can be demonstrated in the REPL (note that you need
to hit Tab at the end of the first example):

scala> val b = a.to[Tab]

toByte toChar toDouble toFloat toInt toLong

toShort toString

scala> 19.45.toInt

res0: Int = 19

scala> 19.toFloat

res1: Float = 19.0

scala> 19.toDouble

res2: Double = 19.0

scala> 19.toLong

res3: Long = 19

scala> val b = a.toFloat

b: Float = 1945.0

Discussion
In Java, you convert from one numeric type to another by casting the types, like this:

int a = (int) 100.00;

But in Scala, you use the to* methods, as shown in this recipe.

If you want to avoid potential conversion errors when casting from one numeric type
to another, you can use the related isValid methods to test whether the type can be

36 | Chapter 2: Numbers

http://bit.ly/18bCByX

converted before attempting the conversion. For instance, a Double object (via
RichDouble) has methods like isValidInt and isValidShort:

scala> val a = 1000L

a: Long = 1000

scala> a.isValidByte

res0: Boolean = false

scala> a.isValidShort

res1: Boolean = true

See Also

The RichDouble class

2.3. Overriding the Default Numeric Type

Problem
Scala automatically assigns types to numeric values when you assign them, and you need
to override the default type it assigns as you create a numeric field.

Solution
If you assign 1 to a variable, Scala assigns it the type Int:

scala> val a = 1

a: Int = 1

The following examples show one way to override simple numeric types:

scala> val a = 1d

a: Double = 1.0

scala> val a = 1f

a: Float = 1.0

scala> val a = 1000L

a: Long = 1000

Another approach is to annotate the variable with a type, like this:

scala> val a = 0: Byte

a: Byte = 0

scala> val a = 0: Int

a: Int = 0

scala> val a = 0: Short

a: Short = 0

2.3. Overriding the Default Numeric Type | 37

http://bit.ly/14O87Sn

scala> val a = 0: Double

a: Double = 0.0

scala> val a = 0: Float

a: Float = 0.0

Spacing after the colon isn’t important, so you can use this format, if preferred:

val a = 0:Byte

According to the Scala Style Guide, those examples show the preferred style for anno‐
tating types, but personally I prefer the following syntax when assigning types to vari‐
ables, specifying the type after the variable name:

scala> val a:Byte = 0

a: Byte = 0

scala> val a:Int = 0

a: Int = 0

You can create hex values by preceding the number with a leading 0x or 0X, and you can
store them as an Int or Long:

scala> val a = 0x20

a: Int = 32

// if you want to store the value as a Long

scala> val a = 0x20L

a: Long = 32

In some rare instances, you may need to take advantage of type
ascription. Stack Overflow shows a case where it’s advantageous to
upcast a String to an Object. The technique is shown here:

scala> val s = "Dave"

s: String = Dave

scala> val p = s: Object

p: Object = Dave

As you can see, the technique is similar to this recipe. This upcasting
is known as type ascription. The official Scala documentation de‐
scribes type ascription as follows:

Ascription is basically just an up-cast performed at compile
time for the sake of the type checker. Its use is not com‐
mon, but it does happen on occasion. The most often seen
case of ascription is invoking a varargs method with a sin‐
gle Seq parameter.

38 | Chapter 2: Numbers

http://bit.ly/13ljL33
http://bit.ly/1ahyUbN

Discussion
It’s helpful to know about this approach when creating object instances. The general
syntax looks like this:

// general case

var [name]:[Type] = [initial value]

// example

var a:Short = 0

This form can be helpful when you need to initialize numeric var fields in a class:

 class Foo {

 var a: Short = 0 // specify a default value

 var b: Short = _ // defaults to 0

 }

As shown, you can use the underscore character as a placeholder when assigning an
initial value. This works when creating class variables, but doesn’t work in other places,
such as inside a method. For numeric types this isn’t an issue—you can just assign the
type the value zero—but with most other types, you can use this approach inside a
method:

var name = null.asInstanceOf[String]

Better yet, use the Option/Some/None pattern. It helps eliminate null values from your
code, which is a very good thing. You’ll see this pattern used in the best Scala libraries
and frameworks, such as the Play Framework. An excellent example of this approach is
shown in Recipe 12.4, “How to Process Every Character in a Text File”.

See Recipe 20.5, “Eliminate null Values from Your Code” and Recipe 20.6, “Using the
Option/Some/None Pattern” for more discussion of this important topic.

See Also

• The Scala Style Guide

• The Stack Overflow URL mentioned in the note in the Solution

2.4. Replacements for ++ and −−

Problem
You want to increment or decrement numbers using operators like ++ and −− that are
available in other languages, but Scala doesn’t have these operators.

2.4. Replacements for ++ and −− | 39

http://docs.scala-lang.org/style
http://bit.ly/1ahyUbN

Solution
Because val fields are immutable, they can’t be incremented or decremented, but
var Int fields can be mutated with the += and −= methods:

scala> var a = 1

a: Int = 1

scala> a += 1

scala> println(a)

2

scala> a −= 1

scala> println(a)

1

As an added benefit, you use similar methods for multiplication and division:

scala> var i = 1

i: Int = 1

scala> i *= 2

scala> println(i)

2

scala> i *= 2

scala> println(i)

4

scala> i /= 2

scala> println(i)

2

Note that these symbols aren’t operators; they’re implemented as methods that are
available on Int fields declared as a var. Attempting to use them on val fields results
in a compile-time error:

scala> val x = 1

x: Int = 1

scala> x += 1

<console>:9: error: value += is not a member of Int

 x += 1

 ^

40 | Chapter 2: Numbers

As mentioned, the symbols +=, −=, *=, and /= aren’t operators, they’re
methods. This approach of building functionality with libraries in‐
stead of operators is a consistent pattern in Scala. Actors, for in‐
stance, are not built into the language, but are instead implemented as
a library. See the Dr. Dobbs link in the See Also for Martin Odersky’s
discussion of this philosophy.

Discussion
Another benefit of this approach is that you can call methods of the same name on other
types besides Int. For instance, the Double and Float classes have methods of the same
name:

scala> var x = 1d

x: Double = 1.0

scala> x += 1

scala> println(x)

2.0

scala> var x = 1f

x: Float = 1.0

scala> x += 1

scala> println(x)

2.0

See Also

Martin Odersky discusses how Actors are added into Scala as a library on
drdobbs.com.

2.5. Comparing Floating-Point Numbers

Problem
You need to compare two floating-point numbers, but as in some other programming
languages, two floating-point numbers that should be equivalent may not be.

Solution
As in Java and many other languages, you solve this problem by creating a method that
lets you specify the precision for your comparison. The following “approximately
equals” method demonstrates the approach:

2.5. Comparing Floating-Point Numbers | 41

http://ubm.io/12JCypq

def ~=(x: Double, y: Double, precision: Double) = {

 if ((x - y).abs < precision) true else false

}

You can use this method like this:

scala> val a = 0.3

a: Double = 0.3

scala> val b = 0.1 + 0.2

b: Double = 0.30000000000000004

scala> ~=(a, b, 0.0001)

res0: Boolean = true

scala> ~=(b, a, 0.0001)

res1: Boolean = true

Discussion
When you begin working with floating-point numbers, you quickly learn that 0.1 plus
0.1 is 0.2:

scala> 0.1 + 0.1

res38: Double = 0.2

But 0.1 plus 0.2 isn’t exactly 0.3:

scala> 0.1 + 0.2

res37: Double = 0.30000000000000004

This subtle inaccuracy makes comparing two floating-point numbers a real problem:

scala> val a = 0.3

a: Double = 0.3

scala> val b = 0.1 + 0.2

b: Double = 0.30000000000000004

scala> a == b

res0: Boolean = false

As a result, you end up writing your own functions to compare floating-point numbers
with a precision (or tolerance).

As you saw in Recipe 1.11, you can define an implicit conversion to add a method like
this to the Double class. This makes the following code very readable:

if (a ~= b) ...

Or, you can add the same method to a utilities object, if you prefer:

object MathUtils {

 def ~=(x: Double, y: Double, precision: Double) = {

 if ((x - y).abs < precision) true else false

42 | Chapter 2: Numbers

 }

}

which you can then invoke like a static method:

println(MathUtils.~=(a, b, 0.000001))

With an implicit conversion, the name ~= is very readable, but in a utilities object like
this, it doesn’t look quite right, so it might be better named approximatelyEqual,
equalWithinTolerance, or some other name.

See Also

• Floating-point accuracy problems

• Arbitrary-precision arithmetic

• What every computer scientist should know about floating-point arithmetic

2.6. Handling Very Large Numbers

Problem
You’re writing an application and need to use very large integer or decimal numbers.

Solution
Use the Scala BigInt and BigDecimal classes. You can create a BigInt:

scala> var b = BigInt(1234567890)

b: scala.math.BigInt = 1234567890

or a BigDecimal:

scala> var b = BigDecimal(123456.789)

b: scala.math.BigDecimal = 123456.789

Unlike their Java equivalents, these classes support all the operators you’re used to using
with numeric types:

scala> b + b

res0: scala.math.BigInt = 2469135780

scala> b * b

res1: scala.math.BigInt = 1524157875019052100

scala> b += 1

scala> println(b)

1234567891

2.6. Handling Very Large Numbers | 43

http://bit.ly/18SxYNc
http://bit.ly/18SxXZy

You can convert them to other numeric types:

scala> b.toInt

res2: Int = 1234567891

scala> b.toLong

res3: Long = 1234567891

scala> b.toFloat

res4: Float = 1.23456794E9

scala> b.toDouble

res5: Double = 1.234567891E9

To help avoid errors, you can also test them first to see if they can be converted to other
numeric types:

scala> b.isValidByte

res6: Boolean = false

scala> b.isValidChar

res7: Boolean = false

scala> b.isValidShort

res8: Boolean = false

scala> if (b.isValidInt) b.toInt

res9: AnyVal = 1234567890

Discussion
Although the Scala BigInt and BigDecimal classes are backed by the Java BigInteger
and BigDecimal classes, they are simpler to use than their Java counterparts. As you can
see in the examples, they work just like other numeric types, and they’re also mutable
(as you saw in the += example). These are nice improvements over the Java classes.

Before using BigInt or BigDecimal, you can check the maximum values that the other
Scala numeric types can handle in Table 1-1, or by checking their MaxValue in the REPL:

scala> Byte.MaxValue

res0: Byte = 127

scala> Short.MaxValue

res1: Short = 32767

scala> Int.MaxValue

res2: Int = 2147483647

scala> Long.MaxValue

res3: Long = 9223372036854775807

44 | Chapter 2: Numbers

www.allitebooks.com

http://www.allitebooks.org

scala> Double.MaxValue

res4: Double = 1.7976931348623157E308

Depending on your needs, you may also be able to use the PositiveInfinity and
NegativeInfinity of the standard numeric types:

scala> Double.PositiveInfinity

res0: Double = Infinity

scala> Double.NegativeInfinity

res1: Double = -Infinity

scala> 1.7976931348623157E308 > Double.PositiveInfinity

res45: Boolean = false

See Also

• The Java BigInteger class

• The Scala BigInt class

• The Scala BigDecimal class

2.7. Generating Random Numbers

Problem
You need to create random numbers, such as when testing an application, performing
a simulation, and many other situations.

Solution
Create random numbers with the Scala scala.util.Random class. You can create ran‐
dom integers:

scala> val r = scala.util.Random

r: scala.util.Random = scala.util.Random@13eb41e5

scala> r.nextInt

res0: Int = −1323477914

You can limit the random numbers to a maximum value:

scala> r.nextInt(100)

res1: Int = 58

In this use, the Int returned is between 0 (inclusive) and the value you specify (exclu‐
sive), so specifying 100 returns an Int from 0 to 99.

You can also create random Float values:

2.7. Generating Random Numbers | 45

http://bit.ly/10RHkE0
http://bit.ly/13FUtUH
http://bit.ly/1b7tLWP

// returns a value between 0.0 and 1.0

scala> r.nextFloat

res2: Float = 0.50317204

You can create random Double values:

// returns a value between 0.0 and 1.0

scala> r.nextDouble

res3: Double = 0.6946000981900997

You can set the seed value using an Int or Long when creating the Random object:

scala> val r = new scala.util.Random(100)

r: scala.util.Random = scala.util.Random@bbf4061

You can also set the seed value after a Random object has been created:

r.setSeed(1000L)

Discussion
The Random class handles all the usual use cases, including creating numbers, setting the
maximum value of a random number range, and setting a seed value. You can also
generate random characters:

// random characters

scala> r.nextPrintableChar

res0: Char = H

scala> r.nextPrintableChar

res1: Char = r

Scala makes it easy to create a random-length range of numbers, which is especially
useful for testing:

// create a random length range

scala> var range = 0 to r.nextInt(10)

range: scala.collection.immutable.Range.Inclusive = Range(0, 1, 2, 3)

scala> range = 0 to r.nextInt(10)

range: scala.collection.immutable.Range.Inclusive = Range(0, 1)

You can add a for/yield loop to modify the numbers:

scala> for (i <- 0 to r.nextInt(10)) yield i * 2

res0: scala.collection.immutable.IndexedSeq[Int] = Vector(0, 2, 4)

You can easily create random-length ranges of other types. Here’s a random-length
collection of up to 10 Float values:

scala> for (i <- 0 to r.nextInt(10)) yield (i * r.nextFloat)

res1: scala.collection.immutable.IndexedSeq[Float] =

 Vector(0.0, 0.71370363, 1.0783684)

Here’s a random-length collection of “printable characters”:

46 | Chapter 2: Numbers

scala> for (i <- 0 to r.nextInt(10)) yield r.nextPrintableChar

res2: scala.collection.immutable.IndexedSeq[Char] = Vector(x, K, ^, z, w)

Be careful with the nextPrintableChar method. A better approach may be to control
the characters you use, as shown in my “How to create a list of alpha or alphanumeric
characters” article, shown in the See Also.

Conversely, you can create a sequence of known length, filled with random numbers:

scala> for (i <- 1 to 5) yield r.nextInt(100)

res3: scala.collection.immutable.IndexedSeq[Int] = Vector(88, 94, 58, 96, 82)

See Also

• The Scala Random class

• Recipe 11.29, “Using a Range”, provides examples of how to create and use ranges

• My article on how to create a list of alpha or alphanumeric characters

• An additional recipe for generating random strings

2.8. Creating a Range, List, or Array of Numbers

Problem
You need to create a range, list, or array of numbers, such as in a for loop, or for testing
purposes.

Solution
Use the to method of the Int class to create a Range with the desired elements:

scala> val r = 1 to 10

r: scala.collection.immutable.Range.Inclusive = Range(1, 2, 3, 4, 5,

 6, 7, 8, 9, 10)

You can set the step with the by method:

scala> val r = 1 to 10 by 2

r: scala.collection.immutable.Range = Range(1, 3, 5, 7, 9)

scala> val r = 1 to 10 by 3

r: scala.collection.immutable.Range = Range(1, 4, 7, 10)

Ranges are commonly used in for loops:

scala> for (i <- 1 to 5) println(i)

1

2

3

2.8. Creating a Range, List, or Array of Numbers | 47

http://bit.ly/12wYbIE
http://bit.ly/12t4iT2
http://bit.ly/11Jw6nw

4

5

When creating a Range, you can also use until instead of to:

scala> for (i <- 1 until 5) println(i)

1

2

3

4

Discussion
Scala makes it easy to create a range of numbers. The first three examples shown in the
Solution create a Range. You can easily convert a Range to other sequences, such as an
Array or List, like this:

scala> val x = 1 to 10 toArray

x: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> val x = 1 to 10 toList

x: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Although this infix notation syntax is clear in many situations (such as for loops), it’s
generally preferable to use this syntax:

scala> val x = (1 to 10).toList

x: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> val x = (1 to 10).toArray

x: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

The magic that makes this process work is the to and until methods, which you’ll find
in the RichInt class. When you type the following portion of the code, you’re actually
invoking the to method of the RichInt class:

1 to

You can demonstrate that to is a method on an Int by using this syntax in the REPL:

1.to(10)

Although the infix notation (1 to 10) shown in most of these exam‐
ples can make your code more readable, Rahul Phulore has a post on
Stack Overflow where he advises against using it for anything other
than internal DSLs. The link to that post is shown in the See Also.

Combine this with Recipe 2.7, “Generating Random Numbers” and you can create a
random-length range, which can be useful for testing:

48 | Chapter 2: Numbers

scala> var range = 0 to scala.util.Random.nextInt(10)

range: scala.collection.immutable.Range.Inclusive = Range(0, 1, 2, 3)

By using a range with the for/yield construct, you don’t have to limit your ranges to
sequential numbers:

scala> for (i <- 1 to 5) yield i * 2

res0: scala.collection.immutable.IndexedSeq[Int] = Vector(2, 4, 6, 8, 10)

You also don’t have to limit your ranges to just integers:

scala> for (i <- 1 to 5) yield i.toDouble

res1: scala.collection.immutable.IndexedSeq[Double] =

 Vector(1.0, 2.0, 3.0, 4.0, 5.0)

See Also

• The Scala RichInt class

• Rahul Phulore’s post, where he advises not using the infix notation

2.9. Formatting Numbers and Currency

Problem
You want to format numbers or currency to control decimal places and commas, typi‐
cally for printed output.

Solution
For basic number formatting, use the f string interpolator shown in Recipe 1.4, “Sub‐
stituting Variables into Strings”:

scala> val pi = scala.math.Pi

pi: Double = 3.141592653589793

scala> println(f"$pi%1.5f")

3.14159

A few more examples demonstrate the technique:

scala> f"$pi%1.5f"

res0: String = 3.14159

scala> f"$pi%1.2f"

res1: String = 3.14

scala> f"$pi%06.2f"

res2: String = 003.14

2.9. Formatting Numbers and Currency | 49

http://bit.ly/179yv9F
http://bit.ly/12meut4

If you’re using a version of Scala prior to 2.10, or prefer the explicit use of the format
method, you can write the code like this instead:

scala> "%06.2f".format(pi)

res3: String = 003.14

A simple way to add commas is to use the getIntegerInstance method of the
java.text.NumberFormat class:

scala> val formatter = java.text.NumberFormat.getIntegerInstance

formatter: java.text.NumberFormat = java.text.DecimalFormat@674dc

scala> formatter.format(10000)

res0: String = 10,000

scala> formatter.format(1000000)

res1: String = 1,000,000

You can also set a locale with the getIntegerInstance method:

scala> val locale = new java.util.Locale("de", "DE")

locale: java.util.Locale = de_DE

scala> val formatter = java.text.NumberFormat.getIntegerInstance(locale)

formatter: java.text.NumberFormat = java.text.DecimalFormat@674dc

scala> formatter.format(1000000)

res2: String = 1.000.000

You can handle floating-point values with a formatter returned by getInstance:

scala> val formatter = java.text.NumberFormat.getInstance

formatter: java.text.NumberFormat = java.text.DecimalFormat@674dc

scala> formatter.format(10000.33)

res0: String = 10,000.33

For currency output, use the getCurrencyInstance formatter:

scala> val formatter = java.text.NumberFormat.getCurrencyInstance

formatter: java.text.NumberFormat = java.text.DecimalFormat@67500

scala> println(formatter.format(123.456789))

$123.46

scala> println(formatter.format(1234.56789))

$1,234.57

scala> println(formatter.format(12345.6789))

$12,345.68

scala> println(formatter.format(123456.789))

$123,456.79

This approach handles international currency:

50 | Chapter 2: Numbers

scala> import java.util.{Currency, Locale}

import java.util.{Currency, Locale}

scala> val de = Currency.getInstance(new Locale("de", "DE"))

de: java.util.Currency = EUR

scala> formatter.setCurrency(de)

scala> println(formatter.format(123456.789))

EUR123,456.79

Discussion
This recipe falls back to the Java approach for printing currency and other formatted
numeric fields, though of course the currency solution depends on how you handle
currency in your applications. In my work as a consultant, I’ve seen most companies
handle currency using the Java BigDecimal class, and others create their own custom
currency classes, which are typically wrappers around BigDecimal.

See Also

• My printf cheat sheet.

• The Joda Money library is a Java library for handling currency, and is currently at
version 0.8.

• JSR 354: Money and Currency API, is also being developed in the Java Community
Process. See jcp.org for more information.

2.9. Formatting Numbers and Currency | 51

http://bit.ly/12wZQhk
http://bit.ly/13V30BZ
http://bit.ly/12t62Ma

CHAPTER 3

Control Structures

Introduction
The control structures in Scala start off similar to their Java counterparts, and then
diverge in some wonderful ways. For instance, Scala’s if/then/else structure is similar
to Java, but can also be used to return a value. As a result, though Java has a special
syntax for a ternary operator, in Scala you just use a normal if statement to achieve the
ternary effect:

val x = if (a) y else z

The try/catch/finally structure is similar to Java, though Scala uses pattern matching
in the catch clause. This differs from Java, but because it’s consistent with other uses of
pattern matching in Scala, it’s easy to remember.

When you get to the for loop, things really start to get interesting. Its basic use is similar
to Java, but with the addition of guards and other conveniences, the Scala for loop
rapidly departs from its Java counterpart. For instance, in Scala you could write two for
loops as follows to read every line in a file and then operate on each character in each
line:

for (line <- source.getLines) {

 for {

 char <- line

 if char.isLetter

 } // char algorithm here ...

}

But with Scala’s for loop mojo, you can write this code even more concisely:

for {

 line <- source.getLines

 char <- line

 if char.isLetter

} // char algorithm here ...

53

The rabbit hole goes even deeper, because a Scala for comprehension lets you easily apply
an algorithm to one collection to generate a new collection:

scala> val nieces = List("emily", "hannah", "mercedes", "porsche")

nieces: List[String] = List(emily, hannah, mercedes, porsche)

scala> for (n <- nieces) yield n.capitalize

res0: List[String] = List(Emily, Hannah, Mercedes, Porsche)

Similarly, in its most basic use, a Scala match expression can look like a Java switch
statement, but because you can match any object, extract information from matched
objects, add guards to case statements, return values, and more, match expressions are
a major feature of the Scala language.

3.1. Looping with for and foreach

Problem
You want to iterate over the elements in a collection, either to operate on each element
in the collection, or to create a new collection from the existing collection.

Solution
There are many ways to loop over Scala collections, including for loops, while loops,
and collection methods like foreach, map, flatMap, and more. This solution focuses
primarily on the for loop and foreach method.

Given a simple array:

val a = Array("apple", "banana", "orange")

I prefer to iterate over the array with the following for loop syntax, because it’s clean
and easy to remember:

scala> for (e <- a) println(e)

apple

banana

orange

When your algorithm requires multiple lines, use the same for loop syntax, and perform
your work in a block:

scala> for (e <- a) {

 | // imagine this requires multiple lines

 | val s = e.toUpperCase

 | println(s)

 | }

APPLE

BANANA

ORANGE

54 | Chapter 3: Control Structures

Returning values from a for loop

Those examples perform an operation using the elements in an array, but they don’t
return a value you can use, such as a new array. In cases where you want to build a new
collection from the input collection, use the for/yield combination:

scala> val newArray = for (e <- a) yield e.toUpperCase

newArray: Array[java.lang.String] = Array(APPLE, BANANA, ORANGE)

The for/yield construct returns a value, so in this case, the array newArray contains
uppercase versions of the three strings in the initial array. Notice that an input Array
yields an Array (and not something else, like a Vector).

When your algorithm requires multiple lines of code, perform the work in a block after
the yield keyword:

scala> val newArray = for (e <- a) yield {

 | // imagine this requires multiple lines

 | val s = e.toUpperCase

 | s

 | }

newArray: Array[java.lang.String] = Array(APPLE, BANANA, ORANGE)

for loop counters

If you need access to a counter inside a for loop, use one of the following approaches.
First, you can access array elements with a counter like this:

for (i <- 0 until a.length) {

 println(s"$i is ${a(i)}")

}

That loops yields this output:

0 is apple

1 is banana

2 is orange

Scala collections also offer a zipWithIndex method that you can use to create a loop
counter:

scala> for ((e, count) <- a.zipWithIndex) {

 | println(s"$count is $e")

 | }

0 is apple

1 is banana

2 is orange

See Recipe 10.11, “Using zipWithIndex or zip to Create Loop Counters”, for more ex‐
amples of how to use zipWithIndex.

3.1. Looping with for and foreach | 55

Generators and guards

On a related note, the following example shows how to use a Range to execute a loop
three times:

scala> for (i <- 1 to 3) println(i)

1

2

3

The 1 to 3 portion of the loop creates a Range, as shown in the REPL:

scala> 1 to 3

res0: scala.collection.immutable.Range.Inclusive = Range(1, 2, 3)

Using a Range like this is known as using a generator. The next recipe demonstrates how
to use this technique to create multiple loop counters.

Recipe 3.3 demonstrates how to use guards (if statements in for loops), but here’s a
quick preview:

scala> for (i <- 1 to 10 if i < 4) println(i)

1

2

3

Looping over a Map

When iterating over keys and values in a Map, I find this to be the most concise and
readable for loop:

val names = Map("fname" -> "Robert",

 "lname" -> "Goren")

for ((k,v) <- names) println(s"key: $k, value: $v")

See Recipe 11.17, “Traversing a Map” for more examples of how to iterate over the
elements in a Map.

Discussion
An important lesson from the for loop examples is that when you use the for/yield
combination with a collection, you’re building and returning a new collection, but when
you use a for loop without yield, you’re just operating on each element in the collection
—you’re not creating a new collection. The for/yield combination is referred to as a
for comprehension, and in its basic use, it works just like the map method. It’s discussed
in more detail in Recipe 3.4, “Creating a for Comprehension (for/yield Combination)”.

In some ways Scala reminds me of the Perl slogan, “There’s more than one way to do
it,” and iterating over a collection provides some great examples of this. With the wealth
of methods that are available on collections, it’s important to note that a for loop may
not even be the best approach to a particular problem; the methods foreach, map,

56 | Chapter 3: Control Structures

flatMap, collect, reduce, etc., can often be used to solve your problem without re‐
quiring an explicit for loop.

For example, when you’re working with a collection, you can also iterate over each
element by calling the foreach method on the collection:

scala> a.foreach(println)

apple

banana

orange

When you have an algorithm you want to run on each element in the collection, just
use the anonymous function syntax:

scala> a.foreach(e => println(e.toUpperCase))

APPLE

BANANA

ORANGE

As before, if your algorithm requires multiple lines, perform your work in a block:

scala> a.foreach { e =>

 | val s = e.toUpperCase

 | println(s)

 | }

APPLE

BANANA

ORANGE

How for loops are translated

As you work with Scala, it’s helpful to understand how for loops are translated by the
compiler. The Scala Language Specification provides details on precisely how a for loop
is translated under various conditions. I encourage you to read the Specification for
details on the rules, but a simplification of those rules can be stated as follows:

1. A simple for loop that iterates over a collection is translated to a foreach method
call on the collection.

2. A for loop with a guard (see Recipe 3.3) is translated to a sequence of a withFilter
method call on the collection followed by a foreach call.

3. A for loop with a yield expression is translated to a map method call on the col‐
lection.

4. A for loop with a yield expression and a guard is translated to a withFilter
method call on the collection, followed by a map method call.

Again, the Specification is more detailed than this, but those statements will help get
you started in the right direction.

3.1. Looping with for and foreach | 57

http://www.scala-lang.org/node/198

These statements can be demonstrated with a series of examples. Each of the following
examples starts with a for loop, and the code in each example will be compiled with the
following scalac command:

$ scalac -Xprint:parse Main.scala

This command provides some initial output about how the Scala compiler translates
the for loops into other code.

As a first example, start with the following code in a file named Main.scala:

class Main {

 for (i <- 1 to 10) println(i)

}

This code is intentionally small and trivial so you can see how the for loop is translated
by the compiler.

When you compile this code with the scalac -Xprint:parse command, the full output
looks like this:

$ scalac -Xprint:parse Main.scala

[[syntax trees at end of parser]] // Main.scala

package <empty> {

 class Main extends scala.AnyRef {

 def <init>() = {

 super.<init>();

 ()

 };

 1.to(10).foreach(((i) => println(i)))

 }

}

For this example, the important part of the output is the area that shows the for loop
was translated by the compiler into the following code:

1.to(10).foreach(((i) => println(i)))

As you can see, the Scala compiler translates a simple for loop over a collection into a
foreach method call on the collection.

If you compile the file with the -Xprint:all option instead of
-Xprint:parse, you’ll see that the code is further translated into the
following code:

scala.this.Predef.intWrapper(1).to(10).foreach[Unit]

 (((i: Int) => scala.this.Predef.println(i)))

The code continues to get more and more detailed as the compiler
phases continue, but for this demonstration, only the first step in the
translation process is necessary.

58 | Chapter 3: Control Structures

Note that although I use a Range in these examples, the compiler behaves similarly for
other collections. For example, if I replace the Range in the previous example with a
List, like this:

// original List code

val nums = List(1,2,3)

for (i <- nums) println(i)

the for loop is still converted by the compiler into a foreach method call:

// translation performed by the compiler

nums.foreach(((i) => println(i)))

Given this introduction, the following series of examples demonstrates how various for
loops are translated by the Scala 2.10 compiler. Here’s the first example again, showing
both the input code I wrote and the output code from the compiler:

// #1 - input (my code)

for (i <- 1 to 10) println(i)

// #1 - compiler output

1.to(10).foreach(((i) => println(i)))

Next, I’ll use the same for loop but add a guard condition (an if statement) to it:

// #2 - input code

for {

 i <- 1 to 10

 if i % 2 == 0

} println(i)

// #2 - translated output

1.to(10).withFilter(((i) => i.$percent(2).$eq$eq(0))).foreach(((i) =>

 println(i)))

As shown, a simple, single guard is translated into a withFilter method call on the
collection, followed by a foreach call.

The same for loop with two guards is translated into two withFilter calls:

// #3 - input code

for {

 i <- 1 to 10

 if i != 1

 if i % 2 == 0

} println(i)

// #3 - translated output

1.to(10).withFilter(((i) => i.$bang$eq(1)))

 .withFilter(((i)

 => i.$percent(2).$eq$eq(0))).foreach(((i) => println(i)))

Next, I’ll add a yield statement to the initial for loop:

3.1. Looping with for and foreach | 59

// #4 - input code

for { i <- 1 to 10 } yield i

// #4 - output

1.to(10).map(((i) => i))

As shown, when a yield statement is used, the compiler translates the for/yield code
into a map method call on the collection.

Here’s the same for/yield combination with a guard added in:

// #5 - input code (for loop, guard, and yield)

for {

 i <- 1 to 10

 if i % 2 == 0

} yield i

// #5 - translated code

1.to(10).withFilter(((i) => i.$percent(2).$eq$eq(0))).map(((i) => i))

As in the previous examples, the guard is translated into a withFilter method call, and
the for/yield code is translated into a map method call.

These examples demonstrate how the translations are made by the Scala compiler, and
I encourage you to create your own examples to see how they’re translated by the com‐
piler into other code. The -Xprint:parse option shows a small amount of compiler
output, while the -Xprint:all option produces hundreds of lines of output for some
of these examples, showing all the steps in the compilation process.

For more details, see the Scala Language Specification for exact rules on the for loop
translation process. The details are currently in Section 6.19, “For Comprehensions and
For Loops,” of the Specification.

See Also

The Scala Language Specification in PDF format

3.2. Using for Loops with Multiple Counters

Problem
You want to create a loop with multiple counters, such as when iterating over a multi‐
dimensional array.

Solution
You can create a for loop with two counters like this:

60 | Chapter 3: Control Structures

http://www.scala-lang.org/node/198

scala> for (i <- 1 to 2; j <- 1 to 2) println(s"i = $i, j = $j")

i = 1, j = 1

i = 1, j = 2

i = 2, j = 1

i = 2, j = 2

When doing this, the preferred style for multiline for loops is to use curly brackets:

for {

 i <- 1 to 2

 j <- 1 to 2

} println(s"i = $i, j = $j")

Similarly, you can use three counters like this:

for {

 i <- 1 to 3

 j <- 1 to 5

 k <- 1 to 10

} println(s"i = $i, j = $j, k = $k")

This is useful when looping over a multidimensional array. Assuming you create a small
two-dimensional array like this:

val array = Array.ofDim[Int](2,2)

array(0)(0) = 0

array(0)(1) = 1

array(1)(0) = 2

array(1)(1) = 3

you can print each element of the array like this:

scala> for {

 | i <- 0 to 1

 | j <- 0 to 1

 | } println(s"($i)($j) = ${array(i)(j)}")

(0)(0) = 0

(0)(1) = 1

(1)(0) = 2

(1)(1) = 3

Discussion
Ranges created with the <- symbol in for loops are referred to as generators, and you
can easily use multiple generators in one loop.

As shown in the examples, the recommended style for writing longer for loops is to use
curly braces:

for {

 i <- 1 to 2

 j <- 2 to 3

} println(s"i = $i, j = $j")

3.2. Using for Loops with Multiple Counters | 61

This style is more scalable than other styles; in this case, “scalable” means that it con‐
tinues to be readable as you add more generators and guards to the expression.

See Also

The Scala Style Guide page on formatting control structures

3.3. Using a for Loop with Embedded if Statements
(Guards)

Problem
You want to add one or more conditional clauses to a for loop, typically to filter out
some elements in a collection while working on the others.

Solution
Add an if statement after your generator, like this:

// print all even numbers

scala> for (i <- 1 to 10 if i % 2 == 0) println(i)

2

4

6

8

10

or using the preferred curly brackets style, like this:

for {

 i <- 1 to 10

 if i % 2 == 0

} println(i)

These if statements are referred to as filters, filter expressions, or guards, and you can
use as many guards as are needed for the problem at hand. This loop shows a hard way
to print the number 4:

for {

 i <- 1 to 10

 if i > 3

 if i < 6

 if i % 2 == 0

} println(i)

62 | Chapter 3: Control Structures

http://bit.ly/15oazgY

Discussion
Using guards with for loops can make for concise and readable code, but you can also
use the traditional approach:

for (file <- files) {

 if (hasSoundFileExtension(file) && !soundFileIsLong(file)) {

 soundFiles += file

 }

}

However, once you become comfortable with Scala’s for loop syntax, I think you’ll find
it makes the code more readable, because it separates the looping and filtering concerns
from the business logic:

for {

 file <- files

 if passesFilter1(file)

 if passesFilter2(file)

} doSomething(file)

As a final note, because guards are generally intended to filter collections, you may want
to use one of the many filtering methods that are available to collections (filter, take,
drop, etc.) instead of a for loop, depending on your needs.

3.4. Creating a for Comprehension (for/yield Combination)

Problem
You want to create a new collection from an existing collection by applying an algorithm
(and potentially one or more guards) to each element in the original collection.

Solution
Use a yield statement with a for loop and your algorithm to create a new collection
from an existing collection.

For instance, given an array of lowercase strings:

scala> val names = Array("chris", "ed", "maurice")

names: Array[String] = Array(chris, ed, maurice)

you can create a new array of capitalized strings by combining yield with a for loop
and a simple algorithm:

scala> val capNames = for (e <- names) yield e.capitalize

capNames: Array[String] = Array(Chris, Ed, Maurice)

Using a for loop with a yield statement is known as a for comprehension.

3.4. Creating a for Comprehension (for/yield Combination) | 63

If your algorithm requires multiple lines of code, perform the work in a block after the
yield keyword:

scala> val lengths = for (e <- names) yield {

 | // imagine that this required multiple lines of code

 | e.length

 | }

lengths: Array[Int] = Array(5, 2, 7)

Except for rare occasions, the collection type returned by a for comprehension is the
same type that you begin with. For instance, if the collection you’re looping over is an
ArrayBuffer:

var fruits = scala.collection.mutable.ArrayBuffer[String]()

fruits += "apple"

fruits += "banana"

fruits += "orange"

the collection your loop returns will also be an ArrayBuffer:

scala> val out = for (e <- fruits) yield e.toUpperCase

out: scala.collection.mutable.ArrayBuffer[java.lang.String] =

 ArrayBuffer(APPLE, BANANA, ORANGE)

If your input collection is a List, the for/yield loop will return a List:

scala> val fruits = "apple" :: "banana" :: "orange" :: Nil

fruits: List[java.lang.String] = List(apple, banana, orange)

scala> val out = for (e <- fruits) yield e.toUpperCase

out: List[java.lang.String] = List(APPLE, BANANA, ORANGE)

Discussion
If you’re new to using yield with a for loop, it can help to think of the loop like this:

• When it begins running, the for/yield loop immediately creates a new, empty
collection that is of the same type as the input collection. For example, if the input
type is a Vector, the output type will also be a Vector. You can think of this new
collection as being like a bucket.

• On each iteration of the for loop, a new output element is created from the current
element of the input collection. When the output element is created, it’s placed in
the bucket.

• When the loop finishes running, the entire contents of the bucket are returned.

That’s a simplification of the process, but I find it helpful when explaining the process.

Writing a basic for/yield expression without a guard is just like calling the map method
on a collection. For instance, the following for comprehension converts all the strings
in the fruits collection to uppercase:

64 | Chapter 3: Control Structures

scala> val out = for (e <- fruits) yield e.toUpperCase

out: List[String] = List(APPLE, BANANA, ORANGE)

Calling the map method on the collection does the same thing:

scala> val out = fruits.map(_.toUpperCase)

out: List[String] = List(APPLE, BANANA, ORANGE)

When I first started learning Scala, I wrote all of my code using for/yield expressions
until the map light bulb went on one day.

See Also

• Comparisons between for comprehensions and map are shown in more detail in
Recipe 10.13, “Transforming One Collection to Another with for/yield” and
Recipe 10.14, “Transforming One Collection to Another with map”.

• The official Scala website offers an introduction to sequence comprehensions

3.5. Implementing break and continue

Problem
You have a situation where you need to use a break or continue construct, but Scala
doesn’t have break or continue keywords.

Solution
It’s true that Scala doesn’t have break and continue keywords, but it does offer similar
functionality through scala.util.control.Breaks.

The following code demonstrates the Scala “break” and “continue” approach:

package com.alvinalexander.breakandcontinue

import util.control.Breaks._

object BreakAndContinueDemo extends App {

 println("\n=== BREAK EXAMPLE ===")

 breakable {

 for (i <- 1 to 10) {

 println(i)

 if (i > 4) break // break out of the for loop

 }

 }

 println("\n=== CONTINUE EXAMPLE ===")

 val searchMe = "peter piper picked a peck of pickled peppers"

3.5. Implementing break and continue | 65

http://bit.ly/1ahFWNJ

 var numPs = 0

 for (i <- 0 until searchMe.length) {

 breakable {

 if (searchMe.charAt(i) != 'p') {

 break // break out of the 'breakable', continue the outside loop

 } else {

 numPs += 1

 }

 }

 }

 println("Found " + numPs + " p's in the string.")

}

Here’s the output from the code:

=== BREAK EXAMPLE ===

1

2

3

4

5

=== CONTINUE EXAMPLE ===

Found 9 p's in the string.

(The “pickled peppers” example comes from a continue example in the Java documen‐
tation. More on this at the end of the recipe.)

The following discussions describe how this code works.

The break example

The break example is pretty easy to reason about. Again, here’s the code:

breakable {

 for (i <- 1 to 10) {

 println(i)

 if (i > 4) break // break out of the for loop

 }

}

In this case, when i becomes greater than 4, the break “keyword” is reached. At this
point an exception is thrown, and the for loop is exited. The breakable “keyword”
essentially catches the exception, and the flow of control continues with any other code
that might be after the breakable block.

Note that break and breakable aren’t actually keywords; they’re methods in
scala.util.control.Breaks. In Scala 2.10, the break method is declared as follows to
throw an instance of a BreakControl exception when it’s called:

private val breakException = new BreakControl

def break(): Nothing = { throw breakException }

66 | Chapter 3: Control Structures

The breakable method is defined to catch a BreakControl exception, like this:

def breakable(op: => Unit) {

 try {

 op

 } catch {

 case ex: BreakControl =>

 if (ex ne breakException) throw ex

 }

 }

See Recipe 3.18 for examples of how to implement your own control
structures in a manner similar to the Breaks library.

The continue example

Given the explanation for the break example, you can now reason about how the “con‐
tinue” example works. Here’s the code again:

val searchMe = "peter piper picked a peck of pickled peppers"

var numPs = 0

for (i <- 0 until searchMe.length) {

 breakable {

 if (searchMe.charAt(i) != 'p') {

 break // break out of the 'breakable', continue the outside loop

 } else {

 numPs += 1

 }

 }

}

println("Found " + numPs + " p's in the string.")

Following the earlier explanation, as the code walks through the characters in the String
variable named searchMe, if the current character is not the letter p, the code breaks out
of the if/then statement, and the loop continues executing.

As before, what really happens is that the break method is reached, an exception is
thrown, and that exception is caught by breakable. The exception serves to break out
of the if/then statement, and catching it allows the for loop to continue executing with
the next element.

General syntax

The general syntax for implementing break and continue functionality is shown in the
following examples, which are partially written in pseudocode, and compared to their
Java equivalents.

3.5. Implementing break and continue | 67

To implement a break, this Scala:

breakable {

 for (x <- xs) {

 if (cond)

 break

 }

}

corresponds to this Java:

for (X x : xs) {

 if (cond) break;

}

To implement continue functionality, this Scala:

for (x <- xs) {

 breakable {

 if (cond)

 break

 }

}

corresponds to this Java:

for (X x : xs) {

 if (cond) continue;

}

About that continue example...

The continue example shown is a variation of the Java continue example shown on the
Oracle website. If you know Scala, you know that there are better ways to solve this
particular problem. For instance, a direct approach is to use the count method with a
simple anonymous function:

val count = searchMe.count(_ == 'p')

When this code is run, count is again 9.

Nested loops and labeled breaks

In some situations, you may need nested break statements. Or, you may prefer labeled
break statements. In either case, you can create labeled breaks as shown in the following
example:

package com.alvinalexander.labeledbreaks

object LabeledBreakDemo extends App {

 import scala.util.control._

 val Inner = new Breaks

 val Outer = new Breaks

68 | Chapter 3: Control Structures

http://bit.ly/11JCuuZ

 Outer.breakable {

 for (i <- 1 to 5) {

 Inner.breakable {

 for (j <- 'a' to 'e') {

 if (i == 1 && j == 'c') Inner.break else println(s"i: $i, j: $j")

 if (i == 2 && j == 'b') Outer.break

 }

 }

 }

 }

}

In this example, if the first if condition is met, an exception is thrown and caught by
Inner.breakable, and the outer for loop continues. But if the second if condition is
triggered, control of flow is sent to Outer.breakable, and both loops are exited. Run‐
ning this object results in the following output:

i: 1, j: a

i: 1, j: b

i: 2, j: a

Use the same approach if you prefer labeled breaks. This example shows how you can
use the same technique with just one break method call:

import scala.util.control._

val Exit = new Breaks

Exit.breakable {

 for (j <- 'a' to 'e') {

 if (j == 'c') Exit.break else println(s"j: $j")

 }

}

Discussion
If you don’t like using break and continue, there are several other ways to attack these
problems.

For instance, if you want to add monkeys to a barrel, but only until the barrel is full,
you can use a simple boolean test to break out of a for loop:

var barrelIsFull = false

for (monkey <- monkeyCollection if !barrelIsFull) {

 addMonkeyToBarrel(monkey)

 barrelIsFull = checkIfBarrelIsFull

}

Another approach is to place your algorithm inside a function, and then return from
the function when the desired condition is reached. In the following example, the
sumToMax function returns early if sum becomes greater than limit:

3.5. Implementing break and continue | 69

// calculate a sum of numbers, but limit it to a 'max' value

def sumToMax(arr: Array[Int], limit: Int): Int = {

 var sum = 0

 for (i <- arr) {

 sum += i

 if (sum > limit) return limit

 }

 sum

}

val a = Array.range(0,10)

println(sumToMax(a, 10))

A common approach in functional programming is to use recursive algorithms. This
is demonstrated in a recursive approach to a factorial function, where the condition
n == 1 results in a break from the recursion:

def factorial(n: Int): Int = {

 if (n == 1) 1

 else n * factorial(n - 1)

}

Note that this example does not use tail recursion and is therefore not an optimal ap‐
proach, especially if the starting value n is very large. A more optimal solution takes
advantage of tail recursion:

import scala.annotation.tailrec

def factorial(n: Int): Int = {

 @tailrec def factorialAcc(acc: Int, n: Int): Int = {

 if (n <= 1) acc

 else factorialAcc(n * acc, n - 1)

 }

 factorialAcc(1, n)

}

Note that you can use the @tailrec annotation in situations like this to confirm that
your algorithm is tail recursive. If you use this annotation and your algorithm isn’t tail
recursive, the compiler will complain. For instance, if you attempt to use this annotation
on the first version of the factorial method, you’ll get the following compile-time
error:

Could not optimize @tailrec annotated method factorial: it contains a recursive

call not in tail position

See Also

The Java continue example mentioned can be found on the Oracle website.

There are many Scala recursive factorial examples on the Internet; here are two of the
best discussions:

70 | Chapter 3: Control Structures

http://bit.ly/11JCuuZ

• A nice discussion about tail recursion and trampolines

• Tail-call optimization in Scala

3.6. Using the if Construct Like a Ternary Operator

Problem
You’d like to use a Scala if expression like a ternary operator to solve a problem in a
concise, expressive way.

Solution
This is a bit of a trick problem, because unlike Java, in Scala there is no special ternary
operator; just use an if/else expression:

val absValue = if (a < 0) -a else a

Because an if expression returns a value, you can embed it into a print statement:

println(if (i == 0) "a" else "b")

You can use it in another expression, such as this portion of a hashCode method:

hash = hash * prime + (if (name == null) 0 else name.hashCode)

Discussion
The Java documentation page shown in the See Also states that the Java conditional
operator ?: “is known as the ternary operator because it uses three operands.” Unlike
some other languages, Scala doesn’t have a special operator for this use case.

In addition to the examples shown, the combination of (a) if statements returning a
result, and (b) Scala’s syntax for defining methods makes for concise code:

def abs(x: Int) = if (x >= 0) x else -x

def max(a: Int, b: Int) = if (a > b) a else b

val c = if (a > b) a else b

See Also

“Equality, Relational, and Conditional Operators” on the Java Tutorials page

3.6. Using the if Construct Like a Ternary Operator | 71

http://bit.ly/136lkGa
http://bit.ly/12mjhKQ
http://bit.ly/1ahGfYY

3.7. Using a Match Expression Like a switch Statement

Problem
You have a situation where you want to create something like a simple Java integer-based
switch statement, such as matching the days in a week, months in a year, and other
situations where an integer maps to a result.

Solution
To use a Scala match expression like a Java switch statement, use this approach:

// i is an integer

i match {

 case 1 => println("January")

 case 2 => println("February")

 case 3 => println("March")

 case 4 => println("April")

 case 5 => println("May")

 case 6 => println("June")

 case 7 => println("July")

 case 8 => println("August")

 case 9 => println("September")

 case 10 => println("October")

 case 11 => println("November")

 case 12 => println("December")

 // catch the default with a variable so you can print it

 case whoa => println("Unexpected case: " + whoa.toString)

}

That example shows how to take an action based on a match. A more functional ap‐
proach returns a value from a match expression:

val month = i match {

 case 1 => "January"

 case 2 => "February"

 case 3 => "March"

 case 4 => "April"

 case 5 => "May"

 case 6 => "June"

 case 7 => "July"

 case 8 => "August"

 case 9 => "September"

 case 10 => "October"

 case 11 => "November"

 case 12 => "December"

 case _ => "Invalid month" // the default, catch-all

}

72 | Chapter 3: Control Structures

The @switch annotation

When writing simple match expressions like this, it’s recommend to use the @switch
annotation. This annotation provides a warning at compile time if the switch can’t be
compiled to a tableswitch or lookupswitch.

Compiling your match expression to a tableswitch or lookupswitch is better for per‐
formance, because it results in a branch table rather than a decision tree. When a value
is given to the expression, it can jump directly to the result rather than working through
the decision tree.

Here’s the official description from the @switch annotation documentation:

“An annotation to be applied to a match expression. If present, the compiler will verify
that the match has been compiled to a tableswitch or lookupswitch, and issue an error if
it instead compiles into a series of conditional expressions.”

The effect of the @switch annotation is demonstrated with a simple example. First, place
the following code in a file named SwitchDemo.scala:

// Version 1 - compiles to a tableswitch

import scala.annotation.switch

class SwitchDemo {

 val i = 1

 val x = (i: @switch) match {

 case 1 => "One"

 case 2 => "Two"

 case _ => "Other"

 }

}

Then compile the code as usual:

$ scalac SwitchDemo.scala

Compiling this class produces no warnings and creates the SwitchDemo.class output

file. Next, disassemble that file with this javap command:

$ javap -c SwitchDemo

The output from this command shows a tableswitch, like this:

16: tableswitch{ //1 to 2

 1: 50;

 2: 45;

 default: 40 }

This shows that Scala was able to optimize your match expression to a tableswitch.
(This is a good thing.)

Next, make a minor change to the code, replacing the integer literal 2 with a value:

3.7. Using a Match Expression Like a switch Statement | 73

http://bit.ly/12x5MHd

import scala.annotation.switch

// Version 2 - leads to a compiler warning

class SwitchDemo {

 val i = 1

 val Two = 2 // added

 val x = (i: @switch) match {

 case 1 => "One"

 case Two => "Two" // replaced the '2'

 case _ => "Other"

 }

}

Again, compile the code with scalac, but right away you’ll see a warning message:

$ scalac SwitchDemo.scala

SwitchDemo.scala:7: warning: could not emit switch for @switch annotated match

 val x = (i: @switch) match {

 ^

one warning found

This warning message is saying that neither a tableswitch nor lookupswitch could be
generated for the match expression. You can confirm this by running the javap com‐
mand on the SwitchDemo.class file that was generated. When you look at that output,

you’ll see that the tableswitch shown in the previous example is now gone.

In his book, Scala In Depth (Manning), Joshua Suereth states that the following condi‐
tions must be true for Scala to apply the tableswitch optimization:

1. The matched value must be a known integer.

2. The matched expression must be “simple.” It can’t contain any type checks, if
statements, or extractors.

3. The expression must also have its value available at compile time.

4. There should be more than two case statements.

For more information on how JVM switches work, see the Oracle document, Compiling
Switches.

Discussion
As demonstrated in other recipes, you aren’t limited to matching only integers; the
match expression is incredibly flexible:

def getClassAsString(x: Any): String = x match {

 case s: String => s + " is a String"

 case i: Int => "Int"

 case f: Float => "Float"

74 | Chapter 3: Control Structures

http://bit.ly/11JFVSH
http://bit.ly/11JFVSH

 case l: List[_] => "List"

 case p: Person => "Person"

 case _ => "Unknown"

}

Handling the default case

The examples in the Solution showed the two ways you can handle the default, “catch
all” case. First, if you’re not concerned about the value of the default match, you can
catch it with the _ wildcard:

case _ => println("Got a default match")

Conversely, if you are interested in what fell down to the default match, assign a variable
name to it. You can then use that variable on the right side of the expression:

case default => println(default)

Using the name default often makes the most sense and leads to readable code, but
you can use any legal name for the variable:

case oops => println(oops)

You can generate a MatchError if you don’t handle the default case. Given this match
expression:

i match {

 case 0 => println("0 received")

 case 1 => println("1 is good, too")

}

if i is a value other than 0 or 1, the expression throws a MatchError:

scala.MatchError: 42 (of class java.lang.Integer)

 at .<init>(<console>:9)

 at .<clinit>(<console>)

 much more error output here ...

So unless you’re intentionally writing a partial function, you’ll want to handle the default
case. (See Recipe 9.8, “Creating Partial Functions”, for more information on partial
functions.)

Do you really need a switch statement?

Of course you don’t really need a switch statement if you have a data structure that maps
month numbers to month names. In that case, just use a Map:

val monthNumberToName = Map(

 1 -> "January",

 2 -> "February",

 3 -> "March",

 4 -> "April",

 5 -> "May",

 6 -> "June",

 7 -> "July",

3.7. Using a Match Expression Like a switch Statement | 75

 8 -> "August",

 9 -> "September",

 10 -> "October",

 11 -> "November",

 12 -> "December"

)

val monthName = monthNumberToName(4)

println(monthName) // prints "April"

See Also

• The @switch annotation documentation.

• The Oracle document, Compiling Switches, discusses the tableswitch and
lookupswitch.

• A tableswitch and lookupswitch differences discussion.

3.8. Matching Multiple Conditions with One Case
Statement

Problem
You have a situation where several match conditions require that the same business logic
be executed, and rather than repeating your business logic for each case, you’d like to
use one copy of the business logic for the matching conditions.

Solution
Place the match conditions that invoke the same business logic on one line, separated
by the | (pipe) character:

val i = 5

i match {

 case 1 | 3 | 5 | 7 | 9 => println("odd")

 case 2 | 4 | 6 | 8 | 10 => println("even")

}

This same syntax works with strings and other types. Here’s an example based on a
String match:

val cmd = "stop"

cmd match {

 case "start" | "go" => println("starting")

 case "stop" | "quit" | "exit" => println("stopping")

 case _ => println("doing nothing")

}

76 | Chapter 3: Control Structures

http://bit.ly/12x5MHd
http://bit.ly/11JFVSH
http://bit.ly/16yPJem

This example shows how to match multiple case objects:

trait Command

case object Start extends Command

case object Go extends Command

case object Stop extends Command

case object Whoa extends Command

def executeCommand(cmd: Command) = cmd match {

 case Start | Go => start()

 case Stop | Whoa => stop()

}

As demonstrated, the ability to define multiple possible matches for each case statement
can simplify your code.

See Also

See Recipe 3.13, “Adding if Expressions (Guards) to Case Statements”, for a
related approach.

3.9. Assigning the Result of a Match Expression to a
Variable

Problem
You want to return a value from a match expression and assign it to a variable, or use a
match expression as the body of a method.

Solution
To assign a variable to the result of a match expression, insert the variable assignment
before the expression, as with the variable evenOrOdd in this example:

val evenOrOdd = someNumber match {

 case 1 | 3 | 5 | 7 | 9 => println("odd")

 case 2 | 4 | 6 | 8 | 10 => println("even")

}

This approach is commonly used to create short methods or functions. For example,
the following method implements the Perl definitions of true and false:

def isTrue(a: Any) = a match {

 case 0 | "" => false

 case _ => true

}

3.9. Assigning the Result of a Match Expression to a Variable | 77

You’ll hear that Scala is an “expression-oriented programming (EOP) language,” which
Wikipedia defines as, “a programming language where every (or nearly every)
construction is an expression and thus yields a value.” The ability to return values from
if statements and match expressions helps Scala meet this definition.

See Also

• Recipe 20.3, “Think “Expression-Oriented Programming””

• The Expression-Oriented Programming page on Wikipedia

3.10. Accessing the Value of the Default Case in a Match
Expression

Problem
You want to access the value of the default, “catch all” case when using a match expres‐
sion, but you can’t access the value when you match it with the _ wildcard syntax.

Solution
Instead of using the _ wildcard character, assign a variable name to the default case:

i match {

 case 0 => println("1")

 case 1 => println("2")

 case default => println("You gave me: " + default)

}

By giving the default match a variable name, you can access the variable on the right
side of the statement.

Discussion
The key to this recipe is in using a variable name for the default match instead of the
usual _ wildcard character.

The name you assign can be any legal variable name, so instead of naming it default,
you can name it something else, such as whoa:

i match {

 case 0 => println("1")

 case 1 => println("2")

 case whoa => println("You gave me: " + whoa)

}

78 | Chapter 3: Control Structures

http://bit.ly/1b7B6FE

It’s important to provide a default match. Failure to do so can cause a MatchError:

scala> 3 match {

 | case 1 => println("one")

 | case 2 => println("two")

 | // no default match

 | }

scala.MatchError: 3 (of class java.lang.Integer)

many more lines of output ...

3.11. Using Pattern Matching in Match Expressions

Problem
You need to match one or more patterns in a match expression, and the pattern may be
a constant pattern, variable pattern, constructor pattern, sequence pattern, tuple pattern,
or type pattern.

Solution
Define a case statement for each pattern you want to match. The following method
shows examples of many different types of patterns you can use in match expressions:

def echoWhatYouGaveMe(x: Any): String = x match {

 // constant patterns

 case 0 => "zero"

 case true => "true"

 case "hello" => "you said 'hello'"

 case Nil => "an empty List"

 // sequence patterns

 case List(0, _, _) => "a three-element list with 0 as the first element"

 case List(1, _*) => "a list beginning with 1, having any number of elements"

 case Vector(1, _*) => "a vector starting with 1, having any number of elements"

 // tuples

 case (a, b) => s"got $a and $b"

 case (a, b, c) => s"got $a, $b, and $c"

 // constructor patterns

 case Person(first, "Alexander") => s"found an Alexander, first name = $first"

 case Dog("Suka") => "found a dog named Suka"

 // typed patterns

 case s: String => s"you gave me this string: $s"

 case i: Int => s"thanks for the int: $i"

 case f: Float => s"thanks for the float: $f"

 case a: Array[Int] => s"an array of int: ${a.mkString(",")}"

 case as: Array[String] => s"an array of strings: ${as.mkString(",")}"

3.11. Using Pattern Matching in Match Expressions | 79

 case d: Dog => s"dog: ${d.name}"

 case list: List[_] => s"thanks for the List: $list"

 case m: Map[_, _] => m.toString

 // the default wildcard pattern

 case _ => "Unknown"

}

The large match expression in this method shows the different categories of patterns
described in the book, Programming in Scala (Artima), by Odersky, et al, including
constant patterns, sequence patterns, tuple patterns, constructor patterns, and typed
patterns.

You can test this match expression in a variety of ways. For the purposes of this example,
I created the following object to test the echoWhatYouGaveMe method:

object LargeMatchTest extends App {

 case class Person(firstName: String, lastName: String)

 case class Dog(name: String)

 // trigger the constant patterns

 println(echoWhatYouGaveMe(0))

 println(echoWhatYouGaveMe(true))

 println(echoWhatYouGaveMe("hello"))

 println(echoWhatYouGaveMe(Nil))

 // trigger the sequence patterns

 println(echoWhatYouGaveMe(List(0,1,2)))

 println(echoWhatYouGaveMe(List(1,2)))

 println(echoWhatYouGaveMe(List(1,2,3)))

 println(echoWhatYouGaveMe(Vector(1,2,3)))

 // trigger the tuple patterns

 println(echoWhatYouGaveMe((1,2))) // two element tuple

 println(echoWhatYouGaveMe((1,2,3))) // three element tuple

 // trigger the constructor patterns

 println(echoWhatYouGaveMe(Person("Melissa", "Alexander")))

 println(echoWhatYouGaveMe(Dog("Suka")))

 // trigger the typed patterns

 println(echoWhatYouGaveMe("Hello, world"))

 println(echoWhatYouGaveMe(42))

 println(echoWhatYouGaveMe(42F))

 println(echoWhatYouGaveMe(Array(1,2,3)))

 println(echoWhatYouGaveMe(Array("coffee", "apple pie")))

 println(echoWhatYouGaveMe(Dog("Fido")))

 println(echoWhatYouGaveMe(List("apple", "banana")))

 println(echoWhatYouGaveMe(Map(1->"Al", 2->"Alexander")))

80 | Chapter 3: Control Structures

 // trigger the wildcard pattern

 println(echoWhatYouGaveMe("33d"))

}

Running this object results in the following output:

zero

true

you said 'hello'

an empty List

a three-element list with 0 as the first element

a list beginning with 1 and having any number of elements

a list beginning with 1 and having any number of elements

a vector beginning with 1 and having any number of elements

a list beginning with 1 and having any number of elements

got 1 and 2

got 1, 2, and 3

found an Alexander, first name = Melissa

found a dog named Suka

you gave me this string: Hello, world

thanks for the int: 42

thanks for the float: 42.0

an array of int: 1,2,3

an array of strings: coffee,apple pie

dog: Fido

thanks for the List: List(apple, banana)

Map(1 -> Al, 2 -> Alexander)

you gave me this string: 33d

Note that in the match expression, the List and Map statements that were written like
this:

case list: List[_] => s"thanks for the List: $list"

case m: Map[_, _] => m.toString

could have been written as this instead:

case m: Map[a, b] => m.toString

case list: List[x] => s"thanks for the List: $list"

I prefer the underscore syntax because it makes it clear that I’m not concerned about
what’s stored in the List or Map. Actually, there are times that I might be interested in
what’s stored in the List or Map, but because of type erasure in the JVM, that becomes
a difficult problem.

3.11. Using Pattern Matching in Match Expressions | 81

When I first wrote this example, I wrote the List expression as follows:

case l: List[Int] => "List"

If you’re familiar with type erasure on the Java platform, you may know that
this won’t work. The Scala compiler kindly lets you know about this prob‐
lem with this warning message:

Test1.scala:7: warning: non-variable type argument Int in type pattern

List[Int] is unchecked since it is eliminated by erasure

 case l: List[Int] => "List[Int]"

 ^

If you’re not familiar with type erasure, I’ve included a link in the See Also
section of this recipe that describes how it works on the JVM.

Discussion
Typically when using this technique, your method will expect an instance that inherits
from a base class or trait, and then your case statements will reference subtypes of that
base type. This was inferred in the echoWhatYouGaveMe method, where every Scala type
is a subtype of Any. The following code shows a more obvious example of this technique.

In my Blue Parrot application, which either plays a sound file or “speaks” the text it’s
given at random intervals, I have a method that looks like this:

import java.io.File

sealed trait RandomThing

case class RandomFile(f: File) extends RandomThing

case class RandomString(s: String) extends RandomThing

class RandomNoiseMaker {

 def makeRandomNoise(t: RandomThing) = t match {

 case RandomFile(f) => playSoundFile(f)

 case RandomString(s) => speak(s)

 }

}

The makeRandomNoise method is declared to take a RandomThing type, and then the
match expression handles its two subtypes, RandomFile and RandomString.

Patterns

The large match expression in the Solution shows a variety of patterns that are defined
in the book Programming in Scala. These patterns are briefly described in the following
paragraphs.

82 | Chapter 3: Control Structures

http://alvinalexander.com/blueparrot

Constant patterns
A constant pattern can only match itself. Any literal may be used as a constant. If
you specify a 0 as the literal, only an Int value of 0 will be matched. Examples:

case 0 => "zero"

case true => "true"

Variable patterns
This was not shown in the large match example in the Solution—it’s discussed in
detail in Recipe 3.10, “Accessing the Value of the Default Case in a Match Expres‐
sion”—but a variable pattern matches any object just like the _ wildcard character.
Scala binds the variable to whatever the object is, which lets you use the variable on
the right side of the case statement. For example, at the end of a match expression
you can use the _ wildcard character like this to catch “anything else”:

case _ => s"Hmm, you gave me something ..."

But with a variable pattern you can write this instead:

case foo => s"Hmm, you gave me a $foo"

See Recipe 3.10 for more information.

Constructor patterns
The constructor pattern lets you match a constructor in a case statement. As shown
in the examples, you can specify constants or variable patterns as needed in the
constructor pattern:

case Person(first, "Alexander") => s"found an Alexander, first name = $first"

case Dog("Suka") => "found a dog named Suka"

Sequence patterns
You can match against sequences like List, Array, Vector, etc. Use the _ character
to stand for one element in the sequence, and use _* to stand for “zero or more
elements,” as shown in the examples:

case List(0, _, _) => "a three-element list with 0 as the first element"

case List(1, _*) => "a list beginning with 1, having any number of elements"

case Vector(1, _*) => "a vector beginning with 1 and having any number …"

Tuple patterns
As shown in the examples, you can match tuple patterns and access the value of
each element in the tuple. You can also use the _ wildcard if you’re not interested
in the value of an element:

case (a, b, c) => s"3-elem tuple, with values $a, $b, and $c"

case (a, b, c, _) => s"4-elem tuple: got $a, $b, and $c"

Type patterns
In the following example, str: String is a typed pattern, and str is a pattern
variable:

3.11. Using Pattern Matching in Match Expressions | 83

case str: String => s"you gave me this string: $str"

As shown in the examples, you can access the pattern variable on the right side of
the expression after declaring it.

Adding variables to patterns

At times you may want to add a variable to a pattern. You can do this with the following
general syntax:

variableName @ pattern

As the book, Programming in Scala, states, “This gives you a variable-binding pattern.
The meaning of such a pattern is to perform the pattern match as normal, and if the
pattern succeeds, set the variable to the matched object just as with a simple variable
pattern.”

The usefulness of this is best shown by demonstrating the problem it solves. Suppose
you had the List pattern that was shown earlier:

case List(1, _*) => "a list beginning with 1, having any number of elements"

As demonstrated, this lets you match a List whose first element is 1, but so far, the List
hasn’t been accessed on the right side of the expression. When accessing a List, you
know that you can do this:

case list: List[_] => s"thanks for the List: $list"

so it seems like you should try this with a sequence pattern:

case list: List(1, _*) => s"thanks for the List: $list"

Unfortunately, this fails with the following compiler error:

Test2.scala:22: error: '=>' expected but '(' found.

 case list: List(1, _*) => s"thanks for the List: $list"

 ^

one error found

The solution to this problem is to add a variable-binding pattern to the sequence pattern:

case list @ List(1, _*) => s"$list"

This code compiles, and works as expected, giving you access to the List on the right
side of the statement.

The following code demonstrates this example and the usefulness of this approach:

case class Person(firstName: String, lastName: String)

object Test2 extends App {

 def matchType(x: Any): String = x match {

 //case x: List(1, _*) => s"$x" // doesn't compile

84 | Chapter 3: Control Structures

 case x @ List(1, _*) => s"$x" // works; prints the list

 //case Some(_) => "got a Some" // works, but can't access the Some

 //case Some(x) => s"$x" // works, returns "foo"

 case x @ Some(_) => s"$x" // works, returns "Some(foo)"

 case p @ Person(first, "Doe") => s"$p" // works, returns "Person(John,Doe)"

 }

 println(matchType(List(1,2,3))) // prints "List(1, 2, 3)"

 println(matchType(Some("foo"))) // prints "Some(foo)"

 println(matchType(Person("John", "Doe"))) // prints "Person(John,Doe)"

}

In the two List examples inside the match expression, the commented-out line of code
won’t compile, but the second example shows how to assign the variable x to the List
object it matches. When this line of code is matched with the
println(matchType(List(1,2,3))) call, it results in the output List(1, 2, 3).

The first Some example shows that you can match a Some with the approach shown, but
you can’t access its information on the righthand side of the expression. The second
example shows how you can access the value inside the Some, and the third example
takes this a step further, giving you access to the Some object itself. When it’s matched
by the second println call, it prints Some(foo), demonstrating that you now have access
to the Some object.

Finally, this approach is used to match a Person whose last name is Doe. This syntax lets
you assign the result of the pattern match to the variable p, and then access that variable
on the right side of the expression.

Using Some and None in match expressions

To round out these examples, you’ll often use Some and None with match expressions.
For instance, assume you have a toInt method defined like this:

def toInt(s: String): Option[Int] = {

 try {

 Some(Integer.parseInt(s.trim))

 } catch {

 case e: Exception => None

 }

}

In some situations, you may want to use this method with a match expression, like this:

toInt("42") match {

 case Some(i) => println(i)

 case None => println("That wasn't an Int.")

}

3.11. Using Pattern Matching in Match Expressions | 85

Inside the match expression you just specify the Some and None cases as shown to handle
the success and failure conditions. See Recipe 20.6 for more examples of using Option,
Some, and None.

See Also

• A discussion of getting around type erasure when using match expressions on Stack
Overflow

• My Blue Parrot application

• The “Type Erasure” documentation

3.12. Using Case Classes in Match Expressions

Problem
You want to match different case classes (or case objects) in a match expression, such
as when receiving messages in an actor.

Solution
Use the different patterns shown in the previous recipe to match case classes and objects,
depending on your needs.

The following example demonstrates how to use patterns to match case classes and case
objects in different ways, depending primarily on what information you need on the
right side of each case statement. In this example, the Dog and Cat case classes and the
Woodpecker case object are different subtypes of the Animal trait:

trait Animal

case class Dog(name: String) extends Animal

case class Cat(name: String) extends Animal

case object Woodpecker extends Animal

object CaseClassTest extends App {

 def determineType(x: Animal): String = x match {

 case Dog(moniker) => "Got a Dog, name = " + moniker

 case _:Cat => "Got a Cat (ignoring the name)"

 case Woodpecker => "That was a Woodpecker"

 case _ => "That was something else"

 }

86 | Chapter 3: Control Structures

http://bit.ly/15odxST
http://bit.ly/15odxST
http://alvinalexander.com/blueparrot
http://bit.ly/139WrFj

 println(determineType(new Dog("Rocky")))

 println(determineType(new Cat("Rusty the Cat")))

 println(determineType(Woodpecker))

}

When the code is compiled and run, the output is:

Got a Dog, name = Rocky

Got a Cat (ignoring the name)

That was a Woodpecker

In this example, if the Dog class is matched, its name is extracted and used in the print
statement on the right side of the expression. To show that the variable name used when
extracting the name can be any legal variable name, I use the name moniker.

When matching a Cat, I want to ignore the name, so I use the syntax shown to match
any Cat instance. Because Woodpecker is defined as a case object and has no name, it is
also matched as shown.

3.13. Adding if Expressions (Guards) to Case Statements

Problem
You want to add qualifying logic to a case statement in a match expression, such as
allowing a range of numbers, or matching a pattern, but only if that pattern matches
some additional criteria.

Solution
Add an if guard to your case statement. Use it to match a range of numbers:

i match {

 case a if 0 to 9 contains a => println("0-9 range: " + a)

 case b if 10 to 19 contains b => println("10-19 range: " + b)

 case c if 20 to 29 contains c => println("20-29 range: " + c)

 case _ => println("Hmmm...")

}

Use it to match different values of an object:

num match {

 case x if x == 1 => println("one, a lonely number")

 case x if (x == 2 || x == 3) => println(x)

 case _ => println("some other value")

}

You can reference class fields in your if guards. Imagine here that x is an instance of a
Stock class that has symbol and price fields:

3.13. Adding if Expressions (Guards) to Case Statements | 87

stock match {

 case x if (x.symbol == "XYZ" && x.price < 20) => buy(x)

 case x if (x.symbol == "XYZ" && x.price > 50) => sell(x)

 case _ => // do nothing

}

You can also extract fields from case classes and use those in your guards:

def speak(p: Person) = p match {

 case Person(name) if name == "Fred" => println("Yubba dubba doo")

 case Person(name) if name == "Bam Bam" => println("Bam bam!")

 case _ => println("Watch the Flintstones!")

}

Discussion
You can use this syntax whenever you want to add simple matches to your case state‐
ments on the left side of the expression.

Note that all of these examples could be written by putting the if tests on the right side
of the expressions, like this:

case Person(name) =>

 if (name == "Fred") println("Yubba dubba doo")

 else if (name == "Bam Bam") println("Bam bam!")

However, for many situations, your code will be simpler and easier to read by joining
the if guard directly with the case statement.

3.14. Using a Match Expression Instead of isInstanceOf

Problem
You want to write a block of code to match one type, or multiple different types.

Solution
You can use the isInstanceOf method to test the type of an object:

if (x.isInstanceOf[Foo]) { do something ...

However, some programmers discourage this approach, and in other cases, it may not
be convenient. In these instances, you can handle the different expected types in a match
expression.

For example, you may be given an object of unknown type, and want to determine if
the object is an instance of a Person:

def isPerson(x: Any): Boolean = x match {

 case p: Person => true

88 | Chapter 3: Control Structures

 case _ => false

}

Or you may be given an object that extends a known supertype, and then want to take
different actions based on the exact subtype. In the following example, the printInfo
method is given a SentientBeing, and then handles the subtypes differently:

trait SentientBeing

trait Animal extends SentientBeing

case class Dog(name: String) extends Animal

case class Person(name: String, age: Int) extends SentientBeing

// later in the code ...

def printInfo(x: SentientBeing) = x match {

 case Person(name, age) => // handle the Person

 case Dog(name) => // handle the Dog

}

Discussion
As shown, a match expression lets you match multiple types, so using it to replace the
isInstanceOf method is just a natural use of the case syntax and the general pattern-
matching approach used in Scala applications.

In simple examples, the isInstanceOf method can be a simpler approach to determin‐
ing whether an object matches a type:

if (o.isInstanceOf[Person]) { // handle this ...

However, with more complex needs, a match expression is more readable than an if/
else statement.

3.15. Working with a List in a Match Expression

Problem
You know that a List data structure is a little different than other collection data struc‐
tures. It’s built from cons cells and ends in a Nil element. You want to use this to your
advantage when working with a match expression, such as when writing a recursive
function.

Solution
You can create a List like this:

val x = List(1, 2, 3)

or like this, using cons cells and a Nil element:

val y = 1 :: 2 :: 3 :: Nil

3.15. Working with a List in a Match Expression | 89

When writing a recursive algorithm, you can take advantage of the fact that the last
element in a List is a Nil object. For instance, in the following listToString method,
if the current element is not Nil, the method is called recursively with the remainder of
the List, but if the current element is Nil, the recursive calls are stopped and an empty
String is returned, at which point the recursive calls unwind:

def listToString(list: List[String]): String = list match {

 case s :: rest => s + " " + listToString(rest)

 case Nil => ""

}

Running this example in the REPL yields the following result:

scala> val fruits = "Apples" :: "Bananas" :: "Oranges" :: Nil

fruits: List[java.lang.String] = List(Apples, Bananas, Oranges)

scala> listToString(fruits)

res0: String = "Apples Bananas Oranges "

The same approach of (a) handling the Nil condition and (b) handling the remainder
of the List can be used when dealing with a List of other types:

def sum(list: List[Int]): Int = list match {

 case Nil => 1

 case n :: rest => n + sum(rest)

}

def multiply(list: List[Int]): Int = list match {

 case Nil => 1

 case n :: rest => n * multiply(rest)

}

These methods are demonstrated in the REPL:

scala> val nums = List(1,2,3,4,5)

nums: List[Int] = List(1, 2, 3, 4, 5)

scala> sum(nums)

res0: Int = 16

scala> multiply(nums)

res1: Int = 120

Discussion
When using this recipe, be sure to handle the Nil case, or you’ll get the following error
in the REPL:

warning: match is not exhaustive!

In the real world (outside the REPL), you’ll get a MatchError:

90 | Chapter 3: Control Structures

Exception in thread "main" scala.MatchError: List()

(of class scala.collection.immutable.Nil$)

See Also

Recipe 3.11, “Using Pattern Matching in Match Expressions”, for more examples
of using a match expression with multiple types

3.16. Matching One or More Exceptions with try/catch

Problem
You want to catch one or more exceptions in a try/catch block.

Solution
The Scala try/catch/finally syntax is similar to Java, but it uses the match expression
approach in the catch block:

val s = "Foo"

try {

 val i = s.toInt

} catch {

 case e: Exception => e.printStackTrace

}

When you need to catch and handle multiple exceptions, just add the exception types
as different case statements:

try {

 openAndReadAFile(filename)

} catch {

 case e: FileNotFoundException => println("Couldn't find that file.")

 case e: IOException => println("Had an IOException trying to read that file")

}

Discussion
As shown, the Scala match expression syntax is used to match different possible excep‐
tions. If you’re not concerned about which specific exceptions might be thrown, and
want to catch them all and do something with them (such as log them), use this syntax:

try {

 openAndReadAFile("foo")

} catch {

 case t: Throwable => t.printStackTrace()

}

You can also catch them all and ignore them like this:

3.16. Matching One or More Exceptions with try/catch | 91

try {

 val i = s.toInt

} catch {

 case _: Throwable => println("exception ignored")

}

As with Java, you can throw an exception from a catch clause, but because Scala doesn’t
have checked exceptions, you don’t need to specify that a method throws the exception.
This is demonstrated in the following example, where the method isn’t annotated in any
way:

// nothing required here

def toInt(s: String): Option[Int] =

 try {

 Some(s.toInt)

 } catch {

 case e: Exception => throw e

 }

If you prefer to declare the exceptions that your method throws, or you need to interact
with Java, add the @throws annotation to your method definition:

@throws(classOf[NumberFormatException])

def toInt(s: String): Option[Int] =

 try {

 Some(s.toInt)

 } catch {

 case e: NumberFormatException => throw e

 }

See Also

• Recipe 5.8, “Declaring That a Method Can Throw an Exception” for more examples
of declaring that a method can throw an exception

• Recipe 2.1, “Parsing a Number from a String” for more examples of a toInt method

3.17. Declaring a Variable Before Using It in a try/catch/
finally Block

Problem
You want to use an object in a try block, and need to access it in the finally portion
of the block, such as when you need to call a close method on an object.

92 | Chapter 3: Control Structures

Solution
In general, declare your field as an Option before the try/catch block, then create a
Some inside the try clause. This is shown in the following example, where the fields in
and out are declared before the try/catch block, and assigned inside the try clause:

import java.io._

object CopyBytes extends App {

 var in = None: Option[FileInputStream]

 var out = None: Option[FileOutputStream]

 try {

 in = Some(new FileInputStream("/tmp/Test.class"))

 out = Some(new FileOutputStream("/tmp/Test.class.copy"))

 var c = 0

 while ({c = in.get.read; c != −1}) {

 out.get.write(c)

 }

 } catch {

 case e: IOException => e.printStackTrace

 } finally {

 println("entered finally ...")

 if (in.isDefined) in.get.close

 if (out.isDefined) out.get.close

 }

}

In this code, in and out are assigned to None before the try clause, and then reassigned
to Some values inside the try clause if everything succeeds. Therefore, it’s safe to call
in.get and out.get in the while loop, because if an exception had occurred, flow
control would have switched to the catch clause, and then the finally clause before
leaving the method.

Normally I tell people that I wish the get and isDefined methods on Option would be
deprecated, but this is one of the few times where I think their use is acceptable, and
they lead to more readable code.

Another approach you can employ inside the try clause is to use the foreach approach
with a Some:

try {

 in = Some(new FileInputStream("/tmp/Test.class"))

 out = Some(new FileOutputStream("/tmp/Test.class.copy"))

 in.foreach { inputStream =>

 out.foreach { outputStream =>

 var c = 0

 while ({c = inputStream.read; c != −1}) {

 outputStream.write(c)

3.17. Declaring a Variable Before Using It in a try/catch/finally Block | 93

 }

 }

 }

} // ...

This is still readable with two variables, and eliminates the get method calls, but wouldn’t
be practical with more variables.

Discussion
One key to this recipe is knowing the syntax for declaring Option fields that aren’t
initially populated:

var in = None: Option[FileInputStream]

var out = None: Option[FileOutputStream]

I had a hard time remembering this until I came up with a little mnemonic, “Var x has
No Option yeT,” where I capitalize the “T” there to stand for “type.” In my brain it looks
like this:

var x has No Option[yeT]

From there it’s a simple matter to get to this:

var x = None: Option[Type]

When I first started working with Scala, the only way I could think to write this code
was using null values. The following code demonstrates the approach I used in an
application that checks my email accounts. The store and inbox fields in this code are
declared as null fields that have the Store and Folder types (from the javax.mail

package):

// (1) declare the null variables

var store: Store = null

var inbox: Folder = null

try {

 // (2) use the variables/fields in the try block

 store = session.getStore("imaps")

 inbox = getFolder(store, "INBOX")

 // rest of the code here ...

 catch {

 case e: NoSuchProviderException => e.printStackTrace

 case me: MessagingException => me.printStackTrace

} finally {

 // (3) call close() on the objects in the finally clause

 if (inbox != null) inbox.close

 if (store != null) store.close

}

94 | Chapter 3: Control Structures

However, working in Scala gives you a chance to forget that null values even exist, so
this is not a recommended approach. See Recipe 20.5, “Eliminate null Values from Your
Code”, for examples of how to rid your code of null values.

See Also

The code shown in this recipe is a Scala version of this Oracle “Byte Streams”
example.

3.18. Creating Your Own Control Structures

Problem
You want to define your own control structures to improve the Scala language, simplify
your own code, or create a DSL for others to use.

Solution
The creators of the Scala language made a conscious decision not to implement some
keywords in Scala, and instead implemented functionality through Scala libraries. This
was demonstrated in Recipe 3.5, “Implementing break and continue”, which showed
that although the Scala language doesn’t have break and continue keywords, you can
achieve the same functionality through library methods.

As a simple example of creating what appears to be a control structure, imagine for a
moment that for some reason you don’t like the while loop and want to create your own
whilst loop, which you can use like this:

package foo

import com.alvinalexander.controls.Whilst._

object WhilstDemo extends App {

 var i = 0

 whilst (i < 5) {

 println(i)

 i += 1

 }

}

To create your own whilst control structure, define a function named whilst that takes
two parameter lists. The first parameter list handles the test condition—in this case,
i < 5—and the second parameter list is the block of code the user wants to run.

3.18. Creating Your Own Control Structures | 95

http://bit.ly/1ahHPtP
http://bit.ly/1ahHPtP

You could implement this as a method that’s just a wrapper around the while operator:

// 1st attempt

def whilst(testCondition: => Boolean)(codeBlock: => Unit) {

 while (testCondition) {

 codeBlock

 }

}

But a more interesting approach is to implement the whilst method without calling
while. This is shown in a complete object here:

package com.alvinalexander.controls

import scala.annotation.tailrec

object Whilst {

 // 2nd attempt

 @tailrec

 def whilst(testCondition: => Boolean)(codeBlock: => Unit) {

 if (testCondition) {

 codeBlock

 whilst(testCondition)(codeBlock)

 }

 }

}

In this code, the testCondition is evaluated once, and if the condition is true, the
codeBlock is executed, and then whilst is called recursively. This approach lets you
keep checking the condition without needing a while or for loop.

Discussion
In the second whilst example, I used a recursive call to keep the loop running, but in
a simpler example, you don’t need recursion. For example, assume you want a control
structure that takes two test conditions, and if both evaluate to true, you’ll run a block
of code that’s supplied. An expression using that control structure might look like this:

doubleif(age > 18)(numAccidents == 0) { println("Discount!") }

In this case, define a function that takes three parameter lists:

// two 'if' condition tests

def doubleif(test1: => Boolean)(test2: => Boolean)(codeBlock: => Unit) {

 if (test1 && test2) {

 codeBlock

 }

}

96 | Chapter 3: Control Structures

Because doubleif only needs to perform one test and doesn’t need to loop indefinitely,
there’s no need for a recursive call in its method body. It simply checks the two test
conditions, and if they evaluate to true, the codeBlock is executed.

See Also

• One of my favorite uses of this technique is shown in the book, Beginning Scala
(Apress), by David Pollak. I describe how it works on my website.

• The Scala Breaks class is demonstrated in Recipe 3.5. Its source code is simple, and
provides another example of how to implement a control structure.

3.18. Creating Your Own Control Structures | 97

http://bit.ly/12JL0Fp
http://bit.ly/16yPb8n

CHAPTER 4

Classes and Properties

Introduction
Although Scala and Java share many similarities, the declaration of classes, class con‐
structors, and the control of field visibility are some of the biggest differences between
the two languages. Whereas Java tends to be more verbose (yet obvious), Scala is more
concise, and the code you write ends up generating other code.

Recipes in this chapter will help you get through the initial learning curve related to
Scala classes and fields by demonstrating how class constructors work, and the code the
Scala compiler generates on your behalf when you declare constructor parameters and
class fields using the val, var, and private keywords.

Because the Scala compiler generates accessors and mutators based on your field dec‐
larations, you may wonder how to override those methods, and this chapter provides
recipes showing how to override that generated code.

Additionally, because Scala automatically sets the field type based on the value you
assign, you may wonder, “What happens when a field has no initial value?” For instance,
you may want to create an uninitialized field as an instance of an Address class. As you
think about this you start typing the following code, and then wonder how to complete
it:

var address = ? // how to create an uninitialized Address?

This chapter shows the solution to that problem, demonstrates how declaring a class as
a case class results in more than 20 additional methods being generated, shows how to
write equals methods that work with class inheritance, and much more.

99

In Java, it seems correct to refer to accessor and mutator methods as
“getter” and “setter” methods, primarily because of the JavaBeans stan‐
dard. In this chapter, I use the terms interchangeably, but to be clear,
Scala does not follow the JavaBeans naming convention for accessor
and mutator methods.

4.1. Creating a Primary Constructor

Problem
You want to create a primary constructor for a class, and you quickly find that the
approach is different than Java.

Solution
The primary constructor of a Scala class is a combination of:

• The constructor parameters

• Methods that are called in the body of the class

• Statements and expressions that are executed in the body of the class

Fields declared in the body of a Scala class are handled in a manner similar to Java; they
are assigned when the class is first instantiated.

The following class demonstrates constructor parameters, class fields, and statements
in the body of a class:

class Person(var firstName: String, var lastName: String) {

 println("the constructor begins")

 // some class fields

 private val HOME = System.getProperty("user.home")

 var age = 0

 // some methods

 override def toString = s"$firstName $lastName is $age years old"

 def printHome { println(s"HOME = $HOME") }

 def printFullName { println(this) } // uses toString

 printHome

 printFullName

 println("still in the constructor")

}

100 | Chapter 4: Classes and Properties

Because the methods in the body of the class are part of the constructor, when an instance
of a Person class is created, you’ll see the output from the println statements at the
beginning and end of the class declaration, along with the call to the printHome and
printFullName methods near the bottom of the class:

scala> val p = new Person("Adam", "Meyer")

the constructor begins

HOME = /Users/Al

Adam Meyer is 0 years old

still in the constructor

Discussion
If you’re coming to Scala from Java, you’ll find that the process of declaring a primary
constructor in Scala is quite different. In Java it’s fairly obvious when you’re in the main
constructor and when you’re not, but Scala blurs this distinction. However, once you
understand the approach, it also makes your class declarations more concise than Java
class declarations.

In the example shown, the two constructor arguments firstName and lastName are
defined as var fields, which means that they’re variable, or mutable; they can be changed
after they’re initially set. Because the fields are mutable, Scala generates both accessor
and mutator methods for them. As a result, given an instance p of type Person, you can
change the values like this:

p.firstName = "Scott"

p.lastName = "Jones"

and you can access them like this:

println(p.firstName)

println(p.lastName)

Because the age field is declared as a var, it’s also visible, and can be mutated and
accessed:

p.age = 30

println(p.age)

The field HOME is declared as a private val, which is like making it private and final
in a Java class. As a result, it can’t be accessed directly by other objects, and its value can’t
be changed.

When you call a method in the body of the class—such as the call near the bottom of
the class to the printFullName method—that method call is also part of the constructor.
You can verify this by compiling the code to a Person.class file with scalac, and then
decompiling it back into Java source code with a tool like the JAD decompiler. After
doing so, this is what the Person class constructor looks like:

4.1. Creating a Primary Constructor | 101

http://www.varaneckas.com/jad/

public Person(String firstName, String lastName)

{

 super();

 this.firstName = firstName;

 this.lastName = lastName;

 Predef$.MODULE$.println("the constructor begins");

 age = 0;

 printHome();

 printFullName();

 Predef$.MODULE$.println("still in the constructor");

}

This clearly shows the printHome and printFullName methods call in the Person con‐
structor, as well as the initial age being set.

When the code is decompiled, the constructor parameters and class fields appear like
this:

private String firstName;

private String lastName;

private final String HOME = System.getProperty("user.home");

private int age;

Anything defined within the body of the class other than method dec‐
larations is a part of the primary class constructor. Because auxiliary
constructors must always call a previously defined constructor in the
same class, auxiliary constructors will also execute the same code.

A comparison with Java

The following code shows the equivalent Java version of the Person class:

// java

public class Person {

 private String firstName;

 private String lastName;

 private final String HOME = System.getProperty("user.home");

 private int age;

 public Person(String firstName, String lastName) {

 super();

 this.firstName = firstName;

 this.lastName = lastName;

 System.out.println("the constructor begins");

 age = 0;

 printHome();

 printFullName();

 System.out.println("still in the constructor");

 }

102 | Chapter 4: Classes and Properties

 public String firstName() { return firstName; }

 public String lastName() { return lastName; }

 public int age() { return age; }

 public void firstName_$eq(String firstName) {

 this.firstName = firstName;

 }

 public void lastName_$eq(String lastName) {

 this.lastName = lastName;

 }

 public void age_$eq(int age) {

 this.age = age;

 }

 public String toString() {

 return firstName + " " + lastName + " is " + age + " years old";

 }

 public void printHome() {

 System.out.println(HOME);

 }

 public void printFullName() {

 System.out.println(this);

 }

}

As you can see, this is quite a bit lengthier than the equivalent Scala code. With con‐
structors, I find that Java code is more verbose, but obvious; you don’t have to reason
much about what the compiler is doing for you.

Those _$eq methods

The names of the mutator methods that are generated may look a little unusual:

public void firstName_$eq(String firstName) { ...

public void age_$eq(int age) { ...

These names are part of the Scala syntactic sugar for mutating var fields, and not any‐
thing you normally have to think about. For instance, the following Person class has a
var field named name:

class Person {

 var name = ""

 override def toString = s"name = $name"

}

Because name is a var field, Scala generates accessor and mutator methods for it. What
you don’t normally see is that when the code is compiled, the mutator method is named

4.1. Creating a Primary Constructor | 103

name_$eq. You don’t see that because with Scala’s syntactic sugar, you mutate the field
like this:

p.name = "Ron Artest"

However, behind the scenes, Scala converts that line of code into this code:

p.name_$eq("Ron Artest")

To demonstrate this, you can run the following object that calls the mutator method in
both ways (not something that’s normally done):

object Test extends App {

 val p = new Person

 // the 'normal' mutator approach

 p.name = "Ron Artest"

 println(p)

 // the 'hidden' mutator method

 p.name_$eq("Metta World Peace")

 println(p)

}

When this code is run, it prints this output:

name = Ron Artest

name = Metta World Peace

Again, there’s no reason to call the name_$eq method in the real world, but when you
get into overriding mutator methods, it’s helpful to understand how this translation
process works.

Summary

As shown with the equivalent Scala and Java classes, the Java code is verbose, but it’s
also straightforward. The Scala code is more concise, but you have to look at the con‐
structor parameters to understand whether getters and setters are being generated for
you, and you have to know that any method that’s called in the body of the class is really
being called from the primary constructor. This was a little confusing when I first started
working with Scala, but it quickly became second nature.

4.2. Controlling the Visibility of Constructor Fields

Problem
You want to control the visibility of fields that are used as constructor parameters in a
Scala class.

104 | Chapter 4: Classes and Properties

Solution
As shown in the following examples, the visibility of constructor fields in a Scala class
is controlled by whether the fields are declared as val, var, without either val or var,
and whether private is also added to the fields.

Here’s the short version of the solution:

• If a field is declared as a var, Scala generates both getter and setter methods for that
field.

• If the field is a val, Scala generates only a getter method for it.

• If a field doesn’t have a var or val modifier, Scala gets conservative, and doesn’t
generate a getter or setter method for the field.

• Additionally, var and val fields can be modified with the private keyword, which
prevents getters and setters from being generated.

See the examples that follow for more details.

var fields

If a constructor parameter is declared as a var, the value of the field can be changed, so
Scala generates both getter and setter methods for that field. In the following examples,
the constructor parameter name is declared as a var, so the field can be accessed and
mutated:

scala> class Person(var name: String)

defined class Person

scala> val p = new Person("Alvin Alexander")

p: Person = Person@369e58be

// getter

scala> p.name

res0: String = Alvin Alexander

// setter

scala> p.name = "Fred Flintstone"

p.name: String = Fred Flintstone

scala> p.name

res1: String = Fred Flintstone

As shown, Scala does not follow the JavaBean naming convention when generating
accessor and mutator methods.

4.2. Controlling the Visibility of Constructor Fields | 105

val fields

If a constructor field is defined as a val, the value of the field can’t be changed once it’s
been set; it’s immutable (like final in Java). Therefore it makes sense that it should have
an accessor method, and should not have a mutator method:

scala> class Person(val name: String)

defined class Person

scala> val p = new Person("Alvin Alexander")

p: Person = Person@3f9f332b

scala> p.name

res0: String = Alvin Alexander

scala> p.name = "Fred Flintstone"

<console>:11: error: reassignment to val

 p.name = "Fred Flintstone"

 ^

The last example fails because a mutator method is not generated for a val field.

Fields without val or var

When neither val nor var are specified on constructor parameters, the visibility of the
field becomes very restricted, and Scala doesn’t generate accessor or mutator methods:

scala> class Person(name: String)

defined class Person

scala> val p = new Person("Alvin Alexander")

p: Person = Person@144b6a6c

scala> p.name

<console>:12: error: value name is not a member of Person

 p.name

 ^

Adding private to val or var

In addition to these three basic configurations, you can add the private keyword to a
val or var field. This keyword prevents getter and setter methods from being generated,
so the field can only be accessed from within members of the class:

scala> class Person(private var name: String) { def getName {println(name)} }

defined class Person

scala> val p = new Person("Alvin Alexander")

p: Person = Person@3cb7cee4

scala> p.name

<console>:10: error: variable name in class Person cannot be accessed in Person

 p.name

 ^

106 | Chapter 4: Classes and Properties

scala> p.getName

Alvin Alexander

Attempting to access p.name fails because a getter method is not generated for the name
field, so callers can’t access it directly, but p.getName works because it can access the
name field.

Discussion
If this is a little confusing, it helps to think about the choices the compiler has when
generating code for you. When a field is defined as a val, by definition its value can’t
be changed, so it makes sense to generate a getter, but no setter. By definition, the value
of a var field can be changed, so generating both a getter and setter make sense for it.

The private setting on a constructor parameter gives you additional flexibility. When
it’s added to a val or var field, the getter and setter methods are generated as before,
but they’re marked private. (I rarely use this feature, but it’s there if you need it.)

The accessors and mutators that are generated for you based on these settings are sum‐
marized in Table 4-1.

Table 4-1. The effect of constructor parameter settings

Visibility Accessor? Mutator?

var Yes Yes

val Yes No

Default visibility (no var or val) No No

Adding the private keyword to var or val No No

You can also manually add your own accessor and mutator methods. See Recipe 4.6,
“Overriding Default Accessors and Mutators”, for more information.

Case classes

Parameters in the constructor of a case class differ from these rules in one way. Case
class constructor parameters are val by default. So if you define a case class field without
adding val or var, like this:

case class Person(name: String)

you can still access the field, just as if it were defined as a val:

scala> val p = Person("Dale Cooper")

p: Person = Person(Dale Cooper)

scala> p.name

res0: String = Dale Cooper

4.2. Controlling the Visibility of Constructor Fields | 107

Although this is slightly different than a “regular” class, it’s a nice convenience and has
to do with the way case classes are intended to be used in functional programming, i.e.,
as immutable records. See Recipe 4.14, “Generating Boilerplate Code with Case
Classes”, for more information about how case classes work.

4.3. Defining Auxiliary Constructors

Problem
You want to define one or more auxiliary constructors for a class to give consumers of
the class different ways to create object instances.

Solution
Define the auxiliary constructors as methods in the class with the name this. You can
define multiple auxiliary constructors, but they must have different signatures (param‐
eter lists). Also, each constructor must call one of the previously defined constructors.

The following example demonstrates a primary constructor and three auxiliary con‐
structors:

// primary constructor

class Pizza (var crustSize: Int, var crustType: String) {

 // one-arg auxiliary constructor

 def this(crustSize: Int) {

 this(crustSize, Pizza.DEFAULT_CRUST_TYPE)

 }

 // one-arg auxiliary constructor

 def this(crustType: String) {

 this(Pizza.DEFAULT_CRUST_SIZE, crustType)

 }

 // zero-arg auxiliary constructor

 def this() {

 this(Pizza.DEFAULT_CRUST_SIZE, Pizza.DEFAULT_CRUST_TYPE)

 }

 override def toString = s"A $crustSize inch pizza with a $crustType crust"

}

object Pizza {

 val DEFAULT_CRUST_SIZE = 12

 val DEFAULT_CRUST_TYPE = "THIN"

}

Given these constructors, the same pizza can be created in the following ways:

108 | Chapter 4: Classes and Properties

val p1 = new Pizza(Pizza.DEFAULT_CRUST_SIZE, Pizza.DEFAULT_CRUST_TYPE)

val p2 = new Pizza(Pizza.DEFAULT_CRUST_SIZE)

val p3 = new Pizza(Pizza.DEFAULT_CRUST_TYPE)

val p4 = new Pizza

Discussion
There are several important points to this recipe:

• Auxiliary constructors are defined by creating methods named this.

• Each auxiliary constructor must begin with a call to a previously defined construc‐
tor.

• Each constructor must have a different signature.

• One constructor calls another constructor with the name this.

In the example shown, all of the auxiliary constructors call the primary constructor, but
this isn’t necessary; an auxiliary constructor just needs to call one of the previously
defined constructors. For instance, the auxiliary constructor that takes the crustType
parameter could have been written like this:

def this(crustType: String) {

 this(Pizza.DEFAULT_CRUST_SIZE)

 this.crustType = Pizza.DEFAULT_CRUST_TYPE

}

Another important part of this example is that the crustSize and crustType parameters
are declared in the primary constructor. This isn’t necessary, but doing this lets Scala
generate the accessor and mutator methods for those parameters for you. You could
start to write a similar class as follows, but this approach requires more code:

class Pizza () {

 var crustSize = 0

 var crustType = ""

 def this(crustSize: Int) {

 this()

 this.crustSize = crustSize

 }

 def this(crustType: String) {

 this()

 this.crustType = crustType

 }

4.3. Defining Auxiliary Constructors | 109

 // more constructors here ...

 override def toString = s"A $crustSize inch pizza with a $crustType crust"

}

To summarize, if you want the accessors and mutators to be generated for you, put them
in the primary constructor.

Although the approach shown in the Solution is perfectly valid, be‐
fore creating multiple class constructors like this, take a few mo‐
ments to read Recipe 4.5, “Providing Default Values for Constructor
Parameters”. Using that recipe can often eliminate the need for mul‐
tiple constructors.

Generating auxiliary constructors for case classes

A case class is a special type of class that generates a lot of boilerplate code for you.
Because of the way they work, adding what appears to be an auxiliary constructor to a
case class is different than adding an auxiliary constructor to a “regular” class. This is
because they’re not really constructors: they’re apply methods in the companion object
of the class.

To demonstrate this, assume that you start with this case class in a file named
Person.scala:

// initial case class

case class Person (var name: String, var age: Int)

This lets you create a new Person instance without using the new keyword, like this:

val p = Person("John Smith", 30)

This appears to be a different form of a constructor, but in fact, it’s a little syntactic sugar
—a factory method, to be precise. When you write this line of code:

val p = Person("John Smith", 30)

behind the scenes, the Scala compiler converts it into this:

val p = Person.apply("John Smith", 30)

This is a call to an apply method in the companion object of the Person class. You don’t
see this, you just see the line that you wrote, but this is how the compiler translates your
code. As a result, if you want to add new “constructors” to your case class, you write
new apply methods. (To be clear, the word “constructor” is used loosely here.)

For instance, if you decide that you want to add auxiliary constructors to let you create
new Person instances (a) without specifying any parameters, and (b) by only specifying

110 | Chapter 4: Classes and Properties

their name, the solution is to add apply methods to the companion object of the Person
case class in the Person.scala file:

// the case class

case class Person (var name: String, var age: Int)

// the companion object

object Person {

 def apply() = new Person("<no name>", 0)

 def apply(name: String) = new Person(name, 0)

}

The following test code demonstrates that this works as desired:

object CaseClassTest extends App {

 val a = Person() // corresponds to apply()

 val b = Person("Pam") // corresponds to apply(name: String)

 val c = Person("William Shatner", 82)

 println(a)

 println(b)

 println(c)

 // verify the setter methods work

 a.name = "Leonard Nimoy"

 a.age = 82

 println(a)

}

This code results in the following output:

Person(<no name>,0)

Person(Pam,0)

Person(William Shatner,82)

Person(Leonard Nimoy,82)

See Also

• Recipe 6.8, “Creating Object Instances Without Using the new Keyword”, demon‐
strates how to implement the apply method in a companion object so you can create
instances of a class without having to use the new keyword (or declare your class as
a case class).

• Recipe 4.5, “Providing Default Values for Constructor Parameters”, demonstrates
an approach that can often eliminate the need for auxiliary constructors.

• Recipe 4.14, “Generating Boilerplate Code with Case Classes”, details the nuts and
bolts of how case classes work.

4.3. Defining Auxiliary Constructors | 111

4.4. Defining a Private Primary Constructor

Problem
You want to make the primary constructor of a class private, such as to enforce the
Singleton pattern.

Solution
To make the primary constructor private, insert the private keyword in between the
class name and any parameters the constructor accepts:

// a private no-args primary constructor

class Order private { ...

// a private one-arg primary constructor

class Person private (name: String) { ...

As shown in the REPL, this keeps you from being able to create an instance of the class:

scala> class Person private (name: String)

defined class Person

scala> val p = new Person("Mercedes")

<console>:9: error: constructor Person in class Person cannot be accessed

in object $iw

 val p = new Person("Mercedes")

 ^

Discussion
A simple way to enforce the Singleton pattern in Scala is to make the primary constructor
private, then put a getInstance method in the companion object of the class:

class Brain private {

 override def toString = "This is the brain."

}

object Brain {

 val brain = new Brain

 def getInstance = brain

}

object SingletonTest extends App {

 // this won't compile

 // val brain = new Brain

112 | Chapter 4: Classes and Properties

 // this works

 val brain = Brain.getInstance

 println(brain)

}

You don’t have to name the accessor method getInstance; it’s only used here because
of the Java convention.

A companion object is simply an object that’s defined in the same file
as a class, where the object and class have the same name. If you
declare a class named Foo in a file named Foo.scala, and then declare
an object named Foo in that same file, the Foo object is the compan‐
ion object for the Foo class.

A companion object has several purposes, and one purpose is that any
method declared in a companion object will appear to be a static
method on the object. See Recipe 6.6 for more information on creat‐
ing the equivalent of Java’s static methods, and Recipe 6.8 for exam‐
ples of how (and why) to define apply methods in a companion object.

Utility classes

Depending on your needs, creating a private class constructor may not be necessary at
all. For instance, in Java you’d create a file utilities class by defining static methods in a
Java class, but in Scala you do the same thing by putting all the methods in a Scala object:

object FileUtils {

 def readFile(filename: String) = {

 // code here ...

 }

 def writeToFile(filename: String, contents: String) {

 // code here ...

 }

}

This lets consumers of your code call these methods like this:

val contents = FileUtils.readFile("input.txt")

FileUtils.writeToFile("output.txt", content)

Because only an object is defined, code like this won’t compile:

val utils = new FileUtils // won't compile

So in this case, there’s no need for a private class constructor; just don’t define a class.

4.4. Defining a Private Primary Constructor | 113

4.5. Providing Default Values for Constructor Parameters

Problem
You want to provide a default value for a constructor parameter, which gives other classes
the option of specifying that parameter when calling the constructor, or not.

Solution
Give the parameter a default value in the constructor declaration. Here’s a simple dec‐
laration of a Socket class with one constructor parameter named timeout that has a
default value of 10000:

class Socket (val timeout: Int = 10000)

Because the parameter is defined with a default value, you can call the constructor
without specifying a timeout value, in which case you get the default value:

scala> val s = new Socket

s: Socket = Socket@7862af46

scala> s.timeout

res0: Int = 10000

You can also specify the desired timeout value when creating a new Socket:

scala> val s = new Socket(5000)

s: Socket = Socket@6df5205c

scala> s.timeout

res1: Int = 5000

If you prefer the approach of using named parameters when calling a constructor (or
method), you can also use this approach to construct a new Socket:

scala> val s = new Socket(timeout=5000)

s: Socket = Socket@52aaf3d2

scala> s.timeout

res0: Int = 5000

Discussion
This recipe demonstrates a powerful feature that can eliminate the need for auxiliary
constructors. As shown in the Solution, the following single constructor is the equivalent
of two constructors:

class Socket (val timeout: Int = 10000)

If this feature didn’t exist, two constructors would be required to get the same func‐
tionality; a primary one-arg constructor and an auxiliary zero-args constructor:

114 | Chapter 4: Classes and Properties

class Socket(val timeout: Int) {

 def this() = this(10000)

 override def toString = s"timeout: $timeout"

}

Multiple parameters

Taking this approach a step further, you can provide default values for multiple con‐
structor parameters:

class Socket(val timeout: Int = 1000, val linger: Int = 2000) {

 override def toString = s"timeout: $timeout, linger: $linger"

}

Though you’ve defined only one constructor, your class now appears to have three
constructors:

scala> println(new Socket)

timeout: 1000, linger: 2000

scala> println(new Socket(3000))

timeout: 3000, linger: 2000

scala> println(new Socket(3000, 4000))

timeout: 3000, linger: 4000

Using named parameters

As shown in the Solution, you can also provide the names of constructor parameters
when creating objects, in a manner similar to Objective-C and other languages. This
means you can also create new Socket instances like this:

println(new Socket(timeout=3000, linger=4000))

println(new Socket(linger=4000, timeout=3000))

println(new Socket(timeout=3000))

println(new Socket(linger=4000))

See Recipe 5.4, “Using Parameter Names When Calling a Method”, for more examples
of how to use parameter names in method calls.

See Also

Recipe 4.3, “Defining Auxiliary Constructors”, for more information on creating
auxiliary class constructors

4.5. Providing Default Values for Constructor Parameters | 115

4.6. Overriding Default Accessors and Mutators

Problem
You want to override the getter or setter methods that Scala generates for you.

Solution
This is a bit of a trick problem, because you can’t override the getter and setter methods
Scala generates for you, at least not if you want to stick with the Scala naming conven‐
tions. For instance, if you have a class named Person with a constructor parameter
named name, and attempt to create getter and setter methods according to the Scala
conventions, your code won’t compile:

// error: this won't work

class Person(private var name: String) {

 // this line essentially creates a circular reference

 def name = name

 def name_=(aName: String) { name = aName }

}

Attempting to compile this code generates three errors:

Person.scala:3: error: overloaded method name needs result type

 def name = name

 ^

Person.scala:4: error: ambiguous reference to overloaded definition,

both method name_= in class Person of type (aName: String)Unit

and method name_= in class Person of type (x$1: String)Unit

match argument types (String)

 def name_=(aName: String) { name = aName }

 ^

Person.scala:4: error: method name_= is defined twice

 def name_=(aName: String) { name = aName }

 ^

three errors found

I’ll examine these problems more in the Discussion, but the short answer is that both
the constructor parameter and the getter method are named name, and Scala won’t allow
that.

To solve this problem, change the name of the field you use in the class constructor so
it won’t collide with the name of the getter method you want to use. A common approach
is to add a leading underscore to the parameter name, so if you want to manually create
a getter method called name, use the parameter name _name in the constructor, then
declare your getter and setter methods according to the Scala conventions:

class Person(private var _name: String) {

 def name = _name // accessor

116 | Chapter 4: Classes and Properties

 def name_=(aName: String) { _name = aName } // mutator

}

Notice the constructor parameter is declared private and var. The private keyword
keeps Scala from exposing that field to other classes, and the var lets the value of the
field be changed.

Creating a getter method named name and a setter method named name_= conforms to
the Scala convention and lets a consumer of your class write code like this:

val p = new Person("Jonathan")

p.name = "Jony" // setter

println(p.name) // getter

If you don’t want to follow this Scala naming convention for getters and setters, you can
use any other approach you want. For instance, you can name your methods getName
and setName, following the JavaBean style. (However, if JavaBeans are what you really
want, you may be better off using the @BeanProperty annotation, as described in
Recipe 17.6, “When Java Code Requires JavaBeans”.)

Discussion
When you define a constructor parameter to be a var field, Scala makes the field private
to the class and automatically generates getter and setter methods that other classes can
use to access the field. For instance, given a simple class like this:

class Stock (var symbol: String)

after the class is compiled with scalac, you’ll see this signature when you disassemble
it with javap:

$ javap Stock

public class Stock extends java.lang.Object{

 public java.lang.String symbol();

 public void symbol_$eq(java.lang.String);

 public Stock(java.lang.String);

}

You can see that the Scala compiler generated two methods: a getter named symbol and
a setter named symbol_$eq. This second method is the same as a method you’d name
symbol_=, but Scala needs to translate the = symbol to $eq to work with the JVM.

That second method name is a little unusual, but it follows a Scala convention, and when
it’s mixed with some syntactic sugar, it lets you set the symbol field on a Stock instance
like this:

stock.symbol = "GOOG"

The way this works is that behind the scenes, Scala converts that line of code into this
line of code:

4.6. Overriding Default Accessors and Mutators | 117

stock.symbol_$eq("GOOG")

You generally never have to think about this, unless you want to override the mutator
method.

Summary

As shown in the Solution, the recipe for overriding default getter and setter methods is:

1. Create a private var constructor parameter with a name you want to reference
from within your class. In the example in the Solution, the field is named _name.

2. Define getter and setter names that you want other classes to use. In the Solution
the getter name is name, and the setter name is name_= (which, combined with Scala’s
syntactic sugar, lets users write p.name = "Jony").

3. Modify the body of the getter and setter methods as desired.

It’s important to remember the private setting on your field. If you forget to control
the access with private (or private[this]), you’ll end up with getter/setter methods
for the field you meant to hide. For example, in the following code, I intentionally left
the private modifier off of the _symbol constructor parameter:

// intentionally left the 'private' modifier off _symbol

class Stock (var _symbol: String) {

 // getter

 def symbol = _symbol

 // setter

 def symbol_= (s: String) {

 this.symbol = s

 println(s"symbol was updated, new value is $symbol")

 }

}

Compiling and disassembling this code shows the following class signature, including
two methods I “accidentally” made visible:

public class Stock extends java.lang.Object{

 public java.lang.String _symbol(); // error

 public void _symbol_$eq(java.lang.String); // error

 public java.lang.String symbol();

 public void symbol_$eq(java.lang.String);

 public Stock(java.lang.String);

}

Correctly adding private to the _symbol field results in the correct signature in the
disassembled code:

public class Stock extends java.lang.Object{

 public java.lang.String symbol(); // println(stock.symbol)

118 | Chapter 4: Classes and Properties

 public void symbol_$eq(java.lang.String); // stock.symbol = "AAPL"

 public Stock(java.lang.String);

}

Note that while these examples used fields in a class constructor, the same principles
hold true for fields defined inside a class.

4.7. Preventing Getter and Setter Methods from Being
Generated

Problem
When you define a class field as a var, Scala automatically generates getter and setter
methods for the field, and defining a field as a val automatically generates a getter
method, but you don’t want either a getter or setter.

Solution
Define the field with the private or private[this] access modifiers, as shown with
the currentPrice field in this example:

class Stock {

 // getter and setter methods are generated

 var delayedPrice: Double = _

 // keep this field hidden from other classes

 private var currentPrice: Double = _

}

When you compile this class with scalac, and then disassemble it with javap, you’ll
see this interface:

// Compiled from "Stock.scala"

public class Stock extends java.lang.Object implements scala.ScalaObject{

 public double delayedPrice();

 public void delayedPrice_$eq(double);

 public Stock();

}

This shows that getter and setter methods are defined for the delayedPrice field, and
there are no getter or setter methods for the currentPrice field, as desired.

Discussion
Defining a field as private limits the field so it’s only available to instances of the same
class, in this case instances of the Stock class. To be clear, any instance of a Stock class
can access a private field of any other Stock instance.

4.7. Preventing Getter and Setter Methods from Being Generated | 119

As an example, the following code yields true when the Driver object is run, because
the isHigher method in the Stock class can access the price field both (a) in its object,
and (b) in the other Stock object it’s being compared to:

class Stock {

 // a private field can be seen by any Stock instance

 private var price: Double = _

 def setPrice(p: Double) { price = p }

 def isHigher(that: Stock): Boolean = this.price > that.price

}

object Driver extends App {

 val s1 = new Stock

 s1.setPrice(20)

 val s2 = new Stock

 s2.setPrice(100)

 println(s2.isHigher(s1))

}

Object-private fields

Defining a field as private[this] takes this privacy a step further, and makes the field
object-private, which means that it can only be accessed from the object that contains
it. Unlike private, the field can’t also be accessed by other instances of the same type,
making it more private than the plain private setting.

This is demonstrated in the following example, where changing private to
private[this] in the Stock class no longer lets the isHigher method compile:

class Stock {

 // a private[this] var is object-private, and can only be seen

 // by the current instance

 private[this] var price: Double = _

 def setPrice(p: Double) { price = p }

 // error: this method won't compile because price is now object-private

 def isHigher(that: Stock): Boolean = this.price > that.price

}

Attempting to compile this class generates the following error:

Stock.scala:5: error: value price is not a member of Stock

 def isHigher(that: Stock): Boolean = this.price > that.price

 ^

one error found

120 | Chapter 4: Classes and Properties

4.8. Assigning a Field to a Block or Function

Problem
You want to initialize a field in a class using a block of code, or by calling a function.

Solution
Set the field equal to the desired block of code or function. Optionally, define the field
as lazy if the algorithm requires a long time to run.

In the following example, the field text is set equal to a block of code, which either
returns (a) the text contained in a file, or (b) an error message, depending on whether
the file exists and can be read:

class Foo {

 // set 'text' equal to the result of the block of code

 val text = {

 var lines = ""

 try {

 lines = io.Source.fromFile("/etc/passwd").getLines.mkString

 } catch {

 case e: Exception => lines = "Error happened"

 }

 lines

 }

 println(text)

}

object Test extends App {

 val f = new Foo

}

Because the assignment of the code block to the text field and the println statement
are both in the body of the Foo class, they are in the class’s constructor, and will be
executed when a new instance of the class is created. Therefore, compiling and running
this example will either print the contents of the file, or the “Error happened” message
from the catch block.

In a similar way, you can assign a class field to the results of a method or function:

class Foo {

 import scala.xml.XML

 // assign the xml field to the result of the load method

 val xml = XML.load("http://example.com/foo.xml")

4.8. Assigning a Field to a Block or Function | 121

 // more code here ...

}

Discussion
When it makes sense, define a field like this to be lazy, meaning it won’t be evaluated
until it is accessed. To demonstrate this, ignore the potential for errors and shorten the
class to this:

class Foo {

 val text =

 io.Source.fromFile("/etc/passwd").getLines.foreach(println)

}

object Test extends App {

 val f = new Foo

}

When this code is compiled and run on a Unix system, the contents of the /etc/passwd

file are printed. That’s interesting, but notice what happens when you change the block
to define the text field as lazy:

class Foo {

 lazy val text =

 io.Source.fromFile("/etc/passwd").getLines.foreach(println)

}

object Test extends App {

 val f = new Foo

}

When this code is compiled and run, there is no output, because the text field isn’t
initialized until it’s accessed. That’s how a lazy field works.

Defining a field as lazy is a useful approach when the field might not be accessed in the
normal processing of your algorithms, or if running the algorithm will take a long time,
and you want to defer that to a later time.

4.9. Setting Uninitialized var Field Types

Problem
You want to set the type for an uninitialized var field in a class, so you begin to write
code like this:

var x =

and then wonder how to finish writing the expression.

122 | Chapter 4: Classes and Properties

Solution
In general, define the field as an Option. For certain types, such as String and numeric
fields, you can specify default initial values.

For instance, imagine that you’re starting a social network, and to encourage people to
sign up, you only ask for a username and password during the registration process.
Therefore, you define username and password as fields in your class constructor:

case class Person(var username: String, var password: String) ...

However, later on, you’ll also want to get other information from users, including their
age, first name, last name, and address. Declaring those first three var fields is simple:

var age = 0

var firstName = ""

var lastName = ""

But what do you do when you get to the address?

The solution is to define the address field as an Option, as shown here:

case class Person(var username: String, var password: String) {

 var age = 0

 var firstName = ""

 var lastName = ""

 var address = None: Option[Address]

}

case class Address(city: String, state: String, zip: String)

Later, when a user provides an address, you can assign it using a Some[Address], like
this:

val p = Person("alvinalexander", "secret")

p.address = Some(Address("Talkeetna", "AK", "99676"))

When you need to access the address field, there are a variety of approaches you can
use, and these are discussed in detail in Recipe 20.6. As one example, if you want to print
the fields of an Address, calling foreach on the address field works well:

p.address.foreach { a =>

 println(a.city)

 println(a.state)

 println(a.zip)

}

If the field hasn’t been assigned, address is a None, and calling foreach on it does no
harm, the loop is just skipped over. If the address field is assigned, it will be a
Some[Address], so the foreach loop will be entered and the data printed.

4.9. Setting Uninitialized var Field Types | 123

Discussion
In a related situation, setting the type on numeric var fields can occasionally be inter‐
esting. For instance, it’s easy to create an Int or Double field:

var i = 0 // Int

var d = 0.0 // Double

In those cases, the compiler automatically defaults to the desired types, but what if you
want a different numeric type? This approach lets you give each field the proper type,
and a default value:

var b: Byte = 0

var c: Char = 0

var f: Float = 0

var l: Long = 0

var s: Short = 0

See Also

• The Option class

• Don’t set fields like this to null; Scala provides a terrific opportunity for you to get
away from ever using null values again. See Recipe 20.5, “Eliminate null Values
from Your Code”, for ways to eliminate common uses of null values.

• In many Scala frameworks, such as the Play Framework, fields like this are com‐
monly declared as Option values. See Recipe 20.6, “Using the Option/Some/None
Pattern”, for a detailed discussion of this approach.

4.10. Handling Constructor Parameters When Extending a
Class

Problem
You want to extend a base class, and need to work with the constructor parameters
declared in the base class, as well as new parameters in the subclass.

Solution
Declare your base class as usual with val or var constructor parameters. When defining
a subclass constructor, leave the val or var declaration off of the fields that are common
to both classes. Then define new constructor parameters in the subclass as val or var
fields, as usual.

For example, first define a Person base class:

124 | Chapter 4: Classes and Properties

http://bit.ly/16yQhkp

class Person (var name: String, var address: Address) {

 override def toString = if (address == null) name else s"$name @ $address"

}

Next define Employee as a subclass of Person, so that it takes the constructor parameters
name, address, and age. The name and address parameters are common to the parent
Person class, so leave the var declaration off of those fields, but age is new, so declare
it as a var:

class Employee (name: String, address: Address, var age: Int)

extends Person (name, address) {

 // rest of the class

}

With this Employee class and an Address case class:

case class Address (city: String, state: String)

you can create a new Employee as follows:

val teresa = new Employee("Teresa", Address("Louisville", "KY"), 25)

By placing all that code in the REPL, you can see that all of the fields work as expected:

scala> teresa.name

res0: String = Teresa

scala> teresa.address

res1: Address = Address(Louisville,KY)

scala> teresa.age

res2: Int = 25

Discussion
To understand how constructor parameters in a subclass work, it helps to understand
how the Scala compiler translates your code. Because the following Person class defines
its constructor parameters as var fields:

class Person (var name: String, var address: Address) {

 override def toString = if (address == null) name else s"$name @ $address"

}

the Scala compiler generates both accessor and mutator methods for the class. You can
demonstrate this by compiling and then disassembling the Person class.

First, put this code in a file named Person.scala:

case class Address (city: String, state: String)

class Person (var name: String, var address: Address) {

 override def toString = if (address == null) name else s"$name @ $address"

}

4.10. Handling Constructor Parameters When Extending a Class | 125

Then compile the code with scalac, and disassemble the Person.class file with javap:

$ javap Person

Compiled from "Person.scala"

public class Person extends java.lang.Object implements scala.ScalaObject{

 public java.lang.String name();

 public void name_$eq(java.lang.String);

 public Address address();

 public void address_$eq(Address);

 public java.lang.String toString();

 public Person(java.lang.String, Address);

}

As shown, the Person class contains the name, name_$eq, address, and address_$eq
methods, which are the accessor and mutator methods for the name and address fields.
(See Recipe 6.8 for an explanation of how those mutator methods work.)

This raises the question, if you define an Employee class that extends Person, how should
you handle the name and address fields in the Employee constructor? Assuming
Employee adds no new parameters, there are at least two main choices:

// Option 1: define name and address as 'var'

class Employee (var name: String, var address: Address)

extends Person (name, address) { ... }

// Option 2: define name and address without var or val

class Employee (name: String, address: Address)

extends Person (name, address) { ... }

Because Scala has already generated the getter and setter methods for the name and
address fields in the Person class, the solution is to declare the Employee constructor
without var declarations:

// this is correct

class Employee (name: String, address: Address)

extends Person (name, address) { ... }

Because you don’t declare the parameters in Employee as var, Scala won’t attempt to
generate methods for those fields. You can demonstrate this by adding the Employee
class definition to the code in Person.scala:

case class Address (city: String, state: String)

class Person (var name: String, var address: Address) {

 override def toString = if (address == null) name else s"$name @ $address"

}

class Employee (name: String, address: Address)

extends Person (name, address) {

 // code here ...

}

Compiling the code with scalac and then disassembling the Employee.class file with

javap, you see the following, expected result:

126 | Chapter 4: Classes and Properties

$ javap Employee

Compiled from "Person.scala"

public class Employee extends Person implements scala.ScalaObject{

 public Employee(java.lang.String, Address);

}

The Employee class extends Person, and Scala did not generate any methods for the
name and address fields. Therefore, the Employee class inherits that behavior from
Person.

While this example shows how Scala works with var fields, you can follow the same line
of reasoning with val fields as well.

4.11. Calling a Superclass Constructor

Problem
You want to control the superclass constructor that’s called when you create constructors
in a subclass.

Solution
This is a bit of a trick question, because you can control the superclass constructor that’s
called by the primary constructor in a subclass, but you can’t control the superclass
constructor that’s called by an auxiliary constructor in the subclass.

When you define a subclass in Scala, you control the superclass constructor that’s called
by its primary constructor when you define the extends portion of the subclass decla‐
ration. For instance, in the following code, the Dog class is defined to call the primary
constructor of the Animal class, which is a one-arg constructor that takes name as its
parameter:

class Animal (var name: String) {

 // ...

}

class Dog (name: String) extends Animal (name) {

 // ...

}

However, if the Animal class has multiple constructors, the primary constructor of the
Dog class can call any of those constructors.

For example, the primary constructor of the Dog class in the following code calls the
one-arg auxiliary constructor of the Animal class by specifying that constructor in its
extends clause:

// (1) primary constructor

class Animal (var name: String, var age: Int) {

4.11. Calling a Superclass Constructor | 127

 // (2) auxiliary constructor

 def this (name: String) {

 this(name, 0)

 }

 override def toString = s"$name is $age years old"

}

// calls the Animal one-arg constructor

class Dog (name: String) extends Animal (name) {

 println("Dog constructor called")

}

Alternatively, it could call the two-arg primary constructor of the Animal class:

// call the two-arg constructor

class Dog (name: String) extends Animal (name, 0) {

 println("Dog constructor called")

}

Auxiliary constructors

Regarding auxiliary constructors, because the first line of an auxiliary constructor must
be a call to another constructor of the current class, there is no way for auxiliary con‐
structors to call a superclass constructor.

As you can see in the following code, the primary constructor of the Employee class can
call any constructor in the Person class, but the auxiliary constructors of the Employee
class must call a previously defined constructor of its own class with the this method
as its first line:

case class Address (city: String, state: String)

case class Role (role: String)

class Person (var name: String, var address: Address) {

 // no way for Employee auxiliary constructors to call this constructor

 def this (name: String) {

 this(name, null)

 address = null

 }

 override def toString = if (address == null) name else s"$name @ $address"

}

class Employee (name: String, role: Role, address: Address)

extends Person (name, address) {

 def this (name: String) {

 this(name, null, null)

 }

128 | Chapter 4: Classes and Properties

 def this (name: String, role: Role) {

 this(name, role, null)

 }

 def this (name: String, address: Address) {

 this(name, null, address)

 }

}

Therefore, there’s no direct way to control which superclass constructor is called from
an auxiliary constructor in a subclass. In fact, because each auxiliary constructor must
call a previously defined constructor in the same class, all auxiliary constructors will
eventually call the same superclass constructor that’s called from the subclass’s primary
constructor.

4.12. When to Use an Abstract Class

Problem
Scala has traits, and a trait is more flexible than an abstract class, so you wonder, “When
should I use an abstract class?”

Solution
There are two main reasons to use an abstract class in Scala:

• You want to create a base class that requires constructor arguments.

• The code will be called from Java code.

Regarding the first reason, traits don’t allow constructor parameters:

// this won't compile

trait Animal(name: String)

So, use an abstract class whenever a base behavior must have constructor parameters:

abstract class Animal(name: String)

Regarding the second reason, if you’re writing code that needs to be accessed from Java,
you’ll find that Scala traits with implemented methods can’t be called from Java code. If
you run into this situation, see Recipe 17.7, “Wrapping Traits with Implementations”,
for solutions to that problem.

Discussion
Use an abstract class instead of a trait when the base functionality must take constructor
parameters. However, be aware that a class can extend only one abstract class.

4.12. When to Use an Abstract Class | 129

Abstract classes work just like Java in that you can define some methods that have
complete implementations, and other methods that have no implementation and are
therefore abstract. To declare that a method is abstract, just leave the body of the method
undefined:

def speak // no body makes the method abstract

There is no need for an abstract keyword; simply leaving the body of the method
undefined makes it abstract. This is consistent with how abstract methods in traits are
defined.

In the following example, the methods save, update, and delete are defined in the
abstract class BaseController, but the connect, getStatus, and set-ServerName
methods have no method body, and are therefore abstract:

abstract class BaseController(db: Database) {

 def save { db.save }

 def update { db.update }

 def delete { db.delete }

 // abstract

 def connect

 // an abstract method that returns a String

 def getStatus: String

 // an abstract method that takes a parameter

 def setServerName(serverName: String)

}

When a class extends the BaseController class, it must implement the connect,
getStatus, and setServerName methods, or be declared abstract. Attempting to extend
BaseController without implementing those methods yields a “class needs to be ab‐
stract” error, as shown in the REPL:

scala> class WidgetController(db: Database) extends BaseController(db)

<console>:9: error: class WidgetController needs to be abstract, since:

method setServerName in class BaseController of type (serverName: String)Unit

is not defined

method getStatus in class BaseController of type => String is not defined

method connect in class BaseController of type => Unit is not defined

 class WidgetController(db: Database) extends BaseController(db)

 ^

Because a class can extend only one abstract class, when you’re trying to decide whether
to use a trait or abstract class, always use a trait, unless you have this specific need to
have constructor arguments in your base implementation.

130 | Chapter 4: Classes and Properties

4.13. Defining Properties in an Abstract Base Class (or
Trait)

Problem
You want to define abstract or concrete properties in an abstract base class (or trait) that
can be referenced in all child classes.

Solution
You can declare both val and var fields in an abstract class (or trait), and those fields
can be abstract or have concrete implementations. All of these variations are shown in
this recipe.

Abstract val and var fields

The following example demonstrates an Animal trait with abstract val and var fields,
along with a simple concrete method named sayHello, and an override of the toString
method:

abstract class Pet (name: String) {

 val greeting: String

 var age: Int

 def sayHello { println(greeting) }

 override def toString = s"I say $greeting, and I'm $age"

}

The following Dog and Cat classes extend the Animal class and provide values for the
greeting and age fields. Notice that the fields are again specified as val or var:

class Dog (name: String) extends Pet (name) {

 val greeting = "Woof"

 var age = 2

}

class Cat (name: String) extends Pet (name) {

 val greeting = "Meow"

 var age = 5

}

The functionality can be demonstrated with a simple driver object:

object AbstractFieldsDemo extends App {

 val dog = new Dog("Fido")

 val cat = new Cat("Morris")

 dog.sayHello

 cat.sayHello

 println(dog)

 println(cat)

4.13. Defining Properties in an Abstract Base Class (or Trait) | 131

 // verify that the age can be changed

 cat.age = 10

 println(cat)

}

The resulting output looks like this:

Woof

Meow

I say Woof, and I'm 2

I say Meow, and I'm 5

I say Meow, and I'm 10

Concrete field implementations are presented in the Discussion, because it helps to
understand how the Scala compiler translates your code in the preceding examples.

Discussion
As shown, you can declare abstract fields in an abstract class as either val or var, de‐
pending on your needs. The way abstract fields work in abstract classes (or traits) is
interesting:

• An abstract var field results in getter and setter methods being generated for the
field.

• An abstract val field results in a getter method being generated for the field.

• When you define an abstract field in an abstract class or trait, the Scala compiler
does not create a field in the resulting code; it only generates the methods that
correspond to the val or var field.

In the example shown in the Solution, if you look at the code that’s created by scalac
using the -Xprint:all option, or by decompiling the resulting Pet.class file, you won’t

find greeting or age fields. For instance, if you decompile the class, the output shows
only methods in the class, no fields:

import scala.*;

import scala.runtime.BoxesRunTime;

public abstract class Pet

{

 public abstract String greeting();

 public abstract int age();

 public abstract void age_$eq(int i);

 public void sayHello() {

 Predef$.MODULE$.println(greeting());

 }

 public String toString(){

132 | Chapter 4: Classes and Properties

 // code omitted

 }

 public Pet(String name){}

}

Because of this, when you provide concrete values for these fields in your concrete
classes, you must again define your fields to be val or var. Because the fields don’t
actually exist in the abstract base class (or trait), the override keyword is not necessary.

As another result of this, you may see developers define a def that takes no parameters
in the abstract base class rather than defining a val. They can then define a val in the
concrete class, if desired. This technique is demonstrated in the following code:

abstract class Pet (name: String) {

 def greeting: String

}

class Dog (name: String) extends Pet (name) {

 val greeting = "Woof"

}

object Test extends App {

 val dog = new Dog("Fido")

 println(dog.greeting)

}

Given this background, it’s time to examine the use of concrete val and var fields in
abstract classes.

Concrete val fields in abstract classes

When defining a concrete val field in an abstract class, you can provide an initial value,
and then override that value in concrete subclasses:

abstract class Animal {

 val greeting = "Hello" // provide an initial value

 def sayHello { println(greeting) }

 def run

}

class Dog extends Animal {

 override val greeting = "Woof" // override the value

 def run { println("Dog is running") }

}

In this example, the greeting variable is created in both classes. To demonstrate this,
running the following code:

abstract class Animal {

 val greeting = { println("Animal"); "Hello" }

}

4.13. Defining Properties in an Abstract Base Class (or Trait) | 133

class Dog extends Animal {

 override val greeting = { println("Dog"); "Woof" }

}

object Test extends App {

 new Dog

}

results in this output, showing that both values are created:

Animal

Dog

To prove this, you can also decompile both the Animal and Dog classes, where you’ll find
the greeting declared like this:

private final String greeting = "Hello";

To prevent a concrete val field in an abstract base class from being overridden in a
subclass, declare the field as a final val:

abstract class Animal {

 final val greeting = "Hello" // made the field 'final'

}

class Dog extends Animal {

 val greeting = "Woof" // this line won't compile

}

Concrete var fields in abstract classes

You can also give var fields an initial value in your trait or abstract class, and then refer
to them in your concrete subclasses, like this:

abstract class Animal {

 var greeting = "Hello"

 var age = 0

 override def toString = s"I say $greeting, and I'm $age years old."

}

class Dog extends Animal {

 greeting = "Woof"

 age = 2

}

In this case, these fields are declared and assigned in the abstract base class, as shown
in the decompiled code for the Animal class:

private String greeting;

private int age;

134 | Chapter 4: Classes and Properties

public Animal(){

 greeting = "Hello";

 age = 0;

}

// more code ...

Because the fields are declared and initialized in the abstract Animal base class, there’s
no need to redeclare the fields as val or var in the concrete Dog subclass.

You can verify this by looking at the code the Scala compiler generates for the Dog class.
When you compile the code with scalac -Xprint:all, and look at the last lines of
output, you’ll see how the compiler has converted the Dog class:

class Dog extends Animal {

 def <init>(): Dog = {

 Dog.super.<init>();

 Dog.this.greeting_=("Woof");

 Dog.this.age_=(2);

 ()

 }

}

Because the fields are concrete fields in the abstract base class, they just need to be
reassigned in the concrete Dog class.

Don’t use null

As discussed in many recipes in this book, including Recipe 20.5, “Eliminate null Values
from Your Code”, you shouldn’t use null values in these situations. If you’re tempted to
use a null, instead initialize the fields using the Option/Some/None pattern. The follow‐
ing example demonstrates how to initialize val and var fields with this approach:

trait Animal {

 val greeting: Option[String]

 var age: Option[Int] = None

 override def toString = s"I say $greeting, and I'm $age years old."

}

class Dog extends Animal {

 val greeting = Some("Woof")

 age = Some(2)

}

object Test extends App {

 val d = new Dog

 println(d)

}

Running this Test object yields the following output:

I say Some(Woof), and I'm Some(2) years old.

4.13. Defining Properties in an Abstract Base Class (or Trait) | 135

See Also

See Recipe 5.2, “Calling a Method on a Superclass”, for more examples of how to
call methods on superclasses.

4.14. Generating Boilerplate Code with Case Classes

Problem
You’re working with match expressions, actors, or other situations where you want to
use the case class syntax to generate boilerplate code, including accessor and mutator
methods, along with apply, unapply, toString, equals, and hashCode methods, and
more.

Solution
Define your class as a case class, defining any parameters it needs in its constructor:

// name and relation are 'val' by default

case class Person(name: String, relation: String)

Defining a class as a case class results in a lot of boilerplate code being generated, with
the following benefits:

• An apply method is generated, so you don’t need to use the new keyword to create
a new instance of the class.

• Accessor methods are generated for the constructor parameters because case class
constructor parameters are val by default. Mutator methods are also generated for
parameters declared as var.

• A good, default toString method is generated.

• An unapply method is generated, making it easy to use case classes in match ex‐
pressions.

• equals and hashCode methods are generated.

• A copy method is generated.

When you define a class as a case class, you don’t have to use the new keyword to create
a new instance:

scala> case class Person(name: String, relation: String)

defined class Person

// "new" not needed before Person

scala> val emily = Person("Emily", "niece")

emily: Person = Person(Emily,niece)

136 | Chapter 4: Classes and Properties

Case class constructor parameters are val by default, so accessor methods are generated
for the parameters, but mutator methods are not generated:

scala> emily.name

res0: String = Emily

scala> emily.name = "Fred"

<console>:10: error: reassignment to val

 emily.name = "Fred"

 ^

By defining a case class constructor parameter as a var, both accessor and mutator
methods are generated:

scala> case class Company (var name: String)

defined class Company

scala> val c = Company("Mat-Su Valley Programming")

c: Company = Company(Mat-Su Valley Programming)

scala> c.name

res0: String = Mat-Su Valley Programming

scala> c.name = "Valley Programming"

c.name: String = Valley Programming

Case classes also have a good default toString method implementation:

scala> emily

res0: Person = Person(Emily,niece)

Because an unapply method is automatically created for a case class, it works well when
you need to extract information in match expressions, as shown here:

scala> emily match { case Person(n, r) => println(n, r) }

(Emily,niece)

Case classes also have generated equals and hashCode methods, so instances can be
compared:

scala> val hannah = Person("Hannah", "niece")

hannah: Person = Person(Hannah,niece)

scala> emily == hannah

res1: Boolean = false

A case class even creates a copy method that is helpful when you need to clone an object,
and change some of the fields during the process:

scala> case class Employee(name: String, loc: String, role: String)

defined class Employee

scala> val fred = Employee("Fred", "Anchorage", "Salesman")

fred: Employee = Employee(Fred,Anchorage,Salesman)

4.14. Generating Boilerplate Code with Case Classes | 137

scala> val joe = fred.copy(name="Joe", role="Mechanic")

joe: Employee = Employee(Joe,Anchorage,Mechanic)

Discussion
Case classes are primarily intended to create “immutable records” that you can easily
use in pattern-matching expressions. Indeed, pure FP developers look at case classes as
being similar to immutable records found in ML, Haskell, and other languages.

Perhaps as a result of this, case class constructor parameters are val by default. As a
reviewer of this book with an FP background wrote, “Case classes allow var fields, but
then you are subverting their very purpose.”

Generated code

As shown in the Solution, when you create a case class, Scala generates a wealth of code
for your class. To see the code that’s generated for you, first compile a simple case class,
then disassemble it with javap. For example, put this code in a file named
Person.scala:

case class Person(var name: String, var age: Int)

Then compile the file:

$ scalac Person.scala

This creates two class files, Person.class and Person$.class. Disassemble Person.class with
this command:

$ javap Person

This results in the following output, which is the public signature of the class:

Compiled from "Person.scala"

public class Person extends java.lang.Object ↵

implements scala.ScalaObject,scala.Product,scala.Serializable{

 public static final scala.Function1 tupled();

 public static final scala.Function1 curry();

 public static final scala.Function1 curried();

 public scala.collection.Iterator productIterator();

 public scala.collection.Iterator productElements();

 public java.lang.String name();

 public void name_$eq(java.lang.String);

 public int age();

 public void age_$eq(int);

 public Person copy(java.lang.String, int);

 public int copy$default$2();

 public java.lang.String copy$default$1();

 public int hashCode();

 public java.lang.String toString();

 public boolean equals(java.lang.Object);

 public java.lang.String productPrefix();

138 | Chapter 4: Classes and Properties

 public int productArity();

 public java.lang.Object productElement(int);

 public boolean canEqual(java.lang.Object);

 public Person(java.lang.String, int);

}

Then disassemble Person$.class:

$ javap Person$

Compiled from "Person.scala"

public final class Person$ extends scala.runtime.AbstractFunction2 ↵

implements scala.ScalaObject,scala.Serializable{

 public static final Person$ MODULE$;

 public static {};

 public final java.lang.String toString();

 public scala.Option unapply(Person);

 public Person apply(java.lang.String, int);

 public java.lang.Object readResolve();

 public java.lang.Object apply(java.lang.Object, java.lang.Object);

}

As you can see, Scala generates a lot of source code when you declare a class as a case
class.

As a point of comparison, if you remove the keyword case from that code (making it a
“regular” class), compile it, and then disassemble it, Scala only generates the following
code:

public class Person extends java.lang.Object{

 public java.lang.String name();

 public void name_$eq(java.lang.String);

 public int age();

 public void age_$eq(int);

 public Person(java.lang.String, int);

}

That’s a big difference. The case class results in 22 more methods than the “regular”
class. If you need the functionality, this is a good thing. However, if you don’t need all
this additional functionality, consider using a “regular” class declaration instead. For
instance, if you just want to be able to create new instances of a class without the new
keyword, like this:

val p = Person("Alex")

create an apply method in the companion object of a “regular” class, as described in
Recipe 6.8, “Creating Object Instances Without Using the new Keyword”. Remember,
there isn’t anything in a case class you can’t code for yourself.

4.14. Generating Boilerplate Code with Case Classes | 139

See Also

• Recipe 4.3, “Defining Auxiliary Constructors”, shows how to write additional apply
methods so a case class can appear to have multiple constructors.

• A discussion of extractors on the official Scala website.

4.15. Defining an equals Method (Object Equality)

Problem
You want to define an equals method for your class so you can compare object instances
to each other.

Solution
Like Java, you define an equals method (and hashCode method) in your class to com‐
pare two instances, but unlike Java, you then use the == method to compare the equality
of two instances.

There are many ways to write equals methods. The following example shows one pos‐
sible way to define an equals method and its corresponding hashCode method:

class Person (name: String, age: Int) {

 def canEqual(a: Any) = a.isInstanceOf[Person]

 override def equals(that: Any): Boolean =

 that match {

 case that: Person => that.canEqual(this) && this.hashCode == that.hashCode

 case _ => false

 }

 override def hashCode:Int = {

 val prime = 31

 var result = 1

 result = prime * result + age;

 result = prime * result + (if (name == null) 0 else name.hashCode)

 return result

 }

}

This example shows a modified version of a hashCode method that Eclipse generated
for a similar Java class. It also uses a canEqual method, which will be explained shortly.

With the equals method defined, you can compare instances of a Person with ==, as
demonstrated in the following tests:

140 | Chapter 4: Classes and Properties

http://bit.ly/1dzQ301

import org.scalatest.FunSuite

class PersonTests extends FunSuite {

 // these first two instances should be equal

 val nimoy = new Person("Leonard Nimoy", 82)

 val nimoy2 = new Person("Leonard Nimoy", 82)

 val shatner = new Person("William Shatner", 82)

 val ed = new Person("Ed Chigliak", 20)

 // all tests pass

 test("nimoy == nimoy") { assert(nimoy == nimoy) }

 test("nimoy == nimoy2") { assert(nimoy == nimoy2) }

 test("nimoy2 == nimoy") { assert(nimoy2 == nimoy) }

 test("nimoy != shatner") { assert(nimoy != shatner) }

 test("shatner != nimoy") { assert(shatner != nimoy) }

 test("nimoy != null") { assert(nimoy != null) }

 test("nimoy != String") { assert(nimoy != "Leonard Nimoy") }

 test("nimoy != ed") { assert(nimoy != ed) }

}

As noted in the code comments, all of these tests pass.

These tests were created with the ScalaTest FunSuite, which is simi‐
lar to writing unit tests with JUnit.

Discussion
The first thing to know about Scala and the equals method is that, unlike Java, you
compare the equality of two objects with ==. In Java, the == operator compares “reference
equality,” but in Scala, == is a method you use on each class to compare the equality of
two instances, calling your equals method under the covers.

As mentioned, there are many ways to implement equals methods, and the code in the
Solution shows just one possible approach. The book Programming in Scala contains
one chapter of more than 25 pages on “object equality,” so this is a big topic.

An important benefit of the approach shown in the Solution is that you can continue
to use it when you use inheritance in classes. For instance, in the following code, the
Employee class extends the Person class that’s shown in the Solution:

class Employee(name: String, age: Int, var role: String)

extends Person(name, age)

{

 override def canEqual(a: Any) = a.isInstanceOf[Employee]

4.15. Defining an equals Method (Object Equality) | 141

 override def equals(that: Any): Boolean =

 that match {

 case that: Employee =>

 that.canEqual(this) && this.hashCode == that.hashCode

 case _ => false

 }

 override def hashCode:Int = {

 val ourHash = if (role == null) 0 else role.hashCode

 super.hashCode + ourHash

 }

}

This code uses the same approach to the canEqual, equals, and hashCode methods, and
I like that consistency. Just as important as the consistency is the accuracy of the ap‐
proach, especially when you get into the business of comparing instances of a child class
to instances of any of its parent classes. In the case of the Person and Employee code
shown, these classes pass all of the following tests:

class EmployeeTests extends FunSuite with BeforeAndAfter {

 // these first two instance should be equal

 val eNimoy1 = new Employee("Leonard Nimoy", 82, "Actor")

 val eNimoy2 = new Employee("Leonard Nimoy", 82, "Actor")

 val pNimoy = new Person("Leonard Nimoy", 82)

 val eShatner = new Employee("William Shatner", 82, "Actor")

 test("eNimoy1 == eNimoy1") { assert(eNimoy1 == eNimoy1) }

 test("eNimoy1 == eNimoy2") { assert(eNimoy1 == eNimoy2) }

 test("eNimoy2 == eNimoy1") { assert(eNimoy2 == eNimoy1) }

 test("eNimoy != pNimoy") { assert(eNimoy1 != pNimoy) }

 test("pNimoy != eNimoy") { assert(pNimoy != eNimoy1) }

}

All the tests pass, including the comparison of the eNimoy and pNimoy objects, which
are instances of the Employee and Person classes, respectively.

Theory

The Scaladoc for the equals method of the Any class states, “any implementation of this
method should be an equivalence relation.” The documentation states that an equiva‐
lence relation should have these three properties:

• It is reflexive: for any instance x of type Any, x.equals(x) should return true.

• It is symmetric: for any instances x and y of type Any, x.equals(y) should return
true if and only if y.equals(x) returns true.

142 | Chapter 4: Classes and Properties

• It is transitive: for any instances x, y, and z of type AnyRef, if x.equals(y) returns
true and y.equals(z) returns true, then x.equals(z) should return true.

Therefore, if you override the equals method, you should verify that your implemen‐
tation remains an equivalence relation.

See Also

• The Artima website has an excellent related article titled How to Write an Equality
Method in Java.

• Eric Torreborre shares an excellent canEqual example on GitHub.

• “Equivalence relation” defined on Wikipedia.

• The Scala Any class.

4.16. Creating Inner Classes

Problem
You want to create a class as an inner class to help keep the class out of your public API,
or to otherwise encapsulate your code.

Solution
Declare one class inside another class. In the following example, a case class named
Thing is declared inside of a class named PandorasBox:

class PandorasBox {

 case class Thing (name: String)

 var things = new collection.mutable.ArrayBuffer[Thing]()

 things += Thing("Evil Thing #1")

 things += Thing("Evil Thing #2")

 def addThing(name: String) { things += new Thing(name) }

}

This lets users of PandorasBox access the collection of things inside the box, while code
outside of PandorasBox generally doesn’t have to worry about the concept of a Thing:

4.16. Creating Inner Classes | 143

http://bit.ly/13a2sBR
http://bit.ly/13a2sBR
http://bit.ly/1bvBjkK
http://bit.ly/18SIt2U
http://bit.ly/18bM1KZ

object ClassInAClassExample extends App {

 val p = new PandorasBox

 p.things.foreach(println)

}

As shown, you can access the things in PandorasBox with the things method. You can
also add new things to PandorasBox by calling the addThing method:

p.addThing("Evil Thing #3")

p.addThing("Evil Thing #4")

Discussion
The concept of a “class within a class” is different in Scala than in Java. As described on
the official Scala website, “Opposed to Java-like languages where such inner classes are
members of the enclosing class, in Scala, such inner classes are bound to the outer
object.” The following code demonstrates this:

object ClassInObject extends App {

 // inner classes are bound to the object

 val oc1 = new OuterClass

 val oc2 = new OuterClass

 val ic1 = new oc1.InnerClass

 val ic2 = new oc2.InnerClass

 ic1.x = 10

 ic2.x = 20

 println(s"ic1.x = ${ic1.x}")

 println(s"ic2.x = ${ic2.x}")

}

class OuterClass {

 class InnerClass {

 var x = 1

 }

}

Because inner classes are bound to their object instances, when that code is run, it prints
the following output:

ic1.x = 10

ic2.x = 20

There are many other things you can do with inner classes, such as include a class inside
an object or an object inside a class:

object InnerClassDemo2 extends App {

 // class inside object

 println(new OuterObject.InnerClass().x)

144 | Chapter 4: Classes and Properties

http://www.scala-lang.org/node/115
http://www.scala-lang.org/node/115

 // object inside class

 println(new OuterClass().InnerObject.y)

}

object OuterObject {

 class InnerClass {

 var x = 1

 }

}

class OuterClass {

 object InnerObject {

 val y = 2

 }

}

See Also

The Scala website has a page on Inner Classes.

4.16. Creating Inner Classes | 145

http://bit.ly/13G0DnG

CHAPTER 5

Methods

Introduction
Conceptually, Scala methods are similar to Java methods in that they are behaviors you
add to a class. However, they differ significantly in their implementation details. The
following example shows some of the differences between Java and Scala when defining
a simple method that takes an integer argument and returns a string:

// java

public String doSomething(int x) {

 // code here

}

// scala

def doSomething(x: Int): String = {

 // code here

}

This is just a start, though. Scala methods can be written even more concisely. This
method takes an Int, adds 1 to it, and returns the resulting Int value:

def plusOne(i: Int) = i + 1

Notice that the return type didn’t have to be specified, and parentheses around the short
method body aren’t required.

In addition to the differences shown in these simple examples, there are other differences
between Java and Scala methods, including:

• Specifying method access control (visibility)

• The ability to set default values for method parameters

147

• The ability to specify the names of method parameters when calling a method

• How you declare the exceptions a method can throw

• Using varargs fields in methods

This chapter demonstrates all of these method-related features.

5.1. Controlling Method Scope

Problem
Scala methods are public by default, and you want to control their scope in ways similar
to Java.

Solution
Scala lets you control method visibility in a more granular and powerful way than Java.
In order from “most restrictive” to “most open,” Scala provides these scope options:

• Object-private scope

• Private

• Package

• Package-specific

• Public

These scopes are demonstrated in the examples that follow.

Object-private scope

The most restrictive access is to mark a method as object-private. When you do this, the
method is available only to the current instance of the current object. Other instances
of the same class cannot access the method.

You mark a method as object-private by placing the access modifier private[this]
before the method declaration:

 private[this] def isFoo = true

In the following example, the method doFoo takes an instance of a Foo object, but be‐
cause the isFoo method is declared as an object-private method, the code won’t compile:

class Foo {

 private[this] def isFoo = true

 def doFoo(other: Foo) {

 if (other.isFoo) { // this line won't compile

148 | Chapter 5: Methods

 // ...

 }

 }

}

The code won’t compile because the current Foo instance can’t access the isFoo method
of the other instance, because isFoo is declared as private[this]. As you can see, the
object-private scope is extremely restrictive.

Private scope

A slightly less restrictive access is to mark a method private, which makes the method
available to (a) the current class and (b) other instances of the current class. This is the
same as marking a method private in Java. By changing the access modifier from
private[this] to private, the code will now compile:

class Foo {

 private def isFoo = true

 def doFoo(other: Foo) {

 if (other.isFoo) { // this now compiles

 // ...

 }

 }

}

By making a method private, it is not available to subclasses. The following code won’t
compile because the heartBeat method is private to the Animal class:

class Animal {

 private def heartBeat {}

}

class Dog extends Animal {

 heartBeat // won't compile

}

Protected scope

Marking a method protected makes the method available to subclasses, so the following
code will compile:

class Animal {

 protected def breathe {}

}

class Dog extends Animal {

 breathe

}

5.1. Controlling Method Scope | 149

The meaning of protected is slightly different in Scala than in Java. In Java, protected
methods can be accessed by other classes in the same package, but this isn’t true in Scala.
The following code won’t compile because the Jungle class can’t access the breathe
method of the Animal class, even though they’re in the same package:

package world {

 class Animal {

 protected def breathe {}

 }

 class Jungle {

 val a = new Animal

 a.breathe // error: this line won't compile

 }

}

Package scope

To make a method available to all members of the current package—what would be
called “package scope” in Java—mark the method as being private to the current package
with the private[packageName] syntax.

In the following example, the method doX can be accessed by other classes in the same
package (the model package), but the method doY is available only to the Foo class:

package com.acme.coolapp.model {

 class Foo {

 private[model] def doX {}

 private def doY {}

 }

 class Bar {

 val f = new Foo

 f.doX // compiles

 f.doY // won't compile

 }

}

More package-level control

Beyond making a method available to classes in the current package, Scala gives you
more control and lets you make a method available at different levels in a class hierarchy.
The following example demonstrates how you can make the methods doX, doY, and doZ
available to different package levels:

package com.acme.coolapp.model {

 class Foo {

 private[model] def doX {}

150 | Chapter 5: Methods

 private[coolapp] def doY {}

 private[acme] def doZ {}

 }

}

import com.acme.coolapp.model._

package com.acme.coolapp.view {

 class Bar {

 val f = new Foo

 f.doX // won't compile

 f.doY

 f.doZ

 }

}

package com.acme.common {

 class Bar {

 val f = new Foo

 f.doX // won't compile

 f.doY // won't compile

 f.doZ

 }

}

In this example, the methods can be seen as follows:

• The method doX can be seen by other classes in the model package
(com.acme.coolapp.model).

• The method doY can be seen by all classes under the coolapp package level.

• The method doZ can be seen by all classes under the acme level.

As you can see, this approach allows a fine-grained level of access control.

Public scope

If no access modifier is added to the method declaration, the method is public. In the
following example, any class in any package can access the doX method:

package com.acme.coolapp.model {

 class Foo {

 def doX {}

 }

}

package org.xyz.bar {

 class Bar {

 val f = new com.acme.coolapp.model.Foo

 f.doX

 }

}

5.1. Controlling Method Scope | 151

Discussion
The Scala approach to access modifiers is different than Java. Though it offers more
power than Java, it’s also a little more complicated.

Table 5-1 describes the levels of access control that were demonstrated in the examples
in the Solution.

Table 5-1. Descriptions of Scala’s access control modifiers

Access modifier Description

private[this] The method is available only to the current instance of the class it’s declared in.

private The method is available to the current instance and other instances of the class it’s declared in.

protected The method is available only to instances of the current class and subclasses of the current class.

private[model] The method is available to all classes beneath the com.acme.coolapp.model package.

private[coolapp] The method is available to all classes beneath the com.acme.coolapp package.

private[acme] The method is available to all classes beneath the com.acme package.

(no modifier) The method is public.

5.2. Calling a Method on a Superclass

Problem
To keep your code DRY (“Don’t Repeat Yourself ”), you want to invoke a method that’s
already defined in a parent class or trait.

Solution
In the basic use case, the syntax to invoke a method in an immediate parent class is the
same as Java: Use super to refer to the parent class, and then provide the method name.
The following Android method (written in Scala) demonstrates how to call a method
named onCreate that’s defined in the Activity parent class:

class WelcomeActivity extends Activity {

 override def onCreate(bundle: Bundle) {

 super.onCreate(bundle)

 // more code here ...

 }

}

As with Java, you can call multiple superclass methods if necessary:

class FourLeggedAnimal {

 def walk { println("I'm walking") }

 def run { println("I'm running") }

}

152 | Chapter 5: Methods

class Dog extends FourLeggedAnimal {

 def walkThenRun {

 super.walk

 super.run

 }

}

Running this code in the Scala REPL yields:

scala> val suka = new Dog

suka: Dog = Dog@239bf795

scala> suka.walkThenRun

I'm walking

I'm running

Controlling which trait you call a method from

If your class inherits from multiple traits, and those traits implement the same method,
you can select not only a method name, but also a trait name when invoking a method
using super. For instance, given this class hierarchy:

trait Human {

 def hello = "the Human trait"

}

trait Mother extends Human {

 override def hello = "Mother"

}

trait Father extends Human {

 override def hello = "Father"

}

The following code shows different ways to invoke the hello method from the traits
the Child class inherits from. This example shows that by mixing in the Human,
Mother, and Father traits, you can call super.hello, or be more specific by calling
super[Mother].hello, super[Father].hello, or super[Human].hello:

class Child extends Human with Mother with Father {

 def printSuper = super.hello

 def printMother = super[Mother].hello

 def printFather = super[Father].hello

 def printHuman = super[Human].hello

}

If you construct a test object to run this code:

object Test extends App {

 val c = new Child

 println(s"c.printSuper = ${c.printSuper}")

 println(s"c.printMother = ${c.printMother}")

5.2. Calling a Method on a Superclass | 153

 println(s"c.printFather = ${c.printFather}")

 println(s"c.printHuman = ${c.printHuman}")

}

you can see the output:

c.printSuper = Father

c.printMother = Mother

c.printFather = Father

c.printHuman = the Human trait

As shown, when a class inherits from multiple traits, and those traits have a common
method name, you can choose which trait to run the method from with the
super[traitName].methodName syntax.

Note that when using this technique, you can’t continue to reach up through the parent
class hierarchy unless you directly extend the target class or trait using the extends or
with keywords. For instance, the following code won’t compile because Dog doesn’t
directly extend the Animal trait:

trait Animal {

 def walk { println("Animal is walking") }

}

class FourLeggedAnimal extends Animal {

 override def walk { println("I'm walking on all fours") }

}

class Dog extends FourLeggedAnimal {

 def walkThenRun {

 super.walk // works

 super[FourLeggedAnimal].walk // works

 super[Animal].walk // error: won't compile

 }

}

If you attempt to compile the code, you’ll get the error, “Animal does not name a parent
class of class Dog.” You can get around that error by adding with Animal to your class
declaration (but whether or not that’s really a good idea is another story):

class Dog extends FourLeggedAnimal with Animal {

5.3. Setting Default Values for Method Parameters

Problem
You want to set default values for method parameters so the method can optionally be
called without those parameters having to be assigned.

154 | Chapter 5: Methods

Solution
Specify the default value for parameters in the method signature. In the following code,
the timeout field is assigned a default value of 5000, and the protocol field is given a
default value of "http":

class Connection {

 def makeConnection(timeout: Int = 5000, protocol: = "http") {

 println("timeout = %d, protocol = %s".format(timeout, protocol))

 // more code here

 }

}

This method can now be called in the following ways:

c.makeConnection()

c.makeConnection(2000)

c.makeConnection(3000, "https")

The results are demonstrated in the REPL:

scala> val c = new Connection

c: Connection = Connection@385db088

scala> c.makeConnection()

timeout = 5000, protocol = http

scala> c.makeConnection(2000)

timeout = 2000, protocol = http

scala> c.makeConnection(3000, "https")

timeout = 3000, protocol = https

Note that empty parentheses are used in the first example. Attempting to call this method
without parentheses results in an error:

scala> c.makeConnection

<console>:10: error: missing arguments for method makeConnection in Connection;

follow this method with `_' to treat it as a partially applied function

 c.makeConnection

 ^

The reason for this error is discussed in Recipe 9.6, “Using Partially Applied Functions”.

If you like to call methods with the names of the method parameters, the method
makeConnection can also be called in these ways:

c.makeConnection(timeout=10000)

c.makeConnection(protocol="https")

c.makeConnection(timeout=10000, protocol="https")

5.3. Setting Default Values for Method Parameters | 155

Discussion
Just as with constructor parameters, you can provide default values for method argu‐
ments. Because you have provided defaults, the consumer of your method can either
supply an argument to override the default or skip the argument, letting it use its default
value.

Arguments are assigned from left to right, so the following call assigns no arguments
and uses the default values for both timeout and protocol:

c.makeConnection()

This call sets timeout to 2000 and leaves protocol to its default:

c.makeConnection(2000)

This call sets both the timeout and protocol:

c.makeConnection(3000, "https")

Note that you can’t set the protocol only with this approach, but as shown in the Sol‐
ution, you can use a named parameter:

c.makeConnection(protocol="https")

If your method provides a mix of some fields that offer default values and others that
don’t, list the fields that have default values last. To demonstrate the problem, the fol‐
lowing example assigns a default value to the first argument and does not assign a default
to the second argument:

class Connection {

 // intentional error

 def makeConnection(timeout: Int = 5000, protocol: String) {

 println("timeout = %d, protocol = %s".format(timeout, protocol))

 // more code here

 }

}

This code compiles, but you won’t be able to take advantage of the default, as shown in
the REPL errors:

scala> c.makeConnection(1000)

<console>:10: error: not enough arguments for method makeConnection:

(timeout: Int, protocol: String)Unit.

Unspecified value parameter protocol.

 c.makeConnection(1000)

 ^

scala> c.makeConnection("https")

<console>:10: error: not enough arguments for method makeConnection:

(timeout: Int, protocol: String)Unit.

Unspecified value parameter protocol.

156 | Chapter 5: Methods

 c.makeConnection("https")

 ^

By changing the method so the first field doesn’t have a default and the last field does,
the default method call can now be used:

class Connection {

 // corrected implementation

 def makeConnection(timeout: Int, protocol: String = "http") {

 println("timeout = %d, protocol = %s".format(timeout, protocol))

 // more code here

 }

}

scala> c.makeConnection(1000)

timeout = 1000, protocol = http

scala> c.makeConnection(1000, "https")

timeout = 1000, protocol = https

5.4. Using Parameter Names When Calling a Method

Problem
You prefer a coding style where you specify the method parameter names when calling
a method.

Solution
The general syntax for calling a method with named parameters is this:

methodName(param1=value1, param2=value2, ...)

This is demonstrated in the following example.

Given this definition of a Pizza class:

class Pizza {

 var crustSize = 12

 var crustType = "Thin"

 def update(crustSize: Int, crustType: String) {

 this.crustSize = crustSize

 this.crustType = crustType

 }

 override def toString = {

 "A %d inch %s crust pizza.".format(crustSize, crustType)

 }

}

you can create a Pizza:

val p = new Pizza

5.4. Using Parameter Names When Calling a Method | 157

You can then update the Pizza, specifying the field names and corresponding values
when you call the update method:

p.update(crustSize = 16, crustType = "Thick")

This approach has the added benefit that you can place the fields in any order:

p.update(crustType = "Pan", crustSize = 14)

Discussion
You can confirm that this example works by running it in the Scala REPL:

scala> val p = new Pizza

p: Pizza = A 12 inch Thin crust pizza.

scala> p.updatePizza(crustSize = 16, crustType = "Thick")

scala> println(p)

A 16 inch Thick crust pizza.

scala> p.updatePizza(crustType = "Pan", crustSize = 14)

scala> println(p)

A 14 inch Pan crust pizza.

The ability to use named parameters when calling a method is available in other lan‐
guages, including Objective-C. Although this approach is more verbose, it can also be
more readable.

This technique is especially useful when several parameters have the same type, such as
having several Boolean or String parameters in a method. For instance, compare this
method call:

engage(true, true, true, false)

to this one:

engage(speedIsSet = true,

 directionIsSet = true,

 picardSaidMakeItSo = true,

 turnedOffParkingBrake = false)

When a method specifies default values for its parameters, as demonstrated in
Recipe 5.3, you can use this approach to specify only the parameters you want to over‐
ride.

For instance, the scala.xml.Utility object has a method named serialize that takes
seven parameters. However, default values are defined for each parameter in the method
declaration, so if you need to change only one parameter, such as whether you want
comments stripped from the output, you need to specify only that one parameter, in
addition to your XML node:

158 | Chapter 5: Methods

Utility.serialize(myNode, stripComments = true)

The combination of these two recipes makes for a powerful approach.

5.5. Defining a Method That Returns Multiple Items
(Tuples)

Problem
You want to return multiple values from a method, but don’t want to wrap those values
in a makeshift class.

Solution
Although you can return objects from methods just as in other OOP languages, Scala
also lets you return multiple values from a method using tuples. First, define a method
that returns a tuple:

def getStockInfo = {

 // other code here ...

 ("NFLX", 100.00, 101.00) // this is a Tuple3

}

Then call that method, assigning variable names to the expected return values:

val (symbol, currentPrice, bidPrice) = getStockInfo

Running this example in the REPL demonstrates how this works:

scala> val (symbol, currentPrice, bidPrice) = getStockInfo

symbol: java.lang.String = NFLX

currentPrice: Double = 100.0

bidPrice: Double = 101.0

Discussion
In Java, when it would be convenient to be able to return multiple values from a method,
the typical workaround is to return those values in a one-off “wrapper” class. For in‐
stance, you might create a temporary wrapper class like this:

// java

public class StockInfo {

 String symbol;

 double currentPrice;

 double bidPrice;

 public StockInfo(String symbol, double currentPrice, double bidPrice) {

 this.symbol = symbol;

 this.currentPrice = currentPrice;

 this.bidPrice = bidPrice;

5.5. Defining a Method That Returns Multiple Items (Tuples) | 159

 }

}

Then you could return an instance of this class from a method, like this:

return new StockInfo("NFLX", 100.00, 101.00);

In Scala you don’t need to create a wrapper like this; you can just return the data as a
tuple.

Working with tuples

In the example shown in the Solution, the getStockInfo method returned a tuple with
three elements, so it is a Tuple3. Tuples can contain up to 22 variables and are imple‐
mented as Tuple1 through Tuple22 classes. As a practical matter, you don’t have to think
about those specific classes; just create a new tuple by enclosing elements inside paren‐
theses, as shown.

To demonstrate a Tuple2, if you wanted to return only two elements from a method,
just put two elements in the parentheses:

def getStockInfo = ("NFLX", 100.00)

val (symbol, currentPrice) = getStockInfo

If you don’t want to assign variable names when calling the method, you can set a variable
equal to the tuple the method returns, and then access the tuple values using the fol‐
lowing tuple underscore syntax:

scala> val result = getStockInfo

x: (java.lang.String, Double, Double) = (NFLX,100.0)

scala> result._1

res0: java.lang.String = NFLX

scala> result._2

res1: Double = 100.0

As shown, tuple values can be accessed by position as result._1, result._2, and so
on. Though this approach can be useful in some situations, your code will generally be
clearer if you assign variable names to the values:

val (symbol, currentPrice) = getStockInfo

See Also

• The Tuple3 class

• Recipe 10.27, “Tuples, for When You Just Need a Bag of Things” for more tuple
examples

160 | Chapter 5: Methods

http://bit.ly/1dzLfI0

5.6. Forcing Callers to Leave Parentheses off Accessor
Methods

Problem
You want to enforce a coding style where getter/accessor methods can’t have parentheses
when they are invoked.

Solution
Define your getter/accessor method without parentheses after the method name:

class Pizza {

 // no parentheses after crustSize

 def crustSize = 12

}

This forces consumers of your class to call crustSize without parentheses:

scala> val p = new Pizza

p: Pizza = Pizza@3a3e8692

// this fails because of the parentheses

scala> p.crustSize()

<console>:10: error: Int does not take parameters

 p.crustSize()

 ^

// this works

scala> p.crustSize

res0: Int = 12

Coming from a Java background, I originally named this method
getCrustSize, but the Scala convention is to drop “get” from meth‐
ods like this, hence the method name crustSize.

Discussion
The recommended strategy for calling getter methods that have no side effects is to leave
the parentheses off when calling the method. As stated in the Scala Style Guide:

Methods which act as accessors of any sort ... should be declared without parentheses,
except if they have side effects.

According to the style guide, because a simple accessor method like crustSize does not
have side effects, it should not be called with parentheses, and this recipe demonstrates
how to enforce this convention.

5.6. Forcing Callers to Leave Parentheses off Accessor Methods | 161

http://docs.scala-lang.org/style/

Although this recipe shows how to force callers to leave parentheses off methods when
calling simple getters, there is no way to force them to use parentheses for side-effecting
methods. This is only a convention, albeit a convention that I like and use these days.
Although it’s usually obvious that a method named printStuff is probably going to
print some output, a little warning light goes off in my head when I see it called as
printStuff() instead.

Side Effects

It’s said that a purely functional program has no side effects. So what is a side effect?

According to Wikipedia, a function is said to have a side effect “if, in addition to re‐
turning a value, it also modifies some state or has an observable interaction with calling
functions or the outside world.”

Side effects include things like:

• Writing or printing output.

• Reading input.

• Mutating the state of a variable that was given as input, changing data in a data
structure, or modifying the value of a field in an object.

• Throwing an exception, or stopping the application when an error occurs.

• Calling other functions that have side effects.

In theory, pure functions are much easier to test. Imagine writing an addition function,
such as +. Given the two numbers 1 and 2, the result will always be 3. A pure function
like this is a simple matter of (a) immutable data coming in, and (b) a result coming out;
nothing else happens. Because a function like this has no side effects, it’s simple to test.

See Recipe 20.1, “Create Methods with No Side Effects (Pure Functions)”, for more
details on writing pure functions. Also, see the Wikipedia discussion on side effects in
functional programming (FP) applications for more details and examples.

See Also

The Scala Style Guide on naming conventions and parentheses

162 | Chapter 5: Methods

http://bit.ly/1dzLoeB
http://bit.ly/16E1Ir4

5.7. Creating Methods That Take Variable-Argument
Fields

Problem
To make a method more flexible, you want to define a method parameter that can take
a variable number of arguments, i.e., a varargs field.

Solution
Define a varargs field in your method declaration by adding a * character after the field
type:

def printAll(strings: String*) {

 strings.foreach(println)

}

Given that method declaration, the printAll method can be called with zero or more
parameters:

// these all work

printAll()

printAll("foo")

printAll("foo", "bar")

printAll("foo", "bar", "baz")

Use _* to adapt a sequence

As shown in the following example, you can use Scala’s _* operator to adapt a sequence
(Array, List, Seq, Vector, etc.) so it can be used as an argument for a varargs field:

// a sequence of strings

val fruits = List("apple", "banana", "cherry")

// pass the sequence to the varargs field

printAll(fruits: _*)

If you come from a Unix background, it may be helpful to think of _* as a “splat” operator.
This operator tells the compiler to pass each element of the sequence to printAll as a
separate argument, instead of passing fruits as a single argument.

Discussion
When declaring that a method has a field that can contain a variable number of argu‐
ments, the varargs field must be the last field in the method signature. Attempting to
define a field in a method signature after a varargs field is an error:

scala> def printAll(strings: String*, i: Int) {

 | strings.foreach(println)

 | }

5.7. Creating Methods That Take Variable-Argument Fields | 163

<console>:7: error: *-parameter must come last

 def printAll(strings: String*, i: Int) {

 ^

As an implication of that rule, a method can have only one varargs field.

As demonstrated in the Solution, if a field is a varargs field, you don’t have to supply
any arguments for it. For instance, in a method that has only one varargs field, you can
call it with no arguments:

scala> def printAll(numbers: Int*) {

 | numbers.foreach(println)

 | }

printAll: (numbers: Int*)Unit

scala> printAll()

This case reveals some of the inner workings of how Scala handles varargs fields. By
defining a varargs method that can take multiple integers, and then calling that method
(a) with arguments, and (b) without arguments, you can see how Scala handles the two
situations:

def printAll(numbers: Int*) {

 println(numbers.getClass)

}

scala> printAll(1, 2, 3)

class scala.collection.mutable.WrappedArray$ofInt

scala> printAll()

class scala.collection.immutable.Nil$

While the first situation reveals how Scala handles the normal “one or more arguments”
situation, treating the “no args” situation as a Nil$ in the second situation keeps your
code from throwing a NullPointerException.

Although the resulting types are different, as a practical matter, this isn’t too important.
You’ll typically use a loop inside a method to handle a varargs field, and either of the
following examples work fine whether the method is called with zero or multiple pa‐
rameters:

// version 1

def printAll(numbers: Int*) {

 numbers.foreach(println)

}

// version 2

def printAll(numbers: Int*) {

 for (i <- numbers) println

}

164 | Chapter 5: Methods

5.8. Declaring That a Method Can Throw an Exception

Problem
You want to declare that a method can throw an exception, either to alert callers to this
fact or because your method will be called from Java code.

Solution
Use the @throws annotation to declare the exception(s) that can be thrown. To declare
that one exception can be thrown, place the annotation just before the method signature:

@throws(classOf[Exception])

override def play {

 // exception throwing code here ...

}

To indicate that a method can throw multiple exceptions, list them all before the method
signature:

@throws(classOf[IOException])

@throws(classOf[LineUnavailableException])

@throws(classOf[UnsupportedAudioFileException])

def playSoundFileWithJavaAudio {

 // exception throwing code here ...

}

Discussion
The two examples shown are from an open source project I created that lets developers
play WAV, AIFF, MP3, and other types of sound files. I declared that these two methods
can throw exceptions for two reasons. First, whether the consumers are using Scala or
Java, if they’re writing robust code, they’ll want to know that something failed.

Second, if they’re using Java, the @throws annotation is the Scala way of providing the
throws method signature to Java consumers. It’s equivalent to declaring that a method
throws an exception with this Java syntax:

public void play() throws FooException {

 // code here ...

}

It’s important to note that Scala’s philosophy regarding checked exceptions is different
than Java’s. Scala doesn’t require that methods declare that exceptions can be thrown,
and it also doesn’t require calling methods to catch them. This is easily demonstrated
in the REPL:

5.8. Declaring That a Method Can Throw an Exception | 165

// 1) it's not necessary to state that a method throws an exception

scala> def boom {

 | throw new Exception

 | }

boom: Unit

// 2) it's not necessary to wrap 'boom' in a try/catch block, but ...

scala> boom

java.lang.Exception

 at .boom(<console>:8)

 // much more exception output here ...

Although Scala doesn’t require that exceptions are checked, if you fail to test for them,
they’ll blow up your code just like they do in Java. In the following example, the second
println statement is never reached because the boom method throws its exception:

object BoomTest extends App {

 def boom { throw new Exception }

 println("Before boom")

 boom

 // this line is never reached

 println("After boom")

}

Java Exception Types

As a quick review, Java has (a) checked exceptions, (b) descendants of Error, and
(c) descendants of RuntimeException. Like checked exceptions, Error and
RuntimeException have many subclasses, such as RuntimeException’s famous off‐
spring, NullPointerException.

According to the Java documentation for the Exception class, “The class Exception and
any subclasses that are not also subclasses of RuntimeException are checked exceptions.
Checked exceptions need to be declared in a method or constructor’s throws clause if
they can be thrown by the execution of the method or constructor and propagate outside
the method or constructor boundary.”

The following links provide more information on Java exceptions and exception han‐
dling:

• The Three Kinds of (Java) Exceptions

• Unchecked Exceptions—The Controversy

• Wikipedia discussion of checked exceptions

166 | Chapter 5: Methods

http://bit.ly/12ADsbu
http://bit.ly/12DBv9y
http://bit.ly/18jrDLf
http://bit.ly/17fSC64

• Java tutorial on exception handling

• Java Exception class

See Also

Recipe 17.2, “Add Exception Annotations to Scala Methods to Work with Java”,
for other examples of adding exception annotations to methods

5.9. Supporting a Fluent Style of Programming

Problem
You want to create an API so developers can write code in a fluent programming style,
also known as method chaining.

Solution
A fluent style of programming lets users of your API write code by chaining method
calls together, as in this example:

person.setFirstName("Leonard")

 .setLastName("Nimoy")

 .setAge(82)

 .setCity("Los Angeles")

 .setState("California")

To support this style of programming:

• If your class can be extended, specify this.type as the return type of fluent style
methods.

• If you’re sure that your class won’t be extended, you can optionally return this from
your fluent style methods.

The following code demonstrates how to specify this.type as the return type of the
set* methods:

class Person {

 protected var fname = ""

 protected var lname = ""

 def setFirstName(firstName: String): this.type = {

 fname = firstName

 this

 }

5.9. Supporting a Fluent Style of Programming | 167

http://bit.ly/12Q9ltg
http://bit.ly/12ADsbu
http://bit.ly/15xKqN2
http://bit.ly/1dzLUJC

 def setLastName(lastName: String): this.type = {

 lname = lastName

 this

 }

}

class Employee extends Person {

 protected var role = ""

 def setRole(role: String): this.type = {

 this.role = role

 this

 }

 override def toString = {

 "%s, %s, %s".format(fname, lname, role)

 }

}

The following test object demonstrates how these methods can be chained together:

object Main extends App {

 val employee = new Employee

 // use the fluent methods

 employee.setFirstName("Al")

 .setLastName("Alexander")

 .setRole("Developer")

 println(employee)

}

Discussion
If you’re sure your class won’t be extended, specifying this.type as the return type of
your set* methods isn’t necessary; you can just return the this reference at the end of
each fluent style method. This is shown in the addTopping, setCrustSize, and
setCrustType methods of the following Pizza class, which is declared to be final:

final class Pizza {

 import scala.collection.mutable.ArrayBuffer

 private val toppings = ArrayBuffer[String]()

 private var crustSize = 0

 private var crustType = ""

 def addTopping(topping: String) = {

 toppings += topping

168 | Chapter 5: Methods

 this

 }

 def setCrustSize(crustSize: Int) = {

 this.crustSize = crustSize

 this

 }

 def setCrustType(crustType: String) = {

 this.crustType = crustType

 this

 }

 def print() {

 println(s"crust size: $crustSize")

 println(s"crust type: $crustType")

 println(s"toppings: $toppings")

 }

}

This class is demonstrated with the following driver program:

object FluentPizzaTest extends App {

 val p = new Pizza

 p.setCrustSize(14)

 .setCrustType("thin")

 .addTopping("cheese")

 .addTopping("green olives")

 .print()

}

This results in the following output:

crust size: 14

crust type: thin

toppings: ArrayBuffer(cheese, green olives)

Returning this in your methods works fine if you’re sure your class won’t be extended,
but if your class can be extended—as in the first example where the Employee class
extended the Person class—explicitly setting this.type as the return type of your
set* methods ensures that the fluent style will continue to work in your subclasses. In
this example, this makes sure that methods like setFirstName on an Employee object
return an Employee reference and not a Person reference.

5.9. Supporting a Fluent Style of Programming | 169

See Also

• Definition of a fluent interface

• Method chaining

• Martin Fowler’s discussion of a fluent interface

170 | Chapter 5: Methods

http://bit.ly/15xKqN2
http://bit.ly/1dzLUJC
http://bit.ly/144R7t4

CHAPTER 6

Objects

Introduction
The word “object” has a dual meaning in Scala. As with Java, you use it to refer to an
instance of a class, but in Scala, object is also a keyword.

The first three recipes in this chapter look at an object as an instance of a class, show
how to cast objects from one type to another, demonstrate the Scala equivalent of
Java’s .class approach, and show how to determine the class of an object.

The remaining recipes demonstrate how the object keyword is used for other purposes.
You’ll see how to use it to launch Scala applications and to create Singletons. There’s
also a special type of object known as a package object. Using a package object is entirely
optional, but it provides a nice little out-of-the-way place where you can put code that’s
common to all classes and objects in a particular package level in your application. For
instance, Scala’s root-level package object contains many lines of code like this:

type Throwable = java.lang.Throwable

type Exception = java.lang.Exception

type Error = java.lang.Error

type Seq[+A] = scala.collection.Seq[A]

val Seq = scala.collection.Seq

Declaring those type definitions in Scala’s root package object helps to make the rest of
the code a little bit cleaner, and also keeps these definitions from cluttering up other
files.

You’ll also see how to create a companion object to solve several problems. For instance,
one use of a companion object is to create the equivalent of Java’s static members. You
can also use a companion object so consumers of its corresponding class won’t need to
use the new keyword to create an instance of the class. For example, notice how the new
keyword isn’t required before each Person instance in this code:

171

val siblings = List(Person("Kim"), Person("Julia"), Person("Kenny"))

These solutions, and a few more, are presented in this chapter.

6.1. Object Casting

Problem
You need to cast an instance of a class from one type to another, such as when creating
objects dynamically.

Solution
Use the asInstanceOf method to cast an instance to the desired type. In the following
example, the object returned by the lookup method is cast to an instance of a class named
Recognizer:

val recognizer = cm.lookup("recognizer").asInstanceOf[Recognizer]

This Scala code is equivalent to the following Java code:

Recognizer recognizer = (Recognizer)cm.lookup("recognizer");

The asInstanceOf method is defined in the Scala Any class and is therefore available
on all objects.

Discussion
In dynamic programming, it’s often necessary to cast from one type to another. This
approach is needed when using the Spring Framework and instantiating beans from an
application context file:

// open/read the application context file

val ctx = new ClassPathXmlApplicationContext("applicationContext.xml")

// instantiate our dog and cat objects from the application context

val dog = ctx.getBean("dog").asInstanceOf[Animal]

val cat = ctx.getBean("cat").asInstanceOf[Animal]

It’s used when reading a YAML configuration file:

val yaml = new Yaml(new Constructor(classOf[EmailAccount]))

val emailAccount = yaml.load(text).asInstanceOf[EmailAccount]

The example shown in the Solution comes from code I wrote to work with an open
source Java speech recognition library named Sphinx-4. With this library, many prop‐
erties are defined in an XML file, and then you create recognizer and microphone objects
dynamically. In a manner similar to Spring, this requires reading an XML configuration
file, then casting instances to the specific types you want:

172 | Chapter 6: Objects

val cm = new ConfigurationManager("config.xml")

// instance of Recognizer

val recognizer = cm.lookup("recognizer").asInstanceOf[Recognizer]

// instance of Microphone

val microphone = cm.lookup("microphone").asInstanceOf[Microphone]

The asInstanceOf method isn’t limited to only these situations. You can use it to cast
numeric types:

scala> val a = 10

a: Int = 10

scala> val b = a.asInstanceOf[Long]

b: Long = 10

scala> val c = a.asInstanceOf[Byte]

c: Byte = 10

It can be used in more complicated code, such as when you need to interact with Java
and send it an array of Object instances:

val objects = Array("a", 1)

val arrayOfObject = objects.asInstanceOf[Array[Object]]

AJavaClass.sendObjects(arrayOfObject)

It’s demonstrated in Chapter 15 like this:

import java.net.{URL, HttpURLConnection}

val connection = (new URL(url)).openConnection.asInstanceOf[HttpURLConnection]

Be aware that as with Java, this type of coding can lead to a ClassCastException, as
demonstrated in this REPL example:

scala> val i = 1

i: Int = 1

scala> i.asInstanceOf[String]

ClassCastException: java.lang.Integer cannot be cast to java.lang.String

As usual, use a try/catch expression to handle this situation.

See Also

• Recipe 2.2, “Converting Between Numeric Types (Casting)”, for more numeric type
casting recipes

• The Any class

• The Sphinx-4 project

6.1. Object Casting | 173

http://bit.ly/14TRvZk
http://bit.ly/15HDPBX

6.2. The Scala Equivalent of Java’s .class

Problem
When an API requires that you pass in a Class, you’d call .class on an object in Java,
but that doesn’t work in Scala.

Solution
Use the Scala classOf method instead of Java’s .class. The following example shows
how to pass a class of type TargetDataLine to a method named DataLine.Info:

val info = new DataLine.Info(classOf[TargetDataLine], null)

By contrast, the same method call would be made like this in Java:

// java

info = new DataLine.Info(TargetDataLine.class, null);

The classOf method is defined in the Scala Predef object and is therefore available in
all classes without requiring an import.

Discussion
This approach also lets you begin with simple reflection techniques. The following REPL
example demonstrates how to access the methods of the String class:

scala> val stringClass = classOf[String]

stringClass: Class[String] = class java.lang.String

scala> stringClass.getMethods

res0: Array[java.lang.reflect.Method] = Array(public boolean

java.lang.String.equals(java.lang.Object), public java.lang.String

(output goes on for a while ...)

See Also

• Oracle’s “Retrieving Class Objects” document

• The Scala Predef object

6.3. Determining the Class of an Object

Problem
Because you don’t have to explicitly declare types with Scala, you may occasionally want
to print the class/type of an object to understand how Scala works, or to debug code.

174 | Chapter 6: Objects

http://bit.ly/1dzQk36
http://bit.ly/11QI0fF

Solution
When you want to learn about the types Scala is automatically assigning on your behalf,
call the getClass method on the object.

For instance, when I was first trying to understand how varargs fields work, I called
getClass on a method argument, and found that the class my method was receiving
varied depending on the situation. Here’s the method declaration:

def printAll(numbers: Int*) {

 println("class: " + numbers.getClass)

}

Calling the printAll method with and without arguments demonstrates the two classes
Scala assigns to the numbers field under the different conditions:

scala> printAll(1, 2, 3)

class scala.collection.mutable.WrappedArray$ofInt

scala> printAll()

class scala.collection.immutable.Nil$

This technique can be very useful when working with something like Scala’s XML li‐
brary, so you can understand which classes you’re working with in different situations.
For instance, the following example shows that the <p> tag contains one child element,
which is of class scala.xml.Text:

scala> val hello = <p>Hello, world</p>

hello: scala.xml.Elem = <p>Hello, world</p>

scala> hello.child.foreach(e => println(e.getClass))

class scala.xml.Text

However, by adding a
 tag inside the <p> tags, there are now three child elements
of two different types:

scala> val hello = <p>Hello,
world</p>

hello: scala.xml.Elem = <p>Hello,
world</p>

scala> hello.child.foreach(e => println(e.getClass))

class scala.xml.Text

class scala.xml.Elem

class scala.xml.Text

When you can’t see information like this in your IDE, using this getClass approach is
very helpful.

6.3. Determining the Class of an Object | 175

Discussion
When I can’t see object types in an IDE, I write little tests like this in the REPL. The
usual pattern is to call getClass on the object of interest, passing in different parameters
to see how things work:

scala> def printClass(c: Any) { println(c.getClass) }

printClass: (c: Any)Unit

scala> printClass(1)

class java.lang.Integer

scala> printClass("yo")

class java.lang.String

In the first example shown in the Solution, the types Scala assigns to the number pa‐
rameter don’t matter too much; it was more a matter of curiosity about how things work.
The actual method looks like the following code, and for my purposes, the only impor‐
tant thing is that each class Scala uses supports a foreach method:

def printAll(numbers: Int*) {

 numbers.foreach(println)

}

As desired, this method can be called with and without parameters:

scala> printAll(1,2,3)

1

2

3

scala> printAll()

(no output)

6.4. Launching an Application with an Object

Problem
You want to start an application with a main method, or provide the entry point for a
script.

Solution
There are two ways to create a launching point for your application: define an object
that extends the App trait, or define an object with a properly defined main method.

For the first solution, define an object that extends the App trait. Using this approach,
the following code creates a simple but complete Scala application:

176 | Chapter 6: Objects

object Hello extends App {

 println("Hello, world")

}

The code in the body of the object is automatically run, just as if it were inside a main
method.

Just save that code to a file named Hello.scala, compile it with scalac, and then run it

with scala, like this:

$ scalac Hello.scala

$ scala Hello

Hello, world

When using this approach, any command-line arguments to your application are im‐
plicitly available through an args object, which is inherited from the App trait. The args
object is an instance of Array[String], just as if you had declared a main method your‐
self. The following code demonstrates how to use the args object:

object Hello extends App {

 if (args.length == 1)

 println(s"Hello, ${args(0)}")

 else

 println("I didn't get your name.")

}

After it’s been compiled, this program yields the following results:

$ scala Hello

I didn't get your name.

$ scala Hello Joe

Hello, Joe

The second approach to launching an application is to manually implement a main
method with the correct signature in an object, in a manner similar to Java:

object Hello2 {

 def main(args: Array[String]) {

 println("Hello, world")

 }

}

This is also a simple but complete application.

Discussion
Note that in both cases, Scala applications are launched from an object, not a class.

I tend to use the App trait for both scripts and larger applications, but you can use either
approach. I recommend reviewing the source code for the App trait to better understand
what it performs. The source code is available from the URL in the See Also section.

6.4. Launching an Application with an Object | 177

The Scaladoc for the App trait currently includes two caveats:

1. It should be noted that this trait is implemented using the DelayedInit function‐
ality, which means that fields of the object will not have been initialized before the
main method has been executed.

2. It should also be noted that the main method will not normally need to be overrid‐
den: the purpose is to turn the whole class body into the “main method.” You should
only choose to override it if you know what you are doing.

See the Scaladoc for the App and DelayedInit traits for more information.

See Also

• The App trait.

• The DelayedInit trait.

• The shell script examples in Chapter 14 demonstrate more examples of the App trait.

6.5. Creating Singletons with object

Problem
You want to create a Singleton object to ensure that only one instance of a class exists.

Solution
Create Singleton objects in Scala with the object keyword. For instance, you might
create a Singleton object to represent something like a keyboard, mouse, or perhaps a
cash register in a pizza restaurant:

object CashRegister {

 def open { println("opened") }

 def close { println("closed") }

}

With CashRegister defined as an object, there can be only one instance of it, and its
methods are called just like static methods on a Java class:

object Main extends App {

 CashRegister.open

 CashRegister.close

}

178 | Chapter 6: Objects

http://bit.ly/1bgzCsJ
http://bit.ly/1anQNpz

This pattern is also common when creating utility methods, such as this DateUtils
object:

import java.util.Calendar

import java.text.SimpleDateFormat

object DateUtils {

 // as "Thursday, November 29"

 def getCurrentDate: String = getCurrentDateTime("EEEE, MMMM d")

 // as "6:20 p.m."

 def getCurrentTime: String = getCurrentDateTime("K:m aa")

 // a common function used by other date/time functions

 private def getCurrentDateTime(dateTimeFormat: String): String = {

 val dateFormat = new SimpleDateFormat(dateTimeFormat)

 val cal = Calendar.getInstance()

 dateFormat.format(cal.getTime())

 }

}

Because these methods are defined in an object instead of a class, they can be called in
the same way as a static method in Java:

scala> DateUtils.getCurrentTime

res0: String = 10:13 AM

scala> DateUtils.getCurrentDate

res1: String = Friday, July 6

Singleton objects also make great reusable messages when using actors. If you have a
number of actors that can all receive start and stop messages, you can create Singletons
like this:

case object StartMessage

case object StopMessage

You can then use those objects as messages that can be sent to actors:

inputValve ! StopMessage

outputValve ! StopMessage

See Chapter 13, Actors and Concurrency, for more examples of this approach.

6.5. Creating Singletons with object | 179

Discussion
In addition to creating objects in this manner, you can give the appearance that a class
has both static and nonstatic methods using an approach known as a “companion
object.” See the following recipe for examples of that approach.

6.6. Creating Static Members with Companion Objects

Problem
You want to create a class that has instance methods and static methods, but unlike Java,
Scala does not have a static keyword.

Solution
Define nonstatic (instance) members in your class, and define members that you want
to appear as “static” members in an object that has the same name as the class, and is in
the same file as the class. This object is known as a companion object.

Using this approach lets you create what appear to be static members on a class (both
fields and methods), as shown in this example:

// Pizza class

class Pizza (var crustType: String) {

 override def toString = "Crust type is " + crustType

}

// companion object

object Pizza {

 val CRUST_TYPE_THIN = "thin"

 val CRUST_TYPE_THICK = "thick"

 def getFoo = "Foo"

}

With the Pizza class and Pizza object defined in the same file (presumably named
Pizza.scala), members of the Pizza object can be accessed just as static members of a
Java class:

println(Pizza.CRUST_TYPE_THIN)

println(Pizza.getFoo)

You can also create a new Pizza instance and use it as usual:

var p = new Pizza(Pizza.CRUST_TYPE_THICK)

println(p)

180 | Chapter 6: Objects

If you’re coming to Scala from a language other than Java, “static”
methods in Java are methods that can be called directly on a class,
without requiring an instance of the class. For instance, here’s an ex‐
ample of a method named increment in a Scala object named
StringUtils:

object StringUtils {

 def increment(s: String) = s.map(c => (c + 1).toChar)

}

Because it’s defined inside an object (not a class), the increment meth‐
od can be called directly on the StringUtils object, without requir‐
ing an instance of StringUtils to be created:

scala> StringUtils.increment("HAL")

res0: String = IBM

In fact, when an object is defined like this without a corresponding
class, you can’t create an instance of it. This line of code won’t compile:

val utils = new StringUtils

Discussion
Although this approach is different than Java, the recipe is straightforward:

• Define your class and object in the same file, giving them the same name.

• Define members that should appear to be “static” in the object.

• Define nonstatic (instance) members in the class.

Accessing private members

It’s also important to know that a class and its companion object can access each other’s
private members. In the following code, the “static” method double in the object can
access the private variable secret of the class Foo:

class Foo {

 private val secret = 2

}

object Foo {

 // access the private class field 'secret'

 def double(foo: Foo) = foo.secret * 2

}

object Driver extends App {

 val f = new Foo

 println(Foo.double(f)) // prints 4

}

6.6. Creating Static Members with Companion Objects | 181

Similarly, in the following code, the instance member printObj can access the private
field obj of the object Foo:

class Foo {

 // access the private object field 'obj'

 def printObj { println(s"I can see ${Foo.obj}") }

}

object Foo {

 private val obj = "Foo's object"

}

object Driver extends App {

 val f = new Foo

 f.printObj

}

6.7. Putting Common Code in Package Objects

Problem
You want to make functions, fields, and other code available at a package level, without
requiring a class or object.

Solution
Put the code you want to make available to all classes within a package in a package object.

By convention, put your code in a file named package.scala in the directory where you
want your code to be available. For instance, if you want your code to be available to all
classes in the com.alvinalexander.myapp.model package, create a file named
package.scala in the com/alvinalexander/myapp/model directory of your project.

In the package.scala source code, remove the word model from the end of the package
statement, and use that name to declare the name of the package object. Including a
blank line, the first three lines of your file will look like this:

package com.alvinalexander.myapp

package object model {

Now write the rest of your code as you normally would. The following example shows
how to create a field, method, enumeration, and type definition in your package object:

package com.alvinalexander.myapp

package object model {

 // field

 val MAGIC_NUM = 42

182 | Chapter 6: Objects

 // method

 def echo(a: Any) { println(a) }

 // enumeration

 object Margin extends Enumeration {

 type Margin = Value

 val TOP, BOTTOM, LEFT, RIGHT = Value

 }

 // type definition

 type MutableMap[K, V] = scala.collection.mutable.Map[K, V]

 val MutableMap = scala.collection.mutable.Map

}

You can now access this code directly from within other classes, traits, and objects in
the package com.alvinalexander.myapp.model as shown here:

package com.alvinalexander.myapp.model

object MainDriver extends App {

 // access our method, constant, and enumeration

 echo("Hello, world")

 echo(MAGIC_NUM)

 echo(Margin.LEFT)

 // use our MutableMap type (scala.collection.mutable.Map)

 val mm = MutableMap("name" -> "Al")

 mm += ("password" -> "123")

 for ((k,v) <- mm) printf("key: %s, value: %s\n", k, v)

}

Discussion
The most confusing part about package objects is where to put them, along with what
their package and object names should be.

Where to put them isn’t too hard; by convention, create a file named package.scala in
the directory where you want your code to be available. In the example shown, I want
the package code to be available in the com.alvinalexander.myapp.model package, so
I put the file package.scala in the com/alvinalexander/myapp/model source code direc‐
tory:

+-- com

 +-- alvinalexander

 +-- myapp

 +-- model

 +-- package.scala

6.7. Putting Common Code in Package Objects | 183

In regards to the first few lines of the package.scala source code, simply start with the
usual name of the package:

package com.alvinalexander.myapp.model

Then take the name of the last package level (model) off that statement, leaving you with
this:

package com.alvinalexander.myapp

Then use that name (model) as the name of your package object:

package object model {

As shown earlier, the first several lines of your package.scala file will look like this:

package com.alvinalexander.myapp

package object model {

The Scala package object documentation states, “Any kind of definition that you can
put inside a class, you can also put at the top level of a package.” In my experience,
package objects are a great place to put methods and functions that are common to the
package, as well as constants, enumerations, and implicit conversions.

As described in the second page of the Scala package object documentation, “The stan‐
dard Scala package also has its package object. Because scala._ is automatically im‐
ported into every Scala file, the definitions of this object are available without prefix.”
If you create something like a StringBuilder or Range, you’re using this code.

See Also
Scala’s root package object is full of type aliases, like these:

type Throwable = java.lang.Throwable

type Exception = java.lang.Exception

type Error = java.lang.Error

type RuntimeException = java.lang.RuntimeException

type NullPointerException = java.lang.NullPointerException

type ClassCastException = java.lang.ClassCastException

Like the Predef object, its source code is worth looking at if you want to know more
about how Scala works. You can find its source by following the “source” link on its
Scaladoc page.

• An introduction to package objects

• The Scala package object

184 | Chapter 6: Objects

http://bit.ly/14OaFQi
http://bit.ly/1anQR8M
http://bit.ly/13lmCc9
http://bit.ly/14OaFQi
http://bit.ly/1anQR8M

6.8. Creating Object Instances Without Using the new
Keyword

Problem
You’ve seen that Scala code looks cleaner when you don’t always have to use the new
keyword to create a new instance of a class, like this:

val a = Array(Person("John"), Person("Paul"))

So you want to know how to write your code to make your classes work like this.

Solution
There are two ways to do this:

• Create a companion object for your class, and define an apply method in the com‐
panion object with the desired constructor signature.

• Define your class as a case class.

You’ll look at both approaches next.

Creating a companion object with an apply method

To demonstrate the first approach, define a Person class and Person object in the same
file. Define an apply method in the object that takes the desired parameters. This meth‐
od is essentially the constructor of your class:

class Person {

 var name: String = _

}

object Person {

 def apply(name: String): Person = {

 var p = new Person

 p.name = name

 p

 }

}

Given this definition, you can create new Person instances without using the new key‐
word, as shown in these examples:

val dawn = Person("Dawn")

val a = Array(Person("Dan"), Person("Elijah"))

The apply method in a companion object is treated specially by the Scala compiler and
lets you create new instances of your class without requiring the new keyword. (More
on this in the Discussion.)

6.8. Creating Object Instances Without Using the new Keyword | 185

Declare your class as a case class

The second solution to the problem is to declare your class as a case class, defining it
with the desired constructor:

case class Person (var name: String)

This approach also lets you create new class instances without requiring the new key‐
word:

val p = Person("Fred Flinstone")

With case classes, this works because the case class generates an apply method in a
companion object for you. However, it’s important to know that a case class creates much
more code for you than just the apply method. This is discussed in depth in the Dis‐
cussion.

Discussion
An apply method defined in the companion object of a class is treated specially by the
Scala compiler. There is essentially a little syntactic sugar baked into Scala that converts
this code:

val p = Person("Fred Flinstone")

into this code:

val p = Person.apply("Fred Flinstone")

The apply method is basically a factory method, and Scala’s little bit of syntactic sugar
lets you use the syntax shown, creating new class instances without using the new key‐
word.

Providing multiple constructors with additional apply methods

To create multiple constructors when manually defining your own apply method, just
define multiple apply methods in the companion object that provide the constructor
signatures you want:

class Person {

 var name = ""

 var age = 0

}

object Person {

 // a one-arg constructor

 def apply(name: String): Person = {

 var p = new Person

 p.name = name

 p

 }

186 | Chapter 6: Objects

 // a two-arg constructor

 def apply(name: String, age: Int): Person = {

 var p = new Person

 p.name = name

 p.age = age

 p

 }

}

You can now create a new Person instance in these ways:

val fred = Person("Fred")

val john = Person("John", 42)

I’m using the term “constructor” loosely here, but each apply method does define a
different way to construct an instance.

Providing multiple constructors for case classes

To provide multiple constructors for a case class, it’s important to know what the
case class declaration actually does.

If you look at the code the Scala compiler generates for the case class example, you’ll see
that see it creates two output files, Person$.class and Person.class. If you disassemble

Person$.class with the javap command, you’ll see that it contains an apply method,
along with many others:

$ javap Person$

Compiled from "Person.scala"

public final class Person$ extends scala.runtime.AbstractFunction1

implements scala.ScalaObject,scala.Serializable{

 public static final Person$ MODULE$;

 public static {};

 public final java.lang.String toString();

 public scala.Option unapply(Person);

 public Person apply(java.lang.String); // the apply method (returns a Person)

 public java.lang.Object readResolve();

 public java.lang.Object apply(java.lang.Object);

}

You can also disassemble Person.class to see what it contains. For a simple class like this,
it contains an additional 20 methods; this hidden bloat is one reason some developers
don’t like case classes.

See Recipe 4.14, “Generating Boilerplate Code with Case Classes”, for
a thorough discussion of what code is generated for case classes, and
why.

Note that the apply method in the disassembled code accepts one String argument:

6.8. Creating Object Instances Without Using the new Keyword | 187

public Person apply(java.lang.String);

That String corresponds to the name field in your case class constructor:

case class Person (var name: String)

So, it’s important to know that when a case class is created, it writes the accessor and
(optional) mutator methods only for the default constructor. As a result, (a) it’s best to
define all class parameters in the default constructor, and (b) write apply methods for
the auxiliary constructors you want.

This is demonstrated in the following code, which I place in a file named Person.scala:

// want accessor and mutator methods for the name and age fields

case class Person (var name: String, var age: Int)

// define two auxiliary constructors

object Person {

 def apply() = new Person("<no name>", 0)

 def apply(name: String) = new Person(name, 0)

}

Because name and age are declared as var fields, accessor and mutator methods will
both be generated. Also, two apply methods are declared in the object: a no-args con‐
structor, and a one-arg constructor.

As a result, you can create instances of your class in three different ways, as demonstrated
in the following code:

object Test extends App {

 val a = Person()

 val b = Person("Al")

 val c = Person("William Shatner", 82)

 println(a)

 println(b)

 println(c)

 // test the mutator methods

 a.name = "Leonard Nimoy"

 a.age = 82

 println(a)

}

Running this test object results in the following output:

Person(<no name>,0)

Person(Al,0)

Person(William Shatner,82)

Person(Leonard Nimoy,82)

188 | Chapter 6: Objects

For more information on case classes, see Recipe 4.14, “Generating Boilerplate Code
with Case Classes”.

6.9. Implement the Factory Method in Scala with apply

Problem
To let subclasses declare which type of object should be created, and to keep the object
creation point in one location, you want to implement the factory method in Scala.

Solution
One approach to this problem is to take advantage of how a Scala companion object’s
apply method works. Rather than creating a “get” method for your factory, you can
place the factory’s decision-making algorithm in the apply method.

For instance, suppose you want to create an Animal factory that returns instances of Cat
and Dog classes, based on what you ask for. By writing an apply method in the com‐
panion object of an Animal class, users of your factory can create new Cat and Dog
instances like this:

val cat = Animal("cat") // creates a Cat

val dog = Animal("dog") // creates a Dog

To implement this behavior, create a parent Animal trait:

trait Animal {

 def speak

}

In the same file, create (a) a companion object, (b) the classes that extend the base trait,
and (c) a suitable apply method:

object Animal {

 private class Dog extends Animal {

 override def speak { println("woof") }

 }

 private class Cat extends Animal {

 override def speak { println("meow") }

 }

 // the factory method

 def apply(s: String): Animal = {

 if (s == "dog") new Dog

 else new Cat

 }

}

6.9. Implement the Factory Method in Scala with apply | 189

This lets you run the desired code:

val cat = Animal("cat") // returns a Cat

val dog = Animal("dog") // returns a Dog

You can test this by pasting the Animal trait and object into the REPL, and then issuing
these statements:

scala> val cat = Animal("cat")

cat: Animal = Animal$Cat@486f8860

scala> cat.speak

meow

scala> val dog = Animal("dog")

dog: Animal = Animal$Dog@412798c1

scala> dog.speak

woof

As you can see, this approach works as desired.

Discussion
You have a variety of ways to implement this solution, so experiment with different
approaches, in particular how you want to make the Cat and Dog classes accessible. The
idea of the factory method is to make sure that concrete instances can only be created
through the factory; therefore, the class constructors should be hidden from all other
classes. The code here shows one possible solution to this problem.

If you don’t like using the apply method as the factory interface, you can create the usual
“get” method in the companion object, as shown in the getAnimal method here:

// an alternative factory method (use one or the other)

def getAnimal(s: String): Animal = {

 if (s == "dog") return new Dog

 else return new Cat

}

Using this method instead of the apply method, you now create new Animal instances
like this:

val cat = Animal.getAnimal("cat") // returns a Cat

val dog = Animal.getAnimal("dog") // returns a Dog

Either approach is fine; consider this recipe as a springboard for your own solution.

See Also

Recipe 6.8 for more examples of implementing the apply method

190 | Chapter 6: Objects

CHAPTER 7

Packaging and Imports

Introduction
Scala’s packaging approach is similar to Java, but it’s more flexible. In addition to using
the package statement at the top of a class file, you can use a curly brace packaging style,
similar to C++ and C# namespaces.

The Scala approach to importing members is also similar to Java, and more flexible.
With Scala you can:

• Place import statements anywhere

• Import classes, packages, or objects

• Hide and rename members when you import them

All of these approaches are demonstrated in this chapter.

It’s helpful to know that in Scala, two packages are implicitly imported for you:

• java.lang._

• scala._

In Scala, the _ character is similar to the * character in Java, so these statements refer to
every member in those packages.

In addition to those packages, all members from the scala.Predef object are imported
into your applications implicitly.

A great suggestion from the book Beginning Scala by David Pollak (Apress), is to dig
into the source code of the Predef object. The code isn’t too long, and it demonstrates
many of the features of the Scala language. Many implicit conversions are brought into

191

http://bit.ly/11QI0fF

scope by the Predef object, as well as methods like println, readLine, assert, and
require.

7.1. Packaging with the Curly Braces Style Notation

Problem
You want to use a nested style package notation, similar to the namespace notation in
C++ and C#.

Solution
Wrap one or more classes in a set of curly braces with a package name, as shown in this
example:

package com.acme.store {

 class Foo { override def toString = "I am com.acme.store.Foo" }

}

The canonical name of the class is com.acme.store.Foo. It’s just as though you declared
the code like this:

package com.acme.store

class Foo { override def toString = "I am com.acme.store.Foo" }

With this approach, you can place multiple packages in one file. You can also nest pack‐
ages using this “curly braces” style.

The following example creates three Foo classes, all of which are in different packages,
to demonstrate how to include one package inside another:

// a package containing a class named Foo

package orderentry {

 class Foo { override def toString = "I am orderentry.Foo" }

}

// one package nested inside the other

package customers {

 class Foo { override def toString = "I am customers.Foo" }

 package database {

 // this Foo is different than customers.Foo or orderentry.Foo

 class Foo { override def toString = "I am customers.database.Foo" }

 }

}

// a simple object to test the packages and classes

object PackageTests extends App {

 println(new orderentry.Foo)

192 | Chapter 7: Packaging and Imports

 println(new customers.Foo)

 println(new customers.database.Foo)

}

If you place this code in a file, and then compile and run it, you’ll get the following
output:

I am orderentry.Foo

I am customers.Foo

I am customers.database.Foo

This demonstrates that each Foo class is indeed in a different package.

As shown in the first example, package names don’t have to be limited to just one level.
You can define multiple levels of depth at one time:

package com.alvinalexander.foo {

 class Foo { override def toString = "I am com.alvinalexander.foo.Foo" }

}

Discussion
You can create Scala packages with the usual Java practice of declaring a package name
at the top of the file:

package foo.bar.baz

class Foo {

 override def toString = "I'm foo.bar.baz.Foo"

}

In most cases, I use this packaging approach, but because Scala code can be much more
concise than Java, the alternative curly brace packaging syntax can be very convenient
when you want to declare multiple classes and packages in one file.

7.2. Importing One or More Members

Problem
You want to import one or more members into the scope of your current program.

Solution
This is the syntax for importing one class:

import java.io.File

You can import multiple classes the Java way:

7.2. Importing One or More Members | 193

import java.io.File

import java.io.IOException

import java.io.FileNotFoundException

Or you can import several classes the Scala way:

import java.io.{File, IOException, FileNotFoundException}

Use the following syntax to import everything from the java.io package:

import java.io._

The _ character in this example is similar to the * wildcard character in Java. If the _
character feels unusual, it helps to know that it’s used consistently throughout the Scala
language as a wildcard character, and that consistency is very nice.

Discussion
The concept of importing code into the current scope is similar between Java and Scala,
but Scala is more flexible. Scala lets you:

• Place import statements anywhere, including the top of a class, within a class or
object, within a method, or within a block of code

• Import classes, packages, or objects

• Hide and rename members when you import them

Syntactically, the two big differences are the curly brace syntax, known as the import
selector clause, and the use of the _ wildcard character instead of Java’s * wildcard. The
advantages of the import selector clause are demonstrated further in Recipes 7.3 and 7.4.

Placing import statements anywhere

In Scala you can place an import statement anywhere. For instance, because Scala makes
it easy to include multiple classes in the same file, you may want to separate your import
statements so the common imports are declared at the top of the file, and the imports
specific to each class are within each class specification:

package foo

import java.io.File

import java.io.PrintWriter

class Foo {

 import javax.swing.JFrame // only visible in this class

 // ...

}

class Bar {

 import scala.util.Random // only visible in this class

194 | Chapter 7: Packaging and Imports

 // ...

}

You can also place import statements inside methods, functions, or blocks:

class Bar {

 def doBar = {

 import scala.util.Random

 println("")

 }

}

See Recipe 7.6, “Using Import Statements Anywhere”, for more examples and details
about the use of import statements.

7.3. Renaming Members on Import

Problem
You want to rename members when you import them to help avoid namespace collisions
or confusion.

Solution
Give the class you’re importing a new name when you import it with this syntax:

import java.util.{ArrayList => JavaList}

Then, within your code, refer to the class by the alias you’ve given it:

val list = new JavaList[String]

You can also rename multiple classes at one time during the import process:

import java.util.{Date => JDate, HashMap => JHashMap}

Because you’ve created these aliases during the import process, the original (real) name
of the class can’t be used in your code. For instance, in the last example, the following
code will fail because the compiler can’t find the java.util.HashMap class:

// error: this won't compile because HashMap was renamed

// during the import process

val map = new HashMap[String, String]

Discussion
As shown, you can create a new name for a class when you import it, and can then refer
to it by the new name, or alias. The book Programming in Scala, by Odersky, et al
(Artima). The book refers to this as a renaming clause.

7.3. Renaming Members on Import | 195

This can be very helpful when trying to avoid namespace collisions and confusion. Class
names like Listener, Message, Handler, Client, Server, and many more are all very
common, and it can be helpful to give them an alias when you import them.

From a strategy perspective, you can either rename all classes that might be conflicting
or confusing:

import java.util.{HashMap => JavaHashMap}

import scala.collection.mutable.{Map => ScalaMutableMap}

or you can just rename one class to clarify the situation:

import java.util.{HashMap => JavaHashMap}

import scala.collection.mutable.Map

As an interesting combination of several recipes, not only can you rename classes on
import, but you can even rename class members. As an example of this, in shell scripts
I tend to rename the println method to a shorter name, as shown here in the REPL:

scala> import System.out.{println => p}

import System.out.{println=>p}

scala> p("hello")

hello

7.4. Hiding a Class During the Import Process

Problem
You want to hide one or more classes while importing other members from the same
package.

Solution
To hide a class during the import process, use the renaming syntax shown in Recipe 7.3,
“Renaming Members on Import”, but point the class name to the _ wildcard character.
The following example hides the Random class, while importing everything else from the
java.util package:

import java.util.{Random => _, _}

This can be confirmed in the REPL:

scala> import java.util.{Random => _, _}

import java.util.{Random=>_, _}

// can't access Random

scala> val r = new Random

<console>:10: error: not found: type Random

 val r = new Random

 ^

196 | Chapter 7: Packaging and Imports

// can access other members

scala> new ArrayList

res0: java.util.ArrayList[Nothing] = []

In that example, the following portion of the code is what “hides” the Random class:

import java.util.{Random => _}

The second _ character inside the curly braces is the same as stating that you want to
import everything else in the package, like this:

import java.util._

Note that the _ import wildcard must be in the last position. It yields an error if you
attempt to use it in other positions:

scala> import java.util.{_, Random => _}

<console>:1: error: Wildcard import must be in last position

 import java.util.{_, Random => _}

 ^

This is because you may want to hide multiple members during the import process, and
to do, so you need to list them first.

To hide multiple members, list them before using the final wildcard import:

scala> import java.util.{List => _, Map => _, Set => _, _}

import java.util.{List=>_, Map=>_, Set=>_, _}

scala> new ArrayList

res0: java.util.ArrayList[Nothing] = []

This ability to hide members on import is useful when you need many members from
one package, and therefore want to use the _ wildcard syntax, but you also want to hide
one or more members during the import process, typically due to naming conflicts.

7.5. Using Static Imports

Problem
You want to import members in a way similar to the Java static import approach, so you
can refer to the member names directly, without having to prefix them with their class
name.

Solution
Use this syntax to import all members of the Java Math class:

import java.lang.Math._

You can now access these members without having to precede them with the class name:

7.5. Using Static Imports | 197

scala> import java.lang.Math._

import java.lang.Math._

scala> val a = sin(0)

a: Double = 0.0

scala> val a = cos(PI)

a: Double = −1.0

The Java Color class also demonstrates the usefulness of this technique:

scala> import java.awt.Color._

import java.awt.Color._

scala> println(RED)

java.awt.Color[r=255,g=0,b=0]

scala> val currentColor = BLUE

currentColor: java.awt.Color = java.awt.Color[r=0,g=0,b=255]

Enumerations are another great candidate for this technique. Given a Java enum like this:

package com.alvinalexander.dates;

public enum Day {

 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY

}

you can import and use this enumeration in a Scala program like this:

import com.alvinalexander.dates.Day._

// somewhere after the import statement

if (date == SUNDAY || date == SATURDAY) println("It's the weekend.")

Discussion
Although some developers don’t like static imports, I find that this approach makes
enums more readable. Just specifying the name of a class or enum before the constant
makes the code less readable:

if (date == Day.SUNDAY || date == Day.SATURDAY) {

 println("It's the weekend.")

}

With the static import approach there’s no need for the leading “Day.” in the code, and
it’s easier to read.

198 | Chapter 7: Packaging and Imports

7.6. Using Import Statements Anywhere

Problem
You want to use an import statement anywhere, generally to limit the scope of the import,
to make the code more clear, or to organize your code.

Solution
You can place an import statement almost anywhere inside a program. As with Java,
you can import members at the top of a class definition, and then use the imported
resource later in your code:

package foo

import scala.util.Random

class ImportTests {

 def printRandom {

 val r = new Random

 }

}

You can import members inside a class:

package foo

class ImportTests {

 import scala.util.Random

 def printRandom {

 val r = new Random

 }

}

This limits the scope of the import to the code in the class that comes after the import
statement.

You can limit the scope of an import to a method:

def getRandomWaitTimeInMinutes: Int = {

 import com.alvinalexander.pandorasbox._

 val p = new Pandora

 p.release

}

You can even place an import statement inside a block, limiting the scope of the import
to only the code that follows the statement, inside that block. In the following example,
the field r1 is declared correctly, because it’s within the block and after the import state‐
ment, but the declaration for field r2 won’t compile, because the Random class is not in
scope at that point:

7.6. Using Import Statements Anywhere | 199

def printRandom {

 {

 import scala.util.Random

 val r1 = new Random // this is fine

 }

 val r2 = new Random // error: not found: type Random

}

Discussion
Import statements are read in the order of the file, so where you place them in a file also
limits their scope. The following code won’t compile because I attempt to reference the
Random class before the import statement is declared:

// this doesn't work because the import is after the attempted reference

class ImportTests {

 def printRandom {

 val r = new Random // fails

 }

}

import scala.util.Random

When you want to include multiple classes and packages in one file, you can combine
import statements and the curly brace packaging approach to limit the scope of the
import statements, as shown in these examples:

package orderentry {

 import foo._

 // more code here ...

}

package customers {

 import bar._

 // more code here ...

 package database {

 import baz._

 // more code here ...

 }

}

In this example, members can be accessed as follows:

• Code in the orderentry package can access members of foo, but can’t access mem‐
bers of bar or baz.

• Code in customers and customers.database can’t access members of foo.

• Code in customers can access members of bar.

• Code in customers.database can access members in bar and baz.

200 | Chapter 7: Packaging and Imports

The same concept applies when defining multiple classes in one file:

package foo

// available to all classes defined below

import java.io.File

import java.io.PrintWriter

class Foo {

 // only available inside this class

 import javax.swing.JFrame

 // ...

}

class Bar {

 // only available inside this class

 import scala.util.Random

 // ...

}

Although placing import statements at the top of a file or just before they’re used can
be a matter of style, I find this flexibility to be useful when placing multiple classes or
packages in one file. In these cases, it’s nice to keep the imports in a small scope to limit
namespace issues, and also to make the code easier to refactor as it grows.

7.6. Using Import Statements Anywhere | 201

CHAPTER 8

Traits

Introduction
In its most basic use, a Scala trait is just like a Java interface. When you’re faced with
situations where you would have used an interface in Java, just think “trait” in Scala.

Just as Java classes can implement multiple interfaces, Scala classes can extend multiple
traits. As you’ll see in the recipes in this chapter, this is done with the extends and with
keywords, so when a class (or object) extends multiple traits, you’ll see code like this:

class Woodpecker extends Bird with TreeScaling with Pecking

However, using traits as interfaces only scratches the surface of what they can do. Traits
have much more power than Java interfaces because, just like abstract methods in Java,
they can also have implemented methods. However, unlike Java’s abstract classes, you
can mix more than one trait into a class, and a trait can also control what classes it can
be mixed into.

This chapter provides examples of the many uses of Scala traits.

8.1. Using a Trait as an Interface

Problem
You’re used to creating interfaces in other languages like Java and want to create some‐
thing like that in Scala.

Solution
You can use a trait just like a Java interface. As with interfaces, just declare the methods
in your trait that you want extending classes to implement:

203

trait BaseSoundPlayer {

 def play

 def close

 def pause

 def stop

 def resume

}

If the methods don’t take any argument, you only need to declare the names of the
methods after the def keyword, as shown. If a method should require parameters, list
them as usual:

trait Dog {

 def speak(whatToSay: String)

 def wagTail(enabled: Boolean)

}

When a class extends a trait, it uses the extends and with keywords. When extending
one trait, use extends:

class Mp3SoundPlayer extends BaseSoundPlayer { ...

When extending a class and one or more traits, use extends for the class, and with for
subsequent traits:

class Foo extends BaseClass with Trait1 with Trait2 { ...

When a class extends multiple traits, use extends for the first trait, and with for sub‐
sequent traits:

class Foo extends Trait1 with Trait2 with Trait3 with Trait4 { ...

Unless the class implementing a trait is abstract, it must implement all of the abstract
trait methods:

class Mp3SoundPlayer extends BaseSoundPlayer {

 def play { // code here ... }

 def close { // code here ... }

 def pause { // code here ... }

 def stop { // code here ... }

 def resume { // code here ... }

}

If a class extends a trait but does not implement the abstract methods defined in that
trait, it must be declared abstract:

// must be declared abstract because it does not implement

// all of the BaseSoundPlayer methods

abstract class SimpleSoundPlayer extends BaseSoundPlayer {

 def play { ... }

 def close { ... }

}

In other uses, one trait can extend another trait:

204 | Chapter 8: Traits

trait Mp3BaseSoundFilePlayer extends BaseSoundFilePlayer {

 def getBasicPlayer: BasicPlayer

 def getBasicController: BasicController

 def setGain(volume: Double)

}

Discussion
As demonstrated, at their most basic level, traits can be used just like Java interfaces. In
your trait, just declare the methods that need to be implemented by classes that want to
extend your trait.

Classes extend your trait using either the extends or with keywords, according to these
simple rules:

• If a class extends one trait, use the extends keyword.

• If a class extends multiple traits, use extends for the first trait and with to extend
(mix in) the other traits.

• If a class extends a class (or abstract class) and a trait, always use extends before
the class name, and use with before the trait name(s).

You can also use fields in your traits. See the next recipe for examples.

As shown in the WaggingTail trait in the following example, not only can a trait be used
like a Java interface, but it can also provide method implementations, like an abstract
class in Java:

abstract class Animal {

 def speak

}

trait WaggingTail {

 def startTail { println("tail started") }

 def stopTail { println("tail stopped") }

}

trait FourLeggedAnimal {

 def walk

 def run

}

class Dog extends Animal with WaggingTail with FourLeggedAnimal {

 // implementation code here ...

 def speak { println("Dog says 'woof'") }

 def walk { println("Dog is walking") }

 def run { println("Dog is running") }

}

This ability is discussed in detail in Recipe 8.3, “Using a Trait Like an Abstract Class”.

8.1. Using a Trait as an Interface | 205

When a class has multiple traits, such as the WaggingTail and FourLeggedAnimal traits
in this example, those traits are said to be mixed in to the class. The term “mixed in” is
also used when extending a single object instance with a trait, like this:

val f = new Foo with Trait1

This feature is discussed more in Recipe 8.8, “Adding a Trait to an Object Instance”.

8.2. Using Abstract and Concrete Fields in Traits

Problem
You want to put abstract or concrete fields in your traits so they are declared in one
place and available to all types that implement the trait.

Solution
Define a field with an initial value to make it concrete; otherwise, don’t assign it an initial
value to make it abstract. This trait shows several examples of abstract and concrete
fields with var and val types:

trait PizzaTrait {

 var numToppings: Int // abstract

 var size = 14 // concrete

 val maxNumToppings = 10 // concrete

}

In the class that extends the trait, you’ll need to define the values for the abstract fields,
or make the class abstract. The following Pizza class demonstrates how to set the values
for the numToppings and size fields in a concrete class:

class Pizza extends PizzaTrait {

 var numToppings = 0 // 'override' not needed

 size = 16 // 'var' and 'override' not needed

}

Discussion
As shown in the example, fields of a trait can be declared as either var or val. You don’t
need to use the override keyword to override a var field in a subclass (or trait), but you
do need to use it to override a val field:

trait PizzaTrait {

 val maxNumToppings: Int

}

class Pizza extends PizzaTrait {

 override val maxNumToppings = 10 // 'override' is required

}

206 | Chapter 8: Traits

Overriding var and val fields is discussed more in Recipe 4.13, “Defining Properties in
an Abstract Base Class (or Trait)”.

8.3. Using a Trait Like an Abstract Class

Problem
You want to use a trait as something like an abstract class in Java.

Solution
Define methods in your trait just like regular Scala methods. In the class that extends
the trait, you can override those methods or use them as they are defined in the trait.

In the following example, an implementation is provided for the speak method in the
Pet trait, so implementing classes don’t have to override it. The Dog class chooses not
to override it, whereas the Cat class does:

trait Pet {

 def speak { println("Yo") } // concrete implementation

 def comeToMaster // abstract method

}

class Dog extends Pet {

 // don't need to implement 'speak' if you don't need to

 def comeToMaster { ("I'm coming!") }

}

class Cat extends Pet {

 // override the speak method

 override def speak { ("meow") }

 def comeToMaster { ("That's not gonna happen.") }

}

If a class extends a trait without implementing its abstract methods, it must be defined
as abstract. Because FlyingPet does not implement comeToMaster, it must be declared
as abstract:

abstract class FlyingPet extends Pet {

 def fly { ("I'm flying!") }

}

Discussion
Although Scala has abstract classes, it’s much more common to use traits than abstract
classes to implement base behavior. A class can extend only one abstract class, but it can
implement multiple traits, so using traits is more flexible.

8.3. Using a Trait Like an Abstract Class | 207

See Also

• Like Java, you use super.foo to call a method named foo in an immediate super‐
class. When a class mixes in multiple traits—and those traits implement a method
declared by a common ancestor—you can be more specific, and specify which trait
you’d like to invoke a method on. See Recipe 5.2, “Calling a Method on a Super‐
class”, for more information.

• See Recipe 4.12, “When to Use an Abstract Class”, for information on when to use
an abstract class instead of a trait. (Spoiler: Use an abstract class (a) when you want
to define a base behavior, and that behavior requires a constructor with parameters,
and (b) in some situations when you need to interact with Java.)

8.4. Using Traits as Simple Mixins

Problem
You want to design a solution where multiple traits can be mixed into a class to provide
a robust design.

Solution
To implement a simple mixin, define the methods you want in your trait, then add the
trait to your class using extends or with. For instance, the following code defines a Tail
trait:

trait Tail {

 def wagTail { println("tail is wagging") }

 def stopTail { println("tail is stopped") }

}

You can use this trait with an abstract Pet class to create a Dog:

abstract class Pet (var name: String) {

 def speak // abstract

 def ownerIsHome { println("excited") }

 def jumpForJoy { println("jumping for joy") }

}

class Dog (name: String) extends Pet (name) with Tail {

 def speak { println("woof") }

 override def ownerIsHome {

 wagTail

 speak

 }

}

208 | Chapter 8: Traits

The Dog class extends the abstract class Pet and mixes in the Tail trait, and can use the
methods defined by both Pet and Tail:

object Test extends App {

 val zeus = new Dog("Zeus")

 zeus.ownerIsHome

 zeus.jumpForJoy

}

In summary, the Dog class gets behavior from both the abstract Pet class and the Tail
trait; this is something you can’t do in Java.

To see a great demonstration of the power of mixins, read Artima’s
short “Stackable Trait Pattern” article. By defining traits and classes as
base, core, and stackable components, they demonstrate how sixteen
different classes can be derived from three traits by “stacking” the traits
together.

See Also
When you develop traits, you may want to limit the classes they can be mixed into. The
classes a trait can be mixed into can be limited using the following techniques:

• Recipe 8.5 shows how to limit which classes can use a trait by declaring inheritance.

• Recipe 8.6 shows how to mark traits so they can only be used by subclasses of a
certain type.

• Recipe 8.7 demonstrates the technique to use to make sure a trait can only be mixed
into classes that have a specific method.

• Also, see Artima’s “Stackable Trait Pattern” article.

8.5. Limiting Which Classes Can Use a Trait by Inheritance

Problem
You want to limit a trait so it can only be added to classes that extend a superclass or
another trait.

Solution
Use the following syntax to declare a trait named TraitName, where TraitName can only
be mixed into classes that extend a type named SuperThing, where SuperThing may be
a trait, class, or abstract class:

8.5. Limiting Which Classes Can Use a Trait by Inheritance | 209

http://bit.ly/17fZTma
http://bit.ly/17fZTma

trait [TraitName] extends [SuperThing]

For instance, in the following example, Starship and StarfleetWarpCore both extend
the common superclass StarfleetComponent, so the StarfleetWarpCore trait can be
mixed into the Starship class:

class StarfleetComponent

trait StarfleetWarpCore extends StarfleetComponent

class Starship extends StarfleetComponent with StarfleetWarpCore

However, in the following example, the Warbird class can’t extend the
StarfleetWarpCore trait, because Warbird and StarfleetWarpCore don’t share the
same superclass:

class StarfleetComponent

trait StarfleetWarpCore extends StarfleetComponent

class RomulanStuff

// won't compile

class Warbird extends RomulanStuff with StarfleetWarpCore

Attempting to compile this second example yields this error:

error: illegal inheritance; superclass RomulanStuff

 is not a subclass of the superclass StarfleetComponent

 of the mixin trait StarfleetWarpCore

class Warbird extends RomulanStuff with StarfleetWarpCore

 ^

Discussion
A trait inheriting from a class is not a common occurrence, and in general, Recipes 8.6
and Recipe 8.7 are more commonly used to limit the classes a trait can be mixed into.

However, when this situation occurs, you can see how inheritance can be used. As long
as a class and a trait share the same superclass (Starship and StarfleetWarpCore
extend StarfleetComponent) the code will compile, but if the superclasses are different
(Warbird and StarfleetWarpCore have different superclasses), the code will not com‐
pile.

As a second example, in modeling a large pizza store chain that has a corporate office
and many small retail stores, the legal department creates a rule that people who deliver
pizzas to customers must be a subclass of StoreEmployee and cannot be a subclass of
CorporateEmployee. To enforce this, begin by defining your base classes:

abstract class Employee

class CorporateEmployee extends Employee

class StoreEmployee extends Employee

Someone who delivers food can only be a StoreEmployee, so you enforce this require‐
ment in the DeliversFood trait using inheritance like this:

210 | Chapter 8: Traits

trait DeliversFood extends StoreEmployee

Now you can define a DeliveryPerson class like this:

// this is allowed

class DeliveryPerson extends StoreEmployee with DeliversFood

Because the DeliversFood trait can only be mixed into classes that extend
StoreEmployee, the following line of code won’t compile:

// won't compile

class Receptionist extends CorporateEmployee with DeliversFood

Discussion
It seems rare that a trait and a class the trait will be mixed into should both have the
same superclass, so I suspect the need for this recipe is also rare. When you want to limit
the classes a trait can be mixed into, don’t create an artificial inheritance tree to use this
recipe; use one of the following recipes instead.

See Also

• Recipe 8.6 to see how to mark traits so they can only be used by subclasses of a
certain type

• Recipe 8.7 to make sure a trait can only be mixed into a class that has a specific
method

8.6. Marking Traits So They Can Only Be Used by
Subclasses of a Certain Type

Problem
You want to mark your trait so it can only be used by types that extend a given base type.

Solution
To make sure a trait named MyTrait can only be mixed into a class that is a subclass of
a type named BaseType, begin your trait with a this: BaseType => declaration, as
shown here:

trait MyTrait {

 this: BaseType =>

For instance, to make sure a StarfleetWarpCore can only be used in a Starship, mark
the StarfleetWarpCore trait like this:

8.6. Marking Traits So They Can Only Be Used by Subclasses of a Certain Type | 211

trait StarfleetWarpCore {

 this: Starship =>

 // more code here ...

}

Given that declaration, this code will work:

class Starship

class Enterprise extends Starship with StarfleetWarpCore

But other attempts like this will fail:

class RomulanShip

// this won't compile

class Warbird extends RomulanShip with StarfleetWarpCore

This second example fails with an error message similar to this:

error: illegal inheritance;

self-type Warbird does not conform to StarfleetWarpCore's selftype

StarfleetWarpCore with Starship

class Warbird extends RomulanShip with StarfleetWarpCore

 ^

Discussion
As shown in the error message, this approach is referred to as a self type. The Scala
Glossary includes this statement as part of its description of a self type:

“Any concrete class that mixes in the trait must ensure that its type conforms to the trait’s
self type.”

A trait can also require that any type that wishes to extend it must extend multiple other
types. The following WarpCore definition requires that any type that wishes to mix it in
must extend WarpCoreEjector and FireExtinguisher, in addition to extending
Starship:

trait WarpCore {

 this: Starship with WarpCoreEjector with FireExtinguisher =>

}

Because the following Enterprise definition matches that signature, this code compiles:

class Starship

trait WarpCoreEjector

trait FireExtinguisher

// this works

class Enterprise extends Starship

 with WarpCore

 with WarpCoreEjector

 with FireExtinguisher

212 | Chapter 8: Traits

http://bit.ly/15xVIAX
http://bit.ly/15xVIAX

However, if the Enterprise doesn’t extend Starship, WarpCoreEjector, and
FireExtinguisher, the code won’t compile. Once again, the compiler shows that the
self-type signature is not correct:

// won't compile

class Enterprise extends Starship with WarpCore with WarpCoreEjector

error: illegal inheritance;

self-type Enterprise does not conform to WarpCore's selftype WarpCore

with Starship with WarpCoreEjector with FireExtinguisher

class Enterprise extends Starship with WarpCore with WarpCoreEjector

 ^

See Also

• Recipe 8.5 shows how to limit which classes can use a trait by declaring inheritance

• Recipe 8.7 demonstrates the technique to use to make sure a trait can only be mixed
into classes that have a specific method

• The Scala Glossary

8.7. Ensuring a Trait Can Only Be Added to a Type That Has
a Specific Method

Problem
You only want to allow a trait to be mixed into a type (class, abstract class, or trait) that
has a method with a given signature.

Solution
Use a variation of the self-type syntax that lets you declare that any class that attempts
to mix in the trait must implement the method you specify.

In the following example, the WarpCore trait requires that any classes that attempt to
mix it in must have an ejectWarpCore method:

trait WarpCore {

 this: { def ejectWarpCore(password: String): Boolean } =>

}

It further states that the ejectWarpCore method must accept a String argument and
return a Boolean value.

8.7. Ensuring a Trait Can Only Be Added to a Type That Has a Specific Method | 213

http://bit.ly/15xVIAX

The following definition of the Enterprise class meets these requirements, and will
therefore compile:

class Starship {

 // code here ...

}

class Enterprise extends Starship with WarpCore {

 def ejectWarpCore(password: String): Boolean = {

 if (password == "password") {

 println("ejecting core")

 true

 } else {

 false

 }

 }

}

A trait can also require that a class have multiple methods. To require more than one
method, just add the additional method signatures inside the block:

trait WarpCore {

 this: {

 def ejectWarpCore(password: String): Boolean

 def startWarpCore: Unit

 } =>

}

class Starship

class Enterprise extends Starship with WarpCore {

 def ejectWarpCore(password: String): Boolean = {

 if (password == "password") { println("core ejected"); true } else false

 }

 def startWarpCore { println("core started") }

}

Discussion
This approach is known as a structural type, because you’re limiting what classes the
trait can be mixed into by stating that the class must have a certain structure, i.e., the
methods you’ve defined. In the examples shown, limits were placed on what classes the
WarpCore trait can be mixed into.

See Also

• Recipe 8.5 shows how to limit which classes can use a trait by declaring inheritance.

• Recipe 8.6 shows how to mark traits so they can only be used by subclasses of a
certain type.

214 | Chapter 8: Traits

8.8. Adding a Trait to an Object Instance

Problem
Rather than add a trait to an entire class, you just want to add a trait to an object instance
when the object is created.

Solution
Add the trait to the object when you construct it. This is demonstrated in a simple
example:

class DavidBanner

trait Angry {

 println("You won't like me ...")

}

object Test extends App {

 val hulk = new DavidBanner with Angry

}

When you compile and run this code, it will print, “You won’t like me ...”, because the
hulk object is created when the DavidBanner class is instantiated with the Angry trait,
which has the print statement shown in its constructor.

Discussion
As a more practical matter, you might mix in something like a debugger or logging trait
when constructing an object to help debug that object:

trait Debugger {

 def log(message: String) {

 // do something with message

 }

}

// no debugger

val child = new Child

// debugger added as the object is created

val problemChild = new ProblemChild with Debugger

This makes the log method available to the problemChild instance.

8.8. Adding a Trait to an Object Instance | 215

8.9. Extending a Java Interface Like a Trait

Problem
You want to implement a Java interface in a Scala application.

Solution
In your Scala application, use the extends and with keywords to implement your Java
interfaces, just as though they were Scala traits.

Given these three Java interfaces:

// java

public interface Animal {

 public void speak();

}

public interface Wagging {

 public void wag();

}

public interface Running {

 public void run();

}

you can create a Dog class in Scala with the usual extends and with keywords, just as
though you were using traits:

// scala

class Dog extends Animal with Wagging with Running {

 def speak { println("Woof") }

 def wag { println("Tail is wagging!") }

 def run { println("I'm running!") }

}

The difference is that Java interfaces don’t implement behavior, so if you’re defining a
class that extends a Java interface, you’ll need to implement the methods, or declare the
class abstract.

216 | Chapter 8: Traits

CHAPTER 9

Functional Programming

Introduction
Scala is both an object-oriented programming (OOP) and a functional programming
(FP) language. This chapter demonstrates functional programming techniques, includ‐
ing the ability to define functions and pass them around as instances. Just like you create
a String instance in Java and pass it around, you can define a function as a variable and
pass it around. I’ll demonstrate many examples and advantages of this capability in this
chapter.

As a language that supports functional programming, Scala encourages an expression-
oriented programming (EOP) model. Simply put, in EOP, every statement (expression)
yields a value. This paradigm can be as obvious as an if/else statement returning a
value:

val greater = if (a > b) a else b

It can also be as surprising as a try/catch statement returning a value:

val result = try {

 aString.toInt

} catch {

 case _ => 0

}

Although EOP is casually demonstrated in many examples in this book, it’s helpful to
be consciously aware of this way of thinking in the recipes that follow.

217

http://bit.ly/1b7B6FE
http://bit.ly/1b7B6FE

9.1. Using Function Literals (Anonymous Functions)

Problem
You want to use an anonymous function—also known as a function literal—so you can
pass it into a method that takes a function, or to assign it to a variable.

Solution
Given this List:

val x = List.range(1, 10)

you can pass an anonymous function to the List’s filter method to create a new List
that contains only even numbers:

val evens = x.filter((i: Int) => i % 2 == 0)

The REPL demonstrates that this expression indeed yields a new List of even numbers:

scala> val evens = x.filter((i: Int) => i % 2 == 0)

evens: List[Int] = List(2, 4, 6, 8)

In this solution, the following code is a function literal (also known as an anonymous
function):

(i: Int) => i % 2 == 0

Although that code works, it shows the most explicit form for defining a function literal.
Thanks to several Scala shortcuts, the expression can be simplified to this:

val evens = x.filter(_ % 2 == 0)

In the REPL, you see that this returns the same result:

scala> val evens = x.filter(_ % 2 == 0)

evens: List[Int] = List(2, 4, 6, 8)

Discussion
In this example, the original function literal consists of the following code:

(i: Int) => i % 2 == 0

When examining this code, it helps to think of the => symbol as a transformer, because
the expression transforms the parameter list on the left side of the symbol (an Int named
i) into a new result using the algorithm on the right side of the symbol (in this case, an
expression that results in a Boolean).

As mentioned, this example shows the long form for defining an anonymous function,
which can be simplified in several different ways. The first example shows the most
explicit form:

218 | Chapter 9: Functional Programming

val evens = x.filter((i: Int) => i % 2 == 0)

Because the Scala compiler can infer from the expression that i is an Int, the Int
declaration can be dropped off:

val evens = x.filter(i => i % 2 == 0)

Because Scala lets you use the _ wildcard instead of a variable name when the parameter
appears only once in your function, this code can be simplified even more:

val evens = x.filter(_ % 2 == 0)

In other examples, you can simplify your anonymous functions further. For instance,
beginning with the most explicit form, you can print each element in the list using this
anonymous function with the foreach method:

x.foreach((i:Int) => println(i))

As before, the Int declaration isn’t required:

x.foreach((i) => println(i))

Because there is only one argument, the parentheses around the i parameter aren’t
needed:

x.foreach(i => println(i))

Because i is used only once in the body of the function, the expression can be further
simplified with the _ wildcard:

x.foreach(println(_))

Finally, if a function literal consists of one statement that takes a single argument, you
need not explicitly name and specify the argument, so the statement can finally be
reduced to this:

x.foreach(println)

9.2. Using Functions as Variables

Problem
You want to pass a function around like a variable, just like you pass String, Int, and
other variables around in an object-oriented programming language.

Solution
Use the syntax shown in Recipe 9.1 to define a function literal, and then assign that
literal to a variable.

The following code defines a function literal that takes an Int parameter and returns a
value that is twice the amount of the Int that is passed in:

9.2. Using Functions as Variables | 219

(i: Int) => { i * 2 }

As mentioned in Recipe 9.1, you can think of the => symbol as a transformer. In this
case, the function transforms the Int value i to an Int value that is twice the value of
i.

You can now assign that function literal to a variable:

val double = (i: Int) => { i * 2 }

The variable double is an instance, just like an instance of a String, Int, or other type,
but in this case, it’s an instance of a function, known as a function value. You can now
invoke double just like you’d call a method:

double(2) // 4

double(3) // 6

Beyond just invoking double like this, you can also pass it to any method (or function)
that takes a function parameter with its signature. For instance, because the map method
of a sequence is a generic method that takes an input parameter of type A and returns a
type B, you can pass the double method into the map method of an Int sequence:

scala> val list = List.range(1, 5)

list: List[Int] = List(1, 2, 3, 4)

scala> list.map(double)

res0: List[Int] = List(2, 4, 6, 8)

Welcome to the world of functional programming.

Discussion
You can declare a function literal in at least two different ways. I generally prefer the
following approach, which implicitly infers that the following function’s return type is
Boolean:

val f = (i: Int) => { i % 2 == 0 }

In this case, the Scala compiler is smart enough to look at the body of the function and
determine that it returns a Boolean value. As a human, it’s also easy to look at the code
on the right side of the expression and see that it returns a Boolean, so I usually leave
the explicit Boolean return type off the function declaration.

However, if you prefer to explicitly declare the return type of a function literal, or want
to do so because your function is more complex, the following examples show different
forms you can use to explicitly declare that your function returns a Boolean:

val f: (Int) => Boolean = i => { i % 2 == 0 }

val f: Int => Boolean = i => { i % 2 == 0 }

val f: Int => Boolean = i => i % 2 == 0

val f: Int => Boolean = _ % 2 == 0

220 | Chapter 9: Functional Programming

A second example helps demonstrate the difference of these approaches. These func‐
tions all take two Int parameters and return a single Int value, which is the sum of the
two input values:

// implicit approach

val add = (x: Int, y: Int) => { x + y }

val add = (x: Int, y: Int) => x + y

// explicit approach

val add: (Int, Int) => Int = (x,y) => { x + y }

val add: (Int, Int) => Int = (x,y) => x + y

As shown, the curly braces around the body of the function in these simple examples
are optional, but they are required when the function body grows to more than one
expression:

val addThenDouble: (Int, Int) => Int = (x,y) => {

 val a = x + y

 2 * a

}

Using a method like an anonymous function

Scala is very flexible, and just like you can define an anonymous function and assign it
to a variable, you can also define a method and then pass it around like an instance
variable. Again using a modulus example, you can define a method in any of these ways:

def modMethod(i: Int) = i % 2 == 0

def modMethod(i: Int) = { i % 2 == 0 }

def modMethod(i: Int): Boolean = i % 2 == 0

def modMethod(i: Int): Boolean = { i % 2 == 0 }

Any of these methods can be passed into collection methods that expect a function that
has one Int parameter and returns a Boolean, such as the filter method of a
List[Int]:

val list = List.range(1, 10)

list.filter(modMethod)

Here’s what that looks like in the REPL:

scala> def modMethod(i: Int) = i % 2 == 0

modMethod: (i: Int)Boolean

scala> val list = List.range(1, 10)

list: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> list.filter(modMethod)

res0: List[Int] = List(2, 4, 6, 8)

As noted, this is similar to the process of defining a function literal and assigning it to
a variable. The following function works just like the previous method:

9.2. Using Functions as Variables | 221

val modFunction = (i: Int) => i % 2 == 0

list.filter(modFunction)

At a coding level, the obvious difference is that modMethod is a method defined in a class,
whereas modFunction is a function that’s assigned to a variable. Under the covers,
modFunction is an instance of the Function1 trait, which defines a function that takes
one argument. (The scala package defines other similar traits, including Function0,
Function2, and so on, up to Function22.)

Assigning an existing function/method to a function variable

Continuing our exploration, you can assign an existing method or function to a function
variable. For instance, you can create a new function named c from the scala.math.cos
method using either of these approaches:

scala> val c = scala.math.cos _

c: Double => Double = <function1>

scala> val c = scala.math.cos(_)

c: Double => Double = <function1>

This is called a partially applied function. It’s partially applied because the cos method
requires one argument, which you have not yet supplied (more on this in Recipe 9.6).

Now that you have c, you can use it just like you would have used cos:

scala> c(0)

res0: Double = 1.0

If you’re not familiar with this syntax, this is a place where the REPL can be invaluable.
If you attempt to assign the cos function/method to a variable, the REPL tells you what’s
wrong:

scala> val c = scala.math.cos

<console>:11: error: missing arguments for method cos in class MathCommon;

follow this method with `_' to treat it as a partially applied function

 val c = scala.math.cos

 ^

The following example shows how to use this same technique on the scala.math.pow
method, which takes two parameters:

scala> val p = scala.math.pow(_, _)

pow: (Double, Double) => Double = <function2>

scala> p(scala.math.E, 2)

res0: Double = 7.3890560989306495

If this seems like an interesting language feature, but you’re wondering where it would
be useful, see Recipe 9.6, “Using Partially Applied Functions”, for more information.

222 | Chapter 9: Functional Programming

http://bit.ly/13KD90C
http://bit.ly/13KD90C

Summary notes:

• Think of the => symbol as a transformer. It transforms the input data on its left side
to some new output data, using the algorithm on its right side.

• Use def to define a method, val, to create a function.

• When assigning a function to a variable, a function literal is the code on the right
side of the expression.

• A function value is an object, and extends the FunctionN traits in the main scala
package, such as Function0 for a function that takes no parameters.

See Also

The Function1 trait

9.3. Defining a Method That Accepts a Simple Function
Parameter

Problem
You want to create a method that takes a simple function as a method parameter.

Solution
This solution follows a three-step process:

1. Define your method, including the signature for the function you want to take as
a method parameter.

2. Define one or more functions that match this signature.

3. Sometime later, pass the function(s) as a parameter to your method.

To demonstrate this, define a method named executeFunction, which takes a function
as a parameter. The method will take one parameter named callback, which is a func‐
tion. That function must have no input parameters and must return nothing:

def executeFunction(callback:() => Unit) {

 callback()

}

9.3. Defining a Method That Accepts a Simple Function Parameter | 223

http://bit.ly/13KD90C

Two quick notes:

• The callback:() syntax defines a function that has no parameters. If the function
had parameters, the types would be listed inside the parentheses.

• The => Unit portion of the code indicates that this method returns nothing.

I’ll discuss this syntax more shortly.

Next, define a function that matches this signature. The following function named
sayHello takes no input parameters and returns nothing:

val sayHello = () => { println("Hello") }

In the last step of the recipe, pass the sayHello function to the executeFunction meth‐
od:

executeFunction(sayHello)

The REPL demonstrates how this works:

scala> def executeFunction(callback:() => Unit) { callback() }

executeFunction: (callback: () => Unit)Unit

scala> val sayHello = () => { println("Hello") }

sayHello: () => Unit = <function0>

scala> executeFunction(sayHello)

Hello

Discussion
There isn’t anything special about the callback name used in this example. When I first
learned how to pass functions to methods, I preferred the name callback because it
made the meaning clear, but it’s just the name of a method parameter. These days, just
as I often name an Int parameter i, I name a function parameter f:

def executeFunction(f:() => Unit) {

 f()

}

The part that is special is that the function that’s passed in must match the function
signature you define. In this case, you’ve declared that the function that’s passed in must
take no arguments and must return nothing:

f:() => Unit

The general syntax for defining a function as a method parameter is:

parameterName: (parameterType(s)) => returnType

224 | Chapter 9: Functional Programming

In the example, the parameterName is f, the parameterType is empty because you don’t
want the function to take any parameters, and the return type is Unit because you don’t
want the function to return anything:

executeFunction(f:() => Unit)

To define a function that takes a String and returns an Int, use one of these two sig‐
natures:

executeFunction(f:String => Int)

executeFunction(f:(String) => Int)

See the next recipe for more function signature examples.

Scala’s Unit

The Scala Unit shown in these examples is similar to Java’s Void class. It’s used in situa‐
tions like this to indicate that the function returns nothing ... or perhaps nothing of
interest.

As a quick look into its effect, first define a method named plusOne, which does what
its name implies:

scala> def plusOne(i: Int) = i + 1

plusOne: (i: Int)Int

scala> plusOne(1)

res0: Int = 2

When it’s called, plusOne adds 1 to its input parameter, and returns that result as an
Int.

Now, modify plusOne to declare that it returns Unit:

scala> def plusOne(i: Int): Unit = i + 1

plusOne: (i: Int)Unit

scala> plusOne(1)

(returns nothing)

Because you explicitly stated that plusOne returns Unit, there’s no result in the REPL
when plusOne(1) is called.

This isn’t a common use of Unit, but it helps to demonstrate its effect.

See Also

Scala’s call-by-name functionality provides a very simple way to pass a block of
code into a function or method. See Recipe 19.8, “Building Functionality with
Types”, for several call-by-name examples.

9.3. Defining a Method That Accepts a Simple Function Parameter | 225

9.4. More Complex Functions

Problem
You want to define a method that takes a function as a parameter, and that function may
have one or more input parameters, and may also return a value.

Solution
Following the approach described in the previous recipe, define a method that takes a
function as a parameter. Specify the function signature you expect to receive, and then
execute that function inside the body of the method.

The following example defines a method named exec that takes a function as an input
parameter. That function must take one Int as an input parameter and return nothing:

def exec(callback: Int => Unit) {

 // invoke the function we were given, giving it an Int parameter

 callback(1)

}

Next, define a function that matches the expected signature. The following plusOne
function matches that signature, because it takes an Int argument and returns nothing:

val plusOne = (i: Int) => { println(i+1) }

Now you can pass plusOne into the exec function:

exec(plusOne)

Because the function is called inside the method, this prints the number 2.

Any function that matches this signature can be passed into the exec method. To
demonstrate this, define a new function named plusTen that also takes an Int and
returns nothing:

val plusTen = (i: Int) => { println(i+10) }

Now you can pass it into your exec function, and see that it also works:

exec(plusTen) // prints 11

Although these examples are simple, you can see the power of the technique: you can
easily swap in interchangeable algorithms. As long as your function signature matches
what your method expects, your algorithms can do anything you want. This is compa‐
rable to swapping out algorithms in the OOP Strategy design pattern.

Discussion
The general syntax for describing a function as a method parameter is this:

226 | Chapter 9: Functional Programming

parameterName: (parameterType(s)) => returnType

Therefore, to define a function that takes a String and returns an Int, use one of these
two signatures:

executeFunction(f:(String) => Int)

// parentheses are optional when the function has only one parameter

executeFunction(f:String => Int)

To define a function that takes two Ints and returns a Boolean, use this signature:

executeFunction(f:(Int, Int) => Boolean)

The following exec method expects a function that takes String, Int, and Double
parameters and returns a Seq[String]:

exec(f:(String, Int, Double) => Seq[String])

As shown in the Solution, if a function doesn’t return anything, declare its return type
as Unit:

exec(f:(Int) => Unit)

exec(f:Int => Unit)

Passing in a function with other parameters

A function parameter is just like any other method parameter, so a method can accept
other parameters in addition to a function.

The following code demonstrates this in a simple example. First, define a simple func‐
tion:

val sayHello = () => println("Hello")

Next, define a method that takes this function as a parameter and also takes a second
Int parameter:

def executeXTimes(callback:() => Unit, numTimes: Int) {

 for (i <- 1 to numTimes) callback()

}

Next, pass the function value and an Int into the method:

scala> executeXTimes(sayHello, 3)

Hello

Hello

Hello

Though that was a simple example, this technique can be used to pass variables into the
method that can then be used by the function, inside the method body. To see how this
works, create a method named executeAndPrint that takes a function and two Int
parameters:

9.4. More Complex Functions | 227

def executeAndPrint(f:(Int, Int) => Int, x: Int, y: Int) {

 val result = f(x, y)

 println(result)

}

This method is more interesting than the previous method, because it takes the Int
parameters it’s given and passes those parameters to the function it’s given in this line
of code:

val result = f(x, y)

To show how this works, create two functions that match the signature of the function
that executeAndPrint expects, a sum function and a multiply function:

val sum = (x: Int, y: Int) => x + y

val multiply = (x: Int, y: Int) => x * y

Now you can call executeAndPrint like this, passing in the different functions, along
with two Int parameters:

executeAndPrint(sum, 2, 9) // prints 11

executeAndPrint(multiply, 3, 9) // prints 27

This is cool, because the executeAndPrint method doesn’t know what algorithm is
actually run. All it knows is that it passes the parameters x and y to the function it is
given and then prints the result from that function. This is similar to defining an in‐
terface in Java and then providing concrete implementations of the interface in multiple
classes.

Here’s one more example of this three-step process:

// 1 - define the method

def exec(callback: (Any, Any) => Unit, x: Any, y: Any) {

 callback(x, y)

}

// 2 - define a function to pass in

val printTwoThings =(a: Any, b: Any) => {

 println(a)

 println(b)

}

// 3 - pass the function and some parameters to the method

case class Person(name: String)

exec(printTwoThings, "Hello", Person("Dave"))

Note that in all of the previous examples where you created functions with the val
keyword, you could have created methods, and the examples would still work. For in‐
stance, you can define printTwoThings as a method, and exec still works:

// 2a - define a method to pass in

def printTwoThings (a: Any, b: Any) {

 println(a)

228 | Chapter 9: Functional Programming

 println(b)

}

// 3a - pass the printTwoThings method to the exec method

case class Person(name: String)

exec(printTwoThings, "Hello", Person("Dave"))

Behind the scenes, there are differences between these two approaches—for instance, a
function implements one of the Function0 to Function22 traits—but Scala is forgiving,
and lets you pass in either a method or function, as long as the signature is correct.

9.5. Using Closures

Problem
You want to pass a function around like a variable, and while doing so, you want that
function to be able to refer to one or more fields that were in the same scope as the
function when it was declared.

Solution
To demonstrate a closure in Scala, use the following simple (but complete) example:

package otherscope {

 class Foo {

 // a method that takes a function and a string, and passes the string into

 // the function, and then executes the function

 def exec(f:(String) => Unit, name: String) {

 f(name)

 }

 }

}

object ClosureExample extends App {

 var hello = "Hello"

 def sayHello(name: String) { println(s"$hello, $name") }

 // execute sayHello from the exec method foo

 val foo = new otherscope.Foo

 foo.exec(sayHello, "Al")

 // change the local variable 'hello', then execute sayHello from

 // the exec method of foo, and see what happens

 hello = "Hola"

 foo.exec(sayHello, "Lorenzo")

}

9.5. Using Closures | 229

To test this code, save it as a file named ClosureExample.scala, then compile and run it.
When it’s run, the output will be:

Hello, Al

Hola, Lorenzo

If you’re coming to Scala from Java or another OOP language, you might be asking,
“How could this possibly work?” Not only did the sayHello method reference the vari‐
able hello from within the exec method of the Foo class on the first run (where hello
was no longer in scope), but on the second run, it also picked up the change to the hello
variable (from Hello to Hola). The simple answer is that Scala supports closure func‐
tionality, and this is how closures work.

As Dean Wampler and Alex Payne describe in their book Programming Scala (O’Reilly),
there are two free variables in the sayHello method: name and hello. The name variable
is a formal parameter to the function; this is something you’re used to.

However, hello is not a formal parameter; it’s a reference to a variable in the enclosing
scope (similar to the way a method in a Java class can refer to a field in the same class).
Therefore, the Scala compiler creates a closure that encompasses (or “closes over”)
hello.

You could continue to pass the sayHello method around so it gets
farther and farther away from the scope of the hello variable, but in
an effort to keep this example simple, it’s only passed to one method
in a class in a different package. You can verify that hello is not in
scope in the Foo class by attempting to print its value in that class or
in its exec method, such as with println(hello). You’ll find that the
code won’t compile because hello is not in scope there.

Discussion
In my research, I’ve found many descriptions of closures, each with slightly different
terminology. Wikipedia defines a closure like this:

“In computer science, a closure (also lexical closure or function closure) is a function
together with a referencing environment for the non-local variables of that function. A
closure allows a function to access variables outside its immediate lexical scope.”

In his excellent article, Closures in Ruby, Paul Cantrell states, “a closure is a block of
code which meets three criteria.” He defines the criteria as follows:

230 | Chapter 9: Functional Programming

http://shop.oreilly.com/product/9780596155964.do
http://bit.ly/12DOhF7

1. The block of code can be passed around as a value, and

2. It can be executed on demand by anyone who has that value, at which time

3. It can refer to variables from the context in which it was created (i.e., it is closed
with respect to variable access, in the mathematical sense of the word “closed”).

Personally, I like to think of a closure as being like quantum entanglement, which Ein‐
stein referred to as “a spooky action at a distance.” Just as quantum entanglement begins
with two elements that are together and then separated—but somehow remain aware
of each other—a closure begins with a function and a variable defined in the same scope,
which are then separated from each other. When the function is executed at some other
point in space (scope) and time, it is magically still aware of the variable it referenced
in their earlier time together, and even picks up any changes to that variable.

As shown in the Solution, to create a closure in Scala, just define a function that refers
to a variable that’s in the same scope as its declaration. That function can be used later,
even when the variable is no longer in the function’s current scope, such as when the
function is passed to another class, method, or function.

Any time you run into a situation where you’re passing around a function, and wish
that function could refer to a variable like this, a closure can be a solution. The variable
can be a collection, an Int you use as a counter or limit, or anything else that helps to
solve a problem. The value you refer to can be a val, or as shown in the example, a
var.

A second example

If you’re new to closures, another example may help demonstrate them. First, start with
a simple function named isOfVotingAge. This function tests to see if the age given to
the function is greater than or equal to 18:

val isOfVotingAge = (age: Int) => age >= 18

isOfVotingAge(16) // false

isOfVotingAge(20) // true

Next, to make your function more flexible, instead of hardcoding the value 18 into the
function, you can take advantage of this closure technique, and let the function refer to
the variable votingAge that’s in scope when you define the function:

var votingAge = 18

val isOfVotingAge = (age: Int) => age >= votingAge

When called, isOfVotingAge works as before:

isOfVotingAge(16) // false

isOfVotingAge(20) // true

You can now pass isOfVotingAge around to other methods and functions:

9.5. Using Closures | 231

def printResult(f: Int => Boolean, x: Int) {

 println(f(x))

}

printResult(isOfVotingAge, 20) // true

Because you defined votingAge as a var, you can reassign it. How does this affect
printResult? Let’s see:

// change votingAge in one scope

votingAge = 21

// the change to votingAge affects the result

printResult(isOfVotingAge, 20) // now false

Cool. The field and function are still entangled.

Using closures with other data types

In the two examples shown so far, you’ve worked with simple String and Int fields, but
closures can work with any data type, including collections. For instance, in the fol‐
lowing example, the function named addToBasket is defined in the same scope as an
ArrayBuffer named fruits:

import scala.collection.mutable.ArrayBuffer

val fruits = ArrayBuffer("apple")

// the function addToBasket has a reference to fruits

val addToBasket = (s: String) => {

 fruits += s

 println(fruits.mkString(", "))

}

As with the previous example, the addToBasket function can now be passed around as
desired, and will always have a reference to the fruits field. To demonstrate this, define
a method that accepts a function with addToBasket’s signature:

def buyStuff(f: String => Unit, s: String) {

 f(s)

}

Then pass addToBasket and a String parameter to the method:

scala> buyStuff(addToBasket, "cherries")

cherries

scala> buyStuff(addToBasket, "grapes")

cherries, grapes

As desired, the elements are added to your ArrayBuffer.

Note that the buyStuff method would typically be in another class, but this example
demonstrates the basic idea.

232 | Chapter 9: Functional Programming

A comparison to Java

If you’re coming to Scala from Java, or an OOP background in general, it may help to
see a comparison between this closure technique and what you can currently do in Java.
(In Java, there are some closure-like things you can do with inner classes, and closures
are intended for addition to Java 8 in Project Lambda. But this example attempts to
show a simple OOP example.)

The following example shows how a sayHello method and the helloPhrase string are
encapsulated in the class Greeter. In the main method, the first two examples with Al
and Lorenzo show how the sayHello method can be called directly.

At the end of the main method, the greeter instance is passed to an instance of the Bar
class, and greeter’s sayHello method is executed from there:

public class SimulatedClosure {

 public static void main (String[] args) {

 Greeter greeter = new Greeter();

 greeter.setHelloPhrase("Hello");

 greeter.sayHello("Al"); // "Hello, Al"

 greeter.setHelloPhrase("Hola");

 greeter.sayHello("Lorenzo"); // "Hola, Lorenzo"

 greeter.setHelloPhrase("Yo");

 Bar bar = new Bar(greeter); // pass the greeter instance to a new Bar

 bar.sayHello("Adrian"); // invoke greeter.sayHello via Bar

 }

}

class Greeter {

 private String helloPhrase;

 public void setHelloPhrase(String helloPhrase) {

 this.helloPhrase = helloPhrase;

 }

 public void sayHello(String name) {

 System.out.println(helloPhrase + ", " + name);

 }

}

class Bar {

 private Greeter greeter;

 public Bar (Greeter greeter) {

 this.greeter = greeter;

9.5. Using Closures | 233

http://bit.ly/13lvtdW

 }

 public void sayHello(String name) {

 greeter.sayHello(name);

 }

}

Running this code prints the following output:

Hello, Al

Hola, Lorenzo

Yo, Adrian

The end result is similar to the Scala closure approach, but the big differences in this
example are that you’re passing around a Greeter instance (instead of a function), and
sayHello and the helloPhrase are encapsulated in the Greeter class. In the Scala clo‐
sure solution, you passed around a function that was coupled with a field from another
scope.

See Also

• The voting age example in this recipe was inspired by Mario Gleichmann’s example
in Functional Scala: Closures.

• Paul Cantrell’s article, Closures in Ruby.

• Recipe 3.18, “Creating Your Own Control Structures”, demonstrates the use of
multiple parameter lists.

• Java 8’s Project Lambda.

9.6. Using Partially Applied Functions

Problem
You want to eliminate repetitively passing variables into a function by (a) passing com‐
mon variables into the function to (b) create a new function that is preloaded with those
values, and then (c) use the new function, passing it only the unique variables it needs.

Solution
The classic example of a partially applied function begins with a simple sum function:

val sum = (a: Int, b: Int, c: Int) => a + b + c

234 | Chapter 9: Functional Programming

http://bit.ly/15y1SRx
http://bit.ly/12DOhF7
http://bit.ly/13lvtdW

There’s nothing special about this sum function, it’s just a normal function. But things
get interesting when you supply two of the parameters when calling the function, but
don’t provide the third parameter:

val f = sum(1, 2, _: Int)

Because you haven’t provided a value for the third parameter, the resulting variable f is
a partially applied function. You can see this in the REPL:

scala> val sum = (a: Int, b: Int, c: Int) => a + b + c

sum: (Int, Int, Int) => Int = <function3>

scala> val f = sum(1, 2, _: Int)

f: Int => Int = <function1>

The result in the REPL shows that f is a function that implements the function1 trait,
meaning that it takes one argument. Looking at the rest of the signature, you see that it
takes an Int argument, and returns an Int value.

When you give f an Int, such as the number 3, you magically get the sum of the three
numbers that have been passed into the two functions:

scala> f(3)

res0: Int = 6

The first two numbers (1 and 2) were passed into the original sum function; that process
created the new function named f, which is a partially applied function; then, some time
later in the code, the third number (3) was passed into f.

Discussion
In functional programming languages, when you call a function that has parameters,
you are said to be applying the function to the parameters. When all the parameters are
passed to the function—something you always do in Java—you have fully applied the
function to all of the parameters. But when you give only a subset of the parameters to
the function, the result of the expression is a partially applied function.

As demonstrated in the example, this partially applied function is a variable that you
can pass around. This variable is called a function value, and when you later provide all
the parameters needed to complete the function value, the original function is executed
and a result is yielded.

This technique has many advantages, including the ability to make life easier for the
consumers of a library you create. For instance, when working with HTML, you may
want a function that adds a prefix and a suffix to an HTML snippet:

def wrap(prefix: String, html: String, suffix: String) = {

 prefix + html + suffix

}

9.6. Using Partially Applied Functions | 235

If at a certain point in your code, you know that you always want to add the same prefix
and suffix to different HTML strings, you can apply those two parameters to the func‐
tion, without applying the html parameter:

val wrapWithDiv = wrap("<div>", _: String, "</div>")

Now you can call the new wrapWithDiv function, just passing it the HTML you want to
wrap:

scala> wrapWithDiv("<p>Hello, world</p>")

res0: String = <div><p>Hello, world</p></div>

scala> wrapWithDiv("")

res1: String = <div></div>

The wrapWithDiv function is preloaded with the <div> tags you applied, so it can be
called with just one argument: the HTML you want to wrap.

As a nice benefit, you can still call the original wrap function if you want:

wrap("<pre>", "val x = 1", "</pre>")

You can use partially applied functions to make programming easier by binding some
arguments—typically some form of local arguments—and leaving the others to be filled
in.

9.7. Creating a Function That Returns a Function

Problem
You want to return a function (algorithm) from a function or method.

Solution
Define a function that returns an algorithm (an anonymous function), assign that to a
new function, and then call that new function.

The following code declares an anonymous function that takes a String argument and
returns a String:

(s: String) => { prefix + " " + s }

You can return that anonymous function from the body of another function as follows:

def saySomething(prefix: String) = (s: String) => {

 prefix + " " + s

}

Because saySomething returns a function, you can assign that resulting function to a
variable. The saySomething function requires a String argument, so give it one as you
create the resulting function sayHello:

236 | Chapter 9: Functional Programming

val sayHello = saySomething("Hello")

The sayHello function is now equivalent to your anonymous function, with the prefix
set to hello. Looking back at the anonymous function, you see that it takes a String
parameter and returns a String, so you pass it a String:

sayHello("Al")

Here’s what these steps look like in the REPL:

scala> def saySomething(prefix: String) = (s: String) => {

 | prefix + " " + s

 | }

saySomething: (prefix: String)String => java.lang.String

scala> val sayHello = saySomething("Hello")

sayHello: String => java.lang.String = <function1>

scala> sayHello("Al")

res0: java.lang.String = Hello Al

Discussion
If you’re new to functional programming, it can help to break this down a little. You can
break the expression down into its two components. On the left side of the = symbol
you have a normal method declaration:

def saySomething(prefix: String)

On the right side of the = is a function literal (also known as an anonymous function):

(s: String) => { prefix + " " + s }

Another example

As you can imagine, you can use this approach any time you want to encapsulate an
algorithm inside a function. A bit like a Factory or Strategy pattern, the function your
method returns can be based on the input parameter it receives. For example, create a
greeting method that returns an appropriate greeting based on the language specified:

def greeting(language: String) = (name: String) => {

 language match {

 case "english" => "Hello, " + name

 case "spanish" => "Buenos dias, " + name

 }

}

If it’s not clear that greeting is returning a function, you can make the code a little more
explicit:

def greeting(language: String) = (name: String) => {

 val english = () => "Hello, " + name

 val spanish = () => "Buenos dias, " + name

 language match {

9.7. Creating a Function That Returns a Function | 237

 case "english" => println("returning 'english' function")

 english()

 case "spanish" => println("returning 'spanish' function")

 spanish()

 }

}

Here’s what this second method looks like when it’s invoked in the REPL:

scala> val hello = greeting("english")

hello: String => java.lang.String = <function1>

scala> val buenosDias = greeting("spanish")

buenosDias: String => java.lang.String = <function1>

scala> hello("Al")

returning 'english' function

res0: java.lang.String = Hello, Al

scala> buenosDias("Lorenzo")

returning 'spanish' function

res1: java.lang.String = Buenos dias, Lorenzo

You can use this recipe any time you want to encapsulate one or more functions behind
a method, and is similar in that effect to the Factory and Strategy patterns.

See Also

My Java Factory Pattern example

9.8. Creating Partial Functions

Problem
You want to define a function that will only work for a subset of possible input values,
or you want to define a series of functions that only work for a subset of input values,
and combine those functions to completely solve a problem.

Solution
A partial function is a function that does not provide an answer for every possible input
value it can be given. It provides an answer only for a subset of possible data, and defines
the data it can handle. In Scala, a partial function can also be queried to determine if it
can handle a particular value.

As a simple example, imagine a normal function that divides one number by another:

val divide = (x: Int) => 42 / x

238 | Chapter 9: Functional Programming

http://bit.ly/15HJ30l

As defined, this function blows up when the input parameter is zero:

scala> divide(0)

java.lang.ArithmeticException: / by zero

Although you can handle this particular situation by catching and throwing an excep‐
tion, Scala lets you define the divide function as a PartialFunction. When doing so,
you also explicitly state that the function is defined when the input parameter is not
zero:

val divide = new PartialFunction[Int, Int] {

 def apply(x: Int) = 42 / x

 def isDefinedAt(x: Int) = x != 0

}

With this approach, you can do several nice things. One thing you can do is test the
function before you attempt to use it:

scala> divide.isDefinedAt(1)

res0: Boolean = true

scala> if (divide.isDefinedAt(1)) divide(1)

res1: AnyVal = 42

scala> divide.isDefinedAt(0)

res2: Boolean = false

This isn’t all you can do with partial functions. You’ll see shortly that other code can
take advantage of partial functions to provide elegant and concise solutions.

Whereas that divide function is explicit about what data it handles, partial functions
are often written using case statements:

val divide2: PartialFunction[Int, Int] = {

 case d: Int if d != 0 => 42 / d

}

Although this code doesn’t explicitly implement the isDefinedAt method, it works
exactly the same as the previous divide function definition:

scala> divide2.isDefinedAt(0)

res0: Boolean = false

scala> divide2.isDefinedAt(1)

res1: Boolean = true

The PartialFunction explained

The PartialFunction Scaladoc describes a partial function in this way:

A partial function of type PartialFunction[A, B] is a unary function where the domain
does not necessarily include all values of type A. The function isDefinedAt allows [you]
to test dynamically if a value is in the domain of the function.

9.8. Creating Partial Functions | 239

This helps to explain why the last example with the match expression (case statement)
works: the isDefinedAt method dynamically tests to see if the given value is in the
domain of the function (i.e., it is handled, or accounted for).

The signature of the PartialFunction trait looks like this:

trait PartialFunction[-A, +B] extends (A) => B

As discussed in other recipes, the => symbol can be thought of as a transformer, and in
this case, the (A) => B can be interpreted as a function that transforms a type A into a
resulting type B.

The example method transformed an input Int into an output Int, but if it returned a
String instead, it would be declared like this:

PartialFunction[Int, String]

For example, the following method uses this signature:

// converts 1 to "one", etc., up to 5

val convertLowNumToString = new PartialFunction[Int, String] {

 val nums = Array("one", "two", "three", "four", "five")

 def apply(i: Int) = nums(i-1)

 def isDefinedAt(i: Int) = i > 0 && i < 6

}

orElse and andThen

A terrific feature of partial functions is that you can chain them together. For instance,
one method may only work with even numbers, and another method may only work
with odd numbers. Together they can solve all integer problems.

In the following example, two functions are defined that can each handle a small number
of Int inputs, and convert them to String results:

// converts 1 to "one", etc., up to 5

val convert1to5 = new PartialFunction[Int, String] {

 val nums = Array("one", "two", "three", "four", "five")

 def apply(i: Int) = nums(i-1)

 def isDefinedAt(i: Int) = i > 0 && i < 6

}

// converts 6 to "six", etc., up to 10

val convert6to10 = new PartialFunction[Int, String] {

 val nums = Array("six", "seven", "eight", "nine", "ten")

 def apply(i: Int) = nums(i-6)

 def isDefinedAt(i: Int) = i > 5 && i < 11

}

Taken separately, they can each handle only five numbers. But combined with orElse,
they can handle ten:

scala> val handle1to10 = convert1to5 orElse convert6to10

handle1to10: PartialFunction[Int,String] = <function1>

240 | Chapter 9: Functional Programming

scala> handle1to10(3)

res0: String = three

scala> handle1to10(8)

res1: String = eight

The orElse method comes from the Scala PartialFunction trait, which also includes
the andThen method to further help chain partial functions together.

Discussion
It’s important to know about partial functions, not just to have another tool in your
toolbox, but because they are used in the APIs of some libraries, including the Scala
collections library.

One example of where you’ll run into partial functions is with the collect method on
collections’ classes. The collect method takes a partial function as input, and as its
Scaladoc describes, collect “Builds a new collection by applying a partial function to
all elements of this list on which the function is defined.”

For instance, the divide function shown earlier is a partial function that is not defined
at the Int value zero. Here’s that function again:

val divide: PartialFunction[Int, Int] = {

 case d: Int if d != 0 => 42 / d

}

If you attempt to use this function with the map method, it will explode with a
MatchError:

scala> List(0,1,2) map { divide }

scala.MatchError: 0 (of class java.lang.Integer)

stack trace continues ...

However, if you use the same function with the collect method, it works fine:

scala> List(0,1,2) collect { divide }

res0: List[Int] = List(42, 21)

This is because the collect method is written to test the isDefinedAt method for each
element it’s given. As a result, it doesn’t run the divide algorithm when the input value
is 0 (but does run it for every other element).

You can see the collect method work in other situations, such as passing it a List that
contains a mix of data types, with a function that works only with Int values:

scala> List(42, "cat") collect { case i: Int => i + 1 }

res0: List[Int] = List(43)

Because it checks the isDefinedAt method under the covers, collect can handle the
fact that your anonymous function can’t work with a String as input.

9.8. Creating Partial Functions | 241

The PartialFunction Scaladoc demonstrates this same technique in a slightly different
way. In the first example, it shows how to create a list of even numbers by defining a
PartialFunction named isEven, and using that function with the collect method:

scala> val sample = 1 to 5

sample: scala.collection.immutable.Range.Inclusive = Range(1, 2, 3, 4, 5)

scala> val isEven: PartialFunction[Int, String] = {

 | case x if x % 2 == 0 => x + " is even"

 | }

isEven: PartialFunction[Int,String] = <function1>

scala> val evenNumbers = sample collect isEven

evenNumbers: scala.collection.immutable.IndexedSeq[String] =

 Vector(2 is even, 4 is even)

Similarly, an isOdd function can be defined, and the two functions can be joined by
orElse to work with the map method:

scala> val isOdd: PartialFunction[Int, String] = {

 | case x if x % 2 == 1 => x + " is odd"

 | }

isOdd: PartialFunction[Int,String] = <function1>

scala> val numbers = sample map (isEven orElse isOdd)

numbers: scala.collection.immutable.IndexedSeq[String] =

 Vector(1 is odd, 2 is even, 3 is odd, 4 is even, 5 is odd)

Portions of this recipe were inspired by Erik Bruchez’s blog post, ti‐
tled, “Scala partial functions (without a PhD).”

See Also

• Erik Bruchez’s blog post

• PartialFunction trait

• Wikipedia definition of a partial function

9.9. A Real-World Example

Problem
Understanding functional programming concepts is one thing; putting them into prac‐
tice in a real project is another. You’d like to see a real example of them in action.

242 | Chapter 9: Functional Programming

http://bit.ly/15xZNVE
http://bit.ly/18YmK9Z
http://bit.ly/1dzVkF5

Solution
To demonstrate some of the techniques introduced in this chapter, the following ex‐
ample shows one way to implement Newton’s Method, a mathematical method that can
be used to solve the roots of equations.

As you can see from the code, the method named newtonsMethod takes functions as its
first two parameters. It also takes two other Double parameters, and returns a Double.
The two functions that are passed in should be the original equation (fx) and the de‐
rivative of that equation (fxPrime).

The method newtonsMethodHelper also takes two functions as parameters, so you can
see how the functions are passed from newtonsMethod to newtonsMethodHelper.

Here is the complete source code for this example:

object NewtonsMethod {

 def main(args: Array[String]) {

 driver

 }

 /**

* A "driver" function to test Newton's method.

* Start with (a) the desired f(x) and f'(x) equations,

* (b) an initial guess and (c) tolerance values.

*/

 def driver {

 // the f(x) and f'(x) functions

 val fx = (x: Double) => 3*x + math.sin(x) - math.pow(math.E, x)

 val fxPrime = (x: Double) => 3 + math.cos(x) - math.pow(Math.E, x)

 val initialGuess = 0.0

 val tolerance = 0.00005

 // pass f(x) and f'(x) to the Newton's Method function, along with

 // the initial guess and tolerance

 val answer = newtonsMethod(fx, fxPrime, initialGuess, tolerance)

 println(answer)

 }

 /**

* Newton's Method for solving equations.

* @todo check that |f(xNext)| is greater than a second tolerance value

* @todo check that f'(x) != 0

*/

 def newtonsMethod(fx: Double => Double,

 fxPrime: Double => Double,

 x: Double,

 tolerance: Double): Double = {

 var x1 = x

9.9. A Real-World Example | 243

 var xNext = newtonsMethodHelper(fx, fxPrime, x1)

 while (math.abs(xNext - x1) > tolerance) {

 x1 = xNext

 println(xNext) // debugging (intermediate values)

 xNext = newtonsMethodHelper(fx, fxPrime, x1)

 }

 xNext

 }

 /**

* This is the "x2 = x1 - f(x1)/f'(x1)" calculation

*/

 def newtonsMethodHelper(fx: Double => Double,

 fxPrime: Double => Double,

 x: Double): Double = {

 x - fx(x) / fxPrime(x)

 }

}

Discussion
As you can see, a majority of this code involves defining functions, passing those func‐
tions to methods, and then invoking the functions from within a method.

The method name newtonsMethod will work for any two functions fx and fxPrime,
where fxPrime is the derivative of fx (within the limits of the “to do” items that are not
implemented).

To experiment with this example, try changing the functions fx and fxPrime, or im‐
plement the @todo items in newtonsMethod.

The algorithm shown comes from an old textbook titled Applied
Numerical Analysis, by Gerald and Wheatley, where the approach was
demonstrated in pseudocode.

See Also

• More details on this example

• Newton’s Method

244 | Chapter 9: Functional Programming

http://bit.ly/13dPSpJ
http://bit.ly/18jyRiv

CHAPTER 10

Collections

Introduction
Scala’s collection classes are rich, deep, and differ significantly from the Java collections,
all of which makes learning them a bit of a speed bump for developers coming to Scala
from Java.

When a Java developer first comes to Scala, she might think, “Okay, I’ll use lists and
arrays, right?” Well, not really. The Scala List class is very different from the Java List
classes—including the part where it’s immutable—and although the Scala Array is an
improvement on the Java array in most ways, it’s not even recommended as the “go to”
sequential collection class.

Because there are many collections classes to choose from, and each of those classes
offers many methods, a goal of this chapter (and the next) is to help guide you through
this plethora of options to find the solutions you need. Recipes will help you decide
which collections to use in different situations, and also choose a method to solve a
problem. To help with this, the methods that are common to all collections are shown
in this chapter, and methods specific to collections like List, Array, Map, and Set are
shown in Chapter 11.

A Few Important Concepts
There are a few important concepts to know when working with the methods of the
Scala collection classes:

• What a predicate is

• What an anonymous function is

• Implied loops

245

A predicate is simply a method, function, or anonymous function that takes one or more
parameters and returns a Boolean value. For instance, the following method returns
true or false, so it’s a predicate:

def isEven (i: Int) = if (i % 2 == 0) true else false

That’s a simple concept, but you’ll hear the term so often when working with collection
methods that it’s important to mention it.

The concept of an anonymous function is also important. They’re described in depth in
Recipe 9.1, but here’s an example of the long form for an anonymous function:

(i: Int) => i % 2 == 0

Here’s the short form of the same function:

_ % 2 == 0

That doesn’t look like much by itself, but when it’s combined with the filter method
on a collection, it makes for a lot of power in just a little bit of code:

scala> val list = List.range(1, 10)

list: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> val events = list.filter(_ % 2 == 0)

events: List[Int] = List(2, 4, 6, 8)

This is a nice lead-in into the third topic: implied loops. As you can see from that example,
the filter method contains a loop that applies your function to every element in the
collection and returns a new collection. You could live without the filter method and
write equivalent code like this:

for {

 e <- list

 if e % 2 == 0

} yield e

But I think you’ll agree that the filter approach is both more concise and easier to
read.

Collection methods like filter, foreach, map, reduceLeft, and many more have loops
built into their algorithms. As a result, you’ll write far fewer loops when writing Scala
code than with another language like Java.

10.1. Understanding the Collections Hierarchy

Problem
The Scala collections hierarchy is very rich (deep and wide), and understanding how
it’s organized can be helpful when choosing a collection to solve a problem.

246 | Chapter 10: Collections

Solution
Figure 10-1, which shows the traits from which the Vector class inherits, demonstrates
some of the complexity of the Scala collections hierarchy.

Figure 10-1. The traits inherited by the Vector class

Because Scala classes can inherit from traits, and well-designed traits are granular, a
class hierarchy can look like this. However, don’t let Figure 10-1 throw you for a loop:
you don’t need to know all those traits to use a Vector. In fact, using a Vector is
straightforward:

val v = Vector(1, 2, 3)

v.sum // 6

v.filter(_ > 1) // Vector(2, 3)

v.map(_ * 2) // Vector(2, 4, 6)

At a high level, Scala’s collection classes begin with the Traversable and Iterable traits,
and extend into the three main categories of sequences (Seq), sets (Set), and maps
(Map). Sequences further branch off into indexed and linear sequences, as shown in
Figure 10-2.

Figure 10-2. A high-level view of the Scala collections

10.1. Understanding the Collections Hierarchy | 247

The Traversable trait lets you traverse an entire collection, and its Scaladoc states that
it “implements the behavior common to all collections in terms of a foreach method,”
which lets you traverse the collection repeatedly.

The Iterable trait defines an iterator, which lets you loop through a collection’s ele‐
ments one at a time, but when using an iterator, the collection can be traversed only
once, because each element is consumed during the iteration process.

Sequences

Digging a little deeper into the sequence hierarchy, Scala contains a large number of
sequences, many of which are shown in Figure 10-3.

Figure 10-3. A portion of the Scala sequence hierarchy

These traits and classes are described in Tables 10-1 through 10-4.

As shown in Figure 10-3, sequences branch off into two main categories: indexed se‐
quences and linear sequences (linked lists). An IndexedSeq indicates that random access
of elements is efficient, such as accessing an Array element as arr(5000). By default,
specifying that you want an IndexedSeq with Scala 2.10.x creates a Vector:

scala> val x = IndexedSeq(1,2,3)

x: IndexedSeq[Int] = Vector(1, 2, 3)

A LinearSeq implies that the collection can be efficiently split into head and tail com‐
ponents, and it’s common to work with them using the head, tail, and isEmpty meth‐
ods. Note that creating a LinearSeq creates a List, which is a singly linked list:

scala> val seq = scala.collection.immutable.LinearSeq(1,2,3)

seq: scala.collection.immutable.LinearSeq[Int] = List(1, 2, 3)

248 | Chapter 10: Collections

Maps

Like a Java Map, Ruby Hash, or Python dictionary, a Scala Map is a collection of key/value
pairs, where all the keys must be unique. The most common map classes are shown in
Figure 10-4.

Figure 10-4. Common map classes

Map traits and classes are discussed in Table 10-5. When you just need a simple,
immutable map, you can create one without requiring an import:

scala> val m = Map(1 -> "a", 2 -> "b")

m: scala.collection.immutable.Map[Int,java.lang.String] = Map(1 -> a, 2 -> b)

The mutable map is not in scope by default, so you must import it (or specify its full
path) to use it:

scala> val m = collection.mutable.Map(1 -> "a", 2 -> "b")

m: scala.collection.mutable.Map[Int,String] = Map(2 -> b, 1 -> a)

Sets

Like a Java Set, a Scala Set is a collection of unique elements. The common set classes
are shown in Figure 10-5.

Figure 10-5. Common set classes

Set traits and classes are discussed in Table 10-6, but as a quick preview, if you just need
an immutable set, you can create it like this, without needing an import statement:

scala> val set = Set(1, 2, 3)

set: scala.collection.immutable.Set[Int] = Set(1, 2, 3)

10.1. Understanding the Collections Hierarchy | 249

Just like a map, if you want to use a mutable set, you must import it, or specify its
complete path:

scala> val s = collection.mutable.Set(1, 2, 3)

s: scala.collection.mutable.Set[Int] = Set(1, 2, 3)

More collection classes

There are many additional collection traits and classes, including Stream, Queue,
Stack, and Range. You can also create views on collections (like a database view); use
iterators; and work with the Option, Some, and None types as collections. All of these
classes (and objects) are demonstrated in this and the next chapter.

Strict and lazy collections

Collections can also be thought of in terms of being strict or lazy. See the next recipe
for a discussion of these terms.

10.2. Choosing a Collection Class

Problem
You want to choose a Scala collection class to solve a particular problem.

Solution
There are three main categories of collection classes to choose from:

• Sequence

• Map

• Set

A sequence is a linear collection of elements and may be indexed or linear (a linked list).
A map contains a collection of key/value pairs, like a Java Map, Ruby Hash, or Python
dictionary. A set is a collection that contains no duplicate elements.

In addition to these three main categories, there are other useful collection types, in‐
cluding Stack, Queue, and Range. There are a few other classes that act like collections,
including tuples, enumerations, and the Option/Some/None and Try/Success/Failure
classes.

Choosing a sequence

When choosing a sequence (a sequential collection of elements), you have two main
decisions:

250 | Chapter 10: Collections

• Should the sequence be indexed (like an array), allowing rapid access to any ele‐
ments, or should it be implemented as a linked list?

• Do you want a mutable or immutable collection?

As of Scala 2.10, the recommended, general-purpose, “go to” sequential collections for
the combinations of mutable/immutable and indexed/linear are shown in Table 10-1.

Table 10-1. Scala’s general-purpose sequential collections

 Immutable Mutable

Indexed Vector ArrayBuffer

Linear (Linked lists) List ListBuffer

As an example of reading that table, if you want an immutable, indexed collection, in
general you should use a Vector; if you want a mutable, indexed collection, use an
ArrayBuffer (and so on).

While those are the general-purpose recommendations, there are many more sequence
alternatives. The most common immutable sequence choices are shown in Table 10-2.

Table 10-2. Main immutable sequence choices

 IndexedSeq LinearSeq Description

List ✓ A singly linked list. Suited for recursive algorithms that work by splitting the head from

the remainder of the list.

Queue ✓ A first-in, first-out data structure.

Range ✓ A range of integer values.

Stack ✓ A last-in, first-out data structure.

Stream ✓ Similar to List, but it’s lazy and persistent. Good for a large or infinite sequence, similar

to a Haskell List.

String ✓ Can be treated as an immutable, indexed sequence of characters.

Vector ✓ The “go to” immutable, indexed sequence. The Scaladoc describes it as, “Implemented

as a set of nested arrays that’s efficient at splitting and joining.”

The most common mutable sequence choices are shown in Table 10-3. Queue and Stack
are also in this table because there are mutable and immutable versions of these classes.

Table 10-3. Main mutable sequence choices

 IndexedSeq LinearSeq Description

Array ✓ Backed by a Java array, its elements are mutable, but it can’t change in

size.

ArrayBuffer ✓ The “go to” class for a mutable, sequential collection. The amortized cost

for appending elements is constant.

10.2. Choosing a Collection Class | 251

 IndexedSeq LinearSeq Description

ArrayStack ✓ A last-in, first-out data structure. Prefer over Stack when performance

is important.

DoubleLinkedList ✓ Like a singly linked list, but with a prev method as well. The

documentation states, “The additional links make element removal very

fast.”

LinkedList ✓ A mutable, singly linked list.

ListBuffer ✓ Like an ArrayBuffer, but backed by a list. The documentation states,

“If you plan to convert the buffer to a list, use ListBuffer instead of

ArrayBuffer.” Offers constant-time prepend and append; most other

operations are linear.

MutableList ✓ A mutable, singly linked list with constant-time append.

Queue ✓ A first-in, first-out data structure.

Stack ✓ A last-in, first-out data structure. (The documentation suggests that an

ArrayStack is slightly more efficient.)

StringBuilder ✓ Used to build strings, as in a loop. Like the Java StringBuilder.

In addition to the information shown in these tables, performance can be a considera‐
tion. See Recipe 10.4, “Understanding the Performance of Collections”, if performance
is important to your selection process.

When creating an API for a library, you may want to refer to your sequences in terms
of their superclasses. Table 10-4 shows the traits that are often used when referring
generically to a collection in an API.

Table 10-4. Traits commonly used in library APIs

Trait Description

IndexedSeq Implies that random access of elements is efficient.

LinearSeq Implies that linear access to elements is efficient.

Seq Used when it isn’t important to indicate that the sequence is indexed or linear in nature.

Of course if the collection you’re returning can be very generic, you can also refer to the
collections as Iterable or Traversable. This is the rough equivalent of declaring that
a Java method returns Collection.

You can also learn more about declaring the type a method returns by looking at the
“code assist” tool in your IDE. For instance, when I create a new Vector in Eclipse and
then look at the methods available on a Vector instance, I see that the methods return
types such as GenSeqLike, IndexedSeqLike, IterableLike, TraversableLike, and
TraversableOnce. You don’t have to be this specific with the types your methods
return—certainly not initially—but it’s usually a good practice to identify the intent of
what you’re really returning, so you can declare these more specific types once you get
used to them.

252 | Chapter 10: Collections

http://bit.ly/1aIbKiD
http://bit.ly/1aIbKiD
http://bit.ly/1aIbKiD

Choosing a map

Choosing a map class is easier than choosing a sequence. There are the base mutable
and immutable map classes, a SortedMap trait to keep elements in sorted order by key,
a LinkedHashMap to store elements in insertion order, and a few other maps for special
purposes. These options are shown in Table 10-5. (Quotes in the descriptions come
from the Scaladoc for each class.)

Table 10-5. Common map choices, including whether immutable or mutable versions
are available

 Immutable Mutable Description

HashMap ✓ ✓ The immutable version “implements maps using a hash trie”; the mutable version

“implements maps using a hashtable.”

LinkedHashMap ✓ “Implements mutable maps using a hashtable.” Returns elements by the order

in which they were inserted.

ListMap ✓ ✓ A map implemented using a list data structure. Returns elements in the opposite

order by which they were inserted, as though each element is inserted at the

head of the map.

Map ✓ ✓ The base map, with both mutable and immutable implementations.

SortedMap ✓ A base trait that stores its keys in sorted order. (Creating a variable as a

SortedMap currently returns a TreeMap.)

TreeMap ✓ An immutable, sorted map, implemented as a red-black tree.

WeakHashMap ✓ A hash map with weak references, it’s a wrapper around

java.util.WeakHashMap.

You can also create a thread-safe mutable map by mixing the SynchronizedMap trait
into the map implementation you want. See the map discussion in the Scala Collections
Overview for more information.

Choosing a set

Choosing a set is similar to choosing a map. There are base mutable and immutable set
classes, a SortedSet to return elements in sorted order by key, a LinkedHashSet to store
elements in insertion order, and a few other sets for special purposes. The common
classes are shown in Table 10-6. (Quotes in the descriptions come from the Scaladoc
for each class.)

Table 10-6. Common set choices, including whether immutable or mutable versions are
available

 Immutable Mutable

BitSet ✓ ✓ A set of “non-negative integers represented as variable-size arrays of bits packed

into 64-bit words.” Used to save memory when you have a set of integers.

HashSet ✓ ✓ The immutable version “implements sets using a hash trie”; the mutable version

“implements sets using a hashtable.”

10.2. Choosing a Collection Class | 253

http://bit.ly/13lzu1T
http://bit.ly/13lzu1T

 Immutable Mutable

LinkedHashSet ✓ A mutable set implemented using a hashtable. Returns elements in the order

in which they were inserted.

ListSet ✓ A set implemented using a list structure.

TreeSet ✓ ✓ The immutable version “implements immutable sets using a tree.” The mutable

version is a mutable SortedSet with “an immutable AVL Tree as underlying

data structure.”

Set ✓ ✓ Generic base traits, with both mutable and immutable implementations.

SortedSet ✓ ✓ A base trait. (Creating a variable as a SortedSet returns a TreeSet.)

You can also create a thread-safe mutable set by mixing the SynchronizedSet trait into
the set implementation you want. See the Scala Collections Overview discussion of maps
and sets for more information.

Types that act like collections

Scala offers many other collection types, and some types that act like collections.
Table 10-7 provides descriptions of several types that act somewhat like collections, even
though they aren’t.

Table 10-7. Other collections classes (and types that act like collections)

 Description

Enumeration A finite collection of constant values (i.e., the days in a week or months in a year).

Iterator An iterator isn’t a collection; instead, it gives you a way to access the elements in a collection. It does, however,

define many of the methods you’ll see in a normal collection class, including foreach, map, flatMap,

etc. You can also convert an iterator to a collection when needed.

Option Acts as a collection that contains zero or one elements. The Some class and None object extend Option.

Some is a container for one element, and None holds zero elements.

Tuple Supports a heterogeneous collection of elements. There is no one “Tuple” class; tuples are implemented as

case classes ranging from Tuple1 to Tuple22, which support 1 to 22 elements.

Strict and lazy collections

To understand strict and lazy collections, it helps to first understand the concept of a
transformer method. A transformer method is a method that constructs a new collection
from an existing collection. This includes methods like map, filter, reverse, etc.—any
method that transforms the input collection to a new output collection.

Given that definition, collections can also be thought of in terms of being strict or lazy.
In a strict collection, memory for the elements is allocated immediately, and all of its
elements are immediately evaluated when a transformer method is invoked. In a lazy
collection, memory for the elements is not allocated immediately, and transformer
methods do not construct new elements until they are demanded.

254 | Chapter 10: Collections

http://bit.ly/13lzu1T
http://bit.ly/13lzu1T

All of the collection classes except Stream are strict, but the other collection classes can
be converted to a lazy collection by creating a view on the collection. See Recipe 10.24,
“Creating a Lazy View on a Collection”, for more information on this approach.

See Also

• In addition to my own experience using the collections, most of the information
used to create these tables comes from the Scaladoc of each type, and the Scala
Collections Overview documentation.

• Recipe 10.1, “Understanding the Collections Hierarchy”.

• Recipe 10.4, “Understanding the Performance of Collections”.

10.3. Choosing a Collection Method to Solve a Problem

Problem
There is a large number of methods available to Scala collections, and you need to choose
a method to solve a problem.

Solution
The Scala collection classes provide a wealth of methods that can be used to manipulate
data. Most methods take either a function or a predicate as an argument. (A predicate
is just a function that returns a Boolean.)

The methods that are available are listed in two ways in this recipe. In the next few
paragraphs, the methods are grouped into categories to help you easily find what you
need. In the tables that follow, a brief description and method signature is provided.

Methods organized by category

Filtering methods
Methods that can be used to filter a collection include collect, diff, distinct,
drop, dropWhile, filter, filterNot, find, foldLeft, foldRight, head,
headOption, init, intersect, last, lastOption, reduceLeft, reduceRight,
remove, slice, tail, take, takeWhile, and union.

Transformer methods
Transformer methods take at least one input collection to create a new output col‐
lection, typically using an algorithm you provide. They include +, ++, −, −−, diff,
distinct, collect, flatMap, map, reverse, sortWith, takeWhile, zip, and
zipWithIndex.

10.3. Choosing a Collection Method to Solve a Problem | 255

http://bit.ly/1bCEnM3
http://bit.ly/1bCEnM3

Grouping methods
These methods let you take an existing collection and create multiple groups from
that one collection. These methods include groupBy, partition, sliding, span,
splitAt, and unzip.

Informational and mathematical methods
These methods provide information about a collection, and include canEqual,
contains, containsSlice, count, endsWith, exists, find, forAll, has-
DefiniteSize, indexOf, indexOfSlice, indexWhere, isDefinedAt, isEmpty,
lastIndexOf, lastIndexOfSlice, lastIndexWhere, max, min, nonEmpty, product,
segmentLength, size, startsWith, sum. The methods foldLeft, foldRight,
reduceLeft, and reduceRight can also be used with a function you supply to obtain
information about a collection.

Others
A few other methods are hard to categorize, including par, view, flatten,
foreach, and mkString. par creates a parallel collection from an existing collection;
view creates a lazy view on a collection (see Recipe 10.24); flatten converts a list
of lists down to one list; foreach is like a for loop, letting you iterate over the
elements in a collection; mkString lets you build a String from a collection.

There are even more methods than those listed here. For instance, there’s a collection
of to* methods that let you convert the current collection (a List, for example) to other
collection types (Array, Buffer, Vector, etc.). Check the Scaladoc for your collection
class to find more built-in methods.

Common collection methods

The following tables list the most common collection methods.

Table 10-8 lists methods that are common to all collections via Traversable. The fol‐
lowing symbols are used in the first column of the table:

• c refers to a collection

• f refers to a function

• p refers to a predicate

• n refers to a number

• op refers to a simple operation (usually a simple function)

Additional methods for mutable and immutable collections are listed in Tables 10-9 and
10-10, respectively.

256 | Chapter 10: Collections

Table 10-8. Common methods on Traversable collections

Method Description

c collect f Builds a new collection by applying a partial function to all elements of the collection on which

the function is defined.

c count p Counts the number of elements in the collection for which the predicate is satisfied.

c1 diff c2 Returns the difference of the elements in c1 and c2.

c drop n Returns all elements in the collection except the first n elements.

c dropWhile p Returns a collection that contains the “longest prefix of elements that satisfy the predicate.”

c exists p Returns true if the predicate is true for any element in the collection.

c filter p Returns all elements from the collection for which the predicate is true.

c filterNot p Returns all elements from the collection for which the predicate is false.

c find p Returns the first element that matches the predicate as Some[A]. Returns None if no match is

found.

c flatten Converts a collection of collections (such as a list of lists) to a single collection (single list).

c flatMap f Returns a new collection by applying a function to all elements of the collection c (like map), and

then flattening the elements of the resulting collections.

c foldLeft(z)(op) Applies the operation to successive elements, going from left to right, starting at element z.

c foldRight(z)(op) Applies the operation to successive elements, going from right to left, starting at element z.

c forAll p Returns true if the predicate is true for all elements, false otherwise.

c foreach f Applies the function f to all elements of the collection.

c groupBy f Partitions the collection into a Map of collections according to the function.

c hasDefiniteSize Tests whether the collection has a finite size. (Returns false for a Stream or Iterator, for

example.)

c head Returns the first element of the collection. Throws a NoSuchElementException if the

collection is empty.

c headOption Returns the first element of the collection as Some[A] if the element exists, or None if the

collection is empty.

c init Selects all elements from the collection except the last one. Throws an

UnsupportedOperationException if the collection is empty.

c1 intersect c2 On collections that support it, it returns the intersection of the two collections (the elements

common to both collections).

c isEmpty Returns true if the collection is empty, false otherwise.

c last Returns the last element from the collection. Throws a NoSuchElementException if the

collection is empty.

c lastOption Returns the last element of the collection as Some[A] if the element exists, or None if the

collection is empty.

c map f Creates a new collection by applying the function to all the elements of the collection.

c max Returns the largest element from the collection.

c min Returns the smallest element from the collection.

10.3. Choosing a Collection Method to Solve a Problem | 257

Method Description

c nonEmpty Returns true if the collection is not empty.

c par Returns a parallel implementation of the collection, e.g., Array returns ParArray.

c partition p Returns two collections according to the predicate algorithm.

c product Returns the multiple of all elements in the collection.

c reduceLeft op The same as foldLeft, but begins at the first element of the collection.

c reduceRight op The same as foldRight, but begins at the last element of the collection.

c reverse Returns a collection with the elements in reverse order. (Not available on Traversable, but

common to most collections, from GenSeqLike.)

c size Returns the size of the collection.

c slice(from, to) Returns the interval of elements beginning at element from and ending at element to.

c sortWith f Returns a version of the collection sorted by the comparison function f.

c span p Returns a collection of two collections; the first created by c.takeWhile(p), and the second

created by c.dropWhile(p).

c splitAt n Returns a collection of two collections by splitting the collection c at element n.

c sum Returns the sum of all elements in the collection.

c tail Returns all elements from the collection except the first element.

c take n Returns the first n elements of the collection.

c takeWhile p Returns elements from the collection while the predicate is true. Stops when the predicate

becomes false.

c1 union c2 Returns the union (all elements) of two collections.

c unzip The opposite of zip, breaks a collection into two collections by dividing each element into two

pieces, as in breaking up a collection of Tuple2 elements.

c view Returns a nonstrict (lazy) view of the collection.

c1 zip c2 Creates a collection of pairs by matching the element 0 of c1 with element 0 of c2, element 1

of c1 with element 1 of c2, etc.

c zipWithIndex Zips the collection with its indices.

Mutable collection methods

Table 10-9 shows the common methods for mutable collections. (Although these are all
methods, they’re often referred to as operators, because that’s what they look like.)

Table 10-9. Common operators (methods) on mutable collections

Operator (method) Description

c += x Adds the element x to the collection c.

c += (x,y,z) Adds the elements x, y, and z to the collection c.

c1 ++= c2 Adds the elements in the collection c2 to the collection c1.

c −= x Removes the element x from the collection c.

c −= (x,y,z) Removes the elements x , y, and z from the collection c.

258 | Chapter 10: Collections

Operator (method) Description

c1 −−= c2 Removes the elements in the collection c2 from the collection c1.

c(n) = x Assigns the value x to the element c(n).

c clear Removes all elements from the collection.

c remove n

c.remove(n, len)

Removes the element at position n, or the elements beginning at position n and continuing for length

len.

There are additional methods, but these are the most common. See the Scaladoc for the
mutable collection you’re working with for more methods.

Immutable collection operators

Table 10-10 shows the common methods for working with immutable collections. Note
that immutable collections can’t be modified, so the result of each expression in the first
column must be assigned to a new variable. (Also, see Recipe 10.6 for details on using
a mutable variable with an immutable collection.)

Table 10-10. Common operators (methods) on immutable collections

Operator (method) Description

c1 ++ c2 Creates a new collection by appending the elements in the collection c2 to the collection c1.

c :+ e Returns a new collection with the element e appended to the collection c.

e +: c Returns a new collection with the element e prepended to the collection c.

e :: list Returns a List with the element e prepended to the List named list. (:: works only on List.)

c drop n

c dropWhile p

c filter p

c filterNot p

c head

c tail

c take n

c takeWhile p

The two methods - and -- have been deprecated, so use the filtering methods listed in Table 10-8 to

return a new collection with the desired elements removed. Examples of some of these filtering methods

are shown here.

Again, this table lists only the most common methods available on immutable collec‐
tions. There are other methods available, such as the -- method on a Set. See the Sca‐
ladoc for your current collection for even more methods.

Maps

Maps have additional methods, as shown in Table 10-11. In this table, the following
symbols are used in the first column:

• m refers to a map

• mm refers to a mutable map

• k refers to a key

10.3. Choosing a Collection Method to Solve a Problem | 259

• p refers to a predicate (a function that returns true or false)

• v refers to a map value

• c refers to a collection

Table 10-11. Common methods for immutable and mutable maps

Map method Description

Methods for immutable maps

m - k Returns a map with the key k (and its corresponding value) removed.

m - (k1, k2, k3) Returns a map with the keys k1, k2, and k3 removed.

m -- c

m -- List(k1, k2)

Returns a map with the keys in the collection removed. (Although List is shown,

this can be any sequential collection.)

Methods for mutable maps

mm += (k -> v)

mm += (k1 -> v1, k2 -> v2)

Add the key/value pair(s) to the mutable map mm.

mm ++= c

mm ++= List(3 -> "c")

Add the elements in the collection c to the mutable map mm.

mm -= k

mm -= (k1, k2, k3)

Remove map entries from the mutable map mm based on the given key(s).

mm --= c Remove the map entries from the mutable map mm based on the keys in the collection

c.

Methods for both mutable and immutable maps

m(k) Returns the value associated with the key k.

m contains k Returns true if the map m contains the key k.

m filter p Returns a map whose keys and values match the condition of the predicate p.

m filterKeys p Returns a map whose keys match the condition of the predicate p.

m get k Returns the value for the key k as Some[A] if the key is found, None otherwise.

m getOrElse(k, d) Returns the value for the key k if the key is found, otherwise returns the default value

d.

m isDefinedAt k Returns true if the map contains the key k.

m keys Returns the keys from the map as an Iterable.

m keyIterator Returns the keys from the map as an Iterator.

m keySet Returns the keys from the map as a Set.

m mapValues f Returns a new map by applying the function f to every value in the initial map.

m values Returns the values from the map as an Iterable.

m valuesIterator Returns the values from the map as an Iterator.

For additional methods, see the Scaladoc for the mutable and immutable map classes.

260 | Chapter 10: Collections

http://bit.ly/12AQ2HY
http://bit.ly/15y3BGn

Discussion
As you can see, Scala collection classes contain a wealth of methods (and methods that
appear to be operators). Understanding these methods will help you become more pro‐
ductive, because as you understand them, you’ll write less code and fewer loops, and
instead write short functions and predicates to work with these methods.

10.4. Understanding the Performance of Collections

Problem
When choosing a collection for an application where performance is extremely impor‐
tant, you want to choose the right collection for the algorithm.

Solution
In many cases, you can reason about the performance of a collection by understanding
its basic structure. For instance, a List is a singly linked list. It’s not indexed, so if you
need to access the one-millionth element of a List as list(1000000), that will be slower
than accessing the one-millionth element of an Array, because the Array is indexed,
whereas accessing the element in the List requires traversing the length of the List.

In other cases, it may help to look at the tables. For instance, Table 10-13 shows that the
append operation on a Vector is eC, “effectively constant time.” As a result, I know I
can create a large Vector in the REPL very quickly like this:

var v = Vector[Int]()

for (i <- 1 to 50000) v = v :+ i

However, as the table shows, the append operation on a List requires linear time, so
attempting to create a List of the same size takes a much (much!) longer time.

With permission from EFPL, the tables in this recipe have been reproduced from
scala-lang.org.

Before looking at the performance tables, Table 10-12 shows the performance charac‐
teristic keys that are used in the other tables that follow.

Table 10-12. Performance characteristic keys for the subsequent tables

Key Description

C The operation takes (fast) constant time.

eC The operation takes effectively constant time, but this might depend on some assumptions, such as maximum length of

a vector, or distribution of hash keys.

aC The operation takes amortized constant time. Some invocations of the operation might take longer, but if many operations

are performed, on average only constant time per operation is taken.

Log The operation takes time proportional to the logarithm of the collection size.

10.4. Understanding the Performance of Collections | 261

http://lamp.epfl.ch/
http://bit.ly/13KECnF

Key Description

L The operation is linear, so the time is proportional to the collection size.

- The operation is not supported.

Table 10-13 shows the performance characteristics for operations on immutable and
mutable sequential collections.

Table 10-13. Performance characteristics for sequential collections

 head tail apply update prepend append insert

Immutable

List C C L L C L -

Stream C C L L C L -

Vector eC eC eC eC eC eC -

Stack C C L L C C L

Queue aC aC L L L C -

Range C C C - - - -

String C L C L L L -

Mutable

ArrayBuffer C L C C L aC L

ListBuffer C L L L C C L

StringBuilder C L C C L aC L

MutableList C L L L C C L

Queue C L L L C C L

ArraySeq C L C C - - -

Stack C L L L C L L

ArrayStack C L C C aC L L

Array C L C C - - -

Table 10-14 describes the column headings used in Table 10-13.

Table 10-14. Descriptions of the column headings for Table 10-13

Operation Description

head Selecting the first element of the sequence.

tail Producing a new sequence that consists of all elements of the sequence except the first one.

apply Indexing.

update Functional update for immutable sequences, side-effecting update (with update) for mutable sequences.

262 | Chapter 10: Collections

Operation Description

prepend Adding an element to the front of the sequence. For immutable sequences, this produces a new sequence. For

mutable sequences, it modifies the existing sequence.

append Adding an element at the end of the sequence. For immutable sequences, this produces a new sequence. For mutable

sequences, it modifies the existing sequence.

insert Inserting an element at an arbitrary position in the sequence. This is supported directly only for mutable sequences.

Map and set performance characteristics

Table 10-15 shows the performance characteristics for maps and sets.

Table 10-15. The performance characteristics for maps and sets

 lookup add remove min

Immutable

HashSet/HashMap eC eC eC L

TreeSet/TreeMap Log Log Log Log

BitSet C L L eC

ListMap L L L L

Mutable

HashSet/HashMap eC eC eC L

WeakHashMap eC eC eC L

BitSet C aC C eC

TreeSet Log Log Log Log

Table 10-16 provides descriptions for the column headings used in Table 10-15.

Table 10-16. Descriptions of the column headings used in Table 10-15

Operation Description

lookup Testing whether an element is contained in a set, or selecting a value associated with a map key.

add Adding a new element to a set or key/value pair to a map.

remove Removing an element from a set or a key from a map.

min The smallest element of the set, or the smallest key of a map.

See Also

• The tables in this recipe have been reproduced from the following URL, with per‐
mission from the Programming Methods Laboratory of EFPL.

• The Programming Methods Laboratory of EFPL.

10.4. Understanding the Performance of Collections | 263

http://bit.ly/13KECnF
http://lamp.epfl.ch/

10.5. Declaring a Type When Creating a Collection

Problem
You want to create a collection of mixed types, and Scala isn’t automatically assigning
the type you want.

Solution
In the following example, if you don’t specify a type, Scala automatically assigns a type
of Double to the list:

scala> val x = List(1, 2.0, 33D, 400L)

x: List[Double] = List(1.0, 2.0, 33.0, 400.0)

If you’d rather have the collection be of type AnyVal or Number, specify the type in
brackets before your collection declaration:

scala> val x = List[Number](1, 2.0, 33D, 400L)

x: List[java.lang.Number] = List(1, 2.0, 33.0, 400)

scala> val x = List[AnyVal](1, 2.0, 33D, 400L)

x: List[AnyVal] = List(1, 2.0, 33.0, 400)

Discussion
By manually specifying a type, in this case Number, you control the collection type. This
is useful any time a list contains mixed types or multiple levels of inheritance. For in‐
stance, given this type hierarchy:

trait Animal

trait FurryAnimal extends Animal

case class Dog(name: String) extends Animal

case class Cat(name: String) extends Animal

create a sequence with a Dog and a Cat:

scala> val x = Array(Dog("Fido"), Cat("Felix"))

x: Array[Product with Serializable with Animal] = Array(Dog(Fido), Cat(Felix))

As shown, Scala assigns a type of Product with Serializable with Animal. If you
just want an Array[Animal], manually specify the desired type:

scala> val x = Array[Animal](Dog("Fido"), Cat("Felix"))

x: Array[Animal] = Array(Dog(Fido), Cat(Felix))

This may not seem like a big deal, but imagine declaring a class with a method that
returns this array:

class AnimalKingdom {

 def animals = Array(Dog("Fido"), Cat("Felix"))

}

264 | Chapter 10: Collections

When you generate the Scaladoc for this class, the animals method will show the
“Product with Serializable” in its Scaladoc:

def animals: Array[Product with Serializable with Animal]

If you’d rather have it appear like this in your Scaladoc:

def animals: Array[Animal]

manually assign the type, as shown in the Solution:

def animals = Array[Animal](Dog("Fido"), Cat("Felix"))

10.6. Understanding Mutable Variables with Immutable
Collections

Problem
You may have seen that mixing a mutable variable (var) with an immutable collection
causes surprising behavior. For instance, when you create an immutable Vector as a
var, it appears you can somehow add new elements to it:

scala> var sisters = Vector("Melinda")

sisters: collection.immutable.Vector[String] = Vector(Melinda)

scala> sisters = sisters :+ "Melissa"

sisters: collection.immutable.Vector[String] = Vector(Melinda, Melissa)

scala> sisters = sisters :+ "Marisa"

sisters: collection.immutable.Vector[String] = Vector(Melinda, Melissa, Marisa)

scala> sisters.foreach(println)

Melinda

Melissa

Marisa

How can this be?

Solution
Though it looks like you’re mutating an immutable collection, what’s really happening
is that the sisters variable points to a new collection each time you use the :+ method.
The sisters variable is mutable—like a non-final field in Java—so it’s actually being
reassigned to a new collection during each step. The end result is similar to these lines
of code:

var sisters = Vector("Melinda")

sisters = Vector("Melinda", "Melissa")

sisters = Vector("Melinda", "Melissa", "Marisa")

10.6. Understanding Mutable Variables with Immutable Collections | 265

In the second and third lines of code, the sisters reference has been changed to point
to a new collection.

You can demonstrate that the vector itself is immutable. Attempting to mutate one of
its elements—which doesn’t involve reassigning the variable—results in an error:

scala> sisters(0) = "Molly"

<console>:12: error: value update is not a member of

scala.collection.immutable.Vector[String]

 sisters(0) = "Molly"

 ^

Summary

When you first start working with Scala, the behavior of a mutable variable with an
immutable collection can be surprising. To be clear about variables:

• A mutable variable (var) can be reassigned to point at new data.

• An immutable variable (val) is like a final variable in Java; it can never be
reassigned.

To be clear about collections:

• The elements in a mutable collection (like ArrayBuffer) can be changed.

• The elements in an immutable collection (like Vector) cannot be changed.

See Also

Recipe 20.2, “Prefer Immutable Objects”, discusses the use of mutable variables
with immutable collections, and its opposite, using immutable variables with
mutable collections as a “best practice.”

10.7. Make Vector Your “Go To” Immutable Sequence

Problem
You want a fast, general-purpose, immutable, sequential collection type for your Scala
applications.

Solution
The Vector class was introduced in Scala 2.8 and is now considered to be the “go to,”
general-purpose immutable data structure. (Vector is an indexed, immutable sequential
collection. Use a List if you prefer working with a linear, immutable sequential collec‐
tion. See Recipe 10.2, “Choosing a Collection Class”, for more details.)

266 | Chapter 10: Collections

Create and use a Vector just like other immutable, indexed sequences. You can create
them and access elements efficiently by index:

scala> val v = Vector("a", "b", "c")

v: scala.collection.immutable.Vector[java.lang.String] = Vector(a, b, c)

scala> v(0)

res0: java.lang.String = a

You can’t modify a vector, so you “add” elements to an existing vector as you assign the
result to a new variable:

scala> val a = Vector(1, 2, 3)

a: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3)

scala> val b = a ++ Vector(4, 5)

b: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3, 4, 5)

Use the updated method to replace one element in a Vector while assigning the result
to a new variable:

scala> val c = b.updated(0, "x")

c: scala.collection.immutable.Vector[java.lang.String] = Vector(x, b, c)

You can also use all the usual filtering methods to get just the elements you want out of
a vector:

scala> val a = Vector(1, 2, 3, 4, 5)

a: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3, 4, 5)

scala> val b = a.take(2)

b: scala.collection.immutable.Vector[Int] = Vector(1, 2)

scala> val c = a.filter(_ > 2)

c: scala.collection.immutable.Vector[Int] = Vector(3, 4, 5)

In those examples, I created each variable as a val and assigned the output to a new
variable just to be clear, but you can also declare your variable as a var and reassign the
result back to the same variable:

scala> var a = Vector(1, 2, 3)

a: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3)

scala> a = a ++ Vector(4, 5)

a: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3, 4, 5)

Discussion
The “concrete, immutable collections classes” page from the scala-lang.org website
states the following:

10.7. Make Vector Your “Go To” Immutable Sequence | 267

http://bit.ly/12QljTA
http://www.scala-lang.org/

Vector is a collection type (introduced in Scala 2.8) that addresses the inefficiency for
random access on lists. Vectors allow accessing any element of the list in ‘effectively’
constant time ... Because vectors strike a good balance between fast random selections
and fast random functional updates, they are currently the default implementation of
immutable indexed sequences...

In his book, Scala In Depth (Manning Publications), Joshua Suereth offers the rule,
“When in Doubt, Use Vector.” He writes, “Vector is the most flexible, efficient collection
in the Scala collections library.”

As noted in Recipe 10.1, if you create an instance of an IndexedSeq, Scala returns a
Vector:

scala> val x = IndexedSeq(1,2,3)

x: IndexedSeq[Int] = Vector(1, 2, 3)

As a result, I’ve seen some developers create an IndexedSeq in their code, rather than a
Vector, to be more generic and to allow for potential future changes.

See Also

• The Vector class

• The “concrete, immutable collections classes” discussion of the Vector class

10.8. Make ArrayBuffer Your “Go To” Mutable Sequence

Problem
You want to use a general-purpose, mutable sequence in your Scala applications.

Solution
Just as the Vector is the recommended “go to” class for immutable, sequential collec‐
tions, the ArrayBuffer class is recommended as the general-purpose class for muta‐
ble sequential collections. (ArrayBuffer is an indexed sequential collection. Use
ListBuffer if you prefer a linear sequential collection that is mutable. See Recipe 10.2,
“Choosing a Collection Class”, for more information.)

To use an ArrayBuffer, first import it:

import scala.collection.mutable.ArrayBuffer

You can then create an empty ArrayBuffer:

var fruits = ArrayBuffer[String]()

var ints = ArrayBuffer[Int]()

Or you can create an ArrayBuffer with initial elements:

268 | Chapter 10: Collections

http://bit.ly/1bgKyXi
http://bit.ly/12QljTA

var nums = ArrayBuffer(1, 2, 3)

Like other mutable collection classes, you add elements using the += and ++= methods:

scala> var nums = ArrayBuffer(1, 2, 3)

nums: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(1, 2, 3)

// add one element

scala> nums += 4

res0: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4)

// add two or more elements (method has a varargs parameter)

scala> nums += (5, 6)

res1: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4, 5, 6)

// add elements from another collection

scala> nums ++= List(7, 8)

res2: scala.collection.mutable.ArrayBuffer[Int] =

 ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8)

You remove elements with the -= and --= methods:

// remove one element

scala> nums -= 9

res3: scala.collection.mutable.ArrayBuffer[Int] =

 ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8)

// remove two or more elements

scala> nums -= (7, 8)

res4: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4, 5, 6)

// remove elements specified by another sequence

scala> nums --= Array(5, 6)

res5: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4)

Discussion
Those are the methods I generally use to add and remove elements from an
ArrayBuffer. However, there are many more:

val a = ArrayBuffer(1, 2, 3) // ArrayBuffer(1, 2, 3)

a.append(4) // ArrayBuffer(1, 2, 3, 4)

a.append(5, 6) // ArrayBuffer(1, 2, 3, 4, 5, 6)

a.appendAll(Seq(7,8)) // ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8)

a.clear // ArrayBuffer()

val a = ArrayBuffer(9, 10) // ArrayBuffer(9, 10)

a.insert(0, 8) // ArrayBuffer(8, 9, 10)

a.insert(0, 6, 7) // ArrayBuffer(6, 7, 8, 9, 10)

a.insertAll(0, Vector(4, 5)) // ArrayBuffer(4, 5, 6, 7, 8, 9, 10)

a.prepend(3) // ArrayBuffer(3, 4, 5, 6, 7, 8, 9, 10)

a.prepend(1, 2) // ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

a.prependAll(Array(0)) // ArrayBuffer(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

10.8. Make ArrayBuffer Your “Go To” Mutable Sequence | 269

val a = ArrayBuffer.range('a', 'h') // ArrayBuffer(a, b, c, d, e, f, g)

a.remove(0) // ArrayBuffer(b, c, d, e, f, g)

a.remove(2, 3) // ArrayBuffer(b, c, g)

val a = ArrayBuffer.range('a', 'h') // ArrayBuffer(a, b, c, d, e, f, g)

a.trimStart(2) // ArrayBuffer(c, d, e, f, g)

a.trimEnd(2) // ArrayBuffer(c, d, e)

See the Scaladoc for more methods that you can use to modify an ArrayBuffer.

The ArrayBuffer Scaladoc provides these details about ArrayBuffer performance:
“Append, update, and random access take constant time (amortized time). Prepends
and removes are linear in the buffer size.” The ArrayBuffer documentation also states,
“array buffers are useful for efficiently building up a large collection whenever the new
items are always added to the end.”

If you need a mutable sequential collection that works more like a List (i.e., a linear
sequence rather than an indexed sequence), use ListBuffer instead of ArrayBuffer.
The Scala documentation on the ListBuffer states, “A ListBuffer is like an array buffer
except that it uses a linked list internally instead of an array. If you plan to convert the
buffer to a list once it is built up, use a list buffer instead of an array buffer.”

See Also

• ArrayBuffer discussion

• ArrayBuffer Scaladoc

• ListBuffer discussion

10.9. Looping over a Collection with foreach

Problem
You want to iterate over the elements in a collection with the foreach method.

Solution
The foreach method takes a function as an argument. The function you define should
take an element as an input parameter, and should not return anything. The input
parameter type should match the type stored in the collection. As foreach executes, it
passes one element at a time from the collection to your function until it reaches the
last element in the collection.

270 | Chapter 10: Collections

http://bit.ly/18YoNuP
http://bit.ly/1dzXIM7
http://bit.ly/18YoNuP
http://bit.ly/18YoTT4

The foreach method applies your function to each element of the collection, but it
doesn’t return a value. Because it doesn’t return anything, it’s said that it’s used for its
“side effect.”

As an example, a common use of foreach is to output information:

scala> val x = Vector(1, 2, 3)

x: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3)

scala> x.foreach((i: Int) => println(i))

1

2

3

That’s the longhand way of writing that code. For most expressions, Scala can infer the
type, so specifying i: Int isn’t necessary:

args.foreach(i => println(i))

You can further shorten this expression by using the ubiquitous underscore wildcard
character instead of using a temporary variable:

args.foreach(println(_))

In a situation like this, where a function literal consists of one statement that takes a
single argument, it can be condensed to this form:

args.foreach(println)

For a simple case like this, the syntax in the last example is typically used.

Discussion
As long as your function (or method) takes one parameter of the same type as the
elements in the collection and returns nothing (Unit), it can be called from a foreach
method. In the following example, the printIt method takes a Char, does something
with it, and returns nothing:

def printIt(c: Char) { println(c) }

Because a String is a sequence of type Char, printIt can be called in a foreach method
on a String as follows:

"HAL".foreach(c => printIt(c))

"HAL".foreach(printIt)

If your algorithm is used only once, you don’t have to declare it as a method or function;
just pass it to foreach as a function literal:

"HAL".foreach((c: Char) => println(c))

To declare a multiline function, use this format:

10.9. Looping over a Collection with foreach | 271

val longWords = new StringBuilder

"Hello world it's Al".split(" ").foreach{ e =>

 if (e.length > 4) longWords.append(s" $e")

 else println("Not added: " + e)

}

To understand this example, it may be helpful to know the split method used in that
function creates an Array[String], as shown here:

scala> "Hello world it's Al".split(" ")

res0: Array[java.lang.String] = Array(Hello, world, it's, Al)

In addition to using the foreach method on sequential collections, it’s also available on
the Map class. The Map implementation of foreach passes two parameters to your func‐
tion. You can handle those parameters as a tuple:

val m = Map("fname" -> "Tyler", "lname" -> "LeDude")

m foreach (x => println(s"${x._1} -> ${x._2}"))

However, I generally prefer the following approach:

movieRatings.foreach {

 case(movie, rating) => println(s"key: $movie, value: $rating")

}

See Recipe 11.17, “Traversing a Map”, for other ways to iterate over a map.

Scala’s for loop provides another powerful way to iterate over the elements in a
collection. See Recipe 10.10, “Looping over a Collection with a for Loop”, for more
information.

10.10. Looping over a Collection with a for Loop

Problem
You want to loop over the elements in a collection using a for loop, possibly creating a
new collection from the existing collection using the for/yield combination.

Solution
You can loop over any Traversable type (basically any sequence) using a for loop:

scala> val fruits = Traversable("apple", "banana", "orange")

fruits: Traversable[String] = List(apple, banana, orange)

scala> for (f <- fruits) println(f)

apple

banana

orange

272 | Chapter 10: Collections

scala> for (f <- fruits) println(f.toUpperCase)

APPLE

BANANA

ORANGE

If your algorithm is long, perform the work in a block following a for loop:

scala> val fruits = Array("apple", "banana", "orange")

fruits: Array[String] = Array(apple, banana, orange)

scala> for (f <- fruits) {

 | // imagine this required multiple lines

 | val s = f.toUpperCase

 | println(s)

 | }

APPLE

BANANA

ORANGE

This example shows one approach to using a counter inside a for loop:

scala> for (i <- 0 until fruits.size) println(s"element $i is ${fruits(i)}")

element 0 is apple

element 1 is banana

element 2 is orange

You can also use the zipWithIndex method when you need a loop counter:

scala> for ((elem, count) <- fruits.zipWithIndex) {

 | println(s"element $count is $elem")

 | }

element 0 is apple

element 1 is banana

element 2 is orange

When using zipWithIndex, consider calling view before
zipWithIndex:

// added a call to 'view'

for ((elem, count) <- fruits.view.zipWithIndex) {

 println(s"element $count is $elem")

}

See the next recipe for details.

Using zip with a Stream is another way to generate a counter:

scala> for ((elem,count) <- fruits.zip(Stream from 1)) {

 | println(s"element $count is $elem")

 | }

element 1 is apple

element 2 is banana

element 3 is orange

10.10. Looping over a Collection with a for Loop | 273

See the next recipe for details on using zipWithIndex and zip to create loop counters.

If you just need to do something N times, using a Range works well:

scala> for (i <- 1 to 3) println(i)

1

2

3

In that example, the expression 1 to 3 creates a Range, which you can demonstrate in
the REPL:

scala> 1 to 3

res0: scala.collection.immutable.Range.Inclusive = Range(1, 2, 3)

Again you can use a block inside curly braces when your algorithm gets long:

scala> for (i <- 1 to 3) {

 | // do whatever you want in this block

 | println(i)

 | }

1

2

3

The for/yield construct

The previous examples show how to operate on each element in a sequence, but they
don’t return a value. As with the foreach examples in the previous recipe, they’re used
for their side effect.

To build a new collection from an input collection, use the for/yield construct. The
following example shows how to build a new array of uppercase strings from an input
array of lowercase strings:

scala> val fruits = Array("apple", "banana", "orange")

fruits: Array[java.lang.String] = Array(apple, banana, orange)

scala> val newArray = for (e <- fruits) yield e.toUpperCase

newArray: Array[java.lang.String] = Array(APPLE, BANANA, ORANGE)

The for/yield construct returns (yields) a new collection from the input collection by
applying your algorithm to the elements of the input collection, so the array newArray
contains uppercase versions of the three strings in the initial array. Using for/yield like
this is known as a for comprehension.

If your for/yield processing requires multiple lines of code, perform the work in a block
after the yield keyword:

274 | Chapter 10: Collections

scala> val newArray = for (fruit <- fruits) yield {

 | // imagine this required multiple lines

 | val upper = fruit.toUpperCase

 | upper

 | }

newArray: Array[java.lang.String] = Array(APPLE, BANANA, ORANGE)

If your algorithm is long, or you want to reuse it, first define it in a method (or function):

def upperReverse(s: String) = {

 // imagine this is a long algorithm

 s.toUpperCase.reverse

}

then use the method with the for/yield loop:

scala> val newArray = for (fruit <- fruits) yield upperReverse(fruit)

newArray: Array[String] = Array(ELPPA, ANANAB, EGNARO)

Maps

You can also iterate over a Map nicely using a for loop:

scala> val names = Map("fname" -> "Ed", "lname" -> "Chigliak")

names: scala.collection.immutable.Map[String,String] =

 Map(fname -> Ed, lname -> Chigliak)

scala> for ((k,v) <- names) println(s"key: $k, value: $v")

key: fname, value: Ed

key: lname, value: Chigliak

See Recipe 11.17, “Traversing a Map”, for more examples of iterating over a map.

Discussion
When using a for loop, the <- symbol can be read as “in,” so the following statement
can be read as “for i in 1 to 3, do ...”:

for (i <- 1 to 3) { // more code here ...

As demonstrated in Recipe 3.3, “Using a for Loop with Embedded if Statements
(Guards)”, you can also combine a for loop with if statements, which are known as
guards:

for {

 file <- files

 if file.isFile

 if file.getName.endsWith(".txt")

} doSomething(file)

See that recipe for more examples of using guards with for loops.

10.10. Looping over a Collection with a for Loop | 275

See Also

• Recipe 3.3, “Using a for Loop with Embedded if Statements (Guards)”

• Recipe 10.9, “Looping over a Collection with foreach”

• Recipe 10.13, “Transforming One Collection to Another with for/yield”

10.11. Using zipWithIndex or zip to Create Loop Counters

Problem
You want to loop over a sequential collection, and you’d like to have access to a counter
in the loop, without having to manually create a counter.

Solution
Use the zipWithIndex or zip methods to create a counter automatically. Assuming you
have a sequential collection of days:

val days = Array("Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "Saturday")

you can print the elements in the collection with a counter using the zipWithIndex and
foreach methods:

days.zipWithIndex.foreach {

 case(day, count) => println(s"$count is $day")

}

As you’ll see in the Discussion, this works because zipWithIndex returns a series of
Tuple2 elements in an Array, like this:

Array((Sunday,0), (Monday,1), ...

and the case statement in the foreach loop matches a Tuple2.

You can also use zipWithIndex with a for loop:

for ((day, count) <- days.zipWithIndex) {

 println(s"$count is $day")

}

Both loops result in the following output:

0 is Sunday

1 is Monday

2 is Tuesday

3 is Wednesday

4 is Thursday

276 | Chapter 10: Collections

5 is Friday

6 is Saturday

When using zipWithIndex, the counter always starts at 0. You can also use the zip
method with a Stream to create a counter. This gives you a way to control the starting
value:

scala> for ((day,count) <- days.zip(Stream from 1)) {

 | println(s"day $count is $day")

 | }

Discussion
When zipWithIndex is used on a sequence, it returns a sequence of Tuple2 elements,
as shown in this example:

scala> val list = List("a", "b", "c")

list: List[String] = List(a, b, c)

scala> val zwi = list.zipWithIndex

zwi: List[(String, Int)] = List((a,0), (b,1), (c,2))

Because zipWithIndex creates a new sequence from the existing sequence, you may
want to call view before invoking zipWithIndex, like this:

scala> val zwi2 = list.view.zipWithIndex

zwi2: scala.collection.SeqView[(String, Int),Seq[_]] = SeqViewZ(...)

As shown, this creates a lazy view on the original list, so the tuple elements won’t be
created until they’re needed. Because of this behavior, calling view before calling
zipWithIndex is recommended at the first two links in the See Also section. However,
my own experience concurs with the performance shown in the third link in the See
Also section, where not using a view performs better. If performance is a concern, try
your loop both ways, and also try manually incrementing a counter.

As mentioned, the zip and zipWithIndex methods both return a sequence of Tuple2
elements. Therefore, your foreach method can also look like this:

days.zipWithIndex.foreach { d =>

 println(s"${d._2} is ${d._1}")

}

However, I think the approaches shown in the Solution are more readable.

As shown in the previous recipe, you can also use a range with a for loop to create a
counter:

val fruits = Array("apple", "banana", "orange")

for (i <- 0 until fruits.size) println(s"element $i is ${fruits(i)}")

See Recipe 10.24, “Creating a Lazy View on a Collection”, for more information on using
views.

10.11. Using zipWithIndex or zip to Create Loop Counters | 277

See Also

• A blog post on using zipWithIndex in several use cases

• A discussion of using zipWithIndex in a for loop

• A discussion of performance related to using a view with zipWithIndex

• SeqView trait

10.12. Using Iterators

Problem
You want (or need) to work with an iterator in a Scala application.

Solution
Although using an iterator with hasNext() and next() is a common way to loop over
a collection in Java, they aren’t commonly used in Scala, because Scala collections have
methods like map and foreach that let you implement algorithms more concisely. To be
clear, in Scala, I’ve never directly written code like this:

// don't do this

val it = collection.iterator

while (it.hasNext) ...

That being said, sometimes you’ll run into an iterator, with one of the best examples
being the io.Source.fromFile method. This method returns an iterator, which makes
sense, because when you’re working with very large files, it’s not practical to read the
entire file into memory.

An important part of using an iterator is knowing that it’s exhausted after you use it. As
you access each element, you mutate the iterator, and the previous element is discarded.
For instance, if you use foreach to iterate over an iterator’s elements, the call works the
first time:

scala> val it = Iterator(1,2,3)

it: Iterator[Int] = non-empty iterator

scala> it.foreach(println)

1

2

3

But when you attempt the same call a second time, you won’t get any output, because
the iterator has been exhausted:

278 | Chapter 10: Collections

http://bit.ly/12DReFU
http://bit.ly/1459nCO
http://bit.ly/17g4PHH
http://bit.ly/12AQN3P

scala> it.foreach(println)

(no output here)

An iterator isn’t a collection; instead, it gives you a way to access the elements in a
collection, one by one. But an iterator does define many of the methods you’ll see in a
normal collection class, including foreach, map, flatMap, collect, etc. You can also
convert an iterator to a collection when needed:

val it = Iterator(1,2,3)

it.toArray

The REPL output shows the collections you can create from an iterator:

scala> it.to[Tab]

toArray toBuffer toIndexedSeq toIterable toIterator

toList toMap toSeq toSet toStream

toString toTraversable

See Also

• An introduction to Scala iterators

• The Iterator trait

10.13. Transforming One Collection to Another with for/
yield

Problem
You want to create a new collection from an existing collection by transforming the
elements with an algorithm.

Solution
Use the for/yield construct and your algorithm to create the new collection. For in‐
stance, starting with a basic collection:

scala> val a = Array(1, 2, 3, 4, 5)

a: Array[Int] = Array(1, 2, 3, 4, 5)

You can create a copy of that collection by just “yielding” each element (with no algo‐
rithm):

scala> for (e <- a) yield e

res0: Array[Int] = Array(1, 2, 3, 4, 5)

You can create a new collection where each element is twice the value of the original:

10.13. Transforming One Collection to Another with for/yield | 279

http://bit.ly/15HLMqB
http://bit.ly/1dzYcSo

scala> for (e <- a) yield e * 2

res1: Array[Int] = Array(2, 4, 6, 8, 10)

You can determine the modulus of each element:

scala> for (e <- a) yield e % 2

res2: Array[Int] = Array(1, 0, 1, 0, 1)

This example converts a list of strings to uppercase:

scala> val fruits = Vector("apple", "banana", "lime", "orange")

fruits: Vector[String] = Vector(apple, banana, lime, orange)

scala> val ucFruits = for (e <- fruits) yield e.toUpperCase

ucFruits: Vector[String] = Vector(APPLE, BANANA, LIME, ORANGE)

Your algorithm can return whatever collection is needed. This approach converts the
original collection into a sequence of Tuple2 elements:

scala> for (i <- 0 until fruits.length) yield (i, fruits(i))

res0: scala.collection.immutable.IndexedSeq[(Int, String)] =

 Vector((0,apple), (1,banana), (2,lime), (3,orange))

This algorithm yields a sequence of Tuple2 elements that contains each original string
along with its length:

scala> for (f <- fruits) yield (f, f.length)

res1: Vector[(String, Int)] = Vector((apple,5), (banana,6), (lime,4), (orange,6))

If your algorithm takes multiple lines, include it in a block after the yield:

scala> val x = for (e <- fruits) yield {

 | // imagine this required multiple lines

 | val s = e.toUpperCase

 | s

 | }

x: Vector[String] = List(APPLE, BANANA, LIME, ORANGE)

Given a Person class and a list of friend’s names like this:

case class Person (name: String)

val friends = Vector("Mark", "Regina", "Matt")

a for/yield loop can yield a collection of Person instances:

scala> for (f <- friends) yield Person(f)

res0: Vector[Person] = Vector(Person(Mark), Person(Regina), Person(Matt))

You can include if statements (guards) in a for comprehension to filter elements:

scala> val x = for (e <- fruits if e.length < 6) yield e.toUpperCase

x: List[java.lang.String] = List(APPLE, LIME)

280 | Chapter 10: Collections

Discussion
This combination of a for loop and yield statement is known as a for comprehension
or sequence comprehension. It yields a new collection from an existing collection.

If you’re new to using the for/yield construct, it can help to think that is has a bucket
or temporary holding area on the side. As each element from the original collection is
operated on with yield and your algorithm, it’s added to that bucket. Then, when the
for loop is finished iterating over the entire collection, all of the elements in the bucket
are returned (yielded) by the expression.

In general, the collection type that’s returned by a for comprehension will be the same
type that you begin with. If you begin with an ArrayBuffer, you’ll end up with an
ArrayBuffer:

scala> val fruits = scala.collection.mutable.ArrayBuffer("apple", "banana")

fruits: scala.collection.mutable.ArrayBuffer[java.lang.String] =

 ArrayBuffer(apple, banana)

scala> val x = for (e <- fruits) yield e.toUpperCase

x: scala.collection.mutable.ArrayBuffer[java.lang.String] =

 ArrayBuffer(APPLE, BANANA)

A List returns a List:

scala> val fruits = "apple" :: "banana" :: "orange" :: Nil

fruits: List[java.lang.String] = List(apple, banana, orange)

scala> val x = for (e <- fruits) yield e.toUpperCase

x: List[java.lang.String] = List(APPLE, BANANA, ORANGE)

However, as shown in the Solution, this isn’t always the case.

Using guards

When you add guards to a for comprehension and want to write it as a multiline ex‐
pression, the recommended coding style is to use curly braces rather than parentheses:

for {

 file <- files

 if hasSoundFileExtension(file)

 if !soundFileIsLong(file)

} yield file

This makes the code more readable, especially when the list of guards becomes long.
See Recipe 3.3, “Using a for Loop with Embedded if Statements (Guards)”, more infor‐
mation on using guards.

When using guards, the resulting collection can end up being a different size than the
input collection:

scala> val cars = Vector("Mercedes", "Porsche", "Tesla")

cars: Vector[String] = Vector(Mercedes, Porsche, Tesla)

10.13. Transforming One Collection to Another with for/yield | 281

scala> for {

 | c <- cars

 | if c.startsWith("M")

 | } yield c

res0: Vector[String] = Vector(Mercedes)

In fact, if none of the car names had matched the startsWith test, that code would
return an empty Vector.

When I first started working with Scala I always used a for/yield expression to do this
kind of work, but one day I realized that I could achieve the same result more concisely
using the map method. The next recipe demonstrates how to use map to create a new
collection from an existing collection.

See Also

• Recipe 3.1, “Looping with for and foreach”, provides detailed examples of how for
loops are translated by the Scala compiler into foreach and map method calls.

• Recipe 3.3, “Using a for Loop with Embedded if Statements (Guards)”, provides
more examples of using guards.

10.14. Transforming One Collection to Another with map

Problem
Like the previous recipe, you want to transform one collection into another by applying
an algorithm to every element in the original collection.

Solution
Rather than using the for/yield combination shown in the previous recipe, call the map
method on your collection, passing it a function, an anonymous function, or method
to transform each element. This is shown in the following examples, where each String
in a List is converted to begin with a capital letter:

scala> val helpers = Vector("adam", "kim", "melissa")

helpers: scala.collection.immutable.Vector[java.lang.String] =

 Vector(adam, kim, melissa)

// the long form

scala> val caps = helpers.map(e => e.capitalize)

caps: scala.collection.immutable.Vector[String] = Vector(Adam, Kim, Melissa)

// the short form

282 | Chapter 10: Collections

scala> val caps = helpers.map(_.capitalize)

caps: scala.collection.immutable.Vector[String] = Vector(Adam, Kim, Melissa)

The next example shows that an array of String can be converted to an array of Int:

scala> val names = Array("Fred", "Joe", "Jonathan")

names: Array[java.lang.String] = Array(Fred, Joe, Jonathan)

scala> val lengths = names.map(_.length)

lengths: Array[Int] = Array(4, 3, 8)

The map method comes in handy if you want to convert a collection to a list of XML
elements:

scala> val nieces = List("Aleka", "Christina", "Molly")

nieces: List[String] = List(Aleka, Christina, Molly)

scala> val elems = nieces.map(niece => {niece})

elems: List[scala.xml.Elem] =

 List(Aleka, Christina, Molly)

Using a similar technique, you can convert the collection directly to an XML literal:

scala> val ul = {nieces.map(i => {i})}

ul: scala.xml.Elem = AlekaChristinaMolly

A function that’s passed into map can be as complicated as necessary. An example in the
Discussion shows how to use a multiline anonymous function with map. When your
algorithm gets longer, rather than using an anonymous function, define the function
(or method) first, and then pass it into map:

// imagine this is a long method

scala> def plusOne(c: Char): Char = (c.toByte+1).toChar

plusOne: (c: Char)Char

scala> "HAL".map(plusOne)

res0: String = IBM

When writing a method to work with map, define the method to take a single parameter
that’s the same type as the collection. In this case, plusOne is defined to take a char,
because a String is a collection of Char elements. The return type of the method
can be whatever you need for your algorithm. For instance, the previous
names.map(_.length) example showed that a function applied to a String can return
an Int.

Unlike the for/yield approach shown in the previous recipe, the map method also works
well when writing a chain of method calls. For instance, you can split a String into an
array of strings, then trim the blank spaces from those strings:

scala> val s = " eggs, milk, butter, Coco Puffs "

s: String = " eggs, milk, butter, Coco Puffs "

10.14. Transforming One Collection to Another with map | 283

scala> val items = s.split(",").map(_.trim)

items: Array[String] = Array(eggs, milk, butter, Coco Puffs)

This works because split creates an Array[String], and map applies the trim method
to each element in that array before returning the final array.

Discussion
For simple cases, using map is the same as using a basic for/yield loop:

scala> val people = List("adam", "kim", "melissa")

people: List[java.lang.String] = List(adam, kim, melissa)

// map

scala> val caps1 = people.map(_.capitalize)

caps1: List[String] = List(Adam, Kim, Melissa)

// for/yield

scala> val caps2 = for (f <- people) yield f.capitalize

caps2: List[String] = List(Adam, Kim, Melissa)

But once you add a guard, a for/yield loop is no longer directly equivalent to just a
map method call. If you attempt to use an if statement in the algorithm you pass to a
map method, you’ll get a very different result:

scala> val fruits = List("apple", "banana", "lime", "orange", "raspberry")

fruits: List[java.lang.String] = List(apple, banana, lime, orange, raspberry)

scala> val newFruits = fruits.map(f =>

 | if (f.length < 6) f.toUpperCase

 |)

newFruits: List[Any] = List(APPLE, (), LIME, (), ())

You could filter the result after calling map to clean up the result:

scala> newFruits.filter(_ != ())

res0: List[Any] = List(APPLE, LIME)

But in this situation, it helps to think of an if statement as being a filter, so the correct
solution is to first filter the collection, and then call map:

scala> val fruits = List("apple", "banana", "lime", "orange", "raspberry")

fruits: List[String] = List(apple, banana, lime, orange, raspberry)

scala> fruits.filter(_.length < 6).map(_.toUpperCase)

res1: List[String] = List(APPLE, LIME)

See Also

Recipe 3.1, “Looping with for and foreach”, provides detailed examples of how
for loops are translated by the Scala compiler into foreach and map method calls.

284 | Chapter 10: Collections

10.15. Flattening a List of Lists with flatten

Problem
You have a list of lists (a sequence of sequences) and want to create one list (sequence)
from them.

Solution
Use the flatten method to convert a list of lists into a single list. To demonstrate this,
first create a list of lists:

scala> val lol = List(List(1,2), List(3,4))

lol: List[List[Int]] = List(List(1, 2), List(3, 4))

Calling the flatten method on this list of lists creates one new list:

scala> val result = lol.flatten

result: List[Int] = List(1, 2, 3, 4)

As shown, flatten does what its name implies, flattening the lists held inside the outer
list into one resulting list.

Though I use the term “list” here, the flatten method isn’t limited to a List; it works
with other sequences (Array, ArrayBuffer, Vector, etc.) as well:

scala> val a = Array(Array(1,2), Array(3,4))

a: Array[Array[Int]] = Array(Array(1, 2), Array(3, 4))

scala> a.flatten

res0: Array[Int] = Array(1, 2, 3, 4)

In the real world, you might use flatten to convert a list of couples attending a wedding
into a single list of all people attending the wedding. Calling flatten on a
List[List[String]] does the job:

scala> val couples = List(List("kim", "al"), List("julia", "terry"))

couples: List[List[String]] = List(List(kim, al), List(julia, terry))

scala> val people = couples.flatten

people: List[String] = List(kim, al, julia, terry)

If you really want to have fun, capitalize each element in the resulting list and then sort
the list:

scala> val people = couples.flatten.map(_.capitalize).sorted

people: List[String] = List(Al, Julia, Kim, Terry)

This helps to demonstrate the power of the Scala collections methods. (Imagine trying
to write that code with only a for loop.)

10.15. Flattening a List of Lists with flatten | 285

In a social-networking application, you might do the same thing with a list of friends,
and their friends:

val myFriends = List("Adam", "David", "Frank")

val adamsFriends = List("Nick K", "Bill M")

val davidsFriends = List("Becca G", "Kenny D", "Bill M")

val friendsOfFriends = List(adamsFriends, davidsFriends)

Because friendsOfFriends is a list of lists, you can use flatten to accomplish many
tasks with it, such as creating a unique list of the friends of your friends:

scala> val uniqueFriendsOfFriends = friendsOfFriends.flatten.distinct

uniqueFriendsOfFriends: List[String] = List(Nick K, Bill M, Becca G, Kenny D)

The flatten method is useful in at least two other situations. First, because a String is
a sequence of Char, you can flatten a list of strings into a list of characters:

scala> val list = List("Hello", "world")

list: List[java.lang.String] = List(Hello, world)

scala> list.flatten

res0: List[Char] = List(H, e, l, l, o, w, o, r, l, d)

Second, because an Option can be thought of as a container that holds zero or one
elements, flatten has a very useful effect on a sequence of Some and None elements. It
pulls the values out of the Some elements to create the new list, and drops the None
elements:

scala> val x = Vector(Some(1), None, Some(3), None)

x: Vector[Option[Int]] = Vector(Some(1), None, Some(3), None)

scala> x.flatten

res1: Vector[Int] = Vector(1, 3)

10.16. Combining map and flatten with flatMap

Problem
When you first come to Scala, the flatMap method can seem very foreign, so you’d like
to understand how to use it and see where it can be applied.

Solution
Use flatMap in situations where you run map followed by flatten. The specific situation
is this:

• You’re using map (or a for/yield expression) to create a new collection from an
existing collection.

286 | Chapter 10: Collections

• The resulting collection is a list of lists.

• You call flatten immediately after map (or a for/yield expression).

When you’re in this situation, you can use flatMap instead.

The next example shows how to use flatMap with an Option. In this example, you’re
told that you should calculate the sum of the numbers in a list, with one catch: the
numbers are all strings, and some of them won’t convert properly to integers. Here’s the
list:

val bag = List("1", "2", "three", "4", "one hundred seventy five")

To solve the problem, you begin by creating a “string to integer” conversion method
that returns either Some[Int] or None, based on the String it’s given:

def toInt(in: String): Option[Int] = {

 try {

 Some(Integer.parseInt(in.trim))

 } catch {

 case e: Exception => None

 }

}

With this method in hand, the resulting solution is surprisingly simple:

scala> bag.flatMap(toInt).sum

res0: Int = 7

Discussion
To see how this works, break the problem down into smaller steps. First, here’s what
happens when you use map on the initial collection of strings:

scala> bag.map(toInt)

res0: List[Option[Int]] = List(Some(1), Some(2), None, Some(4), None)

The map method applies the toInt function to each element in the collection, and returns
a list of Some[Int] and None values. But the sum method needs a List[Int]; how do
you get there from here?

As shown in the previous recipe, flatten works very well with a list of Some and None
elements. It extracts the values from the Some elements while discarding the None ele‐
ments:

scala> bag.map(toInt).flatten

res1: List[Int] = List(1, 2, 4)

This makes finding the sum easy:

scala> bag.map(toInt).flatten.sum

res2: Int = 7

10.16. Combining map and flatten with flatMap | 287

Now, whenever I see map followed by flatten, I think “flat map,” so I get back to the
earlier solution:

scala> bag.flatMap(toInt).sum

res3: Int = 7

(Actually, I think, “map flat,” but the method is named flatMap.)

As you can imagine, once you get the original list down to a List[Int], you can call
any of the powerful collections methods to get what you want:

scala> bag.flatMap(toInt).filter(_ > 1)

res4: List[Int] = List(2, 4)

scala> bag.flatMap(toInt).takeWhile(_ < 4)

res5: List[Int] = List(1, 2)

scala> bag.flatMap(toInt).partition(_ > 3)

res6: (List[Int], List[Int]) = (List(4),List(1, 2))

As a second example of using flatMap, imagine you have a method that finds all the
subwords from a word you give it. Skipping the implementation for a moment, if you
call the method with the string then, it should work as follows:

scala> subWords("then")

res0: List[String] = List(then, hen, the)

(subWords should also return the string he, but it’s in beta.)

With that method (mostly) working, it can be called on a list of words with map:

scala> val words = List("band", "start", "then")

words: List[java.lang.String] = List(band, start, then)

scala> words.map(subWords)

res0: List[List[String]] =

 List(List(band, and, ban), List(start, tart, star), List(then, hen, the))

Very cool, you have a list of subwords for all the given words. One problem, though:
map gave you a list of lists. What to do? Call flatten:

scala> words.map(subWords).flatten

res1: List[String] = List(band, and, ban, start, tart, star, then, hen, the)

Success! You have a list of all the subwords from the original list of words. But notice
what you did: You called map, then flatten. Enter “map flat,” er, flatMap:

scala> words.flatMap(subWords)

res2: List[String] = List(band, and, ban, start, tart, star, then, hen, the)

General rule: Whenever you think map followed by flatten, use flatMap. Eventually
your brain will skip over the intermediate steps.

As for the implementation of subWords ... well, it’s a work in progress:

288 | Chapter 10: Collections

def subWords(word: String) = List(word, word.tail, word.take(word.length-1))

See Also

Recipe 20.6, “Using the Option/Some/None Pattern”, shows another flatMap
example.

10.17. Using filter to Filter a Collection

Problem
You want to filter the items in a collection to create a new collection that contains only
the elements that match your filtering criteria.

Solution
As listed in Recipe 10.3, “Choosing a Collection Method to Solve a Problem”, a variety
of methods can be used to filter the elements of an input collection to produce a new
output collection. This recipe demonstrates the filter method.

To use filter on your collection, give it a predicate to filter the collection elements as
desired. Your predicate should accept a parameter of the same type that the collection
holds, evaluate that element, and return true to keep the element in the new collection,
or false to filter it out. Remember to assign the results of the filtering operation to a
new variable.

For instance, the following example shows how to create a list of even numbers from
an input list using a modulus algorithm:

scala> val x = List.range(1, 10)

x: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)

// create a list of all the even numbers in the list

scala> val evens = x.filter(_ % 2 == 0)

evens: List[Int] = List(2, 4, 6, 8)

As shown, filter returns all elements from a sequence that return true when your
function/predicate is called. There’s also a filterNot method that returns all elements
from a list for which your function returns false.

Discussion
The main methods you can use to filter a collection are listed in Recipe 10.3, and are
repeated here for your convenience: collect, diff, distinct, drop, dropWhile, filter,
filterNot, find, foldLeft, foldRight, head, headOption, init, intersect, last,

10.17. Using filter to Filter a Collection | 289

lastOption, reduceLeft, reduceRight, remove, slice, tail, take, takeWhile, and
union.

Unique characteristics of filter compared to these other methods include:

• filter walks through all of the elements in the collection; some of the other meth‐
ods stop before reaching the end of the collection.

• filter lets you supply a predicate (a function that returns true or false) to filter
the elements.

How you filter the elements in your collection is entirely up to your algorithm. The
following examples show a few ways to filter a list of strings:

scala> val fruits = Set("orange", "peach", "apple", "banana")

fruits: scala.collection.immutable.Set[java.lang.String] =

 Set(orange, peach, apple, banana)

scala> val x = fruits.filter(_.startsWith("a"))

x: scala.collection.immutable.Set[String] = Set(apple)

scala> val y = fruits.filter(_.length > 5)

y: scala.collection.immutable.Set[String] = Set(orange, banana)

Your filtering function can be as complicated as needed. When your algorithm gets long,
you can pass a multiline block of code into filter:

scala> val list = "apple" :: "banana" :: 1 :: 2 :: Nil

list: List[Any] = List(apple, banana, 1, 2)

scala> val strings = list.filter {

 | case s: String => true

 | case _ => false

 | }

strings: List[Any] = List(apple, banana)

You can also put your algorithm in a separate method (or function) and then pass it
into filter:

def onlyStrings(a: Any) = a match {

 case s: String => true

 case _ => false

}

val strings = list.filter(onlyStrings)

The following example demonstrates that you can filter a list as many times as needed:

def getFileContentsWithoutBlanksComments(canonicalFilename: String):

List[String] = {

 io.Source.fromFile(canonicalFilename)

 .getLines

 .toList

290 | Chapter 10: Collections

 .filter(_.trim != "")

 .filter(_.charAt(0) != '#')

}

The two keys to using filter are:

• Your algorithm should return true for the elements you want to keep and false
for the other elements

• Remember to assign the results of the filter method to a new variable; filter
doesn’t modify the collection it’s invoked on

See Also

The collect method can also be used as a filtering method. Because it uses
partial functions, it’s described in detail in Recipe 9.8, “Creating Partial
Functions”.

10.18. Extracting a Sequence of Elements from a
Collection

Problem
You want to extract a sequence of contiguous elements from a collection, either by
specifying a starting position and length, or a function.

Solution
There are quite a few collection methods you can use to extract a contiguous list of
elements from a sequence, including drop, dropWhile, head, headOption, init, last,
lastOption, slice, tail, take, takeWhile.

Given the following Array:

scala> val x = (1 to 10).toArray

x: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

The drop method drops the number of elements you specify from the beginning of the
sequence:

scala> val y = x.drop(3)

y: Array[Int] = Array(4, 5, 6, 7, 8, 9, 10)

The dropWhile method drops elements as long as the predicate you supply returns
true:

10.18. Extracting a Sequence of Elements from a Collection | 291

scala> val y = x.dropWhile(_ < 6)

y: List[Int] = List(6, 7, 8, 9, 10)

The dropRight method works like drop, but starts at the end of the collection and works
forward, dropping elements from the end of the sequence:

scala> val y = x.dropRight(4)

y: Array[Int] = Array(1, 2, 3, 4, 5, 6)

take extracts the first N elements from the sequence:

scala> val y = x.take(3)

y: Array[Int] = Array(1, 2, 3)

takeWhile returns elements as long as the predicate you supply returns true:

scala> val y = x.takeWhile(_ < 5)

y: Array[Int] = Array(1, 2, 3, 4)

takeRight works the same way take works, but starts at the end of the sequence and
moves forward, taking the specified number of elements from the end of the sequence:

scala> val y = x.takeRight(3)

y: Array[Int] = Array(8, 9, 10)

slice(from, until) returns a sequence beginning at the index from until the index
until, not including until, and assuming a zero-based index:

scala> val peeps = List("John", "Mary", "Jane", "Fred")

peeps: List[String] = List(John, Mary, Jane, Fred)

scala> peeps.slice(1,3)

res0: List[String] = List(Mary, Jane)

All of these methods provide another way of filtering a collection, with their distin‐
guishing feature being that they return a contiguous sequence of elements.

Even more methods

There are even more methods you can use. Given this list:

scala> val nums = (1 to 5).toArray

nums: Array[Int] = Array(1, 2, 3, 4, 5)

the comments after the following expressions show the values that are returned by each
expression:

nums.head // 1

nums.headOption // Some(1)

nums.init // Array(1, 2, 3, 4)

nums.last // 5

nums.lastOption // Some(5)

nums.tail // Array(2, 3, 4, 5)

Hopefully the use of most of those methods is obvious. Two that might need a little
explanation are init and tail. The init method returns all elements from the sequence

292 | Chapter 10: Collections

except for the last element. The tail method returns all of the elements except the first
one.

See the Scaladoc for any sequence (List, Array, etc.) for more methods.

10.19. Splitting Sequences into Subsets (groupBy,
partition, etc.)

Problem
You want to partition a sequence into two or more different sequences (subsets) based
on an algorithm or location you define.

Solution
Use the groupBy, partition, span, or splitAt methods to partition a sequence into
subsequences. The sliding and unzip methods can also be used to split sequences into
subsequences, though sliding can generate many subsequences, and unzip primarily
works on a sequence of Tuple2 elements.

The groupBy, partition, and span methods let you split a sequence into subsets ac‐
cording to a function, whereas splitAt lets you split a collection into two sequences by
providing an index number, as shown in these examples:

scala> val x = List(15, 10, 5, 8, 20, 12)

x: List[Int] = List(15, 10, 5, 8, 20, 12)

scala> val y = x.groupBy(_ > 10)

y: Map[Boolean,List[Int]] =

 Map(false -> List(10, 5, 8), true -> List(15, 20, 12))

scala> val y = x.partition(_ > 10)

y: (List[Int], List[Int]) = (List(15, 20, 12), List(10, 5, 8))

scala> val y = x.span(_ < 20)

y: (List[Int], List[Int]) = (List(15, 10, 5, 8), List(20, 12))

scala> val y = x.splitAt(2)

y: (List[Int], List[Int]) = (List(15, 10), List(5, 8, 20, 12))

The groupBy method partitions the collection into a Map of subcollections based on your
function. The true map contains the elements for which your predicate returned
true, and the false map contains the elements that returned false.

The partition, span, and splitAt methods create a Tuple2 of sequences that are of
the same type as the original collection. The partition method creates two lists, one
containing values for which your predicate returned true, and the other containing the

10.19. Splitting Sequences into Subsets (groupBy, partition, etc.) | 293

elements that returned false. The span method returns a Tuple2 based on your pred‐
icate p, consisting of “the longest prefix of this list whose elements all satisfy p, and the
rest of this list.” The splitAt method splits the original list according to the element
index value you supplied.

When a Tuple2 of sequences is returned, its two sequences can be accessed like this:

scala> val (a,b) = x.partition(_ > 10)

a: List[Int] = List(15, 20, 12)

b: List[Int] = List(10, 5, 8)

The sequences in the Map that groupBy creates can be accessed like this:

scala> val groups = x.groupBy(_ > 10)

groups: scala.collection.immutable.Map[Boolean,List[Int]] =

 Map(false -> List(10, 5, 8), true -> List(15, 20, 12))

scala> val trues = groups(true)

trues: List[Int] = List(15, 20, 12)

scala> val falses = groups(false)

falses: List[Int] = List(10, 5, 8)

The sliding(size, step) method is an interesting creature that can be used to break
a sequence into many groups. It can be called with just a size, or both a size and
step:

scala> val nums = (1 to 5).toArray

nums: Array[Int] = Array(1, 2, 3, 4, 5)

// size = 2

scala> nums.sliding(2).toList

res0: List[Array[Int]] = List(Array(1, 2), Array(2, 3), Array(3, 4), Array(4, 5))

// size = 2, step = 2

scala> nums.sliding(2,2).toList

res1: List[Array[Int]] = List(Array(1, 2), Array(3, 4), Array(5))

// size = 2, step = 3

scala> nums.sliding(2,3).toList

res2: List[Array[Int]] = List(Array(1, 2), Array(4, 5))

As shown, sliding works by passing a “sliding window” over the original sequence,
returning sequences of a length given by size. The step parameter lets you skip over
elements, as shown in the last two examples. In my experience, the first two examples
are the most useful, first with a default step size of 1, and then when step matches
size.

The unzip method is also interesting. It can be used to take a sequence of Tuple2 values
and create two resulting lists: one that contains the first element of each tuple, and
another that contains the second element from each tuple:

294 | Chapter 10: Collections

scala> val listOfTuple2s = List((1,2), ('a', 'b'))

listOfTuple2s: List[(AnyVal, AnyVal)] = List((1,2), (a,b))

scala> val x = listOfTuple2s.unzip

x: (List[AnyVal], List[AnyVal]) = (List(1, a),List(2, b))

For instance, given a list of couples, you can unzip the list to create a list of women and
a list of men:

scala> val couples = List(("Kim", "Al"), ("Julia", "Terry"))

couples: List[(String, String)] = List((Kim,Al), (Julia,Terry))

scala> val (women, men) = couples.unzip

women: List[String] = List(Kim, Julia)

men: List[String] = List(Al, Terry)

As you might guess from its name, the unzip method is the opposite of zip:

scala> val women = List("Kim", "Julia")

women: List[String] = List(Kim, Julia)

scala> val men = List("Al", "Terry")

men: List[String] = List(Al, Terry)

scala> val couples = women zip men

couples: List[(String, String)] = List((Kim,Al), (Julia,Terry))

See the Scaladoc for any sequence (List, Array, etc.) for more methods.

10.20. Walking Through a Collection with the reduce and
fold Methods

Problem
You want to walk through all of the elements in a sequence, comparing two neighboring
elements as you walk through the collection.

Solution
Use the reduceLeft, foldLeft, reduceRight, and foldRight methods to walk through
the elements in a sequence, applying your function to neighboring elements to yield a
new result, which is then compared to the next element in the sequence to yield a new
result. (Related methods, such as scanLeft and scanRight, are also shown in the
Discussion.)

For example, use reduceLeft to walk through a sequence from left to right (from
the first element to the last). reduceLeft starts by comparing the first two elements in
the collection with your algorithm, and returns a result. That result is compared with

10.20. Walking Through a Collection with the reduce and fold Methods | 295

the third element, and that comparison yields a new result. That result is compared to
the fourth element to yield a new result, and so on.

If you’ve never used these methods before, you’ll see that they give you a surprising
amount of power. The best way to show this is with some examples. First, create a sample
collection to experiment with:

scala> val a = Array(12, 6, 15, 2, 20, 9)

a: Array[Int] = Array(12, 6, 15, 2, 20, 9)

Given that sequence, use reduceLeft to determine different properties about the col‐
lection. The following example shows how to get the sum of all the elements in the
sequence:

scala> a.reduceLeft(_ + _)

res0: Int = 64

Don’t let the underscores throw you for a loop; they just stand for the two parameters
that are passed into your function. You can write that code like this, if you prefer:

a.reduceLeft((x,y) => x + y)

The following examples show how to use reduceLeft to get the product of all elements
in the sequence, the smallest value in the sequence, and the largest value:

scala> a.reduceLeft(_ * _)

res1: Int = 388800

scala> a.reduceLeft(_ min _)

res2: Int = 2

scala> a.reduceLeft(_ max _)

res3: Int = 20

Show each step in the process

You can demonstrate how reduceLeft works by creating a larger function. The follow‐
ing function does a “max” comparison like the last example, but has some extra debug‐
ging code so you can see how reduceLeft works as it marches through the sequence.
Here’s the function:

// returns the max of the two elements

val findMax = (x: Int, y: Int) => {

 val winner = x max y

 println(s"compared $x to $y, $winner was larger")

 winner

}

Now call reduceLeft again on the array, this time giving it the findMax function:

scala> a.reduceLeft(findMax)

compared 12 to 6, 12 was larger

compared 12 to 15, 15 was larger

compared 15 to 2, 15 was larger

296 | Chapter 10: Collections

compared 15 to 20, 20 was larger

compared 20 to 9, 20 was larger

res0: Int = 20

The output shows how reduceLeft marches through the elements in the sequence, and
how it called the function at each step. Here’s how the process works:

• reduceLeft starts by calling findMax to test the first two elements in the array, 12
and 6. findMax returned 12, because 12 is larger than 6.

• reduceLeft takes that result (12), and calls findMax(12, 15). 12 is the result of the
first comparison, and 15 is the next element in the collection. 15 is larger, so it
becomes the new result.

• reduceLeft keeps taking the result from the function and comparing it to the next
element in the collection, until it marches through all the elements in the collection,
ending up with the result, 20.

The code that reduceLeft uses under the hood looks like this:

// you provide the sequence 'seq' and the function 'f'

var result = seq(0)

for (i <- 1 until seq.length) {

 val next = seq(i)

 result = f(result, next)

}

Feeding different algorithms into this loop lets you extract different types of information
from your sequence. Wrapping the algorithm in a method also makes for very concise
code.

One subtle but important note about reduceLeft: the function (or method) you supply
must return the same data type that’s stored in the collection. This is necessary
so reduceLeft can compare the result of your function to the next element in the
collection.

Working with other sequences and types

As you can imagine, the type contained in the sequence can be anything you need. For
instance, determining the longest or shortest string in a sequence of strings is a matter
of walking through the elements in the sequence with a function to compare the lengths
of two strings:

scala> val peeps = Vector("al", "hannah", "emily", "christina", "aleka")

peeps: scala.collection.immutable.Vector[java.lang.String] =

 Vector(al, hannah, emily, christina, aleka)

// longest

scala> peeps.reduceLeft((x,y) => if (x.length > y.length) x else y)

res0: String = christina

10.20. Walking Through a Collection with the reduce and fold Methods | 297

// shortest

scala> peeps.reduceLeft((x,y) => if (x.length < y.length) x else y)

res1: String = al

If this had been a collection of Person instances, you could run a similar algorithm on
each person’s name to get the longest and shortest names.

foldLeft, reduceRight, and foldRight

The foldLeft method works just like reduceLeft, but it lets you set a seed value to be
used for the first element. The following examples demonstrate a “sum” algorithm, first
with reduceLeft and then with foldLeft, to demonstrate the difference:

scala> val a = Array(1, 2, 3)

a: Array[Int] = Array(1, 2, 3)

scala> a.reduceLeft(_ + _)

res0: Int = 6

scala> a.foldLeft(20)(_ + _)

res1: Int = 26

scala> a.foldLeft(100)(_ + _)

res2: Int = 106

In the last two examples, foldLeft uses 20 and then 100 for its first element, which
affects the resulting sum as shown.

If you haven’t seen syntax like that before, foldLeft takes two parameter lists. The first
parameter list takes one field, the seed value. The second parameter list is the block of
code you want to run (your algorithm). Recipe 3.18, “Creating Your Own Control
Structures”, demonstrates the use of multiple parameter lists.

The reduceRight and foldRight methods work the same as reduceLeft and
foldLeft, respectively, but they begin at the end of the collection and work from right
to left, i.e., from the end of the collection back to the beginning.

The difference between reduceLeft and reduceRight

In many algorithms, it may not matter if you call reduceLeft or reduceRight. In that
case, you can call reduce instead. The reduce Scaladoc states, “The order in which
operations are performed on elements is unspecified and may be nondeterministic.”

But some algorithms will yield a big difference. For example, given this divide function:

val divide = (x: Double, y: Double) => {

 val result = x / y

 println(s"divided $x by $y to yield $result")

 result

}

and this array:

298 | Chapter 10: Collections

val a = Array(1.0, 2.0, 3.0)

reduceLeft and reduceRight yield a significantly different result:

scala> a.reduceLeft(divide)

divided 1.0 by 2.0 to yield 0.5

divided 0.5 by 3.0 to yield 0.16666666666666666

res0: Double = 0.16666666666666666

scala> a.reduceRight(divide)

divided 2.0 by 3.0 to yield 0.6666666666666666

divided 1.0 by 0.6666666666666666 to yield 1.5

res1: Double = 1.5

scanLeft and scanRight

Two methods named scanLeft and scanRight walk through a sequence in a manner
similar to reduceLeft and reduceRight, but they return a sequence instead of a single
value.

For instance, scanLeft “Produces a collection containing cumulative results of applying
the operator going left to right.” To understand how it works, create another function
with a little debug code in it:

val product = (x: Int, y: Int) => {

 val result = x * y

 println(s"multiplied $x by $y to yield $result")

 result

}

Here’s what scanLeft looks like when it’s used with that function and a seed value:

scala> val a = Array(1, 2, 3)

a: Array[Int] = Array(1, 2, 3)

scala> a.scanLeft(10)(product)

multiplied 10 by 1 to yield 10

multiplied 10 by 2 to yield 20

multiplied 20 by 3 to yield 60

res0: Array[Int] = Array(10, 10, 20, 60)

As you can see, scanLeft returns a new sequence, rather than a single value. The
scanRight method works the same way, but marches through the collection from right
to left.

There are a few more related methods, including reduce (which was mentioned earlier),
reduceLeftOption, and reduceRightOption.

If you’re curious about the statement in the reduce method Scaladoc that, “The order
in which operations are performed on elements is unspecified and may be nondeter‐
ministic,” run this code in the REPL:

10.20. Walking Through a Collection with the reduce and fold Methods | 299

val findMax = (x: Int, y: Int) => {

 Thread.sleep(10)

 val winner = x max y

 println(s"compared $x to $y, $winner was larger")

 winner

}

val a = Array.range(0,50)

a.par.reduce(findMax)

You’ll see that the elements in the sequence are indeed compared in a nondeterministic
order.

10.21. Extracting Unique Elements from a Sequence

Problem
You have a collection that contains duplicate elements, and you want to remove the
duplicates.

Solution
Call the distinct method on the collection:

scala> val x = Vector(1, 1, 2, 3, 3, 4)

x: scala.collection.immutable.Vector[Int] = Vector(1, 1, 2, 3, 3, 4)

scala> val y = x.distinct

y: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3, 4)

The distinct method returns a new collection with the duplicate values removed.
Remember to assign the result to a new variable. This is required for both immutable
and mutable collections.

If you happen to need a Set, converting the collection to a Set is another way to remove
the duplicate elements:

scala> val s = x.toSet

s: scala.collection.immutable.Set[Int] = Set(1, 2, 3, 4)

By definition a Set can only contain unique elements, so converting an Array, List,
Vector, or other sequence to a Set removes the duplicates. In fact, this is how distinct
works. The source code for the distinct method in GenSeqLike shows that it uses an
instance of mutable.HashSet.

Using distinct with your own classes

To use distinct with your own class, you’ll need to implement the equals and hashCode
methods. For example, the following class will work with distinct because it imple‐
ments those methods:

300 | Chapter 10: Collections

class Person(firstName: String, lastName: String) {

 override def toString = s"$firstName $lastName"

 def canEqual(a: Any) = a.isInstanceOf[Person]

 override def equals(that: Any): Boolean =

 that match {

 case that: Person => that.canEqual(this) && this.hashCode == that.hashCode

 case _ => false

 }

 override def hashCode: Int = {

 val prime = 31

 var result = 1

 result = prime * result + lastName.hashCode;

 result = prime * result + (if (firstName == null) 0 else firstName.hashCode)

 return result

 }

}

object Person {

 def apply(firstName: String, lastName: String) =

 new Person(firstName, lastName)

}

You can demonstrate that this class works with distinct by placing the following code
in the REPL:

val dale1 = new Person("Dale", "Cooper")

val dale2 = new Person("Dale", "Cooper")

val ed = new Person("Ed", "Hurley")

val list = List(dale1, dale2, ed)

val uniques = list.distinct

The last two lines look like this in the REPL:

scala> val list = List(dale1, dale2, ed)

list: List[Person] = List(Dale Cooper, Dale Cooper, Ed Hurley)

scala> val uniquePeople = list.distinct

uniquePeople: List[Person] = List(Dale Cooper, Ed Hurley)

If you remove either the equals method or hashCode method, you’ll see that distinct
won’t work as desired.

See Also

You can find the source code for the SeqLike trait (and its distinct method) by
following the Source link on its Scaladoc page.

10.21. Extracting Unique Elements from a Sequence | 301

http://bit.ly/15fUomj

10.22. Merging Sequential Collections

Problem
You want to join two sequences into one sequence, either keeping all of the original
elements, finding the elements that are common to both collections, or finding the
difference between the two sequences.

Solution
There are a variety of solutions to this problem, depending on your needs:

• Use the ++= method to merge a sequence into a mutable sequence.

• Use the ++ method to merge two mutable or immutable sequences.

• Use collection methods like union, diff, and intersect.

Use the ++= method to merge a sequence (any TraversableOnce) into a mutable col‐
lection like an ArrayBuffer:

scala> val a = collection.mutable.ArrayBuffer(1,2,3)

a: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(1, 2, 3)

scala> a ++= Seq(4,5,6)

res0: a.type = ArrayBuffer(1, 2, 3, 4, 5, 6)

Use the ++ method to merge two mutable or immutable collections while assigning the
result to a new variable:

scala> val a = Array(1,2,3)

a: Array[Int] = Array(1, 2, 3)

scala> val b = Array(4,5,6)

b: Array[Int] = Array(4, 5, 6)

scala> val c = a ++ b

c: Array[Int] = Array(1, 2, 3, 4, 5, 6)

You can also use methods like union and intersect to combine sequences to create a
resulting sequence:

scala> val a = Array(1,2,3,4,5)

a: Array[Int] = Array(1, 2, 3, 4, 5)

scala> val b = Array(4,5,6,7,8)

b: Array[Int] = Array(4, 5, 6, 7, 8)

// elements that are in both collections

scala> val c = a.intersect(b)

c: Array[Int] = Array(4, 5)

302 | Chapter 10: Collections

// all elements from both collections

scala> val c = a.union(b)

c: Array[Int] = Array(1, 2, 3, 4, 5, 4, 5, 6, 7, 8)

// distinct elements from both collections

scala> val c = a.union(b).distinct

c: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8)

The diff method results depend on which sequence it’s called on:

scala> val c = a diff b

c: Array[Int] = Array(1, 2, 3)

scala> val c = b diff a

c: Array[Int] = Array(6, 7, 8)

The Scaladoc for the diff method states that it returns, “a new list which contains all
elements of this list except some of occurrences of elements that also appear in that.
If an element value x appears n times in that, then the first n occurrences of x will not
form part of the result, but any following occurrences will.”

The objects that correspond to most collections also have a concat method:

scala> Array.concat(a, b)

res0: Array[Int] = Array(1, 2, 3, 4, 4, 5, 6, 7)

If you happen to be working with a List, the ::: method prepends the elements of one
list to another list:

scala> val a = List(1,2,3,4)

a: List[Int] = List(1, 2, 3, 4)

scala> val b = List(4,5,6,7)

b: List[Int] = List(4, 5, 6, 7)

scala> val c = a ::: b

c: List[Int] = List(1, 2, 3, 4, 4, 5, 6, 7)

Discussion
You can also use the diff method to get the relative complement of two sets.

The relative complement of a set A with respect to a set B is the set of
elements in B that are not in A.

On a recent project, I needed to find the elements in one list that weren’t in another list.
I did this by converting the lists to sets, and then using the diff method to compare the
two sets. For instance, given these two arrays:

10.22. Merging Sequential Collections | 303

val a = Array(1,2,3,11,4,12,4,5)

val b = Array(6,7,4,5)

you can find the relative complement of each array by first converting them to sets, and
then comparing them with the diff method:

// the elements in a that are not in b

scala> val c = a.toSet diff b.toSet

c: scala.collection.immutable.Set[Int] = Set(1, 2, 12, 3, 11)

// the elements in b that are not in a

scala> val d = b.toSet diff a.toSet

d: scala.collection.immutable.Set[Int] = Set(6, 7)

If desired, you can then sum those results to get the list of elements that are either in
the first set or the second set, but not both sets:

scala> val complement = c ++ d

complement: scala.collection.immutable.Set[Int] = Set(1, 6, 2, 12, 7, 3, 11)

This works because diff returns a set that contains the elements in the current set
(this) that are not in the other set (that).

You can also use the -- method to get the same result:

scala> val c = a.toSet -- b.toSet

c: scala.collection.immutable.Set[Int] = Set(1, 2, 12, 3, 11)

scala> val d = b.toSet -- a.toSet

d: scala.collection.immutable.Set[Int] = Set(6, 7)

Subtracting the intersection of the two sets also yields the same result:

scala> val i = a.intersect(b)

i: Array[Int] = Array(4, 5)

scala> val c = a.toSet -- i.toSet

c: scala.collection.immutable.Set[Int] = Set(1, 2, 12, 3, 11)

scala> val d = b.toSet -- i.toSet

d: scala.collection.immutable.Set[Int] = Set(6, 7)

10.23. Merging Two Sequential Collections into Pairs with
zip

Problem
You want to merge data from two sequential collections into a collection of key/value
pairs.

304 | Chapter 10: Collections

Solution
Use the zip method to join two sequences into one:

scala> val women = List("Wilma", "Betty")

women: List[String] = List(Wilma, Betty)

scala> val men = List("Fred", "Barney")

men: List[String] = List(Fred, Barney)

scala> val couples = women zip men

couples: List[(String, String)] = List((Wilma,Fred), (Betty,Barney))

This creates an Array of Tuple2 elements, which is a merger of the two original se‐
quences.

This code shows one way to loop over the resulting collection:

scala> for ((wife, husband) <- couples) {

 | println(s"$wife is married to $husband")

 | }

Wilma is married to Fred

Betty is married to Barney

Once you have a sequence of tuples like couples, you can convert it to a Map, which may
be more convenient:

scala> val couplesMap = couples.toMap

couplesMap: scala.collection.immutable.Map[String,String] =

 Map(Wilma -> Fred, Betty -> Barney)

Discussion
If one collection contains more items than the other collection, the items at the end of
the longer collection will be dropped. In the previous example, if the prices collection
contained only one element, the resulting collection will contain only one Tuple2:

// three elements

scala> val products = Array("breadsticks", "pizza", "soft drink")

products: Array[String] = Array(breadsticks, pizza, soft drink)

// one element

scala> val prices = Array(4)

prices: Array[Int] = Array(4)

// one resulting element

scala> val productsWithPrice = products.zip(prices)

productsWithPrice: Array[(String, Int)] = Array((breadsticks,4))

Note that the unzip method is the reverse of zip:

scala> val (a,b) = productsWithPrice.unzip

10.23. Merging Two Sequential Collections into Pairs with zip | 305

a: collection.mutable.IndexedSeq[String] =

 ArrayBuffer(breadsticks, pizza, soft drink)

b: collection.mutable.IndexedSeq[Double] =

 ArrayBuffer(4.0, 10.0, 1.5)

See Also

Recipes 10.10, 10.11, and 10.19 demonstrate other uses of the zip method (and
zipWithIndex).

10.24. Creating a Lazy View on a Collection

Problem
You’re working with a large collection and want to create a “lazy” version of it so it will
only compute and return results as they are actually needed.

Solution
Except for the Stream class, whenever you create an instance of a Scala collection class,
you’re creating a strict version of the collection. This means that if you create a collection
that contains one million elements, memory is allocated for all of those elements im‐
mediately. This is the way things normally work in a language like Java.

In Scala you can optionally create a view on a collection. A view makes the result non‐
strict, or lazy. This changes the resulting collection, so when it’s used with a transformer
method, the elements will only be calculated as they are accessed, and not “eagerly,” as
they normally would be. (A transformer method is a method that transforms an input
collection into a new output collection, as described in the Discussion.)

You can see the effect of creating a view on a collection by creating one Range without
a view, and a second one with a view:

scala> 1 to 100

res0: scala.collection.immutable.Range.Inclusive =

 Range(1, 2, 3, 4, ... 98, 99, 100)

scala> (1 to 100).view

res0: java.lang.Object with

 scala.collection.SeqView[Int,scala.collection.immutable.IndexedSeq[Int]] =

 SeqView(...)

Creating the Range without a view shows what you expect, a Range with 100 elements.
However, the Range with the view shows different output in the REPL, showing some‐
thing called a SeqView.

The signature of the SeqView shows:

306 | Chapter 10: Collections

• Int is the type of the view’s elements.

• The scala.collection.immutable.IndexedSeq[Int] portion of the output indi‐
cates the type you’ll get if you force the collection back to a “normal,” strict
collection.

You can see this when you force the view back to a normal collection:

scala> val view = (1 to 100).view

view: java.lang.Object with

 scala.collection.SeqView[Int,scala.collection.immutable.IndexedSeq[Int]] =

 SeqView(...)

scala> val x = view.force

x: scala.collection.immutable.IndexedSeq[Int] =

 Vector(1, 2, 3, ... 98, 99, 100)

There are several ways to see the effect of adding a view to a collection. First, you’ll see
that using a method like foreach doesn’t seem to change when using a view:

(1 to 100).foreach(println)

(1 to 100).view.foreach(println)

Both of those expressions will print 100 elements to the console. Because foreach isn’t
a transformer method, the result is unaffected.

However, calling a map method with and without a view has dramatically different re‐
sults:

scala> (1 to 100).map { _ * 2 }

res1: scala.collection.immutable.IndexedSeq[Int] =

 Vector(2, 4, 6, ... 196, 198, 200)

scala> (1 to 100).view.map { _ * 2 }

res0: scala.collection.SeqView[Int,Seq[_]] = SeqViewM(...)

These results are different because map is a transformer method. A fun way to further
demonstrate this difference is with the following code:

val x = (1 to 1000).view.map { e =>

 Thread.sleep(10)

 e * 2

}

If you run that code as shown, it will return immediately, returning a SeqView as before.
But if you remove the view method call, the code block will take about 10 seconds to
run.

Discussion
The Scala documentation states that a view “constructs only a proxy for the result col‐
lection, and its elements get constructed only as one demands them ... A view is a special

10.24. Creating a Lazy View on a Collection | 307

kind of collection that represents some base collection, but implements all transformers
lazily.”

A transformer is a method that constructs a new collection from an existing collection.
This includes methods like map, filter, reverse, and many more. When you use these
methods, you’re transforming the input collection to a new output collection.

This helps to explain why the foreach method prints the same result for a strict col‐
lection and its view: it’s not a transformer method. But the map method, and other
transformer methods like reverse, treat the view in a lazy manner:

scala> l.reverse

res0: List[Int] = List(3, 2, 1)

scala> l.view.reverse

res1: scala.collection.SeqView[Int,List[Int]] = SeqViewR(...)

At the end of the Solution you saw this block of code:

val x = (1 to 1000).view.map { e =>

 Thread.sleep(10)

 e * 2

}

As mentioned, that code returns a SeqView immediately. But when you go to print the
elements in x, like this:

x.foreach(print)

there will be a 10 ms pause before each element is printed. The elements are being
“demanded” in this line of code, so the penalty of the Thread.sleep method call is paid
as each element is yielded.

Use cases

There are two primary use cases for using a view:

• Performance

• To treat a collection like a database view

Regarding performance, assume that you get into a situation where you may (or may
not) have to operate on a collection of a billion elements. You certainly want to avoid
running an algorithm on a billion elements if you don’t have to, so using a view makes
sense here.

The second use case lets you use a Scala view on a collection just like a database view.
The following examples show how a collection view works like a database view:

// create a normal array

scala> val arr = (1 to 10).toArray

arr: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

308 | Chapter 10: Collections

// create a view on the array

scala> val view = arr.view.slice(2, 5)

view: scala.collection.mutable.IndexedSeqView[Int,Array[Int]] = SeqViewS(...)

// modify the array

scala> arr(2) = 42

// the view is affected:

scala> view.foreach(println)

42

4

5

// change the elements in the view

scala> view(0) = 10

scala> view(1) = 20

scala> view(2) = 30

// the array is affected:

scala> arr

res0: Array[Int] = Array(1, 2, 10, 20, 30, 6, 7, 8, 9, 10)

Changing the elements in the array updates the view, and changing the elements refer‐
enced by the view changes the elements in the array. When you need to modify a subset
of elements in a collection, creating a view on the original collection and modifying the
elements in the view can be a powerful way to achieve this goal.

As a final note, don’t confuse using a view with saving memory when creating a collec‐
tion. Both of the following approaches will generate a “java.lang.OutOfMemoryError:
Java heap space” error in the REPL:

val a = Array.range(0,123456789)

val a = Array.range(0,123456789).view

The benefit of using a view in regards to performance comes with how the view works
with transformer methods.

See Also

An introduction to Scala views

10.25. Populating a Collection with a Range

Problem
You want to populate a List, Array, Vector, or other sequence with a Range.

10.25. Populating a Collection with a Range | 309

http://bit.ly/1bgLHy8

Solution
Call the range method on sequences that support it, or create a Range and convert it to
the desired sequence.

In the first approach, the range method is available on the companion object of sup‐
ported types like Array, List, Vector, ArrayBuffer, and others:

scala> Array.range(1, 5)

res0: Array[Int] = Array(1, 2, 3, 4)

scala> List.range(0, 10)

res1: List[Int] = List(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> Vector.range(0, 10, 2)

res2: collection.immutable.Vector[Int] = Vector(0, 2, 4, 6, 8)

For some of the collections, such as List and Array, you can also create a Range and
convert it to the desired sequence:

scala> val a = (0 until 10).toArray

a: Array[Int] = Array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> val list = 1 to 10 by 2 toList

list: List[Int] = List(1, 3, 5, 7, 9)

scala> val list = (1 to 10).by(2).toList

list: List[Int] = List(1, 3, 5, 7, 9)

The REPL shows the collections that can be created directly from a Range:

toArray toBuffer toIndexedSeq toIterable toIterator

toList toMap toSeq toSet toStream

toString toTraversable

Using this approach is useful for some collections, like Set, which don’t offer a range
method:

// intentional error

scala> val set = Set.range(0, 5)

<console>:7: error: value range is not a member of object

scala.collection.immutable.Set

 val set = Set.range(0,5)

 ^

scala> val set = (0 until 10 by 2).toSet

set: scala.collection.immutable.Set[Int] = Set(0, 6, 2, 8, 4)

You can also use a Range to create a sequence of characters:

scala> val letters = ('a' to 'f').toList

letters: List[Char] = List(a, b, c, d, e, f)

310 | Chapter 10: Collections

scala> val letters = ('a' to 'f').by(2).toList

letters: List[Char] = List(a, c, e)

As shown in many recipes, ranges are also very useful in for loops:

scala> for (i <- 1 until 10 by 2) println(i)

1

3

5

7

9

Discussion
By using the map method with a Range, you can create a sequence with elements other
than type Int or Char:

scala> val map = (1 to 5).map(_ * 2.0)

map: collection.immutable.IndexedSeq[Double] = Vector(2.0, 4.0, 6.0, 8.0, 10.0)

Using a similar approach, you can also return a sequence of Tuple2 elements:

scala> val map = (1 to 5).map(e => (e,e))

map: scala.collection.immutable.IndexedSeq[(Int, Int)] =

 Vector((1,1), (2,2), (3,3), (4,4), (5,5))

That sequence easily converts to a Map:

scala> val map = (1 to 5).map(e => (e,e)).toMap

map: scala.collection.immutable.Map[Int,Int] =

 Map(5 -> 5, 1 -> 1, 2 -> 2, 3 -> 3, 4 -> 4)

10.26. Creating and Using Enumerations

Problem
You want to use an enumeration (a set of named values that act as constants) in your
application.

Solution
Extend the scala.Enumeration class to create your enumeration:

package com.acme.app {

 object Margin extends Enumeration {

 type Margin = Value

 val TOP, BOTTOM, LEFT, RIGHT = Value

 }

}

Then import the enumeration to use it in your application:

10.26. Creating and Using Enumerations | 311

object Main extends App {

 import com.acme.app.Margin._

 // use an enumeration value in a test

 var currentMargin = TOP

 // later in the code ...

 if (currentMargin == TOP) println("working on Top")

 // print all the enumeration values

 import com.acme.app.Margin

 Margin.values foreach println

}

Enumerations are useful tool for creating groups of constants, such as days of the week,
weeks of the year, and many other situations where you have a group of related, constant
values.

You can also use the following approach, but it generates about four times as much code
as an Enumeration, most of which you won’t need if your sole purpose is to use it like
an enumeration:

// a much "heavier" approach

package com.acme.app {

 trait Margin

 case object TOP extends Margin

 case object RIGHT extends Margin

 case object BOTTOM extends Margin

 case object LEFT extends Margin

}

See Also

Scala Enumeration class

10.27. Tuples, for When You Just Need a Bag of Things

Problem
You want to create a small collection of heterogeneous elements.

Solution
A tuple gives you a way to store a group of heterogeneous items in a container, which
is useful in many situations.

312 | Chapter 10: Collections

http://bit.ly/14U04n2

Create a tuple by enclosing the desired elements between parentheses. This is a two-
element tuple:

scala> val d = ("Debi", 95)

d: (String, Int) = (Debi,95)

Notice that it contains two different types. The following example shows a three-element
tuple:

scala> case class Person(name: String)

defined class Person

scala> val t = (3, "Three", new Person("Al"))

t: (Int, java.lang.String, Person) = (3,Three,Person(Al))

You can access tuple elements using an underscore construct:

scala> t._1

res1: Int = 3

scala> t._2

res2: java.lang.String = Three

scala> t._3

res3: Person = Person(Al)

I usually prefer to assign them to variables using pattern matching:

scala> val(x, y, z) = (3, "Three", new Person("Al"))

x: Int = 3

y: String = Three

z: Person = Person(Al)

A nice feature of this approach is that if you don’t want all of the elements from the
tuple, just use the _ wildcard character in place of the elements you don’t want:

scala> val (x, y, _) = t

x: Int = 3

y: java.lang.String = Three

scala> val (x, _, _) = t

x: Int = 3

scala> val (x, _, z) = t

x: Int = 3

z: Person = Person(Al)

A two-element tuple is an instance of the Tuple2 class, and a tuple with three elements
is an instance of the Tuple3 class. (More on this in the Discussion.) As shown earlier,
you can create a Tuple2 like this:

scala> val a = ("AL", "Alabama")

a: (java.lang.String, java.lang.String) = (AL,Alabama)

10.27. Tuples, for When You Just Need a Bag of Things | 313

You can also create it using these approaches:

scala> val b = "AL" -> "Alabama"

b: (java.lang.String, java.lang.String) = (AL,Alabama)

scala> val c = ("AL" -> "Alabama")

c: (java.lang.String, java.lang.String) = (AL,Alabama)

When you check the class created by these examples, you’ll find they’re all of type
Tuple2:

scala> c.getClass

res0: java.lang.Class[_ <: (java.lang.String, java.lang.String)] =

 class scala.Tuple2

This syntax is very convenient for other uses, including the creation of maps:

val map = Map("AL" -> "Alabama")

Discussion
The tuple is an interesting construct. There is no single “Tuple” class; instead, the API
defines tuple case classes from Tuple2 through Tuple22, meaning that you can have
from 2 to 22 elements in a tuple.

A common use case for a tuple is returning multiple items from a method. See Recipe 5.5,
“Defining a Method That Returns Multiple Items (Tuples)”, for an example of this.

Though a tuple isn’t a collection, you can treat a tuple as a collection when needed by
creating an iterator:

scala> val x = ("AL" -> "Alabama")

x: (java.lang.String, java.lang.String) = (AL,Alabama)

scala> val it = x.productIterator

it: Iterator[Any] = non-empty iterator

scala> for (e <- it) println(e)

AL

Alabama

Be aware that like any other iterator, after it’s used once, it will be exhausted. Attempting
to print the elements a second time yields no output:

scala> for (e <- it) println(e)

// no output here

Create a new iterator if you need to loop over the elements a second time.

You can also convert a tuple to a collection:

scala> val t = ("AL", "Alabama")

t: (String, String) = (AL,Alabama)

314 | Chapter 10: Collections

scala> t.productIterator.toArray

res0: Array[Any] = Array(AL, Alabama)

See Also

• The Tuple2 class

• Recipe 5.5, “Defining a Method That Returns Multiple Items (Tuples)”

10.28. Sorting a Collection

Problem
You want to sort a sequential collection. Or, you want to implement the Ordered trait
in a custom class so you can use the sorted method, or operators like <, <=, >, and >=
to compare instances of your class.

Solution
See Recipe 11.10, “Sorting Arrays”, for information on how to sort an Array. Otherwise,
use the sorted or sortWith methods to sort a collection.

The sorted method can sort collections with type Double, Float, Int, and any other
type that has an implicit scala.math.Ordering:

scala> val a = List(10, 5, 8, 1, 7).sorted

a: List[Int] = List(1, 5, 7, 8, 10)

scala> val b = List("banana", "pear", "apple", "orange").sorted

b: List[String] = List(apple, banana, orange, pear)

The “rich” versions of the numeric classes (like RichInt) and the StringOps class all
extend the Ordered trait, so they can be used with the sorted method. (More on the
Ordered trait in the Discussion.)

The sortWith method lets you provide your own sorting function. The following ex‐
amples demonstrate how to sort a collection of Int or String in both directions:

scala> List(10, 5, 8, 1, 7).sortWith(_ < _)

res1: List[Int] = List(1, 5, 7, 8, 10)

scala> List(10, 5, 8, 1, 7).sortWith(_ > _)

res2: List[Int] = List(10, 8, 7, 5, 1)

scala> List("banana", "pear", "apple", "orange").sortWith(_ < _)

res3: List[java.lang.String] = List(apple, banana, orange, pear)

10.28. Sorting a Collection | 315

http://bit.ly/15HM6FX

scala> List("banana", "pear", "apple", "orange").sortWith(_ > _)

res4: List[java.lang.String] = List(pear, orange, banana, apple)

Your sorting function can be as complicated as it needs to be. For example, you can
access methods on the elements during the sort, such as the following example, which
sorts a list of strings by the string length:

scala> List("banana", "pear", "apple", "orange").sortWith(_.length < _.length)

res5: List[java.lang.String] = List(pear, apple, banana, orange)

scala> List("banana", "pear", "apple", "orange").sortWith(_.length > _.length)

res6: List[java.lang.String] = List(banana, orange, apple, pear)

In the same way the length method is called on a String, you can call a method on any
class you want to sort. If your sorting method gets longer, first declare it as a method:

def sortByLength(s1: String, s2: String) = {

 println("comparing %s and %s".format(s1, s2))

 s1.length > s2.length

}

Then use it by passing it into the sortWith method:

scala> List("banana", "pear", "apple").sortWith(sortByLength)

comparing banana and pear

comparing pear and apple

comparing apple and pear

comparing banana and apple

res0: List[String] = List(banana, apple, pear)

Discussion
If the type a sequence is holding doesn’t have an implicit Ordering, you won’t be able
to sort it with sorted. For instance, given this basic class:

class Person (var name: String) {

 override def toString = name

}

create a List[Person]:

val ty = new Person("Tyler")

val al = new Person("Al")

val paul = new Person("Paul")

val dudes = List(ty, al, paul)

If you try to sort this list in the REPL, you’ll see an error stating that the Person class
doesn’t have an implicit Ordering:

scala> dudes.sorted

<console>:13: error: No implicit Ordering defined for Person.

 dudes.sorted

 ^

316 | Chapter 10: Collections

You can’t use sorted with the Person class as it’s written, but you can write a simple
anonymous function to sort the Person elements by the name field using sortWith:

scala> val sortedDudes = dudes.sortWith(_.name < _.name)

sortedDudes: Array[Person] = Array(Al, Paul, Tyler)

scala> val sortedDudes = dudes.sortWith(_.name > _.name)

sortedDudes: Array[Person] = Array(Tyler, Paul, Al)

Mix in the Ordered trait

If you’d rather use the Person class with the sorted method, just mix the Ordered trait
into the Person class, and implement a compare method. This technique is shown in
the following code:

class Person (var name: String) extends Ordered [Person]

{

 override def toString = name

 // return 0 if the same, negative if this < that, positive if this > that

 def compare (that: Person) = {

 if (this.name == that.name)

 0

 else if (this.name > that.name)

 1

 else

 −1

 }

}

This new Person class can be used with sorted.

The compare method is what provides the sorting capability. As shown in the comment,
compare should work like this:

• Return 0 if the two objects are the same (equal, typically using the equals method
of your class)

• Return a negative value if this is less than that

• Return a positive value if this is greater than that

How you determine whether one instance is greater than another instance is entirely
up to your compare algorithm.

Note that because this compare algorithm only compares two String values, it could
have been written like this:

def compare (that: Person) = this.name.compare(that.name)

However, I wrote it as shown in the first example to be clear about the approach.

10.28. Sorting a Collection | 317

An added benefit of mixing the Ordered trait into your class is that it also lets you
compare object instances directly in your code:

if (al > ty) println("Al") else println("Tyler")

This works because the Ordered trait implements the <=, <, >, and >= methods, and calls
your compare method to make those comparisons.

See Also
For more information, the Ordered and Ordering Scaladoc is excellent, with good ex‐
amples of this approach, and other approaches.

• The Ordering trait

• The Ordered trait

10.29. Converting a Collection to a String with mkString

Problem
You want to convert elements of a collection to a String, possibly adding a field sepa‐
rator, prefix, and suffix.

Solution
Use the mkString method to print a collection as a String. Given a simple collection:

val a = Array("apple", "banana", "cherry")

you can print the collection elements using mkString:

scala> a.mkString

res1: String = applebananacherry

That doesn’t look too good, so add a separator:

scala> a.mkString(" ")

res2: String = apple banana cherry

That’s better. Use a comma and a space to create a CSV string:

scala> a.mkString(", ")

res3: String = apple, banana, cherry

The mkString method is overloaded, so you can also add a prefix and suffix:

scala> a.mkString("[", ", ", "]")

res4: String = [apple, banana, cherry]

318 | Chapter 10: Collections

http://bit.ly/1bCFQSk
http://bit.ly/12ARfPx

If you happen to have a list of lists that you want to convert to a String, such as the
following array of arrays, first flatten the collection, and then call mkString:

scala> val a = Array(Array("a", "b"), Array("c", "d"))

a: Array[Array[java.lang.String]] = Array(Array(a, b), Array(c, d))

scala> a.flatten.mkString(", ")

res5: String = a, b, c, d

Discussion
You can also use the toString method on a collection, but it returns the name of the
collection with the elements in the collection listed inside parentheses:

scala> val v = Vector("apple", "banana", "cherry")

v: scala.collection.immutable.Vector[String] = Vector(apple, banana, cherry)

scala> v.toString

res0: String = Vector(apple, banana, cherry)

10.29. Converting a Collection to a String with mkString | 319

CHAPTER 11

List, Array, Map, Set (and More)

Introduction
Whereas Chapter 10 covers collections in general, this chapter provides recipes that are
specific to the following collection types:

• List

• Array (and ArrayBuffer)

• Map

• Set

It also provides a few recipes for special-purpose collections like Queue, Stack, Range,
and Stream. The following paragraphs provide a brief introduction to the List, Array,
Map, and Set classes.

List
If you’re coming to Scala from Java, you’ll quickly see that despite their names, the Scala
List class is nothing like the Java List classes, such as the popular Java ArrayList. The
Scala List class is immutable, so its size as well as the elements it refers to can’t change.
It’s implemented as a linked list, and is generally thought of in terms of its head, tail,
and isEmpty methods. Therefore, most operations on a List involve recursive algo‐
rithms, where the algorithm splits the list into its head and tail components.

Array (and ArrayBuffer)
A Scala Array is an interesting collection type. The Scaladoc for the Array class states,
“Arrays are mutable, indexed collections of values.” The class is mutable in that its ele‐
ments can be changed, but once the size of an Array is set, it can never grow or shrink.

321

Although the Array is often demonstrated in Scala examples, and often shows up in the
Scala API and third-party APIs, the recommendation with Scala 2.10.x is to use the
Vector class as your “go to” immutable, indexed sequence class, and ArrayBuffer as
your mutable, indexed sequence of choice. In keeping with this suggestion, in my real-
world code, I use Vector and ArrayBuffer for those use cases, and then convert them
to an Array when needed.

Maps
A Scala Map is a collection of key/value pairs, like a Java Map, Ruby Hash, or Python
dictionary. One big difference between a Scala Map and the Java map classes is that the
default Map in Scala is immutable, so if you’re not used to working with immutable
collections, this can be a big surprise when you attempt to add, delete, or change ele‐
ments in the map. The techniques of using both immutable and mutable map traits are
demonstrated in this chapter.

Sets
A Scala Set is also like a Java Set. It’s a collection that contains only unique elements,
where “uniqueness” is determined by the == method of the type the set contains. If you
attempt to add duplicate elements to a set, the set silently ignores the request. Scala has
both mutable and immutable versions of its base Set implementation and offers addi‐
tional set classes for other needs, such as having a sorted set.

11.1. Different Ways to Create and Populate a List

Problem
You want to create and populate a List.

Solution
There are many ways to create and initially populate a List:

// 1

scala> val list = 1 :: 2 :: 3 :: Nil

list: List[Int] = List(1, 2, 3)

// 2

scala> val list = List(1, 2, 3)

x: List[Int] = List(1, 2, 3)

// 3a

scala> val x = List(1, 2.0, 33D, 4000L)

x: List[Double] = List(1.0, 2.0, 33.0, 4000.0)

322 | Chapter 11: List, Array, Map, Set (and More)

// 3b

scala> val x = List[Number](1, 2.0, 33D, 4000L)

x: List[java.lang.Number] = List(1, 2.0, 33.0, 4000)

// 4

scala> val x = List.range(1, 10)

x: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> val x = List.range(0, 10, 2)

x: List[Int] = List(0, 2, 4, 6, 8)

// 5

scala> val x = List.fill(3)("foo")

x: List[String] = List(foo, foo, foo)

// 6

scala> val x = List.tabulate(5)(n => n * n)

x: List[Int] = List(0, 1, 4, 9, 16)

// 7

scala> val x = collection.mutable.ListBuffer(1, 2, 3).toList

x: List[Int] = List(1, 2, 3)

// 8

scala> "foo".toList

res0: List[Char] = List(f, o, o)

The first two approaches shown are the most common and straightforward ways to
create a List. Examples 3a and 3b show how you can manually control the List type
when your collection has mixed types. When the type isn’t manually set in Example 3a,
it ends up as a List[Double], and in 3b it’s manually set to be a List[Number].

Examples 4 through 6 show different ways to create and populate a List with data.
Examples 7 and 8 show that many collection types also have a toList method that
converts their data to a List.

Going back to the first example, it shows the :: method for creating a List, which will
be new to Java developers. As shown, the :: method (called cons) takes two arguments:
a head element, which is a single element, and a tail, which is another List. When a
List is constructed like this, it must end with a Nil element.

It’s important to know that the Scala List class is not like Java List classes, such as the
Java ArrayList. For example, Recipe 17.1, “Going to and from Java Collections” shows
that a java.util.List converts to a Scala Buffer or Seq, not a Scala List.

11.1. Different Ways to Create and Populate a List | 323

The following quote from the Scala List Scaladoc discusses the important properties
of the List class:

This class is optimal for last-in-first-out (LIFO), stack-like access patterns. If you need
another access pattern, for example, random access or FIFO, consider using a collection

more suited to this than List. List has O(1) prepend and head/tail access. Most other

operations are O(n) on the number of elements in the list.

See Recipe 10.4, “Understanding the Performance of Collections” for more information
on the List performance characteristics.

See Also

• The List class.

• Recipe 3.15, “Working with a List in a Match Expression”, shows how to handle a
List in a match expression, especially the Nil element.

• Recipe 10.4, “Understanding the Performance of Collections”, discusses List class
performance.

• Recipe 17.1, “Going to and from Java Collections”, demonstrates how to convert
back and forth between Scala and Java collections.

11.2. Creating a Mutable List

Problem
You want to use a mutable list (a LinearSeq, as opposed to an IndexedSeq), but a List
isn’t mutable.

Solution
Use a ListBuffer, and convert the ListBuffer to a List when needed.

The following examples demonstrate how to create a ListBuffer, and then add and
remove elements, and then convert it to a List when finished:

import scala.collection.mutable.ListBuffer

var fruits = new ListBuffer[String]()

// add one element at a time to the ListBuffer

fruits += "Apple"

fruits += "Banana"

fruits += "Orange"

324 | Chapter 11: List, Array, Map, Set (and More)

http://bit.ly/15iqGNE

// add multiple elements

fruits += ("Strawberry", "Kiwi", "Pineapple")

// remove one element

fruits -= "Apple"

// remove multiple elements

fruits -= ("Banana", "Orange")

// remove multiple elements specified by another sequence

fruits --= Seq("Kiwi", "Pineapple")

// convert the ListBuffer to a List when you need to

val fruitsList = fruits.toList

Discussion
Because a List is immutable, if you need to create a list that is constantly changing, the
preferred approach is to use a ListBuffer while the list is being modified, then convert
it to a List when a List is needed.

The ListBuffer Scaladoc states that a ListBuffer is “a Buffer implementation backed
by a list. It provides constant time prepend and append. Most other operations are
linear.” So, don’t use ListBuffer if you want to access elements arbitrarily, such as ac‐
cessing items by index (like list(10000)); use ArrayBuffer instead. See Recipe 10.4,
“Understanding the Performance of Collections” for more information.

Although you can’t modify the elements in a List, you can create a new List from an
existing one, typically prepending items to the original list with the :: method:

scala> val x = List(2)

x: List[Int] = List(2)

scala> val y = 1 :: x

y: List[Int] = List(1, 2)

scala> val z = 0 :: y

z: List[Int] = List(0, 1, 2)

This is discussed more in Recipe 11.3, “Adding Elements to a List”.

11.3. Adding Elements to a List

Problem
You want to add elements to a List that you’re working with.

11.3. Adding Elements to a List | 325

Solution
“How do I add elements to a List?” is a bit of a trick question, because a List is im‐
mutable, so you can’t actually add elements to it. If you want a List that is constantly
changing, use a ListBuffer (as described in Recipe 11.2), and then convert it to a List
when necessary.

To work with a List, the general approach is to prepend items to the list with the ::
method while assigning the results to a new List:

scala> val x = List(2)

x: List[Int] = List(2)

scala> val y = 1 :: x

y: List[Int] = List(1, 2)

scala> val z = 0 :: y

z: List[Int] = List(0, 1, 2)

Rather than continually reassigning the result of this operation to a new variable, you
can declare your variable as a var, and reassign the result to it:

scala> var x = List(2)

x: List[Int] = List(2)

scala> x = 1 :: x

x: List[Int] = List(1, 2)

scala> x = 0 :: x

x: List[Int] = List(0, 1, 2)

As these examples illustrate, the :: method is right-associative; lists are constructed
from right to left, which you can see in this example:

scala> val list1 = 3 :: Nil

list1: List[Int] = List(3)

scala> val list2 = 2 :: list1

list2: List[Int] = List(2, 3)

scala> val list3 = 1 :: list2

list3: List[Int] = List(1, 2, 3)

326 | Chapter 11: List, Array, Map, Set (and More)

Any Scala method that ends with a : character is evaluated from right
to left. This means that the method is invoked on the right operand.
You can see how this works by analyzing the following code, where
both methods print the number 42:

object RightAssociativeExample extends App {

 val f1 = new Printer

 f1 >> 42

 42 >>: f1

}

class Printer {

 def >>(i: Int) { println(s"$i") }

 def >>:(i: Int) { println(s"$i") }

}

The two methods can also be invoked like this:

f1.>>(42)

f1.>>:(42)

but by defining the second method to end in a colon, it can be used as
a right-associative operator.

Though using :: is very common, there are additional methods that let you prepend
or append single elements to a List:

scala> val x = List(1)

x: List[Int] = List(1)

scala> val y = 0 +: x

y: List[Int] = List(0, 1)

scala> val y = x :+ 2

y: List[Int] = List(1, 2)

You can also merge lists to create a new list. See Recipe 11.5 for examples.

Discussion
If you’re not comfortable using a List, but want to use a mutable, linear list, see
Recipe 11.2, “Creating a Mutable List” for examples of how to use the ListBuffer class.
The ListBuffer is a mutable, linear sequence (as opposed to an indexed sequence, like
an Array or ArrayBuffer), and is similar to working with a StringBuffer or
StringBuilder in Java. Just as you’d convert those classes to a String when needed,
you convert a ListBuffer to a List when needed. Programmers from other back‐
grounds may be more comfortable with the :: approach. A nice benefit of Scala is that
it offers both options.

11.3. Adding Elements to a List | 327

See Also

• Recipe 11.2, “Creating a Mutable List”

• Recipe 10.4, “Understanding the Performance of Collections”

11.4. Deleting Elements from a List (or ListBuffer)

Problem
You want to delete elements from a List or ListBuffer.

Solution
A List is immutable, so you can’t delete elements from it, but you can filter out the
elements you don’t want while you assign the result to a new variable:

scala> val originalList = List(5, 1, 4, 3, 2)

originalList: List[Int] = List(5, 1, 4, 3, 2)

scala> val newList = originalList.filter(_ > 2)

newList: List[Int] = List(5, 4, 3)

Rather than continually assigning the result of operations like this to a new variable,
you can declare your variable as a var and reassign the result of the operation back to
itself:

scala> var x = List(5, 1, 4, 3, 2)

x: List[Int] = List(5, 1, 4, 3, 2)

scala> x = x.filter(_ > 2)

x: List[Int] = List(5, 4, 3)

See Chapter 10 for other ways to get subsets of a collection using methods like filter,
partition, splitAt, take, and more.

ListBuffer

If you’re going to be modifying a list frequently, it may be better to use a ListBuffer
instead of a List. A ListBuffer is mutable, so you can remove items from it using all
the methods for mutable sequences shown in Chapter 10. For example, assuming you’ve
created a ListBuffer like this:

import scala.collection.mutable.ListBuffer

val x = ListBuffer(1, 2, 3, 4, 5, 6, 7, 8, 9)

You can delete one element at a time, by value:

scala> x -= 5

res0: x.type = ListBuffer(1, 2, 3, 4, 6, 7, 8, 9)

328 | Chapter 11: List, Array, Map, Set (and More)

You can delete two or more elements at once:

scala> x -= (2, 3)

res1: x.type = ListBuffer(1, 4, 6, 7, 8, 9)

(That method looks like it takes a tuple, but it’s actually defined to take two parameters
and a third varargs field.)

You can delete elements by position:

scala> x.remove(0)

res2: Int = 1

scala> x

res3: scala.collection.mutable.ListBuffer[Int] = ListBuffer(4, 6, 7, 8, 9)

You can use remove to delete from a given starting position and provide the number of
elements to delete:

scala> x.remove(1, 3)

scala> x

res4: scala.collection.mutable.ListBuffer[Int] = ListBuffer(4, 9)

You can also use --= to delete multiple elements that are specified in another collection:

scala> val x = ListBuffer(1, 2, 3, 4, 5, 6, 7, 8, 9)

x: scala.collection.mutable.ListBuffer[Int] = ListBuffer↵

(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> x --= Seq(1,2,3)

res0: x.type = ListBuffer(4, 5, 6, 7, 8, 9)

Discussion
When you first start using Scala, the wealth of methods whose names are only symbols
(+:, /:, :::, etc.) can seem daunting, but the -= and --= methods are used consistently
across mutable collections, so it quickly becomes second nature to use them.

See Also

• Recipes 10.17 through 10.19 show many ways to filter collections (filtering is a way
of deleting).

• Recipe 10.3, “Choosing a Collection Method to Solve a Problem”.

11.4. Deleting Elements from a List (or ListBuffer) | 329

11.5. Merging (Concatenating) Lists

Problem
You want to merge/concatenate the contents of two lists.

Solution
Merge two lists using the ++, concat, or ::: methods. Given these two lists:

scala> val a = List(1,2,3)

a: List[Int] = List(1, 2, 3)

scala> val b = List(4,5,6)

b: List[Int] = List(4, 5, 6)

you can use the ++ method as shown in the following example. It’s used consistently
across immutable collections, so it’s easy to remember:

scala> val c = a ++ b

c: List[Int] = List(1, 2, 3, 4, 5, 6)

If you work with the List class frequently, you may prefer using ::: as a way to create
a new list from two existing lists:

scala> val c = a ::: b

c: List[Int] = List(1, 2, 3, 4, 5, 6)

The concat method on the List object also works:

scala> val c = List.concat(a, b)

c: List[Int] = List(1, 2, 3, 4, 5, 6)

Discussion
Perhaps because I come from a Java background, I don’t work with the List class too
often, so I can’t remember some of its custom methods without looking at its Scaladoc.
As a result, I prefer the ++ method, because it’s consistently used across immutable
collections.

However, keep in mind what the List class is good at. As its Scaladoc states, “This class
is optimal for last-in-first-out (LIFO), stack-like access patterns. If you need another
access pattern, for example, random access or FIFO, consider using a collection more
suited to this than List.” See Recipe 10.4, “Understanding the Performance of Collec‐
tions” for a discussion of List class performance.

See Also

The List class

330 | Chapter 11: List, Array, Map, Set (and More)

http://bit.ly/15iqGNE

11.6. Using Stream, a Lazy Version of a List

Problem
You want to use a collection that works like a List but invokes its transformer methods
(map, filter, etc.) lazily.

Solution
A Stream is like a List, except that its elements are computed lazily, in a manner similar
to how a view creates a lazy version of a collection. Because Stream elements are com‐
puted lazily, a Stream can be long ... infinitely long. Like a view, only the elements that
are accessed are computed. Other than this behavior, a Stream behaves similar to a
List.

Just like a List can be constructed with ::, a Stream can be constructed with the #::
method, using Stream.empty at the end of the expression instead of Nil:

scala> val stream = 1 #:: 2 #:: 3 #:: Stream.empty

stream: scala.collection.immutable.Stream[Int] = Stream(1, ?)

The REPL output shows that the stream begins with the number 1 but uses a ? to denote
the end of the stream. This is because the end of the stream hasn’t been evaluated yet.

For example, given a Stream:

scala> val stream = (1 to 100000000).toStream

stream: scala.collection.immutable.Stream[Int] = Stream(1, ?)

you can attempt to access the head and tail of the stream. The head is returned imme‐
diately:

scala> stream.head

res0: Int = 1

but the tail isn’t evaluated yet:

scala> stream.tail

res1: scala.collection.immutable.Stream[Int] = Stream(2, ?)

The ? symbol is the way a lazy collection shows that the end of the collection hasn’t been
evaluated yet.

As discussed in Recipe 10.24, “Creating a Lazy View on a Collection”, transformer
methods are computed lazily, so when transformers are called, you see the familiar ?
character that indicates the end of the stream hasn’t been evaluated yet:

scala> stream.take(3)

res0: scala.collection.immutable.Stream[Int] = Stream(1, ?)

scala> stream.filter(_ < 200)

11.6. Using Stream, a Lazy Version of a List | 331

res1: scala.collection.immutable.Stream[Int] = Stream(1, ?)

scala> stream.filter(_ > 200)

res2: scala.collection.immutable.Stream[Int] = Stream(201, ?)

scala> stream.map { _ * 2 }

res3: scala.collection.immutable.Stream[Int] = Stream(2, ?)

However, be careful with methods that aren’t transformers. Calls to the following strict
methods are evaluated immediately and can easily cause java.lang.OutOfMemoryError
errors:

stream.max

stream.size

stream.sum

Transformer methods are collection methods that convert a given in‐
put collection to a new output collection, based on an algorithm you
provide to transform the data. This includes methods like map, filter,
and reverse. When using these methods, you’re transforming the
input collection to a new output collection. Methods like max, size,
and sum don’t fit that definition, so they attempt to operate on the
Stream, and if the Stream requires more memory than you can allo‐
cate, you’ll get the java.lang.OutOfMemoryError.

As a point of comparison, if I had attempted to use a List in these examples, I would
have encountered a java.lang.OutOfMemory error as soon as I attempted to create the
List:

val list = (1 to 100000000).toStream

Using a Stream gives you a chance to specify a huge list, and begin working with its
elements:

stream(0) // returns 1

stream(1) // returns 2

// ...

stream(10) // returns 11

See Also

• A discussion of Scala’s concrete, immutable collections classes, including Stream

• Recipe 10.24, “Creating a Lazy View on a Collection”

332 | Chapter 11: List, Array, Map, Set (and More)

http://bit.ly/13gh1YV

11.7. Different Ways to Create and Update an Array

Problem
You want to create and optionally populate an Array.

Solution
There are many different ways to define and populate an Array. You can create an array
with initial values, in which case Scala can determine the array type implicitly:

scala> val a = Array(1,2,3)

a: Array[Int] = Array(1, 2, 3)

scala> val fruits = Array("Apple", "Banana", "Orange")

fruits: Array[String] = Array(Apple, Banana, Orange)

If you don’t like the type Scala determines, you can assign it manually:

// scala makes this Array[Double]

scala> val x = Array(1, 2.0, 33D, 400L)

x: Array[Double] = Array(1.0, 2.0, 33.0, 400.0)

// manually override the type

scala> val x = Array[Number](1, 2.0, 33D, 400L)

x: Array[java.lang.Number] = Array(1, 2.0, 33.0, 400)

You can define an array with an initial size and type, and then populate it later:

// create an array with an initial size

val fruits = new Array[String](3)

// somewhere later in the code ...

fruits(0) = "Apple"

fruits(1) = "Banana"

fruits(2) = "Orange"

You can create a var reference to an array in a class, and then assign it later:

// this uses a null. don't do this in the real world

var fruits: Array[String] = _

// later ...

fruits = Array("apple", "banana")

The following examples show a handful of other ways to create and populate an
Array:

scala> val x = Array.range(1, 10)

x: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> val x = Array.range(0, 10, 2)

x: Array[Int] = Array(0, 2, 4, 6, 8)

11.7. Different Ways to Create and Update an Array | 333

scala> val x = Array.fill(3)("foo")

x: Array[String] = Array(foo, foo, foo)

scala> val x = Array.tabulate(5)(n => n * n)

x: Array[Int] = Array(0, 1, 4, 9, 16)

scala> val x = List(1, 2, 3).toArray

x: Array[Int] = Array(1, 2, 3)

scala> "Hello".toArray

res0: Array[Char] = Array(H, e, l, l, o)

Discussion
The Array is an interesting creature: It’s mutable in that its elements can be changed,
but it’s immutable in that its size cannot be changed. The first link in the See Also section
provides this information about the Array:

Scala arrays correspond one-to-one to Java arrays. That is, a Scala array Array[Int] is

represented as a Java int[], an Array[Double] is represented as a Java double[] and

a Array[String] is represented as a Java String[].

The Array is an indexed sequential collection, so accessing and changing values by their
index position is straightforward and fast. Once you’ve created an Array, access its
elements by enclosing the desired element number in parentheses:

scala> val a = Array(1, 2, 3)

a: Array[Int] = Array(1, 2, 3)

scala> a(0)

res0: Int = 1

Just as you access an array element by index, you update elements in a similar way:

scala> a(0) = 10

scala> a(1) = 20

scala> a(2) = 30

scala> a

res1: Array[Int] = Array(10, 20, 30)

See Also

• A thorough discussion of Array, including background on its implementation.

• Recipe 10.4, “Understanding the Performance of Collections” discusses Array class
performance.

334 | Chapter 11: List, Array, Map, Set (and More)

http://bit.ly/18iQwn4

11.8. Creating an Array Whose Size Can Change
(ArrayBuffer)

Problem
You want to create an array whose size can change, i.e., a completely mutable array.

Solution
An Array is mutable in that its elements can change, but its size can’t change. To create
a mutable, indexed sequence whose size can change, use the ArrayBuffer class.

To use an ArrayBuffer, import it into scope and then create an instance. You can declare
an ArrayBuffer without initial elements, and then add them later:

import scala.collection.mutable.ArrayBuffer

var characters = ArrayBuffer[String]()

characters += "Ben"

characters += "Jerry"

characters += "Dale"

You can add elements when you create the ArrayBuffer, and continue to add elements
later:

// initialize with elements

val characters = collection.mutable.ArrayBuffer("Ben", "Jerry")

// add one element

characters += "Dale"

// add two or more elements (method has a varargs parameter)

characters += ("Gordon", "Harry")

// add multiple elements with any TraversableOnce type

characters ++= Seq("Andy", "Big Ed")

// append one or more elements (uses a varargs parameter)

characters.append("Laura", "Lucy")

Those are the most common ways to add elements to an ArrayBuffer (and other mu‐
table sequences). The next recipe demonstrates methods to delete ArrayBuffer
elements.

11.9. Deleting Array and ArrayBuffer Elements

Problem
You want to delete elements from an Array or ArrayBuffer.

11.8. Creating an Array Whose Size Can Change (ArrayBuffer) | 335

Solution
An ArrayBuffer is a mutable sequence, so you can delete elements with the usual -=,
--=, remove, and clear methods.

You can remove one or more elements with -=:

import scala.collection.mutable.ArrayBuffer

val x = ArrayBuffer('a', 'b', 'c', 'd', 'e')

// remove one element

x -= 'a'

// remove multiple elements (methods defines a varargs param)

x -= ('b', 'c')

Use --= to remove multiple elements that are declared in another collection (any col‐
lection that extends TraversableOnce):

val x = ArrayBuffer('a', 'b', 'c', 'd', 'e')

x --= Seq('a', 'b')

x --= Array('c')

x --= Set('d')

Use the remove method to delete one element by its position in the ArrayBuffer, or a
series of elements beginning at a starting position:

scala> val x = ArrayBuffer('a', 'b', 'c', 'd', 'e', 'f')

x: scala.collection.mutable.ArrayBuffer[Char] = ArrayBuffer(a, b, c, d, e, f)

scala> x.remove(0)

res0: Char = a

scala> x

res1: scala.collection.mutable.ArrayBuffer[Char] = ArrayBuffer(b, c, d, e, f)

scala> x.remove(1, 3)

scala> x

res2: scala.collection.mutable.ArrayBuffer[Char] = ArrayBuffer(b, f)

In these examples, the collection that contains the elements to be removed can be any
collection that extends TraversableOnce, so removeThese can be a Seq, Array,
Vector, and many other types that extend TraversableOnce.

The clear method removes all the elements from an ArrayBuffer:

scala> var a = ArrayBuffer(1,2,3,4,5)

a: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4, 5)

scala> a.clear

336 | Chapter 11: List, Array, Map, Set (and More)

scala> a

res0: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer()

You can also use the usual Scala filtering methods (drop, filter, take, etc.) to filter
elements out of a collection; just remember to assign the result to a new variable.

Array

The size of an Array can’t be changed, so you can’t directly delete elements. You can
reassign the elements in an Array, which has the effect of replacing them:

scala> val a = Array("apple", "banana", "cherry")

a: Array[String] = Array(apple, banana, cherry)

scala> a(0) = ""

scala> a(1) = null

scala> a

res0: Array[String] = Array("", null, cherry)

You can also filter elements out of one array while you assign the result to a new array:

scala> val a = Array("apple", "banana", "cherry")

a: Array[String] = Array(apple, banana, cherry)

scala> val b = a.filter(! _.contains("apple"))

b: Array[String] = Array(banana, cherry)

Use other filtering methods (drop, slice, take, etc.) in the same way.

If you define the array variable as a var, you can assign the result back to itself, which
gives the appearance of deleting elements using filtering:

scala> var a = Array("apple", "banana", "cherry")

a: Array[String] = Array(apple, banana, cherry)

scala> a = a.take(2)

a: Array[String] = [LString;@e41a882

scala> a

res0: Array[String] = Array(apple, banana)

11.10. Sorting Arrays

Problem
You want to sort the elements in an Array (or ArrayBuffer).

11.10. Sorting Arrays | 337

Solution
If you’re working with an Array that holds elements that have an implicit Ordering, you
can sort the Array in place using the scala.util.Sorting.quickSort method. For
example, because the String class has an implicit Ordering, it can be used with
quickSort:

scala> val fruits = Array("cherry", "apple", "banana")

fruits: Array[String] = Array(cherry, apple, banana)

scala> scala.util.Sorting.quickSort(fruits)

scala> fruits

res0: Array[String] = Array(apple, banana, cherry)

Notice that quickSort sorts the Array in place; there’s no need to assign the result to a
new variable.

This example works because the String class (via StringOps) has an implicit Ordering.
Sorting.quickSort can also sort arrays with the base numeric types like Double,
Float, and Int, because they also have an implicit Ordering.

Other solutions

If the type an Array is holding doesn’t have an implicit Ordering, you can either modify
it to mix in the Ordered trait (which gives it an implicit Ordering), or sort it using the
sorted, sortWith, or sortBy methods. These approaches are shown in Recipe 10.29.

Also, there are no unique sorting approaches for an ArrayBuffer, so see Recipe 10.29
for an example of how to sort it as well.

See Also
The Scaladoc for the Ordered and Ordering traits is very good. The header information
in both documents shows good examples of the approaches shown in this recipe and
Recipe 10.29.

• The Sorting object

• The Ordering trait

• The Ordered trait

11.11. Creating Multidimensional Arrays

Problem
You need to create a multidimensional array, i.e., an array with two or more dimensions.

338 | Chapter 11: List, Array, Map, Set (and More)

http://bit.ly/13MzBeq
http://bit.ly/1bCFQSk
http://bit.ly/12ARfPx

Solution
There are two main solutions:

• Use Array.ofDim to create a multidimensional array. You can use this approach to
create arrays of up to five dimensions. With this approach you need to know the
number of rows and columns at creation time.

• Create arrays of arrays as needed.

Both approaches are shown in this solution.

Using Array.ofDim

Use the Array.ofDim method to create the array you need:

scala> val rows = 2

rows: Int = 2

scala> val cols = 3

cols: Int = 3

scala> val a = Array.ofDim[String](rows, cols)

a: Array[Array[String]] = Array(Array(null, null, null), Array(null, null, null))

After declaring the array, add elements to it:

a(0)(0) = "a"

a(0)(1) = "b"

a(0)(2) = "c"

a(1)(0) = "d"

a(1)(1) = "e"

a(1)(2) = "f"

Access the elements using parentheses, similar to a one-dimensional array:

scala> val x = a(0)(0)

x: String = a

Iterate over the array with a for loop:

scala> for {

 | i <- 0 until rows

 | j <- 0 until cols

 | } println(s"($i)($j) = ${a(i)(j)}")

(0)(0) = a

(0)(1) = b

(0)(2) = c

(1)(0) = d

(1)(1) = e

(1)(2) = f

To create an array with more dimensions, just follow that same pattern. Here’s the code
for a three-dimensional array:

11.11. Creating Multidimensional Arrays | 339

val x, y, z = 10

val a = Array.ofDim[Int](x,y,z)

for {

 i <- 0 until x

 j <- 0 until y

 k <- 0 until z

} println(s"($i)($j)($k) = ${a(i)(j)(k)}")

Using an array of arrays

Another approach is to create an array whose elements are arrays:

scala> val a = Array(Array("a", "b", "c"), Array("d", "e", "f"))

a: Array[Array[String]] = Array(Array(a, b, c), Array(d, e, f))

scala> a(0)

res0: Array[String] = Array(a, b, c)

scala> a(0)(0)

res1: String = a

This gives you more control of the process, and lets you create “ragged” arrays (where
each contained array may be a different size):

scala> val a = Array(Array("a", "b", "c"), Array("d", "e"))

a: Array[Array[String]] = Array(Array(a, b, c), Array(d, e))

You can declare your variable as a var and create the same array in multiple steps:

scala> var arr = Array(Array("a", "b", "c"))

arr: Array[Array[String]] = Array(Array(a, b, c))

scala> arr ++= Array(Array("d", "e"))

scala> arr

res0: Array[Array[String]] = Array(Array(a, b, c), Array(d, e))

Note in this example that the variable arr was created as a var, which lets you assign
the output from the ++= operator back to it. This gives the illusion that you’ve modified
the contents of arr, but in reality, you’ve modified arr’s reference so it points at a new
collection. (See Recipe 10.6, “Understanding Mutable Variables with Immutable Col‐
lections” for more information.)

Discussion
Decompiling the Array.ofDim solution helps to understand how this works behind the
scenes. Create the following Scala class in a file named Test.scala:

class Test {

 val arr = Array.ofDim[String](2, 3)

}

340 | Chapter 11: List, Array, Map, Set (and More)

If you compile that class with scalac, and then decompile it with a tool like JAD, you
can see the Java code that’s created:

private final String arr[][];

Similarly, creating a Scala three-dimensional Array like this:

val arr = Array.ofDim[String](2, 2, 2)

results in a Java array like this:

private final String arr[][][];

As you might expect, the code generated by using the “array of arrays” approach is more
complicated. This is a case where using a decompiler can help you understand how Scala
works, i.e., what code it generates for you.

Finally, the Array.ofDim approach is unique to the Array class; there is no ofDim method
on a List, Vector, ArrayBuffer, etc. But the “array of arrays” solution is not unique to
the Array class. You can have a “list of lists,” “vector of vectors,” and so on.

11.12. Creating Maps

Problem
You want to use a mutable or immutable Map in a Scala application.

Solution
To use an immutable map, you don’t need an import statement, just create a Map:

scala> val states = Map("AL" -> "Alabama", "AK" -> "Alaska")

states: scala.collection.immutable.Map[String,String] =

 Map(AL -> Alabama, AK -> Alaska)

This expression creates an immutable Map with type [String, String]. For the first
element, the string AL is the key, and Alabama is the value.

As noted, you don’t need an import statement to use a basic, immutable Map. The Scala
Predef object brings the immutable Map trait into scope by defining a type alias:

type Map[A, +B] = immutable.Map[A, B]

val Map = immutable.Map

To create a mutable map, either use an import statement to bring it into scope, or specify
the full path to the scala.collection.mutable.Map class when you create an instance.
You can define a mutable Map that has initial elements:

scala> var states = collection.mutable.Map("AL" -> "Alabama")

states: scala.collection.mutable.Map[String,String] = Map(AL -> Alabama)

You can also create an empty, mutable Map initially, and add elements to it later:

11.12. Creating Maps | 341

scala> var states = collection.mutable.Map[String, String]()

states: scala.collection.mutable.Map[String,String] = Map()

scala> states += ("AL" -> "Alabama")

res0: scala.collection.mutable.Map[String,String] = Map(AL -> Alabama)

Discussion
Like maps in other programming languages, maps in Scala are a collection of key/value
pairs. If you’ve used maps in Java, dictionaries in Python, or a hash in Ruby, Scala maps
are straightforward. You only need to know a couple of new things, including the meth‐
ods available on map classes, and the specialty maps that can be useful in certain situa‐
tions, such as having a sorted map.

Note that the syntax that’s used inside parentheses in a map creates a Tuple2:

"AL" -> "Alabama"

Because you can also declare a Tuple2 as ("AL", "Alabama"), you may also see maps
created like this:

scala> val states = Map(("AL", "Alabama"), ("AK", "Alaska"))

states: scala.collection.immutable.Map[String,String] =

 Map(AL -> Alabama, AK -> Alaska)

Use whichever style you prefer.

When I want to be clear that I’m using a mutable map, I normally specify the full path
to the mutable Map class when I create the instance, as shown in the Solution. Another
technique you can use it to give the mutable Map an alias when you import it, and then
refer to it using that alias, as shown here:

import scala.collection.mutable.{Map => MMap}

object Test extends App {

 // MMap is really scala.collection.mutable.Map

 val m = MMap(1 -> 'a')

 for((k,v) <- m) println(s"$k, $v")

}

This technique is described more in Recipe 7.3, “Renaming Members on Import”.

See Also

• The Map trait

• The Predef object

342 | Chapter 11: List, Array, Map, Set (and More)

http://bit.ly/18lkmuu
http://bit.ly/15C0L36

11.13. Choosing a Map Implementation

Problem
You need to choose a map class for a particular problem.

Solution
Scala has a wealth of map types to choose from, and you can even use Java map classes.

If you’re looking for a basic map class, where sorting or insertion order doesn’t matter,
you can either choose the default, immutable Map, or import the mutable Map, as shown
in the previous recipe.

If you want a map that returns its elements in sorted order by keys, use a SortedMap:

scala> import scala.collection.SortedMap

import scala.collection.SortedMap

scala> val grades = SortedMap("Kim" -> 90,

 | "Al" -> 85,

 | "Melissa" -> 95,

 | "Emily" -> 91,

 | "Hannah" -> 92

 |)

grades: scala.collection.SortedMap[String,Int] =

 Map(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90, Melissa -> 95)

If you want a map that remembers the insertion order of its elements, use a
LinkedHashMap or ListMap. Scala only has a mutable LinkedHashMap, and it returns its
elements in the order you inserted them:

scala> import scala.collection.mutable.LinkedHashMap

import scala.collection.mutable.LinkedHashMap

scala> var states = LinkedHashMap("IL" -> "Illinois")

states: scala.collection.mutable.LinkedHashMap[String,String] =

 Map(IL -> Illinois)

scala> states += ("KY" -> "Kentucky")

res0: scala.collection.mutable.LinkedHashMap[String,String] =

 Map(IL -> Illinois, KY -> Kentucky)

scala> states += ("TX" -> "Texas")

res1: scala.collection.mutable.LinkedHashMap[String,String] =

 Map(IL -> Illinois, KY -> Kentucky, TX -> Texas)

Scala has both mutable and immutable ListMap classes. They return elements in the
opposite order in which you inserted them, as though each insert was at the head of the
map (like a List):

11.13. Choosing a Map Implementation | 343

scala> import scala.collection.mutable.ListMap

import scala.collection.mutable.ListMap

scala> var states = ListMap("IL" -> "Illinois")

states: scala.collection.mutable.ListMap[String,String] =

 Map(IL -> Illinois)

scala> states += ("KY" -> "Kentucky")

res0: scala.collection.mutable.ListMap[String,String] =

 Map(KY -> Kentucky, IL -> Illinois)

scala> states += ("TX" -> "Texas")

res1: scala.collection.mutable.ListMap[String,String] =

 Map(TX -> Texas, KY -> Kentucky, IL -> Illinois)

The LinkedHashMap implements a mutable map using a hashtable, whereas a ListMap
is backed by a list-based data structure. (Personally, I don’t use the List class very often,
so I prefer the LinkedHashMap.)

Discussion
Table 11-1 shows a summary of the basic Scala map classes and traits, and provides a
brief description of each.

Table 11-1. Basic map classes and traits

Class or trait Description

collection.immutable.Map This is the default, general-purpose immutable map you get if you don’t

import anything.

collection.mutable.Map A mutable version of the basic map.

collection.mutable.LinkedHashMap All methods that traverse the elements will visit the elements in their insertion

order.

collection.immutable.ListMap

collection.mutable.ListMap

Per the Scaladoc, “implements immutable maps using a list-based data

structure.” As shown in the examples, elements that are added are prepended

to the head of the list.

collection.SortedMap Keys of the map are returned in sorted order. Therefore, all traversal methods

(such as foreach) return keys in that order.

Although those are the most commonly used maps, Scala offers even more map types.
They are summarized in Table 11-2.

Table 11-2. More map classes and traits

Class or trait Description

collection.immutable.HashMap From the Scaladoc, “implements immutable maps using a hash trie.”

collection.mutable.ObservableMap From the Scaladoc: “This class is typically used as a mixin. It adds a

subscription mechanism to the Map class into which this abstract class is

mixed in.”

344 | Chapter 11: List, Array, Map, Set (and More)

http://bit.ly/15iqY79
http://bit.ly/15C0Uno
http://bit.ly/18iQITo

Class or trait Description

collection.mutable.MultiMap From the Scaladoc: “A trait for mutable maps with multiple values assigned

to a key.”

collection.mutable.SynchronizedMap From the Scaladoc: This trait “should be used as a mixin. It synchronizes

the map functions of the class into which it is mixed in.”

collection.immutable.TreeMap From the Scaladoc: “implements immutable maps using a tree.”

collection.mutable.WeakHashMap A wrapper around java.util.WeakHashMap, “a map entry is

removed if the key is no longer strongly referenced.”

But wait, there’s still more. Beyond these types, Scala also offers several more map types
that have parallel/concurrent implementations built into them:

• collection.parallel.immutable.ParHashMap

• collection.parallel.mutable.ParHashMap

• collection.concurrent.TrieMap

See Also

• Map methods

• When map performance is important, see Recipe 10.4, “Understanding the Per‐
formance of Collections”

• Scala’s parallel collections

11.14. Adding, Updating, and Removing Elements with a
Mutable Map

Problem
You want to add, remove, or update elements in a mutable map.

Solution
Add elements to a mutable map by simply assigning them, or with the += method.
Remove elements with -= or --=. Update elements by reassigning them.

Given a new, mutable Map:

scala> var states = scala.collection.mutable.Map[String, String]()

states: scala.collection.mutable.Map[String,String] = Map()

You can add an element to a map by assigning a key to a value:

11.14. Adding, Updating, and Removing Elements with a Mutable Map | 345

http://bit.ly/15C0Yn8
http://bit.ly/14Wammz
http://bit.ly/13MzFLg
http://bit.ly/13lzu1T
http://bit.ly/1dCbKfX

scala> states("AK") = "Alaska"

You can also add elements with the += method:

scala> states += ("AL" -> "Alabama")

res0: scala.collection.mutable.Map[String,String] =

 Map(AL -> Alabama, AK -> Alaska)

Add multiple elements at one time with +=:

scala> states += ("AR" -> "Arkansas", "AZ" -> "Arizona")

res1: scala.collection.mutable.Map[String,String] =

 Map(AL -> Alabama, AR -> Arkansas, AK -> Alaska, AZ -> Arizona)

Add multiple elements from another collection using ++=:

scala> states ++= List("CA" -> "California", "CO" -> "Colorado")

res2: scala.collection.mutable.Map[String,String] = Map(CO -> Colorado,

 AZ -> Arizona, AL -> Alabama, CA -> California, AR -> Arkansas,

 AK -> Alaska)

Remove a single element from a map by specifying its key with the -= method:

scala> states -= "AR"

res3: scala.collection.mutable.Map[String,String] =

 Map(AL -> Alabama, AK -> Alaska, AZ -> Arizona)

Remove multiple elements by key with the -= or --= methods:

scala> states -= ("AL", "AZ")

res4: scala.collection.mutable.Map[String,String] = Map(AK -> Alaska)

// remove multiple with a List of keys

scala> states --= List("AL", "AZ")

res5: scala.collection.mutable.Map[String,String] = Map(AK -> Alaska)

Update elements by reassigning their key to a new value:

scala> states("AK") = "Alaska, A Really Big State"

scala> states

res6: scala.collection.mutable.Map[String,String] =

 Map(AK -> Alaska, A Really Big State)

There are other ways to add elements to maps, but these examples show the most com‐
mon uses.

Discussion
The methods shown in the Solution demonstrate the most common approaches. You
can also use put to add an element (or replace an existing element); retain to keep only
the elements in the map that match the predicate you supply; remove to remove an
element by its key value; and clear to delete all elements in the map. These methods
are shown in the following examples:

346 | Chapter 11: List, Array, Map, Set (and More)

scala> val states = collection.mutable.Map(

 | "AK" -> "Alaska",

 | "IL" -> "Illinois",

 | "KY" -> "Kentucky"

 |)

states: collection.mutable.Map[String,String] =

 Map(KY -> Kentucky, IL -> Illinois, AK -> Alaska)

scala> states.put("CO", "Colorado")

res0: Option[String] = None

scala> states.retain((k,v) => k == "AK")

res1: states.type = Map(AK -> Alaska)

scala> states.remove("AK")

res2: Option[String] = Some(Alaska)

scala> states

res3: scala.collection.mutable.Map[String,String] = Map()

scala> states.clear

scala> states

res4: scala.collection.mutable.Map[String,String] = Map()

As shown, the remove method returns an Option that contains the value that was re‐
moved. It’s not shown in the example, but if the element put into the collection by put
replaced another element, that value would be returned. Because this example didn’t
replace anything, it returned None.

See Also

The Scala mutable Map trait

11.15. Adding, Updating, and Removing Elements with
Immutable Maps

Problem
You want to add, update, or delete elements when working with an immutable map.

Solution
Use the correct operator for each purpose, remembering to assign the results to a new
map.

To be clear about the approach, the following examples use an immutable map with a
series of val variables. First, create an immutable map as a val:

11.15. Adding, Updating, and Removing Elements with Immutable Maps | 347

http://bit.ly/1dCbM7y

scala> val a = Map("AL" -> "Alabama")

a: scala.collection.immutable.Map[String,String] =

 Map(AL -> Alabama)

Add one or more elements with the + method, assigning the result to a new Map variable
during the process:

// add one element

scala> val b = a + ("AK" -> "Alaska")

b: scala.collection.immutable.Map[String,String] =

 Map(AL -> Alabama, AK -> Alaska)

// add multiple elements

scala> val c = b + ("AR" -> "Arkansas", "AZ" -> "Arizona")

c: scala.collection.immutable.Map[String,String] =

 Map(AL -> Alabama, AK -> Alaska, AR -> Arkansas, AZ -> Arizona)

To update a key/value pair with an immutable map, reassign the key and value while
using the + method, and the new values replace the old:

scala> val d = c + ("AR" -> "banana")

d: scala.collection.immutable.Map[String,String] =

 Map(AL -> Alabama, AK -> Alaska, AR -> banana, AZ -> Arizona)

To remove one element, use the - method:

scala> val e = d - "AR"

e: scala.collection.immutable.Map[String,String] =

 Map(AL -> Alabama, AK -> Alaska, AZ -> Arizona)

To remove multiple elements, use the - or -- methods:

scala> val f = e - "AZ" - "AL"

f: scala.collection.immutable.Map[String,String] =

 Map(AK -> Alaska)

Discussion
You can also declare an immutable map as a var. Doing so has a dramatic difference on
how you can treat the map:

scala> var x = Map("AL" -> "Alabama")

x: scala.collection.mutable.Map[String,String] = Map(AL -> Alabama)

// add one element

scala> x += ("AK" -> "Alaska"); println(x)

Map(AL -> Alabama, AK -> Alaska)

// add multiple elements

scala> x += ("AR" -> "Arkansas", "AZ" -> "Arizona"); println(x)

Map(AZ -> Arizona, AL -> Alabama, AR -> Arkansas, AK -> Alaska)

// add a tuple to a map (replacing the previous "AR" key)

scala> x += ("AR" -> "banana"); println(x)

348 | Chapter 11: List, Array, Map, Set (and More)

Map(AZ -> Arizona, AL -> Alabama, AR -> banana, AK -> Alaska)

// remove an element

scala> x -= "AR"; println(x)

Map(AZ -> Arizona, AL -> Alabama, AK -> Alaska)

// remove multiple elements (uses varargs method)

scala> x -= ("AL", "AZ"); println(x)

Map(AK -> Alaska)

// reassign the map that 'x' points to

scala> x = Map("CO" -> "Colorado")

x: scala.collection.mutable.Map[String,String] = Map(CO -> Colorado)

It’s important to understand that when you create an immutable map as a var, you still
have an immutable map. For instance, you can’t reassign an element in the map:

scala> x("AL") = "foo"

<console>:9: error: value update is not a member of scala.collection.immutable.↵

Map[String,String]

 x("AL") = "foo"

 ^

What’s really happening in the previous examples is that because x was defined as a
var, it’s being reassigned during each step in the process. This is a subtle but important
distinction to understand. See Recipe 10.6, “Understanding Mutable Variables with
Immutable Collections” for more information.

See Also

The immutable Map class

11.16. Accessing Map Values

Problem
You want to access individual values stored in a map. You may have tried this and run
into an exception when a key didn’t exist, and want to see how to avoid that exception.

Solution
Given a sample map:

scala> val states = Map("AL" -> "Alabama", "AK" -> "Alaska", "AZ" -> "Arizona")

states: scala.collection.immutable.Map[String,String] =

 Map(AL -> Alabama, AK -> Alaska, AZ -> Arizona)

Access the value associated with a key in the same way you access an element in an array:

11.16. Accessing Map Values | 349

http://bit.ly/13MzP5e

scala> val az = states("AZ")

az: String = Arizona

However, be careful, because if the map doesn’t contain the requested key, a
java.util.NoSuchElementException exception is thrown:

scala> val s = states("FOO")

java.util.NoSuchElementException: key not found: FOO

One way to avoid this problem is to create the map with the withDefaultValue method.
As the name implies, this creates a default value that will be returned by the map when‐
ever a key isn’t found:

scala> val states = Map("AL" -> "Alabama").withDefaultValue("Not found")

states: scala.collection.immutable.Map[String,String] =

 Map(AL -> Alabama)

scala> states("foo")

res0: String = Not found

Another approach is to use the getOrElse method when attempting to find a value. It
returns the default value you specify if the key isn’t found:

scala> val s = states.getOrElse("FOO", "No such state")

s: String = No such state

You can also use the get method, which returns an Option:

scala> val az = states.get("AZ")

az: Option[String] = Some(Arizona)

scala> val az = states.get("FOO")

az: Option[String] = None

To loop over the values in a map, see the next recipe.

See Also

• Recipe 11.20, “Testing for the Existence of a Key or Value in a Map”.

• Recipe 20.6, “Using the Option/Some/None Pattern”, shows how to work with
Option, Some, and None values.

11.17. Traversing a Map

Problem
You want to iterate over the elements in a map.

350 | Chapter 11: List, Array, Map, Set (and More)

Solution
There are several different ways to iterate over the elements in a map. Given a sample
map:

val ratings = Map("Lady in the Water"-> 3.0,

 "Snakes on a Plane"-> 4.0,

 "You, Me and Dupree"-> 3.5)

my preferred way to loop over all of the map elements is with this for loop syntax:

for ((k,v) <- ratings) println(s"key: $k, value: $v")

Using a match expression with the foreach method is also very readable:

ratings.foreach {

 case(movie, rating) => println(s"key: $movie, value: $rating")

}

The following approach shows how to use the Tuple syntax to access the key and value
fields:

ratings.foreach(x => println(s"key: ${x._1}, value: ${x._2}"))

If you just want to use the keys in the map, the keys method returns an Iterable you
can use:

ratings.keys.foreach((movie) => println(movie))

For simple examples like this, that expression can be reduced as follows:

ratings.keys.foreach(println)

In the same way, use the values method to iterate over the values in the map:

ratings.values.foreach((rating) => println(rating))

Note: Those are not my movie ratings. They are taken from the book, Programming
Collective Intelligence (O’Reilly), by Toby Segaran.

Operating on map values

If you want to traverse the map to perform an operation on its values, the mapValues
method may be a better solution. It lets you perform a function on each map value, and
returns the modified map:

scala> var x = collection.mutable.Map(1 -> "a", 2 -> "b")

x: scala.collection.mutable.Map[Int,String] = Map(2 -> b, 1 -> a)

scala> val y = x.mapValues(_.toUpperCase)

y: scala.collection.Map[Int,String] = Map(2 -> B, 1 -> A)

The transform method gives you another way to create a new map from an existing
map. Unlike mapValues, it lets you use both the key and value to write a transformation
method:

11.17. Traversing a Map | 351

http://shop.oreilly.com/product/9780596529321.do
http://shop.oreilly.com/product/9780596529321.do

scala> val map = Map(1 -> 10, 2 -> 20, 3 -> 30)

map: scala.collection.mutable.Map[Int,Int] = Map(2 -> 20, 1 -> 10, 3 -> 30)

scala> val newMap = map.transform((k,v) => k + v)

newMap: map.type = Map(2 -> 22, 1 -> 11, 3 -> 33)

11.18. Getting the Keys or Values from a Map

Problem
You want to get all of the keys or values from a map.

Solution
To get the keys, use keySet to get the keys as a Set, keys to get an Iterable, or
keysIterator to get the keys as an iterator:

scala> val states = Map("AK" -> "Alaska", "AL" -> "Alabama", "AR" -> "Arkansas")

states: scala.collection.immutable.Map[String,String] =

 Map(AK -> Alaska, AL -> Alabama, AR -> Arkansas)

scala> states.keySet

res0: scala.collection.immutable.Set[String] = Set(AK, AL, AR)

scala> states.keys

res1: Iterable[String] = Set(AK, AL, AR)

scala> states.keysIterator

res2: Iterator[String] = non-empty iterator

To get the values from a map, use the values method to get the values as an Iterable,
or valuesIterator to get them as an Iterator:

scala> states.values

res0: Iterable[String] = MapLike(Alaska, Alabama, Arkansas)

scala> states.valuesIterator

res1: Iterator[String] = non-empty iterator

As shown in these examples, keysIterator and valuesIterator return an iterator
from the map data. I tend to prefer these methods because they don’t create a new
collection; they just provide an iterator to walk over the existing elements.

11.19. Reversing Keys and Values

Problem
You want to reverse the contents of a map, so the values become the keys, and the keys
become the values.

352 | Chapter 11: List, Array, Map, Set (and More)

Solution
You can reverse the keys and values of a map with a for comprehension, being sure to
assign the result to a new variable:

val reverseMap = for ((k,v) <- map) yield (v, k)

But be aware that values don’t have to be unique and keys must be, so you might lose
some content. As an example of this, reversing the following map—where two values
are $5—results in one of the items being dropped when the keys and values are reversed:

scala> val products = Map(

 | "Breadsticks" -> "$5",

 | "Pizza" -> "$10",

 | "Wings" -> "$5"

 |)

products: scala.collection.mutable.Map[String,String] =

 Map(Wings -> $5, Pizza -> $10, Breadsticks -> $5)

scala> val reverseMap = for ((k,v) <- products) yield (v, k)

reverseMap: scala.collection.mutable.Map[String,String] =

 Map($5 -> Breadsticks, $10 -> Pizza)

As shown, the $5 wings were lost when the values became the keys, because both the
breadsticks and the wings had the String value $5.

See Also

• Recipe 3.4, “Creating a for Comprehension (for/yield Combination)”

• Recipe 10.13, “Transforming One Collection to Another with for/yield”

11.20. Testing for the Existence of a Key or Value in a Map

Problem
You want to test whether a map contains a given key or value.

Solution
To test for the existence of a key in a map, use the contains method:

scala> val states = Map(

 | "AK" -> "Alaska",

 | "IL" -> "Illinois",

 | "KY" -> "Kentucky"

 |)

states: scala.collection.immutable.Map[String,String] =

 Map(AK -> Alaska, IL -> Illinois, KY -> Kentucky)

11.20. Testing for the Existence of a Key or Value in a Map | 353

scala> if (states.contains("FOO")) println("Found foo") else println("No foo")

No foo

To test whether a value exists in a map, use the valuesIterator method to search for
the value using exists and contains:

scala> states.valuesIterator.exists(_.contains("ucky"))

res0: Boolean = true

scala> states.valuesIterator.exists(_.contains("yucky"))

res1: Boolean = false

This works because the valuesIterator method returns an Iterator:

scala> states.valuesIterator

res2: Iterator[String] = MapLike(Alaska, Illinois, Kentucky)

and exists returns true if the function you define returns true for at least one element
in the collection. In the first example, because at least one element in the collection
contains the String literal ucky, the exists call returns true.

Discussion
When chaining methods like this together, be careful about intermediate results. In this
example, I originally used the values methods to get the values from the map, but this
produces a new collection, whereas the valuesIterator method returns a lightweight
iterator.

See Also

• Recipe 11.16, “Accessing Map Values”, shows how to avoid an exception while ac‐
cessing a map key.

• Recipe 11.18, “Getting the Keys or Values from a Map”, demonstrates the values
and valuesIterator methods.

11.21. Filtering a Map

Problem
You want to filter the elements contained in a map, either by directly modifying a mu‐
table map, or by applying a filtering algorithm on an immutable map to create a new
map.

354 | Chapter 11: List, Array, Map, Set (and More)

Solution
Use the retain method to define the elements to retain when using a mutable map, and
use filterKeys or filter to filter the elements in a mutable or immutable map, re‐
membering to assign the result to a new variable.

Mutable maps

You can filter the elements in a mutable map using the retain method to specify which
elements should be retained:

scala> var x = collection.mutable.Map(1 -> "a", 2 -> "b", 3 -> "c")

x: scala.collection.mutable.Map[Int,String] = Map(2 -> b, 1 -> a, 3 -> c)

scala> x.retain((k,v) => k > 1)

res0: scala.collection.mutable.Map[Int,String] = Map(2 -> b, 3 -> c)

scala> x

res1: scala.collection.mutable.Map[Int,String] = Map(2 -> b, 3 -> c)

As shown, retain modifies a mutable map in place. As implied by the anonymous
function signature used in that example:

(k,v) => ...

your algorithm can test both the key and value of each element to decide which elements
to retain in the map.

In a related note, the transform method doesn’t filter a map, but it lets you transform
the elements in a mutable map:

scala> x.transform((k,v) => v.toUpperCase)

res0: scala.collection.mutable.Map[Int,String] = Map(2 -> B, 3 -> C)

scala> x

res1: scala.collection.mutable.Map[Int,String] = Map(2 -> B, 3 -> C)

Depending on your definition of “filter,” you can also remove elements from a map using
methods like remove and clear, which are shown in Recipe 11.15.

Mutable and immutable maps

When working with a mutable or immutable map, you can use a predicate with the
filterKeys methods to define which map elements to retain. When using this method,
remember to assign the filtered result to a new variable:

scala> val x = Map(1 -> "a", 2 -> "b", 3 -> "c")

x: scala.collection.mutable.Map[Int,String] = Map(2 -> b, 1 -> a, 3 -> c)

scala> val y = x.filterKeys(_ > 2)

y: scala.collection.Map[Int,String] = Map(3 -> c)

11.21. Filtering a Map | 355

The predicate you supply should return true for the elements you want to keep in the
new collection and false for the elements you don’t want.

If your algorithm is longer, you can define a function (or method), and then use it in
the filterKeys call, rather than using an anonymous function. First define your meth‐
od, such as this method, which returns true when the value the method is given is 1:

scala> def only1(i: Int) = if (i == 1) true else false

only1: (i: Int)Boolean

Then pass the method to the filterKeys method:

scala> val x = Map(1 -> "a", 2 -> "b", 3 -> "c")

x: scala.collection.mutable.Map[Int,String] = Map(2 -> b, 1 -> a, 3 -> c)

scala> val y = x.filterKeys(only1)

y: scala.collection.Map[Int,String] = Map(1 -> a)

In an interesting use, you can also use a Set with filterKeys to define the elements to
retain:

scala> var m = Map(1 -> "a", 2 -> "b", 3 -> "c")

m: scala.collection.immutable.Map[Int,String] = Map(1 -> a, 2 -> b, 3 -> c)

scala> val newMap = m.filterKeys(Set(2,3))

newMap: scala.collection.immutable.Map[Int,String] = Map(2 -> b, 3 -> c)

You can also use all of the filtering methods that are shown in Chapter 10. For instance,
the map version of the filter method lets you filter the map elements by either key,
value, or both. The filter method provides your predicate a Tuple2, so you can access
the key and value as shown in these examples:

scala> var m = Map(1 -> "a", 2 -> "b", 3 -> "c")

m: scala.collection.immutable.Map[Int,String] = Map(1 -> a, 2 -> b, 3 -> c)

// access the key

scala> m.filter((t) => t._1 > 1)

res0: scala.collection.immutable.Map[Int,String] = Map(2 -> b, 3 -> c)

// access the value

scala> m.filter((t) => t._2 == "c")

res1: scala.collection.immutable.Map[Int,String] = Map(3 -> c)

The take method lets you “take” (keep) the first N elements from the map:

scala> m.take(2)

res2: scala.collection.immutable.Map[Int,String] = Map(1 -> a, 2 -> b)

See the filtering recipes in Chapter 10 for examples of other methods that you can use,
including takeWhile, drop, slice, and more.

356 | Chapter 11: List, Array, Map, Set (and More)

11.22. Sorting an Existing Map by Key or Value

Problem
You have an unsorted map and want to sort the elements in the map by the key or value.

Solution
Given a basic, immutable Map:

scala> val grades = Map("Kim" -> 90,

 | "Al" -> 85,

 | "Melissa" -> 95,

 | "Emily" -> 91,

 | "Hannah" -> 92

 |)

grades: scala.collection.immutable.Map[String,Int] =

 Map(Hannah -> 92, Melissa -> 95, Kim -> 90, Emily -> 91, Al -> 85)

You can sort the map by key, from low to high, using sortBy:

scala> import scala.collection.immutable.ListMap

import scala.collection.immutable.ListMap

scala> ListMap(grades.toSeq.sortBy(_._1):_*)

res0: scala.collection.immutable.ListMap[String,Int] =

 Map(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90, Melissa -> 95)

You can also sort the keys in ascending or descending order using sortWith:

// low to high

scala> ListMap(grades.toSeq.sortWith(_._1 < _._1):_*)

res0: scala.collection.immutable.ListMap[String,Int] =

 Map(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90, Melissa -> 95)

// high to low

scala> ListMap(grades.toSeq.sortWith(_._1 > _._1):_*)

res1: scala.collection.immutable.ListMap[String,Int] =

 Map(Melissa -> 95, Kim -> 90, Hannah -> 92, Emily -> 91, Al -> 85)

You can sort the map by value using sortBy:

scala> ListMap(grades.toSeq.sortBy(_._2):_*)

res0: scala.collection.immutable.ListMap[String,Int] =

 Map(Al -> 85, Kim -> 90, Emily -> 91, Hannah -> 92, Melissa -> 95)

You can also sort by value in ascending or descending order using sortWith:

// low to high

scala> ListMap(grades.toSeq.sortWith(_._2 < _._2):_*)

res0: scala.collection.immutable.ListMap[String,Int] =

 Map(Al -> 85, Kim -> 90, Emily -> 91, Hannah -> 92, Melissa -> 95)

11.22. Sorting an Existing Map by Key or Value | 357

// high to low

scala> ListMap(grades.toSeq.sortWith(_._2 > _._2):_*)

res1: scala.collection.immutable.ListMap[String,Int] =

 Map(Melissa -> 95, Hannah -> 92, Emily -> 91, Kim -> 90, Al -> 85)

In all of these examples, you’re not sorting the existing map; the sort methods result in
a new sorted map, so the output of the result needs to be assigned to a new variable.
Also, you can use either a ListMap or a LinkedHashMap in these recipes. This example
shows how to use a LinkedHashMap and assign the result to a new variable:

scala> val x = collection.mutable.LinkedHashMap(grades.toSeq.sortBy(_._1):_*)

x: scala.collection.mutable.LinkedHashMap[String,Int] =

 Map(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90, Melissa -> 95)

scala> x.foreach(println)

(Al,85)

(Emily,91)

(Hannah,92)

(Kim,90)

(Melissa,95)

Discussion
To understand these solutions, it’s helpful to break them down into smaller pieces. First,
start with the basic immutable Map:

scala> val grades = Map("Kim" -> 90,

 | "Al" -> 85,

 | "Melissa" -> 95,

 | "Emily" -> 91,

 | "Hannah" -> 92

 |)

grades: scala.collection.immutable.Map[String,Int] =

 Map(Hannah -> 92, Melissa -> 95, Kim -> 90, Emily -> 91, Al -> 85)

Next, this is what grades.toSeq looks like:

scala> grades.toSeq

res0: Seq[(String, Int)] =

 ArrayBuffer((Hannah,92), (Melissa,95), (Kim,90), (Emily,91), (Al,85))

You make the conversion to a Seq because it has sorting methods you can use:

scala> grades.toSeq.sortBy(_._1)

res0: Seq[(String, Int)] =

 ArrayBuffer((Al,85), (Emily,91), (Hannah,92), (Kim,90), (Melissa,95))

scala> grades.toSeq.sortWith(_._1 < _._1)

res1: Seq[(String, Int)] =

 ArrayBuffer((Al,85), (Emily,91), (Hannah,92), (Kim,90), (Melissa,95))

Once you have the map data sorted as desired, store it in a ListMap to retain the sort
order:

358 | Chapter 11: List, Array, Map, Set (and More)

scala> ListMap(grades.toSeq.sortBy(_._1):_*)

res0: scala.collection.immutable.ListMap[String,Int] =

 Map(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90, Melissa -> 95)

The LinkedHashMap also retains the sort order of its elements, so it can be used in all of
the examples as well:

scala> import scala.collection.mutable.LinkedHashMap

import scala.collection.mutable.LinkedHashMap

scala> LinkedHashMap(grades.toSeq.sortBy(_._1):_*)

res0: scala.collection.mutable.LinkedHashMap[String,Int] =

 Map(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90, Melissa -> 95)

There are both mutable and immutable versions of a ListMap, but LinkedHashMap is
only available as a mutable class. Use whichever is best for your situation.

About that _*

The _* portion of the code takes a little getting used to. It’s used to convert the data so
it will be passed as multiple parameters to the ListMap or LinkedHashMap. You can see
this a little more easily by again breaking down the code into separate lines. The sortBy
method returns a Seq[(String, Int)], i.e., a sequence of tuples:

scala> val x = grades.toSeq.sortBy(_._1)

x: Seq[(String, Int)] =

 ArrayBuffer((Al,85), (Emily,91), (Hannah,92), (Kim,90), (Melissa,95))

You can’t directly construct a ListMap with a sequence of tuples, but because the apply
method in the ListMap companion object accepts a Tuple2 varargs parameter, you can
adapt x to work with it, i.e., giving it what it wants:

scala> ListMap(x: _*)

res0: scala.collection.immutable.ListMap[String,Int] =

 Map(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90, Melissa -> 95)

Attempting to create the ListMap without using this approach results in an error:

scala> ListMap(x)

<console>:16: error: type mismatch;

 found : Seq[(String, Int)]

 required: (?, ?)

 ListMap(x)

 ^

Another way to see how _* works is to define your own method that takes a varargs
parameter. The following printAll method takes one parameter, a varargs field of type
String:

def printAll(strings: String*) {

 strings.foreach(println)

}

If you then create a List like this:

11.22. Sorting an Existing Map by Key or Value | 359

// a sequence of strings

val fruits = List("apple", "banana", "cherry")

you won’t be able to pass that List into printAll; it will fail like the previous example:

scala> printAll(fruits)

<console>:20: error: type mismatch;

 found : List[String]

 required: String

 printAll(fruits)

 ^

But you can use _* to adapt the List to work with printAll, like this:

// this works

printAll(fruits: _*)

If you come from a Unix background, it may be helpful to think of _* as a “splat” operator.
This operator tells the compiler to pass each element of the sequence to printAll as a
separate argument, instead of passing fruits as a single List argument.

See Also

• The immutable ListMap class

• The immutable ListMap companion object

• The mutable ListMap class

• The mutable LinkedHashMap class

11.23. Finding the Largest Key or Value in a Map

Problem
You want to find the largest value of a key or value in a map.

Solution
Use the max method on the map, or use the map’s keysIterator or valuesIterator
with other approaches, depending on your needs.

For example, given this map:

val grades = Map("Al" -> 80, "Kim" -> 95, "Teri" -> 85, "Julia" -> 90)

the key is type String, so which key is “largest” depends on your definition. You can
find the “largest” key using the natural String sort order by calling the max method on
the map:

360 | Chapter 11: List, Array, Map, Set (and More)

http://bit.ly/1bkkkDB
http://bit.ly/12tYmWw
http://bit.ly/149431d
http://bit.ly/190DOMw

scala> grades.max

res0: (String, Int) = (Teri,85)

Because the “T” in “Teri” is farthest down the alphabet in the names, it is returned.

You can also call keysIterator to get an iterator over the map keys, and call its max
method:

scala> grades.keysIterator.max

res1: String = Teri

You can find the same maximum by getting the keysIterator and using reduceLeft:

scala> grades.keysIterator.reduceLeft((x,y) => if (x > y) x else y)

res2: String = Teri

This approach is flexible, because if your definition of “largest” is the longest string, you
can compare string lengths instead:

scala> grades.keysIterator.reduceLeft((x,y) => if (x.length > y.length) x else y)

res3: String = Julia

Because the values in the map are of type Int in this example, you can use this simple
approach to get the largest value:

scala> grades.valuesIterator.max

res4: Int = 95

You can also use the reduceLeft approach, if you prefer:

scala> grades.valuesIterator.reduceLeft(_ max _)

res5: Int = 95

You can also compare the numbers yourself, which is representative of what you may
need to do with more complex types:

scala> grades.valuesIterator.reduceLeft((x,y) => if (x > y) x else y)

res6: Int = 95

To find minimum keys and values, just reverse the algorithms in these examples.

See Also

Recipe 11.18, “Getting the Keys or Values from a Map”

11.24. Adding Elements to a Set

Problem
You want to add elements to a mutable set, or create a new set by adding elements to an
immutable set.

11.24. Adding Elements to a Set | 361

Solution
Mutable and immutable sets are handled differently, as demonstrated in the following
examples.

Mutable set

Add elements to a mutable Set with the +=, ++=, and add methods:

// use var with mutable

scala> var set = scala.collection.mutable.Set[Int]()

set: scala.collection.mutable.Set[Int] = Set()

// add one element

scala> set += 1

res0: scala.collection.mutable.Set[Int] = Set(1)

// add multiple elements

scala> set += (2, 3)

res1: scala.collection.mutable.Set[Int] = Set(2, 1, 3)

// notice that there is no error when you add a duplicate element

scala> set += 2

res2: scala.collection.mutable.Set[Int] = Set(2, 6, 1, 4, 3, 5)

// add elements from any sequence (any TraversableOnce)

scala> set ++= Vector(4, 5)

res3: scala.collection.mutable.Set[Int] = Set(2, 1, 4, 3, 5)

scala> set.add(6)

res4: Boolean = true

scala> set.add(5)

res5: Boolean = false

The last two examples demonstrate a unique characteristic of the add method on a set:
It returns true or false depending on whether or not the element was added. The other
methods silently fail if you attempt to add an element that’s already in the set.

You can test to see whether a set contains an element before adding it:

set.contains(5)

But as a practical matter, I use += and ++=, and ignore whether the element was already
in the set.

Whereas the first example demonstrated how to create an empty set, you can also add
elements to a mutable set when you declare it, just like other collections:

scala> var set = scala.collection.mutable.Set(1, 2, 3)

set: scala.collection.mutable.Set[Int] = Set(2, 1, 3)

362 | Chapter 11: List, Array, Map, Set (and More)

Immutable set

The following examples show how to create a new immutable set by adding elements
to an existing immutable set.

First, create an immutable set:

scala> val s1 = Set(1, 2)

s1: scala.collection.immutable.Set[Int] = Set(1, 2)

Create a new set by adding elements to a previous set with the + and ++ methods:

// add one element

scala> val s2 = s1 + 3

s2: scala.collection.immutable.Set[Int] = Set(1, 2, 3)

// add multiple elements (+ method has a varargs field)

scala> val s3 = s2 + (4, 5)

s3: scala.collection.immutable.Set[Int] = Set(5, 1, 2, 3, 4)

// add elements from another sequence

scala> val s4 = s3 ++ List(6, 7)

s4: scala.collection.immutable.Set[Int] = Set(5, 1, 6, 2, 7, 3, 4)

I showed these examples with immutable variables just to be clear about how the ap‐
proach works. You can also declare your variable as a var, and reassign the resulting set
back to the same variable:

scala> var set = Set(1, 2, 3)

set: scala.collection.immutable.Set[Int] = Set(1, 2, 3)

scala> set += 4

scala> set

res0: scala.collection.immutable.Set[Int] = Set(1, 2, 3, 4)

See Recipe 10.6, “Understanding Mutable Variables with Immutable Collections” for
more information on the difference between mutable/immutable variables and muta‐
ble/immutable collections.

11.25. Deleting Elements from Sets

Problem
You want to remove elements from a mutable or immutable set.

Solution
Mutable and immutable sets are handled differently, as demonstrated in the following
examples.

11.25. Deleting Elements from Sets | 363

Mutable set

When working with a mutable Set, remove elements from the set using the -= and --=
methods, as shown in the following examples:

scala> var set = scala.collection.mutable.Set(1, 2, 3, 4, 5)

set: scala.collection.mutable.Set[Int] = Set(2, 1, 4, 3, 5)

// one element

scala> set -= 1

res0: scala.collection.mutable.Set[Int] = Set(2, 4, 3, 5)

// two or more elements (-= has a varags field)

scala> set -= (2, 3)

res1: scala.collection.mutable.Set[Int] = Set(4, 5)

// multiple elements defined in another sequence

scala> set --= Array(4,5)

res2: scala.collection.mutable.Set[Int] = Set()

You can also use other methods like retain, clear, and remove, depending on your
needs:

// retain

scala> var set = scala.collection.mutable.Set(1, 2, 3, 4, 5)

set: scala.collection.mutable.Set[Int] = Set(2, 1, 4, 3, 5)

scala> set.retain(_ > 2)

scala> set

res0: scala.collection.mutable.Set[Int] = Set(4, 3, 5)

// clear

scala> var set = scala.collection.mutable.Set(1, 2, 3, 4, 5)

set: scala.collection.mutable.Set[Int] = Set(2, 1, 4, 3, 5)

scala> set.clear

scala> set

res1: scala.collection.mutable.Set[Int] = Set()

// remove

scala> var set = scala.collection.mutable.Set(1, 2, 3, 4, 5)

set: scala.collection.mutable.Set[Int] = Set(2, 1, 4, 3, 5)

scala> set.remove(2)

res2: Boolean = true

scala> set

res3: scala.collection.mutable.Set[Int] = Set(1, 4, 3, 5)

scala> set.remove(40)

res4: Boolean = false

364 | Chapter 11: List, Array, Map, Set (and More)

As shown, the remove method provides feedback as to whether or not any elements
were removed.

Immutable set

By definition, when using an immutable Set you can’t remove elements from it, but you
can use the - and -- operators to remove elements while assigning the result to a new
variable:

scala> val s1 = Set(1, 2, 3, 4, 5, 6)

s1: scala.collection.immutable.Set[Int] = Set(5, 1, 6, 2, 3, 4)

// one element

scala> val s2 = s1 - 1

s2: scala.collection.immutable.Set[Int] = Set(5, 6, 2, 3, 4)

// multiple elements

scala> val s3 = s2 - (2, 3)

s3: scala.collection.immutable.Set[Int] = Set(5, 6, 4)

// multiple elements defined in another sequence

scala> val s4 = s3 -- Array(4, 5)

s4: scala.collection.immutable.Set[Int] = Set(6)

You can also use all of the filtering methods shown in Chapter 10. For instance, you can
use the filter or take methods:

scala> val s1 = Set(1, 2, 3, 4, 5, 6)

s1: scala.collection.immutable.Set[Int] = Set(5, 1, 6, 2, 3, 4)

scala> val s2 = s1.filter(_ > 3)

s2: scala.collection.immutable.Set[Int] = Set(5, 6, 4)

scala> val firstTwo = s1.take(2)

firstTwo: scala.collection.immutable.Set[Int] = Set(5, 1)

11.26. Using Sortable Sets

Problem
You want to be able to store and retrieve items from a set in a sorted order.

Solution
To retrieve values from a set in sorted order, use a SortedSet. To retrieve elements from
a set in the order in which elements were inserted, use a LinkedHashSet.

A SortedSet returns elements in a sorted order:

scala> val s = scala.collection.SortedSet(10, 4, 8, 2)

s: scala.collection.SortedSet[Int] = TreeSet(2, 4, 8, 10)

11.26. Using Sortable Sets | 365

scala> val s = scala.collection.SortedSet("cherry", "kiwi", "apple")

s: scala.collection.SortedSet[String] = TreeSet(apple, cherry, kiwi)

A LinkedHashSet saves elements in the order in which they were inserted:

scala> var s = scala.collection.mutable.LinkedHashSet(10, 4, 8, 2)

s: scala.collection.mutable.LinkedHashSet[Int] = Set(10, 4, 8, 2)

Discussion
The SortedSet is available only in an immutable version. If you need a mutable version,
use the java.util.TreeSet. The LinkedHashSet is available only as a mutable collec‐
tion.

The examples shown in the Solution work because the types used in the sets have an
implicit Ordering. Custom types won’t work unless you also provide an implicit
Ordering. For example, the following code won’t work because the Person class is just
a basic class:

class Person (var name: String)

import scala.collection.SortedSet

val aleka = new Person("Aleka")

val christina = new Person("Christina")

val molly = new Person("Molly")

val tyler = new Person("Tyler")

// this won't work

val s = SortedSet(molly, tyler, christina, aleka)

In the REPL, the last line of code fails with this error:

scala> val s = SortedSet(molly, tyler, christina, aleka)

<console>:17: error: No implicit Ordering defined for Person.

 val s = SortedSet(molly, tyler, christina, aleka)

 ^

To solve this problem, modify the Person class to extend the Ordered trait, and imple‐
ment a compare method:

class Person (var name: String) extends Ordered [Person]

{

 override def toString = name

 // return 0 if the same, negative if this < that, positive if this > that

 def compare (that: Person) = {

 if (this.name == that.name)

 0

 else if (this.name > that.name)

 1

 else

 −1

366 | Chapter 11: List, Array, Map, Set (and More)

 }

}

With this new Person class definition, sorting works as desired:

scala> val s = SortedSet(molly, tyler, christina, aleka)

s: scala.collection.SortedSet[Person] = TreeSet(Aleka, Christina, Molly, Tyler)

For more information about the Ordered and Ordering traits, see Recipe 10.28, “Sorting
a Collection” and the links in the See Also section.

See Also

• The SortedSet trait

• The LinkedHashSet class

• The Ordering trait

• The Ordered trait

11.27. Using a Queue

Problem
You want to use a queue data structure in a Scala application.

Solution
A queue is a first-in, first-out (FIFO) data structure. Scala offers both an immutable
queue and mutable queue. This recipe demonstrates the mutable queue.

You can create an empty, mutable queue of any data type:

import scala.collection.mutable.Queue

var ints = Queue[Int]()

var fruits = Queue[String]()

var q = Queue[Person]()

You can also create a queue with initial elements:

scala> val q = Queue(1, 2, 3)

q: scala.collection.mutable.Queue[Int] = Queue(1, 2, 3)

Once you have a mutable queue, add elements to it using +=, ++=, and enqueue, as shown
in the following examples:

scala> import scala.collection.mutable.Queue

import scala.collection.mutable.Queue

11.27. Using a Queue | 367

http://bit.ly/12tYs0n
http://bit.ly/11TyOXS
http://bit.ly/1bCFQSk
http://bit.ly/12ARfPx

// create an empty queue

scala> var q = new Queue[String]

q: scala.collection.mutable.Queue[String] = Queue()

// add elements to the queue in the usual ways

scala> var q = new Queue[String]

q: scala.collection.mutable.Queue[String] = Queue()

scala> q += "apple"

res0: scala.collection.mutable.Queue[String] = Queue(apple)

scala> q += ("kiwi", "banana")

res1: scala.collection.mutable.Queue[String] = Queue(apple, kiwi, banana)

scala> q ++= List("cherry", "coconut")

res2: scala.collection.mutable.Queue[String] =

 Queue(apple, kiwi, banana, cherry, coconut)

// can also use enqueue

scala> q.enqueue("pineapple")

scala> q

res3: scala.collection.mutable.Queue[String] =

 Queue(apple, kiwi, banana, cherry, coconut, pineapple)

Because a queue is a FIFO, you typically remove elements from the head of the queue,
one element at a time, using dequeue:

// take an element from the head of the queue

scala> val next = q.dequeue

next: String = apple

// 'apple' is removed from the queue

scala> q

res0: scala.collection.mutable.Queue[String] = Queue(kiwi, banana, cherry, ↵

coconut, pineapple)

// take the next element

scala> val next = q.dequeue

next: String = kiwi

// 'kiwi' is removed from the queue

scala> q

res1: scala.collection.mutable.Queue[String] = Queue(banana, cherry, coconut, ↵

pineapple)

You can also use the dequeueFirst and dequeueAll methods to remove elements from
the queue by specifying a predicate:

scala> q.dequeueFirst(_.startsWith("b"))

res2: Option[String] = Some(banana)

scala> q

368 | Chapter 11: List, Array, Map, Set (and More)

res3: scala.collection.mutable.Queue[String] = Queue(cherry, coconut, pineapple)

scala> q.dequeueAll(_.length > 6)

res4: scala.collection.mutable.Seq[String] = ArrayBuffer(coconut, pineapple)

scala> q

res5: scala.collection.mutable.Queue[String] = Queue(cherry)

A Queue is a collection class that extends from Iterable and Traversable, so it has all
the usual collection methods, including foreach, map, etc. See the Queue Scaladoc for
more information.

See Also

• The mutable Queue class

• The immutable Queue class

11.28. Using a Stack

Problem
You want to use a stack data structure in a Scala application.

Solution
A stack is a last-in, first-out (LIFO) data structure. In most programming languages you
add elements to a stack using a push method, and take elements off the stack with pop,
and Scala is no different.

Scala has both immutable and mutable versions of a stack, as well as an ArrayStack
(discussed shortly). The following examples demonstrate how to use the mutable Stack
class.

Create an empty, mutable stack of any data type:

import scala.collection.mutable.Stack

var ints = Stack[Int]()

var fruits = Stack[String]()

case class Person(var name: String)

var people = Stack[Person]()

You can also populate a stack with initial elements when you create it:

val ints = Stack(1, 2, 3)

Once you have a mutable stack, push elements onto the stack with push:

11.28. Using a Stack | 369

http://bit.ly/10YbKV5
http://bit.ly/15irxhh

// create a stack

scala> var fruits = Stack[String]()

fruits: scala.collection.mutable.Stack[String] = Stack()

// add one element at a time

scala> fruits.push("apple")

res0: scala.collection.mutable.Stack[String] = Stack(apple)

scala> fruits.push("banana")

res1: scala.collection.mutable.Stack[String] = Stack(banana, apple)

// add multiple elements

scala> fruits.push("coconut", "orange", "pineapple")

res2: scala.collection.mutable.Stack[String] =

 Stack(pineapple, orange, coconut, banana, apple)

To take elements off the stack, pop them off the top of the stack:

scala> val next = fruits.pop

next: String = pineapple

scala> fruits

res3: scala.collection.mutable.Stack[String] =

 Stack(orange, coconut, banana, apple)

You can peek at the next element on the stack without removing it, using top:

scala> fruits.top

res4: String = orange

// 'orange' is still on the top

scala> fruits

res5: scala.collection.mutable.Stack[String] =

 Stack(orange, coconut, banana, apple)

Stack extends from Seq, so you can inspect it with the usual methods:

scala> fruits.size

res6: Int = 4

scala> fruits.isEmpty

res7: Boolean = false

You can empty a mutable stack with clear:

scala> fruits.clear

scala> fruits

res8: scala.collection.mutable.Stack[String] = Stack()

370 | Chapter 11: List, Array, Map, Set (and More)

Discussion
There’s also an ArrayStack class, and according to the Scala documentation, “It provides
fast indexing and is generally slightly more efficient for most operations than a normal
mutable stack.”

Although I haven’t used an immutable Stack, I’ve seen several people recommend using
a List instead of an immutable Stack for this use case. A List has at least one less layer
of code, and you can push elements onto the List with :: and access the first element
with the head method.

See Also

• The mutable Stack class

• The immutable Stack class

• The ArrayStack class

11.29. Using a Range

Problem
You want to use a Range in a Scala application.

Solution
Ranges are often used to populate data structures, and to iterate over for loops. Ranges
provide a lot of power with just a few methods, as shown in these examples:

scala> 1 to 10

res0: scala.collection.immutable.Range.Inclusive =

 Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> 1 until 10

res1: scala.collection.immutable.Range = Range(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> 1 to 10 by 2

res2: scala.collection.immutable.Range = Range(1, 3, 5, 7, 9)

scala> 'a' to 'c'

res3: collection.immutable.NumericRange.Inclusive[Char] = NumericRange(a, b, c)

You can use ranges to create and populate sequences:

scala> val x = (1 to 10).toList

x: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

11.29. Using a Range | 371

http://bit.ly/13MA28x
http://bit.ly/12SHete
http://bit.ly/13q90MV

scala> val x = (1 to 10).toArray

x: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> val x = (1 to 10).toSet

x: scala.collection.immutable.Set[Int] = Set(5, 10, 1, 6, 9, 2, 7, 3, 8, 4)

Some sequences have a range method in their objects to perform the same function:

scala> val x = Array.range(1, 10)

x: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> val x = Vector.range(1, 10)

x: collection.immutable.Vector[Int] = Vector(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> val x = List.range(1, 10)

x: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> val x = List.range(0, 10, 2)

x: List[Int] = List(0, 2, 4, 6, 8)

scala> val x = collection.mutable.ArrayBuffer.range('a', 'd')

x: scala.collection.mutable.ArrayBuffer[Char] = ArrayBuffer(a, b, c)

Ranges are also commonly used in for loops:

scala> for (i <- 1 to 3) println(i)

1

2

3

Discussion
In addition to the approaches shown, a Range can be combined with the map method to
populate a collection:

scala> val x = (1 to 5).map { e => (e + 1.1) * 2 }

x: scala.collection.immutable.IndexedSeq[Double] =

 Vector(4.2, 6.2, 8.2, 10.2, 12.2)

While discussing ways to populate collections, the tabulate method is another nice
approach:

scala> val x = List.tabulate(5)(_ + 1)

x: List[Int] = List(1, 2, 3, 4, 5)

scala> val x = List.tabulate(5)(_ + 2)

x: List[Int] = List(2, 3, 4, 5, 6)

scala> val x = Vector.tabulate(5)(_ * 2)

x: scala.collection.immutable.Vector[Int] = Vector(0, 2, 4, 6, 8)

372 | Chapter 11: List, Array, Map, Set (and More)

See Also

The immutable Range class

11.29. Using a Range | 373

http://bit.ly/18lkQAQ

CHAPTER 12

Files and Processes

12.0. Introduction
When it comes to working with files, the scala.io.Source class and its companion
object offer some nice simplifications compared to Java. Not only does Source make it
easy to open and read text files, but it also makes it easy to accomplish other tasks, such
as downloading content from URLs, or substituting a String for a File, which is useful
for testing. The Scala Console class also simplifies console interaction, letting you print
to the console (command line) and read from it very easily. In other cases, such as when
reading a YAML file or working with directories, you simply fall back to use existing
Java libraries.

Scala also makes it much easier to execute system commands. When it comes to inter‐
acting with system processes, the Scala API designers created a clean and familiar API
to let you run external commands. This is useful for applications, and it’s terrific for
scripts.

12.1. How to Open and Read a Text File

Problem
You want to open a plain-text file in Scala and process the lines in that file.

Solution
There are two primary ways to open and read a text file:

375

• Use a concise, one-line syntax. This has the side effect of leaving the file open, but
can be useful in short-lived programs, like shell scripts.

• Use a slightly longer approach that properly closes the file.

This solution shows both approaches.

Using the concise syntax

In Scala shell scripts, where the JVM is started and stopped in a relatively short
period of time, it may not matter that the file is closed, so you can use the Scala
scala.io.Source.fromFile method as shown in the following examples.

To handle each line in the file as it’s read, use this approach:

import scala.io.Source

val filename = "fileopen.scala"

for (line <- Source.fromFile(filename).getLines) {

 println(line)

}

As a variation of this, use the following approach to get all of the lines from the file as
a List or Array:

val lines = Source.fromFile("/Users/Al/.bash_profile").getLines.toList

val lines = Source.fromFile("/Users/Al/.bash_profile").getLines.toArray

The fromFile method returns a BufferedSource, and its getLines method treats “any
of \r\n, \r, or \n as a line separator (longest match),” so each element in the sequence
is a line from the file.

Use this approach to get all of the lines from the file as one String:

val fileContents = Source.fromFile(filename).getLines.mkString

This approach has the side effect of leaving the file open as long as the JVM is running,
but for short-lived shell scripts, this shouldn’t be an issue; the file is closed when the
JVM shuts down.

Properly closing the file

To properly close the file, get a reference to the BufferedSource when opening the file,
and manually close it when you’re finished with the file:

val bufferedSource = Source.fromFile("example.txt")

for (line <- bufferedSource.getLines) {

 println(line.toUpperCase)

}

bufferedSource.close

For automated methods of closing the file, see the “Loan Pattern” examples in the
Discussion.

376 | Chapter 12: Files and Processes

Discussion
The getLines method of the Source class returns a scala.collection.Iterator. The
iterator returns each line without any newline characters. An iterator has many methods
for working with a collection, and for the purposes of working with a file, it works well
with the for loop, as shown.

Leaving files open

As mentioned, the first solution leaves the file open as long as the JVM is running:

// leaves the file open

for (line <- io.Source.fromFile("/etc/passwd").getLines) {

 println(line)

}

// also leaves the file open

val contents = io.Source.fromFile("/etc/passwd").mkString

On Unix systems, you can show whether a file is left open by executing one of these
fromFile statements in the REPL with a real file (like /etc/passwd), and then running

an lsof (“list open files”) command like this at the Unix command line:

$ sudo lsof -u Al | grep '/etc/passwd'

That command lists all the open files for the user named Al, and then searches the output
for the /etc/passwd file. If this filename is in the output, it means that it’s open. On my
Mac OS X system I see a line of output like this when the file is left open:

java 17148 Al 40r REG 14,2 1475 174214161 /etc/passwd

When I shut down the REPL—thereby stopping the JVM process—the file no longer
appears in the lsof output. So while this approach has this flaw, it can be used in short-
lived JVM processes, such as a shell script. (You can demonstrate the same result using
a Scala shell script. Just add a Thread.sleep call after the for loop so you can keep the
script running long enough to check the lsof command.)

Automatically closing the resource

When working with files and other resources that need to be properly closed, it’s best
to use the Loan Pattern. According to this website, the pattern “ensures that a resource
is deterministically disposed of once it goes out of scope.”

In Scala, this can be ensured with a try/finally clause, which the Loan Pattern website
shows like this:

def using[A](r : Resource)(f : Resource => A) : A =

 try {

 f(r)

 } finally {

 r.dispose()

 }

12.1. How to Open and Read a Text File | 377

http://bit.ly/169sJU8

One way to implement the Loan Pattern when working with files is to use Joshua Su‐
ereth’s ARM library. To demonstrate this library, create an SBT project, and then add
the following line to its build.sbt file to pull in the required dependencies:

libraryDependencies += "com.jsuereth" %% "scala-arm" % "1.3"

Next, create a file named TestARM.scala in the root directory of your SBT project with
these contents:

import resource._

object TestARM extends App {

 for (source <- managed(scala.io.Source.fromFile("example.txt"))) {

 for (line <- source.getLines) {

 println(line)

 }

 }

}

This code prints all of the lines from the file named example.txt. The managed method
from the ARM library makes sure that the resource is closed automatically when the
resource goes out of scope. The ARM website shows several other ways the library can
be used.

A second way to demonstrate the Loan Pattern is with the using method described on
the Loan Pattern website. The best implementation I’ve seen of a using method is in
the book Beginning Scala (Apress), by David Pollak. The following code is a slight mod‐
ification of his code:

object Control {

 def using[A <: { def close(): Unit }, B](resource: A)(f: A => B): B =

 try {

 f(resource)

 } finally {

 resource.close()

 }

}

This using method takes two parameters:

• An object that has a close() method

• A block of code to be executed, which transforms the input type A to the output
type B

The body of this using method does exactly what’s shown on the Loan Pattern web page,
wrapping the block of code it’s given in a try/finally block.

378 | Chapter 12: Files and Processes

https://github.com/jsuereth/scala-arm

The following code demonstrates how to use this method when reading from a file:

import Control._

object TestUsing extends App {

 using(io.Source.fromFile("example.txt")) { source => {

 for (line <- source.getLines) {

 println(line)

 }

 }

 }

}

Both the ARM library and the using method end up with the same result, implementing
the Loan Pattern to make sure your resource is closed automatically.

Handling exceptions

You can generate exceptions any time you try to open a file, and if you want to handle
your exceptions, use Scala’s try/catch syntax:

import scala.io.Source

import java.io.{FileNotFoundException, IOException}

val filename = "no-such-file.scala"

try {

 for (line <- Source.fromFile(filename).getLines) {

 println(line)

 }

} catch {

 case e: FileNotFoundException => println("Couldn't find that file.")

 case e: IOException => println("Got an IOException!")

}

The following code demonstrates how the fromFile method can be used with using to
create a method that returns the entire contents of a file as a List[String], wrapped in
an Option:

import Control._

def readTextFile(filename: String): Option[List[String]] = {

 try {

 val lines = using(io.Source.fromFile(filename)) { source =>

 (for (line <- source.getLines) yield line).toList

 }

 Some(lines)

 } catch {

 case e: Exception => None

 }

}

12.1. How to Open and Read a Text File | 379

This method returns a Some(List[String]) on success, and None if something goes
wrong, such as a FileNotFoundException. It can be used in the following ways:

val filename = "/etc/passwd"

println("--- FOREACH ---")

val result = readTextFile(filename)

result foreach { strings =>

 strings.foreach(println)

}

println("\n--- MATCH ---")

readTextFile(filename) match {

 case Some(lines) => lines.foreach(println)

 case None => println("couldn't read file")

}

If the process of opening and reading a file fails, you may prefer to return a Try or an
empty List[String]. See Recipes 20.5 and 20.6 for examples of those approaches.

Multiple fromFile methods

In Scala 2.10, there are eight variations of the fromFile method that let you specify a
character encoding, buffer size, codec, and URI. For instance, you can specify an ex‐
pected character encoding for a file like this:

// specify the encoding

Source.fromFile("example.txt", "UTF-8")

See the Scaladoc for the scala.io.Source object (not the Source class, which is an
abstract class) for more information.

Because Scala works so well with Java, you can use the Java FileReader
and BufferedReader classes, as well as other Java libraries, like the
Apache Commons FileUtils library.

See Also

• The Source object.

• The Loan Pattern.

• Joshua Suereth’s ARM library.

• David Pollak’s book, Beginning Scala.

380 | Chapter 12: Files and Processes

http://bit.ly/1bkl0bX
https://wiki.scala-lang.org/display/SYGN/Loan
https://github.com/jsuereth/scala-arm
http://www.apress.com/9781430219897/

• A detailed discussion of David Pollak’s using method.

• The Apache Commons FileUtils project has many methods for reading and writing
files that can be used with Scala.

12.2. Writing Text Files

Problem
You want to write plain text to a file, such as a simple configuration file, text data file,
or other plain-text document.

Solution
Scala doesn’t offer any special file writing capability, so fall back and use the Java
PrintWriter or FileWriter approaches:

// PrintWriter

import java.io._

val pw = new PrintWriter(new File("hello.txt"))

pw.write("Hello, world")

pw.close

// FileWriter

val file = new File(canonicalFilename)

val bw = new BufferedWriter(new FileWriter(file))

bw.write(text)

bw.close()

Discussion
Although I normally use a FileWriter to write plain text to a file, a good post
at coderanch.com describes some of the differences between PrintWriter and
FileWriter. For instance, while both classes extend from Writer, and both can be used
for writing plain text to files, FileWriter throws IOExceptions, whereas PrintWriter
does not throw exceptions, and instead sets Boolean flags that can be checked.
There are a few other differences between the classes; check their Javadoc for more
information.

See Also

• My Java file utilities and my Scala file utilities

• The Java FileWriter class

12.2. Writing Text Files | 381

http://bit.ly/12JL0Fp
http://bit.ly/18iRijX
http://bit.ly/13gi8rN
http://bit.ly/1bFri4o
http://bit.ly/11TzgoP
https://github.com/alvinj/FileUtils
http://bit.ly/18lkZnN

• The Java PrintWriter class

• The coderanch.com PrintWriter versus FileWriter page

12.3. Reading and Writing Binary Files

Problem
You want to read data from a binary file or write data to a binary file.

Solution
Scala doesn’t offer any special conveniences for reading or writing binary files, so use
the Java FileInputStream and FileOutputStream classes.

To demonstrate this, the following code is a close Scala translation of the CopyBytes
class on the Oracle Byte Streams tutorial:

import java.io._

object CopyBytes extends App {

 var in = None: Option[FileInputStream]

 var out = None: Option[FileOutputStream]

 try {

 in = Some(new FileInputStream("/tmp/Test.class"))

 out = Some(new FileOutputStream("/tmp/Test.class.copy"))

 var c = 0

 while ({c = in.get.read; c != −1}) {

 out.get.write(c)

 }

 } catch {

 case e: IOException => e.printStackTrace

 } finally {

 println("entered finally ...")

 if (in.isDefined) in.get.close

 if (out.isDefined) out.get.close

 }

}

In this code, in and out are populated in the try clause. It’s safe to call in.get and
out.get in the while loop, because if an exception had occurred, flow control would
have switched to the catch clause, and then the finally clause before leaving the
method.

382 | Chapter 12: Files and Processes

http://bit.ly/1apShzo
http://coderanch.com
http://bit.ly/13gi8rN
http://bit.ly/1ahHPtP

Normally I tell people that I think the get and isDefined methods on Option would be
deprecated, but this is one of the few times where I think their use is acceptable and they
lead to more readable code.

Another difference between this code and Oracle’s example is the while loop, which is
slightly different in Scala. This change is required because a Java statement like
c = in.read has a type of Unit in Scala, and will therefore never be equal to −1 (or any
other value). There are several other ways to work around this difference, but this
example shows a fairly direct translation.

See Also

• The Oracle Byte Streams tutorial

• The Apache Commons FileUtils project has many methods for reading and writing
files that can be used with Scala

12.4. How to Process Every Character in a Text File

Problem
You want to open a text file and process every character in the file.

Solution
If performance isn’t a concern, write your code in a straightforward, obvious way:

val source = io.Source.fromFile("/Users/Al/.bash_profile")

for (char <- source) {

 println(char.toUpper)

}

source.close

However, be aware that this code may be slow on large files. For instance, the following
method that counts the number of lines in a file takes 100 seconds to run on an Apache
access logfile that is ten million lines long:

// run time: took 100 secs

def countLines1(source: io.Source): Long = {

 val NEWLINE = 10

 var newlineCount = 0L

 for {

 char <- source

 if char.toByte == NEWLINE

 } newlineCount += 1

 newlineCount

}

12.4. How to Process Every Character in a Text File | 383

http://bit.ly/1ahHPtP
http://bit.ly/18iRijX

The time can be significantly reduced by using the getLines method to retrieve one
line at a time, and then working through the characters in each line. The following line-
counting algorithm counts the same ten million lines in just 23 seconds:

// run time: 23 seconds

// use getLines, then count the newline characters

// (redundant for this purpose, i know)

def countLines2(source: io.Source): Long = {

 val NEWLINE = 10

 var newlineCount = 0L

 for {

 line <- source.getLines

 c <- line

 if c.toByte == NEWLINE

 } newlineCount += 1

 newlineCount

}

Both algorithms work through each byte in the file, but by using getLines in the second
algorithm, the run time is reduced dramatically.

Notice that there’s the equivalent of two for loops in the second ex‐
ample. If you haven’t seen this approach before, here’s what the code
looks like with two explicit for loops:

for (line <- source.getLines) {

 for {

 c <- line

 if c.toByte == NEWLINE

 } newlineCount += 1

}

The two approaches are equivalent, but the first is more concise.

12.5. How to Process a CSV File

Problem
You want to process the lines in a CSV file, either handling one line at a time or storing
them in a two-dimensional array.

Solution
Combine Recipe 12.1, “How to Open and Read a Text File” with Recipe 1.3, “Splitting
Strings”. Given a simple CSV file like this named finance.csv:

January, 10000.00, 9000.00, 1000.00

February, 11000.00, 9500.00, 1500.00

March, 12000.00, 10000.00, 2000.00

384 | Chapter 12: Files and Processes

you can process the lines in the file with the following code:

object CSVDemo extends App {

 println("Month, Income, Expenses, Profit")

 val bufferedSource = io.Source.fromFile("/tmp/finance.csv")

 for (line <- bufferedSource.getLines) {

 val cols = line.split(",").map(_.trim)

 // do whatever you want with the columns here

 println(s"${cols(0)}|${cols(1)}|${cols(2)}|${cols(3)}")

 }

 bufferedSource.close

}

The magic in that code is this line:

val cols = line.split(",").map(_.trim)

It splits each line using the comma as a field separator character, and then uses the map
method to trim each field to remove leading and trailing blank spaces. The resulting
output looks like this:

January|10000.00|9000.00|1000.00

February|11000.00|9500.00|1500.00

March|12000.00|10000.00|2000.00

If you prefer named variables instead of accessing array elements, you can change the
for loop to look like this:

for (line <- bufferedSource.getLines) {

 val Array(month, revenue, expenses, profit) = line.split(",").map(_.trim)

 println(s"$month $revenue $expenses $profit")

}

If the first line of the file is a header line and you want to skip it, just add drop(1) after
getLines:

for (line <- bufferedSource.getLines.drop(1)) { // ...

If you prefer, you can also write the loop as a foreach loop:

bufferedSource.getLines.foreach { line =>

 rows(count) = line.split(",").map(_.trim)

 count += 1

}

If you’d like to assign the results to a two-dimensional array, there are a variety of ways
to do this. One approach is to create a 2D array, and then use a counter while assigning
each line to a row. To do this, you need to know the number of rows in the file before
creating the array:

object CSVDemo2 extends App {

12.5. How to Process a CSV File | 385

 val nrows = 3

 val ncols = 4

 val rows = Array.ofDim[String](nrows, ncols)

 val bufferedSource = io.Source.fromFile("/tmp/finance.csv")

 var count = 0

 for (line <- bufferedSource.getLines) {

 rows(count) = line.split(",").map(_.trim)

 count += 1

 }

 bufferedSource.close

 // print the rows

 for (i <- 0 until nrows) {

 println(s"${rows(i)(0)} ${rows(i)(1)} ${rows(i)(2)} ${rows(i)(3)}")

 }

}

Rather than use a counter, you can do the same thing with the zipWithIndex method.
This changes the loop to:

val bufferedSource = io.Source.fromFile("/tmp/finance.csv")

for ((line, count) <- bufferedSource.getLines.zipWithIndex) {

 rows(count) = line.split(",").map(_.trim)

}

bufferedSource.close

If you don’t know the number of rows ahead of time, read each row as an
Array[String], adding each row to an ArrayBuffer as the file is read. That approach
is shown in this example, which uses the using method introduced in the Solution:

import scala.collection.mutable.ArrayBuffer

object CSVDemo3 extends App {

 // each row is an array of strings (the columns in the csv file)

 val rows = ArrayBuffer[Array[String]]()

 // (1) read the csv data

 using(io.Source.fromFile("/tmp/finance.csv")) { source =>

 for (line <- source.getLines) {

 rows += line.split(",").map(_.trim)

 }

 }

 // (2) print the results

 for (row <- rows) {

 println(s"${row(0)}|${row(1)}|${row(2)}|${row(3)}")

 }

 def using[A <: { def close(): Unit }, B](resource: A)(f: A => B): B =

 try {

386 | Chapter 12: Files and Processes

 f(resource)

 } finally {

 resource.close()

 }

}

An Array[String] is used for each row because that’s what the split method returns.
You can convert this to a different collection type, if desired.

Discussion
As you can see, there are a number of ways to tackle this problem. Of all the examples
shown, the zipWithIndex method probably requires some explanation. The Iterator
Scaladoc denotes that it creates an iterator that pairs each element produced by this
iterator with its index, counting from 0.

So the first time through the loop, line is assigned the first line from the file, and count
is 0. The next time through the loop, the second line of the file is assigned to line, and
count is 1, and so on. The zipWithIndex method offers a nice solution for when you
need a line counter.

In addition to these approaches, a quick search for “scala csv parser” will turn up a
number of competing open source projects that you can use.

See Also

• Recipe 12.1, “How to Open and Read a Text File”, shows both manual and auto‐
mated ways of closing file resources.

• Recipe 10.11, “Using zipWithIndex or zip to Create Loop Counters”, provides more
examples of the zipWithIndex method.

• The Iterator trait.

12.6. Pretending that a String Is a File

Problem
Typically for the purposes of testing, you want to pretend that a String is a file.

Solution
Because Scala.fromFile and Scala.fromString both extend scala.io.Source, they
are easily interchangeable. As long as your method takes a Source reference, you can
pass it the BufferedSource you get from calling Source.fromFile, or the Source you
get from calling Source.fromString.

12.6. Pretending that a String Is a File | 387

http://bit.ly/1dzYcSo

For example, the following method takes a Source object and prints the lines it contains:

import io.Source

def printLines(source: Source) {

 for (line <- source.getLines) {

 println(line)

 }

}

It can be called when the source is constructed from a String:

val s = Source.fromString("foo\nbar\n")

printLines(s)

It can also be called when the source is a file:

val f = Source.fromFile("/Users/Al/.bash_profile")

printLines(f)

Discussion
When writing unit tests, you might have a method like this that you’d like to test:

package foo

object FileUtils {

 def getLinesUppercased(source: io.Source): List[String] = {

 (for (line <- source.getLines) yield line.toUpperCase).toList

 }

}

As shown in the following ScalaTest tests, you can test the getLinesUppercased method
by passing it either a Source from a file or a String:

package foo

import org.scalatest.{FunSuite, BeforeAndAfter}

import scala.io.Source

class FileUtilTests extends FunSuite with BeforeAndAfter {

 var source: Source = _

 after { source.close }

 // assumes the file has the string "foo" as its first line

 test("1 - foo file") {

 source = Source.fromFile("/Users/Al/tmp/foo")

 val lines = FileUtils.getLinesUppercased(source)

 assert(lines(0) == "FOO")

 }

388 | Chapter 12: Files and Processes

 test("2 - foo string") {

 source = Source.fromString("foo\n")

 val lines = FileUtils.getLinesUppercased(source)

 assert(lines(0) == "FOO")

 }

}

If you’re interested in making your method easily testable with a String instead of a
file, define your method to take a Source instance.

See Also

• The Source class

• The Source object

• The BufferedSource class

12.7. Using Serialization

Problem
You want to serialize a Scala class and save it as a file, or send it across a network.

Solution
The general approach is the same as Java, but the syntax to make a class serializable is
different.

To make a Scala class serializable, extend the Serializable trait and add the
@SerialVersionUID annotation to the class:

@SerialVersionUID(100L)

class Stock(var symbol: String, var price: BigDecimal)

extends Serializable {

 // code here ...

}

Because Serializable is a trait, you can mix it into a class, even if your class already
extends another class:

@SerialVersionUID(114L)

class Employee extends Person with Serializable ...

After marking the class serializable, use the same techniques to write and read the objects
as you did in Java, including the Java “deep copy” technique that uses serialization.

12.7. Using Serialization | 389

http://bit.ly/15is1E7
http://bit.ly/1bkl0bX
http://bit.ly/1aLATc1
http://bit.ly/12Dkd13

Discussion
The following code demonstrates the proper approach. The comments in the code ex‐
plain the process:

import java.io._

// create a serializable Stock class

@SerialVersionUID(123L)

class Stock(var symbol: String, var price: BigDecimal)

extends Serializable {

 override def toString = f"$symbol%s is ${price.toDouble}%.2f"

}

object SerializationDemo extends App {

 // (1) create a Stock instance

 val nflx = new Stock("NFLX", BigDecimal(85.00))

 // (2) write the instance out to a file

 val oos = new ObjectOutputStream(new FileOutputStream("/tmp/nflx"))

 oos.writeObject(nflx)

 oos.close

 // (3) read the object back in

 val ois = new ObjectInputStream(new FileInputStream("/tmp/nflx"))

 val stock = ois.readObject.asInstanceOf[Stock]

 ois.close

 // (4) print the object that was read back in

 println(stock)

}

This code prints the following output when run:

NFLX is 85.00

See Also

• The Serializable trait

• Recipe 17.3, “Using @SerialVersionUID and Other Annotations”

• My Java “Deep Copy/Clone” example

390 | Chapter 12: Files and Processes

http://bit.ly/1aLR3Cn
http://bit.ly/12SSwxR

12.8. Listing Files in a Directory

Problem
You want to get a list of files that are in a directory, potentially limiting the list of files
with a filtering algorithm.

Solution
Scala doesn’t offer any different methods for working with directories, so use the
listFiles method of the Java File class. For instance, this method creates a list of all
files in a directory:

def getListOfFiles(dir: String):List[File] = {

 val d = new File(dir)

 if (d.exists && d.isDirectory) {

 d.listFiles.filter(_.isFile).toList

 } else {

 List[File]()

 }

}

The REPL demonstrates how you can use this method:

scala> import java.io.File

import java.io.File

scala> val files = getListOfFiles("/tmp")

files: List[java.io.File] = List(/tmp/foo.log, /tmp/Files.scala.swp)

Note that if you’re sure that the file you’re given is a directory and it exists, you can
shorten this method to just the following code:

def getListOfFiles(dir: File):List[File] =

 dir.listFiles.filter(_.isFile).toList

Discussion
If you want to limit the list of files that are returned based on their filename extension,
in Java, you’d implement a FileFilter with an accept method to filter the filenames
that are returned. In Scala, you can write the equivalent code without requiring a
FileFilter. Assuming that the File you’re given represents a directory that is known
to exist, the following method shows how to filter a set of files based on the filename
extensions that should be returned:

import java.io.File

def getListOfFiles(dir: File, extensions: List[String]): List[File] =

{

 dir.listFiles.filter(_.isFile).toList.filter { file =>

12.8. Listing Files in a Directory | 391

 extensions.exists(file.getName.endsWith(_))

 }

}

You can call this method as follows to list all WAV and MP3 files in a given directory:

val okFileExtensions = List("wav", "mp3")

val files = getListOfFiles(new File("/tmp"), okFileExtensions)

As long as this method is given a directory that exists, this method will return an empty
List if no matching files are found:

scala> val files = getListOfFiles(new File("/Users/Al"), okFileExtensions)

files: List[java.io.File] = List()

This is nice, because you can use the result normally, without having to worry about a
null value:

scala> files.foreach(println)

(no output or errors, because an empty List was returned)

See Also

The Java File class

12.9. Listing Subdirectories Beneath a Directory

Problem
You want to generate a list of subdirectories in a given directory.

Solution
Use a combination of the Java File class and Scala collection methods:

// assumes that dir is a directory known to exist

def getListOfSubDirectories(dir: File): List[String] =

 dir.listFiles

 .filter(_.isDirectory)

 .map(_.getName)

 .toList

This algorithm does the following:

• Uses the listFiles method of the File class to list all the files in the given directory
as an Array[File].

• The filter method trims that list to contain only directories.

392 | Chapter 12: Files and Processes

http://bit.ly/15KfbRd

• map calls getName on each file to return an array of directory names (instead of File
instances).

• toList converts that to a List[String].

Calling toList isn’t necessary, but if it isn’t used, the method should be declared to
return Array[String].

This method can be used like this:

getListOfSubDirectories(new File("/Users/Al")).foreach(println)

As mentioned, this method returns a List[String]. If you’d rather return a
List[File], write the method as follows, dropping the map method call:

dir.listFiles.filter(_.isDirectory).toList

Discussion
This problem provides a good way to demonstrate the differences between writing code
in a functional style versus writing code in an imperative style.

When a developer first comes to Scala from Java, she might write a more Java-like
(imperative) version of that method as follows:

def getListOfSubDirectories1(dir: File): List[String] = {

 val files = dir.listFiles

 val dirNames = collection.mutable.ArrayBuffer[String]()

 for (file <- files) {

 if (file.isDirectory) {

 dirNames += file.getName

 }

 }

 dirNames.toList

}

After getting more comfortable with Scala, she’d realize the code can be shortened. One
simplification is that she can eliminate the need for the ArrayBuffer by using a for loop
with a yield expression. Because the method should return a List[String], the for
loop is made to yield file.getName, and the for loop result is assigned to the variable
dirs. Finally, dirs is converted to a List in the last line of the method, and it’s returned
from there:

def getListOfSubDirectories2(dir: File): List[String] = {

 val files = dir.listFiles

 val dirs = for {

 file <- files

 if file.isDirectory

 } yield file.getName

 dirs.toList

}

12.9. Listing Subdirectories Beneath a Directory | 393

Although there’s nothing wrong with this code—indeed, some programmers prefer
writing for comprehensions to using map—at some point, as the developer gets more
comfortable with the Scala collections and FP style, she’ll realize the intention of the
code is to create a filtered list of files, and using the filter method on the collection to
return only directories will come to mind. Also, when she sees a for/yield combination,
she should think, “map method,” and in short order, she’ll be at the original solution.

12.10. Executing External Commands

Problem
You want to execute an external (system) command from within a Scala application.
You’re not concerned about the output from the command, but you are interested in its
exit code.

Solution
To execute external commands, use the methods of the scala.sys.process package.
There are three primary ways to execute external commands:

• Use the ! method to execute the command and get its exit status.

• Use the !! method to execute the command and get its output.

• Use the lines method to execute the command in the background and get its result
as a Stream.

This recipe demonstrates the ! method, and the next recipe demonstrates the !! method.
The lines method is shown in the Discussion of this recipe.

To execute a command and get its exit status, import the necessary members and run
the desired command with the ! method:

scala> import sys.process._

import sys.process._

scala> "ls -al".!

total 64

drwxr-xr-x 10 Al staff 340 May 18 18:00 .

drwxr-xr-x 3 Al staff 102 Apr 4 17:58 ..

-rw-r--r-- 1 Al staff 118 May 17 08:34 Foo.sh

-rw-r--r-- 1 Al staff 2727 May 17 08:34 Foo.sh.jar

res0: Int = 0

When using the ! method, you can get the exit code of the command that was run:

scala> val exitCode = "ls -al".!

total 64

drwxr-xr-x 10 Al staff 340 May 18 18:00 .

394 | Chapter 12: Files and Processes

drwxr-xr-x 3 Al staff 102 Apr 4 17:58 ..

-rw-r--r-- 1 Al staff 118 May 17 08:34 Foo.sh

-rw-r--r-- 1 Al staff 2727 May 17 08:34 Foo.sh.jar

result: Int = 0

scala> println(exitCode)

0

Both of those examples work because of an implicit conversion that adds the ! method
to a String when you add the import statement shown.

Discussion
I use this technique to execute the afplay system command on Mac OS X systems to
play sound files in one of my Scala applications, as shown in this method:

def playSoundFile(filename: String): Int = {

 val cmd = "afplay " + filename

 val exitCode = cmd.!

 exitCode

}

That method attempts to play the given filename as a sound file with the afplay com‐
mand, and returns the exitCode from the command. This method can be shortened to
just one line, but I prefer the approach shown because it’s easy to read, especially if you
don’t execute system processes very often.

To execute system commands I generally just use ! after a String, but the Seq approach
is also useful. The first element in the Seq should be the name of the command you want
to run, and subsequent elements are considered to be arguments to it, as shown in these
examples:

val exitCode = Seq("ls", "-al").!

val exitCode = Seq("ls", "-a", "-l").!

val exitCode = Seq("ls", "-a", "-l", "/tmp").!

I’ve omitted the output from each of those examples, but each command provides the
same directory listing you’d get at the Unix command line.

You can also create a Process object to execute an external command, if you prefer:

val exitCode = Process("ls").!

When running these commands, be aware of whitespace around your command and
arguments. All of the following examples fail because of extra whitespace:

// beware leading whitespace

scala> " ls".!

java.io.IOException: Cannot run program "": error=2,

 No such file or directory

 at java.lang.ProcessBuilder.start(ProcessBuilder.java:460)

12.10. Executing External Commands | 395

scala> val exitCode = Seq(" ls ", "-al").!

java.io.IOException: Cannot run program " ls ": error=2,

 No such file or directory

// beware trailing whitespace

scala> val exitCode = Seq("ls", " -al ").!

ls: -al : No such file or directory

exitCode: Int = 1

If you enter the strings yourself, leave the whitespace out, and if you get the strings from
user input, be sure to trim them.

Using the lines method

The lines method is an interesting alternative to the ! and !! commands. With
lines, you can immediately execute a command in the background. For instance, the
following command will run for a long time on a Unix system and result in a large
amount of output:

val process = Process("find / -print").lines

The variable process in this example is a Stream[String]. With lines running the
process in the background, you can either work with the result immediately or at some
later point. For instance, you can read from the stream like this:

process.foreach(println)

The lines method throws an exception if the exit status of the command is nonzero.
You can catch that with a try/catch expression, but if this is a problem, or if you also
want to retrieve the standard error from the command, use the lines_! method instead
of lines. The lines_! method is demonstrated in Recipe 12.11 and discussed in
Table 12-1 in Recipe 12.19.

External commands versus built-in commands

As a final note, you can run any external command from Scala that you can run from
the Unix command line. However, there’s a big difference between an external command
and a shell built-in command. The ls command is an external command that’s available
on all Unix systems, and can be found as a file in the /bin directory:

$ which ls

/bin/ls

Some other commands that can be used at a Unix command line, such as the cd or for
commands in the Bash shell, are actually built into the shell; you won’t find them as files
on the filesystem. Therefore, these commands can’t be executed unless they’re executed
from within a shell. See Recipe 12.13, “Building a Pipeline of Commands” for an example
of how to execute a shell built-in command.

396 | Chapter 12: Files and Processes

12.11. Executing External Commands and Using STDOUT

Problem
You want to run an external command and then use the standard output (STDOUT) from
that process in your Scala program.

Solution
Use the !! method to execute the command and get the standard output from the
resulting process as a String.

Just like the ! command in the previous recipe, you can use !! after a String to execute
a command, but !! returns the STDOUT from the command rather than the exit code of
the command. This returns a multiline string, which you can process in your applica‐
tion:

scala> import sys.process._

import sys.process._

scala> val result = "ls -al" !!

result: String =

"total 64

drwxr-xr-x 10 Al staff 340 May 18 18:00 .

drwxr-xr-x 3 Al staff 102 Apr 4 17:58 ..

-rw-r--r-- 1 Al staff 118 May 17 08:34 Foo.sh

-rw-r--r-- 1 Al staff 2727 May 17 08:34 Foo.sh.jar

"

scala> println(result)

total 64

drwxr-xr-x 10 Al staff 340 May 18 18:00 .

drwxr-xr-x 3 Al staff 102 Apr 4 17:58 ..

-rw-r--r-- 1 Al staff 118 May 17 08:34 Foo.sh

-rw-r--r-- 1 Al staff 2727 May 17 08:34 Foo.sh.jar

If you prefer, you can do the same thing with a Process or Seq instead of a String:

val result = Process("ls -al").!!

val result = Seq("ls -al").!!

As shown in the previous recipe, using a Seq is a good way to execute a system command
that requires arguments:

val output = Seq("ls", "-al").!!

val output = Seq("ls", "-a", "-l").!!

val output = Seq("ls", "-a", "-l", "/tmp").!!

The first element in the Seq is the name of the command to be run, and subsequent
elements are arguments to the command. The following code segment shows how to
run a complex Unix find command:

12.11. Executing External Commands and Using STDOUT | 397

val dir = "/Users/Al/tmp"

val searchTerm = "dawn"

val results = Seq("find", dir, "-type", "f", "-exec", "grep", "-il",

 searchTerm, "{}", ";").!!

println(results)

This code is the equivalent of running the following find command at the Unix prompt:

find /Users/Al/tmp -type f -exec grep -il dawn {} \;

If you’re not familiar with Unix commands, this command can be read as, “Search all
files under the /Users/Al/tmp directory for the string dawn, ignoring case, and print the
names of all files where a match is found.”

Discussion
Use the ! method to get the exit code from a process, or !! to get the standard output
from a process.

Be aware that attempting to get the standard output from a command exposes you to
exceptions that can occur. As a simple example, if you write the following statement to
get the exit code of a command using the ! operator, even though a little extra STDERR
information is printed in the REPL, out is just assigned a nonzero exit code:

scala> val out = "ls -l fred" !

ls: fred: No such file or directory

out: Int = 1

But if you attempt to get the standard output from the same command using the !!
method, an exception is thrown, and out is not assigned:

scala> val out = "ls -l fred" !!

ls: fred: No such file or directory

java.lang.RuntimeException: Nonzero exit value: 1

 many more lines of output ...

Unexpected newline characters

When running an external command, you may expect a one-line string to be returned,
but you can get a newline character as well:

scala> val dir = "pwd" !!

dir: String =

"/Users/Al/Temp

"

When this happens, just trim the result:

scala> val dir = "pwd".!!.trim

dir: java.lang.String = /Users/Al/Temp

398 | Chapter 12: Files and Processes

Using the lines_! method

You may want to check to see whether an executable program is available on your system.
For instance, suppose you wanted to know whether the hadoop2 executable is available
on a Unix-based system. A simple way to handle this situation is to use the Unix which
command with the ! method, where a nonzero exit code indicates that the command
isn’t available:

scala> val executable = "which hadoop2".!

executable: Int = 1

If the value is nonzero, you know that the executable is not available on the current
system. More accurately, it may be on the system, but it’s not on the PATH (or much less
likely, the which command is not available).

Another way to handle this situation is to use the lines_! method. This can be used to
return a Some or None, depending on whether or not the hadoop command is found by
which. The syntax for the lines_! method is shown in this example:

val executable = "which hadoop2".lines_!.headOption

In the Scala REPL, you can see that if the executable isn’t available on the current system,
this expression returns None:

scala> val executable = "which hadoop2".lines_!.headOption

executable: Option[String] = None

Conversely, if the command is found, the expression returns a Some:

scala> val executable = "which ls".lines_!.headOption

executable: Option[String] = Some(/bin/ls)

Note the call to the headOption method at the end of this pipeline. You call this method
because the lines_! method returns a Stream, but you want the Option immediately.

See Recipe 12.19 for a description of the lines_! method.

12.12. Handling STDOUT and STDERR for External
Commands

Problem
You want to run an external command and get access to both its STDOUT and STDERR.

Solution
The simplest way to do this is to run your commands as shown in previous recipes, and
then capture the output with a ProcessLogger. This Scala shell script demonstrates the
approach:

12.12. Handling STDOUT and STDERR for External Commands | 399

#!/bin/sh

exec scala "$0" "$@"

!#

import sys.process._

val stdout = new StringBuilder

val stderr = new StringBuilder

val status = "ls -al FRED" ! ProcessLogger(stdout append _, stderr append _)

println(status)

println("stdout: " + stdout)

println("stderr: " + stderr)

When this script is run, the status variable contains the exit status of the command.
The stdout variable contains the STDOUT if the command is successful (such as with
ls -al), and stderr contains the STDERR from the command if there are problems. If
the command you’re running writes to both STDOUT and STDERR, both stdout and
stderr will contain data.

For instance, assuming you don’t run the following command as root, changing the
status expression in the script to the following code should generate output to both
STDOUT and STDERR on a Unix system:

val status = Seq("find", "/usr", "-name", "make") ! ↵

ProcessLogger(stdout append _, stderr append _)

Running the script with this command on a Mac OS X (Unix) system, I correctly get
the following exit status, STDOUT, and STDERR output:

scala> val status = Seq("find", "/usr", "-name", "make") ! ProcessLogger(stdout↵

append _, stderr append _)

status: Int = 1

scala> println(stdout)

/usr/bin/make

scala> println(stderr)

find: /usr/local/mysql-5.0.67-osx10.5-x86/data: Permission denied

Depending on your needs, this can get much more complicated very quickly. The Sca‐
ladoc states, “If one desires full control over input and output, then a ProcessIO can be
used with run.” See the scala.sys.process API documentation for the ProcessLogger
and ProcessIO classes for more examples.

See Also

The process package object documentation includes many details and examples.

400 | Chapter 12: Files and Processes

http://bit.ly/13MI5Cl

12.13. Building a Pipeline of Commands

Problem
You want to execute a series of external commands, redirecting the output from one
command to the input of another command, i.e., you want to pipe the commands
together.

Solution
Use the #| method to pipe the output from one command into the input stream of
another command. When doing this, use ! at the end of the pipeline if you want the
exit code of the pipeline, or !! if you want the output from the pipeline.

The !! approach is shown in the following example where the output from the ps
command is piped as the input to the wc command:

import sys.process._

val numProcs = ("ps auxw" #| "wc -l").!!.trim

println(s"#procs = $numProcs")

Because the output from the ps command is piped into a line count command (wc -l),
that code prints the number of processes running on a Unix system. The following
command creates a list of all Java processes running on the current system:

val javaProcs = ("ps auxw" #| "grep java").!!.trim

There are other ways to write these commands, but because I usually end up trimming
the result I get back from commands, I find this syntax to be the most readable approach.

Discussion
If you come from a Unix background, the #| command is easy to remember because
it’s just like the Unix pipe symbol, but preceded by a # character (#|). In fact, with the
exception of the ### operator (which is used instead of the Unix ; symbol), the entire
library is consistent with the equivalent Unix commands.

Note that attempting to pipe commands together inside a String and then execute them
with ! won’t work:

// won't work

val result = ("ls -al | grep Foo").!!

This doesn’t work because the piping capability comes from a shell (Bourne shell, Bash,
etc.), and when you run a command like this, you don’t have a shell.

To execute a series of commands in a shell, such as the Bourne shell, use a Seq with
multiple parameters, like this:

12.13. Building a Pipeline of Commands | 401

val r = Seq("/bin/sh", "-c", "ls | grep .scala").!!

This approach runs the ls | grep .scala command inside a Bourne shell instance. A
quick run in the REPL demonstrates this:

scala> val r = Seq("/bin/sh", "-c", "ls | grep .scala").!!

r: String =

"Bar.scala

Baz.scala

Foo.scala

"

However, note that when using !!, you’ll get the following exception if there are
no .scala files in the directory:

java.lang.RuntimeException: Nonzero exit value: 1

I’ve found it best to wrap commands executed with !! in a try/catch expression.

See Also

My tutorial, “How to Execute a System Command Pipeline in Java,” discusses
the need for a shell when piping commands.

12.14. Redirecting the STDOUT and STDIN of External
Commands

Problem
You want to redirect the standard output (STDOUT) and standard input (STDIN) when
running external commands. For instance, you may want to redirect STDOUT to log the
output of an external command to a file.

Solution
Use #> to redirect STDOUT, and #< to redirect STDIN.

When using #>, place it after your command and before the filename you want to write
to, just like using > in Unix:

import sys.process._

import java.io.File

("ls -al" #> new File("files.txt")).!

("ps aux" #> new File("processes.txt")).!

You can also pipe commands together and then write the resulting output to a file:

("ps aux" #| "grep http" #> new File("http-processes.out")).!

402 | Chapter 12: Files and Processes

http://bit.ly/15KflrJ

Get the exit status from a command like this:

val status = ("cat /etc/passwd" #> new File("passwd.copy")).!

println(status)

You can also download a URL and write its contents to a file:

import sys.process._

import scala.language.postfixOps

import java.net.URL

import java.io.File

new URL("http://www.google.com") #> new File("Output.html") !

I don’t redirect STDIN too often, but this example shows one possible way to read the
contents of the /etc/passwd file into a variable using #< and the Unix cat command:

import scala.sys.process._

import java.io.File

val contents = ("cat" #< new File("/etc/passwd")).!!

println(contents)

Discussion
The #> and #< operators generally work like their equivalent > and < Unix commands,
though you can also use them for other purposes, such as using #> to write from one
ProcessBuilder to another, like a pipeline:

val numLines = ("cat /etc/passwd" #> "wc -l").!!.trim

println(numLines)

The ProcessBuilder Scaladoc states that #> and #< “may take as input either
another ProcessBuilder, or something else such as a java.io.File or a
java.lang.InputStream.”

As mentioned, the Scala process commands are consistent with the standard Unix re‐
direction symbols, so you can also append to a file with the #>> method:

// append to a file

("ps aux" #>> new File("ps.out")).!

Regarding the use of the URL and File classes, the Scaladoc states that instances of
java.io.File and java.net.URL can be used as input to other processes, and a File
instance can also be used as output. This was demonstrated in the Solution with the
ability to download the contents from a URL and write it to a file with the #> operator.

12.14. Redirecting the STDOUT and STDIN of External Commands | 403

See Also

• The process package object

• The Scala ProcessBuilder trait

• The Scala Process trait

12.15. Using AND (&&) and OR (||) with Processes

Problem
You want to use the equivalent of the Unix && and || commands to perform an if/then/
else operation when executing external commands.

Solution
Use the Scala operators #&& and #||, which mirror the Unix && and || operators:

val result = ("ls temp" #&& "rm temp" #|| "echo 'temp' not found").!!.trim

This command can be read as, “Run the ls command on the file temp, and if it’s found,
remove it, otherwise, print the ‘not found’ message.”

In practice, this can be a little more difficult than shown, because these commands
usually involve the use of a wildcard operator. For instance, even if there are .scala files

in the current directory, the following attempt to compile them using #&& and #|| will
fail because of the lack of wildcard support:

scala> ("ls *.scala" #&& "scalac *.scala" #|| "echo no files to compile").!

ls: *.scala: No such file or directory

no files to compile

res0: Int = 0

To get around this problem, use the formula shared in Recipe 12.16, “Handling Wildcard
Characters in External Commands” running each command in a shell (and also sepa‐
rating each command to make the #&& and #|| command readable):

#!/bin/sh

exec scala "$0" "$@"

!#

import scala.sys.process._

val filesExist = Seq("/bin/sh", "-c", "ls *.scala")

val compileFiles = Seq("/bin/sh", "-c", "scalac *.scala")

(filesExist #&& compileFiles #|| "echo no files to compile").!!

404 | Chapter 12: Files and Processes

http://bit.ly/13MI5Cl
http://bit.ly/17iya4p
http://bit.ly/10Yk0UY

That script compiles all .scala files in the current directory.

12.16. Handling Wildcard Characters in External
Commands

Problem
You want to use a Unix shell wildcard character, such as *, in an external command.

Solution
In general, the best thing you can do when using a wildcard character like * is to run
your command while invoking a Unix shell. For instance, if you have .scala files in the
current directory and try to list them with the following command, the command will
fail:

scala> import scala.sys.process._

import scala.sys.process._

scala> "ls *.scala".!

ls: *.scala: No such file or directory

res0: Int = 1

But by running the same command inside a Bourne shell, the command now correctly
shows the .scala files (and returns the exit status of the command):

scala> val status = Seq("/bin/sh", "-c", "ls *.scala").!

AndOrTest.scala

Console.scala

status: Int = 0

Discussion
Putting a shell wildcard character like * into a command doesn’t work because the *
needs to be interpreted and expanded by a shell, like the Bourne or Bash shells. In this
example, even though there are files in the current directory named AndOrTest.scala

and Console.scala, the first attempt doesn’t work. These other attempts will also fail as
a result of the same problem:

scala> "echo *".!

*

res0: Int = 0

scala> Seq("grep", "-i", "foo", "*.scala").!

grep: *.scala: No such file or directory

res1: Int = 2

scala> Seq("ls", "*.scala").!

12.16. Handling Wildcard Characters in External Commands | 405

ls: *.scala: No such file or directory

res2: Int = 1

In each example, you can make these commands work by invoking a shell in the first
two parameters to a Seq:

val status = Seq("/bin/sh", "-c", "echo *").!

val status = Seq("/bin/sh", "-c", "ls *.scala").!

val status = Seq("/bin/sh", "-c", "grep -i foo *.scala").!

An important part of this recipe is using the -c argument of the /bin/sh command. The

sh manpage describes this parameter as follows:

-c string

If the -c option is present, then commands are read from string.

If there are arguments after the string, they are assigned to the

positional parameters, starting with $0.

As an exception to this general rule, the -name option of the find command may work
because it treats the * character as a wildcard character itself. As a result, the following
find command finds the two files in the current directory without having to be run in
a shell:

scala> val status = Seq("find", ".", "-name", "*.scala", "-type", "f").!

./AndOrTest.scala

./Console.scala

status: Int = 0

However, as shown, other commands generally require that the * wildcard character be
interpreted and expanded by a shell.

See Also

• “How to Execute a Command Pipeline in Java”

• “Execute System Processes with Java Process and ProcessBuilder”

12.17. How to Run a Process in a Different Directory

Problem
You want to use another directory as the base directory when running an external
command.

406 | Chapter 12: Files and Processes

http://bit.ly/15KflrJ
http://bit.ly/16GAKPp

Solution
Use one of the Process factory methods, setting your command and the desired direc‐
tory, then running the process with the usual ! or !! commands. The following example
runs the ls command with the -al arguments in the /var/tmp directory:

import sys.process._

import java.io.File

object Test extends App {

 val output = Process("ls -al", new File("/tmp")).!!

 println(output)

}

To run that same command in the current directory, just remove the second parameter
when creating the Process:

val p = Process("ls -al")

You can use another Process factory method to set system environment variables, i.e.,
those that can be seen at the shell command line with set or env. See the next recipe
for examples of that method.

12.18. Setting Environment Variables When Running
Commands

Problem
You need to set one or more environment variables when running an external command.

Solution
Specify the environment variables when calling a Process factory method (an apply
method in the Process object).

The following example shows how to run a shell script in a directory named
/home/al/bin while also setting the PATH environment variable:

val p = Process("runFoo.sh",

 new File("/Users/Al/bin"),

 "PATH" -> ".:/usr/bin:/opt/scala/bin")

val output = p.!!

To set multiple environment variables at one time, keep adding them at the end of the
Process constructor:

12.18. Setting Environment Variables When Running Commands | 407

val output = Process("env",

 None,

 "VAR1" -> "foo",

 "VAR2" -> "bar")

These examples work because of the overloaded apply methods in the Process object.
For instance, one method takes a File for the directory parameter, and another method
takes an Option[File] for that parameter. This second approach lets you use None to
indicate the current directory.

The ability to specify multiple environment variables when calling a Process factory
method works because the apply methods accept a varargs argument of the type
(String, String)* for their last argument. This means “a variable number of tuple
arguments.”

See Also

The Process object

12.19. An Index of Methods to Execute External
Commands
The following tables list the methods of the scala.sys.process package that you can
use when running external (system) commands.

Table 12-1 lists the methods that you can use to execute system commands.

Table 12-1. Methods to execute system commands

Method Description

! Runs the command and returns its exit code. Blocks until all external commands exit. If used in a chain, returns the

exit code of the last command in the chain.

!! Runs the command (or command pipe/chain), and returns the output from the command as a String. Blocks

until all external commands exit. Warning: throws exceptions when the command’s exit status is nonzero.

run Returns a Process object immediately while running the process in the background. The Process can’t currently

be polled to see if it has completed.

lines Returns immediately, while running the process in the background. The output that’s generated is provided through

a Stream[String]. Getting the next element of the Stream may block until it becomes available. Throws an

exception if the return code is not zero; if this isn’t desired, use the lines_! method.

Example:

scala> val x = Process("ls").lines

x: Stream[String] = Stream(Bar.scala, ?)

lines_! Like the lines method, but STDERR output is sent to the ProcessLogger you provide. Per the Scaladoc, “If

the process exits with a nonzero value, the Stream will provide all lines up to termination but will not throw an

exception.” Demonstrated in Recipe 12.11.

408 | Chapter 12: Files and Processes

http://bit.ly/149qL9t

Table 12-2 lists the methods that you can use to redirect STDIN and STDOUT when external
commands are executed.

Table 12-2. Methods to redirect STDIN and STDOUT

Methods Description

#< Read from STDIN

#> Write to STDOUT

#>> Append to STDOUT

Table 12-3 lists the methods that you can use to combine (pipe) external commands.

Table 12-3. Methods to combine external commands

Methods Description

cmd1 #| cmd2 The output of the first command is used as input to the second command, like a Unix shell

pipe.

cmd1 ### cmd2 cmd1 and cmd2 will be executed in sequence, one after the other. This is like the Unix ;

operator, but ; is a reserved keyword in Scala.

cmd1 #> cmd2 Normally used to write to STDOUT but can be used like #| to chain commands together.

Example:

scala> ("ps aux" #> "grep java" #> "wc -l").!!.trim

res0: String = 2

cmd1 #&& cmd2 Run cmd2 if cmd1 runs successfully (i.e., it has an exit status of 0).

cmd1 #|| cmd2 Run cmd2 if cmd1 has an unsuccessful (nonzero) exit status.

cmd1 #&& cmd2 #|| cmd3 Run cmd2 is cmd1 has a successful exit status, otherwise, run cmd3.

The primary online documentation for the Scala process API is at these URLs:

• The scala.sys.process package object

• The ProcessBuilder trait

12.19. An Index of Methods to Execute External Commands | 409

http://bit.ly/13MI5Cl
http://bit.ly/17iya4p

CHAPTER 13

Actors and Concurrency

Introduction
In Scala you can still use Java threads, but the Actor model is the preferred approach
for concurrency. The Actor model is at a much higher level of abstraction than threads,
and once you understand the model, it lets you focus on solving the problem at hand,
rather than worrying about the low-level problems of threads, locks, and shared data.

Although earlier versions of Scala included its original Actors library, Scala 2.10.0 began
the official transition to the Akka actor library from Typesafe, which is more robust
than the original library. Scala 2.10.1 then deprecated the original scala.actors library.

In general, actors give you the benefit of offering a high level of abstraction for achieving
concurrency and parallelism. Beyond that, the Akka actor library adds these additional
benefits:

• Lightweight, event-driven processes. The documentation states that there can be
approximately 2.7 million actors per gigabyte of RAM.

• Fault tolerance. Akka actors can be used to create “self-healing systems.” (The Akka
“team blog” is located at http://letitcrash.com/.)

• Location transparency. Akka actors can span multiple JVMs and servers; they’re
designed to work in a distributed environment using pure message passing.

A “high level of abstraction” can also be read as “ease of use.” It doesn’t take very long
to understand the Actor model, and once you do, you’ll be able to write complex, con‐
current applications much more easily than you can with the basic Java libraries. I wrote
a speech interaction application (speech recognition input, text-to-speech output)
named SARAH that makes extensive use of Akka actors, with agents constantly working
on tasks in the background. Writing this code with actors was much easier than the
equivalent threading approach.

411

http://akka.io/
http://letitcrash.com/
http://alvinalexander.com/sarah

I like to think of an actor as being like a web service on someone else’s servers that I
can’t control. I can send messages to that web service to ask it to do something, or I can
query it for information, but I can’t reach into the web service to directly modify its state
or access its resources; I can only work through its API, which is just like sending
immutable messages. In one way, this is a little limiting, but in terms of safely writing
parallel algorithms, this is very beneficial.

The Actor Model
Before digging into the recipes in this chapter, it can help to understand the Actor model.

The first thing to understand about the Actor model is the concept of an actor:

• An actor is the smallest unit when building an actor-based system, like an object in
an OOP system.

• Like an object, an actor encapsulates state and behavior.

• You can’t peek inside an actor to get its state. You can send an actor a message
requesting state information (like asking a person how they’re feeling), but you can’t
reach in and execute one of its methods, or access its fields.

• An actor has a mailbox (an inbox), and its purpose in life is to process the messages
in its mailbox.

• You communicate with an actor by sending it an immutable message. These mes‐
sages go into the actor’s mailbox.

• When an actor receives a message, it’s like taking a letter out of its mailbox. It opens
the letter, processes the message using one of its algorithms, then moves on to the
next letter in the mailbox. If there are no more messages, the actor waits until it
receives one.

In an application, actors form hierarchies, like a family, or a business organization:

• The Typesafe team recommends thinking of an actor as being like a person, such
as a person in a business organization.

• An actor has one parent (supervisor): the actor that created it.

• An actor may have children. Thinking of this as a business, a president may have a
number of vice presidents. Those VPs will have many subordinates, and so on.

• An actor may have siblings. For instance, there may be 10 VPs in an organization.

• A best practice of developing actor systems is to “delegate, delegate, delegate,” es‐
pecially if behavior will block. In a business, the president may want something
done, so he delegates that work to a VP. That VP delegates work to a manager, and
so on, until the work is eventually performed by one or more subordinates.

412 | Chapter 13: Actors and Concurrency

• Delegation is important. Imagine that the work takes several man-years. If the
president had to handle that work himself, he couldn’t respond to other needs (while
the VPs and other employees would all be idle).

A final piece of the Actor model is handling failure. When performing work, something
may go wrong, and an exception may be thrown. When this happens, an actor suspends
itself and all of its children, and sends a message to its supervisor, signaling that a failure
has occurred. (A bit like Scotty calling Captain Kirk with a problem.)

Depending on the nature of the work and the nature of the failure, the supervising actor
has a choice of four options at this time:

• Resume the subordinate, keeping its internal state

• Restart the subordinate, giving it a clean state

• Terminate the subordinate

• Escalate the failure

In addition to those general statements about actors, there are a few important things
to know about Akka’s implementation of the Actor model:

• You can’t reach into an actor to get information about its state. When you instantiate
an Actor in your code, Akka gives you an ActorRef, which is essentially a façade
between you and the actor.

• Behind the scenes, Akka runs actors on real threads; many actors may share one
thread.

• There are different mailbox implementations to choose from, including variations
of unbounded, bounded, and priority mailboxes. You can also create your own
mailbox type.

• Akka does not let actors scan their mailbox for specific messages.

• When an actor terminates (intentionally or unintentionally), messages in its mail‐
box go into the system’s “dead letter mailbox.”

Hopefully these notes about the general Actor model, and the Akka implementation
specifically, will be helpful in understanding the recipes in this chapter.

Other Features
Scala offers other conveniences for writing code that performs operations in parallel. A
future can be used for simple, “one off ” tasks that require concurrency. The Scala
collections library also includes special parallel collections, which can be used to improve
the performance of large collections and certain algorithms.

Introduction | 413

There are interesting debates about what the terms concurrency and
parallelism mean. I tend to use them interchangeably, but for one
interesting discussion of their differences—such as concurrency be‐
ing one vending machine with two lines, and parallelism being two
vending machines and two lines—see this blog post.

13.1. Getting Started with a Simple Actor

Problem
You want to begin using actors to build concurrency into your applications.

Solution
Create an actor by extending the akka.actor.Actor class and writing a receive method
in your class. The receive method should be implemented with a case statement that
allows the actor to respond to the different messages it receives.

To demonstrate this, create an SBT project directory named HelloAkka, move into that
directory, and then add the necessary Akka resolver and dependency information to
your build.sbt file:

name := "Hello Test #1"

version := "1.0"

scalaVersion := "2.10.0"

resolvers += "Typesafe Repository" at ↵

 "http://repo.typesafe.com/typesafe/releases/"

libraryDependencies += "com.typesafe.akka" %% "akka-actor" % "2.1.2"

At the time of this writing, the Akka actor library is being migrated
into the Scala distribution, but it’s still necessary to include the li‐
brary as a dependency in your SBT build.sbt file (or download the
necessary JAR files manually). This may change in the future, in which
case the dependencies shown in this chapter may not be necessary.

Next, define an actor that responds when it receives the String literal hello as a mes‐
sage. To do this, save the following source code to a file named Hello.scala in the root

directory of your SBT project. Notice how the literal hello is used in the first case
statement in the receive method of the HelloActor class:

414 | Chapter 13: Actors and Concurrency

http://bit.ly/12u8azO

import akka.actor.Actor

import akka.actor.ActorSystem

import akka.actor.Props

class HelloActor extends Actor {

 def receive = {

 case "hello" => println("hello back at you")

 case _ => println("huh?")

 }

}

object Main extends App {

 // an actor needs an ActorSystem

 val system = ActorSystem("HelloSystem")

 // create and start the actor

 val helloActor = system.actorOf(Props[HelloActor], name = "helloactor")

 // send the actor two messages

 helloActor ! "hello"

 helloActor ! "buenos dias"

 // shut down the system

 system.shutdown

}

Then run the application like this:

$ sbt run

After SBT downloads the Akka JAR files and their dependencies, you should see the
following output from the println statements in the HelloActor class:

[info] Running Main

hello back at you

huh?

Discussion
Here’s a step-by-step description of the code:

• The import statements import the members that are needed.

• An Actor named HelloActor is defined.

• HelloActor’s behavior is implemented by defining a receive method, which is
implemented using a match expression.

• When HelloActor receives the String literal hello as a message, it prints the first
reply, and when it receives any other type of message, it prints the second reply.

• The Main object is created to test the actor.

13.1. Getting Started with a Simple Actor | 415

• In Main, an ActorSystem is needed to get things started, so one is created. The
ActorSystem takes a name as an argument, so give the system a meaningful name.
The name must consist of only the [a-zA-Z0-9] characters, and zero or more hy‐
phens, and a hyphen can’t be used in the leading space.

• Actors can be created at the ActorSystem level, or inside other actors. At the
ActorSystem level, actor instances are created with the system.actorOf method.
The helloActor line shows the syntax to create an Actor with a constructor that
takes no arguments.

• Actors are automatically started (asynchronously) when they are created, so there’s
no need to call any sort of “start” or “run” method.

• Messages are sent to actors with the ! method, and Main sends two messages to the
actor with the ! method: hello and buenos dias.

• helloActor responds to the messages by executing its println statements.

• The ActorSystem is shut down.

That’s all you need to create and use your first Akka Actor.

Details

When implementing the behavior of an Akka actor, you should define a receive method
using a match expression, as shown in the example. Your method should handle all
potential messages that can be sent to the actor; otherwise, an UnhandledMessage will
be published to the ActorSystem’s EventStream. As a practical matter, this means having
the catch-all case _ line in your match expression.

In this example, messages were sent to the HelloActor class as String literals, but other
recipes will show how to send messages to actors using other types. Messages should
be immutable, so for simple examples, a String works well.

ActorSystem

The API documentation describes an ActorSystem like this:

“An actor system is a hierarchical group of actors which share common configuration,
e.g. dispatchers, deployments, remote capabilities and addresses. It is also the entry point
for creating or looking up actors.”

An ActorSystem is the structure that allocates one or more threads for your application,
so you typically create one ActorSystem per (logical) application.

As an example, I wrote a “speech interaction” application named SARAH that lets me
interact with a Mac OS X computer using only voice commands. Besides allowing in‐
teractive commands, SARAH also runs background tasks to check my email, notify me
of Facebook and Twitter events, stock prices, etc.

416 | Chapter 13: Actors and Concurrency

SARAH uses a plug-in architecture, so there are plug-ins for each major area of func‐
tionality (such as an email plug-in, Facebook plug-in, Twitter plug-in, etc.). A plug-in
typically has one parent actor that delegates work to child actors as necessary. All of
these plug-ins run under one ActorSystem. When SARAH starts, it starts the
ActorSystem using the same method shown in the Solution. Once started, it creates
three main actors named brain, ears, and mouth, and then starts its plug-ins.

As an interesting experiment with the ActorSystem, remove the system.shutdown line
at the end of the Main object. You’ll see that the application doesn’t terminate, because
the actors and system are still running. (Press Control-C to terminate the application.)

ActorRef

When you call the actorOf method on an ActorSystem, it starts the actor asynchro‐
nously and returns an instance of an ActorRef. This reference is a “handle” to the actor,
which you can think of as being a façade or broker between you and the actual actor.
This façade keeps you from doing things that would break the Actor model, such as
reaching into the Actor instance and attempting to directly mutate variables. Tasks like
this should only be done by passing messages to the actor, and the hands-off approach
of an ActorRef helps reinforce proper programming practices.

(Again, think of an actor as a person you can only communicate with by placing mes‐
sages in his mailbox.)

The Akka documentation states that an ActorRef has these qualities:

• It is immutable.

• It has a one-to-one relationship with the Actor it represents.

• It is serializable and network-aware. This lets you pass the ActorRef around the
network.

See Also

• The introductory Akka actor documentation

• The ActorSystem class

• The ActorRef class

13.1. Getting Started with a Simple Actor | 417

http://bit.ly/14Wm54w
http://bit.ly/17iyzE7
http://bit.ly/1bFDp1q

13.2. Creating an Actor Whose Class Constructor Requires
Arguments

Problem
You want to create an Akka actor, and you want your actor’s constructor to have one or
more arguments.

Solution
Create the actor using the syntax shown here, where HelloActor takes one constructor
parameter:

val helloActor = system.actorOf(Props(new HelloActor("Fred")), ↵

name = "helloactor")

Discussion
When creating an actor whose constructor takes one or more arguments, you still use
the Props class to create the actor, but with a different syntax than when creating an
actor whose constructor takes no arguments.

The following code demonstrates the difference between creating an actor with a no-
args constructor and an actor that takes at least one constructor parameter:

// an actor with a no-args constructor

val helloActor = system.actorOf(Props[HelloActor], name = "helloactor")

// an actor whose constructor takes one argument

val helloActor = system.actorOf(Props(new HelloActor("Fred")), ↵

name = "helloactor")

To demonstrate these differences, the following source code is a modified version of the
example in Recipe 13.1. Comments are included in the code to highlight the changes:

import akka.actor._

// (1) constructor changed to take a parameter

class HelloActor(myName: String) extends Actor {

 def receive = {

 // (2) println statements changed to show the name

 case "hello" => println(s"hello from $myName")

 case _ => println(s"'huh?', said $myName")

 }

}

object Main extends App {

 val system = ActorSystem("HelloSystem")

 // (3) use a different version of the Props constructor

418 | Chapter 13: Actors and Concurrency

 val helloActor = system.actorOf(

 Props(new HelloActor("Fred")), name = "helloactor")

 helloActor ! "hello"

 helloActor ! "buenos dias"

 system.shutdown

}

As shown in this example, if your actor takes more than one argument, include those
arguments in the constructor call. If the HelloActor constructor required both a first
and last name, you’d specify them like this:

Props(new HelloActor("John", "Doe")), name = "helloactor")

Remember that an actor instance is instantiated and started when the actorOf method
is called, so the only ways to set a property in an actor instance are:

• By sending the actor a message

• In the actor’s constructor

• In its preStart method

You’ve already seen how to send a message to an actor and use its constructor. The
preStart method is demonstrated in Recipe 13.4, “Understanding the Methods in the
Akka Actor Lifecycle”.

See Also

The Props class

13.3. How to Communicate Between Actors

Problem
You’re building an actor-based application and want to send messages between actors.

Solution
Actors should be sent immutable messages with the ! method.

When an actor receives a message from another actor, it also receives an implicit ref‐
erence named sender, and it can use that reference to send a message back to the orig‐
inating actor.

The general syntax to send a message to an actor is:

actorInstance ! message

13.3. How to Communicate Between Actors | 419

http://bit.ly/1aq25JW

For example, if you have an actor instance named car, you can send it a start message
like this:

car ! "start"

In this case, the message is the String literal start. The car actor should receive this
message in a match expression in its receive method, and from there it can send a
message back to whoever sent the start message. A simplified version of a receive
method for car might look like this:

def receive = {

 case "start" =>

 val result = tryToStart()

 sender ! result

 case _ => // do nothing

}

As mentioned, the sender instance is implicitly made available to your actor. If you just
want to send a message back to the code that sent you a message, that’s all you have to
do.

Discussion
To demonstrate a more complicated example of actors communicating, the following
code shows how to send messages back and forth between Akka actors. It was inspired
by the “Ping Pong” threading example in the book by James Gosling et al., The Java
Programming Language (Addison-Wesley Professional):

import akka.actor._

case object PingMessage

case object PongMessage

case object StartMessage

case object StopMessage

class Ping(pong: ActorRef) extends Actor {

 var count = 0

 def incrementAndPrint { count += 1; println("ping") }

 def receive = {

 case StartMessage =>

 incrementAndPrint

 pong ! PingMessage

 case PongMessage =>

 incrementAndPrint

 if (count > 99) {

 sender ! StopMessage

 println("ping stopped")

 context.stop(self)

 } else {

 sender ! PingMessage

420 | Chapter 13: Actors and Concurrency

 }

 case _ => println("Ping got something unexpected.")

 }

}

class Pong extends Actor {

 def receive = {

 case PingMessage =>

 println(" pong")

 sender ! PongMessage

 case StopMessage =>

 println("pong stopped")

 context.stop(self)

 case _ => println("Pong got something unexpected.")

 }

}

object PingPongTest extends App {

 val system = ActorSystem("PingPongSystem")

 val pong = system.actorOf(Props[Pong], name = "pong")

 val ping = system.actorOf(Props(new Ping(pong)), name = "ping")

 // start the action

 ping ! StartMessage

 // commented-out so you can see all the output

 //system.shutdown

}

Actors should communicate by sending immutable messages between each other. In
this case there are four messages, and they’re defined using case objects: PingMessage,
PongMessage, StartMessage, and StopMessage.

The PingPongTest object performs the following work:

1. Creates an ActorSystem.

2. Creates pong, an instance of the Pong actor. (The pong object is actually an instance
of ActorRef, though I loosely refer to it as an actor, or actor instance.) The Pong
actor constructor does not require any arguments, so the noargs Props syntax is
used.

3. Creates ping, an instance of the Ping actor. The Ping actor constructor takes one
argument, an ActorRef, so a slightly different version of the Props syntax is used.

4. Starts the ping/pong action by sending a StartMessage to the ping actor.

Once ping receives the StartMessage, the actors send messages back and forth between
each other as fast as they can until the counter limit in ping is reached. Messages are
sent using the usual ! method.

13.3. How to Communicate Between Actors | 421

To get things started, the Ping class needs an initial reference to the Pong actor, but once
the action starts, the two actors just send a PingMessage and PongMessage to each other
using the sender references they implicitly receive, until the Ping actor count limit is
reached. At that time, it sends a StopMessage to the Pong actor, and then both actors
call their context.stop methods. The context object is implicitly available to all actors,
and can be used to stop actors, among other uses.

In addition to demonstrating how to communicate between actors using immutable
messages, this example provides several examples of an ActorRef. The ping and pong
instances are ActorRef instances, as is the sender variable.

A great thing about an ActorRef is that it hides the actor instance from you. For instance,
the Pong actor can’t directly execute ping.incrementAndPrint; the two actors can only
send messages between each other. Although this seems limiting at first, once you un‐
derstand the model, you’ll see that it’s a terrific way to safely implement concurrency in
your applications.

Messages can also be sent between actors using the ? or ask meth‐
ods, but those should be used only rarely. See Recipe 13.10, “Sending
a Message to an Actor and Waiting for a Reply” for examples of those
methods.

13.4. Understanding the Methods in the Akka Actor
Lifecycle

Problem
You’re creating more complicated actors, and need to understand when the methods
on an Actor are called.

Solution
In addition to its constructor, an Actor has the following lifecycle methods:

• receive

• preStart

• postStop

• preRestart

• postRestart

422 | Chapter 13: Actors and Concurrency

To demonstrate when these methods are called, basic implementations of these methods
have been created in the Kenny actor of the following example:

import akka.actor._

class Kenny extends Actor {

 println("entered the Kenny constructor")

 override def preStart { println("kenny: preStart") }

 override def postStop { println("kenny: postStop") }

 override def preRestart(reason: Throwable, message: Option[Any]) {

 println("kenny: preRestart")

 println(s" MESSAGE: ${message.getOrElse("")}")

 println(s" REASON: ${reason.getMessage}")

 super.preRestart(reason, message)

 }

 override def postRestart(reason: Throwable) {

 println("kenny: postRestart")

 println(s" REASON: ${reason.getMessage}")

 super.postRestart(reason)

 }

 def receive = {

 case ForceRestart => throw new Exception("Boom!")

 case _ => println("Kenny received a message")

 }

}

case object ForceRestart

object LifecycleDemo extends App {

 val system = ActorSystem("LifecycleDemo")

 val kenny = system.actorOf(Props[Kenny], name = "Kenny")

 println("sending kenny a simple String message")

 kenny ! "hello"

 Thread.sleep(1000)

 println("make kenny restart")

 kenny ! ForceRestart

 Thread.sleep(1000)

 println("stopping kenny")

 system.stop(kenny)

 println("shutting down system")

 system.shutdown

}

The output from this program shows when the lifecycle methods are invoked:

[info] Running LifecycleDemo

sending kenny a simple String message

entered the Kenny constructor

kenny: preStart

13.4. Understanding the Methods in the Akka Actor Lifecycle | 423

Kenny received a message

make kenny restart

[ERROR] [05/14/2013 10:21:54.953] [LifecycleDemo-akka.actor.default-dispatcher-4]

[akka://LifecycleDemo/user/Kenny] Boom!

java.lang.Exception: Boom!

 at Kenny$$anonfun$receive$1.applyOrElse(Test.scala:19)

 (many more lines of exception output ...)

kenny: preRestart

 MESSAGE: ForceRestart

 REASON: Boom!

kenny: postStop

entered the Kenny constructor

kenny: postRestart

 REASON: Boom!

kenny: preStart

stopping kenny

shutting down system

kenny: postStop

[success]

Discussion
As shown in the println statement at the beginning of the Kenny actor, the body of an
Akka Actor is a part of the constructor, just like any regular Scala class. Along with an
actor’s constructor, the pre* and post* methods can be used to initialize and close
resources that your actor requires.

Notice that preRestart and postRestart call the super versions of their methods. This
is because the default implementation of postRestart calls preRestart, and I want that
default behavior in this application.

Table 13-1 provides a description of each lifecycle method, including an actor’s
constructor.

Table 13-1. Akka actor lifecycle methods

Method Description

The actor’s

constructor

An actor’s constructor is called just like any other Scala class constructor, when an instance of the class

is first created.

preStart Called right after the actor is started. During restarts it’s called by the default implementation of

postRestart.

postStop Called after an actor is stopped, it can be used to perform any needed cleanup work. According to the

Akka documentation, this hook “is guaranteed to run after message queuing has been disabled for this

actor.”

preRestart According to the Akka documentation, when an actor is restarted, the old actor is informed of the process

when preRestart is called with the exception that caused the restart, and the message that triggered

the exception. The message may be None if the restart was not caused by processing a message.

424 | Chapter 13: Actors and Concurrency

Method Description

postRestart The postRestart method of the new actor is invoked with the exception that caused the restart. In

the default implementation, the preStart method is called.

See Also

The Akka actors documentation

13.5. Starting an Actor

Problem
You want to start an Akka actor, or attempt to control the start of an actor.

Solution
This is a bit of a tricky problem, because Akka actors are started asynchronously when
they’re passed into the actorOf method using a Props. At the ActorSystem level of your
application, you create actors by calling the system.actorOf method. Within an actor,
you create a child actor by calling the context.actorOf method.

As demonstrated in Recipe 13.1, you can create an actor at the ActorSystem level by
passing your actor class name (such as HelloActor) to the system.actorOf method,
using the Props case class:

val system = ActorSystem("HelloSystem")

// the actor is created and started here

val helloActor = system.actorOf(Props[HelloActor], name = "helloactor")

helloActor ! "hello"

The process of creating a child actor from within another actor is almost identical. The
only difference is that you call the actorOf method on the context object instead of on
an ActorSystem instance. The context object is implicitly available to your actor in‐
stance:

class Parent extends Actor {

 val child = context.actorOf(Props[Child], name = "Child")

 // more code here ...

}

Discussion
The following complete example demonstrates how to create actors both at the system
level and from within another actor:

13.5. Starting an Actor | 425

http://bit.ly/14Wm54w

package actortests.parentchild

import akka.actor._

case class CreateChild (name: String)

case class Name (name: String)

class Child extends Actor {

 var name = "No name"

 override def postStop {

 println(s"D'oh! They killed me ($name): ${self.path}")

 }

 def receive = {

 case Name(name) => this.name = name

 case _ => println(s"Child $name got message")

 }

}

class Parent extends Actor {

 def receive = {

 case CreateChild(name) =>

 // Parent creates a new Child here

 println(s"Parent about to create Child ($name) ...")

 val child = context.actorOf(Props[Child], name = s"$name")

 child ! Name(name)

 case _ => println(s"Parent got some other message.")

 }

}

object ParentChildDemo extends App {

 val actorSystem = ActorSystem("ParentChildTest")

 val parent = actorSystem.actorOf(Props[Parent], name = "Parent")

 // send messages to Parent to create to child actors

 parent ! CreateChild("Jonathan")

 parent ! CreateChild("Jordan")

 Thread.sleep(500)

 // lookup Jonathan, then kill it

 println("Sending Jonathan a PoisonPill ...")

 val jonathan = actorSystem.actorSelection("/user/Parent/Jonathan")

 jonathan ! PoisonPill

 println("jonathan was killed")

 Thread.sleep(5000)

 actorSystem.shutdown

}

Here’s a brief description of that code:

426 | Chapter 13: Actors and Concurrency

• At the beginning of the code, the CreateChild and Name case classes are created.
They’ll be used to send messages to the actors.

• The Child actor has a receive method that can handle a Name message. It uses that
message to set its name field.

• The receive method of the Parent actor can handle a CreateChild message. When
it receives that message, it creates a new Child actor with the given name. Notice
that it calls context.actorOf to do this.

• The ParentChildDemo object creates a new ActorSystem, and then creates the
Parent actor using the ActorSystem reference. It then sends two CreateChild
messages to the parent actor reference. After a brief pause, it looks up the Child
actor named Jonathan, and then sends it a PoisonPill message. After another
pause, it shuts down the system using the ActorSystem reference.

Although it isn’t required, in this case, the child actor instance is created in the con‐
structor of the Parent actor. The Child actor could have been created when the Parent
actor received a message, so in a sense, that gives you a way to control when an actor
instance is created.

13.6. Stopping Actors

Problem
You want to stop one or more running Akka actors.

Solution
There are several ways to stop Akka actors. The most common ways are to call
system.stop(actorRef) at the ActorSystem level or context.stop(actorRef) from
inside an actor.

There are other ways to stop an actor:

• Send the actor a PoisonPill message.

• Program a gracefulStop.

To demonstrate these alternatives, at the ActorSystem level you can stop an actor by
using the ActorSystem instance:

actorSystem.stop(anActor)

Within an actor, you can stop a child actor by using the context reference:

context.stop(childActor)

13.6. Stopping Actors | 427

An actor can also stop itself:

context.stop(self)

You can stop an actor by sending it a PoisonPill message:

actor ! PoisonPill

The gracefulStop is a little more complicated and involves the use of a future. See the
Discussion for a complete example.

Discussion
Table 13-2 provides a summary of the methods that you can use to stop an actor.

Table 13-2. Ways to stop actors

Message Description

stop method The actor will continue to process its current message (if any), but no additional messages will be

processed. See additional notes in the paragraphs that follow.

PoisonPill message A PoisonPill message will stop an actor when the message is processed. A PoisonPill

message is queued just like an ordinary message and will be handled after other messages queued

ahead of it in its mailbox.

gracefulStop method Lets you attempt to terminate actors gracefully, waiting for them to timeout. The documentation

states that this is a good way to terminate actors in a specific order.

As noted in Table 13-2, a major difference between calling the stop method on an actor
and sending it a PoisonPill message is in how the actor is stopped. The stop method
lets the actor finish processing the current message in its mailbox (if any), and then stops
it. The PoisonPill message lets the actors process all messages that are in the mailbox
ahead of it before stopping it.

Calling actorSystem.stop(actor) and context.stop(actor) are the most common
ways to stop an actor. The following notes on this process are from the official Akka
actor documentation:

• Termination of an actor is performed asynchronously; the stop method may return
before the actor is actually stopped.

• The actor will continue to process its current message, but no additional messages
will be processed.

• An actor terminates in two steps. First, it suspends its mailbox and sends a stop
message to all of its children. Then it processes termination messages from its chil‐
dren until they’re all gone, at which point it terminates itself. If one of the actors
doesn’t respond (because it’s blocking, for instance), the process has to wait for that
actor and may get stuck.

428 | Chapter 13: Actors and Concurrency

http://bit.ly/15CoDUk
http://bit.ly/15CoDUk

• When additional messages aren’t processed, they’re sent to the deadLetters actor
of the ActorSystem (though this can vary depending on the mailbox implementa‐
tion). You can access these with the deadLetters method on an ActorSystem.

• As shown in the following examples, the postStop lifecycle method is invoked when
an actor is fully stopped, which lets you clean up resources, as needed.

The following subsections demonstrate examples of each of these approaches.

system.stop and context.stop

This is a complete example that shows how to stop an actor by using the stop method
of an ActorSystem:

package actortests

import akka.actor._

class TestActor extends Actor {

 def receive = {

 case _ => println("a message was received")

 }

}

object SystemStopExample extends App {

 val actorSystem = ActorSystem("SystemStopExample")

 val actor = actorSystem.actorOf(Props[TestActor], name = "test")

 actor ! "hello"

 // stop our actor

 actorSystem.stop(actor)

 actorSystem.shutdown

}

As mentioned, using context.stop(actorRef) is similar to using actor-
System.stop(actorRef); just use context.stop(actorRef) from within an actor. The
context variable is implicitly available inside an Actor. This is demonstrated in
Recipe 13.5, “Starting an Actor”.

PoisonPill message

You can also stop an actor by sending it a PoisonPill message. This message will stop
the actor when the message is processed. The message is queued in the mailbox like an
ordinary message.

Here is a PoisonPill example:

package actortests

import akka.actor._

class TestActor extends Actor {

13.6. Stopping Actors | 429

 def receive = {

 case s:String => println("Message Received: " + s)

 case _ => println("TestActor got an unknown message")

 }

 override def postStop { println("TestActor::postStop called") }

}

object PoisonPillTest extends App {

 val system = ActorSystem("PoisonPillTest")

 val actor = system.actorOf(Props[TestActor], name = "test")

 // a simple message

 actor ! "before PoisonPill"

 // the PoisonPill

 actor ! PoisonPill

 // these messages will not be processed

 actor ! "after PoisonPill"

 actor ! "hello?!"

 system.shutdown

}

As shown in the comments, the second String message sent to the actor won’t be re‐
ceived or processed by the actor because it will be in the mailbox after the
PoisonPill. The only output from running this program will be:

Message Received: before PoisonPill

TestActor::postStop called

gracefulStop

As its name implies, you can use the gracefulStop approach if you want to wait for a
period of time for the termination process to complete gracefully. The following code
shows a complete example of the gracefulStop approach:

package actortests.gracefulstop

import akka.actor._

import akka.pattern.gracefulStop

import scala.concurrent.{Await, ExecutionContext, Future}

import scala.concurrent.duration._

import scala.language.postfixOps

class TestActor extends Actor {

 def receive = {

 case _ => println("TestActor got message")

 }

 override def postStop { println("TestActor: postStop") }

}

430 | Chapter 13: Actors and Concurrency

object GracefulStopTest extends App {

 val system = ActorSystem("GracefulStopTest")

 val testActor = system.actorOf(Props[TestActor], name = "TestActor")

 // try to stop the actor gracefully

 try {

 val stopped: Future[Boolean] = gracefulStop(testActor, 2 seconds)(system)

 Await.result(stopped, 3 seconds)

 println("testActor was stopped")

 } catch {

 case e:Exception => e.printStackTrace

 } finally {

 system.shutdown

 }

}

Per the Scaladoc, gracefulStop(actorRef, timeout) “Returns a Future that will be
completed with success when existing messages of the target actor has [sic] been pro‐
cessed and the actor has been terminated.” If the actor isn’t terminated within the time‐
out, the Future results in an ActorTimeoutException. To keep this example simple, I
use Await.result, so the time period it waits for should be just slightly longer than the
timeout value given to gracefulStop.

If the order in which actors are terminated is important, using gracefulStop can be a
good way to attempt to terminate them in a desired order. The “Akka 2 Terminator”
example referenced in the See Also section demonstrates a nice technique for killing
child actors in a specific order using gracefulStop and flatMap.

“Killing” an actor

As you dig deeper into Akka actors, you’ll get into a concept called “supervisor strate‐
gies.” When you implement a supervisor strategy, you can send an actor a Kill message,
which can actually be used to restart the actor. The Akka documentation states that
sending a Kill message to an actor, “will restart the actor through regular supervisor
semantics.”

With the default supervisory strategy, the Kill message does what its name states, ter‐
minating the target actor. The following example shows the semantics for sending a
Kill message to an actor:

package actortests

import akka.actor._

class Number5 extends Actor {

 def receive = {

 case _ => println("Number5 got a message")

 }

 override def preStart { println("Number5 is alive") }

13.6. Stopping Actors | 431

http://bit.ly/10YksCP
http://bit.ly/10YksCP

 override def postStop { println("Number5::postStop called") }

 override def preRestart(reason: Throwable, message: Option[Any]) {

 println("Number5::preRestart called")

 }

 override def postRestart(reason: Throwable) {

 println("Number5::postRestart called")

 }

}

object KillTest extends App {

 val system = ActorSystem("KillTestSystem")

 val number5 = system.actorOf(Props[Number5], name = "Number5")

 number5 ! "hello"

 // send the Kill message

 number5 ! Kill

 system.shutdown

}

Running this code results in the following output:

Number5 is alive

Number5 got a message

[ERROR] [16:57:02.220] [KillTestSystem-akka.actor.default-dispatcher-2]

[akka://KillTestSystem/user/Number5] Kill (akka.actor.ActorKilledException)

Number5::postStop called

This code demonstrates the Kill message so you can see an example of it. In general,
this approach is used to kill an actor to allow its supervisor to restart it. If you want to
stop an actor, use one of the other approaches described in this recipe.

See Also

• The “Akka 2 Terminator” example.

• This Google Groups thread discusses how a Kill message is turned into an excep‐
tion that is handled in the default supervision strategy so it doesn’t restart the actor.

• The Akka actors documentation provides more examples of these approaches.

• The gracefulStop method is described on this Scaladoc page.

13.7. Shutting Down the Akka Actor System

Problem
You want to shut down the Akka actor system, typically because your application is
finished, and you want to shut it down gracefully.

432 | Chapter 13: Actors and Concurrency

http://bit.ly/10YksCP
http://goo.gl/F3mIP
http://bit.ly/14Wm54w
http://bit.ly/149s744

Solution
Call the shutdown method on your ActorSystem instance:

object Main extends App {

 // create the ActorSystem

 val system = ActorSystem("HelloSystem")

 // put your actors to work here ...

 // shut down the ActorSystem when the work is finished

 system.shutdown

}

Discussion
When you’re finished using actors in your application, you should call the shutdown
method on your ActorSystem instance. As shown in the examples in this chapter, if you
comment out the system.shutdown call, your application will continue to run
indefinitely.

In my SARAH application, which is a Swing application, I call actorSystem.shutdown
when the user shuts down the GUI.

If you want to stop your actors before shutting down the actor system, such as to let
them complete their current work, see the examples in Recipe 13.6, “Stopping Actors”.

13.8. Monitoring the Death of an Actor with watch

Problem
You want an actor to be notified when another actor dies.

Solution
Use the watch method of an actor’s context object to declare that the actor should be
notified when an actor it’s monitoring is stopped.

In the following code snippet, the Parent actor creates an actor instance named
kenny, and then declares that it wants to “watch” kenny:

class Parent extends Actor {

 val kenny = context.actorOf(Props[Kenny], name = "Kenny")

 context.watch(kenny)

 // more code here ...

(Technically, kenny is an ActorRef instance, but it’s simpler to say “actor.”)

13.8. Monitoring the Death of an Actor with watch | 433

http://alvinalexander.com/sarah

If kenny is killed or stopped, the Parent actor is sent a Terminated(kenny) message.
This complete example demonstrates the approach:

package actortests.deathwatch

import akka.actor._

class Kenny extends Actor {

 def receive = {

 case _ => println("Kenny received a message")

 }

}

class Parent extends Actor {

 // start Kenny as a child, then keep an eye on it

 val kenny = context.actorOf(Props[Kenny], name = "Kenny")

 context.watch(kenny)

 def receive = {

 case Terminated(kenny) => println("OMG, they killed Kenny")

 case _ => println("Parent received a message")

 }

}

object DeathWatchTest extends App {

 // create the ActorSystem instance

 val system = ActorSystem("DeathWatchTest")

 // create the Parent that will create Kenny

 val parent = system.actorOf(Props[Parent], name = "Parent")

 // lookup kenny, then kill it

 val kenny = system.actorSelection("/user/Parent/Kenny")

 kenny ! PoisonPill

 Thread.sleep(5000)

 println("calling system.shutdown")

 system.shutdown

}

When this code is run, the following output is printed:

OMG, they killed Kenny

calling system.shutdown

Discussion
Using the watch method lets an actor be notified when another actor is stopped (such
as with the PoisonPill message), or if it’s killed with a Kill message or
gracefulStop. This can let the watching actor handle the situation, as desired.

434 | Chapter 13: Actors and Concurrency

An important thing to understand is that if the Kenny actor throws an exception, this
doesn’t kill it. Instead it will be restarted. You can confirm this by changing the Kenny
actor code to this:

case object Explode

class Kenny extends Actor {

 def receive = {

 case Explode => throw new Exception("Boom!")

 case _ => println("Kenny received a message")

 }

 override def preStart { println("kenny: preStart") }

 override def postStop { println("kenny: postStop") }

 override def preRestart(reason: Throwable, message: Option[Any]) {

 println("kenny: preRestart")

 super.preRestart(reason, message)

 }

 override def postRestart(reason: Throwable) {

 println("kenny: postRestart")

 super.postRestart(reason)

 }

}

Also, change this line of code in the DeathWatchTest object:

kenny ! PoisonPill

to this:

kenny ! Explode

When you run this code, in addition to the error messages that are printed because of
the exception, you’ll also see this output:

kenny: preRestart

kenny: postStop

kenny: postRestart

kenny: preStart

calling system.shutdown

kenny: postStop

What you won’t see is the “OMG, they killed Kenny” message from the Parent actor,
because the exception didn’t kill kenny, it just forced kenny to be automatically restarted.
You can verify that kenny is restarted after it receives the explode message by sending
it another message:

kenny ! "Hello?"

It will respond by printing the “Kenny received a message” string in the default _ case
of its receive method.

Looking up actors

This example also showed one way to look up an actor:

13.8. Monitoring the Death of an Actor with watch | 435

val kenny = system.actorSelection("/user/Parent/Kenny")

As shown, you look up actors with the actorSelection method, and can specify a full
path to the actor in the manner shown. The actorSelection method is available on an
ActorSystem instance and on the context object in an Actor instance.

You can also look up actors using a relative path. If kenny had a sibling actor, it could
have looked up kenny using its own context, like this:

// in a sibling actor

val kenny = context.actorSelection("../Kenny")

You can also use various implementations of the actorFor method to look up actors.
The kenny instance could be looked up from the DeathWatchTest object in these ways:

val kenny = system.actorFor("akka://DeathWatchTest/user/Parent/Kenny")

val kenny = system.actorFor(Seq("user", "Parent", "Kenny"))

It could also be looked up from a sibling like this:

val kenny = system.actorFor(Seq("..", "Kenny"))

13.9. Simple Concurrency with Futures

Problem
You want a simple way to run one or more tasks concurrently, including a way to handle
their results when the tasks finish. For instance, you may want to make several web
service calls in parallel, and then work with their results after they all return.

Solution
A future gives you a simple way to run an algorithm concurrently. A future starts running
concurrently when you create it and returns a result at some point, well, in the future.
In Scala,it’s said that a future returns eventually.

The following examples show a variety of ways to create futures and work with their
eventual results.

Run one task, but block

This first example shows how to create a future and then block to wait for its result.
Blocking is not a good thing—you should block only if you really have to—but this is
useful as a first example, in part, because it’s a little easier to reason about, and it also
gets the bad stuff out of the way early.

The following code performs the calculation 1 + 1 at some time in the future. When
it’s finished with the calculation, it returns its result:

436 | Chapter 13: Actors and Concurrency

package actors

// 1 - the imports

import scala.concurrent.{Await, Future}

import scala.concurrent.duration._

import scala.concurrent.ExecutionContext.Implicits.global

object Futures1 extends App {

 // used by 'time' method

 implicit val baseTime = System.currentTimeMillis

 // 2 - create a Future

 val f = Future {

 sleep(500)

 1 + 1

 }

 // 3 - this is blocking (blocking is bad)

 val result = Await.result(f, 1 second)

 println(result)

 sleep(1000)

}

Here’s how this code works:

• The import statements bring the code into scope that’s needed.

• The ExecutionContext.Implicits.global import statement imports the “default
global execution context.” You can think of an execution context as being a thread
pool, and this is a simple way to get access to a thread pool.

• A Future is created after the second comment. Creating a future is simple; you just
pass it a block of code you want to run. This is the code that will be executed at
some point in the future.

• The Await.result method call declares that it will wait for up to one second for
the Future to return. If the Future doesn’t return within that time, it throws a
java.util.concurrent.TimeoutException.

• The sleep statement at the end of the code is used so the program will keep running
while the Future is off being calculated. You won’t need this in real-world programs,
but in small example programs like this, you have to keep the JVM running.

I created the sleep method in my package object while creating my future and con‐
currency examples, and it just calls Thread.sleep, like this:

def sleep(time: Long) { Thread.sleep(time) }

As mentioned, blocking is bad; you shouldn’t write code like this unless you have to.
The following examples show better approaches.

13.9. Simple Concurrency with Futures | 437

The code also shows a time duration of 1 second. This is made available by the
scala.concurrent.duration._ import. With this library, you can state time durations in

several convenient ways, such as 100 nanos, 500 millis, 5 seconds, 1 minute,
1 hour, and 3 days. You can also create a duration as Duration(100, MILLISECONDS),
Duration(200, "millis").

Run one thing, but don’t block—use callback

A better approach to working with a future is to use its callback methods. There are
three callback methods: onComplete, onSuccess, and onFailure. The following exam‐
ple demonstrates onComplete:

import scala.concurrent.{Future}

import scala.concurrent.ExecutionContext.Implicits.global

import scala.util.{Failure, Success}

import scala.util.Random

object Example1 extends App {

 println("starting calculation ...")

 val f = Future {

 sleep(Random.nextInt(500))

 42

 }

 println("before onComplete")

 f.onComplete {

 case Success(value) => println(s"Got the callback, meaning = $value")

 case Failure(e) => e.printStackTrace

 }

 // do the rest of your work

 println("A ..."); sleep(100)

 println("B ..."); sleep(100)

 println("C ..."); sleep(100)

 println("D ..."); sleep(100)

 println("E ..."); sleep(100)

 println("F ..."); sleep(100)

 sleep(2000)

}

This example is similar to the previous example, though it just returns the number 42
after a random delay. The important part of this example is the f.onComplete method
call and the code that follows it. Here’s how that code works:

• The f.onComplete method call sets up the callback. Whenever the Future com‐
pletes, it makes a callback to onComplete, at which time that code will be executed.

• The Future will either return the desired result (42), or an exception.

438 | Chapter 13: Actors and Concurrency

• The println statements with the slight delays represent other work your code can
do while the Future is off and running.

Because the Future is off running concurrently somewhere, and you don’t know exactly
when the result will be computed, the output from this code is nondeterministic, but it
can look like this:

starting calculation ...

before onComplete

A ...

B ...

C ...

D ...

E ...

Got the callback, meaning = 42

F ...

Because the Future returns eventually, at some nondeterministic time, the “Got the
callback” message may appear anywhere in that output.

The onSuccess and onFailure callback methods

There may be times when you don’t want to use onComplete, and in those situations,
you can use the onSuccess and onFailure callback methods, as shown in this example:

import scala.concurrent.{Future}

import scala.concurrent.ExecutionContext.Implicits.global

import scala.util.{Failure, Success}

import scala.util.Random

object OnSuccessAndFailure extends App {

 val f = Future {

 sleep(Random.nextInt(500))

 if (Random.nextInt(500) > 250) throw new Exception("Yikes!") else 42

 }

 f onSuccess {

 case result => println(s"Success: $result")

 }

 f onFailure {

 case t => println(s"Exception: ${t.getMessage}")

 }

 // do the rest of your work

 println("A ..."); sleep(100)

 println("B ..."); sleep(100)

 println("C ..."); sleep(100)

 println("D ..."); sleep(100)

 println("E ..."); sleep(100)

 println("F ..."); sleep(100)

13.9. Simple Concurrency with Futures | 439

 sleep(2000)

}

This code is similar to the previous example, but this Future is wired to throw an ex‐
ception about half the time, and the onSuccess and onFailure blocks are defined as
partial functions; they only need to handle their expected conditions.

Creating a method to return a Future[T]

In the real world, you may have methods that return futures. The following example
defines a method named longRunningComputation that returns a Future[Int]. De‐
claring it is new, but the rest of this code is similar to the previous onComplete example:

import scala.concurrent.{Await, Future, future}

import scala.concurrent.ExecutionContext.Implicits.global

import scala.util.{Failure, Success}

object Futures2 extends App {

 implicit val baseTime = System.currentTimeMillis

 def longRunningComputation(i: Int): Future[Int] = future {

 sleep(100)

 i + 1

 }

 // this does not block

 longRunningComputation(11).onComplete {

 case Success(result) => println(s"result = $result")

 case Failure(e) => e.printStackTrace

 }

 // keep the jvm from shutting down

 sleep(1000)

}

The future method shown in this example is another way to create a future. It starts
the computation asynchronously and returns a Future[T] that will hold the result of
the computation. This is a common way to define methods that return a future.

Run multiple things; something depends on them; join them together

The examples so far have shown how to run one computation in parallel, to keep things
simple. You may occasionally do something like this, such as writing data to a database
without blocking the web server, but many times you’ll want to run several operations
concurrently, wait for them all to complete, and then do something with their combined
results.

440 | Chapter 13: Actors and Concurrency

For example, in a stock market application I wrote, I run all of my web service queries
in parallel, wait for their results, and then display a web page. This is faster than running
them sequentially.

The following example is a little simpler than that, but it shows how to call an algorithm
that may be running in the cloud. It makes three calls to Cloud.runAlgorithm, which
is defined elsewhere to return a Future[Int]. For the moment, this algorithm isn’t
important, other than to know that it prints its result right before returning it.

The code starts those three futures running, then joins them back together in the for
comprehension:

import scala.concurrent.{Future, future}

import scala.concurrent.ExecutionContext.Implicits.global

import scala.util.{Failure, Success}

import scala.util.Random

object RunningMultipleCalcs extends App {

 println("starting futures")

 val result1 = Cloud.runAlgorithm(10)

 val result2 = Cloud.runAlgorithm(20)

 val result3 = Cloud.runAlgorithm(30)

 println("before for-comprehension")

 val result = for {

 r1 <- result1

 r2 <- result2

 r3 <- result3

 } yield (r1 + r2 + r3)

 println("before onSuccess")

 result onSuccess {

 case result => println(s"total = $result")

 }

 println("before sleep at the end")

 sleep(2000) // keep the jvm alive

}

Here’s a brief description of how this code works:

• The three calls to Cloud.runAlgorithm create the result1, result2, and result3
variables, which are of type Future[Int].

• When those lines are executed, those futures begin running, just like the web service
calls in my stock market application.

• The for comprehension is used as a way to join the results back together. When all
three futures return, their Int values are assigned to the variables r1, r2, and r3,

13.9. Simple Concurrency with Futures | 441

and the sum of those three values is returned from the yield expression, and assigned
to the result variable.

• Notice that result can’t just be printed after the for comprehension. That’s because
the for comprehension returns a new future, so result has the type Future[Int].
(This makes sense in more complicated examples.) Therefore, the correct way to
print the example is with the onSuccess method call, as shown.

When this code is run, the output is nondeterministic, but looks something like this:

starting futures

before for-comprehension

before onSuccess

before sleep at end

returning result from cloud: 30

returning result from cloud: 20

returning result from cloud: 40

total = 90

Notice how all of the println statements in the code print before the total is printed.
That’s because they’re running in sequential fashion, while the future is off and running
in parallel, and returns at some indeterminate time (“eventually”).

I mentioned earlier that the Cloud.runAlgorithm code wasn’t important—it was just
something running “in the cloud,”—but for the sake of completeness, here’s that code:

object Cloud {

 def runAlgorithm(i: Int): Future[Int] = future {

 sleep(Random.nextInt(500))

 val result = i + 10

 println(s"returning result from cloud: $result")

 result

 }

}

In my real-world code, I use a future in a similar way to get information from web
services. For example, in a Twitter client, I make multiple calls to the Twitter web service
API using futures:

// get the desired info from twitter

val dailyTrendsFuture = Future { getDailyTrends(twitter) }

val usFuture = Future { getLocationTrends(twitter, woeidUnitedStates) }

val worldFuture = Future { getLocationTrends(twitter, woeidWorld) }

I then join them in a for comprehension, as shown in this example. This is a nice, simple
way to turn single-threaded web service calls into multiple threads.

442 | Chapter 13: Actors and Concurrency

Discussion
Although using a future is straightforward, there are also many concepts behind it. The
following sections summarize the most important concepts.

A future and ExecutionContext

The following statements describe the basic concepts of a future, as well as the
ExecutionContext that a future relies on.

• A Future[T] is a container that runs a computation concurrently, and at some
future time may return either (a) a result of type T or (b) an exception.

• Computation of your algorithm starts at some nondeterministic time after the fu‐
ture is created, running on a thread assigned to it by the execution context.

• The result of the computation becomes available once the future completes.

• When it returns a result, a future is said to be completed. It may either be successfully
completed, or failed.

• As shown in the examples, a future provides an interface for reading the value that
has been computed. This includes callback methods and other approaches, such as
a for comprehension, map, flatMap, etc.

• An ExecutionContext executes a task it’s given. You can think of it as being like a
thread pool.

• The ExecutionContext.Implicits.global import statement shown in the exam‐
ples imports the default global execution context.

Callback methods

The following statements describe the use of the callback methods that can be used with
futures.

• Callback methods are called asynchronously when a future completes.

• The callback methods onComplete, onSuccess, onFailure, are demonstrated in the
Solution.

• A callback method is executed by some thread, some time after the future is com‐
pleted. From the Scala Futures documentation, “There is no guarantee that it will
be called by the thread that completed the future or the thread that created the
callback.”

• The order in which callbacks are executed is not guaranteed.

• onComplete takes a callback function of type Try[T] => U.

• onSuccess and onFailure take partial functions. You only need to handle the de‐
sired case. (See Recipe 9.8, “Creating Partial Functions” for more information on
partial functions.)

13.9. Simple Concurrency with Futures | 443

http://bit.ly/12STMkt

• onComplete, onSuccess, and onFailure have the result type Unit, so they can’t be
chained. This design was intentional, to avoid any suggestion that callbacks may be
executed in a particular order.

For comprehensions (combinators: map, flatMap, filter, foreach, recoverWith, fallbackTo,
andThen)

As shown in the Solution, callback methods are good for some purposes. But when you
need to run multiple computations in parallel, and join their results together when
they’re finished running, using combinators like map, foreach, and other approaches,
like a for comprehension, provides more concise and readable code. The for compre‐
hension was shown in the Solution.

The recover, recoverWith, and fallbackTo combinators provide ways of handling
failure with futures. If the future they’re applied to returns successfully, you get that
(desired) result, but if it fails, these methods do what their names suggest, giving you a
way to recover from the failure.

As a short example, you can use the fallbackTo method like this:

val meaning = calculateMeaningOfLife() fallbackTo 42

The andThen combinator gives you a nice syntax for running whatever code you want
to run when a future returns, like this:

var meaning = 0

future {

 meaning = calculateMeaningOfLife()

} andThen {

 println(s"meaning of life is $meaning")

}

See the Scala Futures documentation for more information on their use.

See Also

• The Scala Futures documentation

• These examples (and more) are available at my GitHub repository.

• As shown in these examples, you can read a result from a future, and a promise is
a way for some part of your software to put that result in there. I’ve linked to the
best article I can find.

444 | Chapter 13: Actors and Concurrency

http://bit.ly/12STMkt
http://bit.ly/12STMkt
https://github.com/alvinj/ScalaFutureExamples
http://bit.ly/18zUuI8

13.10. Sending a Message to an Actor and Waiting for a
Reply

Problem
You have one actor that needs to ask another actor for some information, and needs an
immediate reply. (The first actor can’t continue without the information from the second
actor.)

Solution
Use the ? or ask methods to send a message to an Akka actor and wait for a reply, as
demonstrated in the following example:

import akka.actor._

import akka.pattern.ask

import akka.util.Timeout

import scala.concurrent.{Await, ExecutionContext, Future}

import scala.concurrent.duration._

import scala.language.postfixOps

case object AskNameMessage

class TestActor extends Actor {

 def receive = {

 case AskNameMessage => // respond to the 'ask' request

 sender ! "Fred"

 case _ => println("that was unexpected")

 }

}

object AskTest extends App {

 // create the system and actor

 val system = ActorSystem("AskTestSystem")

 val myActor = system.actorOf(Props[TestActor], name = "myActor")

 // (1) this is one way to "ask" another actor for information

 implicit val timeout = Timeout(5 seconds)

 val future = myActor ? AskNameMessage

 val result = Await.result(future, timeout.duration).asInstanceOf[String]

 println(result)

13.10. Sending a Message to an Actor and Waiting for a Reply | 445

 // (2) a slightly different way to ask another actor for information

 val future2: Future[String] = ask(myActor, AskNameMessage).mapTo[String]

 val result2 = Await.result(future2, 1 second)

 println(result2)

 system.shutdown

}

Discussion
Both the ? or ask methods use the Future and Await.result approach demonstrated
in Recipe 13.9, “Simple Concurrency with Futures”. The recipe is:

1. Send a message to an actor using either ? or ask instead of the usual ! method.

2. The ? and ask methods create a Future, so you use Await.result to wait for the
response from the other actor.

3. The actor that’s called should send a reply back using the ! method, as shown in
the example, where the TestActor receives the AskNameMessage and returns an
answer using sender ! "Fred".

To keep the previous example simple, only one actor is shown, but the same approach
is used by two actors. Just use the ? or ask method in your actor, like this:

class FooActor extends Actor {

 def receive = {

 case GetName =>

 val future: Future[String] = ask(otherActor, AskNameMessage).mapTo↵

[String]

 val result = Await.result(future, 1 second)

 case _ => // handle other messages

 }

}

Be careful when writing code that waits for immediate responses like this. This causes
your actor to block, which means that it can’t respond to anything else while it’s in this
state. When you need to perform work like this, the mantra is, “Delegate, delegate,
delegate.”

13.11. Switching Between Different States with become

Problem
You want a simple mechanism to allow an actor to switch between the different states
it can be in at different times.

446 | Chapter 13: Actors and Concurrency

Solution
Use the Akka “become” approach. To do this, first define the different possible states
the actor can be in. Then, in the actor’s receive method, switch between the different
states based on the messages it receives.

The following example shows how the actor named DavidBanner might switch between
its normalState and its angryState (when he becomes The Hulk):

package actortests.becometest

import akka.actor._

case object ActNormalMessage

case object TryToFindSolution

case object BadGuysMakeMeAngry

class DavidBanner extends Actor {

 import context._

 def angryState: Receive = {

 case ActNormalMessage =>

 println("Phew, I'm back to being David.")

 become(normalState)

 }

 def normalState: Receive = {

 case TryToFindSolution =>

 println("Looking for solution to my problem ...")

 case BadGuysMakeMeAngry =>

 println("I'm getting angry...")

 become(angryState)

 }

 def receive = {

 case BadGuysMakeMeAngry => become(angryState)

 case ActNormalMessage => become(normalState)

 }

}

object BecomeHulkExample extends App {

 val system = ActorSystem("BecomeHulkExample")

 val davidBanner = system.actorOf(Props[DavidBanner], name = "DavidBanner")

 davidBanner ! ActNormalMessage // init to normalState

 davidBanner ! TryToFindSolution

 davidBanner ! BadGuysMakeMeAngry

 Thread.sleep(1000)

 davidBanner ! ActNormalMessage

 system.shutdown

}

Here’s a description of the code:

13.11. Switching Between Different States with become | 447

1. The davidBanner actor instance is created, as shown in previous recipes.

2. The davidBanner instance is sent the ActNormalMessage to set an initial state.

3. After sending davidBanner a TryToFindSolution message, it sends a
BadGuysMakeMeAngry message.

4. When davidBanner receives the BadGuysMakeMeAngry message, it uses become to
switch to the angryState.

5. In the angryState the only message davidBanner can process is the
ActNormalMessage. (In the real world, er, entertainment world, it should be pro‐
grammed to receive other messages, like SmashThings.)

6. When davidBanner receives the final ActNormalMessage, it switches back to the
normalState, again using the become method.

Discussion
As shown, the general recipe for using the become approach to switch between different
possible states is:

• Define the different possible states, such as the normalState and angryState.

• Define the receive method in the actor to switch to the different states based on
the messages it can receive. As shown in the example, this is handled with a match
expression.

It’s important to note that the different states can only receive the messages they’re
programmed for, and those messages can be different in the different states. For instance,
the normalState responds to the messages TryToFindSolution and BadGuys-
MakeMeAngry, but the angryState can only respond to the ActNormal-Message.

See Also

The Akka actors documentation shows a become example.

13.12. Using Parallel Collections

Problem
You want to improve the performance of algorithms by using parallel collections.

448 | Chapter 13: Actors and Concurrency

http://bit.ly/14Wm54w

Solution
When creating a collection, use one of the Scala’s parallel collection classes, or convert
an existing collection to a parallel collection. In either case, test your algorithm to make
sure you see the benefit you’re expecting.

You can convert an existing collection to a parallel collection. To demonstrate this, first
create a sequential collection, such as a Vector:

scala> val v = Vector.range(0, 10)

v: scala.collection.immutable.Vector[Int] = Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

Next, print the sequence, and you’ll see that it prints as usual:

scala> v.foreach(print)

0123456789

As expected, that example prints the string 0123456789. No matter how many times you
print it, you’ll always see that same result; that’s the linear world you’re used to.

Next, call the par method on your collection to turn it into a parallel collection, and
repeat the experiment:

scala> v.par.foreach(print)

5678901234

scala> v.par.foreach(print)

0123456789

scala> v.par.foreach{ e => print(e); Thread.sleep(50) }

0516273894

Whoa. Sometimes the collection prints in order, other times it prints in a seemingly
random order. That’s because it’s now using an algorithm that runs concurrently. Wel‐
come to the brave, new, parallel world.

That example showed how to convert a “normal” collection to a parallel collection. You
can also create a parallel collection directly:

scala> import scala.collection.parallel.immutable.ParVector

import scala.collection.parallel.immutable._

scala> val v = ParVector.range(0, 10)

v: scala.collection.parallel.immutable.ParVector[Int] =

 ParVector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> v.foreach{ e => Thread.sleep(100); print(e) }

0516273849

Discussion
As shown, you can create parallel collections in two ways:

13.12. Using Parallel Collections | 449

• Convert a “normal” collection to its parallel counterpart

• Instantiate them directly, just like their nonparallel counterparts

You can create a new instance of a parallel collection directly. As with the “normal”
collection classes that are discussed in Chapter 10 and Chapter 11, there are both im‐
mutable and mutable parallel collections. Here’s a list of some of the immutable parallel
collection classes:

ParHashMap ParHashSet ParIterable ParMap

ParRange ParSeq ParSet ParVector

In addition to these, the mutable collection has other classes and traits, including
ParArray.

For a full list of Scala’s parallel collections, see the Scala website.

Where are parallel collections useful?

To understand where a parallel collection can be useful, it helps to think about how they
work. Conceptually, you can imagine a collection being split into different chunks; your
algorithm is then applied to the chunks, and at the end of the operation, the different
chunks are recombined.

For instance, in the Solution, a ParVector was created like this:

scala> val v = ParVector.range(0, 10)

v: scala.collection.parallel.immutable.ParVector[Int] =

 ParVector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

The elements in the ParVector were then printed like this:

scala> v.foreach{ e => Thread.sleep(100); print(e) }

0516273849

This makes sense if you imagine that the original ParVector is split into two sequences
before the printing operation begins:

(0,1,2,3,4)

(5,6,7,8,9)

In this case you can imagine the foreach method taking (or receiving) the 0 from the
first sequence, printing it; getting the 5 from the second sequence, printing it; then
getting the 1 from the first sequence, etc.

450 | Chapter 13: Actors and Concurrency

http://bit.ly/1dCbKfX

To summarize the basic concept:

• Collection elements are split into different groups.

• The operation is performed.

• The elements are recombined.

The impact of this approach is that it must be okay that your algorithm receives elements
in an arbitrary order. This means that algorithms like sum, max, min, mean, and filter
will all work fine.

Conversely, any algorithm that depends on the collection elements being received in a
predictable order should not be used with a parallel collection. A simple demonstration
of this is the foreach examples that have been shown: if it’s important that the collection
elements are printed in a particular order, such as the order in which they were placed
in the collection, using a parallel collection isn’t appropriate.

The official Scala documentation refers to this as “side-effecting operations.” The Parallel
Collections Overview URL in the See Also section discusses this in detail.

Performance

Using parallel collections won’t always make your code faster. It’s important to test your
algorithm with and without a parallel collection to make sure your algorithm is faster
with a parallel collection. The “Measuring Performance” URL in the See Also section
has a terrific discussion about how to properly benchmark JVM performance.

For a parallel algorithm to provide a benefit, a collection usually needs to be fairly large.
The documentation states:

“As a general heuristic, speed-ups tend to be noticeable when the size of the collection is
large, typically several thousand elements.”

Finally, if using a parallel collection won’t solve your problem, using Akka actors and
futures can give you complete control over your algorithms.

See Also

• Immutable parallel collections

• Mutable parallel collections

• Parallel collections overview

• Measuring the performance of parallel collections

13.12. Using Parallel Collections | 451

http://bit.ly/1dCbKfX
http://bit.ly/1dCbKfX
http://bit.ly/190QUtd
http://bit.ly/15iEXd9
http://bit.ly/12GQ10p
http://bit.ly/1dCbKfX
http://bit.ly/190QUtd

CHAPTER 14

Command-Line Tasks

14.0. Introduction
Scala offers a number of tools to let you work at the command line, including the Read-
Eval-Print-Loop, or REPL. As shown in Figure 14-1, the REPL lets you execute Scala
expressions in an interactive environment.

Figure 14-1. The REPL lets you execute Scala expressions in an interactive environment

453

If you’ve used an interactive interpreter before (such as Ruby’s irb tool), the Scala REPL
will seem very familiar.

When it comes to building your projects, you’ll be well served to use the Simple Build
Tool (SBT), so that’s covered in Chapter 18. But there are still times when you’ll want
to use scalac, fsc, scaladoc, and other command-line tools, and this chapter demon‐
strates all of those tools.

The name “Scala” comes from the word “scalable,” and Scala does indeed scale from
small shell scripts to the largest, highest-performance applications in the world. On the
low end of that scale, this chapter demonstrates how to create your own shell scripts,
prompt for input from your scripts, and then make them run faster.

14.1. Getting Started with the Scala REPL

Problem
You want to get started using the Scala REPL, including understanding some of its basic
features, such as tab completion, starting the REPL with different options, and dealing
with errors.

Solution
To start the Scala REPL, type scala at your operating system command line:

$ scala

You’ll see a welcome message and Scala prompt:

Welcome to Scala version 2.10.0

Type in expressions to have them evaluated.

Type :help for more information.

scala> _

Welcome, you’re now using the Scala REPL.

Inside the REPL environment, you can try all sorts of different experiments and ex‐
pressions:

scala> val x, y = 1

x: Int = 1

y: Int = 1

scala> x + y

res0: Int = 2

scala> val a = Array(1, 2, 3)

a: Array[Int] = Array(1, 2, 3)

454 | Chapter 14: Command-Line Tasks

scala> a.sum

res1: Int = 6

As shown in the second example, if you don’t assign the result of an expression to a
variable, the REPL creates its own variable, beginning with res0, then res1, etc. You
can use these variable names just as though you had created them yourself:

scala> res1.getClass

res2: Class[Int] = int

Writing tests like this in the REPL is a great way to run experiments outside of your IDE
or editor.

There are a few simple tricks that can make using the REPL more effective. One trick
is to use tab completion to see the methods that are available on an object. To see how
tab completion works, create a String object, type a decimal, and then press the Tab
key. With Scala 2.10, the REPL shows that more than 30 methods are available on a
String instance:

scala> "foo".[Tab]

+ asInstanceOf charAt codePointAt

codePointBefore codePointCount compareTo

// a total of thirty methods listed here ...

If you press the Tab key again, the REPL expands the list to more than 50 methods:

scala> "foo".[Tab][Tab]

// 51 methods now listed ...

Similarly, the Int object expands from 25 to 34 methods when you press the Tab key
twice.

When you press the Tab key the first time, the REPL filters out many common methods,
but by pressing the Tab key the second time, it removes those filters and increases the
verbosity of its output. You can find an explanation of how this works at the
JLineCompletion class link in the See Also section of this recipe.

You can also limit the list of methods that are displayed by typing the first part of a
method name and then pressing the Tab key. For instance, if you know that you’re
interested in the to* methods on a Scala List, type a decimal and the characters to after
a List instance, and then press Tab:

scala> List(1,2,3).to[Tab]

toByte toChar toDouble toFloat toInt toLong toShort toString

These are all the List methods that begin with the letters to.

14.1. Getting Started with the Scala REPL | 455

Although the REPL tab-completion feature is good, it currently doesn’t
show methods that are available to an object that results from implic‐
it conversions. For instance, when you invoke the tab-completion fea‐
ture on a String instance, the REPL doesn’t show the methods that are
available to the String that come from the implicit conversions de‐
fined in the StringOps class.

To see methods available from the StringOps class, you currently have
to do something like this:

scala> val s = new collection.immutable.StringOps("")

s: scala.collection.immutable.StringOps = s

scala> s.[Tab]

After pressing the Tab key, you’ll see dozens of additional methods that
are available to a String object, such as all the to* and collection
methods.

The REPL also doesn’t show method signatures. Hopefully features like
this will be added to future versions of the REPL. In the meantime,
these are most easily seen in an IDE.

Discussion
I use the REPL to create many small experiments, and it also helps me understand some
type conversions that Scala performs automatically. For instance, when I first started
working with Scala and typed the following code into the REPL, I didn’t know what type
the variable x was:

scala> val x = (3, "Three", 3.0)

x: (Int, java.lang.String, Double) = (3,Three,3.0)

With the REPL, it’s easy to run tests like this, and then call getClass on a variable to
see its type:

scala> x.getClass

res0: java.lang.Class[_ <: (Int, java.lang.String, Double)] = class scala.Tuple3

Although some of that result line is hard to read when you first start working with Scala,
the text on the right side of the = lets you know that the type is a Tuple3.

Though this is a simple example, when you’re working with more complicated code or
a new library, you’ll find yourself running many small tests like this in the REPL.

456 | Chapter 14: Command-Line Tasks

A Tuple3 is a specific instance of a tuple. A tuple is a container for
heterogeneous objects. A Tuple3 is simply a tuple that contains three
elements. Here’s a Tuple2 that holds a String and a Char:

scala> val y = ("Foo", 'a')

y: (java.lang.String, Char) = (Foo,a)

scala> y.getClass

res1: java.lang.Class[_ <: (java.lang.String, Char)]

 = class scala.Tuple2

See Recipe 10.27, “Tuples, for When You Just Need a Bag of Things”
for more information.

REPL command-line options

If you need to set Java properties when starting the Scala interpreter, you can do so like
this on Unix systems:

$ env JAVA_OPTS="-Xmx512M -Xms64M" scala

That command sets the maximum and initial size of the Java memory allocation pool.
You can confirm this by looking at the maximum available memory in the REPL:

scala> Runtime.getRuntime.maxMemory / 1024

res0: Long = 520064

When starting the Scala 2.10 REPL without any options, the same command yields a
different result:

scala> Runtime.getRuntime.maxMemory / 1024

res0: Long = 258880

You can also use the -J command-line argument to set parameters. I ran into a
java.lang.OutOfMemoryError in the REPL while processing a large XML dataset, and
fixed the problem by starting the REPL with this command:

$ scala -J-Xms256m -J-Xmx512m

The scala command you’re running in these examples is actually a shell script, so if
you need to modify these parameters permanently, just edit that script. (On Unix sys‐
tems, you can also create a wrapper script or an alias.)

Deprecation and feature warnings

From time to time, you may see a message that suggests starting the REPL with the
-deprecation or -feature option enabled. For instance, attempting to create an octal
value by entering an integer value with a leading zero generates a deprecation warning:

scala> 012

warning: there were 1 deprecation warnings; re-run with -deprecation for details

res0: Int = 10

14.1. Getting Started with the Scala REPL | 457

To see the error, you could restart the REPL with the -deprecation option, like this:

$ scala -deprecation

Fortunately, restarting the REPL isn’t usually necessary. Beginning with Scala 2.10, it’s
usually easier to ask the REPL to show the message with the :warning command:

scala> 012

warning: there were 1 deprecation warnings; re-run with -deprecation for details

res0: Int = 10

scala> :warning

<console>:8: warning: Treating numbers with a leading zero as octal is deprecated.

 012

 ^

The REPL documentation states that the :warning command shows “the suppressed
warnings from the most recent line.”

If you run into the similar feature warning message, you can also issue the :warning
command to see the error. If necessary, you can also restart the REPL with the -feature
option:

$ scala -feature

The Scala Worksheet

If you’re using Eclipse with the Scala IDE plug-in, you can also run a REPL session in a
Scala Console panel. Another alternative is to use the Scala Worksheet. The Worksheet
is a plug-in that’s available for Eclipse and IntelliJ IDEA. It works like the REPL, but
runs inside the IDE. Figure 14-2 shows what the Worksheet looks like in Eclipse.

Figure 14-2. The Scala Worksheet plug-in works like the REPL

458 | Chapter 14: Command-Line Tasks

http://bit.ly/1aq2RXe

See Also

• Source code for the JLineCompletion class

• The Tuple3 class

14.2. Pasting and Loading Blocks of Code into the REPL

Problem
You want to experiment with some code in the Scala REPL, and typing it in or trying to
paste it into the REPL won’t work.

Solution
The REPL is “greedy” and consumes the first full statement you type in, so attempting
to paste blocks of code into it can fail. To solve the problem, either use the :paste
command to paste blocks of code into the REPL, or use the :load command to load the
code from a file into the REPL.

The :paste command

Attempting to paste the following if/else block into the REPL will cause an error:

if (true)

 print("that was true")

else

 print("that was false")

But by issuing the :paste command before pasting in the code, the code will be inter‐
preted properly:

scala> :paste

// Entering paste mode (ctrl-D to finish)

if (true)

 print("that was true")

else

 print("false")

[Ctrl-D]

// Exiting paste mode, now interpreting.

that was true

As shown, follow these steps to paste your code into the REPL:

14.2. Pasting and Loading Blocks of Code into the REPL | 459

http://bit.ly/12DmhpW
http://bit.ly/1aq2VWU

1. Type the :paste command in the REPL.

2. Paste in your block of code (Command-V on a Mac, Ctrl-V on Windows).

3. Press Ctrl-D, and the REPL will evaluate what you pasted in.

The :load command

Similarly, if you have source code in a file that you want to read into the REPL envi‐
ronment, you can use the :load command. For example, assume you have the following
source code in a file named Person.scala in the same directory where you started the
REPL:

case class Person(name: String)

You can load that source code into the REPL environment like this:

scala> :load Person.scala

Loading /Users/Al/ScalaTests/Person.scala...

defined class Person

Once the code is loaded into the REPL, you can create a new Person instance:

scala> val al = Person("Alvin Alexander")

al: Person = Person(Alvin Alexander)

Note, however, that if your source code has a package declaration:

// Person.scala source code

package com.alvinalexander.foo

case class Person(name: String)

the :load command will fail:

scala> :load /Users/Al/ProjectX/Person.scala

Loading /Users/Al/ProjectX/Person.scala...

<console>:1: error: illegal start of definition

 package com.alvinalexander.foo

 ^

defined class Person

You can’t use packages in the REPL, so for situations like this, you’ll need to compile
your file(s) and then include them on the classpath, as shown in Recipe 14.3, “Adding
JAR Files and Classes to the REPL Classpath”.

Discussion
Although the REPL is incredibly helpful, its greedy nature can cause multiline state‐
ments to fail. Imagine that you want to type the following block of code into the REPL:

if (true)

 't'

else

 'f'

460 | Chapter 14: Command-Line Tasks

If you try typing this code in one line at a time, the REPL will cut you off as soon as it
sees a complete statement:

scala> if (true)

 | 't'

res0: AnyVal = t

In this simple example, you can get around the problem by adding curly braces to the
expression, in which case the REPL recognizes that the expression isn’t finished:

scala> if (true) {

 | 't'

 | } else {

 | 'f'

 | }

res0: Char = t

But you can’t always do this. In the cases where this fails, use one of the approaches
shown in the Solution.

Scala’s -i option

Another approach you can use is to load your source code with the -i argument when
starting the Scala REPL. See Recipe 14.4, “Running a Shell Command from the REPL”
for more information on that approach.

See Also

Recipe 14.3, “Adding JAR Files and Classes to the REPL Classpath”

14.3. Adding JAR Files and Classes to the REPL Classpath

Problem
You want to add individual classes or one or more JAR files to the REPL classpath so
you can use them in a REPL session.

Solution
If you know that you want to use code from a JAR file when you start the REPL session,
add the -cp or -classpath argument to your scala command when you start the ses‐
sion. This example shows how to load and use my DateUtils.jar library:

$ scala -cp DateUtils.jar

scala> import com.alvinalexander.dateutils._

import com.alvinalexander.dateutils._

14.3. Adding JAR Files and Classes to the REPL Classpath | 461

scala> DateUtils.getCurrentDate

res0: String = Saturday, March 16

If you realize you need a JAR file on your classpath after you’ve started a REPL session,
you can add one dynamically with the :cp command:

scala> :cp DateUtils.jar

Added '/Users/Al/Projects/Scala/Tests/DateUtils.jar'.

Your new classpath is:

".:/Users/Al/Projects/Scala/Tests/DateUtils.jar"

scala> import com.alvinalexander.dateutils._

import com.alvinalexander.dateutils._

scala> DateUtils.getCurrentDate

res0: String = Saturday, March 16

Compiled class files in the current directory (*.class) are automatically loaded into
the REPL environment, so if a simple Person.class file is in the current directory when
you start the REPL, you can create a new Person instance without requiring a classpath
command:

scala> val p = new Person("Bill")

p: Person = Person(Bill)

However, if your class files are in a subdirectory, you can add them to the environment
when you start the session, just as with JAR files. If all the class files are located in a
subdirectory named classes, you can include them by starting your REPL session like
this:

$ scala -cp classes

If the class files you want to include are in several different directories, you can add
them all to your classpath:

$ scala -cp "../Project1/bin:../Project2/classes"

(This command works on Unix systems, but it may be slightly different on Windows.)

These approaches let you add JAR files and other compiled classes to your REPL envi‐
ronment, either at startup or as the REPL is running.

14.4. Running a Shell Command from the REPL

Problem
You want to be able to run a shell command from within the Scala REPL, such as listing
the files in the current directory.

462 | Chapter 14: Command-Line Tasks

Solution
Run the command using the :sh REPL command, then print the output. The following
example shows how to run the Unix ls -al command from within the REPL, and then
show the results of the command:

scala> :sh ls -al

res0: scala.tools.nsc.interpreter.ProcessResult = `ls -al` (6 lines, exit 0)

scala> res0.show

total 24

drwxr-xr-x 5 Al staff 170 Jul 14 17:14 .

drwxr-xr-x 29 Al staff 986 Jul 14 15:27 ..

-rw-r--r-- 1 Al staff 108 Jul 14 15:34 finance.csv

-rw-r--r-- 1 Al staff 469 Jul 14 15:38 process.scala

-rw-r--r-- 1 Al staff 412 Jul 14 16:24 process2.scala

Alternatively you can import the scala.sys.process package, and then use the normal
Process and ProcessBuilder commands described in Recipe 12.10, “Executing Ex‐
ternal Commands”:

scala> import sys.process._

import sys.process._

scala> "ls -al" !

total 24

drwxr-xr-x 5 Al staff 170 Jul 14 17:14 .

drwxr-xr-x 29 Al staff 986 Jul 14 15:27 ..

-rw-r--r-- 1 Al staff 108 Jul 14 15:34 finance.csv

-rw-r--r-- 1 Al staff 469 Jul 14 15:38 process.scala

-rw-r--r-- 1 Al staff 412 Jul 14 16:24 process2.scala

res0: Int = 0

Scala’s -i option

Although those examples show the correct approach, you can improve the situation by
loading your own custom code when you start the Scala interpreter. For instance, I
always start the REPL in my /Users/Al/tmp directory, and I have a file in that directory
named repl-commands with these contents:

import sys.process._

def clear = "clear".!

def cmd(cmd: String) = cmd.!!

def ls(dir: String) { println(cmd(s"ls -al $dir")) }

def help {

 println("\n=== MY CONFIG ===")

 "cat /Users/Al/tmp/repl-commands".!

}

case class Person(name: String)

val nums = List(1, 2, 3)

14.4. Running a Shell Command from the REPL | 463

val strings = List("sundance", "rocky", "indigo")

// lets me easily see the methods from StringOps

// with tab completion

val so = new collection.immutable.StringOps("")

With this setup, I start the Scala interpreter with the -i argument, telling it to load this
file when it starts:

$ scala -i repl-commands

This makes those pieces of code available to me inside the REPL. For instance, I can
clear my terminal window by invoking the clear method:

scala> clear

My ls method provides a directory listing:

scala> ls("/tmp")

With my cmd method I can run other external commands:

scala> cmd("cat /etc/passwd")

The help method uses the system cat command to display this file, which is helpful if
I haven’t used it in a while. The nums and strings variables and Person class also make
it easy to run quick experiments.

This approach is similar to using a startup file to initialize a Unix login session, like
a .bash_profile file for Bash users, and I highly recommend it. As you use the REPL more
and more, use this technique to customize its behavior.

To make this even easier, I created the following Unix alias and put it in my .bash_profile

file:

alias repl="scala -i /Users/Al/tmp/repl-commands"

I now use this alias to start a REPL session, rather than starting it by typing scala:

$ repl

See Also

The “Executing external commands” recipes in Chapter 12 for more examples of
executing external commands from Scala code

464 | Chapter 14: Command-Line Tasks

14.5. Compiling with scalac and Running with scala

Problem
Though you normally use the Simple Build Tool (SBT) to build Scala applications, you
may want to use more basic tools to compile and run small test programs, in the same
way you might use javac and java with small Java applications.

Solution
Compile programs with scalac, and run them with scala. For example, given a Scala
source code file named Hello.scala:

object Hello extends App {

 println("Hello, world")

}

Compile it from the command line with scalac:

$ scalac Hello.scala

Then run it with scala:

$ scala Hello

Hello, world

Discussion
Compiling and executing classes is basically the same as Java, including concepts like
the classpath. For instance, if you have a class named Pizza in a file named
Pizza.scala, it may depend on a Topping class:

class Pizza (var toppings: Topping*) {

 override def toString = toppings.toString

}

Assuming that the Topping class is compiled to a file named Topping.class in a subdir‐
ectory named classes, compile Pizza.scala like this:

$ scalac -classpath classes Pizza.scala

In a more complicated example, you may have your source code in subdirectories under
a src folder, one or more JAR files in a lib directory, and you want to compile your output
class files to a classes folder. In this case, your files and directories will look like this:

./classes

./lib/DateUtils.jar

./src/com/alvinalexander/pizza/Main.scala

./src/com/alvinalexander/pizza/Pizza.scala

./src/com/alvinalexander/pizza/Topping.scala

14.5. Compiling with scalac and Running with scala | 465

The Main.scala, Pizza.scala, and Topping.scala files will also have package declarations
corresponding to the directories they are located in, i.e.:

package com.alvinalexander.pizza

Given this configuration, to compile your source code files to the classes directory, use
the following command:

$ scalac -classpath lib/DateUtils.jar -d classes ↵ src/com/alvinalexander/pizza/*

Assuming Main.scala is an object that extends App, Pizza.scala is a regular class file, and
Topping.scala is a case class, your classes directory will contain these files after your

scalac command:

./classes/com/alvinalexander/pizza/Main$.class

./classes/com/alvinalexander/pizza/Main$delayedInit$body.class

./classes/com/alvinalexander/pizza/Main.class

./classes/com/alvinalexander/pizza/Pizza.class

./classes/com/alvinalexander/pizza/Topping$.class

./classes/com/alvinalexander/pizza/Topping.class

Once the files have been compiled in this manner, you can run the application like this:

$ scala -classpath classes:lib/DateUtils.jar com.alvinalexander.pizza.Main

As you can imagine, this process gets more and more difficult as you add new classes
and libraries, and it’s strongly recommended that you use a tool like SBT, Maven, or Ant
to manage your application’s build process. The examples shown in this recipe are shown
for the “one off ” cases where you might want to compile and run a small application or
test code.

For other useful command-line options, see the manpages for the scalac and scala
commands.

14.6. Disassembling and Decompiling Scala Code

Problem
In the process of learning Scala, or trying to understand a particular problem, you want
to examine the bytecode the Scala compiler generates from your source code.

Solution
You can use several different approaches to see how your Scala source code is translated:

466 | Chapter 14: Command-Line Tasks

• Use the javap command to disassemble a .class file to look at its signature.

• Use scalac options to see how the compiler converts your Scala source code to Java
code.

• Use a decompiler to convert your class files back to Java source code.

All three solutions are shown here.

Using javap

Because your Scala source code files are compiled into regular Java class files, you can
use the javap command to disassemble them. For example, assume that you’ve created
a file named Person.scala that contains the following source code:

class Person (var name: String, var age: Int)

If you compile that file with scalac, you can disassemble the resulting class file into its
signature using javap, like this:

$ javap Person

Compiled from "Person.scala"

public class Person extends java.lang.Object implements scala.ScalaObject{

 public java.lang.String name();

 public void name_$eq(java.lang.String);

 public int age();

 public void age_$eq(int);

 public Person(java.lang.String, int);

}

This shows the signature of the Person class, which is basically its public API, or inter‐
face. Even in a simple example like this you can see the Scala compiler doing its work
for you, creating methods like name(), name_$eq, age(), and age_$eq.

Using scalac print options

Depending on your needs, another approach is to use the “print” options available with
the scalac command. These are demonstrated in detail in Recipe 3.1, “Looping with
for and foreach”.

As that recipe shows, you begin with a file named Main.scala that has these contents:

class Main {

 for (i <- 1 to 10) println(i)

}

Next, compile this code with the scalac -Xprint:parse command:

$ scalac -Xprint:parse Main.scala

[[syntax trees at end of parser]] // Main.scala

package <empty> {

 class Main extends scala.AnyRef {

 def <init>() = {

14.6. Disassembling and Decompiling Scala Code | 467

 super.<init>();

 ()

 };

 1.to(10).foreach(((i) => println(i)))

 }

}

Recipe 3.1 demonstrates that the initial Scala for loop is translated into a foreach
method call, as shown by this line in the compiler output:

1.to(10).foreach(((i) => println(i)))

If you want to see more details, use the -Xprint:all option instead of
-Xprint:parse. For this simple class, this command yields more than 200 lines of out‐
put. A portion of the code at the end of the output looks like this:

class Main extends Object {

 def <init>(): Main = {

 Main.super.<init>();

 RichInt.this.to$extension0(scala.this.Predef.intWrapper(1),

 10).foreachmVcsp({

 (new anonymous class anonfun$1(Main.this): Function1)

 });

 ()

 }

};

As you can see, your beautiful Scala code gets translated into something quite different,
and this is only part of the output.

Whereas scalac -Xprint:all prints a lot of output, the basic scalac -print com‐
mand only prints the output shown at the very end of the -Xprint:all output. The
scalac manpage states that this print option, “Prints program with all Scala-specific
features removed.” View the manpage for the scalac command to see other -Xprint
options that are available.

Use a decompiler

Depending on class versions and legal restrictions, you may be able to take this approach
a step further and decompile a class file back to its Java source code representation using
a Java decompiler tool, such as JAD. Continuing from the previous example, you can
decompile the Main.class file like this:

$ jad Main

Parsing Main...Parsing inner class Main$$anonfun$1.class...

Generating Main.jad

The Main.jad file that results from this process contains the following Java source code:

import scala.*;

import scala.collection.immutable.Range;

import scala.runtime.*;

468 | Chapter 14: Command-Line Tasks

public class Main

{

 public Main()

 {

 RichInt$.MODULE$.to$extension0(Predef$.MODULE$.intWrapper(1),

 10).foreachmVcsp(new Serializable() {

 public final void apply(int i)

 {

 apply$mcVI$sp(i);

 }

 public void apply$mcVI$sp(int v1)

 {

 Predef$.MODULE$.println(BoxesRunTime.boxToInteger(v1));

 }

 public final volatile Object apply(Object v1)

 {

 apply(BoxesRunTime.unboxToInt(v1));

 return BoxedUnit.UNIT;

 }

 public static final long serialVersionUID = 0L;

 });

 }

}

Though you may have to be careful with legal issues when using a decompiler, when
you’re first learning Scala, a tool like JAD or the Java Decompiler Project can really help
to see how your Scala source code is converted into Java source code. Additionally, both
Eclipse and IntelliJ offer decompiler plug-ins that are based on JAD or the Java De‐
compiler Project.

Discussion
Disassembling class files with javap can be a helpful way to understand how Scala works.
As you saw in the first example with the Person class, defining the constructor param‐
eters name and age as var fields generates quite a few methods for you.

As a second example, take the var attribute off both of those fields, so you have this
class definition:

class Person (name: String, age: Int)

Compile this class with scalac, and then run javap on the resulting class file. You’ll see
that this results in a much shorter class signature:

14.6. Disassembling and Decompiling Scala Code | 469

http://bit.ly/10Yl4IC
http://java.decompiler.free.fr/

$ javap Person

Compiled from "Person.scala"public class Person extends java.lang.Object↵

implements scala.ScalaObject{

 public Person(java.lang.String, int);

}

Conversely, leaving var on both fields and turning the class into a case class significantly
expands the amount of code Scala generates on your behalf. To see this, change the code
in Person.scala so you have this case class:

case class Person (var name: String, var age: Int)

When you compile this code, it creates two output files, Person.class and Person$.class.

Disassemble these two files using javap:

$ javap Person

Compiled from "Person.scala"

public class Person extends java.lang.Object implements scala.ScalaObject,scala.↵

Product,scala.Serializable{

 public static final scala.Function1 tupled();

 public static final scala.Function1 curry();

 public static final scala.Function1 curried();

 public scala.collection.Iterator productIterator();

 public scala.collection.Iterator productElements();

 public java.lang.String name();

 public void name_$eq(java.lang.String);

 public int age();

 public void age_$eq(int);

 public Person copy(java.lang.String, int);

 public int copy$default$2();

 public java.lang.String copy$default$1();

 public int hashCode();

 public java.lang.String toString();

 public boolean equals(java.lang.Object);

 public java.lang.String productPrefix();

 public int productArity();

 public java.lang.Object productElement(int);

 public boolean canEqual(java.lang.Object);

 public Person(java.lang.String, int);

}

$ javap Person$

Compiled from "Person.scala"

public final class Person$ extends scala.runtime.AbstractFunction2 implements ↵

scala.ScalaObject,scala.Serializable{

 public static final Person$ MODULE$;

 public static {};

 public final java.lang.String toString();

 public scala.Option unapply(Person);

 public Person apply(java.lang.String, int);

 public java.lang.Object readResolve();

 public java.lang.Object apply(java.lang.Object, java.lang.Object);

}

470 | Chapter 14: Command-Line Tasks

As shown, when you define a class as a case class, Scala generates a lot of code for you.
This output shows the signature for that code. See Recipe 4.14, “Generating Boilerplate
Code with Case Classes” for a detailed discussion of this code.

See Also

• Information on the JAD decompiler

• The Java Decompiler project

14.7. Finding Scala Libraries

Problem
Ruby has the RubyGems package manager, which lets developers easily distribute and
manage the installation of Ruby libraries; does Scala have anything like this?

Solution
Prior to Scala 2.9.2, a tool named sbaz shipped with Scala, but it wasn’t very popular.
Instead, most tools are “discovered” by paying attention to the mailing lists, using a
search engine, and being aware of a few key websites.

As discussed in Chapter 18, once you’ve found a tool you want to use, you usually add
it as a dependency to your project with SBT. For instance, to include libraries into your
project, such as ScalaTest and Mockito, just add lines like this to your SBT build.sbt file:

resolvers += "Typesafe Repository" at↵

 "http://repo.typesafe.com/typesafe/releases/"

libraryDependencies ++= Seq(

 "org.scalatest" %% "scalatest" % "1.8" % "test",

 "org.mockito" % "mockito-core" % "1.9.0" % "test"

)

SBT has become the de facto tool for building Scala applications and managing depen‐
dencies. Possibly because of this success, a system like RubyGems hasn’t evolved, or
been necessary.

14.7. Finding Scala Libraries | 471

http://bit.ly/10Yl4IC
http://java.decompiler.free.fr/

Some of the top ways of finding Scala libraries are:

• Searching for libraries using a search engine, or ls.implicit.ly.

• Asking questions and searching the scala-tools@googlegroups.com and
scala-language@googlegroups.com mailing lists.

• New software is also announced at the “scala-announce” mailing list; you can find
a list of Scala mailing lists online.

• Viewing tools listed at the Scala wiki.

• Scala project updates are often noted at http://notes.implicit.ly/, the archive is at
http://notes.implicit.ly/archive, and you can search for tools at http://ls.implicit.ly/.

• Asking questions on StackOverflow.com.

The search engine at ls.implicit.ly is interesting. The owners advertise the site as “A card
catalog for Scala libraries.” As they state on their website, they make two assumptions
regarding their search process:

• The library you’re looking for is an open source library that’s hosted at GitHub.

• You build your projects with SBT.

For instance, if you search for “logging,” the website currently shows tools like the
“Grizzled-SLF4J” library.

14.8. Generating Documentation with scaladoc

Problem
You’ve annotated your Scala code with Scaladoc, and you want to generate developer
documentation for your API.

Solution
To generate Scaladoc API documentation, document your code using Scaladoc tags,
and then create the documentation using an SBT task or the scaladoc command.

You can mark up your source code using Scaladoc tags as well as a wiki-like syntax. The
following code shows many of the Scaladoc tags and a few of the wiki-style markup tags:

472 | Chapter 14: Command-Line Tasks

http://ls.implicit.ly/
mailto:scala-tools@googlegroups.com
mailto:scala-language@googlegroups.com
http://www.scala-lang.org/node/199
http://bit.ly/1aLUmJM
http://notes.implicit.ly/
http://notes.implicit.ly/archive
http://ls.implicit.ly/
http://stackoverflow.com
http://ls.implicit.ly/
http://www.scala-sbt.org/
http://bit.ly/13qCk5U
http://bit.ly/18j2ugh

package com.acme.foo

/**

* A class to represent a ''human being''.

*

* Specify the `name`, `age`, and `weight` when creating a new `Person`,

* then access the fields like this:

* {{{

* val p = Person("Al", 42, 200.0)

* p.name

* p.age

* p.weight

* }}}

*

* Did you know: The [[com.acme.foo.Employee]] extends this class.

*

* @constructor Create a new person with a `name`, `age`, and `weight`.

* @param name The person's name.

* @param age The person's age.

* @param weight The person's weight.

* @author Alvin Alexander

* @version 1.0

* @todo Add more functionality.

* @see See [[http://alvinalexander.com alvinalexander.com]] for more

* information.

*/

@deprecated("The `weight` field is going away", "1.0")

class Person (var name: String, var age: Int, var weight: Double) {

 /**

* @constructor This is an auxiliary constructor. Just need a `name` here.

*/

 def this(name: String) {

 this(name, 0, 0.0)

 }

 /**

* @return Returns a greeting based on the `name` field.

*/

 def greet = s"Hello, my name is $name"

}

14.8. Generating Documentation with scaladoc | 473

/**

* @constructor Create a new `Employee` by specifying their `name`, `age`,

* and `role`.

* @param name The employee's name.

* @param age The employee's age.

* @param role The employee's role in the organization.

* @example val e = Employee("Al", 42, "Developer")

*/

class Employee(name: String, age: Int, role: String) extends Person(name, age, 0)

{

 /**

* @throws boom Throws an Exception 100% of the time, be careful.

*/

 @throws(classOf[Exception])

 def boom { throw new Exception("boom") }

 /**

* @return Returns a greeting based on the `other` and `name` fields.

* @param other The name of the person we're greeting.

*/

 override def greet(other: String) = s"Hello $other, my name is $name"

}

With this code saved to a file named Person.scala, generate the Scaladoc documentation

with the scaladoc command:

$ scaladoc Person.scala

This generates a root index.html file and other related files for your API documentation.

Similarly, if you’re using SBT, generate Scaladoc API documentation by running the
sbt doc command in the root directory of your project:

$ sbt doc

This generates the same API documentation, and places it under the target directory of
your SBT project. With Scala 2.10 and SBT 0.12.3, the root file is located at
target/scala-2.10/api/index.html.

Figure 14-3 shows the resulting Scaladoc for the Person class, and Figure 14-4 shows
the Scaladoc for the Employee class. Notice how the Scaladoc and wiki tags affect the
documentation.

474 | Chapter 14: Command-Line Tasks

Figure 14-3. The Scaladoc for the Person class

14.8. Generating Documentation with scaladoc | 475

Figure 14-4. The Scaladoc for the Employee class

Discussion
Most Scaladoc tags are similar to Javadoc tags. Common Scaladoc tags are shown in
Table 14-1.

476 | Chapter 14: Command-Line Tasks

Table 14-1. Common Scaladoc tags

Tag Description Number allowed

@author The author of the class. Multiple tags are allowed

@constructor Documentation you want to provide for the constructor. One (does not currently work

on auxiliary constructors)

@example Provide an example of how to use a method or constructor. Multiple

@note Document pre- and post-conditions, and other requirements. Multiple

@param Document a method or constructor parameter. One per parameter

@return Document the return value of a method. One

@see Describe other sources of related information. Multiple

@since Used to indicate that a member has been available since a certain version

release.

One

@todo Document “to do” items for a method or class. Multiple

@throws Document an exception type that can be thrown by a method or constructor. Multiple

@version The version of a class. One

These are just some of the common tags. Other tags include @define, @migration,
@tparam, and @usecase. Other Scala annotation tags like @deprecated and @throws also
result in output to your documentation.

As shown in the source code, you can format your documentation using wiki-like tags.
Table 14-2 shows the most common wiki character formatting tags, and Table 14-3
shows the most common wiki paragraph formatting tags.

Table 14-2. Scaladoc wiki character formatting tags

Format Tag example

Bold '''foo'''

Italic ''foo''

Monospace (fixed-width) `foo`

Subscript ,,foo,,

Superscript ^foo^

Underline __foo__

Table 14-3. Scaladoc wiki paragraph formatting tags

Format Tag example

Headings =heading1=

==heading2==

===heading3===

New paragraph A blank line starts a new paragraph

14.8. Generating Documentation with scaladoc | 477

Format Tag example

Source code block // all on one line

{{{ if (foo) bar else baz }}}

// multiple lines

{{{

val p = Person("Al", 42)

p.name

p.age

}}}

Table 14-4 shows how to create hyperlinks in Scaladoc.

Table 14-4. Scaladoc hyperlink tags

Link type Tag example

Link to a Scala type [[scala.collection.immutable.List]]

Link to an external web page [[http://alvinalexander.com My website]]

The Scaladoc tags and annotations are described in more detail in the Scala wiki, as well
as the Wiki markup tags.

Generating Scaladoc documentation with SBT

SBT has several commands that can be used to generate project documentation. See
Recipe 18.8, “Generating Project API Documentation” for a tabular listing of those
commands.

See Also

• Recipe 5.8, “Declaring That a Method Can Throw an Exception” and Recipe 17.2,
“Add Exception Annotations to Scala Methods to Work with Java” for demonstra‐
tions of the @throws annotation

• Scaladoc wiki-like syntax

• Scaladoc tags

• The Scaladoc page in the Scala Style Guide

• Recipe 18.8, “Generating Project API Documentation” for details on generating
Scaladoc documentation with SBT

478 | Chapter 14: Command-Line Tasks

http://bit.ly/13qCk5U
http://bit.ly/18j2ugh
http://bit.ly/18j2ugh
http://bit.ly/13qCk5U
http://docs.scala-lang.org/style/scaladoc.html

14.9. Faster Command-Line Compiling with fsc

Problem
You’re making changes to a project and recompiling it with scalac, and you’d like to
reduce the compile time.

Solution
Use the fsc command instead of scalac to compile your code:

$ fsc *.scala

The fsc command works by starting a compilation daemon and also maintains a cache,
so compilation attempts after the first attempt run much faster than scalac.

Discussion
Although the primary advantage is that compile times are significantly improved when
recompiling the same code, it’s important to be aware of a few caveats, per the fsc
manpage:

• “The tool is especially effective when repeatedly compiling with the same class
paths, because the compilation daemon can reuse a compiler instance.”

• “The compilation daemon is smart enough to flush its cached compiler when the
class path changes. However, if the contents of the class path change, for example
due to upgrading a library, then the daemon should be explicitly shut down with
-shutdown.”

As an example of the second caveat, if the JAR files on the classpath have changed, you
should shut down the daemon, and then reissue your fsc command:

$ fsc -shutdown

[Compile server exited]

$ fsc *.scala

On Unix systems, running fsc creates a background process with the name
CompileServer. You can see information about this process with the following ps com‐
mand:

$ ps auxw | grep CompileServer

See the fsc manpage for more information.

14.9. Faster Command-Line Compiling with fsc | 479

See Also

• The fsc manpage (type man fsc at the command line).

• When using SBT, you can achieve similar performance improvements by working
in the SBT shell instead of your operating system’s command line. See Recipe 18.2,
“Compiling, Running, and Packaging a Scala Project with SBT” for more
information.

14.10. Using Scala as a Scripting Language

Problem
You want to use Scala as a scripting language on Unix systems, replacing other scripts
you’ve written in a Unix shell (Bourne Shell, Bash), Perl, PHP, Ruby, etc.

Solution
Save your Scala code to a text file, making sure the first three lines of the script contain
the lines shown, which will execute the script using the scala interpreter:

#!/bin/sh

exec scala "$0" "$@"

!#

println("Hello, world")

To test this, save the code to a file named hello.sh, make it executable, and then run it:

$ chmod +x hello.sh

$./hello.sh

Hello, world

As detailed in the next recipe, command-line parameters to the script can be accessed
via an args array, which is implicitly made available to you:

#!/bin/sh

exec scala "$0" "$@"

!#

args.foreach(println)

Discussion
Regarding the first three lines of a shell script:

480 | Chapter 14: Command-Line Tasks

• The #! in the first line is the usual way to start a Unix shell script. It invokes a Unix
Bourne shell.

• The exec command is a shell built-in. $0 expands to the name of the shell script,
and $@ expands to the positional parameters.

• The !# characters as the third line of the script is how the header section is closed.

A great thing about using Scala in your scripts is that you can use all of its advanced
features, such as the ability to create and use classes in your scripts:

#!/bin/sh

exec scala "$0" "$@"

!#

class Person(var firstName: String, var lastName: String) {

 override def toString = firstName + " " + lastName

}

println(new Person("Nacho", "Libre"))

Using the App trait or main method

To use an App trait in a Scala script, start the script with the usual first three header lines,
and then create an object that extends the App trait:

#!/bin/sh

exec scala "$0" "$@"

!#

object Hello extends App {

 println("Hello, world")

 // if you want to access the command line args:

 //args.foreach(println)

}

Hello.main(args)

The last line in that example shows how to pass the script’s command-line arguments
to the implicit main method in the Hello object. As usual in an App trait object, the
arguments are available via a variable named args.

You can also define an object with a main method to kick off your shell script action:

#!/bin/sh

exec scala "$0" "$@"

!#

object Hello {

 def main(args: Array[String]) {

 println("Hello, world")

 // if you want to access the command line args:

 //args.foreach(println)

14.10. Using Scala as a Scripting Language | 481

 }

}

Hello.main(args)

Building the classpath

If your shell script needs to rely on external dependencies (such as JAR files), add them
to your script’s classpath using this syntax:

#!/bin/sh

exec scala -classpath "lib/htmlcleaner-2.2.jar:lib/scalaemail_2.10.0-↵

1.0.jar:lib/stockutils_2.10.0-1.0.jar" "$0" "$@"

!#

You can then import these classes into your code as usual. The following code shows a
complete script I wrote that retrieves stock quotes and mails them to me:

#!/bin/sh

exec scala -classpath "lib/htmlcleaner-2.2.jar:lib/scalaemail_2.10.0-↵

1.0.jar:lib/stockutils_2.10.0-1.0.jar" "$0" "$@"

!#

import java.io._

import scala.io.Source

import com.devdaily.stocks.StockUtils

import scala.collection.mutable.ArrayBuffer

object GetStocks {

 case class Stock(symbol: String, name: String, price: BigDecimal)

 val DIR = System.getProperty("user.dir")

 val SLASH = System.getProperty("file.separator")

 val CANON_STOCKS_FILE = DIR + SLASH + "stocks.dat"

 val CANON_OUTPUT_FILE = DIR + SLASH + "quotes.out"

 def main(args: Array[String]) {

 // read the stocks file into a list of strings ("AAPL|Apple")

 val lines = Source.fromFile(CANON_STOCKS_FILE).getLines.toList

 // create a list of Stock from the symbol, name, and by

 // retrieving the price

 var stocks = new ArrayBuffer[Stock]()

 lines.foreach{ line =>

 val fields = line.split("\\|")

 val symbol = fields(0)

 val html = StockUtils.getHtmlFromUrl(symbol)

 val price = StockUtils.extractPriceFromHtml(html, symbol)

 val stock = Stock(symbol, fields(1), BigDecimal(price))

 stocks += stock

 }

482 | Chapter 14: Command-Line Tasks

 // build a string to output

 var sb = new StringBuilder

 stocks.foreach { stock =>

 sb.append("%s is %s\n".format(stock.name, stock.price))

 }

 val output = sb.toString

 // write the string to the file

 val pw = new PrintWriter(new File(CANON_OUTPUT_FILE))

 pw.write(output)

 pw.close

 }

}

GetStocks.main(args)

I run this script twice a day through a crontab entry on a Linux server. The stocks.dat

file it reads has entries like this:

AAPL|Apple

KKD|Krispy Kreme

NFLX|Netflix

See Also

• More about the first three lines of these shell script examples at my site

• Recipe 14.13, “Make Your Scala Scripts Run Faster” for a way to make your scripts
run faster

14.11. Accessing Command-Line Arguments from a Script

Problem
You want to access the command-line arguments from your Scala shell script.

Solution
Use the same script syntax as shown in Recipe 14.8, “Generating Documentation with
scaladoc”, and then access the command-line arguments using args, which is a
List[String] that is implicitly made available:

#!/bin/sh

exec scala "$0" "$@"

!#

args.foreach(println)

14.11. Accessing Command-Line Arguments from a Script | 483

http://bit.ly/1bkJW2V

Save this code to a file named args.sh, make the file executable, and run it like this:

$./args.sh a b c

a

b

c

Discussion
Because the implicit field args is a List[String], you can perform all the usual oper‐
ations on it, including getting its size, and accessing elements with the usual syntax.

In a more “real-world” example, you’ll check for the number of command-line argu‐
ments, and then assign those arguments to values. This is demonstrated in the following
script:

#!/bin/sh

exec scala "$0" "$@"

!#

if (args.length != 2) {

 Console.err.println("Usage: replacer <search> <replace>")

 System.exit(1)

}

val searchPattern = args(0)

val replacePattern = args(1)

println(s"Replacing $searchPattern with $replacePattern ...")

// more code here ...

When this script is run from the command line without arguments, the result looks like
this:

$./args.sh

Usage: replacer <search> <replace>

When it’s run with the correct number of arguments, the result looks like this:

$./args.sh foo bar

Replacing foo with bar ...

If you decide to use the App trait in your script, make sure you pass the command-line
arguments to your App object, as shown in the Hello.main(args) line in this example:

#!/bin/sh

exec scala "$0" "$@"

!#

object Hello extends App {

 println("Hello, world")

 // if you want to access the command line args:

484 | Chapter 14: Command-Line Tasks

 //args.foreach(println)

}

Hello.main(args)

Use the same syntax if you use a main method instead of an App object.

14.12. Prompting for Input from a Scala Shell Script

Problem
You want to prompt a user for input from a Scala shell script and read her responses.

Solution
Use the readLine, print, printf, and Console.read* methods to read user input, as
demonstrated in the following script. Comments in the script describe each method:

#!/bin/sh

exec scala "$0" "$@"

!#

// write some text out to the user with Console.println

Console.println("Hello")

// Console is imported by default, so it's not really needed, just use println

println("World")

// readLine lets you prompt the user and read their input as a String

val name = readLine("What's your name? ")

// readInt lets you read an Int, but you have to prompt the user manually

print("How old are you? ")

val age = readInt()

// you can also print output with printf

println(s"Your name is $name and you are $age years old.")

Discussion
The readLine method lets you prompt a user for input, but the other read* methods
don’t, so you need to prompt the user manually with print, println, or printf.

You can list the Console.read* methods in the Scala REPL:

scala> Console.read

readBoolean readByte readChar readDouble readFloat

readInt readLine readLong readShort readf

readf1 readf2 readf3

14.12. Prompting for Input from a Scala Shell Script | 485

Be careful with the methods that read numeric values; as you might expect, they can all
throw a NumberFormatException.

Although these methods are thorough, if you prefer, you can also fall back and read
input with the Java Scanner class:

// you can also use the Java Scanner class, if desired

val scanner = new java.util.Scanner(System.in)

print("Where do you live? ")

val input = scanner.nextLine()

print(s"I see that you live in $input")

Reading multiple values from one line

If you want to read multiple values from one line of user input (such as a person’s name,
age, and weight), there are several approaches to the problem.

To my surprise, I prefer to use the Java Scanner class. The following code demonstrates
the Scanner approach:

import java.util.Scanner

// simulated input

val input = "Joe 33 200.0"

val line = new Scanner(input)

val name = line.next

val age = line.nextInt

val weight = line.nextDouble

To use this approach in a shell script, replace the input line with a readLine() call, like
this:

val input = readLine()

Of course if the input doesn’t match what you expect, an error should be thrown. The
Scanner next* methods throw a java.util.InputMismatchException when the data
doesn’t match what you expect, so you’ll want to wrap this code in a try/catch block.

I initially assumed that one of the readf methods on the Console object would be the
best solution to this problem, but unfortunately they return their types as Any, and then
you have to cast them to the desired type. For instance, suppose you want to read the
same name, age, and weight information as the previous example. After prompting the
user, you read three values with the readf3 method like this:

val(a,b,c) = readf3("{0} {1,number} {2,number}")

If the user enters a string followed by two numbers, a result is returned, but if he
enters an improperly formatted string, such as 1 a b, the expression fails with a
ParseException:

java.text.ParseException: MessageFormat parse error!

 at java.text.MessageFormat.parse(MessageFormat.java:1010)

486 | Chapter 14: Command-Line Tasks

 at scala.Console$.readf(Console.scala:413)

 at scala.Console$.readf3(Console.scala:445)

Unfortunately, even if the user enters the text as desired, you still need to cast the values
to the correct type, because the variables a, b, and c are of type Any. You can try to cast
them with this approach:

val name = a

val age = b.asInstanceOf[Long]

val weight = c.asInstanceOf[Double]

Or convert them like this:

val name = a.toString

val age = b.toString.toInt

val weight = c.toString.toDouble

But for me, the Scanner is cleaner and easier.

A third approach is to read the values in as a String, and then split them into tokens.
Here’s what this looks like in the REPL:

scala> val input = "Michael 54 250.0"

input: String = Michael 54 250.0

scala> val tokens = input.split(" ")

tokens: Array[String] = Array(Michael, 54, 250.0)

The split method creates an Array[String], so access the array elements and cast
them to the desired types to create your variables:

val name = tokens(0)

val age = tokens(1).toInt

val weight = tokens(2).toDouble

Note that the age and weight fields in this example can throw a
NumberFormatException.

A fourth way to read the user’s input is by specifying a regular expression to match the
input you expect to receive. Using this technique, you again receive each variable as a
String, and then cast it to the desired type. The process looks like this in the REPL:

scala> val ExpectedPattern = "(.*) (\\d+) (\\d*\\.?\\d*)".r

ExpectedPattern: scala.util.matching.Regex = (.*) (\d+) (\d*\.?\d*)

// you would use readLine() here

scala> val input = "Paul 36 180.0"

input: String = Paul 36 180.0

scala> val ExpectedPattern(a, b, c) = input

a: String = Paul

b: String = 36

c: String = 180.0

14.12. Prompting for Input from a Scala Shell Script | 487

Now that you have the variables as strings, cast them to the desired types, as before:

val name = a

val age = b.toInt

val weight = c.toDouble

The ExpectedPattern line in this example will fail with a scala.MatchError if the input
doesn’t match what’s expected.

Hopefully with all of these examples you’ll find your own preferred way to read in
multiple values at one time.

Fun with output

Use print, printf, or println to write output. As shown in the Solution, the readLine
method also lets you prompt a user for input.

The Console object contains a number of fields that you can use with the print methods
to control the display. For instance, if you want your entire line of output to be under‐
lined, change the last lines of the script to look like this:

val qty = 2

val pizzaType = "Cheese"

val total = 20.10

print(Console.UNDERLINED)

println(f"$qty%d $pizzaType pizzas coming up, $$$total%.2f.")

print(Console.RESET)

This prints the following string, underlined:

2 Cheese pizzas coming up, $20.10.

Other displayable attributes include colors and attributes such as BLINK, BOLD,
INVISIBLE, RESET, REVERSED, and UNDERLINED. See the Console object Scaladoc page
for more options.

See Also

• Recipe 1.8, “Extracting Parts of a String That Match Patterns” for more examples
of the pattern-matching technique shown in this recipe.

• The Java Scanner class

• The Java Pattern class

• The Scala Console object provides the read* methods

488 | Chapter 14: Command-Line Tasks

http://bit.ly/14WoFaM
http://bit.ly/17iBhJG
http://bit.ly/1aLWLEh

14.13. Make Your Scala Scripts Run Faster

Problem
You love using Scala as a scripting language, but you’d like to eliminate the lag time in
starting up a script.

Solution
Use the -savecompiled argument of the Scala interpreter to save a compiled version of
your script.

A basic Scala script like this:

#!/bin/sh

exec scala "$0" "$@"

!#

println("Hello, world!")

args foreach println

consistently runs with times like this on one of my computers:

real 0m1.573s

user 0m0.574s

sys 0m0.089s

To improve this, add the -savecompiled argument to the Scala interpreter line:

#!/bin/sh

exec scala -savecompiled "$0" "$@"

!#

println("Hello, world!")

args foreach println

Then run the script once. This generates a compiled version of the script. After that, the
script runs with a consistently lower real time (wall clock) on all subsequent runs:

real 0m0.458s

user 0m0.487s

sys 0m0.075s

Precompiling your script shaves a nice chunk of time off the runtime of your script,
even for a simple example like this.

14.13. Make Your Scala Scripts Run Faster | 489

Discussion
When you run your script the first time, Scala generates a JAR file that matches the
name of your script. For instance, I named my script test1.sh, and then ran it like this:

$./test1.sh

After running the script, I looked at the directory contents and saw that Scala created a
file named test1.sh.jar. Scala creates this new file and also leaves your original script in
place.

On subsequent runs, Scala sees that there’s a JAR file associated with the script, and if
the script hasn’t been modified since the JAR file was created, it runs the precompiled
code from the JAR file instead of the source code in the script. This results in a faster
runtime because the source code doesn’t need to be compiled.

You can look at the contents of the JAR file using the jar command:

$ jar tvf test1.sh.jar

 43 Wed Jul 25 15:44:26 MDT 2012 META-INF/MANIFEST.MF

965 Wed Jul 25 15:44:26 MDT 2012 Main$$anon$1$$anonfun$1.class

725 Wed Jul 25 15:44:26 MDT 2012 Main$$anon$1.class

557 Wed Jul 25 15:44:26 MDT 2012 Main$.class

646 Wed Jul 25 15:44:26 MDT 2012 Main.class

In this example, I didn’t include a main method in an object or use the App trait with an
object, so Scala assumed the name Main for the main/primary object that it created to
run my script.

490 | Chapter 14: Command-Line Tasks

CHAPTER 15

Web Services

Introduction
Between the Java web services libraries and the newer Scala libraries and frameworks
that are available, Scala easily handles web service tasks. You can rapidly create web
service clients to send and receive data using these general libraries, or solve problems
with more specific libraries, such as creating a Twitter client with the Twitter4J library.
There are also several good JSON libraries available, so you can easily convert between
data JSON strings and Scala objects.

When it comes to creating your own RESTful web services, you can use lightweight
frameworks like Scalatra or Unfiltered and have web services up and running in a matter
of minutes. But you have many choices, so you can also use the Play Framework
(Play), Lift Framework, or other Scala libraries to create web services, as well as all of
the previously available Java web service libraries.

As demonstrated in Chapter 16, Scala has nice support for the MongoDB database, and
this chapter demonstrates how to provide a complete web services solution using Sca‐
latra and MongoDB. This chapter shares a few recipes that are specific to using Play to
create web services.

Finally, although the Scala libraries offer some nice convenience classes and methods
for connecting to web services, the trusty old Java Apache HttpClient library is still very
useful, and it’s also demonstrated in several recipes.

15.1. Creating a JSON String from a Scala Object

Problem
You’re working outside of a specific framework, and want to create a JSON string from
a Scala object.

491

http://scalatra.org/
http://unfiltered.databinder.net/Unfiltered.html
http://www.playframework.com/
http://www.playframework.com/
http://liftweb.net/
http://www.mongodb.org/
http://hc.apache.org/httpclient-3.x/

Solution
If you’re using the Play Framework, you can use its library to work with JSON, as shown
in Recipes 15.13 and 15.14, but if you’re using JSON outside of Play, you can use the
best libraries that are available for Scala and Java:

• Lift-JSON

• The Google Gson library (Java)

• Json4s

• spray-json

This recipe demonstrates the Lift-JSON and Gson libraries. (Json4s is a port of Lift-
JSON, so it shares the same API.)

Lift-JSON solution

To demonstrate the Lift-JSON library, create an empty SBT test project. With Scala 2.10
and SBT 0.12.x, configure your build.sbt file as follows:

name := "Basic Lift-JSON Demo"

version := "1.0"

scalaVersion := "2.10.0"

libraryDependencies += "net.liftweb" %% "lift-json" % "2.5+"

Next, in the root directory of your project, create a file named LiftJsonTest.scala:

import scala.collection.mutable._

import net.liftweb.json._

import net.liftweb.json.Serialization.write

case class Person(name: String, address: Address)

case class Address(city: String, state: String)

object LiftJsonTest extends App {

 val p = Person("Alvin Alexander", Address("Talkeetna", "AK"))

 // create a JSON string from the Person, then print it

 implicit val formats = DefaultFormats

 val jsonString = write(p)

 println(jsonString)

}

This code creates a JSON string from the Person instance, and prints it. When you run
the project with the sbt run command, you’ll see the following JSON output:

{"name":"Alvin Alexander","address":{"city":"Talkeetna","state":"AK"}}

492 | Chapter 15: Web Services

https://github.com/lift/framework/tree/master/core/json
https://code.google.com/p/google-gson/
https://github.com/json4s/json4s
https://github.com/spray/spray-json

Gson solution

To demonstrate the Gson library, follow similar steps. Create an empty SBT test project,
then download the Gson JAR file from the Gson website, and place it in your project’s
lib directory.

In the root directory of the project, create a file named GsonTest.scala with these
contents:

import com.google.gson.Gson

case class Person(name: String, address: Address)

case class Address(city: String, state: String)

object GsonTest extends App {

 val p = Person("Alvin Alexander", Address("Talkeetna", "AK"))

 // create a JSON string from the Person, then print it

 val gson = new Gson

 val jsonString = gson.toJson(p)

 println(jsonString)

}

In a manner similar to the first example, this code converts a Person instance to a JSON
string and prints the string. When you run the project with sbt run, you’ll see the same
output as before:

{"name":"Alvin Alexander","address":{"city":"Talkeetna","state":"AK"}}

Discussion
The Lift-JSON project is a subproject of the Lift Framework, which is a complete Scala
web framework. Fortunately the library has been created as a separate module you can
download and use on its own.

In addition to working with simple classes, it works well with Scala collections. The
following example shows how to generate JSON strings from a simple Scala Map:

import net.liftweb.json.JsonAST

import net.liftweb.json.JsonDSL._

import net.liftweb.json.Printer.{compact,pretty}

object LiftJsonWithCollections extends App {

 val json = List(1, 2, 3)

 println(compact(JsonAST.render(json)))

 val map = Map("fname" -> "Alvin", "lname" -> "Alexander")

 println(compact(JsonAST.render(map)))

}

15.1. Creating a JSON String from a Scala Object | 493

http://code.google.com/p/google-gson/
http://liftweb.net/

That program prints the following output:

 [1,2,3]

{"fname":"Alvin","lname":"Alexander"}

When communicating with other computer systems you’ll want to use the compact
method as shown, but when a human needs to look at your JSON strings, use the pretty
method instead:

println(pretty(JsonAST.render(map)))

This changes the map output to look like this:

{

 "fname":"Alvin",

 "lname":"Alexander"

}

The Lift-JSON examples in this recipe work well for either objects or collections, but
when you have an object that contains collections, such as a Person class that has a list
of friends defined as List[Person], it’s best to use the Lift-JSON DSL. This is demon‐
strated in Recipe 15.2.

Gson is a Java library that you can use to convert back and forth between Scala objects
and their JSON representation. From the Gson documentation:

There are a few open-source projects that can convert Java objects to JSON. However,
most of them require that you place Java annotations in your classes; something that you
can not do if you do not have access to the source-code. Most also do not fully support
the use of Java Generics. Gson considers both of these as very important design goals.

I used Gson to generate JSON for a while, but because it’s written in Java, it has a few
issues when trying to work with Scala collections. One such problem is demonstrated
in Recipe 15.2.

See Also

• The Lift-JSON library

• The Gson library

• A project named Json4s aims to provide a unified interface for all Scala JSON
projects. The current package is a port of Lift-JSON, with support for using the Java
Jackson library as a backend as well.

• spray-json is another popular Scala JSON library.

494 | Chapter 15: Web Services

http://code.google.com/p/google-gson/
https://github.com/lift/framework/tree/master/core/json
http://code.google.com/p/google-gson/
http://json4s.org/
https://github.com/spray/spray-json

15.2. Creating a JSON String from Classes That Have
Collections

Problem
You want to generate a JSON representation of a Scala object that contains one or more
collections, such as a Person class that has a list of friends or addresses.

Solution
Once classes start containing collections, converting them to JSON becomes more dif‐
ficult. In this situation, I prefer to use the Lift-JSON domain-specific library (DSL) to
generate the JSON.

Lift-JSON version 1

The Lift-JSON library uses its own DSL for generating JSON output from Scala objects.
As shown in the previous recipe, this isn’t necessary for simple objects, but it is necessary
once objects become more complex, specifically once they contain collections. The
benefit of this approach is that you have complete control over the JSON that is
generated.

The following example shows how to generate a JSON string for a Person class that has
a friends field defined as List[Person]:

import net.liftweb.json._

import net.liftweb.json.JsonDSL._

case class Person(name: String, address: Address) {

 var friends = List[Person]()

}

case class Address(city: String, state: String)

object LiftJsonListsVersion1 extends App {

 //import net.liftweb.json.JsonParser._

 implicit val formats = DefaultFormats

 val merc = Person("Mercedes", Address("Somewhere", "KY"))

 val mel = Person("Mel", Address("Lake Zurich", "IL"))

 val friends = List(merc, mel)

 val p = Person("Alvin Alexander", Address("Talkeetna", "AK"))

 p.friends = friends

 // define the json output

 val json =

 ("person" ->

 ("name" -> p.name) ~

15.2. Creating a JSON String from Classes That Have Collections | 495

 ("address" ->

 ("city" -> p.address.city) ~

 ("state" -> p.address.state)) ~

 ("friends" ->

 friends.map { f =>

 ("name" -> f.name) ~

 ("address" ->

 ("city" -> f.address.city) ~

 ("state" -> f.address.state))

 })

)

 println(pretty(render(json)))

}

The JSON output from this code looks like this:

{

 "person":{

 "name":"Alvin Alexander",

 "address":{

 "city":"Talkeetna",

 "state":"AK"

 },

 "friends":[{

 "name":"Mercedes",

 "address":{

 "city":"Somewhere",

 "state":"KY"

 }

 },{

 "name":"Mel",

 "address":{

 "city":"Lake Zurich",

 "state":"IL"

 }

 }]

 }

}

The JSON-generating code is shown after the “define the json output” comment, and
is repeated here:

val json =

 ("person" ->

 ("name" -> p.name) ~

 ("address" ->

 ("city" -> p.address.city) ~

 ("state" -> p.address.state)) ~

 ("friends" ->

 friends.map { f =>

 ("name" -> f.name) ~

496 | Chapter 15: Web Services

 ("address" ->

 ("city" -> f.address.city) ~

 ("state" -> f.address.state))

 })

)

As you can see, Lift uses a custom DSL to let you generate the JSON, and also have
control over how the JSON is generated (as opposed to using reflection to generate the
JSON). Although you’ll want to read the details of the DSL to take on more difficult
tasks, the basics are straightforward.

The first thing to know is that any Tuple2 generates a JSON field, so a code snippet like
("name" -> p.name) produces this output:

"name":"Alvin Alexander"

The other important thing to know is that the ~ operator lets you join fields. You can
see from the example code and output how it works.

You can also refer to objects and methods when generating the JSON. You can see this
in sections of the code like p.address.city and friends.map { f =>. Writing JSON-
generating code like this feels just like writing other Scala code.

Lift-JSON Version 2

As your classes grow, creating a larger JSON generator in one variable becomes hard to
read and maintain. Fortunately, with the Lift-JSON DSL you can break your JSON-
generating code down into small chunks to keep the code maintainable. The following
code achieves the same result as the previous example, but I’ve broken the JSON-
generating code down into small methods that are easier to maintain and reuse:

import net.liftweb.json._

import net.liftweb.json.JsonDSL._

object LiftJsonListsVersion2 extends App {

 val merc = Person("Mercedes", Address("Somewhere", "KY"))

 val mel = Person("Mel", Address("Lake Zurich", "IL"))

 val friends = List(merc, mel)

 val p = Person("Alvin Alexander", Address("Talkeetna", "AK"))

 p.friends = friends

 val json =

 ("person" ->

 ("name" -> p.name) ~

 getAddress(p.address) ~

 getFriends(p)

)

 println(pretty(render(json)))

 def getFriends(p: Person) = {

15.2. Creating a JSON String from Classes That Have Collections | 497

 ("friends" ->

 p.friends.map { f =>

 ("name" -> f.name) ~

 getAddress(f.address)

 })

 }

 def getAddress(a: Address) = {

 ("address" ->

 ("city" -> a.city) ~

 ("state" -> a.state))

 }

}

case class Person(name: String, address: Address) {

 var friends = List[Person]()

}

case class Address(city: String, state: String)

As shown, this approach lets you create methods that can be reused. The getAddress
method, for instance, is called several times in the code.

Discussion
As shown in Recipe 15.1, Gson works via reflection, and it works well for simple classes.
However, I’ve found it to be harder to use when your classes have certain collections.
For instance, the following code works fine when the list of friends is defined as an
Array[Person]:

import com.google.gson.Gson

import com.google.gson.GsonBuilder

case class Person(name: String, address: Address) {

 var friends: Array[Person] = _

}

case class Address(city: String, state: String)

/**

* This approach works with Array.

*/

object GsonWithArray extends App {

 val merc = Person("Mercedes", Address("Somewhere", "KY"))

 val mel = Person("Mel", Address("Lake Zurich", "IL"))

 val friends = Array(merc, mel)

 val p = Person("Alvin Alexander", Address("Talkeetna", "AK"))

 p.friends = friends

 val gson = (new GsonBuilder()).setPrettyPrinting.create

498 | Chapter 15: Web Services

 println(gson.toJson(p))

}

Because a Scala Array is backed by a Java array, that code works well, generating JSON
output that is similar to Lift-JSON. However, if you change the Array[Person] to
List[Person], Gson removes the list of friends from the output:

{

 "name": "Alvin Alexander",

 "address": {

 "city": "Talkeetna",

 "state": "AK"

 },

 "friends": {}

}

Changing the Array to an ArrayBuffer also causes problems and exposes the internal
implementation of an ArrayBuffer:

{

 "name": "Alvin Alexander",

 "address": {

 "city": "Talkeetna",

 "state": "AK"

 },

 "friends": {

 "initialSize": 16,

 "array": [

 {

 "name": "Mercedes",

 "address": {

 "city": "Somewhere",

 "state": "KY"

 }

 },

 {

 "name": "Mel",

 "address": {

 "city": "Lake Zurich",

 "state": "IL"

 }

 },

 null, // this line is repeated 13 more times

 ...

 ...

 null

],

 "size0": 2

 }

}

15.2. Creating a JSON String from Classes That Have Collections | 499

An ArrayBuffer begins with 16 elements, and when Gson generates the JSON for the
list of friends, it correctly includes the two friends, but then outputs the word null 14
times, along with including the other output shown.

If you like the idea of generating JSON from your code using reflection, see the Gson
User Guide link in the See Also section for information on how to try to resolve these
issues by writing custom serializers (creating a JSON string from an object) and deser‐
ializers (creating an object from a JSON string).

See Also

• The Lift-JSON library.

• The Gson User Guide shows how to write serializers and deserializers.

15.3. Creating a Simple Scala Object from a JSON String

Problem
You need to convert a JSON string into a simple Scala object, such as a Scala case class
that has no collections.

Solution
Use the Lift-JSON library to convert a JSON string to an instance of a case class. This
is referred to as deserializing the string into an object.

The following code shows a complete example of how to use Lift-JSON to convert a
JSON string into a case class named MailServer. As its name implies, MailServer
represents the information an email client needs to connect to a server:

import net.liftweb.json._

// a case class to represent a mail server

case class MailServer(url: String, username: String, password: String)

object JsonParsingExample extends App {

 implicit val formats = DefaultFormats

 // simulate a json string

 val jsonString = """

{

"url": "imap.yahoo.com",

"username": "myusername",

"password": "mypassword"

}

500 | Chapter 15: Web Services

https://github.com/lift/framework/tree/master/core/json
https://sites.google.com/site/gson/gson-user-guide

"""

 // convert a String to a JValue object

 val jValue = parse(jsonString)

 // create a MailServer object from the string

 val mailServer = jValue.extract[MailServer]

 println(mailServer.url)

 println(mailServer.username)

 println(mailServer.password)

}

In this example, the jsonString contains the text you’d expect to receive if you called
a web service asking for a MailServer instance. That string is converted into a Lift-
JSON JValue object with the parse function:

val jValue = parse(jsonString)

Once you have a JValue object, use its extract method to create a MailServer object:

val mailServer = jValue.extract[MailServer]

The JValue class is the root class in the Lift-JSON abstract syntax tree (AST), and its
extract method builds a case class instance from a JSON string.

Working with objects that have collections is a little more difficult, and that process is
covered in the next recipe.

See Also

• The Lift-JSON library

• Lift-JSON documentation

15.4. Parsing JSON Data into an Array of Objects

Problem
You have a JSON string that represents an array of objects, and you need to deserialize
it into objects you can use in your Scala application.

Solution
Use a combination of methods from the Lift-JSON library. The following example
demonstrates how to deserialize the string jsonString into a series of EmailAccount
objects, printing each object as it is deserialized:

15.4. Parsing JSON Data into an Array of Objects | 501

https://github.com/lift/framework/tree/master/core/json
http://bit.ly/1aJ22ZN

import net.liftweb.json.DefaultFormats

import net.liftweb.json._

// a case class to match the JSON data

case class EmailAccount(

 accountName: String,

 url: String,

 username: String,

 password: String,

 minutesBetweenChecks: Int,

 usersOfInterest: List[String]

)

object ParseJsonArray extends App {

 implicit val formats = DefaultFormats

 // a JSON string that represents a list of EmailAccount instances

 val jsonString ="""

{

"accounts": [

{ "emailAccount": {

"accountName": "YMail",

"username": "USERNAME",

"password": "PASSWORD",

"url": "imap.yahoo.com",

"minutesBetweenChecks": 1,

"usersOfInterest": ["barney", "betty", "wilma"]

}},

{ "emailAccount": {

"accountName": "Gmail",

"username": "USER",

"password": "PASS",

"url": "imap.gmail.com",

"minutesBetweenChecks": 1,

"usersOfInterest": ["pebbles", "bam-bam"]

}}

]

}

"""

 // json is a JValue instance

 val json = parse(jsonString)

 val elements = (json \\ "emailAccount").children

 for (acct <- elements) {

 val m = acct.extract[EmailAccount]

 println(s"Account: ${m.url}, ${m.username}, ${m.password}")

 println(" Users: " + m.usersOfInterest.mkString(","))

 }

}

502 | Chapter 15: Web Services

Running this program results in the following output:

Account: imap.yahoo.com, USERNAME, PASSWORD

 Users: barney,betty,wilma

Account: imap.gmail.com, USER, PASS

 Users: pebbles,bam-bam

Discussion
I use code like this in my SARAH application to notify me when I receive an email
message from people in the usersOfInterest list. SARAH scans my email inbox peri‐
odically, and when it sees an email message from people in this list, it speaks, “You have
new email from Barney and Betty.”

This example begins with some sample JSON stored in a string named jsonString. This
string is turned into a JValue object named json with the parse function. The json
object is then searched for all elements named emailAccount using the \\ method. This
syntax is nice, because it’s consistent with the XPath-like methods used in Scala’s XML
library.

The for loop iterates over the elements that are found, and each element is extracted as
an EmailAccount object, and the data in that object is then printed.

Notice that the EmailAccount class has the usersOfInterest field, which is defined as
List[String]. The Lift-JSON library converts this sequence easily, with no additional
coding required.

See Also

• The Lift-JSON library is well-documented on GitHub and Assembla.

• SARAH is a voice-interaction application written in Scala.

15.5. Creating Web Services with Scalatra

Problem
You want to be able to build new web services with Scalatra, a lightweight Scala web
framework similar to the Ruby Sinatra library.

Solution
The recommended approach to create a new Scalatra project is to use Giter8, a great
tool for building SBT directories for new projects.

15.5. Creating Web Services with Scalatra | 503

http://alvinalexander.com/sarah
https://github.com/lift/framework/tree/master/core/json
http://www.assembla.com/spaces/liftweb/wiki/JSON_Support
http://alvinalexander.com/sarah
http://www.scalatra.org/
http://www.sinatrarb.com/
https://github.com/n8han/giter8

Assuming you have Giter8 installed, use the g8 command to create a new project with
a Scalatra template:

$ g8 scalatra/scalatra-sbt

organization [com.example]: com.alvinalexander

package [com.example.app]: com.alvinalexander.app

name [My Scalatra Web App]:

scalatra_version [2.2.0]:

servlet_name [MyScalatraServlet]:

scala_version [2.10.0]:

version [0.1.0-SNAPSHOT]:

Template applied in ./my-scalatra-web-app

When Giter8 finishes, move into the new directory it created:

$ cd my-scalatra-web-app

Start SBT in that directory, and then issue the container:start command to start the
Jetty server:

$ sbt

> container:start

// a lot of output here ...

[info] Started SelectChannelConnector@0.0.0.0:8080

[success] Total time: 11 s, completed May 13, 2013 4:32:08 PM

Then use the following command to enable continuous compilation:

> ~ ;copy-resources;aux-compile

1. Waiting for source changes... (press enter to interrupt)

That command is nice; it automatically recompiles your source code when it changes.

The Jetty server starts on port 8080 by default. If you switch to a browser and go to the
URL http://localhost:8080/, you should see some default “Hello, world” output, indi‐
cating that Scalatra is running.

The content displayed at this URL comes from a class named MyScalatraServlet, lo‐
cated in the project’s src/main/scala/com/alvinalexander/app directory:

package com.alvinalexander.app

import org.scalatra._

import scalate.ScalateSupport

class MyScalatraServlet extends MyScalatraWebAppStack {

 get("/") {

 <html>

 <body>

 <h1>Hello, world!</h1>

 Say hello to Scalate.

504 | Chapter 15: Web Services

 </body>

 </html>

 }

}

That’s the entire servlet. If you’re used to building web services with “heavier” tools, this
can be quite a shock.

The get method shown declares that it’s listening to GET requests at the / URI. If you
try accessing another URL like http://localhost:8080/foo in your browser, you’ll see out‐
put like this in the browser:

Requesting "GET /foo" on servlet "" but only have:

GET /

This is because MyScalatraServlet only has one method, and it’s programmed to listen
for a GET request at the / URI.

Add a new service

To demonstrate how the process of adding a new web service works, add a new method
that listens to GET requests at the /hello URI. To do this, just add the following method
to the servlet:

get("/hello") {

 <p>Hello, world!</p>

}

A few moments after saving this change to MyScalatraServlet, you should see some
output in your SBT console. An abridged version of the output looks like this:

[info] Compiling 1 Scala source to target/scala-2.10/classes...

[success] Total time: 8 s

[info] Generating target/scala-2.10/resource_managed/main/rebel.xml.

[info] Compiling Templates in Template Directory:

 src/main/webapp/WEB-INF/templates

[success] Total time: 1 s, completed May 28, 2013 1:56:36 PM

2. Waiting for source changes... (press enter to interrupt)

As a result of the ~ aux-compile command, SBT automatically recompiles your source
code. Once the code is recompiled, you can go to the http://localhost:8080/hello URL in
your browser, where you’ll see the new output.

Congratulations. By following the steps in this recipe, you should have a web service up
and running in a matter of minutes.

Discussion
Giter8 is a tool for creating SBT project directory structures based on templates. The
template used in this example is just one of many Giter8 templates. Giter8 requires SBT

15.5. Creating Web Services with Scalatra | 505

https://github.com/n8han/giter8/wiki/giter8-templates
http://www.scala-sbt.org/

and another tool named Conscript. Despite these requirements, the overall installation
process is simple, and is described in Recipe 18.1.

In addition to the MyScalatraServlet class, this list shows some of the most important
files in your project:

project/build.scala

project/plugins.sbt

src/main/resources/logback.xml

src/main/scala/com/alvinalexander/app/MyScalatraServlet.scala

src/main/scala/com/alvinalexander/app/MyScalatraWebAppStack.scala

src/main/scala/ScalatraBootstrap.scala

src/main/webapp/WEB-INF/web.xml

src/main/webapp/WEB-INF/templates/layouts/default.jade

src/main/webapp/WEB-INF/templates/views/hello-scalate.jade

src/test/scala/com/alvinalexander/app/MyScalatraServletSpec.scala

Notice that this includes a WEB-INF/web.xml file. If you’re used to the Java web pro‐
gramming world, you’ll find that this is a normal web.xml file, albeit a very small one.
Excluding the boilerplate XML, it has only this entry:

<listener>

 <listener-class>org.scalatra.servlet.ScalatraListener</listener-class>

</listener>

You’ll rarely need to edit this file. Recipe 15.6, “Replacing XML Servlet Mappings with
Scalatra Mounts” shows one instance where you’ll need to make a small change to it,
but that’s it.

As shown in the list of files, an interesting thing about the current Giter8 template for
Scalatra is that it uses a project/build.scala file rather than a build.sbt file. You can find
all of Scalatra’s dependencies in that file, including the use of tools such as the Scalate
template engine, specs2, Logback, and Jetty.

See Also

• The Scalatra website

• The Giter8 website

• Recipe 18.1, “Creating a Project Directory Structure for SBT” for how to install
Giter8, and use it in other scenarios

506 | Chapter 15: Web Services

https://github.com/n8han/conscript
http://scalate.fusesource.org/
http://scalate.fusesource.org/
http://etorreborre.github.io/specs2/
http://logback.qos.ch/
http://www.eclipse.org/jetty/
http://www.scalatra.org/
https://github.com/n8han/giter8/

15.6. Replacing XML Servlet Mappings with Scalatra
Mounts

Problem
You want to add new servlets to your Scalatra application, and need to know how to add
them, including defining their URI namespace.

Solution
Scalatra provides a nice way of getting you out of the business of declaring your servlets
and servlet mappings in the web.xml file. Simply create a boilerplate web.xml file like
this in the src/main/webapp/WEB-INF directory:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee ↵

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

 version="3.0">

 <listener>

 <listener-class>org.scalatra.servlet.ScalatraListener</listener-class>

 </listener>

 <servlet-mapping>

 <servlet-name>default</servlet-name>

 <url-pattern>/img/*</url-pattern>

 <url-pattern>/css/*</url-pattern>

 <url-pattern>/js/*</url-pattern>

 <url-pattern>/assets/*</url-pattern>

 </servlet-mapping>

</web-app>

Next, assuming that you’re working with the application created in Recipe 15.5, edit the
src/main/scala/ScalatraBootstrap.scala file so that it has these contents:

import org.scalatra._

import javax.servlet.ServletContext

import com.alvinalexander.app._

class ScalatraBootstrap extends LifeCycle {

 override def init(context: ServletContext) {

 // created by default

 context.mount(new MyScalatraServlet, "/*")

 // new

 context.mount(new StockServlet, "/stocks/*")

 context.mount(new BondServlet, "/bonds/*")

15.6. Replacing XML Servlet Mappings with Scalatra Mounts | 507

 }

}

The two new context.mount lines shown tell Scalatra that a class named StockServlet
should handle all URI requests that begin with /stocks/, and another class named
BondServlet should handle all URI requests that begin with /bonds/.

Next, create a file named src/main/scala/com/alvinalexander/app/OtherServlets.scala to

define the StockServlet and BondServlet classes:

package com.alvinalexander.app

import org.scalatra._

import scalate.ScalateSupport

class StockServlet extends MyScalatraWebAppStack {

 get("/") {

 <p>Hello from StockServlet</p>

 }

}

class BondServlet extends MyScalatraWebAppStack {

 get("/") {

 <p>Hello from BondServlet</p>

 }

}

Assuming your project is still configured to recompile automatically, when you access
the http://localhost:8080/stocks/ and http://localhost:8080/bonds/ URLs, you should see
the content from your new servlets.

Discussion
Scalatra refers to this configuration process as “mounting” the servlets, and if you’ve
used a filesystem technology like NFS, it does indeed feel similar to the process of
mounting a remote filesystem.

As a result of the configuration, new methods in the StockServlet and BondServlet
will be available under the /stocks/ and /bonds/ URIs. For example, if you define a new
method like this in the StockServlet:

get("/foo") {

 <p>Foo!</p>

}

you’ll be able to access this method at the /stocks/foo URI, e.g., the http://localhost:8080/
stocks/foo URL, if you’re running on port 8080 on your local computer.

In the end, this approach provides the same functionality as servlet mappings, but it’s
more concise, with the added benefit that you’re working in Scala code instead of XML,
and you can generally forget about the web.xml file after the initial configuration.

508 | Chapter 15: Web Services

See Also

Scalatra configuration and deployment guide

15.7. Accessing Scalatra Web Service GET Parameters

Problem
When creating a Scalatra web service, you want to be able to handle parameters that are
passed into a method using a GET request.

Solution
If you want to let parameters be passed into your Scalatra servlet with a URI that uses
traditional ? and & characters to separate data elements, like this:

http://localhost:8080/saveName?fname=Alvin&lname=Alexander

you can access them through the implicit params variable in a get method:

/**

* The URL

* http://localhost:8080/saveName?fname=Alvin&lname=Alexander

* prints: Some(Alvin), Some(Alexander)

*/

get("/saveName") {

 val firstName = params.get("fname")

 val lastName = params.get("lname")

 <p>{firstName}, {lastName}</p>

}

However, Scalatra also lets you use a “named parameters” approach, which can be more
convenient, and also documents the parameters your method expects to receive. Using
this approach, callers can access a URL like this:

http://localhost:8080/hello/Alvin/Alexander

You can handle these parameters in a get method like this:

get("/hello/:fname/:lname") {

 <p>Hello, {params("fname")}, {params("lname")}</p>

}

As mentioned, a benefit of this approach is that the method signature documents the
expected parameters.

With this approach, you can use wildcard characters for other needs, such as when a
client needs to pass in a filename path, where you won’t know the depth of the path
beforehand:

15.7. Accessing Scalatra Web Service GET Parameters | 509

http://www.scalatra.org/2.2/guides/deployment/configuration.html

get("/getFilename/*.*") {

 val data = multiParams("splat")

 <p>{data.mkString("[", ", ", "]")}</p>

}

You can understand this method by looking at a specific example. Imagine a GET request
to the http://localhost:8080/getFilename/Users/Al/tmp/file.txt URL. The comments in
the following code show how this URL is handled:

/**

* (1) GET http://localhost:8080/getFilename/Users/Al/tmp/file.txt

*/

get("/getFilename/*.*") {

 // (2) creates a Vector(Users/Al/tmp/file, txt)

 val data = multiParams("splat")

 // (3) prints: [Users/Al/tmp/file, txt]

 <pre>{data.mkString("[", ", ", "]")}</pre>

}

This code works because the multiParams method with the splat argument creates a
Vector that contains two elements: the strings Users/Al/tmp/file and txt. Next, the
information is printed back to the browser with the data.mkString line. In a real-world
program, you can put the filename back together by merging data(0) and data(1), and
then using the filename as needed.

There are more methods for parsing GET request parameters with Scalatra, including
additional uses of wildcard characters, and Rails-like pattern matching. See the latest
Scalatra documentation for more information.

15.8. Accessing POST Request Data with Scalatra

Problem
You want to write a Scalatra web service method to handle POST data, such as handling
JSON data sent as a POST request.

Solution
To handle a POST request, write a post method in your Scalatra servlet, specifying the
URI the method should listen at:

post("/saveJsonStock") {

 val jsonString = request.body

 // deserialize the JSON ...

}

510 | Chapter 15: Web Services

http://scalatra.org/guides/

As shown, access the data that’s passed to the POST request by calling the request.body
method.

The Discussion shows an example of how to process JSON data received in a post
method, and two clients you can use to test a post method: a Scala client, and a
command-line client that uses the Unix curl command.

Discussion
Recipe 15.3 shows how to convert a JSON string into a Scala object using the Lift-JSON
library, in a process known as deserialization. In a Scalatra post method, you access a
JSON string that has been POSTed to your method by calling request.body. Once you
have that string, deserialize it using the approach shown in Recipe 15.3.

For instance, the post method in the following StockServlet shows how to convert
the JSON string it receives as a POST request and deserialize it into a Stock object. The
comments in the code explain each step:

package com.alvinalexander.app

import org.scalatra._

import scalate.ScalateSupport

import net.liftweb.json._

class StockServlet extends MyScalatraWebAppStack {

 /**

* Expects an incoming JSON string like this:

* {"symbol":"GOOG","price":"600.00"}

*/

 post("/saveJsonStock") {

 // get the POST request data

 val jsonString = request.body

 // needed for Lift-JSON

 implicit val formats = DefaultFormats

 // convert the JSON string to a JValue object

 val jValue = parse(jsonString)

 // deserialize the string into a Stock object

 val stock = jValue.extract[Stock]

 // for debugging

 println(stock)

 // you can send information back to the client

 // in the response header

 response.addHeader("ACK", "GOT IT")

15.8. Accessing POST Request Data with Scalatra | 511

 }

}

// a simple Stock class

class Stock (var symbol: String, var price: Double) {

 override def toString = symbol + ", " + price

}

The last step to get this working is to add the Lift-JSON dependency to your project.
Assuming that you created your project as an SBT project as shown in Recipe 15.1, add
this dependency to the libraryDependencies declared in the project/build.scala file in
your project:

"net.liftweb" %% "lift-json" % "2.5+"

Test the POST method with Scala code

As shown in the code comments, the post method expects a JSON string with this form:

{"symbol":"GOOG","price":600.00}

You can test your post method in a variety of ways, including (a) a Scala POST client or
(b) a simple shell script. The following PostTester object shows how to test the post
method with a Scala client:

import net.liftweb.json._

import net.liftweb.json.Serialization.write

import org.apache.http.client.methods.HttpPost

import org.apache.http.entity.StringEntity

import org.apache.http.impl.client.DefaultHttpClient

object PostTester extends App {

 // create a Stock and convert it to a JSON string

 val stock = new Stock("AAPL", 500.00)

 implicit val formats = DefaultFormats

 val stockAsJsonString = write(stock)

 // add the JSON string as a StringEntity to a POST request

 val post = new HttpPost("http://localhost:8080/stocks/saveJsonStock")

 post.setHeader("Content-type", "application/json")

 post.setEntity(new StringEntity(stockAsJsonString))

 // send the POST request

 val response = (new DefaultHttpClient).execute(post)

 // print the response

 println("--- HEADERS ---")

 response.getAllHeaders.foreach(arg => println(arg))

}

512 | Chapter 15: Web Services

class Stock (var symbol: String, var price: Double)

The code starts by creating a Stock object and converting the object to a JSON string
using Lift-JSON. It then uses the methods of the Apache HttpClient library to send the
JSON string as a POST request: it creates an HttpPost object, sets the header content
type, then wraps the JSON string as a StringEntity object before sending the POST
request and waiting for the response.

When this test object is run against the Scalatra saveJsonStock method, it results in
the following output:

--- HEADERS ---

ACK: GOT IT

Content-Type: text/html;charset=UTF-8

Content-Length: 0

Server: Jetty(8.1.8.v20121106)

Note that it receives the ACK message that was returned by the Scalatra post method.
This isn’t required, but it gives the client a way to confirm that the data was properly
received and processed by the server method (or that it failed).

Test the POST method with a curl command

Another way to test the post method is with a Unix shell script. The following curl
command sets the Content-type header, and sends a sample JSON string to the Scalatra
StockServlet post method as a POST request:

curl \

 --header "Content-type: application/json" \

 --request POST \

 --data '{"symbol":"GOOG", "price":600.00}' \

 http://localhost:8080/stocks/saveJsonStock

On Unix systems, save this command to a file named postJson.sh, and then make it
executable:

$ chmod +x postJson.sh

Then run it to test your Scalatra web service:

$./postJson.sh

You won’t see any output from this command, but you should see the correct debugging
output printed by the StockServlet in its output window. Assuming that you’re run‐
ning your Scalatra web service using SBT, the debug output will appear there.

Notes

Recent versions of Scalatra use the Json4s library to deserialize JSON. This library is
currently based on Lift-JSON, so the deserialization code will be similar, if not exactly
the same. Either library will have to be added as a dependency.

15.8. Accessing POST Request Data with Scalatra | 513

The other important parts about this recipe are:

• Knowing to use the post method to handle a POST request

• Using request.body to get the POST data

• Using response.addHeader("ACK", "GOT IT") to return a success or failure mes‐
sage to the client (though this is optional)

• Having POST request client programs you can use

15.9. Creating a Simple GET Request Client

Problem
You want an HTTP client you can use to make GET request calls.

Solution
There are many potential solutions to this problem. This recipe demonstrates three
approaches:

• A simple use of the scala.io.Source.fromURL method

• Adding a timeout wrapper around scala.io.Source.fromURL to make it more
robust

• Using the Apache HttpClient library

These solutions are demonstrated in the following sections.

A simple use of scala.io.Source.fromURL

If it doesn’t matter that your web service client won’t time out in a controlled manner,
you can use this simple method to download the contents from a URL:

/**

* Returns the text (content) from a URL as a String.

* Warning: This method does not time out when the service is non-responsive.

*/

def get(url: String) = scala.io.Source.fromURL(url).mkString

This GET request method lets you call the given RESTful URL to retrieve its content. You
can use it to download web pages, RSS feeds, or any other content using an HTTP GET
request.

Under the covers, the Source.fromURL method uses classes like java.net.URL and
java.io.InputStream, so this method can throw exceptions that extend from

514 | Chapter 15: Web Services

java.io.IOException. As a result, you may want to annotate your method to indicate
that:

@throws(classOf[java.io.IOException])

def get(url: String) = io.Source.fromURL(url).mkString

Setting the timeout while using scala.io.Source.fromURL

As mentioned, that simple solution suffers from a significant problem: it doesn’t time
out if the URL you’re calling is unresponsive. If the web service you’re calling isn’t re‐
sponding, your code will become unresponsive at this point as well.

Therefore, a better approach is to write a similar method that allows the setting of a
timeout value. By using a combination of java.net classes and the method

io.Source.fromInputStream, you can create a more robust method that lets you con‐
trol both the connection and read timeout values:

/**

* Returns the text (content) from a REST URL as a String.

* Inspired by http://matthewkwong.blogspot.com/2009/09/↵

scala-scalaiosource-fromurl-blockshangs.html

 * and http://alvinalexander.com/blog/post/java/how-open-url-↵

read-contents-httpurl-connection-java

 *

 * The `connectTimeout` and `readTimeout` comes from the Java URLConnection

 * class Javadoc.

 * @param url The full URL to connect to.

 * @param connectTimeout Sets a specified timeout value, in milliseconds,

 * to be used when opening a communications link to the resource referenced

 * by this URLConnection. If the timeout expires before the connection can

 * be established, a java.net.SocketTimeoutException

 * is raised. A timeout of zero is interpreted as an infinite timeout.

 * Defaults to 5000 ms.

 * @param readTimeout If the timeout expires before there is data available

 * for read, a java.net.SocketTimeoutException is raised. A timeout of zero

 * is interpreted as an infinite timeout. Defaults to 5000 ms.

 * @param requestMethod Defaults to "GET". (Other methods have not been tested.)

 *

 * @example get("http://www.example.com/getInfo")

 * @example get("http://www.example.com/getInfo", 5000)

 * @example get("http://www.example.com/getInfo", 5000, 5000)

 */

@throws(classOf[java.io.IOException])

@throws(classOf[java.net.SocketTimeoutException])

def get(url: String,

 connectTimeout:Int =5000,

 readTimeout:Int =5000,

 requestMethod: String = "GET") = {

 import java.net.{URL, HttpURLConnection}

 val connection = (new URL(url)).openConnection.asInstanceOf[HttpURLConnection]

 connection.setConnectTimeout(connectTimeout)

 connection.setReadTimeout(readTimeout)

15.9. Creating a Simple GET Request Client | 515

 connection.setRequestMethod(requestMethod)

 val inputStream = connection.getInputStream

 val content = io.Source.fromInputStream(inputStream).mkString

 if (inputStream != null) inputStream.close

 content

}

As the Scaladoc shows, this method can be called in a variety of ways, including this:

try {

 val content = get("http://localhost:8080/waitForever")

 println(content)

} catch {

 case ioe: java.io.IOException => // handle this

 case ste: java.net.SocketTimeoutException => // handle this

}

I haven’t tested this method with other request types, such as PUT or DELETE, but I have
allowed for this possibility by making the requestMethod an optional parameter.

Using the Apache HttpClient

Another approach you can take is to use the Apache HttpClient library. Before I learned
about the previous approaches, I wrote a getRestContent method using this library
like this:

import java.io._

import org.apache.http.{HttpEntity, HttpResponse}

import org.apache.http.client._

import org.apache.http.client.methods.HttpGet

import org.apache.http.impl.client.DefaultHttpClient

import scala.collection.mutable.StringBuilder

import scala.xml.XML

import org.apache.http.params.HttpConnectionParams

import org.apache.http.params.HttpParams

/**

* Returns the text (content) from a REST URL as a String.

* Returns a blank String if there was a problem.

* This function will also throw exceptions if there are problems trying

* to connect to the url.

*

* @param url A complete URL, such as "http://foo.com/bar"

* @param connectionTimeout The connection timeout, in ms.

* @param socketTimeout The socket timeout, in ms.

*/

def getRestContent(url: String,

 connectionTimeout: Int,

 socketTimeout: Int): String = {

 val httpClient = buildHttpClient(connectionTimeout, socketTimeout)

 val httpResponse = httpClient.execute(new HttpGet(url))

 val entity = httpResponse.getEntity

 var content = ""

516 | Chapter 15: Web Services

 if (entity != null) {

 val inputStream = entity.getContent

 content = io.Source.fromInputStream(inputStream).getLines.mkString

 inputStream.close

 }

 httpClient.getConnectionManager.shutdown

 content

}

private def buildHttpClient(connectionTimeout: Int, socketTimeout: Int):

DefaultHttpClient = {

 val httpClient = new DefaultHttpClient

 val httpParams = httpClient.getParams

 HttpConnectionParams.setConnectionTimeout(httpParams, connectionTimeout)

 HttpConnectionParams.setSoTimeout(httpParams, socketTimeout)

 httpClient.setParams(httpParams)

 httpClient

}

This requires significantly more code than the Source.fromURL approaches, as well as
the HttpClient library. If you’re already using the Apache HttpClient library for other
purposes, this is a viable alternative. As shown in Recipes 15.11 and 15.12, the HttpClient
library definitely has advantages in situations such as working with request headers.

Discussion
There are several other approaches you can take to handle this timeout problem. One
is to use the Akka Futures as a wrapper around the Source.fromURL method call. See
Recipe 13.9, “Simple Concurrency with Futures” for an example of how to use that
approach.

Also, new libraries are always being released. A library named Newman was released
by StackMob as this book was in the production process, and looks promising. The
Newman DSL was inspired by the Dispatch library, but uses method names instead of
symbols, and appears to be easier to use as a result. It also provides separate methods
for the GET, POST, PUT, DELETE, and HEAD request methods.

See Also

• Matthew Kwong’s Source.fromURL timeout approach.

• If you prefer asynchronous programming, you can mix this recipe with Scala Fu‐
tures, which are demonstrated in Chapter 13. Another option is the Dispatch li‐
brary. As its documentation states, “Dispatch is a library for asynchronous HTTP
interaction. It provides a Scala vocabulary for Java’s async-http-client.”

• Newman, from StackMob.

15.9. Creating a Simple GET Request Client | 517

https://github.com/stackmob/newman
http://bit.ly/18lwkV3
http://dispatch.databinder.net/Dispatch.html
https://github.com/stackmob/newman

15.10. Sending JSON Data to a POST URL

Problem
You want to send JSON data (or other data) to a POST URL, either from a standalone
client, or when using a framework that doesn’t provide this type of service.

Solution
Create a JSON string using your favorite JSON library, and then send the data to the
POST URL using the Apache HttpClient library. In the following example, the Gson
library is used to construct a JSON string, which is then sent to a server using the
methods of the HttpClient library:

import java.io._

import org.apache.commons._

import org.apache.http._

import org.apache.http.client._

import org.apache.http.client.methods.HttpPost

import org.apache.http.impl.client.DefaultHttpClient

import java.util.ArrayList

import org.apache.http.message.BasicNameValuePair

import org.apache.http.client.entity.UrlEncodedFormEntity

import com.google.gson.Gson

case class Person(firstName: String, lastName: String, age: Int)

object HttpJsonPostTest extends App {

 // create our object as a json string

 val spock = new Person("Leonard", "Nimoy", 82)

 val spockAsJson = new Gson().toJson(spock)

 // add name value pairs to a post object

 val post = new HttpPost("http://localhost:8080/posttest")

 val nameValuePairs = new ArrayList[NameValuePair]()

 nameValuePairs.add(new BasicNameValuePair("JSON", spockAsJson))

 post.setEntity(new UrlEncodedFormEntity(nameValuePairs))

 // send the post request

 val client = new DefaultHttpClient

 val response = client.execute(post)

 println("--- HEADERS ---")

 response.getAllHeaders.foreach(arg => println(arg))

}

518 | Chapter 15: Web Services

Discussion
The Gson library is used to construct a JSON string in this code because this is a simple
example. For more complex cases, you’ll probably want to use the Lift-JSON library, as
discussed in the first several recipes of this chapter.

In this example, once you’ve constructed a JSON string from a Scala object, the Apache
HttpClient NameValuePair, BasicNameValuePair, and UrlEncodedFormEntity classes
are used to set an Entity on an HttpPost object. In the last lines of the code, the POST
request is sent using the client.execute call, the response is received, and the response
headers are printed (though this isn’t necessary).

See Also

• Recipe 15.1, “Creating a JSON String from a Scala Object” and Recipe 15.2, “Cre‐
ating a JSON String from Classes That Have Collections”.

• The Lift-JSON library.

• The Google Gson library.

• Dispatch is a “library for asynchronous HTTP interaction.”

15.11. Getting URL Headers

Problem
You need to access the HTTP response headers after making an HTTP request.

Solution
Use the Apache HttpClient library, and get the headers from the HttpResponse object
after making a request:

import org.apache.http.client.methods.HttpGet

import org.apache.http.impl.client.DefaultHttpClient

object FetchUrlHeaders extends App {

 val get = new HttpGet("http://alvinalexander.com/")

 val client = new DefaultHttpClient

 val response = client.execute(get)

 response.getAllHeaders.foreach(header => println(header))

}

Running that program prints the following header output:

15.11. Getting URL Headers | 519

https://github.com/lift/framework/tree/master/core/json
http://code.google.com/p/google-gson/
http://dispatch.databinder.net/Dispatch.html

Server: nginx/1.0.10

Date: Sun, 15 Jul 2012 19:10:19 GMT

Content-Type: text/html; charset=utf-8

Connection: keep-alive

Keep-Alive: timeout=20

Content-Length: 28862

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Expires: Sun, 19 Nov 1978 05:00:00 GMT

Vary: Accept-Encoding

Discussion
When I worked with a Single Sign-On (SSO) system named OpenSSO from Sun (now
known as OpenAM), much of the work in the sign-on process involved setting and
reading header information. The HttpClient library greatly simplifies this process.

See Also

• Apache HttpClient library.

• You may also be able to use the Dispatch library for this purpose.

15.12. Setting URL Headers When Sending a Request

Problem
You need to set URL headers when making an HTTP request.

Solution
Use the Apache HttpClient library to set the headers before making the request, as shown
in this example:

import org.apache.http.client.methods.HttpGet

import org.apache.http.impl.client.DefaultHttpClient

object SetUrlHeaders extends App {

 val url = "http://localhost:9001/baz"

 val httpGet = new HttpGet(url)

 // set the desired header values

 httpGet.setHeader("KEY1", "VALUE1")

 httpGet.setHeader("KEY2", "VALUE2")

 // execute the request

 val client = new DefaultHttpClient

 client.execute(httpGet)

520 | Chapter 15: Web Services

http://www.forgerock.com/openam.html
http://hc.apache.org/httpclient-3.x/
http://dispatch.databinder.net/Dispatch.html

 client.getConnectionManager.shutdown

}

Discussion
If you don’t have a web server to test against, you can use a tool like HttpTea to see the
results of running this program. HttpTea helps to simulate a server in a test environment.

Start HttpTea at the command line to listen on port 9001 like this:

$ java -jar HttpTea.jar -l 9001

Now when you run your client program—such as the program shown in the Solution—
you should see the following output from HttpTea, including the headers that were set:

Client>>>

GET /baz HTTP/1.1

KEY1: VALUE1

KEY2: VALUE2

Host: localhost:9001

Connection: Keep-Alive

User-Agent: Apache-HttpClient/4.1.3 (java 1.5)

See Also

• HttpTea.

• Apache HttpClient library.

• You may also be able to use the Dispatch library for this purpose.

15.13. Creating a GET Request Web Service with the Play
Framework

Problem
You want to create a GET request web service using the Play Framework, such as re‐
turning a JSON string when the web service URI is accessed.

Solution
When working with RESTful web services, you’ll typically be converting between one
or more model objects and their JSON representation.

To demonstrate how a GET request might be used to return the JSON representation of
an object, create a new Play project with the play new command:

15.13. Creating a GET Request Web Service with the Play Framework | 521

http://httptea.sourceforge.net/
http://httptea.sourceforge.net/
http://hc.apache.org/httpclient-3.x/
http://dispatch.databinder.net/Dispatch.html

$ play new WebServiceDemo

Respond to the prompts to create a new Scala application, and then move into the
WebServiceDemo directory that’s created.

Next, assume that you want to create a web service to return an instance of a Stock when
a client makes a GET request at the /getStock URI. To do this, first add this line to your
conf/routes file:

GET /getStock controllers.Application.getStock

Next, create a method named getStock in the default Application controller
(apps/controllers/Application.scala), and have it return a JSON representation of a Stock
object:

package controllers

import play.api._

import play.api.mvc._

import play.api.libs.json._

import models.Stock

object Application extends Controller {

 def index = Action {

 Ok(views.html.index("Your new application is ready."))

 }

 def getStock = Action {

 val stock = Stock("GOOG", 650.0)

 Ok(Json.toJson(stock))

 }

}

That code uses the Play Json.toJson method. Although the code looks like you can
create Stock as a simple case class, attempting to use only a case class will result in this
error when you access the /getStock URI:

No Json deserializer found for type models.Stock. Try to implement an implicit Writes
or Format for this type.

To get this controller code to work, you need to create an instance of a Format object to
convert between the Stock model object and its JSON representation. To do this, create
a model file named Stock.scala in the app/models directory of your project. (Create the
directory if it doesn’t exist.)

In that file, define the Stock case class, and then implement a
play.api.libs.json.Format object. In that object, define a reads method to convert
from a JSON string to a Stock object and a writes method to convert from a Stock
object to a JSON string:

522 | Chapter 15: Web Services

package models

case class Stock(symbol: String, price: Double)

object Stock {

 import play.api.libs.json._

 implicit object StockFormat extends Format[Stock] {

 // convert from JSON string to a Stock object (de-serializing from JSON)

 def reads(json: JsValue): JsResult[Stock] = {

 val symbol = (json \ "symbol").as[String]

 val price = (json \ "price").as[Double]

 JsSuccess(Stock(symbol, price))

 }

 // convert from Stock object to JSON (serializing to JSON)

 def writes(s: Stock): JsValue = {

 // JsObject requires Seq[(String, play.api.libs.json.JsValue)]

 val stockAsList = Seq("symbol" -> JsString(s.symbol),

 "price" -> JsNumber(s.price))

 JsObject(stockAsList)

 }

 }

}

The comments in that code help to explain how the reads and writes methods work.

With this code in place, you can now access the getStock web service. If you haven’t
already done so, start the Play console from within the root directory of your project,
then issue the run command:

$ play

[WebServiceDemo] $ run 8080

Play runs on port 9000 by default, but this collides with other services on my system,
so I run it on port 8080, as shown. Assuming that you’re running on port 8080, access
the http://localhost:8080/getStock URL from a web browser. You should see this result
in the browser:

{"symbol":"GOOG","price":650.0}

Discussion
When converting from a Stock object to its JSON representation, the writes method
of your Format object is implicitly used in this line of code:

Json.toJson(stock)

15.13. Creating a GET Request Web Service with the Play Framework | 523

Although there are other approaches to converting between objects and their JSON
representation, implementing the reads and writes methods of a Format object pro‐
vides a straightforward means for this serialization and deserialization process.

See Also

The Play json package object

15.14. POSTing JSON Data to a Play Framework Web
Service

Problem
You want to create a web service using the Play Framework that lets users send JSON
data to the service using the POST request method.

Solution
Follow the steps from the previous recipe to create a new Play project, controller, and
model.

Whereas the previous recipe used the writes method of the Format object in the model,
this recipe uses the reads method. When JSON data is received in a POST request, the
reads method is used to convert from the JSON string that’s received to a Stock object.
Here’s the code for the reads method:

def reads(json: JsValue): JsResult[Stock] = {

 val symbol = (json \ "symbol").as[String]

 val price = (json \ "price").as[Double]

 JsSuccess(Stock(symbol, price))

}

This method creates a Stock object from the JSON value it’s given. (The complete code
for the model object is shown in the previous recipe.)

With this method added to the model, create a saveStock method in the Application
controller:

import play.api._

import play.api.mvc._

object Application extends Controller {

 import play.api.libs.json.Json

 def saveStock = Action { request =>

 val json = request.body.asJson.get

524 | Chapter 15: Web Services

http://bit.ly/12ubzOT

 val stock = json.as[Stock]

 println(stock)

 Ok

 }

}

The saveStock method gets the JSON data sent to it from the request object, and then
converts it with the json.as method. The println statement in the method is used for
debugging purposes, and prints to the Play command line (the Play console).

Finally, add a route that binds a POST request to the desired URI and the saveStock
method in the Application controller by adding this line to the conf/routes file:

POST /saveStock controllers.Application.saveStock

If you haven’t already done so, start the Play console from within the root directory of
your project, and issue the run command:

$ play

[WebServicesDemo] $ run 8080

With the Play server running, use the following Unix curl command to POST a sample
JSON string to your saveStock web service:

curl \

 --header "Content-type: application/json" \

 --request POST \

 --data '{"symbol":"GOOG", "price":900.00}' \

 http://localhost:8080/saveStock

If everything works properly, you should see this output in your Play console window:

STOCK: Stock(GOOG,900.0)

Discussion
A few notes about the code:

• The request object is a play.api.mvc.AnyContent object.

• The request.body is also a play.api.mvc.AnyContent object.

• The request.body.asJson returns an instance of the following:
Option[play.api.libs.json.JsValue].

• request.body.asJson.get returns a JsValue.

In a real-world web service, once you’ve converted the JSON string to an object, you
can do anything else you need to do with it, such as saving it to a database.

15.14. POSTing JSON Data to a Play Framework Web Service | 525

See Also

• The Play json package object

• The Play Request trait

526 | Chapter 15: Web Services

http://bit.ly/12ubzOT
http://bit.ly/16GF3uf

CHAPTER 16

Databases and Persistence

Introduction
With Scala, you can interact with traditional relational databases using their JDBC
drivers, just like you do in Java. As an example of this, the first recipe in this chapter
demonstrates how to connect to a MySQL database using the “plain old JDBC” ap‐
proach.

In the real world, once applications grow in size, few people use plain old JDBC to work
with databases. Typically on those projects you use a library, such as the Spring Frame‐
work, to make development easier and handle issues like connection pooling. Therefore,
this chapter also demonstrates the few changes you’ll need to make to use the Spring
JDBC library with Scala. As an added benefit, by showing the changes needed to in‐
stantiate a bean from a Spring application context file, this recipe will help you use other
Spring libraries with Scala as well. You can use other technologies with Scala, such as
the Java Persistence API (JPA) and Hibernate, with just a few changes.

The Scala community is also developing new approaches to database development. The
Squeryl and Slick libraries both take “type-safe” approaches to writing database code.
The Squeryl documentation states that it’s a “Scala ORM and DSL.” In a manner similar
to Hibernate, Squeryl lets you write database code like this:

// insert

val bill = people.insert(new Person("Bill"))

val candy = people.insert(new Person("Candy"))

// update

stock.price = 500.00

stocks.update(stock)

With Squeryl’s DSL, you can also write statements like this:

update(stocks)(s =>

 where(s.symbol === "AAPL")

527

http://www.springsource.org/spring-framework
http://www.springsource.org/spring-framework
http://squeryl.org/
http://slick.typesafe.com/

 set(s.price := 500.00)

)

Slick isn’t an object-relational mapping (ORM) tool, but with its type-safe approach, it
lets you write database access code almost like you’re working with a collection. This
approach is demonstrated in the last recipe in this chapter.

When you get to “big data” projects, it’s nice to know that Scala works there as well.
There are several Scala drivers available for the MongoDB database, including Casbah
and ReactiveMongo. The recipes in this chapter demonstrate how to use the Casbah
driver to insert, update, read, and delete objects in a MongoDB collection with Scala.

If you want to use Scala to work with Hadoop, Twitter has created a project named
Scalding that “makes it easy to specify Hadoop MapReduce jobs.” Scalding is analogous
to the Apache Pig project, but is tightly integrated with Scala. Scalding and Hadoop are
not covered in this chapter, but the Scalding source code tutorials can help you quickly
get up and running with Scalding.

16.1. Connecting to MySQL with JDBC

Problem
You want to connect to a MySQL database (or any other database with a JDBC driver)
from a Scala application using “plain old JDBC.”

Solution
Use JDBC just like you would in a Java application. Download the MySQL JDBC driver,
and then access your database with code like this:

package tests

import java.sql.{Connection,DriverManager}

object ScalaJdbcConnectSelect extends App {

 // connect to the database named "mysql" on port 8889 of localhost

 val url = "jdbc:mysql://localhost:8889/mysql"

 val driver = "com.mysql.jdbc.Driver"

 val username = "root"

 val password = "root"

 var connection:Connection = _

528 | Chapter 16: Databases and Persistence

http://www.mongodb.org/
https://github.com/mongodb/casbah
http://reactivemongo.org/
https://github.com/twitter/scalding
http://pig.apache.org/
https://github.com/twitter/scalding/tree/master/tutorial

 try {

 Class.forName(driver)

 connection = DriverManager.getConnection(url, username, password)

 val statement = connection.createStatement

 val rs = statement.executeQuery("SELECT host, user FROM user")

 while (rs.next) {

 val host = rs.getString("host")

 val user = rs.getString("user")

 println("host = %s, user = %s".format(host,user))

 }

 } catch {

 case e: Exception => e.printStackTrace

 }

 connection.close

}

That code shows how to query a database table named user in a database named
mysql. That database name and table name are standard in any MySQL installation.

As shown in the example, the format of the MySQL JDBC URL string is:

jdbc:mysql://HOST:PORT/DATABASE

In this code I have MySQL running on port 8889 on my computer because it’s the default
port when using MAMP, a tool that makes it easy to run MySQL, Apache, and PHP on
Mac OS X systems. If you have MySQL running on its standard port (3306), just drop
the port off the URL string.

Discussion
The easiest way to run this example is to use the Simple Build Tool (SBT). To do this,
create an SBT directory structure as described in Recipe 18.1, “Creating a Project Di‐
rectory Structure for SBT”, then add the MySQL JDBC dependency to the build.sbt file:

libraryDependencies += "mysql" % "mysql-connector-java" % "5.1.24"

Copy and paste the code shown in this recipe into a file named Test1.scala in the root
directory of your project, and then run the program:

$ sbt run

You should see some output like this:

host = localhost, user =

host = localhost, user = fred

That output will vary depending on the users actually defined in your MySQL database.

This recipe works well for small applications where you want one connection to a da‐
tabase, and you don’t mind running simple JDBC SQL queries using the Statement,
PreparedStatement, and ResultSet classes. For larger applications, you’ll want to use

16.1. Connecting to MySQL with JDBC | 529

http://www.mamp.info/en/index.html
https://github.com/harrah/xsbt/wiki

a tool that gives you connection pooling capabilities, and possibly DSL or ORM capa‐
bilities to simplify your SQL queries.

If you’re using a different relational database, the approach is the same as long as the
database provides a JDBC driver. For instance, to use PostgreSQL, just use the Post‐
greSQL JDBC driver and this information to create a connection:

Class.forName("org.postgresql.Driver")

val url = "jdbc:postgresql://HOST/DATABASE"

val conn = DriverManager.getConnection(url,"username", "password")

Of course your database tables will be different, but the process of connecting to the
database is the same.

See Also

• The MySQL JDBC driver.

• MAMP.

• The Simple Build Tool (SBT).

• Recipe 18.1, “Creating a Project Directory Structure for SBT” shows how to create
an SBT directory structure.

• If you’re new to MySQL and JDBC, I wrote a series of MySQL JDBC tutorials that
can help you get started.

16.2. Connecting to a Database with the Spring
Framework

Problem
You want to connect to a database using the Spring Framework. This gives you a nice
way to add connection pooling and other capabilities to your SQL code.

Solution
Use the same Spring Framework configuration you’ve used in Java applications, but
convert your Java source code to Scala. The biggest changes involve the differences in
class casting between Java and Scala, and conversions between Java and Scala collections.

530 | Chapter 16: Databases and Persistence

http://www.postgresql.org/
http://jdbc.postgresql.org/
http://jdbc.postgresql.org/
http://dev.mysql.com/downloads/connector/j/
http://www.mamp.info/
http://www.scala-sbt.org/
http://alvinalexander.com/java/java-mysql-examples
http://www.springsource.org/

Discussion
To demonstrate this, create a basic Spring JDBC example. Start by creating a simple SBT
project directory structure as demonstrated in Recipe 18.1, “Creating a Project Direc‐
tory Structure for SBT”.

Once the SBT directory structure is created, place this Spring applicationContext.xml

file in the src/main/resources directory:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

 <bean id="testDao" class="springtests.TestDao">

 <property name="dataSource" ref="basicDataSource"/>

 </bean>

 <bean id="basicDataSource" class="org.apache.commons.dbcp.BasicDataSource">

 <property name="driverClassName" value="com.mysql.jdbc.Driver" />

 <property name="url" value="jdbc:mysql://localhost/mysql" />

 <property name="username" value="root" />

 <property name="password" value="root" />

 <property name="initialSize" value="1" />

 <property name="maxActive" value="5" />

 </bean>

</beans>

This file declares that you’ll have a class named TestDao in a package named
springtests. This bean declaration will be used in the Main object, which you’ll create
shortly.

This file also lets you connect to a MySQL database named mysql, on the default port
(3306) of the localhost server, with the username and password both set to root. The
initialSize and maxActive settings let you control the database connection pool set‐
tings. Change those properties as needed for your system.

You’ll need to add a number of dependencies to your build.sbt file to get Spring to work:

name := "MySQLTest1"

version := "1.0"

scalaVersion := "2.10.1"

libraryDependencies ++= Seq(

 "mysql" % "mysql-connector-java" % "5.1.+",

 "commons-dbcp" % "commons-dbcp" % "1.4",

 "org.springframework" % "spring-core" % "3.1+",

16.2. Connecting to a Database with the Spring Framework | 531

 "org.springframework" % "spring-beans" % "3.1+",

 "org.springframework" % "spring-jdbc" % "3.1+",

 "org.springframework" % "spring-tx" % "3.1+"

)

Alternatively, you can manually download the JAR files that are needed and put them
in your lib directory.

Next, create a file named Main.scala in your root SBT directory with the following
contents:

package springtests

import org.springframework.context.support.ClassPathXmlApplicationContext

object Main extends App {

 // read the application context file

 val ctx = new ClassPathXmlApplicationContext("applicationContext.xml")

 // get a testDao instance

 val testDao = ctx.getBean("testDao").asInstanceOf[TestDao]

 val numUsers = testDao.getNumUsers

 println("You have this many users: " + numUsers)

}

Note how an instance of the TestDao is instantiated in this object. This code is similar
to Java, except for the way class casting is handled. As shown, Scala uses the
asInstanceOf method to declare that the testDao bean is of the type TestDao.

Next, create another file in the root directory of the project named TestDao.scala with
these contents:

package springtests

import org.springframework.jdbc.core.simple._

class TestDao

extends SimpleJdbcDaoSupport {

 def getNumUsers: Int = {

 val query = "select count(1) from user"

 return getJdbcTemplate.queryForInt(query)

 }

}

Now run the project with the sbt run command. You should see some simple output,
including the number of records in your MySQL user database table.

532 | Chapter 16: Databases and Persistence

Although this example was created to demonstrate how to use the Spring JDBC support
with Scala, you can use the steps in this recipe to use other Spring libraries in your Scala
applications.

See Also

• The Spring Framework.

• MAMP.

• Recipe 18.1, “Creating a Project Directory Structure for SBT”.

• A project named “Spring Scala” is being created to make it easier to use Spring in
Scala applications.

16.3. Connecting to MongoDB and Inserting Data

Problem
You want to use the MongoDB database with a Scala application, and want to learn how
to connect to it, and insert and retrieve data.

Solution
If you don’t already have a MongoDB installation, download and install the MongoDB
software per the instructions on its website. (It’s simple to install.) Once it’s running,
use the Casbah driver with your Scala application to interact with MongoDB.

In development, I start my test instance of MongoDB from its installation directory
with this command:

$ bin/mongod -vvvv --dbpath /Users/Al/data/mongodatabases

This starts the MongoDB server in a verbose mode, using the directory shown for its
databases. After a lot of output, the last few lines from the mongod command look like
this:

Sun Sep 16 14:27:34 [websvr] admin web console waiting for connections

 on port 28017

Sun Sep 16 14:27:34 [initandlisten] waiting for connections on port 27017

To demonstrate Casbah, build a small application. First, create a simple SBT project
directory structure, as demonstrated in Recipe 18.1, “Creating a Project Directory
Structure for SBT”.”

16.3. Connecting to MongoDB and Inserting Data | 533

http://www.springsource.org/
http://mamp.info/en/index.html
http://blog.springsource.org/2012/12/10/introducing-spring-scala/
http://blog.springsource.org/2012/12/10/introducing-spring-scala/
http://www.mongodb.org/
https://github.com/mongodb/casbah

You can follow along by cloning my GitHub project.

Second, create your build.sbt file, specifically including the Casbah driver dependency:

name := "MongoDBDemo1"

version := "1.0"

scalaVersion := "2.10.0"

libraryDependencies ++= Seq(

 "org.mongodb" %% "casbah" % "2.6.0",

 "org.slf4j" % "slf4j-simple" % "1.6.4"

)

scalacOptions += "-deprecation"

The SLF4J library shown isn’t necessary for a simple example, but including it gets rid
of a few warning messages.

Next, put the following code in a file named MongoFactory.scala in the root directory
of your SBT project:

import com.mongodb.casbah.MongoCollection

import com.mongodb.casbah.MongoConnection

object MongoFactory {

 private val SERVER = "localhost"

 private val PORT = 27017

 private val DATABASE = "portfolio"

 private val COLLECTION = "stocks"

 val connection = MongoConnection(SERVER)

 val collection = connection(DATABASE)(COLLECTION)

}

This object helps to simplify the interactions with a MongoDB database. You won’t need
all of its functionality for this recipe, but it will be used completely in other recipes. If
your MongoDB instance is running on the default port on localhost, those settings
will work fine. If you already have a database named portfolio, be sure to use a different
name.

Next, put the following code in a file named Common.scala, also in the root directory
of your SBT project:

534 | Chapter 16: Databases and Persistence

https://github.com/alvinj/ScalaCasbahMongoDB

import com.mongodb.casbah.Imports._

case class Stock (symbol: String, price: Double)

object Common {

 /**

* Convert a Stock object into a BSON format that MongoDb can store.

*/

 def buildMongoDbObject(stock: Stock): MongoDBObject = {

 val builder = MongoDBObject.newBuilder

 builder += "symbol" -> stock.symbol

 builder += "price" -> stock.price

 builder.result

 }

}

That code includes a simple case class to represent a Stock, and the
buildMongoDbObject method in the Common object does the work of converting a Stock
into a MongoDBObject that can be stored in a MongoDB database. The method converts
the fields in the Stock object into key/value pairs that correspond to the MongoDB
“document” paradigm. The MongoDBObject from the Casbah driver simplifies the con‐
version process.

With this code in place, it’s time to create a simple test program to insert several Stock
instances into the database. Put the following code into a file named Insert.scala in the
root directory of your SBT project:

import com.mongodb.casbah.Imports._

import Common._

object Insert extends App {

 // create some Stock instances

 val apple = Stock("AAPL", 600)

 val google = Stock("GOOG", 650)

 val netflix = Stock("NFLX", 60)

 // save them to the mongodb database

 saveStock(apple)

 saveStock(google)

 saveStock(netflix)

 // our 'save' method

 def saveStock(stock: Stock) {

 val mongoObj = buildMongoDbObject(stock)

 MongoFactory.collection.save(mongoObj)

 }

}

16.3. Connecting to MongoDB and Inserting Data | 535

The interesting part of this code is the saveStock method. It does the following work:

• It takes a Stock object as an input parameter.

• It converts the Stock object to a MongoDBObject with the buildMongoDbObject
method.

• It saves the mongoObj object to the database collection with the save method of the
collection instance. The collection is an instance of MongoCollection, which
is obtained from the MongoFactory.

With everything in place, run this object with sbt run, and it will quietly insert the data
into the collection.

Discussion
In Recipe 16.5, “Searching a MongoDB Collection”, you’ll see how to search a MongoDB
collection using Scala and Casbah, but for the time being, if you open up the MongoDB
command-line client and switch to the portfolio database, you can see the new docu‐
ments in the stocks collection.

To do this, move to your MongoDB installation bin directory, start the mongo command-

line client, move to the portfolio database, and list all the documents in the stocks
collection, using these commands:

$ mongo

> use portfolio

> db.stocks.find()

{"_id" : ObjectId("5023fad43004f32afda0b550"), "symbol" : "AAPL", "price" : 600 }

{"_id" : ObjectId("5023fad43004f32afda0b551"), "symbol" : "GOOG", "price" : 650 }

{"_id" : ObjectId("5023fad43004f32afda0b552"), "symbol" : "NFLX", "price" : 60 }

This shows the three objects the Insert application inserted. You can remove those
objects with the following command if you’d like to modify and run the program again:

> db.stocks.remove()

To help you work with MongoDB, I’ve created a Scala + MongoDB + Casbah example
project on GitHub that includes the source code shown in this recipe, as well as addi‐
tional code from the Find, Update, and Delete recipes in this chapter.

536 | Chapter 16: Databases and Persistence

https://github.com/alvinj/ScalaCasbahMongoDB

See Also

• MongoDB

• Casbah

• The MongoCollection API

16.4. Inserting Documents into MongoDB with insert,
save, or +=

Problem
You want to save documents to a MongoDB collection from a Scala application.

Solution
Use the insert, save, or += methods of the Casbah MongoCollection class.

In order to save a document to your MongoDB collection, you can use the
MongoCollection insert method:

collection.insert(buildMongoDbObject(apple))

collection.insert(buildMongoDbObject(google))

collection.insert(buildMongoDbObject(netflix))

You can also use the save method:

collection.save(buildMongoDbObject(apple))

collection.save(buildMongoDbObject(google))

collection.save(buildMongoDbObject(netflix))

And you can also use the += method:

collection += buildMongoDbObject(apple)

collection += buildMongoDbObject(google)

collection += buildMongoDbObject(netflix)

collection += buildMongoDbObject(amazon)

The intention of the insert and save methods is obvious; you’re inserting/saving data
to your MongoDB collection. The third approach is a little different; it looks like what
you’re doing is adding an object to a collection. In fact, you’re saving your object to the
database collection with each += call.

Here’s what the += approach looks like in a complete program:

import com.mongodb.casbah.Imports._

import Common._

16.4. Inserting Documents into MongoDB with insert, save, or += | 537

http://www.mongodb.org/
http://api.mongodb.org/scala/casbah/current/
http://api.mongodb.org/scala/casbah/current/scaladoc/#com.mongodb.casbah.MongoCollection

object Insert2 extends App {

 val collection = MongoFactory.collection

 // create some Stock instances

 val apple = Stock("AAPL", 600)

 val google = Stock("GOOG", 650)

 val netflix = Stock("NFLX", 60)

 val amazon = Stock("AMZN", 220)

 // add them to the collection (+= does the save)

 collection += buildMongoDbObject(apple)

 collection += buildMongoDbObject(google)

 collection += buildMongoDbObject(netflix)

 collection += buildMongoDbObject(amazon)

}

To use the insert or save methods, simply replace the += lines with their equivalent
lines.

Discussion
If you’d like to experiment with this code, just add it to the SBT project that you started
in Recipe 16.3. The buildMongoDbObject method in the Common class of that recipe
converts a Scala object to a MongoDBObject that can be saved to the database using save,
insert, or +=.

When choosing between save, insert, or +=, there’s obviously a big difference in style
between += and the other methods. The save and insert methods accept a variety of
different parameters and both return a WriteResult, so you have a number of options
to choose from.

You’ll encounter the WriteResult and WriteConcern classes while working with the
Casbah driver. These classes come from the MongoDB Java driver, which Casbah wraps.
WriteResult lets you access the results of the previous write, and has methods like
getField, getError, and getLastError.

WriteConcern provides options to let you control the write behavior, including behavior
about network errors, slaves, timeouts, and forcing fsync to disk.

See Also

• The WriteResult Javadoc

• The WriteConcern Javadoc

538 | Chapter 16: Databases and Persistence

http://bit.ly/18lGsNu
http://bit.ly/13gNwpY

16.5. Searching a MongoDB Collection

Problem
You want to find objects in your MongoDB collection using Scala and the Casbah driver.

Solution
Use the find* methods of the MongoCollection class to get the elements you want,
specifically the find and findOne methods.

Assuming that you have everything set up as shown in Recipe 16.3, the following code
demonstrates these techniques:

• How to find all the documents in a collection

• How to find one document that matches your search criteria

• How to find all documents that match your search criteria

• How to limit the number of results returned by a find query

Here’s the code:

import com.mongodb.casbah.Imports._

object Find extends App {

 val collection = MongoFactory.collection

 // (1) find all stocks with find()

 // -------------------------------

 println("\n___ all stocks ___")

 var stocks = collection.find

 stocks.foreach(println)

 // (2) search for an individual stock

 // ----------------------------------

 println("\n___ .findOne(query) ___")

 val query = MongoDBObject("symbol" -> "GOOG")

 val result = collection.findOne(query) // Some

 val stock = convertDbObjectToStock(result.get) // convert it to a Stock

 println(stock)

 // (3) find all stocks that meet a search criteria

 // ---

 println("\n___ price $gt 500 ___")

 stocks = collection.find("price" $gt 500)

 stocks.foreach(println)

 // (4) find all stocks that match a search pattern

16.5. Searching a MongoDB Collection | 539

 // ---

 println("\n___ stocks that begin with 'A' ___")

 stocks = collection.find(MongoDBObject("symbol" -> "A.*".r))

 stocks.foreach(println)

 // (5) find.limit(2)

 // -------------------------------

 println("\n___ find.limit(2) ___")

 stocks = collection.find.limit(2)

 stocks.foreach(println)

 // warning: don't use the 'get' method in real-world code

 def convertDbObjectToStock(obj: MongoDBObject): Stock = {

 val symbol = obj.getAs[String]("symbol").get

 val price = obj.getAs[Double]("price").get

 Stock(symbol, price)

 }

}

Save that code to a file named Find.scala in the root directory of your SBT project, and
then run the object with SBT:

$ sbt run

If you’ve been working through the MongoDB recipes in this chapter, or you cloned
my Scala + Casbah + MongoDB project from GitHub, you may have multiple main
methods in your project. If so, SBT detects those main methods and asks which one you
want to run. To run the Find object, select it from the list SBT displays:

Multiple main classes detected, select one to run:

 [1] Find

 [2] Insert

 [3] Insert2

Enter number: 1

Running the Find object after populating the database in the earlier recipes results in
the following output:

___ all stocks ___

{ "_id" : { "$oid" : "502683283004b3802ec47df2"} , "symbol" : "AAPL" ,

 "price" : 600.0}

{ "_id" : { "$oid" : "502683283004b3802ec47df3"} , "symbol" : "GOOG" ,

 "price" : 650.0}

{ "_id" : { "$oid" : "502683283004b3802ec47df4"} , "symbol" : "NFLX" ,

 "price" : 60.0}

{ "_id" : { "$oid" : "502683283004b3802ec47df5"} , "symbol" : "AMZN" ,

 "price" : 220.0}

___ .findOne(query) ___

Stock(GOOG,650.0)

540 | Chapter 16: Databases and Persistence

https://github.com/alvinj/ScalaCasbahMongoDB

___ price $gt 500 ___

{ "_id" : { "$oid" : "502683283004b3802ec47df2"} , "symbol" : "AAPL" ,

 "price" : 600.0}

{ "_id" : { "$oid" : "502683283004b3802ec47df3"} , "symbol" : "GOOG" ,

 "price" : 650.0}

___ stocks that begin with 'A' ___

{ "_id" : { "$oid" : "502683283004b3802ec47df2"} , "symbol" : "AAPL" ,

 "price" : 600.0}

{ "_id" : { "$oid" : "502683283004b3802ec47df5"} , "symbol" : "AMZN" ,

 "price" : 220.0}

___ find.limit(2) ___

{ "_id" : { "$oid" : "502683283004b3802ec47df2"} , "symbol" : "AAPL" ,

 "price" : 600.0}

{ "_id" : { "$oid" : "502683283004b3802ec47df3"} , "symbol" : "GOOG" ,

 "price" : 650.0}

Discussion
In the first query, the find method returns all documents from the specified collection.
This method returns a MongoCursor, and the code iterates over the results using that
cursor.

In the second query, the findOne method is used to find one stock that matches the
search query. The query is built by creating a MongoDBObject with the desired attributes.
In this example, that’s a stock whose symbol is GOOG. The findOne method is called to
get the result, and it returns an instance of Some[MongoDBObject].

In this example, result.get is called on the next line, but in the real world, it’s a better
practice to use a for loop or a match expression:

collection.findOne(query) match {

 case Some(Stock) =>

 // convert it to a Stock

 println(convertDbObjectToStock(result.get))

 case None =>

 println("Got something else")

}

Of course, how you implement that will vary depending on your needs.

The convertDbObjectToStock method does the reverse of the buildMongoDbObject
method shown in the earlier recipes, and converts a MongoDBObject to a Stock instance.

The third query shows how to search for all stocks whose price is greater than 500:

stocks = collection.find("price" $gt 500)

This again returns a MongoCursor, and all matches are printed.

16.5. Searching a MongoDB Collection | 541

Casbah includes other methods besides $gt, such as $gte, $lt, and $lte. You can use
multiple operators against one field like this:

"price" $gt 50 $lte 100

You can also query against multiple fields by joining tuples:

val query: DBObject = ("price" $gt 50 $lte 100) ++ ("priceToBook" $gt 1)

See the Casbah documentation for more examples of creating Casbah-style queries.

In the fourth query, a simple regular expression pattern is used to search for all stocks
whose symbol begins with the letter A:

stocks = collection.find(MongoDBObject("symbol" -> "A.*".r))

Notice that the r method is called on a String to create the query. This converts the
String to a Regex, as demonstrated in the REPL:

scala> "A.*".r

res0: scala.util.matching.Regex = A.*

The fifth query demonstrates how to use the limit method to limit the number of results
that are returned:

stocks = collection.find.limit(2)

Because MongoDB is typically used to store a lot of data, you’ll want to use limit to
control the amount of data you get back from a query.

The MongoCollection class also has a findByID method that you can use when you
know the ID of your object. Additionally, there are findAndModify and findAndRemove
methods, which are discussed in other recipes in this chapter.

See Also

• Casbah documentation

• The MongoCollection class

• The MongoDB tutorial

16.6. Updating Documents in a MongoDB Collection

Problem
You want to update one or more documents in a MongoDB collection.

542 | Chapter 16: Databases and Persistence

http://api.mongodb.org/scala/casbah/current/tutorial.html
http://mongodb.github.io/casbah/
http://bit.ly/1aMhTKC
http://docs.mongodb.org/manual/tutorial/getting-started/

Solution
Use either the findAndModify or update methods from the Casbah MongoCollection
class, as shown in this example:

import com.mongodb.casbah.Imports._

import Common._

object Update extends App {

 val collection = MongoFactory.collection

 // findAndModify

 // -------------

 // create a new Stock object

 val google = Stock("GOOG", 500)

 // search for an existing document with this symbol

 var query = MongoDBObject("symbol" -> "GOOG")

 // replace the old document with one based on the 'google' object

 val res1 = collection.findAndModify(query, buildMongoDbObject(google))

 println("findAndModify: " + res1)

 // update

 // ------

 // create a new Stock

 var apple = Stock("AAPL", 1000)

 // search for a document with this symbol

 query = MongoDBObject("symbol" -> "AAPL")

 // replace the old document with the 'apple' instance

 val res2 = collection.update(query, buildMongoDbObject(apple))

 println("update: " + res2)

}

In both cases, you build a document object to replace the existing document in the
database, and then create a query object, which lets you find what you want to replace.
Then you call either findAndModify or update to perform the update.

For instance, in the findAndModify example, a new Stock instance named google is
created, and it’s used to replace the old document in the database whose symbol is
GOOG. The buildMongoDbObject method is used to convert the google instance into a
MongoDB document before the update method is called.

The difference between the two methods can be seen in the output:

findAndModify: Some({ "_id" : { "$oid" : "502683283004b3802ec47df3"} ,

 "symbol" : "GOOG" , "price" : 500.0})

update: N/A

16.6. Updating Documents in a MongoDB Collection | 543

Whereas the findAndModify method returns the old document (the document that was
replaced), the update method returns a WriteResult instance.

If you’ve been following along with the MongoDB recipes in this chapter, save that file
as Update.scala in the root directory of your project, and run it with sbt run.

16.7. Accessing the MongoDB Document ID Field

Problem
You want to get the ID field for a document you’ve inserted into a MongoDB collection.

Solution
Perform a query to get the document you want, and then call get("_ID") on the re‐
sulting MongoDBObject, like this:

basicDbObject.get("_id")

The following example shows how to get the ID field from a DBObject after inserting
the object into the database. I first create a Stock as usual, convert the Stock to a
MongoDBObject, perform the insert, and then get the ID value, which is added to the
MongoDBObject after the insert operation is performed:

import com.mongodb.casbah.Imports._

import Common._

object InsertAndGetId extends App {

 val coll = MongoFactory.collection

 // get the _id field after an insert

 val amazon = Stock("AMZN", 220)

 val amazonMongoObject = buildMongoDbObject(amazon)

 coll.insert(amazonMongoObject)

 println("ID: " + amazonMongoObject.get("_id"))

}

If you just need to get the ID field from a MongoDBObject after performing a query, the
following complete example shows how to do that with a match expression:

import com.mongodb.casbah.Imports._

object GetId extends App {

 val collection = MongoFactory.collection

 val query = MongoDBObject("symbol" -> "GOOG")

 collection.findOne(query) match {

544 | Chapter 16: Databases and Persistence

 case Some(result) => println("ID: " + result.get("_id"))

 case None => println("Stock not found")

 }

}

A match expression is used in this example because the findOne(query) will return
None if no matching documents are found in the collection. You can also use the usual
getOrElse and foreach techniques to work with an Option.

If you’ve been following along with the MongoDB recipes in this chapter, save those
files with the names InsertAndGetId.scala and GetId.scala in the root directory of your

project, and run them with sbt run.

See Also

Recipe 20.6, “Using the Option/Some/None Pattern” for many examples of
working with methods that return an Option

16.8. Deleting Documents in a MongoDB Collection

Problem
You want to delete one or more documents in a MongoDB collection.

Solution
Use the findAndRemove method of the Casbah MongoCollection class to delete one
document at a time, or use the remove method to delete one or more documents at a
time.

The following code uses findAndRemove to delete the document whose symbol field is
AAPL:

val query = MongoDBObject("symbol" -> "AAPL")

val result = collection.findAndRemove(query)

println("result: " + result)

When a document is deleted, the findAndRemove method returns the document that
was deleted, wrapped in a Some:

result: Some({ "_id" : { "$oid" : "50255d1d03644925d83b3d07"} ,

 "symbol" : "AAPL" , "price" : 600.0})

If nothing is deleted, such as when you try to delete a document that doesn’t exist, the
result is None:

result: None

16.8. Deleting Documents in a MongoDB Collection | 545

Therefore, you’ll probably want to handle this using a match expression, as shown in
the previous recipe.

To delete multiple documents from the collection, specify your search criteria when
using the remove method, such as deleting all documents whose price field is greater
than 500:

collection.remove("price" $gt 500)

The following method is dangerous: it shows how to delete all documents in the current
collection:

// removes all documents

def deleteAllObjectsFromCollection(coll: MongoCollection) {

 coll.remove(MongoDBObject.newBuilder.result)

}

(Be careful with that one.)

Discussion
If you’ve been following along with the MongoDB recipes in this chapter, you can ex‐
periment with these approaches by saving the following code to a file named
DeleteApple.scala in the root directory of your SBT project:

import com.mongodb.casbah.Imports._

object DeleteApple extends App {

 var collection = MongoFactory.collection

 // delete AAPL

 val query = MongoDBObject("symbol" -> "AAPL")

 val result = collection.findAndRemove(query)

 println("result: " + result)

}

You can also clone my complete Scala + Casbah + MongoDB project
from GitHub.

If your database has a document whose symbol field is AAPL, when you run this object
with sbt run, the result will show the document that was deleted:

result: Some({ "_id" : { "$oid" : "5026b22c300478e85a145d43"} ,

 "symbol" : "AAPL" , "price" : 600.0})

The following complete code shows how to delete multiple documents:

546 | Chapter 16: Databases and Persistence

https://github.com/alvinj/ScalaCasbahMongoDB

import com.mongodb.casbah.Imports._

object DeleteMultiple extends App {

 var collection = MongoFactory.collection

 // delete all documents with price > 200

 collection.remove("price" $gt 200)

}

In this case, the remove method doesn’t return anything interesting, so I don’t assign it
to a result.

See Also

My Scala + Casbah + MongoDB sample project

16.9. A Quick Look at Slick
When it comes to working with relational databases, you can use the wealth of Java
solutions that are available, but other tools are emerging to provide a “Scala way” of
working with databases. One of these solutions is a library named Slick, from Type‐
safe, a company that was founded by the creators of the Scala language. According to
their documentation, Slick provides a “modern database query and access library.”

This recipe doesn’t cover Slick in depth because it’s well documented on the Typesafe
website, but instead offers a quick look at what Slick offers.

In short, Slick lets you define database table objects in your code like this:

object Authors extends Table[(Int, String, String)]("AUTHORS") {

 def id = column[Int]("ID", O.PrimaryKey)

 def firstName = column[String]("FIRST_NAME")

 def lastName = column[String]("LAST_NAME")

 def * = id ~ firstName ~ lastName

}

object Books extends Table[(Int, String)]("BOOKS") {

 def id = column[Int]("ID", O.PrimaryKey)

 def title = column[String]("TITLE")

 def * = id ~ title

}

object BookAuthors extends Table[(Int, Int, Int)]("BOOK_AUTHORS") {

 def id = column[Int]("ID", O.PrimaryKey)

 def bookId = column[Int]("BOOK_ID")

 def authorId = column[Int]("AUTHOR_ID")

 def bookFk = foreignKey("BOOK_FK", bookId, Books)(_.id)

 def authorFk = foreignKey("AUTHOR_FK", authorId, Authors)(_.id)

16.9. A Quick Look at Slick | 547

https://github.com/alvinj/ScalaCasbahMongoDB
http://slick.typesafe.com/
http://typesafe.com/
http://typesafe.com/

 def * = id ~ bookId ~ authorId

}

Having defined your tables in Scala code, you can refer to the fields in the tables in a
type-safe manner. You can create your database tables using Scala code, like this:

(Books.ddl ++ Authors.ddl ++ BookAuthors.ddl).create

A simple query to retrieve all records from the resulting books database table looks like
this:

val q = Query(Books)

q.list.foreach(println)

You can filter queries using a filter method:

val q = Query(Books).filter(_.title.startsWith("Zen"))

q.list.foreach(println)

You can write a join like this:

val q = for {

 b <- Books

 a <- Authors

 ba <- BookAuthors if b.id === ba.bookId && a.id === ba.authorId

} yield (b.title, a.lastName)

q.foreach(println)

Insert, update, and delete expressions follow the same pattern. Because you declared
the database design in Scala code, Slick makes working with a database feel like working
with collections.

Though I appreciate a good DSL, one thing I always look for in a database library is a
way to break out of the library to let me write my own SQL queries, and Slick allows
this as well.

As mentioned, the Slick documentation is thorough, so it’s not covered in this chapter.
See the Slick website for more information.

548 | Chapter 16: Databases and Persistence

http://slick.typesafe.com/docs/
http://slick.typesafe.com/

CHAPTER 17

Interacting with Java

Introduction
In general, the ability to easily mix Scala and Java code is pretty seamless and amazing.
In most cases, you can create an SBT project, put your Scala code in src/main/scala, put
your Java code in src/main/java, and it “just works.” For instance, the recipes on web
services in Chapter 15 provide many examples of calling existing Java libraries from
Scala code.

In my Scala/Java interactions, the biggest issues I’ve run into deal with the differences
between their collections libraries. However, I’ve always been able to work through those
problems with Scala’s JavaConversions object.

If you’re going to be accessing Scala code from Java, the other problem you can run into
is that there are things you can do in Scala that don’t map well to Java. If you’re going
to use Scala features like implicit conversions and parameters, currying, traits that have
implemented methods, and other advanced features, you’ll want to keep that Scala code
away from your public API.

Finally, for some cases such as serialization, methods with varargs parameters, and cre‐
ating JavaBean-like classes in Scala, it’s important to know the annotations that are
available to you.

17.1. Going to and from Java Collections

Problem
You’re using Java classes in a Scala application, and those classes either return Java col‐
lections, or require Java collections in their method calls.

549

Solution
Use the methods of Scala’s JavaConversions object to make the conversions work.

For instance, the java.util.ArrayList class is commonly used in Java applications,
and you can simulate receiving an ArrayList from a method in the REPL, like this:

scala> def nums = {

 | var list = new java.util.ArrayList[Int]()

 | list.add(1)

 | list.add(2)

 | list

 | }

nums: java.util.ArrayList[Int]

Even though this method is written in Scala, when it’s called, it acts just as though it was
returning an ArrayList from a Java method:

scala> val list = nums

list: java.util.ArrayList[Int] = [1, 2]

However, because it’s a Java collection, I can’t call the foreach method on it that I’ve
come to know and love in Scala, because it isn’t there:

scala> list.foreach(println)

<console>:10: error:

value foreach is not a member of java.util.ArrayList[Int]

 list.foreach(println)

 ^

But by importing the methods from the JavaConversions object, the ArrayList mag‐
ically acquires a foreach method:

scala> import scala.collection.JavaConversions._

import scala.collection.JavaConversions._

scala> list.foreach(println)

1

2

This “magic” comes from the power of Scala’s implicit conversions, which are demon‐
strated in Recipe 1.10, “Add Your Own Methods to the String Class”.

Discussion
When you get a reference to a Java collections object, you can either use that object as
a Java collection (such as using its Iterator), or you can convert that collection to a
Scala collection. Once you become comfortable with Scala collection methods like
foreach, map, etc., you’ll definitely want to treat it as a Scala collection, and the way to
do that is to use the methods of the JavaConversions object.

550 | Chapter 17: Interacting with Java

As a more thorough example of how the JavaConversions methods work, assume you
have a Java class named JavaExamples with the following getNumbers method:

// java

public static List<Integer> getNumbers() {

 List<Integer> numbers = new ArrayList<Integer>();

 numbers.add(1);

 numbers.add(2);

 numbers.add(3);

 return numbers;

}

You can attempt to call that method from Scala code, as shown in this example:

val numbers = JavaExamples.getNumbers()

numbers.foreach(println) // this won't work

But this code will fail with the following compiler error:

value 'foreach' is not a member of java.util.List[Integer]

To solve this problem, you need to import the JavaConversions.asScalaBuffer meth‐
od. When you do this, you can either explicitly call the asScalaBuffer method, or let
it be used implicitly. The explicit call looks like this:

import scala.collection.JavaConversions.asScalaBuffer

val numbers = asScalaBuffer(JavaExamples.getNumbers)

numbers.foreach(println)

// prints 'scala.collection.convert.Wrappers$JListWrapper'

println(numbers.getClass)

The implicit use looks like this:

import scala.collection.JavaConversions.asScalaBuffer

val numbers = JavaExamples.getNumbers

numbers.foreach(println)

// prints 'java.util.ArrayList'

println(numbers.getClass)

The println(numbers.getClass) calls show that there’s a slight difference in the result
between the explicit and implicit uses. Using the explicit asScalaBuffer method call
makes the numbers object an instance of collection.convert.Wrap-
pers$JListWrapper, whereas the implicit use shows that numbers is an ArrayList. As
a practical matter, you can use either approach, depending on your preferences about
working with implicit conversions; they both let you call foreach, map, and other Scala
sequence methods.

You can repeat the same example using a Java Map and HashMap. First, create this method
in a JavaExamples class:

17.1. Going to and from Java Collections | 551

// java

public static Map<String, String> getPeeps() {

 Map<String, String> peeps = new HashMap<String, String>();

 peeps.put("captain", "Kirk");

 peeps.put("doctor", "McCoy");

 return peeps;

}

Then, before calling this method from your Scala code, import the appropriate
JavaConversions method:

import scala.collection.JavaConversions.mapAsScalaMap

You can then call the mapAsScalaMap method explicitly, or allow it to be called implicitly:

// explicit call

val peeps1 = mapAsScalaMap(JavaExamples.getPeeps)

// implicit conversion

val peeps2 = JavaExamples.getPeeps

Again there is a difference between the types of the map objects. In this case, peeps1,
which used the explicit method call, has a type of collection.con-
vert.Wrappers$JMapWrapper, whereas peeps2 has a type of java.util.HashMap.

Note that the JavaConversions class has been through a number of changes, and al‐
though you’ll see a large number of conversion methods in your IDE, many of them are
deprecated. See the latest Scaladoc for the JavaConversions object for up-to-date in‐
formation.

Conversion tables

One interesting thing that happens during the process of converting Java collections is
that you learn more about the Scala collections. For instance, given their names, you
might expect a Scala List and a Java List to convert back and forth between each other,
but that isn’t the case. A Java List is much more like a Scala Seq or a mutable Buffer.

This is shown in Table 17-1, which shows the two-way conversions that the
JavaConversions object allows between Java and Scala collections. This table is adapted
from the JavaConversions documentation.

Table 17-1. The two-way conversions provided by the JavaConversions object

Scala collection Java collection

collection.Iterable java.lang.Iterable

collection.Iterable java.util.Collection

collection.Iterator java.util.{Iterator, Enumeration}

collection.mutable.Buffer java.util.List

collection.mutable.Set java.util.Set

collection.mutable.Map java.util.{Map, Dictionary}

552 | Chapter 17: Interacting with Java

http://bit.ly/13N4ZJO
http://bit.ly/13N4ZJO

Scala collection Java collection

collection.mutable.ConcurrentMap java.util.concurrent.ConcurrentMap

As an example of the two-way conversions shown in Table 17-1, the JavaConversions
object provides methods that convert between a Java List and a Scala Buffer. The
asScalaBuffer method converts a Java List to a Scala Buffer, and bufferAsJavaList
converts in the opposite direction, from a Buffer to a List.

Going from Scala collections to Java collections

So far you’ve looked primarily at converting Java collections to Scala collections. You
may also need to go in the other direction, from a Scala collection to a Java collection.

If you’re converting a Scala collection to a Java collection, in addition to the two-way
conversions shown in Table 17-1, the one-way conversions shown in Table 17-2 are
available. Again, these have been adapted from the JavaConversions Scaladoc.

Table 17-2. The Scala to Java one-way conversions provided by the JavaConversions
class

Scala collection Java collection

collection.Seq java.util.List

collection.mutable.Seq java.util.List

collection.Set java.util.Set

collection.Map java.util.Map

collection.mutable.Map[String,String] java.util.Properties

For example, assume you want to call the following sum method declared in a Java class
named ConversionExamples, which expects a java.util.List<Integer>:

// java

public static int sum(List<Integer> list) {

 int sum = 0;

 for (int i: list) { sum = sum + i; }

 return sum;

}

Putting the conversion tables to work, the following examples show how to pass a Seq,
ArrayBuffer, and ListBuffer to the sum method:

import scala.collection.JavaConversions._

import scala.collection.mutable._

val sum1 = ConversionExamples.sum(seqAsJavaList(Seq(1, 2, 3)))

val sum2 = ConversionExamples.sum(bufferAsJavaList(ArrayBuffer(1,2,3)))

val sum3 = ConversionExamples.sum(bufferAsJavaList(ListBuffer(1,2,3)))

There are many other collection conversion possibilities, and hopefully these examples
will get you started on the right path.

17.1. Going to and from Java Collections | 553

The JavaConverters object

The Scala JavaConverters object lets you perform conversions in a manner similar to
the examples shown, though they don’t offer implicit conversions. Instead they require
you to explicitly call asJava or asScala methods to perform the conversions. Be careful,
because the object also contains many deprecated methods.

See Also

• The JavaConversions object

• The JavaConverters object

17.2. Add Exception Annotations to Scala Methods to
Work with Java

Problem
You want to let Java users know that a method can throw one or more exceptions so
they can handle those exceptions with try/catch blocks.

Solution
Add the @throws annotation to your Scala methods so Java consumers will know which
methods can throw exceptions and what exceptions they throw.

For example, the following Scala code shows how to add an @throws annotation to let
callers know that the exceptionThrower method can throw an Exception:

// scala

class Thrower {

 @throws(classOf[Exception])

 def exceptionThrower {

 throw new Exception("Exception!")

 }

}

With your Scala method annotated like that, it will work just like a Java method that
throws an exception. If you attempt to call exceptionThrower from a Java class without
wrapping it in a try/catch block, or declaring that your Java method throws an excep‐
tion, the compiler (or your IDE) will give you the following error:

unreported exception java.lang.Exception; must be caught or declared to be thrown

In your Java code, you’ll write a try/catch block as usual to handle the exception:

554 | Chapter 17: Interacting with Java

http://bit.ly/13rwXU4
http://bit.ly/190DRry
http://bit.ly/18jroMN

// java

Thrower t = new Thrower();

try {

 t.exceptionThrower();

} catch (Exception e) {

 System.err.println("Caught the exception.");

 e.printStackTrace();

}

If you want to declare that your Scala method throws multiple exceptions, add an an‐
notation for each exception:

@throws(classOf[IOException])

@throws(classOf[LineUnavailableException])

@throws(classOf[UnsupportedAudioFileException])

def playSoundFileWithJavaAudio {

 // exception throwing code here ...

}

Discussion
If you don’t mark the Scala exceptionThrower method with the @throws annotation, a
Java developer can call it without using a try/catch block in her method, or declaring
that her method throws an exception. For example, you can define the Scala method as
follows, without declaring that it throws an exception:

//scala

def exceptionThrower {

 throw new Exception("Exception!")

}

This method can then be called from Java:

// java

public static void main(String[] args) {

 Thrower t = new Thrower();

 t.exceptionThrower();

}

However, when the Java developer calls exceptionThrower, the uncaught exception will
cause the Java method to fail:

[error] (run-main) java.lang.Exception: Exception!

java.lang.Exception: Exception!

 at Thrower.exceptionThrower(Thrower.scala:6)

 at Main.main(Main.java:9)

As shown, if a Java consumer doesn’t know an exception can be thrown, it can wreak
havoc on her application.

17.2. Add Exception Annotations to Scala Methods to Work with Java | 555

17.3. Using @SerialVersionUID and Other Annotations

Problem
You want to specify that a class is serializable, and set the serialVersionUID. More
generally, you want to know the syntax for using annotations in your Scala code, and
know which annotations are available.

Solution
Use the Scala @SerialVersionUID annotation while also having your class extend the
Serializable trait:

@SerialVersionUID(1000L)

class Foo extends Serializable {

 // class code here

}

Note that Scala has a serializable annotation, but it has been deprecated since version
2.9.0. The serializable annotation Scaladoc includes the following note:

instead of @serializable class C, use class C extends Serializable

Discussion
In addition to the @SerialVersionUID annotation and the Serializable trait, Scala
has other annotations that should be used for various purposes, including the
cloneable, remote, transient, and volatile annotations. Based primarily on the “A
Tour of Scala Annotations” web page, Table 17-3 shows a mapping of Scala annotations
to their Java equivalents.

Table 17-3. Scala annotations and their Java equivalents

Scala Java

scala.beans.BeanProperty No equivalent. When added to a class field, it results in getter and setter methods being

generated that match the JavaBean specification.

scala.cloneable java.lang.Cloneable

scala.deprecated java.lang.Deprecated

scala.inline Per the Scaladoc, @inline “requests that the compiler should try especially hard to

inline the annotated method.”

scala.native The Java native keyword.

scala.remote java.rmi.Remote

scala.serializable java.io.Serializable

scala.SerialVersionUID serialVersionUID field.

scala.throws throws keyword.

556 | Chapter 17: Interacting with Java

http://bit.ly/17j1zLG
http://bit.ly/12uB5nl
http://bit.ly/12uB5nl

Scala Java

scala.transient transient keyword.

scala.unchecked No equivalent. According to its Scaladoc, it designates that “the annotated entity should

not be considered for additional compiler checks.”

scala.annotation.varargs Used on a field in a method, it instructs the compiler to generate a Java varargs-style

parameter.

scala.volatile volatile keyword.

As one example of these annotations, the current nightly version of the Scala Remote
Scaladoc states that the following Scala code and Java code are equivalent:

// scala

@remote trait Hello {

 def sayHello(): String

}

// java

public interface Hello extends java.rmi.Remote {

 String sayHello() throws java.rmi.RemoteException;

}

Recipe 17.6, “When Java Code Requires JavaBeans” provides examples of the
BeanProperty annotation.

See Also

• The Serializable trait is deprecated

• “A Tour of Scala Annotations”

• Recipe 17.5 discusses the @varargs annotation, and Recipe 17.6 discusses JavaBeans

17.4. Using the Spring Framework

Problem
You want to use the Java Spring Framework library in your Scala application.

Solution
In my experience, the only real changes in using the Spring Framework in Scala appli‐
cations involve how you cast the objects you instantiate from your Spring application
context file, and that’s only because the casting processes in Scala and Java are different.

17.4. Using the Spring Framework | 557

http://bit.ly/15Dcq1z
http://bit.ly/15Dcq1z
http://bit.ly/15DctKQ
http://www.scala-lang.org/node/106

To demonstrate this, create an empty SBT project. (See Recipe 18.1, if necessary.) Within
that project, create a Spring applicationContext.xml file in the src/main/resources di‐
rectory with the following contents:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" ↵

 "http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

 <bean id="dog" class="scalaspring.Dog">

 <constructor-arg value="Fido" />

 </bean>

 <bean id="cat" class="scalaspring.Cat">

 <constructor-arg value="Felix" />

 </bean>

</beans>

This file declares that there are two classes, one named Dog and the other named Cat,
in a package named scalaspring. You can’t tell it from looking at this file, but as you’ll
see shortly, both the Dog and Cat classes extend a base Animal class.

Next, create a simple Scala object in a file named SpringExample.scala in the root di‐

rectory of your project with a main method to read the applicationContext.xml file and

create instances of the Dog and Cat classes:

package scalaspring

import org.springframework.context.support.ClassPathXmlApplicationContext

object ScalaSpringExample extends App {

 // open & read the application context file

 val ctx = new ClassPathXmlApplicationContext("applicationContext.xml")

 // instantiate the dog and cat objects from the application context

 val dog = ctx.getBean("dog").asInstanceOf[Animal]

 val cat = ctx.getBean("cat").asInstanceOf[Animal]

 // let them speak

 dog.speak

 cat.speak

}

In this code, the applicationContext.xml file is loaded, the dog and cat instances are

created from their bean definitions in the application context, and their speak methods
are executed.

558 | Chapter 17: Interacting with Java

Next, define the Dog and Cat classes in a file named Animals.scala, along with their

abstract parent class Animal. You can also save this file in the root directory of your SBT
project:

package scalaspring

abstract class Animal(name: String) {

 def speak: Unit // asbtract

}

class Dog(name: String) extends Animal(name) {

 override def speak {

 println(name + " says Woof")

 }

}

class Cat(name: String) extends Animal(name) {

 override def speak {

 println(name + " says Meow")

 }

}

The base Animal class requires that the concrete classes have a speak method, and the
Dog and Cat classes define their speak methods in different ways. The Dog and Cat classes
are defined using a one-argument constructor, and if you look back at the application
context file, you’ll see that the names Fido and Felix are used in their Spring bean
definitions.

Next, add Spring as a dependency to your build.sbt file. A basic file looks like this:

name := "Scala Spring Example"

version := "1.0"

scalaVersion := "2.10.0"

libraryDependencies += "org.springframework" % "spring" % "2.5.6"

As mentioned, you should place the applicationContext.xml file in your project’s
src/main/resources folder. This listing shows all the files in my project:

./Animals.scala

./build.sbt

./SpringExample.scala

./src/main/resources/applicationContext.xml

With everything in place, run the project with the usual sbt run command. You’ll see
a lot of output, including these lines, showing that the program ran successfully:

17.4. Using the Spring Framework | 559

$ sbt run

Fido says Woof

Felix says Meow

You can put the two Scala source files under the src/main/scala direc‐
tory if you prefer, but for simple examples like this, I put them in the
root directory of my SBT project.

Discussion
Although there was a bit of boilerplate work in this example, the only major differences
between using Scala and Java are these two lines of code in the ScalaSpringExample
object:

val dog = ctx.getBean("dog").asInstanceOf[Animal]

val cat = ctx.getBean("cat").asInstanceOf[Animal]

That’s because this is how you cast classes in Scala. In Java, these same lines of code
would look like this:

Animal dog = (Animal)ctx.getBean("dog");

Animal cat = (Animal)ctx.getBean("cat");

See Also

• Recipe 6.1 provides other examples of casting in Scala

• Recipe 16.2, “Connecting to a Database with the Spring Framework” shows another
Scala Spring example

• The “Spring Scala” project aims to make it easier to use the Spring Framework in
Scala

17.5. Annotating varargs Methods

Problem
You’ve created a Scala method with a varargs field, and would like to be able to call that
method from Java code.

Solution
When a Scala method has a field that takes a variable number of arguments, mark it
with the @varargs annotation.

560 | Chapter 17: Interacting with Java

http://blog.springsource.org/2012/12/10/introducing-spring-scala/
http://blog.springsource.org/2012/12/10/introducing-spring-scala/

For example, the printAll method in the following Scala class is marked with @varargs
so it can be called as desired from Java:

package varargs

import scala.annotation.varargs

class Printer {

 @varargs def printAll(args: String*) {

 args.foreach(print)

 println

 }

}

The printAll method can now be called from a Java program with a variable number
of parameters, as shown in this example:

package varargs;

public class Main {

 public static void main(String[] args) {

 Printer p = new Printer();

 p.printAll("Hello");

 p.printAll("Hello, ", "world");

 }

}

When this code is run, it results in the following output:

Hello

Hello, world

Discussion
If the @varargs annotation isn’t used on the printAll method, the Java code shown
won’t even compile, failing with the following compiler errors:

Main.java:7: printAll(scala.collection.Seq<java.lang.String>) in

varargs.Printer cannot be applied to (java.lang.String)

[error] p.printAll("Hello");

[error] ^

Main.java:8: printAll(scala.collection.Seq<java.lang.String>) in

varargs.Printer cannot be applied to (java.lang.String,java.lang.String)

[error] p.printAll("Hello, ", "world");

[error] ^

Without the @varargs annotation, from a Java perspective, the printAll method ap‐
pears to take a scala.collection.Seq<java.lang.String> as its argument.

17.5. Annotating varargs Methods | 561

17.6. When Java Code Requires JavaBeans

Problem
You need to interact with a Java class or library that accepts only classes that conform
to the JavaBean specification.

Solution
Use the @BeanProperty annotation on your fields, also making sure you declare each
field as a var.

The @BeanProperty annotation can be used on fields in a Scala class constructor:

import scala.reflect.BeanProperty

class Person(@BeanProperty var firstName: String,

 @BeanProperty var lastName: String) {

 override def toString = s"Person: $firstName $lastName"

}

It can also be used on the fields in a Scala class:

import scala.reflect.BeanProperty

class EmailAccount {

 @BeanProperty var username: String = ""

 @BeanProperty var password: String = ""

 override def toString = s"Email Account: ($username, $password)"

}

To demonstrate this, create an SBT project, then save the following code to a file named
Test.scala in the root directory of the project:

package foo

import scala.reflect.BeanProperty

class Person(@BeanProperty var firstName: String,

 @BeanProperty var lastName: String) {

}

class EmailAccount {

 @BeanProperty var username: String = ""

 @BeanProperty var password: String = ""

}

This code shows how to use the @BeanProperty annotation on class constructor pa‐
rameters, as well as the fields in a class.

562 | Chapter 17: Interacting with Java

Next, create a directory named src/main/java/foo, and save the following Java code in
a file named Main.java in that directory:

package foo;

public class Main {

 public static void main(String[] args) {

 // create instances

 Person p = new Person("Regina", "Goode");

 EmailAccount acct = new EmailAccount();

 // demonstrate 'setter' methods

 acct.setUsername("regina");

 acct.setPassword("secret");

 // demonstrate 'getter' methods

 System.out.println(p.getFirstName());

 System.out.println(p.getLastName());

 System.out.println(acct.getUsername());

 System.out.println(acct.getPassword());

 }

}

This Java code demonstrates how to create instances of the Scala Person and
EmailAccount classes, and access the JavaBean methods of those classes. When the code
is run with sbt run, you’ll see the following output, showing that all the getter and setter
methods work:

$ sbt run

[info] Running foo.Main

Regina

Goode

regina

secret

Discussion
You can see how the @BeanProperty annotation works by compiling a simple class and
then disassembling it. First, save these contents to a file named Person.scala:

import scala.reflect.BeanProperty

class Person(@BeanProperty var name: String,

 @BeanProperty var age: Int) {

}

Then compile the class:

17.6. When Java Code Requires JavaBeans | 563

$ scalac Person.scala

After it’s compiled, disassemble it with the javap command:

$ javap Person

Compiled from "Person.scala"

public class Person extends java.lang.Object implements scala.ScalaObject{

 public java.lang.String name();

 public void name_$eq(java.lang.String);

 public void setName(java.lang.String);

 public int age();

 public void age_$eq(int);

 public void setAge(int);

 public int getAge();

 public java.lang.String getName();

 public Person(java.lang.String, int);

}

As you can see from the disassembled code, the methods getName, setName, getAge,
and setAge have all been generated because of the @BeanProperty annotation.

Note that if you declare your fields as type val, the “setter” methods (setName, setAge)
won’t be generated:

Compiled from "Person.scala"

public class Person extends java.lang.Object implements scala.ScalaObject{

 public java.lang.String name();

 public int age();

 public int getAge();

 public java.lang.String getName();

 public Person(java.lang.String, int);

}

Without these methods, your class will not follow the JavaBean specification.

As a final example, if the @BeanProperty annotation is removed from all fields, you’re
left with this code:

class Person(var firstName: String, var lastName: String)

When you compile this code with scalac and then disassemble it with javap, you’ll see
that no getter or setter methods are generated (except for those that follow the Scala
convention):

Compiled from "Person.scala"

public class Person extends java.lang.Object{

 public java.lang.String firstName();

 public void firstName_$eq(java.lang.String);

 public java.lang.String lastName();

 public void lastName_$eq(java.lang.String);

 public Person(java.lang.String, java.lang.String);

}

564 | Chapter 17: Interacting with Java

See Also

My tutorial about using the Java SnakeYaml library in Scala shows more
examples of the @BeanProperty annotation.

17.7. Wrapping Traits with Implementations

Problem
You’ve written a Scala trait with implemented methods and need to be able to use those
methods from a Java application.

Solution
You can’t use the implemented methods of a Scala trait from Java, so wrap the trait in a
class.

Assuming you have a Scala trait named MathTrait with a method named sum that you
want to access from Java code, create a Scala class named MathTraitWrapper that wraps
MathTrait:

// scala

package foo

// the original trait

trait MathTrait {

 def sum(x: Int, y: Int) = x + y

}

// the wrapper class

class MathTraitWrapper extends MathTrait

In your Java code, extend the MathTraitWrapper class, and access the sum method:

// java

package foo;

public class JavaMath extends MathTraitWrapper {

 public static void main(String[] args) {

 new JavaMath();

 }

 public JavaMath() {

 System.out.println(sum(2,2));

 }

}

This code works as expected, printing the number 4 when it is run.

17.7. Wrapping Traits with Implementations | 565

http://bit.ly/13h3kcc

Discussion
A Java class can’t extend a Scala trait that has implemented methods. To demonstrate
the problem, first create a trait with a simple implemented method named sum:

package foo

trait MathTrait {

 def sum(x: Int, y: Int) = x + y

}

Next, to attempt to use this trait from Java, you have a choice of trying to extend it or
implement it. Let’s first try to extend it:

package foo;

public class JavaMath extends MathTrait {}

By the time you finish typing that code, you see the following compiler error message:

The type MathTrait cannot be the superclass of JavaMath;

a superclass must be a class

Next, you can attempt to implement the trait, but intuitively you know that won’t work,
because in Java you implement interfaces, and this trait has implemented behavior, so
it’s not a regular Java interface:

package foo;

public class JavaMath implements MathTrait {}

This code leads to the following compiler error:

The type JavaMath must implement the inherited abstract method

MathTrait.sum(int, int)

You could implement a sum method in your JavaMath class, but that defeats the purpose
of trying to use the sum method that’s already written in the Scala MathTrait.

Other attempts

You can try other things, such as attempting to create an instance of the MathTrait and
trying to use the sum method, but this won’t work either:

// java

package foo;

public static void main(String[] args) {

 MathTrait trait = new MathTrait(); // error, won't compile

 int sum = trait.sum(1,2);

 System.out.println("SUM = " + sum);

}

Trying to instantiate a MathTrait instance results in this compiler error:

566 | Chapter 17: Interacting with Java

foo.MathTrait is abstract; cannot be instantiated

[error] MathTrait trait = new MathTrait();

[error] ^

You may already know what the problem is, but to be clear, let’s see what class files are
generated on the Scala side. In an SBT project, the class files are located in the following
directory:

$PROJECT/target/scala-2.10.0/classes/foo

If you move into that directory and list the files, you’ll see that two files related to the
Scala MathTrait trait have been created:

MathTrait.class

MathTrait$class.class

You can see the problem by disassembling these files with javap. First, the
MathTrait.class file:

$ javap MathTrait

Compiled from "MathTrait.scala"

public interface foo.MathTrait{

 public abstract int sum(int, int);

}

Next, the MathTrait$class.class file:

$ javap MathTrait\$class

Compiled from "MathTrait.scala"

public abstract class foo.MathTrait$class extends java.lang.Object{

 public static int sum(foo.MathTrait, int, int);

 public static void $init$(foo.MathTrait);

}

The problem with trying to work with the Scala MathTrait from a Java perspective is
that MathTrait looks like an interface, and MathTrait$class looks like an abstract class.
Neither one will let you use the logic in the sum method.

Because MathTrait looks like just an interface, you realize you might be able to create
a Java class that implements that interface, and then override the sum method:

// java

package foo;

public class JavaMath implements MathTrait {

 public int sum(int x, int y) {

 return x + y;

 }

17.7. Wrapping Traits with Implementations | 567

 public static void main(String[] args) {

 JavaMath math = new JavaMath();

 System.out.println(math.sum(1,1));

 }

}

This does indeed work, but for the purposes of this recipe, it doesn’t really matter. The
purpose of trying to use the trait was to use the behavior of the trait’s sum method, and
there’s no way to do this from Java without creating a Scala wrapper class.

In a last desperate attempt, you might try to call super.sum(x,y) from your Java meth‐
od, like this:

// java

public int sum(int x, int y) {

 return super.sum(x, y);

}

But that won’t work either, failing with the following error message:

cannot find symbol

[error] symbol : method sum(int,int)

[error] location: class java.lang.Object

[error] return super.sum(x,y);

[error] ^

The only way to solve the problem is to wrap the trait with a class on the Scala side,
which was demonstrated in the Solution.

To summarize: If you’re writing a Scala API that will be used by Java clients, don’t expose
traits that have implemented behavior in your public API. If you have traits like that,
wrap them in a class for your Java consumers.

568 | Chapter 17: Interacting with Java

CHAPTER 18

The Simple Build Tool (SBT)

Introduction
Although you can use Ant and Maven to build your Scala projects, SBT, or the Simple
Build Tool, is the de facto build tool for Scala applications. SBT makes the basic build
and dependency management tasks simple, and lets you use the Scala language itself to
conquer more difficult tasks.

SBT uses the same directory structure as Maven, and like Maven, it uses a “convention
over configuration” approach that makes the build process incredibly easy for basic
projects. Because it provides a well-known, standard build process, if you work on one
Scala project that’s built with SBT, it’s easy to move to another project that also uses SBT.
The project’s directory structure will be the same, and you’ll know that you should look
at the build.sbt file and the optional project/*.scala files to see how the build process is
configured.

Like Maven, under the covers, SBT’s dependency management system is handled by
Apache Ivy. This means that all those Java projects that have been created and packaged
for use with Maven over the years can easily be used by SBT. Additionally, other JAR
files not in an Ivy/Maven repository can simply be placed in your project’s lib folder,
and SBT will automatically find them.

As a result of all these features, with very little effort on your part, SBT lets you build
projects that contain both Scala and Java code, unit tests, and both managed and un‐
managed dependencies.

All examples in this chapter were tested with SBT version 0.12.3.

569

http://www.scala-sbt.org/
http://www.scala-sbt.org/
http://ant.apache.org/ivy/

18.1. Creating a Project Directory Structure for SBT

Problem
SBT doesn’t include a command to create a new project, and you’d like to quickly and
easily create the directory structure for a new project.

Solution
Use either a shell script or a tool like Giter8 to create your project’s directory structure.
Both approaches are shown here.

Use a shell script

SBT uses the same directory structure as Maven, and for simple needs, you can generate
a compatible structure using a shell script. For example, the following Unix shell script
creates the initial set of files and directories you’ll want for most projects:

#!/bin/sh

mkdir -p src/{main,test}/{java,resources,scala}

mkdir lib project target

create an initial build.sbt file

echo 'name := "MyProject"

version := "1.0"

scalaVersion := "2.10.0"' > build.sbt

Just save that code as a shell script on Unix systems (or Cygwin on Windows), make it
executable, and run it inside a new project directory to create all the subdirectories SBT
needs, as well as an initial build.sbt file.

Assuming this script is named mkdirs4sbt, and it’s on your path, the process looks like
this:

/Users/Al/Projects> mkdir MyNewProject

/Users/Al/Projects> cd MyNewProject

/Users/Al/Projects/MyNewProject> mkdirs4sbt

If you have the tree command on your system and run it from the current directory,
you’ll see that the basic directory structure looks like this:

570 | Chapter 18: The Simple Build Tool (SBT)

https://github.com/n8han/giter8

.

|-- build.sbt

|-- lib

|-- project

|-- src

| |-- main

| | |-- java

| | |-- resources

| | |-- scala

| |-- test

| |-- java

| |-- resources

| |-- scala

|-- target

This is just a simple starter script, but it helps to show how easy it is to create a basic
SBT directory structure.

The build.sbt file is SBT’s basic configuration file. You define most
settings that SBT needs in this file, including specifying library depen‐
dencies, repositories, and any other basic settings your project re‐
quires. I’ll demonstrate many examples of it in the recipes in this
chapter.

Use Giter8

Although that script shows how simple building a basic directory structure is, Giter8 is
an excellent tool for creating SBT directory structures with specific project needs. It’s
based on a template system, and the templates usually contain everything you need to
create a skeleton SBT project that’s preconfigured to use one or more Scala tools, such
as ScalaTest, Scalatra, and many others.

The Giter8 templates that you can use are listed on GitHub. As a demonstration of how
this works, the following example shows how to use the scalatra/scalatra-sbt tem‐
plate.

To create a project named “NewApp,” Giter8 prompts you with a series of questions,
and then creates a newapp folder for your project. To demonstrate this, move to a di‐

rectory where you normally create your projects, then start Giter8 with the g8 command,
giving it the name of the template you want to use:

/Users/Al/Projects> g8 scalatra/scalatra-sbt

organization [com.example]: com.alvinalexander

package [com.example.app]: com.alvinalexander.newapp

name [My Scalatra Web App]: NewApp

scalatra_version [2.2.0]:

servlet_name [MyScalatraServlet]: NewAppServlet

18.1. Creating a Project Directory Structure for SBT | 571

https://github.com/n8han/giter8
https://github.com/n8han/giter8/wiki/giter8-templates

scala_version [2.10.0]:

version [0.1.0-SNAPSHOT]:

Template applied in ./newapp

Because I answered the name prompt with NewApp, Giter8 creates a subdirectory under
the current directory named newapp. It contains the following files and directories:

newapp/.gitignore

newapp/project/build.properties

newapp/project/build.scala

newapp/project/plugins.sbt

newapp/README.md

newapp/sbt

newapp/src/main/resources/logback.xml

newapp/src/main/scala/com/alvinalexander/newapp/NewAppServlet.scala

newapp/src/main/scala/com/alvinalexander/newapp/NewappStack.scala

newapp/src/main/scala/ScalatraBootstrap.scala

newapp/src/main/webapp/WEB-INF/templates/layouts/default.jade

newapp/src/main/webapp/WEB-INF/templates/views/hello-scalate.jade

newapp/src/main/webapp/WEB-INF/web.xml

newapp/src/test/scala/com/alvinalexander/newapp/NewAppServletSpec.scala

In this example, Giter8 creates all the configuration files and Scalatra stub files you need
to have a skeleton Scalatra project up and running in just a minute or two.

Giter8 notes

At the time of this writing, I had a problem with the current Scalatra template, and had
to add this line to the build.sbt file in my root project directory to get the template to
work:

scalaVersion := "2.10.0"

To run a Scalatra project, enter the SBT shell from your operating system command
line, and then run the container:start command:

/Users/Al/Projects/newapp> sbt

> container:start

This command starts the Jetty server running on port 8080 on your computer, so you
can easily test your installation by accessing the http://localhost:8080/ URL from a
browser.

In the case of using a new template like this, SBT may have a lot of files to download.
Fear not—once they’re downloaded, your new Scalatra project should be up and run‐
ning, and all of these downloads are required only during the first sbt run.

572 | Chapter 18: The Simple Build Tool (SBT)

Discussion
As shown in the Solution, because the SBT directory structure is standard and based
on the Maven directory structure, you can create your own tool, or use other tools that
are built for this purpose.

For simple SBT projects, I’ve created an improved version of the shell script shown in
the Solution. I named it sbtmkdirs, and you can download it from the URL shown in
the See Also section. Like Giter8, this script prompts you with several questions, and
optionally creates .gitignore and README.md files, along with a full build.sbt file. I use
this script whenever I want to create a Scala project where I don’t need a template.

As demonstrated, Giter8 works by downloading project templates from GitHub. Giter8
requires SBT and another tool named Conscript, so to install and use Giter8, you’ll need
to follow these steps:

1. Install SBT.

2. Install Conscript.

3. Install Giter8.

Fortunately those projects are well documented, and it takes just a few minutes to install
all three tools.

There have been a couple of times when I’ve used Giter8 and it failed to download a
project template. I don’t remember the exact error messages, but this was the most recent
one:

$ g8 scalatra/scalatra-sbt

Unable to find github repository: scalatra/scalatra-sbt.g8 (master)

Each time this has happened, I’ve upgraded Conscript and Giter8 to their latest versions,
and the problem has gone away.

Conscript is an interesting tool that works with GitHub projects for
the purpose of “installing and updating Scala programs.” Its purpose
and installation process are well documented at its website.

Giter8 currently uses a Java installer. Installing it on a Mac OS X sys‐
tem failed when I double-clicked the JAR file, but when I ran it from
the command line (using the java -jar approach), it installed
successfully.

18.1. Creating a Project Directory Structure for SBT | 573

http://www.scala-sbt.org/
https://github.com/n8han/conscript/
https://github.com/n8han/giter8

See Also

• The SBT website

• Information about installing SBT

• My sbtmkdirs script

• The Giter8 website

• There are currently over thirty Giter8 templates

• The Conscript website

18.2. Compiling, Running, and Packaging a Scala Project
with SBT

Problem
You want to use SBT to compile and run a Scala project, and package the project as a
JAR file.

Solution
Create a directory layout to match what SBT expects, then run sbt compile to compile
your project, sbt run to run your project, and sbt package to package your project as
a JAR file.

To demonstrate this, create a new SBT project directory structure as shown in
Recipe 18.1, and then create a file named Hello.scala in the src/main/scala directory with
these contents:

package foo.bar.baz

object Main extends App {

 println("Hello, world")

}

Unlike Java, in Scala, the file’s package name doesn’t have to match the directory name.
In fact, for simple tests like this, you can place this file in the root directory of your SBT
project, if you prefer.

From the root directory of the project, you can compile the project:

$ sbt compile

574 | Chapter 18: The Simple Build Tool (SBT)

http://www.scala-sbt.org
http://bit.ly/1bGe3Au
http://alvinalexander.com/scala/sbtmkdirs-script
https://github.com/n8han/giter8
https://github.com/n8han/giter8/wiki/giter8-templates
https://github.com/n8han/conscript/

Run the project:

$ sbt run

Package the project:

$ sbt package

Discussion
The first time you run SBT, it may take a while to download all the dependencies it
needs, but after that first run, it will download new dependencies only as needed. The
commands executed in the Solution, along with their output, are shown here:

$ sbt compile

[info] Loading global plugins from /Users/Al/.sbt/plugins

[info] Set current project to Basic (in build file:/Users/Al/SbtTests/)

[success] Total time: 0 s

$ sbt run

[info] Loading global plugins from /Users/Al/.sbt/plugins

[info] Set current project to Basic (in build file:/Users/Al/SbtTests/)

[info] Running foo.bar.baz.Main

Hello, world

[success] Total time: 1 s

$ sbt package

[info] Loading global plugins from /Users/Al/.sbt/plugins

[info] Set current project to Basic (in build file:/Users/Al/SbtTests/)

[info] Packaging /Users/Al/SbtTests/target/scala-2.10/basic_2.10-1.0.jar ...

[info] Done packaging.

[success] Total time: 0 s

Because compile is a dependency of run, you don’t have to run compile before each
run; just type sbt run.

The JAR file created with sbt package is a normal Java JAR file. You can list its contents
with the usual jar tvf command:

$ jar tvf target/scala-2.10/basic_2.10-1.0.jar

 261 Sat Apr 13 13:58:44 MDT 2013 META-INF/MANIFEST.MF

 0 Sat Apr 13 13:58:44 MDT 2013 foo/

 0 Sat Apr 13 13:58:44 MDT 2013 foo/bar/

 0 Sat Apr 13 13:58:44 MDT 2013 foo/bar/baz/

 2146 Sat Apr 13 13:57:52 MDT 2013 foo/bar/baz/Main$.class

 1003 Sat Apr 13 13:57:52 MDT 2013 foo/bar/baz/Main.class

 759 Sat Apr 13 13:57:52 MDT 2013 foo/bar/baz/Main$delayedInit$body.class

You can also execute the main method in the JAR file with the Scala interpreter:

18.2. Compiling, Running, and Packaging a Scala Project with SBT | 575

$ scala target/scala-2.10/basic_2.10-1.0.jar

Hello, world

SBT commands

As with any Java-based command, there can be a little startup lag time involved with
running SBT commands, so when you’re using SBT quite a bit, it’s common to run these
commands in interactive mode from the SBT shell prompt to improve the speed of the
process:

$ sbt

> compile

> run

> package

You can run multiple commands at one time, such as running clean before compile:

> clean compile

At the time of this writing, there are 247 SBT commands available (which I just found
out by hitting the Tab key at the SBT shell prompt, which triggered SBT’s tab comple‐
tion). Table 18-1 shows a list of the most common commands.

Table 18-1. Descriptions of the most common SBT commands

Command Description

clean Removes all generated files from the target directory.

compile Compiles source code files that are in src/main/scala, src/main/java, and the root directory

of the project.

~ compile Automatically recompiles source code files while you’re running SBT in interactive mode (i.e., while

you’re at the SBT command prompt).

console Compiles the source code files in the project, puts them on the classpath, and starts the Scala

interpreter (REPL).

doc Generates API documentation from your Scala source code using scaladoc.

help <command> Issued by itself, the help command lists the common commands that are currently available. When

given a command, help provides a description of that command.

inspect <setting> Displays information about <setting>. For instance, inspect library-dependencies

displays information about the libraryDependencies setting. (Variables in build.sbt are

written in camelCase, but at the SBT prompt, you type them using this hyphen format instead of

camelCase.)

package Creates a JAR file (or WAR file for web projects) containing the files in src/main/scala,

src/main/java, and resources in src/main/resources.

package-doc Creates a JAR file containing API documentation generated from your Scala source code.

publish Publishes your project to a remote repository. See Recipe 18.15, “Publishing Your Library”.

publish-local Publishes your project to a local Ivy repository. See Recipe 18.15, “Publishing Your Library”.

576 | Chapter 18: The Simple Build Tool (SBT)

Command Description

reload Reloads the build definition files (build.sbt, project/*.scala, and project/*.sbt), which is

necessary if you change them while you’re in an interactive SBT session.

run Compiles your code, and runs the main class from your project, in the same JVM as SBT. If your

project has multiple main methods (or objects that extend App), you’ll be prompted to select one

to run.

test Compiles and runs all tests.

update Updates external dependencies.

There are many other SBT commands available, and when you use plug-ins, they can
also make their own commands available. For instance, Recipe 18.7, “Using SBT with
Eclipse” shows that the sbteclipse plug-in adds an eclipse command. See the SBT doc‐
umentation for more information.

Continuous compiling

As mentioned, you can eliminate the SBT startup lag time by starting the SBT interpreter
in “interactive mode.” To do this, type sbt at your operating system command line:

$ sbt

>

When you issue your commands from the SBT shell, they’ll run noticeably faster.

As shown in the Solution, you can issue the compile command from within the SBT
shell, but you can also take this a step further and continuously compile your source
code by using the ~ compile command instead. When you issue this command, SBT
watches your source code files, and automatically recompiles them whenever it sees the
code change.

To demonstrate this, start the SBT shell from the root directory of your project:

$ sbt

Then issue the ~ compile command:

> ~ compile

[info] Compiling 1 Scala source to /Users/Al/SbtTests/target/scala-2.10/classes

[success] Total time: 4 s, completed Apr 13, 2013 2:34:23 PM

1. Waiting for source changes... (press enter to interrupt)

Now, any time you change and save a source code file, SBT automatically recompiles it.
You’ll see these new lines of output when SBT recompiles the code:

[info] Compiling 1 Scala source to /Users/Al/SbtTests/target/scala-2.10/classes

[success] Total time: 2 s, completed Apr 13, 2013 2:34:32 PM

2. Waiting for source changes... (press enter to interrupt)

18.2. Compiling, Running, and Packaging a Scala Project with SBT | 577

https://github.com/harrah/xsbt/wiki/Command-Line-Reference
https://github.com/harrah/xsbt/wiki/Command-Line-Reference

Use last to get more information on the last command

From time to time when working in the SBT shell you may have a problem, such as with
incremental compiling. When issues like this come up, you may be able to use the shell’s
last command to see what happened.

For instance, you may issue a compile command, and then see something wrong in the
output:

> compile

[info] Updating ...

[info] Resolving com.typesafe#config;1.0.0 ...

[info] Compiling 1 Scala source to

YIKES!

I made up the YIKES! part, but you get the idea; something goes wrong. To see what
happened, issue the last compile command:

> last compile

[debug]

[debug] Initial source changes:

[debug] removed:Set()

[debug] added: Set(/Users/Al/Projects/Scala/Foo/Test.scala)

[debug] modified: Set()

[debug] Removed products: Set()

[debug] Modified external sources: Set()

many more lines of debug output here ...

The last command prints logging information for the last command that was executed.
This can help you understand what’s happening, including understanding why some‐
thing is being recompiled over and over when using incremental compilation.

Typing help last in the SBT interpreter shows a few additional details, including a
note about the last-grep command, which can be useful when you need to filter a large
amount of output.

See Also

• The SBT command-line reference.

• Information on publishing an SBT project.

• Incremental compiling can often be much (much!) faster than compiling an entire
project. See the Scala website for more details on how it works in SBT.

• Typesafe has made SBT’s incremental compiler available as a standalone tool named
Zinc, which can be used with other tools, like Maven.

578 | Chapter 18: The Simple Build Tool (SBT)

http://bit.ly/178Zztv
http://bit.ly/12DYQNk
http://bit.ly/1blueEQ
http://bit.ly/12HthNJ

18.3. Running Tests with SBT and ScalaTest

Problem
You want to set up an SBT project with ScalaTest, and run the tests with SBT.

Solution
Create a new SBT project directory structure as shown in Recipe 18.1, and then add the
ScalaTest library dependency to your build.sbt file, as shown here:

name := "BasicProjectWithScalaTest"

version := "1.0"

scalaVersion := "2.10.0"

libraryDependencies += "org.scalatest" % "scalatest_2.10" % "1.9.1" % "test"

Add your Scala source code under the src/main/scala folder, add your tests under the

src/test/scala folder, and then run the tests with the SBT test command:

$ sbt test

Discussion
The libraryDependencies tag in the build.sbt file shows the standard way of adding
new dependencies to an SBT project:

libraryDependencies += "org.scalatest" % "scalatest_2.10" % "1.9.1" % "test"

You can write that line as shown, or this way:

libraryDependencies += "org.scalatest" %% "scalatest" % "1.9.1" % "test"

In the second example, I used the %% method to automatically append the project’s Scala
version (2.10) to the end of the artifact name (scalatest). These two options are ex‐
plained more in Recipe 18.4, “Managing Dependencies with SBT”, but hopefully the
way they work is clear from those examples.

To demonstrate how ScalaTest integrates seamlessly with SBT, create a source file named
Hello.scala with the following contents in the src/main/scala directory of your project:

package com.alvinalexander.testproject

object Hello extends App {

 val p = Person("Alvin Alexander")

 println("Hello from " + p.name)

}

case class Person(var name: String)

18.3. Running Tests with SBT and ScalaTest | 579

Then create a test file named HelloTests.scala in the src/test/scala directory of your
project with these contents:

package com.alvinalexander.testproject

import org.scalatest.FunSuite

class HelloTests extends FunSuite {

 test("the name is set correctly in constructor") {

 val p = Person("Barney Rubble")

 assert(p.name == "Barney Rubble")

 }

 test("a Person's name can be changed") {

 val p = Person("Chad Johnson")

 p.name = "Ochocinco"

 assert(p.name == "Ochocinco")

 }

}

Next, run your tests from your project’s root directory with SBT:

$ sbt test

[info] Loading global plugins from /Users/Al/.sbt/plugins

[info] Set current project to BasicProjectWithScalaTest (in build

 file:/Users/Al/Projects/BasicProjectWithScalaTest/)

[info] HelloTests:

[info] - the name is set correctly in constructor

[info] - a Person's name can be changed

[info] Passed: : Total 2, Failed 0, Errors 0, Passed 2, Skipped 0

[success] Total time: 0 s

This output shows that the two tests in the HelloTests test class were run.

As shown in these examples, there’s nothing special you have to do to make ScalaTest
work with SBT, other than adding it as a dependency in the build.sbt file; it just works.

If you reused an existing SBT project folder to test this recipe, you may
need to issue the SBT reload command. As described in Table 18-1,
this command tells SBT to reload the project definition files, includ‐
ing the build.sbt file.

See Also

• The ScalaTest “quick start” page.

• If you’d like a simple way to test this, you can download the code for this recipe
from GitHub.

580 | Chapter 18: The Simple Build Tool (SBT)

http://www.scalatest.org/quick_start
https://github.com/alvinj/BasicScalaSbtProjectWithScalatest

• specs2 is another popular Scala testing framework that integrates easily with SBT.
It compares well to ScalaTest, and is also the default testing library for the Play
Framework.

• The SBT Quick Configuration documentation shows dozens of build.sbt examples.

18.4. Managing Dependencies with SBT

Problem
You want to use one or more external libraries in your Scala/SBT projects.

Solution
You can use both managed and unmanaged dependencies in your SBT projects.

If you have JAR files (unmanaged dependencies) that you want to use in your project,
simply copy them to the lib folder in the root directory of your SBT project, and SBT
will find them automatically. If those JARs depend on other JAR files, you’ll have to
download those other JAR files and copy them to the lib directory as well.

If you have a single managed dependency, such as wanting to use the Java HtmlCleaner
library in your project, add a libraryDependencies line like this to your build.sbt file:

libraryDependencies += "net.sourceforge.htmlcleaner" % "htmlcleaner" % "2.4"

Because configuration lines in build.sbt must be separated by blank lines, a simple but
complete file with one dependency looks like this:

name := "BasicProjectWithScalaTest"

version := "1.0"

scalaVersion := "2.10.0"

libraryDependencies += "org.scalatest" %% "scalatest" % "1.9.1" % "test"

To add multiple managed dependencies to your project, define them as a Seq in your
build.sbt file:

libraryDependencies ++= Seq(

 "net.sourceforge.htmlcleaner" % "htmlcleaner" % "2.4",

 "org.scalatest" % "scalatest_2.10" % "1.9.1" % "test",

 "org.foobar" %% "foobar" % "1.8"

)

Or, if you prefer, you can add them one line at a time to the file, separating each line by
a blank line:

18.4. Managing Dependencies with SBT | 581

http://etorreborre.github.com/specs2/
http://bit.ly/1aqsveB
http://htmlcleaner.sourceforge.net/
http://htmlcleaner.sourceforge.net/

libraryDependencies += "net.sourceforge.htmlcleaner" % "htmlcleaner" % "2.4"

libraryDependencies += "org.scalatest" % "scalatest_2.10" % "1.9.1" % "test"

libraryDependencies += "org.foobar" %% "foobar" % "1.6"

As you might infer from these examples, entries in build.sbt are simple key/value pairs.
SBT works by creating a large map of key/value pairs that describe the build, and when
it parses this file, it adds the pairs you define to its map. The fields in this file named
version, name, scalaVersion, and libraryDependencies are all SBT keys (and in fact
are probably the most common keys).

Discussion
A managed dependency is a dependency that’s managed by your build tool, in this case,
SBT. In this situation, if library a.jar depends on b.jar, and that library depends on
c.jar, and those JAR files are kept in an Ivy/Maven repository along with this relationship
information, then all you have to do is add a line to your build.sbt file stating that you
want to use a.jar. The other JAR files will be downloaded and included into your project
automatically.

When using a library as an unmanaged dependency, you have to manage this situation
yourself. Given the same situation as the previous paragraph, if you want to use the
library a.jar in your project, you must manually download a.jar, and then know about
the dependency on b.jar, and the transitive dependency on c.jar, then download all those
files yourself, and place them in your project’s lib directory.

I’ve found that manually managing JAR files in the lib directory works fine for small
projects, but as shown in Recipe 16.2, “Connecting to a Database with the Spring
Framework”, a few lines of managed dependency declarations can quickly explode into
a large number of JAR files you’ll need to manually track down and add to your lib
folder.

Under the covers, SBT uses Apache Ivy as its dependency manager. Ivy is also used by
Ant and Maven, and as a result, you can easily use the wealth of Java libraries that have
been created over the years in your Scala projects.

There are two general forms for adding a managed dependency to a build.sbt file. In the

first form, you specify the groupID, artifactID, and revision:

libraryDependencies += groupID % artifactID % revision

In the second form, you add an optional configuration parameter:

libraryDependencies += groupID % artifactID % revision % configuration

582 | Chapter 18: The Simple Build Tool (SBT)

The groupID, artifactID, revision, and configuration strings correspond to what
Ivy requires to retrieve the module you want. Typically, the module developer will give
you the information you need. For instance, the specs2 website provides this string:

libraryDependencies += "org.specs2" %% "specs2" % "1.14" % "test"

It also provides this information, which shows how to use the same library with Maven:

<dependency>

 <groupId>org.specs2</groupId>

 <artifactId>specs2_2.10</artifactId>

 <version>1.14</version>

 <scope>test</scope>

</dependency>

The symbols +=, %, and %% used in build.sbt are part of the DSL defined by SBT. They’re
described in Table 18-2.

Table 18-2. Common methods used in a build.sbt file

Method Description

+= Appends to the key’s value. The build.sbt file works with settings defined as key/value pairs. In the examples shown,

libraryDependencies is a key, and it’s shown with several different values.

% A method used to construct an Ivy Module ID from the strings you supply.

%% When used after the groupID, it automatically adds your project’s Scala version (such as _2.10) to the end of the

artifact name.

As shown in the examples, you can use % or %% after the groupID. This example shows
the % method:

libraryDependencies += "org.scalatest" % "scalatest_2.10" % "1.9.1" % "test"

This example shows the %% method:

libraryDependencies += "org.scalatest" %% "scalatest" % "1.9.1" % "test"

When using Scala 2.10, these two lines are equivalent. The %% method adds your project’s
Scala version to the end of the artifact name. The practice of adding the Scala version
(in the format _2.10.0) to the artifactID is used because modules may be compiled
for different Scala versions.

Note that in some of the examples, the string test is added after the revision:

"org.scalatest" % "scalatest_2.10" % "1.9.1" % "test"

This demonstrates the use of the “configuration” form for adding a dependency that
was shown earlier:

libraryDependencies += groupID % artifactID % revision % configuration

As the SBT documentation states, this means that the dependency you’re defining “will
be added to the classpath only for the Test configuration, and won’t be added in the

18.4. Managing Dependencies with SBT | 583

Compile configuration.” This is useful for adding dependencies like ScalaTest, specs2,
Mockito, etc., that will be used when you want to test your application, but not when
you want to compile and run the application.

If you’re not familiar with Apache Ivy, it can be helpful to know that managed depen‐
dencies are downloaded beneath a .ivy2 directory in your home directory (~/.ivy2/) on
your filesystem. See the Ivy documentation for more information.

Repositories

SBT uses the standard Maven2 repository by default, so it can locate most libraries when
you add a libraryDependencies line to a build.sbt file. In these cases, there’s no need
for you to tell SBT where to look for the file. However, when a library is not in a standard
repository, you can tell SBT where to look for it. This process is referred to as adding a
resolver, and it’s covered in Recipe 18.11, “Telling SBT How to Find a Repository
(Working with Resolvers)”.

See Also

• Apache Ivy.

• The SBT Quick Configuration documentation shows dozens of build.sbt examples.

• Recipe 18.11, “Telling SBT How to Find a Repository (Working with Resolvers)”.

18.5. Controlling Which Version of a Managed
Dependency Is Used

Problem
You want to make sure you always have the desired version of a managed dependency,
including the latest integration release, milestone release, or other versions.

Solution
The revision field in the libraryDependencies setting isn’t limited to specifying a
single, fixed version. According to the Apache Ivy documentation, you can specify terms
such as latest.integration, latest.milestone, and other terms.

As one example of this flexibility, rather than specifying version 1.8 of a foobar module,
as shown here:

libraryDependencies += "org.foobar" %% "foobar" % "1.8"

you can request the latest.integration version like this:

libraryDependencies += "org.foobar" %% "foobar" % "latest.integration"

584 | Chapter 18: The Simple Build Tool (SBT)

http://ant.apache.org/ivy/
http://ant.apache.org/ivy/
http://bit.ly/1aqsveB

The module developer will often tell you what versions are available or should be used,
and Ivy lets you specify tags to control which version of the module will be downloaded
and used. The Ivy “dependency” documentation states that the following tags can be
used:

• latest.integration

• latest.[any status], such as latest.milestone

• You can end the revision with a + character. This selects the latest subrevision of
the dependency module. For instance, if the dependency module exists in revisions
1.0.3, 1.0.7, and 1.1.2, specifying 1.0.+ as your dependency will result in 1.0.7
being selected.

• You can use “version ranges,” as shown in the following examples:

[1.0,2.0] matches all versions greater or equal to 1.0 and lower or equal to

 2.0

[1.0,2.0[matches all versions greater or equal to 1.0 and lower than 2.0

]1.0,2.0] matches all versions greater than 1.0 and lower or equal to 2.0

]1.0,2.0[matches all versions greater than 1.0 and lower than 2.0

[1.0,) matches all versions greater or equal to 1.0

]1.0,) matches all versions greater than 1.0

(,2.0] matches all versions lower or equal to 2.0

(,2.0[matches all versions lower than 2.0

(These configuration examples are courtesy of the Apache Ivy documentation. See the
link in the See Also section for more information.)

To demonstrate a few of these tags, this example shows the latest.milestone tag:

libraryDependencies += "org.scalatest" %% "scalatest" % "latest.milestone" % ↵

"test"

At the time of this writing, it retrieves this file:

scalatest_2.10-2.0.M6-SNAP13.jar

This specification demonstrates the + tag:

libraryDependencies += "org.scalatest" %% "scalatest" % "1.9.+" % "test"

It currently retrieves this file:

scalatest_2.10-1.9.2-SNAP1.jar

See Also

Apache Ivy revision documentation

18.5. Controlling Which Version of a Managed Dependency Is Used | 585

http://bit.ly/18jswQI

18.6. Creating a Project with Subprojects

Problem
You want to configure SBT to work with a main project that depends on other subpro‐
jects you’re developing.

Solution
Create your subproject as a regular SBT project, but without a project subdirectory.
Then, in your main project, define a project/Build.scala file that defines the dependen‐
cies between the main project and subprojects.

This is demonstrated in the following example, which I created based on the SBT Multi-
Project documentation:

import sbt._

import Keys._

/**

* based on http://www.scala-sbt.org/release/docs/Getting-Started/Multi-Project

*/

object HelloBuild extends Build {

 // aggregate: running a task on the aggregate project will also run it

 // on the aggregated projects.

 // dependsOn: a project depends on code in another project.

 // without dependsOn, you'll get a compiler error: "object bar is not a

 // member of package com.alvinalexander".

 lazy val root = Project(id = "hello",

 base = file(".")) aggregate(foo, bar) dependsOn(foo, bar)

 // sub-project in the Foo subdirectory

 lazy val foo = Project(id = "hello-foo",

 base = file("Foo"))

 // sub-project in the Bar subdirectory

 lazy val bar = Project(id = "hello-bar",

 base = file("Bar"))

}

To create your own example, you can either follow the instructions in the SBT Multi-
Project documentation to create a main project with subprojects, or clone my SBT
Subproject Example on GitHub, which I created to help you get started quickly.

586 | Chapter 18: The Simple Build Tool (SBT)

https://github.com/harrah/xsbt/wiki/Getting-Started-Multi-Project
https://github.com/harrah/xsbt/wiki/Getting-Started-Multi-Project
https://github.com/harrah/xsbt/wiki/Getting-Started-Multi-Project
https://github.com/harrah/xsbt/wiki/Getting-Started-Multi-Project
https://github.com/alvinj/SbtSubProjectsExample
https://github.com/alvinj/SbtSubProjectsExample

Discussion
Creating a main project with subprojects is well documented on the SBT website, and
the primary glue that defines the relationships between projects is the project/Build.scala

file you create in your main project.

In the example shown, my main project depends on two subprojects, which are in
directories named Foo and Bar beneath my project’s main directory. I reference these
projects in the following code in my main project, so it’s necessary to tell SBT about the
relationship between the projects:

package com.alvinalexander.subprojecttests

import com.alvinalexander.bar._

import com.alvinalexander.foo._

object Hello extends App {

 println(Bar("I'm a Bar"))

 println(Bar("I'm a Foo"))

}

The following output from the Unix tree command shows what the directory structure
for my project looks like, including the files and directories for the main project, and
the two subprojects:

|-- Bar

| |-- build.sbt

| +-- src

| |-- main

| | |-- java

| | |-- resources

| | +-- scala

| | +-- Bar.scala

| +-- test

| |-- java

| +-- resources

|-- Foo

| |-- build.sbt

| +-- src

| |-- main

| | |-- java

| | |-- resources

| | +-- scala

| | +-- Foo.scala

| +-- test

| |-- java

| +-- resources

|-- build.sbt

|-- project

| |-- Build.scala

|

18.6. Creating a Project with Subprojects | 587

+-- src

 |-- main

 | |-- java

 | |-- resources

 | +-- scala

 | +-- Hello.scala

 +-- test

 |-- java

 |-- resources

 +-- scala

 +-- HelloTest.scala

To experiment with this yourself, I encourage you to clone my GitHub project.

See Also

• SBT Multi-Project documentation

• My example “SBT Subprojects” code at GitHub

18.7. Using SBT with Eclipse

Problem
You want to use Eclipse with a project you’re managing with SBT.

Solution
Use the Scala IDE for Eclipse project so you can work on Scala projects in Eclipse, and
use the sbteclipse plug-in to enable SBT to generate files for Eclipse.

The Scala IDE for Eclipse project lets you edit Scala code in Eclipse. With syntax high‐
lighting, code completion, debugging, and many other features, it makes Scala devel‐
opment in Eclipse a pleasure.

To use the sbteclipse plug-in, download it per the instructions on the website. Once
installed, when you’re in the root directory of an SBT project, type sbt eclipse to
generate the files Eclipse needs. You may see a lot of output the first time you run the
command as SBT checks everything it needs, but at the end of the output you should
see a “success” message, like this:

$ sbt eclipse

[info] Successfully created Eclipse project files for project(s):

[info] YourProjectNameHere

The plug-in generates the two files Eclipse needs, the .classpath and .project files.

588 | Chapter 18: The Simple Build Tool (SBT)

http://bit.ly/13bjik7
http://bit.ly/15gi9Mi
http://bit.ly/13bjik7
http://scala-ide.org/
https://github.com/typesafehub/sbteclipse

Once these files are generated, go to Eclipse and follow the usual steps to import a project
into the Eclipse workspace: File → Import → Existing Projects into Workspace. Your
project will then appear in the Eclipse Navigator, Project Explorer, Package Explorer,
and other views.

Discussion
The .classpath file is an XML file that contains a number of <classpathentry> tags, like
this:

<classpath>

 <classpathentry output="target/scala-2.10/classes"

 path="src/main/scala" kind="src"></classpathentry>

 <classpathentry output="target/scala-2.10/classes"

 path="src/main/java" kind="src"></classpathentry>

 <classpathentry output="target/scala-2.10/test-classes"

 path="src/test/scala" kind="src"></classpathentry>

 <classpathentry output="target/scala-2.10/test-classes"

 path="src/test/java" kind="src"></classpathentry>

 <classpathentry kind="con"

 path="org.scala-ide.sdt.launching.SCALA_CONTAINER"></classpathentry>

 <classpathentry

 path="/Users/Al/.ivy2/cache/com.typesafe/config/bundles/config-1.0.0.jar"

 kind="lib"></classpathentry>

 <classpathentry path="org.eclipse.jdt.launching.JRE_CONTAINER"

 kind="con"></classpathentry>

 <classpathentry path="bin" kind="output"></classpathentry>

</classpath>

The .project file is an XML file that describes your project and looks like this:

<projectDescription>

 <name>YourProjectName</name>

 <buildSpec>

 <buildCommand>

 <name>org.scala-ide.sdt.core.scalabuilder</name>

 </buildCommand>

 </buildSpec>

 <natures>

 <nature>org.scala-ide.sdt.core.scalanature</nature>

 <nature>org.eclipse.jdt.core.javanature</nature>

 </natures>

</projectDescription>

18.7. Using SBT with Eclipse | 589

Any time you update your SBT build definition files (build.sbt, project/*.scala,

project/*.sbt) you should rerun the sbt eclipse command to update the .classpath

and .project files. Eclipse will also need to know that these files were regenerated, so this
is really a two-step process:

• Run sbt eclipse from the command line.

• In Eclipse, select your project and then refresh it (using the F5 function key, or
refreshing it with the menu commands).

See Also

• The Scala IDE for Eclipse

• The sbteclipse plug-in

• JetBrains also has plug-ins for IntelliJ IDEA

18.8. Generating Project API Documentation

Problem
You’ve marked up your source code with Scaladoc comments, and want to generate the
API documentation for your project.

Solution
Use any of the commands listed in Table 18-3, depending on your needs.

Table 18-3. Descriptions of SBT commands that generate project documentation

SBT command Description

doc Creates Scaladoc API documentation from the Scala source code files located in src/main/scala.

test:doc Creates Scaladoc API documentation from the Scala source code files located in src/test/scala.

package-doc Creates a JAR file containing the API documentation created from the Scala source code in

src/main/scala.

test:package-doc Creates a JAR file containing the API documentation created from the Scala source code in

src/test/scala.

publish Publishes artifacts to the repository defined by the publish-to setting. See Recipe 18.15,

“Publishing Your Library”.

publish-local Publishes artifacts to the local Ivy repository as described. See Recipe 18.15, “Publishing Your Library”.

For example, to generate API documentation, use the doc command:

590 | Chapter 18: The Simple Build Tool (SBT)

http://scala-ide.org/
https://github.com/typesafehub/sbteclipse/
http://plugins.jetbrains.com/

$ sbt doc

At the time of this writing, SBT doesn’t show where the output from this command is
written to, but with Scala 2.10.0, SBT 0.12.3 places the root index.html Scaladoc file at
target/scala-2.10/api/index.html under the root directory of your project. Other com‐

mands, including package-doc and publish, do indicate where their output is located.

The following example shows that publish-local generates its output for a project
named “Hello” to the .ivy2 directory under your $HOME directory:

> sbt publish-local

[info] Loading global plugins from /Users/Al/.sbt/plugins

$HOME/.ivy2/local/hello/hello_2.10/1.0/poms/hello_2.10.pom

$HOME/.ivy2/local/hello/hello_2.10/1.0/jars/hello_2.10.jar

$HOME/.ivy2/local/hello/hello_2.10/1.0/srcs/hello_2.10-sources.jar

$HOME/.ivy2/local/hello/hello_2.10/1.0/docs/hello_2.10-javadoc.jar

$HOME/.ivy2/local/hello/hello_2.10/1.0/ivys/ivy.xml

See Recipe 18.15, “Publishing Your Library” for examples of how to use publish and
publish-local.

For a detailed example of how to use Scaladoc, see Recipe 14.8, “Generating Documen‐
tation with scaladoc”.

See Also

• The SBT command-line reference has more information on these commands

• When writing Scaladoc, you can use a Wiki-like syntax

• The Scaladoc tags (@see, @param, etc.) are listed in the Scala wiki

• Recipe 14.8, “Generating Documentation with scaladoc” provides more examples
of the documentation publishing commands

• See Recipe 18.15, “Publishing Your Library” for examples of using publish and
publish-local

18.9. Specifying a Main Class to Run

Problem
You have multiple main methods in objects in your project, and you want to specify
which main method should be run when you type sbt run, or specify the main method
that should be invoked when your project is packaged as a JAR file.

18.9. Specifying a Main Class to Run | 591

http://bit.ly/178Zztv
https://wiki.scala-lang.org/display/SW/Syntax
https://wiki.scala-lang.org/display/SW/Tags+and+Annotations

Solution
If you have multiple main methods in your project and want to specify which main
method to run when typing sbt run, add a line like this to your build.sbt file:

// set the main class for 'sbt run'

mainClass in (Compile, run) := Some("com.alvinalexander.Foo")

This class can either contain a main method, or extend the App trait.

To specify the class that will be added to the manifest when your application is packaged
as a JAR file, add this line to your build.sbt file:

// set the main class for packaging the main jar

mainClass in (Compile, packageBin) := Some("com.alvinalexander.Foo")

That setting tells SBT to add the following line to the META-INF/MANIFEST.MF file

in your JAR when you run sbt package:

Main-Class: com.alvinalexander.Foo

Using run-main

When running your application with SBT, you can also use SBT’s run-main command
to specify the class to run. Invoke it like this from your operating system command line:

$ sbt "run-main com.alvinalexander.Foo"

[info] Loading global plugins from /Users/Al/.sbt/plugins

[info] Running com.alvinalexander.Foo

hello

[success] Total time: 1 s

Invoke it like this from inside the SBT shell:

$ sbt

> run-main com.alvinalexander.Foo

[info] Running com.alvinalexander.Foo

hello

[success] Total time: 1 s

Discussion
If you have only one main method in an object in your project (or one object that extends
the App trait), SBT can automatically determine the location of that main method. In
that case, these configuration lines aren’t necessary.

If you have multiple main methods in your project and don’t use any of the approaches
shown in the Solution, SBT will prompt you with a list of objects it finds that have a
main method or extend the App trait when you execute sbt run:

592 | Chapter 18: The Simple Build Tool (SBT)

Multiple main classes detected, select one to run:

 [1] com.alvinalexander.testproject.Foo

 [2] com.alvinalexander.testproject.Bar

The following code shows what a build.sbt file with both of the mainClass settings looks
like:

name := "Simple Test Project"

version := "1.0"

scalaVersion := "2.10.0"

// set the main class for packaging the main jar

mainClass in (Compile, packageBin) := Some("com.alvinalexander.testproject.Foo")

// set the main class for the main 'sbt run' task

mainClass in (Compile, run) := Some("com.alvinalexander.testproject.Foo")

See Also

The SBT Quick Configuration documentation shows dozens of build.sbt

examples.

18.10. Using GitHub Projects as Project Dependencies

Problem
You want to use a Scala library project on GitHub as an SBT project dependency.

Solution
Reference the GitHub project you want to include in your project/Build.scala file as a

RootProject.

For example, assuming you want to use the Scala project at https://github.com/alvinj/
SoundFilePlayer as a dependency, put the following contents in a file named
project/Build.scala in your SBT project:

import sbt._

object MyBuild extends Build {

 lazy val root = Project("root", file(".")) dependsOn(soundPlayerProject)

 lazy val soundPlayerProject =

 RootProject(uri("git://github.com/alvinj/SoundFilePlayer.git"))

}

18.10. Using GitHub Projects as Project Dependencies | 593

http://bit.ly/1aqsveB
https://github.com/alvinj/SoundFilePlayer
https://github.com/alvinj/SoundFilePlayer

You can now use that library in your code, as shown in this little test program:

package githubtest

import com.alvinalexander.sound._

import javazoom.jlgui.basicplayer._

import scala.collection.JavaConversions._

import java.util.Map

object TestJavaSound extends App {

 val testClip = "/Users/al/Sarah/Sounds/HAL-mission-too-important.wav"

 val player = SoundFilePlayer.getSoundFilePlayer(testClip)

 player.play

}

With this configuration and a basic build.sbt file, you can run this code as usual with

the sbt run command.

Including this GitHub project is interesting, because it has a number of JAR files in its
own lib folder, and compiling and running this example works fine.

Note that although this works well for compiling and running your project, you can’t
package all of this code into a JAR file by just using the sbt package command. Un‐
fortunately, SBT doesn’t include the code from the GitHub project for you. However, a
plug-in named sbt-assembly does let you package all of this code together as a single
JAR file. See Recipe 18.14, “Deploying a Single, Executable JAR File” for information
on how to configure and use sbt-assembly.

Discussion
Whereas the build.sbt file is used to define simple settings for your SBT project, the
project/Build.scala file is used for “everything else.” In this file you write Scala code using
the SBT API to accomplish any other task you want to achieve, such as including GitHub
projects like this.

To use multiple GitHub projects as dependencies, add additional RootProject instances
to your project/Build.scala file:

import sbt._

object MyBuild extends Build {

 lazy val root = Project("root", file("."))

 .dependsOn(soundPlayerProject)

 .dependsOn(appleScriptUtils)

 lazy val soundPlayerProject =

 RootProject(uri("git://github.com/alvinj/SoundFilePlayer.git"))

594 | Chapter 18: The Simple Build Tool (SBT)

https://github.com/sbt/sbt-assembly

 lazy val appleScriptUtils =

 RootProject(uri("git://github.com/alvinj/AppleScriptUtils.git"))

}

See Also

Recipe 18.6, “Creating a Project with Subprojects”, and Recipe 18.16, “Using
Build.scala Instead of build.sbt”, show other examples of the project/Build.scala

file.

18.11. Telling SBT How to Find a Repository (Working with
Resolvers)

Problem
You want to add a managed dependency to your project from an Ivy repository that
SBT doesn’t know about by default.

Solution
Use the resolvers key in the build.sbt file to add any unknown Ivy repositories. Use
this syntax to add one resolver:

resolvers += "Java.net Maven2 Repository" at ↵

"http://download.java.net/maven/2/"

You can use a Seq to add multiple resolvers:

resolvers ++= Seq(

 "Typesafe" at "http://repo.typesafe.com/typesafe/releases/",

 "Java.net Maven2 Repository" at "http://download.java.net/maven/2/"

)

Or, if you prefer, you can also add them one line at a time, making sure to separate them
by a blank line:

resolvers += "Typesafe" at "http://repo.typesafe.com/typesafe/releases/"

resolvers += "Java.net Maven2 Repository" at ↵

"http://download.java.net/maven/2/"

Discussion
If the module you’re requesting is in the default Maven2 repository SBT knows about,
adding a managed dependency “just works.” But if the module isn’t there, the library’s
author will need to provide you with the repository information.

18.11. Telling SBT How to Find a Repository (Working with Resolvers) | 595

http://search.maven.org/#browse

You define a new repository in the build.sbt file with this general format:

resolvers += "repository name" at "location"

As shown in the Solution, you can enter one resolver at a time with the += method, and
you can add multiple resolvers with ++= and a Seq.

In addition to the default Maven2 repository, SBT is configured to know about the
JavaNet1Repository. To use this repository in your SBT project, add this line to your
build.sbt file:

resolvers += JavaNet1Repository

18.12. Resolving Problems by Getting an SBT Stack Trace

Problem
You’re trying to use SBT to compile, run, or package a project, and it’s failing, and you
need to be able to see the stack trace to understand why it’s failing.

Solution
When an SBT command silently fails (typically with a “Nonzero exit code” message),
but you can’t tell why, run your command from within the SBT shell, then use the
last run command after the command that failed.

This pattern typically looks like this:

$ sbt run // something fails here, but you can't tell what

$ sbt

> run // failure happens again

> last run // this shows the full stack trace

I’ve run into this on several projects where I was using JAR files and managing their
dependencies myself, and in one specific case, I didn’t know I needed to include the
Apache Commons Logging JAR file. This was causing the “Nonzero exit code” error
message, but I couldn’t tell that until I issued the last run command from within the
SBT shell. Once I ran that command, the problem was obvious from the stack trace.

Depending on the problem, another approach that can be helpful is to set the SBT
logging level. See Recipe 18.13, “Setting the SBT Log Level” for more information.

596 | Chapter 18: The Simple Build Tool (SBT)

http://download.java.net/maven/1/

18.13. Setting the SBT Log Level

Problem
You’re having a problem compiling, running, or packaging your project with SBT and
need to adjust the SBT logging level to debug the problem. (Or, you’re interested in
learning about how SBT works.)

Solution
Set the SBT logging level in your build.sbt file with this setting:

logLevel := Level.Debug

Or, if you’re working interactively from the SBT command line and don’t want to add
this to your build.sbt file, use this syntax:

> set logLevel := Level.Debug

Changing the logging levels significantly changes the output SBT produces, which can
help you debug problems. If you’re just starting out with SBT, the output can also help
you learn how SBT works.

Other logging levels are:

• Level.Info

• Level.Warning

• Level.Error

See Also

The SBT FAQ shows the logging levels.

18.14. Deploying a Single, Executable JAR File

Problem
You’re building a Scala application, such as a Swing application, and want to deploy a
single, executable JAR file to your users.

18.13. Setting the SBT Log Level | 597

http://www.scala-sbt.org/release/docs/faq

Solution
The sbt package command creates a JAR file that includes the class files it compiles
from your source code, along with the resources in your project (from
src/main/resources), but there are two things it doesn’t include in the JAR file:

• Your project dependencies (JAR files in your project’s lib folder, or managed de‐
pendencies declared in build.sbt).

• Libraries from the Scala distribution that are needed to execute the JAR file with
the java command.

This makes it difficult to distribute a single, executable JAR file for your application.
There are three things you can do to solve this problem:

• Distribute all the JAR files necessary with a script that builds the classpath and
executes the JAR file with the scala command. This requires that Scala be installed
on client systems.

• Distribute all the JAR files necessary (including Scala libraries) with a script that
builds the classpath and executes the JAR file with the java command. This requires
that Java is installed on client systems.

• Use an SBT plug-in such as sbt-assembly to build a single, complete JAR file that
can be executed with a simple java command. This requires that Java is installed
on client systems.

This solution focuses on the third approach. The first two approaches are examined in
the Discussion.

Using sbt-assembly

The installation instructions for sbt-assembly may change, but at the time of this writing,
just add these two lines of code to a plugins.sbt file in the project directory of your SBT
project:

resolvers += Resolver.url("artifactory",

url("http://scalasbt.artifactoryonline.com/scalasbt/sbt-plugin-releases"))↵

(Resolver.ivyStylePatterns)

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.8.4")

You’ll need to create that file if it doesn’t already exist.

Then add these two lines to the top of your build.sbt file:

import AssemblyKeys._

// sbt-assembly

assemblySettings

598 | Chapter 18: The Simple Build Tool (SBT)

https://github.com/sbt/sbt-assembly/

That’s the only setup work that’s required. Now run sbt assembly to create your single,
executable JAR file:

$ sbt assembly

When the assembly task finishes running it will tell you where the executable JAR file
is located. For instance, when packaging my Blue Parrot application, SBT prints the
following lines of output that show the dependencies sbt-assembly is including, and the
location of the final JAR file:

[info] Including akka-actor-2.0.1.jar

[info] Including scala-library.jar

[info] Including applescriptutils_2.9.1-1.0.jar

[info] Including forms-1.0.7.jar

[info] Including sounds_2.9.1-1.0.jar

[info] Packaging target/BlueParrot-assembly-1.0.jar ...

[info] Done packaging.

The sbt-assembly plug-in works by copying the class files from your source code, the
class files from your dependencies, and the class files from the Scala library into one
single JAR file that can be executed with the java interpreter. This can be important if
there are license restrictions on a JAR file, for instance.

As noted, there are other plug-ins to help solve this problem, including One-JAR, but
sbt-assembly worked best with several applications I’ve deployed as single, executable
JAR files.

Discussion
A JAR file created by SBT can be run by the Scala interpreter, but not the Java interpreter.
This is because class files in the JAR file created by sbt package have dependencies on
Scala class files (Scala libraries), which aren’t included in the JAR file SBT generates.
This is easily demonstrated.

First, create an empty SBT project directory. (See Recipe 18.1 for easy ways to do this.)

Then place the following code in a file named Main.scala in the root directory of the
project:

package foo.bar.baz

object Main extends App {

 println("Hello, world")

}

Next, run sbt package to create the JAR file:

$ sbt package

[info] Loading global plugins from /Users/Al/.sbt/plugins

[info] Done updating.

[info] Compiling 1 Scala source to target/scala-2.10/classes...

18.14. Deploying a Single, Executable JAR File | 599

http://alvinalexander.com/blueparrot

[info] Packaging target/scala-2.10/basic_2.10-1.0.jar ...

[info] Done packaging.

[success] Total time: 6 s

Now attempt to run the JAR file with the java -jar command. This will fail:

$ java -jar target/scala-2.10/basic_2.10-1.0.jar

Exception in thread "main" java.lang.NoClassDefFoundError: scala/App

 at java.lang.ClassLoader.defineClass1(Native Method)

 ... 32 more

This fails because the Java interpreter doesn’t know where the scala/App trait is.

Next, demonstrate that you can run the same JAR file with the Scala interpreter:

$ scala target/scala-2.10/basic_2.10-1.0.jar

Hello, world

This works fine.

For the Java interpreter to run your JAR file, it needs the scala-library.jar file from your
Scala installation to be on its classpath. You can get this example to work with Java by
including that JAR file on its classpath with this command:

$ java -cp "${CLASSPATH}:${SCALA_HOME}/lib/scala-library.jar:target/scala-2.10↵

/basic_2.10-1.0.jar" foo.bar.baz.Main

Hello, world

As shown, adding the scala-library.jar file lets the Java interpreter find the scala/App
trait (which is a normal .class file), which lets it run the application successfully for you.

This is part of the work that sbt-assembly performs for you. It repackages the class files
from ${SCALA_HOME}/lib/scala-library.jar into your single, executable JAR file, and
does the same thing with your other project dependencies. Note that if your application
is more complicated, it may need additional JAR files from the ${SCALA_HOME}/lib

directory.

See Also

• The sbt-assembly project.

• My Blue Parrot application is written in Scala, and packaged with SBT and sbt-
assembly.

• The One-JAR project.

600 | Chapter 18: The Simple Build Tool (SBT)

https://github.com/sbt/sbt-assembly/
http://alvinalexander.com/blueparrot
https://github.com/sbt/sbt-onejar

18.15. Publishing Your Library

Problem
You’ve created a Scala project or library with SBT that you want to share with other
users, creating all the files you need for an Ivy repository.

Solution
Define your repository information, then publish your project with sbt publish or
sbt publish-local.

For my SoundFilePlayer library, I added this setting to my build.sbt file to define the
location of my local repository:

publishTo := Some(Resolver.file("file", new File("/Users/al/tmp")))

I then ran sbt publish, and SBT generated the following files:

$ sbt publish

[info] Wrote

/Users/al/SoundFilePlayer/target/scala-2.10.0/sounds_2.10.0-1.0.pom

[info] :: delivering :: default#sounds_2.10.0;1.0 :: 1.0 :: release ::

[info] delivering ivy file to

/Users/al/SoundFilePlayer/target/scala-2.10.0/ivy-1.0.xml

[info] published sounds_2.10.0 to

/Users/al/tmp/default/sounds_2.10.0/1.0/sounds_2.10.0-1.0.pom

[info] published sounds_2.10.0 to

/Users/al/tmp/default/sounds_2.10.0/1.0/sounds_2.10.0-1.0.jar

[info] published sounds_2.10.0 to

/Users/al/tmp/default/sounds_2.10.0/1.0/sounds_2.10.0-1.0-sources.jar

[info] published sounds_2.10.0 to

/Users/al/tmp/default/sounds_2.10.0/1.0/sounds_2.10.0-1.0-javadoc.jar

[success] Total time: 1s

Without doing anything to define a “local Ivy repository,” I get the following results
when running the publish-local task:

$ sbt publish-local

[info] Wrote /Users/al/SoundFilePlayer/target/scala-2.10.0/sounds_2.10.0-1.0.pom

[info] :: delivering :: default#sounds_2.10.0;1.0 :: 1.0 :: release ::

[info] delivering ivy file to

/Users/al/SoundFilePlayer/target/scala-2.10.0/ivy-1.0.xml

[info] published sounds_2.10.0 to

/Users/al/.ivy2/local/default/sounds_2.10.0/1.0/poms/sounds_2.10.0.pom

[info] published sounds_2.10.0 to

/Users/al/.ivy2/local/default/sounds_2.10.0/1.0/jars/sounds_2.10.0.jar

[info] published sounds_2.10.0 to

/Users/al/.ivy2/local/default/sounds_2.10.0/1.0/srcs/sounds_2.10.0-sources.jar

18.15. Publishing Your Library | 601

[info] published sounds_2.10.0 to

/Users/al/.ivy2/local/default/sounds_2.10.0/1.0/docs/sounds_2.10.0-javadoc.jar

[info] published ivy to

/Users/al/.ivy2/local/default/sounds_2.10.0/1.0/ivys/ivy.xml

[success] Total time: 1 s,

The “SBT Publishing” documentation provides these descriptions of the publish and
publish-local tasks:

• The publish action is used to publish your project to a remote repository. To use
publishing, you need to specify the repository to publish to and the credentials to
use. Once these are set up, you can run publish.

• The publish-local action is used to publish your project to a local Ivy repository.
You can then use this project from other projects on the same machine.

For more information on publishing to remote servers, repositories, and artifacts, see
the SBT Publishing documentation.

18.16. Using Build.scala Instead of build.sbt

Problem
You want to use the project/Build.scala file instead of build.sbt to define your Scala
project, or you need some examples of how to use Build.scala to solve build problems
that can’t be handled in build.sbt.

Solution
The recommended approach when using SBT is to define all your simple settings (key/
value pairs) in the build.sbt file, and handle all other work, such as build logic, in the
project/Build.scala file. However, it can be useful to use only the project/Build.scala file
to learn more about how it works.

To demonstrate this, don’t create a build.sbt file in your project, and then do create a

Build.scala file in the project subdirectory by extending the SBT Build object:

import sbt._

import Keys._

object ExampleBuild extends Build {

 val dependencies = Seq(

 "org.scalatest" %% "scalatest" % "1.9.1" % "test"

)

 lazy val exampleProject = Project("SbtExample", file(".")) settings(

 version := "0.2",

602 | Chapter 18: The Simple Build Tool (SBT)

http://www.scala-sbt.org/release/docs/Detailed-Topics/Publishing

 scalaVersion := "2.10.0",

 scalacOptions := Seq("-deprecation"),

 libraryDependencies ++= dependencies

)

}

With just this Build.scala file, you can now run all the usual SBT commands in your

project, including compile, run, package, and so on.

Discussion
The Build.scala file shown in the Solution is equivalent to the following build.sbt file:

name := "SbtExample"

version := "0.2"

scalaVersion := "2.10.0"

scalacOptions += "-deprecation"

libraryDependencies += "org.scalatest" %% "scalatest" % "1.9.1" % "test"

As mentioned, the recommended approach when working with SBT is to define your
basic settings in the build.sbt file, and perform all other work in a Build.scala file, so
creating a Build.scala file with only settings in it is not a best practice. However, when
you first start working with a Build.scala file, it’s helpful to see a “getting started” example
like this.

Also, although the convention is to name this file Build.scala, this is only a convention,
which I use here for simplicity. You can give your build file any legal Scala filename, as
long as you place the file in the project directory with a .scala suffix. Another convention
is to name this file after the name of your project, so the Scalaz project uses the name
ScalazBuild.scala.

The Full Configuration Example in the SBT documentation

The Full Configuration Example in the SBT documentation and the ScalazBuild.scala

build file both show many more examples of what can be put in a Build.scala file. For
instance, the Full Configuration Example shows how to add a series of resolvers to a
project:

// build 'oracleResolvers'

object Resolvers {

 val sunrepo = "Sun Maven2 Repo" at "http://download.java.net/maven/2"

 val sunrepoGF = "Sun GF Maven2 Repo" at

 "http://download.java.net/maven/glassfish"

 val oraclerepo = "Oracle Maven2 Repo" at "http://download.oracle.com/maven"

 val oracleResolvers = Seq (sunrepo, sunrepoGF, oraclerepo)

18.16. Using Build.scala Instead of build.sbt | 603

http://bit.ly/1aMJeML
https://github.com/harrah/xsbt/wiki/Full-Configuration-Example

}

object CDAP2Build extends Build {

 import Resolvers._

 // more code here ...

 // use 'oracleResolvers' here

 lazy val server = Project (

 "server",

 file ("cdap2-server"),

 settings = buildSettings ++ Seq (resolvers := oracleResolvers,

 libraryDependencies ++= serverDeps)

) dependsOn (common)

This code is similar to the example shown in Recipe 18.11, “Telling SBT How to Find a
Repository (Working with Resolvers)”, where the following configuration line is added
to a build.sbt file:

resolvers += "Java.net Maven2 Repository" at "http://download.java.net/maven/2/"

The ScalazBuild.scala file also shows many examples of using TaskKey and

SettingKey, which are different types of keys that can be used in SBT project definition
files.

See Also

• The Full Configuration Example in the SBT documentation.

• The ScalazBuild.scala file.

• For more examples of using Build.scala files, see Recipe 18.6, “Creating a Project
with Subprojects”; Recipe 18.10, “Using GitHub Projects as Project Dependen‐
cies”; and Recipe 18.11, “Telling SBT How to Find a Repository (Working with
Resolvers)”.

18.17. Using a Maven Repository Library with SBT

Problem
You want to use a Java library that’s in a Maven repository, but the library doesn’t include
information about how to use it with Scala and SBT.

Solution
Translate the Maven groupId, artifactId, and version fields into an SBT
libraryDependencies string.

604 | Chapter 18: The Simple Build Tool (SBT)

http://bit.ly/1blwxHZ
http://bit.ly/1aMJeML

For example, I wanted to use the Java HTMLCleaner project in a Scala/SBT project. The
HTMLCleaner website provided the following Maven information, but no SBT
information:

<dependency>

 <groupId>net.sourceforge.htmlcleaner</groupId>

 <artifactId>htmlcleaner</artifactId>

 <version>2.2</version>

</dependency>

Fortunately this translates into the following SBT libraryDependencies string:

libraryDependencies += "net.sourceforge.htmlcleaner" % "htmlcleaner" % "2.2"

After adding this line to my build.sbt file, I ran sbt compile, and watched as it down‐
loaded the HTMLCleaner JAR file and dependencies:

[info] downloading http://repo1.maven.org/maven2/net/sourceforge/htmlcleaner/

 htmlcleaner/2.2/htmlcleaner-2.2.jar ...

[info] [SUCCESSFUL] net.sourceforge.htmlcleaner#htmlcleaner;2.2!htmlcleaner.jar

 (864ms)

[info] downloading http://repo1.maven.org/maven2/org/jdom/jdom/1.1/jdom-1.1.jar ...

[info] [SUCCESSFUL] org.jdom#jdom;1.1!jdom.jar (514ms)

[info] downloading

 http://repo1.maven.org/maven2/org/apache/ant/ant/1.7.0/ant-1.7.0.jar ...

[info] [SUCCESSFUL] org.apache.ant#ant;1.7.0!ant.jar (1997ms)

[info] downloading http://repo1.maven.org/maven2/org/apache/ant/ant-launcher/

 1.7.0/ant-launcher-1.7.0.jar ...

[info] [SUCCESSFUL] org.apache.ant#ant-launcher;1.7.0!ant-launcher.jar (152ms)

[info] Done updating.

[info] Compiling 1 Scala source to target/scala-2.10.0/classes...

[success] Total time: 13 s, completed Aug 10, 2012 9:22:38 PM

As mentioned in other recipes, because SBT and Maven both use Apache Ivy under the
covers, and SBT also uses the standard Maven2 repository as a default resolver, SBT
users can easily use Java libraries that are packaged for Maven.

As shown inRecipe 18.4, “Managing Dependencies with SBT”, there are two formats
for adding a libraryDependencies line to a build.sbt file. The first form was used in
the Solution, and its general format looks like this:

libraryDependencies += groupID % artifactID % revision

As shown with the HTMLCleaner example, the groupID, artifactID, and revision
fields correspond directly to the information you’ll find in the documentation for a
Maven library.

The second libraryDependencies form lets you add an optional configuration pa‐
rameter:

libraryDependencies += groupID % artifactID % revision % configuration

18.17. Using a Maven Repository Library with SBT | 605

http://htmlcleaner.sourceforge.net/
http://htmlcleaner.sourceforge.net/

Maven doesn’t use the term configuration, instead using a <scope> tag for the same
information. This field is optional, and is typically used for testing libraries such as
ScalaTest and specs2, so when it’s needed, the value is usually just test.

See Also

The Java HTMLCleaner website

18.18. Building a Scala Project with Ant

Problem
You want to use Ant to build your Scala project.

Solution
Assuming you have a Maven- and SBT-like project directory structure as described in
Recipe 18.1, create the following Ant build.xml file in the root directory of your project:

<project name="AntCompileTest" default="compile" basedir=".">

 <!-- mostly from: http://www.scala-lang.org/node/98 -->

 <property name="sources.dir" value="src" />

 <property name="scala-source.dir" value="main/scala" />

 <property name="scala-test.dir" value="main/test" />

 <property name="build.dir" value="classes" />

 <!-- set scala.home -->

 <property environment="env" />

 <property name="scala.home" value="${env.SCALA_HOME}" />

 <target name="init">

 <property name="scala-library.jar"

 value="${scala.home}/lib/scala-library.jar" />

 <property name="scala-compiler.jar"

 value="${scala.home}/lib/scala-compiler.jar" />

 <property name="scala.reflect"

 value="${scala.home}/lib/scala-reflect.jar"/>

 <path id="build.classpath">

 <pathelement location="${scala-library.jar}" />

 <pathelement location="${build.dir}" />

 </path>

 <taskdef resource="scala/tools/ant/antlib.xml">

 <classpath>

 <pathelement location="${scala-compiler.jar}" />

 <pathelement location="${scala-library.jar}" />

 <pathelement location="${scala.reflect}"/>

 </classpath>

606 | Chapter 18: The Simple Build Tool (SBT)

http://htmlcleaner.sourceforge.net/

 </taskdef>

 </target>

 <target name="compile" depends="init">

 <mkdir dir="${build.dir}" />

 <scalac srcdir="${sources.dir}"

 destdir="${build.dir}"

 classpathref="build.classpath"

 deprecation="on">

 <include name="${scala-source.dir}/**/*.scala" />

 <exclude name="${scala-test.dir}/**/*.scala" />

 </scalac>

 </target>

</project>

You can then run the usual ant command, which by default will compile your files to a
new classes folder under the root directory of your project. Running ant on a small
project produces output like this:

$ ant

Buildfile: /Users/Al/Projects/AntExample/build.xml

init:

compile:

 [scalac] Compiling 1 source file to /Users/Al/Projects/AntExample/classes

BUILD SUCCESSFUL

Total time: 5 seconds

Discussion
In general, when learning a new technology, it’s best to learn the tools of that technology,
and in this case, the preferred build tool for Scala projects is SBT. (As a friend once said,
when we went from C to Java, we didn’t attempt to bring make along with us.) Once you
grasp the SBT concepts, you’ll find that it’s both a simple and powerful tool, and you
can find a lot of support in the Scala community.

That being said, you’re also hit with a lot of changes when first learning a new technology,
and at the beginning, it can be helpful to use the tools you’re already comfortable with,
so this recipe demonstrates how to use Ant to compile a Scala project to help you get
into Scala in a comfortable way.

Recommendation: If someone brought me into their organization to
help them adopt Scala, SBT is one of the first things I’d teach. In this
case, I think you’re better off just diving into the water, so to speak. It
doesn’t take that long to grasp the SBT basics.

18.18. Building a Scala Project with Ant | 607

The build.xml code

The secret sauce to this recipe is the init target, whose source code can be found on
the official Scala website. This target does the work necessary to make the scalac Ant
task available to you.

As you can see from the code, the build target depends on the init target, and uses
scalac to compile all the files in the source directory, while skipping the files in the test
directory. Of course that approach is completely optional, and you can adjust it to meet
your needs.

The antlib.xml file referred to in the taskdef tag is shipped with the Scala distribution.
You can demonstrate this on a Unix system with the following command:

$ jar tvf ${SCALA_HOME}/lib/scala-compiler.jar | grep -i antlib

The build.xml file shown here is slightly different than the file shown on the Scala web‐

site. Specifically, I found that the scala.home property needed to be set manually, and
with Scala 2.10, it’s also necessary to add the scala.reflect lines to the build file. The
compilation process worked fine with Ant 1.8.4 once I made those changes.

In addition to this scalac Ant task, there are fsc and scaladoc tasks. See the Scala Ant
Tasks page on the official Scala website for more information.

Creating a JAR file with Ant

Once you’ve compiled your Scala classes, you can treat them as normal Java class files.
For instance, you can create a JAR file from them using the following simplified Ant
task. This task shows how to create a JAR file named hello.jar from the compiled classes

in the classes directory, and a simple manifest in a Manifest.txt file. Here’s the create-jar
task, which you can add to the earlier build.xml file:

<target name="create-jar" depends="compile">

 <jar basedir="classes"

 jarfile="hello.jar"

 manifest="Manifest.txt"/>

</target>

Assuming the Hello class in the hello package has the main method for your application
(or extends the App trait), place this line in the Manifest.txt file:

Main-Class: hello.Hello

After adding this task to your build.xml file, you can run it as follows from the root
directory of your project:

$ ant create-jar

That command creates a JAR file named hello.jar in the root directory. You can then
run the JAR file with this Scala command:

$ scala hello.jar

608 | Chapter 18: The Simple Build Tool (SBT)

http://www.scala-lang.org/node/98
http://www.scala-lang.org/node/98
http://www.scala-lang.org/node/98

This is similar to running java -jar on a JAR file created by a Java application, but
because a Scala application has dependencies on its own JAR files, such as
$SCALA_HOME/lib/scala-library.jar, you need to run the JAR file with the scala in‐
terpreter, as shown. You can run the JAR file with the Java interpreter, but this takes a
bit more work. See Recipe 18.14, “Deploying a Single, Executable JAR File” for details
on that process.

See Also

The Scala Ant Tasks documentation

18.18. Building a Scala Project with Ant | 609

http://bit.ly/13fICX5

CHAPTER 19

Types

Introduction
As you can tell from one look at the Scaladoc for the collections classes, Scala has a
powerful type system. However, unless you’re the creator of a library, you can go a long
way in Scala without having to go too far down into the depths of Scala types. But once
you start creating collections-style APIs for other users, you will need to learn them.

This chapter provides recipes for the most common problems you’ll encounter, but
when you need to go deeper, I highly recommend the book, Programming in Scala, by
Odersky, Spoon, and Venners. (Martin Odersky is the creator of the Scala programming
language, and I think of that book as “the reference” for Scala.)

Scala’s type system uses a collection of symbols to express different generic type concepts,
including variance, bounds, and constraints. The most common of these symbols are
summarized in the next sections.

Variance
Type variance is a generic type concept, and defines the rules by which parameterized
types can be passed into methods. The type variance symbols are briefly summarized
in Table 19-1.

Table 19-1. Descriptions of type variance symbols

Symbols Name Description

Array[T] Invariant Used when elements in the container are mutable.

Example: Can only pass Array[String] to a method expecting

Array[String].

Seq[+A] Covariant Used when elements in the container are immutable. This makes the container more

flexible.

Example: Can pass a Seq[String] to a method expected Seq[Any].

611

Symbols Name Description

Foo[-A]

Function1[-A, +B]

Contravariant Contravariance is essentially the opposite of covariance, and is rarely used. See Scala’s

Function1 trait for an example of how it is used.

The following examples, showing what code will and won’t compile with the
Grandparent, Parent, and Child classes, can also be a helpful reference to understand‐
ing variance:

class Grandparent

class Parent extends Grandparent

class Child extends Parent

class InvariantClass[A]

class CovariantClass[+A]

class ContravariantClass[-A]

class VarianceExamples {

 def invarMethod(x: InvariantClass[Parent]) {}

 def covarMethod(x: CovariantClass[Parent]) {}

 def contraMethod(x: ContravariantClass[Parent]) {}

 invarMethod(new InvariantClass[Child]) // ERROR - won't compile

 invarMethod(new InvariantClass[Parent]) // success

 invarMethod(new InvariantClass[Grandparent]) // ERROR - won't compile

 covarMethod(new CovariantClass[Child]) // success

 covarMethod(new CovariantClass[Parent]) // success

 covarMethod(new CovariantClass[Grandparent]) // ERROR - won't compile

 contraMethod(new ContravariantClass[Child]) // ERROR - won't compile

 contraMethod(new ContravariantClass[Parent]) // success

 contraMethod(new ContravariantClass[Grandparent]) // success

}

Bounds
Bounds let you place restrictions on type parameters. Table 19-2 shows the common
bounds symbols.

Table 19-2. Descriptions of Scala’s bounds symbols

 Name Description

A <: B Upper bound A must be a subtype of B. See Recipe 19.6.

A >: B Lower bound A must be a supertype of B. Not commonly used. See Recipe 19.8.

A <: Upper >: Lower Lower and upper bounds

used together

The type A has both an upper and lower bound.

612 | Chapter 19: Types

http://bit.ly/11Uopv5

Programming Scala (O’Reilly) had a nice tip that helps me remember these symbols.
The authors state that in UML diagrams, subtypes are shown below supertypes, so when
I see A <: B, I think, “A is less than B ... A is under B ... A is a subtype of B.”

Lower bounds are demonstrated in several methods of the collections classes. To find
some lower bound examples, search the Scaladoc of classes like List for the >: symbol.

There are several additional symbols for bounds. For instance, a view bound is written
as A <% B, and a context bound is written as T : M. These symbols are not covered in
this book; see Programming in Scala for details and examples of their use.

Type Constraints
Scala lets you specify additional type constraints. These are written with these symbols:

A =:= B // A must be equal to B

A <:< B // A must be a subtype of B

A <%< B // A must be viewable as B

These symbols are not covered in this book. See Programming in Scala for details and
examples. Twitter’s Scala School Advanced Types page also shows brief examples of their
use, where they are referred to as “type relation operators.”

Type Examples in Other Chapters
Because types are naturally used in many solutions, you can find some recipes related
to types in other chapters:

• Recipe 2.2, “Converting Between Numeric Types (Casting)” and Recipe 2.3 demon‐
strate ways to convert between types.

• Recipe 5.9, “Supporting a Fluent Style of Programming” demonstrates how to re‐
turn this.type from a method.

• Implicit conversions let you add new behavior to closed types like String, which
is declared final in Java. They are demonstrated in Recipe 1.10, “Add Your Own
Methods to the String Class” and Recipe 2.1, “Parsing a Number from a String”.

• Recipe 6.1, “Object Casting” demonstrates how to cast objects from one type to
another.

Finally, Recipe 19.8, “Building Functionality with Types” combines several of the con‐
cepts described in this chapter, and also helps to demonstrate Scala’s call-by-name
feature.

Introduction | 613

http://bit.ly/Program_Scala
http://bit.ly/15iqGNE
http://bit.ly/18juAbp

19.1. Creating Classes That Use Generic Types

Problem
You want to create a class (and associated methods) that uses a generic type.

Solution
As a library writer, creating a class (and methods) that takes a generic type is similar to
Java. For instance, if Scala didn’t have a linked list class and you wanted to write your
own, you could write the basic functionality like this:

class LinkedList[A] {

 private class Node[A] (elem: A) {

 var next: Node[A] = _

 override def toString = elem.toString

 }

 private var head: Node[A] = _

 def add(elem: A) {

 val n = new Node(elem)

 n.next = head

 head = n

 }

 private def printNodes(n: Node[A]) {

 if (n != null) {

 println(n)

 printNodes(n.next)

 }

 }

 def printAll() { printNodes(head) }

}

Notice how the generic type A is sprinkled throughout the class definition. This is similar
to Java, but Scala uses [A] everywhere, instead of <T> as Java does. (More on the char‐
acters A versus T shortly.)

To create a list of integers with this class, first create an instance of it, declaring its type
as Int:

val ints = new LinkedList[Int]()

Then populate it with Int values:

ints.add(1)

ints.add(2)

614 | Chapter 19: Types

Because the class uses a generic type, you can also create a LinkedList of String:

val strings = new LinkedList[String]()

strings.add("Nacho")

strings.add("Libre")

strings.printAll()

Or any other type you want to use:

val doubles = new LinkedList[Double]()

val frogs = new LinkedList[Frog]()

At this basic level, creating a generic class in Scala is just like creating a generic class in
Java, with the exception of the brackets.

Discussion
When using generics like this, the container can take subtypes of the base type you
specify in your code. For instance, given this class hierarchy:

trait Animal

class Dog extends Animal { override def toString = "Dog" }

class SuperDog extends Dog { override def toString = "SuperDog" }

class FunnyDog extends Dog { override def toString = "FunnyDog" }

you can define a LinkedList that holds Dog instances:

val dogs = new LinkedList[Dog]

You can then add Dog subtypes to the list:

val fido = new Dog

val wonderDog = new SuperDog

val scooby = new FunnyDog

dogs.add(fido)

dogs.add(wonderDog)

dogs.add(scooby)

So far, so good: you can add Dog subtypes to a LinkedList[Dog]. Where you might run
into a problem is when you define a method like this:

def printDogTypes(dogs: LinkedList[Dog]) {

 dogs.printAll()

}

You can pass your current dogs instance into this method, but you won’t be able to pass
the following superDogs collection into makeDogsSpeak:

val superDogs = new LinkedList[SuperDog]

superDogs.add(wonderDog)

// error: this line won't compile

printDogTypes(superDogs)

19.1. Creating Classes That Use Generic Types | 615

The last line won’t compile because (a) makeDogsSpeak wants a LinkedList[Dog],
(b) LinkedList elements are mutable, and (c) superDogs is a LinkedList[SuperDog].
This creates a conflict the compiler can’t resolve. This situation is discussed in detail in
Recipe 19.5, “Make Immutable Collections Covariant”.

In Scala 2.10, the compiler is even nice enough to tell you what’s wrong in this situation,
and points you toward a solution:

[error] Note: SuperDog <: Dog, but class LinkedList is invariant in type A.

[error] You may wish to define A as +A instead. (SLS 4.5)

Type parameter symbols

If a class requires more than one type parameter, use the symbols shown in
Table 19-3. For instance, in the official Java Generics documentation, Oracle shows an
interface named Pair, which takes two types:

// from http://docs.oracle.com/javase/tutorial/java/generics/types.html

public interface Pair<K, V> {

 public K getKey();

 public V getValue();

}

You can port that interface to a Scala trait, as follows:

trait Pair[A, B] {

 def getKey: A

 def getValue: B

}

If you were to take this further and implement the body of a Pair class (or trait), the
type parameters A and B would be spread throughout your class, just as the symbol A
was used in the LinkedList example.

The same Oracle document lists the Java type parameter naming conventions. These
are mostly the same in Scala, except that Java starts naming simple type parameters with
the letter T, and then uses the characters U and V for subsequent types. The Scala standard
is that simple types should be declared as A, the next with B, and so on. This is shown
in Table 19-3.

Table 19-3. Standard symbols for generic type parameters

Symbol Description

A Refers to a simple type, such as List[A].

B, C, D Used for the 2nd, 3rd, 4th types, etc.
// from the Scala Styleguide

class List[A] {

 def map[B](f: A => B): List[B] = ...

}

K Typically refers to a key in a Java map. Scala collections use A in this situation.

616 | Chapter 19: Types

http://bit.ly/13rHoad

Symbol Description

N Refers to a numeric value.

V Typically refers to a value in a Java map. Scala collections use B in this situation.

See Also

• Oracle’s Java “Generic Types” documentation.

• Recipe 19.4, “Make Mutable Collections Invariant”.

• Recipe 19.5, “Make Immutable Collections Covariant”.

• You can find a little more information on Scala’s generic type naming conventions
at the Scala Style Guide’s Naming Conventions page.

19.2. Creating a Method That Takes a Simple Generic Type

Problem
You’re not concerned about type variance, and want to create a method (or function)
that takes a generic type, such as a method that accepts a Seq[A] parameter.

Solution
As with Scala classes, specify the generic type parameters in brackets, like [A].

For example, when creating a lottery-style application to draw a random name from a
list of names, you might follow the “Do the simplest thing that could possibly work”
credo, and initially create a method without using generics:

def randomName(names: Seq[String]): String = {

 val randomNum = util.Random.nextInt(names.length)

 names(randomNum)

}

As written, this works with a sequence of String values:

val names = Seq("Aleka", "Christina", "Tyler", "Molly")

val winner = randomName(names)

Then, at some point in the future you realize that you could really use a general-purpose
method that returns a random element from a sequence of any type. So, you modify the
method to use a generic type parameter, like this:

def randomElement[A](seq: Seq[A]): A = {

 val randomNum = util.Random.nextInt(seq.length)

 seq(randomNum)

}

19.2. Creating a Method That Takes a Simple Generic Type | 617

http://bit.ly/13rHoad
http://docs.scala-lang.org/style/naming-conventions.html

With this change, the method can now be called on a variety of types:

randomElement(Seq("Aleka", "Christina", "Tyler", "Molly"))

randomElement(List(1,2,3))

randomElement(List(1.0,2.0,3.0))

randomElement(Vector.range('a', 'z'))

Note that specifying the method’s return type isn’t necessary, so you can simplify the
signature slightly, if desired:

// change the return type from ':A =' to just '='

def randomElement[A](seq: Seq[A]) = { ...

Discussion
This is a simple example that shows how to pass a generic collection to a method that
doesn’t attempt to mutate the collection. See Recipes 19.4 and 19.5 for more complicated
situations you can run into.

19.3. Using Duck Typing (Structural Types)

Problem
You’re used to “Duck Typing” (structural types) from another language like Python or
Ruby, and want to use this feature in your Scala code.

Solution
Scala’s version of “Duck Typing” is known as using a structural type. As an example of
this approach, the following code shows how a callSpeak method can require that its
obj type parameter have a speak() method:

def callSpeak[A <: { def speak(): Unit }](obj: A) {

 // code here ...

 obj.speak()

}

Given that definition, an instance of any class that has a speak() method that takes no
parameters and returns nothing can be passed as a parameter to callSpeak. For exam‐
ple, the following code demonstrates how to invoke callSpeak on both a Dog and a
Klingon:

class Dog { def speak() { println("woof") } }

class Klingon { def speak() { println("Qapla!") } }

object DuckTyping extends App {

 def callSpeak[A <: { def speak(): Unit }](obj: A) {

 obj.speak()

618 | Chapter 19: Types

 }

 callSpeak(new Dog)

 callSpeak(new Klingon)

}

Running this code prints the following output:

woof

Qapla!

The class of the instance that’s passed in doesn’t matter at all. The only requirement for
the parameter obj is that it’s an instance of a class that has a speak() method.

Discussion
The structural type syntax is necessary in this example because the callSpeak method
invokes a speak method on the object that’s passed in. In a statically typed language,
there must be some guarantee that the object that’s passed in will have this method, and
this recipe shows the syntax for that situation.

Had the method been written as follows, it wouldn’t compile, because the compiler can’t
guarantee that the type A has a speak method:

// won't compile

def callSpeak[A](obj: A) {

 obj.speak()

}

This is one of the great benefits of type safety in Scala.

It may help to break down the structural type syntax. First, here’s the entire method:

def callSpeak[A <: { def speak(): Unit }](obj: A) {

 obj.speak()

}

The type parameter A is defined as a structural type like this:

[A <: { def speak(): Unit }]

The <: symbol in the code is used to define something called an upper bound. This is
described in detail in Recipe 19.5, “Make Immutable Collections Covariant”. As shown
in that recipe, an upper bound is usually defined like this:

class Stack[A <: Animal] (val elem: A)

This states that the type parameter A must be a subtype of Animal.

However, in this recipe, a variation of that syntax is used to state that A must be a subtype
of a type that has a speak method. Specifically, this code can be read as, “A must be a

19.3. Using Duck Typing (Structural Types) | 619

subtype of a type that has a speak method. The speak method (or function) can’t take
any parameters and must not return anything.”

To demonstrate another example of the structural type signature, if you wanted to state
that the speak method must take a String parameter and return a Boolean, the struc‐
tural type signature would look like this:

[A <: { def speak(s: String): Boolean }]

As a word of warning, this technique uses reflection, so you may not want to use it when
performance is a concern.

19.4. Make Mutable Collections Invariant

Problem
You want to create a collection whose elements can be mutated, and want to know how
to specify the generic type parameter for its elements.

Solution
When creating a collection of elements that can be changed (mutated), its generic type
parameter should be declared as [A], making it invariant.

For instance, elements in a Scala Array or ArrayBuffer can be mutated, and their sig‐
natures are declared like this:

class Array[A] ...

class ArrayBuffer[A] ...

Declaring a type as invariant has several effects. First, the container can hold both the
specified types as well as its subtypes. For example, the following class hierarchy states
that the Dog and SuperDog classes both extend the Animal trait:

trait Animal {

 def speak

}

class Dog(var name: String) extends Animal {

 def speak { println("woof") }

 override def toString = name

}

class SuperDog(name: String) extends Dog(name) {

 def useSuperPower { println("Using my superpower!") }

}

With these classes, you can create a Dog and a SuperDog:

620 | Chapter 19: Types

val fido = new Dog("Fido")

val wonderDog = new SuperDog("Wonder Dog")

val shaggy = new SuperDog("Shaggy")

When you later declare an ArrayBuffer[Dog], you can add both Dog and SuperDog
instances to it:

val dogs = ArrayBuffer[Dog]()

dogs += fido

dogs += wonderDog

So a collection with an invariant type parameter can contain elements of the base type,
and subtypes of the base type.

The second effect of declaring an invariant type is the primary purpose of this recipe.
Given the same code, you can define a method as follows to accept an
ArrayBuffer[Dog], and then have each Dog speak:

import collection.mutable.ArrayBuffer

def makeDogsSpeak(dogs: ArrayBuffer[Dog]) {

 dogs.foreach(_.speak)

}

Because of its definition, this works fine when you pass it an ArrayBuffer[Dog]:

val dogs = ArrayBuffer[Dog]()

dogs += fido

makeDogsSpeak(dogs)

However, the makeDogsSpeak call won’t compile if you attempt to pass it an
ArrayBuffer[SuperDog]:

val superDogs = ArrayBuffer[SuperDog]()

superDogs += shaggy

superDogs += wonderDog

makeDogsSpeak(superDogs) // ERROR: won't compile

This code won’t compile because of the conflict built up in this situation:

• Elements in an ArrayBuffer can be mutated.

• makeDogsSpeak is defined to accept a parameter of type ArrayBuffer[Dog].

• You’re attempting to pass in superDogs, whose type is ArrayBuffer[SuperDog].

• If the compiler allowed this, makeDogsSpeak could replace SuperDog elements in
superDogs with plain old Dog elements. This can’t be allowed.

One of the reasons this problem occurs is that ArrayBuffer elements can be mutated.
If you want to write a method to make all Dog types and subtypes speak, define it to
accept a collection of immutable elements, such as a List, Seq, or Vector.

19.4. Make Mutable Collections Invariant | 621

Discussion
The elements of the Array, ArrayBuffer, and ListBuffer classes can be mutated, and
they’re all defined with invariant type parameters:

class Array[T]

class ArrayBuffer[A]

class ListBuffer[A]

Conversely, collections classes that are immutable identify their generic type parameters
differently, with the + symbol, as shown here:

class List[+T]

class Vector[+A]

trait Seq[+A]

The + symbol used on the type parameters of the immutable collections defines their
parameters to be covariant. Because their elements can’t be mutated, adding this symbol
makes them more flexible, as discussed in the next recipe.

See Also
You can find the source code for Scala classes by following the “Source code” links in
their Scaladoc. The source code for the ArrayBuffer class isn’t too long, and it shows
how the type parameter A ends up sprinkled throughout the class:

ArrayBuffer class Scaladoc

19.5. Make Immutable Collections Covariant

Problem
You want to create a collection whose elements can’t be changed (they’re immutable),
and want to understand how to specify it.

Solution
You can define a collection of immutable elements as invariant, but your collection will
be much more flexible if you declare that your type parameter is covariant. To make a
type parameter covariant, declare it with the + symbol, like [+A].

Covariant type parameters are shown in the Scaladoc for immutable collection classes
like List, Vector, and Seq:

class List[+T]

class Vector[+A]

trait Seq[+A]

622 | Chapter 19: Types

http://bit.ly/18YoNuP

By defining the type parameter to be covariant, you create a situation where the collec‐
tion can be used in a more flexible manner.

To demonstrate this, modify the example from the previous recipe slightly. First, define
the class hierarchy:

trait Animal {

 def speak

}

class Dog(var name: String) extends Animal {

 def speak { println("Dog says woof") }

}

class SuperDog(name: String) extends Dog(name) {

 override def speak { println("I'm a SuperDog") }

}

Next, define a makeDogsSpeak method, but instead of accepting a mutable
ArrayBuffer[Dog] as in the previous recipe, accept an immutable Seq[Dog]:

def makeDogsSpeak(dogs: Seq[Dog]) {

 dogs.foreach(_.speak)

}

As with the ArrayBuffer in the previous recipe, you can pass a sequence of type [Dog]
into makeDogsSpeak without a problem:

// this works

val dogs = Seq(new Dog("Fido"), new Dog("Tanner"))

makeDogsSpeak(dogs)

However, in this case, you can also pass a Seq[SuperDog] into the makeDogsSpeak
method successfully:

// this works too

val superDogs = Seq(new SuperDog("Wonder Dog"), new SuperDog("Scooby"))

makeDogsSpeak(superDogs)

Because Seq is immutable and defined with a covariant parameter type, makeDogsSpeak
can now accept collections of both Dog and SuperDog.

Discussion
You can demonstrate this by creating a collection class with a covariant type parameter.
To do this, create a collection class that can hold one element. Because you don’t want
the collection element to be mutated, define the element as a val, and make the type
parameter covariant with +A:

class Container[+A] (val elem: A)

19.5. Make Immutable Collections Covariant | 623

Using the same type hierarchy as shown in the Solution, modify the makeDogsSpeak
method to accept a Container[Dog]:

def makeDogsSpeak(dogHouse: Container[Dog]) {

 dogHouse.elem.speak()

}

With this setup, you can pass a Container[Dog] into makeDogsSpeak:

val dogHouse = new Container(new Dog("Tanner"))

makeDogsSpeak(dogHouse)

Finally, to demonstrate the point of adding the + symbol to the parameter, you can also
pass a Container[SuperDog] into makeDogsSpeak:

val superDogHouse = new Container(new SuperDog("Wonder Dog"))

makeDogsSpeak(superDogHouse)

Because the Container element is immutable and its mutable type parameter is marked
as covariant, all of this code works successfully. Note that if you change the
Container’s type parameter from +A to A, the last line of code won’t compile.

As demonstrated in these examples, defining an immutable collection to take a covariant
generic type parameter makes the collection more flexible and useful throughout your
code.

19.6. Create a Collection Whose Elements Are All of Some
Base Type

Problem
You want to specify that a class or method takes a type parameter, and that parameter
is limited so it can only be a base type, or a subtype of that base type.

Solution
Define the class or method by specifying the type parameter with an upper bound.

To demonstrate this, create a simple type hierarchy:

trait CrewMember

class Officer extends CrewMember

class RedShirt extends CrewMember

trait Captain

trait FirstOfficer

trait ShipsDoctor

trait StarfleetTrained

Then create a few instances:

624 | Chapter 19: Types

val kirk = new Officer with Captain

val spock = new Officer with FirstOfficer

val bones = new Officer with ShipsDoctor

Given this setup, imagine that you want to create a collection of officers on a ship, like
this:

val officers = new Crew[Officer]()

officers += kirk

officers += spock

officers += bones

The first line lets you create officers as a collection that can only contain types that
are an Officer, or subtype of an Officer.

In this example, those who are of type RedShirt won’t be allowed in the collection,
because they don’t extend Officer:

val redShirt = new RedShirt

officers += redShirt // ERROR: this won't compile

To enable this functionality and let Crew control which types are added to it, define it
with an upper bound while extending ArrayBuffer:

class Crew[A <: CrewMember] extends ArrayBuffer[A]

This states that any instance of Crew can only ever have elements that are of type
CrewMember. In this example, this lets you define officers as a collection of Officer,
like this:

val officers = new Crew[Officer]()

It also prevents you from writing code like this, because String does not extend
CrewMember:

// error: won't compile

val officers = new Crew[String]()

In addition to creating a collection of officers, you can create a collection of RedShirts,
if desired:

val redshirts = new Crew[RedShirt]()

(I don’t know the names of any redshirts, otherwise I’d add a few to this collection.)

Typically you’ll define a class like Crew so you can create specific instances as shown.
You’ll also typically add methods to a class like Crew that are specific to the type
(CrewMember, in this case). By controlling what types are added to Crew, you can be
assured that your methods will work as desired. For instance, Crew could have methods
like beamUp, beamDown, goWhereNoOneElseHasGone, etc.—any method that makes sense
for a CrewMember.

19.6. Create a Collection Whose Elements Are All of Some Base Type | 625

Discussion
This type is referred to as a bound, specifically an upper bound.

(If you’re working with an implicit conversion, you’ll want to use a view bound instead
of an upper bound. To do this, use the <% symbol instead of the <: symbol.)

You can use the same technique when you need to limit your class to take a type that
extends multiple traits. For example, to create a Crew that only allows types that extend
CrewMember and StarfleetTrained, declare the Crew like this:

class Crew[A <: CrewMember with StarfleetTrained] extends ArrayBuffer[A]

If you adapt the officers to work with this new trait:

val kirk = new Officer with Captain with StarfleetTrained

val spock = new Officer with FirstOfficer with StarfleetTrained

val bones = new Officer with ShipsDoctor with StarfleetTrained

you can still construct a list of officers, with a slight change to the Crew definition:

val officers = new Crew[Officer with StarfleetTrained]()

officers += kirk

officers += spock

officers += bones

This approach works as long as the instances have those types somewhere in their lineage
(class hierarchy). For instance, you can define a new StarfleetOfficer like this:

class StarfleetOfficer extends Officer with StarfleetTrained

You could then define the kirk instance like this:

val kirk = new StarfleetOfficer with Captain

With this definition, kirk can still be added to the officers collection; the instance still
extends Officer and StarfleetTrained.

Methods

Methods can also take advantage of this syntax. For instance, you can add a little be‐
havior to CrewMember and RedShirt:

trait CrewMember {

 def beamDown { println("beaming down") }

}

class RedShirt extends CrewMember {

 def putOnRedShirt { println("putting on my red shirt") }

}

With this behavior, you can write methods to work specifically on their types. This
method works for any CrewMember:

626 | Chapter 19: Types

def beamDown[A <: CrewMember](crewMember: Crew[A]) {

 crewMember.foreach(_.beamDown)

}

But this method will only work for RedShirt types:

def getReadyForDay[A <: RedShirt](redShirt: Crew[A]) {

 redShirt.foreach(_.putOnRedShirt)

}

In both cases, you control which type can be passed into the method using an appropriate
upper bound definition on the method’s type parameter.

See Also

• Recipe 19.3, “Using Duck Typing (Structural Types)”.

• Scala also includes a lower type bound, though it is used less frequently. A lower
bound is briefly demonstrated in Recipe 19.8, “Building Functionality with
Types”. The page titled “A Tour of Scala: Lower Type Bounds” also describes a sit‐
uation where a lower type bound might be used.

19.7. Selectively Adding New Behavior to a Closed Model

Problem
You have a closed model, and want to add new behavior to certain types within that
model, while potentially excluding that behavior from being added to other types.

Solution
Implement your solution as a type class.

To demonstrate the problem and solution, when I first came to Scala, I thought it would
be easy to write a single add method that would add any two numeric parameters,
regardless of whether they were an Int, Double, Float, or other numeric value. Un‐
fortunately I couldn’t get this to work—until I learned about type classes.

Because a Numeric type class already exists in the Scala library, it turns out that you can
create an add method that accepts different numeric types like this:

def add[A](x: A, y: A)(implicit numeric: Numeric[A]): A = numeric.plus(x, y)

Once defined, this method can be used with different numeric types like this:

println(add(1, 1))

println(add(1.0, 1.5))

println(add(1, 1.5F))

19.7. Selectively Adding New Behavior to a Closed Model | 627

http://www.scala-lang.org/node/137

The add method works because of some magic in the scala.math.Numeric trait. To see
how this magic works, create your own type class.

Creating a type class

The process of creating a type class is a little complicated, but there is a formula:

• Usually you start with a need, such as having a closed model to which you want to
add new behavior.

• To add the new behavior, you define a type class. The typical approach is to create
a base trait, and then write specific implementations of that trait using implicit
objects.

• Back in your main application, create a method that uses the type class to apply the
behavior to the closed model, such as writing the add method in the previous ex‐
ample.

To demonstrate this, assume that you have a closed model that contains Dog and Cat
types, and you want to make a Dog more human-like by giving it the capability to speak.
However, while doing this, you don’t want to make a Cat more human-like. (Everyone
knows that dogs are human-like and can speak; see YouTube for examples.)

The closed model is defined in a class named Animals.scala, and looks like this:

package typeclassdemo

// an existing, closed model

trait Animal

final case class Dog(name: String) extends Animal

final case class Cat(name: String) extends Animal

To begin making a new speak behavior available to a Dog, create a type class that im‐
plements the speak behavior for a Dog, but not a Cat:

package typeclassdemo

object Humanish {

 // the type class.

 // defines an abstract method named 'speak'.

 trait HumanLike[A] {

 def speak(speaker: A): Unit

 }

 // companion object

 object HumanLike {

 // implement the behavior for each desired type. in this case,

 // only for a Dog.

 implicit object DogIsHumanLike extends HumanLike[Dog] {

 def speak(dog: Dog) { println(s"I'm a Dog, my name is ${dog.name}") }

 }

628 | Chapter 19: Types

 }

}

With this behavior defined, use the new functionality back in your main application:

package typeclassdemo

object TypeClassDemo extends App {

 import Humanish.HumanLike

 // create a method to make an animal speak

 def makeHumanLikeThingSpeak[A](animal: A)(implicit humanLike: HumanLike[A]) {

 humanLike.speak(animal)

 }

 // because HumanLike implemented this for a Dog, it will work

 makeHumanLikeThingSpeak(Dog("Rover"))

 // however, the method won't compile for a Cat (as desired)

 //makeHumanLikeThingSpeak(Cat("Morris"))

}

The comments in the code explain why this approach works for a Dog, but not a Cat.

There are a few other things to notice from this code:

• The makeHumanLikeThingSpeak is similar to the add method in the first example.

• In the first example, the Numeric type class already existed, so you could just use it
to create the add method. But when you’re starting from scratch, you need to create
your own type class (the code in the HumanLike trait).

• Because a speak method is defined in the DogIsHumanLike implicit object, which
extends HumanLike[Dog], a Dog can be passed into the makeHumanLikeThingSpeak
method. But because a similar implicit object has not been written for the Cat class,
it can’t be used.

Discussion
Despite the name “class,” a type class doesn’t come from the OOP world; it comes from
the FP world, specifically Haskell. As shown in the examples, one benefit of a type class
is that you can add behavior to a closed model.

Another benefit is that it lets you define methods that take generic types, and provide
control over what those types are. For instance, in the first example, the add method
takes Numeric types:

def add[A](x: A, y: A)(implicit numeric: Numeric[A]): A = numeric.plus(x, y)

19.7. Selectively Adding New Behavior to a Closed Model | 629

Because the numeric.plus method is implemented for all the different numeric types,
you can create an add method that works for Int, Double, Float, and other types:

println(add(1, 1))

println(add(1.0, 1.5))

println(add(1, 1.5F))

This is great; it works for all numeric types, as desired. As an additional benefit, the add
method is type safe. If you attempted to pass a String into it, it won’t compile:

// won't compile

add("1", 2.0)

In the second example, the makeHumanLikeThingSpeak method is similar to the add
method. However, in this case, it lets a Dog type speak, but because the HumanLike trait
didn’t define a similar behavior for a Cat, a Cat instance can’t currently be used by the
method. You can resolve this by adding a speak method for a Cat type as another implicit
object, or keep the code as it’s currently written to prevent a Cat from speaking.

See Also

• If you dig into the source code for Scala’s Numeric trait, you’ll find that it’s imple‐
mented in a manner similar to what’s shown here. You can find the source code for
Scala’s Numeric trait by following the “Source code” link on its Scaladoc page.

• Recipe 1.10, “Add Your Own Methods to the String Class” demonstrates how to add
new functionality to closed classes using implicit conversions.

19.8. Building Functionality with Types
To put what you’ve learned in this chapter to use, let’s create two examples. First, you’ll
create a “timer” that looks like a control structure and works like the Unix time com‐
mand. Second, you’ll create another control structure that works like the Scala 2.10 Try/
Success/Failure classes.

Example 1: Creating a Timer
On Unix systems you can run a time command (timex on some systems) to see how
long commands take to execute:

$ time find . -name "*.scala"

That command returns the results of the find command it was given, along with the
time it took to run. This can be a helpful way to troubleshoot performance problems.

You can create a similar timer method in Scala to let you run code like this:

630 | Chapter 19: Types

http://bit.ly/16HeYLy

val (result, time) = timer(someLongRunningAlgorithm)

println(s"result: $result, time: $time")

In this example, the timer runs a method named longRunningAlgorithm, and then
returns the result from the algorithm, along with the algorithm’s execution time. You
can see how this works by running a simple example in the REPL:

scala> val (result, time) = timer{ Thread.sleep(500); 1 }

result: Int = 1

time: Double = 500.32

As expected, the code block returns the value 1, with an execution time of about 500
ms.

The timer code is surprisingly simple, and involves the use of a generic type parameter:

def timer[A](blockOfCode: => A) = {

 val startTime = System.nanoTime

 val result = blockOfCode

 val stopTime = System.nanoTime

 val delta = stopTime - startTime

 (result, delta/1000000d)

}

The timer method uses Scala’s call-by-name syntax to accept a block of code as a pa‐
rameter. Rather than declare a specific return type from the method (such as Int), you
declare the return type to be a generic type parameter. This lets you pass all sorts of
algorithms into timer, including those that return nothing:

scala> val (result, time) = timer{ println("Hello") }

Hello

result: Unit = ()

time: Double = 0.544

Or an algorithm that reads a file and returns an iterator:

scala> def readFile(filename: String) = io.Source.fromFile(filename).getLines

readFile: (filename: String)Iterator[String]

scala> val (result, time) = timer{ readFile("/etc/passwd") }

result: Iterator[String] = non-empty iterator

time: Double = 32.119

This is a simple use of specifying a generic type in a noncollection class, and helps you
get ready for the next example.

Example 2: Writing Your Own “Try” Classes
Imagine the days back before Scala 2.10 when there was no such thing as the Try,
Success, and Failure classes in scala.util. (They were available from Twitter, but just
ignore that for now.) In those days, you might have come up with your own solution
that you called Attempt, Succeeded, and Failed that would let you write code like this:

19.8. Building Functionality with Types | 631

val x = Attempt("10".toInt) // Succeeded(10)

val y = Attempt("10A".toInt) // Failed(Exception)

To enable this basic API, you realize you’ll need a class named Attempt, and because
you know you don’t want to use the new keyword to create a new instance, you know
that you need a companion object with an apply method. You further realize that you
need to define Succeeded and Failed, and they should extend Attempt. Therefore, you
begin with this code, placed in a file named Attempt.scala:

// version 1

sealed class Attempt[A]

object Attempt {

 def apply[A](f: => A): Attempt[A] =

 try {

 val result = f

 return Succeeded(result)

 } catch {

 case e: Exception => Failed(e)

 }

}

final case class Failed[A](val exception: Throwable) extends Attempt[A]

final case class Succeeded[A](value: A) extends Attempt[A]

In a manner similar to the previous timer code, the apply method takes a call-by-name
parameter, and the return type is specified as a generic type parameter. In this case, the
type parameter ends up sprinkled around in other areas. Because apply returns a type
of Attempt, it’s necessary there; because Failed and Succeeded extend Attempt, it’s
propagated there as well.

This first version of the code lets you write the basic x and y examples. However, to be
really useful, your API needs a new method named getOrElse that lets you get the
information from the result, whether that result happens to be a type of Succeeded or
Failed.

The getOrElse method will be called like this:

val x = Attempt(1/0)

val result = x.getOrElse(0)

Or this:

val y = Attempt("foo".toInt).getOrElse(0)

To enable a getOrElse method, make the following changes to the code:

// version 2

sealed abstract class Attempt[A] {

 def getOrElse[B >: A](default: => B): B = if (isSuccess) get else default

632 | Chapter 19: Types

 var isSuccess = false

 def get: A

}

object Attempt {

 def apply[A](f: => A): Attempt[A] =

 try {

 val result = f

 Succeeded(result)

 } catch {

 case e: Exception => Failed(e)

 }

}

final case class Failed[A](val exception: Throwable) extends Attempt[A] {

 isSuccess = false

 def get: A = throw exception

}

final case class Succeeded[A](result: A) extends Attempt[A] {

 isSuccess = true

 def get = result

}

The variable isSuccess is added to Attempt so it can be set in Succeeded or Failed.
An abstract method named get is also declared in Attempt so it can be implemented in
the two subclasses. These changes let the getOrElse method in Attempt work.

The getOrElse method signature is the most interesting thing about this new code:

def getOrElse[B >: A](default: => B): B = if (isSuccess) get else default

Because of the way getOrElse works, it can either return the type A, which is the result
of the expression, or type B, which the user supplies, and is presumably a substitute for
A. The expression B >: A is a lower bound. Though it isn’t commonly used, a lower
bound declares that a type is a supertype of another type. In this code, the term B >: A
expresses that the type parameter B is a supertype of A.

The Scala 2.10 Try classes

You could keep developing your own classes, but the Try, Success, and Failure classes
in the scala.util package were introduced in Scala 2.10, so this is a good place to stop.

However, it’s worth noting that these classes can be a great way to learn about Scala
types. For instance, the getOrElse method in the Attempt code is the same as the
getOrElse method declared in Try:

def getOrElse[U >: T](default: => U): U = if (isSuccess) get else default

The map method declared in Success shows how to define a call-by-name parameter
that transforms a type T to a type U:

def map[U](f: T => U): Try[U] = Try[U](f(value))

19.8. Building Functionality with Types | 633

Its flatten method uses the <:< symbol that wasn’t covered in this chapter. When used
as A <:< B, it declares that “A must be a subtype of B.” Here’s how it’s used in the Success
class:

def flatten[U](implicit ev: T <:< Try[U]): Try[U] = value

When it comes to learning about generic parameter types, these classes are very inter‐
esting to study. They’re self-contained and surprisingly short. The Scala collections
classes also demonstrate many more uses of generics.

634 | Chapter 19: Types

CHAPTER 20

Idioms

Introduction
When I first came to Scala from Java, I was happy with the small things, including
eliminating a lot of ;, (), and {} characters, and writing more concise, Ruby-like code.
These were nice little wins that made for “a better Java.”

Over time, I wanted to add more to my repertoire and use Scala the way it’s intended to
be used. As Ward Cunningham said in the book, Clean Code (Prentice Hall), I wanted
to write code that “makes it look like the language was made for the problem.”

That’s what this chapter is about—trying to share some of the best practices of Scala
programming so you can write code in “the Scala way.”

Before digging into the recipes in this chapter, here’s a short summary of Scala’s best
practices.

At the application level:

• At the big-picture, application-design level, follow the 80/20 rule, and try to write
80% of your application as pure functions, with a thin layer of other code on top of
those functions for things like I/O.

• Learn “Expression-Oriented Programming” (Recipe 20.3).

• Use the Actor classes to implement concurrency (Chapter 13).

• Move behavior from classes into more granular traits. This is best described in the
Scala Stackable Trait pattern.

At the coding level:

• Learn how to write pure functions. At the very least, they simplify testing.

• Learn how to pass functions around as variables (Recipes 9.2 to 9.4).

635

http://bit.ly/17fZTma
http://bit.ly/17fZTma

• Learn how to use the Scala collections API. Know the most common classes and
methods (10 and 11).

• Prefer immutable code. Use vals and immutable collections first (Recipe 20.2).

• Drop the null keyword from your vocabulary. Use the Option/Some/None and Try/
Success/Failure classes instead (Recipe 20.6).

• Use TDD and/or BDD testing tools like ScalaTest and specs2.

Outside the code:

• Learn how to use SBT. It’s the de-facto Scala build tool (Chapter 18).

• Keep a REPL session open while you’re coding (or use the Scala Worksheet), and
constantly try small experiments (Recipes 14.1 to 14.4, and many examples
throughout the book).

Other Resources
In addition to the practices shared in this chapter, I highly recommend reading Twitter’s
Effective Scala document. The Twitter team has been a big user and proponent of Scala,
and this document summarizes their experiences.

The Scala Style Guide is a good resource that shares examples of how to write code in
the Scala “style.”

20.1. Create Methods with No Side Effects (Pure
Functions)

Problem
In keeping with the best practices of Functional Programming (FP), you want to write
“pure functions.”

Solution
In general, when writing a function (or method), your goal should be to write it as a
pure function. This raises the question, “What is a pure function?” Before we tackle that
question we need to look at another term, referential transparency, because it’s part of
the description of a pure function.

636 | Chapter 20: Idioms

http://bit.ly/1aq2RXe
http://bit.ly/1c3BpjS
http://docs.scala-lang.org/style/

Referential transparency

If you like algebra, you’ll like referential transparency. An expression is referentially
transparent (RT) if it can be replaced by its resulting value without changing the be‐
havior of the program. This must be true regardless of where the expression is used in
the program.

For instance, assume that x and y are immutable variables within some scope of an
application, and within that scope they’re used to form this expression:

x + y

You can assign this expression to a third variable, like this:

val z = x + y

Now, throughout the given scope of your program, anywhere the expression x + y is
used, it can be replaced by z without affecting the result of the program.

Note that although I stated that x and y are immutable variables, they can also be the
result of RT functions. For instance, "hello".length + "world".length will always
be 10. This result could be assigned to z, and then z could be used everywhere instead
of this expression.

Although this is a simple example, this is referential transparency in a nutshell.

Pure functions

Wikipedia defines a pure function as follows:

1. The function always evaluates to the same result value given the same argument
value(s). It cannot depend on any hidden state or value, and it cannot depend on
any I/O.

2. Evaluation of the result does not cause any semantically observable side effect or
output, such as mutation of mutable objects or output to I/O devices.

The book Functional Programming in Scala by Chiusano and Bjarnason (Manning
Publications), states this a little more precisely:

“A function f is pure if the expression f(x) is referentially transparent for all referentially

transparent values x.”

To summarize, a pure function is referentially transparent and has no side effects.

20.1. Create Methods with No Side Effects (Pure Functions) | 637

Regarding side effects, the authors of the book, Programming in Scala, make a great
observation:

“A telltale sign of a function with side effects is that its result type is Unit.”

From these definitions, we can make these statements about pure functions:

• A pure function is given one or more input parameters.

• Its result is based solely off of those parameters and its algorithm. The algorithm
will not be based on any hidden state in the class or object it’s contained in.

• It won’t mutate the parameters it’s given.

• It won’t mutate the state of its class or object.

• It doesn’t perform any I/O operations, such as reading from disk, writing to disk,
prompting for input, or reading input.

These are some examples of pure functions:

• Mathematical functions, such as addition, subtraction, multiplication.

• Methods like split and length on the String class.

• The to* methods on the String class (toInt, toDouble, etc.)

• Methods on immutable collections, including map, drop, take, filter, etc.

• The functions that extract values from an HTML string in Recipe 20.3.

The following functions are not pure functions:

• Methods like getDayOfWeek, getHour, or getMinute. They return a different value
depending on when they are called.

• A getRandomNumber function.

• A function that reads user input or prints output.

• A function that writes to an external data store, or reads from a data store.

If you’re coming to Scala from a pure OOP background, it can be difficult to write pure
functions. Speaking for myself, historically my code has followed the OOP paradigm of
encapsulating data and behavior in classes, and as a result, my methods often mutated
the internal state of objects.

638 | Chapter 20: Idioms

At this point you may be wondering how you can get anything done
in a program consisting only of pure functions. If you can’t read in‐
put from a user or database, and can’t write output, how will your
application ever work?

The best advice I can share about FP is to follow the 80/20 rule: write
80% of your program using pure functions (the “cake”), then create a
20% layer of other code on top of the functional base (the “icing”) to
handle the user interface, printing, database interactions, and other
methods that have “side effects”.

Obviously any interesting application will have I/O, and this bal‐
anced approach lets you have the best of both worlds.

The Java approach

To look at how to write pure functions, you’ll convert the methods in an OOP class into
pure functions. The following code shows how you might create a Stock class that
follows the Java/OOP paradigm. The following class intentionally has a few flaws. It not
only has the ability to store information about a Stock, but it can also access the Internet
to get the current stock price, and further maintains a list of historical prices for the
stock:

// a poorly written class

class Stock (var symbol: String, var company: String,

 var price: BigDecimal, var volume: Long) {

 var html: String = _

 def buildUrl(stockSymbol: String): String = { ... }

 def getUrlContent(url: String):String = { ... }

 def setPriceFromHtml(html: String) { this.price = ... }

 def setVolumeFromHtml(html: String) { this.volume = ... }

 def setHighFromHtml(html: String) { this.high = ... }

 def setLowFromHtml(html: String) { this.low = ... }

 // some dao-like functionality

 private val _history: ArrayBuffer[Stock] = { ... }

 val getHistory = _history

}

Beyond attempting to do too many things, from an FP perspective, it has these other
problems:

20.1. Create Methods with No Side Effects (Pure Functions) | 639

• All of its fields are mutable.

• All of the set methods mutate the class fields.

• The getHistory method returns a mutable data structure.

The getHistory method is easily fixed by only sharing an immutable data structure,
but this class has deeper problems. Let’s fix them.

Fixing the problems

The first fix is to separate two concepts that are buried in the class. First, there should
be a concept of a Stock, where a Stock consists only of a symbol and company name.
You can make this a case class:

case class Stock(symbol: String, company: String)

Examples of this are Stock("AAPL", "Apple") and Stock("GOOG", "Google").

Second, at any moment in time there is information related to a stock’s performance on
the stock market. You can call this data structure a StockInstance, and also define it as
a case class:

case class StockInstance(symbol: String,

 datetime: String,

 price: BigDecimal,

 volume: Long)

A StockInstance example looks like this:

StockInstance("AAPL", "Nov. 2, 2012 5:00pm", 576.80, 20431707)

Going back to the original class, the getUrlContent method isn’t specific to a stock, and
should be moved to a different object, such as a general-purpose NetworkUtils object:

object NetworkUtils {

 def getUrlContent(url: String): String = { ... }

}

This method takes a URL as a parameter and returns the HTML content from that URL.

Similarly, the ability to build a URL from a stock symbol should be moved to an object.
Because this behavior is specific to a stock, you’ll put it in an object named
StockUtils:

object StockUtils {

 def buildUrl(stockSymbol: String): String = { ... }

}

The ability to extract the stock price from the HTML can also be written as a pure
function and should be moved into the same object:

object StockUtils {

 def buildUrl(stockSymbol: String): String = { ... }

640 | Chapter 20: Idioms

 def getPrice(html: String): String = { ... }

}

In fact, all of the methods named set* in the previous class should be get* methods in
StockUtils:

object StockUtils {

 def buildUrl(stockSymbol: String): String = { ... }

 def getPrice(symbol: String, html: String): String = { ... }

 def getVolume(symbol: String, html: String): String = { ... }

 def getHigh(symbol: String, html: String): String = { ... }

 def getLow(symbol: String, html: String): String = { ... }

}

The methods getPrice, getVolume, getHigh, and getLow are all pure functions: given
the same HTML string and stock symbol, they will always return the same values, and
they don’t have side effects.

Following this thought process, the date and time are moved to a DateUtils object:

object DateUtils {

 def currentDate: String = { ... }

 def currentTime: String = { ... }

}

With this new design, you create an instance of a Stock for the current date and time
as a simple series of expressions. First, retrieve the HTML that describes the stock from
a web page:

val stock = new Stock("AAPL", "Apple")

val url = StockUtils.buildUrl(stock.symbol)

val html = NetUtils.getUrlContent(url)

Once you have the HTML, extract the desired stock information, get the date, and create
the Stock instance:

val price = StockUtils.getPrice(html)

val volume = StockUtils.getVolume(html)

val high = StockUtils.getHigh(html)

val low = StockUtils.getLow(html)

val date = DateUtils.currentDate

val stockInstance = StockInstance(symbol, date, price, volume, high, low)

Notice that all of the variables are immutable, and each line is an expression.

The code is simple, so you can eliminate all the intermediate variables, if desired:

val html = NetUtils.getUrlContent(url)

val stockInstance = StockInstance(

 symbol,

 DateUtils.currentDate,

 StockUtils.getPrice(html),

 StockUtils.getVolume(html),

20.1. Create Methods with No Side Effects (Pure Functions) | 641

 StockUtils.getHigh(html),

 StockUtils.getLow(html))

As mentioned earlier, the methods getPrice, getVolume, getHigh, and getLow are all
pure functions. But what about methods like getDate? It’s not a pure function, but the
fact is, you need the date and time to solve the problem. This is part of what’s meant by
having a healthy, balanced attitude about pure functions.

As a final note about this example, there’s no need for the Stock class to maintain a
mutable list of stock instances. Assuming that the stock information is stored in a da‐
tabase, you can create a StockDao to retrieve the data:

object StockDao {

 def getStockInstances(symbol: String): Vector[StockInstance] = { ... }

 // other code ...

}

Though getStockInstances isn’t a pure function, the Vector class is immutable, so you
can feel free to share it without worrying that it might be modified somewhere else in
your application.

Although I use the prefix get in many of those method names, it’s not
at all necessary to follow a JavaBeans-like naming convention. In fact,
in part because you write “setter” methods in Scala without begin‐
ning their names with set, and also to follow the Uniform Access
Principle, many Scala APIs don’t use get or set at all.

For example, think of case classes. The accessors and mutators they
generate don’t use get or set:

case class Person(name: String)

val p = Person("Mark")

p.name // accessor

p.name = "Bubba" // mutator

That being said, although it’s best to follow the Scala standards, use
whatever method names best fit your API.

Discussion
A benefit of this coding style is that pure functions are easier to test. For instance,
attempting to test the set* methods in the original code is harder than it needs to be.
For each field (price, volume, high, and low), you have to follow these steps:

1. Set the html field in the object.

2. Call the current set method, such as setPriceFromHtml.

3. Internally, this method reads the private html class field.

4. When the method runs, it mutates a field in the class (price).

642 | Chapter 20: Idioms

http://en.wikipedia.org/wiki/Uniform_access_principle
http://en.wikipedia.org/wiki/Uniform_access_principle

5. You have to “get” that field to verify that it was changed.

6. In more complicated classes, it’s possible that the html and price fields may be
mutated by other methods in the class.

The test code for the original class looks like this:

val stock = new Stock("AAPL", "Apple", 0, 0)

stock.buildUrl

val html = stock.getUrlContent

stock.getPriceFromHtml(html)

assert(stock.getPrice == 500.0)

This is a simple example of testing one method that has side effects, but of course this
can get much more complicated in a large application.

By contrast, testing a pure function is easier:

1. Call the function, passing in a known value.

2. Get a result back from the function.

3. Verify that the result is what you expected.

The functional approach results in test code like this:

val url = NetUtils.buildUrl("AAPL")

val html = NetUtils.getUrlContent(url)

val price = StockUtils.getPrice(html)

assert(price == 500.0)

Although the code shown isn’t much shorter, it is much simpler.

StockUtils or Stock object?

The methods that were moved to the StockUtils class in the previous examples could
be placed in the companion object of the Stock class. That is, you could have placed the
Stock class and object in a file named Stock.scala:

case class Stock(symbol: String, company: String)

object Stock {

 def buildUrl(stockSymbol: String): String = { ... }

 def getPrice(symbol: String, html: String): String = { ... }

 def getVolume(symbol: String, html: String): String = { ... }

 def getHigh(symbol: String, html: String): String = { ... }

 def getLow(symbol: String, html: String): String = { ... }

}

For the purposes of this example, I put these methods in a StockUtils class to be clear
about separating the concerns of the Stock class and object. In your own practice, use
whichever approach you prefer.

20.1. Create Methods with No Side Effects (Pure Functions) | 643

See Also

• Pure Functions

• Referential Transparency

• The Uniform Access Principle

20.2. Prefer Immutable Objects

Problem
You want to reduce the use of mutable objects and data structures in your code.

Solution
Begin with this simple philosophy, stated in the book, Programming in Scala:

“Prefer vals, immutable objects, and methods without side effects. Reach for them first.”

Then use other approaches with justification.

There are two components to “prefer immutability”:

• Prefer immutable collections. For instance, use immutable sequences like List and
Vector before reaching for the mutable ArrayBuffer.

• Prefer immutable variables. That is, prefer val to var.

In Java, mutability is the default, and it can lead to unnecessarily dangerous code and
hidden bugs. In the following example, even though the List parameter taken by the
trustMeMuHaHa method is marked as final, the method can still mutate the collection:

// java

class EvilMutator {

 // trust me ... mu ha ha (evil laughter)

 public static void trustMeMuHaHa(final List<Person> people) {

 people.clear();

 }

}

Although Scala treats method arguments as vals, you leave yourself open to the exact
same problem by passing around a mutable collection, like an ArrayBuffer:

def evilMutator(people: ArrayBuffer[Person]) {

 people.clear()

}

644 | Chapter 20: Idioms

http://en.wikipedia.org/wiki/Pure_function
http://bit.ly/12E47nU
http://en.wikipedia.org/wiki/Uniform_access_principle

Just as with the Java code, the evilMutator method can call clear because the contents
of an ArrayBuffer are mutable.

Though nobody would write malicious code like this intentionally, accidents do happen.
To make your code safe from this problem, if there’s no reason for a collection to be
changed, don’t use a mutable collection class. By changing the collection to a Vector,
you eliminate the possibility of this problem, and the following code won’t even compile:

def evilMutator(people: Vector[Person]) {

 // ERROR - won't compile

 people.clear()

}

Because Vector is immutable, any attempt to add or remove elements will fail.

Discussion
There are at least two major benefits to using immutable variables (val) and immutable
collections:

• They represent a form of defensive coding, keeping your data from being changed
accidentally.

• They’re easier to reason about.

The examples shown in the Solution demonstrate the first benefit: if there’s no need for
other code to mutate your reference or collection, don’t let them do it. Scala makes this
easy.

The second benefit can be thought of in many ways, but I like to think about it when
using actors and concurrency. If I’m using immutable collections, I can pass them
around freely. There’s no concern that another thread will modify the collection.

Using val + mutable, and var + immutable

As mentioned several times in this chapter, it’s important to have a balanced attitude. I
generally use that expression in regards to pure functions, but it also has meaning when
discussing “prefer immutability.”

For instance, some developers like to use these combinations:

• A mutable collection field declared as a val.

• An immutable collection field declared as a var.

20.2. Prefer Immutable Objects | 645

These approaches generally seem to be used as follows:

• A mutable collection field declared as a val is typically made private to its class (or
method).

• An immutable collection field declared as a var in a class is more often made pub‐
licly visible, that is, it’s made available to other classes.

As an example of the first approach, the current Akka FSM class (scala.akka.actor.FSM)

defines several mutable collection fields as private vals, like this:

private val timers = mutable.Map[String, Timer]()

// some time later ...

timers -= name

timers.clear()

This is safe to do, because the timers field is private to the class, so its mutable collection
isn’t shared with others.

An approach I used on a recent project is a variation of this theme:

class Pizza {

 private val _toppings = new collection.mutable.ArrayBuffer[Topping]()

 def toppings = _toppings.toList

 def addTopping(t: Topping) { _toppings += t }

 def removeTopping(t: Topping) { _toppings -= t }

}

This code defines _toppings as a mutable ArrayBuffer, but makes it a val that’s private
to the Pizza class. Here’s my rationale for this approach:

• I made _toppings an ArrayBuffer because I knew that elements (toppings) would
often be added and removed.

• I made _toppings a val because there was no need for it to ever be reassigned.

• I made it private so its accessor wouldn’t be visible outside of my class.

• I created the methods toppings, addTopping, and removeTopping to let other code
manipulate the collection.

• When other code calls the toppings method, I can give them an immutable copy
of the toppings.

I intentionally didn’t use the “val + mutable collection” approach, which would have
looked like this:

// did not do this

val toppings = new collection.mutable.ArrayBuffer[Topping]()

646 | Chapter 20: Idioms

I didn’t use this approach because I didn’t want to expose toppings as an immutable
collection outside of my Pizza class, which would have happened here, because the val
would have generated an accessor method. In using an OOP design, you think, “Who
should be responsible for managing the toppings on the pizza?” and Pizza clearly has
the responsibility of maintaining its toppings.

I also didn’t choose this “var + immutable collection” design:

var toppings = Vector[Topping]()

The benefits of this approach are (a) it automatically shares toppings as an immutable
collection, and (b) it lets me add toppings like this:

def addTopping(t: Topping) = toppings :+ t

But the approach suffers, because it’s a little cumbersome to remove an element from a
Vector (you have to filter the undesired toppings out of the originating Vector while
assigning the result to a new Vector), and it lets toppings be reassigned outside of the
Pizza class, which I don’t want:

// bad: other code can mutate 'toppings'

pizza.toppings = Vector(Cheese)

You can remove elements with this approach by using the filter method and then
reassigning the result back to toppings, like this:

toppings = toppings.filter(_ != Pepperoni)

But if you create a “double pepperoni” pizza by having two instances of Pepperoni in
toppings, and then want to change it to a regular pepperoni pizza, the earlier
ArrayBuffer approach is simpler.

Summary

In summary, always begin with the “prefer immutability” approach, and relax that phi‐
losophy when it makes sense for the current situation, that is, when you can properly
rationalize your decision.

See Also

Recipe 10.6, “Understanding Mutable Variables with Immutable Collections”

20.3. Think “Expression-Oriented Programming”

Problem
You’re used to writing statements in another programming language, and want to learn
how to write expressions in Scala, and the benefits of the expression-oriented program‐
ming (EOP) philosophy.

20.3. Think “Expression-Oriented Programming” | 647

Solution
To understand EOP, you have to understand the difference between a statement and an
expression. Wikipedia provides a concise distinction between the two:

“Statements do not return results and are executed solely for their side effects, while
expressions always return a result and often do not have side effects at all.”

So statements are like this:

order.calculateTaxes()

order.updatePrices()

Expressions are like this:

val tax = calculateTax(order)

val price = calculatePrice(order)

On Wikipedia’s EOP page, it also states:

“An expression-oriented programming language is a programming language where every
(or nearly every) construction is an expression, and thus yields a value.”

As you might expect, it further states that all pure FP languages are expression-oriented.

The following example helps to demonstrate EOP. This recipe is similar to
Recipe 20.1, so it reuses the class from that recipe to show a poor initial design:

// an intentionally bad example

class Stock (var symbol: String,

 var company: String,

 var price: String,

 var volume: String,

 var high: String,

 var low: String) {

 var html: String = _

 def buildUrl(stockSymbol: String): String = { ... }

 def getUrlContent(url: String):String = { ... }

 def setPriceUsingHtml() { this.price = ... }

 def setVolumeUsingHtml() { this.volume = ... }

 def setHighUsingHtml() { this.high = ... }

 def setLowUsingHtml() { this.low = ... }

}

Although I didn’t show it in that recipe, using this class would result in code like this:

val stock = new Stock("GOOG", "Google", "", "", "", "")

val url = buildUrl(stock.symbol)

stock.html = stock.getUrlContent(url)

// a series of calls on an object ('statements')

stock.setPriceUsingHtml

648 | Chapter 20: Idioms

stock.setVolumeUsingHtml

stock.setHighUsingHtml

stock.setLowUsingHtml

Although the implementation code isn’t shown, all of these “set” methods extract data
from the HTML that was downloaded from a Yahoo Finance page for a given stock, and
then update the fields in the current object.

After the first two lines, this code is not expression-oriented at all; it’s a series of calls
on an object to populate (mutate) the class fields, based on other internal data. These
are statements, not expressions; they don’t yield values.

Recipe 20.1 showed that by refactoring this class into several different components, you
would end up with the following code:

// a series of expressions

val url = StockUtils.buildUrl(symbol)

val html = NetUtils.getUrlContent(url)

val price = StockUtils.getPrice(html)

val volume = StockUtils.getVolume(html)

val high = StockUtils.getHigh(html)

val low = StockUtils.getLow(html)

val date = DateUtils.getDate

val stockInstance = StockInstance(symbol, date, price, volume, high, low)

This code is expression-oriented. It consists of a series of simple expressions that pass
values into pure functions (except for getDate), and each function returns a value that’s
assigned to a variable. The functions don’t mutate the data they’re given, and they don’t
have side effects, so they’re easy to read, easy to reason about, and easy to test.

Discussion
In Scala, most expressions are obvious. For instance, the following two expressions both
return results, which you expect:

scala> 2 + 2

res0: Int = 4

scala> List(1,2,3,4,5).filter(_ > 2)

res1: List[Int] = List(3, 4, 5)

However, it can be more of a surprise that an if/else expression returns a value:

val greater = if (a > b) a else b

Match expressions also return a result:

20.3. Think “Expression-Oriented Programming” | 649

http://finance.yahoo.com/

val evenOrOdd = i match {

 case 1 | 3 | 5 | 7 | 9 => println("odd")

 case 2 | 4 | 6 | 8 | 10 => println("even")

}

Even a try/catch block returns a value:

val result = try {

 "1".toInt

} catch {

 case _ => 0

}

Writing expressions like this is a feature of functional programming languages, and
Scala makes using them feel natural and intuitive, and also results in concise, expressive
code.

Benefits

Because expressions always return a result, and generally don’t have side effects, there
are several benefits to EOP:

• The code is easier to reason about. Inputs go in, a result is returned, and there are
no side effects.

• The code is easier to test.

• Combined with Scala’s syntax, EOP also results in concise, expressive code.

• Although it has only been hinted at in these examples, expressions can often be
executed in any order. This subtle feature lets you execute expressions in parallel,
which can be a big help when you’re trying to take advantage of modern multicore
CPUs.

See Also

• The Wikipedia definition of a statement, and the difference between a statement
and an expression

• Expression-Oriented Programming (EOP)

20.4. Use Match Expressions and Pattern Matching

Problem
Match expressions (and pattern matching) are a major feature of the Scala programming
language, and you want to see examples of the many ways to use them.

650 | Chapter 20: Idioms

http://bit.ly/10YJKAM
http://bit.ly/10YJKAM
http://bit.ly/1b7B6FE

Solution
Match expressions (match/case statements) and pattern matching are a major feature
of the Scala language. If you’re coming to Scala from Java, the most obvious uses are:

• As a replacement for the Java switch statement

• To replace unwieldy if/then statements

However, pattern matching is so common, you’ll find that match expressions are used
in many more situations:

• In try/catch expressions

• As the body of a function or method

• With the Option/Some/None coding pattern

• In the receive method of actors

The following examples demonstrate these techniques.

Replacement for the Java switch statement and unwieldy if/then statements

Recipe 3.8 showed that a match expression can be used like a Java switch statement:

val month = i match {

 case 1 => "January"

 case 2 => "February"

 // more months here ...

 case 11 => "November"

 case 12 => "December"

 case _ => "Invalid month" // the default, catch-all

}

It can be used in the same way to replace unwieldy if/then/else statements:

i match {

 case 1 | 3 | 5 | 7 | 9 => println("odd")

 case 2 | 4 | 6 | 8 | 10 => println("even")

}

These are simple uses of match expressions, but they’re a good start.

In try/catch expressions

It helps to become comfortable with match expressions, because you’ll use them with
Scala’s try/catch syntax. The following example shows how to write a try/catch ex‐
pression that returns an Option when lines are successfully read from a file, and None
if an exception is thrown during the file-reading process:

20.4. Use Match Expressions and Pattern Matching | 651

def readTextFile(filename: String): Option[List[String]] = {

 try {

 Some(Source.fromFile(filename).getLines.toList)

 } catch {

 case e: Exception => None

 }

}

To catch multiple exceptions in a try/catch expression, list the exception types in the
catch clause, just like a match expression:

def readTextFile(filename: String): Option[List[String]] = {

 try {

 Some(Source.fromFile(filename).getLines.toList)

 } catch {

 case ioe: IOException =>

 logger.error(ioe)

 None

 case fnf: FileNotFoundException =>

 logger.error(fnf)

 None

 }

}

Note that if the specific error is important in a situation like this, use the Try/Success/
Failure approach to return the error information to the caller, instead of Option/Some/
None. See Recipe 20.6 for both Option and Try examples.

As the body of a function or method

As you get comfortable with match expressions, you’ll use them as the body of your
methods, such as this method that determines whether the value it’s given is true, using
the Perl definition of “true”:

def isTrue(a: Any) = a match {

 case 0 | "" => false

 case _ => true

}

In general, a match expression used as the body of a function will accept a parameter
as input, match against that parameter, and then return a value:

def getClassAsString(x: Any):String = x match {

 case s: String => "String"

 case i: Int => "Int"

 case l: List[_] => "List"

 case p: Person => "Person"

 case Dog() => "That was a Dog"

 case Parrot(name) => s"That was a Parrot, name = $name"

 case _ => "Unknown"

}

652 | Chapter 20: Idioms

As shown in Recipe 9.8, a match expression can also be used to create a partial function
(i.e., working only for a subset of possible inputs):

val divide: PartialFunction[Int, Int] = {

 case d: Int if d != 0 => 42 / d

}

See that recipe for more details on this approach.

Use with Option/Some/None

Match expressions work well with the Scala Option/Some/None types. For instance, given
a method that returns an Option:

def toInt(s: String): Option[Int] = {

 try {

 Some(s.toInt)

 } catch {

 case e: Exception => None

 }

}

You can handle the result from toInt with a match expression:

toInt(aString) match {

 case Some(i) => println(i)

 case None => println("Error: Could not convert String to Int.")

}

In a similar way, match expressions are a popular way of handling form verifications
with the Play Framework:

verifying("If age is given, it must be greater than zero",

 model =>

 model.age match {

 case Some(age) => age < 0

 case None => true

 }

)

In actors

Match expressions are baked into actors as the way to handle incoming messages:

class SarahsBrain extends Actor {

 def receive = {

 case StartMessage => handleStartMessage

 case StopMessage => handleStopMessage

 case SetMaxWaitTime(time) => helper ! SetMaxWaitTime(time)

 case SetPhrasesToSpeak(phrases) => helper ! SetPhrasesToSpeak(phrases)

 case _ => log.info("Got something unexpected.")

 }

 // other code here ...

}

20.4. Use Match Expressions and Pattern Matching | 653

Summary

Match expressions are an integral part of the Scala language, and as shown, they can be
used in many ways. The more you use them, the more uses you’ll find for them.

See Also

• Match expressions are demonstrated in many examples in Chapter 3.

• Chapter 13 demonstrates the use of match expressions when writing actors.

20.5. Eliminate null Values from Your Code

Problem
Tony Hoare, inventor of the null reference way back in 1965, refers to the creation of
the null value as his “billion dollar mistake.” In keeping with modern best practices,
you want to eliminate null values from your code.

Solution
David Pollak, author of the book Beginning Scala, offers a wonderfully simple rule about
null values:

“Ban null from any of your code. Period.”

Although I’ve used null values in this book to make some examples easier, in my own
practice, I no longer use them. I just imagine that there is no such thing as a null, and
write my code in other ways.

There are several common situations where you may be tempted to use null values, so
this recipe demonstrates how not to use null values in those situations:

• When a var field in a class or method doesn’t have an initial default value, initialize
it with Option instead of null.

• When a method doesn’t produce the intended result, you may be tempted to return
null. Use an Option or Try instead.

• If you’re working with a Java library that returns null, convert it to an Option, or
something else.

Let’s look at each of these techniques.

654 | Chapter 20: Idioms

http://en.wikipedia.org/wiki/Tony_Hoare

Initialize var fields with Option, not null

Possibly the most tempting time to use a null value is when a field in a class or method
won’t be initialized immediately. For instance, imagine that you’re writing code for the
next great social network app. To encourage people to sign up, during the registration
process, the only information you ask for is an email address and a password. Because
everything else is initially optional, you might write some code like this:

case class Address (city: String, state: String, zip: String)

class User(email: String, password: String) {

 var firstName: String = _

 var lastName: String = _

 var address: Address = _

}

This is bad news, because firstName, lastName, and address are all declared to be
null, and can cause problems in your application if they’re not assigned before they’re
accessed.

A better approach is to define each field as an Option:

case class Address (city: String, state: String, zip: String)

class User(email: String, password: String) {

 var firstName = None: Option[String]

 var lastName = None: Option[String]

 var address = None: Option[Address]

}

Now you can create a User like this:

val u = new User("al@example.com", "secret")

At some point later you can assign the other values like this:

u.firstName = Some("Al")

u.lastName = Some("Alexander")

u.address = Some(Address("Talkeetna", "AK", "99676"))

Later in your code, you can access the fields like this:

println(firstName.getOrElse("<not assigned>"))

Or this:

u.address.foreach { a =>

 println(a.city)

 println(a.state)

 println(a.zip)

}

In both cases, if the values are assigned, they’ll be printed. With the example of printing
the firstName field, if the value isn’t assigned, the string <not assigned> is printed.

20.5. Eliminate null Values from Your Code | 655

In the case of the address, if it’s not assigned, the foreach loop won’t be executed, so
the print statements are never reached. This is because an Option can be thought of as
a collection with zero or one elements. If the value is None, it has zero elements, and if
it is a Some, it has one element—the value it contains.

On a related note, you should also use an Option in a constructor when a field is optional:

case class Stock (id: Long,

 var symbol: String,

 var company: Option[String])

Don’t return null from methods

Because you should never use null in your code, the rule for returning null values from
methods is easy: don’t do it.

If you can’t return null, what can you do? Return an Option. Or, if you need to know
about an error that may have occurred in the method, use Try instead of Option.

With an Option, your method signatures should look like this:

def doSomething: Option[String] = { ... }

def toInt(s: String): Option[Int] = { ... }

def lookupPerson(name: String): Option[Person] = { ... }

For instance, when reading a file, a method could return null if the process fails, but
this code shows how to read a file and return an Option instead:

def readTextFile(filename: String): Option[List[String]] = {

 try {

 Some(io.Source.fromFile(filename).getLines.toList)

 } catch {

 case e: Exception => None

 }

}

This method returns a List[String] wrapped in a Some if the file can be found and
read, or None if an exception occurs.

As mentioned, if you want the error information instead of a Some or None, use the Try/
Success/Failure approach instead:

import scala.util.{Try, Success, Failure}

object Test extends App {

 def readTextFile(filename: String): Try[List[String]] = {

 Try(io.Source.fromFile(filename).getLines.toList)

 }

 val filename = "/etc/passwd"

 readTextFile(filename) match {

 case Success(lines) => lines.foreach(println)

656 | Chapter 20: Idioms

 case Failure(f) => println(f)

 }

}

This code prints the lines from the /etc/passwd file if the code succeeds, or prints an
error message like this if the code fails:

java.io.FileNotFoundException: Foo.bar (No such file or directory)

As a word of caution (and balance), the Twitter Effective Scala page recommends not
overusing Option, and using the Null Object Pattern where it makes sense. As usual,
use your own judgment, but try to eliminate all null values using one of these ap‐
proaches.

A Null Object is an object that extends a base type with a “null” or
neutral behavior. Here’s a Scala implementation of Wikipedia’s Java
example of a Null Object:

trait Animal {

 def makeSound()

}

class Dog extends Animal {

 def makeSound() { println("woof") }

}

class NullAnimal extends Animal {

 def makeSound() {}

}

The makeSound method in the NullAnimal class has a neutral, “do
nothing” behavior. Using this approach, a method defined to return
an Animal can return NullAnimal rather than null.

This is arguably similar to returning None from a method declared to
return an Option, especially when the result is used in a foreach loop.

Converting a null into an Option, or something else

The third major place you’ll run into null values is in working with legacy Java code.
There is no magic formula here, other than to capture the null value and return some‐
thing else from your code. That may be an Option, a Null Object, an empty list, or
whatever else is appropriate for the problem at hand.

For instance, the following getName method converts a result from a Java method that
may be null and returns an Option[String] instead:

def getName: Option[String] = {

 var name = javaPerson.getName

 if (name == null) None else Some(name)

}

20.5. Eliminate null Values from Your Code | 657

http://en.wikipedia.org/wiki/Null_Object_pattern

Benefits

Following these guidelines leads to these benefits:

• You’ll eliminate NullPointerExceptions.

• Your code will be safer.

• You won’t have to write if statements to check for null values.

• Adding an Option[T] return type declaration to a method is a terrific way to indicate
that something is happening in the method such that the caller may receive a None
instead of a Some[T]. This is a much better approach than returning null from a
method that is expected to return an object.

• You’ll become more comfortable using Option, and as a result, you’ll be able to take
advantage of how it’s used in the collection libraries and other frameworks.

See Also

• Tony Hoare’s Billion Dollar Mistake

• The “Null Object Pattern”

20.6. Using the Option/Some/None Pattern

Problem
For a variety of reasons, including removing null values from your code, you want to
use what I call the Option/Some/None pattern. Or, if you’re interested in a problem (ex‐
ception) that occurred while processing code, you may want to return Try/Success/
Failure from a method instead of Option/Some/None.

Solution
There is some overlap between this recipe and the previous recipe, “Eliminate null Val‐
ues from Your Code”. That recipe shows how to use Option instead of null in the
following situations:

• Using Option in method and constructor parameters

• Using Option to initialize class fields (instead of using null)

• Converting null results from other code (such as Java code) into an Option

See that recipe for examples of how to use an Option in those situations.

658 | Chapter 20: Idioms

http://en.wikipedia.org/wiki/Tony_Hoare#Quotations
http://en.wikipedia.org/wiki/Null_Object_pattern

This recipe adds these additional solutions:

• Returning an Option from a method

• Getting the value from an Option

• Using Option with collections

• Using Option with frameworks

• Using Try/Success/Failure when you need the error message (Scala 2.10 and
newer)

• Using Either/Left/Right when you need the error message (pre-Scala 2.10)

Returning an Option from a method

The toInt method used in this book shows how to return an Option from a method. It
takes a String as input and returns a Some[Int] if the String is successfully converted
to an Int, otherwise it returns a None:

def toInt(s: String): Option[Int] = {

 try {

 Some(Integer.parseInt(s.trim))

 } catch {

 case e: Exception => None

 }

}

Although this is a simple method, it shows the common pattern, as well as the syntax.
For a more complicated example, see the readTextFile example in Recipe 20.5.

This is what toInt looks like in the REPL when it succeeds and returns a Some:

scala> val x = toInt("1")

x: Option[Int] = Some(1)

This is what it looks like when it fails and returns a None:

scala> val x = toInt("foo")

x: Option[Int] = None

Getting the value from an Option

The toInt example shows how to declare a method that returns an Option. As a con‐
sumer of a method that returns an Option, there are several good ways to call it and
access its result:

• Use getOrElse

• Use foreach

• Use a match expression

20.6. Using the Option/Some/None Pattern | 659

To get the actual value if the method succeeds, or use a default value if the method fails,
use getOrElse:

scala> val x = toInt("1").getOrElse(0)

x: Int = 1

Because an Option is a collection with zero or one elements, the foreach method can
be used in many situations:

toInt("1").foreach{ i =>

 println(s"Got an int: $i")

}

That example prints the value if toInt returns a Some, but bypasses the println state‐
ment if toInt returns a None.

Another good way to access the toInt result is with a match expression:

toInt("1") match {

 case Some(i) => println(i)

 case None => println("That didn't work.")

}

Using Option with Scala collections

Another great feature of Option is that it plays well with Scala collections. For instance,
starting with a list of strings like this:

val bag = List("1", "2", "foo", "3", "bar")

imagine you want a list of all the integers that can be converted from that list of strings.
By passing the toInt method into the map method, you can convert every element in
the collection into a Some or None value:

scala> bag.map(toInt)

res0: List[Option[Int]] = List(Some(1), Some(2), None, Some(3), None)

This is a good start. Because an Option is a collection of zero or one elements, you can
convert this list of Int values by adding flatten to map:

scala> bag.map(toInt).flatten

res1: List[Int] = List(1, 2, 3)

As shown in Recipe 10.16, “Combining map and flatten with flatMap”, this is the same
as calling flatMap:

scala> bag.flatMap(toInt)

res2: List[Int] = List(1, 2, 3)

660 | Chapter 20: Idioms

The collect method provides another way to achieve the same result:

scala> bag.map(toInt).collect{case Some(i) => i}

res3: List[Int] = List(1, 2, 3)

That example works because the collect method takes a partial function, and the
anonymous function that’s passed in is only defined for Some values; it ignores the None
values.

These examples work for several reasons:

• toInt is defined to return Option[Int].

• Methods like flatten, flatMap, and others are built to work well with Option
values.

• You can pass anonymous functions into the collection methods.

Using Option with other frameworks

Once you begin working with third-party Scala libraries, you’ll see that Option is used
to handle situations where a variable may not have a value. For instance, they’re baked
into the Play Framework’s Anorm database library, where you use Option/Some/None
for database table fields that can be null. In the following example, the third field may
be null in the database, so it’s handled using Some and None, as shown:

def getAll() : List[Stock] = {

 DB.withConnection { implicit connection =>

 sqlQuery().collect {

 // the 'company' field has a value

 case Row(id: Int, symbol: String, Some(company: String)) =>

 Stock(id, symbol, Some(company))

 // the 'company' field does not have a value

 case Row(id: Int, symbol: String, None) =>

 Stock(id, symbol, None)

 }.toList

 }

}

The Option approach is also used extensively in Play validation methods:

verifying("If age is given, it must be greater than zero",

 model =>

 model.age match {

 case Some(age) => age < 0

 case None => true

 }

)

20.6. Using the Option/Some/None Pattern | 661

The scala.util.control.Exception object gives you another way to
use an Option, depending on your preferences and needs. For in‐
stance, the try/catch block was removed from the following method
and replaced with an allCatch method:

import scala.util.control.Exception._

def readTextFile(f: String): Option[List[String]] =

 allCatch.opt(Source.fromFile(f).getLines.toList)

allCatch is described as a Catch object “that catches everything.” The
opt method returns None if an exception is caught (such as a
FileNotFoundException), and a Some if the block of code succeeds.

Other allCatch methods support the Try and Either approaches. See
the Exception object Scaladoc for more information.

If you like the Option/Some/None approach, but want to write a method that returns
error information in the failure case (instead of None, which doesn’t return any error
information), there are two similar approaches:

• Try, Success, and Failure (introduced in Scala 2.10)

• Either, Left, and Right

I prefer the new Try/Success/Failure approach, so let’s look at it next.

Using Try, Success, and Failure

Scala 2.10 introduced scala.util.Try as an approach that’s similar to Option, but re‐
turns failure information rather than a None.

The result of a computation wrapped in a Try will be one of its subclasses: Success or
Failure. If the computation succeeds, a Success instance is returned; if an exception
was thrown, a Failure will be returned, and the Failure will hold information about
what failed.

To demonstrate this, first import the new classes:

import scala.util.{Try,Success,Failure}

Then create a simple method:

def divideXByY(x: Int, y: Int): Try[Int] = {

 Try(x / y)

}

This method returns a successful result as long as y is not zero. When y is zero, an
ArithmeticException happens. However, the exception isn’t thrown out of the method;
it’s caught by the Try, and a Failure object is returned from the method.

The method looks like this in the REPL:

662 | Chapter 20: Idioms

http://bit.ly/10YJQIt

scala> divideXByY(1,1)

res0: scala.util.Try[Int] = Success(1)

scala> divideXByY(1,0)

res1: scala.util.Try[Int] = Failure(java.lang.ArithmeticException: / by zero)

As with an Option, you can access the Try result using getOrElse, a foreach method,
or a match expression. If you don’t care about the error message and just want a result,
use getOrElse:

// Success

scala> val x = divideXByY(1, 1).getOrElse(0)

x: Int = 1

// Failure

scala> val y = divideXByY(1, 0).getOrElse(0)

y: Int = 0

Using a foreach method also works well in many situations:

scala> divideXByY(1, 1).foreach(println)

1

scala> divideXByY(1, 0).foreach(println)

(no output printed)

If you’re interested in the Failure message, one way to get it is with a match expression:

divideXByY(1, 1) match {

 case Success(i) => println(s"Success, value is: $i")

 case Failure(s) => println(s"Failed, message is: $s")

}

Another approach is to see if a Failure was returned, and then call its toString method
(although this doesn’t really follow the “Scala way”):

scala> if (x.isFailure) x.toString

res0: Any = Failure(java.lang.ArithmeticException: / by zero)

The Try class has the added benefit that you can chain operations together, catching
exceptions as you go. For example, the following code won’t throw an exception, re‐
gardless of what the values of x and y are:

val z = for {

 a <- Try(x.toInt)

 b <- Try(y.toInt)

} yield a * b

val answer = z.getOrElse(0) * 2

If x and y are String values like "1" and "2", this code works as expected, with answer
resulting in an Int value. If x or y is a String that can’t be converted to an Int, z will
have this value:

20.6. Using the Option/Some/None Pattern | 663

z: scala.util.Try[Int] =

 Failure(java.lang.NumberFormatException: For input string: "one")

If x or y is null, z will have this value:

z: scala.util.Try[Int] = Failure(java.lang.NumberFormatException: null)

In either Failure case, the getOrElse method protects us, returning the default value
of 0.

The readTextFile method in Recipe 20.5 shows another Try example. The method
from that example is repeated here:

def readTextFile(filename: String): Try[List[String]] = {

 Try(Source.fromFile(filename).getLines.toList)

}

If the readTextFile method runs successfully, the lines from the /etc/passwd file are

printed, but if an exception happens while trying to open and read the file, the Failure
line in the match expression prints the error, like this:

java.io.FileNotFoundException: Foo.bar (No such file or directory)

The Try class includes a nice collection of methods that let you handle situations in
many ways, including:

• Collection-like implementations of filter, flatMap, flatten, foreach, and map

• get, getOrElse, and orElse

• toOption, which lets you treat the result as an Option

• recover, recoverWith, and transform, which let you gracefully handle Success
and Failure results

As you can see, Try is a powerful alternative to using Option/Some/None.

Using Either, Left, and Right

Prior to Scala 2.10, an approach similar to Try was available with the Either, Left, and
Right classes. With these classes, Either is analogous to Try, Right is similar to
Success, and Left is similar to Failure.

The following method demonstrates how to implement the Either approach:

def divideXByY(x: Int, y: Int): Either[String, Int] = {

 if (y == 0) Left("Dude, can't divide by 0")

 else Right(x / y)

}

As shown, your method should be declared to return an Either, and the method body
should return a Right on success and a Left on failure. The Right type is the type your
method returns when it runs successfully (an Int in this case), and the Left type is
typically a String, because that’s how the error message is returned.

664 | Chapter 20: Idioms

As with Option and Try, a method returning an Either can be called in a variety of
ways, including getOrElse or a match expression:

val x = divideXByY(1, 1).right.getOrElse(0) // returns 1

val x = divideXByY(1, 0).right.getOrElse(0) // returns 0

// prints "Answer: Dude, can't divide by 0"

divideXByY(1, 0) match {

 case Left(s) => println("Answer: " + s)

 case Right(i) => println("Answer: " + i)

}

You can also access the error message by testing the result with isLeft, and then ac‐
cessing the left value, but this isn’t really the Scala way:

scala> val x = divideXByY(1, 0)

x: Either[String,Int] = Left(Dude, can't divide by 0)

scala> x.isLeft

res0: Boolean = true

scala> x.left

res1: scala.util.Either.LeftProjection[String,Int] =

 LeftProjection(Left(Dude, can't divide by 0))

Although the Either classes offered a potential solution prior to Scala 2.10, I now use
the Try classes in all of my code instead of Either.

Discussion
As shown in the Solution, if there’s a weakness of using Option, it’s that it doesn’t tell
you why something failed; you just get a None instead of a Some. If you need to know
why something failed, use Try instead of Option.

Don’t use the get method with Option

When you first come to Scala from Java, you may be tempted to use the get method to
access the result:

scala> val x = toInt("5").get

x: Int = 5

However, this isn’t any better than a NullPointerException:

scala> val x = toInt("foo").get

java.util.NoSuchElementException: None.get

// long stack trace omitted ...

Your next thought might be to test the value before trying to access it:

// don't do this

scala> val x = if (toInt("foo").isDefined) toInt("foo") else 0

x: Any = 0

20.6. Using the Option/Some/None Pattern | 665

As the comment says, don’t do this. In short, it’s a best practice to never call get on an
Option. The preferred approaches are to use getOrElse, a match expression, or
foreach. (As with null values, I just imagine that get doesn’t exist.)

See Also

• The Option class

• The Try class

• The Either class

666 | Chapter 20: Idioms

http://bit.ly/12uGdb2
http://bit.ly/12TttL0
http://bit.ly/12E4y1t

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
! method

executing command and getting exit code,
394, 398

sending messages to actors, 416
!! method, executing command and getting out‐

put, 394, 397, 398, 401
" (quotation marks, double), “"” surrounding

multiline strings, 6
#&& (AND) operator, 404
#:: method, constructing a Stream, 331
#< operator, redirecting STDIN, 402
#> operator, redirecting STDOUT, 402
#>> method, appending to a file, 403
#| method, pipelining commands, 401
#|| (OR) operator, 404
$ (dollar sign)

preceding variable names, 9
$ { }, including expressions inside a string, 10
% method, in build.sbt file, 583
%% method, in build.sbt file, 583
() (parentheses), forcing callers to leave off ac‐

cessor methods, 161
*= method, 40
+ method

adding elements to immutable Map, 348
adding elements to immutable Set, 363

++ method, 302, 304
adding elements to immutable Set, 363

merging two lists, 330
++= method, 302

adding elements to ArrayBuffer, 335
adding elements to mutable Queue, 367
adding elements to mutable Set, 362
adding multiple elements to mutable maps,

346
+= method

adding elements to ArrayBuffer, 335
adding elements to mutable maps, 346
adding elements to mutable Queue, 367
adding elements to mutable Set, 362
inserting documents into MongoDB, 537
on Int and other numeric types, 40
use in build.sbt file, 583

, (comma), adding to numbers, 50
- method

removing elements from immutable Map,
348

removing elements from immutable Set, 365
-- method, 304

removing elements from immutable Map,
348

removing elements from immutable Set, 365
--= method

deleting elements from mutable Set, 364
deleting multiple elements from a ListBuffer,

329

667

removing elements from collections extend‐
ing TraversableOnce, 336

removing elements from mutable maps, 346
-= method

deleting elements from ListBuffer, 328
deleting elements from mutable Set, 364
on Int and other numeric types, 40
removing ArrayBuffer elements, 336
removing elements from mutable maps, 346

/= method, 40
/bin/sh command, -c argument, 406
: (colon), Scala methods ending with, evaluation

of, 327
:+ method, 265
:: (cons) method

creating a List, 323, 325
prepending elements to a list, 326

::: method, merging or concatenating lists, 303,
330

<- symbol in for loops, 275
ranges created with, 61

<=, <, >, and >= methods, implemented by Or‐
dered trait, 318

= (equals sign)
== (equality) operator

testing object equality in Scala, 6
testing string equality, 4

== method, comparing object instances
with, 140

=> symbol as transformer, 218, 220
? (question mark)

? method, used with Actors, 445
in lazy collections, 331

? : (ternary operator in Java), 71
@BeanProperty annotation, 117, 562–565
@SerialVersionUID annotation, 389, 556
@switch annotation, 73
@tailrec annotation, 70
@throws annotation, 34, 92, 165, 554
@varargs annotation, 560
\ and \\ methods, 503
_ (underscore)

accessing tuple elements, 313
standing for an element in a sequence, 83
using to shorten code, 13
wildcard character in Scala, xvi, 83, 191, 194

catching default in match expression, 75
in imports, 196
shortening expressions with, 271

using variable name for default match, 78
_$eq methods, 103
_* operator

adapting a sequence to be used as argument
for varargs field, 163

converting data to pass as multiple parame‐
ters to ListMap or LinkedHashMap, 359

{ } (curly braces)
around function body, 221
in nested style package notation, 192

combining with import statements, 200
using to include expressions in strings, 10
using to print object fields, 10
using to write longer for loops, 61

| (pipe symbol)
separating match conditions for case state‐

ments, 76
using to create multiline strings, 7

~ operator
joining fields with, 497

A
abstract classes

extending traits, 204
using traits as, 207
when to use, 129

abstract fields, using in traits, 206
abstract methods, 207

(see also abstract classes)
implementation by classes implementing

traits, 204
access modifiers, 148

(see also methods, controlling scope)
descriptions of Scala modifiers, 152

accessor and mutator methods, 99
accessor method for constructor val field,

106
automatic generation of, in primary con‐

structor, 109
case class constructor parameters, 137
effect of constructor parameter settings, 107
for case classes, 188
for constructor var fields, 105
forcing callers to leave parentheses off acces‐

sors, 161
mutator method names for var fields, 103
overriding default, 116–119
preventing generation of, 119

668 | Index

Actor model, 412
Akka’s implementation of, 413

actorFor method, looking up actors, 436
actorOf method, 416

calling on ActorSystem, 417, 425
ActorRef, 413, 417, 421, 433
actors, 411–436

benefits of, 411
communication between, 419–422
creating Actor with class constructor requir‐

ing arguments, 418
defined, 412
getting started with, 414
match expressions in, 653
methods in Akka actor lifecycle, 422–425
monitoring actor’s death with watch, 433–

436
sending message to actor and waiting for re‐

ply, 445
shutting down Akka actor system, 432
Singleton objects as messages for, 179
starting, 425
stopping, 427–432

using gracefulStop method, 430
using Kill message, 431
using PoisonPill message, 429
using stop method, 429

switching between different states with be‐
come, 446

actorSelection method, 435
ActorSystem, 416

actorSelection method, 436
defined, 416
shutdown method, 433
stop method, 427

ActorSystem class, creating actors, 425
ActorTimeoutException, 431
add method, using with mutable Set, 362
afplay system command on Mac OS X, 395
Akka actor library, 411
andThen method, 444

PartialFunction trait, 240
annotations

adding exception annotations to Scala meth‐
ods to work with Java, 554

annotating variables with a type, 37
for return type of implicit methods, 28
Scala annotations and Java equivalents, 556

using @SerialVersionUID and other annota‐
tions, 556

anonymous functions, 218, 246
defining, 218
passed into map method, 283
returning from body of another function,

236
using methods like, 221

Anorm, using Option, 661
Ant, 466

building a Scala project with, 606–609
Any class, asInstanceOf method, 172
AnyRef class, == method, 6
AnyVal type, specifying for collections, 264
Apache Commons FileUtils library, 380
Apache HttpClient library, 491, 513, 514, 516

getting URL headers from HttpResponse ob‐
ject, 519

sending JSON data to POST URL, 518
setting URL headers before making HTTP

request, 520
Apache Ivy, 569, 584
APIs for libraries, traits commonly used in, 252
App trait, 176

caveats, 178
using in Scala shell scripts

basic use and header lines, 481
passing command-line arguments to, 484

apply method
case classes, 136
creating in companion object of regular

class, 139
defining in companion objects, 110, 185
implementing factory method with, 189–190
providing multiple case class constructors

with multiple apply methods, 186
treatment by Scala compiler, 186

args object, 177
ARM library, 378
array notation, using to access a character in a

String, 24
Array.ofDim method, 339, 385

decompiling, 340
ArrayBuffer class, 322

deleting elements, 336
Gson library working with, 499
making your go to mutable sequence, 268
methods to add or remove elements, 269
reading CSV file rows to, 386

Index | 669

using to create array whose size can change,
335

ArrayList class (Java), 550
arrays

accessing and changing values by index posi‐
tion, 334

Array and ArrayBuffer classes, 321
assigning CSV file processing results to 2D

array, 385
converting findAllIn method results to Ar‐

ray, 18
converting Range object to Array, 48
creating array whose size can change (Array‐

Buffer), 335
creating multidimensional arrays, 338

using array of arrays, 340
deleting elements from an Array, 337
different ways to define and populate an Ar‐

ray, 333
extracting sequence of elements from, 291
iterating over, using for loop, 54
looping over elements, xiv
manually specifying the type, 264
of objects, parsing JSON data into, 501
performance of an Array, 261
sorting, 337

ArrayStack class, 371
asInstanceOf method

casting numeric types, 173
object casting with, 172

ask method (of Akka actors), 445
assignment, adding elements to mutable maps,

345
auxiliary constructors

defining, 108–111
eliminating need for, 114
subclass, inability to call superclass con‐

structor, 128
Await.result method, 431, 437, 446

B
base and radix, handling in conversions of

strings to integers, 33
@BeanProperty annotation, 117, 562–565
“become” approach for actors to switch states,

446
best practices in Scala, 635–666

creating methods with no side effects (pure
functions), 636–644

eliminating null values from code, 654–658
expression-oriented programming (EOP),

647–650
prefer immutable objects, 644–647
using match expressions (and pattern

matching), 650–654
using Option/Some/None pattern, 658–666

BigDecimal, 43
conversions to other numeric types, 44
creating directly from strings, 33

BigDecimal class (Java), 44
currency formatting with, 51

BigInt, 43
conversions to other numeric types, 44
creating directly from strings, 33

BigInteger class (Java), 44
binary files, reading and writing, 382
Boolean test to break out of loops, 69
bounds, 612

upper bound, 624, 626
view bound, 626

Bourne shell, 481
break and continue, implementing in Scala, 65–

71
break example, 66
continue example, 67

better way to solve problem, 68
general syntax, 67
nested loops and labeled breaks, 68
ways to avoid using break and continue, 69

break method, 66
breakable method, 66
BreakControl exception, 66
BufferedSource class, 376

close method, 376
build tools, 466
build.sbt file, 579

adding multiple dependencies, 581
common methods used in, 583
entries as key/value pairs, 582
entry for sbt-assembly plug-in, 598
example file with one dependency, 581
logLevel setting, 597
mainClass settings, 593
resolvers key, 595
specifying man method to run, 592
using Build.scala file instead of, 602–604

Build.scala file (see project/Build.scala file)

670 | Index

build.xml file (Ant), 606
init target, 608

by method, setting step in ranges, 47
Byte type, 31

C
callback methods, futures, 443

onSuccess and onFailure, 439
canEqual method, 142
Casbah driver, 533

creating Casbah-style queries, 542
case classes, 99, 640

adding uninitialized var field to, 122
as inner class, 143
constructor parameters, val by default, 107
creating new class instances without new

keyword, 186
extracting case class fields in match expres‐

sions, 88
final, 644
generating auxiliary constructors for, 110
generating boilerplate code with, 136–140
in match expressions, 86–87

with variable-binding pattern, 84
MailServer, generating from JSON string,

500
methods generated by, 140–143
providing multiple constructors for, 187–189
toString implementation, 137
used to match JSON data with Lift-JSON,

492
case statements

adding if expressions (guards) to, 87
matching multiple conditions with single

statement, 76
pattern matching examples, 79

case-insensitive string comparisons, 5
casting

from one numeric type to another, 36
object, 172

catch clause, 92
(see also try/catch/finally)
throwing exception from, 92

chaining methods, 4
Char type, 31
charAt method, 24
checked exceptions, 165

in Java, 166
Child actor, 427

class members
renaming on import, 196
static imports of, 197

ClassCastException, 173
classes, 99

adding to REPL classpath, 462
assigning field to a block or function, 121
calling superclass constructor, 127
controlling visibility of constructor fields,

104–108
creating inner classes, 143
creating primary constructor for, 100–104
default values for constructor parameters,

114
defining auxiliary constructors, 108–111
defining equals method to compare object

instances, 140–143
defining properties in abstract base class,

131
determining class of an object, 174
extending traits, 203
generating boilerplate code with case classes,

136–140
handling constructor parameters when ex‐

tending, 124–127
hiding during import process, 196
importing into current program scope, 193
making serializable, 389
mixing traits in, 208
multiple, in a single file, 201
overriding default accessors and mutators,

116–119
preventing accessor and mutator methods

from being generated, 119
providing private primary constructor, 112
renaming on import, 195
setting uninitialized var field types, 122
traits can be mixed into, limiting, 209
traits inheriting from, 210
use of @BeanProperty annotation on fields,

562
using a trait by inheritance, limiting, 209
using generic types, 614–617
when to use abstract class, 129

classOf function, 174
classpath

building for Scala shell script, 482
REPL, adding JAR files and classes to, 461

Index | 671

clear method
deleting all elements in a map, 346
emptying mutable Stack with, 370
removing all elements from ArrayBuffer, 336
using with mutable Set, 364

closing files
automatically, 377
manually closing BufferedSource, 376

closures, 229–234
comparison to techniques in Java, 233
defined, 230
using with other data types, 232

code blocks
assigning class field to, 121
for/yield processing after yield keyword, 274
import statements in, 199
pasting and loading into REPL, 459–461

code examples, using, xxii
code listings in this book, xxi
collect method, taking partial function as input,

241
collections, xv, 245–319

building new collection from input collec‐
tion, using for/yield, 55

choosing a collection class, 250
main categories of classes, 250
maps, 253
sequences, 250
sets, 253
strict and lazy collections, 254
types acting like collections, 254

choosing a collection method to solve a
problem, 255
common collection methods, 256
common methods for maps, 259
immutable collection operators, 259
methods organized by category, 255
mutable collection methods, 258

classes containing, generating JSON string
from, 495–500

collection features in String, 3
combining map and flatten with flatMap

method, 286–289
converting iterators to, 279
converting to string with mkString, 318
creating and using enumerations, 311
creating lazy view on, 306–309
creating whose elements are all of some base

type, 624–627

declaring type when creating, 264
deleting documents from MongoDB collec‐

tion, 545
extracting sequence of elements from, 291–

293
extracting unique elements from a sequence,

300
filtering with filter method, 289
flattening list of lists with flatten, 285
important concepts when working with

methods of classes, 245
iterating over, using collection methods, 57
iterating over, using for and for/yield loops,

56
Java, going to and from, 549–554

conversion tables, 552
going from Scala collections to Java col‐

lections, 553
looping over, 54
looping over with for loop, 272–276
looping over with foreach, 270
making ArrayBuffer your go to mutable se‐

quence, 268
making immutable collections covariant, 622
making mutable collections invariant, 620
making Vector your go to immutable se‐

quence, 266
merging sequential collections, 302
merging two sequential collections into pairs

with zip, 304
mutable and immutable, 266
mutable variables with immutable collec‐

tions, 265
performance of, 261–264

maps and sets, 263
performance characteristic keys, 261
sequential collections, 262

populating
using Range with map method, 372
using tabulate method, 372
with a Range, 309

random-length collection of printable char‐
acters, 46

Scala collections hierarchy, 246
high-level view of collections, 247
maps, 249
more collection classes, 250
sequences, 248
sets, 249

672 | Index

strict and lazy collections, 250
searching MongoDB collection, 539–542
sorting, 315–318
splitting sequences into subsets, 293
transforming one to another with for/yield,

279–282
transforming one to another with map

method, 282–284
tuples, 312–315
updating documents in MongoDB collec‐

tion, 542
using collection methods on strings, 14
using iterators, 278
using Option with, 660
using parallel collections, 448
using zipWithIndex or zip to creating loop

counters, 276–278
walking through with reduce and fold meth‐

ods, 295–300
working with, using Lift-JSON library, 493

combinators, 444
command-line tasks, 453–490

accessing command-line arguments from
Scala shell script, 483

adding JAR files and classes to REPL class‐
path, 461

compiling with scalac and running with sca‐
la, 465

disassembling and decompiling Scala code,
466–471

faster compiling with fsc, 479
finding Scala libraries, 471
generating documentation with Scaladoc,

472–479
getting started with REPL, 454
making Scala scripts run faster, 489
pasting and loading blocks of code into

REPL, 459–461
prompting for input from Scala shell script,

485–489
REPL (Read-Eval-Print-Loop) tool, 453
running shell command from REPL, 462–

464
commas (,), adding to numbers, 50
companion objects

apply method, 189–190
apply methods, 110

defining, 185

providing multiple constructors with,
186

creating, 185
creating static members with, 180–182
defined, 113
getInstance method in, 112

compare method, 317
compiling

faster command-line compiling with fsc, 479
Scala projects in SBT, 574

continuous compiling, 577
using scalac, 465

complex numbers, working with, 32
concat method, 303

List class, 330
concrete fields, using in traits, 206
concurrency

simple concurrency with futures, 436–445
using parallel collections, 448

conditional operator in Java (? :), 71
cons method (::) for creating a List, 323
Conscript, 506, 573
Console, 375

fields to use with print methods to control
display, 488

read* methods, 485
listing in Scala REPL, 485

readf methods, 486
constant patterns, 83
constraints, type constraints, 613
constructor patterns, 83
constructors

actor’s constructor, 424
taking arguments, 418

calling superclass constructor, 127
controlling visibility of constructor fields,

104–108
creating primary constructor, 100–104

comparison with Java, 102
mutator methods for var fields, 103

defining auxiliary constructors, 108–111
handling parameters when extending a class,

124–127
private primary constructor, 112
providing default values for parameters, 114
providing multiple constructors for case

classes, 187–189
Scala class, use of @BeanProperty annota‐

tion, 562

Index | 673

container:start command (SBT), 572
contains method

testing for existence of a key in a map, 353
testing if set contains an element, 362
using with valuesIterator on a map, 354

context object, 425
actorOf method, 425
actorSelection method, 436
stop method, 427
watch method, 433, 434

continue, implementing in Scala, 65
continue example, better ways to solve prob‐

lem, 68
example code, 67
general syntax for, 68

control structures, 53–97
accessing value of default case in match ex‐

pression, 78
adding if expressions (guards) to case state‐

ments, 87
assigning match expression result to vari‐

able, 77
creating your own, 95
declaring variable before using in try/catch/

finally block, 92–95
for and foreach, looping with, 54–60
for comprehension, 63–65
implementing break and continue, 65–71
matching multiple conditions with one case

statement, 76
matching one or more exceptions with try/

catch, 91
using case classes in match expressions, 86
using if expression like ternary operator, 71
using match expression instead of isInstan‐

ceOf, 88
using match expression like switch state‐

ment, 72–76
using pattern matching in match expres‐

sions, 79–86
working with a List in a match expression,

89
copy method, case classes, 137
CopyBytes class, 382
count method, using with anonymous function

instead of continue construct, 68
counters

in for loops, 55, 273
multiple counters, 60–62

using zipWithIndex or zip to create loop
counters for sequential collections, 276

covariant immutable collections, 622
:cp command (REPL), 462
CreateChild case class, 427
CSV files, processing, 384
CSV strings, 318
curl command, 513, 525
currency, formatting

commas, 50
decimals, 50

D
data types (see types)
database views, 308
databases, 527–548

accessing MongoDB document ID field, 544
connecting to database with Spring Frame‐

work, 530
connecting to MongoDB and inserting data,

533–537
connecting to MySQL with JDBC, 528
deleting documents from MongoDB collec‐

tion, 545
inserting documents into MongoDB with in‐

sert, save, or +=, 537
searching a MongoDB collection, 539–542
Slick library, 547
updating documents in MongoDB collec‐

tion, 542
dates, processing, 32
decimals, in numbers or currency, 50
decompiling code, using decompiler, 468
default global execution context, 437
DelayedInit trait, 178
dependencies

adding to SBT project, 579
controlling version of managed dependency

to use, 584
managing with SBT, 581–584
using Scala project on GitHub as SBT

project dependency, 593
deprecation warnings, 457
dequeue method, 368
dequeueAll method, 368
dequeueFirst method, 368
deserializing JSON string into an object, 500

674 | Index

diff method, 303
using to get relative complement of two sets,

303
directories

creating project directory structure for SBT,
570–574

listing files in, 391
listing subdirectories of, 392
running a process in a different directory,

406
disassembling Scala code, 466, 469
distinct method

calling on collections, 300
using with your own classes, 300

documentation
generating project API documentation with

SBT, 590
generating with Scaladoc, 472–479

domain-specific library (DSL) (see Lift-JSON
DSL)

Double type, 31
drop method, 291
dropRight method, 292
dropWhile method, 291
DSL (domain-specific library) (see Lift-JSON

DSL)
Duck Typing (structural types), 618
durations, 437

E
Eclipse

using SBT with, 588
.classpath file, 589
.project file, 589

Either, Left, and Right classes, 664
enqueue method, 367
Enumeration class, 311
enumerations

creating and using, 311
static imports of, 198

environment variables, setting when running
external commands, 407

EOP (expression-oriented programming), 647–
650
expressions versus statements, 648
languages, 78
model, 217

equality, 4
(see also == operator, under Symbols)

testing for String instances, 4
equals method

case classes, 137
defining for a class, 140–143
using with distinct, 300

equalsIgnoreCase method, String class, 5
equivalence relation, 142
Exception object, 662
exceptions

access to information, other possibilities for,
35

adding exception annotations to Scala meth‐
ods, 554

declaring that a method can throw, 165
in Java, 166
matching one or more with try/catch, 91
opening and reading files, 379
Scala methods throwing, 34

execution context, 437
ExecutionContext, futures and, 443
ExecutionContext.Implicits.global, 437
exists method, using with valuesIterator on

map, 354
expression-oriented programming (EOP), 647–

650
expressions versus statements, 648
languages, 78
model, 217

extends keyword, 126, 127, 204
specifying superclass constructor to call, 127
using to implement Java interfaces, 203

extends with keywords, 203, 204
using to implement Java interfaces, 216

external commands
building a pipeline of commands, 401
executing and using STDOUT, 397–399
executing from Scala application, 394
handling STDOUT and STDERR for, 399
handling wildcard characters in, 405
methods to execute, 408
redirecting STDOUT and STDIN of, 402
setting environment variables when running,

407
versus shell built-in commands, 396

F
f string interpolator, 11

formatting numbers, 49
factorial function, recursive, 70

Index | 675

factory method, 110
implementing in Scala with apply, 189–190

Failure class, 633, 662
failure, handling by actors, 413
fallbackTo combinator method, 444
feature warnings, 458
fields

abstract, in abstract base class or trait, 131,
132

constructor, 104
adding private to val or var, 106
case classes, 107
effect of settings, 107
val fields, 106
var fields, 105
without val or var designation, 106

defining with private or private[this] access
modifiers, 119

initializing class field using block of code or
calling function, 121

object-private, 120
setting uninitialized var field types in a class,

122
static, creating on a class, 180
using abstract and concrete fields in traits,

206
File class (Java), 403

listFiles method, 391
FileFilter object (Java), accept method, 391
FileInputStream class, 382
FileOutputStream class, 382
files, 375–394

listing in a directory, 391
logging external command output to, 402
opening and reading text file, 375–381
pretending that a String is a File, 387
processing CSV files, 384
processing every character in a text file, 383
writing text files, 381

FileWriter class, 381
filter expressions, 62

(see also guards)
filter method, xvi

calling on String to create new String, 14
comparison to other collection filtering

methods, 290
filtering a collection, 289
filtering queries in Slick, 548
keys to using, 291

on collections, combined with anonymous
function, 246

trimming list to contain only directories, 392
using on immutable Set, 365
using on strings, 2
using with maps, 355, 356

filtering collections
main methods for, 290
maps, 354–356

mutable and immutable maps, 355
mutable maps, 355

methods for, 255
methods returning contiguous sequence of

elements, 291
using filter methods on immutable Set, 365
using filter methods to remove elements

from collections, 337
using filter methods with Array, 337

filtering files, 391
filterKeys method, 355

using a predicate, 355
filters, 62

(see also guards)
find command (Unix), 398
findAllIn method, 18
findFirstIn method, 18

handling Option returned by, 19
flatMap method, 286–289
flatten method, 256

combining with map in flatMap, 286–289
flattening list of lists, 285
flattening list of strings into list of charac‐

ters, 286
using on sequence of Some and None ele‐

ments, 286
using with mkString, 319
using with other sequences, 285

Float type, 31
floating-point numbers, comparing, 41–43
fluent programming style, 4, 167–170
foldLeft method, 295, 298
foldRight method, 295, 298
for comprehension, 54, 56, 274, 281

(see also for/yield loops)
creating, 63–65

for loops, 54–60
<- symbol in, 275
alternatives to break and continue, 69
Boolean test to break out of, 69

676 | Index

counters in, 55
generators and guards, 56
iterating over keys and values in a Map, 56
looping over collections, 272–275

for/yield construct, 274
Maps, 275

ranges in, 47, 372
returning values from, 55
Scala versus Java versions, 53
translation by compiler, 57–60

for yield/construct, 59
with guard condition, 59

treating String as sequence of bytes, 2
treating String as sequence of characters, 2
using with multiple counters, 60–62
using with strings, 14
using zipWithIndex as loop counter, 276
with embedded if statements (guards), 62,

275
yield statement with, 63

(see also for comprehension; for/yield
loops)

for/yield loops, 14
building new collection from input collec‐

tion, 274, 279–282
using guards, 281

getting list of directory names, 393
joining three futures together, 441
returning values, 55
reversing keys and values of a map, 353
using to modify random-length range of

numbers, 46
foreach method, 176

adding after getBytes called on String, 17
collections, 256
for loops’ translation by compiler, 57, 58
iterating over collections, 57, 270

functions or methods called from fore‐
ach, 271

JavaConversions object, 550
operating on each element without returning

result, 14
printing fields of an Address, 123
Traversable trait, 248
using match expression with to iterate over

map elements, 351
using Option in, 20
using to iterate over iterator’s elements, 278
using with zipWithIndex, 276, 277

format method
calling on strings, 12
formatting numbers, 50

Format object (Play Framework), 522
reads method, 524

forms, verification in Play Framework, using
match expressions, 653

free variables, 230
fromURL method, Source object, 514
fsc command, 479
function literals, 218–219

declaring, 220
function value, 235
functional programming (FP), 217–244

case classes, 108
creating a function that returns a function,

236–238
creating partial functions, 238
defining method that accepts more complex

function as parameter, 226–229
defining method that accepts simple func‐

tion as parameter, 223–225
functional versus imperative style, 393
having no side effects, 162
real-world example of use, 242–244
using closures, 229–234
using function literals (anonymous func‐

tions), 218
using functions as variables, 219–223
using partially applied functions, 234
using recursive algorithms, 70
writing pure functions, 636–644

FunctionN traits, 222
functions

assigning class field to results of, 121
assigning existing function or method to a

function variable, 222
defining as method parameter, 223–225

general syntax, 224
more complex functions, 226–229

match expressions as body of, 652
methods versus, 16
partially applied, 222, 234
returning a function, 236–238
using as variables, 219–223
without side effects (see pure functions)

future method, 440
futures, 436–445

and ExecutionContext, 443

Index | 677

callback methods, 438, 443
onSuccess and onFailure, 439

creating a method to return a Future[T], 440
creating and blocking to wait for its result,

436
creation of Future object, 437
joining together with for comprehensions or

combinators, 444
using as wrapper around Source.fromURL

method call, 517

G
generators, 56

writing for loops with, 61
generic types

creating classes that use, 614–617
generic type parameter symbols, 616

creating method that takes, 617
GenSeqLike, distinct method, 300
get method

finding map values, 350
not using with Option, 665

GET requests
accessing Scalatra web service GET parame‐

ters, 509
creating GET request web service with Play

Framework, 521–524
creating simple client for, 514

getBytes method, calling on String and passing
block of code to foreach method, 16

getClass method, 175
getCurrencyInstance method, NumberFormat,

50
getInstance method, 112
getIntegerInstance method, NumberFormat, 50
getLinesUppercased method, 388
getOrElse method

calling on Option value, 20
using to find map value, 350

getter and setter methods, 100
Giter8, 503, 506

requirements for, 573
using to create SBT project directory struc‐

ture, 571
notes, 572

GitHub
Giter8 templates, 571
Scala project on, using as SBT project de‐

pendency, 593

Google, Gson library, 492
gracefulStop method, 428

stopping an actor with (example), 430
groupBy method, 293
grouping methods, 255
Gson library, 492, 494

constructing JSON string, 518
creating JSON string from Scala object, 493
generating JSON strings from classes con‐

taining collections, 498
guards, 56

adding to case statements, 87
attempting to use with map method, 284
for loop with, translation by compiler, 59
in for/yield loops, 280, 281
using for loop with, 62, 275

H
hashCode method

case classes, 137
defining, 140
if expression in, 71
using with distinct, 300

hex values, storing as Int or Long, 38
HTMLCleaner library

adding library dependency to SBT build.sbt
file, 581

using Maven repository with SBT, 605
HTTP requests, setting URL headers for, 520
HTTP response headers, accessing after making

a request, 519
HttpClient library (see Apache HttpClient li‐

brary)
HttpPost object, 513
HttpTea, 521
hyperlinks, Scaladoc hyperlink tags, 478

I
-i argument, using to load code into Scala REPL,

461
if expressions

adding to case statements, 87
attempting to use as guard with map meth‐

od, 284
guards in for loops, 62, 275
guards in for/yield loops, 280, 281
using in for loops, 56
using like ternary operator, 71

678 | Index

if/then/else statements, match expressions as re‐
placement for, 651

immutable collections
common operators (methods) on, 259
maps

common methods for, 259
mutable variables with, 265
Vector class, go to immutable sequence, 266

immutable objects
case classes as immutable records, 138
preferring, 644–647

using val + mutable and var + immuta‐
ble, 645

imperative programming, 15, 393
implicit classes

defining, 25
defining methods on, 27

annotating method return type, 28
returning other types, 29

putting in package objects, 26
putting into objects, 25

implicit conversions, 2
using to add methods to closed String class,

3
using to add methods to String class, 25–29

implied loops, 246
import statements, using anywhere in Scala,

194, 199
imports

hiding a class during import process, 196
one or more members into current program

scope, 193
renaming members on import, 195
static, 197

incrementing and decrementing numbers
replacements for ++ and --, 39–41

indexed sequences, 327
ArrayBuffer class, 268

IndexedSeq, 248, 252
creating instance of, returning a Vector, 268

infix notation, 48
informational methods (collections), 256
inheritance

classes using a trait by inheritance, limiting,
209

init method, 293
inner classes, creating, 143
Inner.breakable, 69

input, prompting users for, from Scala shell
script, 485–489

InputStream class (Java), 515
insert method, Casbah MongoCollection class,

537
Insert object, 535
Int type, 31
Integer class (Java), parseInt method, 33
interfaces

extending Java interface like a trait, 216
traits versus, 203
using traits as, 203

interpreter
-savecompiled argument for Scala interpret‐

er, 489
starting Scala interpreter in REPL, 463

intersect method, 302
intersection of two sets, subtracting, 304
invariant, declaring a type as, 620
IOException (Java), 515
isDefinedAt method, 241
isInstanceOf method, using match expression

instead of, 88
isValid methods, 37
Iterable trait, 247
iterators

converting to collections, 279
creating for tuples, 314
keysIterator and valuesIterator methods on

maps, 352
using in Scala application, 278
working with text files, 377

J
JAD (decompiler), 468
JAR files

adding to REPL classpath, 461
creating with Ant, 608
deploying single, executable file from SBT,

597–601
generated for Scala scripts, 490
SBT projects packaged as, specifying main

method to run, 591
Java

arrays, 334
BigInteger and BigDecimal classes, 44
checked exceptions, 166
.class, 174
class declaration, comparison with Scala, 102

Index | 679

closure-like techniques, 233
conditional (or ternary) operator (? :), 71
control structures, 53
converting numeric types using casting, 36
declaration of classes, class constructors, and

field visibility control, 99
deep copy technique using serialization, 389
FileInputStream and FileOutputStream

classes, 382
files, opening and reading, 380
files, writing with PrintWriter or FileWriter,

381
HTMLCleaner library, 581, 605
importing code into current scope, 194
inner classes, 144
interacting with, 549–568

adding exception annotations to Scala
methods, 554

annotating varargs methods, 560
Java code requiring JavaBeans, 562–565
using @SerilVersionUID and other anno‐

tations, 556
using Spring Framework in Scala appli‐

cation, 557–560
wrapping traits with implementations,

565–568
interfaces, 203

extending like a trait, 216
iterators, 278
Joda Time project, 32
List classes, 321, 323
method returning multiple values, 159
methods, 147
OOP approach to writing classes and meth‐

ods, 639
processes running on system, listing, 401
static methods, 181
switch statement, 651

match expressions versus, 54
traits with implemented methods, inability

to call, 129
Java Decompiler Project, 469
Java interpreter, running JAR file created by

SBT, 599
java.lang.OutOfMemoryError errors, 332
java.text.NumberFormat class, 50
java.util.ArrayList class, 550
java.util.NoSuchElementException, 350
java.util.TreeSet, 366

JavaBeans
getters and setters, 117
Java code requiring, interacting with, 562–

565
JavaConversions object, 550–553

asScalaBuffer method, 551
mapAsScalaMap method, 552
Scala to Java one-way conversions, 553
two-way conversions provided by, 552

JavaConverters object, 554
JavaNet1Repository, 596
javap command

disassembling case class files, 126, 126, 187,
470

disassembling class files, 73, 117, 119, 467,
469, 564, 567

JDBC, 527
connecting to MySQL with, 528

JLineCompletion class, 455
Joda Time project, 32
js.implicit.ly, 472
JSON, 491

conversions of JSON strings to and from ob‐
jects, 522

creating JSON string from classes having
collections, 495–500

creating JSON string from Scala object, 491
Gson library solution, 493
Lift-JSON library solution, 492

creating simple Scala object from JSON
string, 500

data sent as POST request, handling in Sca‐
latra web service, 510–514

parsing JSON data into array of objects, 501
POSTing JSON data to Play Framework web

service, 524
representations of model objects, 521
sending JSON data to POST URL, 518

Json.toJson method, 522
Json4s library, 513
JValue object, 501
JVM

switches, information on, 74
type erasure in, 81

K
key/value pairs, merging two sequential collec‐

tions into, using zip, 304
keys method, 351, 352

680 | Index

keySet method, 352
keysIterator method, 352

using with max method, 361
using with reduceLeft method, 361

Kill message, sending to an actor, 431

L
labeled breaks, 68
lazy collections, 250, 254
lazy fields, 122
libraries

finding Scala libraries, 471
JSON, 492
publishing your Scala library with SBT, 601

library APIs, sequence traits commonly used in,
252

libraryDependencies setting in SBT, 579
adding dependencies singly or in multiples,

581
adding Java HTMLCleaner library, 581
managed dependencies, forms of, 582
Maven repository library used with SBT, 605
specifying version of managed dependency,

584
Lift Framework, 491, 493
Lift-JSON DSL, 494, 495–498
Lift-JSON library, 492

adding dependency to SBT project, 512
converting JSON string into Scala object,

500
generating JSON strings from Scala Map,

493
limit method, using to limit query results re‐

turned, 542
line separators, 376
linear sequences, 327

ListBuffer class, 268
LinearSeq, 248, 252
lines method, 396
lines_! method, 396, 399
LinkedHashMap class, 343

sorting, 358
storing sorted map data in, 359

LinkedHashSet class, 366
ListBuffer class, 268, 270, 327

creating and converting to a List, 324
deleting elements from, 328
Scaladoc description of, 325

listFiles method, File class (Java), 391, 392

ListMap class, 343
sorting by key or value, 357
storing sorted map data in, 358

lists
adding elements to existing List, 325
converting Range object to List, 48
creating a mutable list, 324
creating and populating a List, 322
deleting elements from a List or ListBuffer,

328
differences between Scala List and Java List,

552
exploring to* methods of List in REPL, 455
flattening list of lists with flatten method,

285
for loops iterating over, translation by com‐

piler, 59
LinearSeq and, 248
merging or concatenating, 330
passing anonymous function to List’s filter

method to create new List, 218
performance of a List, 261, 262
prepending elements of one list to another,

303
Scala List class, 321, 323
Scaladoc description of List class, 330
Stream class, similarity to List, 331
working with a List in a match expression,

89
:load command (REPL), 460
Loan Pattern, 377
locale, setting with getIntegerInstance method,

50
logging

setting SBT log level, 597
Long type, 31
looking up actors, 435
lookupswitch, compiling match expression to,

73, 74
loops, 2

(see also for loops; for/yield loops; foreach
method)

implied, 246
using in methods to handle varargs fields,

164

M
main method, 176

manually implementing in an object, 177

Index | 681

overriding, 178
specifying which to run in SBT, 591
using in a Scala script, 481

mainClass settings, build.sbt file, 593
MAMP, 529
managed dependencies, 582
Map class, 249

foreach method, 272
map method, xv, xvi

calling getName on files, 393
combinator, 444
combining map and flatten with flatMap,

286–289
creating uppercase string from input string,

13
for loops and, 57
for/yield construct (for comprehension) and,

64
for/yield constructs translated to, 60
transforming one collection to another with,

282–284
understanding how map works, 15
using to call trim method on strings, 8
using with a Range, 311, 372
views on collections and, 308
writing for loop to work like, 14

maps, 322
accessing values, 349
adding, updating, and removing elements in

immutable map, 347
adding, updating, or removing elements in

mutable map, 345
choosing a map class, 343

map classes and traits, 344
common map choices, mutable and immuta‐

ble, 253
common map classes, 249
common methods for, 259
creating, 341

immutable map, 341
mutable map, 341

defined, 250
filtering, 354–356
finding largest key or value in, 360
generating JSON string from Scala Map, 493
getting keys and values from, 352
iterating over elements, 350
iterating over with for loop, 275
looping over a Map using for loop, 56

performance characteristics, 263
reversing keys and values, 352
sorting existing map by key or value, 357–

360
_* operator, 359

testing for existence of a key or value in, 353
mapValues method, 351
match expressions, 650–654

accessing value of default case in, 78
assigning result to a variable, 77
in actors, 653
replacement for Java switch statements and

if/then statements, 651
resemblance to Java switch statement, 54
use in catch block of try/catch, 91
using as body of function or method, 652
using case classes in, 86
using in try/catch expressions, 651
using instead of isInstanceOf, 88
using like switch statement, 72–76

@switch annotation, 73
handling default match, 75

using Option in, 20
using pattern matching, 79–86

adding variables to patterns, 84–85
constant patterns, 79–83
constructor patterns, 79–83
sequence patterns, 79–83
Some and None, 85
typed patterns, 79–83

using when searching MongoDB database,
541

using with foreach method to loop over map
elements, 351

using with Option/Some/None pattern, 653
working with a List, 89

MatchError, 79
math, more powerful math classes, 32
mathematical methods (collections), 256
Maven, 466, 569

Maven2 repository, 596
using repository library with SBT, 604

max method, using on map, 360
MaxValue, checking for numeric types, 44
memory allocation, views and, 309
messages (sent between actors), 419–422
method chaining, 167–170
methods, 147–170

abstract, defining, 130

682 | Index

adding exception annotations to work with
Java, 554

assigning class field to results of, 121
assigning existing method to a function vari‐

able, 222
avoiding returning nulll from, 656
calling on a superclass or trait, 152–154

selecting the trait, 153
chaining, 4
collection (see collections)
controlling scope, 148–152

object-private scope, 148
package scope, 150
package-level control, additional, 150
private scope, 149
protected scope, 149
public scope, 151

declaring can throw exceptions, 165
declaring in traits, 203
defined in object, not a class, 179
defining method that takes function as pa‐

rameter, 223–225
more complex functions, 226–229

differences between Java and Scala, 147
forcing callers to leave parentheses off acces‐

sor methods, 161
functions versus, 16
implemented methods of Scala traits, Java

and, 565
match expressions as body of, 652
passing a class to, 174
requiring implementation by class attempt‐

ing to mix in a trait, 213
returning multiple items (tuples), 159–161
returning Option from, 659
setting default values for parameters, 154–

157
static, creating on a class, 180
symbols implemented as, in Scala, 41
taking simple generic type, 617
taking variable-argument fields, 163–165
throwing exceptions in Scala, 34
traits providing method implementations,

205
upper bound definition on type parameter,

626
using like anonymous functions, 221
using parameter names when calling, 157
vararg, annotating, 560

without side effects (see pure functions)
mixins, using traits as, 208
mkString method, 256

converting collection to a String, 318
mongo command-line client, 536
MongoCollection class, 536, 537

find and findOne methods, 539
find* methods, 542
findAndModify or update methods, 543
findAndRemove method, 545

MongoCursor, 541
MongoDB, 491

accessing document ID field, 544
connecting to and inserting data, 533–537
deleting documents from collection, 545
inserting documents with insert, save, or +=,

537
searching a collection, 539–542
updating documents in a collection, 542

MongoDBObject, 535
getting document ID from, 544

mounting servlets, 508
multidimensional arrays, creating, 338
multiline strings, creating, 6
mutable collections

common methods on, 258
maps, common methods for, 259
sequences, making ArrayBuffer go to se‐

quence, 268
MySQL, connecting to, using JDBC, 528

N
named parameters, 114

using for constructors, 115
using when calling methods, 156, 157

namespace collisions or confusion, avoiding,
195

NegativeInfinity, 45
nested break statements, 68
new keyword

creating object instances without using, 110,
185–189

newline characters, 376
replacing with blank spaces in multiline

string creation, 7
unexpected, in external command output,

398
Newman DSL, 517
Newton’s Method, implementation of, 243–244

Index | 683

Nil element
ending a list, 323
last element in List, 89

Nil$, 164
None and Some, using with match expressions,

85
NoSuchElementException, 350
nscala-time project, 32
Null Object Pattern, 657
null values

eliminating from your code, 654–658
converting null to Option or something

else, 657
initializing var fields with Option, not

null, 654
not returning null from methods, 656

initializing fields with Option/Some/None
pattern instead of, 135

string comparisons and, 6
NullPointerException (string equality compari‐

sons), 5
Number type, specifying for collections, 264
NumberFormat class (Java)

getCurrencyInstance method, 50
getInstance method, 50
getIntegerInstance method, 50

NumberFormatException, 33
numbers

caution with methods reading numeric val‐
ues, 486

comparing floating-point numbers, 41–43
complex numbers and dates, 32
converting Strings to Scala numeric types,

32–36
creating range, list, or array of, 47
formatting numbers or currency, 49
generating random numbers, 45–47
handling very large numbers, 43–45
incrementing and decrementing, replace‐

ments for ++ and --, 39–41
Scala’s built-in numeric types, 31

Numeric trait, 628
numeric types, 31

casting with asInstanceOf method, 173
converting between, 36–37
data ranges of Scala’s built-in types, 31
overriding default type, 37–39

numeric var fields, setting type on, 124

O
object instances

comparing equality of, 140–143
creating, 39

object keyword, 171
creating Singletons with, 178

object-private fields, 120
object-private scope, 148
object-relational mapping (ORM) tools, 527
objects, 171–190

adding traits to object instance, 215
array of, parsing JSON data into, 501
casting, 172
companion object, 113
creating JSON string from Scala object, 491
creating object instances without using new

keyword, 185–189
creating Scala object from JSON string, 500
creating static members with companion ob‐

jects, 180–182
determining class of, 174
generating JSON string from Scala classes

containing collections, 495–500
launching an application with, 176
providing named constructor parameters

for, 115
putting common code in package objects,

182–185
onComplete method, futures, 438, 443
onFailure method, futures, 439, 443
onSuccess method, futures, 439, 443
open files, 377
operators, methods versus, in Scala, 41
Option

converting a null into, 657
declaring fields not initially populated, 94
declaring object as before using in try/catch/

finally block, 93
defining uninitialized var fields as, 123
get and isDefined methods, 383
initializing var fields with, not null, 654
returned by findFirstIn method, handling,

19
Option/Some/None pattern, 658–666

eliminating null values from code, 39
getting value from an Option, 659
not using get methods with Option, 665
returning file contents with fromFile and us‐

ing methods, 379

684 | Index

returning Option from a method, 659
throwing exceptions in string conversion to

integer, 35
using match expressions with, 653
using Option with other frameworks, 661
using Option with Scala collections, 660
using to initialize val and var fields, 135

Oracle Byte Streams tutorial, 382
Ordered trait, 315

mixing in with type to be sorted, 317
mixing with Array, 338

Ordering trait, 315
Array holding elements with implicit Order‐

ing, sorting, 338
sorted method and, 316

orElse method, PartialFunction trait, 240
ORM (object-relational mapping) tools, 527
Outer.breakable, 69
OutOfMemoryError errors (Java), 332
output, console, writing, 488
overriding var and val fields, 206

P
package objects

process package object, 400
putting common code in, 182–185
putting implicit class in, 26
root package object, 184

package scope, 150
package-level control for methods, 150
package.scala file, 182
packages

creating, 193
import statements, 200
importing everything from a package, 194
unable to use in REPL, 460

packaging, 191–193
Scala project, using SBT, 574

par method, 256, 449
parallel collections, 448

converting regular collections to, 449
parallel collection classes, 450
performance, 451
situations for use, 450

ParseException, 486
parseInt method, Integer class, 33
partial functions, 238

chaining, 240
example of use with collections, 242

PartialFunction trait, explained, 239
partially applied functions, 222

using, 234
partition method, 293
ParVector class, 449
:paste command (REPL), 459
PATH environment variable, 407
pattern matching, 651

(see also match expressions)
using in match expressions, 79–86

patterns, 82
adding variables to, 84–85
using to match case classes and objects, 86

performance
collections, 252, 261–264

ArrayBuffer methods, 270
maps and sets, 263
performance characteristic keys, 261
sequential collections, 262

parallel collections, 451
views on collections and, 308

piping commands together, 401
and writing output to a file, 402
methods for external commands, 409

Play Framework, 491
Anorm database library, using Option, 661
creating GET request web service, 521–524
web service, POSTing JSON data to, 524

play.api.libs.json.Format object, 522
PoisonPill message, 427

sending, 428
stopping an actor by sending (example), 429

pop method (Stack), 370
PositiveInfinity, 45
POST requests

accessing request data with Scalatra, 510–
514

Play Framework web service allowing users
to send JSON data, 524

sending JSON data to POST URL, 518
PostgreSQL, connecting to with JDBC, 530
postRestart method, Actor object, 422, 424, 435
postStop method, Actor object, 422, 424
precision, floating-point number comparisons,

41
Predef object, 192

classOf method, 174
immutable Maps, 341

predicate, defined, 246

Index | 685

preRestart method, Actor object, 422, 424
preStart method, Actor object, 419, 422, 424
print method, 485
print options, scalac, 467
printAll method, annotated with @varargs, 561
printf method, 485
printf style format specifiers

common, 12
using inside strings, 11

println method, if expression embedded in, 71
PrintWriter class, 381
private access modifier, 101

accessing private members, class and com‐
panion object, 181

adding to val or var field, 106
defining object-private fields, 120
making primary constructor private, 112
object-private scope, 148
preventing generation of getter and setter

methods, 119
private scope, 149
private var constructor parameter, 117

Process object, 395
executing external commands, 397
setting environment variables when calling

apply method, 407
process package, 394
ProcessBuilder trait, 403
processed string literals, 10
processes

building pipeline of external commands, 401
executing external commands, 394
executing external commands and using

STDOUT, 397–399
handling STDOUT and STDERR for exter‐

nal commands, 399
handling wildcard characters in external

commands, 405
methods to execute external commands, 408
redirecting STDIN and STDOUT of external

commands, 402
running in a different directory, 406
using AND (&&) and OR (||) commands

with, 404
using Process and ProcessBuilder com‐

mands in REPL, 463
ProcessIO class, 400
ProcessLogger class, 399

project directory structure, creating for SBT,
570–574

Project Lambda (Java 8), 233
project/Build.scala file, 593

RootProject, 593
using instead of build.sbt, 602–604

Props class, 418, 425
protected scope, 149
public scope, 151
pure functions, 636–644

and side effects, 162
defined, 637
examples of, 638
Java approach, problems with, 639

fixing the problems, 640
methods with no side effects, 644
referential transparency, 637
write 80% of your application as pure func‐

tions advice, 639
push method (Stack), 369
put method, adding or replacing element on

mutable Map, 346

Q
queues, 367

adding elements to mutable Queue, 367
creating a mutable Queue, 367
removing elements from, 368

quickSort method, sorting an Array, 338

R
r method, converting String to a Regex, 18, 542
Random class, 45
random numbers, generating, 45–47
random-length ranges, 48
range method, 310, 372
ranges, 371–372

as generators in for loops, 61
combining with map method, 372
converting Range to Array or List, 48
creating and populating sequences, 371
creating range of numbers, 47

random-length ranges, 48
creating Range with and without a view, 306
populating a collection with a Range, 309

collections created directly from Range,
310

using range method, 310

686 | Index

random-length, 46
using as for loop generator, 56, 372
using in for loops, 274

raw interpolator, 11
read* methods (Console.read*), 485
Read-Eval-Print-Loop (see REPL)
readLine method, 485, 488
receive method, Actor object, 414, 416, 422
recover combinator method, 444
recoverWith combinator method, 444
recursive algorithms, 70
reduce method, 298, 299
reduceLeft method, 295

reduceRight versus, 298
showing each step in process, 296
using with keysIterator on maps, 361
using with valuesIterator, 361

reduceLeftOption method, 299
reduceRight method, 295

reduceLeft versus, 298
reduceRightOption method, 299
referential transparency, 636
reflection

accessing methods of String class, 174
Gson library working via, 498

Regex object
converting String to, 542
creating, 19
creating by invoking .r method on a String,

18
regular expressions

extracting parts of String that match pat‐
terns, 22

finding patterns in strings, 18
replacing patterns in strings, 21
using pattern matching in match expres‐

sions, 79–86
using with split method, String objects, 8
writing to match expected user input, 487

relative complement of two sets, 303
remove method

deleting elements from ArrayBuffer, 336
deleting elements from ListBuffer, 329
removing items from MongoDB collection,

546
using with mutable Set, 364

renaming clause, importing members, 195
REPL (Read-Eval-Print-Loop), xxi, 1, 453

adding JAR files and classes to classpath, 461

command-line options, 457
Console.read* methods, 485
customizing with startup file, 464
deprecation and feature warnings, 457
getting started with, 454
pasting and loading blocks of code into,

459–461
:load command, 460
:paste command, 459
greedy nature of REPL, 460

running shell command from, 462–464
tab completion, 455

replaceAll method, String, 7
replaceAllIn method, String, 21
replaceFirst method, String, 21
replaceFirstIn method, using with a Regex, 21
repositories, 584

telling SBT how to find, 595, 601
using Maven repository library with SBT,

604
request.body method, Scalatra, 511
resolvers key in build.sbt file, 595, 601
response.addHeader method, Scalatra, 512
RESTful URL, 514
RESTful web services, 521
retain method

filtering elements in mutable maps, 355
using with mutable Map, 346
using with mutable Set, 364

return type
annotating for implicit methods, 28
declaring for function literals, 220

rich versions of numeric classes, extending Or‐
dered trait, 315

RichDouble class, 37
RichInt class, to and until methods, 48
root package object, 184
running Scala project in SBT, 575

S
s string interpolator, 9, 10
save method

Casbah MongoCollection class, 537
SBT (Simple Build Tool), 454, 569–609

compiling, running, and packaging a Scala
project, 574–579
common SBT commands, 576
continuous compiling, 577

Index | 687

using last to get info on last command,
578

connecting to database with Spring Frame‐
work project, 531

connecting to MySQL with JDBC, 529
controlling version of managed dependency

to use, 584
creating project directory structure, 570–574

using Giter8, 571
using shell script, 570

creating project with subprojects, 586–588
deploying single, executable JAR file, 597–

601
generating project API documentation, 590
generating Scaladoc documentation with,

478
generating Scaladoc documentation with sbt

doc command, 474
including libraries into a project, 471
managing dependencies with, 581–584
publishing your library, 601
resolving problems by getting stack trace,

596
running tests with ScalaTest, 579–581
setting log level, 597
specifying main class to run, 591
telling SBT how to find repository, 595
using Build.scala file instead of build.sbt,

602–604
using GitHub projects as project dependen‐

cies, 593
using Maven repository library with, 604
using with Eclipse, 588

.classpath file, 589

.project file, 589
updates to SBT build definition files, 590

using with Giter8 to create Scalatra project,
504

sbt-assembly plug-in, 594
creating single, executable JAR file, 598

sbteclipse plug-in, 588
Scala

installing, xx
using as scripting language, 480–483
versions prior to 2.10

defining implicit classes, 27
Scala Ant Tasks page, 608
scala command, 457

-cp or -classpath argument, 461

-i option, 463
running programs with, 465

Scala Glossary, 212
Scala IDE for Eclipse project, 588
Scala language, xiii

characteristics of, xiv
Scala Language Specification

for loop translation by compiler, 57, 60
Scala package object, 184
Scala Style Guide, 636

accessor methods, 161
formatting control structures, 62

Scala Worksheet, 458, 636
scala.concurrent.duration._ import, 438
scala.io.Source, 375, 380

(see also Source object)
fromFile, 387
fromString, 387
fromURL, 514

setting timeout while using, 515
simple use of, 514

scala.math.Ordering, 315
scala.sys.process package, 394, 463

methods for executing external commands,
408

scala.util.control.Breaks, 65
scalac

-print command, 468
compiling with, 465
print options, using, 467

Scaladoc
generating documentation with, 472–479

example documentation, 474
hyperlink tags, 478
scaladoc command, 474
Scaladoc tags, 472, 476
using SBT, 478
wiki-like tags, 477

scaladoc command, 472, 474
ScalaLab, 32
ScalaTest, running tests with SBT, 579–581
Scalatra framework, 491

accessing POST request data, 510–514
accessing web service GET parameters, 509
creating web services with, 503–507
replacing XML servlet mappings with Scala‐

tra mounts, 507
SBT project preconfigured to use, creating

with Giter8, 571

688 | Index

ScalazBuild.scala file, 603
scanLeft and scanRight methods, 299
Scanner class (Java), 486
scripting language, using Scala as, 480–483
self type, 212
Seq trait, 252

executing external commands, 397
executing series of commands in a shell, 401
executing system commands, 395

sequence comprehension, 281
(see also for/yield loops)

sequence patterns, 83
sequences, 247

adapting to use as argument for varargs field,
163

adding elements to mutable sequences, 335
choosing, 250–252

main immutable sequence choices, 251
main mutable sequence choices, 251
Scala’s general-purpose sequential collec‐

tions, 251
defined, 250
extracting unique elements from, 300
foreach method called on, 271
hierarchy in Scala, 248
indexed and linear, 248
making ArrayBuffer your go to mutable se‐

quence, 268
merging sequential collections, 302
merging two sequential collections into pairs

with zip, 304
performance characteristics for sequential

collections, 262
populating with a Range, 309
sorting a sequential collection, 315
splitting into subsets, 293
using ranges to create and populate, 371
Vector class, making your go to immutable

sequence, 266
walking through elements in, 295–300

SeqView, 306
Serializable trait, 389, 556
serialization, 389
@SerialVersionUID annotation, 389, 556
servlet mappings (XML), replacing with Scalatra

mounts, 507
sets, 249, 322

adding elements to, 361
immutable Set, 363

mutable Set, 362
common set choices, mutable and immuta‐

ble, 253
converting sequential collections to in order

to eliminate duplicates, 300
creating a Set from a Range, 310
defined, 250
deleting elements, 363

immutable Set, 365
mutable Set, 363

performance characteristics, 263
relative complement of, getting with diff, 303
using sortable sets, 365

:sh command (REPL), 463
shell built-in commands versus external com‐

mands, 396
shell scripts, 480–483

accessing command-line arguments from,
483

first lines of, 480
making Scala scripts run faster, 489
prompting for input from Scala shell script,

485–489
using to create SBT project directory struc‐

ture, 570
shells

handling wildcard characters in external
commands, 405

piping capability and, 401
running shell command from REPL, 462–

464
Short type, 31
shutdown method, ActorSystem object, 433
side effects, 162

statements and expressions, 648
writing functions or methods without (pure

functions), 636–644
side-effecting operations, 451
Simple Build Tool (see SBT)
Singleton object, creating with object keyword,

178
Singleton pattern, enforcing in Scala, 112
slice method, 292
Slick library, 527, 547

documentation, 548
sliding method, 294
Some and None

using flatten method on sequence of, 286
using with match expressions, 85

Index | 689

sortBy method
sorting immutable map by key, 357
sorting immutable map by value, 357
using with Array, 338

sorted method
inability to use on sequence type without

implicit Ordering, 316
sorting a collection, 315
using on Person class after mixing in Or‐

dered trait, 317
using with Array, 338

SortedMap class, 343
SortedSet class, 365
Sorting.quickSort method, 338
sortWith method, 315

passing your sorting function into, 316
sorting immutable map by value, 357
sorting keys of immutable map, 357
using anonymous function to sort Person el‐

ements, 317
using with Array, 338

Source object, 375, 380
fromFile method, 376, 383, 387

using with using method, 379
variations of, 380

fromInputStream method, 515
fromString method, 387
fromURL method, 514

setting timeout while using, 515
simple use of, 514

getLines method, 376, 384
span method, 293
Sphinx-4 project, 172
Spire project, 32
split method

from Java String class and StringLike class, 9
String objects, 8

splitAt method, 293
Spring Framework, 527

connecting to database with, 530
using in Scala application, 557–560

Squeryl library, 527
Stack Overflow

finding Scala libraries through, 472
Rahul Phulore’s post on infix notation, 48

stack trace, getting for SBT, 596
“Stackable Trait Pattern” article, 209
stacks, 369

creating a mutable Stack, 369

emptying mutable Stack with clear, 370
immutable Stack, 371
inspecting, 370
peeking at next element of mutable Stack

with top, 370
pushing elements onto mutable Stack with

push, 369
taking elements off mutable Stack with pop,

370
statements versus expressions, 648
static imports, 197
static members, creating with companion ob‐

jects, 180–182
STDERR, 399
STDIN

methods for redirecting, 409
redirecting for external commands, 402

STDOUT
handling for external commands, 399
methods for redirecting, 409
redirecting for external commands, 402
using in Scala program, 397–399

stop method, actors, 427
stopping actor using ActorSystem stop

method, 429
Stream class, 331

caution with calls to non-transformer meth‐
ods, 332

lazy collection, 255
transformer methods called on, 331
zip method, 273

strict and lazy collections, 250, 254, 306
String class

java.lang.String
equalsIgnoreCase method, 5
split method, 9

java.lang.String and Scala String, 1
string interpolation, 9

creating your own interpolator, 12
f string interpolator, 11
functions for, 10
raw interpolator, 11

string literals, using expressions in, 10
StringEntity object, 513
StringLike class, 3

split method, 9
StringOps class, 2

capitalize method, 3

690 | Index

supertype and type hierarchy information
for, 3

viewing methods available from, in REPL,
456

strings, 1–29
accessing a character in, 24
adding methods to closed String class, 3
adding your own methods to String class,

25–29
building from collections with mkString, 256
case statement matching, 76
converting a String to Scala numeric type,

32–36
handling base and radix, 33

converting collection to a String with
mkString, 318

extracting parts that match regular expres‐
sion patterns, 22

finding regular expression patterns in, 18
complete example, 20

flattening list of strings into list of charac‐
ters, 286

foreach method called on, 2, 271
implicit conversions, 2, 33
iterating over characters, Scala versus Java

approach, 15
Java String as Scala String, 1
multiline, creating, 6
operations on, 2
pretending that a String is a File, 387
processing one character at a time, 13
replacing regular expression patterns in, 21
sorting list of strings by string length, 316
splitting, 8, 385
substituting variables into, 9
testing equality, 4
using methods available on sequential col‐

lections, 2
stripMargin method, 7
structural types, 214, 618
subclasses, constructor parameters in, 125
subprojects in SBT, 586–588
Success class, 633, 662
Suereth, Joshua, 378
sumToMax function, 69
superclasses

calling methods in, 152–154, 208
super[traitName].methodName syntax, 154
@switch annotation, 73

switch statements (Java), 54
match expressions as replacement for, 651
using match expressions like, 72–76

SynchronizedMap trait, 253
SynchronizedSet trait, 254

T
tab completion (REPL), 455
tableswitch, compiling match expression to, 73,

74
tabulate method, 372
tail method, 293
tail recursion, 70
@tailrec annotation, 70
take method, 292

using on immutable Set, 365
using with maps, 356

takeRight method, 292
takeWhile method, 292
ternary operator, using if construct as, 71
testing and debugging

running tests with SBT and ScalaTest, 579–
581

text files
opening and reading, 375–381
processing every character in, 383
writing, 381

this method, as constructor method call, 108
this reference, returning from fluent style meth‐

ods, 168
this.type as return type of fluent style methods,

167
thread pools, 437
Thread.sleep method, 377, 437
threads, 411
@throws annotation, 34, 92, 165, 554
timer, creating, 630
to method

Int class, 47
RichInt class, 48

to* methods on numeric types, converting be‐
tween numeric types, 36

toArray method, using with findAllIn method
call, 18

toList method
collection types converting their data to a

List, 323
converting array of directory names, 393

top method, 370

Index | 691

toString method
case class implementation of, 137
using on a collection, 319

traits, 203–216
abstract classes versus, 129
adding to object instance, 215
calling a method on, 152–154

selecting the trait, 153
defining properties in, 131
ensuring trait can only be added to type with

method of given signature, 213
extending another trait, 204
FunctionN, 222
inherited by Vector class, 247
limiting classes using a trait by inheritance,

209
marking for use only by subclasses of certain

type, 211
sequence, commonly used in library APIs,

252
using abstract and concrete fields in, 206
using as interface, 203
using as simple mixins, 208
using like abstract class, 207
wrapping with implementations to use from

Java, 565–568
transform method, Map

creating new map from existing map, 351
using with mutable map, 355

transformer methods, 254, 255
calling on Stream, 331
used with lazy collections, 306
views on collections and, 308

transformer, => symbol, 218, 220
Traversable trait, 247

looping over Traversable types with for loop,
272

methods common to all collections via, 256
TraversableOnce trait, 336
tree command, 570, 587
TreeSet class (Java), 366
trimming strings, 8
Try, Success, and Failure classes, 662

Scala 2.10 Try classes, 633
writing your own, 631

try/catch/finally
closing files and resources with try/finally,

377
declaring a variable before using in, 92–95

handling exceptions when opening files, 379
matching one or more exceptions with try/

catch, 91
reading and writing binary files, 382
using match expressions in try/catch, 651

tuple patterns, in match expressions, 80, 83
Tuple2 class, 313
Tuple3 class, 456
tuples, 254, 312–315, 457

converting to collections, 314
returned by zipWithIndex and zip when

used on sequences, 277
returning multiple objects from a method,

159
returning sequence of Tuple2 elements using

map method with a Range, 311
treating as collection by creating iterator, 314
using Tuple syntax to access key and values

fields in maps, 351
working with, 160

Twitter, Effective Scala document, 636
type ascription, 38
type class, 627–630
type erasure, 81
type patterns, 83
types, 611–634

assigning manually to an Array, 333
bounds, 612
building functionality with, 630–634

creating a timer, 630
writing your own Try classes, 631–634

creating a collection whose elements are all
of some base type, 624–627

creating a method that takes generic type,
617

creating classes that use generic types, 614–
617
type parameter symbols, 616

declaring a type when creating collections,
264

inferred by Scala for most expressions, 271
making immutable collections covariant, 622
selectively adding new behavior to closed

model, 627–630
type constraints, 613
type examples in other chapters, 613
type variance, 611

Typesafe
Akka actor library, 411

692 | Index

recommendation to think of actors as peo‐
ple, 412

sbteclipse plugin, 577
Slick library, 527, 547, 548
Typesafe repository in build.sbt file, 414,

471, 578
Zinc, incremental compiler based on SBT,

578
typing

making mutable collections invariant, 620
using Duck Typing (structural types), 618

U
unapply method, case classes, 137
Unfiltered, 491
UnhandledMessage, 416, 416
Uniform Access Principle, 642
Unit, 224, 225

functions or methods returning, calling from
foreach method, 271

return type for function returning nothing,
227

Unix command line, 396
Unix commands, equivalency of Scala com‐

mands to, 401
Unix systems

setting Java properties when starting Scala
interpreter, 457

using Scala as scripting language, 480–483
unmanaged dependencies, 582
until method

RichInt class, 48
using in creating ranges, 48

unzip method, 294, 305
updating elements, mutable maps, 346
upper bound, 624, 626
URL class (Java), 403, 515
URLs

getting URL headers, 519
MySQL JDBC, 529
sending JSON data to POST URL, 518

using method, 378
using with Source.fromFile and returning

file contents as List, 379
utility classes, 113

V
val + mutable and var + immutable, 645

val fields
abstract, in abstract classes (or traits), 131

how they work, 132
adding private keyword to, 106
case class constructor parameters, 107, 137
concrete, in abstract classes, 133
constructor fields defined as, 106
using in traits, 206

values method, Map
getting values from map as an Iterable, 352
iterating over values in maps, 351

valuesIterator method, Map, 352, 354
using with max method, 361
using with reduceLeft method, 361

var fields
abstract, in abstract classes (or traits), 131

how they work, 132
adding private keyword to, 106
case class constructor parameters, 137
concrete, in abstract classes, 133, 134
constructor parameters, 105
declaring subclass constructor without var

declarations, 126
initializing with Option, not null, 654
private var constructor parameter, 117
setting uninitialized var field types in a class,

122
using in traits, 206

@varargs annotation, 560
varargs fields, 163–165

adapting a sequence to use as argument with
_* operator, 163

annotating varargs methods, 560
defining in method declaration, 163
with or without arguments supplied, 164

variable patterns, in match expressions, 83
variable substitution into strings, 9
variable-binding patterns, 84–85
variables

assigning to result of match expression, 77
assigning type to, 38
declaring before using in try/catch/finally

block, 92–95
declaring immutable map as a var, 348
function value, 235
function variable, assigning existing function

or method to, 222
mutable and immutable, 266

Index | 693

mutable, with immutable collections, 265,
340

preferring immutable variables, 644
benefits to using immutable variables,

645
using functions as, 219–223

Vector class
creating a Vector and converting to parallel

collection, 449
making your go to immutable sequence, 266
traits inherited by, 247

view bound, 626
view method, 256

calling before zipWithIndex, 273, 277
views

creating lazy view on a collection, 306–309
use cases for views, 308

W
:warning command (REPL), 458
watch method, context object, 433, 434
web services, 491–526

accessing POST request data with Scalatra,
510–514

creating GET request web service with Play
Framework, 521–524

creating simple GET request client, 514
creating with Scalatra, 503–507
Play Framework, POSTing JSON data to, 524
Scalatra, accessing GET parameters, 509

web.xml file, 506
replacing XML servlet mappings with Scala‐

tra mounts, 507
while loops, 383
whitespace around commands and arguments,

395
wiki-style markup tags, 472, 477
wildcard characters in external commands, 404

handling, 405

withDefaultValue method, creating map with,
350

withFilter method
for loop with guard, translation by compiler,

59
for loop with yield expression and guard, 57

WriteResult and WriteConcern classes, Mon‐
goDB, 538

X
XML

getting classes for objects, 175
searching with \ and \\ methods, 503
web.xml file, 506

replacing servlet mappings with Scalatra
mounts, 507

-Xprint:all compiler option, scalac, 58, 60, 468
-Xprint:parse compiler option, scalac, 58, 60,

467

Y
yield statement, using with for loop, 63

(see also for comprehension; for/yield loops)
processing requiring multiple lines of code,

274

Z
zip method

merging two sequential collections into pairs
with, 304

using with a Stream, 273
creating a loop counter, 277

zipWithIndex method
using to create loop counter, 55, 273, 276,

386

694 | Index

About the Author
Alvin took the circuitous route to software development. He managed to get a degree
in Aerospace Engineering from Texas A&M University, while all he was really trying to
do was play baseball. Once he became a practicing engineer, he realized he liked software
and programming more than engineering. So, in approximate order, he taught himself
Fortran, C, Unix and network administration, sed, awk, Perl, Java, Python, Ruby, JRuby,
Groovy, PHP, and Scala. During this process, he started a software consulting firm, grew
it to 15 people, sold it, and moved to Alaska for a few years. After returning to the “Lower
48,” he self-published two books (How I Sold My Business: A Personal Diary and Zen
and the Art of Consulting). He also created DevDaily.com, which receives millions of
page views every year, started a new software consulting business, Valley Program‐
ming, and started a nonprofit organization named Zen Foundation.

Colophon
The animal on the cover of Scala Cookbook is a long-beaked echidna (Zaglossus bruijnii,
Z. bartoni, and Z. attenboroughi), a genus of three mammal species found only on the
island of New Guinea. Weighing up to 35 pounds, long-beaked echidnas are nocturnal
insectivores that prefer to live in forests at higher altitudes.

The first specimen was found in 1961 on New Guinea’s Cyclops Mountains, and the
entire species was thought to be extinct in that area until evidence of their activity was
found in 2007. According to data collected in 1982, only 1.6 echidnas existed per square
kilometer of suitable habitat across New Guinea, adding up to a total of 300,000 indi‐
viduals. Since then, that number has dropped significantly due to habitat loss as large
areas are exploited for farming, logging, and mining. Hunting also remains a large
problem since the long-beaked echidna is considered a delicacy to locals in Papua New
Guinea. The low population numbers and rapid destruction of habitat make the long-
beaked echidna an endangered species, while the short-beaked variety fares slightly
better in both New Guinea and Australia.

The echidna is classified as a “monotreme,” or a mammal that lays eggs. The mother
holds one egg at a time in her body, providing it with nutrients and a place to live after
it hatches. The only surviving monotremes are the four species of echidna and the
platypus. All of these mammals are native to Australia and New Guinea, although there
is evidence that they were once more widespread. With origins in the Jurassic era some
60 million years ago, monotremes offer evidence of mammal evolution away from rep‐
tilian forms of reproduction.

http://alvinalexander.com/
http://valleyprogramming.com
http://valleyprogramming.com
http://zenfoundation.org

Instead of having teeth, echidnas’ tongues are covered in spikes that help draw earth‐
worms and ants into the mouth. The entire body is also covered in fur and spikes that
are used for protection; much like a hedgehog, echidnas can curl up into a spiny ball
when threatened. Although very little echidna behavior has been observed in the wild,
they are believed to be solitary creatures; the short-beaked echidna displays little evi‐
dence of grooming, aggression, courting, or maternal behavior. In captivity, these crea‐
tures can live up to 30 years.

The cover image is from Cassell’s Natural History. The cover font is Adobe ITC Gara‐
mond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	The Scala Language
	Solutions
	Audience
	Contents of This Book
	Online Bonus Chapters
	Installing the Software
	How the Code Listings Work
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Strings
	Introduction
	Add Methods to Closed Classes

	1.1. Testing String Equality
	Problem
	Solution
	Discussion

	1.2. Creating Multiline Strings
	Problem
	Solution
	Discussion

	1.3. Splitting Strings
	Problem
	Solution
	Discussion

	1.4. Substituting Variables into Strings
	Problem
	Solution
	Discussion
	See Also

	1.5. Processing a String One Character at a Time
	Problem
	Solution
	Discussion
	See Also

	1.6. Finding Patterns in Strings
	Problem
	Solution
	Discussion
	See Also

	1.7. Replacing Patterns in Strings
	Problem
	Solution
	See Also

	1.8. Extracting Parts of a String That Match Patterns
	Problem
	Solution
	Discussion
	See Also

	1.9. Accessing a Character in a String
	Problem
	Solution
	Discussion

	1.10. Add Your Own Methods to the String Class
	Problem
	Solution
	Discussion

	Chapter 2. Numbers
	Introduction
	Complex Numbers and Dates

	2.1. Parsing a Number from a String
	Problem
	Solution
	Discussion
	See Also

	2.2. Converting Between Numeric Types (Casting)
	Problem
	Solution
	Discussion
	See Also

	2.3. Overriding the Default Numeric Type
	Problem
	Solution
	Discussion
	See Also

	2.4. Replacements for ++ and −−
	Problem
	Solution
	Discussion
	See Also

	2.5. Comparing Floating-Point Numbers
	Problem
	Solution
	Discussion
	See Also

	2.6. Handling Very Large Numbers
	Problem
	Solution
	Discussion
	See Also

	2.7. Generating Random Numbers
	Problem
	Solution
	Discussion
	See Also

	2.8. Creating a Range, List, or Array of Numbers
	Problem
	Solution
	Discussion
	See Also

	2.9. Formatting Numbers and Currency
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Control Structures
	Introduction
	3.1. Looping with for and foreach
	Problem
	Solution
	Discussion
	See Also

	3.2. Using for Loops with Multiple Counters
	Problem
	Solution
	Discussion
	See Also

	3.3. Using a for Loop with Embedded if Statements (Guards)
	Problem
	Solution
	Discussion

	3.4. Creating a for Comprehension (for/yield Combination)
	Problem
	Solution
	Discussion
	See Also

	3.5. Implementing break and continue
	Problem
	Solution
	Discussion
	See Also

	3.6. Using the if Construct Like a Ternary Operator
	Problem
	Solution
	Discussion
	See Also

	3.7. Using a Match Expression Like a switch Statement
	Problem
	Solution
	Discussion
	See Also

	3.8. Matching Multiple Conditions with One Case Statement
	Problem
	Solution
	See Also

	3.9. Assigning the Result of a Match Expression to a Variable
	Problem
	Solution
	See Also

	3.10. Accessing the Value of the Default Case in a Match
 Expression
	Problem
	Solution
	Discussion

	3.11. Using Pattern Matching in Match Expressions
	Problem
	Solution
	Discussion
	See Also

	3.12. Using Case Classes in Match Expressions
	Problem
	Solution

	3.13. Adding if Expressions (Guards) to Case Statements
	Problem
	Solution
	Discussion

	3.14. Using a Match Expression Instead of isInstanceOf
	Problem
	Solution
	Discussion

	3.15. Working with a List in a Match Expression
	Problem
	Solution
	Discussion
	See Also

	3.16. Matching One or More Exceptions with try/catch
	Problem
	Solution
	Discussion
	See Also

	3.17. Declaring a Variable Before Using It in a try/catch/finally
 Block
	Problem
	Solution
	Discussion
	See Also

	3.18. Creating Your Own Control Structures
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Classes and Properties
	Introduction
	4.1. Creating a Primary Constructor
	Problem
	Solution
	Discussion

	4.2. Controlling the Visibility of Constructor Fields
	Problem
	Solution
	Discussion

	4.3. Defining Auxiliary Constructors
	Problem
	Solution
	Discussion
	See Also

	4.4. Defining a Private Primary Constructor
	Problem
	Solution
	Discussion

	4.5. Providing Default Values for Constructor Parameters
	Problem
	Solution
	Discussion
	See Also

	4.6. Overriding Default Accessors and Mutators
	Problem
	Solution
	Discussion

	4.7. Preventing Getter and Setter Methods from Being Generated
	Problem
	Solution
	Discussion

	4.8. Assigning a Field to a Block or Function
	Problem
	Solution
	Discussion

	4.9. Setting Uninitialized var Field Types
	Problem
	Solution
	Discussion
	See Also

	4.10. Handling Constructor Parameters When Extending a Class
	Problem
	Solution
	Discussion

	4.11. Calling a Superclass Constructor
	Problem
	Solution

	4.12. When to Use an Abstract Class
	Problem
	Solution
	Discussion

	4.13. Defining Properties in an Abstract Base Class (or Trait)
	Problem
	Solution
	Discussion
	See Also

	4.14. Generating Boilerplate Code with Case Classes
	Problem
	Solution
	Discussion
	See Also

	4.15. Defining an equals Method (Object Equality)
	Problem
	Solution
	Discussion
	See Also

	4.16. Creating Inner Classes
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. Methods
	Introduction
	5.1. Controlling Method Scope
	Problem
	Solution
	Discussion

	5.2. Calling a Method on a Superclass
	Problem
	Solution

	5.3. Setting Default Values for Method Parameters
	Problem
	Solution
	Discussion

	5.4. Using Parameter Names When Calling a Method
	Problem
	Solution
	Discussion

	5.5. Defining a Method That Returns Multiple Items (Tuples)
	Problem
	Solution
	Discussion
	See Also

	5.6. Forcing Callers to Leave Parentheses off Accessor Methods
	Problem
	Solution
	Discussion
	See Also

	5.7. Creating Methods That Take Variable-Argument Fields
	Problem
	Solution
	Discussion

	5.8. Declaring That a Method Can Throw an Exception
	Problem
	Solution
	Discussion
	See Also

	5.9. Supporting a Fluent Style of Programming
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. Objects
	Introduction
	6.1. Object Casting
	Problem
	Solution
	Discussion
	See Also

	6.2. The Scala Equivalent of Java’s .class
	Problem
	Solution
	Discussion
	See Also

	6.3. Determining the Class of an Object
	Problem
	Solution
	Discussion

	6.4. Launching an Application with an Object
	Problem
	Solution
	Discussion
	See Also

	6.5. Creating Singletons with object
	Problem
	Solution
	Discussion

	6.6. Creating Static Members with Companion Objects
	Problem
	Solution
	Discussion

	6.7. Putting Common Code in Package Objects
	Problem
	Solution
	Discussion
	See Also

	6.8. Creating Object Instances Without Using the new Keyword
	Problem
	Solution
	Discussion

	6.9. Implement the Factory Method in Scala with apply
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Packaging and Imports
	Introduction
	7.1. Packaging with the Curly Braces Style Notation
	Problem
	Solution
	Discussion

	7.2. Importing One or More Members
	Problem
	Solution
	Discussion

	7.3. Renaming Members on Import
	Problem
	Solution
	Discussion

	7.4. Hiding a Class During the Import Process
	Problem
	Solution

	7.5. Using Static Imports
	Problem
	Solution
	Discussion

	7.6. Using Import Statements Anywhere
	Problem
	Solution
	Discussion

	Chapter 8. Traits
	Introduction
	8.1. Using a Trait as an Interface
	Problem
	Solution
	Discussion

	8.2. Using Abstract and Concrete Fields in Traits
	Problem
	Solution
	Discussion

	8.3. Using a Trait Like an Abstract Class
	Problem
	Solution
	Discussion
	See Also

	8.4. Using Traits as Simple Mixins
	Problem
	Solution
	See Also

	8.5. Limiting Which Classes Can Use a Trait by Inheritance
	Problem
	Solution
	Discussion
	Discussion
	See Also

	8.6. Marking Traits So They Can Only Be Used by Subclasses of a Certain
 Type
	Problem
	Solution
	Discussion
	See Also

	8.7. Ensuring a Trait Can Only Be Added to a Type That Has a Specific
 Method
	Problem
	Solution
	Discussion
	See Also

	8.8. Adding a Trait to an Object Instance
	Problem
	Solution
	Discussion

	8.9. Extending a Java Interface Like a Trait
	Problem
	Solution

	Chapter 9. Functional Programming
	Introduction
	9.1. Using Function Literals (Anonymous Functions)
	Problem
	Solution
	Discussion

	9.2. Using Functions as Variables
	Problem
	Solution
	Discussion
	See Also

	9.3. Defining a Method That Accepts a Simple Function Parameter
	Problem
	Solution
	Discussion
	See Also

	9.4. More Complex Functions
	Problem
	Solution
	Discussion

	9.5. Using Closures
	Problem
	Solution
	Discussion
	See Also

	9.6. Using Partially Applied Functions
	Problem
	Solution
	Discussion

	9.7. Creating a Function That Returns a Function
	Problem
	Solution
	Discussion
	See Also

	9.8. Creating Partial Functions
	Problem
	Solution
	Discussion
	See Also

	9.9. A Real-World Example
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Collections
	Introduction
	A Few Important Concepts

	10.1. Understanding the Collections Hierarchy
	Problem
	Solution

	10.2. Choosing a Collection Class
	Problem
	Solution
	See Also

	10.3. Choosing a Collection Method to Solve a Problem
	Problem
	Solution
	Discussion

	10.4. Understanding the Performance of Collections
	Problem
	Solution
	See Also

	10.5. Declaring a Type When Creating a Collection
	Problem
	Solution
	Discussion

	10.6. Understanding Mutable Variables with Immutable Collections
	Problem
	Solution
	See Also

	10.7. Make Vector Your “Go To” Immutable Sequence
	Problem
	Solution
	Discussion
	See Also

	10.8. Make ArrayBuffer Your “Go To” Mutable Sequence
	Problem
	Solution
	Discussion
	See Also

	10.9. Looping over a Collection with foreach
	Problem
	Solution
	Discussion

	10.10. Looping over a Collection with a for Loop
	Problem
	Solution
	Discussion
	See Also

	10.11. Using zipWithIndex or zip to Create Loop Counters
	Problem
	Solution
	Discussion
	See Also

	10.12. Using Iterators
	Problem
	Solution
	See Also

	10.13. Transforming One Collection to Another with for/yield
	Problem
	Solution
	Discussion
	See Also

	10.14. Transforming One Collection to Another with map
	Problem
	Solution
	Discussion
	See Also

	10.15. Flattening a List of Lists with flatten
	Problem
	Solution

	10.16. Combining map and flatten with flatMap
	Problem
	Solution
	Discussion
	See Also

	10.17. Using filter to Filter a Collection
	Problem
	Solution
	Discussion
	See Also

	10.18. Extracting a Sequence of Elements from a Collection
	Problem
	Solution

	10.19. Splitting Sequences into Subsets (groupBy, partition, etc.)
	Problem
	Solution

	10.20. Walking Through a Collection with the reduce and fold
 Methods
	Problem
	Solution

	10.21. Extracting Unique Elements from a Sequence
	Problem
	Solution
	See Also

	10.22. Merging Sequential Collections
	Problem
	Solution
	Discussion

	10.23. Merging Two Sequential Collections into Pairs with zip
	Problem
	Solution
	Discussion
	See Also

	10.24. Creating a Lazy View on a Collection
	Problem
	Solution
	Discussion
	See Also

	10.25. Populating a Collection with a Range
	Problem
	Solution
	Discussion

	10.26. Creating and Using Enumerations
	Problem
	Solution
	See Also

	10.27. Tuples, for When You Just Need a Bag of Things
	Problem
	Solution
	Discussion
	See Also

	10.28. Sorting a Collection
	Problem
	Solution
	Discussion
	See Also

	10.29. Converting a Collection to a String with mkString
	Problem
	Solution
	Discussion

	Chapter 11. List, Array, Map, Set (and More)
	Introduction
	List
	Array (and ArrayBuffer)
	Maps
	Sets

	11.1. Different Ways to Create and Populate a List
	Problem
	Solution
	See Also

	11.2. Creating a Mutable List
	Problem
	Solution
	Discussion

	11.3. Adding Elements to a List
	Problem
	Solution
	Discussion
	See Also

	11.4. Deleting Elements from a List (or ListBuffer)
	Problem
	Solution
	Discussion
	See Also

	11.5. Merging (Concatenating) Lists
	Problem
	Solution
	Discussion
	See Also

	11.6. Using Stream, a Lazy Version of a List
	Problem
	Solution
	See Also

	11.7. Different Ways to Create and Update an Array
	Problem
	Solution
	Discussion
	See Also

	11.8. Creating an Array Whose Size Can Change (ArrayBuffer)
	Problem
	Solution

	11.9. Deleting Array and ArrayBuffer Elements
	Problem
	Solution

	11.10. Sorting Arrays
	Problem
	Solution
	See Also

	11.11. Creating Multidimensional Arrays
	Problem
	Solution
	Discussion

	11.12. Creating Maps
	Problem
	Solution
	Discussion
	See Also

	11.13. Choosing a Map Implementation
	Problem
	Solution
	Discussion
	See Also

	11.14. Adding, Updating, and Removing Elements with a Mutable Map
	Problem
	Solution
	Discussion
	See Also

	11.15. Adding, Updating, and Removing Elements with Immutable Maps
	Problem
	Solution
	Discussion
	See Also

	11.16. Accessing Map Values
	Problem
	Solution
	See Also

	11.17. Traversing a Map
	Problem
	Solution

	11.18. Getting the Keys or Values from a Map
	Problem
	Solution

	11.19. Reversing Keys and Values
	Problem
	Solution
	See Also

	11.20. Testing for the Existence of a Key or Value in a Map
	Problem
	Solution
	Discussion
	See Also

	11.21. Filtering a Map
	Problem
	Solution

	11.22. Sorting an Existing Map by Key or Value
	Problem
	Solution
	Discussion
	See Also

	11.23. Finding the Largest Key or Value in a Map
	Problem
	Solution
	See Also

	11.24. Adding Elements to a Set
	Problem
	Solution

	11.25. Deleting Elements from Sets
	Problem
	Solution

	11.26. Using Sortable Sets
	Problem
	Solution
	Discussion
	See Also

	11.27. Using a Queue
	Problem
	Solution
	See Also

	11.28. Using a Stack
	Problem
	Solution
	Discussion
	See Also

	11.29. Using a Range
	Problem
	Solution
	Discussion
	See Also

	Chapter 12. Files and Processes
	12.0. Introduction
	12.1. How to Open and Read a Text File
	Problem
	Solution
	Discussion
	See Also

	12.2. Writing Text Files
	Problem
	Solution
	Discussion
	See Also

	12.3. Reading and Writing Binary Files
	Problem
	Solution
	See Also

	12.4. How to Process Every Character in a Text File
	Problem
	Solution

	12.5. How to Process a CSV File
	Problem
	Solution
	Discussion
	See Also

	12.6. Pretending that a String Is a File
	Problem
	Solution
	Discussion
	See Also

	12.7. Using Serialization
	Problem
	Solution
	Discussion
	See Also

	12.8. Listing Files in a Directory
	Problem
	Solution
	Discussion
	See Also

	12.9. Listing Subdirectories Beneath a Directory
	Problem
	Solution
	Discussion

	12.10. Executing External Commands
	Problem
	Solution
	Discussion

	12.11. Executing External Commands and Using STDOUT
	Problem
	Solution
	Discussion

	12.12. Handling STDOUT and STDERR for External Commands
	Problem
	Solution
	See Also

	12.13. Building a Pipeline of Commands
	Problem
	Solution
	Discussion
	See Also

	12.14. Redirecting the STDOUT and STDIN of External Commands
	Problem
	Solution
	Discussion
	See Also

	12.15. Using AND (&&) and OR (||) with Processes
	Problem
	Solution

	12.16. Handling Wildcard Characters in External Commands
	Problem
	Solution
	Discussion
	See Also

	12.17. How to Run a Process in a Different Directory
	Problem
	Solution

	12.18. Setting Environment Variables When Running Commands
	Problem
	Solution
	See Also

	12.19. An Index of Methods to Execute External Commands

	Chapter 13. Actors and Concurrency
	Introduction
	The Actor Model
	Other Features

	13.1. Getting Started with a Simple Actor
	Problem
	Solution
	Discussion
	See Also

	13.2. Creating an Actor Whose Class Constructor Requires
 Arguments
	Problem
	Solution
	Discussion
	See Also

	13.3. How to Communicate Between Actors
	Problem
	Solution
	Discussion

	13.4. Understanding the Methods in the Akka Actor Lifecycle
	Problem
	Solution
	Discussion
	See Also

	13.5. Starting an Actor
	Problem
	Solution
	Discussion

	13.6. Stopping Actors
	Problem
	Solution
	Discussion
	See Also

	13.7. Shutting Down the Akka Actor System
	Problem
	Solution
	Discussion

	13.8. Monitoring the Death of an Actor with watch
	Problem
	Solution
	Discussion

	13.9. Simple Concurrency with Futures
	Problem
	Solution
	Discussion
	See Also

	13.10. Sending a Message to an Actor and Waiting for a Reply
	Problem
	Solution
	Discussion

	13.11. Switching Between Different States with become
	Problem
	Solution
	Discussion
	See Also

	13.12. Using Parallel Collections
	Problem
	Solution
	Discussion
	See Also

	Chapter 14. Command-Line Tasks
	14.0. Introduction
	14.1. Getting Started with the Scala REPL
	Problem
	Solution
	Discussion
	See Also

	14.2. Pasting and Loading Blocks of Code into the REPL
	Problem
	Solution
	Discussion
	See Also

	14.3. Adding JAR Files and Classes to the REPL Classpath
	Problem
	Solution

	14.4. Running a Shell Command from the REPL
	Problem
	Solution
	See Also

	14.5. Compiling with scalac and Running with scala
	Problem
	Solution
	Discussion

	14.6. Disassembling and Decompiling Scala Code
	Problem
	Solution
	Discussion
	See Also

	14.7. Finding Scala Libraries
	Problem
	Solution

	14.8. Generating Documentation with scaladoc
	Problem
	Solution
	Discussion
	See Also

	14.9. Faster Command-Line Compiling with fsc
	Problem
	Solution
	Discussion
	See Also

	14.10. Using Scala as a Scripting Language
	Problem
	Solution
	Discussion
	See Also

	14.11. Accessing Command-Line Arguments from a Script
	Problem
	Solution
	Discussion

	14.12. Prompting for Input from a Scala Shell Script
	Problem
	Solution
	Discussion
	See Also

	14.13. Make Your Scala Scripts Run Faster
	Problem
	Solution
	Discussion

	Chapter 15. Web Services
	Introduction
	15.1. Creating a JSON String from a Scala Object
	Problem
	Solution
	Discussion
	See Also

	15.2. Creating a JSON String from Classes That Have Collections
	Problem
	Solution
	Discussion
	See Also

	15.3. Creating a Simple Scala Object from a JSON String
	Problem
	Solution
	See Also

	15.4. Parsing JSON Data into an Array of Objects
	Problem
	Solution
	Discussion
	See Also

	15.5. Creating Web Services with Scalatra
	Problem
	Solution
	Discussion
	See Also

	15.6. Replacing XML Servlet Mappings with Scalatra Mounts
	Problem
	Solution
	Discussion
	See Also

	15.7. Accessing Scalatra Web Service GET Parameters
	Problem
	Solution

	15.8. Accessing POST Request Data with Scalatra
	Problem
	Solution
	Discussion

	15.9. Creating a Simple GET Request Client
	Problem
	Solution
	Discussion
	See Also

	15.10. Sending JSON Data to a POST URL
	Problem
	Solution
	Discussion
	See Also

	15.11. Getting URL Headers
	Problem
	Solution
	Discussion
	See Also

	15.12. Setting URL Headers When Sending a Request
	Problem
	Solution
	Discussion
	See Also

	15.13. Creating a GET Request Web Service with the Play Framework
	Problem
	Solution
	Discussion
	See Also

	15.14. POSTing JSON Data to a Play Framework Web Service
	Problem
	Solution
	Discussion
	See Also

	Chapter 16. Databases and Persistence
	Introduction
	16.1. Connecting to MySQL with JDBC
	Problem
	Solution
	Discussion
	See Also

	16.2. Connecting to a Database with the Spring Framework
	Problem
	Solution
	Discussion
	See Also

	16.3. Connecting to MongoDB and Inserting Data
	Problem
	Solution
	Discussion
	See Also

	16.4. Inserting Documents into MongoDB with insert, save, or +=
	Problem
	Solution
	Discussion
	See Also

	16.5. Searching a MongoDB Collection
	Problem
	Solution
	Discussion
	See Also

	16.6. Updating Documents in a MongoDB Collection
	Problem
	Solution

	16.7. Accessing the MongoDB Document ID Field
	Problem
	Solution
	See Also

	16.8. Deleting Documents in a MongoDB Collection
	Problem
	Solution
	Discussion
	See Also

	16.9. A Quick Look at Slick

	Chapter 17. Interacting with Java
	Introduction
	17.1. Going to and from Java Collections
	Problem
	Solution
	Discussion
	See Also

	17.2. Add Exception Annotations to Scala Methods to Work with
 Java
	Problem
	Solution
	Discussion

	17.3. Using @SerialVersionUID and Other Annotations
	Problem
	Solution
	Discussion
	See Also

	17.4. Using the Spring Framework
	Problem
	Solution
	Discussion
	See Also

	17.5. Annotating varargs Methods
	Problem
	Solution
	Discussion

	17.6. When Java Code Requires JavaBeans
	Problem
	Solution
	Discussion
	See Also

	17.7. Wrapping Traits with Implementations
	Problem
	Solution
	Discussion

	Chapter 18. The Simple Build Tool (SBT)
	Introduction
	18.1. Creating a Project Directory Structure for SBT
	Problem
	Solution
	Discussion
	See Also

	18.2. Compiling, Running, and Packaging a Scala Project with SBT
	Problem
	Solution
	Discussion
	See Also

	18.3. Running Tests with SBT and ScalaTest
	Problem
	Solution
	Discussion
	See Also

	18.4. Managing Dependencies with SBT
	Problem
	Solution
	Discussion
	See Also

	18.5. Controlling Which Version of a Managed Dependency Is Used
	Problem
	Solution
	See Also

	18.6. Creating a Project with Subprojects
	Problem
	Solution
	Discussion
	See Also

	18.7. Using SBT with Eclipse
	Problem
	Solution
	Discussion
	See Also

	18.8. Generating Project API Documentation
	Problem
	Solution
	See Also

	18.9. Specifying a Main Class to Run
	Problem
	Solution
	Discussion
	See Also

	18.10. Using GitHub Projects as Project Dependencies
	Problem
	Solution
	Discussion
	See Also

	18.11. Telling SBT How to Find a Repository (Working with
 Resolvers)
	Problem
	Solution
	Discussion

	18.12. Resolving Problems by Getting an SBT Stack Trace
	Problem
	Solution

	18.13. Setting the SBT Log Level
	Problem
	Solution
	See Also

	18.14. Deploying a Single, Executable JAR File
	Problem
	Solution
	Discussion
	See Also

	18.15. Publishing Your Library
	Problem
	Solution

	18.16. Using Build.scala Instead of build.sbt
	Problem
	Solution
	Discussion
	See Also

	18.17. Using a Maven Repository Library with SBT
	Problem
	Solution
	See Also

	18.18. Building a Scala Project with Ant
	Problem
	Solution
	Discussion
	See Also

	Chapter 19. Types
	Introduction
	Variance
	Bounds
	Type Constraints
	Type Examples in Other Chapters

	19.1. Creating Classes That Use Generic Types
	Problem
	Solution
	Discussion
	See Also

	19.2. Creating a Method That Takes a Simple Generic Type
	Problem
	Solution
	Discussion

	19.3. Using Duck Typing (Structural Types)
	Problem
	Solution
	Discussion

	19.4. Make Mutable Collections Invariant
	Problem
	Solution
	Discussion
	See Also

	19.5. Make Immutable Collections Covariant
	Problem
	Solution
	Discussion

	19.6. Create a Collection Whose Elements Are All of Some Base
 Type
	Problem
	Solution
	Discussion
	See Also

	19.7. Selectively Adding New Behavior to a Closed Model
	Problem
	Solution
	Discussion
	See Also

	19.8. Building Functionality with Types
	Example 1: Creating a Timer
	Example 2: Writing Your Own “Try” Classes

	Chapter 20. Idioms
	Introduction
	Other Resources

	20.1. Create Methods with No Side Effects (Pure Functions)
	Problem
	Solution
	Discussion
	See Also

	20.2. Prefer Immutable Objects
	Problem
	Solution
	Discussion
	See Also

	20.3. Think “Expression-Oriented Programming”
	Problem
	Solution
	Discussion
	See Also

	20.4. Use Match Expressions and Pattern Matching
	Problem
	Solution
	See Also

	20.5. Eliminate null Values from Your Code
	Problem
	Solution
	See Also

	20.6. Using the Option/Some/None Pattern
	Problem
	Solution
	Discussion
	See Also

	Index
	About the Author

