ot
A

Learn by doing: less theory, more results

Railo 3

Easily develop and deploy complex applications
online using the powerful Railo Server

Beginner's Guide

Mark Drew Gert Franz open source

Paul Klinkenberg Jordan Michaels L, . ...
[vww allitebooks.cond



http:///
http://www.allitebooks.org

Beginner's Guide

Easily develop and deploy complex applications online
using the powerful Railo Server

Mark Drew
Gert Franz
Paul Klinkenberg

Jordan Michaels

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

[vww allitebooks.cond



http://www.packtpub.com/authors/profiles/mark-drew
http:///
http://www.allitebooks.org

Beginner's Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2011

Production Reference: 1091211

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84951-340-1
www . packtpub.com

Cover Image by Rakesh Shejwal (shejwal .rakesh@egmail . com)

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Authors
Mark Drew

Gert Franz
Paul Klinkenberg

Jordan Michaels

Reviewers
A J Mercer

Akbarsait Noormohamed

Jamie Krug

Paul Klinkenberg

Acquisition Editor
Sarah Cullington

Development Editor

Meeta Rajani

Technical Editors
Mohd. Sahil

Lubna Shaikh

Project Coordinator

Joel Goveya

Proofreader

Sol Agramont

Copy Editor
Leonard D'Silva

Indexers

Hemangini Bari

Monica Ajmera

Graphics
Manu Joseph

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Mark Drew has been developing web applications for a number of clients since the mid
90s. He has been using ColdFusion and writing in CFML since 1996, and even though he has
had the occasional forays into Perl, ASP, PHP, Rails, and Java, he is still loving every line of
code he has written in CFML.

Mark has been part of the CFEclipse Project developing a CFML IDE and Project Manager for
the Reactor ORM Project, as well as contributor to a number of frameworks.

His career has concentrated on e-commerce, web content management, and application
scalability for various well-known brands in the UK as well as the rest of the world.

Mark is also a well-known speaker at various conferences on subjects close to his heart, such
as ORMs, Frameworks, Development Tooling and Process, as well as noSQL databases and a
range of other topics.

Mark lives in Greenwich, London, where the Mean Time comes from. Mark isn't mean of
course. He works as the CEO of Railo Technologies Limited ( http://www.getrailo.com),
a web development consultancy and Professional Open Source provider of Railo Server.

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Really, this book would not have been possible without the help of the
below-mentioned people, whom | am utterly indebted to and I shall fulfill
all those promises to buy them a beer, even if it takes emptying out a
whole brewery. | want to thank Gert Franz, for giving me the opportunity
to write this book; Sarah Cullington, for her invaluable advice as an editor;
Joel Goveya, for his reminders and motivation to get all the chapters done
on time; Paul Klinkenberg, for his hard work and timely offers of help;
Roland Ringgenberg, for his Flex and Flash mastery—I would have really
been out of my depth on that one! | would also like to thank Sean Corfield,
Peter Bell, and A J Mercer, for their awesome feedback on chapters in the
process of writing this book; Todd Rafferty, for his great contributions and
eagle eye; Andrea Campologhi, for his stellar AJAX skills and contributions
to Railo Server; and Michael Offner, for all his skills in developing Railo
Server itself and giving me peeks behind the curtains to how it all works. A
big thank you to all the folks in the Railo Users mailing list for keeping the
community alive and kicking. Finally, | would like to thank Charlie Khan and
The Organ Grinder for the musical accompaniment that helped clarify my
thoughts as | went along!

Gert Franz was born in 1967 in Romania. He moved to Germany in 1982. He studied
Astrophysics in Munich in the early nineties and lives in Switzerland since 1998.

Gert is a father of three children and lives in with his Swiss girlfriend, somewhere next
to Zurich. Even though the jobs Gert had did not involve Astronomy in any way, he still
remained loyal to it as a hobby and from time to time he taught local classes about the
wonders and miracles of Astronomy.

In the past 20 years, he worked as a Senior Programmer for several different companies and
leads Railo Technologies Switzerland as a CEO since its foundation in 2007.

Gert is a well-known speaker who appeared and appears at several different conferences
around the world. Mostly, he speaks about Railo and/or performance tuning. Besides
speaking, Gert programs a lot, and does all different kinds of consulting related to Railo,
CFML, databases, and system architectures. He is a specialist in performance tuning,
especially with MSSQL and Railo.

Next to the things mentioned before, Gert hosts Railo training sessions and performance-
tuning training sessions around the world. Along the way, Gert acquired a deep knowledge
in Railo, CFML, Delphi, C, ASP, SQL, SQL tuning, and other programming-related things.

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Paul Klinkenberg (1979) is a long-time CFML addict, living in The Netherlands with his
wife Emma and baby daughter Luce. His history in both Commercial Economics and Fine Arts
were no match for the enthusiasm he got from programming. In his 10+ years of experience
in programming in CFML, he has always been investigating and pushing the boundaries of
this magnificent language constantly. As a Railo Team member, he is in charge of managing
and promoting Railo Extensions. He never stops thinking and creating new features for Railo
Server, and tries to evangelize Railo as much as possible.

He shares code projects and ideas via his weblog http://www.railodeveloper.com.
Though it has gotten a lot quieter on his blog lately, as his beautiful baby daughter Luce,
born in 2011, gets a lot of his attention.

Paul is currently employed at the Dutch web-development company and Railo partner Carlos
Gallupa BV. He is also working on projects through his own company Ongevraagd Advies,
which means unasked advice. Friends and clients often say the name suits him really well,
with his power to thoroughly analyze project plans and ideas, and come up with new ideas
and suggestions out of the blue.

I'd like to sincerely thank my lovely and caring wife for the patience she had
with me. It's probably not easy to share your husband with a programming
language. To Luce: je papa houdt van jou, schatje!

Jordan Michaels currently participates in the Railo Team as the Community Deployments
Coordinator, where his duties include coordinating efforts and documentation on how to
deploy Railo in various environments. Jordan has been a CFML enthusiast and developer for
just over 8 years, and is now the co-owner of Vivio Technologies where he operates as a CEO.
Jordan is an active participant in the CFML community providing evangelism, community
support, and has also printed various articles on CFML. Jordan is also an amateur musician
and science buff. Jordan currently resides with his wife and two sons in WA state, USA.

[vww allitebooks.cond



http:///
http://www.allitebooks.org

A J Mercer first discovered CFML as a DBA when looking for a way to extract data from
Informix and display it with links to drill down to detailed information. That was back in
1997 when that was a big deal. After battling with CGI scripts and embedded ESQL in C and
Informix 4GL he discovered Cold Fusion Express. This is exactly what he was looking for,
and with the added bonus of being able to email reports — via a scheduled task!

After a job or two doing all sorts of consultancy development work in various web and
desktop languages, he was approached by a firm and asked if he knew anything about
ColdFusion. This was in 2000 when being able to spell CFML was enough to get you hired.

It was in this job that he developed his web development skills using ASP and CFML. Luckily
for him, the development team was big enough to allow for specialization and was allowed
to just work on the CFML projects. During web development team meetings his favorite joke
when the .NET guys were stuck on something was "Allaire / Macromedia have got a patch
for that—it is called ColdFusion". It was also at this job when he first discovered FuseBox
and introduced a development standard into the organization.

AJ has backed his career on CFML and has swapped jobs when the pointy-haired bosses
started phasing out ColdFusion. He is deeply passionate about CFML and has been actively
promoting the product and sharing his knowledge with local user group CFUGWA (of which
he was manager for 5 years) and has presented at webDU and cf.Objective(ANZ).

[vww allitebooks.cond



http:///
http://www.allitebooks.org

He is one of many who subscribe to the theory that CFML needs a free version to be able
to compete with the likes of .NET, PHP, and Ruby. In his spare time, he was on the look out
for other CFML engines. In 2006, he discovered Railo—and once again stopped looking. He
worked with many Framework developers, such as Farcry CMS, MangoBlog, ColdBox and
Mach-Il, and the Railo team to get these frameworks running on Railo. Due to his passion
and enthusiasm, he was appointed Railo Community Manager for Australia in 2010.

| feel humbled and honored to have been asked to review this book.

The Railo team is made up of a lot of people | respect and look up to in
the CFML community. My hat goes off to Mark Drew for taking on this
mammoth task of writing this book. Truth be told, there was not a lot | had
to do as a reviewer, and | learned quite a few things on the way through at
the same time, as | am sure you will too.

I will also take this opportunity to thank and congratulate Michael Offner
and Gert Franz for Railo—not just the Server product, but the Team and
Consultancy. Way back, when | first started out with Railo, Gert was very
generous with his time and helped me build my Railo server. Gert and the
rest of the team still, to this day, are passionate about helping people with
Railo and CFML. So, this book is not the end of your learning, but just the
start of the exciting world of Railo. Enjoy!

Akbarsait Noormohamed is a passionate Computer programmer and has been a
ColdFusion developer since 2004. Akbarsait specializes in using CFML, SQL (MS SQL Server,
MySQL, and Oracle), and web technologies for creating web applications and Content
Management Systems.

Akbarsait is currently working as a Consultant for MindTree Ltd in Chennai India. His
experience includes building web applications and intranet systems for Travel and
Transportation, Healthcare, and ERP domains. He loves troubleshooting and solving
problems in CFML engines. He has always had a keen interest in improving web performance.

He also manages the Chennai's ColdFusion User Group in India and he is an Adobe
Community Champion for ColdFusion. He currently holds a B.E in Computer Science and
Engineering and Diploma in Electrical and Electronics Engineering from Bharathidasan
University. You can follow him on his blog at http://www.akbarsait.comor at
@Akbarsait on Twitter.

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Jamie Krug developed a love for programming early on, writing a BASIC program on a
RadioShack TRS-80 to track "little league" baseball batting averages at an early age. He

has since then continued to enjoy programming and the learning experiences along the way.
Primarily building web applications in CFML since 2001, Jamie is a passionate learner and
also geeks around in Java/Groovy, Flex/ActionScript and Linux, among others. He also
greatly appreciates and participates in many open source software projects. You'll find
Jamie occasionally blogging at http://jamiekrug.com/blog/.

I'd like to thank my lovely wife, Wendy, and children, Ayvin and Nyah, for
their loving support. I'd also like to thank my entire network of friends
and family everywhere. | "work" doing something | truly enjoy, and enjoy
constant support and encouragement all through. For my experience and
learning opportunities, | thank the amazing CFML community, as well as
the countless passionate software geeks everywhere.

[vww allitebooks.cond



http://jamiekrug.com/blog/
http:///
http://www.allitebooks.org

This book is published by Packt Publishing. You might want to visit Packt's website at
www . PacktPub.com and take advantage of the following features and offers:

Discounts

Have you bought the print copy or Kindle version of this book? If so, you can get a massive
85% off the price of the eBook version, available in PDF, ePub, and MOBI.

Simply go to http://www.packtpub.com/railo-3-beginners-guide-to-develop-
deploy-complex-applications-online/book, add it to your cart,
and enter the following discount code:

r3bgebk

If you sign up to an account on www . PacktPub . com, you will have access to nine
free eBooks.

Sign up for Packt's newsletters, which will keep you up to date with offers, discounts, books,
and downloads, and you could win an iPod Shuffle.

You can set up your subscription at www. PacktPub.com/newsletters

Code Downloads, Errata and Support

Packt supports all of its books with errata. While we work hard to eradicate errors from our
books, some do creep in. Many Packt books also have accompanying snippets of code to
download.

You can find errata and code downloads at www . PacktPub. com/support


http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com/newsletters
http:///

[@ PACKT

PacktLib offers instant solutions to your IT questions. It is Packt's fully searchable online
digital book library, accessible from any device with a web browser.

Contains every Packt book ever published. That's about 100,000 pages of content
Fully searchable. Find an immediate solution to your problem

Copy, paste, print, and bookmark content

* 6 o o

Available on demand via your web browser

If you have a Packt account, you might want to have a look at the nine free books which you
can access now on PacktLib. Head to PacktLib.PacktPub.com and log in or register.


http://PacktLib.PacktPub.com
http://PacktLib.PacktPub.com
http:///



http:///

Tahle of Gontents

Preface 1
Chapter 1: Introducing Railo Server 7
Why use Railo Server? 8
What does Railo Server do? 9
A better look at Railo Server 11
What else can you do with Railo Server? 14
CFML compiler 14
Railo archives—compiled code 14
Wide variety of CFML tags and functions 15
Object-oriented approach 15
Scripting support 15
Integrated administration frontend 15
Background task execution 16
Extension manager 16
Easy update mechanism 16
Compatibility 16
Framework and application compatibility 16
Security 16
Virtual filesystems 17
High performance 17
Easy installation 17
Inexpensive and free 17
Easy clustering 17
Summary 18


http:///

Table of Contents

Chapter 2: Installing Railo Server 19
Getting up and running with Railo Express 19
Time for action — downloading Railo 20
Customizing Railo Express 22
Time for action — setting the administrator's password 22
Running the Railo Server Tomcat installer 23
Time for action — installing on Windows 24
Adding CFML-enabled sites to 11S7 29
Time for action — adding a site to 11S7 29
Getting up and running with the Railo WAR and Jetty 32
Time for action — downloading and installing Jetty 33
Time for action — booting up Jetty 34
Time for action — downloading and deploying the Railo WAR 36
Summary 38

Chapter 3: CFML Language 39
Basics of the CMFL language 40
Time for action — Hello World! 40
CFML tags 41

Single tags with attributes 41
Tags with expressions 42
Time for action — single tag example 42
Tags with content 44
Tags with sub tags 45
CFML functions 46
Time for action — using built-in functions 46
User-defined functions 48
Time for action — using user-defined functions 48
CFML variables 50
Structure variables 51
Time for action — using structures 51
Array variables 53
Time for action — creating an array 54
CFML scopes 55
SERVER scope 55
Time for action — adding a variable to the SERVER scope 56
APPLICATION scope 57
Time for action — creating the APPLICATION scope 57
SESSION scope 58
Time for action — creating a SESSION scope in your Application 59
REQUEST scope 60



http:///

Table of Contents

Time for action — using the REQUEST Scope 61
CGl scope 62
Handling web data 63
URL variables 63
Time for action — getting variables from the URL 63
FORM variables 65
Time for action — getting FORM variables 65
Cookies 68
Database access 69
Time for action — installing MySQL and setting up our database 70
Time for action — configuring data sources in Railo Server 72
Time for action — running queries against our database 74
Queries with parameters 77
What just happened? 78
Stored procedures 79
Time for action — calling stored procedures 79
Object Oriented Programming with Components 80
Time for action — creating the Employee component 81
Summary 86
Chapter 4: Railo Server Administration 87
Server and Web context 88
Time for action — setting up an example context 89
Setting up security 91
Time for action — setting your password 92
How contexts relate to each other 93
Time for action — setting the time zone 93
The Railo Web Administrator 95
Time for action — investigating the Web Administrator 96
Settings 97
Performance/Caching 98
Time for action — comparing template caching settings 99
Regional 102
Charset 103
Scope 103
Time for action — restricting the scoping of variables 104
Time for action — merging the URL and FORM scopes 106
Application 108
Output 111
Error 112
Services 112
Event Gateway 112

Cache 114



http:///

Table of Contents

Datasource 114
ORM 114
Search 115
Time for action — creating a search collection 115
Mail 118
Tasks 119
Scheduled tasks 120
Extension 121
Applications 121
Providers 123
Remote 124
Archives and resources 125
Mappings 125
Time for action — creating mappings in our application 126
Component 127
Time for action — using magic functions 129
Additional resources 130
Custom tags 130

CFX tags 131
Development 131
Time for action - setting the debug template 132
Security 135
Documentation 135
Summary 137
Chapter 5: Developing Applications with Railo Server 139
Railo applications 139
Time for action - building the simplest application 140
Time for action — defining the application 141
Session and client settings 143
Application events 143
Object relational mapping with Railo Server 147
Time for action — upgrading Railo Server 148
Creating our database persistence store 150
Time for action — creating a database 151
Time for action — creating our railoblog datasource 151
Using persistent components 152
Time for action - creating the blog 152
Time for action - listing our blog posts 157
Time for action — adding comments 159
Caching in Railo Server 162
Cache: what is it good for? 163
Time for action - creating a cache connection 163



http:///

Table of Contents

Time for action — using the Cache object 166
Time for action — getting well versed with more caching functions 167
Cache providers 169
Cache types 171
Time for action — caching a page with cfcache 171
Partial template caching 173
Time for action — caching content within a template 174
Query cache 175
Time for action — caching a query using cachedwithin 175
Resource cache 176
Time for action — assigning an EHCache Lite connection to resources 177
Summary 178
Chapter 6: Advanced CFML Functionality 179
Scripting within Railo Server 179
Why tags are good 180
Why tags are bad 181
The <cfscript> tag 182
Loops 183
Looping lists 183
Time for action — looping through a list 183
Looping arrays 184
Time for action — looping an array 184
Looping structures 185
Time for action — looping through a structure 185
Looping queries 186
Time for action — looping over queries 186
Scripted components 187
Time for action — creating the component 188
Scripting tags 190
Time for action — getting the contents of another site 190
Scripting wrapped tags 191
Time for action — using the <cfloop> tag in CFScript 191
Scripting wrapped tags—Part 2 192
Time for action — get a user by his/her ID 192
Built-in components 194
The Query built-in component 194
Time for action — using the Query component 194
The HTTP built-in component 196
Time for action — getting the content of a website via the HTTP component 196
Summary 198



http:///

Table of Contents

Chapter 7: Multimedia and AJAX 199
Video 199
Displaying video 200
Time for action — displaying a video player 200
Converting a video 202
Time for action — installing the Video Extension 202
Time for action — creating clips for our video player 204
Time for action — creating poster frames and clips 205
Time for action — adding a playlist to <cfvideoplayer> 208
AJAX functionality within the Railo server 209
Time for action — setting up the application and services 210
Time for action — binding the input to the component 212
Time for action — displaying the tasks 214
Time for action — deleting a task 217
Summary 219
Chapter 8: Resources and Mappings 221
Railo resources 221
Accessing files locally 222
Time for action — writing and reading files 222
Looping files 223
Time for action — looping through the contents of a file Mappings 224
Time for action — creating a mapping for the log file 225
Accessing code from mappings 226
Time for action — creating our components 227
Railo archives 228
Time for action — creating a Railo archive 229
Mappings and their settings 230
Time for action — changing the settings of a mapping 230
Accessing your files from ZIP and TAR files 232
Time for action — accessing files from a ZIP file 232
Using RAM as a quick location to store files 233
Time for action — compiling plain text to CFML 234
Using Amazon's Simple Storage Service to use files in the Cloud 236
Time for action — using Amazon's Simple Storage Service (S3) 237

Summary 242



http:///

Table of Contents

Chapter 9: Extending Railo Server 243
Why create your own CFML tags and functions? 243
Time for action — creating our own CFML tag 244

CFML functions 248
Time for action — creating our own CFML function 249
Using return type "any" 252
Structure and array notation in the form and URL scope 252
Installing extensions 253
Time for action — installing an extension for the web context 254
Server versus web extensions 256
The extension installation system 257
Time for action — installing the Galleon forums web application 257
Time for action — creating our own Railo application extension 261
Creating the Famous Quotes App 261
Time for action — creating our own extension provider 270
The ExtensionProvider CFC 274
GetlInfo structure information 274
ListApplications query information 275
GetDownloadDetails function 276
The role of the Web ID and Server ID 277
The Railo Extension Store 279
Summary 281

Chapter 10: Creating a Video-sharing Application 283
VideoShare: Getting to know our application 283
Goals of the application 284
Creating our application 285
Time for action — creating our basic application 285
Laying it all out 288
Time for action — creating the layout custom tag 288
Registering users 290
Time for action — creating our user model object 290
User login and logout 298
Time for action — log in or log out of the application 299
Uploading videos 302
Time for action — uploading a video 303
Adding security 306
Time for action — adding the secure tag 306
Assigning videos to users 308

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Table of Contents

Time for action — storing our video to the database
Converting and playing videos

Time for action — converting the uploaded video
Creating thumbnails for our videos

Time for action — creating images from a video
Adding comments to our video page

Time for action — adding comments to our videos
Creating the home page

Time for action — getting the latest videos
Summary

Index

308
313
313
317
317
319
320
324
325
327

329



http:///

Railo Server is one of the quickest ways to start developing complex web applications. Widely
considered as the fastest CFML (ColdFusion Markup Language) engine, Railo Server allows
you to create dynamic web pages that can change depending on the user input, database
lookups, or even the time of day.

Railo 3 Beginner's Guide will show you how to get up and running with Railo Server, as well
as enabling you to develop your web applications with ease. You will learn how to install
Railo Server and the basics of CFML as the book progresses to allow you to gradually build
up your knowledge and your dynamic web applications.

Using Packt's Beginner's Guide approach, this book will guide you with step-by-step
instructions, through installing the Railo Server on various environments. You will learn

how to use caches, resources, event gateways, and special scripting functions that will

allow you to create web pages with limitless functionality. You will even explore methods of
extending Railo by adding your own tags to the server and building custom extensions. Railo
3 Beginner's Guide is a must for anyone getting to grips with Railo Server.

Chapter 1, Introducing Railo Server, gives an introduction to Railo Server and also shows us
an overview of how it is a breeze to develop web applications.

Chapter 2, Installing Railo Server, describes how to install Railo Server under a number of
operating systems as well as using different servlet containers.

Chapter 3, CFML Language, provides a foundation for using the CFML Language to develop
sites in Railo Server. This chapter also covers object-oriented programming with components
as well as functions and tags.


http:///

Preface

Chapter 4, Railo Server Administration, details the functionality in the server and web
context. It also explains how different settings affect the behavior of the server and cover a
number of other topics, such as Extension , Archives and Resources, and Security.

Chapter 5, Developing Applications with Railo Server, looks at how applications can be
defined programmatically, the Application.cfc lifecycle, and also how components
interact with the database and even looks into various caching techniques.

Chapter 6, Advanced CFML Functionality, looks at the scripting formats available in CFML,
while investigating the CFScript language. It also looks at the built-in components available in
Railo Server.

Chapter 7, Multimedia and AJAX, this practical chapter goes through converting and
displaying video, as well as communicating between the browser and the server using the
AJAX functionality of Railo Server.

Chapter 8, Resources and Mappings, describes how to use local and remote resources via the
use of mappings within Railo Server. It also looks at how we can use ZIP and TAR files, using
RAM as a handy resource and saving our files out in the Cloud using Amazon S3.

Chapter 9, Extending Railo Server, looks at how we can create new tags and functions for
Railo Server and create an extension so that we can share our changes to the core server
with other Railo Server users via our own Extension Provider.

Chapter 10, Creating a Video-sharing Application, brings together all your skills into a single
application, setting up the Object Relational Model (ORM), creating security, converting your
videos, and displaying your videos for everyone to use!

What you need for this hook

You can run Railo server on a PC or a Mac, under Windows, OS X, and Linux.

To edit the code snippets described in the book, you will need a text editor, such as TextMate
on OS X or Textpad on Windows. As long as you are able to edit text files the choice of
software is up to you.

If you want to develop your own dynamic web applications using CFML, then this book is for
you. No prior experience with Railo or CFML is required, although you are expected to have
some experience in web application development and the knowledge of HTML, basically,
how websites work in general.

[2]


http:///

Preface

In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action - heading

1. Action1l
2. Action?2
3. Action3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?

This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

These are short multiple choice questions intended to help you test your own understanding.

These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: “ Using the <cfvideo> tag, we are able to convert
to a number of formats."

[31]


http:///

Preface

A block of code is set as follows:

<script type="text/javascript" charset="utf-8">

onError = function(code,message){
alert (code + ' - ' + message);

1

displayTodos = function (data){

document .getElementById('taskname') .value = “";
Railo.Ajax.refresh('displayTodos') ;

}

</script>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<head>
<link rel="stylesheet" href="main.css" type="text/css">
<title>Todo</title>
<cfajaxproxy bind="cfc:todo.TaskService.addTodo ({taskname}) "
onSuccess="displayTodos"
onError="onError"/>
<cfajaxproxy cfc="todo.TaskService"" jsclassname="TaskService">

Any command-line input or output is written as follows:
sudo vi /etc/default/jetty

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “Go to Members |} Login and
use your new username and password to log in to the website."

% Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

[4]



http:///

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub . com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@epacktpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub. com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you

find any errata, please report them by visiting http: //www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

[5]


http://www.PacktPub.com
http://www.PacktPub.com/support
http:///

Preface

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

[6]



mailto:copyright@packtpub.com
http:///

The Web is now the best way to deploy your applications. It is because of the
ease of use and reach to your users and, of course, the fact that you only have
to deploy one version of your code for everyone to use.

To get this done, you would have probably looked at different languages and
even frameworks out there. Did they seem complicated to get going? Were
there lots of new terms to learn?

This is where Railo Server comes in. It provides an easy way to write and
deploy your applications using a language that is very similar to HTML
(http://en.wikipedia.org/wiki/HTML), about which you'd already
know if you happened to work with static websites.

If you are already using HTML, Railo Server is a perfect addition to your toolkit!

In this book, you will learn how to use Railo Server to develop web applications in a very
efficient manner. We will also introduce the different features and options available to get
things done easily and quickly as we go along.

In this chapter, we will:

¢ Introduce you to the Railo Server
¢ Introduce you to some of the features of Railo Server

¢ Show you why Railo Server and CFML make developing web applications a breeze

Let's dive right in!


http:///

Introducing Railo Server

HTML per-se (without JavaScript) is a static language, which means that you cannot query
databases, send e-mails, execute searches, or generally interact with the server, and return
dynamic results to the user.

Imagine that you need to do one of the above tasks. HTML doesn't offer any solutions for
these kinds of problems because it is just a way to display information and not manipulate
other systems.

What can we do in order to overcome this problem?

ColdFusion Markup Language (CFML) neatly fits into the HTML syntax and allows you to
place CFML tags in-between HTML tags. Basically, Railo Server generates HTML, which is
then interpreted by the browser.

Depending on the tags that you are using, different HTML pages are sent back to the client.

Let's have a look at an example Railo Server template:

<html>
<head><title>An Example Template</title></head>
<body>
<div id="AccountHeader">
<cfif SESSION.loggedIn>
<h3>Private bank account No.:
<cfoutput>#bank.accountNr#</cfoutput>
Show secret information
</cfif>
</div>
</body>
</html>

The highlighted code above shows you some CFML (or Railo Template) code. This code is
dynamic and will run on the server before returning the rendered HTML back to the browser
that requested the page.

If you are used to reading HTML code, you can easily figure out what the previous code is
supposed to do. (It displays the HTML between the <cfif> tags if the variable 1loggedIn in
the SESSION is true.)



http:///

Chapter 1

Railo Server is a service that can be installed on any Java Application Server
(http://en.wikipedia.org/wiki/Java_Servlet) that helps you write web
applications quickly and easily, without the complexities normally associated with
developing fast, scalable, and secure applications in Java.

Railo Server is a servlet that runs on any servlet engine. Servlets are small (or large)
programs that are invoked by a servlet engine or a J2EE application server (such as
Tomcat, JRun, Jetty, Resin, Glassfish, IBM WebSphere, BEA WebLogic, and others).

The application servers run within the Java Runtime Environment (JRE) and call the
corresponding servlet; if a certain request comes to it, it matches certain conditions.

If this is the first time you are hearing about servlets, JREs, and similar things, no need to
worry, Railo Server can be installed with an easy installer for a complete setup. It installs the
JRE, the servlet engine, and can even hook into an existing IIS or Apache web server. What
the servlet does is completely open. In this case, the Railo Servlet allows us to do

the following:

Compile CFM files into Java bytecode

Check the syntax of invoked files

Invoke the necessary files according to the CFML syntax

Execute the bytecode and throw any errors that may occur

Build up a request environment

® 6 ¢ 6 o o

Interact with external resources, including:
o Databases
o Cache systems
o Filesystems (virtual or physical)
o Web services
o Event Gateways
o Write files

¢ Return HTML, JSON, XML, PDF, or anything else that an HTTP request can generate
and handle

Execute scheduled tasks
Send e-mails
Create and read RSS and ATOM feeds

* 6 o o

Manage sessions

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Introducing Railo Server

If you need to build a dynamic web application, Railo Server comes into play. You can use
Railo Server in order to program your applications in CFML and run your application either
in an externally-hosted server or a local server.

Basically, when a client enters a URL into his/her browser address line a request is made to a
Railo Server. The process is the following:

The URL is resolved to an IP address by checking the DNS system.

The browser sends the request to the server at the retrieved IP address.

The web server on the target server is invoked (since that runs on port 80).

i

The web server checks what kind of extension or filter definition matches the URL
(.cfmor .cfc).

The application server is invoked (assuming it is responsible for the extension . cfm).
The application server calls the corresponding servlet (in our case, Railo).
Railo processes the request.

Railo sends back HTML (or whatever else) to the application server.

W e N o U

The application server sends the response back to the web server.
10. The webserver sends the HTML response back to the client.

11. The client browser interprets the returned HTML.

So, basically with Railo, you will dynamically create static pages. The following image
illustrates this process:

. P
El reguest i FEOLES]
- T w i ER T
= respanse Intermet respanss

L

e Lesst
respon e

—

Apphcatian Sender

In essence, Railo Server provides the web developer with CFML, which is a simple
yet powerful language, as well as a highly configurable server. This helps you write
applications extremely quickly.

Railo itself is written in Java, and therefore the libraries deployed with Railo are JAR files.

Your CFML code will be compiled to Java, so you could say that programming in Railo CFML is
ultimately programming in Java because Railo generates Java and disguises the complexity of
Java applications from the programmer.

[101


http:///

Chapter 1

Whenever you use a programming language, the features and tools that come with the
language are most influential in helping you decide whether you made the right choice
for the current project.

Railo Server's strengths are geared towards Rapid Application Development (RAD). Once
you use Railo Server, you will find that you can create websites literally within hours. For
example, you can build a blog within an hour or two.

Time is a huge asset and any tool or any programming language that saves you time is
something you should take a closer look at.

Let's take a look at how easy it is to send an e-mail with Railo in comparison to other
programming languages:

First of all, this is how you would send an e-mail in PHP:

<?php
require once "Mail.php";
Sfrom = "Sandra Sender <sender@example.coms";
Sto = "Ramona Recipient <recipient@example.coms>";
Ssubject = "Hil";
$body = "Hi,\n\nHow are you?";
Shost = "mail.example.com";
Susername = "smtp_username" ;
Spassword = "smtp password";
Sheaders = array ('From' => S$from,
'"To' => Sto,
'Subject!' => S$subject) ;
Ssmtp = Mail::factory('smtp', array ('host' => Shost,

'auth' => true,
'username' => Susername,
'password' => $password)) ;

Smail = S$smtp->send($to, S$headers, S$body) ;

if (PEAR::isError ($mail)) {

echo ("<p>" . $mail->getMessage() . "</p>");
} else {

echo ("<p>Message successfully sent!</p>");
}

?>

nl



http:///

Introducing Railo Server

Let's have a look at the same functionality in Java:

import javax.mail.*;
import javax.mail.internet.*;
import java.util.*;

public void postMail( String recipients[ ], String subject, String
message , String from) throws MessagingException
{
boolean debug = false;

//Set the host smtp address
Properties props = new Properties() ;
props.put ("mail.smtp.host", "smtp.jcom.net");

// create some properties and get the default Session
Session session = Session.getDefaultInstance (props, null);
session. setDebug (debug) ;

// create a message
Message msg = new MimeMessage (session) ;

// set the from and to address
InternetAddress addressFrom = new InternetAddress (from) ;
msg.setFrom(addressFrom) ;

InternetAddress[] addressTo = new InternetAddress[recipients.
length] ;
for (int i = 0; 1 < recipients.length; i++)
addressTo[i] = new InternetAddress (recipients[i]);

}

msg.setRecipients (Message.RecipientType.TO, addressTo) ;

// Optional : You can also set your custom headers in the Email
if you Want

msg.addHeader ("MyHeaderName", "myHeaderValue") ;

// Setting the Subject and Content Type

msg.setSubject (subject) ;

msg.setContent (message, "text/plain");

Transport .send (msg) ;

}
And finally, let's compare that to how we would do it in CFML:

<cfmail from="Sandra Sender <sender@example.com>"
to="Ramona Recipient <recipient@example.com>"
subject="Hi!">
Hi,
How are you?
</cfmails>

121



http:///

Chapter 1

As you see, this is a lot of functionality with very little code!

Another comparative example would be the number of lines of code required to create a
web service. This shows you how Railo Server really can speed up your development:
PHP:25 lines
Java:16 lines
Railo:1 line
In terms of productivity, Railo Server is very powerful and can match any other programming

language in performance and especially in conciseness, as we will discover with many of the
examples in this book.

In addition, Railo Server lets you manage your resources such as databases, mail servers, and
even the behavior of the server itself with the included Railo Administration application.

8006 Railo Web Administrator -

I 4| b [EJ | + | @ http://localhost:8888/railo-context/admin /web.cfm?action=services.datasource ¢ la- Google

Server Administrator Web Administrator

Settings Services - Datasource Logou
Performance/Caching

Regional
Charset
s

cope
Application Settings
Qutput
Error Preserve single quotes Prasarve single quotes (*) in tha SOL defined with tha tag clquery
Services

Event Gateway (Beta)

Cache

Datasource

ORM (Beta)
Sasitnc Datasources

Name Type Storage Check
dbincludes MySQL No
mydatabase MySQL No
rallobook MySQL No
rallomura MySQL Ne
videoshare MySQL No

update  cancel  Reset to Server Administrator Setting

Scheduled tasks

Extension
Applications
Providers

Remote
Security Key
Clients

Archives & Resources L verify | cancel | delete

NNRNN

CFX tags -

Development Create new datasource
Debugging

Security

Password

Name

Type DB2
Documentation
Tag Reference create cancel
Function Reference
Plugins

Naote
Simon

1131



http:///

Introducing Railo Server

Another feature that the Railo Server includes is session management, allowing the state of
users to be persisted across several requests.

This feature is also expanded in being able to store general code settings in an application
scope. This is kept in memory so that the environment doesn't have to be built up on each
request; this, means great performance benefits right out of the box for your application.

With Railo Server, scaling and clustering is extremely easy to achieve without having to
configure a full-blown J2EE cluster.

Starting with basic CFML, we can explore the full power of Railo components, caching
features, database interaction, and last but not least, Java interaction.

What else can you do with Railo Server?

This section will outline some of the features that also come with Railo Server and will give
you some idea of the power behind it.

CFML compiler

Railo Server has an integrated bytecode generator (written with ASM) that directly compiles
CFML written templates into Java bytecode. The compiler is very fast and, on average, it
compiles a template file in less than 10 milliseconds.

In early versions, Railo Server translated CFML code into XML, then used XSL to convert it
into Java, and finally used a Java compiler to generate bytecode. Since version 2.0, Railo has
had an integrated bytecode generator. The compiler is able to spot syntax errors in templates
and throw errors accordingly.

Railo archives—compiled code

Railo Server is capable of using Railo archives that are compiled versions of your templates.
This allows you to package and distribute your applications without having to worry

about other people viewing your code and possibly stealing your intellectual property.

In addition, the size of your application decreases drastically and it executes a lot faster

(as it is already compiled).

(14l


http:///

Chapter 1

Wide variety of CFML tags and functions

Railo Server has more than 125 tags and over 500 functions that allow you to create the best
applications in no time. There are tags and functions for nearly every task you can think of,
from manipulating arrays to converting images. The great thing is that Railo Server is also
extendable, so you can create your own functions and tags to extend your application or

the server itself.

CFML components give you the power you need in order to scale and design MVC-based
applications. They allow you to use Object Oriented Programming (OOP) techniques such as
methods, encapsulation, and inheritance. This leads to robust, encapsulated code, and, in
the long run, reduced maintenance costs.

Railo Server also integrates a scripting version of the tag-based programming language.
Programmers who are familiar with the coding syntax of other languages, such as JavaScript,
PHP, or JSP, will enjoy this feature.

For example, you can create a component using tags as follows:

<cfcomponent output="false">
<cffunction name="init">
<cfreturn this />
</cffunctions>
</cfcomponent >

You can also use the cfscript format to achieve the same thing:

component output=false({
function init () {

return this;

}
}

Integrated administration frontend

With the web and server administrator, Railo Server offers a very easy tool in order to
configure the behavior of local and global applications. The Web and Server Administrator
applications are the main tools you will use in order to interact with the behavior of Railo. Of
course, these applications are also built using CFML. So, you can programmatically adjust all
the settings from CFML itself.

151


http:///

Introducing Railo Server

Background task execution

Railo Server integrates a task manager that allows you to asynchronously execute requests in
the background.

Extension manager

Railo Server tries to include everything you need, but sometimes there are things that are
very specific to your application. For this, there is an Extension Manager that allows you to
add features to Railo Server directly from the Railo Server Administrator application. The
extension store offers programmers a whole new set of features and applications that are
easily installed and updated.

Easy update mechanism

Extensions are not the only thing that can be easily updated. You can update Railo Server
itself to the latest version with just a click. In the Railo Server administrator, you will get
notifications as soon as a new release of Railo Server is available and this allows for a
one-click update. If you need to restore the old version again, it is also just one click away.
Normally, it is only a matter of seconds.

Compatibility

When developing Railo Server, it was a strict goal to keep compatibility with the CF standard
as tightly as possible. This is demonstrated by the fact that with various applications, a
change of the application server to Railo did not change anything in the runtime behavior of
the application itself, except maybe for the improved speed. So, if you already have some CF
applications running, there's no reason to fear high migration costs.

At the moment, all of the major CFML frameworks or Content Management Systems
(CMS) work with Railo Server. So, if you are used to using a framework or tool like FW/1,
ColdSpring, ModelGlue, CFWheels, or ColdBox, you don't have to fear incompatibilities. In
fact, FW/1 is even written by one of the members of the Railo team, Sean Corfield.

Security

With Railo Server, global security settings can be made for all applications running on
the server. For example, access to the filesystem can be denied for a single application or
restricted only to files that lie within the web root of the application.

1161


http:///

Chapter 1

In Railo Server, it is very easy to interact with different virtual filesystems (VFS). The local
hard disk is just an instance of a virtual filesystem. Other VFSs that Railo supports are RAM,
HTTP, DB, FTP, SFTP, ZIP, TAR, S3, and others.

Railo Server's main goal was to be the CFML engine with the best performance. One of the
main reasons why this goal can be achieved is because Railo uses common resources for all
applications. Additional changes in the architecture and various internal structures allowed
us to push the performance to higher limits. To the end user, these changes are noticeable in
a short response time, during the execution of the same code on the various engines.

The easiest way to give Railo Server a try is to download Railo Express, unpack it, and hit a
batch file. There is no easier way to install the software. Railo Server can also be downloaded
as an integrated installer for various operating systems and will install Apache Tomcat and
add connectors from web servers, such as Microsoft's IIS and the Apache HTTP server.

Railo Server is free and an open source LGPL V2 allowing you to both use and re-distribute
your applications with the underlying engine.

When it comes to using Railo Server in a clustered environment, there are some useful and
inexpensive extensions that can be purchased. Just use the Railo Extension Manager that is
part of the Railo Administration Application in order to see what extensions are available.

Because Railo Server is free, you don't have to fear any update cost or high-initial cost if you
plan to use it in a large environment.

Railo Server makes scaling and clustering very easy. You are able to build independent nodes
that act as a virtual cluster and meet any scalability demand your application may have.

[l


http:///

Introducing Railo Server

Hopefully, this chapter has given you an overview of what Railo Server offers the web
developer in terms of ease of programming, conciseness of language, and feature set.

You should now have an idea of:

The small number of lines you need to write to get things done
The rich number of features that Railo Server provides
How easy it is to extend Railo Server by using extensions

The way templates are processed and delivered to the client

* 6 6 o o

The powerful Java underpinnings that are made available to you without
any complexity

In the next chapter, we shall have a look at the various ways you can install Railo Server and
how to get up and running quickly under different environments.

[181


http:///

Let's get started with Railo Server! The first thing we want to do is install it on
our computer. Luckily, this is pretty easy.

Railo Server is essentially a Java web application that can be installed on many
servlet containers such as Jetty, Tomcat, and Resin. In this chapter, we are going
to look at the three different ways to install Railo Server

In this chapter, we will:

¢ Get up and running with Railo Express
¢ Get up and running with the Railo Server Tomcat installer in Windows environment

¢ Get up and running with the Railo WAR and Jetty in the Linux environment

So, let's get on with it!

Getting up and running with Railo Express
Running Railo Express is probably the quickest way that you can get started with Railo.

Railo Express includes Jetty, which is a very lightweight servlet container and a great way to
get a local development version of Railo running on your machine. This is very helpful when
you want to try out the code samples in just a few minutes without having to permanently
install any software.

Servlet containers are a way to run Java applications to be served by a
% web server. They can be run standalone or connecting to a web server
’ such as Apache or Microsoft's IIS.

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Installing Railo Server

Time for action — downioading Railo

The following Railo Express procedure is for OS X, but it is identical to how we do it on
Windows. Let's get started!

1. To get started, we should first head to
http://www.getrailo.org/index.cfm/download/.

2. Scroll down to the Current stable release table and select the correct version for
your operating system (in this case, we are downloading the Railo Express for OS X).

Current stable release (3.2.1.000)

Rallo Server with Tomcat 6.0.29
& Install instructions

Rallo Express (Jetty 7.2.2)
08 X: ¢ Install Instructions
‘Windows: & Install Instructions

Rallo Custom
& Install Instructions

3. Once you have downloaded the ZIP file, extract it and we will have a folder like the
one shown in the following screenshot:

& Nno [ railo-3.2.2.000-railo-express-macosx —)
Name & Date Modified Size Kind

“ about.html 15 March 2011 14:01 4 KB HTML ...ument

» [ bin 15 March 2011 14:01 - Folder

» [ contexts 15 March 2011 14:01 - Folder

> G etc 15 March 2011 14:01 - Folder
=) install.txt 15 March 2011 14:01 4 KB Plain Text

» [ lib 15 March 2011 14:01 - Folder
=| LICENSE-APACHE-2.0.txt 15 March 2011 14:01 12 KB Plain Text
#] LICENSE-ECLIPSE-1.0.html 15 March 2011 14:01 20 KB HTML ...ument
= License.txt 15 March 2011 14:01 29 KB Plain Text

» [ logs 15 March 2011 14:01 - Folder
# notice.html 15 March 2011 14:01 BKB HTML ...ument
=] README.txt 15 March 2011 14:01 4 KB Plain Text

> D resgurces 15 March 2011 14:01 - Folder
M stan 15 March 2011 14:01 4 KB Unix E...le File
= startini 15 March 2011 14:01 4 KB MS Wi...ion file
M swop 15 March 2011 14:01 4 KB Unix E...le File
= VERSION.txt 15 March 2011 14:01 213 KB Plain Text

» [ webroot Today, 10:31 - Folder

[201



http://www.getrailo.org/index.cfm/download/
http://www.getrailo.org/index.cfm/download/
http:///

Chapter 2

4. Now that we have expanded the ZIP file, you can start Railo Express by clicking on
the start file (start .bat on Windows). If we get a security warning, just click
on Open.

“start” is a Unix application downloaded from the
Internet. Are you sure you want to open it?

Google Chrome downloaded this file on 26 January 2011 from
www_getrailo.o rg.l

@ ( Show Web Page :I ( Cancel ) ( Open :I

5. Aterminal window will open and start a list of commands; this is Railo Server
starting up. Once the commands stop running, you can check that Railo Express is
running correctly by going to http://localhost: 8888, where you will get Railo's
welcome screen:

Welcome to Railo 3.2

[ <[> | [+ htp://tocalhostg888/ ¢ J(Qr Google

%ﬂ(ﬂ) Welcome to the Railo world.

Railo 3.2
Getting Started Yo
Comunity Website
Wiki - Documentation

Railo mailing list

Important notes

Thank you for choosing Railo Server as your GFML engine. If you have installed Railo on your production server, please make sure that
'your Server Administrator is protected and that you have set a default password for the Web Administrator.

Support & consultung

Please check the quick start guide on our page on how to begin. In our Wiki you will find a lot of useful information and documentation.
If you have installed Railo Express, please check out our installation guides for other platforms and application servers which are available
In the wiki.

At the moment this page runs on the virtual host localhost. If you like to know how to add additional virtual hosts which result in Railo
contexts please check the wiki on how to do this. Creating new virtual hosts

Railo Administration

If you want to call the Railo Administrator, just follow this link:

« Rallo Server Administrator

+ Rallo Web Administrator

“1»-‘

6. Hurray! Railo Server is running!

[211



http://localhost:888/
http:///

Installing Railo Server

What just happened?

You just downloaded and ran Railo Express. Nothing was installed to your computer, but
you're still able to get up and running with Railo extremely quickly.

Now that you have Railo running, let's customize it a bit. We will need to assign the
administrators some passwords, add our own CFML files, and start developing!

Time for action - setting the administrator's password

1. To update the passwords for both the server and the web administrators, let's point
our browser to http://localhost:8888/railo-context/admin/web.cfm.
You will get the web administrator's login screen. Because no password is currently
set, Railo Server will prompt you to set one:

ano Railo Web Administrator
[ - | > ] [+ |@http:HIoca\host:88SBjrailo—conlextfadminfweb.cfm C] I(Q‘ Google p

Server Administrator Web Administrator

New Password

can't aceess, no password is defined

Password

Retype new password

Language | English |% ]

submit

& 2011 Railo Technologies GmbH Switzerland. All Rights Reserved. | Designed by Blue River Interactive Group, Inc.

[22]



http://localhost:8888/railo-context/admin/web.cfm
http:///

Chapter 2

2.
3.

4.

Enter your password and retype it to set the web administrator password.

Now click on the Server Administrator tab at the top-right-hand side and repeat
the same procedure again. You have now set the passwords for the whole server
administrator and for the web administrator.

Now that we have secured our server, we can start coding. You can find the webroot
in <railo folders/webroot, which is where we will save our template files. The
main file will be index.cfm, which is already there.

What just happened?

You now have a fully-functional development environment for Railo and you didn't even have
to install any software to get there!

Running the Railo Server Tomcat installer

The Railo Server Tomcat installer was developed with several goals in mind. Those goals are
as follows:

*

Easy Integration with the existing web servers: As a general rule, most developers
are comfortable working with either Apache or IIS as their web server, and don't
want or need to use anything different. The Railo Server Tomcat installer provides

a way for those developers to get up and running quickly with support for their
preferred web servers. This means those developers (and possibly you) will not have
to change their development style too much in order to get comfortable with Railo.

Better "Control Panel" support: By seamlessly supporting existing web servers,

the Railo installer can very easily be deployed by hosting companies or individuals
using services from a hosting company. This gives Railo developers the ability to use
whatever Control Panel (such as cPanel, Plesk, Virtualmin, and so on) they're most
comfortable with and still have Railo support.

Easy Support for multiple sites.

The Railo installer makes it easy to run many sites, and many web applications off
a single instance of Railo. This is different from, say, a WAR deployment where
possibly many instances of Railo can be deployed at a single time. It also saves
memory because there is only one instance of Railo running.

The Railo installers provide the most flexible and easy ways to get up and running on Railo.

[231


http:///

Installing Railo Server

Time for action - installing on Windows

Let's install Railo Server on a Windows machine to see how easy it is.

Before we install this version, make sure that Railo Express is not running anymore. If you still
have the start/start.bat console window open, close it now. The reason for this is that

both Jetty (Railo Express) and Tomcat listen to port 8888 by default, and only one program
can bind them to a given port at the same time.

1. As with Railo Express, let's head to
http://www.getrailo.org/index.cfm/download/

2. This time, let's download the Railo Server with Tomcat version:

Current stable release (3.2.1.000)

Py A )
A ” A
- 3 — &

Windows 05X Linux ALLOS

Railo Server with Tomcat 6.0.29 Railo Server with Tomcat 6.0.29 it “nix B4bit

The server version is the main version of @ Install instructions run 92 MB

Railo. This version is delivered with *nix 32bit

Apache Tomcal as the integrated run 97 MB,

application and web senver. This version » _— . B

is recommended for production use. Railo Express (Jetty 7.2.2) _\illu;L:L‘_IIEE 0s :iA ‘_U:TTILEJRE - \‘t!1 ‘Jf'\E\E

Read our installation guidelines on the o o D

Rallo wiki for more information. ith JRE

zip 79 MB;
Railo Custom AR _—[=:m‘ e
# Install instructions wiar 43 MB
JarFiles
zip 43 MB

JarFiles

(targz 43 M

3. Once we have downloaded the executable, we run it, We select the language we
want to install it in, and click on OK:

Please select the installation language

English - English

oK ]’ Cancel ]

4. When we get to the introduction screen, we click on Next >.

[24]



http:///

Chapter 2

5. When asked where to install Railo Server, we leave it as C: \railo and click on
Next >:

Installation Directory

Flease specify the directory where Railo will be installed.

Installation Directory C: \rilo)

< Back ” MNext = ][ Cancel

6. The next screen asks us what we would like the Tomcat Administrator's username to
be. We can leave it as admin and click on Next >:

Tomcat Administrator Username

Tomcat indudes a web interface that can be used to manage some aspects of your Tomcat server,
Please enter the username that you would like to use to access that web based administratar.

Tomcat Administrator Username m

l < Back H Mext = ” Cancel

1251



http:///

Installing Railo Server

7. The Tomcat Administrator Password screen comes up. We then enter the password
we want for it and click on Next >.

Tomcat Administrator Password

Mow I need & password for the Tomcat Administrator...

Tomcat Administrator Password | yourpassword

< Back H Next > H Cancel

8. The Start at Boot?? screen appears and we leave it checked so that when the
machine restarts, we know that Railo Server will be ready to serve requests.
We click on Next>

Start At Boot?

Do you want Railo to start up automatically whenever the system boots up?

Yes, Start Railo at Boot Time

< Back ]l Mext = |[ Cancel

1261



http:///

Chapter 2

9. The Install FusionReactor screen appears. FusionReactor is a server-monitoring
tool by Intergral GmbH. It is outside the scope of this book, so for this example, we
will leave it unchecked and click on Next>:

Install FusionReactor? %j‘(ﬁ

Evaluate FusionReactor server monitor for 10 days free of charge

- Gather and log metrics on requests, CPU, Memory, and more.,
-Manage all of your servers from a single user interface.

- Keep servers responding even as they run out of memary.,

- Receive notifications whenever there is a problem.

FusionReactor has virtually no everhead and is built for continuous use in production environments.

[ tnstall FusionReactor Server Monitoring?

[ < Back “ Next = |l Cancel l

10. Now that the Railo Server installer has gathered all the information it needs, it is
ready to install Railo. Click on Next >:

Ready to Install

Setup iz now ready to begin installing Railo on your computer.

[ < Back ]| Mext = |[ Cancel

[21]



http:///

Installing Railo Server

11. After a few seconds, you should get a confirmation screen that everything has been
installed and you have the option to open the Railo Server Administrator. Leave this
checked and click on Finish:

Completing the Railo Setup Wizard

Setup has finished installing Railo on your computer.

[¥] Open the Railo Server Administrator now?

Cancel

12. You should now be taken to the welcome screen of Railo Server. Just as with Railo
Express, you can goto http://localhost:8888/railo-context/admin/
web . cfmto change the server administrator and web administrator's password:

I,E:] hitp://localhost:8888 railo-context/admin/server.cfm

i Favorites [ Railo Server Administrator - v [ @ v Pager Safety~ Took+ @~

Server Administrator Web Administrator

New Password

Password
Retype new password
Language English

submit

13. Congratulations! Railo is now installed on your computer!

[281



http://localhost:8888/railo-context/admin/index.cfm
http:///

Chapter 2

What just happened?

You now have Railo Server installed on your computer, running under the Tomcat servlet
engine. You can now create sites in 1IS or Apache like you normally do, and have the CFML
code that you put in each of those sites processed by Railo.

Differences in installers

\l If the installer had different steps for your installation it might be
~ because you already have a web server, such as Apache or IIS,
Q installed. You can follow the installation process for your particular
settings and all that should change at the end of the process is the
URL that you will be using.

Adding CFML-enabled sites to lIS7

The Railo Server installer creates an instance of Railo Server that is built to support having
a web server in front of it. In this section, we will review how to go about adding sites to IIS
and configuring them to process CFML code. The process is similar for both IIS and Apache,
so we'll just go through the IIS process here.

Time for action — adding a site to l1S7

To add a Railo-enabled site to I1S7, just carry out the following steps:

1. Create your site in IIS. This part is no different than what you would normally do to
create a site in IIS.

1291

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Installing Railo Server

2. Inthe IIS site that you want to connect, create a virtual directory in your new
site named jakarta and point it to your connector directory, which is usually
at c:\railo\connector.

d17 8. i = jakarta Home

N SuriFage = =
= ) WIN-SEPTIEE (- | | e ™ HE e - Shew M | Gra By
o} Apphcation Poals s
= @ SIS
= i Detwit web Ste a "'.'|

. d 9

o & &

Muthenbcaton Compresmon et Dwectory Ervor Pages
Dcecurment Browenrsy

N = A

Lopng MIME Typues Moduies

Required for
*EVERY* new site!



http:///

Chapter 2

3. Next, go to your Start menu. Click on the Railo folder, and then click on the Tomcat
Host Config link. This will open the Tomcat's server.xml file in Notepad, so you

can edit it.

D Defau Programs
53 Windows Fax and Scan
] Windows Update
w105 Viewer

b Accessores

4 Admirastrative Tools

. Games

. Google Chrome
. Maintensnce

. Open EhueDragen

. Rails
) Railo Server Ademinastrator
BB Railo-Tamiat Service Cortrol
B Railo-Tomncst Service Manitor
B Tomato Cont,_
B Uninctall fado |

. Startup

. Sum VirtualBox Guest Additions.

| Viitware

[311



http:///

Installing Railo Server

4. Notice the comments in the server.xml file. Add an additional Host entry to the
file that states your domain name and where your files are located for that domain.

File Edit Format  View Help
resources under the key “userbatabase”. A its
that_are performed against this userparabase are immediately
available for use by the reals. --=
<realm classname="org. apache. catalina. realis. userpacabaserealm”
résourceNanes="UserDatabase” =

<!== pefine the default wirtual host B
Mote: ¥ML Schema validation will not work with Xerces 2.2,
-2
<HOST name="localhost™  appBases="webapps”
unpackwaRs="Trua” aumueﬁﬂny-"true"
xmlvalidations"Talse” xminamespacesware="false"s
</ HOLZT >

£

Adg additional VIRTUALHOSTS by copying the following example config:

EENTER DOMAIN NAME] with a domain, IE: www. mysite.com

ENTER SYSTEM PATH] with your web site’s base directory. I£: /home/user /public_huml
pon't forger to remove comments! i)

-

Fip-
«HO3t name="[ENTER DOMAIN Nm[}" appBase="webapps ">
«Context path="" docBase= [ENTER S¥STEM PATH]" /=
«/Host>
==

<HOsST name="getrailo.org” applases"webapps”s
<Context paths"" docBase="c:'sitesigecrailo.ergh” /»
<A1 assweiw. getrad 1o, orge/alfass

£ HOS T >

< /Engines
</Service>
‘

S80F/E0 @ EnrightCui

5. Now that you've set up IIS and configured your new host in Tomcat, you need to
restart Tomcat for your changes to take effect. You can do this using the Tomcat
Service Control option in the Railo Start menu folder.

The Railo WAR is a general-purpose install method that is meant for use with any Java servlet
container (such as Jetty, Tomcat, JBoss, Resin, and so on) that supports WAR deployments. If
your organization is already using Java and a Java Servlet Engine, this will be an easy way to
get an application up and running within your existing Java environment.



http:///

Chapter 2

What is a WAR?

M In the context of Java Servlet Engines, a WAR file is a file that contains
Q all the programs and classes that Java needs in order to run a single
application. For Railo, this means that the WAR file contains all the
programs and classes needed to run Railo and process CFML code.

WAR files can be deployed anywhere, on any operating system. Earlier in the chapter we
covered installing to the Tomcat Servlet Engine under Windows OS. We will now cover
installing Railo to a Jetty Servlet Engine running on top of an Ubuntu Linux machine.

Time for action — downloading and installing Jetty

Let's download and install Jetty so we can get Railo deployed:

1. Open aterminal window in Ubuntu by going to Applications | Accessories | Terminal.
2. Once you have a Terminal open, type in the following:

$ sudo apt-get install jetty libjetty-extra-java

E'El jordan@jordan-desktop: ~
File Edit View Search Terminal Help
j jor top:~$ sudo apt-get '_'lzta]_]_ljett'-,-' libjetty-

3. Ubuntu will prompt you for your password so that it knows you have the permission
to be installing software on the machine. Go ahead and enter in your password and
Ubuntu will install Jetty from there.

What just happened?

You just used the Ubuntu command apt -get to tell Ubuntu to go out to a public file location
(called a repository), download the files for Jetty, and install them on your computer. It's
actually a pretty complicated process, but it's made really simple with this one command.



http:///

Installing Railo Server

Time for action - hooting up Jetty

It is important to note that Jetty will not start yet. There is a safety precaution in a
Jetty configuration file that helps avoid problems. We need to go edit the default Jetty
configuration and remove this safety block.

You can use whatever text editor you prefer, but we're going use the "vi" editor for
this example.

Let's open up the /etc/default/jetty configuration file in the "vi" editor. To do this, all
you have to do is type:

sudo vi /etc/default/jetty

1. Now that you're in "vi" editor, use the arrow keys and move your cursor to the
beginning of the line that states NO_START=1.

2. Hit the / key on your keyboard. This will put the "vi" editor in what's called
Insert mode and allow you to insert text. You will see a white - Insert - at the
bottom-left-hand side of your screen. This is how you know you're in Insert mode.

3. Type a pound sign (#) in front of the "NO_START=1 line, so that it looks like
"#NO_START=1. This will comment out that line.

4. Hit the Escape key (Esc) to leave Insert Mode. You will see that the white - Insert - is
no longer at the bottom-left of your screen.

5. Now type :wq! and hit the Enter key. This will save your file and exit the "vi" editor.
You're done!

Now that we've edited the configuration file, we're free to start up Jetty. Type the following
to start the Jetty Servlet Engine:

$ sudo /etc/init.d/jetty start
You will see Jetty start up, which is something like this:

jordan@jordan-desktop: /opt

View Search Terminal Help

341


http:///

Chapter 2

This screen is telling you that Jetty was able to start and is now listening on port 8080 of your
local computer. My computer name is jordan-desktop. This is what the script put as the URL.
Instead of jordan-desktop, it's probably better to use 1localhost, because it's less likely

to be firewalled and cause problems. If you're installing to a remote machine, you could also

use that machine's remote IP address. Just make sure there's no firewall blocking port 8080.

We will need that port open in order to use it.

Now, let's test to make sure we can see our new Jetty install. Try hitting
http://localhost:8080/ and make sure you get the Jetty page, as shown
in the following screenshot:

—

Welcome to Jetty 6 on Debian - Google Chrome

[ Welcome to Jetty 6 ...
. e | © localhost 8080 |

m HTTP/1.1

Welcome to Jetty 6 on Debian

Jetty is a 100% Java HTTP Server and Servlet Container. This means that you do not need to
configure and run a seperate web server (like Apache) in order to use java, servlets and JSPs to
generate dynamic content. Jetty is a fully featured web server for static and dynamic content. Unlike
separate server/container solutions, this means that your web server and web application run in the
same process, without interconnection overheads and complications. Furthermore, as a pure java
component, Jetty can be simply included in your application for demonstration, distribution or
deployment. Jetty is available on all Java supported platforms.

You can also visit Jetty's Javadoc

If you see the same thing as in the previous screenshot, you're all set! Your computer is now
prepared to install the Railo WAR.



http:///

Installing Railo Server

Time for action - downloading and deploying the Railo WAR

The process of deploying a WAR file is super simple. You just download the WAR file, place it
in the webapps or webapp folder of whichever servlet engine you're using, and your servlet
engine will handle the rest via AutoDeploy. The following steps describe how to accomplish
this with our Ubuntu/Jetty install.

Current stable release (3.2.2.000)

& B & S

—
Windaws 08 X Linux ALLOS
Railo Server with Tomeat 6.0.20 &
& Install Instructions M lal k
il

Railo Express (Jetty 7.2.2) With JRE 05 X Without JRE Viithout JRE
08 X: o Install instr 5 i 48 MB (targz 48 M
Windows: " Insia ructions Withaul JRE th JRE

18 M 4 W
Railo Custom My WAR Archive
& Install instructions / (war 43 MB

1. Move to the Jetty's webapps folder. You can do that in Ubuntu's Terminal interface
by typing in the following command:

$ cd /var/lib/jetty/webapps/

2. Download Railo's WAR file. At the time of this writing, the most recent Railo release
is 3.2.2.000, so let's download that WAR to our Jetty webapps directory.

3. To save time in the future, let's rename that WAR file to simply railo.zip with the
following command:

$ sudo mv railo-3.2.2.000.war railo.zip

4. Unzip it so that it's deployed:

$ sudo unzip -d railo railo.zip



http:///

Chapter 2

5. Remove the ZIP file as we're done with it:

$ sudo rm railo.zip

6. Finally, change the permissions of the extracted files to match that of Jetty:

$ sudo chown -R jetty:adm railo

7. Now let's restart Jetty so it will pick up our new railo folder:

$ sudo /etc/init.d/jetty restart

8. Now we should be able to access Railo from the web at
http://localhost:8080/railo/.

Welcoma to Railo 3.2 - Google Chrome

Welcome to the Railo world.

Railo 3.2

Getting Started
Cormunity Website
Wiki - Documantation

Raile mailing st Important nDte

Niaith you Kf chooing Railo Sarvar as yous CRL eng

Support & consultung

you It irvetalbed Fail on your
v sl & dabwull password forthe Web A

your Server Adminisiraior s pralested and thad

ji on finw 1o Bogin Inaes Wikl yons sl ind a ot

herck oLt our inatnd ation guides for olher platficers and apr

ua IR0 I P ikl

A e rorrant Bve page rung an e driusl ol localhost, you like (o ko bow o add sddiions! drios! hesis which sesall in Raily
colrats pransa chec e wiki on hew o do s Cresting nes

9. Congratulations! We have installed Railo with Jetty Web Server.

Once you see this screen, you're all set! You are now able to get started developing on Railo
under Jetty.

To add your own CFML files to this install, you just add them to the railo directory. Be
sure to not touch the WEB- INF directory, as that's where Railo lives and processes your
CFML files.

[311


http:///

Installing Railo Server

What just happened?

You just installed Railo on top of your Jetty install. You can now drop your own CFML
files into the railo directory. Be sure to leave the WEB- INF directory there. It contains
important files that Railo uses to process your CFML code. But don't worry, this folder is
not web accessible.

sSummary

In this chapter, we saw how simple it was to install Railo Server in various environments.
We started with the Railo Express version, which includes Jetty and is standalone. It can

be started from a simple script without needing to install or connect it to a web server. We
then used the Railo Server installer to install Railo with Apache Tomcat into a Windows
environment and then connected the IIS server to our sites. Finally, we saw how easy it was
to install on an Ubuntu server by simply getting Jetty through the apt command and just
deploying it to the Railo WAR.

We also briefly touched on securing the Railo Web and Server Administrators by adding
a password and found out where we should put our CFML templates to get started
in developing.

In the next chapter, we are going to talk more about CFML, so that we can get to grips with
the structure and syntax of this very easy, yet powerful, language.



http:///

CFML Language

Now that we have got Railo Server installed, we can finally get down to
some coding!

This chapter will introduce you to the CFML programming language, the
programming language that lets you build awesome web applications that can
run on Railo Server. The great thing about the CFML language is that it is really
easy to get started, using simple tags and functions that generally are self
descriptive, which will get you coding applications from the start and become
a master of the language in no time at all!

In this chapter, we shall learn the following:

Basics of the language: tags, functions, variables, operators, and scopes
Database access: configuring data sources, running queries and stored procedures

Handling web data such as forms, URL variables, cookies, and sessions

* 6 o o

Object-oriented programming with components

Why don't we dive in and get started!

The CFML language history

*  The CFML language was initially created by Allaire Technologies for their
ColdFusion Server in 1995. CFML is an acronym for ColdFusion MarkUp

Language, and currently three servers (Railo, OpenBD (Open Blue Dragon),
and Adobe's ColdFusion Server) support the language.

[vww allitebooks.cond



http:///
http://www.allitebooks.org

CFML Language

Basics of the CMFL language

The idea behind the CFML language was to let web developers have a way to create
server-side applications quickly and easily. To do this, it was designed to use coding
metaphors that are familiar, such as using tags (like HTML tags) and functions (just like
JavaScript functions).

If you have done HTML development, you will be used to using tags to describe the layout
of your document. With CFML, you describe what you want to do on the server side, for
example, saving the contents of a feedback form, display details of a product stored in a
database, allow a user to login to your site, and so on.

When you write CFML code, it is not displayed in the browser, but rather parsed by the
server, providing you a way to output some code. To show you an example, let's try the
quintessential Hello World example.

Time for action — Hello World!

Create afile called 1isting3 1.cfm with the following contents (most CFML pages end
with the extension . cfm.. This tells Railo Server that this file should be parsed):

<html>
<head><title>Example 1l</title></head>
<body>
<cfset hello = "Hello World"s
<cfoutput>#hello#</cfoutputs>
</body>
</html>

You can now save this file to <railo install directorys/webroot/listing3 1.
cfm, and then we can view the results by goingto http://localhost:8888/
listing3 1.cfm(you should be using the Railo Express edition you installed in
Chapter 2, Installing Railo Server for all these examples). You will see the output

"Hello World" displayed in your browser.

What just happened?

In the preceding code, we have an example HTML document that we have added some CFML
code to. In the preceding example, we used the <cfset> tag to set the variable hello with
avalue of "Hello World".Then we use the <cfoutput> tag to say that we want to start
outputting the hello variable to the document.

We use the # (pound or hash) sign surrounding a variable to output it. This is one of the most
basic ways of outputting variables.

[401


http:///

Chapter 3

If you look at the source of the browser document, you can see that the server has replaced
all the CFML tags and variables and output the following HTML:

<html>
<head><title>Example l</title></head>
<body>

Hello World
</body>
</html>

CFMLtags

There are a number of CFML tags that allow you to code nearly anything you can imagine.
But before we start investigating some of these tags and their functions, it is good to
understand the general syntax of CFML tags. The overall syntax of CFML tags can be
described as:

<tagname attribute="value">
Code/text that is affected by the surrounding tags.
</tagname>

A tag can have one or more attributes that have values similar to HTML. They can also wrap
some code or text that will be affected by the surrounding tags. It is important to note that
despite the previous example, all CFML tag names start with "cf"; so, for example, we have
tags called <cfaborts>, <cfloop>, <cfoutput>, and so on.

Single tags with attrihutes

A number of CFML tags can be used as a single tag, without the need to close it.
For example:

<cfabort>

You might notice that since it is a single tag, you don't need to add a closing tag. For the
sharp eyed ones amongst you, you will notice that you also don't need to use XML-type
syntax and add a closing forward slash in the tag like <cfabort /> because CFML doesn't
require them, but you can use them in your code. As an aside, the above tag stops the page
execution. We shall look in detail at the functionality of each tag later on.

Tags can also have attributes, which define what they do as shown next:

<cffile action="read" file="/somefile.txt" variable="myFile">

[aml


http:///

CFML Language

The previous tag has a number of attributes that define how it functions better, in this case,
to read afile from /somefile.txt and put it into a variable called myFile. Nearly all tags
in the CFML language take some attributes.

Tags with expressions

As we saw before, there are tags that take attributes, but some tags just take an expression;
two notable tags in this category are <cfset> and <cfif>. You already saw how you can
set a variable with <cfset>, which is its purpose, but you can also evaluate expressions,
for example:

<cfset ArrayAppend (myArray, "something") >

We use a function to add an item to the array myArray with the value something. There is
no value set, but we have still achieved a goal.

Another tag that uses an expression instead of an attribute is the <cfif > tag. This tag
allows you to perform conditional logic, depending on whether an expression is true,
for example:

<cfif isNumeric (myValue) >
The value is numeric
</cfif>

The previous code evaluates the value myvalue with the function isNumeric () to check
whether it is a number value. If the expression evaluates to true, then the contents between
<cfifs>and </cfif> are displayed.

Time for action - single tag example

Let's create an example where we can use a few single tags.

In our <Railo Install Directorys>/webroot/Chapter 3/ folder, let's create afile
called tag_example.cfm.

In this tag, let's add a form and some code that will respond to changes in a checkbox:

<cfparam name="FORM.doexecute" default="false">

<hl id="logic example">Logic Example</hl>

<form action="tag example.cfm" method="post">
<label for="execute">Execute</label><input
type="checkbox" name="doexecute" value="true" id="execute">
<p><input type="submit" value="Submit"></p>

</form>

[42]



http:///

Chapter 3

<cfset output = "">
<cfif FORM.doexecutes>
<cfset output = "We are going to execute some code!">
<cfelse>
Aborted!
<cfaborts>
</cfif>

<cfoutput>#output#</cfoutput>
<brs>
This is the end of the file

Let's run this in the browser by going to http://localhost:8888/Chapter 3/tag_
example.cfm. You will see the form with a single tickbox:

B O O http://localhost:8888/Chapter_3/tag_example.cfm .
[«/> | (@] + @ nupy/iocalhostssss/chap: ¢ | (Qr Google

Logic Example

Execute
Submit

Aborted!

If we submit the form, without ticking the checkbox, you will always see the Aborted!
message at the bottom.

If we now tick the Execute checkbox, you should see a message saying:
We are going to execute some code!

This is the end of the file

What just happened?

In our example we have used a few tags to set variables in our code. At the start of the file,
we put a <cfparam name="FORM.doexecute" default="false"> statement, which
sets the FORM. doexecute variable to false, but only if it doesn't exist. This is important to
note. Otherwise we would have to check if that form variable has been passed in. This is a

neater way of coding, as it removes the need to check for variables all the time.

[431


http://localhost:8888/Chapter_3/tag_example.cfm
http:///

CFML Language

We then create a simple form with a checkbox. This form will actually post back to the
tag _example.cfmfile.

We then use the <cfset output=""> to set up a variable called output, and then use the
<cfif>, <cfelses> and </cfif> tags to test whether the value of the FORM. doexecute
value (which is passed into the form) is set to true or to false.

If the value of FORM. doexecute is false, we then use the <cfabort> tagto escape the
rest of the execution of the file.

Tags with content

As you saw in the previous example, some tags take content, such as the <cfif> tag. There
are other tags that can take parsed content within them. A notable example of this is the
<cfquerys tag:

<cfquery name="myQuery" datasource="myDatabase">
SELECT *
FROM Users

</cfquery>

The code above shows how, instead of outputting the text within the <cfquery> tags, the
content will be parsed as SQL and executed against the database defined in the datasource
attribute. In this example, we would now have the results of our query in the myQuery
variable. If we want to loop through the results, we can do the following:

<cfoutput query="myQuery">
Username: #name# <br>

</cfoutput>

The previous code would output a list of all the values in the name column of the Users
table (of course, if that is what you have in your database).

® O O http://localhost:8888/Chapter_3/query_example.cfm "
(<> |[©] [+ @ nup//localhost:8888/Chapter & | (Q- Google

Username: Dara
Username: Alexander
Username: Claudia
Username: Michael
Username: Kenneth
Username: Veda
Username: Cheyenne
Username: Alisa
Username: Melodie
Username: Kessie
Username: Brody
Username: Remedios
Username: Nayda

1T Sh

(441


http:///

Chapter 3

Tags with sub tags

There are a number of tags that can only be used within another tag. These tags

usually allow the parent tag to filter or pass more variables. A great example is the
<cfqueryparams> tag. This allows you to specify the value and type that you are passing to
a query and allows you to stop SQL Injection attacks on your system. If we were looking for a
specific user from our database table, we might do something like:

<cfquery name="myQuery" datasource="myDatabase">
SELECT *
FROM Users
WHERE userid = #URL.userid#
</cfquerys>

The problem with the code is that the variable (that we are passing through the URL) of
userid could be hacked by a malicious user of the site. To make sure that the variable
passed into user ID is of the right format, and there are no SQL attacks, we can insert a
<cfqueryparam>. For example:

<cfquery name="myQuery" datasource="myDatabase">
SELECT *
FROM Users

WHERE userid = <cfqueryparam cfsgltype="cf sgl numeric"
value="#URL.userid#">

</cfquery>

Now that we have added the <cfqueryparams> tag, you can see that we define the
cfsgltype of the variable that we are going to pass, in this case, a cf_sgl numeric
variable and the value from the URL. Railo uses a mapping of database column types to the
cf_sqgl = attribute variables so that the previous code can run on any database, rather than
being database-type-specific. Other tags that take sub tags such as <cfqueryparams for
filtering purposes are <cfhttp> with <cfhttpparams>, <cfmails> with <cfmailparams>,
and <cfstoredprocs with <cfprocparams, to name a few. There is another type of tag
that has to be placed within another tag, and those are some of the logic operation tags,
such as <cfcase>, <cfelse>, and <cfelseif>. The <cfcase> tag can only go inside a
<cfswitch> tag, for example:

<cfswitch expression="#URL.action#">

<cfcase value="showpage">
<!---Show the page-a
</cfcase>

<cfcase value="editpage">
<!---Edit the page -a
</cfcase>

451



http:///

CFML Language

<cfdefaultcase>
<!---Do some other action -a
</cfdefaultcase>
</cfswitch>

We now have a parent <cfswitchs tag in which we check the value of the URL.action
parameter passed to the page. Then we have a series of cases that we can check with the
<cfcase> tag, so if the value of URL.action is "showpage", in the case above, we would
run the actions inside the <cfcase value="showpage"> statement.

Another example is the <cfelse> and <cfelseif> tags, which could be used to write the
previous function:

<cfif URL.action EQ "showpage">
<!---Show the page -a

<cfelseif URL.action EQ "editpage"s>

<!---Edit the page -a
<cfelse>

<!--- Do some other action -a
</cfif>

As you have seen, CFML tags are easy to get started with. If you have ever developed HTML
pages, you should get a grasp of using them in no time at all.

CFML functions

Functions in CFML come in two flavors, namely, the built-in functions that Railo provides as
a part of the core engine, which are highly optimized, and the functions that you can write
in CFML and have your code use. You have already seen the use of a built-in function with
the use of ArrayAppend () and isNumeric (). So let's go and look at some functions in
greater detail.

Time for action - using huilt-in functions

Railo has a large number of built-in functions (or BiFs) that provide a vast array of
functionality at the tip of your fingers. On last count, there were roughly 500 functions
that are available to you and of course that would be too much to cover each one of
them in this book.

Functions provide a way to check and manipulate simple data, as well as manipulating
complex variable types-like structures, arrays and dates.

[461



http:///

Chapter 3

The simplest example of using a function would be to get the current date, so for example,
let's create a file in <Railo Install Directorys>/webroot/Chapter 3/ called
Listing3_ 14.cfmand put the following code:

<cfoutput>
#Now () #
</cfoutput>

By going to http://localhost:8888/Chapter 3/Listing3 14.cfm, your page will be
displayed as:

806 http:/[localhost:8888/chapter_3/Listing3_14.cfm
[ ] » |+ [@ hup:/siocaihostaesg/chapter_3/Listing3_14.cfm ¢ | (Q~ Coogle ]

{ts '2011-03-14 09:57:32'}

Many functions take a number of parameters. Since we are talking about dates, let's format
the date a bit better with another function:

<cfoutputs>
#DateFormat (Now (), "dd-mm-yyyy")#
</cfoutput>

Now our date has been formatted nicely.

anon http://localhost: 8888/ chapter_3/Listing3_15.cfm
[ « [ » | [+ [@hup://tocalhost:8888 chapter_3/Listing3_15.cfm & | (Qr Google )
14-03-2011

[a11



http:///

CFML Language

What just happened?

With Railo Server, you can also name the parameters as a name and value pairs with the
"=" operator, rather than just passing them as a list, so the above function call can also be
written as:

<cfoutput>
#DateFormat (date=Now () , mask="dd-mm-yyyy")#
</cfoutput>

You can also use ":" as the operator between function parameters, so the code above can
also be written as:

<cfoutput>
#DateFormat (date:Now (), mask:"dd-mm-yyyy")#
</cfoutput>

The choice is up to you of course, since functionally, there is no difference, but it can improve
clarity when reading a function. As you have seen in the previous code examples, functions
can be used within functions, they can also be used inside the attributes of tags, for example:

<cfcookie name="userid" value="1" expires="#CreateDate (2011,12,29)#">

Even though there are swathes of functions available to you with Railo Server; there are
many times when you need to create your own functions to do something specific.

These could be functions that are not as generic as the ones provided by Railo Server and are
specific to your use case, such as running a Regular Expression over a string or (as we shall
see later) capitalizing the first letter of a word.

Functions that are not part of the core functionality of Railo Server are called User-defined
functions and are pretty easy to create.

Time for action - using user-defined functions

To create a user-defined function all you have to do is use the <cffunctions tag.
For example:

<cffunction name="MakeCapitalised">
<cfargument name="wordToCapitalise" type="string"s>
<cfset FirstLetter = Left (wordToCapitalise,l) >
<cfset FirstLetter = UCase (FirstLetter) >

<cfset RestOfWord = Mid(wordToCapitalise, 2,
Len (wordToCapitalise)-1) >

[481



http:///

Chapter 3

<cfreturn FirstLetter & RestOfWord>
</cffunctions>

<cfoutput>
#MakeCapitalised ("steven")#
</cfoutput>

The previous code will return the following:

a0 0n http://localhost: 8888/ chapter_3/Listing3_19.cfm
| « [ » |[ + [@ hup://1ocalhost:8888 /chapter_3/Listing3_19.cfm ¢ | (Qr coogle )
Steven
]
What just happened?

Let's work through the code, we first define the function with a name of MakeCapitalised:
<cffunction name="MakeCapitalised">

Then we define the argument that it takes; in this case, we call it wordToCapitalise and
say that it is of type string:

<cfargument name="wordToCapitalise" type="string"s>

Next, we get the first letter of the wordToCapitalise using the Left () function, saying
we want one character from the left of the wordToCapitalise:

<cfset FirstLetter = Left (wordToCapitalise,l) >
Now we can convert that letter to uppercase with the ucase () function:

<cfset FirstLetter = UCase (FirstLetter) >

1491

vww allitebooks.conl



http:///
http://www.allitebooks.org

CFML Language

Next we want to get the rest of the wordToCapitalise so that we can add it to the
FirstLetter variable (which is now "S") using the Mid () function, which takes a
string, the start, and the length of the string, to get:

<cfset RestOfWord = Mid(wordToCapitalise, 2,
Len (wordToCapitalise)) >

And finally, we combine the FirstLetter and RestOfWord variables and return the
output of the function with the <cfreturns tag:

<cfreturn FirstLetter & RestOfWord>

The final part of the code, we just call the function with the name Steven and the function
is run. A word of warning though, you can name your functions anything you like, as long as
you don't name it the same as the existing function in CFML. If you do this, you will get an
error saying that it is already used by a built-in function.

CFMLvariables

We have already seen CFML variables at work in previous code examples, but what we have
seen so far have been simple strings. The power of the CFML language is that you don't have
to define what type variables are. Railo Server takes care of this and you can change the type
of variable as you go along. So, for example:

<cfset a = "Mike">
<cfset a = 1>
<cfoutput>

#a#
</cfoutput>

Will give result in "1". Variables in CFML are dynamically typed, so if we did the following:

<cfset a = 1>

<cfoutput>
#isNumeric (a)#

</cfoutput>

We would get "true" being returned and displayed, the same would happen if we made
"1" a string:

<cfset a = "1">

<cfoutput>
#isNumeric (a)#

</cfoutput>



http:///

Chapter 3

Variables can be simple types, such as strings, numbers and Booleans, but they can also be
complex types. There are a number of complex variable types in CFML, such as Structures,
Arrays and Queries. Functions and Components (see "Object Oriented Programming with
Components" later in this chapter) can also be passed to variables.

Let's look at some of the more complex variables.

Structure variables are key/value representations of data. They are also known as Structs
(or referred to as Maps or Collections). A structure can have as many keys as you want but
they all must be unique, and can be referenced via the key name.

Time for action - using structures

Let's create an example so we can see it at work, create a file in your <Railo Install
Directory>/webroot/Chapter 3/structure example.cfmand put the following
code in the template:

<cfset myStruct = StructNew() >
<cfset myStruct.name = "Steven"s>
<cfset myStruct.age = "29">

<cfdump var="#myStruct#">

So far we have been using <cfoutput> to display simple variables, but complex variables
cannot just be displayed to the browser, hence we use the <cfdump> tag. This is a very
handy tag to use to display complex values during development. It will produce the following
output when you run your code:

eanNne http://localhost: 8888/ chapter_3/Listing3_23.cfm
[ 4 | » | [ + |@ http:/ /1ocalhost: 8888 fchapter_3/Listing3_23.cfm ¢ Q- Google )

[51]



http:///

CFML Language

If you want to reference the name key in the structure myStruct directly, you candoitina
couple of ways:

<cfoutput>
#myStruct .name#

Or:

#myStruct ['name']#
</cfoutput>

Also, you can create structures using implicit creation, using the curly brackets ({}) and the
key valued objects directly:

<cfset myStruct = {name="Steven", age="29"}>
<cfdump var="#myStruct#">

Structures can contain any type of variable, but the keys need to be simple strings, so for
example, we can create a structure within a structure:

<cfset myStruct = {name="Steven", age="29"}>
<cfset myStruct.cars = {carl="audi", car2="ford"}>
<cfdump var="#myStruct#">

It will give us the following:

e®anon http://localhost:8888/chapter_3/Listing3_26.cfm
[ « [ » ][+ | hup://localnostasss chapter_3/Listing3_26.cim & | (Q~ Coogle

-

o |

You may have noticed that the keys of the structure are automatically made uppercase,
this doesn't matter when you are accessing them, as CFML is case insensitive. If you need
to make sure your keys maintain their case, you can do so by quoting the key name.

For example:

<cfset myStruct = {"FirstName"="Steven", "LastName"="Smith"}>
<cfdump var="#myStruct#">

521



http:///

Chapter 3

Or:
<cfset myStruct2 = StructNew() >
<cfset myStruct2["CarType"] = "Audi">
<cfset myStruct2 ["HouseType"] = "Bungalow">

<cfdump var="#myStruct2#">

[ NdNé)] http://localhost: 8888/ chapter_3/Listing3_27.cfm

| 4| » || + [ htp:/10calhost:8888 /chapter_3/Listing3_27.cfm

G] (Q' Google

This now displays the keys maintaining their case.

What just happened?

Using Structures in Railo Server is a handy way of storing multiple values. They are stored
in alphabetical order by the key name and by default, the keys are stored in uppercase,

regardless of their original name.

Structures are very handy for storing simple and complex objects that you need to reference
by name. The problem arises when you need to store data in an ordered manner; this is

where Array variables come in.

Arrays are a type of variable that can contain other variables in an indexed order. You
can add any type of variable to an array, and they will be stored in the order that they

were added.



http:///

CFML Language

Time for action - creating an array

Let's look an example of creating an array, create a file in the Chapter_ 3 directory we have
been using called Listing3 28.cfm with the following content:

<cfset myArray = ArrayNew (1) >

<cfset ArrayAppend (myArray, "FirstItem") >
<cfset myArray[2] = "SecondItem"s>

<cfdump var="#myArray#">

When we run this code we get the following:

anom http:/ flocalhost: 8888/ chapter_3/Listing3_28.cfm
| « | » ||+ @ nup://iocalhost:8888/chapter_3/Listing3_28.ctm & | (Q Google )

Ay ]
I - FirstItem

I - SecondItem

What just happened?

In the previous code, we created an array using the ArrayNew (1) function, and
passing in the variable 1 to create a one-dimensional array. Then, we used the function
ArrayAppend () to add the string "First Item" to the array. Then, instead of using
ArrayAppend () again, we just defined the position of the array that we wanted to add
another item into. To access a variable inside an array, it is simply a matter of defining
which item you want using the square brackets notation, []:

<cfset myArray = ArrayNew(l) >
<cfset ArrayAppend (myArray, "FirstItem") >
<cfset ArrayAppend (myArray, "Second Item") >
<cfoutput>

lst Item : #myArray[1l]#

<br>

2nd Item: #myArray[2]#

</cfoutput>

[541



http:///

Chapter 3

The above code would output:
1st Item : First Item
2nd Item: Second Item

You can loop through the variables in an array using the <cf1loop> tag:

<cfloop array="#myArray#" index="item">
<cfoutput>
#item#<br>
</cfoutput>
</cfloop>

This would give us the following:
First Item
Second Item

In the loop above, we don't need to pass the item to the myArray variable, it already returns
the item in the array that we are seeking in the item variable.

CFML scopes

Railo Server provides special structures that are available at different points in the request
lifecycle. These structures are called Scopes and they essentially store the variables. You

are able to read and write (to most of them) to help with the efficiency of your application.
These scopes have names that are reserved in Railo CFML, so you can always make sure you
can access them.

Let's have a look at some of these scopes and get an idea on how they work.

The Server Scope in Railo Server is a scope that is available to all your applications on a

server. Hence the name. It also provides some interesting information that you are able
to read. If we want to see what the Server scope contains, all you have to do is use the

<cfdump> tag to display the values:

<cfdump var="#SERVER#">

[551



http:///

CFML Language

This displays the scope as follows:

http://localhost: 8888/ myApgi

| + |63 http://localhost: 8888/ myApp/ [ Q' Google

This scope holds information about Railo's version and compatibility, Java Memory and
version information, Operating System details, System delimiters, and which servlet
container we are running.

If you want to set some information in this scope, all you have to do is use the <cfset> tag
and use the SERVER prefix in the variable name and set whichever value you want, to assign
to it; this goes for all the other scopes too.

Time for action - adding a variahle to the SERVER scope

Let's add the following code to a template called Listing3 30.c£fm inour
Chapter_3 directory:

<cfset SERVER.aVariable = "My Lovely Variable"s>



http:///

Chapter 3

Now, if you dump the SERVER scope you should get your variable displayed:

eno http://localhost: 8888/ chapter_3/Listing3_30.cfm

| > + |@ http://localhost:8888/chapter_3/Listing3_30.cfm ¢ B Qr Google

What just happened?

The SERVER scope is accessible by all the applications and contexts that are on a single
instance of Railo Server. This means that if we set any variables here, they can be read
(and written) across the server.

APPLICATION scope

In Railo Server, you can define a folder (and of course, its sub folders) as a specific
application, with its own settings and data sources using CFML. To do this, you need to
put a special file in the root named Application.cfc. This file has a special type of
template called Component (we shall have a more detailed look at the components later
in this chapter).

Time for action - creating the APPLICATION scope

Why don't we try that now:

1. Inthe <railo install directorys>/webroot/ folder, create another folder
called myApp

2. Inthe myApp folder create a file called Application.cfec.

3. Editapplication.cfc and put the following code in there:

<cfcomponent>
<cfset this.name = "MyApplication"s>
</cfcomponent >

[511


http:///

CFML Language

4. Save the file and now create another file called index.cfm

5. The index.cfmfile is the actual file we are going to call, so let's put some code in
there to make sure we are in a CFML application. Add the following code to your
index.cfm:

<cfdump var="#APPLICATION#">

6. You will see the application scope displayed, with a key called applicationname:

enNo http://localhost: 8888/ myApp/
[ 4| » ||+ | niep:/flocalhost:8888/myApp/ ¢ ) (Qr Google )

e ] oo

L

What just happened?

By simply placing a file named Application.cfc and putting some settings in there we
have created a scope that is available only to the templates that are in the same folder or
folders below it. This way we can make sure all the settings are inherited and data can be
shared only in that location.

There is much more to the application scope and application lifecycle, which we will cover in
Chapter 5, but for now you can see that these settings are specific to your application.

The SESSION scope is a structure in which you can store information about a single user
across requests. This is useful to store user specific information, such as their ID. What is
great about this scope is that it will survive requests, so you don't need to worry about
re-setting variables. A better way to see this is to have a go yourself.



http:///

Chapter 3

Time for action — creating a SESSION scope in your Application

Still within our my2pp folder, edit the Application.cfc file and let's turn on session

management—this tells our application that we want to enable sessions per user. We do this
by adding <cfset this.sessionmanagement

= true> in our code:

<cfcomponent >
<cfset this.name = "MyApplication"s
<cfset this.sessionmanagement = true>
</cfcomponent >

1.

If you now change the code in index.cfmto <cfdump var="#SESSION#"> and
call the page, you will see the following:

0o http://localhost: 8888/ myApp /

| « | » || + |@nhup//iocalhost:8888/myApp/ ¢ | (Qr Google )

[Scope Session (typecrmy |
- [string] bo8bsbad-dd77-4eag-b625-695587154376 ]

N el
-‘ [string | _bosbsbas-dd77-4eas-b625-995587154376_0]

-‘ [string] CFID=b08bSba4-dd77-4ead-b625-9955871543768CFTOKEN=0

2.

Let's set a variable, so let's change our index. cfm to the following:
<cfset SESSION.myID = "12345">
<cfdump var="#SESSION#">



http:///

CFML Language

3. By running the code we now see that our variable myID is in the session:

800 http://localhost:8888/myApp/

4. Now that that variable has been set, let's remove the code <cfset SESSION.myId
= "12345"> from index.cfm so that myID will not be set in the session scope
again. When you reload the page, you'll still find our variable.

What just happened?

The SESSION scope will be unique for each user, hence it's very useful to store data that is
specific to each user of your application there, for example, login information.

This is the power of sessions, the variables we set there maintain even across a user request.

However, sessions do not live forever. They will time out after a period of time. You can set
the length of the SESSION variable by putting the this.sessiontimeout variable in your
Application.cfc and using the CreateTimeSpan () function to define how long you
want it to last.

REQUEST scope

The REQUEST scope is a structure that stores variables for the lifecycle of a single request
for a page. Even if you include other files into your main file, you will still see the variables
stored in the REQUEST scope. Like the SERVER and APPLICATION scopes, you can set
variables to this scope and know they will exist for that user and to that request.



http:///

Chapter 3

Time for action — using the REQUEST Scope

To demonstrate how this works, let's see what is in the request, include another file, set
variables there and see what we end up with. Let's get started:

1. Inthe index.cfm file you created, put the following code:

<cfdump var="#REQUEST#" label="Initial request">

<cfset REQUEST.myNewVar = "Hello there!'">
<cfdump var="#REQUEST#" label="Now with our added variable"s

<cfinclude template="included.cfm">

2. Now, let's create another file in which we'll include the <cfincludes> tag. We'll
name it as included. cfmand put the following code inside it:
<cfdump var="#REQUEST#" label="Showing the request scope in an
included file"s>

3. Save the file and now run it in the web browser by going to
http://localhost:8888/myApp; we should see the following:

enNne http: //localhost: 8888 /myApp/
[ -« | > ] [+ |6http:f,fiocalhost:BBSB,fmyAppj G] (C{' Google ‘j

Initial request



http:///

CFML Language

What just happened?

As you can see, the value that we added in index . cfm s available in the request scope of
the included file.

The REQUEST scope is available to ALL the templates. It doesn't matter how they are
included for the lifetime of a single request to Railo Server.

M As you have seen, <cfdump> is a very handy tag to see the values of
Q complex variables, but we can also add a title to the outputted display
through the 1abel attribute.

The CGlI scope is a read only structure that Railo Server provides for you to find out
information about the web server and request that has been passed to you, it gives you
the information about the browser and server including the client's IP address amongst
other useful items. You can have a look at the contents by doing our usual <cfdump
var="#CGI#">, which will give you something similar to the following:

800 hittp://localhost: 8888/ myApp/
€A http://localhost: 8888 /myApp/ ¢ [ Q~ Google



http:///

Chapter 3

There are other scopes that are very useful in developing web applications, and we shall
have a look at them in the next section.

So far we have been looking at the general scopes that are available to get information from
the server and environment, in addition to setting variables to these scopes. In this section,
we are going to look at how to handle user input, that is requests made through the URL
and through web forms, which are the most common ways that users interact with your
web application.

URL variables

In many sites you would have seen something like: http://www.somesite.com/
getproduct.cfm?productid=1232. These query strings allow the server to know that
you are looking for a product with the productid of 1232. But how to get this information
with Railo Server? Well, it's rather easy, we have the URL scope.

Time for action - getting variables from the URL

Let's see how we can get some information from the user, shall we?

1. Create afile named product .cfm inyour <Railo Install Directorys/
webroot /myApp/ folder.

2. Run that file in your browser with the following URL: http://localhost:8888/
myApp/product . cfm, and you will get a blank page.

3. Now let's add the following code:

<cfoutput>
The product you requested is #url.productid#
</cfoutput>

Now let's browse to the page with the following: http://localhost:8888/myApp/
product.cfm?productid=1234. You will now see "The product you requested is 1234"
displayed on the page.

It is that simple to access variables passed in the URL; all you have to do is to reference the
URL scope.



http://www.somesite.com/getproduct.cfm?productid=1234
http://www.somesite.com/getproduct.cfm?productid=1234
http:///

CFML Language

But what happens if we remove the ?productid=1234 from the URL? Oh dear! We get
an error!

(NN http://localhost: 8888/ myApp/product.cfm
[ « | »> ] [+ |9 http://localhost:8888/myApp/product.cfm G] (Q' Coogle )

The product you requested is

Railo 3.2.1.000 Error (expression)

Message key [PRODUCTID] doesn't exist in struct (keys:)

The Error Occurred in
E fUsers/markdrew/Dropbox/Railo Team/Book Progress/ railo-server-for-demos/webroot/ myApp/p

Stacktrace 1: <cfoutput>
& 2: The prod you d Is #url.productid#

3: </cfoutput>

key [PRODUCTID] doesn't exist in struct (keys:)

at railo.runtime.type.util.StructSupport.invalidRey(StructSupport.java:30):30

at railo.runtime.type.StructImpl.get{StructImpl.java:78):78

at myapp.product_cfm$cf.call(/Users/markdrew/Dropbox/Railo Team/Book Progress/railo]

at railo.runtime.PageContextImpl.doInclude{PageContextImpl.java:764):764

at railo.runtime.listener.ModernAppListener._onRequest{ModernAppListener.java:205):]

at railo.runtime.listener.MixedApplistener.onR t{MixedAppListener.java:23):23

at railo.runtime.PageContextImpl.execute{PageContextImpl.java:1973):1973

at railo.runtime.engine.CFMLEngineImpl.serviceCFML({CFMLEngineImpl.java:280):280

at railo.loader.servlet.CFMLServlet.service({CFMLServlet.java:32):32

at javax.servlet.http.HttpServlet.service(HttpServlet.java:820):820

at org.eclipse.jetty.servlet.ServletHolder.handle(ServletHolder.java:534):534

at org.eclipse.jetty.servlet.ServletHandler.doHandle(ServletHandler.java:475):475

at org.eclipse.jetty.server.handler.ScopedHandler.handle(ScopedHandler.java:119):119

at org.eclipse.jetty.security.SecurityHandler.handle{SecurityHandler.java:516):516

at org.eclipse.jetty.server.session.SessionHandler.doHandle(SessionHandler.java:226

at Drg.eclipsa.jetty.Eerver.handler.CnntextHa.ndler.dnHandle(CnntextHandler.java:gzgl
Java Stacktrace at org.eclipse.jetty.servlet.ServletHandler.doScope(ServletHandler.java:403):403
at org.eclipse.jetty.server.session.SessionHandler.doScope(SessionHandler.java:184)
at org.eclipse.jetty.server.handler.ContextHandler.doScope(ContextHandler.java:864)
at org.eclipse.jetty.server.handler.ScopedHandler.handle(ScopedHandler.java:117}):117
at org.eclipse.jetty.server.handler.ContextHandlerCollection.handle({ContextHandlerCd
at org.eclipse.jetty.server.handler.HandlerCollection.handle{HandlerCollection.java
at org.eclipse.jetty.server.handler.HandlerWrapper.handle(HandlerWrapper.java:114}):]
at org.eclipse.jetty.server.Server.handle({Server.java:352):352
at org.eclipse.jetty.server.HttpConnection.handleRequest (HttpConnection.java:596):59
at org.eclipse.jetty.server.HttpConnection$RequestHandler.headerComplete(HttpConnect
at org.eclipse.jetty.http.HttpParser.parseNext({HttpParser.java:590):590
at org.eclipse.jetty.http.HttpParser.parsefAvailable(HttpParser.java:212):212
at org.eclipse.jetty.server.HttpConnection.handle(HttpConnection.java:426):426
at org.eclipse.jetty.io.nio.SelectChannelEndPoint.handle{8electChannelEndPoint.java
at org.eclipse.jetty.ioc.nio.SelectChannelEndPoint.access$000(5electChannelEndPoint. ]
at org.eclipse.jetty.io.nio.SelectChannelEndPoint$l.run({SelectChannelEndPoint.java:4
at org.eclipse.jetty.util.thread.QueuvedThreadPool$2.run{QuenedThreadPool.java:451):4
at java.lang.Thread.run{Thread.java:680):680

Our applications should be a bit more robust, right? Thankfully, we can easily fix that with a
simple tag. Let's update our code here:

<cfparam name="URL.productid" default="">
<cfoutput>

The product you requested is #url.productid#
</cfoutput>

We can now load our page without a single error.

[6a1



http:///

Chapter 3

What just happened?

Accessing the variables that have been passed in the URL scope is rather easy, because it

is just another structure as we have used before. What we have to make sure is that our
applications are a bit more robust and variables are well defined if we are going to use
them. One option is to use the <cfparam> tag. This tag sets a default variable to the URL.
productid to a blank string if it isn't passed in. This is a good way to make sure your code is
robust and can handle unforeseen user actions.

Other ways to check if the variables are present is to use the isDefined ("URL.
productid") function, passing in the variable (in quotes) that you want to
check, or to explicitly check if the variable exists in a structure with the function
StructKeyExists (URL, "productid")

Have a Go Hero - try the isDefined() and StructKeyExists( functions

Why not try re-writing the code in our template using the isDefined () and
StructKeyExists () functions. It should be easier by now!

In many web applications, we need to get information from the user using a form, be it a
feedback form, a contact us form, a registration form, or a search dialog. Railo Server has
some handy ways to let you access this information in the FORM scope. This scope is created
when a form has been posted to another template using the POST method in the form.

Time for action — getting FORM variahles

Let's look at a simple form and check out what gets sent:

1. Create afile in your application by the name contact .cfmand create a simple
HTML page within this file:

<!DOCTYPE html >

<html lang="en">

<head>
<title>Contact Form</title>

</head>

<body>

<hl>Contact Us</hl>

<form action="contact.cfm" method="post">
<p>

<label for="name">Name</label><input type="text" name="name">

</p>



http:///

CFML Language

<p>
<label for="email">Email</label><input type="email"
name="email" >

</p>
<p><input type="submit" value="Send"></p>
</form>

</body>
</html>

Now, if you load this template in your browser, you should see the following:

oo Contact Form
| 4| » || + @ nhup://localhost8888/myapy & | (Qr Google )

Contact Us

Name

Email

rl Y
| Send )

2. This form posts to itself, as you can see through action="contact.cfm" in the
form tag. We also have method="post" to make sure we are accepting a form post.
Now if we submit this, we will get no output because we haven't added any CFML
code. Let's add a simple <cfdump var="#FORM#" > after the form, and resubmit
the form:



http:///

Chapter 3

8ane Contact Form
[ - | [ 3 ] [+ |e http://localhost:B888,/ myAp G] (Q,' Google )

Contact Us

Name

Email

As with the URL scope, you can reference the values directly, but if they are
not present you will get an error, so let's change our code a little bit to include
some checks:

<!DOCTYPE html >

<cfparam name="FORM.name" default="">
<cfparam name="FORM.email" default="">
<html lang="en">
<head>
<title>Contact Form</title>
</head>
<body>
<hl>Contact Us</hl>
<form action="contact.cfm" method="post">
<p>
<label for="name">Name</label><input type="text" name="name">
</p>

<p>
<label for="email">Email</label><input type="email"
name="email" >
</p>
<p><input type="submit" value="Send"></p>
</form>

611



http:///

CFML Language

<cfif Len(FORM.name) AND Len (FORM.email) >
<cfoutput>

Hello #FORM.name#, thanks for giving the email address #FORM.
email#

</cfoutput>
</cfif>
</body>
</html>

What just happened?

Using the FORM variable is exactly same as using the URL variable, apart from the fact that it
is generated only when you submit a form using the POST method.

In the previous code, we added the <cfparam> tags at the top to make sure we have a
default for the name and email fields. Also, in the form, we have added a check to see if
there is a length to the FORM . name variable by using the Len () function and also checking
the length to the FORM. email variable.

You might be wondering about the Len (FORM.name) statement used in the previous code.
If the length of the string is equal to zero, then the statement will be "false", but if it has
some length, this would equate to "true."

Using the <cfparams> is recommended in any template that will be retrieving content, as
you can set the default content without having to check the existence of every field you
need to use.

Cookies are a technology used by web browsers that allows web developers to store a small
amounts of information for a period of time even if the browser closes. So for example you
can store a user's preferences with regards to their choice of background color, or even their
unique login name (read more about cookies here: http://en.wikipedia.org/wiki/
HTTP_ cookie).

Railo Server makes it very easy to read and save information to the browser's cookies.
There is another scope available to you to read the cookies, aptly named COOKIE.

You can save a variable name and value to the COOKIE scope using the <cfset COOKIE.
variableName = variableValues> but this does not give you enough control over the
other attributes that you set with a cookie, such as, when it expires, which domains can
access it, and maybe the path in a domain that the cookie can access. For this, we have the
<cfcookies tag.



http:///

Chapter 3

The <cfcookies> tag is very simple to use, if you want to save a variable in a cookie all you
have to do is:

<cfcookie name="superSecretName" value="Elvis">

Of course, we might want to say how long this cookie can live, so we can also add the
expires attribute:

<cfcookie name="superSecretName" value="Elvis" expires="30/12/2011">

You can also set which domain the cookie can only be read from:

<cfcookie name="superSecretName" value="Elvis" domain="www.mydomain.
com" >

If your application only exists within a path of the specified domain, you could also add
the path:

<cfcookie name="superSecretName" value="Elvis" domain="www.mydomain.
com" path="/myApp">

To read the value from the cookie all you have to do is:

<cfset cookieValue = COOKIE.superSecretNamex>
<cfdump var="#cookieValue#">

So far we have looked at all the ways that we can use to display variables in Railo Server.
But one of the main attractions of using Railo Server is the really easy way you can
access databases.

Railo Server makes it really easy to define and query data stored in any Relational Database
Management System (RDBMS) virtually. In this section, we shall go through the setup of

a data source to a database, running queries against that database, securing our queries
against SQL Injection attacks and even running stored procedures.

One of the main functions that are used in nearly every web application is to show and/or
capture data from its users. Railo Server makes this incredibly simple with minimal code so
that we can see how these things work together; of course, we need to have a database to
connect to.

Railo Server can connect to nearly every single database out there. Out of the box

(or rather out of the ZIP) Railo Server can connect to DB2, Firebird, HSSQI (Hipersonic),
Microsoft MS SQL, MySQL, Oracle, PostgreSQL, Sybase, and any other database that has
Java JDBC driver. Railo Server even includes a JDBC-ODBC bridge to connect (on Windows)
to your ODBC datasources.



http:///

CFML Language

For the examples in this book, we chose MySQL to connect to, because it's a free and open
source database that is easy to install and configure.

Time for action - installing MySQL and setting up our datahase

Before we can configure a datasource to hook onto, we might want to have a database first.
For the following examples we are going to be using MySQL, the world's most popular Open
Source database. You can download a version to match your operating system, for free,
from: http://dev.mysqgl.com/downloads/. For the following examples, we will be
using MySQL Community Server.

Apart from the database server, you can also get some tools to interact with the database
visually, so once you have the database downloaded and you're running (instructions for
each operating system is available on the website) MySQL, you can go ahead and create a
database called "railobook". For example, if you are using the command line, it is easy to
connect to MySQL with the following command:

$ mysgl -uroot -p

Once you enter your password, you should have a response from the server as follows:

&M m Terminal — mysgl — 80x11

Commands end with ; or Mg

rar (GPLY

o clear the current input statement.

Now that we have connected we are going to go in and create a database to store our
tables, use that database, create a sample table, and finally add a bit of content to it.
Let's get started!

Now that we have logged in, let's go and create the database:

> CREATE DATABASE railobook;

To use the database, enter the following in the console:

> USE railobook;

701



http:///

Chapter 3

Now, let's create an employee table; this is the table that we will be getting data by running
the following code:

> CREATE TABLE employee (
id int(11) NOT NULL auto_increment,
FirstName varchar (50) default NULL,
LastName varchar (50) default NULL,
email varchar(100) default NULL, PRIMARY KEY (1d) ) ;

The server will respond with:

Query OK, 0 rows affected (0.01 sec)

This is to tell you that it has created the table successfully.

Let's add some test data:

> INSERT INTO employee (FirstName,LastName,email)

VALUES
('Test', 'TestSurname', 'test@localhost.com'),
('Test2', 'TestSurname2', 'test2@localhost.com'),

('Test3', 'TestSurname3', 'test3@localchost.com') ;

The server will respond with "Query OK, 3 rows affected (0.00 sec)" to tell you that you have
created three new records in the table employee.

Finally, let's see what is stored in the employee table:

> SELECT * FROM employee;

You should get the results as follows:

® MO Terminal — mysgl — 59x20

ni



http:///

CFML Language

What just happened?

We installed the MySQL database server onto our machine. We then connected to the server
through the command line and created a database called railobook. Before we can add
tables and data, we switched to using the railobook database, then we created a table
named employees and added some test data!

Time for action — configuring data sources in Railo Server

Now that we have our test data, we are going to create a data source in the Railo Server
web administrator. The administrator is where you can configure many aspects of Railo
Server's behavior, which we will look at (in depth) later in this chapter. Let's go and setup a
datasource pointing to the railobook database.

In your browser, head to the administrator by going to http://localhost:8888/railo-
context/admin/web.cfm. This takes us to the Railo Web Administrator. If you have not
already done this, you can enter a password to protect this area.

808 Railo Web Administrator
I - ‘ » l [ + |9 http:/ flocalhost:8888 frailo-context/admin/web.cfm G] (Q' Google )

Server Administrator Web Administrator

New Password

Password
Retype new password

Language | English a

submit

On the left-hand side of the Overview page, there is a list of links, under the Services
category. From this list, locate the Datasource link and click on it.

We can create a new datasource by entering railobook in the Name field of the Create
new datasource form and selecting MySQL from the Type drop down. Now, press the
create button.

121


http:///

Chapter 3

800

Railo Web Administrator

[ 4 ‘ » ] [ + |9http'NIo(a\hnsl‘SESE,‘rallofmn[exlfadmmfweb.cfm?a(t|0n=ser\r|ces‘dalasour(e [+ ] (Q' Google \

Settings
Performance/Caching
Regional

Application
Output
Error
Services
Event Gateway (Beta)

Datasource
ORM (Bata)

Tasks

Scheduled tasks
Extension

Applications

Praviders
Remote

Security Key

Clients

Archives & Resources

Services - Datasource

Settings
Preserve single quotes

update  cancel

Create new datasource

Server Administrator Web Administrator

[ Preserve single quates () in the SQL defined with the tag cfquery

Reset to Server Administrator Setting

Name
Type DB2 ?
create  cancel

We can now set the details of the connection. In the Database field, we enter railobook as
that is the name of the database that we created, we can leave the Host/Server and Port
fields as they are (if you have installed MySQL on your local machine), and we can enter the
username and password for this database. If you don't know the username and password for
your database, just use the values that were defined during the installation of MySQL. Once
done, scroll to the bottom of the form and click on create.

8n0o6

Railo Web Administrator

4| > + | http://localhost:8888/ railo-context/admin /web.cfm?action=services.datasource&action2 =create [ (Q'Cooqle
S

Server Administrator Web Administrator

Settings
Performance/Caching
Regional
Charset
Scope
Application
Output
Error

Services
Event Gateway (Beta)
Cache
Datasource
ORM (Beta)

Tasks
Scheduled tasks
Extenslon
Applications
Providers
Remote
Security Key
Clients
Archives & Resources
Mappings
Gomponent
Custom tags
CFX tags

Services - Datasource

Logout

Create new datasource connection MySQL

For MYSQL Databases

Name

Host/Server

Database

Username

Password

railobook
Host name where the databasa server is located
localhost
Name of the database to connect

ralahogk

The port to connect the database

3306

The usemame for the databasa
root
The password for the database



http:///

CFML Language

Congratulations! You should now have a new Datasource setup with a nice green OK
verification that all went well.

Mame Typa Check

il ook MyS0L OK

wverify cancel delete

What just happened?

The Railo Web Administrator is where connections to various systems can be defined. As we
will just refer to the data source name (railobook in this case) in our code, it means that we
don't have to change our code if we need to change the location of the database.

That is all we needed to do, now we can go and run some queries on our database!

Time for action - running queries against our datahase

The magic for running a lot of queries with Railo stems from the <cfquery> tag. This is a
very versatile tag that allows you to run queries to a data source. Remember, we queried
the database to get our list of employees? Let's do that in CFML to see how easy it is to do.

<cfquery name="getEmployees" datasource="railobook">
SELECT * FROM employee

</cfquerys>

<cfloop query="getEmployees">

<cfoutput>#FirstName# #LastName# <br></cfoutputs>

</cfloop>>

We use the <cfquerys> tag, setting the name of the results to getEmployees by putting
that in the name attribute. We also use the datasource attribute to say we are going to
use the datasource we setup, called railobook previously.

Then we put the SQL query, to select all the employees. Then to show that something is
happening we use the <cfloop> tag and define which query you want to loop through.
Then to output the variables we use the <cfoutput > tag and just need to put the names
of the columns we want to output, surrounding the names with the # to say they should be
evaluated. Running this code gets us a nice listing of our users.

nl



http:///

Chapter 3

M ™ ) http://localhost:8888...pter_3/listing3_6.cfm
+ |63 http://localhost:8888/chapter - & | (Qr Google

Test TestSurname
Test2 TestSurname?2
Test3 TestSurname3

There is more information you can get from a query, such as the total number of records,
how long it took to execute, the template that called it, and the final rendered SQL
statement. To see these details, you can use the <cfdump> tag as follows:

<cfdump eval=getEmployees>

getEmployees

Test TestSurname test@localhost.com

1
-| 2 Test2 TestSurname2 test2@localhost.com
-| 3 Test3 TestSurname3 test3@localchost.com

If you need to use these variables in your code, instead of just seeing them, you can add the
result attribute to the <cfquery> tag as follows:

<cfquery name="getEmployees" datasource="railobook"
result="employeeresult">

SELECT * FROM employee
</cfquery>

17151



http:///

CFML Language

This will give you a structure that you can reference. If you use <cfdump>, the
employeeresult variable you get the following:

employeeresult

What about if we want to get one user via the URL (or some other variable)? This is also very
easy. For example, if we needed to get a user by his/her ID (remember, we created an id
column in the table?) from a URL variable, then all we need to do is to put that variable in
the SQL code:

<cfquery name="getEmployees" datasource="railobook"
result="employeeresult">

SELECT * FROM employee

WHERE id = #URL.id#
</cfquery>
<cfloop query="getEmployees">
<cfoutput>#FirstName# #LastName# <br></cfoutputs>
</cfloop>

What's left now is to open the page with "id=1" as one of our URL variables:
http://localhost:8888/chapter 3/listing3 63.cfm?id=1

anmno http://localhost: 8888/ chapter_3/listing3_63.cfm?id=1

4 | » ||+ | nhttp://localhost:B888/chapter_3/listing3_63.cfm” & | [Qr Google

Test TestSurname

1761


http:///

Chapter 3

And we can see that the only record returned was the one where the ID matched the
variable in the URL.

What happens if we want to insert a new record? We can just use the SQL for that in a
<cfquery> tag.

<cfquery result="insertEmployee" datasource="railobook"s>
INSERT INTO employee (FirstName,LastName,email)
VALUES
('Mr. CFML1','Is Great', 'cfmll@localhost.com')

</cfquery>

<cfdump eval=insertEmployees

In the above line, we have removed the name attribute from the <cfquery> tag because it
won't return any results. We then add our insert SQL statement and then use <cfdump> to
see what information was returned about our last query.

ano http://localhost:8888/chapter_3/listing3_63.cfm

< | > A http:/ /localhost:8888 /chapter_3/listing3_63.cfm [ Qr Google

When running queries against records in a database from your web application you have
to be very cautious to sanitize the data that the users pass to your application. Malicious
users can use a method called SQL Injection (http://en.wikipedia.org/wiki/SQL
injection) to delete, add, and generally tamper with your data that may result

in a compromise of security and stability of your application.

¥]]]


http:///

CFML Language

CFML has a very simple way to stop this type of attack by checking the variables that you are
passing to your database with the use of <cfqueryparams. This tag allows you to set the
value and the type of variable that you are passing in your SQL statement and also improves
the performance as the database will cache the statement without variables and return the
values faster (this is called a prepared statement).

So, how can we implement our select employee query with a <cfqueryparams? We simply
replace our variable as so:

<cfquery name="getEmployees" datasource="railobook"
result="employeeresult">

SELECT * FROM employee

WHERE id = <cfqueryparam cfsqgltype="cf sqgl numeric" value="#URL.
id#">
</cfquery>

<cfloop query="getEmployees">
<cfoutput>#FirstName# #LastName# <br></cfoutputs>
</cfloop>

If we now check what the query information is by dumping the employeeresult variable
we shall see that SQL has added a "?" to our user ID:

employeerasult

In all the above examples we are able to see how easy it is to work with Databases by using
the <cfquery> tag. We can retrieve records and insert records (you could try deleting and
updating records too) easily.

7181



http:///

Chapter 3

By using the <cfqueryparam> variable, we have seen how we can prevent SQL Injection
attacks and define specifically the format of the data we are querying.

Databases have special functions that you can create called Stored Procedures
(http://en.wikipedia.org/wiki/Stored procedure) that allow you to have

more complex query logic stored within the database itself. If you need to call these

stored procedures from Railo Server it is a simple matter of using the <cfstoredprocs tag.

Time for action - calling stored procedures

Let's create a stored procedure in our database and run it from Railo Server.

In our MySQL console, let's run the following command to create a stored procedure called
employeebyid:

DELIMITER //
CREATE PROCEDURE employeebyid (IN empid int (11))
BEGIN

SELECT *

FROM employee

WHERE id = empid;
END //
DELIMITER ;

We get a response from MySQL as follows:

mysqgl> DELIMITER //
mysqgl> CREATE PROCEDURE employeebyid (IN empid int(11))
-> BEGIN
-> SELECT *
-> FROM employee
-> WHERE id = empid;
-> END //
Query OK, 0 rows affected (0.00 sec)

mysqgl> DELIMITER ;
mysql>

17191



http:///

CFML Language

Now, we can test a call to it by running the following code:

mysql> CALL employeebyid(1l);

R it B LT e e +
| id | FirstName | LastName | email |
R it B LT e e +
| 1 | Test | TestSurname | test@localhost.com |
R it B LT e e +

1l row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

So, now our stored procedure works from inside MySQL. Let's call it from a CFML template:

<cfstoredproc procedure="employeebyid" datasource="railobook">
<cfprocparam cfsgltype="cf sqgl numeric" value="1" />
<cfprocresult name="getEmployee" />

</cfstoredproc>

<cfdump eval=getEmployees>.

We first call the <cfstoredprocs> procedure, passing it the procedure name and the
datasource. To pass a variable to the stored procedure we need to nest the <cfprocparams>
tag, defining the data type we are passing using the c£_sgl numeric for a general numeric
type and its value. Then, we add the <cfprocresults tag, this will grab the results from
the stored procedure and save them to the get Employee variable that we can use later on.
It is that simple!

Of course, stored procedures can get trickier with them returning multiple variables and
taking in a number of parameters, like cachedAfter or cacheWithin to perform query
caching, debug for listing debug information about each stored procedure statement
executed and so on, but you should now have a good example of how to deal with even
more complex calls.

Object Oriented Programming (OOP, http://en.wikipedia.org/wiki/Object-
oriented programming) is a paradigm that has been available in a number of languages
for decades and, in fact, most modern programming languages provide support for defining
objects with properties and methods. This is the same with CFML.

Railo Server provides OOP capabilities to developers in the form of components. So far, you
have seen CFML templates created with the file extension . cfm. CFML components are
defined with the . cfc extension.

So, what are objects?



http:///

Chapter 3

Objects in OOP allow you to encapsulate blocks of code that define a specific business
object, for example, an employee. An employee object in an application would be a way to
interact with data of an employee. It is not just properties of an employee, for example, first
name, surname, salary, and e-mail, that can be encapsulated in an object, but also functions
(or methods), for example, get EmployeeName and setEmployeeName, that you can call to
get and set properties, or perform actions on that object.

Time for action - creating the Employee component

To define an object in CFML, you need to create a file with the extension . cfc, let's create
the file Employee.cfc and put the following code inside it:

<cfcomponent name="Employee">
</cfcomponent >

Now that we have created a basic Employee component, we can call it from another CFML,
.cfmtemplate in a number of ways, firstly with the <cfobject> tag:

<cfobject component="Employee" name="myEmployee">
<cfdump eval=myEmployee>

Another way is to use the CreateObject () function:

<cfset myEmployee = CreateObject ("component", "Employee") >
<cfdump eval=myEmployee>

You can also use the "new" keyword to create your object:

<cfset myEmployee = new Employee() >
<cfdump eval=myEmployee>

All of the methods above will display the following output:

myEmployee

Component (Employee)
Only the functions and data members that are accessible from your location are displayed

So far, we don't see much in our Employee object, so let's change Employee.cfc to have a
few properties:

<cfcomponent name="Employee'">
<cfset this.firstname = "">
<cfset this.surname = "">
<cfset this.salary = "">
<cfset this.email = "">
</cfcomponent >

811



http:///

CFML Language

When we call this object now, we have properties that we can see, because we have used
the THIS scope of the component, that means that the properties are public as can be seen
if we output the result of instantiating the component.

myEmployee

Component (Employee)
Only the functions and data members that are accessible from your location are displayed

public

EMAIL

[strina[ ]

SURNAME -|:|

FIRSTNAME -|:|

SALARY

[strina] ]

You can now set the properties directly, since they are public as follows:

<cfset myEmployee = new Employee() >

<cfset myEmployee.firstname = "John">

<cfset myEmployee.surname = "Smith"s>

<cfset myEmployee.salary = "20000">

<cfset myEmployee.email = "john.smith@somedomain.com">

<cfdump eval=myEmployee>

This is not the best way of accessing the properties of a component, so we can add functions
to set and get the properties in a much safer, and even controlled manner. Let's add a getter
and a setter for the firstname property:

<cfcomponent name="Employee'>

<cfset this.
<cfset this.

<cfset this

<cfset this.

firstname = "">

surname = "">

.salary = "">

email = "">

<cffunction name="getFirstName">
<cfreturn this.firstname>

</cffunctions>

<cffunction name="setFirstName">

<cfargument name="firstname" type="string" required="true">

<cfset this.firstname = arguments.firstnames>

</cffunctions>

</cfcomponent >

1821



http:///

Chapter 3

You now see that we have used the <cffunction> tagto define two new functions. In
the getFirstName function we simply use the <cfreturn> tagto returnthe this.
firstname variable.

In the setFirstName function we use the <cfargument > tag to define what arguments
the function can take, in this case, we are going to call it firstname, what type of argument
it is (a string), and whether it is required. Inside a function, you can get all the arguments
that are passed to that function in the arguments scope. In this case, we can refer to the
string that is passed to our function as arguments . firstname and we can then set it to
the this scope of the component.

We can now set the first name as follows:

<cfset myEmployee = new Employee() >
<cfset myEmployee.setFirstName ("John") >

If we want to get the first name, we can now safely get it using the get FirstName function
we defined:

<cfset myEmployee = new Employee () >
<cfset myEmployee.setFirstName ("John") >
<cfset firstname = myEmployee.getFirstName () >

The variable firstname in our template would now be set to "John".

Of course, in this component there are only a few properties and we would like to make
sure they are set when we create the object; this is done by a special function called a
constructor. Constructors are usually defined by a function with the name init, let's add
that to our component:

<cfcomponent name="Employee'">

<cffunction name="init">
<cfargument name="firstname" type="string" required="true">
<cfargument name="surname" type="string" required="true">
<cfargument name="salary" type="numeric" required="true">
<cfargument name="email" type="string" required="true">

<cfset this.firstname = arguments.firstnames>
<cfset this.surname = arguments.surname>
<cfset this.salary = arguments.salary>
<cfset this.email = arguments.emails
<cfreturn thiss

</cffunctions>

</cfcomponent >



http:///

CFML Language

As we can see in the previous code, we have created the init function and set all the
parameters that we need to call when we create this component. The arguments passed into
the init function are then set to the this scope, and we return the whole component back
by using <cfreturn this> at the end of our function. We can now create our component
in a few ways, by passing in the arguments in and using the new keyword:

<cfset myEmployee = new Employee ("John", "Smith", "20000", "john.
smith@somedomain.com") >

<cfdump eval=myEmployees>
Or by calling the function after using the CreateObject () function:

<cfset myEmployee = CreateObject ("component", "Employee")
.init ("John", "Smith", "20000", "john.smith@somedomain.com") >
<cfdump eval=myEmployee>

This gives us a component that is ready to do some work for us.

CFML Components also support inheritance. That is the ability of one object to "inherit" the
properties and functions of another component. For example, what if we had a Janitor
component? It might have all the properties and functions of an Employee object but it
might also have very specific functions that an Employee component wouldn't have. Let's
create a Janitor.cfc component that extends the Employee component:

<cfcomponent name="Janitor" extends="Employee">

</cfcomponent >

By using the extends attribute in the <cfcomponent > tag, we have now inherited from the
Employee component, let's see what happens when we call our Janitor component:

<cfset myJanitor = new Janitor("Zak", "Brown", "15000", "zak.brown@
somedomain.com") >

<cfdump eval=myJanitor>

[8a1



http:///

Chapter 3

myJanitor
Component (Janitor)
Only the ions and data that are ible from your ion are display
Extends || Employee
public
GETFIRSTNAME
EMAIL
INIT
firstname | true string null
surname | true string null
salary true numeric | null
email true string null
SURNAME
SETFIRSTNAME
fUsers/markdrew/Dropbox /Railo Team/Book
Progress/railo-server-for-demos fwebroot/
chapter_3/Listing3_7.cfm:2 -
”ﬁrskname ”true "string "null —|
FIRSTNAME
SALARY

You can see it has the same properties and methods as the Employee component.

We can now add functions that are specific to Janitors rather than all Employees, so let's add
a "clean" function:

<cfcomponent name="Janitor" extends="Employee">
<cffunction name="clean">
<cfargument name="area" type="string" required="true">

<cfreturn "I am cleaning the #arguments.area#">
</cffunctions>
</cfcomponent >

We can now ask the Janitor object to perform the clean function:

<cfset myJanitor = new Janitor("Zak", "Brown", "15000", "zak.browne@
somedomain.com") >
<cfoutput>#myJanitor.clean("hall") #</cfoutput>

This would display I am cleaning the hall in our browser.



http:///

CFML Language

What just happened?

Railo Components allow you to encapsulate data and functionality in a simple object that
cleans up a lot of your code by making it reusable. You could have, of course, created a
structure to do this, but it would have only stored the data and it would not have been able
to run functions. This is the crux of object-oriented programming, creating encapsulated
objects that represent some kind of real world object, both in their contents and behavior
that you can use in your system.

sSummary

This has been a tour de force chapter, we have learned:

How tags and functions are used in Railo Server
The various scopes that are available and where they can be seen and modified

How to access databases with the <cfquery> tag as well as using
<cfstoredprocs to call database stored procedures

¢ Anintroduction to Railo Server's object-oriented programming using components

There are many more things you can do with components in Railo Server, but hopefully this
has given you some idea on how they behave. In the upcoming chapters, you will see how
they can help you architect your application, control your application flow, and even allow
you to create web services with ease.



http:///

So far, we have looked at installing Railo Server, got to grips with the CFML
language that we can write our templates in, and very briefly visited the Railo
Administrator to create a datasource. In this chapter, we will explore the Railo
Administrator in more detail and get to grips with:

¢ Server and Web context: What does each one manage and how do
they affect each other

¢ Settings: How they affect performance, output, and internationalization
of your server

¢ Services: How to access other services, such as databases, caches, event
gateways, debugging, and mail servers

¢ Extensions: How you can add extra functionality to the Railo server
through extensions

¢ Archives and Resources: How to access mappings, resources,
custom tags, and CFX tags
& Security: Setting the password and access restrictions for each context

By the end of this chapter, we will have a good grasp of the various settings that can be
changed and configured in the Railo Server Administration and how they affect the behavior
of the server.

Let's get started!


http:///

Railo Server Administration

Before we delve too deeply into the administration of Railo Server, there is an important
concept to get to grips with first. Even though, so far, we have been running only one
website, Railo Server can actually run a number of websites.

A good example would be if we were running two different websites from our server,
say our main website (http://localhost :8888) and another website, let's call it
http://site2.local:8888.

Different websites might have different settings, and if you were an ISP, it probably would be
maintained by different people. Railo Server allows you to do this by giving each context its
own administrator and separating it from the other contexts, depending on which domain
was used in the URL to access each site. These are called Web contexts.

Of course, the main administrator of the site should have access to all the settings and could
also set "defaults" for the Web contexts. This is called the Server context.

You can visualize it as follows:

Application Server

Web Comtext P Web Context
Server Administrator
Web Context Web Context
http:/isite2 http://site3

Imagine a server that has 20 websites installed in a single instance of Railo Server. We might
want to add a new web context containing a database, some different custom tags, and

a single search collection. In Railo Server, all these resources inside of a web context are
private, and can only be used inside this single web context.

On the other hand, commonly requested Railo resources can be centrally defined in the
Server Administrator, and therefore be made available to everyone.

If we want to give all the web contexts the ability to share the same mapping (let's say,
/coldbox for the ColdBox framework), you can define it in the Railo Server Administrator.
The mapping's definition is "read-only" for all web contexts. This definition can be seen in
every local Web Administrator, but it cannot be deleted or modified by them. The only thing
Railo allows you to do is to overwrite the global definition of the mapping by defining a local
one with the same name.



http:///

Chapter 4

This architecture implicates several advantages:

¢ Web contexts are separated from one another: The isolation of web contexts
assures that no user of another web context goes "messing around" in another
user's web context. Railo prevents this by default. System resources (libraries
(JAR files), core) are shared amongst the server.

The libraries used by Railo are shared between all web contexts. This helps reduce
server memory and saves management and installation work.

¢ Local administrator for each web context: A server administrator can assign rights
to specific users to manage their own context. This saves on change requests, and
of course, gives power to the person that manages that context to change settings
without affecting others.

¢ Global definition of security rules: A Railo Server Administrator can allow or
disallow the installing and modification of certain resources that Railo Server
provides. For example, the administrator could do the following:

o Implement constraints on file access per web context

o Set restrictions on Java-Access (including totally restricting access to base
Java calls from CFML code)

o Setrestrictions on data source definitions

o Create separate default settings for any web context

¢ Restart and update: An administrator can restart Railo Server without having to
restart the whole servlet engine.

An administrator is also able to easily update the server to the latest version, and
even choose what patches/updates they want to install, be they stable, preview
releases, or bleeding edge updates to test out.

¢ Easy export of webs configuration files: Railo Server stores all local settings of a web
context in a single file inside the directory (usually in /webroot /WEB-INF/railo/
railo-web.xml.cfm). This allows for the ability to zip up all the files in a web
context, move them onto another server, and end up with the exact same settings
as on the original server. Some of the settings might have become invalid because
of invalid paths or different IP addresses. But at least they are in place.

Time for action - setting up an example context

Currently, our http://localhost: 8888 website points to the <railo installs>/
webroot/ folder. Let's say we want to have the http://site2.local: 8888 website
served from the <railo installs/webroot2/ folder, and all the requests that go to
the domain http://site2.local: 8888, be served from there. We will need to create
another context.



http:///

Railo Server Administration

Al

Don't worry about the port number at the end of the domain (8888). We can
change that in the configuration of Jetty, if you look in the folder you installed
Railo Express; in the /etc/ folder, you should see a file called jetty.xml. You
can change the port by modifying the XML that says:

<Set name="port"><Property name="jetty.port" default="8888"/></Set>
to
<Set name="port"><Property name="jetty.port" default="80"/></Set>

And you will be running your websites without the need to add the port, since
port 80 is the default port for websites.

To create a context, we are going to create the http://site2.local: 8888 domain on our
local machine, create a folder where the webroot is going to be for site2.1local, and add a
context file to our Railo Server.

1.

Let's add the domain to our hosts file. In OS X and Linux, you can do this by
editingthe file /etc/hosts (on Windows, this file is located in C: \Windows\
System32\drivers\etc\hosts), and add the following to the bottom of the file:

127.0.0.1 site2.local

This tells our computer that when we go to the site2.local domain, all our
requests are pointed back to our machine.

Now create a folder in our <railo installs folder called webroot2.

Now when you have a look in the <railo installs/contexts directory, you will
have a railo.xml file, which defines the default context.

Copy the railo.xml file to a new file called site2.xml.

Edit the site2.xml file and add the following code:

<?xml version="1.0" encoding="ISO-8859-1"7?>

<!DOCTYPE Configure PUBLIC "-//Jetty//Configure//EN"
"http://www.eclipse.org/jetty/configure.dtd">

<Configure class="org.eclipse.jetty.webapp.WebAppContext">
<Set name="contextPath">/</Set>
<Set name="resourceBase">

<SystemProperty name="jetty.home" default="."/>/webroot2/
</Set>
<Set name="defaultsDescriptor"s>
<SystemProperty name="jetty.home" default="."/>
/etc/webdefault.xml
</Set>

<Set name="virtualHosts">
<Array type="String"s><Item>site2.local</Item></Array>
</Set>
</Configure>



http:///

Chapter 4

7. Theimportant lines comprise the resourceBase that has been changed to point to
our webroot2 folder and the entry in the virtualHosts section that points to our
site2.local.

8. Createafilein <railo installs/webroot2 and callit index.cfm. Add the
following in the file, so we can see that everything is working:

<!DOCTYPE html>
<html lang="en">
<head>
<title>Site2</titles>
</head>
<body>
<hl>Welcome to Site 2!</hl>
<p><cfoutput>#Now () #</cfoutput></p>
</body>
</html>

9. Once you save the file, head over to http://site2.local: 8888/, and you
should now see your Site2 working.

ann Site2
[ + |"§http:,-’,"site2‘Iocal:BSBB,-f G] |.\0( Google s
Welcome to Site 2!

{ts '2011-03-31 11:01:00'}

What just happened?

By adding an entry in the hosts file, we have been able to create a domain that our local
machine will respond to. Once we did that, we were able to create a new context that is
separate from our main context, which will serve pages from a different directory, and
only respond to pages on the http://site2.local: 8888 domain. Now, we can go
ahead and check out the differences between a Railo Server Administrator and a Railo
Web Administrator.

Now that we have set up the second context, we can access the administration through the
URLhttp://site2.local:8888/railo-context/admin/web.cfm. Let's have a proper
look this time.

91l



http:///

Railo Server Administration

Time for action - setting your password

Let's go and set our passwords for the Railo Web administrator (since we already set our
Railo Server Administrator password in Chapter 2, Installing Railo Server) of our new context:

1. Inthe browser, go to
http://site2.local:8888/railo-context/admin/web.cfm.

2. You will see the New Password screen with the Web Administrator tab highlighted.

an0e Railo Web Administrator

[ = |ﬁ http://site2.local:8888 /railo-context/admin fweb.cfm G] (0\' Google p

.

[«

Server Administrator Web Administrator

New Password

Password
Retype new password

Language | English ?}

submit

b

3. Enter a Password and then retype it in the dialog. You should now see the Railo
Web Administrator homepage.

4. Now that you have logged in, click on the Logout button to get back to the Web
Administrator login page.

5.  You will now see the Login prompt, which you can now use to log in using the
password you set previously.

What just happened?

Railo Server allows you to set a different password for the Web Administrator in each
context. We have just set the password for the site2.local (http://site2.
local:8888/railo-context/admin/web.cfm) context, which is separate from the
context at http://localhost:8888/railo-context/admin/web.cfm.

You can follow the same procedure to change the main Server Administrator by clicking on
the Server Administrator tab.

1921



http://site2.local:8888/railo-context/admin/web.cfm
http://site2.local:8888/railo-context/admin/web.cfm
http://site2.local:8888/railo-context/admin/web.cfm
http://site2.local:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http:///

Chapter 4

How contexts relate to each other

Now that we have set up the passwords for our Web and Server Administrator sections, we
can investigate how changes to settings in one context affects the settings in another.

Let's take an example of having two contexts. One hosts a website that is aimed at users
from Hong Kong and the other is aimed at users from the USA. It would make no sense if
the time zone settings (such as the time) would be the same for both. Normally, this setting
would be defined by the actual geographic location of the whole server. Railo Server allows
you to customize this.

Let's check it out.

Time for action - setting the time zone

Let's create a file that will display the time zone for the current context:

1. Inyour <Railo Intall Directory>/webroot/, create a file called
server timezone.cfm.

2. Inthat file, enter the following code:
<cfoutput>#getTimeZone () # #Now () #</cfoutputs>

3. Let's copy this file to our second context located in <Railo Intall Directorys/
webroot2/.

4. Ifyounowgotohttp://localhost:8888/server timezone.cfm, you should
see your local time zone, for example, mine displays:

America/New_York {ts '2011-09-16 13:08:10'}

5. If you now go to your second context by going to http://site2.local:8888/
server timezone.cfm, you should also see:

America/New_York {ts '2011-09-16 13:10:27'} (or at least the same as was
displayed in your first context).

6. Let's set the server context and see what happens. In your browser, go to
http://site2.local:8888/railo-context/admin/server.cfm
and log in (or enter a new password and confirm it if it hasn't already been set).



http://localhost:8888/server_timezone.cfm
http://localhost:8888/server_timezone.cfm
http://site2.local:8888/server_timezone.cfm
http://site2.local:8888/server_timezone.cfm
http://site2.local:8888/railo-context/admin/server.cfm
http://site2.local:8888/railo-context/admin/server.cfm
http:///

Railo Server Administration

7. On the left menu, under Settings, click on the Regional link, and you will see the
Settings - Regional screen, as shown in the following screenshot:

Settings - Regional Logout
Railo lets you set your own individual locale, timezone and timeserver.
Define the desired time locale for Raile, this will change the default locale for the contest of the web.
Locale | English (United States) ?
. Define the desired time zone for Railo, this will also change the time for the context of the web.
Time zone | Europe/London - Greenwich Mean Time H 1
Time server that returns the cument time. If set, this time will be used within Raile instead of the local server time. (Exampla:
swigstime.athz.ch, time.nist.gov)
Time server (NTP)
pool.ntp.org
date/time 04/01/20 52:42
:52:43
update cancel Reset to Server Administrator Setting

8. Inthe Time zone drop-down box, change the setting to (for example) America/
Jamaica. This is now the default setting for the whole server, and therefore all the
contexts. Click Update to confirm these settings.

9. If you now reload the pages at http://localhost:8888/server_ timezone.
cfmand http://site2.local:8888/server_ timezone.cfm, you will see that
the server-wide settings have been applied to all the contexts, as the pages now
display America/Jamaica {ts '2011-09-16 12:11:29'}.

10. Let's change the first context to the UK first. Let's head to the Web Administrator for
our localhost context by going to http://localhost:8888/railo-context/
admin/web.cfm, and then clicking on the Settings — Regional (as you previously did
for the server).

11. In the Settings — Regional page for the localhost web context, let's select the
Europe/London — Greenwich Mean Time time zone and click on Update.

12. When we now reload http://localhost: 8888/server timezone.cfm, we
can see that the time zone displayed is now Europe/London, and if we also reload
http://site2.local:8888/server_timezone.cfm, we can see that the server-wide
settings still apply to this context, as it is still displaying America/Jamaica.

13. Let's change the site2.1local time zone now by following the same procedure
as localhost, but by goingto http://site2.local:8888/railo-context/
admin/web.cfm, selecting Settings — Regional, changing the time zone to Asia/
Hong Kong — Hong Kong Time in the drop-down, and clicking the Update button.

[9a1



http://localhost:8888/server_timezone.cfm
http://site2.local:8888/server_timezone.cfm
http://site2.local:8888/server_timezone.cfm
http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/server_timezone.cfm
http://localhost:8888/server_timezone.cfm
http://site2.local:8888/server_timezone.cfm
http://site2.local:8888/server_timezone.cfm
http:///

Chapter 4

14. Now when we reload each of the time zone files in each context, we will
get Europe/London for the localhost context and Asia/Hong_Kong for the
site2.local context.

What just happened?

The settings that are made in the Railo Server Administrator apply to all existing and new
contexts. These can be seen as the default settings. If you want to override these settings,
you can make changes in the Railo Web Administrator, which will only affect the current
context. This is very handy for settings that are specific to an application.

The Railo Weh Administrator

In the Railo Web Administrator, you can change many settings regarding how you want
the code in the context to behave, what resources it has access to, how output should be
handled, and so on.

The Railo Web Administrator is organized into several sections, which are listed as follows:

Settings

Services

Extension

Remote

Archives and Resources
Development

Security

® 6 6 6 6 0 o o

Documentation

These menu items are likely to change, depending on which plugins and extensions you have
installed (we shall go into Railo Extensions in detail later in the book), but the main structure
is set.

Remember, any changes that you make to the Railo Web Administrator will only affect the
current context. If you want to make changes across all the contexts, you can do them in the
Server Administrator.



http:///

Railo Server Administration

gating the Weh Administrato

Now that we have secured the Web Administrator, let's log in again and explore it:

1. In your browser, goto http://site2.local:8888/railo-context/admin/
web.cfm.

2. Enter your password and click on the submit button.

3. You should now see the Railo Web Administrator - Overview, as shown in the
following screenshot:

[N N&) Railo Web Administrator

[ - ‘ » ] {+ |9hltp:,ffsltez.\oca\:SSSB,’ra\qucontext,'admmfweb.(fm C] (Q' Google ]

Server Administrator Web Administrator

. |
Overview Logout |
|
Railo, the GFML engine - free, open source and easy to use. This Web Administrator s provided in order to customize your web context. |
Info
semmiﬁ = Version Railo 3.2.1.000 final |
Event Gateway (Beta)
Cache Version Name Greyfriars Bobby |
Datasource |
ORM (Beta) Release date Dec 22,2010 |
Search N
i ColdFusion® compatibiity g4 o |
Tasks version |
Scheduled tasks 0s Mac OS X (10.6.7) |
Extension Remote IP 127.0041 |
’;DP";i“:‘"s Host Name site2 local |
roviders
Serviet Container Jetty/7.2.2v20101205 |
Remote !
R ol K Rallo Server ID 7T63c4abd542e2f7c2145903730a30a7 |
it ¥ Y
Clients
‘m :Inbr;;arl‘lz;d tag - Railo Core Tag Library |
Archives & Resources |
Installed function ¥ 4 |
e - Railo Gore Function Library |
Railo date/time Apr1,2011 10:36 AM !
Development Server date/time: Apr1,2011 10:36 AM
Debugging Java 1.6.0_24 (Apple Inc.)
Security Memory 508mb
Password AUsers fuarhdren Drophos/Railo TeanfBook Progress/zails-server-for-demos/1ibfextftagsoup. jar T
#Usersfmarhdren/Dropbox/Faile TeanwFock Progress/raile-server-for-
Documentation deracs S 1ibf jrpfcom. sm. «1 L. 0.0 w0100 4190858, jar m
Tag Reference AUsersfmachdren/Dropbox/Raile TeamfBock Progress/raile-server-for-demosflibfexmtfoml-apis. jar
ner;.--'::r‘c Classpath JUsersfmarkdren/Dropbox/Failo Teaw Book Frogress/railo-server-for-demos/1ibfextf sun-indi-ldapsec.jar

FUsersfmarkdrew/Dropbox/Railo TeanfBock Progress/railo-server-for-demosf1ibfextf sum-jai_rodec. jar
#Usersfmackdren/Iropbox/Failo TeawBock Progress/zailo-server-1or-demoss 1ibf exc/FITRenderss, jar
#Vs exs fmackdren/Dropbon/Failo TeaniBock Frogress/zailo- F1iBf e mtefmi s jax



http:///

Chapter 4

What just happened?

Using the password we set earlier, we have logged into the Railo Web Administrator and
seen the Overview page.

This Overview page gives us a lot of important information about our current installation
such as:

Railo version, name, and release date

The Adobe ColdFusion(tm) compatibility level
The operating system

IP address of the caller and the host name
The Servlet container type and server ID
Loaded tag libraries

Loaded function libraries

Local Web Administrator time

Server time

Loaded Java Virtual Machine (JVM) version
Maximum available amount of memory

Class path (loaded Java archives JARs)

® 6 6 6 6 0 O 6 0 O O 0 o

Railo Company information

Settings
The settings are general settings that are controlling the behavior of Railo Server. These

affect things such as template caching, regional settings, how components are handled,
character sets, and other issues. Let's look at each section in detail.

1971



http:///

Railo Server Administration

Performance/Caching

The settings you make in the Performance/Caching section determine how Railo Server
deals with changed CFM (and CFC) files. Normally, Railo will compile any modified file into a
new Java class file. While this is very fast (depending on the complexity and size of the file,
this might take around 10 ms), each <cfinclude>, <cfmodule>, CFC invocation, Custom
Tags call, and so on, will check whether the related file has changed. This file checking will
only take a few milliseconds at the OS level, but this might add up to give you some quite
heavy performance problems.

Settings - Performance/Caching Logout

Different Cache and Performance settings to improve overall performance

() Never { Best Performance )

When checked, any requested files found to cumently reside in the template cache will not be inspected for potential updates.
Faor sites where templates ame not updated during the life of the server, this minimizes file system overhead.

Inspect Templates ® Once ( Good)

(CFMYCFC) When checked, any reque: will be inspected only once for potential updates within a request. For sites whena
tamplates are not expected to reflect updates within the same request, this minimizes file system overhead.
() Always [ Bad)
When checked, any requested files found to cumently reside in the template cache will aways be inspected for potential

updates. For sites where templates are updated during the life of the server or within request.

Template Gache Clear template cache { 7 element(s) )}

Press the button above to clear the template cache.

Clear query cache ( 0 element(s) }

Press the button abowve to clear the guery cacha.

Query Cache

Clear component path cache ( 0 element(s) )

Press the button above to clear the component path cache.

Component path Gache

Clear custom tag path cache ( 0 element(s) )}

Press the button abowe to clear the custom tag path cache.

Custom tag path Cache

update cancel Reset to Server Administrator Setting

For the Inspect Templates (CFM/CFC) section, the following settings are available:

¢ Never (Best Performance): If selected, each template requested, which is in the
template cache, will not be checked for potential updates. For sites where the
templates do not change during the server runtime, this setting minimizes the
system load.

Select this option on a live server, where you know that the templates used almost
never change. If a template is updated, you can simply flush the template cache
by clicking on the Clear template cache button, which will force the server to
recompile the files. You can also use the function pagePoolClear () to flush

the template cache.



http:///

Chapter 4

¢ Once (Good): If selected, the templates are only checked once per request for
potential updates. For sites where the templates do not change very often during
the server runtime, this setting reduces the system load.

We would suggest that this is the most recommended setting, because it is a very
good mix between keeping templates up-to-date and performing well. This is also
the default setting.

¢ Always (Bad): If selected, each template that is in the template cache will always be
checked for potential updates. This is the best choice for sites where the templates
might change during a single request. If you cannot choose the Never or Once
settings, because files might be generated or recreated by an application during
the execution of a request, this option may be a possibility. But, if possible, this
should be avoided on production systems. In order to clear the page pool if files
are generated, you can always call the pagePoolClear () function.

Time for action — comparing template caching settings

Let's have a look at what impact these settings have on a normal request.

This way we can compare how long it takes for the request for each of the different settings.
Let's create some templates to test:

1. Inthe <Railo Install Directorys>/webroot/, create a template called
speed_test.cfm with the following code

<cfscripts>
totalPage = 0;
loop from=1 to=10 index="i" {
FileWrite ("my_ include.cfm", "<cfset myvar #i# = Now()>");
includeStart = getTickCount () ;
include template="my_ include.cfm";
includeTotal = getTickCount () - includeStart;
totalPage += includeTotal;
WriteOutput ("Include #i# took: #includeTotal# <br>");
sleep (1000) ;
}
WriteOutput ("Total include time #totalPage#");
</cfscript>

2. This code does a simple loop from 1 to 10, and each time, it writes the code <cfset
myvar #i# = Now () > into afile called my include.cfm. Essentially, this will be
rendered as <cfset myvar 1 = Now () > for the first loop into the template, and
basically change the actual code for each loop.



http:///

Railo Server Administration

3.

Then, we time how long it takes to include that file in our main template. The
other parts of the code simply time how long each include takes using the
getTickCount () function.

Before we run this, we should go to the Railo Web Administrator by going to
http://localhost:8888/railo-context/admin/web.cfm.

Click on the Performance/Caching link on the left, then select Always (Bad), and
press the update button.

When we run the template by going to http://localhost:8888/speed test.
cfm a few times, we will get something like (your results may vary of course):

Include 1 took: 2
Include 2 took: 6
Include 3 took: 12
Include 4 took: 12
Include 5 took: 2
Include 6 took: 2
Include 7 took: 1
Include 8 took: 1
Include 9 took: 1
Include 10 took: 2
Total include time 41

Then, if we go back to the Railo Web Administrator, select Once (Good), click the
update button, then re-run the template, and we will get some results similar to
the ones that follow:

N
~N

Include 1 took:
Include 2 took:
Include 3 took:
Include 4 took:
Include 5 took:
Include 6 took:
Include 7 took:
Include 8 took:
Include 9 took:
Include 10 took: 0

Total include time 27

©O O O O 0o o o o

[100]


http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/speed_test.cfm
http:///

Chapter 4

8. Finally, if you now select Never (Best Performance) and reload our speed test a
couple of times, you should get the following results:

Include 1 took: 0
Include 2 took:
Include 3 took:
Include 4 took:
Include 5 took:
Include 6 took:
Include 7 took:
Include 8 took:

O O O O 0o o o o

Include 9 took:
Include 10 took: 0
Total include time 0

What just happened?

In the previous examples, we can see how the Inspect Templates setting in the
Performance/Caching section of the Railo Web Administrator is changing and how
Railo Server deals with templates on each request.

In the first example, each time we tried to include my template.cfm, Railo Server
re-parsed and compiled the template.

When we set the performance to Once (Good), the first time the template was included,
it was inspected for changes. On subsequent requests, it took no time, since Railo Server
already had compiled it and could now ignore it.

Finally, when we have the setting of Never (Best Performance), Railo Server checks if it has a
compiled version of that template; if it has, it never checks for changes again. Hence we get
zero milliseconds for each include.

This might be a good thing on some systems, but remember that the template has indeed
changed, so in some cases, we do want Railo Server to actually re-check for changes. In this
case, you can run the pagePoolClear () function, which will remove the templates from
the Template Cache and then reload them again.

11011


http:///

Railo Server Administration

In addition to determining the way Railo Server treats CFML templates that are in the
template cache, you can additionally flush the template and query cache. The Web
Administrator will always display the number of items that are currently stored in the cache.
If you click on the clear cache button, the items are removed. Don't be surprised that some
elements reappear in the template cache. In order to flush the cache, some templates that
land in this cache had to be called.

The Server Administrator determines what the standard caching method is, which of course,
you can overwrite in each of the Web Administrators. This is why you have a button Reset to
Server Administrator Setting that will reset any changes you have made to the value set in
the Server Administrator.

We have already seen this section in our previous example, dealing with the differences
between contexts and the Server context, and have used the Locale and time zone features.

Besides setting the current locale for display, it also allows us to access locale-specific
formatting of values, such as dates and numbers. This is the default region that will be used,
if we use a conversion function LSNumberFormat () or LSDateFormat (). Once set, you
never have to adjust this value.

Of course, there are times that you want to get the time defined by the server itself. Railo
Server has a Built in Function (BIF) called nowServer (). This function returns the current
server time. You can easily test this. Just change the time zone and click on update. After
that, you will see that the regional time has changed accordingly (Server time/Railo time).

Railo Server synchronizes its time with a time server. You can enter a valid URL of the desired
time server in the Time Server (NTP) field. Railo Server will then update its time every hour
from the time server defined. In order to use a time server, the server only needs to support
the Network Time Protocol (NTP).

Settings - Regional Logout

Railo lets you set your own individual locale, timezone and timeserver.

Define the desired time locale for Rail, this will change the default locale for the context of the web.
Locale | English (United States) B
) Define the desired time zone for Raile, this will also change the time for the context of the web.
Time zone | EuropefLondon - Greenwich Mean Time h

r that returns the cument time. If set, this time will be used within Railo instead of the local server time. {Example:
ethz.ch, time.nist.gov)

swigsti

Time server (NTP)

pool.ntp.org
Server datetime: Railo dateftime 04/01/2011 11:52:42
Railo datevti 04/01/2011 11:52:42
update cancel Reset to Server Administrator Setting

11021



http:///

Chapter 4

Why don't you try it yourself? Modify the code we used previously when choosing the time
zones for each context and display the server time.

Charset

The Charset section allows you to set the different character sets that are used for different
purposes. The default is the one set by the operating system and the Java charset.

Charset type Description

Template charset Defines the charset used when reading CFML templates from the file
system. It is the charset that is pre-defined by the Operating System.
(For Windows, it normally is CP1252).

Web charset Defines the charset used in forms and for the output in the browser.
The charset is predefined by the charset of the used JRE.

Resource charset Defines the character set for reading from/writing to various
resources, such as ZIP files.

Scopes are special structures that store information within the Railo Server. This section
allows you to modify different behaviors of the scopes, such as how lookups of variables are
handled, the type of sessions used by the context, enabling session, cookie, and client scope
management, and the time-out values for various scopes.

¥ou can cefing the 5cona SETNGS tha will b rsed s default for Bl wes contes hara
Cmcasmg
Standard (CFML Detault) (3]
(]

Saarch rasultsets

Session rype cau
o 58

Maorge UAL and form

SOSSHON MAnaguTeNT =
Client managoment

Doman codkies

Cliert cookien (5]
Lol scope made

update (CFML standard) W8]

Session timeout

Days Hours  Minutes Saconds
Application tmeout

. Des  Hows Minutes Seconds
Clent Himeout

update  cancel

[1031


http:///

Railo Server Administration

Cascading

One of the benefits of CFML is also one of the determents, something called scope
cascading. CFML makes it easy for a programmer to use variables without identifying
which scope they are stored in.

Let's think of an analogy of calling the register in school. Let us assume that our application
is a school and all pupils are variables. If you call out the name Peter in a classroom, without
telling which Peter you mean, you might get lucky if there is only one Peter in the room

and only receive one response. But if there is no Peter in the class, then you have to look
for a Peter. You use a certain order in which you scan the classrooms. You start with the

first classrooms on your left and continue until you have found a Peter. So you call Peter
and CFML gets you a Peter. Sometimes surprising results happen. Maybe the janitor named
Peter turns up, although you were in fact looking for Peter Parker from class 7-b. So why
weren't we required to call Peter Parker, class 7-b come here!!I? CFML saves you the trouble.
You don't have to do it specifically. CFML leaves you the freedom to not strictly scope your
variables. It does come with the price that you might end up with a different Peter than

you expected.

Getting back to programming, you can configure how Railo Server handles these look-ups to
the point that "scope cascading" ("Get me a Peter") can be even turned off. If it is turned off,
you need to write more specific code to reference your variables.

Time for action - restricting the scoping of variahles

Let's have a look at examples of these settings in practice.

1. Inyour<Railo Install Directorys/webroot, create a template called
scope_test.cfm. In this template, just add the following code:

<cfoutput>#name#</cfoutput>

2. Let's load this template by calling http://localhost:8888/scope test.
cfm?name=Mark. Notice that we have added a URL variable called name with the
value of Mark.

3. The output we get for this template is still Mark, since Railo looked through our
scopes, starting with the VARIABLES scope, then the CGI, URL, FORM, and finally
COOKIE, and found the variable name in the URL scope.

4. If we go to the Railo Web Administrator, then go to the Scope section, and change
the cascading from Standard (CFML Default) to Small, the code will still work,
since Railo Server has only had to look through the VARIABLES, CGI, URL, and
FORM scopes.

(1041


http://localhost:8888/scope_test.cfm?name=Mark
http://localhost:8888/scope_test.cfm?name=Mark
http:///

Chapter 4

5. Let's change the cascade to Strict and reload the template in the browser. This time,
we get an error that says:

variable [NAME] doesn't exist

6. Let's change our code to be a bit more precise; change the code in the scope
test.cfmtemplate to have a scope:

<cfoutput>#URL.name#</cfoutput>

7. When we reload the template, we see that it now works.

What just happened?

Railo Server lets you access variables without having to prefix the scope they live in quite
nicely. Of course, this has performance issues, since Railo Server will have to look through
various scopes, until it finds the variable. If there is a variable with the same name, then it
will return the first one it finds.

You find that you have better code if you are more explicit with the name of the scope and
then the variable, as in the <scope> . <variables> format, for example URL . name.

Using stricter scoping of variables will invariably speed up your application, as Railo Server
has to do less work in looking up variables. It will also eliminate potential issues when the
same variable name is used in multiple scopes.

Session type

Railo Server is fast, but sometimes heavy traffic slows down even on the fastest system.

It could become necessary to cluster multiple servers running Railo Server together. Railo
Server offers the possibility to cluster two or more servers in a JEE environment. In this
case, the JEE server handles the sessions, and you can define the session type in the Railo
administrator. Possible values are JEE or CFML. This would allow the underlying Servlet
Container (such as Resin, Tomcat, or Jetty) to manage the SESSION scope across the cluster.

Session identifiers that are passed through the URL have a higher priority when using
CFML Session. It is the other way round when you use JEE sessions. In such cases, cookies
are preferred.

Combine the URL and Form scope

If we enable the Merge URL and FORM scopes setting, Railo Server merges the variables
from the FORM and URL scope into a single scope. The variables can then be accessed either
over the FORM or the URL scope.

Variables with the same name that are present in both scopes are combined into a comma
separated list, as if a variable has been passed twice in the form scope.

[1051


http:///

Railo Server Administration

Time for action — merging the URL and FORM scopes

1.

4.

Let's test this out. Create a form called scope _merge.cfmand add the
following code:

<cfif isDefined("form.firstname") >
<cfdump eval=FORM>
<cfdump eval=URL>
</cfif>
<form action="scope merge.cfm?name=Wilhelm&test=5" method="post">
<input type="Hidden" name="firstname" value="John"x>
<input type="Hidden" name="Name" value="Doe'>
<input type="Submit"s>
</form>

This code creates a form that will submit and create FORM variables that are hidden,
as well as URL variables.

When we call this template, by going to http://localhost:8888/scope

merge.cfm, we get a simple form which, when submitted, gives the following
output:

FORM

Scope

firstname -
e | Gonalood

URL
Scope

o
et | gl

Submit

Now, if we go to the Railo Web Administrator and tick the checkbox next to
the Merge URL and FORM section, we would get something similar to the
following screenshot:

[1061]



http://localhost:8888/scope_merge.cfm
http:///

Chapter 4

FORM
Scope

fieldnames -test,firstname,l‘dame
Fravame | oo

Name [Etring][poe, Wilhelm
=l

URL
Scope

fieldnames -test,firstname,Name
e | el

Name [E&ing][poe, Wilhelm

= e

Submit

What just happened?

Railo Server allows you to join up the URL and FORM scopes and copy the values
into both scopes. If you have values that are named the same, they will be joined
in a comma-delimited list, as if they were the same named field in a form.

Railo Server allows sessions to be used. Railo Server keeps a session for each visitor of an
application. In order to recognize a returning user, you need a few tricks. You could either
use URL parameters, hidden form fields, or cookies, in order for Railo Server to address

an already existing session to the returning user. When using CFML sessions, Railo Server
creates two IDs (named CFID and CFTOKEN), which the user sends with the request. These
IDs are used to assign the right session to the user. In order to use sessions, you need to turn
on session management in the Railo Web Administrator. Sessions are quite handy when you
like to store some data during the visit of a user (shopping cart, user data, preferences, and
so on).

The workflow when initializing a session with cookies goes as follows:

¢ Auser calls a website (for example, http://www.getrailo. com).

¢ Since Railo Server is running on this system and session management is turned on
for the requested application, the browser stores (if possible) a cookie at the end of
the requests on the client's local PC.

¢ With every subsequent request from this client, the cookies will be sent back
to the server.

¢ Railo Server then identifies the user and assigns the corresponding session to
the user.

11071



http:///

Railo Server Administration

Railo Server creates a session only when it is used.

The session is stored in the server's memory. So, for example, if we set a value of 5
in a user's session with the following code:

<cfset session.retry = 5>

The value of 5 will be stored in the variable session.retry. The next time the
user calls a page (as long as it's in the same application), the value of the session.
retry variable will still be available in the session scope.

This option allows storing data of an application user in the client scope. The default usage of
the client scope can be turned on here. Client variables are like an extended cookie.

When you enable this option, the cookies stored by Railo Server are stored for a complete
domain and not only for a single host.

Client cookies

By turning on this option, Railo Server automatically stores cookies on the client computer,
when using sessions.

Session timeout

This option defines the time span the session scope is kept alive for a certain user. If during
this time span there is no activity in this user's session, the session variable will be deleted
from the server's memory. Higher time span values consume more memory on the server.

Application timeout

This option defines the time span the application scope is kept alive. If during this time span
there is no activity in this application, the application scope will be deleted from the server's
memory. Higher time span values consume more memory on the server.

Application

Under Application, you can define several different application-specific settings. We shall go
into more detail about the application lifecycle and how it is defined in Railo Server in the
next chapter, but for the moment, you should be aware that this is where you can change
how Railo Server deals with different aspects of applications.

[108]



http:///

Chapter 4

Logout

Settings - Application

Here you can define several default settings for the application context. These settings can be overridden with the tag cfapplication or the
Application.cfc.
The configuration of Script protect, secures your system from "cross-site scripting®
none (DScript-protect is nat active

Script-protect all 88c1.|:1-|:'ctect checks in all scopes for exdemal data {cgicookia, form,ur)

O\‘.:u can dafine the scopes to be checked individually

custom s 0 | s ==
cgi []| cookie [ form [] wd []

Sets the amount of tima Railo will wait for a request to finish before a request imeout will be raised. This means that the

execution of the request will be stopped. This behaviour can be ovemidden by the tag cfsstting.

Request timeout Days Hours Minutes Seconds

o o o 50
Request timeout in URL () When the URL parameter [AsquestTimeout] is passed in the UAL obey it
update cancel Reset to Server Administrator Setting

Application listener
Sets how requests are handled and which templates are invoked by default.

Please salect the typs of the listener

None O When a request is called no other inttialzation tem plate will be invoked by Railo
Classical (CFML <7) Classic handling. Railo looks for the file "Application.cfm" and a coresponding file
Type "OnRequastEnd.cfm"
Modern {0} Modem handiing. Railo only looks for tha file *Appiication.cfc®
Mixed [CFML >=7) 8 Mixed handiing. Raile looks for a file "Application.cfm/OnRequestEnd.cfm” as well as for the
Defines whers Railo looks for the fies "Application.cfo/Application.cfm®. In casa of type "none® this setting = meaningless.
Current O Looks for the file "Application.cic/Application.cfm® only in the cument template directory .
Mode Root O Looks for the file "Application.cfa/Application.cfm® anly in tha webmot
Current to root (GFML default) 8 Looks for the file "Application .cfe/Application.cfm® from the cument up to the webroat
directory.
update cancel Reset to Server Administrator Setting

Script Protect

This setting should protect your application from "cross-site scripting" attacks. Here, you can
choose to switch it off (not recommended). The setting protects all scopes that are checked
for the inclusion of the <script> tag or specific scopes.

(1091



http:///

Railo Server Administration

Cross-site scripting

Cross-site scripting (XSS) is a type of computer security vulnerability, typically
found in web applications, which allows code injection by malicious web users
into the web pages viewed by other users. Examples of such code include HTML
code and client-side scripts. An exploited cross-site scripting vulnerability can be
used by attackers to bypass access controls, such as the same origin policy.

If you turn on script protection, Railo Server checks incoming scopes for foreign
data and replaces it with harmless data. When you have set the setting to all the
scopes, CGI, COOKIE, FORM, and URL are scanned. These are the only ones
that might contain external data. When set to custom, you can define which of

%@‘ the scopes will be scanned by Railo. By default, no scope is checked for external
data (none).

This setting is just a default setting. You can use the attributes of the tag
<cfapplication> or the properties of the Application.cfc
in order to override this default. For example, to set the name and script
protection specifically for your application, you can use the following
<cfapplication> tag:
<cfapplication name="MyApplication"
scriptprotect="true">

For more information on XSS, see http://en.wikipedia.org/wiki/
Cross-Site Scripting.

The request timeout field allows you to set the maximum time a CFML page can run, before
an error is thrown mentioning that the request ran too long. You can also define whether this
setting can be overruled with a parameter in the URL called RequestTimeout. For example,
you could set the maximum timeout of a page that you know will run a long time by calling it
as follows:

http://localhost:8888/chapter 4/Listing4 4.cfm?RequestTimeout=50000

And this would change the request timeout of the page to 50 seconds (the time is measured
in milliseconds).

Application listener

Applications in Railo Server can be defined with the use of a special file called
Application.cfc. We shall see more on how this behaves in the next chapter, but
for the moment, you can use this section to set which behaviors you want to support
in your application.

(1101


http:///

Chapter 4

An Application Listener is a special file or function that is run at different points during the
request. You can set it to any of the following:

L 4

None: This means Railo server will not look for specific files at the start and end of
a request.

Classic (CFML < 7): This means Railo Server will look for a file called Application.
cfm at the start of each request. If there is a file called OnRequestEnd.cfmin the
same directory, it will include this template at the end of the request.

Modern: This means Railo server will only look for a file called Application.cfc
at the start of the request, not the Application.cfmor OnRequestEnd.cfm.

Mixed (CFML >= 7): This means Railo server will handle both the Classic and
Modern patterns of template inclusion.

The next section for the Application Listener settings is called mode, and defines how Railo
Server will look up the location of the Application.cfc/.cfmfiles.

¢ Current: This means Railo Server will only look for the Application.cfc/
Application.cfmfile in the current directory of the requested page.
¢ Root: This means Railo Server will only look for the Application.cfc/
Application.cfmfile in the web root of the site.
¢ Current to Root: This default setting will look for an Application.cfc/
Application.cfmfile starting from the current template path to the web root.
Output
This section of the Web Administrator allows you to define special settings that give output
to the user.
¢ Whitespace management: If this is set, Railo Server removes all extra whitespace

(tabs, spaces, and carriage returns) from between the code that is output to
the browser.

Output Railo Version: If this is set, Railo Server returns the version of Railo you are
running in the HTTP headers.

Suppress Content for CFC Remoting: If this is set, Railo Server removes any content
from inside a function call called remotely. Therefore, all that is returned is what the
function returns, rather than any content inside the call.

[l


http:///

Railo Server Administration

This section of the Web Administrator allows you to define how errors are handled. You can
define templates for:

¢ General Error Template: This is invoked in case of a coding or server error. You can
define your own custom error page.

¢ Missing Template Error: This template is called when you call fora .cfmor . cfc file
that doesn't exist. You can define your own custom error template.

¢ Status Code: Normally, when a website has an error, an appropriate HTTP status
code is returned. Here, you can set whether you will return this status code, or the
status code 200, which suggests that the request went okay (on an HTTP level).

Settings - Error Etiei

Please enter an individual error template.

Template that will be invoked in case of an emor. This setting can be ovemidden by the tag CFEmor.
General Error Template @ error.cfm TI
(500) .
Template that w 858 FEmo
Missing Template Error @ error.cfm
(404} =
0y
Status code Ii'[ In case of an excaption should an other status code be used or would it still be 200
update cancel Reset to Server Administrator Setting

The services section of the Web Administrator allows you to define connections and settings
to external systems, such as databases, caches, and e-mail servers. It also allows you to see
running tasks and set up scheduled tasks.

Let's briefly cover some of the sections, since they will be covered later in the book
in more detail.

Event Gateway

Event Gateway allows the Railo Server to handle requests or events from other systems
outside a normal HTTP request. We are going to go into more detail about configuring and
using Event Gateway in the next chapter.

In this section, you can choose from the built-in Event Gateway, such as the Directory
Watcher and the Mail Watcher, as well as any others that might be installed.

[n2]



http:///

Chapter 4

Services - Event Gateway (Beta) Logout

The Gateway Implementation is currently in Beta State. Its functionality can change before it's final release. If you have
any problems while using the Gateway Implementation, please post the bugs and errors in our bugtracking system.

Create a new Gateway instance
ID
Type + Directory Watcher

Cregve — wanwer

Once you have given the Event Gateway an ID, you will get a screen to configure it. As an
example, here is the Directory Watcher configuration screen:

Services - Event Gateway (Beta) Logout

The Gateway Implementation is currently in Beta State. Its functionality can change before it's final release. If you have
any problems while using the Gateway Implementation, please post the bugs and errors in our bugtracking system.

Directory Watcher
Watch a certain directory for changes
D testWatcher
Listener GFC Path railo.extension.gateway.DirectoryWatcherListener
Startup Mode [ Automatic & |
Directory
Tha directory you want to watch
Watch subdirectory 4
Should we watch the directory and all subdirectories too
Interval (ms) 60000
The interval between checks, in miliseconds
Extensions a

Tha comma separated list of extensions to match (* = all files).

CFC Listener Function Definition
Definition for the CFC Listener Functions, when empty no listener is called

Change onChange

called when a file change
Add onAdd

called when a file is added
Delete onDelete

called when a file is remowed

submit

131


http:///

Railo Server Administration

Railo Server provides a number of caches that you can use to save various variables to
improve the speed of lookups, especially when getting frequently-used data. Built-in caches
include EHCache Lite and RamCache. There are a number of functions that you can use to
save objects into the cache and get them back again. This can vastly improve the speed of
your application, rather than having to re-create the objects or save them in other ways.

Services - Cache Logout

Create a new cache connection
Name

Type | EHCache Lite |4

create cancel

We will look further into caches later on in the book. This section of the administrator will
allow you to create caches, set properties of the cache, and to assign it as the default cache
for various operations.

Datasource

The Datasource section of the Railo Web Administrator allows you to add connections to
databases. By default, Railo Server comes with a range of connectors to different database
servers, and you can even add your own JDBC drivers to connect to other database types.

By default, Railo Server supports the following databases: DB2, Firebird, H2, HSQL DB,
Microsoft SQL Server, MySQL, PostgreSQL, Sybase, Oracle, JDBC-ODBC Bridge (to connect
to your ODBC datasources), and any other database that has a JDBC driver.

The Object Relational Mapping (ORM) section of the Web Administrator allows you to
define settings on how Railo Server will interact with the included Hibernate ORM service.
Railo Server provides a way for you to "persist" CFML Components to a database and relate
them to each other. This means you don't have to do SQL queries to the database and you
can just code your whole application using components that are saved to the database for
you. We shall have a better look at this functionality in Chapter 5, Developing Applications
with Railo Server.

(14l


http:///

Chapter 4

Railo Server contains a full text search engine. It uses the Lucene search engine from the
Apache Foundation. The underlying engine can be swapped-out, since Railo Server uses an
interface for the abstraction of the full text search. This enables you to add other search
engines, if required, but your CFML code won't need to change.

Services - Search Logout

Here you can manage, create, populate and delete search collections. By default, railo uses Apache Lucene as the search engine.

Create collection

Name BookCollection
Path bookCollection/
Language | English ?

create cancel

In order to use the search functionality, we have to create a collection first. This can be done
either within the Railo Web (or Server) Administrator or with the <cfcollection> tag.

You define a collection by giving it a name, a path where the collection index is stored, and
the language that the collection is in.

A collection is a group of items that Apache Lucene will allow you to search. These can
be HTML files, PDF documents, Microsoft Word documents, and even web pages from
other sites.

Time for action - creating a search collection

Let's create a collection and use the built-in search functionality to see it work.

1. We first need to create a directory to hold our collection; this doesn't have to be
web-visible, but just for this example, we are going to create a folder in <Railo
Install Directorys/webroot called collections.

2. Now, in the Railo Web Administrator, head to the Search section.

3. Enter bookcollection in the Name field for the collection.

(1151



http:///

Railo Server Administration

4.

10.

Then, enter the full path to the collection folder in the Path field, and we should
have something similar to the following screenshot:

Create collection
Name hookeallection
Path fUsers/markdrew/Dropbox/Railo Team/Bock Progress

Language English

create cancel

Click on create, and you will have a page listing the created collection.

We need something to search, so let's create a folder in the <Railo Install
Directorys>/webroot called searchitems.

In this folder, let's add a page that we can now search. Let's write a file called
railorocks.html and add the following to the file:

<!DOCTYPE html >
<html>
<head>
<title>A search item!</title>
</head>
<body>
<hl>Railo Rocks!</hls>
</body>
</html>

The railorocks.html is just a simple HTML file with the word Railo in it that we
are going to search.

Let's head back to the Railo Web Administrator and click on the pencil icon next to
the bookcollection we created before.

In the Add/Update path index section, add the full path to our searchitems folder,
so it should look something like the following screenshot, and then click on update:

(1161



http:///

Chapter 4

Add/Update path index

File extensions .html, .htm, .cfm, .cfml

Directory path fUsers/markdrew/Dropbox/Railo Team/Book Progress
Index subdirectories £
URL
Language English
cancel update

11. Now click on the pencil next to the bookcollection collection, and at the bottom,
you can enter Railo in the Enter the searchitem textbox and click on search. You
should now have an example result of the contents in that collection.

search

Search the collection

Enter the searchterm railo

Results 1 - 1 of about 1 searched in 57 Records

oduction Framewaorks and lequirements |Installation Upgrading to

Results 1 - 1 of about 1 searched in 57 Records

What just happened?

Using the Railo Web Administrator, we added a new collection to the Apache Lucene engine.
We then added a path, which we set to look through .htm, .html, .cfm, and . c£fml files.

Railo Server will then maintain this collection, allowing you to add it to your site by using the

<cfsearchs> tag.

Why not create a template with a form to search the collection? You could also add other
types of files, such as PDF and Word Documents. To search this collection, you will need to
use the <cfsearch> tag. Here is a quick example, but why not explore what else you

can do?

<cfsearch collection="bookcollection"

criteria="railo"

name="findBooks" >

<cfoutput query="findBooks">
#score# - #title# - #Hsummary#

</cfoutput>

1111



http:///

Railo Server Administration

Mail

Most web applications, at some point, need to send an e-mail. For example, e-mails can
be used to notify a user, to send error reports, or to even send out a newsletter. The Mail
section of the Railo Web Administrator allows you to define global settings, such as the
default encoding, the location of the log file, the kind of logs that will be kept, whether
the spooler is enabled, the spool interval, and the timeout for sending mails.

You can also define SMTP servers that you will be using, the username, password, the port
for that server, and whether it has been enabled. Then to send mail in your code, all you
have to do is add the following code:

<cfmail from="me@mydomain.com" to="them@theirdomain.com"
subject="This is an email from Railo">
It's so easy to send an email from Railo Server! You should try it!

</cfmail>

You can define a number of mail servers, and Railo Server will attempt each mail server in
turn if one fails as a fall-back.

Services - Mail Logout
Mail settings
This is the default encoding used

Default encoding UTF-8

Log file {railo-webl/logs/mail.log

Log level "ERROR | & ]

Spool enable ™

Spool interval 5

Timeout 30

update cancel Reset to Server Administrator Setting

Mail servers
You can define more than one mail server. When sending an email, Railo tries to send the mail with the first
defined mail server. If the send operation fails, Railo will continue using the next mail server in the list.
Server (SMTF) Username Password Port TLS SSL Check

\_ verify update cancel delete

(1181



http:///

Chapter 4

Tasks

There are certain things that happen in the background with Railo Server, for example,
sending an e-mail. This happens asynchronously, as it is put into a queue and sent later. This
means your page will process normally and send the e-mail in the background. The problem
with this is that the e-mail might end up not being sent for whatever reason. In the Tasks
section, you can see a list of items that are being processed.

Services - Tasks

List of failed tasks. The tasks listed in green will be reexecuted. The ones in red have failed all attempts of executuion and wont be executed again

Logout

L cancel execute delete delete all

=) Type Name Next execution Number of tries  Check
1to 1 from 1

O | mail || This ts an email from Railo |[Apra, 2011 15:08:07 || 1 I |
1to1 from 1

You can see that it will tell you how many times it has tried to send it, the type of task, and
the name of the task in the list of tasks. By clicking on the edit button, we can get more
details about why the task might still be active (or failed) in more detail:

Services - Tasks

This task has been executed 3 times. There are 30 tries |eft

Logout

Last execution
04/03/2011 15:20:14

Next execution
04/03/2011 16:21:14

Number of tries 3

Number of 30
remaining tries
State Open
mail body It's s0 easy to send an email from Railo Server! You should try it!
mail subject This is an email from Rallo
mail to them@theirdomain.com
mail from me@mydomain.com
Error messages
Execution time
Error messages

bs4sm2367326wbb.52 :0

04/03/2011

smtp.gmail.com 530 5.7.0 Must issue a STARTTLS command first.

gmail com 530 5.7.0 Must issue a STARTTLS
untima.net.smtp. SMTPClient._send(SM

bedsm2367328wbb 52 0 at
at

15:19:03

rt

=

sk.java:95):85 at

: rtjavai72):72 at
Enginelmpl.execute(SposlerEnginalmpl.java:546):548
Enginelmpl§TaskThread.run{SpoclerEnginelmpl java:471):471



http:///

Railo Server Administration

In this case, for example, we can see that the Gmail SMTP server returned the following
error:

smtp.gmail.com 530 5.7.0 Must issue a STARTTLS command first.

The Tasks section is very good for debugging errors with asynchronous tasks.

There are times when you want a process to happen on a regular basis. Of course, you
could hire someone to hit a URL on your server every few hours, but it is easier to
set up a scheduled task. In essence, a scheduled task will call a URL at defined times.

Services - Scheduled tasks Logout

Here you can add, modify, run and delete scheduled tasks

Create scheduled task

Name
URL of the new task
URL
Exscution intarval of the new task
Interval type [Cevery .. a
Doy Maonth Yo
St e 03 o4 2011
Hour Minute  Second
Start time 00 00 00
Paused =)
cancel create

To create a scheduled task, all you need to do is enter:

Name: The name you are going to give this scheduled task
URL: The URL that will be called

Interval Type: Whether you want to run this task once, daily, weekly, monthly, or at
more specific intervals ("every...")

Start date: When you want this task to start running

Start time: At what time you want this task to start

1201



http:///

Chapter 4

Once you have saved this basic information, you will be able to add more detailed
configuration information, for example, you will be able to set:

The Username and Password if the URL is protected

Any proxy settings, if you are using a proxy server to access the URL

Whether logging should be enabled and where the log file will be stored

* & o o

Precisely when the execution should be run and until when

The task will then run until you either set it to paused, delete the task, or you set an end
date for the task to stop executing.

Extension

The Extension section of the Railo Web (and Server) administrator allows you to install
external applications and extensions directly into your web context. There are currently a
number of applications (and growing) that can be installed, as well as different functional
additions to the Railo Server that you can use, for example, different cache providers,
resource providers, and tags.

The Applications section of the Railo Web Administrator shows applications that can be
installed into your web context, for example, here is a list of the applications available:

Extension - Applications Logout
Not installed
These applications are not yet installed on the system.
filter
cfcav, tag, COLDFUSION
railo, few. <CFDNS> COLDFUSION
<cresv /> WHEELS
CFCSV CFDNS cfdocfonts cfjasperreport ciwheels
Core Core Administration Reporting Framework
ColdBoX & 1ic: B EHCACHE
— - Spring e AT Galle n
Coldbox R coim i " EHCache lite Fusebox Galleon CFML Forums
Framework SR Database Framework Forum
Log analyzer Model Glue
Debugging Framework

[1211



http:///

Railo Server Administration

Selecting an application to install will give you some details about that application.

cfwheels (Not installed)

COLDFUSION

WHEELS

ColdFusion on Wheels provides fast application development, a great organization system for your code, and
Is just plain fun to use.

Avallable version 0.8_2

Category Framework

Author Michael Offner

Release Date Dec 24,2010

Provider Shop Provider (www.getrailo.org)

install cancel

Once you start the installation procedure by clicking on the install button, the extension
will ask you specific instructions as to how that application needs to be installed. As an
example, the application might ask you for the location to where it should be installed in,
the datasource, and any other variable that needs to be set for it to work:

Extension - Applications Logout

Path
Path where the application should be copied to

JUsers/markdrew/Dropbox /Railo Team/Book Progress frailo-server-for—
Mapping
4 create a mapping

Jcfwheels

install

While you are in the applications screen, if you click on the Server Administrator tab at the
top of the page, you will see the extensions that can be installed for a whole server:

11221



http:///

Chapter 4

Extension - Applications Logout
Installed
These applications are already installed on the system.
filter
Video
Core
Not installed
These applications are not yet installed on the system.
filter
cfcav, tag,
railo, few. <CFDHS>
<CFCSV />
Admin Sync CFGSV GFDNS cfjasperreport Cluster Scope
;ore Core Core Reporting Core
B EHCACHE
EHGache Log analyzer global ...
Core Core

The difference between the Server and Web Applications is that the Server applications
usually provide functionality for all the contexts in a Railo Server, whereas the Applications
in the Web Administrator usually install functionality just for that context.

Extensions and applications are provided from Railo Technologies directly, but you can also
consume applications from other providers. The Providers screenshot, shown next, allows
you to define other providers, including ones you wrote. We shall see more about this in
Chapter 9, Extending Railo Server.

Extension - Providers Logout

O uRL Check

hitp:/fwww.getrailo.com/ExtensionProvider.cfc
hitp:/f/www.getrailo.org/ExtensionProvider.cic

UAL to the ExtensionProvider incl. path

\— save verify delete cancel

11231



http:///

Railo Server Administration

Remote

This section is used if you install the Admin Sync extension in the Server Administrator.

The Admin Sync extension allows you to synchronize any changes you make to one server
administrator across a number of other servers. To do this, you need to use the security key
provided in the Security Key section:

Remote - Security Key Logout

In case this Web Administrator is to be synchronized by another server, you have to enter the security key below in the distant definition of the
remote client.

835d5bb3-1feb-47e4-9302-4f7088074e02

reset

You can then use that key when you are setting up another connection in the Clients:

Remote - Clients Logout

Create Remote Client

Label

Usage Define for what the Remote Client is used

Connection

Cennection to the Remete Ciient, URL (witl

HTTP Access

Rem nt Server (&.g. http:/getrailo.com)
Server

Path to Admin.cic (example: frailo-contextfadmin.cic?wsdl)
Path =

Jrailo-context/admin.cfc?wsd|

Hitp Access Authentication
Username

Hitp Access Authentication
Password

Admin Access
Define Access to Hemote Client, the Passw:

ote Client rtself

Password for the remote Server
Administrator

ha key of the ramata clients. You can find it under Remote sacurity key in tha
the remota clients

Security Key

Proxy Settings

Proxy Sattings should ba used for connection

Proxy Server (Host)

Server

Proxy Server Port

Username

Password

create cancel

[124]



http:///

Chapter 4

More details on this can be found at http://wiki.getrailo.com, as it is outside the
scope of this book.

Railo Server has the ability to use a number of different filesystems as well as create
aliases to code what you want to use. This section allows you to create those aliases,
called Mappings, to securely access code that can be placed away from the webroot.

Mappings

Mappings are an easy way of accessing files and directories not available to an application.
Mappings (like a virtual web server directory only for Railo), for example, allow you to access
files that lie outside the webroot in your CFML code.

A mapping in Railo Server always starts with a slash /. If a / is at the beginning of a file
location, Railo server checks any corresponding mapping and retrieves the file from the
physical folder that the mapping points to. This is only valid for calls of .cfmor . cfc files
through the browser, since these files are handled by Railo Server and mappings are only
known to Railo Server. Other file types can be accessed through the <cfincludes> tag and
fileRead () function (and in fact most of the £ilexxxx () functions).

A web server knows nothing about Railo Server mappings. Therefore, it would be necessary
to make Railo Server process all kinds of files, such as images and stylesheets, if you would
like to use mappings for other file types.

Archives & Resources - Mappings Logout

Please note, that only pages processed by Railo are aware of these mappings (cfm, cfml, cfc). If you want to use files not processed by Railo for
these special mapping directories, you have to add virtual mappings to these directories to your application server.

Virtual Resource Archive Primary Trusted

frailo-context {railo-configl/context/ H {railo-config}/context/railo-context... physical Yes

=] [ Resource 4] [

I— save cancel delete compile

Within Railo Server, you can use mappings wherever you like. So a mapping works with a
<cffile> tag and other file-related functions or tags.

11251



http:///

Railo Server Administration

Let's look at some examples

Time for action - creating mappings in our application

Let's create a mapping to include a file from our application.

1. Inourwebroot, let's create a folder called includes.

2. Inthe includes directory, add a template that will simply show the time; let's call
it inc.cfmand add the following code:

<cfoutput>#Now () #</cfoutput>
3. Then, in the Railo Web Administrator, head to the Mappings section, enter /myinc

under the Virtual column entry box, and then enter the full path to the includes
folder under the Resource column:

Archives & Resources - Mappings Logout

Please note, that only pages processed by Railo are aware of these mappings (cfm, cfml, cfc). If you want to use files not processed by Railo for
these special mapping directories, you have to add virtual mappings to these directories to your application server.

Virtual Resource Archive Primary Inspect

/rallo-context {railo-web}/context/ {raillo-web}/context/rallo-context.ra physical Never
& Imyingc JUsers/markdrew,Dropbox/Railo T Resource Always 3
Resource * Always 3

\— save cancel delete compile

4. Once we have done that, click on the save button.

5. Inour webroot folder, let's create another template this time called
mapping test.cfmand put the following code in it:

<cfinclude template="/myinc/inc.cfm">

6. When we run our mapping_test .cfmtemplate, by going to
http://localhost:8888/include test.cfm, we get the
current time displayed:

{ts '2011-09-19 09:47:24'}

What just happened?

By using a mapping, we were able to create an alias to a folder that we can use in our code.
Railo Server is able to translate these mappings to specific files.

11261



http://localhost:8888/include_test.cfm
http:///

Chapter 4

In Railo, mappings can be used wherever files are related in some way. So, for example, for
the following tags we will follow the mappings:
¢ <cfdirectorys>
& <cffile>
& <cfinclude>
& <cfmodule>

A mapping can also be marked as Trusted by selecting the never item in the drop-down
under the Inspect column. This means that Railo Server will only check the contents of this
mapping once, and then remember the content without re-checking whether the contents
have changed or not. This is useful for sections of code that never change, and therefore, do
not need to be re-compiled at any point.

We shall talk more in depth about resources in Chapter 8, Resources and Mappings.

Components are used by Railo Server to provide self-contained modules of code. They are
defined by creating a template with a . cfc extension (instead of the usual . cfm that we
have seen so far).

They are analogous to Java classes, and have properties and functions that can act on those
properties, but they are also more than that, as we shall see later in the book.

Archives & Resources - Component Logout

Define the component settings that will be used as a default for all web contexts.

ds*) will by default axtand this.

Base/Root Component

Jraile-context/Component.cfc

the following package defintion is imparted into every template.

Auto Import

org.raile.cfml.”

Search local

Search mappings
P ", that points on the webroot

Cache

o dump the component, (Example:
Component "dump"
template

onent. This dafines how variables of the “this* scopa of a componant

Data member access type

Magic functions

Variables scope

update  cancel

Addional Resources
Addional Resources that Railo checks for Gomponents.

O Resource Archive Primary Trusted
j‘ {railo-web}/components/ “Resource [3)

B Resource | 4] [
L update cancel delete

1211



http:///

Railo Server Administration

This section allows you to define the defaults on how components are handled.

Base/Root Component

This setting defines the base component that every component will extend by default.
(unless you use the extends="" attribute in the <cfcomponent> tag).

There are built-in components available to every .cfmor . cfc template. These components
are provided by default by Railo Server. We shall see more of these in Chapter 6, Advanced
Functionality. But, in effect, it means that you can call Railo Server's built-in components as:

<cfset myFeed = new Feed() >
Instead of using the full path:
<cfset myFeed = new org.railo.cfml.Feed() >

This will start the search for components in the directory relative to where you are calling the
component from.

Looking up components can be a processor-intensive task. Therefore, once Railo Server
has found a component, the location or path to that component is cached, speeding up
subsequent calls to create that component.

Normally, when you call a component directly through the URL, you will get a dump of the
properties and functions of that component. This is defined by the /railo-context/
component -dump . cfm template. If you would like to do something different, such as
provide documentation for that component when it is called, you can modify the template
used to display a component.

Data member access type
Properties within a component are normally stored in the THIS scope and by default are
public, thatis, you can access and modify them externally. By changing the setting here,
you can change this behavior and make them:

private: The properties are only available from within the component itself

package: The properties are only visible to other templates that are in the same
folder

public: The properties are visible to all the templates in the application

remote: The properties are visible to remote (web service) calls to this component

11281


http:///

Chapter 4

Magic functions allow you to specify functions that will be called when you call or set a
property of a component.

Let's look at an example to see how they work.

Time for action - using magic functions

1. Let's create a component that we are going to access. In our webroot folder, let's
create a template called PrivateComponent . cfc and add the following code:
<cfcomponent >

<cfset variables.name = "Test Value">
</cfcomponent >

2. This code has defined a component. Since the VARIABLES scope is private, by
default, the variable name is also protected from being read directly.

3. Now let's create a template to call this component and see what happens when we
call the VARIABLES . name variable. In the webroot folder, create a template called
magic.cfm with the following code:
<cfset myComponent = new PrivateComponent () >
<cfset theName = myComponent.name>
<cfoutput>#theName#</cfoutput>

4. When we run the magic.cfmtemplate, by going to http://localhost:8888/
magic.cfm, we get the following error:

Component [PrivateComponent] has no acessible Member with name [NAME]

5. That makes sense; the VARIABLES scope is a private scope. Let's enable magic
functions. In the Railo Web Administrator, go to the Components section and tick
the Magic Functions checkbox (if it hasn't been ticked already, of course) and click
on the update button.

6. Now that we have enabled them, we can add a function to our component that
will be called. Let's modify our PrivateComponent . cfc template to look like
the following:
<cfcomponent>

<cfset variables.name = "Test Value">
<cffunction name="getName">

<cfreturn variables.name>
</cffunction>

</cfcomponent >

11291



http://localhost:8888/magic.cfm
http://localhost:8888/magic.cfm
http:///

Railo Server Administration

7. Now, let's re-run our magic.cfmtemplate. We see that instead of getting an error,
we get:

Test Value

What just happened?

When we enable Magic Functions for our components, Railo Server sees that we are
calling a property in a component, translates that to get <Property Names, and runs
the matching function in the component (if the function exists of course). Also, if you were
setting a property in a component, it would call the set<Property Names.

This is very handy if you have code that has, for example, been using key value structures
and you want to replace that structure with a component to enable it to have more
functionality.

The Additional resources section of the Component section works in the same way
as mappings do, but it allows you to define overall additional locations to check for
components.

Custom tags

We are going to explore custom tags in more detail in Chapter 9, Extending Railo Server.
Custom tags are files written in CFML that you can call by name. So, for example, if we
had a file called hello.cfm with the following content:

Hello There!

We could call it as follows from another template:
<cf_hello>

And it would display Hello There!

The Custom tags section allows you to define how Railo Server looks for custom tags, how it
caches them, and what extensions you can use.

[130]


http:///

Chapter 4

As an addition, you can also define custom tag mappings the same way that mappings are
defined, and they are searched in addition to the normal mappings.

Setting Description

Search Subdirectories Tells Railo Server to search in the subdirectories for custom tags.

Search Local Tells Railo Server to look in the current folder that we are calling the
custom tags from.

Cache To cache a path of a custom tag once it has been successfully called.

Extensions Which extensions you can use for custom tags. By default, you can

create component-based custom tags (. cfc) as well as simple
template-based components.

Resources Paths that Railo Server will search for custom tags.

CFX tags

In Railo Server, you can not only use custom tags written in CFML, but you can also have
custom tags written in Java. There are a number of open source and commercial CFX tags
developed, and by adding a library to your <railo installs>/1ib/ directory, you can
then define the custom tag in this section by giving it a name and a Java class to call.

Archives & Resources - CFX tags Logout

Java CFX tags

| Name Class Check

<cfx_helloworld> railo.cfx.example.HelloWorld

\_ verify save cancel delete

The debugging section allows you to turn on debugging for your context. If you set Enable
debugging to Yes, when you call a page in Railo Server, you will get debug information, such
as which components and templates have been called, how many times they have been
called, and how long each template took to process.

Showing debugging output is very useful to see what templates you are calling, what queries
are run, as well as other useful information.

11311



http:///

Railo Server Administration

Time for action - setting the debug template

Let's create a file to see what debug output we can get from Railo Server. We are going to
add a query and include another file.

1. Under<Railo Server Installs/webroot, let's create a file called
example debug.cfm.

2. Using the datasource we created earlier, we are going to create a template so that
we can display debugging. Let's first create a template that we are going to include
in<Railo Install Directorys/webroot/ called testinclude.cfm, and put
the following code in it:

<cfoutput>#Now () #</cfoutput >

3. Now let's create a template that we shall debug; let's call it sampledebug. cfm and
put it in the webroot too.

4. Inthis template, let's perform some actions, so that we can see some interesting
output. Let's put the following code there:

<cfquery name="getUsers" datasource="railobook"s>
SELECT * FROM Users

</cfquery>

<cfoutput query="getUsers'">
#Username# <br>

</cfoutput>

<cfinclude template="testinclude.cfm">

5. If we run this template currently, the output should look something like this:

SN O http://localhost:8888/sampledebug.cfm

[ - | - l [ + |ﬁhttp:HIocalh051:BESB;sampIedebug.cfm G] I.\_Qv Google J
userl

user2

user3

{ts '2011-05-17 19:34:39'}

11321



http:///

Chapter 4

8.

As you can see, there is no debugging output being displayed. Let's change that
by going to the Railo Web Administrator http://localhost:8888/railo-
context/admin/web.cfmand then clicking on the Debugging link under
Development.

To enable debugging, change the Enable Debugging drop-down to say Yes rather
than the default setting, which should be Server Administrator Value (No), and click
on update.

When we refresh our sampledebug.cfmtemplate in the browser, we will now see
the debugging output that Railo Server provides:

aNne http:/ {localhost: 8888/ sampledebug.cfm

[ « | ] [ == ‘ﬁh1tp:ff\ocalhost:sBBEEsampledebug.cfm G] If_O\' Google )
userl

user2

user3d

{15 '2011-05-17 19:42:06'}

Debugging Output
Pages |l(ge count| load || query [app || [ total
Total & 15 (1 65 81
fUsers/markdrew/Dropbox/Railo Team/Book Progress/railo-server-for-demos/webroot/sampledebug.cfm |1 10 1 62 73
JfUsers/markdrew/Dropbox/Railo Team/Book Progress/railo-server-for-demos/webroot/Application.cfc 1 0 0 3 3
/Users/markdrew/Dropbox/Railo Team/Book Progress/railo-server-for-demos/webroot/WEB- 1 3 0 1] 3
INF/railo/context/templates/debugging/debugging.cfm
JfUsers/markdrew/Dropbox/Railo Team/Book Progress/railo-server-for-demos/webroot/testinclude.cfm 1 2 u] 1] 2
/Users/markdrew/Dropbox/Railo Team/Book Progress/railo-server-for-demos/webroot/WEB- 1 0 0 0 0
INF/railo/context/Component.cfc
Total 5 15 1 65 81
file count|load ||query [[app || || total
AEE, Source fUsers/markdrew/Dropbox/Railo Team/Book Progress/railo-server-for-demos/webroot/sampledebug.cfm
Execution Time |1
Recordcount 3
Query SELECT * FROM Users

It displays all the files that were called; including the base components and the
debug tag itself. It also shows the queries that we run on this page.

[1331



http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http:///

Railo Server Administration

10. We can change the debug output by going back to the Debug screen in the Railo
Web Administrator and selecting a different debug template from the drop-down,
such as debugging-neo.cfm, which will give us a different debugging output:

{15 '2011-05-17 19:46:26'}

/ano http://localhost: 8888 /sampledebug.cfm

[ 4 | > ] [+ |6http',.’;Iocalhost‘EBSB,fsampIedebug.cfm G] (Q' Google :)
userl f
user2

user3

Host Name localhost

Debugging Information

Railo (Hachiko) Os BETA 3.3.0.013 (CFML Version 9,0,0,1)

Template /sampledebug.cfm (/Users/markdrew/Dropbox/Railo Team/Book Progress/railo-server-for-demos/webroot/sampledebug.cfm)

Time Stamp May 17,2011 7:46 PM

Time Zone Greenwich Mean Time

Locale English (us)

User Agent Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_7; en-us) AppleWebKit/533.21.1 (KHTML, like Gecko) Version/5.0.5 Safari/533.21.1
Remote I 0:0:0:0:0:0:0:1%0

Execution Time

Total Time|Avg Time |Count| Template

28 ms 28ms| 1 |/Users'markdrew/Dropbox/Railo Team/Book Progress/railo-server-for-demos/webroot/sampledebug.cfm
2ms 2ms| 1 |/Users'markdrew/Dropbox/Railo Team/Book Progress/railo-server-for-demos/webroot/Application.cfc
0'ms Oms| 1 |/Users'markdrew/Dropbox/Railo Team/Book Progress/railo-server-for-demos/webroot/WEB-INF/railo/context/templates/debugging
0'ms Oms| 1 |/Users'markdrew/Dropbox/Railo Team/Book Progress/railo-server-for-demos/webroot/testinclude.cfm
0 ms| Oms| 1 |/Users'markdrew/Dropbox/Railo Team/Book Progress/railo-server-for-demos/webroot/WEB-INF/railo/context/Component.cfc

97 ms STARTUP, PARSING, COMPILING, LOADING, & SHUTDOWN

29 ms APPLICATION EXECUTION TIME
Ims QUERY EXECUTION TIME

127 ms| TOTAL EXECUTION TIME

red = over 250 ms average execution time

SOL Queries

What just happened?

By enabling debugging in the administrator, we are able to see exactly what our code is
doing. It displays information about resources, scopes, components, and templates that we
have included. If you want to, you can even create your own debugging template that would
only show under certain conditions, such as a request from a specific URL.

(1341



http:///

Chapter 4

Security

The Password section under Security allows you to change this context's password. Just
enter your current password, your new password, and retype your new password. The next
time you log into the Web Administrator, you will use your new password.

Security - Password Logout

Change password
Change the password for this administrator
The old password to change

Old password

The new password for the administrator

New password

Resnter the new password

Retype new password

change cancel

Documentation

Under the Documentation section, you will find some quick ways to look up Tag and
Function references. They both work the same way, and you just need to select the tag or
function and it will display a summary of its function and attributes/arguments that are valid
for that tag.

Documentation - Tag Reference Logout

o

cfabort
cfadmin
cfajaximport
cfajaxproxy
cfapplet
cfapplication
cfargument
cfassociate

[1351



http:///

Railo Server Administration

Documentation - Tag Reference Logout

| cfapplication o OK

Defines scoping for a application, enables or disables storing client variables, and specifies a client variable storage mechanism. By default,
client variables are disabled. Also, enables session variables and sets timeouts for session and application variables. Session and
application variables are stored in memory.

<cfapplication
[action="string"]
[applicationtimecut="timespan"]
[clientmanagement="hboolean" ]
[clientstorage="string" ]
[customtagpaths="any" ]
[datasource="object" ]
[defaultdatasource="string" ]
[loginstorage="string"]
[mappings="struct"]
[name="string"]
[seriptprotect="gtring"]
[securejson="hboolean"]
[securejsonprefix="gtring"]
[sessicnmanagement="hoolean" ]
[sessiontimecut="+imespan"]
[setclientcockies="hboolean"]
[setdomaincoockies="boolean" ]>

Body
This tag can't have a body.
Attributes
The attributes for this tag are fixed. Except for the following attributes no other attributes are allowed.
MName Type Required Description
action for the data set: - create (default): creates a new application context and
action string No overwrite the existing - update: update the existing application context when there
is already one, otherwise a new one is created
Enter the CreateTimeSpan function and values in days, hours, minutes, and
applicationtimeout timespan No seconds, separated by commas, to specify the lifespan of application wariables.
The default value is specified in the Variables page of the Railo Administrator.
clientmanagement boolean  No Yes or Mo. Enables client variables. Default is No.
clientstorage string No Specifies how Rallo stores client variables
customtagpaths any No Contains custom tag paths.
datasource any No alias for defaultdatasource

[1361



http:///

Chapter 4

We covered a lot of ground in this chapter. You should now have a good idea of:

¢ The Server and Web contexts available to your application

o The Server context is a part of Railo Server that is used to define settings
across web contexts

o The Web context(s) are instances of Railo Server that allow administrators
to manage their own context independently of other Web Contexts

& The settings available to change the time, output, performance, and
internationalization of your server and web context

¢ How to set up different services, such as databases and datasources, caches, adding
debug information to your requests, and setting up a connection to mail servers

¢ How to extend your server and web context with different applications available
from different providers

¢ How to call templates and components through different mappings that are outside
the web root

This chapter should have given you a great overview of configuring and customizing your
server to your needs.

In the next chapter, we shall start using some of the services and archives and get to use
some of the settings that we have seen in this chapter.

11311



http:///



http:///

Now that we have a good handle on the settings that are available in the web
administrator for a context, let's turn our attention to the Application Lifecycle
and how we can use that to develop applications. In this chapter, we will have a
look at:

¢ Usingthe Application.cfc to manage the Application Lifecycle
¢ Using components to interact with our database using ORM

¢ Using the various caching techniques in Railo Server

By the end of the chapter, you should have a good understanding of what the
Application.cfc file does, be able to interact with your database using components,
and finally, be able to see how caching affects your application's performance.

Railo applications

Applications in Railo Server are defined as a number of templates working together. All
the templates can share certain resources and scopes, such as the "APPLICATION" scope
and interact with each other, for example, storing session information, setting and reading
cookies from a user, sharing a datasource, and so on.

We have already seen in the Railo Web Administrator that we can set certain defaults for
applications, such as the application and session timeouts, and so on, but what if we wanted
to have more control than that?


http:///

Developing Applications with Railo Server

Time for action - building the simplest application

Imagine that we are creating an application and all that it has to do is remember a user's
name. The whole application will only consist of a couple of files — a form where a user can
enter their name, and another page that will display their name. Then, we'll go ahead and
make our application, it will have to remember these names without having the user submit
it again.

1. Under the webroot in <Railo Install Directorys/webroot, create a
sub-folder, where we are going to store our templates, called Hel1loApp.

2. Create a file in the Helloapp directory called index . cfm with the following code:

<!DOCTYPE html>
<html lang="en">
<head>
<title>Remember My Name</title>
</head>
<body>
<form action="savename.cfm" method="post">
<labels>Enter your name</label>

<input type="text" name="name" value="">
<p><input type="submit" value="Save Name"></p>
</form>
</body>
</html>

3. Create another template called savename . cfm with the following code:

<!DOCTYPE htmls>
<cfparam name="FORM.name" default="">
<html lang="en">
<head>
<title>Saved your name</title>
</head>
<body>
<cfset SESSION.name = FORM.name>Welcome
<cfoutput>#SESSION.name#</cfoutputs>!
</body>
</html>

In this code, we have used the <cfparam> to set the FORM. name posted variable to
a default value; this way, this template won't break if you don't send anything. Then
we set the variable SESSTION . name to the value we sent in the form by getting the
variable from FORM. name. Finally, we output what is stored in the SESSION.name
and display it in a friendly way.

(1101



http:///

Chapter 5

4. Nowgotohttp://localhost:8888/HelloApp/ and see our newly created
form, which will look like the following screenshot:

| [ » | [+ /@ htp://iocalhost:8888/HelloApp/

Enter your name

ir© Y
| Save Name )
Seee——

o Enter your name and submit the form

o Ohno! We get an error:

Railo 3.2.1.000 Error (expression)

Message there is no session context defined for this application

Detail you can define a session context with the tag cfapplication/Application.cfc

What just happened?

We created a simple form to submit our name to another template, but we got an error. The
error actually explains what is going on. We tried to set a variable to the SESSION scope, but
we haven't enabled sessions in our application; in fact, we don't even have an application
defined yet. There are just two templates in a folder. Let's fix this now.

Time for action - defining the application

To define an Application, we need to create a special template called Application.cfcin
the root of our He1l1loApp folder. This template manages our application lifecycle and various
other settings that we can use within our application. Let's define it now:

1. Inthe HelloApp folder, create a file called Application.cfc with the
following code:

<cfcomponent output="false">

<cfset this.name = "RememberName">
<cfset this.sessionmanagement = trues
</cfcomponent >

In this template, we have simply defined a component with the <cfcomponent >
tag. Inside this tag, we set two variables: this.name="RememberMe", which

will be the name of our application, separating it out from other applications on
the server, and this.sessionmanagement = true, which sets whether this
application will manage sessions or not. By setting it to true, we now have access
to the Session scope.

(a1l


http:///

Developing Applications with Railo Server

2. Inthe form, re-enter your name and submit the form. You will now get a
friendly greeting.

[ - | (3 ] [+ |9http:,.',,"Iocalh051:BESSJI'HeIIoApp.Fsavename.cfm G]

Welcome Mark Drew!

But how do we know that we have actually set this name for the whole session?

3. Change the index.cfmtemplate to display a Welcome back message, if we have
set the name:

<!DOCTYPE htmls>
<html lang="en"s>

<head>
<title>Remember My Name</title>
</head>
<body>
<cfparam name="SESSION.name" default="">

<cfif Len (SESSION.name) >

<hl>Welcome back <cfoutput>#SESSION.name#</cfoutput></hl>
</cfif>
<form action="savename.cfm" method="post">

<label>Enter your name</label>

<input type="text" name="name" value="">
<p><input type="submit" value="Save Name"></p>
</form>
</body>
</html>

In this code, we set a default parameter for the SESSION.name variable. Then, we
check to see if there is any length to the string value and then display it.

4. Go back to the Helloapp application, without submitting your name. You will see
that the application has remembered your name:

| « [ » ||+ @ hup:/siocaihost:8888/HelloApp/ ¢ |

Welcome back Mark Drew

Enter your name

P rTE—
| Save Name |
| Sy

(1101



http:///

Chapter 5

What just happened?

The Application.cfc component manages various settings of your application. By adding
it to the Hel1loApp folder, we said that all the templates (and templates in directories

below the current directory) are part of our application. Any setting, such as the this.
sessionmanagement setting, will now apply to these templates.

Session and client settings

You can control other session settings in your Application.cfc too. There are a number
of session and client information storage settings; a few of them are listed as follows:

Setting Description

applicationTimeout Defines how long variables in the APPL.ICATION scope will
persist

sessionManagement Whether there will be a SESSION scope available to the
application

sessionTimeout Defines how long variables in the SESSION scope will persist

setClientCookies Whether the application will set client cookies

setDomainCookies Should the cookies be domain-specific

clientManagement Whether we should use the CLIENT scope, such as the
COOKIES scope stored on the server

clientStorage Where the CLIENT scope variables are stored

Since we have told you what all the settings are, why don't you try them out? There are clues
in the names, of course, and if you are stuck, check out the Railo Web Administrator sections
that we went over in the previous chapter.

Application events

Apart from being able to manage settings of your application in the Application.cfc,
you can also manage different parts of the Application, Session, Request, and Error lifecycle.
To do this, we can create functions within the Application.cfc that are triggered at
different points.

(1431



http:///

Developing Applications with Railo Server

There are a number of methods that you can implement in Application.cfc. They are
simply functions. For example, the onApplicationStart () method will be executed if
the application hasn't started up:

<cfcomponent >
<cfset this.name = "RememberName">
<cfset this.sessionmanagement = trues>

<cffunction name="onApplicationStart" returnType="boolean"
output="false">
<cfreturn true>
</cffunction>
</cfcomponent >

Before trying out some of these functions, let's look at the Application lifecycle and
how Railo Server triggers different functions. The following screenshot depicts the
Application lifecycle:

—

run oriMissing Tamplate() —‘\‘M



http:///

Chapter 5

When an initial request arrives at the web server, it checks the extension. If it is a
.cfmora .cfc, it gets passed onto Railo Server.

When Railo Server receives a request, it checks if there is an Application.cfc
file. If there is one, it will check if there is an application defined, and set all the
variables and settings. If there is an onApplicationStart () method, it will run
the method, for example:

<cfcomponent >
<cfset this.name = "RememberName">
<cfset this.sessionmanagement = true>

<cffunction name="onApplicationStart" returnType="boolean"
output="false">
<cfset application.mySetting = "MySetting">
<cfreturn trues
</cffunctions>
</cfcomponent >

In the onApplicationStart () method, you can set any of the APPLICATION
scope variables that your application might need. This will run only if the application
hasn't started or if there have been no requests to the server for longer than the
this.applicationtimeout setting.

When the application timeout time has elapsed, you can also define an
onApplicationEnd function that will be called. Remember that at this point, the
code will NOT have access to the APPLICATION scope, but you can get the variables
from the, now elapsing, scope, as they are passed into the function through the
ARGUMENTS . applicationScope structure:
<cffunction name="onApplicationEnd" returnType="void"
output="false">
<cfargument name="applicationScope" required="true"s>
<!--- do something --->
</cffunctions>

This can be useful to, for example, log variables that you have kept in the
APPLICATION scope or to do any other clean up function.

Railo Server then checks to see if sessionmanagement has been turned on in this
Application. Ifitis turned on and the current user doesn't have a session yet,
then it will run the onSessionStart () method, where you can set any variables
that the user may need for this session, such as the defaults for example:
<cffunction name="onSessionStart" returnType="void"
output="false">
<cfset SESSION.setting = "User Session Setting"s>
</cffunctions>

11451


http:///

Developing Applications with Railo Server

4.

Analogous to the onApplicationEnd, there is also an onSessionEnd that
will be run when a user's session has elapsed, and again, you won't be able to
access the SESSION scope directly, but you will have access to the ARGUMENTS .
sessionScope variable:

<cffunction name="onSessionEnd" returnType="void" output="false">
<cfargument name="sessionScope" type="struct" required="true">
<cfargument name="appScope" type="struct" required="false">
</cffunctions>

Now that the Application and Session-related start functions have been called, you
can also implement an onRequestStart method to add any variables or settings
related to that request:
<cffunction name="onRequestStart" returnType="boolean"
output="false">
<cfargument name="thePage" type="string" required="true">
<cfreturn trues
</cffunctions>

You can also implement an onRequest method, but be warned, this means that
"your" code will manage including a page, rather than be part of the normal flow of
a request. This can be rather confusing if you have no code in there, since nothing
will be returned.

Railo Server now checks to see if the requested template exists in the file system.
If the template is not found, the error page defined in the Railo Web Administrator
will be displayed. But if you implement an onMissingTemplate, then you can
implement your own code specifically for this application, for example, you could log
the missing template or return a different one, as shown below:
<cffunction name="onMissingTemplate" returnType="boolean"
output="true">
<cfargument name="targetpage" required="true" type="string"s
<cfinclude template="404.cfm">
<cfreturn true>

</cffunctions>

Now Railo Server processes the page that was requested. If there is an error thrown,
Railo will run the template defined in the Railo Web Administrator, but you can
override this behavior by implementing an onError method:

<cffunction name="onError" returnType="void" output="true">
<cfargument name="exception" required="true">
<cfargument name="eventname" type="string" required="true">
<cfinclude template="MyError.cfm"s>

</cffunctions>

(1101


http:///

Chapter 5

9. Once Railo has processed any errors, you can implement the onRequestEnd
method. This will do any post-processing (maybe log the type of request the
user requested):

<cffunction name="onRequestEnd" returnType="void" output="false">
<cfargument name="thePage" type="string" required="true">
<!--- do something --->

</cffunctions>

And finally, the rendered template is now passed back to the user.

We have covered some of the functionality of the Application.cfc file. You should now
have a good idea of how a request is processed by the Application.cfc file.

Pon quiz - Application.cfc

Time to get the old brain cells thinking!
Can you put these functions in the order that they are called?

onRequest
onRequestStart
onSessionStart
onError
onApplicationEnd

onApplicationStart

Applications can get complex as they get larger. It is fine to just do a few templates with
inline queries, but as your applications increase in size, developers realize that keeping
business logic in the correct place becomes harder.

Instead of talking of displaying our tables in a web page, why not talk about discreet objects
and how they are related to each other? Once we have done that, we will want the objects
to somehow persist for longer than the request that created them, so why not store them in
a database? This is incredibly simple in Railo Server, as we shall see.

Railo Server allows you to do this with the use of the Hibernate Persistence from JBoss
(http://www.hibernate.org/), but without you having to do a lot of the configuration
that is normally required to use it in Java applications.

(1411



http://www.hibernate.org/
http://www.hibernate.org/
http:///

Developing Applications with Railo Server

Time for action — upgrading Railo Server

Before we get started, it should be mentioned that the ORM feature is in the Beta state for
Railo 3.2, but this is ok. Let's update the Railo Server, so that we can use these features. It's
quick and painless:

1.

Open the Railo Administrator at http://localhost:8888/railo-context/
admin/index.cfm and click on the Server Administrator tab.

Either enter your password or set a password if you have not already done so.

Notice the current version of Railo Server in your installation:

Railo 3.2.1.000 final

Under the Services section, click on the Update link.

The Update section allows you to stay up-to-date with major and minor releases of
Railo Server.

In the Properties section, select the Development releases (Bleeding Edge) radio
button and click on the Update button.

(1101


http:///

Chapter 5

Properties
Define where Railo gets its patches. Railo will restart automatically after the update in order for the changes to take effect.

() Stable releases
This Update Provider {waww
source is recommanded fo

() Preview releases
This Update Provi {
stable releases. This sourc

atrailz.org ) retums only stable versions. The versions found hers are deeply tested. This
duction environments.

etrailo.org) returns public preview versions. Versions are tested, but not as deaply as
be used for production envirenments. Please use caution.

Update Provider :
[C] Development releases (Bleeding Edge)
Thizs Update Provider {dev.getra rg) returns "“Bleeding Edge™ versions. Usually only a small amount of testing has
been performed on these versi his source should NOT be used for production environments.
[ Y
' Gustom
Here you can define your own Update Provider. This iz a URL of the form "*http:Ymy.demainname.ong ™
Type Define how Railo will be patched
means that you can update Railo
update cancel

6. Once the page refreshes, scroll down and you should be able to see an Info panel,
showing you the release notes of the latest version of Railo. Click on the execute
update button; this will install the latest version of Railo Server.

Info
A patch 3.3.0.010 is available for your current version 3.2.1.000.

Version 3.3.0.010 m
[EAILO=-1016] - ORM transactions with dialect MySQLwithInnoDB hangs or holds lock across requests
[BAITO-1262] - cfdump javascrip duplication
[RAILO=1263] = ORM: Unknown entity
[BAITO-1270] - query.cfec not keeping the end of the query when normal text comes after the last gquery par
[RAILO=1273] = orm: "discriminator" relation fails

[BAILO-1274] - reuse PreparedStatements

[RAILO=1275] = dot notation ORM when defining relationships

Version 3.3.0.009

[RAILO=1178] = http error 411 = POST requests require a Content=length header when doing a CFHTTP

[BAILO-1249] - Railo ORM - entityToQuery throws an exception when table has zero records

[RAILO=1250] = cfthrow does not maintain extendedInfo content when there is no message content .

[BAILO=-125]1] - LSTimeFormat use System Timezone to parse given time String b 1
aF b s
For details go to our Bug Tracking System

Execute update
Apply the latest patch for your version. After the update has been installed Railo will be restarted, all sessions will be cleared and you have
to login again.

execute update

7. Once the server has updated, you will have to log in again, and you should now be
on the latest version of Railo Server. Congratulations!

11491



http:///

Developing Applications with Railo Server

8. If you see a section about updating your JARSs, just click the Update JAR's button (if
you are running Windows, you might have to restart the Railo Server by shutting it
down in the console and clicking on the start.bat or re-running the start script under
your Railo Server install directory):

Update JAR's

Your JAR's are out of date. In order to update your JAR's, please click the button below. This might not work if you do not have a proper
internet connection. If the download did not succeed, please download the latest JAR's from our download section and update the JAR's
manually. You have to restart your Servlet engineg, so that the changes take effect.

Update JAR's

Wow! That was pretty easy!

What just happened?

By going to the Server Administrator, we were able to update Railo Server to the latest
version and get new features; we didn't have to install anything or go and download anything
ourselves, the Railo Server Administrator did it for us.

If you now check the Railo Server Administrator homepage by going to
http://localhost:8888/railo-context/admin/server.cfm, you should
see that we have now got the latest (and greatest!) version of Railo Server. We can
now start playing with the awesome ORM capabilities.

Railo 3.3.0.010 beta

To demonstrate the features of the ORM, we are going to quickly build a simple blog. The
blog will have posts, and people will be able to comment on each post. This is just going to
be a simple example to show you some of the capabilities of the ORM, rather than trying to
implement a production-ready blog.

Let's get started!

(1101



http:///

Chapter 5

Time for action - creating a database

Before we can start persisting our components into a database, we have to actually tell Railo
Server about that database. In your MySQL database, create a new empty database, either
by using a Graphical User Interface (GUI) tool or by using the command line utilities:

1.

At the command line, enter the following command to log into the mysgl console:

> mysqgl -u root -p
When prompted, enter your password.

Enter the following to create a database called railoblog:
> CREATE DATABASE railoblog;

mysql should reply with:
Query OK, 1 row affected (0.10 sec)

What just happened?

We have just created a database that we are going to connect to from our templates. Let's go
and configure the datasource now.

Time for action - creating our railoblog datasource

So that we can connect to our database from our application, we need to set up a datasource
in the Railo Web Administrator. Let's set that up now, by carrying out the following steps:

1.

In your browser, open the Railo Web Administrator by going to
http://localhost:8888/railo-context/admin/web.cfm.

Click Datasource under the Services section.

Enter the name railoblog in the Name field of the Create new datasource form,
select MySQL from the Type drop-down, and click on Create.

[1511


http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http:///

Developing Applications with Railo Server

4. Since we are doing local development, the Host/Server and Port in the Create
new datasource connection MySQL form should be fine. Enter the Database
name as railoblog and enter values for the Username and Password to
connect to the server:

Create new datasource connection MySQL
For MYSQL Databases
MName railoblog
HOSEl name wnene the OSEnass Sar/ o ated
Host/Server :
localhost
nea of the d asa o connect
Database m_—
railghlea
he port to connect the datal a8
For 3306
he userman ne for the database
Username
root
The password for the databese
Passwaord
LR EET L]

5. Finally, click on the Create button at the end of the form.

What just happened?

We have created a datasource that points to our newly-created database. We can now use
this datasource to create our application

Using persistent components

To create our blog, we are going to need to set up our Application.cfc and define some
components that will be persisted to the database. Let's do that now.

Time for action - creating the blog

Let's get down to creating our blog. To keep it simple, we are only going to have one main
page that will show our posts. We will get a few blog posts and comments and display those.

1. Inyour<Railo Install Directorys/webroot directory, create a new folder
called blog.

(1101



http:///

Chapter 5

Create the main index.cfm page with the following code:

<!DOCTYPE html>
<html lang="en">
<head>
<title>My Blog</title>
<meta name="author" content="Mark Drew"s>
</head>
<body>
<hl1>My Blog</hl>
<h2>Add a new blog post</h2>
<form action="addpost.cfm" method="post">

<p>

<label for="title">Title:</label>

<input type="text" name="title" value="" id="title">
</p>
<p>

<label for="content"s>Content</labels>
<textarea name="content" rows="content" cols="40"
id="content">
</textareas>
</p>
<p>
<input type="submit" value="Post">
</p>
</form>
</body>
</html>

This code is just our form for adding our new posts.

Now let's create the page where we will be saving our blog posts, and name it
addpost . cfm (as defined in form action):

< !DOCTYPE html>
<html lang="en">
<head>
<title>Post Saved</title>
<meta name="author" content="Mark Drew">
</head>
<body>
<hl id="post saved!">Post Saved!</hl>
<cfdump var"#FORM#" />
<p>
<a href="index.cfm">Back</a>
</p>
</body>
</html>

[1531


http:///

Developing Applications with Railo Server

We should now have a nice form that we can submit, which looks as follows:

[ 4| » | [+ |® hup://iocalhost:8888/blog/

My Blog

Add a new blog post

Title:

Content 4

(Post )
[ Post )

4. 5o far, these are just two templates. Let's make this an application and configure
the ORM capabilities. Let's create an Application.cfc in this folder too, with the
following content and settings:

<cfcomponent output="false">

<cfset this.name = "MyBlog">

<cfset this.datasource = "railoblog"x>

<cfset this.ormEnabled= trues

<cfset this.ormSettings.dbcreate = "dropcreate"s>
</cfcomponent >

We set the name of the application to MyBlog, then we set the datasource, enabled
the ORM with this.ormEnabled =true, and then set the ormSettings to
dropcreate, which will delete the table and create it when changes are made. This
is ok for the moment, since we are developing and we don't care about the data we
are storing.

5. Great! Now that the ORM is configured, let's create a persistent Post object that we
are going to save in our addpost . cfm page. Create a file called post . cfc:
<cfcomponent persistent="true" entityname="post" output="false">

<cfproperty name="id" ormtype="id" generator="native">

<cfproperty name="title" ormtype="string"s>

<cfproperty name="content" ormtype="text">

<cfproperty name="dateCreated" fieldtype="timestamp">
</cfcomponent >

In this code, you can see the component tag with a new attribute of
persistent="true", which tells Railo Server that we are going to persist it to

the ORM. We give the entity the name of the post in the entityname="post"
attribute. Now to define the properties of our object, we add some properties using
the <cfproperty> tag, and they all are given a name. The id property is given the
ormtype="1d" to define it as a unique identifier.

(1101


http:///

Chapter 5

The title property is given the ormtype="string" to say it will be stored as
a varchar.

The content property is given the ormtype="text" to say that it will be a long bit
of text.

Finally, we create a dateCreated property, and say it's a special type of field called
timestamp that will put in the current time and date when it is saved.

That's it! We have defined our persistent object. Let's go and save our form to our
database now.

Let's modify our addpost . cfm template, so that it saves the form fields to
the ORM:

< !DOCTYPE html>
<html lang="en">
<head>
<title>Post Saved</titles>
<meta name="author" content="Mark Drew">
</head>
<body>
<cfset myPost = EntityNew("post")>
<cfset myPost.setTitle (FORM.title) >
<cfset myPost.setContent (FORM.content) >
<cfset EntitySave (myPost) >
<hl id="post saved!">Post Saved!</hl>
<p><a href="index.cfm">Back</a></p>
</body>
</html>

In the first line, we created a new post using EntityNew ("post"), which is a blank
persistent entity. Automatically, getters and setters will be defined for our object. So
if you want to set the value of the title property, all you have to do is call myPost .
setTitle(".."), and if you want to get a value from an existing object, all you
have to do is call myPost .getTitle ().

Once we have set the title and content to our object, all we have to do is save
the myPost object (we do that with EntitySave (myPost)).

[1551]


http:///

Developing Applications with Railo Server

7. Now that we have done that, we can go back to our form, fill it with some content,
and submit it:

| 4 [ » | [+ ]@ htp://localhost:8888 /blog/

My Blog
Add a new blog post

Title: My First Post

Here is some content for my first post!
Content 4

f o [ b
| Post )

8. Once we have submitted it, you will get a page displaying the message Post Saved!.

9. If you now go and check in your database with a GUI tool, you will see that the
object has been persisted.

|TJ“\BLES Search: ( id D (= ECY

id dateCreated title content

1 2011-04-07 18:42:42 My First Post Here is some content for my first post!
What just happened?

Wow, in just a few lines of code, we have used Hibernate to persist our objects. What we
managed to do in just a few lines of code would have been much harder to set up with Java,
but Railo Server made it easy for us.

As we saw before, we added an ormEnable setting in our Application.cfc and we set
the datasource and the settings that the ORM should use when our objects change. Then we
defined our persistent object, just not like any component using the cfproperty tag, but by
adding some information that enabled the ORM to create the tables for us. And finally, we
created a new object, filled it with data, and saved it to the database.

(1101


http:///

Chapter 5

Time for action - listing our hiog posts

It's all fine to be creating posts in your blog, but if no one can see them, there is no point.
Let's customize it, so that everyone can see our posts:

1. Let's add some code to our index.cfmto list our blog posts:

< !DOCTYPE html>

<body>
<hl1>My Blog</hl>
<h2>Latest posts</h2>
<cfset Posts = EntityLoad("post")>
<cfloop array="#Posts#" index="post">
<cfoutput>
<div class="post">
<div class="title">#post.getDateCreated()# -
#post.getTitle () #</div>
<div class="content">#post.getContent () #</div>
</div>
<hr>
</cfoutput>
</cfloop>
<h2>Add a new blog post</h2>

In this code, we have got our Posts using the EntityLoad ("post"). This returns
an array of Post objects. We then use <cfloop> to go through the posts and use
<cfoutput > around our code to output the variables from the object.

Have you noticed the index="post" in the <cfloop> tag? Well this is going
to be the variable that is going to hold each blog post that we can then use to
get the properties out of using the getters; so for example, we get the post.
getContent () to get the value stored in content.

1571


http:///

Developing Applications with Railo Server

2. After adding a few more posts into the blog, you should be able to see all the items
being output:

800 My Blog

[ + | @ hup:/ /localhost:3888/blog/index.cim & Q- Gaogle |
My Blog

Latest posts

{ts '2011-04-07 18:42:42'} - My First Post
Here is some content for my first post!

{13 '2011-04-07 18:42:42'} - Another Blog Post!
Here is the content of the second blog post! Check it out! Lets make it nice

{ts '2011-04-07 18:42:42'} - Third blog post!
orem ipsum dolor sit amet, consectetur adipiscing elit. Integer dictum viverra purus sed fringilla. Cras
dictum ullamcorper ornare. Curabitur suscipit gravida erat, ut fringilla purus porta id. Pellentesque
‘vulputate fermentum faucibus. Vivamus enim eros, ullamcorper quis dapibus a, mattis vel ante. Nulla id
nisi dolor, eget laoreet sem. Aenean at leo sit amet massa egestas laoreet sit amet in magna. Nam posuere
tellus vitae nibh pharetra eu eleifend risus porta. Nulla ante dolor, vulputate sed hendrerit sed, tristique a
erat. Etiam suscipit imperdiet velit lobortis ultrices. Donec dignissim metus eu elit fermentum
condimentum. Integer et sodales justo. Curabitur nec magna tellus, nec lacinia arcu. In quis augue lacus.
Aenean odio ante, gravida quis iaculis venenatis, sagittis ac turpis. Aenean dui neque, pellentesque eget
ultrices vitae, porttitor ac odio. Fusce id mauris eget ipsum volutpat facilisis in nec ante. Duis nec dui erat.
Integer varius pellentesque scelerisque. Nullam blandit sollicitudin felis quis ultricies. Morbi neque odio,
faucibus id interdum eget, lacinia sed mi. Ut bibendum, ante a ullamcorper lacinia, velit justo ultricies
tellus, quis facilisis nisi justo id massa. Phasellus vestibulum rhoncus libero, quis elementurm nisl
scelerisque vel. Praesent varius tortor a tortor consequat vitae varius dui dignissim. Duis et eros ipsum, in
mattis lorem. Suspendisse eget luctus orci. Maecenas in erat ac libero bibendum dignissim. Curabitur in
sem quis nulla laoreet condimentum. Nullam accumsan, dolor eu pretium sagittis, neque risus accumsan
felis, ut rutrum risus lectus molestie nunc. Fusce pulvinar lectus sit amet nunc porta ullamcorper. Nullam
ullamcorper lorem fringilla arcu feugiat interdum.

Add a new blog post

Title:

Content 4

Post

3. Wow! That was easy to get a list of Posts. But wait, there is a problem here. The
order of the blog posts is wrong. We want to order them by the dateCreated,
so that the latest post is at the top. Let's change the EntityLoad ("post™")
to the following:

<cfset Posts = EntityLoad("post", {}, "dateCreated desc")>

The function EntityLoad now takes three parameters, namely, the name of the
entity, a filter that will only return items that match key-value pairs, and finally the
ordering commands (in this case, we want the posts sorted by date). This

now returns our Posts with the latest at the top.

4. Let's clean up the date. Since there is an automatically created function for
getDateCreated, we can actually override this. Let's do that to return a
nicer looking date. In your post . cfc, add the following function:

<cffunction name="getDateCreated">
<cfreturn DateFormat (dateCreated, "medium") >
</cffunctions>

(1101


http:///

Chapter 5

The dates will now be output using the DateFormat () function:

My Blog

Latest posts

Apr7,2011 - Third blog post!
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer dictum viverra purus sed fringilla. Cras
dictum ullamcorper ornare. Curabitur suscipit gravida erat, ut fringilla purus porta id. Pellentesque

What just happened?

In the previous section, we managed to list all our posts using the EntityLoad () function,
which brought back all of our posts from the database. Since they weren't in the right order
(with the latest at the top), we added a third parameter to our EntityLoad ("Post", {},
"dateCreated desc") function to specify which property we want to order by. Finally,
since we are creating a timestamp for our dateCreated property, we overrode the built-in
getter and formatted the date nicely.

Time for action - adding comments

A blog wouldn't really be a blog if users can't make comments to a post. We are going to now
add comments to our posts by relating a post to a comment object.

1. First thing to do is to create a comment persistent object. Let's create a template
called comment . cfc with the following description:
<cfcomponent persistent="true" entityname="comment"
output="false">
<cfproperty name="id" ormtype="id" generator="native"x>
<cfproperty name="from" ormtype="string"s>
<cfproperty name="comment" ormtype="text">
<cfproperty name="dateCreated" fieldtype="timestamp">
<cfproperty name="post" fieldtype="one-to-one" fkcolumn="id"
cfc="Post" insert="false" update="false">

</cfcomponent >
We have seen most of the properties before, except that now a Comment has a
property called post that is related to the Post object.

o First, weadd a fieldtype="one-to-one" to the property to define how
this component will relate in the ORM to the Post object.

o Now, let's define which column will be referenced in the foreign key column
in the Post object using fkcolumn="1d".

[1591]



http:///

Developing Applications with Railo Server

2.

o Then we say which is the component we are relating to with the
cfc="Post" attribute.

o Finally, we set the insert="false" and update="false" attributes.
These define whether if we save a Comment they will update the Post
object, which we don't need to do.

Now that we have related our Comment to our Post object, let's add the inverse
relationship from the Post to the Comment objects. After all, we want to get all
the comments for a Post. Edit the Post . cfc and add the following property:

<cfproperty name="comments" type="array" fieldtype="one-to-many"
cfc="Comment" fkcolumn="postid"x>

We have created a property called comments and defined its type as an array of
comment components with cfc="Comment ". We defined the relationship is a one-
to-many relationship with fieldtype="one-to-many". Finally, we link it to the
postid of the Comment column using fkcolumn="postid".

Time for us to add a form so that users can post a comment. Let's add a comment
form under each post:

<div class="newComment">
<form action="addComment.cfm" method="post">
<input type="hidden" name="postid" value="#post.getId()#"
id="postid">
<p>
<label for="name">Name</label>
<input type="text" name="name" value="" id="name">
</p>
<p>
<label for="comment">Comment</labels>
<textarea name="comment" rows="comment" cols="40"
id="comment">
</textarea>
<p>
<p><input type="submit" value="AddComment"s></p>
</form>

</div>

This form is pretty standard; it points to the addComment . c£m template (this will
save our comment) and it has a hidden field called postid that contains the id of
the current post.

(1101



http:///

Chapter 5

5. Let's create the addComment . c£m template. This will save our comments:

<cfparam name="FORM.postid" type="numeric"s>

<cfset
<cfset
<cfset
<cfset
<cfset
<cfset
<cfset

post = EntityLoad("post", FORM.postid, true)>
comment = EntityNew ("comment") >

comment . setFrom (FORM.name) >

comment . setComment (FORM. comment) >

EntitySave (comment) >

post .addComments (comment) >

EntitySave (post) >

<cflocation url="index.cfm" addtoken="false">

In this code, we:

[m]

Make sure that a postid is passed in the FORM scope with the <cfparam>
tag and that it is a numeric value (an error will be thrown if it isn't).

Then, we load up the Post entity with the 1d of FORM. postid using the
EntityLoad () function. The last attribute passed to EntityLoad ()
(true) says that we only want one Post returned.

Then we create a new Comment entity and fill in the variables, using the
setFrom() and setComment () methods, and then save it using the
EntitySave () function.

We then add the comment to the post using the addComments () method
that has been automatically generated for us. Finally, we save the post
object, again using the EntitySave () function.

Since we don't need to show any output, we then relocate to the index.
cfm using the <cflocations tag.

6. Now that we have added a comment, the final task is to actually list each of
the comments for a post. After the post, we can get the comments using the
autogenerated method of post .getComments ().

Let's add some code to display the comments after each post in index.cfm:

<div class="comments">

<cfloop array="#post.getComments () #" index="comment"s>

<div class="commment">

<div class="commentFrom">#comment.getFrom()# on

#comment .getDateCreated () #

</div>
<div class="commentText">#comment .getComment ()#</div>

</div>

</cfloop>

</div>

11611



http:///

Developing Applications with Railo Server

In this code, we get the comments and loop through them, passing them to a
comment variable using index="comment" in the <cf1loop> tag. For each
comment, we simply output the From, DateCreated, and Comment properties
using the auto-generated getters.

What just happened?

In the previous section, we saw how we can relate objects to each other quite simply
by adding a fieldtype to a component's property, including a back relationship. The
relationships that you can have between objects are:

one-to-one

one-to-many

many-to-one

* 6 o o

many-to-many

You can then use various related objects with methods, such as get Comments,
addComment, and hasComments to find out what kind of related objects are
assigned to a primary object with the relations you have set.

This is just a taste of the ORM capabilities in Railo Server.

Getting and displaying content from a database is pretty easy in Railo Server. You can use the
ORM capabilities or use queries with the <cfquery> tag, and you can develop applications
relatively quickly.

Unfortunately, the world has other plans. Once you put your application live, you will

notice that different parts of your application can start to become bottlenecks in the overall
response time. When you start analyzing what is slowing things down, you will soon discover
that sometimes your application is busy doing things that is has already done before. For
example, returning a list of countries for every request. This data has not changed (unless
there is a big change in the geo-political landscape of the world) and probably won't for a
few years.

Therefore, it makes a lot of sense to cache this content once and serve it from the cache

for the subsequent requests. Of course, caching has some limitations, since some elements
cannot be cached or need to be most recent, but for now, we will just focus on elements that
can be cached.

(1101


http:///

Chapter 5

Railo Server allows you to create different caches that allow you to store data; but before we
look into the details, let's get a feel for what a cache is good for.

Cache: what is it good for?

The Railo cache allows data that has been written to a database, a variable, or to the
filesystem to now be stored and retrieved without having to get it again from the original
source. The main advantages of this are:

Access is much faster than reading and writing from the filesystem

You can determine the lifetime of the elements that are stored in the cache

The data can be (but does not need to be) persistent, that is, it survives a restart of
Railo Server

¢ The memory used for storing items is quite small in comparison to data stored in a
variable, since caches usually have an intelligent paging mechanism

¢ Data can be easily distributed across multiple systems (peer-2-peer) or can be
centrally maintained (client-server), so that multiple Railo Server instances can
have access to the same objects

Time for action - creating a cache connection

Before we can see the power of using caching services, we need to define a cache connection.

In the Railo (Server and Web) Administrators, you can create and manage cache instances.
Railo Server allows you to create as many instances as you need. The concept is similar to
the creation of a datasource connection under Services/Datasource.

Let's go and create a cache connection:

1. Head to the Railo Web Administrator by going to
http://localhost:8888/railo-context/admin/web.cfm

11631


http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http:///

Developing Applications with Railo Server

2. Login if you have not already done so, and then click on the Cache link under
Services. You will see something similar to the following screenshot:

Services - Cache

Create a new cache connection

Name  myCache

Type RamCache % 3

create cancel

Out of the box, Railo Server provides the options to create a RamCache or an
EHCache Light Cache Connections. RamCache is the default cache implementation
for Railo Server. Let's create a Cache connection by giving it a name (without spaces
and special characters). Let's call it myCache and select the RamCache connection.
Click on the create button.

3. Afterwards, we see the details of the cache. We are presented with the
configuration details of our cache, as shown in the following screenshot:

Services - Cache

RamCache (railo.runtime.cache.ram.RamCache)
Create a Ram Cache (in Memory Cache)
MName myCache

Storage || Allow to usa this cacha as client/sassion storage

Days Hours Minutes Seconds

Time to idle in seconds 0 0 0 0

Sats the time to idle for an slement before it expires. If all fields are set to 0 the element Ive as long

the server e

Days Hours Minutes Seconds

Time to live in seconds a0 0 0 o

Sats the timeout to lve for an alemant before it expires. If all fislds are set to 0 the element live as

long tha zarver va.

connection for tempates (ofoacha) and object (cacheliet, cachePut ..., this connection is used when no

submit

(1101



http:///

Chapter 5

The RamCache only has two settings, namely, Time to idle in seconds and Time to
live in seconds. The final setting states what type of cache connection this should be

the default for. Since we are going to be using it for objects, let's select object and
click on submit.

4. We are now presented with a list of our defined cache connections. See the new
cache is listed in the following screenshot:

Services - Cache Logout

List of existing cache connection

List of all existing connection for ths enviroment
8 Name Type Storage Check

04 | myCache RamCache No

L wverify delete cancel

Default cache connection

Define the default cache connection for tempates (cfcache) and object (cacheGet, cachePut ..), this connection is used when no cache
name is explicit defined

Object | myéaé.he-- ;]

This cache connection is used for all cache operations {cachelGet,cachePut ...)

Template L.

This cache connection is used for the tag cfcache
[ m——— '. ry
CQuery =
This cache connection is used for the caching of the tag cfgueny
| — [ers
Resource =
This cache connection is used for the Ram Resource (ram:4...)
update Reset to Server Administrator Setting

What just happened?

In order to use a Cache store, we needed to create a cache connection for it. The default
cache type that you can use with Railo Server is the RamCache, which will store any object
we create in the server's RAM. Once we created our Cache, we are ready to use it in our
code. Let's try that out now.

(1651



http:///

Developing Applications with Railo Server

Time for action — using the Cache ohject

Since we have now created our Cache connection, we can start using it. Let's try it out:

1. Underour <Railo Install>/webroot/Chapter 5/ folder, let's create a file
called Listing5_ 3.cfm with the following code:

<cfset cachePut ('hello', 'Hello World') >
<cfoutput> #cacheGet ( 'hello')#</cfoutputs>

This code puts the string He11o wor1d into the cache under the key hello. We can
then get the item that is present using the cacheGet () function and display it.

This code would output:

Hello World

2. We can expand on this example a little, so you get an idea of the other parameters
that we can use with the cachepPut () function:

<cfset cachePut('hello!', 'Hello World',6 createTimespan(0,0,0,10)
,createTimespan(0,0,0,10), 'mycache') >
<cfoutput> #cacheGet ( 'hello', true, 'myCache')#</cfoutputs>
In this example, we call the cachePut () method with the following parameters:
o KeyName: This is the key name of our item in the cache.

o Value: Thisis the value we are storing in the cache that we will retrieve
with cacheGet () later on.

o LifeSpan: This is the third argument that defines how long an item will live
in the cache; in our example, we do this by using the createTimeSpan ()
function to define a lifespan for 10 seconds.

o idleTime: Thisis the fourth argument that defines how long an item will
stay in the cache before being removed, if it is not accessed. In our example,
if it is not accessed for 10 seconds, the item will be deleted.

0 CacheConnection: This is the final parameter that defines the name of
the cache connection we are going to be using to store this item.
In the cacheGet () function, we now have the following items:
o KeyName: This is the name of the key whose value we want to get.

o ThrowError: It will have a Boolean value to say that we will throw an error
if the item doesn't exist.

0 CacheConnection: This is the final parameter that defines the name of
the cache connection we are going to be using to retrieve this item.

(1101



http:///

Chapter 5

What just happened?

Using the Railo Caching functions is pretty easy, with cacheGet () and cachePut () being
our main entry points. In the next section, we shall see more functions that can be used to
introspect the cache.

Time for action - getting well versed with more caching

So far, you have seen some simple examples. In the following example, we are going to make
a form to which we can add items to our cache, see what is in the whole cache, and then
delete individual items as well as the whole cache. Let's get started:

1. Inthe <railo Installs>/webroot/Chapter 5 folder, let's create a file called
cacheform.cfmand add the following code:

< !DOCTYPE html>
<html>
<head>
<title>cacheform</title>
</head>
<body>
<cfparam name="FORM.key" default="">
<cfparam name="FORM.value" default="">
<cfparam name="URL.delete" default="">
<cfparam name="URL.deleteall" default="false">
<form action="cacheform.cfm" method="post">
<label for="key">Key</label>
<input type="text" name="key"><br>
<label for="value">Value</labels>
<input type="text" name="value"><brs>
<p><input type="submit" value="Save"></p>
</form>
<cfif Len (FORM.key) >
<cfset cachePut (FORM.KEY, FORM.VALUE) >
</cfif>
<cfif Len (URL.delete) >
<cfset cacheDelete (URL.delete) >
</cfif>
<cfif URL.deletealls>
<cfset cacheClear() >
</cfif>
<cfoutputs>
Total Items in Cache: #cacheCount ()# <brs>

11671


http:///

Developing Applications with Railo Server

<ul>
<cfloop array="#cacheGetAllIds ()#" index="c">
<li>#cH# : #cacheGet (c)#
<a href="cacheform.cfm?delete=#c#">Delete</a>
</1li>
</cfloop>
</ul>
<a href="cacheform.cfm?deleteall=true">Cache Delete All</a>
</cfoutput>
<cfdump var="#cacheGetAll () #">
</body>
</html>

2. When we call the template in our browser, by going to http://localhost:8888/
Chapter 5/cacheform.cfm, we should get a form to enter our Key and Value to
the cache:

[ L | | > ] [+ |9http:Hlocalhost:BBSB}Chapter_S,!cacheform.cfm

Key
Value

.’5 b
| save |

Total Items in Cache: 0

Cache Delete All

3. Enter a Key with the name item1 and Value of Item One and submit the form. You
should now see that the Total Items in Cache increases to 1, and you now have your
item displayed in the cache. How did this happen? When we submitted our values, it
called the following code:
<cfif Len(FORM.key) >

<cfset cachePut (FORM.KEY, FORM.VALUE) >
</cfif>

This code simply checks that there is a key defined in the FORM scope and then adds
that item to the cache; we have seen this before. (Did you notice the <cfparams>
code at the top make sure that we had already defined our values?)

4. Now that we have an item in our cache, we can go and get it anytime by using
cacheGet (), but you already knew that right? How about getting a count of all
the items in the cache? Well, the following code gets the number of items:

Total Items in Cache: #cacheCount ()# <br>

(1101


http://localhost:8888/Chapter_5/cacheform.cfm
http://localhost:8888/Chapter_5/cacheform.cfm
http:///

Chapter 5

5. How about looping through the items in our cache? That is easy! We can use the
cacheGetAllIds () to getan array of IDs and then loop through them while
getting each one:
<ul>

<cfloop array="#cacheGetAllIds ()#" index="c">
<li>#c# : #cacheGet (c)#
<a href="cacheform.cfm?delete=#c#">Delete</a>
</1li>
</cfloop>
</uls>

6. We can get a structure with all the items in our cache simply by calling
cacheGetAll ().

7. How about deleting items in our cache? As you can see in the previous code, we
have a link that passes the key name back to our template, which then checks for
the URL.delete variable and deletes that key in our cache:
<cfif Len(URL.delete) >

<cfset cacheDelete (URL.delete) >
</cfif>

8. We can also delete all the items in our cache by using the cacheClear () function.

What just happened?

Using a template, we have managed to add items to our cache and list them. You should also
notice that once you put an item in the cache and go back to the page, the items will stay in
the cache.

Now that we have looked at the basic cache functions and functionality, we can have a look
at what other things the cache can be used for.

Using the RamCache is fine, but RAM is a precious resource. Railo Server allows you to also
use a number of external caches. Similar to databases, Railo Server supports different types
of cache connections. Imagine you could only use MySQL in Railo Server. This would be a
huge restriction, as you might want to harness some of the features of other database types.

We believe that the same is true for caches. Therefore, Railo Server is not limited to one
single caching system, but has left the interface open for several cache types you can use,
depending on your requirements.

(1691


http:///

Developing Applications with Railo Server

Currently, Railo Server supports the following cache types:

*

RamCache: This cache is shipped with Railo and is based in memory. The cache is
very fast and well suited for small applications, but very quickly pushes its limits.

EHCache Lite http://ehcache.org/: This cache is packaged with Railo version
3.2. This cache is also used in other CFML engines in the same way, and it provides a
variety of ways to define for how long objects should live and where and when they
are stored.

EHCache http://ehcache.org/ (Extension): This cache works similar to
"EHCache Lite", but in addition, it allows the configuration of a cluster by connecting
to other EHCache servers through a peer-2-peer cluster.

Memcached http://memcached.org/ (Extension): This cache is offered as a free
extension and works in the same way as "EHCache Lite" does. Just like "EHCache",
this cache provides a cluster solution, but not as a peer-2-peer model, but as a
client-server model. The data is not stored locally, but on a centralized server,
similar to a database.

Infinispan http://www.jboss.org/infinispan (Extension): Infinispan is an
extremely scalable and highly available data grid platform — 100 percent open
source and written in Java. The purpose of Infinispan is to expose a data structure
that is highly concurrent, designed ground-up to make the most of modern multi-
processor/multi-core architectures, while at the same time providing distributed
caching capabilities. It is also optionally backed by a peer-to-peer network
architecture to distribute state efficiently around a data grid.

Membase http://www.membase .org (Extension): Membase is a distributed key-
value database management system, optimized for storing data behind interactive
web applications. Membase automatically spreads data and I/O across servers.

This "scale out" approach at the data layer permits virtually unlimited growth

of transaction capacity, with linear increases in cost and constant per-operation
performance.

CouchDB http://couchdb.apache.org/ (Extension): Apache CouchDB is a
document-oriented database that can be queried and indexed in a MapReduce
fashion using JavaScript. CouchDB also offers incremental replication with bi-
directional conflict detection and resolution.

As you can see, Railo Server supports a number of cache types and the list is growing. Of
course, you can also write a cache driver for your favorite caching system too, as you will
see in Chapter 9, Extending Railo Server.

These can be installed through the extension providers, which we will go into more detail in
Chapter 9, Extending Railo Server.

(1101


http://www.jboss.org/infinispan
http://www.jboss.org/infinispan
http://www.jboss.org/infinispan/license.html
http://www.membase.org
http://www.membase.org
http://couchdb.apache.org/
http://couchdb.apache.org/
http:///

Chapter 5

Cache types

So far, we have looked at using one type of cache, the object cache, using the RamCache
connection. This is not the only functionality of caches in Railo Server. They can be used for
caching other types of resources too.

Railo Caches can be used with other services and functions, such as queries, templates,
objects, and resources.

Template cache

The tag <cfcache> has the actions £1ush, get, and put in order to read and write objects,
similar to the functions CacheGet, CachePut, and CacheClear. You can also use this tag
for caching templates of your application for a period of time.

Time for action — caching a page with cicache

Let's see how the <cfcaches> tag can cache a template for us:

1. Inour<Railo installs/webroot/Chapter 5/ folder, let's create a template
called templatecache.cfmand add the following code:

<!DOCTYPE html>
<html>
<head>
<title>Template Cache</title>
</head>
<body>
<cfoutput>
Current Time: #TimeFormat (Now(), "HH:mm:ss")#
</cfoutput>
</body>
</html>

2. When you run this template by going to http://localhost :8888/Chapter 5/
templatecache.cfm, you should see the current time displayed, for example,
Current Time: 15:02:25. Each time you refresh this, it will show the current
time and stay up-to-date.

3. Let's add some code to cache this whole page. At the top of the page, add the
following code:
<cfcache action="cache">
<!DOCTYPE htmls>
<html>
<head>

1l



http://localhost:8888/Chapter_5/templatecache.cfm
http:///

Developing Applications with Railo Server

<title>Template Cache</title>

</head>

<body>
<cfoutput>

Current Time: #TimeFormat (Now (), "HH:mm:ss")#

</cfoutput>

</body>

</html>

The <cfcache action="cache"> tag at the top of our page will cache the
whole page.

4. Now, when we reload the page each time, it will keep displaying the original time.
This is because the page is now cached to disk. You can see this if you go to the
<Railo installs/webroot/WEB-INF/railo/cache folder. Thereis afilein
there called 31d4007e8254394£98704ffeb17b8243 . cache (the name might
vary based on your system).

5. What happens if we want to invalidate the cache? We have a few options; we
could delete the 31d4007e8254394£98704ffeb17b8243 . cache file from the
hard drive or we could use the <cfcache> tag again. Let's use the tag and add the
following code to the top of our template:

<cfif isDefined ("URL.flush")>
<cfcache action="flush">
</cfif>
<cfcache action="cache">
< !DOCTYPE html>
<html>
<head>
<title>Template Cache</title>
</head>
<body>
<cfoutput>
Current Time: #TimeFormat (Now(), "HH:mm:ss")#
</cfoutput>
</body>
</html>

When we run our template again, it will still be cached until we add a URL parameter
to flush the cache. If you run the URLhttp://localhost:8888/Chapter 5/
templatecache.cfm?flush, you will be able to see that the template is removed
from the cache.

(1101


http://localhost:8888/Chapter_5/templatecache.cfm?flush
http:///

Chapter 5

6. The template cache is still reading from the filesystem, and you can imagine with
a lot of templates this cache could become slow. We can change it to use the URL
cache that we created earlier by changing what cache the templates are using.
Let's head back to the Railo Web Administrator and set a default cache by going to
http://localhost:8888/railo-context/admin/web.cfmand then clicking
on the Cache link under Services.

7. In the Default cache connection section, select the myCache connection next to the
Template cache and set all the other types to the blank connection:

Default cache connection
Define the default cache connection for tempates (cfcache) and object (cacheGet, cachePut ...), this connection is used when no cache
name is explicit defined
Object "
This cache connection is used for all cache operations (cacheGet,cachePut ...)
Template (FmyCache- iy B
This ceche connection is used for the tag cfcache
Query L )
This cache connection is used for tha caching of the tag cfquary
Resource ;.’ﬂ
This cache connection is used for the Ram Resgurce (ram:/...)
update Reset to Server Administrator Setting

8. Then click update.

9. Now all the templates will be cached in the RAM instead of the hard drive.

What just happened?

In the previous example, we managed to cache a whole template using the <cfcache> tag.
We saw a couple of actions that the <cfcache> tag provides to both add items to a cache
as well as be able to flush the contents of the cache. We also saw that we can assign a cache
connection to the template resources, so that they are also cached to any type of cache
provider we choose.

Partial template caching

In the previous section, we saw how we cached a template (in fact, a whole template, as we
could have included other templates within our main template), which is very useful, but
what if we only want to cache a part of a page?

The <cfcaches tag can also allow you to cache a portion of the page, so let's try this out.

(1131



http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http:///

Developing Applications with Railo Server

Time for action — caching content within a template

Using our previous template, templatecache.cfm, let's add some caching to only a part of
our template:

1. Open upthe templatecache.cfm file and replace the contents with the following
block of code:

<cfif isDefined ("URL.flush")>
<cfcache action="flush">
</cfif>
< !DOCTYPE html>
<html>
<head>
<title>Template Cache</title>
</head>
<body>
<cfoutput>
<cfcache action="content" key="myCachedTime">
Cached Time: #TimeFormat (Now(), "HH:mm:ss")#
</cfcache>
Current Time: #TimeFormat (Now(), "HH:mm:ss")#
</cfoutput>
</body>
</html>

2. Asyou can see, we removed the <cfcache action="cache"> from the top of
our template. This removes caching for the whole template. We have now added a
<cfcache action="content"s around the output of time, and also added the
current time, so that we can see the difference.

3. When you load up this template and refresh it a few times by going to
http://localhost:8888/chapter 5/templatecache.cfm, you can
see that the time differs as the content inside the <cfcache> tag will now
be stored, but the rest of the template will run as normal:

Cached Time: 15:43:00 Current Time: 16:14:10

What just happened?

We have managed to cache only a portion of our page, maybe a part that would contain a
lot of processing that normally wouldn't need to be processed for each request. This greatly
improves our template speeds and how the user perceives our application.

(1101



http://localhost:8888/chapter_5/templatecache.cfm
http://localhost:8888/chapter_5/templatecache.cfm
http:///

Chapter 5

You can use the <cfquery> tag to retrieve records from a database, but what happens if
this data doesn't change very often?

Railo Server can cache database requests for a period of time, using the cachedwithin
and cachedafter attributes, which define a time span of how long a query will be held
in memory.

Time for action — caching a query using cachedwithin

Let's say, we want to display a list of our blog posts. Since we don't want to query the
database all the time, we are going to cache our query for a set length of time. Let's first
get the items from our database:

1. Inyour <Railo Installs/webroot/Chapter 5 folder, create a template called
querycache.cfm with a simple query and a dump of the results:
<cfquery name="getPosts" datasource="railoblog"s>
SELECT * FROM post
</cfquery>
<cfdump var="#getPosts#">

The output of this query should look something like the following screenshot:

Query

Template:/Users/markdrew/Dropbox/Railo Team/Book Progress/railo-server-for-demos/webroot/Chapter_5/querycache.cfm
Execution Time (ms):1

Recordcount:5

Cached:No
SQL:
SELECT * FROM post
id |dateCreated title content
1|1 ({ts'2011-04-17 15:22:14'} A Mew Post A Fantastic new post item!
2 (2 ({ts'2011-04-17 15:22:27'} Another Post! This post is better than before!
3 (3 ({ts'2011-04-17 15:25:57'} Another New Post This is a brand new post
4 (4 |[{ts '2011-04-17 15:26:23'} An awesome new post This really is an awesome post
5 (5 |({ts'2011-04-17 15:26:23'} Post in DB

2. At the top of the query, you can see that it says Cached: No
3. Let'sadd a cachedwithin attribute to the <cfquery> tag:

<cfquery name="getPosts" datasource="railoblog"
cachedwithin="#CreateTimeSpan(0,0,5,0)#">
SELECT * FROM post

</cfquery>

<cfdump var="#getPosts#">

(1151


http:///

Developing Applications with Railo Server

When we now run the template a couple of times, we will get the following result:

Query

Template:/Users/markdrew/Dropbox,/Railo Team/Book Progress/railo-server-for-demos/webroot/Chapter_5/querycache.cfm
Execution Time {ms):4

Recordcount:5

Cached:Yes
sSQL:
SELECT * FROM post
id ||dateCreated title content
1 (1 |f{ts '2011-04-17 15:22:14'} A New Post A Fantastic new post item!
2 |2 [{ts '2011-04-17 15:22:27'} Another Post! This post is better than before!
3 (3 |[{ts '2011-04-17 15:25:57'} Another New Post This is a brand new post
4 4 |[{ts '2011-04-17 15:26:23'} An awesome new post This really is an awesome post
5 (5 |[{ts '2011-04-17 15:26:23'} Post in DB

You can see that the query now has Cached: Yes

What just happened?

By adding the cachedwithin attribute to our <cfquerys> tag, we are able to cache

the results of a query for a period of time. The cachedwithin attribute takes a variable
returned from the CreateTimeSpan () function, which takes four arguments: Days, Hours,
Minutes, and Seconds. The <cfquery> tag now won't run against the database, but use
the cached results for a period of time (5 minutes, as we defined in our CreateTimeSpan ()
function).

Railo Server has the ability to write and read templates straight from RAM as well as other
resources. We shall have a closer look at this functionality in Chapter 8, Railo Resources, but
for now, you should know that this is possible.

For example, you can run the following code to write a variable to a file in RAM called
susi.txt:

<cffile action="write" file="ram://susi.txt" output="Hello Susi">

This functionality is limited, because the memory itself is a precious resource that is shared
by all applications on the server. Also, any items you have saved there will be flushed if the
server is restarted.

Railo Server has the ability to set which cache provider will be used for our resources. We
can assign a better caching system rather than the default RAM cache.

As with the template cache, we can create a new cache connection to, for example, EHCache
Lite, and assign that to our resource cache.

(1101


http:///

Chapter 5

Time for action - assigning an EHCache Lite connection to

Since we want to provide a better cache provider for our resources, we can now go
and create an EHCache Lite connection and assign it as the default cache provider for
our resources:

1. Go to the Railo Web Administrator through http://localhost:8888/railo-
context/admin/web.cfmand log in, if required.

2. Click on the Cache link under the Services section to get a list of our existing caches.

3. Create a new cache connection called ResourceCache of the type EHCache Lite:

a new cache connection
Name | ResourceCache
Type [ EHCache Lite |3

create cancel

4. Once we have clicked on create, we have a number of options (they are fine set as
default for the moment). Make sure that the Default drop-down is set to Resource:

Ehcache is available under an Apache open source license and is actively developed, maintained and supported. This version does not support
replication, for replication check the Extension/Application page for "EHCache".

Name ResourceCache
Storage
Eternal
the
Maximal elements in 10000
memoary

Sets the maximum objects to ba heid in memary

Memory Store Eviction
Policy

5 sast frequently ussd) o
Days Hours  Minutes Seconds
Time to idle in seconds 1 0 0 0

Time to live In seconds 1 0 0 0
u an element before it expires. |s only used if the element is n

Disk persistent

for caches that overflow to disk, whether the disk store persists between restarts of the Engine
Overflow to disk =]

for caches that averflow to disk, the disk cache persist between CacheManager instances
Maximal elements on disk 10000000

Sets the maximum number elements on Disk. 0 means unlimited

Default

Resource |

submit

(11



http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http:///

Developing Applications with Railo Server

5. Now when we run the previous code, all our calls to the ram: // resource will be
stored using the EHCache Lite connection that we have now defined.

What just happened?

By default, the ram: // resource is stored in the server's RAM memory. By creating a new
cache provider to the included EHCache Lite service, we can now store resources in a more
permanent, yet fast, caching system.

This has been a varied chapter that has introduced you to the Application Lifecycle of Railo
Applications, ORM capabilities, and caching services available with Railo Server.

You should now be able to:
¢ Manage different parts of your requests, sessions, and application lifecyle using the

Application.cfc file

¢ Create mappings between Railo Components and database tables to persist them in
a database

Create different caches to store variables and templates for faster retrieval

Cache queries to reduce database lookups for data that doesn't change frequently
Since we have now got a good grounding in the services of Railo Server and got used to
coding with CFML tags, in the next chapter, we are going to explore the other way of coding

in CFML, without using tags. We are also going to investigate some of the built-in objects
available in Railo Server.

(1101


http:///

Advanced CFML Functionality

So far we have looked at how we can write CFML with tags and functions. This
is a great way to develop web applications since it fits well with the way web
pages are built, that is, through HTML.

In this chapter we are going to look at the alternative ways to write CFML
language, namely, by using a scripting language called CFScript.

In this chapter, we will cover:
& Scripting formats that are available in Railo Server

¢ How to leverage CFScript with your code

¢ The in-built components in Railo Server

By the end of the chapter, we will be able to write applications using the CFScript syntax
which accesses outside resources without the need to use tags.

Let's dive right in!

So far all the examples and code you have written have used a tag-based format. Even

when we used functions that had no output, we used the <cfset> tag. It's a natural way to
program when developing web applications because the output language is HTML, which is
also a tag-based language. But, is this the only way to do this? Let's have a look at the reason
for there being another way to do things and how it could improve our current situation.

Let's have a look at the pros and cons of using these tags in the following two sections.


http:///

Advanced CFML Functionality

Why tags are good

Using a tag-based format has many advantages. Primarily, it makes for a very easy learning
curve for the user. Although there are many tags in Railo Server (about 126 on the last
count), the syntax remains the same:

<cfTAGNAME ATTRIBUTE1="VALUE" ...>

When using a self-closing tag, we use the following:
<cfTAGNAME ATTRIBUTEl="VALUE"/>
In case of tags that wrap some content in the format, it is as follows:

<cfTAGNAME ATTRIBUTE1="VALUE" ...>

</cfTAGNAME >

Therefore, it is easy to figure out what tag you might want to use. Because Railo Server
is not overly strict on syntax, you don't have to close the single tags if you don't want
to (that is, adding /> at the end). This makes it a very forgiving format to learn the
language—somewhat similar to HTML

Also, with this format, you are also able to parse the CFML rather easily, so different tools,
like text editors, can work with it easily.

The only change to this syntax is the use of the hash mark # (also known as the pound sign)
to surround variables that need to be outputted to the browser.

This makes the whole language fairly consistent in this format, especially when mixed with
HTML, as shown in the following lines of code:

<!DOCTYPE htmls>
<html>
<head>
<titlescacheform</titles>
</head>
<body>
<cfquery name="getList" datasource="railoblog">
SELECT * FROM posts
</cfquery>
<uls>
<cfloop query="#getList#">
<lis>
<cfoutput>#title#i</cfoutput>
getList. </1li>
</cfloop>
</ul>
</body>
</html>

[1801]



http:///

Chapter 6

As you can see in the preceding code, CFML mixes quite well with HTML; it's readable and
you can tell which are CFML tags and which are HTML rendering tags.

Why tags are bad

The benefits of CFML formatting can also be its detriment. The logic in code isn't always

as simple as one tag; it could be a number of statements, settings and parsing variables,
calling functions, and any number of other features of the language. You could end up with
something that, in tag format, is actually too verbose.

If you are coding business logic with nothing to be outputted to the browser, it may be better
to place that code in a component.

Let's have a look at some code; it doesn't matter what it does ultimately, but it's to give you
an idea of where CFML tags can actually get in the way:

<cfset selectedDir = expandPath("../../../Chapter 6/images")>
<cfset aFiles = DirectorylList (absolute path=selectedDir, filter="*.
png", listInfo="name")>
<cfset prefix = "3401_05">
<cfset imageCountNumber = 0>
<cfloop array="#aFiles#" index="f">

<cfif f.startsWith (prefix) >

<!--- increase the count --->
<cfset FoundNumber = ListLast (ListFirst(f,"."), " ")>

<cfif FoundNumber GTE imageCountNumbers>
<cfset imageCountNumber = FoundNumber + 1>
</cfif>
</cfif>
</cfloop>

<!--- rename the image files to the proper format --->
<cfloop array="#aFiles#" index="f">
<cfif NOT f.startsWith (prefix) >
<cfset newName = prefix & " " & NumberFormat (imageCountNumber,
"00") & "." & ListLast(f,".")>
<cfset FileMove ("#selectedDir#/#f#", "#selectedDir#/#newName#") >
<cfset imageCountNumber++>
</cfif>
</cfloop>

11811


http:///

Advanced CFML Functionality

In the previous code, we set a number of variables with the <cfset > tag (in fact, we have
done that nine times already!), and in some cases, we aren't even setting anything; we are
just calling it to call a function to do some action.

More importantly, because the code is basically about renaming a file, there is no output
to the user, so the benefits of a tag-based language seem to be diminished. It seems a bit
superfluous to have all those <cfset> tags too.

Let's have a look at another way in which we could write the previous code:

selectedDir = expandPath("../../../Chapter 6/images") ;

aFiles = Directorylist (absolute path=selectedDir, filter="*.png",
listInfo="name") ;
prefix = "3401 05";
imageCountNumber = 0;
for(f in aFiles) {
if (f.startsWith(prefix)) {
FoundNumber = ListLast (ListFirst(f,"."), " ");

if (FoundNumber >= imageCountNumber){
imageCountNumber = FoundNumber + 1;

for(f in aFiles)
if (I f.startsWith (prefix)) {

newName = prefix & " " & NumberFormat (imageCountNumber, "00") &
"." & ListLast(f,".");

FileMove ("#selectedDir#/#f#", "#selectedDir#/#newName#") ;
imageCountNumber++;

}

What we have now is something that is more concise, without the syntactic noise that tags
can bring. We are still writing CFML and it seems we have just removed the tags (apart for
the "for loop") and everything is pretty much the same, but there is less "noise".

Let's see how we can use this to our advantage.

The <cfscript>tag

The reduction of code we saw in the previous code example was achieved using the other
language syntax that Railo Server supports. This syntax is known as CFScript.

[1801]


http:///

Chapter 6

Similar to the <SCRIPT> tag in HTML, we are able to use the <cfscript> tagin our CFML
templates to use the CFScript syntax. This is very similar to ECMAScript (or JavaScript) in its
general notation.

You can think of it as CFML, but without the <cf at the start of a tag and the > at the end. Or
another way of looking at it is that we are calling the <cfset > tag without having to use the
<cfset> tag.

Let's look at some of the differences between the tag-based CFML language and its
CFSC counterpart.

Loons

Loops are used for many things in Railo, but in the tag-based CFML language, the main tag
for all of the looping interactions is the <cf1oop> tag.

Looping lists

Lists are the simplest type of data structures that you can have in CFML, it's basically a long
string delimited by some character, usually a comma (",").

Time for action - looping through a list

Let's loop through a list using <cf1loop> and then compare it to looping through it using
<cfscripts:

1. First, create a file named looplist.cfmin the <Railo Installation
Directory>/webroot/Chapter 6 folder and create a list by adding the
following code:

<cfset myList = "Item One,Item Two,Item Three">

2. Now, let's loop through the list using <c£1oop> by appending the following code:

<cfloop list="#myList#" index="i">
<cfoutput>#i#i<br></cfoutputs>
</cfloop>

3. This prints out the following output, as expected:
Item One
Item Two

Item Three

[1831


http:///

Advanced CFML Functionality

4. Let's replace the <cf1loop> with the following lines of code:

<cfscripts>
for(i = 1; i <= ListLen(myList); i+){
WriteOutput (ListGetAt (myList, i) & "<br>");

}

</cfscripts>

5. We get the same output, but of course, we seem to be doing it rather differently.

What just happened?

The <cfloop> tag is incredibly powerful because it knows how to loop over a number of
objects including files. In the previous example, we use the for () {} loop to iterate from
1 whilst the variable i is less than or equal to the length of the list. This is not the shortest
example, but it does show that you can loop through a list and then use the ListGetAt ()
built-in function to get the item there.

Let's look at more complex examples now.

Looping arrays
Arrays are actually easier to loop through in CFScript than lists. Let's just go with an example
to see how easy they are.

Time for action - looping an array

1. This time, let's create another template named looparray.cfmin the same
directory as we created the 1ooplist.cfmtemplate.

2. Let's create an array by putting the following code at the top of our template:

<cfset myArr = ["Item One", "Item Two", "Item Three"]>

3. Now let's loop through it using <c£1oop>; we do this by adding the arguments
array and index:
<cfloop array="#myArr#" index="a">
<cfoutput>#a#<br></cfoutput>
</cfloop>

[1801]


http:///

Chapter 6

4. We passed the myArr variable into the array attribute, and to display the contents
of each item, we output #a#. Now, let's do this using CFScript. Let's add the
following code:
<cfscripts>

for(a in myArr)
WriteOutput (a & "<br>");

}

</cfscript>

5. Now when we run the template again, we should see the same output as with
<cfloop>, but the for loop is much more contained.

What just happened?

When looping arrays, the <cfscript> syntax is much more refined. It makes sense when
you say it out in English, "For (every item called) a in myArr ( do this)."

Looping structures

Structures in CFML are a map of key/value pairs, and as you might have guessed by now,
<cfloop> also has attributes designed to be used with looping through a structure. Let's
see how this works in tags and <cfscripts.

Time for action - looping through a structure

1. Inthe same directory where we placed our other templates, let's create a template
named loopstruct.cfmand let's add the following code that creates a simple
structure that we can loop over:

<cfset myStruct = {iteml="Item One", item2="Item Two", item3="Item
Three"}>

2. The previous code has a number of keys (iteml, item2, item3) that have
values; let's loop through them with <cf1loop> by using the collection and
item attributes:
<cfloop collection="#myStruct#" item="s">

<cfoutput>#s# = #myStruct[sl# <br></cfoutputs>
</cfloop>

(1851



http:///

Advanced CFML Functionality

3. This code would output the following values:

ITEM3 Item Three

ITEM2 = Item Two

ITEM1 = Item One

4. The variable s refers to the current key that we are looping over, and to get the
content, we can use #myStruct [s]#

5. Let's try this with <CFSCRIPT>. Now and see the difference:

<cfscripts>
for(s in myStruct) {
WriteOutput(s & " = " & myStruct[s] & "<br>");

}

</cfscript>

6. The previous code would also output the same values as the <cf1oop>.

What just happened?

We can see that the syntax for the <cfscript> version of structure loop is identical

to the array version of the loop. If we ignore the output (we don't always output things
when we are looping over items), it is a much tidier syntax and less verbose. This is where
<cfscript> really shines!

Looping gueries

As we have seen a number of times so far, database queries are very well handled
within Railo Server and the CFML language. Let's see how we can handle them with
<cfscripts> too

Time for action - looping over queries

1. Inthe same folder that we have been placing all of our examples so far, let's create a
template named loopquery.cfmand put a <cfquery> statement at the top:
<cfquery name="gItems" datasource="railobook">

SELECT * FROM Users
</cfquery>

2. Now, we can loop through the results using <c£1oop> and the query attribute as
follows (we have seen this a number of times now):

<cfloop query="gltems">
<cfoutput>#gltems.username#<br></cfoutput>
</cfloop>

[1801]



http:///

Chapter 6

3. Nothing new here; we just get a listing of our users in the database. Now, let's try it
with <cfscripts>:

<cfscripts>
for(g in gItems) {
WriteOutput (gItems [g] ["username"] & "<br>");

}

</cfscripts>

4. When we run this code, we get an error!l—key [username] not found. This is
because each item in a query is actually the column, not the row! Let's change
our code to loop through all the rows:
<cfscripts>

for(r=1; r LTE gItems.recordcount; r++){
WriteOutput (gItems ["username"] [r] & "<br>");

}

</cfscript>

5. Now, we get a list of users as we would expect!

What just happened?

Even though we expected to use the for (g in gItems) syntax to loop over a query,
things are slightly different when you think about the structure of a query. It is still easy to
loop over itin <cfscript>, but we need to remember that we have to loop over all the
rows first before outputting the column (either directly by name, or by having another loop
inside the row loop).

Components are a great location to place the business logic of your application into. They
are object-oriented and allow you to separate your business logic from your display logic and
build the foundation for creating maintainable CFML applications. Despite this, they can get
rather long to code. Let's look at a simple component that we might use in an application.
The Person component will only have two properties, name and age, and we will have
functions (called getters) to get the values of the name and age properties.

11871


http:///

Advanced CFML Functionality

Time for action - creating the component

Let's start off by creating a folder to store our component. Under the <Railo Install
Directorys>/webroot, let's create a folder named cfcs.

1. Inthe cfcs directory, create a template named Person. cfc and put the following
code inside it:

<cfcomponent output="false">
<cfset this.name = "">
<cfset this.age = "">

</cfcomponent >

2. This is the simplest form of a component. Let's create another template under
<Railo Install Directorys>/webroot/Chapter 6/ named PersonGetter.
cfm; this template will be used to create an instance of the Person. cfc object and
populate it by adding the following code:

<cfset person = new cfcs.Person() >
<cfset person.name = "Mark"s>
<cfset person.age = 36>

<cfdump var="#person#">

800 http://localhost: 8080/ Chapter_&/PersonCetter.cfm )
|_ 4 ||+ | @ nhip://localhost:B080/Chapter_6/PersonGetie: & | (Qr Google |2|

Component (cfcs.Person)
Only the functions and data members that are accessible from your location are displayed

public

3. The this scope in a component is actually public. This means it can be read and
modified from outside the component (as we can see in the previous code listing),
which is not best practice. Let's make the properties private and add getters
and setters:

<cfcomponent output="false">
<cfset variables.name = "">
<cfset variables.age = "">

<cffunction name="getName" output="false" returntype="string"s>
<cfreturn variables.name>
</cffunctions>

[1801]


http:///

Chapter 6

<cffunction name="setName" output="false" returntype="void"s
<cfargument name="name" type="String" required="true">
<cfset variables.age = arguments.age>
</cffunctions>
</cfcomponent >

In the previous code, we have changed the this scope to the private variables
scope within the component. We have also added a number of <cffunctions tags
to add methods to our component that set and get the variables. Now, we need to
change the PersonGetter.cfm file to use these methods:

<cfset person = new cfcs.Person() >

<cfset person.setName ("Mark") >

<cfset person.setAge (36) >

<cfoutput>#person.getName () # - #person.getAge () #</cfoutput>

Even though this is now a better practice, it takes a bit of coding to get all of what's
written out. This is where <cfscript> can help. Let's create another component
that will behave the same way, but written solely in CFScript.

In the cfcs folder, create a template named PersonScript.cfc. Notice that it is
still a . cfc file. Let's add the following code:
component {

variables.name = "";

variables.age = "";
String function getName () {

return variables.name;

function setName (String required name){
variables.name = arguments.name;

Numeric function getAge () {
return variables.age;

function setAge (Numeric required age) {
variables.age = arguments.age;

}

(1891



http:///

Advanced CFML Functionality

7. Wow! This seems more condensed right? There is less syntactic noise from the
tags and yet we are keeping the functionality the same. Also, because it is CFScript,
we don't have to keep putting output="false" in our code. Using the tag-based
component functions, we need output="false" if we want to prevent any output.
Of course, we could output code straight from the function if we want, although this
is also not good practice.

8. Now, to test our new component, we need to change one line in the
PersonGetter.cfmfile:

<cfset person = new cfcs.PersonScript () >

<cfset person.setName ("Mark") >

<cfset person.setAge (36) >

<cfoutput>#person.getName () # - #person.getAge () #</cfoutput>

What just happened?

We created a simple component using standard CFML tags, which works fine, but it adds a
lot of noise, especially in simple objects. By modifying it to use the CFScript syntax, we can
see that we save a lot of typing, and also, the component is much clearer. This is one of the
benefits of using CFScript over tags.

There are many ways to code something, and now that you have seen the benefits of
CFScript, you might want to code everything that way. Therein lies a problem. For example,
even though there are over 500 functions you can call, there are also over 100 tags available
to you in Railo Server and sometimes the functionality doesn't overlap. So how do we get
access to that functionality in CFScript?

A number of tags have the ability to be used from CFScript directly by simply removing the
<cf at the start and replacing the > at the end with ;. Let's look at an example.

Time for action - getting the contents of another site

Let's say that in our code we want to get the contents from another site, for example, the
HTML content of the http://www.getrailo.org website. Let's do this using tag-based
code first:

1. Create atemplate under <Railo Install Directorys/webroot/Chapter 6/
named getrailo.cfmand put the following code inside it:

<cfhttp url="http://www.getrailo.org" method="GET">
<cfdump var="#CFHTTP.filecontent#">

[1801]


http://www.getrailo.org/
http://www.getrailo.org/
http:///

Chapter 6

2. When we run the previous code by going to http://localhost:8888/
Chapter 6/getrailo.cfm, we get a big dump of the HTML that is hosted at
http://www.getrailo.org. Thisis pretty simple, but there isn't a CFScript
function that will do this, let's use what we have learned about some tags to
see if it works without the <cf at the start of the <cfhttp> tag:
<cfscripts>

http url="http://www.getrailo.org" method="GET";
dump (CFHTTP.filecontent) ;
</cfscripts>

3. We now see exactly the same output we saw with the tag version!

What just happened?

A number of CFML tags in Railo Server can be invoked from the CFScript syntax with little
modification as to how they work. All it takes is removing the starting <CF and replacing
the final > with a ; to get them working. This makes writing complex components using
the CFScript syntax much easier!

As we have just seen, it's not difficult using a single tag call in CFScript, but what happens
with tags that wrap other content? If you remember when we looped over a list, things got
tricky, as we had to loop over the length of the list, and then use the ListGetAt () function,
especially because the tag version is so much simpler to read. How about we try to re-write
this, as we now know that we can use tags in CFScript?

Time for action — using the <cfloop> tag in CFScript

1. Let's start off by copying the original list loop that we looked at earlier into a
new file named loopscript.cfmunderthe <Railo Install Directorys/
webroot/Chapter_ 6/ directory:

<cfset myList = "Item One, Item Two, Item Three">

<cfloop list="#myList#" index="1">
<cfoutput>#l#<br></cfoutput>

</cfloop>

2. Now, if we head to http://localhost:8888/Chapter 6/loopscript.cfm,
we should get the list output as follows:
Item One

Item Two
Item Three

11911


http://localhost:8888/Chapter_6/getrailo.cfm
http://www.getrailo.org/
http://localhost:8888/Chapter_6/loopscript.cfm
http://localhost:8888/Chapter_6/loopscript.cfm
http://localhost:8888/Chapter_6/loopscript.cfm
http:///

Advanced CFML Functionality

3. Let's change the code to just use CFScript. We will use the <cf1oop> tag, but now
use angular brackets to wrap the content; in other words, we use what's inside the
<cfloop> tag:

<cfscripts>
myList = "Item One, Item Two, Item Three";
loop list="#myList#" index="1" {
WriteOutput( 1 & "<br>");

}

</cfscripts>

4. Running this code, we now get exactly the same output!

Item One
Item Two

Item Three

What just happened?

Wow! In the previous example, you saw how to use a CFML tag using the CFScript syntax
where a lot more code would have been required to do the same thing. This is the power
that CFML and Railo Server give you!

Scripting wrapped tags—Part 2

In the previous section, we saw how we could script wrapped tags using the CFScript
notation. It doesn't end there of course; there are a number of tags that we can use that
actually take child tags. Let's look at a simple example of getting an individual item from
a query.

To protect ourselves from nasty SQL injection attacks, we can parameterize variables passed
to a query using the <cfqueryparams tag. This ensures that our inputs into a query are
what they say they are. Let's look at a simple example.

Time for action - get a user by his/her ID

Let's first write the script as we would have done using a <cfquery> tag and then see how
we can convert it to the CFScript format.

1. Create atemplate under the <Railo Install Directorys/webroot/
Chapter 6/ named queryscript.cfmand let's put the following code in there:

<cfparam name="url.id" type="numeric"s>
<cfquery name="getUser" datasource="railobook">

[1801]



http:///

Chapter 6

SELECT * FROM Users WHERE id = <cfqueryparam cfsgltype="cf sql
numeric" value="#url.id#">

</cfquery>

<cfoutput>
#getUser.username#
</cfoutput>

2. Inthe previous code, the first line sets up a parameter called url . id; this means
that an error will be thrown if an id is not passed in the URL or if it is passed and is
not numeric.

3. We then create our query, but instead of simply passing the variable to the query,
we use <cfqueryparams to say that the value we are passing is of a database type
cf sqgl numeric. Finally, we output the first item we get back from the results of
the query. So far so good. Let's rewrite this in the CFScript format.

<cfscripts>
param name="url.id" type="numeric";
query name="getUser" datasource="railobook"
WriteOutput ("SELECT * FROM Users WHERE id = ");
queryparam cfsgltype="cf sgl numeric" value="#url.id#";
}
WriteOutput (getUser.username) ;
</cfscript>

What just happened?

In the first line, we have replaced the <cfparam> tag for the near identical param scripted
tag. Then, we replace the <cfquery> tag with the query scripted tag and open the brackets
after it.

Using the WriteOutput () function, we write our SQL statement to the query scripted tag.
Then, wherein the tag version the <cfqueryparam> tag would have gone, we have simply
added the queryparam scripted tag.

As we have seen, tags that have child tags can simply be written inside the curly braces. In

some tags where we have a mixture of some text content as well as other tags, we can mix
them by placing them in order and using the child tags, as you would have done in the tag

versions of those tags.

[1931



http:///

Advanced CFML Functionality

So far, we have seen that we have some good options for converting tag-based CFML code
to using the CFScript syntax. However, as you can see from the previous query example, this
could start getting very messy. There would be a lot of WriteOutput () functions if you
have a number of statements, and especially if you have a number of child parameters that
you would need to pass.

Another issue is that if you are writing this code dynamically, there will be a /ot of
concatenation of strings, and eventually, the code will not be readable, which is certainly
not the point of Railo Server. Normally, a good way of resolving this would be by abstracting
away a lot of the code into a component and then just calling methods on them. Luckily,
Railo Server includes a few components already to help you do this.

The Query huilt-in component

As we saw in our CFScript version of a <cfquery>, the code could get rather complex.
Luckily, there is a component shipped with Railo Server that allows you to easily call
complex tags. The Query component in Railo Server is a perfect example of this, and
the best way to understand it is to take it for a test drive.

Time for action — using the Query component

Let's redo the code in our queryscript.cfmfile to use the Query component:

1. Delete all the code in <Railo Install Directorys/webroot/Chapter 6/
queryscript.cfmand replace it with a blank <cfscript> tag and a call to a new
Query object:
<cfscripts>

myQuery = new Query (datasource="railobook") ;
myQuery.setSQL ("SELECT * FROM Users WHERE id = :id");
myQuery.addParam(name="id", type="cf sqgl numeric", value=url.
id) ;
myResult = myQuery.execute() ;
dump (myResult) ;
</cfscript>

2. Inthe first line, we can call our new Query () object and we pass it a datasource.

[1801]



http:///

Chapter 6

3. We then call the setSQL () method, which you might notice has the SQL for the
query, but more importantly, it has : 1d. This is the name of the parameter we are
going to replace.

4. We then called the addParam () method on the Query object toadd a
queryparam, passing in the name (which will replace the : id variable in the SQL
statement), the type, and the value that we get from the URL scope.

5. Finally, we call the myQuery .execute () method; this actually runs the query
against the database and it returns a result object, which, when dumped, looks
like this:

Component {(Result) result
Only the functions and data members that are accessible from your location are displayed

Hint( object returned by the http,ftp,query and mail services

Properties

result Query

Template:/Users/markdrew/Dropbox/Railo Team/Book Progress/railo-server-for-demos/webroot/WEB-
INF/railofcomponents/org/railo/cfm|/Base.cfc

Execution Time {ms):1

Recordcount: 1

Cached:No
sSQL:
SELECT * FROM Users WHERE id =
i
id username
1 1 userl

prefix || [gtruct

cached [Beslean]false]
COLUMNLIST
executionTime EI 1
RECORDCOUNT

SQb [String|[SELECT * FROM Users WHERE id = ?

sqlparameters E
=8

6. The resulting object contains two variables, the result (what comes back from the
database) and the prefix (which has information about the query itself).

7. To get the actual query result (so that we can loop it), we add the following code:

results = myResult.getResult () ;

What just happened?

By using the built-in Query component, we are able to abstract a lot of the semantic noise
of using scripted tags. We can get all the information that is required from a query, including
the results returned from a database as well as any other variables such as the actual SQL
run and the columns that are returned, all in a nice result component.

(1951



http:///

Advanced CFML Functionality

The HTTP built-in component

Similar to the Query component, there are times when you have complex HTTP calls, as we
showed in our example, where we obtained the content from the website http://www.
getrailo.org. HTTP calls to other websites, especially when using REST services, can get a
lot more complicated and require a number of parameters. Of course, we could do this using
scripted tags, but as you have figured out by now, there is a nice alternative with the built-in
components that allows you to do this much easily.

Let's look at how we can make the same code to get the content from an external site, but
this time, using a scripted component.

Time for action - getting the content of a wehsite via the HTTP

To start with, let's create a template under <Railo Install Directorys/
webroot/Chapter 6/ named httpscript.cfm

In this template, let's add the following code:

<cfscript>
myHTTP = new HTTP (url="http://www.getrailo.org", method="GET") ;
myResult = myHTTP.send() ;
dump (myResult.getPrefix () .filecontent) ;

</cfscript>

When you run this code, you will get a dump of the HTML that is outputted by the
website http://www.getrailo.org.

But how about passing parameters? Let's try to get the output of a script we created
in queryscript.cfm. Let's change the script in the queryscript.cfmfile a bit so
that it just returns a username:
<cfscripts>
myQuery = new Query (datasource="railobook") ;
myQuery.setSQL ("SELECT * FROM Users WHERE id = :id");
myQuery.addParam (name="1id", type="cf sqgl numeric", value=url.
id) ;
myResult = myQuery.execute() ;
results = myResult.getResult () ;
WriteOutput (results.username) ;
</cfscripts>

[1801]



http://www.getrailo.org/
http://www.getrailo.org/
http:///

Chapter 6

5. In the previous code, we changed the final output to just display the username we
got from the database. We can now go and call this page from our httpscript.
cfm if we change it as follows:

<cfscripts>
myHTTP = new HTTP (url="http://localhost:8888/Chapter 6/
queryscript.cfm", method="GET") ;
myHTTP.addParam (type="URL", name="id", value="1");
myResult = myHTTP.send() ;
dump (myResult.getPrefix () .filecontent) ;
</cfscripts>

6. When we load the httpscript.cfmin the browser, it will now make another call
to our queryscript.cfmtemplate and return the following, which is displayed as
shown in the following image:

| 4| » | [ + |®nup://iocalhost:8888 /Chapter_6/hupscript.cim ¢ |

Eeer:

What just happened?

With slight modifications, you can use all of the functionality available to you from the tags,
via either scripted tags, or even better, by built-in components available to you.

Can you think of other uses for the HTTP component? Why not give it a try to submit forms
and get the results from your own scripts?

Railo Server includes other built-in components that you can call in a similar way to the HTTP
and Query components. These are the Feed, Mail, and FTP components. Why not try them
out and see what you can do with them?

11971


http:///

Advanced CFML Functionality

In this chapter, we have seen the power of CFScript and how it compares to the tag-based
CFML syntax. We have also seen:

How to use various loops from within CFScript

How to use CFScript to create your components

How to use CFML tags inside CFScript

* 6 o o

How to use the in-built components that Railo Server provides

This has been a fun chapter with a lot of coding! In the next chapter, we will be having even
more fun as we'll look at the functionality available in Railo Server to create AJAX-powered
sites and to convert and display videos.

[1801]


http:///

In this chapter, we are going to have a look at some of the other functionality
that Railo Server provides outside of the normal web application development
tooling. In this chapter, we are going to look at:

¢ Converting and displaying video with <cfvideo> and
<cfvideoplayer> tags

¢ Adding communication between the browser and Railo Server
using the AJAX functionality

Let's start off with checking out some videos.

Video has taken off massively on the Web, and it is often a requirement for a site to be able
to use some kind of video functionality. Whether it is for displaying it or converting it, it can
be a tough option on how to do it as a developer. Luckily, this is where Railo Server comes to
the rescue.

Built into Railo Server is the capability of easily displaying videos on your site. Railo Server
does this by enabling a player to display videos by embedding a Flash video player into the
HTML of your pages and displaying videos that are encoded using the Flash Video format.
You have control over what to display and how it will be displayed, as well as over links,
thumbnails, and other options.

The video we are going to use in this chapter is a trailer to the movie Big Buck Bunny, which
is the product of the Peach open movie project and is licensed under the Creative Commons
Attribution license. This means that we are allowed to use it as our example without
licensing issues. If you would like to get a copy of the trailer or the whole movie, you
canseeitathttp://www.bigbuckbunny.org/.


http:///

Multimedia and AJAX

Let's see if we can display a trailer video on our own site too:

Time for action - displaying a video player

1. Underour <Railo Install Directorys/webroot/ folder, let's create a
Chapter_7 folder to put all our code samples in.

2. Download and copy the file trailer. £1v from the code samples, which you can
download from the Packt Publishing website. This is the video of Big Buck Bunny
that we are going to display.

3. Let's create a template named 1isting 7 01.cfmand add this code, it's the basic
outline of a page with the tag <cfvideoplayers:

<!DOCTYPE htmls>
<html>
<head><title>Video Display</title></head>
<body>
<cfvideoplayer video="trailer.flv" width="480" height="270">
</body>
</html>

4. If we now head to http://localhost:8888/Chapter 7/listing 7 01.cfm,
we will be able to see the video player with our trailer in it. It has the controls that
are needed, including play, full screen, and volume control.

eano Video Display
| | » |+ | hup://locaihost:8888/Chapter_7/listing_7_0L.cfm ¢ | (Qr Coogle )

[200]


http://localhost:8888/Chapter_7/listing_7_01.cfm
http:///

Chapter 7

5. The attributes of the <cfvideoplayers tag are quite easy; we have the video that
we want to display as well as the width and the height to display this video.

6. Atthe moment, our video is kind of boring because until we click on the play button,
there is no image; just a black square. Let's add a preview image.

7. Copythe trailer.jpg file from the code samples' directory you obtained from the
Packt Publishing website into the Chapter 7 directory.

8. Editthe codeinlisting 7 01.cfmand add the preview="trailer.jpg"
attribute to the tag, so our code should look like this now:

<!DOCTYPE html>
<html>
<head><title>Video Display</title></head>
<body>
<cfvideoplayer video="trailer.flv" width="480" height="270"
thumbnails="true" preview="trailer.jpg">

</body>
</html>

9. When you now reload the page by going to http://localhost:8888/
Chapter_ 7/listing 7 01.cfm, you will see a nice background to the video:

ann Video Display
[ L] | » ] [ + ]6http:.r‘,flocalhost:ssEE;Chapter_?.fllsllng_?_Ol.cfm G] (Q' Google )
‘i ||
/'l
What just happened?

By adding the <cfvideoplayers tag, we can display a video in the page as long as the
video is in the FLV video format. The <videoplayers> tag accepts the preview attribute
that allows us to assign a poster frame to it.

2011



http:///

Multimedia and AJAX

Before we continue exploring all the options available in the <cfvideoplayers> tag, we
really should explore the video conversion capabilities that Railo Server can offer. These
capabilities are not actually part of the base install; they are provided in the form of a Server
Extension. Server Extensions provide a way to add functionality to Railo Server (you will see
how to create your own in Chapter 9).

The CFVideo Extension allows you to convert video, extract single frames, and get
information on a variety of video formats out there. Rather than just talking about it, let's go
and get it installed.

Time for action - installing the Video Extension

So far, we have looked at the Railo Web Administrator, but because the Video Extension
is installed server wide, we need to go to the Railo Server Administrator to download
the extension.

1. In your browser, goto http://localhost:8888/railo-context/admin/
server.cfmand either log in or enter your new password.

2. Under the Extension section on the left-hand side, click on Applications. This will
take you to the Applications page where you can see the available extensions for
Railo Server.

Extension - Applications Logout

Not installed
These applications are not yet installed on the system.

cfeav, tag,
railo, ftw. <CFDNS>
<CFCSV />
f arreport
1

filter

Admin Sync CFCsV CFDNS Cluster Scope
Core Core Core Core
EHCache Log analyzer global ... Video

Core Core Core

3. Click on the Video Core extension, and it will take you to the information page of the
Video Extension.

12021



http:///

Chapter 7

4.

Video (Not installed)

Video implementation for Railo.

Available

version 101

Category Core

Author Michael Offner

Release Date Dec 24, 2010
) op Provid

Provider Shon Pr

(www.getrailo.com)

install cancel

Click on the Install button, and it will take you to the page that allows you to install
the video components. Under the hood, the <cfvideo> tag uses the FFmpeg
library. This form allows you to install your own version or get a pre-built version
for your operating system.

Step 1 of 2

Video components (ffmpeg.zip)
For the tag cfvideo/cfvideoplayer OS specific video components are required. Therefore you can download these
components directly from a provider or upload them with the form below.

® Download video components by an URL (Basic)

O Upload video components by a Form {Advanced)

next

Leave the radio button selected on the Download video components by an URL
item and click on next. This takes you to the URL selection screen, which you can
leave as is, and click on install.

Step 2 of 2

Video components (ffmpeg.zip)
For the tag cfvideo/cfvideoplayer OS specific video components are required.

Download video components by an URL

Provider URL http: / fwww.ffmpeg -binaries.org

URL of a provider offering the necessary (FFMpeg binares) components.

previous install

[2031



http:///

Multimedia and AJAX

6. This will start the install process, and after a few seconds, you should have a notice
saying that the Video Extension has been successfully installed.

Video Extension is now successfully installed
OK

What just happened?

There are a lot of functionalities that don't need to be deployed with the Railo Server itself.
We are able to extend the Railo Server using Applications that are produced either by Railo
technologies or other content providers in many ways. In the previous example, we were
able to add a new tag, namely, the <cfvideo> tag, which we can use to convert a video.

Now that we have the <cfvideos> tag installed, we can get on with playing with the
conversion of the video. Let's get to it!

Time for action - creating clips for our video player

In order to display the video, we used a file named trailer. f1v. This file was actually
generated by the <cfvideos tagitself. Let's do that again, but from scratch. Don't worry,
it won't take too long.

1. First off, let's get the original video. Copy the file named bbb_trailer iphone.
m4v from the code samples into the Chapter_ 7 folder.

2. Delete the current trailer. £1v file that we have in the code samples; we will
create a new one from the bbb _trailer iphone.m4v file.

3. Now, let's create a file that will do our conversion for us. Create a template named
listing 7 02.cfmand putin the following code:

<cfvideo action="convert"
source="bbb trailer iphone.m4v"
destination="trailer.flv">

4. Wecannowrunhttp://localhost:8888/Chapter 7/listing 7 02.cfm,
and after a few seconds, a new trailer. f1v will be created.

5. Before we go on, we should add some more code. Because videos take a long
time to convert, we need to add some code that will tell Railo Server to allow this
template to run for longer than the default time.

12041



http:///

Chapter 7

6. Atthetopoflisting 7 02.cfm, add a <cfsettings tag so that your code looks
as follows:

<cfsetting requesttimeout="600">
<cfvideo action="convert" source="bbb trailer iphone.m4v"
destination="trailer.flv">

What just happened?

Using the <cfvideo> tag, we are able to convert to a number of formats. The <cfvideo>
tag is intelligent enough to realize what you want to convert the video to and then do the
conversion for us.

If we now go back to our player that we had in the 1isting 7 01.cfmtemplate and run it
by going to http://localhost:8888/Chapter 7/listing 7 01.cfm, we will see the
video that we just converted.

Let's create another clip from the trailer and create a couple of poster frames for it so that
we can display a playlist next to our standard player.

Time for action - creating poster frames and clins

We already saw how to convert one video. Let's create another video, but this time we are
going to define which segment of the video we want to convert, rather than converting the
whole video.

1. Inthelisting 7 02.cfmtemplate, add the following lines of code so that the
template code now looks like this:
<cfsetting requesttimeout="600">
<cfvideo action="convert" source="bbb trailer iphone.m4v"
destination="trailer.flv">

<cfvideo action="convert" source="bbb trailer iphone.m4v"
destination="clip.flv" start="19s" max="3s">

2. When we run the code by going to http://localhost:8888/Chapter 7/
listing 7 02.cfmand look in the folder, you will see we have a trailer.
flvfileand aclip. f1v file. The clip was created by stating when we wanted
the conversion to start, and the number of seconds we wanted to convert (the
start="19s" and max="3s" attributes).

3. Awesome! We have now created our clips.

[2051]


http:///

Multimedia and AJAX

4.

6.

Let's get some info from the video to create our poster images, we can do this by
selecting another action to perform with the <cfvideo> tag; this time we can add
the following:

<cfsetting requesttimeout="600">

<cfvideo action="convert" source="bbb trailer iphone.m4v"
destination="trailer.flv">

<cfvideo action="convert" source="bbb trailer iphone.m4v"
destination="clip.flv" start="19s" max="3s">

<cfvideo action="info" source="bbb_trailer_iphone.m4v"
result="video_info">

<cfdump eval=video_info>

When we run this code, we can now see that the <cfvideo action="info"
source="bbb trailer iphone.m4v" result="video info"> returnsa
structure with information about the video. What we are interested in are the
width and height variables.

anon http://localhost: 8888/ Chapter_7/listing_7_02.cfm
[ [ » | [+ ]@ hup://tocalhost:8888 /Chapter_7/listing_7_02.cfm & | (Q Google )
video_info

Struct

audio Struct

channels | [Eg][stered]
codec o
duration | [imber] 33000]

height | [Rimber| 270

video | [gtruct

bitrate -
codec | Eng]aes
formot | [iimaluvezos)
framerate -

o | e eo

Let's use these variables to create the image files for the video by adding
another <cfvideos> tag action, namely, the cut Image action. Let's add
the code to our template:

<cfsetting requesttimeout="600">

<cfvideo action="convert" source="bbb trailer iphone.m4v"
destination="trailer.flv">

<cfvideo action="convert" source="bbb trailer iphone.m4v"
destination="clip.flv" start="19s" max="3s">

[2061]



http:///

Chapter 7

<cfvideo action="info" source="bbb trailer iphone.m4v"
result="video info">
<cfdump eval=video info>

<cfvideo action="cutimage"

source="bbb trailer iphone.m4v" destination="trailer.jpg"
start="28s" width="#video info.width#" height="#video_ info.height#">

<cfvideo action="cutimage"

source="bbb trailer iphone.m4v" destination="clip.jpg"
start="19.5s" width="#video info.width#" height="#video info.height#">

7. When you run the code, you will see the dump of the video info variable. If you
go into the folder, you should now see a couple of new files, trailer.jpg and
clip.jpg, which will be used in our video player! If you look at these files, they
should look like the following images:

What just happened?

Now that we have installed the video extension to Railo Server, we can use the
various functions of the <cfvideo> tag. We converted a video to FLV for use in
our <cfvideoplayers tag, we obtained information about the video using the
action="info" attribute of the tag, and finally, we created a poster image by
using the action="cutImage" and defining at which point we wanted to cut the
image from the video.

Now that we have done all the preparatory work, let's go and add a playlist to our
<cfvideoplayers.

2071


http:///

Multimedia and AJAX

Time for action - adding a playlist to <cfvideoplayer>

Let's go and add some movies to our playlist:

1. Open up the template we were using to display our <cfvideoplayer>
listing 7 01.cfmand edit the code. We are going to replace the video
player we have there with the following code:
<!DOCTYPE html>
<html>

<head><title>Video Display</title></head>
<body>
<cfvideoplayer playlist="right" playlistsize="200"
playlistthumbnails="true" width="480" height="270">
<cfvideoplayerparam video="trailer.flv" preview="trailer.jpg"
author="Big Buck Bunny" title="1. Trailer">
<cfvideoplayerparam video="clip.flv" preview="clip.jpg"
author="Big Buck Bunny" title="2. Clip">
</cfvideoplayer>
</body>
</html>

2. Asyou can see, we have a new set of attributes. We have a playlist="right"
which defines where we want to display the playlist, the playlistsize="200"
which defines the width of the playlist, and playlisthumbnails which defines if
we are going to show thumbnails in our playlist.

3. Inthe body content of the <cfvideoplayers tag, we have some new tags, namely,
<cfvideoplayerparams>tags. These tags are used to define the videos we are
going to have in the video player. With the attribute video="clip.flv", we
define which videos we are going to show, and with the preview="clip.jpg"
attribute, we define which is the preview or poster image we are going to display.
The author="Big Buck Bunny" sets an author to display in the playlist, and
finally, we can add a title attribute to display it.

4. Let's have a look at our player now. Head to http://localhost : 8888/
Chapter 7/listing 7 01.cfmto view it.

8eno Video Display
EE] [ + ‘Qhup:lﬁlor Ih hapter_7/listing_7_01.cfm 01 (Qr Google

ﬁn Big Buck Bunny:
1. Trailer

K.Y, =igBuckBunmy:
B. # ﬂ:\, 2.Clip

[208]


http:///

Chapter 7

What just happened?

Once we have prepped our resources, we can use the <cfvideoplayers> tag to display a
playlist of videos, rather than just one video. Using the <cfvideoplayerparam> tag, we
can add new videos and set a number of variables such as the author and the title.

Hopefully, this section has encouraged you to use the video feature a bit more. There are
many more options with all these tags, but this has just been a quick tour through some of
their functionality.

You can see more attributes of the <cfvideo> tagin the Railo Wiki: http://wiki.
getrailo.org/wiki/TAG:CFVIDEO.

AJAX functionality within the Railo server

As we have just seen, using and manipulating a video is pretty easy with Railo Server. But
that is not all. Railo Server also allows you to add AJAX (Asynchronous JavaScript and XML)
functionality to your web applications with ease.

AJAX allows you to build dynamic frontends that don't need to refresh the page to
show results from the server. There are many JavaScript libraries out there that make
communicating with the server easy, but as we shall see, Railo Server makes it even easier.

For this section, we are going to build a simple application to store our tasks. For simplicity,
we are just going to store our tasks in the session scope, but, if you want, you can save them
to the database using the ORM capabilities.

BS00 Todo
[ [ » [ +]® hup:sriocalhost:a8ss/todos ¢ | (Qr Google )

Todo

¢ Install Railo Server o
« Write Some Great CFML! o
e Profit! o

Here's what we are going to build from scratch. It's basically a form that you can enter a
task. The entered tasks are listed as shown in the previous screenshot, and you can delete a
task by just clicking on the checkbox associated with each task. Simple enough functionality,
but to make it more interactive, we are going to be using the power of Railo Server's AJAX
functionality to build this application.

Let's get started!

[2091]


http:///

Multimedia and AJAX

Time for action - setting up the application and services

Before we look at the AJAX functionality, let's set up our Railo Application and create the
server-side service that will be used to store our tasks:

1. Create a directory named todo in your <Railo Install Directorys/webroot
directory; this is where we are going to hold the application.

2. Now let's create the Application.cfc for this application, so add a template
called Application.cfc and add the following code:
component {

this.name = "TodoList";
this.sessionmanagement = true;

function onSessionStart () {
session.tasks = [];

}
}

3. Next, we are going to create our TaskService. Let's create a template named
TaskService.cfc in the todo folder and add the following code:

component {

remote function addTodo (String taskname) {
if (Len (arguments.taskname)) {
ArrayAppend (SESSION. tasks, {name:arguments.taskname,
addedat=Now () }) ;

}

return SESSION.tasks;;

}

remote function removeTodo (Numeric id)
ArrayDeleteAt (SESSION.tasks, id);
return SESSION.tasks;

}
}

4. In the previous code, we have created a component with two functions, the
addTodo () and the removeTodo (). We notice that we have a remote keyword
before the function. That tells the component that you can call these functions
remotely, either as web services or via JavaScript, and they will return JSON
(JavaScript Object Notation) objects. The addTodo function takes a task name as
a variable, checks whether there is anything in it (in other words, it isn't a blank
string), and if there is something, it appends a new entry in the array that is made
up of a structure with the name of the task and when we added it. The remove
function is pretty simple, it uses the ArrayDeleteat () function to delete the
entry in the array with the same position. We shall see how this works a bit later.

[2101



http:///

Chapter 7

5. Now that we have added these two functions, we can start building our page.

6. Let's copy the stylesheet named main.css from the code_samples directory into
our todo directory, so that we have a nice style to get going with.

7. Next, let's create a template named index. cfm. This is where most of the action is
going to happen, as you add the following code:

<!DOCTYPE htmls>
<html lang="en">

<head>
<link rel="gtylesheet" href="main.css" type="text/css">
<title>Todo</title>

</head>

<body>

<div id="page">
<hl id="todo">Todo</hl>
<input type="text" name="taskname" id="taskname"
placeholder="What do you need to do?">
</div>
</body>
</html>

8. The previous code is simply the outline of the page, so we have everything set up
and it should look something like the image below. There is no functionality as yet,
but it's a good start!

ano Todo
[ 4] » | [+ [ nttp:/siocalhost:8888/todoy & | (@ coogle )

Todo

What just happened?

The code in Application.cfc gives our application the name TodoList and enables the
SESSION scope for use by setting this.sessionmanagement=true. So that we know we
have a task array ready to use, we make sure that when the session starts (with the function
onSessionStart () { }) we have an empty array ready for us to fill.

[21]


http:///

Multimedia and AJAX

We then created the TaskService.cfc so that we can add and remove tasks from the
SESSION scope, and finally we have put the index . cfm main file and given it a nice
stylesheet so it doesn't look too bare. The Next we will be to add new tasks.

Time for action - binding the input to the component

Because we want to be able to enter items in the main text field, let's create a binding form
that form-inputs to our TaskService.cfc.

1. Add the following code to index . cfm; this will bind the text field to the
TaskService.cfc:

<!DOCTYPE htmls>
<html lang="en"s>
<head>
<link rel="stylesheet" href="main.css" type="text/css">
<title>Todo</title>
<cfajaxproxy bind="cfc:todo.TaskService.addTodo ({taskname})"
onSuccess="displayTodos"
onError="onError"/>
<script type="text/javascript" charset="utf-8">

onError = function(code,message){
alert (code + ' - ' + message);

!

displayTodos = function (data){

document .getElementById('taskname') .value = "";
}
</script>
</head>
<body>
<div id="page">
<hl id="todo">Todo</hl>

<input type="text" name="taskname" id="taskname"
placeholder="What do you need to do?">

</divs>
<cfdump var="#SESSION.TASKS#">

</body>
</html>

[212]



http:///

Chapter 7

2.

In the previous highlighted code, we add the <cfajaxproxy> tag. This tag allows
you to bind to a component defined by the bind="cfc:todo.TaskService.
addTodo ({taskname}) " attribute. There is a lot going on in here, but in essence,
we are binding to the addTodo () function in the TaskService.cfc template.
We are then referencing the taskname field (notice the name of the <input
type="text" name="taskname" ... > field) by name. Any changes that happen
to that field, will then call this function, without us having to do anything about it.

You also notice we are adding a couple of JavaScript functions; the first one is
onError, which is triggered if there are any errors with the call. The second is
onSuccess="displayTodos", which gets called when the call is successful. The
final bit of code is just for debugging, so now if you add something in the text field,
it will update the session without reloading, but we won't see anything happen. To
see any changes, we need to reload the page so that we can see the array of tasks
that is displayed using <cfdump var="#SESSION.TASKS#">

Let's give itagotohttp://localhost:8888/todo/ and you will see an empty
array of tasks:

ano Todo

| 4| » | [+ | hup://iocaihost:8888/todoy ¢ ] (Qr Google )

Todo

3.

Enter a task and press the return key; nothing will happen apart from the entry field
going back to blank

[2131


http:///

Multimedia and AJAX

4. If you now reload the page, you will see that we have successfully added another
item to the session:

[ NN Todo

[ <] » | [+ [®hup://10calhost:8888/todoy ¢ ] (@ Google )

Todo

Array
1listruct

#0504 st T (Eropeiondon)

{ts '2011-06-15 16:55:09'}

NAME - First Test Task a3

What just happened?

Using the <cfajaxproxy>, we bounded events that happen on the taskname field to the
addTodo () function on the TaskService.cfc component. A lot is happening behind the
scenes that we don't have to worry about because Railo Server is taking care of all the wiring
up for us.

Because we are saving the tasks to the SESSION scope, we needed to put some debug code
to display; but let's change that now and create a way to display our items.

Time for action — displaying the tasks

Because we have to reload the page to show our tasks. Let's do this automatically? This is
really simple. But First, let's create a page that displays the tasks:

1. Create atemplate named displayTasks.cfmand save it in the todo folder.

2. Inthe displayTasks.cfmtemplate, add the following simple loop code:

<ul id="taskList">
<cfloop array="#SESSION.tasks#" index="task">
<li><cfoutput>#task.NAME#</cfoutput></1i>
</cfloop>

</ul>

3. The previous code simply loops through the items in the SESSION. tasks array and
displays them in an unordered list.

[214]



http:///

Chapter 7

4. If we now gotohttp://localhost:8888/todo/displaytasks.cfm, we can
see the output from the session:
e http://localhost: 8888/ todo/displaytasks.cfm
[ 4 | > ] [+ |ﬁ http:/ /localhost:8888/todo/displaytasks.cfm G] (Q' Google \l

» First Test Task

5.

7.

Now that we have something to display, we can integrate it into the main index.
cfmtemplate. Let's add another AJAX tag to display the contents of displayTask.
cfm; change the main part of your code to add the <cfdiv> tag:
<div id="page">

<hl id="todo">Todo</hl>

<input type="text" name="taskname" id="taskname"
placeholder="What do you need to do?">

<cfdiv id="displayTodos" bind="url:displayTasks.cfm"></cfdiv>

</div>

We can see the <cfdiv> tag in action. We give it an 1d so that we can refer to it by
name, and then we use the bind="url:displayTasks.cfm" attribute to bind
the contents of the div to our displayTasks.cfmtemplate.

If you reload the page by goingto http://localhost:8888/todo/, you will now
see your tasks displayed.

800 Todo
[ « | » | [+ [@nup://iocalhost:a888 10do/ ¢ | (Qr Google )
Todo

s First Test Task

Array
1) |struet
50047 st Time (Ewrape/London]
{ts '2011-06-15 17:33:04'}
NAYE | il et oot :

[215]


http:///

Multimedia and AJAX

8.

10.

11.

We are not finished yet. We still have to reload the whole page to get them to
display. How about we add functionality so that once we add a task, the <cfdiv>
tag automatically refreshes? This is easy since we already have an onSuccess
function we are triggering.

Change the <script> block so that it has the following code:

<script type="text/javascript" charset="utf-8">
onError = function (code,message) {

alert (code + ' - ' + message) ;
}
displayTodos = function (data) {
document .getElementById ('taskname') .value = "";

Railo.Ajax.refresh('displayTodos') ;

}

</scripts>

In the previous code, we have added one of the built-in JavaScript

objects that Railo Server has placed in our page. By calling Railo.Ajax.
refresh('displayTodos'), we are telling the Railo Ajax object to refresh
our <cfdiv> since we are referring to it by its ID.

Refresh the page and you can now enter another item. It will be displayed
immediately without a page refresh between submissions.

LX)

Todo

[«]>]

| + |@ hup:/ flocalhost:8888 todo/ ¢ | (Qr Google )

Todo

e First Test Task
» Second test task!
e Third test task!

Array

1listruct

#0203 ot Time Esapefiondo) :

{ts '2011-06-15 17:33:04'}

(2161



http:///

Chapter 7

What just happened?

By using the <cfdiv> tag, we were able to bind it to a URL, namely, that of our
displayTasks.cfm page that lists our tasks. When we use any Railo Server AJAX tags, we
automatically have a Railo JavaScript object available that allows us to interact with various
parts of the page, including other Railo AJAX tags and, for example, be able to reload the
<cfdivs.

So far so good! But what about when we have completed the task already? Why don't we go
ahead and add the ability to delete a task?

Time for action — deleting a task

If you remember, in the TaskService.cfc template, we have a function called
removeTodo () that takes the position of the task in our array and deletes it. Let's
connect a JavaScript function to this server-side function:

1. Inthe index.cfmtemplate, let's add another <cfajaxproxys tag. This time it will
bind the TaskService.cfc to a JavaScript variable:

<head>
<link rel="stylesheet" href="main.css" type="text/css">
<title>Todo</title>

<cfajaxproxy bind="cfc:todo.TaskService.addTodo ({taskname})"
onSuccess="displayTodog"
onError="onError"/>

<cfajaxproxy cfc="todo.TaskService"" jsclassname="TaskService"s>

2. Inthe previous code, we have used the <cfajaxproxy> tag again, but this
time we are using the cfc="todo.TaskService" attribute to say which
component we want to bind to a new JavaScript object. We then use the
jsclassname="TaskService" attribute to set its name.

3. Now that we have bound it to a new object, let's add the JavaScript function to
delete an item:

<script type="text/javascript" charset="utf-8">

onError = function(code,message) {
alert (code + ' - ' + message) ;

}

displayTodos = function (data) {

document .getElementById ('taskname') .value = "";
Railo.Ajax.refresh('displayTodos') ;

}

markDone = function(item) {
var Todo = new TaskService() ;

[2111


http:///

Multimedia and AJAX

Todo.removeTodo (item) ;
Railo.Ajax.refresh('displayTodos') ;

}

</script>

In the previous code snippet, we added the markDone JavaScript function. When
this function is called, it will pass an itemid which we will call from each of the
items in the list. Then, it will create an instance of the TaskService JavaScript
object we have defined with the <cfajaxproxy> tag. We can then call the
removeTodo () function and pass it the position of the item (item) to delete it.
Once we have done that, we can re-run the Railo.Ajax.refresh () function to
re-display our tasks.

Now that we have all that in place, we need to trigger this function from each of the
displayed tasks, so let's edit our displayTasks.cfmtemplate:

<ul id="taskList">
<cfset counter = 1>
<cfloop array="#SESSION.tasks#" index="task">

<lis><cfoutput>#task.NAME# <input type="checkbox"
value="#counter#" onClick="markDone (#counter#)"></cfoutput></1i>

<cfset counter++>
</cfloop>
</ul>

In the previous code, we are adding a checkbox after the name of the task. So

that we tick each task as done, we add an onClick="" JavaScript attribute to the
<input> box. This calls the markDone () function we just defined. Since we need
to know which item we want to delete, we create a counter. After each loop we
increase it by one with the <cfset counter++> call, and then use the counter
variable in our method call to markDone (#counter#).

When we now reload the page, we can see each of the items, and when we click on
the checkbox, the code will call the markbDone function, which in turn will call the
removeTodo () function in our TaskService.cfc component. Finally, we use the
Railo JavaScript object to refresh the <c£div> with our tasks.

[218]



http:///

Chapter 7

eano Todo
| « [ » | [+ | nhup://localhost:g888/todo/ ¢ | (Qr Google )

Todo

» Second test task! O
o Third test task! o

What just happened?

By using the <cfajaxproxys>, we are able to bind a proxy to a component to a JavaScript
object. This JavaScript object can then be used directly from JavaScript to call remote
methods on a component. It's really just that simple! With this method, we were able

to assign an event handler to the task checkbox, which, when called, called a JavaScript
function to call our component.

In this chapter, we covered a couple of the multimedia and AJAX capabilities of Railo Server:

We used the <cfvideoplayers tag to display videos

We also used the <cfvideoplayers tag to control which preview image we want
to assign to a video and even add other videos in a playlist

¢ Using the Extension Store, we added the Video Extension so that we had access to
the <cfvideo> tag

¢ Using the <cfvideo> tag, we converted different video formats so that they can be
displayed in our web page using the <cfvideoplayers> tag

¢ We also created clips and thumbnails from our origin video using the
<cfvideos> tag

[219]


http:///

Multimedia and AJAX

In the second part of the chapter, we looked at Railo Server's AJAX functionality. We
looked at:

L 4

Using the onSessionStart () method in the Application.cfctosetupa
SESSION variable to store our tasks

We created a TaskService.cfc to add and remove tasks from the SESSION.
tasks variable

We used the <cfajaxproxy bind="cfc:todo.TaskService.
addTodo ({taskname}) " > to bind changes to an input field to a method in our
TaskService.cfc component

We used the <cfdivs tag to include an external page within our main page
dynamically
We then used the built in Railo AJAX functions to refresh the contents of the

<cfdiv> tag when we updated the tasks using the Railo.Ajax.refresh()
function

In the next chapter, we are going to look at Mappings and Resources that are available to
you when using Railo Server. This will show you how you can store items in memory, have
consistent paths that you can change to suit your needs in the Railo Server administrator,
and how to use Amazon's Simple Storage Service to your advantage.

Onwards we go!

12201


http:///

By now, you should have a good handle on developing different applications
with Railo Server. In this chapter, we will be going through the resources and
mappings that Railo Server is able to use as filesystems to access your files. In
short, we will be looking at:

& Accessing files locally and then creating mappings as aliases to files and
folders

Accessing your files from ZIP and TAR files
Using RAM as a quick location to store files

Using Amazon's Simple Storage Service to place files in the Cloud

By the end of this chapter, you will see the benefits of using mappings as well as being able
to create clustered solutions that access single resources.

Let's get started!

The architecture of Railo Server has been created so that everything is coded to an interface.
This means that most parts of the Railo Server can be extended to use different kinds of
underlying systems. Let's take the example of datasources. All the datasources in Railo Server
comply with an interface that we have defined. This means that if we want to add another
type of database, we just need to create a driver that has the same functionality, as defined
in the interface, and it will work with Railo Server nicely.


http:///

Resources and Mappings

This goes for resources too. So, for example, you can access files in the filesystem with
the various FileXXX () or DirectoryXxX () functions as well as the <cffile> and
<cfdirectorys> tags. You might think that there is only one type of filesystem, namely,
that of the hard drive installed in the server. However, this is not the case. There are other
filesystems out there that we can use, for example, FTP servers. You should be able to

list a number of files, read, write those files, and delete, the same way you do on your
local filesystem.

There are many times when you want to access files locally. For example, you might want to
list the images that a user has uploaded, write to log files and even include code thatisin a
different file. Railo Server provides a number of functions for this; they are usually named
FileXXX () or DirectoryXXX () where XXX is the action to be performed. Railo Server also
provides these as tags, in the form of the <cffile aciton="XXX">and <cfdirectory
action="XXX">, again, where the xxX is the action to be performed.

Let's look at some examples.

Time for action — writing and reading files

Let's say that we want to log some information about what is happening in our application;
rather than displaying it to the user. We should store this in a file that we can read either
manually or via another interface, for example, in an administration application we might
want to build.

Let's create the simplest code for this:

1. First off, let's create a folder to keep our logs. In <Railo Installations/
webroot/Chapter_ 8/, create a folder named logs

2. Now, let's write some code to append to a log file inside it (we haven't created
any files inside it, but Railo Server will take care of it). Create a file in <Railo
Installation>/webroot/Chapter 8/ named listing 8 01.cfmand add
the following:

<cffile action="append" file="logs/mylog.txt" output="This is the
output to our log file! #Now()#">

12221



http:///

Chapter 8

3. If we now load up the script a few times by going to http://localhost:8888/
Chapter 8/listing 8 01.cfm, we can populate our log file and you should see
something like this if you open up the file in <Railo Installation>/webroot/
Chapter 8/logs/mylog.txt:

This is the output to our log file! {ts '2011-06-11 14:53:01'}
This is the output to our log file! {ts '2011-06-11 14:53:04'}
This is the output to our log file! {ts '2011-06-11 14:53:16'}
This is the output to our log file! {ts '2011-06-11 14:53:29'}

4. Rather than opening the file, let's modify our script to also list what the log file
consists of:
<cffile action="append" file="logs/mylog.txt" output="This is the
output to our log file! #Now()#">
<cffile action="read" file="logs/mylog.txt" variable="MyLogs">
<pre>
<cfoutput>#MyLogs#</cfoutput>
</pre>

5. If we now reload the template by going to http://localhost:8888/
Chapter 8/listing 8 1.cfm, we should now see the contents of the log file!
Awesome, huh?

What just happened?

Using some of the simple tags available in Railo Server, we were able to log messages to a
file, read that file, and display its contents on screen quite easily.

The problem with the preceding code is that it gets all the contents of the file, which is
rather annoying. What happens if we want to loop through each line in the file instead?
Well, that's what the <cfloop> is for.

12231


http:///

Resources and Mappings

Time for action - looping through the contents of a file

Let's change our code in the 1isting 8 01.cfmtemplate to loop through the contents of
a file; this will allow us to have a bit more control over what we do with the output.

1. Editlisting 8 01.cfm, remove the <cffile action="read"s, and let's use a
loop to display each line of the code:
<cffile action="append" file="logs/mylog.txt" output="This is the
output to our log file! #Now()#">
<cfloop file="logs/mylog.txt" index="1i">
<cfoutput>#i#</cfoutput><br>
</cfloop>

2. If you now run the template by going to http://localhost : 8888 /Chapter 8/
listing 8 01.cfm, you will get each line outputted nicely. You could now parse
each line.

What just happened?

The <cfloop> tag has the £ile attribute which lets us bypass reading the file directly, as
the file could be rather large. Using the <cfloop file=""> tag, we can loop through every
line in a very large file and parse it without worrying about the size.

The previous examples are fine if the code was always on that server, but what if we wanted
to move our code to another server, or even worse, if that new server had a different
operating system? Also, what would happen if we wanted to move the location of the

logs to another disk (for example, if it was getting too big)?

This is where the idea of mappings comes in. Mappings in Railo Server are ways to create a
shortcut to a folder on another part of the server. This makes your code more portable.

For example, imagine if we had an application that wrote to a specific file (or read files from
a specific directory) such as C: \MyApplication\MyLogfiles\usercount.txt and

we had that path written all over our code. It would then be a nightmare of searching and
replacing throughout our code to change that. With mappings, we can create a link in the
Railo Server Administrator and manage the location of this file outside our code. Let's do this
for our log file.

[224]


http:///

Chapter 8

Time for action - creating a mapping for the loy file

Instead of hardcoding the location of our code, let's create a mapping in the Railo Web
Administrator that we are going to use to point to our location.

1. Open up the Railo Web Administrator by browsing to
http://localhost:8888/railo-context/admin/web.cfmand login.

2. Click on the Mappings link that can be found under the Archives & Resources
section on the left.

3. Here you will see the Archives & Resources - Mappings screen.

ano Railo Web Administrator
l L] ‘ b ] [ + |Qhnp‘H\ocalhos|‘BBSEIraiID—Lonlexl/admwnfweb.cfm?a(t\on:resources.mappmgs C] I(Q' Google

Server Administrator Web Administrator

Archives & Resources - Mappings Logout
ation Please note, that only pages processed by Railo are aware of these mappings (cfm, cfmi, cfc). If you want to use files not processed by Railo for
Output these special mapping directories, you have to add virtual mappings to these directories to your application server.
Error
Virtual Resource Archive Primary Inspect
Services
vent Gateway (Beta) frallo-context {rallo-web)/context/ {rallo-web}/context/railo-context.ra physical Newver

I; save cancel delete compile

Resource [#] | Always |5

Scheduled tasks
Extension

Applications

Providers
Remote

Security Key

Clignts
Archives & Resources
Mappings r
Component

4. Let's add a mapping to a folder that isn't in our web root; in my example, | am using
/temp/logs but you can choose anywhere (for example, C: \temporary\logs\
if you are using Microsoft Windows). Add the name of our mapping, /1ogs, in the
text field under the Virtual column, and then add the path to the folder in the text
field under the Resource column:

=] Virtual Resource Archive Primary Inspect
frailo-context {railo-web}/context/ {railo-web}/context/railo-context.ra physical MNever
E flogs Jtemp/logs| | Resource ? | Always ?

\— save cancel delete compile

12251



http:///

Resources and Mappings

5. Now click on the save button to update this mapping
6. Now that we have created this mapping, let's see how we can use it in our code

7. Createafilein <Railo Installation>/webroot/Chapter 8/ called
listing_ 8 05.cfmand put the following code in there (it's nearly the same as
the code in our previous Time for action heading):
<cffile action="append" file="/logs/mylog.txt" output="This is the
output to our log file! #Now()#">
<cfloop file="/logs/mylog.txt" index="i">

<cfoutput>#i#</cfoutput><br>
</cfloop>

8. The difference in our code now is that the path to our log file starts with /1ogs.

9. Run the template by goingto http://localhost:8888/Chapter 8/
listing 8 01.cfmand it will still work.

What just happened

We have added a mapping to our web context that points /1ogs to another folder. This
means that we can use this mapping throughout our code, and if we move our code to
another server or need to change how we store the log files, all we need to do is change
where the mapping points to in the Railo Server Administrator without affecting anything
else. Neat eh?

Any new code that we add to our application that will need to write to the logs file now
doesn't need to know where the actual path is, as we can now just reference it with the
/logs path.

Reading and writing are not the only things we can do with mappings; we can do other
things with these mappings. Remember components? A mapping can also be used to store
our components in different locations. Let's say you want to code consistently and keep your
components in a specific folder structure. In Java, they call these paths packages. Let's create
some components so that we can pretend that they are part of a bigger application.

12261


http:///

Chapter 8

Time for action - creating our components

1. Underthe Chapter_8 folder, create another folder named cfcs, and then create a
template called Main.cfc in there.

2. Put the following code in Main.cfc, which basically just reverses a string:

component output="false"{

public function reverselt (String input) {
return Reverse (input) ;

3. Now that we have done that, let's call it from another template. Create a file named
listing 8 07.cfminthe Chapter_ 8 folder and put the following code inside:

<cfset Main = new cfc.Main() >
<cfoutput>#Main.reverselt ("Check out my reverse!")#</cfoutputs>

4. When we run the code http://localhost:8888/Chapter 8/listing 8 07.
cfm, we get the following code:

lesrever ym tuo kcehC

5. Nothing new so far. But what if we don't want to keep our components accessible
to the Web? It would help if we could tuck them away somewhere and only
expose what we want to the Web. Let's create a folder under <Railo Install
Directory> called components, and move the cfcs folder in there.

6. Now let's create a mapping. We are going to call it /api and point it to the <Railo
Install Directorys/components/cfc directory. We can actually use one of
the built-in Railo Server variables to point to our <Railo Install Directorys,
so that we can put {system-directory}/components/cfcs.

Please note, that only pages processed by Railo are aware of these mappings (cfm, cfml, cfc). If you want to use files not processed by Railo for
these special mapping directories, you have to add virtual mappings to these directories to your application server.

=] Virtual Resource Archive Primary Inspect
Jrailo-contest {railo-web}/context/ {railo-web}/context/railo-context.ra physical Mever

O & nNogs Jtemp/logs/ Resource 3] [ Always 12

E,’T & | fapi {system -directoryl/components/cfc | Resource ? | Always ?]

=] Resource | 5] | Always =]

I— save cancel delete compile

[2211


http:///

Resources and Mappings

7. Now, click on save on the mapping and let's re-visit our code in the 1isting 08 07.
cfm template and change the path to the main component as follows:

<cfset Main = new api.Main() >
<cfoutput>#Main.reverselt ("Check out my reverse!")#</cfoutput>

8. Now when we run the template, it will still work. It's reading our components from
the new location.

What just happened?

From creating a component, we have been able to still access it through our mapping, so our
code can remain consistent in a variety of environments, and all we need to do is change the
mapping.

Once you start playing with other frameworks and libraries for CFML, you will get used to
doing this. It's a good way to keep things out of the way.

Server variables

There are a number of shortcut variables that Railo Server uses, that can be used
in configuration. They are:

{railo-web}: The path to the Railo web directory typically {web-root}/
WEB-INF/railo

{railo-server}: The path to the Railo server directory typically where the

a railo.jarislocated
a {temp-directory}: The path to the temp directory of the current user of
the system

{home-directory}: The path to the home directory of the current user of
the system

{web-root-directory}: The path to the web root
{system-directory}: The path to the system directory

{web-context-hash}: The hash of the web context

What happens if we had a number of components that we wanted to distribute to people?
You could, of course, zip it up, provide instructions for people to unzip it, and so on. Also, if
you want to provide code for other people to use, but you want to protect your intellectual
property, you might not want to allow people to see the code itself (of course, we at Railo
Technologies disagree because we are an open source project, but we understand there are
cases where you wouldn't want to allow the users of your code to access it). Railo Server
provides a solution with Railo Archives (. ra) and Secure Railo Archives (. ras).

12281



http:///

Chapter 8

Let's turn our little APl into a Railo Archive.

Time for action - creating a Railo archive

Now that we have created a mapping to our API, we can easily convert it to a Railo Archive.

1. Head over to the mappings screen by going to http://localhost :8888/
railo-context/admin/web.cfmin the Railo Web Administrator and click on the
Mappings link under Archives & Resources.

2. Click on the pencil (Edit) icon next to the /api mapping to get to the Mapping
Settings screen.

3. Scroll to the bottom of the screen to the create archive section.

4. You can now click on the download archive button, and it will give you a file called
archive-api.ra. The file that has been generated by Railo Server is a ZIP file
containing all your components, ready for you to distribute.

compile
Compile all cfm and cfc files inside the mapping
Stop on error i‘ Sets whether the compile process should be aborted on emors

compile cancel ann Downloads

@1 archive-api.ra

3.9KB

create archive
Generate a Railo archive (ra) from an existing mapping

Secured [ Exclude source files from ag
download archive assign archive to mapping
& 2011 Railo Technologies GmbH Switzerland. All Rights Resel 1 Download o

5. If you want to give it a test, instead of clicking on the download archive button, click
on the assign archive to mapping button. This will create an archive and assign it to
this mapping:

Please note, that only pages processed by Railo are aware of these mappings (cfm, cfml, cfc). If you want to use files not processed by Railo for
these special mapping directories, you have to add virtual mappings to these directories to your application server.

= Virtual Resource Archive Primary Inspect
[railo-context {railo-web}/context/ {railo-web}/context/rallo-context.ra physical Mever

O J fNogs Jtemp/logs, Resource 3] [ Always \2

a # fapi {system -directory}/components/cfc JUsers/markdrew/Dropbox/Railo T¢ | Resource ? | Always _ﬂ

= [‘Resource |+ [ Always [+

\— save cancel delete compile

12291



http:///

Resources and Mappings

What just happened?

Now that we have assigned a mapping to a folder where we keep our code, we can actually
create an archive that will hold all our code. This archive can now be assigned to a mapping
and the templates will be obtained from the archive. This is very useful if we want to
distribute self-contained bundles of code.

Now that we have assigned an archive to a mapping, we can remove the components/api
folder. But before that, let's experiment with some of the settings we have in the mappings.

If you look in the listing of Mappings, you will see the Primary column. You have a choice of
Resource or Archive. Currently, our /api mapping points both to the components/cfcs
folder and the archive we created. Since the Primary setting is set to Resource, it means that
any changes we do to our template will be reflected since that is the primary resource with a
backup of the Archive.

We can actually now remove the Resource path and save the mapping and our code will now
access the archive solely.

Let's see how this works.

Time for action - changing the settings of a mappingy

In order to see what happens with the different settings assigned to a mapping, let's check
that our current mapping is as follows:

™ 7 rapl {system -directory}/components/cfc fUsers/markdrew/Dropbox /Railo Te Resource | 5| | Never |+

We have /api as our virtual name. We are pointing to our {system-directory}/
components/cfcs folder and we are using an Archive that was set up for us by Railo Server.
Our Primary mapping is set to Resource, while Inspect is set to Always.

1. Let'schange the code in our Main.cfc component and add a new function; let's
edit the component that's in our <Railo Install Directorys/components/
api/Main.cfc and add the following:

component output="false"{

public function reverselt (String input) {
return Reverse (input) ;

}

2301



http:///

Chapter 8

public function getFirstLetter (String input) {
return left (input, 1);

}

2. Now let's add another line to the template named 1isting 8 07.cfmto call this
function and add the following code:
<cfset Main = new api.Main() >
<cfoutput>#Main.reverselt ("Check out my reverse!")#</cfoutputs>
<br>

First Letter: <cfoutput>#Main.getFirstLetter ("Check out my
reverse!") #</cfoutput>

3. When we now call the template via the browser by going to http://
localhost:8888/chapter 8/listing 8 07.cfm, we get the following:

lesrever ym tuo kcehC
First Letter: C

4. Now let's change it so that the Primary mapping is using the Railo Archive we
created earlier. Go back to your mappings screen, and in the /api mapping line,
change the Primary select box to Archive.

5. When you run the code again, you get an error:

‘I Railo 3.3.0.015 Error (expression)

I Message Immpﬂnent [api.Main] has no function with name [GETFIRSTLETTER]

What just happened?

Since we added the code to the component that is in the mapping, and that is set as primary,
Railo Server will pick up this code first. If we change the mapping to check the archive first, it
then uses the archive instead. This is handy if you want to add more functionality.

As an aside, if you change Inspect setting to Never, your templates will be loaded up and
cached only once during the server lifecycle. This makes it much faster to run code, as it's
not checking and recompiling Railo Templates.

2311



http:///

Resources and Mappings

Accessing your files from ZIP and TAR files

A Railo Archive is a ZIP file in itself. If you were to rename it to a ZIP file, you could unzip it
and see your Main.cfc in there. This gives you a hint that Railo Server is quite happy using
zipped archives too.

Let's try this out.

Time for action — accessing files from a ZIP file

Let's create a standard header and footer for our pages, and let's say we are going to use this
from all the files and we need to read it.

1.

2.

Under the <Railo Install Directory>/webroot/Chapter_8 folder, let's
create a folder named includes.

In the includes folder, create a couple more files, one called header.cfmand
another called footer.cfm.

In the header.cfmfile, let's put the following code:
<!DOCTYPE htmls>
<head>

<title>My Page</title>

<body id="page"s>

In the footer.cfm, let's put the following code:

</body>
</head>

Now let's create a page that includes them; let's call it 1isting 8 13.cfm, save it
in <Railo Install Directorys>/webroot/Chapter 8 and put the following
code in the template:

<cfinclude template="includes/header.cfm">
<hl>Page With Included header and footer</hls>
<cfinclude template="includes/footer.cfm">

Now when we run the template by going to http://localhost:8888/
chapter 8/listing 8 13.cfm, we will see that we are including the header and
footer. Nice!

Let's now zip up the includes folder. Here, we can use whichever ZIP program is
installed on our computer. Once we have zipped it, let's name it includes. zip and
make sure it's in the Chapter_8 folder.

12321


http:///

Chapter 8

8. Now we have the two files we wanted in a ZIP file named includes.zip. How are
we going to include them in our template now? Simple! Let's create a mapping to
the ZIP file from our administrator.

9. Head back to the mappings screen in the Railo Web Administrator and add a
new mapping by setting the Virtual name to /includes, and the Resource to
zip://<Path to Railo Install Dir>/webroot/Chapter 8/includes.
zip (for example my pathis: zip:///Users/markdrew/railoserver/
webroot/Chapter_ 8/includes.zip)and let's save it.

10. Let's change the code inthe 1isting 8 13.cfmtemplate to use these itemsin
the ZIP file. Because all mappings start with /, the code would now look like:

<cfinclude template="/includes/includes/header.cfm">
<hl>Page With Included header and footer</hls>
<cfinclude template="/includes/includes/footer.cfm">

11. When we reload the page, you will see that the page renders correctly. How neat
is that?

What just happened?

Railo Server can use a number of resources including ZIP files. Here, we have created a
mapping to a ZIP file that contained all the include files we wanted to use and now we can
add them easily to our page.

As | mentioned before, filesystems can be nearly anything in Railo Server. One of the
interesting uses is of RAM (Random Access Memory) as a temporary storage for templates.
Why would you do this?

A good example is going back to our blog application. Imagine you have a blog post whose
content you are displaying on a page, but the contents of the blog post has some code you
want to execute every time someone reads the post. You would have to somehow save the
content of the blog post to a file, and then include it to get it running live. But, of course,
what do you do with these files all the time? Do you delete them at a certain point when the
post is done? This would also mean a security issue as people could possibly access them
directly (which, in all probability, you don't want them to do).

By storing them in RAM, we create a temporary resource that is available as long as we need
it, and then, as part of the normal garbage collection, they will be removed.

[2331]


http:///

Resources and Mappings

This is where the RAM resource comes into its own.

Time for action — compiling plain text to GFML

Let's say, for example, you have a text file. One that contains some CFML code in it, but you
know Railo Server won't parse it. This text could come from a database as a variable or from
a file. In this example, we are just going to use a file to make it easy. Because Railo Server
won't parse TXT files, this makes for a good example:

1. Create afile named blogpost . txt in your Chapter 8 folder and put the
following code in it:
The time now is <cfoutputs>#Now ()#</cfoutput>

2. Now, let's read the file and display it; let's create a template named
listing 08 14.cfmin the Chapter 8 folder and put the following code to
display the contents of the file:
<cfset myBlogPost = FileRead("blogpost.txt") >
<cfoutput>#myBlogPost#</cfoutput>

3. When you run this template by going to http://localhost :8888/chapter 8/
listing 08 14.cfm, you get the following displayed:

SO http://localhost: 8888/ chapter_8/listing_08_14.cfm

| 4| » || + @ htp://localhost:8888/chapter_8/listing_08 ¢ | (Qr Google )

The time now is #Now(#

This is not quite what we want to be displayed. We would have expected the time to
be displayed rather than the raw CFML code.

Let's add a RAM mapping first and see if we can get it to render on the fly.

Go to the mappings screen in the Railo Web Administrator and add a new mapping
with the Virtual name of /ram and the Resource pointing to ram: // and click
on Save.

12331


http:///

Chapter 8

Archives & Resources - Mappings Logout

Flease note, that only pages processed by Railo are aware of these mappings (cfm, cfml, cfc). If you want to use files not processed by Railo for
these special mapping directories, you have to add virtual mappings to these directories to your application server.

8 Virtual Resource Archive Primary Inspect
frailo-context {railo-web}/context/ {railo-web}/context/railo-context.ra physical Mever

O & /fincludes zip:/{ {Users /markdrew/Dropbox/R [ Resource (5] | Always [5]

QO # fogs Jtemp/logs/ | Resource -¢] | Always -:]

a # Jepi {system -directory}/components /cfc JUsers/markdrew/Dropbox/Railo Te | | Archive | ¢] | Newer %

] fram ram:/ | [ Resource [#] [ Always [+]

\— save cancel delete compile

7. Now, let's copy the variable into the mapping by changing the code in the
listing 08 14.cfmtemplate to the following:

<cfset myBlogPost = FileRead("blogpost.txt") >
<cfset FileWrite ("/ram/blogpost.cfm", myBlogPost) >
<cfoutput><cfinclude template="/ram/blogpost.cfm"></cfoutputs>

8. When we run the template again in the browser, we now get the correct time and
date being displayed.

NS R&) http://localhost: 8888/ chapter_8/listing_08_14.cfm
l - | 3 l [+ |8http:HIocalhost:BBSBfchapter_a,.fl'lsl'lng_ﬂE G] (Q,' Google

w.

The time now is {ts '2011-06-14 09:27:31'}

[2351]



http:///

Resources and Mappings

What just happened?

There are times when we need to temporarily store a file. We don't want to manage the
lifecycle of this file, such as making sure we delete it after a period, but we just want to

be able to instantly use it and then forget about it. This is where the RAM resource comes

in handy. In the previous code, we read a variable from a text file using the FileRead ()
function (which could have been from a database or some other source) and then saved it to
a virtual file in the RAM called blogpost . cfm using the FileWrite () function. Then, to
display the variable, we just included this temporary file, and because it is a . cfm template,
Railo Server will run the code for us. Impressive work so far.

Now that we have used files from within Railo Server, how about using files that are outside
of Railo Server?

In the previous section, we looked at storing files in the temporary space of the RAM, but
how about if we wanted a more permanent place to store them so that other servers might
have access to them?

Amazon—the company behind the famous online store—also provides a number of web
services that are very useful. One of them is their Simple Storage Service (S3). Think of it as
a great way to share files, whether they are images, downloads, or videos. Railo Server can
make use of S3 as yet another filesystem resource.

For more details on Amazon Web Services, check out
i https://aws.amazon.com/

[2361]


http:///

Chapter 8

[LNaNG) Amazon Web Services
l - | » ] [+ | http:/ faws.amazon.com/ 6] (Qv Google ‘\
Sign in to the AWS Management Consale Create an AWS Account English il
amazon Search: Entire Site v # |
webservices" ‘
AWS Products Developers Community Support Account |
W \
- - 4 a Sign up for a free !
Monitor your Cloud Applications = Amazon Web Services Account ‘
[] \
Now you can use Amazon CloudWatch to |
track, graph, and set alarms for your own |
application metrics. |
> Learn more... /‘ "
' J Business Managers
News & Events Learn how Amazon Web Services
News & Events enables you to reach business
goals faster:
What's New? Media Coverage Upcoming Events
Solutions & Use Cases
May 31, 2011 AWS CloudFormation announces May 24, 2011 Elastic Load Balancing Announces
parameter validation, resource Support for 1Pv6, Zone Apex Support Security & Compliance
deletion policies and application and Security Group Integration
barriers Economics Center
May 23, 2011 Amazon RDS for Oracle Database
May 26, 2011 Improved Pricing Control for Spot Case Studies
Instances Coming July 1st May 18, 2011 Announcing AWS EC2 Support for
SAP® Rapid Deployment solutions and Service Health Dashboard
May 24, 2011 Amazon Route 53 Announces ELB SAP® BusinessObjects™ solutions
integration, Weighted Round Rabin, Solution Providers
and General Availability
B Rss > View all Videos & Webinars
AWS Blog
Products & Services b
"]
Developers

What would happen if our site got so popular that we needed to scale on demand? This is
where S3 comes into its own.

If you would like to carry out the following examples, you will need to sign up for an account
first, otherwise you can just walk through our examples to get an idea of how it works.

Time for action — using Amazon's Simple Storage Service (S3)

In our previous example, we used the RAM to store code we wanted to run. This works well
for one server. But let's imagine we have a cluster of servers, all doing the same thing, and
instead of having each server hold a copy of the same thing, we would like all of them to
access these blog posts that we are rendering. All the servers would need is to have access
to the same filesystem. This is where we can use an S3 bucket. An S3 bucket is a "folder" that
you can assign specific settings to in the AWS (Amazon Web Services) system. Let's go and
create a bucket where we are going to now store our blog posts.

2311



http:///

Resources and Mappings

Browse to https://console.aws.amazon.com/s3/home and log in. This is where all the
"buckets" are shown in S3.

!,! {1 https://console.aws.amazon.com/s3 home?

¢ [ Qr Google

ﬁ aws.amazon.com AWS | Products Developers Community | Support | Account

Welcome, Mark Drew  Sign Out

“Amazon

EC2

4/ markdrew_demos

Amazon

Elastic s3 vPC

Amazon

AWS
IAM

AWS || ‘Amazon

Amazon Amazon Amazan
cl Elastic Red

WS Amazon
CloudFormation ” RDS

4/ markdrew_sotr

|4/ markdrewApplications.
| s
|4 markdrewdemaphatos & Select one of your buckets to the Ie‘l_’t to Ifmk at the objects it contains,
=TS 2 A or to upload objects into it.

markdrewbDocumen .

\4/ markdrewPresentations
4/ mddevel

o —
|2/ mdmangoinstance

Y
{4/ mdsupermassive

1.

Click on the Create Bucket button and enter a new bucket name. | have used
railoforbeginners and the region as US Standard.

17 https:/ /conscle.aws.amazon.com/s3 fhome? ¢ P(Q~ Google
™

Create a Bucket - Select a Bucket Name and Region cancel [x]

A bucket Is a container for objects stored in Amazon S3. When creating a bucket,
you can choose a Region to optimize for latency, minimize costs, or address
regulatory requirements. For more information regarding bucket naming
conwventions, please visit the Amazon S3 documentation.

Bucket Name: | rajlofarhegioness |

SetUpLoggmg.-Hc:aaaaHCanoai|

[238]



http:///

Chapter 8

2. Click on Create and your bucket will be created:
[ A eN&) AWS Management Consale B
[ « ‘ 3 I [+ | https://console.aws.amazon.com/s3/home? C} (Q' Google )

aws.amazon.com AWS | Products | Developers | Community | Support | Account Welcome, Mark Drew | Sign Out
Elastic Beanstalk 53 EC2 |VPC | Cloud h | Elastic di Cl Cl i RDS SNS | IAM
« Create Bucket | Actions + & Upload || | Create Folder = Actions = ' Refresh || @ Properties | @ Transfers | @ Help
i o/ railoforbeginners
Name Size Last Modified

4/ markdrew_demos
./ markdrew_sotr

4/ markdrewApplications

o markdrewdemophatos
4/ markdrewDacuments

./ markdrewPresentations

— ]

mddevel

&/ mdmangoinstance

4/ mdsupermassive

The bucket 'railoforbeginners’ is empty

— )

‘\\-s

3.

4.

Now, before we can create a mapping to this S3 bucket, we need to get our Amazon

Access Credentials. That is, our Access Key ID and our Secret Access Key. They are
used by Railo Server to connect to the bucket, proving that you have the rights to

read and write to the bucket. Think of them as your username and password.

From the AWS console, click on the Acc

ount link at the top:

8006

Account

Llr

http://aws.amazon.com/account/

C] ":0,' Google

Sign in to the AWS Management Console

selg'lazogm Search:
AWS Products Developers

Your Account

» Account Activity

v

View current charges and account activity, itemized by service and by
usage type. Previous months’ billing statements are also available.

Usage Reports

v

Download usage reports for each service you are subscribed to. Reports
can be customized by specifying usage types, timeframe, service
operations, and more.

Security Credentials

-

Amazon Web Services uses access identifiers to authenticate requests to
AWS and to identify the sender of a request. Three types of identifiers are
available: (1) AWS Access Key Identifiers, (2} X.509 Certificates, and (3)
Key pairs.

Personal Information

v

Create an AWS Account English

AWS Product Information »

Community Support Account

Payment Method

View and edit current payment method, as well as add new payment
methods.

Consolidated Billing
Receive one bill for multiple AWS Accounts, with cost breakdowns for
each account. Usage is combined, enabling you to more quickly reach
lower-priced volume tiers.

AWS Identity and Access Management
Create multiple Users and manage the permissions for each of these
Users within your AWS Account.

AWS Management Console
Access and manage AWS Infrastructure Web Services through our web-
based, point-and-click, graphical user interface.

[2391]



http:///

Resources and Mappings

5.

Then click on the Security Credentials link.

ano Amazon Web Services
[ - | » I [ + |9hl[ps:f,’awsfpor[al.amazm.mm{gp{aw;,’deveIoper}accoun[,‘\ndex.html?acuon=access—kev [ l (Q' Google
Sign in to the AWS Management Console Create an AWS Account English
amazon Search: AWS Product Information o
webservices”
AWS Products Developers Community Support Account
A Security Credentials Welcome Mark Drew | Sign Out

Account Number 8819-5192-2390
Account Activity
Usage Reports

This page allows you to manage the root account credentials for your AWS Account. Te manage IAM Users, their
Security Credentials permissions and security credentials, use the AWS Management Console.

Personal Information

Access to applications and services within AWS cloud is secure and protected in multiple ways. Accessing those
applications and services requires the use of special credentials that are associated with your account. There are three
types of credentials currently offered by AWS. If you know which security credentials you need, simply select one of the
links below:

Payment Method
Consolidated Billing

AWS Identity and Access
Management Access Credentials: Your Access Keys, X.509 Certificates, and Key Pairs

Sign-In Credentials: Your E-mail Address, Password, and AWS Multi-Factor Authentication Device
Account Identifiers: Your AWS Account ID and Canonical User ID

AWS Management Console

DevPay
If you are not sure which security credentials you should use, the link below will help you identify the credentials you

6.

In the next page, scroll down to the Access Credentials section, copy the Access
Key ID, and click on the Show link under the Secret Access Key to show it and copy
these somewhere.

8eno Amazon Web Services &
[ -« ‘ > ] [ + |9 https:/ faws-portal.amazon.com/gp/aws/developer/account/index.htmi?action=access-key [ ] (Q' Google )
L I TTOUr AWS ACCOUNT 10 any Canorcar User 10
DevPay
If you are not sure which security credentials you should use, the link below will help you identify the credentials you
need for the task you want to accomplish:
) Find out which AWS Security Credentials you need
|
|
Access Credentials |
|
There are three types of access credentials used to authenticate your requests to AWS services: (a) access keys, (b) |
X.509 certificates, and (c) key pairs. Each access credential type is explained below.
“ Access Keys || [4 x.509 Certificates | ¥ Key Pairs
Use access keys to make secure REST or Query protocol requests to any AWS service API. We create one for you
when your account is created — see your access key below.
Your Access Keys
Created Access Key ID Secret Access Key Status
January 21, 2006 OPADSBA Show Active (Make Inactive)
Create a new Access Key Secret Access Key
For your protection, you should never share your secret acct XoWIY:
recommends frequent key rotation. , a
v
&) Learn more about Access Keys

7.

Now, we are going to go back to the Mappings page in the Railo Web Administrator
and add a mapping that points to our bucket.

[2401



http:///

Chapter 8

8. Enter /mys3 in the Virtual mapping name box. Then we are going to enter the
Resource that points to our S3 bucket. It is in the format s3: //<Access Key
ID>:<Secret Access Key>@<bucketname>/, so for my example, | have
s3://0PAD8A------ :XoWJY-------- @railoforbeginners/ (I have
removed the full string as obviously this is my account.):

=] Virtual Resource Archive Primary Inspect

Jrailo-context {railo-web}/context/ {railo-web}/context/railo-context.ra physical MNever

O & /includes zip: [/ /Users/markdrew/ Dropbox/R Resource 3] [ Always |5
a #  fogs Jtemp/logs/ Resource.a ..Alwars ?
a & | /fram ram:// | Resource.? | Always ?
o #  fapl {system-directory}/components/cfc  fUsers/markdrew/Dropbox/Railo Te [ Archive %] [ Never |%
] fmys3 s3:/ /OPADBA oW | Resource |5 | Always ?]
\— save cancel delete compile

9.

10.
11.

12.

Now that you have entered your access key and path to the bucket, you can
click save.

Let's now create the same functionality we had with our RAM example but using S3.

Create a template in the Chapter 8 folder named 1isting 08 16.cfmand put
the following code (it's very similar to the RAM example):

<cfset myBlogPost = FileRead ("blogpost.txt") >

<cfif NOT FileExists("/mys3/blogpost.cfm") >

<cfset FileWrite ("/mys3/blogpost.cfm", myBlogPost) >
Writing file to S3<br>

</cfif>

<cfoutput><cfinclude template="/mys3/blogpost.cfm"></cfoutputs>

When we run our template by going to http://localhost:8888/chapter 8/
listing 08 16.cfm, we should get the same code as before.

What just happened?

Mappings in Railo Server can use a number of resources that can be treated like filesystems,
even remote ones such as Amazon's S3 service. In the previous code, we created a mapping
as usual but pointed it to our S3 bucket.

[241]



http:///

Resources and Mappings

Going through the code, you see that we read the contents of blogpost . txt as a variable.

We then check to see if we have a blogpost .cfm on our /mys3 mapping, which is pointing
to our S3 bucket. If the file doesn't exist, we can create it and show that we are writing to it.

Then we include the file, again from the S3 bucket.

This means all our servers will have access to the file, and if they aren't there, one of the
servers will create it for us. Pretty neat!

Hopefully, this chapter has given you a good idea about resources and mappings in Railo
Server.

We covered:

Reading and writing to local files with the <cfifle> tag
Easily looping over the contents in a file using the <cfloop file="">tag

Creating mappings to directories in our filesystem and how to access the templates
and components

¢ Creating Railo Archives from mappings, using them, and overriding the order,
depending on whether a resource or an archive is used

Using ZIP files as other Archives in our mappings
Using RAM as a mapping to compile and render Railo Templates
Using Amazon's Simple Storage Service as a filesystem to access our files from other

Railo Server instances.

Now that you understand mappings, we can move onto the next chapter, in which we extend
the functionality of a Railo Server.

[242]


http:///

Now that you know all the ins and outs of using CFML and the existing
functionalities of Railo Server, it is time to go one magnificent step further. You
are not limited by any boundaries in Railo Server; you can easily push those
boundaries yourself. Welcome to the world of extending Railo Server.

In this chapter, we shall:

Create a new CFML tag and function
Install a Railo Extension

Create a Railo Application Extension
Create a Railo Server Extension

Develop and deploy our own Extension Provider

There's much to do, so let's get started!

Why create your own GFML tags and functions?

You might ask yourself why you should do this. Isn't it bad practice to be making your own
custom additions to an existing scripting language? Well, there are a lot of reasons why Railo
Server gives you this option.

First off, Railo Server does not include the exact same CFML functionality as Open
BlueDragon or Adobe ColdFusion®. About 95 percent is the same, but you can find some
differences and un-implemented features. By having the option of creating (and overwriting)
CFML tags and functions, you can change the workings of Railo Server by yourself to make it
suit your needs.


http:///

Extending Railo Server

By adding your own CFML tags and functions, you can write more of your code in the
same coding style. This will make it much easier to read and understand, especially when
comparing it to using includes or CFC function calls.

Another great reason is the ability to use this new functionality not just for you, but for the
whole Railo community. It is as easy as adding it to the Railo Extension Store, or to distribute
it via your own Extension provider, as we shall see shortly.

Custom CFML tags and functions are written in CFML. This means that you don't

have to know any Java, C++, or other complicated stuff. We can just keep it
’ simple, as we shall see.

Time for action - creating our own CFML tag

One of the Railo team members, Todd Rafferty, tweeted the following a while ago:

tu.littef’ Search S Home Profle Messages Who To Follow E .;t,? frinky

4

Why is it <cfdump var="
abort> and not <cfabort
dump=" #">?:P

I thought he had a good point there, so let's take this example and create the functionality
for him. Heck, we could even propose our enhanced tag to be added into the Railo core!

1. Open up your editor and write the following code:

<cfcomponent name="abort" output="false">

<cfset this.metadata.attributetype="£fixed" />
<cfset this.metadata.attributes =
showerror: {required:false, type: "string"}
, dump: {required:false, type: "any"}
y />

[241]



http:///

Chapter 9

<cffunction name="init" output="false" returntype="void"
hint="invoked after tag is constructed">

<cfargument name="hasEndTag" type="boolean" required="true" />

<cfargument name="parent" type="component" required="false"
hint="the parent cfc custom tag, if there is one" />

</cffunctions>

<cffunction name="onStartTag" returntype="boolean"s>
<cfargument name="attributes" type="struct" required="true" />
<cfargument name="caller" type="struct" required="true" />

<cfif structKeyExists (arguments.attributes, "dump") >

<cfdump var="#arguments.attributes.dump#" label="dump via
cfabort" />

</cfif>

<!--- Create an instance of the original Railo Abort tag --->

<cfset var abortJavaObject = createObject ("java", "railo.
runtime.tag.Abort") />

<!--- set the error text when given --->

<cfif structKeyExists (arguments.attributes, "showerror") >

<cfset abortJavaObject.setShowerror( javaCast ("string",
arguments.attributes.showerror) ) />

</cfif>
<!--- call the cfabort function --->
<cfset abortJavaObject.doStartTag() />

<cfreturn true />
</cffunctions>

<cffunction name="onEndTag" output="true" returntype="boolean"s>
<cfargument name="attributes" type="struct" required="true" />
<cfargument name="caller" type="struct" required="true" />
<cfargument name="generatedContent" type="string"
required="false" />
<cfreturn false />
</cffunctions>
</cfcomponent >

[2451



http:///

Extending Railo Server

2.

Save this file to the tag library, for example:

Tomcat:<Railo install directorys>/tomcat/railo/railo-
server/context/library/tag/

Railo Express: Railo install directorys>/lib/ext/railo-server/
context/library/tag/

Save this file as Abort .cfcin <Railo install directorys/tomcat/railo/
railo-server/context/library/tag/, or <Railo install directory>/
lib/ext/railo-server/context/library/tag/, if you are using Railo
Express edition.

Now, restart your Railo Server instance for this new tag to be picked up by clicking
on the Restart link in the Server Administrator navigation or by running the
following code:

<cfadmin action="reload" type="server" password="Your-server-
admin-pasword" />

Let's create a new CFML file dumpandabort . cfm with the following content:

<cfset myData = {name: "Paul", role: "Railo Extension Manager"} />

<cfabort dump="#myData#" />

(e ) http://localhost/dumpandabort.cfm

J

E| http:/ {localhost/dumpandabort.cfm

- _E = ,\_ http:/ flocalhost/dumpandabort.cfm (=] & -"-Cuogl ]

a

dump via cfabart

-‘ -‘ Railo Extensian Manager|

Done

127.0.0.1 | %@

What just happened?

In short, we changed the working of the <cfabort > tag in our Railo instance.

First, we created the Abort . cfc file. We could have made this CFC even smaller by
removing the argument declarations in the init and onEndTag functions. | left them
there, so that you can see which arguments are given to those functions.

[2461


http:///

Chapter 9

The function onStartTag within the CFC contains all our functionality. If we take a closer
look at that code, we can see that we first check if a dump attribute was given in the
<cfabort> tag. If so, we do a <cfdump> with the given data:

<cfif structKeyExists (arguments.attributes, "dump") >

<cfdump var="#arguments.attributes.dump#" label="dump via cfabort"
/>
</cfif>

Now all that's left to do is to make sure that a regular <cfabort> action is executed. But
how do we do this? We can't simply call <cfabort>, because that would once again trigger
our newly created Abort . cfc, this would cause an infinite loop, and would give you both a
headache and a non-responding computer. So, let's move on to a better solution.

You know that Railo Server is an open source product, right? That means we can download
and inspect the source code. For this exercise, | searched for "abort" within the Railo source
code, which showed me the following file:

https://github.com/getrailo/railo/blob/master/railo-java/railo-core/
src/railo/runtime/tag/Abort.java. Because it is stored in the directory /railo/
runtime/tag/, this is most definitely the file we need.

I will not get into Java specifics here, especially because | haven't got the faintest clue as
to how to write Java code myself. But from looking at the source code, | could extract the
following pieces of code within that file:

package railo.runtime.tag ;
public final class Abort extends TagImpl

public void setShowerror (String showerror) {
this.showerror=showerror;

public int doStartTag() throws PageException {
if (showerror!=null) throw new AbortException (showerror) ;
throw new railo.runtime.exp.Abort (type) ;

}

[247]


https://github.com/getrailo/railo/blob/master/railo-java/railo-core/src/railo/runtime/tag/Abort.java
https://github.com/getrailo/railo/blob/master/railo-java/railo-core/src/railo/runtime/tag/Abort.java
https://github.com/getrailo/railo/blob/master/railo-java/railo-core/src/railo/runtime/tag/Abort.java
http:///

Extending Railo Server

Combining the Java package name with the filename, we get railo.runtime.tag.Abort
as the class name:

<cfset var abortJavaObject = createObject ("java", "railo.runtime.tag.
Abort") />

Because there is another optional parameter for the <cfabort> tag, showerror, we need
to set that attribute in the abort object we just created:

<cfif structKeyExists (arguments.attributes, "showerror") >

<cfset abortJavaObject.setShowerror( javaCast ("string", arguments.
attributes.showerror) ) />

</cfif>

. Because we are directly dealing with a Java object here, we need to
% make sure that we are sending the correct argument type to the function
i setShowError. In this case, that would be a string, and hence we need
javaCast ("string", arguments.attributes.showerror).

Now that we got the Java object ready for action, we can simply run the original abort
function like this:

<cfset abortJavaObject.doStartTag() />
After writing this code, we saved it into <Railo>..../context/library/tag/.

As the directory name suggests, we got a 1ibrary available to us where we can save our
custom tags and functions. You can also find this library path within the WEB- INF directory
of each web context, where you can save custom tags and functions to be used only for the
web context.

CFML functions

When | say CFML functions, you might think of the built-in functions such as isDefined ()
or trim (), but you might also think about <cffunction name="myFunction"s.The
main difference between the two is that the latter needs to be explicitly set within your
application before it can be used, while the built-in functions can just be called from
anywhere at any time.

What we are going to do now is convert our own function into a built-in CFML function.
Let's start!

[2481


http:///

Chapter 9

Time for action - creating our own CFML function

Now that we know how to create our own CFML tag in Railo Server, it won't be very hard to
create our own CFML function. And indeed, it isn't!

Let's create the function cleanScope (), which cleans the contents of a scope like URL
or form (or any CFML structure actually). This could save us some lines of code in our
next project:

1. Create a file with the following content:

<cffunction name="cleanscope" output="false" access="public"
returntype="any" hint="I clean a given struct/array from spaces
and script injection"s>

<cfargument name="scope" type="any" required="true" hint="The
scope to clean (e.g. URL of form)" />

<cfset var key = "" />

<cfif not isStruct (arguments.scope) and not isArray(arguments.
scope) >

<cfthrow message="The argument for function cleanscope must be

either a struct or array!" />

</cfif>

<cfloop collection="#arguments.scope#" item="key">

<!--- if the value is a simple value (string, number, etc.)
--->

<cfif isSimpleValue (arguments.scope [key]) >

<!--- replace any instance of "<script", "</script", or
"<«iframe", with "<cleaned" --->

<cfset arguments.scope[key] = rereplaceNoCase (arguments.
scope [key], "<(/?) (script|iframe)", "<\lcleaned", "all") />

<!--- remove spaces, tabs and line feeds from the start and
end of each value --->

<cfset arguments.scope [key] = trim(arguments.scope [key]l) />

<!--- If we find an array or struct, we will clean those

contents too --->

<cfelseif isStruct (arguments.scope[key]) or isArray(arguments.
scope [key]) >

<cfset arguments.scope[key] = cleanscope (arguments.
scope [key]) />
</cfif>
</cfloop>

<cfreturn arguments.scope />
</cffunctions>

12491


http:///

Extending Railo Server

2.

4.

Save the file as cleanscope.cfmin <Railo install directorys/tomcat/
railo/railo-server/context/library/function/, or <Railo install
directorys/lib/ext/railo-server/context/library/function/, if you
are using the Railo Express edition.

Now create a test file named cleanScopeTest . cfm with the following content:
<!--- first off, let's restart Railo Server for the new custom
function to be picked up (we only need to do this one time) --->

<cfadmin action="reload" type="server" password="Your-server-
admin-pasword" />

<!--- if the form scope is not empty, clean it --->
<cfif structCount (form) gt 0>
<cfset cleanscope (form) />
<l--- dump the form values --->
<cfdump eval=form />
</cfif>
<form method="post" action="cleanscopetest.cfm">
<input type="text" name="evilvalue" value="&lt;script>alert ('boo
') &lt; /script>" size="50" /><br />

<input type="text" name="spacy" value=" Hi there! " size="50"
/><br />

<input type="text" name="name.first" value=" Railo " size="50"
/><br />

<input type="text" name="name.last" value=" Server

"size="50" /><br />

<input type="text" name="versions[]" value=" 3.3 " size="50"
/><br />

<input type="submit" value="test" />
</form>

<cfabort />

When we save this file to the <Railo Install Directorys/webroot, runit,
and click on the test button, we get the following output:

[2501]


http:///

Chapter 9

arguments

What just happened?

Just as we previously created a CFML tag, we now created and tested an internal CFML
function. The only thing we needed to do was define the <cffunction> and save it to the
library/function/ directory of Railo Server.

There are a few caveats that you need to be aware of when creating custom CFML functions:
¢ The function name and the filename must be exactly the same (cleanscope in the
example).
The file extension must be . cfm, and not . cfc as you might expect.

When using a function written in <cfscripts, it must be surrounded by a
<cfscript> tag.

[2511


http:///

Extending Railo Server

Using return type "any”

Did you notice the value any (on the first line) for the returntype and cfargument type
within the function? The reason we used this type has to do with the fact that we needed

to allow both a structure and an array as the argument. Because we return the argument

at the end of the function (<cfreturn arguments.scope />), we also needed to set the
returntype to any. This setting makes all types of incoming data possible, so we needed to
add an extra check:

<cfif not isStruct (arguments.scope) and not isArray(arguments.scope) >

<cfthrow message="The argument for function cleanscope must be
either a struct or array!" />

</cfif>

Of course, it is your own decision to include these kinds of checks, but if you hate debugging
strange errors as much as | do, well, then you'd better leave it where it is.

Structure and array notation in the form and URL scope

If you take a closer look at the example page we created, you will see the input names
versions[], name.first, and name.last. If you are coming from the PHP world,
then you are probably familiar with this syntax, but if you're not, keep on reading.

The array notation versions [] creates an array called versions in the form scope,
where the value of the form variable is used for the array value. If you want to add another
value to this array, then you need to send another form variable called versions[].

For example, let's have a look at the following lines of code:

<input name="versions[]" value="3.2" type="text" />
<input name="versions[]" value="3.3" type="text" />

This code will create an array called versions, with the values 3.2 and 3. 3. Setting a list as
the input value, that is, 3.2, 3.3, does not create two items in the array. You really need to
send two form variables.

The dot notation name . 1ast creates a structure within the form scope. As you can see

in the previous image, it created a structure called name, with the keys first and last.
Besides this structure, these form variables are also available by their original names, name.
last and name.first.

This is a new notation, which can help you in pre-organizing your FORM or URL scope. On the
other hand, you need to take this into account when you are working with the FORM or URL
scope; you might encounter non-simple values where you did not expect them to be.

[2521



http:///

Chapter 9

Have you taken a look at the Extension | Applications menu item in the Web and Server
administrator yet? It contains tons of useful applications, eagerly waiting to be installed
by you:

Extension - Applications Logout

Not installed
These applications are not yet installed on the system.

filter
cfcsv, tag, m o e e
railo, ftw, <CFDNS> COLDFUSION
<CFESV /> = WHEELS
CFCsV CFDNS cfdocfonts cfjasperreport cltwheels
Core Core Administration Reporting Framework

Q W EHCACHE 'ﬁ

Coldbox ’ %’E’?E’_’jng EHCache Iite Fusebox Galleon GFML Forums
Framework AQP Framewark Database Framewark Forum
& iinispan MACH-II ﬂ )
Infinispan Cache g CokdBox
Ff}:,z;re-. Log analyzer :PJ:CET '!Erk Model Glue WireBox : The Enterp...
Debugging J bk Framework AOP Framework

The previous screenshot shows the list of extensions available in the Railo Web Administrator.

These applications are generally standalone applications that can be installed in the context
that the Railo Web Administrator is being used in. For example, we have various frameworks
and applications available to us. When you install one of these applications, it will only be
available in the context that you have installed it into and not affect other parts of the server.

But what about applications that are not context-specific, for example, if you want to extend
the capabilities of the whole server?

These applications are installed from the Railo Server Administrator. They are applications
that change or add some behavior to the whole server, and that include all the other
contexts that are running on that server.

[2531]



http:///

Extending Railo Server

Some examples of these types of applications are:
¢ Admin Sync: This application allows you to synchronize the settings of one server
with another completely separate server.

¢ Cluster Scope: This provides a new scope named CLUSTER that can be read between
different servers in a cluster.

¢ EHCache Core: This extension allows you to install a fully featured and clusterable
version of the EHCache caching server.

Extension - Applications Logout

Not installed
These applications are not yet installed on the system.
filter
cfesv, tag, ii=
railo, ftw. <CFDNS> husj1
<cresy /> -
Admin Sync CFCSV CFDNS cfdocfonts cfjasperraport
Core Core Core Administration Reporting

'ﬁ' B EHCACHE | .=\ finiccon 'a'
R «* TERRACOTTA %“ 1 i_‘F'k‘ 1

o Infinispan Cache
Cluster Scope EHCache Gira Log analyzer global ... Video

Core Core Core Core

This screenshot displays the list of extensions available in the Railo Server Administrator.

Some of them are paid extensions, others are free. Let's start by installing a new custom
tag: <cfdnss.

Time for action - installing an extension for the weh context

As the title suggests, we're going to install an extension for one web context. This needs to
be done via the corresponding web administrator.

1. Gotohttp://localhost:8080/railo-context/admin/web.cfm (or browse
as according to your local setup, for example, site2.local:8888).

2. After logging in, go to the menu item Extension | Applications.
3. Under the heading Not installed, click on the link CFDNS.

4 You will get a details page with the specifications of the extension:

12541



http://localhost:8080/railo-context/admin/web.cfm
http://localhost:8080/railo-context/admin/web.cfm
http:///

Chapter 9

Server Administrator Web Administrator

Extension - Applications Logout

CFDNS (Not installed)

CFDNS, a new custom tag for Railo!

Available

; 1.0.3
version

Category Core

Author Paul Klinkenberg
<
CFDNS> g:'t':ase Feb 20, 2011

Provider Shop Provide: rw.getrailo.org)

www.railodeveloper.com/post.cfm
[railo-custom-tag-cfdns

Support

install cancel

5. Now click on Install.

6. After agreeing to the license information, you'll get the following screen:

Extension - Applications Logout

Installed!

The GFDNS Railo custom tag is now installed.
OK

7. That screen means you have installed a new Railo Server custom tag within
30 seconds.

8. Let's test this by creating a new file dnstest . c£m with the following content:

<cfdns action="getaddress" host="www.getrailo.org"
variable="testresult" />

<cfdump eval=testresult />

[2551]



http://www.getrailo.org/
http://www.getrailo.org/
http:///

Extending Railo Server

9. When we save that page and run it, we get the following output:

anOn Mozilla Firefox
J|_| htp:/ /site2.local /dnstest.cfm I + G
testresult

- 188.138.56.135

What just happened?

By using the Railo Web Administrator, we installed a Railo custom tag for use in our web
context. This means we can use it for the website we are on (localhost :8080), but not
in other web contexts like site2.local.

We also tested whether the new tag worked, by doing an IP lookup for
http://www.getrailo.org.

If you want more information about the working of the <cfdns> tag, just

visithttp://www.railodeveloper.com/post.cfm/railo-

custom-tag-cfdns.

The look and feel of both Railo admins is exactly the same, and the procedure for installing
extensions is also exactly the same. However, there is one difference between the two,
namely, the list of available extensions.

There are extensions that are only useful when installed in a specific web context, for
example, the installation of a blog application. A typical Server extension is the (paid)
Admin-synchronization extension. This extension keeps the settings for multiple Railo
installations in sync.

There is a third category of extensions, and it is available in both Administrators. The CFDNS
extension, for example, is available in both admins. If you have your Railo website hosted in
a shared-hosting environment, then you will probably have access to your own web admin,
but not to the global server admin. The great thing about Railo is that you don't have to open
a ticket with your hosting provider to have the extension added (or updated), as you can just
manage it locally with your own web admin.

[2561]


http://www.getrailo.org/
http://www.railodeveloper.com/post.cfm/railo-custom-tag-cfdns
http://www.railodeveloper.com/post.cfm/railo-custom-tag-cfdns
http:///

Chapter 9

The extension installation system

We have gone through the installation of the CFDNS extension. We clicked it in the admin,
hit the Install button, agreed to the license terms, and we were done. It doesn't get more
basic than that.

The extension installation system offers us much more, with data input and validation
options across multiple steps.

Time for action - installing the Galleon forums weh application

In order to see a more complex application installed, we are going to install the Galleon
forums application in our web context:

1. Before we go ahead, Galleon needs a database to store all of its information. We
need to create a database and assign a datasource to it (we have covered this
already a number of times; just create a new database in your MySQL database
server and a datasource in the Services | Datasource section of the administrator)
and call it Galleon to keep it consistent.

2. Let's go and check out the available applications in our Railo Web Administrator
by goingto http://localhost:8888/railo-context/admin/web.cfm
and clicking on the Extension | Applications link. Here, we can see the available
applications that can be installed in our context:

Extension - Applications Logout
Not installed
These applications are not yet installed on the system.
filter
cfcav, tag, =] COLDELISION
railo, ftw. <CFONS> m COLDFUSION
<cresy /> 'ﬁ' = WHEELS
CFCsV CFDNS cfdocfonts cfjasperreport cfwheels
Core Administration Reporting Framework
D W EHCACHE
H_C:.O:__‘ﬁ?’ru'"?rl EHCache lite Fusabox Galleon GFML Forums
* = Database Framework Forum
== nhnispan MACH-II u
Infinispan Cache it
%-"rc— Log analyzer _IMdih Hr, Model Glue WireBox : The Enterp...
B Debugging FARIIAENT Framework AOP Framework

2571


http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http:///

Extending Railo Server

3. Let's choose the Galleon CFML Forums and click on the option to see some more
information about it:

Extension - Applications

Galleon CFML Forums (Not installed)

Galleon is a forums application built with ColdFusion.

Avallable version 2.2.4

Category Forum

Author Rallo Development Team
Release Date Dec 2, 2010

Provider Shop Provider {www.getrailo.org)

Support galleon.risforge.org/

install cancel

4. Now that we are ready to install it, click on the install button and we are presented
with a License agreement screen:

Extension - Applications

License agreement

agree

5. Now, the next screen has a number of fields asking us for various details, such
as which datasource we are going to use (let's select the Galleon datasource we
created in the first step). It has a number of settings, but let's just add our e-mail
address as that is all that is required to be added by us:

[2581]



http:///

Chapter 9

Datasource

Datasources

Table Prefix

Settings

Title

Records per Page

From Address

URL

Path

create Mapping

Post CC Address

Confirm E-Mail

datasource definition

[ galleon (localhost) H

You can use only MSS0L or MySQL Databases, please select one of your detabazes

galleon_

prefic used for table names

Some general settings used for the application

Galleon Forums
lets you give your forums a specific title. So for ecample, if you were discussing the TV
show ''Last'', you may want to use tha title, Lost Forums. This title is also used in all
emaile gant from the application.

10

determines the number of records to show per page

the email address used when notifications are sent to members

http:/ flocalhost: 8080/ forum//

The URL is tha root location of the forums application.

fUsersfmarkdrew/Dropbox/BookProgress frailo-server-for-demos fwebrc
the physical location of the forums application.
[

create a mapping for root path

Thizs address setting is an email address. Each and every forum post will be sent to this
email address. This is usaful for moenitoring forums for spam or otherwize objectionable
posts. For busy forums though it could easily fill your email client.

sticn is =et to true, an
link before they are

n supports email verification for new users. If requireconfi
amail will ba sant to new users. The user must click a verficatio
allowed to log on.

—1

6. Once we have filled everything, we can now click on the install button at the bottom
and the application will be installed in our context.

Galleon is now successfully installed, call this to execute application

OK

[2591]



http:///

Extending Railo Server

7. When we click on the link in this screen, we will be able to view the
installed application:

eo0o Galleon Forums e
| < | P | | + | A http:/ /localhost:8080 /forum Preinit=1 ¢ [ [Q- Google | (3] |
Galleon Forums Home | Profile | Search | Login

Home

Page: 1
Conferences
[Name] Description Messages Last Post

Sorry, but there are no conferences available.

Galleon Forums V2.2.3 was created by Raymond Camden

8 We are not going to go into how this application works here, but you can go ahead
and try it out. When we click on the OK button on the installation confirmation
screen, we will be taken back to the application's screen and we can see which
applications we now have installed:

Extension - Applications Logout

Installed
These applications are already installed on the system.

Galleon CFML Forums

Forum

filter

What just happened?

We installed the Galleon CFML Forums by using its Railo Server extension. We needed to
provide some necessary information, such as our e-mail ID which was asked by the installer
in the configuration screen. Then, we hit install, after which we installed Railo Server and
configured our application for us.

[260]



http:///

Chapter 9

We didn't need to download any external files, Railo Server did the whole installation for
us. The extension installed the relevant database tables for us, and copied all the files to
the correct location. Now, you can see what the benefit is by creating an extension for
your application. It makes it extremely easy to package applications for other people to
use and install.

Time for action - creating our own Railo application extension

Now that we know how to install extensions, it is about time to create our own.

An extension is a ZIP file that contains at least three files:

1. 1icense.txt contains the license for the extension
2. Install.cfc handles the complete installation

3. config.xml contains all information about displaying the installation steps: field
names, values, labels, page title, and so on

For this exercise, we will create an application which we can then install. So let's create a
Famous Quotes App:

¢ Underthe <Railo Install Directorys>/webroot, create a folder named
famousquotes

¢ Create afile quotes. txt in our famousquotes folder with the following content:

Houston, we've got a problem...
Oh my god, they killed Kenny!
. and any others you can come up with, divided by a line break

¢ Create Quote. cfc with the following content. This returns a random single line
from the quotes. txt file:

<cfcomponent >
<cffunction name="getquote" returntype="string" output="false">
<cfset var filecontents = fileRead("quotes.txt") />
<cfset var numberofquotes = listLen(filecontents, chr(10)) />

<cfreturn listGetAt (fileContents, randRange (1,
numberofquotes), chr(10)) />
</cffunctions>
</cfcomponent >

12611


http:///

Extending Railo Server

L 4

Create include quote.cfm with the following content. This will call the Quote.
cfc component and call our getQuote () function:

<h3>Random quote</h3>
<cfset quoteObj = createObject ("component", "Quote") />
<cfoutput><p><em>#quoteObj.getQuote () #</em></p></cfoutput>

Create QuoteWebservice.cfc:

<cfcomponent extends="Quote">

<cffunction name="getquote" access="remote" returntype="string"
output="false">

<cfreturn super.getquote() />
</cffunctions>

Create a ZIP file with these four files and name it famousquotesapp. zipc.

Alright, we got a killer app with included web service functionality and everything. It's time
to make a Railo Server extension for it.

First, we need to think about how we want the application to be installed. Just think of a
regular "next-next-finish" installer. In this case, we can just copy four files to a directory
within the webroot. Also, we should ask if they actually want the web service to be installed
as well, as it could be perceived as an undesired access point.

L 4

We've got two questions we want to ask, which we will split into two installation
steps. Create the config.xml file, with the following content:

<?xml version="1.0"?>
<config>
</configs>

This file will be read by Railo Server to create our steps; let's add the first step
that asks where you want to install the application. In the config.xm1 file,
add the following:

<?xml version="1.0"?>
<configs>

<step label="Step 1" description="Thanks for installing the
Famous Quotes app! &lt;br&gt; The following steps will guide you
through installing the app.">

<group label="Installation directory" description="Please
enter the directory path starting from your webroot, where the
Famous Quotes app will be installed into"s>

<item type="text" name="installdir" label="Directory name or
path">/quotesapp/</item>
</group>
</step>
</config>

12621



http:///

Chapter 9

Great! This gets where we want to install the application. Now let's add a second
step, asking whether the user wants to install the webservice:

<?xml version="1.0"?>
<config>

<step label="Step 1" description="Thanks for installing the
Famous Quotes app! &lt;br&gt; The following steps will guide you
through installing the app.">

<group label="Installation directory" description="Please
enter the directory path starting from your webroot, where the
Famous Quotes app will be installed into">
<item type="text" name="installdir" label="Directory name or
path">/quotesapp/</item>
</group>
</step>
<step label="Step 2" description="Webservice installation">
<group label="Install webservice?" description="Do you want
to install the webservice component as well? This will make it
possible for everyone to retrieve the quotes from your website.">
<item type="radio" name="installWS" description="">
<option value="1" description="">Yes</optionx>
</item>
<item type="radio" name="installWS" description="">
<option value="0" description="">No</option>
</item>
</group>
</step>
</config>

We need to validate the input, copy files, and have a function to uninstall. Let's
create the Install.cfc file for this task:

<cfcomponent output="no">

<cffunction name="validate" returntype="void" output="no">
<cfargument name="error" type="struct" required="yes" />
<cfargument name="path" type="string" required="yes" />
<cfargument name="config" type="struct" required="yes" />
<cfargument name="step" type="num+++++
++
eric" required="yes" />
<cfset var allformdata = config.mixed />
<!--- the install directory --->
<cfif arguments.step eq 1>
<cfif left(allformdata.installdir, 1) neq "/" or
right (allformdata.installdir, 1) neq "/">

12631



http:///

Extending Railo Server

<cfset arguments.error.fields.installdir = "The directory

must both start and end with a forward slash (i.e. /foldername/)"
/>

</cfif>

<!--- Does a file "quotes.txt" exist in the directory? If
so, we don't allow overwrite. --->

<cfif fileExists (expandPath(allformdata.installdir &
"quotes.txt")) >

<cfset arguments.error.fields.installdir = "The directory
[#allformdata.installdir#] already exists, and contains a
file [quotes.txt]. Please backup and remove this file before
continuing." />
</cfif>
<cfelse>
<cfif not structKeyExists(allformdata, "installWs") s

<cfset arguments.error.fields.webservertype = "Please
choose 1f you want to install the webserver file." />

</cfif>
</cfif>
</cffunctions>
</cfcomponent >

¢ The Install.cfc now has one method, named validate; this method will check
whether the user has entered the proper values for the location, whether we are
overwriting any existing files, and if they have chosen to install the web service.

¢ Next, let's add the install method to our Install.cfc file:

<cfcomponent output="no">
<cffunction name="validate" returntype="void" output="no">
</cffunctions>

<cffunction name="install" returntype="string" output="no"s>
<cfargument name="error" type="struct" required="yes" />
<cfargument name="path" type="string" required="yes" />
<cfargument name="config" type="struct" required="yes" />
<cfset var allformdata = arguments.config.mixed />
<cfset var sReturn = "" />
<cfset var savePath = expandPath(allformdata.installdir) />
<!--- create the destination directory when necessary --->
<cfif not directoryExists (savepath) >

<cfdirectory action="create" directory="#savepath#"
recurse="yes" />

</cfif>

12641



http:///

Chapter 9

<!--- copy the app files to the right location --->

<cfzip action="unzip" file="#arguments.path#famousquotesapp.
zip" destination="#savepath#" filter="*.*" overwrite="yes" />

<!--- remove the webservice file, if requested --->
<cfif allformdata.installWS neqg 1>
<cffile action="delete" file="#savepath#QuoteWebservice.cfc"
/>
</cfif>
<!--- give a response --->
<cfsavecontent variable="sReturn"s<cfoutputs
<h3>The <em>Famous Quotes app</em> has been installed!</h3>
<p><a href="#allformdata.installdir#include quote.cfm">See
the app in action</a></p>
<cfif allformdata.installWS neqg 1>
<p><em>Note: the webservice files were not installed.</
em></p>
</cfif>
<p></p>
</cfoutput></cfsavecontent>
<cfreturn sReturn />
</cffunctions>
</cfcomponent >

The install method takes care of copying the right files, including checking
whether we need to also remove the web service. It does this by using the
famousquotesapp. zip file we created previously and unpacking the files.

Now that we have installed our extension, let's add the functionality to uninstall it.
Add the uninstall method to our Install.cfc component:

<cfcomponent output="no"s>

<cffunction name="validate" returntype="void" output="no">

</cffunctions>

<cffunction name="install" returntype="string" output="no">

</cffunctions>

<cffunction name="uninstall" returntype="string" output="no">
<cfargument name="path" type="string" required="yes" />
<cfargument name="config" type="struct" required="yes" />

<cfset var allformdata = arguments.config.mixed />
<cfset var savePath = expandPath(allformdata.installdir) />

12651


http:///

Extending Railo Server

<cfset var gFiles = "" />

<cfset var aErrors = [] />

<!--- find out which files we installed, so we can remove
those --->

<cfzip action="1list" name="gFiles" file="#arguments.
path#famousquotesapp.zip" filter="*.*" />
<!--- keep the quotes.txt file; it might contain user-
provided content --->
<cfloop query="gFiles">
<cfif gFiles.name neq "quotes.txt"s>
<cftry>
<cffile action="delete" file="#savePath##gFiles.name#"
/>
<cfcatch>
<cfset arrayAppend (aErrors, "The file
#savePath##gFiles.name# could not be deleted: #cfcatch.message#
#icfcatch.detail#.") />
</cfcatch>
</cftry>
</cfif>
</cfloop>

<cfset var sReturn = "" />
<cfsavecontent variable="sReturn'"s<cfoutputs>
<p><strong>The <em>Famous Quotes App</em> is now
uninstalled.</strong><p/>
<p>To prevent accidental loss of your data, the file
<em>quotes.txt</em> has not been removed.</p>
<!--- errors occurred? Show them here --->
<cfif not arrayIsEmpty (aErrors) >
<p style="color:red;">0One or more errors occurred while
uninstalling:</p>
<ul style="color:red;">
<cfset var i = 0 />
<cfloop collection="#aErrors#" item="1i">
<lis#aErrors[i]#</1li>
</cfloop>
</uls>
</cfif>
</cfoutput></cfsavecontent>

<cfreturn sReturn />
</cffunctions>

</cfcomponent >

12661



http:///

Chapter 9

The uninstall method gets a list of files from our famousquotesapp. zip
file and deletes these files from the folder in which the application was originally
installed in. It doesn't remove the quotes file as, of course, the user might have
changed it.

Finally, let's use a final method; this time, it's the update method, which will be run
if there is a new version of the extension:

<cfcomponent output="no">
<cffunction name="validate" returntype="void" output="no">
</é££unction>
<cffunction name="install" returntype="string" output="no">
</é££unction>
<cffunction name="uninstall" returntype="string" output="no">
</é££unction>

<cffunction name="update" returntype="string" output="no">
<cfreturn install (argumentCollection=arguments) />
</cffunctions>
</cfcomponent >

The last thing we need to do is create a 1icense. txt file. Here, we are using the
Apache 2 license:

Copyright 2011 <Your name>

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this software except in compliance with the
License.

You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,
software

distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.

See the License for the specific language governing permissions
and

limitations under the License.

12671



http:///

Extending Railo Server

¢ Now that we've got all the files needed to create our own extension, we need to
make a ZIP file containing all the documents we just created. This ZIP file will be our
Railo Extension.

¢ Create a ZIP file, named famousquotesinstaller. zip, with the following files:
o famousquotesapp.zip
o config.xml

0 Install.cfc

0 license.txt

What just happened?

You are probably kind of disappointed at this point, because you cannot see the result
of all the hard work you just did. | am sorry for that, and | will make it up to you in the
upcoming pages.

So, what just happened? We created a first-class Famous Quotes App, and we made a Railo
extension for it, which we will absolutely be installing—just hang on for a few paragraphs.

We created a config.xml file, which contains the steps (HTML pages) we need to go
through for installing the extension. It describes the HTML frontend of the installation
procedure. Each step within the XML contains one or more groups, which contains one or
more item tags. These items will be shown as HTML form elements during installation, such
as <input type="text"s, <input type="radio"s, and <selects.

1
‘Q For more in-depth knowledge of the configuration options, see: http://

wiki.getrailo.org/wiki/Tutorial:Extension Provider.

Then, we created a fairly long Install.cfc component, which handles the complete
installation, updating, and uninstallation of our extension.

After each of the steps defined in the XML file, the validate function within Install.cfc
is called. This function checks the entered data. If you want to prevent the user from going
to the next step because a problem is found with the given data, you can just add an error to
the given error structure in the arguments scope:

<cfif not structKeyExists(allformdata, "installWsS")s

<cfset arguments.error.fields.webservertype = "Please choose if you want
to install the webserver file." />
</cfif>

If the arguments . error structure remains empty, then the installation goes to the
next step.

[268]



http://wiki.getrailo.org/wiki/Tutorial:Extension_Provider
http://wiki.getrailo.org/wiki/Tutorial:Extension_Provider
http:///

Chapter 9

After all validation steps, the install function is called. We receive all submitted data in the
config argument and the absolute path to our installation package in the path argument.
When doing a <cfdump eval=arguments />, you will see the following:

=

< A=
=

Il http://localhost/cleanscopetest.cfr 7 '!,lv Goog 2L

== &
|| http:/ {localhost/cleanscopetest.cfm ]\1}\ 1

<script>alert(boo’)</script>

Hi there!

Railo

Server

Dane ul+2 |

Install.cfc simply copies our Famous Quotes App files to the requested directory by
unzipping the zipped application:

<cfzip action="unzip" file="#arguments.path#famousquotesapp.zip"
destination="#savepath#" filter="*.*" overwrite="yes" />

Then, all we need to do is return an installation successful message.

We also needed to provide an uninstall function. This function is called from the Railo
Administrator when a user chooses to uninstall the application. This function receives the
same argument values as the install function received while installing. To make this
possible, all installation variables are automatically written to the configuration XML of the
Railo administrator (railo-server.xml / railo-web.xml.cfm).



http:///

Extending Railo Server

Time for action - creating our own extension provider

We created the Railo Extension famousquotesinstaller. zip, which we now have on
our local computer. How can we add and share the extension within Railo Server? This can
be achieved by using the Extension Provider system. This is a system unique to Railo Server,
where you can easily share extensions with other Railo Server users.

We only need to create one CFC file, which will be serving our extensions for us, and
provides some details about itself.

1. Attherootof our <Railo Install Directorys/webroot2/ folder, create a file
named ExtensionProvider.cfc, with the following content:

<cfcomponent output="no"s>

<cffunction name="getInfo" access="remote" returntype="struct"
output="no">
<cfset var info = {
title="Railo book extensions"
, description="Providing you with the best Extensions you
can find!"
, lmage="http://site2.local:8888/railoBookExtensions.png"
, url="http://site2.local/"
, mode="develop"
y />
<cfreturn info />
</cffunction>

</cfcomponent >

2. The previous code adds the get Info method to our extension provider, which
returns some information about the extension provider itself. Next, let's add the
listApplications method, which will obviously list our applications:

<cfcomponent output="no">

<cffunction name="getInfo" access="remote" returntype="struct"
output="no">

</cffunctions>

<cffunction name="listApplications" access="remote"
returntype="query" output="no">
<cfset var apps = queryNew("type, id,name, label,description, ver
sion, category, image,download, author, codename, " &

12101



http:///

Chapter 9

"video, support,documentation, forum,mailinglist, network, creat
ed") />

<cfset QueryAddRow (apps) />

<cfset QuerySetCell (apps, "id", "famousquotes") />

<cfset QuerySetCell (apps, "name", "Famous Quotes App") />

<cfset QuerySetCell (apps, "type", "web") />

<cfset QuerySetCell (apps, "label", "Famous Quotes App") />

<cfset QuerySetCell (apps, "description", "This extension will
install the Famous Quotes App") />

<cfset QuerySetCell (apps, "author", "[Your name]") />

<cfset QuerySetCell (apps, "codename", "railobookVli") />

<cfset QuerySetCell (apps, "support", "http://site2.local/

support/") />
<cfset QuerySetCell (apps, "created", CreateDate (2011, 06, 01))

/>

<cfset QuerySetCell (apps, "version", "1.0.0") />

<cfset QuerySetCell (apps, "category", "Applications") />

<!--- if you do NOT define a URL here, the function
getDownloadDetails () is called --->

<cfset QuerySetCell (apps, "download", "") />

<cfreturn apps />

</cffunctions>

</cfcomponent >

In the previous code, we create a query object and add a row to it, adding
information to all the columns about our Famous Quotes Apps. Finally, let's add the
getDownloadDetails method, which will be called when someone installs our
application:

<cfcomponent output="no">

<cffunction name="getInfo" access="remote" returntype="struct"
output="no">

</cffunctions>

<cffunction name="listApplications" access="remote"
returntype="query" output="no">

</cffunctions>

[2nl



http:///

Extending Railo Server

<cffunction name="getDownloadDetails" access="remote"
returntype="struct" output="no">
<cfargument name="type" required="yes" type="string" />
<cfargument name="serverId" required="yes" type="string" />
<cfargument name="webId" required="yes" type="string" />
<cfargument name="appId" required="yes" type="string" />
<cfargument name="serialNumber" required="no" type="string"
default="" />

<cfset var linebreak = server.separator.line />

<cflog file="extensiondownloads" type="information" text="Date
:#now () ##flinebreak#IP:#cgi .REMOTE ADDR##linebreak#iarguments:#seria
lize (arguments) #" />

<cfset var data = structNew() />
<cfif arguments.appId eq "famousquotes"s
<cfset data.error = 0 />
<cfset data.url = "http://#cgi.http host#/
famousquotesinstaller.zip" />
<cfelse>
<cfset data.error = 1 />
<cfset data.url = "" />
<cfset data.message = "The extension you requested does not
exist." />
</cfif>

<cfreturn data />
</cffunctions>
</cfcomponent >

4. This method checks if the extension exists and returns the url of the

5

famousquotesinstaller.zip file

Now go to the Railo web admin at http://localhost:8888/railo-
context/admin/web.cfm and navigate to Extensions | Providers. Check the
checkbox, and enter our extension provider's URLhttp://site2.local: 8888/
ExtensionProvider.cfc in the textbox next to it:

[2121



http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http:///

Chapter 9

Extension - Providers Logout
URL Title Check
http:/fwww.getrallo.com/ExtensionProvider.cfc %'Q;S’ . .

Shop Provider (www.getrailo.com)
hitp:/fwww.getrailo.org/ExtensionProvider.cic %Q}? . .
Shop Provider (www.getrailo.org)

@] http:/ /site2.local:8888/ExtensionProvider.cfc

URL to the ExtensionProvider incl. path

\— save verify delete cancel

6. After we hit submit, we can navigate to Extensions | Applications within the
administrator. There, we can finally see our Famous Quotes App listed:

These applications am not yat instalied on the system
filter
ApplcEon Category Provder
Applcations
Forurr
Fis sk

What just happened?

We created a CFC file, which provides information about our extensions. Most of the
functions in the CFC have their access attribute set to remote, which means they can
be called as a web service:

<cffunction name="getInfo" access="remote" ...>

We saved it in the webroot of site2.local, so we can access it from the URL
http://site2.local:8888/ExtensionProvider.cfc.

Then, we added this URL into the Railo Web Administrator as a new Extension provider.
After doing this, we saw our Famous Quotes App appear in the Applications list of the
administrator.

Let's go into some more detail about the CFC we just created.

(2131


http://site2.local:8888/ExtensionProvider.cfc
http://site2.local:8888/ExtensionProvider.cfc
http:///

Extending Railo Server

The ExtensionProvider CFC

First off, you can name the file anything you want. It could even be a .NET web service if you
wanted it to; but then you wouldn't be reading this book now, would you?

Anyway, the CFC has a few required methods:

¢ getInfo: This method returns a structure with information about your Extension
Provider.
listApplications: This one returns a query with all the available extensions.

getDownloadDetails: This returns a structure with download information for
a given extension. Only used/required when no download URL is given in the
extension details query.

Key Description

title Title of the extension provider
description Description of the extension provider
image Link to an image

URL URL for more information

mode Defines how the information of the

ExtensionProvider is cached in the Railo
Administrator. The valid values are:

e develop—does not cache the result of
the extension provider

e production (or no value)—caches
the result in the session scope of the
Railo administrator user

This information is partly shown in the Details page of an extension, and fully when you click
on the Provider's name in the Applications listing:

2]



http:///

Chapter 9

Server Administrator Web Administrator

Extension - Applications Logout

Railo book extensions
Providing you with the best Extensions you can find!

%"%,e

Provider http://site?. local’

extensions

ListApplications query information

As we have seen in the previous example, we needed to create a query with information
about our extension. The following list is very long, but most of the fields can remain empty.
The required fields are marked with an asterisk (*).

Field Description

Id * This is the identifier of the extension. With this ID, updates are done and
download details are retrieved.

Name * This is the internal name of the extension. It must be a valid CFML variable name.

Label * This displays the name of the extension.

Description * This is the text/HTML description of the extension.

Type This determines if the extension can be installed via the Web and/or Server

Administrator. The valid values are: server, web, and so on. The value "web" is the
default value.

Download It is the URL to the extension itself. If empty, the function
getDownloadDetails () is called when a user wants to install the extension.

Author Author of the extension.

Created The date of when was the extension created.

Version * Version number of the extension.

Codename Code name for (the current release of) the extension.

Category Category of the extension. For example "CMS", "Framework", "Database".

Video URL to a video file, for example, for installation instructions.

Image URL to an image file, which will be used as the logo for the extension.

[215]



http:///

Extending Railo Server

Field Description

Support Support URL for the extension
Documentation  URL to documentation about the extension
Forum URL to a forum about the extension
Mailinglist URL to a mailing list about the extension
Network URL to a users' network about the extension

GetDownloadDetails function

As said before, this function returns the download details about a given extension. There are
a lot of benefits when using this function, instead of just adding the download link to the
query of listApplications (). The most important one is that you can track how many
people downloaded your extension, as we saw in the code we created:

<cfset var linebreak = server.separator.line />

<cflog file="extensiondownloads" type="information" text="Date:#now()
##linebreak#IP:#cgi.REMOTE ADDR##linebreak#arguments:#serialize (argum
ents)#" />

Because the function is only called when a Railo Administrator user chooses to install the
plugin, you can be fairly certain that the download count is the sum of all installations and
updates.

Another good reason to use this function is for payment handling. If we want to become rich
with our Famous Quotes App, we could add a simple check like this:

<cfif not hasPaidForExtension (arguments.appID, arguments.webID) >

<cfset data.error = 1 />

<cfgset data.url = "" />

<cfset data.message = "Please first pay $25 to our paypal account
paypale@efamousqg.com. Afterwards, email us your server details by <a
href='"mailto:sales@famousqg.com?body=#urlencodedformat ('$25 was paid to
the paypal account, for web ID #arguments.webID#')#'s>clicking here</
as" />
<cfelse>

[ ... send them the download details ... ]

12161



mailto:paypal@famousq.com
mailto:paypal@famousq.com
mailto:sales@famousq.com?subject=Famous
http:///

Chapter 9

The structure returned by this function must contain the fields, as shown in the

following table:

Key Description
Error A number indicating whether an error should be shown:
¢ 0:Noerror. The "URL" value must be given.
¢ 1:Anerroroccurred. The "message" field contains the error message.
URL The URL to the extension
Message The error message

The role of the Weh ID and Server ID

You probably noticed that we receive a webID and serverID as arguments for the
getDownloadDetails function. These IDs can uniquely identify any Railo Server and

web context.

The Server ID is created by Railo at the moment Railo Server is started for the first time. The
Web ID is created at the moment a web context is first called. Both IDs will never change and
are stored in the Railo configuration files.

You can view the Server ID on the Dashboard page of the Railo Administrator. Even though
there is another ID shown on the dashboard page, which is labelled "Hash", this is not the

Web ID:

Settings

ed tasks

Extension

Development

Bakudgics

Performance/Caching

Web Administrator

Server Administrator

Overview Logout

Rallo, the CFML engine - free, open source and easy to use. This Web Administrator is provided in order to customize your web context.

Info

Label 27b29bd0d 170¢4002c257a2b72de2232 Ignore this; it's NOT
Hash 27b29bd0d 1704002257 a2b72de2232 the web ID!

Version Rallo 3.3.0.007 beta

Version Name Hachiko

Release date Mar g, 2011

ColdFusion® compatibilty 9.0.04

version

Configuration File /developing/defaultSite/data/WEB-INF/railo/rallo-web.xml.cfm

‘Webroot Jdeveloping/defaultSite/data

0s Mac 0§ X (10.6.7)

Remate IP 127.001

Host Name site2.local

Senvet Container

Railo Server ID 98ealbded927c1e189821801c69a29cd Server D

istalled tag
libraries

Installed function

- Ralle Core Tag Library

i

[2m1



http:///

Extending Railo Server

The Web ID can be found programmatically by running the following code from somewhere
in the Web context:

<cfdump eval=getRailoId() .web.id />

This will output the following:

getRailold().web.id

If you think like me, then the question currently in your head is, "So what does the complete
getRailoID () output look like?". Well, let's not keep you waiting for an answer. It looks
as follows:

getRailold()

As you can see, it also contains the Web ID, the Server ID, and a securityKey. This
security key has nothing to do with the extensions, but instead belongs to the Admin
Synchronization system.

The Admin Synchronization system lets you manage multiple Railo
administrators from one place. Any change you make in one place is instantly

sent to all linked administrators. For more information on this paid extension see
http://www.railo.ch/blog/index.cfm/2008/9/10/Railo-30-
released--Features-part-2.

12181


http://www.railo.ch/blog/index.cfm/2008/9/10/Railo-30-released--Features-part-2
http://www.railo.ch/blog/index.cfm/2008/9/10/Railo-30-released--Features-part-2
http://www.railo.ch/blog/index.cfm/2008/9/10/Railo-30-released--Features-part-2
http:///

Chapter 9

Let's get back on topic to the Web and Server IDs. When we installed our extension, we
had to get the download details from the function getDownloadDetails (). We sent
the Web ID of our current web context (local host), and the Server ID of our Railo instance.
Our extension provider can make decisions based on these IDs. Has the client paid for the
extension yet? And if we log the IDs to a database, we will also know how many times this
extension has been installed on a server and whether our clients already downloaded the
latest update. If they previously registered with us because they paid for an extension, we
can even send them an e-mail with instructions, or just to say thanks, the moment they
download the extension.

Extend your ExtensionProvider

| hope you have learned enough to be able to extend the ExtensionProvider.cfc
yourself. We already saw a very simple example of payment handling within the provider,
but can you make this more robust?

Here are some things that could be added:

Database schema for customers, extensions, downloads, and payments
Saving download information to the database

Checking in the database if a payment was made for the given server/web context

* 6 o o

The payment system itself

The Railo Extension Store

Railo 3.3 has a great new feature, which makes sure that any extension you create gets the
attention it deserves. Like Apple has its App Store, Railo now has an Extension Store.

The store can be found at http://www.getrailo.org/index.cfm/extensions/ and
all its extensions are shown within your Railo Administrator.

(2191


http://www.getrailo.org/index.cfm/extensions/
http:///

Extending Railo Server

You can browse through all the available extensions, register for a developer account, and
add your own extensions:

View All Extensions

AOP Framework (1)

CMS (0)

Core (7)

Database (2)

Forum (1)

Framework (5)

How to install

For Developers

Railo Extension Store

—

Community About Railo Contact Us

Welcome to the Railo Extension Store!

Here you can find all kinds of extensions to use with your Rallo server, From complete framework installs to new tags like <cfdns>, you
can get it alll Just browse the available extensions, and install them by using your Railo admin. Also see the installation procedure info.

Developers can add their own extensions 1o this store, both for free and paid. Gheck out the Developers section!

All Featured Recently Added

COLDFUSION

WHEELS

cfwheels

ColdFusion on Wheels
provides fast application
development, a great
organization system for your
code, and is just plain fun to
use.

Downloads

0 Reviews

Mach-11

The mission of Mach-1l is to
serve as a powerful, object-
oriented, MVC framework for
developing CFML
applications. The team
behind Mach-II believes that
enterprise-level CFML

Most Downloaded

ColdBoxX [t

ColdBox Is an event-driven
conventions based
GoldFusion Framework.

§ Downloads

0 Reviews

Model Glue

The Model-Glue family of
frameworks support Web
application developers by
making the construction of
Object-Oriented Web and
RIAs a straightforward
process.

Fusebox

Fusebox Is a framework for
building web applications.

0 Downloads

0 Reviews

It is your choice if you want to use the Railo Extension Store or your own provider. Here are
the main differences between the two:

[2801]



http:///

Chapter 9

Option

Extension Store Own provider

Paid extensions  You can't add paid extensions to You can build your own payment

the store (there is a Contact us  handling

link though)

Exposure The Store Extensions are shown You'll have to tell people to add your
in every Railo Administrator provider to the Railo Administrator
worldwide

Statistics The store only has one You can log every request, which gives
statistic—the total number of you more insight into its use
downloads

Hosting Done by the Extension Store Done by yourself

sSummary

We learned about extending Railo Server in this chapter, by using the Extension system,
custom tags, and custom functions.

Specifically, we covered:

L 4

Creating and installing a custom tag in Railo Server. We learned how to enhance the
<cfabort > tag, and where to save it so it will be picked up as a custom tag.

Creating a custom function: cleanScope. We also saw how to use array and
struct notation with form variables.

How to use the Railo Administrator to install extensions.

How to create our own Railo Extension. We created a tiny little web application and
then created and zipped the necessary installation files.

By creating and exploring ExtensionProvider.cfc, we learned how we can
distribute our own extension. We also logged downloads and talked a bit about
hosting paid extensions.

After all the trouble of creating the ExtensionProvider, we found out that there
is an extension store where we can simply upload our extension into. We also did a
small comparison between the Store and a self-hosted extension provider.

Now that we have learned about extending Railo Server, let's build a full application. In the
next chapter, we are going to build a video-sharing application from start to finish.

Let's get coding!

2811


http:///



http:///

10

In the preceding chapters, we have looked at a lot of features that are available
to you in Railo Server. It's time to put them all into practice. This chapter will
guide you through developing a video sharing application from start to finish.
Also, in this process, we are going to put into practice techniques we learned

in previous chapters so you can see how the various aspects of Railo Server
actually work in a real world example.

In this chapter, we will:

Build an application to share videos
Use the Railo Server ORM system to register and log in users

Use the video conversion capabilities to convert videos ready for the web

* 6 o o

Use the session scope to allow users to log in to the application

Doesn't sound like a lot, but with these aspects, we can build a fully working application.
Let's get to it!

Before we get coding, let's get acquainted with the application we are going to be building.
VideoShare is a video-sharing website. It allows users to upload a video, which is then
converted into a format suitable for display on the Web. It also allows registered users to
comment on those videos.


http:///

Creating a Video-sharing Application

When finished, our application should look like the following screenshot:

® 00 VideoShare I
E] o [+  http:/ /localhost:3888 /videoshare/index.cfm & | Q- Google i
- LogoutUpload
VideoSh

Buck Bunny Clip 2 submitted by Mr User Recent Videos
- — . |

.B_u(k Bunny Clip 2

e}

f

?|

N =ih
k Bunny Clip

Sean Corfield talking at MuraCon

Railo Fans Cheering!

Mr Bucky Bunny

® 2011 Railo Technologies

Before we get coding, let's make a list of the things that the video sharing application
should do:

¢ Be able to show a home page with a main video and a list of all the other items that
have been recently uploaded

Be able to register a user so that they can upload a video

Allow users to log in and log out of the application

Only allow registered users to upload a video

Convert a video into a format that is web viewable

Create a large poster image of the video

*® 6 ¢ 6 0 o

Create a thumbnail version of the poster image

12841



http:///

Chapter 10

Other goals are:

¢ Allow registered users to comment on a video

¢ Display comments underneath a video

That seems to be enough to get on, so let's start implementing these features.

Let's get the ball rolling by creating our application skeleton and adding our initial settings.

Time for action - creating our hasic application

To start off, let's just create a place to store our application.

1. Inthe <Railo Install Locations/wwwroot/ path, let's create a folder named
VideoShare. This might as well be the name of our application.

2. Inthe VideoShare folder, create a file named Application.cfc and add the
following code:

component {
this.name = "VideoShare'";
this.datasource = "VideoShare";
this.ormEnabled = true;
this.sessionmanagement = true;
this.ormSettings = {};
this.ormSettings.dbcreate = "dropCreate";

}

Let's look at the previous code for a second as there is a lot going on. We already
know that the Application.cfc file controls the settings in an application; so

by creating a new one here, we can manage various settings. The first setting is the
name of the application, in this case, we have named it VideoShare and then we
have defined that it will use a datasource named videoShare, which we will set
up in the next section. Because we will want to track user sessions to see if they are
logged in or not, we are setting this.sessionmannagement = true.We shall
look further into how we manage it later on.

Then comes the magic: we set this.ormEnabled=true; which enables us to
define our data domain using only Railo Components and not have to bother with
playing around with the database itself.

[2851]



http:///

Creating a Video-sharing Application

3.

5.

Because we are in development mode, we will be changing the schema

(or structure) of our database, so we need to set some settings for the ORM by

first creating the this.ormSettings = {}; structure. To this structure, we add
this.ormSettings.dbcreate = "dropCreate", which tells Railo server that if
we change our ORM-persisted components, Railo Server will drop and re-create the
database tables. Be warned—this means that any data we have there will also be
deleted, so it's only good while we are developing.

We have got all our settings in place, now let's get our first page set up. In the same
folder that we created our Application.cfc file, let's create our index.cfmfile
and put the following content in it:

<!DOCTYPE htmls>
<html lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html;
charset=utf-8">

<link rel="stylesheet" href="css/main.css" type="text/css">
<title>VideoShare</title>

</head>
<body>
<cfoutput>
<div id="header">
<hl><a href="index.cfm">VideoShare</a></hl>
<div id="topnav"s>
<ul>
<li><a href="login.cfm">Login</a></1li>
<li><a href="register.cfm">Register</a></1li>
</ul>
</div>
</div>
<div id="main">
<div id="content"s>
Welcome!
</div>
</div>
<div id="footer"s&copy; #DateFormat (Now(), "yyyy")# Railo
Technologies</div>
</cfoutput>
</body>
</html>

The previous code should give you an idea of the layout we are going to use. We
have three main divs in our layout, namely, header, main, and footer.

[2861]



http:///

Chapter 10

6. You should have also noticed that we are using a stylesheet. Let's create a folder
named css in our current working folder and copy the main. css from the source
code files available for this book from the PacktPub site; they should be under
videoshare/css/main.css. Once you have added these, hopefully your site will
look as follows:

eno VideoShare e’

| | + ﬁh[tp‘,ff\o(alhus['SSSE,i\rldeosharep’mdex_lnna\.(fm ¢ [ [Q- Google

VideOShare Login Register

© 2011 Railo Technologies

7. By now, you should be all set to actually start creating our application.

What just happened?

Before we dive into our application, let us have a look at the nice layout we have ready. We
have set up our application with the ORM settings used while we were developing. To make
the site look a bit better, we have added a stylesheet to the code.

Because we have defined the name of the datasource as videoShare in our
Application.cfc, we need to create that now, even though we are not going to use it yet.

You have done this a number of times before in this book, so why don't you try creating a
new database in MySQL and creating a datasource in the Railo Web Administrator? It should
be pretty easy by now.

12871


http:///

Creating a Video-sharing Application

Laying it all out

There is a problem here with our initial strategy. Because we are going to be adding a few
more pages and want to let them have the same look and feel, we could copy the index.
cfm page each time, but this would mean that if we wanted to change the layout, or add
any logic to the navigation, we would have to make the change to every page. Instead of
doing that, we can use a custom tag to create our layout, and just call that from each page.

Time for action - creating the layout custom tag

We are going to split out the main part of our layout into a custom tag. A custom tag is handy
for this, because we can call it from all the pages:

1. Let'sfirst create a file in our videoshare directory named layout . cfm. Copy all
the contents of index.cfm into this file, because so far, all we have is something we
are going to repeat in our code. 1ayout . cfm should now look like this:

<!DOCTYPE htmls>
<html lang="en"s>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8">
<link rel="stylesheet" href="css/main.css" type="text/css">
<titles>VideoShare</title>
</head>
<body>
<cfoutput>
<div id="header"s>
<hl><a href="index.cfm">VideoShare</a></hl>
<div id="topnav">
<ul>
<li><a href="login.cfm"s>Login</a></1li>
<li><a href="register.cfm">Register</a></1li>
</ul>
</div>
</div>
<div id="main">
<div id="content">
</div>
</div>
<div id="footer"s&copy; #DateFormat (Now(), "yyyy")# Railo
Technologies</divs>

[2881]



http:///

Chapter 10

</cfoutput>
</body>
</html>

Let's change the code in 1ayout . cfm and add the following:

<cfif ThisTag.executionmode IS "start"s>
<!DOCTYPE htmls>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8">
<link rel="stylesheet" href="css/main.css" type="text/css">
<title>VideoShare</title>
</head>
<body>
<cfoutput>
<div id="header"s>
<hl><a href="index.cfm">VideoShare</a></hl>
<div id="topnav"s>
<uls>
<li><a href="login.cfm">Login</a></1li>
<li><a href="register.cfm">Register</a></li>
</uls>
</div>
</div>
</cfoutput>
<div id="main">
</cfif>

<cfif ThisTag.executionmode IS "end">

</div>

<cfoutput>

<div id="footer"s>&copy; #DateFormat (Now (), "yyyy")# Railo
Technologies</divs>

</cfoutput>

</body>

</html>

</cfif>

[2891]



http:///

Creating a Video-sharing Application

3. Asyou can see, we have removed the <div id="content"s</div> from the
middle of the template and surrounded the top part (which every page will have)
with the <cfif thisTag.executionmode IS "start'"s condition. This tells
the Railo Server that it will only display that portion when the custom tag is opened
and the bottom section will be called when the custom tag is closed. We also
need to re-jig where we have our <cfoutput > tags so that they are within their
respective <cfif> statements.

4. Let's change our index.cfm file to use this custom tag. Let's replace the contents of
index.cfm with the following:

<cf layout>
<div id="content">
</div>

</cf layouts>

What just happened?

Repeating code isn't very good, because you have to be tied down to doing multiple searches
and replace actions when you want to change even the slightest thing. Custom tags are very
handy for repeating code, as they are very light in performance and have other benefits that
we will see later in this chapter, such as passing variables.

All the actions that you can do in our VideoShare application will require users to be logged
in, but before they can even log in, we should let users actually register. Before we create our
registration form, we are going define the persistent objects of our application. Let's start
with the user.

Time for action - creating our user model ohject

The User object in our application will need a few properties for us to work with, for
example, a username, user e-mail address, and password.

1. Let's create a folder named model in our videoshare directory; this is where all
our model objects are going to be stored so that they are out of the way, and we can
easily tell where they are.

[290]


http:///

Chapter 10

2.

In the model folder, create a file named User. cfc and add the following content:

component persistent="true"{

property name="id" fieldtype="id" ormtype="int"
generator="increment";

property name="email";

property name="password";

property name="username";

}

In the previous code, we see that we have used the persistent="true" property;
this alerts the ORM in Railo Server that it should create a table for this component.
Then, we use the property name="id" fieldtype="id" ormtype="int"
generator="increment"; to define a unique ID for this property of the name id.
We then add properties for e-mail, password, and username. They will, by default,
become varchar fields in our database.

Now that we have the object, let's create a form for people to register from. In
the videoshare directory, create a template named register.cfm with the
following code:

<cf layout>

<cfparam name="FORM.username" default="">
<cfparam name="FORM.email" default="">
<hl>Register</hl>

<cfoutput>

<form action="register user.cfm" method="post" accept-
charset="utf-8">
<div class="input">
<label for="username">Username</label><input type="text"
name="username" value="#form.username#" id="username">
</div>
<div class="input">
<label for="email">Email</label><input type="email"
name="email" value="#form.email#" id="email"s>
</div>
<div class="input">
<label for="password">Password</label><input type="password"
name="password" value="" id="password">
</div>
<div class="input">

2911



http:///

Creating a Video-sharing Application

5.

<label for="password confirmation">Password Confirmation</
label><input type="password" name="password confirmation" value=""
id="password confirmation">

</div>

<p><input type="submit" value="Register &rarr;"></p>
</form>

</cfoutput>
</cf layout>

There seems to be a lot going on here, but it's rather basic. We have used the
<cfparams tags to set default values for most of our fields (we ignored the
password fields because we don't want to set a default for those) and we created a
form. The form points to the register user.cfmtemplate that we are going to
create next.

We have also created a number of fields, and they have a default value by adding
the #form.username# and #form.email#, so that if there is an error when we
submit it, the user doesn't need to re-fill in the field.

You might have also noticed that we are now using our <c£_layout> tag
surrounding the whole template. This saves us the trouble of re-writing the header
again. Neat!

Before we go on, you might notice that the title of the page just says VideoShare.
Let's improve our layout by adding the sub section that we are in. In the register.
cfm file, change the code at the top to the following:

<cf layout section="Register"s

<cfparam name="FORM.username" default="">
<cfparam name="FORM.email" default="">
<hl>Register</hl>

We are now passing to our layout .cfm file an attribute called section. Let's edit
the top of the 1ayout . cfm template to display it:

<cfif ThisTag.executionmode IS "start"s
<cfparam name="attributes.section" default="">
<!DOCTYPE htmls>
<html lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html;
charset=utf-8">

<link rel="stylesheet" href="css/main.css" type="text/css">
<cfoutput> <title>VideoShare #attributes.section#</title> </
cfoutput>
</head>

12921



http:///

Chapter 10

9. Asvyoucan see, we used a <cfparams to define the attributes.section
variable; this variable is blank by default and then we add it to the <title> tag of
our page, surrounding it in <cfoutput> tags so that it will be rendered. When we
gotohttp://localhost:8888/videoshare/register.cfm, we now see the
form as well as the title of the page, showing us that we are in the Register section

of our site.
e 00 VideoShare Register "
[al>] |§] | + | @ http://localhost:8888 /videoshare/register.cfm ¢ [ (Q~ Google
VideoShare Login Register
Register

Username
Email
Password

Password Confirmation

Register —+

® 2011 Railo Technologies

10. Now that we have the form ready, let's create the action template that will do all
the work. Because our form was pointing to register user.cfm for the action,
let's create that template in our videoshare folder and put the following code in
the beginning:
<cfparam name="FORM.username" default="">
<cfparam name="FORM.email" default="">
<cfparam name="FORM.password" default="">
<cfparam name="FORM.password confirmation" default="">
<cfparam name="errors" default="#[]#">
<cfscripts>

</cfscript>

<cf layout section="Registered!">

<hl id="congratulations!">Congratulations!</hl>

<p>You have successfully registered to Video Share!</p>
</cf layouts>

12931


http://localhost:8888/videoshare/register.cfm
http://localhost:8888/videoshare/register.cfm
http:///

Creating a Video-sharing Application

11. Not much here yet, as we are not actually processing, but you can see we are using
<cfparam> to set up some defaults, including an array of errors, which we can
pre-fill if anything went wrong. We also have a <cfscript> block. We are going to
code our registration logic in <cfscript> here because it will be quicker to write
without using tags.

12. Let's first check for some obvious errors in the registration page, such as making
sure they filled in their names, that their e-mails are valid, and that their passwords
match. In the <cfscript> block, add the following code:

<cfscripts>
if (!Len (FORM.username) ) {
ArrayAppend (errors, "Username is missing");
}
if (!Len(FORM.email) OR !isValid("email", FORM.email)) {
ArrayAppend (errors, "Email is not wvalid");

bi

if ((!Len (FORM.password) OR !Len (FORM.password confirmation)) or
FORM.password NEQ FORM.password confirmation) {

ArrayAppend (errors, "The password was not set or it doesn't
match the confirmation password") ;

}

</cfscripts>

13. Next, we should check that they are not already registered. This is where we can
see if there already is a user with this e-mail; it's quite simple, so let's add some
code after the last check:

<cfscripts>

if ((!Len (FORM.password) OR !Len (FORM.password confirmation)) or
FORM.password NEQ FORM.password confirmation) {
ArrayAppend (errors, "The password was not set or it doesn't
match the confirmation password") ;

}

//Check that the email is not already in the database;
User = EntityLoad("User", {email=FORM.email}) ;
if (ArrayLen (User)) {
ArrayAppend (errors, "A user with this email address has
already registered! Try another email address.");

}

</cfscripts>

12941



http:///

Chapter 10

14.

15.

The User object is loaded by using the ORM function EntityLoad (); we pass in
the object type we are expecting, User, and then pass in an array of conditions; in
this case, email=FORM. email. If it returns any items in from the EnityLoad ()
function, it means that there are already existing users in the database, so we add
another error to our error array.

So what happens when you have an error? Simple, we include the register.cfm
template again, by adding the following code:

<cfscripts>

User = EntityLoad("User", {email=FORM.email}) ;
if (ArrayLen (User)) {
ArrayAppend (errors, "A user with this email has already
registered! Try another email address");
}
if (ArrayLen (errors)) {
include template="register.cfm";
abort;

}

Now that we are re-displaying the main register.cfmtemplate when we have
an error, let's display those errors in the register.cfmtemplate. At the top of
register.cfm, let's add another <cfparam> variable to set up our default errors
array and then loop though them if there are any:

<cf layout section="Register"s

<cfparam name="FORM.username" default="">
<cfparam name="FORM.email" default="">
<cfparam name="errors" default="#[1#">

<hl>Register</hl>
<cfoutput>
<cfif ArrayLen(errors) >
<div class="errors"s>
<uls>
<cfloop array="#errorsf#" index="e">
<lisf#tett</1li>
</cfloop>
</uls>
</div>
</cfif>

[2951]


http:///

Creating a Video-sharing Application

16. Great! Now, when we submit an empty form, we should get something similar to
the following screenshot displayed:

VideoShare

Register

e Username is missing

¢ Email is not valid

¢ The password was not set or it doesn't match the confirmation password
Username
Email
Password

Password Confirmation

Register —+

17. So, now that we have managed to deal with erroneous form submissions, how
about actually registering our user? After we check there aren't any errors, we can
add the code to create a new user, since we are using the abort ; function to stop
the rest of the page processing and we are safe to add a new user. Let's add some
code to register user.cfmto handle that:

<cfscripts>

if (ArraylLen (errors)) {
include template="register.cfm";
abort;

NewUser = EntityNew ("user");
NewUser.setEmail (FORM.email) ;
NewUser.setPassword (FORM.password) ;
NewUser.setUsername (FORM.username) ;
EntitySave (NewUser) ;

//Also log them in too!

session.userid = NewUser.getID() ;
</cfscript>

[2961]



http:///

Chapter 10

18. To add a new user, we use the EntityNew ("User") function to return a blank
new ORM object for us to use. We then set the Email, Password, and Username.
Finally, we use the EntitySave (NewUser) to persist our user to the database. In
the final part of our function, we save the new user ID to the SESSION scope; this
will tell our application that the user is logged in.

the database. The beauty of the EntitySave () function is that
S

The EntityNew () function takes an entity name as an
input (in this case, User) and creates a new ORM object. The
EntitySave () function will insert the NewUser object into

Railo Server smartly figures out whether the record needs to be
inserted or updated in the database. We can also tell the Railo
Server if we want the current operation to be an insertion of a
new record by using the 'true' parameter.

19. Finally, to tidy up our application, we should set a default variable in the SESSTON
scope, so that session.userid is always available. To do this, we can add it to
the onSessionStart () function in our Application.cfc template. Let's add
the following function so that our Application.cfc looks as follows:

component {

this

this.
this.
this.
this.
this.

.name = "VideoShare";

datasource = "VideoShare";
ormEnabled = true;

sessionmanagement = true;
ormSettings = {};
ormSettings.dbcreate = "dropCreate";

function onSessionStart () ({

session.userid = 0;

}
}

20. The code in onSessionStart () will make sure that every time we start a new

session,

the variable session.userid is available.

2971



http:///

Creating a Video-sharing Application

21. We can now go and add some real details to our form and submit it. We finally get
the friendly welcome message that we had in our template:

VideoShare

Congratulations!

You have successfully registered to Video Share!

© 2011 Railo Technologies

22. And by inspecting the database (you can use your favorite MySQL client or the
command line application), we can see that the new user has been created.

id ermail password username
1 user@domain.com password myuser
What just happened?

We managed to do a lot in this section. We created a form (with the default values for
safety), added error handling by checking the user input from the registration form, checked
our database for other users with the same e-mail address, created a new user using the
EntityNew () function, and added the user ID to the session so that they are logged in after
registering.

User login and logout

Now that the users are able to register, we should handle the login and logout, as well as
check whether the users are indeed logged in or not. By now, we should be logged in (as we
have just registered). Let's change the header to display whether we are logged in or not.

[298]


http:///

Chapter 10

Time for action - log in or log out of the application

1. Open upthe layout.cfm file and change the header section to look like the
following code:

<body>
<cfoutput>
<div id="header">
<hl><a href="index.cfm">VideoShare</a></hl>
<div id="topnav">
<ul>
<cfif NOT session.userids>
<lis><a href="login.cfm">Login</a></1li>
<li><a href="register.cfm">Register</a></li>
<cfelse> <!--- only display if logged in --->
<li><a href="logout.cfm">Logout</a></li>
<li><a href="upload.cfm">Upload</a></li>
</cfif>
</uls>
</div>
</div>
</cfoutput>

2. Inthe previously highlighted code, we are checking if SESSION.userid is set
(to anything except 0) and this means that a user has logged in. If they are logged
in, we now display the logout and upload links; otherwise we display the login and
register links.

3. When we now head to the home page of our VideoShare by going to
http://localhost:8888/videoshare/index.cfm, we will see the
logout and upload links. It's all working!

4. Let's add the logout functionality; all it has to do is set our session.userid
variable to 0. Create a logout . c£m template and put the following code to do this:

<cfset session.userid = 0>

<cf layout section="Logout's>

<hl>Sorry to see you go!</hl>

<p>You have successfully logged out of Video Share, come back
soon!</p>

</cf layout>

5. The template is pretty simple. We are just setting session.userid = 0 and
displaying a friendly message to the user. That's it for logging the user out. Let's let
them log in again.

[299]


http://localhost:8888/videoshare/index.cfm
http://localhost:8888/videoshare/index.cfm
http:///

Creating a Video-sharing Application

6.

First, we are going to create a 1ogin.cfm template with a login form asking our
user for his/her e-mail and password. Add the following code into a new login.
cfmtemplate:

<cf layout section="Login">

<cfparam name="FORM.email" default="">
<cfparam name="FORM.password" default="">
<cfparam name="errors" default="#[1#">
<cfoutput>

<hl id="login"sLogin</hl>

<p>Enter your email and password to login!</p>

<cfif ArrayLen(errors) >
<div class="errors"s>
<ul>
<cfloop array="#errors#" index="e">
<lis#teff</1li>
</cfloop>
</uls>
</div>
</cfif>

<form action="login user.cfm" method="post" accept-
charset="utf-8">

<div class="input">

<label for="email">Email</labels>

<input type="email" name="email" value="#form.email$#" id="email">
</div>

<div class="input">

<label for="password">Password</labels>

<input type="password" name="password" value="" id="password">
</div>

<p><input type="submit" value="Login &rarr;"></p>

</form>

</cfoutput>
</cf layouts

Even though there is a lot of code being added, you have seen most of it before
with the registration form. We have our layout, our form variables which are set
as default with the <cfparam> tag, a loop through any errors we encounter, and
finally, the form with an e-mail and password field that we are sending to login
user.cfm.



http:///

Chapter 10

Let's create the template that will actually log in our users. Let's create a Login
user.cfmtemplate and add the following code:

<cfparam name="FORM.email" default="">
<cfparam name="FORM.password" default="">
<cfparam name="errors" default="#[]1#">

<cfscripts>
if (!Len(FORM.email) OR !isValid("email", FORM.email)) {
ArrayAppend (errors, "Email is not wvalid");

bi

if (!Len (FORM.password) ) {
ArrayAppend (errors, "The password was not set");
}
//Try to lookup the user
User = EntityLoad("User", {email=FORM.email, password=FORM.
password}, true);

if (isDefined ("User")) {
session.userid = User.getID() ;

}

else {
ArrayAppend (errors, "We couldn't find you, check your email
and password") ;

}

if (ArrayLen (errors)) {
include template="login.cfm";
abort;

</cfscripts>

<cf layout section="Login Welcome!">
<hl id="welcome!">Welcome!</hl>
<p>You have logged in! You can upload videos now!</p>

</cf layout>

[3011



http:///

Creating a Video-sharing Application

9. Similarto our register user.cfmtemplate, we are first setting our default
expected fields, checking for errors as we did before, and then using the
EntityLoad ("User", {email=FORM.email, password=FORM.password},
true) ; function, while passing in a structure of e-mail and password as our
search criteria. The final true variable that we are passing into the EntityLoad ()
function is actually saying that the function should return only one record, rather
than an array of objects. We then check if we have found a user whose e-mail
and password matches what we have in our database, and if one is found, we set
the session.userid variable to that user ID and display the welcome screen;
otherwise, we add an error and include the login form again. Pretty simple right?

What just happened?

Using the same methods we saw in registering our users, we were able to set and unset
the SESSION.userid variable that we are using in our application to say whether a user is
logged in or not.

Other security functionality in Railo server

~\l There are other tags that you can also use to log in and authenticate users in
Railo Server. The tags <cflogin>, <cfloginusers>, and <cflogout>
Q could accomplish the same thing. You can then use a number of functions
to check if a user is logged in, such as isUserLoggedIn () and
isUserInRole ().

Now that we have our users nicely logged in, we can get to the core functionality of our
application, namely, that of uploading and converting videos.

As was mentioned in Chapter 7, Multimedia and AJAX, we will be using the video extension
you should have downloaded from the Extension store to convert uploaded videos and the
<cfvideoplayers tag to display it. We are also going to create some preview images for

our videos, so when we display them, there will be a screenshot from the actual video

to view.

3021



http:///

Chapter 10

Time for action — uploading a video

1.

Now that we are logged in and ready to upload a video, let's create a form for the
user to do this. Add a template named upload.cfmin your videoshare folder
and add the following code:

<cf layout section="Upload Video">

<cfparam name="FORM.title" default="">
<cfoutput>

<hl id="upload video">Upload Video</hl>

<p>In this section you can upload a video</p>

<form action="upload video.cfm" method="post" enctype="multipart/
form-data">

<div class="input">

<label for="title"s>Title</label>

<input type="text" name="title" value="#form.title#" id="title">
</div>

<div class="input">

<label for="video">Video</label>

<input type="file" name="video" id="video">

</div>

<p><input type="submit" value="Upload &rarr;"></p>
</form>
</cfoutput>
</cf layout>

This is a simple form. We have seen this before with the registration and login
forms, but there are a couple of notable differences. The first difference being the
enctype="multipart/form-data™" attribute in the <forms> tag. This is required
to upload files (such as videos and pictures); otherwise, all that will be uploaded

is the path to the video, not the video itself. The second difference is in regards to
actually adding an <input type="file" ...>tagto upload our video.



http://localhost:8888/videoshare/upload.cfm
http:///

Creating a Video-sharing Application

3. When we head to http://localhost:8888/videoshare/upload.cfm, we can
now see our neat little upload form.

VideoShare

Upload Video

In this section you can upload a video

Title

Video Choose File | no file selected

Upload —

© 2011 Railo Technologies

4. Now that we have our form, we need to create the file that is going to do the
uploading for us; but before we do that, let's create four folders under our
VideoShare directory:

o uploads: Here, we are going to initially upload our videos
o videos: Here, once converted, all the videos will reside
o thumbs: Here we are going to place the thumbnails for our application

o posters: Here we are going to put the large image of the videos that we
are going to use as a poster frame

5. Your videoshare folder should now look something like this:

8.0.60 [ videoshare
Name 4| Date Modified Size Kind
— Application.cfc Yesterday 16:21 252 bytes Cold Fusion file
> | css Yesterday 15:29 - Folder
e index.cfm Yesterday 15:37 64 bytes Document
e layout.cfm Yesterday 17:09 953 bytes Document
2 login_user.cfm Yesterday 17:21 796 bytes Document
2 login.cfm Yesterday 17:17 797 bytes Document
2 logout.cfm Yesterday 17:13 170 bytes Document
» [ model Yesterday 15:38 -- Folder
» [ ] posters Today 11:02 - Folder
% register_user.cfm Yesterday 16:20 1KB Document
2 register.cfm Yesterday 16:26 1KB Document
» [ thumbs Today 11:02 -- Folder
2 upload.cfm Yesterday 17:59 575 bytes Document
» [ ] uploads Today 11:02 -— Folder
b [ ] videos Today 11:02 - Foldar

3041



http://localhost:8888/videoshare/upload.cfm
http:///

Chapter 10

6.

Let's upload the initial video. Under your videoshare folder, create a template
named upload video.cfm, add the layout, and so on, so that it looks like the
following lines of code:

<cfparam name="FORM.title" default="">
<cfparam name="FORM.video" default="">
<cfparam name="errors" default="#[]#">

<cfscripts>
if (!Len(form.title) OR !Len(FORM.video)) {
ArrayAppend (errors, "Please Upload a valid video and give it a
title") ;
include template="upload.cfm";
abort;

}

file action="upload" destination="#expandPath ("upl
oads")#" filefield="video" nameconflict="makeunique"
result="uploadedvVideo";

</cfscripts>

<cf layout section="Video Uploaded!">
<hl id="video_ uploaded">Video Uploaded!</hl>

<p>You have successfully uploaded your video! Our video
converting cats will get right on it to make your video look
awesome! </p>
</cf layouts>

In the previous code, we have our usual <cfparam> tags, making sure that we have
defaulted the values of the FORM scope we are expecting, added an error array
variable to store any errors, and then we checked that we have a title and video.
The next part is important: file action="upload" destination="#expand
Path("uploads")#" filefield="video" nameconflict="makeunique"
result="uploadedvideo" ;; this line takes a file, and uploads it, and then we
define the location as to where it will be uploaded with destination="#expan
dpath ("uploads") #". To tell Railo Server which form field we expect the file to
come from, we add the filefield="video" attribute.

Because a lot of videos could be called the same, such as MyvVideo.mov, we use
the attribute nameconflict="makeunique" to make sure we have a unique
name for this file when we save it. Finally, we return all the information using the
result="uploadedvideo" attribute.



http:///

Creating a Video-sharing Application

What just happened?

In this section, we set up a form as we had done before. However, this time we changed the
<forms> tag so that we could upload files to the Railo Server. When we post the form, we
can then easily upload the file to a directory of our choice using the file tag.

Tags in CFScript

Railo Server is able to parse tags inside the <cfscript> tag as if they are
scripts. We have just done that in the previous section. For example, we can
write the following tag:

<cffile action="upload" destination="#expandPath ("upl
N oads")#" filefield="video" nameconflict="makeunique"

~ result="uploadedvideo">
This is done inside the <cfscript> block as:
file action="upload" destination="#expandPath ("uplo

ads")#" filefield="video" nameconflict="makeunique"
result="uploadedvideo";

We do this by simply removing the first <cf part of the string and replacing the
closing angle bracket (>) with a semi-colon ( ;). You can convert nearly all of the
Railo Server tags to the <cfscript> format.

One of the things we haven't touched yet is one of the security requirements we have
for users to upload a file. Only users that have registered and logged in should be able to
upload a file, and presently, this is not the case. Let's add another custom tag to protect
these templates.

Time for action - adding the secure tag

To add some security, we need to check if a user has logged in; we can do this by using a
tag that can be added at the top of each file that we want to secure. Let's add a custom tag
called <cf secure> to our templates:

1. Create atemplate under the videoshare directory named secure.cfmand add
the following code:

<cfif session.userid NEQ 0>
<cfinclude template="login.cfm">
<cfaborts>

</cfif>



http:///

Chapter 10

The tag is rather simple; it checks whether we have a session.userid setand
makes sure it isn't equal to zero with the NEQ operator. If it is not set, it includes our
login.cfmtemplate and then aborts the rest of the rendering of the page. If there
isa session.userid set, it will ignore this statement.

At the top of the upload. ctmfile, let's call the <c£_secures tag:

<cf secure>

<cf layout section="Upload Video">
<cfparam name="FORM.title" default="">
<cfoutput>

<hl id="upload video"s>Upload Video</hl>

When a user of our site now requests http://localhost:8888/videoshare/
upload.cfmand they haven't logged in, they will now get the 1ogin.cfm
template instead of the one they requested.

Let's do the same for the upload video.cfmtemplate:

<cf_ secure>
<cfparam name="FORM.title" default="">
<cfparam name="FORM.video" default="">
<cfparam name="errors" default="#[]#">
<cfscripts>

If we now try going to http://localhost:8888/videoshare/upload.cfm, we
will get a login screen:

enon Vig

| 4| ] [3 | + | @ nttp:/ /localhost:B888 /videoshare/upload.cfm

VideoShare

Login
Enter your email and password to login!

Email

Password

| Login = |

[3071


http://localhost:8888/videoshare/upload.cfm
http://localhost:8888/videoshare/upload.cfm
http://localhost:8888/videoshare/upload.cfm
http://localhost:8888/videoshare/upload.cfm
http://localhost:8888/videoshare/upload.cfm
http:///

Creating a Video-sharing Application

What just happened?

The requirements of our application are such that there are pages that need to be protected.
By creating a simple tag that does the protection for us, we can change how we handle security
at a later stage, update the <c£_secure> tag, and know that it will all still work as required.

We could have added the code to check if a user is logged in, in each of our templates, but it
is always better to externalize code that is going to be repeated.

Assigning videos to users

In our application, we will want to know who has uploaded which video. We are also going to
need to store a reference to our video in the database. What should our Video model object
look like?

If we think about it for a moment, we can come up with a list of properties for a video that
will be displayed:

Title: The name of the video that the user has given us

Original File: The name of the original file that was uploaded

File: A unique name for the converted video, its thumbnail, and poster image
Status: Whether the video has been converted or not

Converted At: The time when the video was converted

Uploaded At: The time when the video was uploaded

® & 6 6 0 0o o

User: The user that uploaded the video

With this information, let's get on and create our persistent object for the video.

Time for action - storing our video to the databhase

1. Let's create a video. cfc file in our model folder under the videoshare folder
and add the following code to the template:

component persistent="true"{
property name="id" fieldtype="id" ormtype="int"
generator="increment";
property name="title";
property name="status" ormtype="int" default="0";
property name="originalfile";
property name="file";
property name="convertedAt" ormtype="timestamp";
property name="uploadedAt" ormtype="timestamp";
property name="User" fieldtype="many-to-one" cfc="User"
fkColumn="User_Id";

}
13081



http:///

Chapter 10

2.

Working through the code, we can see it's very similar to the User object. It has an
id property (the primary key), but we can see we have other types of properties
that are defined by the ormtype attribute. For example, our status property is
defined as an integer with a default of 0 with ormtype="int" default="0" and
our convertedAt and uploadedAt properties are defined as date/time fields
using the ormtype="timestamp" attribute.

Finally, we have a property that is defined as a User. Here we define that many
videos can be uploaded by one user using the fieldtype="many-to-one". This
is achieved by adding a column in the Video table called User_ 1d, which represents
the ID of the user.

Because we can relate many videos to one user, we should also update the User
to say that they can have many videos. So let's add that property to the User.cfc
object in our mode1 directory:

component persistent="true"{

property name="id" fieldtype="id" ormtype="int"
generator="increment";

property name="email";

property name="password";

property name="username";

property name="videos" fieldtype="one-to-many" cfc="Video"
fkColumn="User_ Id";

}

You can see that we have now created a one-to-many relationship between a User
object and a Video object by using the fieldtype="one-to-many" attribute.

Now that we have defined our relationships, we can upload the video and save it in
the database. In the upload video.cfmtemplate, we can add the following code:

<cf_secure>
<cfparam name="FORM.title" default="">
<cfparam name="FORM.video" default="">
<cfparam name="errors" default="#[1#">
<cfscripts>

if (!Len(form.title) OR !Len(FORM.video)) {

ArrayAppend (errors, "Please Upload a valid video and give it a

title");

include template="upload.cfm";

abort;

}

file action="upload" destination="#expandPath ("upl
oads")#" filefield="video" nameconflict="makeunique"
result="uploadedvVideo";



http:///

Creating a Video-sharing Application

8.

User = EntityLoad("User", session.userid, true);
VideoObj = EntityNew ("Video") ;

VideoObj.setTitle (FORM.title) ;
VideoObj.setOriginalFile (uploadedVideo.serverfile) ;
VideoObj.setUser (User) ;

VideoObj .setUploadedAt (Now () ) ;

EntitySave (VideoObj) ;
</cfscripts>

Because we want to add a user to the new Video object we are storing, we first
load the User object by using the EntitylLoad ("User", session.userid,
true) function and by getting the userid from the SESSION scope. Then, we
create a new Video object using the EntityNew ("video") function. Each
property will have a set<PropertyName> method automatically created in our
object, so we can set the title, the originalFile, the Uploadedat time (using
the Now () function), and finally we set the User object we loaded previously.

To save the object, we simply call the EntitySave (VideoOb3j) method and our
object will be stored in the database.

We can now try to upload a video. Because we are using the DropCreate property
inthe this.ormsettings.dbcreate property in Application.cfc, we might
have to re-register our user:

VideoShare
Register
Username Mr User
Email user@domain.com
Password sensnnes

Password Confirmation [,.sseeee

Register —+

© 2011 Railo Technologies

Once we have done that, we should get a friendly greeting stating that we have
registered, and we should also be logged in:

3101


http:///

Chapter 10

VideoShare

Congratulations!

You have successfully registered to Video Share!

© 2011 Railo Technologies

9. Now we can click upload, set the name of our video, and select an
appropriate video to upload (we chose the trailer of Big Buck Bunny
from http://www.bigbuckbunny.org/):

VideoShare

Upload Video

In this section you can upload a video

Title My Videa
Video | Choose File | n bbb_trailer_iphone.mdv
| Upload -+ |

© 2011 Railo Technologies

10. Once we uploaded it, we got another friendly greeting stating that we have

uploaded the file:

VideoShare

Video Uploaded!

You have successfully uploaded your video! Qur video converting cats will get right on it to make your video look awesome!

© 2011 Railo Technologies

Logout Upload

(3111



http://www.bigbuckbunny.org/
http://www.bigbuckbunny.org/
http:///

Creating a Video-sharing Application

11. If we now look in the uploads folder of our videoshare directory, we can see
that the file has been uploaded! Success.

800 [ videoshare
Name 4| Date Modified
| Application.cfc Yesterday 16:21
> [l css Yesterday 15:29
2 index.cfm Yesterday 15:37
2 layout.cfm Yesterday 17:09
2 login_user.cfm Yesterday 17:21
2 login.cfm Yesterday 17:17
2 logout.cfm Yesterday 17:13
» [ model Today 12:23
» [ posters Today 11:02
# register_user.cfm Yesterday 16:20
2 register.cfm Yesterday 16:26
e secure.cfm Today 11:57
» [ thumbs Today 11:02
2 upload_video.cfm Today 17:09
= upload.cfm Today 12:07
¥ [ uploads Today 17:36
¥ [ videos Today 11:02

12. If we now check our database, we can see that a Video table has been created,
and also a new entry has been placed for our video that relates it back to our user
via the User_ Id column.

id title status |originalfile file convertedAt | uploadedAt User_Id
1 My Video 0 bbb_trailer_iphone.mdv 2011-08-31 17:36:30 1
What just happened?

In this section, we used the ORM fieldtype to define a one-to-many relationship between
the User and video objects, as well as relating many videos to one User using the
one-to-many relationship. Finally, once we uploaded the video, we were able to simply
store the video in the database and relate it to the user, without having to write a single line
of SQL code.

[3121



http:///

Chapter 10

DropCreate and other ormsettings.dbcreate properties

Inthe Application.cfc template, we set the this.ormsettings.

dbcreate = "DropCreate" property. This property tells Railo Server that

all the tables should be dropped (deleted) whenever there is a change to any of

the model files. The downside of this is that all your data will also be deleted.
~\l This could be fine in development, but can get rather annoying. You have other

choices though; you can set this property to:

None: It means that none of the tables will be altered, regardless of changes to

your model objects.

Update: Using this, new tables will be created and any additional columns will
be added, hence maintaining your data.

DropCreate: This will delete the tables and recreate them whenever there is a
change or Railo Server is re-started.

So far, we have uploaded our videos and added them to the database, but now, we should
convert the video to a format that is useful for viewing using the <cfvideoplayers> tag, so
that users of the VideoShare site can actually play the videos. After all, it that is the whole
point of the application. Luckily, this is an easy task with the <cfvideo> tag. Let's convert
the videos we uploaded to a format that is actually useful.

Time for action - converting the uploaded video

Let's edit the video upload.cfmfile to add the code required to convert this video to an
Internet-viewable format.

1. Inthe video upload.cfmfile, in our videoShare folder, add the following lines
of code; we will go through what they do in a second:

<cfscript>

VideoObj.setUser (User) ;
VideoObj .setUploadedAt (Now () ) ;
EntitySave (VideoObj) ;

newName = CreateUUID() ;
videoName = newName & ".flv";
</cfscripts>
<cfvideo action="convert"

[3131



http:///

Creating a Video-sharing Application

profile="internet"
source="uploads/#VideoObj.getOriginalFile () #"
destination="videos/#videoName#">
<cfscripts>
VideoObj.setFile (newName) ;
VideoObj.setConvertedAt (Now()) ;
VideoObj.setStatus (1) ;
EntitySave (VideoObj) ;
</cfscript>

<cf layout section="Video Uploaded!">

2. In the previous code, we started by creating the newName variable for our video.
This is done by using the CreateUUID () function, which will give us a unique string
for our converted video. This is a shortcut, but you could use any unique name. In
this case, it will produce a name like 0164BE91-004B-4C42-9B99570EFFEOFFEF.

We then set the videoName variable to be the newName, but we add the .flv
file extension.

We break out of <cfscripts since the <cfvideo> tag is one of the tags that
doesn't have a <cfscript> version equivalent (this will change in the future) and
set the action="convert". We then use the video format shortcut to say we
want an Internet-formatted video with the profile="internet" attribute. Finally,
we get the original filename from our saved video object, set it as the source
attribute in source="uploads/#VideoObj.getOriginalFile () #", and set the
destination with the new name we have created.

We then add some more properties to our Video object: we set the file attribute to
the new name (that we created with a CreateUUID () function), set the date we
converted it, and set the status to 1. We are going to be using the status to get all
the "published" videos later on.

3. If we look in our videos folder, where we store our converted files, you will now
see a file named 0164BE91-004B-4C42-9B99570EFFEOFFEF.flv. Also, if you look in
the database, the entry for the video should be updated.

id title status | originalfile file convertedAt uploadedAt User_ld
1 My Video L bbb_trailer_iphonel.mdv 0164BE91-004B-4C42-3B39570EFFEQOFFEF 2011-09-01 10:56:29 2011-09-01 10:56:23 1

(3141



http:///

Chapter 10

4. So far, we have managed to convert the video, but now we should create a page to
display it. Let's create a new page named play.cfm, which will be used to play our
videos and put the following code:

<cf layout>

<cfparam name="URL.id" default="0">

<div id="content">

<cfset Video = EntityLoad("Video",

true) >

<cfdump var="#Video#">

</divs>

</cf layouts>

{status=1, id=URL.id},

5. This file has a <cfparams at the top, so that we can define a default URL variable

of id. We then use the EntityLoad ("Video",

{status=1, id=URL.id},

true) function to load a video with a status of 1 and an ID which is the URL. id

that we passed in. This should return a video object if found. Finally, we

added <cfdump var="#Video#">, so that we can see the data object that
is passed back:

nf'\f'\

VideoShare

[«]r| (@] + @ hip://localhost:8888/videoshare/play.cm?id=1

¢ | [Q~ Google

VideoShare

Component (Video)

Only the functions and data members that are accessible from your location are displayed
Properties
N [ ]
status -
file [Sifing] 0164BE91-004B-4C42 9B99570EFFEOFFER]
|pub|ic |
[setuser I catllcar 1]

Logout Upload

[315]



http:///

Creating a Video-sharing Application

6. Great! We got the video we uploaded back. Now, let's remove the <cfdump> tag
and replace it with some code to display the video:

<cf layout>
<cfparam name="url.id" default="0">
<cfoutput>
<div id="content"s>
<cfset Video = EntityLoad("Video", {status=1, id=url.id},
true) >
<h2>#Video.getTitle () # submitted by #Video.getUser() .
getUserName () #</h2>
<cfvideoplayer video="videos/#Video.getFile ()#.£f1lv"
width="600" height="338">
</div>
</cfoutput>
</cf layout>

7. First, we surround our code with a <cfoutput> tag; this will allow us to output
the variables. Then, we set the header, while getting the title of the video, and as
we have a User object in our Video object, we can get the username of the person
that posted it by using the syntax Video.getUser () .getUserName (). Finally,
we use the <cfvideoplayers tag to display the video, setting the source
to the videos directory and adding the filename and extension (as well as
the width and height of the player), we can now view the video by going to
http://localhost:8888/videoshare/play.cfm?id=1:

8006 VideoShare .
|4 » | @] + | € hup:/localhost:8888/videoshare/play.cfm?id=1 ¢ | (Q- Google

VideoShare Logout Upload

My Video submitted by Mr User

One error in opening the page. For more information, choose Window > Activity.

[316]



http:///

Chapter 10

8. When we press play, we get our video playing.

What just happened?

This section covered a lot of ground, but we have seen most of the functions before. We
started out by using the <cfvideo action="convert"s tagto convert our video to a

. £1v file. We then used the ORM to update the video object we created before with the
new name and status.

Finally, we used the EntityLoad () function to load our video object from the database to
get the information to pass to the <cfvideoplayers tag and display our video.

Video format shortcuts

You might be wondering where the value for the <cfvideo> tag's format
attribute comes from? When you installed the CFVideo Extension, Railo Server
created a file that lists various formats; you can find this file in <Railo
"Q Install Directorys>/webroot/WEB-INF/railo/video/video.
xml.

This file lists a number of different video format profiles that you can use.

You can, in fact, copy the attributes of each profile and put them into the

<cfvideo> tagindividually to refine your conversions, or add new ones that
L are specific to your needs. -

At the moment, before you click play in the play.cfm page, our video just displays a black
screen. This isn't very friendly, so maybe we should add some images to display as a preview.

This is easy with the <cfvideo> tag as we have another action, called cut Image. Let's use
this tag to create some thumbnails and a preview image.

Time for action - creating images from a video

Let's go add the ability to create thumbnails from our video.

1. Llet'sopenupupload video.cfmagain, and add the following code after we
convert the video:

newName = CreateUUID() ;

videoName = newName & ".flv";

imageName = newName & ".jpg"
</cfscripts>

<cfvideo action="convert"

13171



http:///

Creating a Video-sharing Application

2.

profile="internet"
source="uploads/#VideoObj.getOriginalFile () #"
destination="videos/#videoName#">

<cfvideo action="cutimage"
source="uploads/#VideoObj.getOriginalFile () #"
start="1s"
destination="thumbs/#imageName#" width="100">
<cfvideo action="cutimage"
source="uploads/#VideoObj.getOriginalFile () #"
start="1g"
destination="posters/#imageName#" >

In the previous code, we have added a new variable named imageName, which we
have created using newName, and appended the . jpg extension. This is what we are
going to call our images. Then, after we convert the video, we use the <cfvideo>
tag again, but this time, we will do it by using action="cutimage" and passingin
the original video as the source, and by setting where in the video we want to get an
image from. In this case, we use start="1s" to get a frame from one second into
the video. We then set the destination where we want to save this file. In the first
instance, we use the thumbs directory, as we then use the width="100" attribute
to make an image 100 pixels in width. The <cfvideos> tag is intelligent enough to
figure out the height of the video. We then repeat this tag again, but we remove the
width and save it in the posters folder. We now have a 100 pixel-wide thumbnail in
the thumbs folder and a large image in the posters folder.

Now that we have created our poster image, let's edit the play . cfm template and
add a placeholder to the <cfvideoplayers tag:

<cf layout>
<cfparam name="url.id" default="0">
<cfoutput>
<div id="content">
<cfset Video = EntityLoad("Video", {status=1, id=url.id},
true) >
<h2>#Video.getTitle ()# submitted by #Video.getUser().
getUserName () #</h2>
<cfvideoplayer video="videos/#Video.getFile ()#.£1lv"
width="600" height="338"
preview="posters/#Video.getFile () #.jpg">
</div>
</cfoutput>
</cf layout>

[318]



http:///

Chapter 10

4. All we have to do to display a preview frame is add the
preview="posters/#Video.getFile () #.jpg" attribute to the
<cfvideoplayers> tag. Now, when we upload a new video, you should
see a nice preview of the video as shown next:

® 00 VideoShare 3

| > | |§] |+ @ hip://localhost: 8888 /videoshare/play.cfm?id=2 ¢ | [Q~ Google

Logout Upload

VideoShare

Mr Buck Bunny submitted by Mr User

THE PEACH OPEMSMOVIE PROJECT
PRESENTS

One error in opening the page. For more information, choose Window > Activity.

What just happened?

The <cfvideo> tag has a number of actions, as we saw in Chapter 7, Multimedia and AJAX;
one of them being the ability to get an image still from any part of a video. In this section, we
cut out an image from the video at one second into the clip (most movies start with a blank
screen, so this was a good compromise) and then we added it to the <cfvideoplayers tag
using the preview attribute.

Our application is certainly coming along! Let's add some user interaction now.

Adding comments to our video page

When users are viewing a video, it would be great if they could add a comment, but of
course, only if they are logged in.

[319]


http:///

Creating a Video-sharing Application

In this section, we are going to follow on what we have been doing so far and add the ability
for a user to comment on an individual video. Let's get started by creating a comment-
persisted component.

Time for action - adding comments to our videos

1.

3.

In our model folder, which is under the videoshare directory, let's create a new
component named Comment . cfc and add the following code to define it:

component persistent="true" {

property name="id" fieldtype="id" ormtype="int"
generator="increment";

property name="comment";

property name="postedAt" ormtype="timestamp";

property name="User" fieldtype="many-to-one" cfc="User"
fkColumn="User Id";

property name="Video" fieldtype="many-to-one" cfc="Video"
fkColumn="vVideo Id";

}

In the previous code, we have defined a comment as having an id, a comment
property, and the date it was posted. We have also defined its relationships to the
other model objects in our application. A user can have many comments; therefore,
many comments can belong to one user. The same goes for a video; a video can
have many comments, but a comment can only belong to one user. We define these
relationships easily using the fieldtype="many-to-one".

fieldtype and ORM

The fieldtype attribute can be used to define the relationship
~\l between two ORM objects (or database tables). In the previous
code, we had two properties that were defined with the
fieldtype attribute with a many-to-one relationship between
the User and Video using the columns User Idand Video_
Id. The relationship types that are allowed are one-to-one,
one-to-many, many-to-one, and many-to-many.

Because we have defined relationships from the comment to the user, let's define
the relationship back to the comment from the user. Let's add the following to the
User.cfcin our model directory:

component persistent:"true"{

property name="id" fieldtype="id" ormtype="int"
generator="increment";

property name="email";

property name="password";

3201



http:///

Chapter 10

property name="username";
property name="videos" fieldtype="one-to-many" cfc="Video"
fkColumn="User_ Id";

property name="comments" fieldtype="one-to-many" cfc="Comment"

fkColumn="User_ Id";
}
As you can see we have added a new property for the comment with a
fieldtype="one-to-many"
Let's add the relationship to the Comments object in the Video.cfc
too:
component persistent="true"{

property name="id" fieldtype="id" ormtype="int"
generator="increment";

property name="title";

property name="status" ormtype="int" default="0";

property name="originalfile";

property name="file";

property name="convertedAt" ormtype="timestamp";

property name="uploadedAt" ormtype="timestamp";

property name="User" fieldtype="many-to-one" cfc="User"
fkColumn="User Id";

property name="Comments" fieldtype="one-to-many" cfc="Comment"
fkColumn="video Id";

}

This is nearly identical to the User component, except we change the £kColumn to
use Video Id as the foreign key. After we try this code again, we can have a look
at our database. We should have a Comment table with the video id and
user_id columns:

Field Type Length
id INT . 11
comment WVARCHAR + 255
postedAt DATETIME .

User_| INT s 11
Wideo_ld INT y 11
User_ld INT : 11

3211



http:///

Creating a Video-sharing Application

5. Now that we have defined our relationships, let's add the code to display comments
inthe play.cfmfile:

<div id="content">
<cfset Video = EntityLoad("Video", {status=1, id=url.id},
true) >

<h2>#Video.getTitle () # submitted by #Video.getUser() .
getUserName () #</h2>

<cfvideoplayer video="videos/#Video.getFile ()#.£f1v"
width="600" height="338"

preview="posters/#Video.getFile () #.jpg" >
</div>

<div id="comments">
<h2>Comments</h2>
<div id="commentform">

<form action="comment add.cfm" method="post" accept-
charset="utf-8">

<input type="hidden" name="videoid" value="#Video.
getID()#">
<label for="comment:">Add a comment:</label><br>
<textarea name="comment" cols="60" rows="5"></textarea>
<p><input type="submit" value="Post Comment &rarr;"></p>
</form>
</div>
<cfset comments = Video.getComments () >
<ul class="commentList">
<cfloop array="#Comments#" index="comment"s>

<lis>#comment .getComment () #<br>By #comment.getUser () .
getUserName () #</1i>

</cfloop>
</ul>
</div>

6. After we display the video, we add a new <divs for the comments and create
a normal form that is posting to comment _add.cfm (we shall create this file in
a minute). In that form, we have a hidden field that has the video ID defined as
<input type="hidden" name="videoid" value="#Video.getID()#">.
After the form, we set a variable called comments by calling the video.
getComments () method from the video object. Railo Server had created
this method when we defined the relationships. We then use the <cfloop
array="#Comments#" index="comment"> to loop through the comments
array and display them in a list. Because each comment will have a related user,
we get the username by calling the comment .getUser () .getUserName () on
each comment.

13221



http:///

Chapter 10

7.

Let's handle the actual posting of a comment by creating the comment add.cfm
template with the following code:

<cf secure>

<cfscripts>
param name="FORM.comment" default="";
param name="FORM.videoid" default="0";

Comment = EntityNew ("Comment") ;

Video = EntityLoad("Video", FORM.videoid, true);
User = EntityLoad("User", SESSION.userid, true);
Comment . setUser (User) ;

Comment .setVideo (Video) ;

Comment . setComment (FORM. comment) ;

Comment . setPostedAt (Now () ) ;

EntitySave (Comment) ;

location url="play.cfm?id=#FORM.videoid#" addtoken=false;
</cfscripts>

In this template, we have added the <c£ _secure> tag at the top, since you need to
be logged in to actually post. Then we have set defaults for the FORM. comment and
FORM.videoid variables using the <cfscript> version of the <cfparam> tag.
After that, we create a new Comment object using the EntityNew ("Comment")
function, load up our Video object and User object, set them to the Comment
object, set the comment that a user has posted and when it was posted, and then
save the comment using the EntitySave (Comment) function. Finally, we use the
location url="play.cfm?id=#FORM.videoid#" addtoken=false; to redirect
us back to the video. If we now go and add a comment on our video, we should see
something like:

Comments

Add a comment:

Post Comment —

» This is such a great video!
By Mr User

[323]



http:///

Creating a Video-sharing Application

What just happened?

Continuing on from what we have learned about ORM relationships, we created a Comment
object that was related to the User and vVideo objects. We then modified the User and
Video objects to also have relationships with comments. This is useful in our video display
page as we want to be able to display any comment related to that video. Finally, we added a
page that allowed the saving of a comment by adding other objects to it.

So far we have created a page to display a single video by its ID. But how do we find our
videos in the first place? You might also ask, why did we create thumbnails for our videos if
we are not using them?

In this section, we are going to change our home page to display a video and the most
recent videos that have been uploaded as well as add a list of related videos that will
use the thumbnails.

Let's remind ourselves what our home page currently looks like by going to
http://localhost:8888/videoshare/index.cfm:

[:NaNs] VideoShare |
\: <[> | |2\ + @ nhttp://localhost:8888 videoshare/index.cfm ¢ [ [Qr Google
. Logout Upload
VideoShare
Welcome!

© 2011 Railo Technologies

It looks a bit boring, doesn't it? We should improve it by displaying the latest video which is
ready to play, along with a list of thumbnails of all the latest videos. That should make it a lot
more interesting.

[3241


http:///

Chapter 10

Time for action - getting the latest videos

We could go and get the latest video, then do another query to get a list of the latest videos.
Instead of doing that, we could simply get the top ten latest videos and use the first one as
our "hero" video in the middle. Let's do that:

1.

Open up index.cfmand add the following code to get the latest published videos:

<cf layout>

<cfset Videos = EntityLoad("Video", {status=1}, "uploadedAt
DESC", {maxResults=10})>

<cfset HeroVideo = Videos[1l]>
<cfoutput>
<div id="content">

<h2>#HeroVideo.getTitle () # submitted by #HeroVideo.
getUser () .getUserName () #</h2>

<cfvideoplayer video="videos/#HeroVideo.getFile ()#.£1v"
width="600" height="338"

preview="posters/#HeroVideo.getFile () #.jpg">
</div>

<div id="sidebar">
<h2>Recent Videos</h2>
<ul class="thumbList">
<cfloop array="#Videos#" index="video">
<li>
<a href="play.cfm?id=#video.getID()#"><img
src="thumbs/#video.getFile () #.jpg" border="0"></a><br>
#video.getTitle () #
</1li>
</cfloop>
</uls>
</div>
</cfoutput>
</cf layouts>

Not a massive change here; we have seen most of it before. First off, we get an
array of the latest videos by calling EntityLoad ("Video", {status=1},
"uploadedAt DESC", {maxResults=10}), which gets all the videos with
status=1, ordered by the uploadedat property. Then we set that we are only
going to return ten results. We then set our HeroVideo (the main video on the
page) by getting the first item in the Vvideos array.

[325]



http:///

Creating a Video-sharing Application

As we did in the play.cfm page, we display the <cfvideoplayers> with our
HeroVideo. Finally, we simply list all the videos in another <div> by looping
through the whole array of videos we first obtained. Those videos are actually just
displayed as the thumbnails we created, and we link them to the play.cfm page!

3. Now, after we upload a few more videos, our home page looks much more
interesting, as shown in the following screenshot:

8enn VideoShare =
4> @ | + A http://localhost:8888 /videoshare/index.cfm [+ | '\Q‘ Coogle !
. Logout Upload
Vi h
Buck Bunny Clip 2 submitted by Mr User Recent Videos

%i. B |

Buck Bunny Clip 2

Buck Bunny Clip

Sean Corfield talking at MuraCon

Railo Fans Cheering!

Mr Bucky Bunny

@ 2011 Railo Technologies

What just happened?

We finished our application! To get the latest uploaded videos, we used the

EntityLoad ("Video", {status=1}, "uploadedAt DESC", {maxResults=10})
function to get all the videos that have a status equal to 1 (which we set after we converted
it), we then sorted them by the uploadedAt property and then listed them using the
thumbnails we created earlier.

Now, our application has all the features we want, and it wasn't that hard to achieve!



http:///

Chapter 10

There are areas that we could improve in the application. Why don't you try adding the
following features:

*

Displaying a User page with his/her information and all the videos they have
uploaded

Maybe use the AJAX capabilities of Railo to make the comments system more
interactive

Display related videos on the video display page by relating videos to each other

sSummary

In this chapter, we covered a lot, and hopefully brought together a lot of the features of Railo
Server that we learned in other chapters to develop a full-fledged application.

We covered:

*

Setting up our Application.cfc template so that our application can have access
to the ORM capabilities

Adding an onSessionStart () method to the Application.cfc—this allowed
us to implement a simple security system based on the SESSION scope

Creating components that can easily be persisted in a database—the ORM capability
of Railo Server means that you don't have to worry too much about the database
schema and just get on with developing your application using components that
map to real-world objects

Converting and getting images from videos— by using the <cfvideo> tag. We were
able to convert videos easily to a web-displayable format and also generate poster
and thumbnails from a video

Hopefully, this chapter has given you an overview of how all the features we learned in
previous chapters go together easily. Now, you too can develop complex applications using
Railo Server quickly.

13211


http:///



http:///

Symbols

<cfabort> tag 41, 44, 246, 247, 248
<cfajaxproxy> tag 213, 217, 218
<cfcache> tag

about 171

used, for page caching 171-173
<cfcase> tag 45, 46
<cfcomponent> tag 141
<cfcookie> tag 69
<cfdirectory> tag 222
<cfdiv> tag 217
<cfdump> tag 55, 75, 316
<cfelseif> tag 45
<cfelse> tag 45
<cffile> tag 222
<cffunction> tag 48, 251
<cfhttpparam> tag 45
<cfhttp> tag 45
<cfif> tag 42,44
<cf_layout> tag 292
<cflocation> tag 161
<cfloop file=""> tag 224
<cfloop> tag

about 41, 74, 184, 224

using, in CFScript 191, 192
<cfmailparam> tag 45
<cfmail> tag 45
<cfoutput> tag 40, 41, 74, 293, 316
<cfparam> code 168
<cfparam> tag 65, 68, 292
<cfproperty> tag 154
<cfqueryparam> tag 45

<cfquery> tag 44, 74, 75, 77, 162, 175
<cfscript> tag 182, 251

<cfscript> version 186

<cf_secure> tag 323

<cfset>tag 40, 42,179
<cfstoredproc> tag 45, 79

<cfswitch> tag 46
<cfvideoplayerparam>tag 208
<cfvideoplayer> tag 199, 201, 302, 313, 316, 318
<cfvideo> tag 199, 203, 313, 317
/etc/default/jetty configuration file 34
<form> tag 306

{home-directory} variable 228

<Railo Install Directory>/webroot directory 210
{railo-server} variable 228

{railo-web} variable 228
{system-directory} variable 228
{temp-directory} variable 228
<videoplayer> tag 201
{web-context-hash} variable 228
{web-root-directory} variable 228

A

Access Key ID 239
addComments() method 161
addParam() method 195
addTodo() function 210
admin password, Railo Express
setting 22, 23
Admin Sync 254
AJAX functionality
about 209


http:///

application, setting up 210, 211
input, binding to component 212-214
services, creating 210, 211
task, deleting 217-219
tasks, displaying 214-217
Allaire Technologies 39
Amazon
about 236
Simple Storage Service (S3) 236
Amazon Web Services
URL 236
any, returntype
using 252
application
defining 141-143
SESSION scope, creating in 59, 60
Application.cfc component 143
Application.cfc file 139
application events 143
Application Lifecycle 139
APPLICATION Scope
about 57
creating 57, 58
application section, Railo Web Administrator
settings
about 108
application listener 110, 111
request timeout field 110
script protect 109, 110
applications section, Railo Web Administrator
extension 121, 122
application timeout option, Railo Web
Administrator settings 108
apt-get command 33
archives and resources, Railo Web Administrator
remote 125
ARGUMENTS.sessionScope variable 146
ArrayAppend() function 46, 54
array attribute 185
ArrayDeleteAt() function 210
array notation versions[] 252
array variables
about 53
creating 54,55
AutoDeploy 36
Auto import component 128
AWS console 239

Base/Root component 128
Big Buck Bunny movie

URL 199, 311
blog

creating, persistent components used 152-156
blogpost.cfm 236
blog posts

listing, persistent components used 157-159
built-in functions

using 46-48

C

cacheClear() function 169, 171
cache component 128
cache connection
creating 163, 165
cachedafter attribute 175
cachedwithin attribute 175
cacheGetAlllds() 169
cacheGet() function
about 166-171
parameters 166
cache providers 169
cachePut() function
about 166, 167, 171
parameters 166
cache section, Railo Web Administrator services
114
cache types
about 171
CouchDB 170
EHCache 170
EHCache Lite 170
Infinispan 170
Membase 170
Memcached 170
partial template caching 173
query cache 175
RamCache 170
resource cache 176
template cache 171
caching functions
about 167, 168
cacheClear() function 169
cacheGetAll() function 169

[330]



http:///

caching, Railo Server
about 162
cache connection, creating 163, 165
cache providers 169
cache types 171
caching functions 167, 168
object cache, using 166-178
cascading section, Railo Web Administrator
settings 104
CFDNS extension 257
CFML
about 8, 39, 228
built-in functions 46-48
CFML code 29
CFML compiler 14
CFML engines 170
CFML functions
about 46, 248
cleanScope() 249
isDefined() 248
trim() 248
CFML language
basics 40
Hello World example 40, 41
history 39
CFML scopes
about 55
APPLICATION 57,58
CGl 62,63
REQUEST 60, 62
SERVER 55, 56
SESSION 58, 60
CFML tags
about 41
single tag, with attributes 41
syntax 41
tags, with content 44
tags, with expressions 42
tags, with sub tags 45, 46
CFML variables
about 50
array variables 53-55
structure variables 51-53
CFScript
<cfloop> tag, using 191, 192
wrapped tags, scripting 192, 193
CFVideo Extension 202,317

CFX tags, Railo Web Administrator remote 131
CGl scope 62, 63
charset section, Railo Web Administrator
settings
about 103
Resource charset, type 103
Template charset, type 103
Web charset, type 103
cleanScope() function 249
client cookies option, Railo Web Administrator
settings 108
client management option, Railo Web
Administrator settings 108
clips
creating 205
creating, from video player 204
Cluster Scope 254
code
accessing, from mappings 226
ColdFusion MarkUp Language. See CFML
ColdFusion Server 39
comment_add.cfm template 323
comments
adding, persistent comments used 159-161
adding, to videos 319-324
component dump template 128
component, Railo Web Administrator remote
about 127
additional resources section 130
Auto import component 128
Base/Root component 128
cache component 128
component dump template 128
data access number type 128
magic functions 129
magic functions, using 129, 130
search local component 128
components
about 187
creating 188, 190, 227, 228
content
caching, within template 174
content property 155
context
relating 93
setting up 89, 91
time zone, setting 93-95

[331]



http:///

cookies 68
CouchDB
about 170
URL 170
CreateObject() function 81, 84
CreateTimeSpan() function 60, 176
CreateUUID() function 314
Creative Commons Attribution license 199
Cross-site scripting. See XSS
custom CFML function
creating 249-251
custom CFML tags
creating 243-248
custom extension provider
creating 270-273
custom Railo application extension
creating 261
custom tags, Railo Web Administrator remote
130, 131
cutimage 317

D

data access number type 128
database

creating 151

queries, running against 74-77

setting up 70-72

stored procedures, creating in 79, 80
database access

about 69

queries, with parameters 77, 78

stored procedures 79
database persistence store

creating 150

database, creating 151

railoblog datasource, creating 151, 152
datasource attribute 44
data sources

configuring, in Railo server 72-74
datasource section, Railo Web Administrator

services 114

datasource, VideoShare

creating 287
dateCreated property 155, 159
DateFormat() function 159

DB2 69

debug template section, Railo Web
Administrator development 132-134

DirectoryXXX() function 222

documentation, Railo Web Administrator 135

domain cookies option, Railo Web Administrator
settings 108

dot notation name.last 252

DropCreate property 313

E

EHCache
about 170
URL 170
EHCache Core 254
EHCache Lite
about 170
URL 170
EHCache Lite connection
assigning, to resources 177, 178
Employee component
creating 81-85
EnityLoad() function 295
EntityLoad() function 159, 161, 302
EntityNew() function 297
EntitySave() function 161, 297
EntitySave(NewUser) 297
EntitySave(VideoObj) method 310
error section, Railo Web Administrator settings
112
event gateway section, Railo Web Administrator
services 112
expires attribute 69
extension, for web context
installing 254-256
extension installation system
about 257
custom Railo application extension, creating
261
Famous Quotes App, creating 261-268
Galleon forums web application, installing
257-260
ExtensionProvider CFC
about 274
extending 279

[332]



http:///

GetDownloadDetails function 276, 277
ListApplications query information 275
methods 274
structure information 274
Extension Provider system 270
extensions
installing 253

F

Famous Quotes App

creating 261-268
famousquotesapp.zip 262
fieldtype attribute 320
FileRead() function 236
files

accessing, from ZIP file 232, 233

accessing locally 222

looping 223, 224

reading 222, 223

writing 222,223
FileWrite() function 236
FileXXX() function 222
Firebird 69
Flash Video format 199
Flash video player

embedding 199
FORM.email variable 68
FORM variables

about 65

retrieving 65-68
functions 46

G

Galleon forums web application
installing 257-261

getDateCreated 158

GetDownloadDetails function 276

getDownloadDetails method 271

getinfo method 270

getQuote() function 262

goals, Railo Server Tomcat installer 23

goals, VideoShare 284, 285

Graphical User Interface (GUI) tool 151

H

Helloapp application 142
HelloApp directory 140
Hello World example 40, 41
Hibernate 156
Hibernate Persistence

about 147

URL 147
home page, VideoShare

creating 324

latest videos, acquiring 325, 326
HSSQl 69
HTML 41
HTTP component

website content, retrieving 196, 197

11S7
Railo-enabled site, adding 29-32
1S process 29
index.cfm template 142
Infinispan
about 170
URL 170
init function 246
Inspect Templates (CFM/CFC) section 98
installation, Railo server. See Railo server
installation
Install FusionReactor screen 27
installing
Railo Server 19
install method 264
isDefined() function 248
isNumeric() function 42, 46

J

jakarta 30

JBoss 147

Jetty
booting up 34, 35
downloading 33
installing 33

[333]



http:///

Jetty Servlet Engine 33 Memcached

jordan-desktop 35 about 170
JSON (JavaScript Object Notation) 210 URL 170
Merge URL and FORM scopes setting 105
L methods, ExtensionProvider CFC
getDownloadDetails 274

layout custom tag, Videoshare getinfo 274

creating 288-290 listApplications 274
Len() function 68 Microsoft MS SQL 69
license.txt file 267 Mid() function 50
listApplications method 270 myPost object 155
ListApplications query information 275 myQuery variable 44
ListGetAt() built-in function 184 MysQL
ListGetAt() function 191 about 69
listing_7_02.cfm template 205 installing 70-72
listing_8_01.cfm template 224 MySQL database 151
localhost 35 myQuery.execute() method 195
login.cfm template 300
looping N

about 183

array 184, 185 newName variable 314

lists 183 new Query() object 194

over queries 186, 187

through list 183, 184 (o)

through structures 185, 186
object Cache

M using 166
Object Oriented Programming (OOP) 15
magic functions Object Oriented Programming, with components
using 129 80
mail section, Railo Web Administrator services object relational mapping
118 about 147
mappings Railo Server, upgrading 148-150
about 224 Object Relational Mapping (ORM) section, Railo
code, accessing from 226 Web Administrator services 114
creating, for log file 225, 226 onApplicationEnd function 145
settings 230 onApplicationStart() method 144, 145
settings, changing 230, 231 onEndTag function 246
ZIP files, accessing 232 onError method 146
mappings, Railo Web Administrator remote onMissingTemplate 146
about 125 onRequestEnd method 147
creating, in application 126 onRequest method 146
markDone() function 218 onRequestStart method 146
markDone JavaScript function 218 onSessionStart() function 297
Membase onSessionStart() method 145
about 170 onStartTag function 247
URL 170 OpenBD 39

[334]



http:///

Oracle 69
ormtype attribute 309

output section, Railo Web Administrator settings

111

P

page caching
cfcache used 171-173
parameters, cacheGet() function
CacheConnection 166
KeyName 166
ThrowError 166
parameters, cachePut() method
CacheConnection 166
idleTime 166
KeyName 166
LifeSpan 166
Value 166
partial template caching
about 173
content, caching within template 174
performance/caching section, Railo Web
Administrator settings
about 98
Always (Bad) 99
Inspect Templates (CFM/CFC) section 98
Never (Best Performance) 98
Once (Good) 99
persistent components
blog, creating 152-156
blog posts, listing 157, 158
comments, adding 159, 161
using 152
persistent Post object 154
plain text
compiling, to CFML 234-236
playlist
adding, to <cfvideoplayer> 208, 209
poster frames
creating 206, 207
PostgreSQL 69
preview attribute 201
providers section, Railo Web Administrator
extension 123

Q

queries

running, against database 74-77

query cache

about 175
query, caching using cachedwithin 175, 176

query component

addParam() method 195
myQuery.execute() method 195
new Query() object 194
setSQL() method 195

using 194, 195

Quote.cfc 261
quotes.txt 261

R

Railo.Ajax.refresh() function 218
Railo applications

about 139

application, defining 141-143

client settings 143

session settings 143

simplest application, building 140, 141

Railo archive

about 228
creating 229

railoblog datasource

creating 151, 152

Railo cache

about 163
advantages 163

railo directory 38
Railo-enabled site

adding, to 11IS7 29, 32

Railo Express

about 19
customizing 22
downloading 19, 20
running 20-22

Railo Express customization

about 22
admin password, setting 22, 23

Railo Extension Store

about 279, 280

[335]



http:///

differences, with custom provider 280
URL 279

Railo resources
about 221
files, accessing locally 222
files, looping 223

Railo Server
about 19, 69
AJAX functionality 209
application events 143
background task, execution 16
built-in components 194
caching 162
CFML compiler 14
CFML functions, variety 15
CFML tags, variety 15
compatibility 16
custom CFML tags, creating 243-248
database access 69
database persistence store, creating 150
data sources, configuring in 72-74
easy clustering 17
easy installation 17
easy update mechanism 16
email, sending in PHP 11, 12
extension manager 16
extensions, installing 253
features 9
framework and application compatibility 16
high performance 17
HTTP built-in component 196
in CFML 12
inexpensive and free 17
inJava 12
installing, on windows 24-28
installing ways 19
mappings 224
need for 8
object-oriented approach 15
object relational mapping 147
persistent components, using 152
query built-in component 194, 195
Railo archives 14
RAM resource 233
scripting, support 15
security 16
stored procedures, running from 79, 80

template 8
upgrading 148-150
uses 9
video 199
VideoShare, creating 283
virtual filesystems 17
Railo Server installation
Railo Express, running 19
Railo Server Tomcat installer, running 23
Railo WAR and Jetty, running 32
Railo Server Tomcat installer
about 23
CFML-enabled sites, adding to 1IS7 29
goals 23
Install FusionReactor screen 27
Start at Boot?? screen 26
Tomcat Administrator Password screen 26
Railo Server variables
{home-directory} 228
{railo-server} 228
{railo-web} 228
{system-directory} 228
{temp-directory} 228
{web-context-hash} 228
{web-root-directory} 228
Railo WAR
about 32
deploying 36, 37
downloading 36
Railo Web Administrator
about 74, 95, 139
development 131
documentation 135
extension 121
extensions 253
investigating 96, 97
password, setting up 92
remote 124
sections 95
security 135
settings 97
Railo Web Administrator, development
debug template section 132-134
Railo Web Administrator, extension
applications section 121, 122
providers section 123

[336]



http:///

Railo Web Administrator, remote
archives and resources 125
CFX tags 131
component 127
custom tags 130, 131
mappings 125
Railo Web Administrator, services
cache 114
datasource section 114
event gateway 112
mail section 118
Object Relational Mapping (ORM) section 114
scheduled tasks section 120
search collection, creating 115, 116
search section 115
tasks section 118-120
Railo Web Administrator, settings
application 108
application listener 110
application timeout option 108
cascading 104
Charset section 103
client cookies option 108
client management option 108
domain cookies option 108
error section 112
Merge URL and FORM scopes setting 105
output 111
performance/caching section 98, 99
regional 102
request timeout 110
scope 103
scoping of variables, restricting 104, 105
script protect 109
server time zone, getting 103
services section 112
session management option 107, 108
session timeout 108
session type 105
template caching settings, comparing 99-101
URL and FORM scopes, merging 106
Railo Wiki
URL 209
RAM
used, for storing files 233
RamCache 170

RAM resource
plain text, compiling to CFML 234, 236
regional section, Railo Web Administrator
settings 102
Relational Database Management System
(RDBMS) 69
removeTodo() function 210, 217
repository 33
REQUEST scope
about 60
using 61, 62
request timeout field 110
resource cache
about 176
EHCache Lite connection, assigning 177, 178
Resource charset 103

S

savename.cfm template 140
scheduled tasks section, Railo Web
Administrator services 120, 121
scope section, Railo Web Administrator settings
about 103
variables scoping, restricting 104, 105
search local component 128
search section, Railo Web Administrator services
115
Secret Access Key 239
security
password, setting up 92
setting up 91
security, Railo Web Administrator 135
security, VideoShare
adding 306, 307
server
and web context 88, 89
server extensions
versus, web extensions 256
Server ID 277, 278
Server scope
about 55, 56
variable, adding to 56, 57
server time zone, Railo Web Administrator
settings
getting 103

[337]



http:///

Servlet containers 19
session and client settings
applicationTimeout 143
clientManagement 143
clientStorage 143
sessionManagement 143
sessionTimeout 143
setClientCookies 143
setDomainCookies 143
session management option, Railo Web
Administrator settings 107, 108
SESSION.name variable 142
SESSION scope
about 58
creating, in application 59, 60
session timeout option, Railo Web Administrator
settings 108
session type, Railo Web Administrator settings
105
SESSION.userid variable 302
setComment() method 161
setFrom() method 161
setShowError function 248
setSQL() method 195
settings, Railo Web Administrator. See Railo
Web Administrator, settings
simplest application
building 140, 141
Simple Storage Service (S3)
about 236
using, as filesystem 237-241
single tag example 42, 43
single tags, with attributes 41
Start at Boot?? screen 26
stored procedures
about 79
creating, in database 79, 80
running, from Railo Server 79, 80
structure variables
about 51
using 51-53
Sybase 69

T

tags
about 41
advantages 180, 181

disadvantages 181, 182
scripting 190
tags, with content 44
tags, with expressions 42
tags, with sub tags 45, 46
taskname field 214
TaskService JavaScript object 218
tasks section, Railo Web Administrator services
119, 120
template cache
about 171
page, caching with cfcache 171-173
template caching settings, Railo Web Adminis-
trator settings
comparing 99-101
Template charset 103
this scope 188, 189
thumbnails
creating, for videos 317-319
timestamp 155
time zone
setting up 93,94
title property 155
Tomcat Administrator Password screen 26
Tomcat Servlet Engine 33
trim() function 248

U

Ubuntu 33
Ubuntu Linux machine 33
uninstall function 269
update method 267
uploadedAt property 326
upload_video.cfm template 309
URL
variables, retrieving from 63-65
URL and Form scope, Railo Web Administrator
settings
merging 106
URL.delete variable 169
URL variables 63
User.cfc object 309
user-defined functions
about 48
creating 48-50
user_id column 321
user login, VideoShare 298-302

[338]



http:///

user logout, VideoShare 298-302
user model object, Videoshare
creating 290-298
User object, Videoshare 290
users, Videoshare
registering 290

Vv

validate method 264
variable
adding, to Server scope 56, 57
retrieving, from URL 63-65
video
about 199
converting 202
displaying 200
video conversion
about 202
clips, creating 205
clips, creating for video player 204
playlist, adding to <cfvideoplayer> 208, 209
poster frames, creating 206, 207
Video Extension, installing 202-204
Video Extension
installing 202-204
video_id column 321
video_info variable 207
videoName variable 314
video player
displaying 200, 201
videos
assigning, to users 308
comments, adding 319-324
converting 313-316
playing 316, 317
properties 308
storing, to database 308-312
thumbnails, creating 317-319
uploading 302-305
VideoShare application
about 283
basic application, creating 285-287
comments, adding to video page 319-324
creating 285
datasource, creating 287
goals 284,285

home page, creating 324

images, creating from video 317-319
latest videos, acquiring 325, 326
layout custom tag, creating 288-290
secure tag, adding 306, 308
security, adding 306

thumbnails, creating for videos 317
user login 298-302

user logout 298-302

user model object, creating 290-298
users, registering 290

video, converting 313-320

video, playing 313

videos, assigning to users 308
video, storing to database 308-312
videos, uploading 302-305

w

WAR 33
Web charset 103
web context

and server 88, 89
web data

handling 63
Web ID 277, 278
WEB-INF directory 37
Windows

Railo Server, installing on 24-28
Windows OS 33

X

XSS
about 110
URL 110

4

ZIP file
files, accessing from 232, 233

[339]


http:///



http:///

open source

community experience distilled

PUBLISHING

Thank you for buying
Railo 3 Beginner's Guide

About Packt Publishing

Packt, pronounced 'packed’, published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're

using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.


http:///

open source

community experience distilled

PUBLISHING

Squid Proxy Server 3.1: Beginner's Guide
ISBN: 978-1-84951-390-6 Paperback: 332 pages

Improve the performance of your network using the
caching and access control capabilities of Squid

1. Getthe most out of your network connection by
customizing Squid's access control lists and helpers

2. Set up and configure Squid to get your website
working quicker and more efficiently

3. No previous knowledge of Squid or proxy servers is
required

4. Part of Packt's Beginner's Guide series: lots of
practical, easy-to-follow examples accompanied by
screenshots

Apache Soir 3.1Cookhook
ISBN: 978-1-84951-218-3 Paperback: 300 pages

Over 100 recipes to discover new ways to work with
Apache's Enterprise Search Server

1. Improve the way in which you work with Apache
Solr to make your search engine quicker and more
effective

Apabhe Solr 3.1

Cookbook problems in no time

2. Deal with performance, setup, and configuration

3. Discover little-known Solr functionalities and
create your own modules to customize Solr to your
company's needs

4. Part of Packt's Cookbook series; each chapter covers
a different aspect of working with Solr

Please check www.PacktPub.com for information on our titles


http:///

open source

community experience distilled

PUBLISHING

Yii 1.1 Application Development Cookhook
ISBN: 978-1-84951-548-1 Paperback: 392 pages

Over 80 recipes to help you master using the Yii PHP
framewor

1. Learn to use Yii more efficiently through plentiful Yii
recipes on diverse topics

—
2. Make the most efficient use of your controller and

Yii 1.1 Appllcatlon views and reuse them

Development Cookbook

3. Automate error tracking and understand the Yii log
and stack trace

4.  Full of practically useful solutions and concepts
that you can use in your application, with clearly
explained code and all the necessary screenshots

Flash Game Development by Example
ISBN: 978-1-84969-090-4 Paperback: 328 pages

Build 10 classic Flash games and learn game
development along the way

1. Build 10 classic games in Flash. Learn the essential
skills for Flash game development

F IaS h 2. Start developing games straight away. Build your
first game in the first chapter

Game Development by Example

3. Fun and fast paced. Ideal for readers with no Flash
or game programming experience

4. The most popular games in the world are
built in Flash.

Please check www.PacktPub.com for information on our titles


http:///

	Cover

	Copyright

	Credits

	About the Authors

	About the Reviewers

	www.PacktPub.com

	PacktLib.PacktPub.com

	Table of Contents

	Preface
	Chapter 1: 
Introducing Railo Server
	Why use Railo Server?
	What does Railo Server do?
	A better look at Railo Server
	What else can you do with Railo Server?
	CFML compiler
	Railo archives—compiled code
	Wide variety of CFML tags and functions
	Object-oriented approach
	Scripting support
	Integrated administration frontend
	Background task execution
	Extension manager
	Easy update mechanism
	Compatibility
	Framework and application compatibility
	Security 
	Virtual filesystems
	High performance 
	Easy installation 
	Inexpensive and free 
	Easy clustering

	Summary

	Chapter 2
: Installing Railo Server
	Getting up and running with Railo Express
	Time for action – downloading Railo
	Customizing Railo Express
	Time for action – setting the administrator's password
	Running the Railo Server Tomcat installer
	Time for action – installing on Windows
	Adding CFML-enabled sites to IIS7
	Time for action – adding a site to IIS7
	Getting up and running with the Railo WAR and Jetty
	Time for action – download and install Jetty
	Time for action – booting up Jetty
	Time for action – download and deploy the Railo WAR
	Summary

	Chapter 3: 
CFML Language
	Basics of the CMFL language
	Time for action – Hello World!
	CFML tags
	Single tags with attributes
	Tags with expressions

	Time for action – single tag example
	Tags with content
	Tags with sub tags

	CFML functions
	Time for action – using built-in functions
	User-defined functions

	Time for action – using user-defined functions 
	CFML variables
	Structure variables 

	Time for action – using Structures
	Array variables

	Time for action – creating an array
	CFML scopes
	SERVER scope

	Time for action – adding a variable to the SERVER Scope
	APPLICATION scope

	Time for action – creating the APPLICATION Scope
	SESSION scope

	Time for action – creating a SESSION scope in your Application
	REQUEST scope

	Time for action – using the REQUEST Scope
	CGI scope

	Handling web data
	URL variables

	Time for action – getting variables from the URL
	FORM variables

	Time for action – getting FORM variables
	Cookies

	Database access
	Time for action – installing MySQL and setting up our database
	Time for action – configuring data sources in Railo Server
	Time for action – tunning Queries against our Database
	Queries with parameters
	What just happened?
	Stored Procedures

	Time for action – calling stored procedures
	Object Oriented Programming with Components

	Time for action – creating the Employee component
	Summary

	Chapter 4: 
Railo Server Administration
	Server and Web context
	Time for action – setting up an example context
	Setting up security

	Time for action – setting your password
	How contexts relate to each other
	Time for action – setting the time zone 
	The Railo Web Administrator
	Time for action – investigating the Web Administrator
	Settings
	Performance/Caching


	Time for action – comparing template caching settings
	Regional
	Charset
	Scope


	Time for action – restricting the scoping of variables
	Time for action – merging the URL and FORM scopes
	Application
	Output
	Error

	Services
	Event Gateway
	Cache
	Datasource
	ORM
	Search


	Time for action – creating a search collection
	Mail
	Tasks
	Scheduled tasks

	Extension
	Applications
	Providers

	Remote
	Archives and Resources
	Mappings


	Time for action – creating mappings in our application
	Component

	Time for action – using magic functions
	Additional resources 
	Custom tags
	CFX tags

	Development

	Time for action – setting the debug template
	Security
	Documentation

	Summary

	Chapter 5: 
Developing Applications with 
Railo Server
	Railo applications
	Time for action – building the simplest application
	Time for action – defining the application
	Session and client settings

	Application events
	Object relational mapping with Railo Server 
	Time for action – upgrading Railo Server
	Creating our database persistence store
	Time for action – creating a database
	Time for action – creating our railoblog datasource
	Using persistent components
	Time for action – creating the blog
	Time for action – listing our blog posts
	Time for action – adding comments
	Caching in Railo Server
	Cache: what is it good for?

	Time for action – creating a cache connection
	Time for action – using the object Cache
	Time for action – getting well versed with more caching functions
	Time for action – caching a page with cfcache
	Partial template caching

	Time for action – caching content within a template
	Query cache

	Time for action – caching a query using cachedwithin
	Resource cache

	Time for action – assigning an EHCache Lite connection to resources

	Summary

	Chapter 6: 
Advanced CFML Functionality
	Scripting within Railo Server
	Why tags are good
	Why tags are bad

	The <cfscript> tag
	Loops
	Looping lists


	Time for action – looping through a list
	Looping arrays

	Time for action – looping an array
	Looping structures

	Time for action – looping through a structure
	Looping queries

	Time for action – looping over queries
	Scripted components

	Time for action – creating the component
	Scripting tags

	Time for action – getting the contents of another site
	Scripting wrapped tags

	Time for action – using the <cfloop> tag in CFScript
	Scripting wrapped tags—Part 2

	Time for action – get a user by his/her ID
	Built-in components
	The Query built-in component


	Time for action – using the Query component
	The HTTP built-in component

	Time for action – getting the content of a website via the HTTP component

	Summary

	Chapter 7: 
Multimedia and AJAX
	Video
	Displaying video

	Time for action – displaying a video player
	Converting a video

	Time for action – installing the Video Extension
	Time for action – creating clips for our video player
	Time for action – creating poster frames and clips
	Time for action – adding a playlist to <cfvideoplayer>
	AJAX functionality within the Railo server
	Time for action – setting up the application and services
	Time for action – binding the input to the component
	Time for action – displaying the tasks
	Time for action – deleting a task
	Summary

	Chapter 8: 
Resources and Mappings
	Railo resources
	Accessing files locally
	Time for action – writing and reading files
	Looping files
	Time for action – looping through the contents of a file
	Mappings
	Time for action – creating a mapping for the log file
	Accessing code from mappings
	Time for action – creating our components
	Railo archives
	Time for action – creating a Railo archive
	Mappings and their settings
	Time for action – changing the settings of a mapping
	Accessing your files from ZIP and TAR files 
	Time for action – accessing files from a ZIP file
	Using RAM as a quick location to store files
	Time for action – compiling plain text to CFML
	Using Amazon's Simple Storage Service to use files in the Cloud
	Time for action – using Amazon's Simple Storage Service (S3)
	Summary

	Chapter 9: 
Extending Railo Server
	Why create your own CFML tags and functions?
	Time for action – creating our own CFML tag
	CFML functions

	Time for action – create our own CFML function
	Using return type "any"
	Structure and array notation in the form and URL scope


	Installing extensions
	Time for action – installing an extension for the web context
	Server versus web extensions
	The extension installation system

	Time for action – installing the Galleon forums web application
	Time for action – create our own Railo application extension
	Creating the Famous Quotes App

	Time for action – creating our own extension provider
	The ExtensionProvider CFC
	GetInfo structure information
	ListApplications query information
	GetDownloadDetails function

	The role of the Web ID and Server ID

	The Railo Extension Store
	Summary

	Chapter 10: 
Creating a Video-sharing Application
	VideoShare: Getting to know our application
	Goals of the application
	Creating our application
	Time for action – creating our basic application
	Laying it all out
	Time for action – creating the layout custom tag
	Registering users
	Time for action – creating our user model object
	User login and logout
	Time for action – log in or log out of the application
	Uploading videos
	Time for action – uploading a video
	Adding security
	Time for action – adding the secure tag
	Assigning videos to users
	Time for action – storing our video to the database
	Converting and playing videos
	Time for action – converting the uploaded video
	Creating thumbnails for our videos
	Time for action – creating images from a video
	Adding comments to our video page
	Time for action – adding comments to our videos
	Creating the home page
	Time for action – getting the latest videos
	Summary

	Index

