
www.allitebooks.com

http:///
http://www.allitebooks.org

Railo 3
Beginner's Guide

Easily develop and deploy complex applicaions online
using the powerful Railo Server

Mark Drew

Gert Franz

Paul Klinkenberg

Jordan Michaels

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.packtpub.com/authors/profiles/mark-drew
http:///
http://www.allitebooks.org

Railo 3
Beginner's Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,

or transmited in any form or by any means, without the prior writen permission of the
publisher, except in the case of brief quotaions embedded in criical aricles or reviews.

Every efort has been made in the preparaion of this book to ensure the accuracy of the
informaion presented. However, the informaion contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark informaion about all of the
companies and products menioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this informaion.

First published: December 2011

Producion Reference: 1091211

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84951-340-1

www.packtpub.com

Cover Image by Rakesh Shejwal (shejwal.rakesh@gmail.com)

www.allitebooks.com

http:///
http://www.allitebooks.org

Credits

Authors

Mark Drew

Gert Franz

Paul Klinkenberg

Jordan Michaels

Reviewers

A J Mercer

Akbarsait Noormohamed

Jamie Krug

Paul Klinkenberg

Acquisiion Editor

Sarah Cullington

Development Editor

Meeta Rajani

Technical Editors

Mohd. Sahil

Lubna Shaikh

Project Coordinator

Joel Goveya

Proofreader

Sol Agramont

Copy Editor

Leonard D'Silva

Indexers

Hemangini Bari

Monica Ajmera

Graphics

Manu Joseph

Producion Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Authors

Mark Drew has been developing web applicaions for a number of clients since the mid
90s. He has been using ColdFusion and wriing in CFML since 1996, and even though he has
had the occasional forays into Perl, ASP, PHP, Rails, and Java, he is sill loving every line of
code he has writen in CFML.

Mark has been part of the CFEclipse Project developing a CFML IDE and Project Manager for
the Reactor ORM Project, as well as contributor to a number of frameworks.

His career has concentrated on e-commerce, web content management, and applicaion
scalability for various well-known brands in the UK as well as the rest of the world.

Mark is also a well-known speaker at various conferences on subjects close to his heart, such
as ORMs, Frameworks, Development Tooling and Process, as well as noSQL databases and a
range of other topics.

Mark lives in Greenwich, London, where the Mean Time comes from. Mark isn't mean of
course. He works as the CEO of Railo Technologies Limited (http://www.getrailo.com),

a web development consultancy and Professional Open Source provider of Railo Server.

www.allitebooks.com

http:///
http://www.allitebooks.org

Really, this book would not have been possible without the help of the
below-menioned people, whom I am uterly indebted to and I shall fulill
all those promises to buy them a beer, even if it takes emptying out a

whole brewery. I want to thank Gert Franz, for giving me the opportunity
to write this book; Sarah Cullington, for her invaluable advice as an editor;
Joel Goveya, for his reminders and moivaion to get all the chapters done
on ime; Paul Klinkenberg, for his hard work and imely ofers of help;
Roland Ringgenberg, for his Flex and Flash mastery—I would have really
been out of my depth on that one! I would also like to thank Sean Corield,
Peter Bell, and A J Mercer, for their awesome feedback on chapters in the
process of wriing this book; Todd Raferty, for his great contribuions and
eagle eye; Andrea Campologhi, for his stellar AJAX skills and contribuions
to Railo Server; and Michael Ofner, for all his skills in developing Railo
Server itself and giving me peeks behind the curtains to how it all works. A
big thank you to all the folks in the Railo Users mailing list for keeping the
community alive and kicking. Finally, I would like to thank Charlie Khan and
The Organ Grinder for the musical accompaniment that helped clarify my
thoughts as I went along!

Gert Franz was born in 1967 in Romania. He moved to Germany in 1982. He studied
Astrophysics in Munich in the early nineies and lives in Switzerland since 1998.

Gert is a father of three children and lives in with his Swiss girlfriend, somewhere next
to Zurich. Even though the jobs Gert had did not involve Astronomy in any way, he sill
remained loyal to it as a hobby and from ime to ime he taught local classes about the
wonders and miracles of Astronomy.

In the past 20 years, he worked as a Senior Programmer for several diferent companies and
leads Railo Technologies Switzerland as a CEO since its foundaion in 2007.

Gert is a well-known speaker who appeared and appears at several diferent conferences
around the world. Mostly, he speaks about Railo and/or performance tuning. Besides
speaking, Gert programs a lot, and does all diferent kinds of consuling related to Railo,
CFML, databases, and system architectures. He is a specialist in performance tuning,
especially with MSSQL and Railo.

Next to the things menioned before, Gert hosts Railo training sessions and performance-
tuning training sessions around the world. Along the way, Gert acquired a deep knowledge
in Railo, CFML, Delphi, C, ASP, SQL, SQL tuning, and other programming-related things.

www.allitebooks.com

http:///
http://www.allitebooks.org

Paul Klinkenberg (1979) is a long-ime CFML addict, living in The Netherlands with his
wife Emma and baby daughter Luce. His history in both Commercial Economics and Fine Arts
were no match for the enthusiasm he got from programming. In his 10+ years of experience
in programming in CFML, he has always been invesigaing and pushing the boundaries of
this magniicent language constantly. As a Railo Team member, he is in charge of managing
and promoing Railo Extensions. He never stops thinking and creaing new features for Railo
Server, and tries to evangelize Railo as much as possible.

He shares code projects and ideas via his weblog http://www.railodeveloper.com.

Though it has goten a lot quieter on his blog lately, as his beauiful baby daughter Luce,
born in 2011, gets a lot of his atenion.

Paul is currently employed at the Dutch web-development company and Railo partner Carlos
Gallupa BV. He is also working on projects through his own company Ongevraagd Advies,
which means unasked advice. Friends and clients oten say the name suits him really well,
with his power to thoroughly analyze project plans and ideas, and come up with new ideas
and suggesions out of the blue.

I'd like to sincerely thank my lovely and caring wife for the paience she had
with me. It's probably not easy to share your husband with a programming
language. To Luce: je papa houdt van jou, schatje!

Jordan Michaels currently paricipates in the Railo Team as the Community Deployments
Coordinator, where his duies include coordinaing eforts and documentaion on how to
deploy Railo in various environments. Jordan has been a CFML enthusiast and developer for
just over 8 years, and is now the co-owner of Vivio Technologies where he operates as a CEO.
Jordan is an acive paricipant in the CFML community providing evangelism, community
support, and has also printed various aricles on CFML. Jordan is also an amateur musician
and science buf. Jordan currently resides with his wife and two sons in WA state, USA.

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Reviewers

A J Mercer irst discovered CFML as a DBA when looking for a way to extract data from
Informix and display it with links to drill down to detailed informaion. That was back in
1997 when that was a big deal. Ater batling with CGI scripts and embedded ESQL in C and
Informix 4GL he discovered Cold Fusion Express. This is exactly what he was looking for,
and with the added bonus of being able to email reports – via a scheduled task!

Ater a job or two doing all sorts of consultancy development work in various web and
desktop languages, he was approached by a irm and asked if he knew anything about
ColdFusion. This was in 2000 when being able to spell CFML was enough to get you hired.
It was in this job that he developed his web development skills using ASP and CFML. Luckily
for him, the development team was big enough to allow for specializaion and was allowed
to just work on the CFML projects. During web development team meeings his favorite joke
when the .NET guys were stuck on something was "Allaire / Macromedia have got a patch
for that—it is called ColdFusion". It was also at this job when he irst discovered FuseBox
and introduced a development standard into the organizaion.

AJ has backed his career on CFML and has swapped jobs when the pointy-haired bosses
started phasing out ColdFusion. He is deeply passionate about CFML and has been acively
promoing the product and sharing his knowledge with local user group CFUGWA (of which
he was manager for 5 years) and has presented at webDU and cf.Objecive(ANZ).

www.allitebooks.com

http:///
http://www.allitebooks.org

He is one of many who subscribe to the theory that CFML needs a free version to be able
to compete with the likes of .NET, PHP, and Ruby. In his spare ime, he was on the look out
for other CFML engines. In 2006, he discovered Railo—and once again stopped looking. He
worked with many Framework developers, such as Farcry CMS, MangoBlog, ColdBox and
Mach-II, and the Railo team to get these frameworks running on Railo. Due to his passion
and enthusiasm, he was appointed Railo Community Manager for Australia in 2010.

I feel humbled and honored to have been asked to review this book.
The Railo team is made up of a lot of people I respect and look up to in
the CFML community. My hat goes of to Mark Drew for taking on this
mammoth task of wriing this book. Truth be told, there was not a lot I had
to do as a reviewer, and I learned quite a few things on the way through at
the same ime, as I am sure you will too.

I will also take this opportunity to thank and congratulate Michael Ofner
and Gert Franz for Railo—not just the Server product, but the Team and
Consultancy. Way back, when I irst started out with Railo, Gert was very
generous with his ime and helped me build my Railo server. Gert and the
rest of the team sill, to this day, are passionate about helping people with
Railo and CFML. So, this book is not the end of your learning, but just the
start of the exciing world of Railo. Enjoy!

Akbarsait Noormohamed is a passionate Computer programmer and has been a

ColdFusion developer since 2004. Akbarsait specializes in using CFML, SQL (MS SQL Server,
MySQL, and Oracle), and web technologies for creaing web applicaions and Content
Management Systems.

Akbarsait is currently working as a Consultant for MindTree Ltd in Chennai India. His
experience includes building web applicaions and intranet systems for Travel and
Transportaion, Healthcare, and ERP domains. He loves troubleshooing and solving
problems in CFML engines. He has always had a keen interest in improving web performance.

He also manages the Chennai's ColdFusion User Group in India and he is an Adobe
Community Champion for ColdFusion. He currently holds a B.E in Computer Science and
Engineering and Diploma in Electrical and Electronics Engineering from Bharathidasan

University. You can follow him on his blog at http://www.akbarsait.com or at

@Akbarsait on Twiter.

www.allitebooks.com

http:///
http://www.allitebooks.org

Jamie Krug developed a love for programming early on, wriing a BASIC program on a
RadioShack TRS-80 to track "litle league" baseball baing averages at an early age. He
has since then coninued to enjoy programming and the learning experiences along the way.
Primarily building web applicaions in CFML since 2001, Jamie is a passionate learner and
also geeks around in Java/Groovy, Flex/AcionScript and Linux, among others. He also
greatly appreciates and paricipates in many open source sotware projects. You'll ind
Jamie occasionally blogging at http://jamiekrug.com/blog/.

I'd like to thank my lovely wife, Wendy, and children, Ayvin and Nyah, for
their loving support. I'd also like to thank my enire network of friends
and family everywhere. I "work" doing something I truly enjoy, and enjoy
constant support and encouragement all through. For my experience and

learning opportuniies, I thank the amazing CFML community, as well as
the countless passionate sotware geeks everywhere.

www.allitebooks.com

http://jamiekrug.com/blog/
http:///
http://www.allitebooks.org

www.PacktPub.com

This book is published by Packt Publishing. You might want to visit Packt's website at
www.PacktPub.com and take advantage of the following features and ofers:

Discounts

Have you bought the print copy or Kindle version of this book? If so, you can get a massive
85% of the price of the eBook version, available in PDF, ePub, and MOBI.

Simply go to http://www.packtpub.com/railo-3-beginners-guide-to-develop-

deploy-complex-applications-online/book, add it to your cart,

and enter the following discount code:

r3bgebk

Free eBooks

If you sign up to an account on www.PacktPub.com, you will have access to nine
free eBooks.

Newsletters

Sign up for Packt's newsleters, which will keep you up to date with ofers, discounts, books,
and downloads, and you could win an iPod Shule.

You can set up your subscripion at www.PacktPub.com/newsletters

Code Downloads, Errata and Support

Packt supports all of its books with errata. While we work hard to eradicate errors from our
books, some do creep in. Many Packt books also have accompanying snippets of code to

download.

You can ind errata and code downloads at www.PacktPub.com/support

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com/newsletters
http:///

 PacktLib.PacktPub.com

PacktLib ofers instant soluions to your IT quesions. It is Packt's fully searchable online
digital book library, accessible from any device with a web browser.

 � Contains every Packt book ever published. That's about 100,000 pages of content

 � Fully searchable. Find an immediate soluion to your problem

 � Copy, paste, print, and bookmark content

 � Available on demand via your web browser

If you have a Packt account, you might want to have a look at the nine free books which you
can access now on PacktLib. Head to PacktLib.PacktPub.com and log in or register.

http://PacktLib.PacktPub.com
http://PacktLib.PacktPub.com
http:///

http:///

Table of Contents

Preface 1

Chapter 1: Introducing Railo Server 7
Why use Railo Server? 8

What does Railo Server do? 9

A beter look at Railo Server 11
What else can you do with Railo Server? 14

CFML compiler 14
Railo archives—compiled code 14
Wide variety of CFML tags and funcions 15
Object-oriented approach 15
Scriping support 15
Integrated administraion frontend 15
Background task execuion 16
Extension manager 16
Easy update mechanism 16
Compaibility 16
Framework and applicaion compaibility 16
Security 16
Virtual ilesystems 17
High performance 17
Easy installaion 17
Inexpensive and free 17
Easy clustering 17

Summary 18

http:///

Table of Contents

[ii]

Chapter 2: Installing Railo Server 19
Geing up and running with Railo Express 19
Time for acion – downloading Railo 20
Customizing Railo Express 22

Time for acion – seing the administrator's password 22
Running the Railo Server Tomcat installer 23

Time for acion – installing on Windows 24
Adding CFML-enabled sites to IIS7 29

Time for acion – adding a site to IIS7 29
Geing up and running with the Railo WAR and Jety 32
Time for acion – downloading and installing Jety 33
Time for acion – booing up Jety 34
Time for acion – downloading and deploying the Railo WAR 36
Summary 38

Chapter 3: CFML Language 39
Basics of the CMFL language 40
Time for acion – Hello World! 40
CFML tags 41

Single tags with atributes 41
Tags with expressions 42

Time for acion – single tag example 42
Tags with content 44
Tags with sub tags 45

CFML funcions 46
Time for acion – using built-in funcions 46

User-deined funcions 48
Time for acion – using user-deined funcions 48
CFML variables 50

Structure variables 51

Time for acion – using structures 51
Array variables 53

Time for acion – creaing an array 54
CFML scopes 55

SERVER scope 55
Time for acion – adding a variable to the SERVER scope 56

APPLICATION scope 57
Time for acion – creaing the APPLICATION scope 57

SESSION scope 58
Time for acion – creaing a SESSION scope in your Applicaion 59

REQUEST scope 60

http:///

Table of Contents

[iii]

Time for acion – using the REQUEST Scope 61
CGI scope 62

Handling web data 63
URL variables 63

Time for acion – geing variables from the URL 63
FORM variables 65

Time for acion – geing FORM variables 65
Cookies 68

Database access 69
Time for acion – installing MySQL and seing up our database 70
Time for acion – coniguring data sources in Railo Server 72
Time for acion – running queries against our database 74

Queries with parameters 77
What just happened? 78
Stored procedures 79

Time for acion – calling stored procedures 79
Object Oriented Programming with Components 80

Time for acion – creaing the Employee component 81
Summary 86

Chapter 4: Railo Server Administraion 87
Server and Web context 88

Time for acion – seing up an example context 89
Seing up security 91

Time for acion – seing your password 92
How contexts relate to each other 93
Time for acion – seing the ime zone 93
The Railo Web Administrator 95

Time for acion – invesigaing the Web Administrator 96
Seings 97

Performance/Caching 98

Time for acion – comparing template caching seings 99
Regional 102
Charset 103

Scope 103

Time for acion – restricing the scoping of variables 104
Time for acion – merging the URL and FORM scopes 106

Applicaion 108
Output 111
Error 112

Services 112
Event Gateway 112
Cache 114

http:///

Table of Contents

[iv]

Datasource 114
ORM 114
Search 115

Time for acion – creaing a search collecion 115
Mail 118
Tasks 119
Scheduled tasks 120

Extension 121
Applicaions 121
Providers 123

Remote 124
Archives and resources 125

Mappings 125

Time for acion – creaing mappings in our applicaion 126
Component 127

Time for acion – using magic funcions 129
Addiional resources 130
Custom tags 130

CFX tags 131

Development 131

Time for acion – seing the debug template 132
Security 135

Documentaion 135
Summary 137

Chapter 5: Developing Applicaions with Railo Server 139
Railo applicaions 139
Time for acion – building the simplest applicaion 140
Time for acion – deining the applicaion 141

Session and client seings 143
Applicaion events 143
Object relaional mapping with Railo Server 147
Time for acion – upgrading Railo Server 148
Creaing our database persistence store 150
Time for acion – creaing a database 151
Time for acion – creaing our railoblog datasource 151
Using persistent components 152
Time for acion – creaing the blog 152
Time for acion – lising our blog posts 157
Time for acion – adding comments 159
Caching in Railo Server 162

Cache: what is it good for? 163
Time for acion – creaing a cache connecion 163

http:///

Table of Contents

[v]

Time for acion – using the Cache object 166
Time for acion – geing well versed with more caching funcions 167

Cache providers 169
Cache types 171

Time for acion – caching a page with cfcache 171
Parial template caching 173

Time for acion – caching content within a template 174
Query cache 175

Time for acion – caching a query using cachedwithin 175
Resource cache 176

Time for acion – assigning an EHCache Lite connecion to resources 177

Summary 178

Chapter 6: Advanced CFML Funcionality 179
Scriping within Railo Server 179

Why tags are good 180
Why tags are bad 181

The <cfscript> tag 182

Loops 183
Looping lists 183

Time for acion – looping through a list 183
Looping arrays 184

Time for acion – looping an array 184
Looping structures 185

Time for acion – looping through a structure 185
Looping queries 186

Time for acion – looping over queries 186
Scripted components 187

Time for acion – creaing the component 188
Scriping tags 190

Time for acion – geing the contents of another site 190
Scriping wrapped tags 191

Time for acion – using the <cloop> tag in CFScript 191
Scriping wrapped tags—Part 2 192

Time for acion – get a user by his/her ID 192
Built-in components 194

The Query built-in component 194

Time for acion – using the Query component 194
The HTTP built-in component 196

Time for acion – geing the content of a website via the HTTP component 196
Summary 198

http:///

Table of Contents

[vi]

Chapter 7: Mulimedia and AJAX 199
Video 199

Displaying video 200

Time for acion – displaying a video player 200
Convering a video 202

Time for acion – installing the Video Extension 202
Time for acion – creaing clips for our video player 204
Time for acion – creaing poster frames and clips 205
Time for acion – adding a playlist to <cfvideoplayer> 208
AJAX funcionality within the Railo server 209
Time for acion – seing up the applicaion and services 210
Time for acion – binding the input to the component 212
Time for acion – displaying the tasks 214
Time for acion – deleing a task 217
Summary 219

Chapter 8: Resources and Mappings 221
Railo resources 221

Accessing iles locally 222
Time for acion – wriing and reading iles 222
Looping iles 223
Time for acion – looping through the contents of a ile Mappings 224

Time for acion – creaing a mapping for the log ile 225
Accessing code from mappings 226
Time for acion – creaing our components 227
Railo archives 228

Time for acion – creaing a Railo archive 229
Mappings and their seings 230
Time for acion – changing the seings of a mapping 230
Accessing your iles from ZIP and TAR iles 232
Time for acion – accessing iles from a ZIP ile 232
Using RAM as a quick locaion to store iles 233
Time for acion – compiling plain text to CFML 234
Using Amazon's Simple Storage Service to use iles in the Cloud 236
Time for acion – using Amazon's Simple Storage Service (S3) 237
Summary 242

http:///

Table of Contents

[vii]

Chapter 9: Extending Railo Server 243
Why create your own CFML tags and funcions? 243
Time for acion – creaing our own CFML tag 244

CFML funcions 248
Time for acion – creaing our own CFML funcion 249

Using return type "any" 252
Structure and array notaion in the form and URL scope 252

Installing extensions 253

Time for acion – installing an extension for the web context 254
Server versus web extensions 256
The extension installaion system 257

Time for acion – installing the Galleon forums web applicaion 257
Time for acion – creaing our own Railo applicaion extension 261

Creaing the Famous Quotes App 261
Time for acion – creaing our own extension provider 270

The ExtensionProvider CFC 274
GetInfo structure informaion 274
ListApplicaions query informaion 275
GetDownloadDetails funcion 276

The role of the Web ID and Server ID 277
The Railo Extension Store 279

Summary 281

Chapter 10: Creaing a Video-sharing Applicaion 283
VideoShare: Geing to know our applicaion 283
Goals of the applicaion 284
Creaing our applicaion 285
Time for acion – creaing our basic applicaion 285
Laying it all out 288

Time for acion – creaing the layout custom tag 288
Registering users 290
Time for acion – creaing our user model object 290
User login and logout 298
Time for acion – log in or log out of the applicaion 299
Uploading videos 302
Time for acion – uploading a video 303
Adding security 306
Time for acion – adding the secure tag 306
Assigning videos to users 308

www.allitebooks.com

http:///
http://www.allitebooks.org

Table of Contents

[viii]

Time for acion – storing our video to the database 308
Convering and playing videos 313
Time for acion – convering the uploaded video 313
Creaing thumbnails for our videos 317
Time for acion – creaing images from a video 317
Adding comments to our video page 319

Time for acion – adding comments to our videos 320
Creaing the home page 324
Time for acion – geing the latest videos 325
Summary 327

Index 329

http:///

Preface
Railo Server is one of the quickest ways to start developing complex web applicaions. Widely
considered as the fastest CFML (ColdFusion Markup Language) engine, Railo Server allows
you to create dynamic web pages that can change depending on the user input, database
lookups, or even the ime of day.

Railo 3 Beginner's Guide will show you how to get up and running with Railo Server, as well
as enabling you to develop your web applicaions with ease. You will learn how to install
Railo Server and the basics of CFML as the book progresses to allow you to gradually build
up your knowledge and your dynamic web applicaions.

Using Packt's Beginner's Guide approach, this book will guide you with step-by-step
instrucions, through installing the Railo Server on various environments. You will learn
how to use caches, resources, event gateways, and special scriping funcions that will
allow you to create web pages with limitless funcionality. You will even explore methods of
extending Railo by adding your own tags to the server and building custom extensions. Railo
3 Beginner's Guide is a must for anyone geing to grips with Railo Server.

What this book covers
Chapter 1, Introducing Railo Server, gives an introducion to Railo Server and also shows us
an overview of how it is a breeze to develop web applicaions.

Chapter 2, Installing Railo Server, describes how to install Railo Server under a number of
operaing systems as well as using diferent servlet containers.

Chapter 3, CFML Language, provides a foundaion for using the CFML Language to develop
sites in Railo Server. This chapter also covers object-oriented programming with components
as well as funcions and tags.

http:///

Preface

[2]

Chapter 4, Railo Server Administraion, details the funcionality in the server and web
context. It also explains how diferent seings afect the behavior of the server and cover a
number of other topics, such as Extension , Archives and Resources, and Security.

Chapter 5, Developing Applicaions with Railo Server, looks at how applicaions can be
deined programmaically, the Application.cfc lifecycle, and also how components
interact with the database and even looks into various caching techniques.

Chapter 6, Advanced CFML Funcionality, looks at the scriping formats available in CFML,
while invesigaing the CFScript language. It also looks at the built-in components available in
Railo Server.

Chapter 7, Mulimedia and AJAX, this pracical chapter goes through convering and
displaying video, as well as communicaing between the browser and the server using the
AJAX funcionality of Railo Server.

Chapter 8, Resources and Mappings, describes how to use local and remote resources via the
use of mappings within Railo Server. It also looks at how we can use ZIP and TAR iles, using
RAM as a handy resource and saving our iles out in the Cloud using Amazon S3.

Chapter 9, Extending Railo Server, looks at how we can create new tags and funcions for
Railo Server and create an extension so that we can share our changes to the core server
with other Railo Server users via our own Extension Provider.

Chapter 10, Creaing a Video-sharing Applicaion, brings together all your skills into a single

applicaion, seing up the Object Relaional Model (ORM), creaing security, convering your
videos, and displaying your videos for everyone to use!

What you need for this book
You can run Railo server on a PC or a Mac, under Windows, OS X, and Linux.

To edit the code snippets described in the book, you will need a text editor, such as TextMate
on OS X or Textpad on Windows. As long as you are able to edit text iles the choice of
sotware is up to you.

Who this book is for
If you want to develop your own dynamic web applicaions using CFML, then this book is for
you. No prior experience with Railo or CFML is required, although you are expected to have
some experience in web applicaion development and the knowledge of HTML, basically,
how websites work in general.

http:///

Preface

[3]

Conventions
In this book, you will ind several headings appearing frequently.

To give clear instrucions of how to complete a procedure or task, we use:

Time for action – heading

1. Acion 1

2. Acion 2

3. Acion 3

Instrucions oten need some extra explanaion so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instrucions that you have just completed.

You will also ind some other learning aids in the book, including:

Pop quiz – heading

These are short muliple choice quesions intended to help you test your own understanding.

Have a go hero – heading

These set pracical challenges and give you ideas for experimening with what you
have learned.

You will also ind a number of styles of text that disinguish between diferent kinds of
informaion. Here are some examples of these styles, and an explanaion of their meaning.

Code words in text are shown as follows: “ Using the <cfvideo> tag, we are able to convert
to a number of formats."

http:///

Preface

[4]

A block of code is set as follows:

<script type="text/javascript" charset="utf-8">

 onError = function(code,message){

 alert(code + ' - ' + message);

 }

 displayTodos = function (data){

 document.getElementById('taskname').value = “";

 Railo.Ajax.refresh('displayTodos');

 }

</script>

When we wish to draw your atenion to a paricular part of a code block, the relevant lines
or items are set in bold:

<head>

 <link rel="stylesheet" href="main.css" type="text/css">

 <title>Todo</title>

 <cfajaxproxy bind="cfc:todo.TaskService.addTodo({taskname})"

 onSuccess="displayTodos"

 onError="onError"/>

 <cfajaxproxy cfc="todo.TaskService"" jsclassname="TaskService">

Any command-line input or output is writen as follows:

sudo vi /etc/default/jetty

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “Go to Members ¦ Login and

use your new username and password to log in to the website."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

http:///

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop itles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and

menion the book itle via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have experise in and you are interested in either wriing or
contribuing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the iles e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustraion and help us improve subsequent versions of this book. If you
ind any errata, please report them by visiing http://www.packtpub.com/support,

selecing your book, clicking on the errata submission form link, and entering the details

of your errata. Once your errata are veriied, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of exising errata, under the
Errata secion of that itle. Any exising errata can be viewed by selecing your itle from
http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support
http:///

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,

we take the protecion of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the locaion
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecing our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com
http:///

1
Introducing Railo Server

The Web is now the best way to deploy your applicaions. It is because of the
ease of use and reach to your users and, of course, the fact that you only have
to deploy one version of your code for everyone to use.

To get this done, you would have probably looked at diferent languages and
even frameworks out there. Did they seem complicated to get going? Were
there lots of new terms to learn?

This is where Railo Server comes in. It provides an easy way to write and
deploy your applicaions using a language that is very similar to HTML

(http://en.wikipedia.org/wiki/HTML), about which you'd already
know if you happened to work with staic websites.

If you are already using HTML, Railo Server is a perfect addiion to your toolkit!

In this book, you will learn how to use Railo Server to develop web applicaions in a very
eicient manner. We will also introduce the diferent features and opions available to get
things done easily and quickly as we go along.

In this chapter, we will:

 � Introduce you to the Railo Server

 � Introduce you to some of the features of Railo Server

 � Show you why Railo Server and CFML make developing web applicaions a breeze

Let's dive right in!

http:///

Introducing Railo Server

[8]

Why use Railo Server?

HTML per-se (without JavaScript) is a staic language, which means that you cannot query
databases, send e-mails, execute searches, or generally interact with the server, and return
dynamic results to the user.

Imagine that you need to do one of the above tasks. HTML doesn't ofer any soluions for
these kinds of problems because it is just a way to display informaion and not manipulate
other systems.

What can we do in order to overcome this problem?

ColdFusion Markup Language (CFML) neatly its into the HTML syntax and allows you to
place CFML tags in-between HTML tags. Basically, Railo Server generates HTML, which is
then interpreted by the browser.

Depending on the tags that you are using, diferent HTML pages are sent back to the client.

Let's have a look at an example Railo Server template:

 <html>

 <head><title>An Example Template</title></head>

 <body>

 <div id="AccountHeader">

 <cfif SESSION.loggedIn>

 <h3>Private bank account No.:

 <cfoutput>#bank.accountNr#</cfoutput>

 Show secret information

 </cfif>

 </div>

 </body>

 </html>

The highlighted code above shows you some CFML (or Railo Template) code. This code is
dynamic and will run on the server before returning the rendered HTML back to the browser
that requested the page.

If you are used to reading HTML code, you can easily igure out what the previous code is
supposed to do. (It displays the HTML between the <cfif> tags if the variable loggedIn in

the SESSION is true.)

http:///

Chapter 1

[9]

What does Railo Server do?

Railo Server is a service that can be installed on any Java Applicaion Server
(http://en.wikipedia.org/wiki/Java_Servlet) that helps you write web
applicaions quickly and easily, without the complexiies normally associated with
developing fast, scalable, and secure applicaions in Java.

Railo Server is a servlet that runs on any servlet engine. Servlets are small (or large)
programs that are invoked by a servlet engine or a J2EE applicaion server (such as
Tomcat, JRun, Jety, Resin, Glassish, IBM WebSphere, BEA WebLogic, and others).

The applicaion servers run within the Java Runime Environment (JRE) and call the
corresponding servlet; if a certain request comes to it, it matches certain condiions.

If this is the irst ime you are hearing about servlets, JREs, and similar things, no need to
worry, Railo Server can be installed with an easy installer for a complete setup. It installs the
JRE, the servlet engine, and can even hook into an exising IIS or Apache web server. What
the servlet does is completely open. In this case, the Railo Servlet allows us to do
the following:

 � Compile CFM iles into Java bytecode

 � Check the syntax of invoked iles

 � Invoke the necessary iles according to the CFML syntax

 � Execute the bytecode and throw any errors that may occur

 � Build up a request environment

 � Interact with external resources, including:

 � Databases

 � Cache systems

 � Filesystems (virtual or physical)

 � Web services

 � Event Gateways

 � Write iles

 � Return HTML, JSON, XML, PDF, or anything else that an HTTP request can generate
and handle

 � Execute scheduled tasks

 � Send e-mails

 � Create and read RSS and ATOM feeds

 � Manage sessions

www.allitebooks.com

http:///
http://www.allitebooks.org

Introducing Railo Server

[10]

If you need to build a dynamic web applicaion, Railo Server comes into play. You can use
Railo Server in order to program your applicaions in CFML and run your applicaion either
in an externally-hosted server or a local server.

Basically, when a client enters a URL into his/her browser address line a request is made to a
Railo Server. The process is the following:

1. The URL is resolved to an IP address by checking the DNS system.

2. The browser sends the request to the server at the retrieved IP address.

3. The web server on the target server is invoked (since that runs on port 80).

4. The web server checks what kind of extension or ilter deiniion matches the URL
(.cfm or .cfc).

5. The applicaion server is invoked (assuming it is responsible for the extension .cfm).

6. The applicaion server calls the corresponding servlet (in our case, Railo).

7. Railo processes the request.

8. Railo sends back HTML (or whatever else) to the applicaion server.

9. The applicaion server sends the response back to the web server.

10. The webserver sends the HTML response back to the client.

11. The client browser interprets the returned HTML.

So, basically with Railo, you will dynamically create staic pages. The following image
illustrates this process:

In essence, Railo Server provides the web developer with CFML, which is a simple
yet powerful language, as well as a highly conigurable server. This helps you write
applicaions extremely quickly.

Railo itself is writen in Java, and therefore the libraries deployed with Railo are JAR iles.

Your CFML code will be compiled to Java, so you could say that programming in Railo CFML is
ulimately programming in Java because Railo generates Java and disguises the complexity of
Java applicaions from the programmer.

http:///

Chapter 1

[11]

A better look at Railo Server

Whenever you use a programming language, the features and tools that come with the
language are most inluenial in helping you decide whether you made the right choice
for the current project.

Railo Server's strengths are geared towards Rapid Applicaion Development (RAD). Once
you use Railo Server, you will ind that you can create websites literally within hours. For
example, you can build a blog within an hour or two.

Time is a huge asset and any tool or any programming language that saves you ime is
something you should take a closer look at.

Let's take a look at how easy it is to send an e-mail with Railo in comparison to other
programming languages:

First of all, this is how you would send an e-mail in PHP:

<?php

 require_once "Mail.php";

 $from = "Sandra Sender <sender@example.com>";

 $to = "Ramona Recipient <recipient@example.com>";

 $subject = "Hi!";

 $body = "Hi,\n\nHow are you?";

 $host = "mail.example.com";

 $username = "smtp_username";

 $password = "smtp_password";

 $headers = array ('From' => $from,

 'To' => $to,

 'Subject' => $subject);

 $smtp = Mail::factory('smtp', array ('host' => $host,

 'auth' => true,

 'username' => $username,

 'password' => $password));

 $mail = $smtp->send($to, $headers, $body);

 if (PEAR::isError($mail)) {

 echo("<p>" . $mail->getMessage() . "</p>");

 } else {

 echo("<p>Message successfully sent!</p>");

 }

 ?>

http:///

Introducing Railo Server

[12]

Let's have a look at the same funcionality in Java:

 import javax.mail.*;
 import javax.mail.internet.*;
 import java.util.*;

 public void postMail(String recipients[], String subject, String
message , String from) throws MessagingException
 {
 boolean debug = false;
 //Set the host smtp address
 Properties props = new Properties();
 props.put("mail.smtp.host", "smtp.jcom.net");

 // create some properties and get the default Session
 Session session = Session.getDefaultInstance(props, null);
 session.setDebug(debug);

 // create a message
 Message msg = new MimeMessage(session);

 // set the from and to address
 InternetAddress addressFrom = new InternetAddress(from);
 msg.setFrom(addressFrom);

 InternetAddress[] addressTo = new InternetAddress[recipients.
length];
 for (int i = 0; i < recipients.length; i++)
 {
 addressTo[i] = new InternetAddress(recipients[i]);
 }
 msg.setRecipients(Message.RecipientType.TO, addressTo);

 // Optional : You can also set your custom headers in the Email
if you Want
 msg.addHeader("MyHeaderName", "myHeaderValue");
 // Setting the Subject and Content Type
 msg.setSubject(subject);
 msg.setContent(message, "text/plain");
 Transport.send(msg);

 }

And inally, let's compare that to how we would do it in CFML:

 <cfmail from="Sandra Sender <sender@example.com>"
 to="Ramona Recipient <recipient@example.com>"
 subject="Hi!">
 Hi,
 How are you?
 </cfmail>

http:///

Chapter 1

[13]

As you see, this is a lot of funcionality with very litle code!

Another comparaive example would be the number of lines of code required to create a
web service. This shows you how Railo Server really can speed up your development:

PHP:25 lines

Java:16 lines

Railo:1 line

In terms of producivity, Railo Server is very powerful and can match any other programming
language in performance and especially in conciseness, as we will discover with many of the
examples in this book.

In addiion, Railo Server lets you manage your resources such as databases, mail servers, and
even the behavior of the server itself with the included Railo Administraion applicaion.

http:///

Introducing Railo Server

[14]

Another feature that the Railo Server includes is session management, allowing the state of
users to be persisted across several requests.

This feature is also expanded in being able to store general code seings in an applicaion
scope. This is kept in memory so that the environment doesn't have to be built up on each
request; this, means great performance beneits right out of the box for your applicaion.

With Railo Server, scaling and clustering is extremely easy to achieve without having to
conigure a full-blown J2EE cluster.

Staring with basic CFML, we can explore the full power of Railo components, caching
features, database interacion, and last but not least, Java interacion.

What else can you do with Railo Server?

This secion will outline some of the features that also come with Railo Server and will give
you some idea of the power behind it.

CFML compiler
Railo Server has an integrated bytecode generator (writen with ASM) that directly compiles
CFML writen templates into Java bytecode. The compiler is very fast and, on average, it
compiles a template ile in less than 10 milliseconds.

In early versions, Railo Server translated CFML code into XML, then used XSL to convert it
into Java, and inally used a Java compiler to generate bytecode. Since version 2.0, Railo has
had an integrated bytecode generator. The compiler is able to spot syntax errors in templates
and throw errors accordingly.

Railo archives—compiled code
Railo Server is capable of using Railo archives that are compiled versions of your templates.
This allows you to package and distribute your applicaions without having to worry
about other people viewing your code and possibly stealing your intellectual property.
In addiion, the size of your applicaion decreases drasically and it executes a lot faster
(as it is already compiled).

http:///

Chapter 1

[15]

Wide variety of CFML tags and functions
Railo Server has more than 125 tags and over 500 funcions that allow you to create the best
applicaions in no ime. There are tags and funcions for nearly every task you can think of,
from manipulaing arrays to convering images. The great thing is that Railo Server is also
extendable, so you can create your own funcions and tags to extend your applicaion or
the server itself.

Object-oriented approach
CFML components give you the power you need in order to scale and design MVC-based
applicaions. They allow you to use Object Oriented Programming (OOP) techniques such as

methods, encapsulaion, and inheritance. This leads to robust, encapsulated code, and, in
the long run, reduced maintenance costs.

Scripting support
Railo Server also integrates a scriping version of the tag-based programming language.
Programmers who are familiar with the coding syntax of other languages, such as JavaScript,
PHP, or JSP, will enjoy this feature.

For example, you can create a component using tags as follows:

 <cfcomponent output="false">

 <cffunction name="init">

 <cfreturn this />

 </cffunction>

 </cfcomponent>

You can also use the cfscript format to achieve the same thing:

 component output=false{

 function init(){

 return this;

 }

 }

Integrated administration frontend
With the web and server administrator, Railo Server ofers a very easy tool in order to
conigure the behavior of local and global applicaions. The Web and Server Administrator
applicaions are the main tools you will use in order to interact with the behavior of Railo. Of
course, these applicaions are also built using CFML. So, you can programmaically adjust all
the seings from CFML itself.

http:///

Introducing Railo Server

[16]

Background task execution
Railo Server integrates a task manager that allows you to asynchronously execute requests in
the background.

Extension manager
Railo Server tries to include everything you need, but someimes there are things that are
very speciic to your applicaion. For this, there is an Extension Manager that allows you to
add features to Railo Server directly from the Railo Server Administrator applicaion. The
extension store ofers programmers a whole new set of features and applicaions that are
easily installed and updated.

Easy update mechanism
Extensions are not the only thing that can be easily updated. You can update Railo Server
itself to the latest version with just a click. In the Railo Server administrator, you will get
noiicaions as soon as a new release of Railo Server is available and this allows for a
one-click update. If you need to restore the old version again, it is also just one click away.
Normally, it is only a mater of seconds.

Compatibility
When developing Railo Server, it was a strict goal to keep compaibility with the CF standard
as ightly as possible. This is demonstrated by the fact that with various applicaions, a
change of the applicaion server to Railo did not change anything in the runime behavior of
the applicaion itself, except maybe for the improved speed. So, if you already have some CF
applicaions running, there's no reason to fear high migraion costs.

Framework and application compatibility
At the moment, all of the major CFML frameworks or Content Management Systems
(CMS) work with Railo Server. So, if you are used to using a framework or tool like FW/1,
ColdSpring, ModelGlue, CFWheels, or ColdBox, you don't have to fear incompaibiliies. In
fact, FW/1 is even writen by one of the members of the Railo team, Sean Corield.

Security
With Railo Server, global security seings can be made for all applicaions running on
the server. For example, access to the ilesystem can be denied for a single applicaion or
restricted only to iles that lie within the web root of the applicaion.

http:///

Chapter 1

[17]

Virtual ilesystems
In Railo Server, it is very easy to interact with diferent virtual ilesystems (VFS). The local
hard disk is just an instance of a virtual ilesystem. Other VFSs that Railo supports are RAM,
HTTP, DB, FTP, SFTP, ZIP, TAR, S3, and others.

High performance
Railo Server's main goal was to be the CFML engine with the best performance. One of the
main reasons why this goal can be achieved is because Railo uses common resources for all
applicaions. Addiional changes in the architecture and various internal structures allowed
us to push the performance to higher limits. To the end user, these changes are noiceable in
a short response ime, during the execuion of the same code on the various engines.

Easy installation
The easiest way to give Railo Server a try is to download Railo Express, unpack it, and hit a
batch ile. There is no easier way to install the sotware. Railo Server can also be downloaded
as an integrated installer for various operaing systems and will install Apache Tomcat and
add connectors from web servers, such as Microsot's IIS and the Apache HTTP server.

Inexpensive and free
Railo Server is free and an open source LGPL V2 allowing you to both use and re-distribute
your applicaions with the underlying engine.

When it comes to using Railo Server in a clustered environment, there are some useful and
inexpensive extensions that can be purchased. Just use the Railo Extension Manager that is
part of the Railo Administraion Applicaion in order to see what extensions are available.

Because Railo Server is free, you don't have to fear any update cost or high-iniial cost if you
plan to use it in a large environment.

Easy clustering
Railo Server makes scaling and clustering very easy. You are able to build independent nodes

that act as a virtual cluster and meet any scalability demand your applicaion may have.

http:///

Introducing Railo Server

[18]

Summary

Hopefully, this chapter has given you an overview of what Railo Server ofers the web
developer in terms of ease of programming, conciseness of language, and feature set.

You should now have an idea of:

 � The small number of lines you need to write to get things done

 � The rich number of features that Railo Server provides

 � How easy it is to extend Railo Server by using extensions

 � The way templates are processed and delivered to the client

 � The powerful Java underpinnings that are made available to you without
any complexity

In the next chapter, we shall have a look at the various ways you can install Railo Server and
how to get up and running quickly under diferent environments.

http:///

2
Installing Railo Server

Let's get started with Railo Server! The irst thing we want to do is install it on
our computer. Luckily, this is prety easy.

Railo Server is essenially a Java web applicaion that can be installed on many
servlet containers such as Jety, Tomcat, and Resin. In this chapter, we are going
to look at the three diferent ways to install Railo Server

In this chapter, we will:

 � Get up and running with Railo Express

 � Get up and running with the Railo Server Tomcat installer in Windows environment

 � Get up and running with the Railo WAR and Jety in the Linux environment

So, let's get on with it!

Getting up and running with Railo Express

Running Railo Express is probably the quickest way that you can get started with Railo.

Railo Express includes Jety, which is a very lightweight servlet container and a great way to
get a local development version of Railo running on your machine. This is very helpful when
you want to try out the code samples in just a few minutes without having to permanently
install any sotware.

Servlet containers are a way to run Java applicaions to be served by a
web server. They can be run standalone or connecing to a web server
such as Apache or Microsot's IIS.

www.allitebooks.com

http:///
http://www.allitebooks.org

Installing Railo Server

[20]

Time for action – downloading Railo

The following Railo Express procedure is for OS X, but it is idenical to how we do it on
Windows. Let's get started!

1. To get started, we should irst head to

http://www.getrailo.org/index.cfm/download/.

2. Scroll down to the Current stable release table and select the correct version for

your operaing system (in this case, we are downloading the Railo Express for OS X).

3. Once you have downloaded the ZIP ile, extract it and we will have a folder like the
one shown in the following screenshot:

http://www.getrailo.org/index.cfm/download/
http://www.getrailo.org/index.cfm/download/
http:///

Chapter 2

[21]

4. Now that we have expanded the ZIP ile, you can start Railo Express by clicking on
the start ile (start.bat on Windows). If we get a security warning, just click
on Open.

5. A terminal window will open and start a list of commands; this is Railo Server
staring up. Once the commands stop running, you can check that Railo Express is
running correctly by going to http://localhost:8888, where you will get Railo's
welcome screen:

6. Hurray! Railo Server is running!

http://localhost:888/
http:///

Installing Railo Server

[22]

What just happened?
You just downloaded and ran Railo Express. Nothing was installed to your computer, but
you're sill able to get up and running with Railo extremely quickly.

Customizing Railo Express

Now that you have Railo running, let's customize it a bit. We will need to assign the
administrators some passwords, add our own CFML iles, and start developing!

Time for action – setting the administrator's password

1. To update the passwords for both the server and the web administrators, let's point
our browser to http://localhost:8888/railo-context/admin/web.cfm.

You will get the web administrator's login screen. Because no password is currently
set, Railo Server will prompt you to set one:

http://localhost:8888/railo-context/admin/web.cfm
http:///

Chapter 2

[23]

2. Enter your password and retype it to set the web administrator password.

3. Now click on the Server Administrator tab at the top-right-hand side and repeat
the same procedure again. You have now set the passwords for the whole server
administrator and for the web administrator.

4. Now that we have secured our server, we can start coding. You can ind the webroot
in <railo folder>/webroot, which is where we will save our template iles. The
main ile will be index.cfm, which is already there.

What just happened?
You now have a fully-funcional development environment for Railo and you didn't even have
to install any sotware to get there!

Running the Railo Server Tomcat installer

The Railo Server Tomcat installer was developed with several goals in mind. Those goals are
as follows:

 � Easy Integraion with the exising web servers: As a general rule, most developers

are comfortable working with either Apache or IIS as their web server, and don't
want or need to use anything diferent. The Railo Server Tomcat installer provides
a way for those developers to get up and running quickly with support for their
preferred web servers. This means those developers (and possibly you) will not have
to change their development style too much in order to get comfortable with Railo.

 � Beter ''Control Panel'' support: By seamlessly supporing exising web servers,
the Railo installer can very easily be deployed by hosing companies or individuals
using services from a hosing company. This gives Railo developers the ability to use
whatever Control Panel (such as cPanel, Plesk, Virtualmin, and so on) they're most
comfortable with and sill have Railo support.

 � Easy Support for muliple sites.

 � The Railo installer makes it easy to run many sites, and many web applicaions of
a single instance of Railo. This is diferent from, say, a WAR deployment where
possibly many instances of Railo can be deployed at a single ime. It also saves
memory because there is only one instance of Railo running.

The Railo installers provide the most lexible and easy ways to get up and running on Railo.

http:///

Installing Railo Server

[24]

Time for action – installing on Windows

Let's install Railo Server on a Windows machine to see how easy it is.

Before we install this version, make sure that Railo Express is not running anymore. If you sill
have the Start/start.bat console window open, close it now. The reason for this is that
both Jety (Railo Express) and Tomcat listen to port 8888 by default, and only one program
can bind them to a given port at the same ime.

1. As with Railo Express, let's head to
http://www.getrailo.org/index.cfm/download/

2. This ime, let's download the Railo Server with Tomcat version:

3. Once we have downloaded the executable, we run it, We select the language we
want to install it in, and click on OK:

4. When we get to the introducion screen, we click on Next >.

http:///

Chapter 2

[25]

5. When asked where to install Railo Server, we leave it as C:\railo and click on

Next >:

6. The next screen asks us what we would like the Tomcat Administrator's username to
be. We can leave it as admin and click on Next >:

http:///

Installing Railo Server

[26]

7. The Tomcat Administrator Password screen comes up. We then enter the password
we want for it and click on Next >.

8. The Start at Boot?? screen appears and we leave it checked so that when the
machine restarts, we know that Railo Server will be ready to serve requests.
We click on Next>

http:///

Chapter 2

[27]

9. The Install FusionReactor screen appears. FusionReactor is a server-monitoring
tool by Intergral GmbH. It is outside the scope of this book, so for this example, we
will leave it unchecked and click on Next>:

10. Now that the Railo Server installer has gathered all the informaion it needs, it is
ready to install Railo. Click on Next >:

http:///

Installing Railo Server

[28]

11. Ater a few seconds, you should get a conirmaion screen that everything has been
installed and you have the opion to open the Railo Server Administrator. Leave this
checked and click on Finish:

12. You should now be taken to the welcome screen of Railo Server. Just as with Railo
Express, you can go to http://localhost:8888/railo-context/admin/

web.cfm to change the server administrator and web administrator's password:

13. Congratulaions! Railo is now installed on your computer!

http://localhost:8888/railo-context/admin/index.cfm
http:///

Chapter 2

[29]

What just happened?
You now have Railo Server installed on your computer, running under the Tomcat servlet
engine. You can now create sites in IIS or Apache like you normally do, and have the CFML
code that you put in each of those sites processed by Railo.

Diferences in installers

If the installer had diferent steps for your installaion it might be
because you already have a web server, such as Apache or IIS,
installed. You can follow the installaion process for your paricular
seings and all that should change at the end of the process is the
URL that you will be using.

Adding CFML-enabled sites to IIS7

The Railo Server installer creates an instance of Railo Server that is built to support having
a web server in front of it. In this secion, we will review how to go about adding sites to IIS
and coniguring them to process CFML code. The process is similar for both IIS and Apache,
so we'll just go through the IIS process here.

Time for action – adding a site to IIS7

To add a Railo-enabled site to IIS7, just carry out the following steps:

1. Create your site in IIS. This part is no diferent than what you would normally do to
create a site in IIS.

www.allitebooks.com

http:///
http://www.allitebooks.org

Installing Railo Server

[30]

2. In the IIS site that you want to connect, create a virtual directory in your new
site named jakarta and point it to your connector directory, which is usually
at c:\railo\connector.

http:///

Chapter 2

[31]

3. Next, go to your Start menu. Click on the Railo folder, and then click on the Tomcat

Host Conig link. This will open the Tomcat's server.xml ile in Notepad, so you
can edit it.

http:///

Installing Railo Server

[32]

4. Noice the comments in the server.xml ile. Add an addiional Host entry to the
ile that states your domain name and where your iles are located for that domain.

5. Now that you've set up IIS and conigured your new host in Tomcat, you need to

restart Tomcat for your changes to take efect. You can do this using the Tomcat

Service Control opion in the Railo Start menu folder.

Getting up and running with the Railo WAR and Jetty

The Railo WAR is a general-purpose install method that is meant for use with any Java servlet
container (such as Jety, Tomcat, JBoss, Resin, and so on) that supports WAR deployments. If
your organizaion is already using Java and a Java Servlet Engine, this will be an easy way to
get an applicaion up and running within your exising Java environment.

http:///

Chapter 2

[33]

What is a WAR?

In the context of Java Servlet Engines, a WAR ile is a ile that contains
all the programs and classes that Java needs in order to run a single

applicaion. For Railo, this means that the WAR ile contains all the
programs and classes needed to run Railo and process CFML code.

WAR iles can be deployed anywhere, on any operaing system. Earlier in the chapter we
covered installing to the Tomcat Servlet Engine under Windows OS. We will now cover
installing Railo to a Jety Servlet Engine running on top of an Ubuntu Linux machine.

Time for action – downloading and installing Jetty

Let's download and install Jety so we can get Railo deployed:

1. Open a terminal window in Ubuntu by going to Applicaions | Accessories | Terminal.

2. Once you have a Terminal open, type in the following:

 $ sudo apt-get install jetty libjetty-extra-java

3. Ubuntu will prompt you for your password so that it knows you have the permission
to be installing sotware on the machine. Go ahead and enter in your password and
Ubuntu will install Jety from there.

What just happened?
You just used the Ubuntu command apt-get to tell Ubuntu to go out to a public ile locaion
(called a repository), download the iles for Jety, and install them on your computer. It's
actually a prety complicated process, but it's made really simple with this one command.

http:///

Installing Railo Server

[34]

Time for action – booting up Jetty

It is important to note that Jety will not start yet. There is a safety precauion in a
Jety coniguraion ile that helps avoid problems. We need to go edit the default Jety
coniguraion and remove this safety block.

You can use whatever text editor you prefer, but we're going use the "vi" editor for
this example.

Let's open up the /etc/default/jetty coniguraion ile in the "vi" editor. To do this, all
you have to do is type:

 sudo vi /etc/default/jetty

1. Now that you're in "vi" editor, use the arrow keys and move your cursor to the
beginning of the line that states NO_START=1.

2. Hit the I key on your keyboard. This will put the "vi" editor in what's called
Insert mode and allow you to insert text. You will see a white - Insert - at the

botom-let-hand side of your screen. This is how you know you're in Insert mode.

3. Type a pound sign (#) in front of the "NO_START=1 line, so that it looks like

"#NO_START=1. This will comment out that line.

4. Hit the Escape key (Esc) to leave Insert Mode. You will see that the white - Insert - is

no longer at the botom-let of your screen.

5. Now type :wq! and hit the Enter key. This will save your ile and exit the "vi" editor.
You're done!

Now that we've edited the coniguraion ile, we're free to start up Jety. Type the following
to start the Jety Servlet Engine:

$ sudo /etc/init.d/jetty start

You will see Jety start up, which is something like this:

http:///

Chapter 2

[35]

This screen is telling you that Jety was able to start and is now listening on port 8080 of your

local computer. My computer name is jordan-desktop. This is what the script put as the URL.
Instead of jordan-desktop, it's probably beter to use localhost, because it's less likely

to be irewalled and cause problems. If you're installing to a remote machine, you could also
use that machine's remote IP address. Just make sure there's no irewall blocking port 8080.

We will need that port open in order to use it.

Now, let's test to make sure we can see our new Jety install. Try hiing
http://localhost:8080/ and make sure you get the Jety page, as shown
in the following screenshot:

If you see the same thing as in the previous screenshot, you're all set! Your computer is now
prepared to install the Railo WAR.

http:///

Installing Railo Server

[36]

Time for action – downloading and deploying the Railo WAR

The process of deploying a WAR ile is super simple. You just download the WAR ile, place it
in the webapps or webapp folder of whichever servlet engine you're using, and your servlet
engine will handle the rest via AutoDeploy. The following steps describe how to accomplish
this with our Ubuntu/Jety install.

1. Move to the Jety's webapps folder. You can do that in Ubuntu's Terminal interface

by typing in the following command:

 $ cd /var/lib/jetty/webapps/

2. Download Railo's WAR ile. At the ime of this wriing, the most recent Railo release
is 3.2.2.000, so let's download that WAR to our Jety webapps directory.

3. To save ime in the future, let's rename that WAR ile to simply railo.zip with the
following command:

 $ sudo mv railo-3.2.2.000.war railo.zip

4. Unzip it so that it's deployed:

 $ sudo unzip -d railo railo.zip

http:///

Chapter 2

[37]

5. Remove the ZIP ile as we're done with it:

 $ sudo rm railo.zip

6. Finally, change the permissions of the extracted iles to match that of Jety:

 $ sudo chown -R jetty:adm railo

7. Now let's restart Jety so it will pick up our new railo folder:

 $ sudo /etc/init.d/jetty restart

8. Now we should be able to access Railo from the web at
http://localhost:8080/railo/.

9. Congratulaions! We have installed Railo with Jety Web Server.

Once you see this screen, you're all set! You are now able to get started developing on Railo
under Jety.

To add your own CFML iles to this install, you just add them to the railo directory. Be

sure to not touch the WEB-INF directory, as that's where Railo lives and processes your
CFML iles.

http:///

Installing Railo Server

[38]

What just happened?
You just installed Railo on top of your Jety install. You can now drop your own CFML
iles into the railo directory. Be sure to leave the WEB-INF directory there. It contains

important iles that Railo uses to process your CFML code. But don't worry, this folder is
not web accessible.

Summary

In this chapter, we saw how simple it was to install Railo Server in various environments.
We started with the Railo Express version, which includes Jety and is standalone. It can
be started from a simple script without needing to install or connect it to a web server. We
then used the Railo Server installer to install Railo with Apache Tomcat into a Windows
environment and then connected the IIS server to our sites. Finally, we saw how easy it was
to install on an Ubuntu server by simply geing Jety through the apt command and just
deploying it to the Railo WAR.

We also briely touched on securing the Railo Web and Server Administrators by adding
a password and found out where we should put our CFML templates to get started
in developing.

In the next chapter, we are going to talk more about CFML, so that we can get to grips with
the structure and syntax of this very easy, yet powerful, language.

http:///

3
CFML Language

Now that we have got Railo Server installed, we can inally get down to
some coding!

This chapter will introduce you to the CFML programming language, the
programming language that lets you build awesome web applicaions that can
run on Railo Server. The great thing about the CFML language is that it is really
easy to get started, using simple tags and funcions that generally are self
descripive, which will get you coding applicaions from the start and become
a master of the language in no ime at all!

In this chapter, we shall learn the following:

 � Basics of the language: tags, funcions, variables, operators, and scopes

 � Database access: coniguring data sources, running queries and stored procedures

 � Handling web data such as forms, URL variables, cookies, and sessions

 � Object-oriented programming with components

Why don't we dive in and get started!

The CFML language history

The CFML language was iniially created by Allaire Technologies for their

ColdFusion Server in 1995. CFML is an acronym for ColdFusion MarkUp

Language, and currently three servers (Railo, OpenBD (Open Blue Dragon),
and Adobe's ColdFusion Server) support the language.

www.allitebooks.com

http:///
http://www.allitebooks.org

CFML Language

[40]

Basics of the CMFL language

The idea behind the CFML language was to let web developers have a way to create
server-side applicaions quickly and easily. To do this, it was designed to use coding
metaphors that are familiar, such as using tags (like HTML tags) and funcions (just like
JavaScript funcions).

If you have done HTML development, you will be used to using tags to describe the layout
of your document. With CFML, you describe what you want to do on the server side, for
example, saving the contents of a feedback form, display details of a product stored in a

database, allow a user to login to your site, and so on.

When you write CFML code, it is not displayed in the browser, but rather parsed by the
server, providing you a way to output some code. To show you an example, let's try the
quintessenial Hello World example.

Time for action – Hello World!

Create a ile called listing3_1.cfm with the following contents (most CFML pages end
with the extension .cfm.. This tells Railo Server that this ile should be parsed):

 <html>

 <head><title>Example 1</title></head>

 <body>

 <cfset hello = "Hello World">

 <cfoutput>#hello#</cfoutput>

 </body>

 </html>

You can now save this ile to <railo install directory>/webroot/listing3_1.
cfm, and then we can view the results by going to http://localhost:8888/
listing3_1.cfm (you should be using the Railo Express ediion you installed in
Chapter 2, Installing Railo Server for all these examples). You will see the output
"Hello World" displayed in your browser.

What just happened?
In the preceding code, we have an example HTML document that we have added some CFML
code to. In the preceding example, we used the <cfset> tag to set the variable hello with
a value of "Hello World". Then we use the <cfoutput> tag to say that we want to start
outpuing the hello variable to the document.

We use the # (pound or hash) sign surrounding a variable to output it. This is one of the most
basic ways of outpuing variables.

http:///

Chapter 3

[41]

If you look at the source of the browser document, you can see that the server has replaced

all the CFML tags and variables and output the following HTML:

<html>

 <head><title>Example 1</title></head>

 <body>

 Hello World

 </body>

</html>

CFML tags

There are a number of CFML tags that allow you to code nearly anything you can imagine.
But before we start invesigaing some of these tags and their funcions, it is good to
understand the general syntax of CFML tags. The overall syntax of CFML tags can be

described as:

<tagname attribute="value">

 Code/text that is affected by the surrounding tags.

</tagname>

A tag can have one or more atributes that have values similar to HTML. They can also wrap
some code or text that will be afected by the surrounding tags. It is important to note that
despite the previous example, all CFML tag names start with "cf"; so, for example, we have
tags called <cfabort> , <cfloop>, <cfoutput>, and so on.

Single tags with attributes
A number of CFML tags can be used as a single tag, without the need to close it.
For example:

<cfabort>

You might noice that since it is a single tag, you don't need to add a closing tag. For the
sharp eyed ones amongst you, you will noice that you also don't need to use XML-type
syntax and add a closing forward slash in the tag like <cfabort /> because CFML doesn't

require them, but you can use them in your code. As an aside, the above tag stops the page

execuion. We shall look in detail at the funcionality of each tag later on.

Tags can also have atributes, which deine what they do as shown next:

<cffile action="read" file="/somefile.txt" variable="myFile">

http:///

CFML Language

[42]

The previous tag has a number of atributes that deine how it funcions beter, in this case,
to read a ile from /somefile.txt and put it into a variable called myFile. Nearly all tags

in the CFML language take some atributes.

Tags with expressions
As we saw before, there are tags that take atributes, but some tags just take an expression;
two notable tags in this category are <cfset> and <cfif>. You already saw how you can
set a variable with <cfset>, which is its purpose, but you can also evaluate expressions,
for example:

<cfset ArrayAppend(myArray, "something")>

We use a funcion to add an item to the array myArray with the value something. There is
no value set, but we have sill achieved a goal.

Another tag that uses an expression instead of an atribute is the <cfif> tag. This tag
allows you to perform conditional logic, depending on whether an expression is true,
for example:

<cfif isNumeric(myValue)>

 The value is numeric

</cfif>

The previous code evaluates the value myValue with the funcion isNumeric() to check

whether it is a number value. If the expression evaluates to true, then the contents between
<cfif> and </cfif> are displayed.

Time for action – single tag example

Let's create an example where we can use a few single tags.

In our <Railo Install Directory>/webroot/Chapter_3/ folder, let's create a ile
called tag_example.cfm.

In this tag, let's add a form and some code that will respond to changes in a checkbox:

<cfparam name="FORM.doexecute" default="false">

<h1 id="logic_example">Logic Example</h1>

<form action="tag_example.cfm" method="post">

 <label for="execute">Execute</label><input
 type="checkbox" name="doexecute" value="true" id="execute">

 <p><input type="submit" value="Submit"></p>

</form>

http:///

Chapter 3

[43]

 <cfset output = "">

 <cfif FORM.doexecute>

 <cfset output = "We are going to execute some code!">

 <cfelse>

 Aborted!

 <cfabort>

 </cfif>

 <cfoutput>#output#</cfoutput>

 This is the end of the file

Let's run this in the browser by going to http://localhost:8888/Chapter_3/tag_
example.cfm. You will see the form with a single tickbox:

If we submit the form, without icking the checkbox, you will always see the Aborted!
message at the botom.

If we now ick the Execute checkbox, you should see a message saying:

We are going to execute some code!

This is the end of the ile

What just happened?
In our example we have used a few tags to set variables in our code. At the start of the ile,
we put a <cfparam name="FORM.doexecute" default="false"> statement, which
sets the FORM.doexecute variable to false, but only if it doesn't exist. This is important to
note. Otherwise we would have to check if that form variable has been passed in. This is a
neater way of coding, as it removes the need to check for variables all the ime.

http://localhost:8888/Chapter_3/tag_example.cfm
http:///

CFML Language

[44]

We then create a simple form with a checkbox. This form will actually post back to the
tag_example.cfm ile.

We then use the <cfset output=""> to set up a variable called output, and then use the

<cfif>, <cfelse> and </cfif> tags to test whether the value of the FORM.doexecute

value (which is passed into the form) is set to true or to false.

If the value of FORM.doexecute is false, we then use the <cfabort> tag to escape the

rest of the execuion of the ile.

Tags with content
As you saw in the previous example, some tags take content, such as the <cfif> tag. There
are other tags that can take parsed content within them. A notable example of this is the
<cfquery> tag:

 <cfquery name="myQuery" datasource="myDatabase">

 SELECT *

 FROM Users

 </cfquery>

The code above shows how, instead of outpuing the text within the <cfquery> tags, the

content will be parsed as SQL and executed against the database deined in the datasource

atribute. In this example, we would now have the results of our query in the myQuery

variable. If we want to loop through the results, we can do the following:

 <cfoutput query="myQuery">

 Username: #name#

 </cfoutput>

The previous code would output a list of all the values in the name column of the Users

table (of course, if that is what you have in your database).

http:///

Chapter 3

[45]

Tags with sub tags
There are a number of tags that can only be used within another tag. These tags
usually allow the parent tag to ilter or pass more variables. A great example is the
<cfqueryparam> tag. This allows you to specify the value and type that you are passing to
a query and allows you to stop SQL Injecion atacks on your system. If we were looking for a
speciic user from our database table, we might do something like:

 <cfquery name="myQuery" datasource="myDatabase">

 SELECT *

 FROM Users

 WHERE userid = #URL.userid#

 </cfquery>

The problem with the code is that the variable (that we are passing through the URL) of
userid could be hacked by a malicious user of the site. To make sure that the variable
passed into user ID is of the right format, and there are no SQL atacks, we can insert a
<cfqueryparam>. For example:

 <cfquery name="myQuery" datasource="myDatabase">

 SELECT *

 FROM Users

 WHERE userid = <cfqueryparam cfsqltype="cf_sql_numeric"
value="#URL.userid#">

 </cfquery>

Now that we have added the <cfqueryparam> tag, you can see that we deine the
cfsqltype of the variable that we are going to pass, in this case, a cf_sql_numeric

variable and the value from the URL. Railo uses a mapping of database column types to the
cf_sql_* atribute variables so that the previous code can run on any database, rather than
being database-type-speciic. Other tags that take sub tags such as <cfqueryparam> for

iltering purposes are <cfhttp> with <cfhttpparam>, <cfmail> with <cfmailparam>,

and <cfstoredproc> with <cfprocparam>, to name a few. There is another type of tag
that has to be placed within another tag, and those are some of the logic operaion tags,
such as <cfcase>, <cfelse>, and <cfelseif>. The <cfcase> tag can only go inside a

<cfswitch> tag, for example:

 <cfswitch expression="#URL.action#">

 <cfcase value="showpage">

 <!---Show the page-à

 </cfcase>

 <cfcase value="editpage">

 <!---Edit the page -à

 </cfcase>

http:///

CFML Language

[46]

 <cfdefaultcase>

 <!---Do some other action -à

 </cfdefaultcase>

 </cfswitch>

We now have a parent <cfswitch> tag in which we check the value of the URL.action

parameter passed to the page. Then we have a series of cases that we can check with the
<cfcase> tag, so if the value of URL.action is "showpage", in the case above, we would
run the acions inside the <cfcase value="showpage"> statement.

Another example is the <cfelse> and <cfelseif> tags, which could be used to write the
previous funcion:

 <cfif URL.action EQ "showpage">

 <!---Show the page -à

 <cfelseif URL.action EQ "editpage">

 <!---Edit the page -à

 <cfelse>

 <!--- Do some other action -à

 </cfif>

As you have seen, CFML tags are easy to get started with. If you have ever developed HTML
pages, you should get a grasp of using them in no ime at all.

CFML functions

Funcions in CFML come in two lavors, namely, the built-in funcions that Railo provides as
a part of the core engine, which are highly opimized, and the funcions that you can write
in CFML and have your code use. You have already seen the use of a built-in funcion with
the use of ArrayAppend() and isNumeric(). So let's go and look at some funcions in
greater detail.

Time for action – using built-in functions

Railo has a large number of built-in funcions (or BiFs) that provide a vast array of
funcionality at the ip of your ingers. On last count, there were roughly 500 funcions
that are available to you and of course that would be too much to cover each one of
them in this book.

Funcions provide a way to check and manipulate simple data, as well as manipulaing
complex variable types-like structures, arrays and dates.

http:///

Chapter 3

[47]

The simplest example of using a funcion would be to get the current date, so for example,
let's create a ile in <Railo Install Directory>/webroot/Chapter_3/ called

Listing3_14.cfm and put the following code:

 <cfoutput>

 #Now()#

 </cfoutput>

By going to http://localhost:8888/Chapter_3/Listing3_14.cfm, your page will be
displayed as:

Many funcions take a number of parameters. Since we are talking about dates, let's format
the date a bit beter with another funcion:

 <cfoutput>

 #DateFormat(Now(), "dd-mm-yyyy")#

 </cfoutput>

Now our date has been formated nicely.

http:///

CFML Language

[48]

What just happened?
With Railo Server, you can also name the parameters as a name and value pairs with the
"=" operator, rather than just passing them as a list, so the above funcion call can also be
writen as:

 <cfoutput>

 #DateFormat(date=Now(), mask="dd-mm-yyyy")#

 </cfoutput>

You can also use ":" as the operator between funcion parameters, so the code above can
also be writen as:

 <cfoutput>

 #DateFormat(date:Now(), mask:"dd-mm-yyyy")#

 </cfoutput>

The choice is up to you of course, since funcionally, there is no diference, but it can improve
clarity when reading a funcion. As you have seen in the previous code examples, funcions
can be used within funcions, they can also be used inside the atributes of tags, for example:

<cfcookie name="userid" value="1" expires="#CreateDate(2011,12,29)#">

User-deined functions
Even though there are swathes of funcions available to you with Railo Server; there are
many imes when you need to create your own funcions to do something speciic.

These could be funcions that are not as generic as the ones provided by Railo Server and are
speciic to your use case, such as running a Regular Expression over a string or (as we shall
see later) capitalizing the irst leter of a word.

Funcions that are not part of the core funcionality of Railo Server are called User-deined
funcions and are prety easy to create.

Time for action – using user-deined functions
To create a user-deined funcion all you have to do is use the <cffunction> tag.

For example:

 <cffunction name="MakeCapitalised">

 <cfargument name="wordToCapitalise" type="string">

 <cfset FirstLetter = Left(wordToCapitalise,1)>

 <cfset FirstLetter = UCase(FirstLetter)>

 <cfset RestOfWord = Mid(wordToCapitalise, 2,
Len(wordToCapitalise)-1)>

http:///

Chapter 3

[49]

 <cfreturn FirstLetter & RestOfWord>

 </cffunction>

 <cfoutput>

 #MakeCapitalised("steven")#

 </cfoutput>

The previous code will return the following:

What just happened?
Let's work through the code, we irst deine the funcion with a name of MakeCapitalised:

 <cffunction name="MakeCapitalised">

Then we deine the argument that it takes; in this case, we call it wordToCapitalise and

say that it is of type string:

 <cfargument name="wordToCapitalise" type="string">

Next, we get the irst leter of the wordToCapitalise using the Left() funcion, saying
we want one character from the let of the wordToCapitalise:

 <cfset FirstLetter = Left(wordToCapitalise,1)>

Now we can convert that leter to uppercase with the UCase() funcion:

 <cfset FirstLetter = UCase(FirstLetter)>

www.allitebooks.com

http:///
http://www.allitebooks.org

CFML Language

[50]

Next we want to get the rest of the wordToCapitalise so that we can add it to the
FirstLetter variable (which is now "S") using the Mid() funcion, which takes a
string, the start, and the length of the string, to get:

 <cfset RestOfWord = Mid(wordToCapitalise, 2,
Len(wordToCapitalise))>

And inally, we combine the FirstLetter and RestOfWord variables and return the

output of the funcion with the <cfreturn> tag:

 <cfreturn FirstLetter & RestOfWord>

The inal part of the code, we just call the funcion with the name Steven and the funcion
is run. A word of warning though, you can name your funcions anything you like, as long as
you don't name it the same as the exising funcion in CFML. If you do this, you will get an
error saying that it is already used by a built-in funcion.

CFML variables

We have already seen CFML variables at work in previous code examples, but what we have
seen so far have been simple strings. The power of the CFML language is that you don't have
to deine what type variables are. Railo Server takes care of this and you can change the type
of variable as you go along. So, for example:

<cfset a = "Mike">

<cfset a = 1>

<cfoutput>

 #a#

</cfoutput>

Will give result in "1". Variables in CFML are dynamically typed, so if we did the following:

 <cfset a = 1>

 <cfoutput>

 #isNumeric(a)#

 </cfoutput>

We would get "true" being returned and displayed, the same would happen if we made
"1" a string:

 <cfset a = "1">

 <cfoutput>

 #isNumeric(a)#

 </cfoutput>

http:///

Chapter 3

[51]

Variables can be simple types, such as strings, numbers and Booleans, but they can also be

complex types. There are a number of complex variable types in CFML, such as Structures,
Arrays and Queries. Funcions and Components (see "Object Oriented Programming with
Components" later in this chapter) can also be passed to variables.

Let's look at some of the more complex variables.

Structure variables
Structure variables are key/value representaions of data. They are also known as Structs
(or referred to as Maps or Collecions). A structure can have as many keys as you want but
they all must be unique, and can be referenced via the key name.

Time for action – using structures

Let's create an example so we can see it at work, create a ile in your <Railo Install
Directory>/webroot/Chapter_3/structure_example.cfm and put the following
code in the template:

 <cfset myStruct = StructNew()>

 <cfset myStruct.name = "Steven">

 <cfset myStruct.age = "29">

 <cfdump var="#myStruct#">

So far we have been using <cfoutput> to display simple variables, but complex variables

cannot just be displayed to the browser, hence we use the <cfdump> tag. This is a very
handy tag to use to display complex values during development. It will produce the following
output when you run your code:

http:///

CFML Language

[52]

If you want to reference the name key in the structure myStruct directly, you can do it in a

couple of ways:

 <cfoutput>
 #myStruct.name#

Or:

 #myStruct['name']#
 </cfoutput>

Also, you can create structures using implicit creaion, using the curly brackets ({}) and the

key valued objects directly:

 <cfset myStruct = {name="Steven", age="29"}>
 <cfdump var="#myStruct#">

Structures can contain any type of variable, but the keys need to be simple strings, so for

example, we can create a structure within a structure:

 <cfset myStruct = {name="Steven", age="29"}>
 <cfset myStruct.cars = {car1="audi", car2="ford"}>
 <cfdump var="#myStruct#">

It will give us the following:

You may have noiced that the keys of the structure are automaically made uppercase,
this doesn't mater when you are accessing them, as CFML is case insensiive. If you need
to make sure your keys maintain their case, you can do so by quoing the key name.
For example:

 <cfset myStruct = {"FirstName"="Steven", "LastName"="Smith"}>

 <cfdump var="#myStruct#">

http:///

Chapter 3

[53]

Or:

 <cfset myStruct2 = StructNew()>

 <cfset myStruct2["CarType"] = "Audi">

 <cfset myStruct2["HouseType"] = "Bungalow">

 <cfdump var="#myStruct2#">

This now displays the keys maintaining their case.

What just happened?
Using Structures in Railo Server is a handy way of storing muliple values. They are stored
in alphabeical order by the key name and by default, the keys are stored in uppercase,
regardless of their original name.

Structures are very handy for storing simple and complex objects that you need to reference
by name. The problem arises when you need to store data in an ordered manner; this is
where Array variables come in.

Array variables
Arrays are a type of variable that can contain other variables in an indexed order. You

can add any type of variable to an array, and they will be stored in the order that they
were added.

http:///

CFML Language

[54]

Time for action – creating an array

Let's look an example of creaing an array, create a ile in the Chapter_3 directory we have
been using called Listing3_28.cfm with the following content:

 <cfset myArray = ArrayNew(1)>

 <cfset ArrayAppend(myArray, "FirstItem")>

 <cfset myArray[2] = "SecondItem">

 <cfdump var="#myArray#">

When we run this code we get the following:

What just happened?
In the previous code, we created an array using the ArrayNew(1) funcion, and
passing in the variable 1 to create a one-dimensional array. Then, we used the funcion
ArrayAppend() to add the string "First Item" to the array. Then, instead of using
ArrayAppend() again, we just deined the posiion of the array that we wanted to add
another item into. To access a variable inside an array, it is simply a mater of deining
which item you want using the square brackets notaion, []:

 <cfset myArray = ArrayNew(1)>

 <cfset ArrayAppend(myArray, "FirstItem")>

 <cfset ArrayAppend(myArray, "Second Item")>

 <cfoutput>

 1st Item : #myArray[1]#

 2nd Item: #myArray[2]#

 </cfoutput>

http:///

Chapter 3

[55]

The above code would output:

1st Item : First Item

2nd Item: Second Item

You can loop through the variables in an array using the <cfloop> tag:

 <cfloop array="#myArray#" index="item">

 <cfoutput>

 #item#

 </cfoutput>

 </cfloop>

This would give us the following:

First Item

Second Item

In the loop above, we don't need to pass the item to the myArray variable, it already returns

the item in the array that we are seeking in the item variable.

CFML scopes

Railo Server provides special structures that are available at diferent points in the request
lifecycle. These structures are called Scopes and they essenially store the variables. You
are able to read and write (to most of them) to help with the eiciency of your applicaion.
These scopes have names that are reserved in Railo CFML, so you can always make sure you
can access them.

Let's have a look at some of these scopes and get an idea on how they work.

SERVER scope
The Server Scope in Railo Server is a scope that is available to all your applicaions on a
server. Hence the name. It also provides some interesing informaion that you are able
to read. If we want to see what the Server scope contains, all you have to do is use the
<cfdump> tag to display the values:

 <cfdump var="#SERVER#">

http:///

CFML Language

[56]

This displays the scope as follows:

This scope holds informaion about Railo's version and compaibility, Java Memory and
version informaion, Operaing System details, System delimiters, and which servlet
container we are running.

If you want to set some informaion in this scope, all you have to do is use the <cfset> tag

and use the SERVER preix in the variable name and set whichever value you want, to assign
to it; this goes for all the other scopes too.

Time for action – adding a variable to the SERVER scope

Let's add the following code to a template called Listing3_30.cfm in our

Chapter_3 directory:

 <cfset SERVER.aVariable = "My Lovely Variable">

http:///

Chapter 3

[57]

Now, if you dump the SERVER scope you should get your variable displayed:

What just happened?
The SERVER scope is accessible by all the applicaions and contexts that are on a single
instance of Railo Server. This means that if we set any variables here, they can be read
(and writen) across the server.

APPLICATION scope
In Railo Server, you can deine a folder (and of course, its sub folders) as a speciic
applicaion, with its own seings and data sources using CFML. To do this, you need to
put a special ile in the root named Application.cfc. This ile has a special type of
template called Component (we shall have a more detailed look at the components later
in this chapter).

Time for action – creating the APPLICATION scope

Why don't we try that now:

1. In the <railo install directory>/webroot/ folder, create another folder

called myApp

2. In the myApp folder create a ile called Application.cfc.

3. Edit Application.cfc and put the following code in there:

 <cfcomponent>

 <cfset this.name = "MyApplication">

 </cfcomponent>

http:///

CFML Language

[58]

4. Save the ile and now create another ile called index.cfm

5. The index.cfm ile is the actual ile we are going to call, so let's put some code in
there to make sure we are in a CFML applicaion. Add the following code to your
index.cfm:

 <cfdump var="#APPLICATION#">

6. You will see the applicaion scope displayed, with a key called applicationname:

What just happened?
By simply placing a ile named Application.cfc and puing some seings in there we
have created a scope that is available only to the templates that are in the same folder or

folders below it. This way we can make sure all the seings are inherited and data can be
shared only in that locaion.

There is much more to the applicaion scope and applicaion lifecycle, which we will cover in
Chapter 5, but for now you can see that these seings are speciic to your applicaion.

SESSION scope
The SESSION scope is a structure in which you can store informaion about a single user
across requests. This is useful to store user speciic informaion, such as their ID. What is
great about this scope is that it will survive requests, so you don't need to worry about
re-seing variables. A beter way to see this is to have a go yourself.

http:///

Chapter 3

[59]

Time for action – creating a SESSION scope in your Application

Sill within our myApp folder, edit the Application.cfc ile and let's turn on session
management—this tells our applicaion that we want to enable sessions per user. We do this
by adding <cfset this.sessionmanagement = true> in our code:

 <cfcomponent>

 <cfset this.name = "MyApplication">

 <cfset this.sessionmanagement = true>

 </cfcomponent>

1. If you now change the code in index.cfm to <cfdump var="#SESSION#"> and

call the page, you will see the following:

2. Let's set a variable, so let's change our index.cfm to the following:

 <cfset SESSION.myID = "12345">

 <cfdump var="#SESSION#">

http:///

CFML Language

[60]

3. By running the code we now see that our variable myID is in the session:

4. Now that that variable has been set, let's remove the code <cfset SESSION.myId
= "12345"> from index.cfm so that myID will not be set in the session scope
again. When you reload the page, you'll sill ind our variable.

What just happened?
The SESSION scope will be unique for each user, hence it's very useful to store data that is
speciic to each user of your applicaion there, for example, login informaion.

This is the power of sessions, the variables we set there maintain even across a user request.

However, sessions do not live forever. They will ime out ater a period of ime. You can set
the length of the SESSION variable by puing the this.sessiontimeout variable in your

Application.cfc and using the CreateTimeSpan() funcion to deine how long you
want it to last.

REQUEST scope
The REQUEST scope is a structure that stores variables for the lifecycle of a single request

for a page. Even if you include other iles into your main ile, you will sill see the variables
stored in the REQUEST scope. Like the SERVER and APPLICATION scopes, you can set

variables to this scope and know they will exist for that user and to that request.

http:///

Chapter 3

[61]

Time for action – using the REQUEST Scope

To demonstrate how this works, let's see what is in the request, include another ile, set
variables there and see what we end up with. Let's get started:

1. In the index.cfm ile you created, put the following code:

 <cfdump var="#REQUEST#" label="Initial request">

 <cfset REQUEST.myNewVar = "Hello there!">

 <cfdump var="#REQUEST#" label="Now with our added variable">

 <cfinclude template="included.cfm">

2. Now, let's create another ile in which we'll include the <cfinclude> tag. We'll
name it as included.cfm and put the following code inside it:

 <cfdump var="#REQUEST#" label="Showing the request scope in an
 included file">

3. Save the ile and now run it in the web browser by going to
http://localhost:8888/myApp; we should see the following:

http:///

CFML Language

[62]

What just happened?
As you can see, the value that we added in index.cfm is available in the request scope of

the included ile.

The REQUEST scope is available to ALL the templates. It doesn't mater how they are
included for the lifeime of a single request to Railo Server.

As you have seen, <cfdump> is a very handy tag to see the values of

complex variables, but we can also add a itle to the outputed display
through the label atribute.

CGI scope
The CGI scope is a read only structure that Railo Server provides for you to ind out
informaion about the web server and request that has been passed to you, it gives you
the informaion about the browser and server including the client's IP address amongst
other useful items. You can have a look at the contents by doing our usual <cfdump

var="#CGI#">, which will give you something similar to the following:

http:///

Chapter 3

[63]

There are other scopes that are very useful in developing web applicaions, and we shall
have a look at them in the next secion.

Handling web data

So far we have been looking at the general scopes that are available to get informaion from
the server and environment, in addiion to seing variables to these scopes. In this secion,
we are going to look at how to handle user input, that is requests made through the URL
and through web forms, which are the most common ways that users interact with your
web applicaion.

URL variables
In many sites you would have seen something like: http://www.somesite.com/

getproduct.cfm?productid=1232. These query strings allow the server to know that
you are looking for a product with the productid of 1232. But how to get this informaion
with Railo Server? Well, it's rather easy, we have the URL scope.

Time for action – getting variables from the URL

Let's see how we can get some informaion from the user, shall we?

1. Create a ile named product.cfm in your <Railo Install Directory>/

webroot/myApp/ folder.

2. Run that ile in your browser with the following URL: http://localhost:8888/
myApp/product.cfm, and you will get a blank page.

3. Now let's add the following code:

 <cfoutput>

 The product you requested is #url.productid#

 </cfoutput>

Now let's browse to the page with the following: http://localhost:8888/myApp/
product.cfm?productid=1234. You will now see "The product you requested is 1234"
displayed on the page.

It is that simple to access variables passed in the URL; all you have to do is to reference the
URL scope.

http://www.somesite.com/getproduct.cfm?productid=1234
http://www.somesite.com/getproduct.cfm?productid=1234
http:///

CFML Language

[64]

But what happens if we remove the ?productid=1234 from the URL? Oh dear! We get
an error!

Our applicaions should be a bit more robust, right? Thankfully, we can easily ix that with a
simple tag. Let's update our code here:

<cfparam name="URL.productid" default="">

<cfoutput>

The product you requested is #url.productid#

</cfoutput>

We can now load our page without a single error.

http:///

Chapter 3

[65]

What just happened?
Accessing the variables that have been passed in the URL scope is rather easy, because it
is just another structure as we have used before. What we have to make sure is that our
applicaions are a bit more robust and variables are well deined if we are going to use
them. One opion is to use the <cfparam> tag. This tag sets a default variable to the URL.
productid to a blank string if it isn't passed in. This is a good way to make sure your code is
robust and can handle unforeseen user acions.

Other ways to check if the variables are present is to use the isDefined("URL.
productid") funcion, passing in the variable (in quotes) that you want to
check, or to explicitly check if the variable exists in a structure with the funcion
StructKeyExists(URL, "productid")

Have a Go Hero – try the isDeined() and StructKeyExists() functions
Why not try re-wriing the code in our template using the isDefined() and

StructKeyExists() funcions. It should be easier by now!

FORM variables
In many web applicaions, we need to get informaion from the user using a form, be it a
feedback form, a contact us form, a registraion form, or a search dialog. Railo Server has
some handy ways to let you access this informaion in the FORM scope. This scope is created
when a form has been posted to another template using the POST method in the form.

Time for action – getting FORM variables

Let's look at a simple form and check out what gets sent:

1. Create a ile in your applicaion by the name contact.cfm and create a simple

HTML page within this ile:

<!DOCTYPE html >

<html lang="en">

<head>

 <title>Contact Form</title>

</head>

<body>

<h1>Contact Us</h1>

<form action="contact.cfm" method="post">

 <p>

 <label for="name">Name</label><input type="text" name="name">

 </p>

http:///

CFML Language

[66]

 <p>

 <label for="email">Email</label><input type="email"
name="email" >

 </p>

 <p><input type="submit" value="Send"></p>

</form>

</body>

</html>

Now, if you load this template in your browser, you should see the following:

2. This form posts to itself, as you can see through action="contact.cfm" in the

form tag. We also have method="post" to make sure we are acceping a form post.
Now if we submit this, we will get no output because we haven't added any CFML
code. Let's add a simple <cfdump var="#FORM#"> ater the form, and resubmit

the form:

http:///

Chapter 3

[67]

3. As with the URL scope, you can reference the values directly, but if they are
not present you will get an error, so let's change our code a litle bit to include
some checks:

<!DOCTYPE html >

<cfparam name="FORM.name" default="">
<cfparam name="FORM.email" default="">
<html lang="en">
<head>
 <title>Contact Form</title>
</head>
<body>
<h1>Contact Us</h1>
<form action="contact.cfm" method="post">
 <p>
 <label for="name">Name</label><input type="text" name="name">
 </p>

 <p>
 <label for="email">Email</label><input type="email"
name="email" >
 </p>
 <p><input type="submit" value="Send"></p>
</form>

http:///

CFML Language

[68]

<cfif Len(FORM.name) AND Len(FORM.email)>

 <cfoutput>

 Hello #FORM.name#, thanks for giving the email address #FORM.
email#

 </cfoutput>

</cfif>

</body>

</html>

What just happened?
Using the FORM variable is exactly same as using the URL variable, apart from the fact that it
is generated only when you submit a form using the POST method.

In the previous code, we added the <cfparam> tags at the top to make sure we have a
default for the name and email ields. Also, in the form, we have added a check to see if
there is a length to the FORM.name variable by using the Len() funcion and also checking

the length to the FORM.email variable.

You might be wondering about the Len(FORM.name) statement used in the previous code.

If the length of the string is equal to zero, then the statement will be "false", but if it has
some length, this would equate to "true."

Using the <cfparam> is recommended in any template that will be retrieving content, as
you can set the default content without having to check the existence of every ield you
need to use.

Cookies
Cookies are a technology used by web browsers that allows web developers to store a small
amounts of informaion for a period of ime even if the browser closes. So for example you
can store a user's preferences with regards to their choice of background color, or even their
unique login name (read more about cookies here: http://en.wikipedia.org/wiki/
HTTP_cookie).

Railo Server makes it very easy to read and save informaion to the browser's cookies.
There is another scope available to you to read the cookies, aptly named COOKIE.

You can save a variable name and value to the COOKIE scope using the <cfset COOKIE.

variableName = variableValue> but this does not give you enough control over the

other atributes that you set with a cookie, such as, when it expires, which domains can
access it, and maybe the path in a domain that the cookie can access. For this, we have the
<cfcookie> tag.

http:///

Chapter 3

[69]

The <cfcookie> tag is very simple to use, if you want to save a variable in a cookie all you
have to do is:

<cfcookie name="superSecretName" value="Elvis">

Of course, we might want to say how long this cookie can live, so we can also add the
expires atribute:

<cfcookie name="superSecretName" value="Elvis" expires="30/12/2011">

You can also set which domain the cookie can only be read from:

<cfcookie name="superSecretName" value="Elvis" domain="www.mydomain.
com">

If your applicaion only exists within a path of the speciied domain, you could also add
the path:

<cfcookie name="superSecretName" value="Elvis" domain="www.mydomain.
com" path="/myApp">

To read the value from the cookie all you have to do is:

<cfset cookieValue = COOKIE.superSecretName>

<cfdump var="#cookieValue#">

Database access

So far we have looked at all the ways that we can use to display variables in Railo Server.
But one of the main atracions of using Railo Server is the really easy way you can
access databases.

Railo Server makes it really easy to deine and query data stored in any Relaional Database

Management System (RDBMS) virtually. In this secion, we shall go through the setup of
a data source to a database, running queries against that database, securing our queries

against SQL Injecion atacks and even running stored procedures.

One of the main funcions that are used in nearly every web applicaion is to show and/or
capture data from its users. Railo Server makes this incredibly simple with minimal code so
that we can see how these things work together; of course, we need to have a database to
connect to.

Railo Server can connect to nearly every single database out there. Out of the box
(or rather out of the ZIP) Railo Server can connect to DB2, Firebird, HSSQl (Hipersonic),
Microsot MS SQL, MySQL, Oracle, PostgreSQL, Sybase, and any other database that has

Java JDBC driver. Railo Server even includes a JDBC-ODBC bridge to connect (on Windows)
to your ODBC datasources.

http:///

CFML Language

[70]

For the examples in this book, we chose MySQL to connect to, because it's a free and open
source database that is easy to install and conigure.

Time for action – installing MySQL and setting up our database

Before we can conigure a datasource to hook onto, we might want to have a database irst.
For the following examples we are going to be using MySQL, the world's most popular Open
Source database. You can download a version to match your operaing system, for free,
from: http://dev.mysql.com/downloads/. For the following examples, we will be
using MySQL Community Server.

Apart from the database server, you can also get some tools to interact with the database
visually, so once you have the database downloaded and you're running (instrucions for
each operaing system is available on the website) MySQL, you can go ahead and create a
database called "railobook". For example, if you are using the command line, it is easy to
connect to MySQL with the following command:

$ mysql -uroot -p

Once you enter your password, you should have a response from the server as follows:

Now that we have connected we are going to go in and create a database to store our
tables, use that database, create a sample table, and inally add a bit of content to it.
Let's get started!

Now that we have logged in, let's go and create the database:

> CREATE DATABASE railobook;

To use the database, enter the following in the console:

> USE railobook;

http:///

Chapter 3

[71]

Now, let's create an employee table; this is the table that we will be geing data by running
the following code:

> CREATE TABLE employee (
 id int(11) NOT NULL auto_increment,
 FirstName varchar(50) default NULL,
 LastName varchar(50) default NULL,
 email varchar(100) default NULL, PRIMARY KEY (id));

The server will respond with:

Query OK, 0 rows afected (0.01 sec)

This is to tell you that it has created the table successfully.

Let's add some test data:

> INSERT INTO employee (FirstName,LastName,email)
 VALUES
 ('Test','TestSurname','test@localhost.com'),
 ('Test2','TestSurname2','test2@localhost.com'),
 ('Test3','TestSurname3','test3@localchost.com');

The server will respond with "Query OK, 3 rows afected (0.00 sec)" to tell you that you have
created three new records in the table employee.

Finally, let's see what is stored in the employee table:

> SELECT * FROM employee;

You should get the results as follows:

http:///

CFML Language

[72]

What just happened?
We installed the MySQL database server onto our machine. We then connected to the server
through the command line and created a database called railobook. Before we can add
tables and data, we switched to using the railobook database, then we created a table
named employees and added some test data!

Time for action – coniguring data sources in Railo Server
Now that we have our test data, we are going to create a data source in the Railo Server
web administrator. The administrator is where you can conigure many aspects of Railo
Server's behavior, which we will look at (in depth) later in this chapter. Let's go and setup a
datasource poining to the railobook database.

In your browser, head to the administrator by going to http://localhost:8888/railo-
context/admin/web.cfm . This takes us to the Railo Web Administrator. If you have not
already done this, you can enter a password to protect this area.

On the let-hand side of the Overview page, there is a list of links, under the Services

category. From this list, locate the Datasource link and click on it.

We can create a new datasource by entering railobook in the Name ield of the Create

new datasource form and selecing MySQL from the Type drop down. Now, press the
create buton.

http:///

Chapter 3

[73]

We can now set the details of the connecion. In the Database ield, we enter railobook as

that is the name of the database that we created, we can leave the Host/Server and Port

ields as they are (if you have installed MySQL on your local machine), and we can enter the
username and password for this database. If you don't know the username and password for
your database, just use the values that were deined during the installaion of MySQL. Once
done, scroll to the botom of the form and click on create.

http:///

CFML Language

[74]

Congratulaions! You should now have a new Datasource setup with a nice green OK

veriicaion that all went well.

What just happened?
The Railo Web Administrator is where connecions to various systems can be deined. As we
will just refer to the data source name (railobook in this case) in our code, it means that we
don't have to change our code if we need to change the locaion of the database.

That is all we needed to do, now we can go and run some queries on our database!

Time for action – running queries against our database

The magic for running a lot of queries with Railo stems from the <cfquery> tag. This is a
very versaile tag that allows you to run queries to a data source. Remember, we queried
the database to get our list of employees? Let's do that in CFML to see how easy it is to do.

<cfquery name="getEmployees" datasource="railobook">

 SELECT * FROM employee

</cfquery>

<cfloop query="getEmployees">

<cfoutput>#FirstName# #LastName#
</cfoutput>

</cfloop>>

We use the <cfquery> tag, seing the name of the results to getEmployees by puing
that in the name atribute. We also use the datasource atribute to say we are going to
use the datasource we setup, called railobook previously.

Then we put the SQL query, to select all the employees. Then to show that something is
happening we use the <cfloop> tag and deine which query you want to loop through.
Then to output the variables we use the <cfoutput> tag and just need to put the names
of the columns we want to output, surrounding the names with the # to say they should be

evaluated. Running this code gets us a nice lising of our users.

http:///

Chapter 3

[75]

There is more informaion you can get from a query, such as the total number of records,
how long it took to execute, the template that called it, and the inal rendered SQL
statement. To see these details, you can use the <cfdump> tag as follows:

<cfdump eval=getEmployees>

If you need to use these variables in your code, instead of just seeing them, you can add the
result atribute to the <cfquery> tag as follows:

<cfquery name="getEmployees" datasource="railobook"
result="employeeresult">

 SELECT * FROM employee

</cfquery>

http:///

CFML Language

[76]

This will give you a structure that you can reference. If you use <cfdump>, the

employeeresult variable you get the following:

What about if we want to get one user via the URL (or some other variable)? This is also very
easy. For example, if we needed to get a user by his/her ID (remember, we created an id

column in the table?) from a URL variable, then all we need to do is to put that variable in
the SQL code:

<cfquery name="getEmployees" datasource="railobook"
result="employeeresult">
 SELECT * FROM employee
 WHERE id = #URL.id#
</cfquery>
<cfloop query="getEmployees">
<cfoutput>#FirstName# #LastName#
</cfoutput>
</cfloop>

What's let now is to open the page with "id=1" as one of our URL variables:
http://localhost:8888/chapter_3/listing3_63.cfm?id=1.

http:///

Chapter 3

[77]

And we can see that the only record returned was the one where the ID matched the
variable in the URL.

What happens if we want to insert a new record? We can just use the SQL for that in a
<cfquery> tag.

<cfquery result="insertEmployee" datasource="railobook">

 INSERT INTO employee (FirstName,LastName,email)

 VALUES

 ('Mr. CFML1','Is Great','cfml1@localhost.com')

</cfquery>

<cfdump eval=insertEmployee>

In the above line, we have removed the name atribute from the <cfquery> tag because it

won't return any results. We then add our insert SQL statement and then use <cfdump> to

see what informaion was returned about our last query.

Queries with parameters
When running queries against records in a database from your web applicaion you have
to be very cauious to saniize the data that the users pass to your applicaion. Malicious
users can use a method called SQL Injecion (http://en.wikipedia.org/wiki/SQL_
injection) to delete, add, and generally tamper with your data that may result
in a compromise of security and stability of your applicaion.

http:///

CFML Language

[78]

CFML has a very simple way to stop this type of atack by checking the variables that you are
passing to your database with the use of <cfqueryparam>. This tag allows you to set the
value and the type of variable that you are passing in your SQL statement and also improves
the performance as the database will cache the statement without variables and return the
values faster (this is called a prepared statement).

So, how can we implement our select employee query with a <cfqueryparam>? We simply
replace our variable as so:

<cfquery name="getEmployees" datasource="railobook"
result="employeeresult">

 SELECT * FROM employee

 WHERE id = <cfqueryparam cfsqltype="cf_sql_numeric" value="#URL.
id#">

</cfquery>

<cfloop query="getEmployees">

<cfoutput>#FirstName# #LastName#
</cfoutput>

</cfloop>

If we now check what the query informaion is by dumping the employeeresult variable

we shall see that SQL has added a "?" to our user ID:

What just happened?
In all the above examples we are able to see how easy it is to work with Databases by using
the <cfquery> tag. We can retrieve records and insert records (you could try deleing and
updaing records too) easily.

http:///

Chapter 3

[79]

By using the <cfqueryparam> variable, we have seen how we can prevent SQL Injecion
atacks and deine speciically the format of the data we are querying.

Stored procedures
Databases have special funcions that you can create called Stored Procedures

(http://en.wikipedia.org/wiki/Stored_procedure) that allow you to have
more complex query logic stored within the database itself. If you need to call these
stored procedures from Railo Server it is a simple mater of using the <cfstoredproc> tag.

Time for action – calling stored procedures

Let's create a stored procedure in our database and run it from Railo Server.

In our MySQL console, let's run the following command to create a stored procedure called
employeebyid:

DELIMITER //

CREATE PROCEDURE employeebyid(IN empid int(11))

BEGIN

 SELECT *

 FROM employee

 WHERE id = empid;

END //

DELIMITER ;

We get a response from MySQL as follows:

mysql> DELIMITER //

mysql> CREATE PROCEDURE employeebyid(IN empid int(11))

 -> BEGIN

 -> SELECT *

 -> FROM employee

 -> WHERE id = empid;

 -> END //

Query OK, 0 rows affected (0.00 sec)

mysql> DELIMITER ;

mysql>

http:///

CFML Language

[80]

Now, we can test a call to it by running the following code:

mysql> CALL employeebyid(1);

+----+-----------+-------------+--------------------+

| id | FirstName | LastName | email |

+----+-----------+-------------+--------------------+

| 1 | Test | TestSurname | test@localhost.com |

+----+-----------+-------------+--------------------+

1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

So, now our stored procedure works from inside MySQL. Let's call it from a CFML template:

<cfstoredproc procedure="employeebyid" datasource="railobook">

 <cfprocparam cfsqltype="cf_sql_numeric" value="1" />

 <cfprocresult name="getEmployee" />

</cfstoredproc>

<cfdump eval=getEmployee>.

We irst call the <cfstoredproc> procedure, passing it the procedure name and the

datasource. To pass a variable to the stored procedure we need to nest the <cfprocparam>

tag, deining the data type we are passing using the cf_sql_numeric for a general numeric

type and its value. Then, we add the <cfprocresult> tag, this will grab the results from
the stored procedure and save them to the getEmployee variable that we can use later on.
It is that simple!

Of course, stored procedures can get trickier with them returning muliple variables and
taking in a number of parameters, like cachedAfter or cacheWithin to perform query

caching, debug for lising debug informaion about each stored procedure statement
executed and so on, but you should now have a good example of how to deal with even
more complex calls.

Object Oriented Programming with Components
Object Oriented Programming (OOP, http://en.wikipedia.org/wiki/Object-
oriented_programming) is a paradigm that has been available in a number of languages

for decades and, in fact, most modern programming languages provide support for deining
objects with properies and methods. This is the same with CFML.

Railo Server provides OOP capabiliies to developers in the form of components. So far, you
have seen CFML templates created with the ile extension .cfm. CFML components are

deined with the .cfc extension.

So, what are objects?

http:///

Chapter 3

[81]

Objects in OOP allow you to encapsulate blocks of code that deine a speciic business
object, for example, an employee. An employee object in an applicaion would be a way to
interact with data of an employee. It is not just properies of an employee, for example, irst
name, surname, salary, and e-mail, that can be encapsulated in an object, but also funcions
(or methods), for example, getEmployeeName and setEmployeeName, that you can call to

get and set properies, or perform acions on that object.

Time for action – creating the Employee component

To deine an object in CFML, you need to create a ile with the extension .cfc, let's create

the ile Employee.cfc and put the following code inside it:

<cfcomponent name="Employee">
 ...
</cfcomponent>

Now that we have created a basic Employee component, we can call it from another CFML,
.cfm template in a number of ways, irstly with the <cfobject> tag:

<cfobject component="Employee" name="myEmployee">
<cfdump eval=myEmployee>

Another way is to use the CreateObject() funcion:

<cfset myEmployee = CreateObject("component", "Employee")>
<cfdump eval=myEmployee>

You can also use the "new" keyword to create your object:

<cfset myEmployee = new Employee()>
<cfdump eval=myEmployee>

All of the methods above will display the following output:

So far, we don't see much in our Employee object, so let's change Employee.cfc to have a

few properies:

<cfcomponent name="Employee">
 <cfset this.firstname = "">
 <cfset this.surname = "">
 <cfset this.salary = "">
 <cfset this.email = "">
</cfcomponent>

http:///

CFML Language

[82]

When we call this object now, we have properies that we can see, because we have used
the THIS scope of the component, that means that the properies are public as can be seen
if we output the result of instaniaing the component.

You can now set the properies directly, since they are public as follows:

<cfset myEmployee = new Employee()>

<cfset myEmployee.firstname = "John">

<cfset myEmployee.surname = "Smith">

<cfset myEmployee.salary = "20000">

<cfset myEmployee.email = "john.smith@somedomain.com">

<cfdump eval=myEmployee>

This is not the best way of accessing the properies of a component, so we can add funcions
to set and get the properies in a much safer, and even controlled manner. Let's add a geter
and a seter for the firstname property:

<cfcomponent name="Employee">

 <cfset this.firstname = "">

 <cfset this.surname = "">

 <cfset this.salary = "">

 <cfset this.email = "">

 <cffunction name="getFirstName">

 <cfreturn this.firstname>

 </cffunction>

 <cffunction name="setFirstName">

 <cfargument name="firstname" type="string" required="true">

 <cfset this.firstname = arguments.firstname>

 </cffunction>

</cfcomponent>

http:///

Chapter 3

[83]

You now see that we have used the <cffunction> tag to deine two new funcions. In
the getFirstName funcion we simply use the <cfreturn> tag to return the this.

firstname variable.

In the setFirstName funcion we use the <cfargument> tag to deine what arguments
the funcion can take, in this case, we are going to call it firstname, what type of argument
it is (a string), and whether it is required. Inside a funcion, you can get all the arguments
that are passed to that funcion in the arguments scope. In this case, we can refer to the
string that is passed to our funcion as arguments.firstname and we can then set it to
the this scope of the component.

We can now set the irst name as follows:

<cfset myEmployee = new Employee()>

<cfset myEmployee.setFirstName("John")>

If we want to get the irst name, we can now safely get it using the getFirstName funcion
we deined:

<cfset myEmployee = new Employee()>

<cfset myEmployee.setFirstName("John")>

<cfset firstname = myEmployee.getFirstName()>

The variable firstname in our template would now be set to "John".

Of course, in this component there are only a few properies and we would like to make
sure they are set when we create the object; this is done by a special funcion called a
constructor. Constructors are usually deined by a funcion with the name init, let's add

that to our component:

<cfcomponent name="Employee">
 ...

 <cffunction name="init">
 <cfargument name="firstname" type="string" required="true">
 <cfargument name="surname" type="string" required="true">
 <cfargument name="salary" type="numeric" required="true">
 <cfargument name="email" type="string" required="true">

 <cfset this.firstname = arguments.firstname>
 <cfset this.surname = arguments.surname>
 <cfset this.salary = arguments.salary>
 <cfset this.email = arguments.email>
 <cfreturn this>
 </cffunction>

 ...

</cfcomponent>

http:///

CFML Language

[84]

As we can see in the previous code, we have created the init funcion and set all the
parameters that we need to call when we create this component. The arguments passed into
the init funcion are then set to the this scope, and we return the whole component back
by using <cfreturn this> at the end of our funcion. We can now create our component
in a few ways, by passing in the arguments in and using the new keyword:

<cfset myEmployee = new Employee("John", "Smith", "20000", "john.
smith@somedomain.com")>

<cfdump eval=myEmployee>

Or by calling the funcion ater using the CreateObject() funcion:

<cfset myEmployee = CreateObject("component", "Employee")

 .init("John", "Smith", "20000", "john.smith@somedomain.com")>

<cfdump eval=myEmployee>

This gives us a component that is ready to do some work for us.

CFML Components also support inheritance. That is the ability of one object to "inherit" the
properies and funcions of another component. For example, what if we had a Janitor

component? It might have all the properies and funcions of an Employee object but it
might also have very speciic funcions that an Employee component wouldn't have. Let's
create a Janitor.cfc component that extends the Employee component:

<cfcomponent name="Janitor" extends="Employee">

</cfcomponent>

By using the extends atribute in the <cfcomponent> tag, we have now inherited from the
Employee component, let's see what happens when we call our Janitor component:

<cfset myJanitor = new Janitor("Zak", "Brown", "15000", "zak.brown@
somedomain.com")>

<cfdump eval=myJanitor>

http:///

Chapter 3

[85]

You can see it has the same properies and methods as the Employee component.

We can now add funcions that are speciic to Janitors rather than all Employees, so let's add
a "clean" funcion:

<cfcomponent name="Janitor" extends="Employee">
 <cffunction name="clean">
 <cfargument name="area" type="string" required="true">

 <cfreturn "I am cleaning the #arguments.area#">
 </cffunction>
</cfcomponent>

We can now ask the Janitor object to perform the clean funcion:

<cfset myJanitor = new Janitor("Zak", "Brown", "15000", "zak.brown@
somedomain.com")>

<cfoutput>#myJanitor.clean("hall")#</cfoutput>

This would display I am cleaning the hall in our browser.

http:///

CFML Language

[86]

What just happened?
Railo Components allow you to encapsulate data and funcionality in a simple object that
cleans up a lot of your code by making it reusable. You could have, of course, created a

structure to do this, but it would have only stored the data and it would not have been able
to run funcions. This is the crux of object-oriented programming, creaing encapsulated
objects that represent some kind of real world object, both in their contents and behavior
that you can use in your system.

Summary

This has been a tour de force chapter, we have learned:

 � How tags and funcions are used in Railo Server

 � The various scopes that are available and where they can be seen and modiied

 � How to access databases with the <cfquery> tag as well as using
<cfstoredproc> to call database stored procedures

 � An introducion to Railo Server's object-oriented programming using components

There are many more things you can do with components in Railo Server, but hopefully this
has given you some idea on how they behave. In the upcoming chapters, you will see how
they can help you architect your applicaion, control your applicaion low, and even allow
you to create web services with ease.

http:///

4
Railo Server Administration

So far, we have looked at installing Railo Server, got to grips with the CFML
language that we can write our templates in, and very briely visited the Railo
Administrator to create a datasource. In this chapter, we will explore the Railo
Administrator in more detail and get to grips with:

 � Server and Web context: What does each one manage and how do
they afect each other

 � Seings: How they afect performance, output, and internaionalizaion
of your server

 � Services: How to access other services, such as databases, caches, event
gateways, debugging, and mail servers

 � Extensions: How you can add extra funcionality to the Railo server
through extensions

 � Archives and Resources: How to access mappings, resources,
custom tags, and CFX tags

 � Security: Seing the password and access restricions for each context

By the end of this chapter, we will have a good grasp of the various seings that can be
changed and conigured in the Railo Server Administraion and how they afect the behavior
of the server.

Let's get started!

http:///

Railo Server Administraion

[88]

Server and Web context

Before we delve too deeply into the administraion of Railo Server, there is an important
concept to get to grips with irst. Even though, so far, we have been running only one
website, Railo Server can actually run a number of websites.

A good example would be if we were running two diferent websites from our server,
say our main website (http://localhost:8888) and another website, let's call it
http://site2.local:8888.

Diferent websites might have diferent seings, and if you were an ISP, it probably would be
maintained by diferent people. Railo Server allows you to do this by giving each context its
own administrator and separaing it from the other contexts, depending on which domain
was used in the URL to access each site. These are called Web contexts.

Of course, the main administrator of the site should have access to all the seings and could
also set "defaults" for the Web contexts. This is called the Server context.

You can visualize it as follows:

Imagine a server that has 20 websites installed in a single instance of Railo Server. We might
want to add a new web context containing a database, some diferent custom tags, and
a single search collecion. In Railo Server, all these resources inside of a web context are
private, and can only be used inside this single web context.

On the other hand, commonly requested Railo resources can be centrally deined in the
Server Administrator, and therefore be made available to everyone.

If we want to give all the web contexts the ability to share the same mapping (let's say,
/coldbox for the ColdBox framework), you can deine it in the Railo Server Administrator.
The mapping's deiniion is "read-only" for all web contexts. This deiniion can be seen in
every local Web Administrator, but it cannot be deleted or modiied by them. The only thing
Railo allows you to do is to overwrite the global deiniion of the mapping by deining a local
one with the same name.

http:///

Chapter 4

[89]

This architecture implicates several advantages:

 � Web contexts are separated from one another: The isolaion of web contexts
assures that no user of another web context goes "messing around" in another
user's web context. Railo prevents this by default. System resources (libraries
(JAR iles), core) are shared amongst the server.

The libraries used by Railo are shared between all web contexts. This helps reduce
server memory and saves management and installaion work.

 � Local administrator for each web context: A server administrator can assign rights

to speciic users to manage their own context. This saves on change requests, and
of course, gives power to the person that manages that context to change seings
without afecing others.

 � Global deiniion of security rules: A Railo Server Administrator can allow or
disallow the installing and modiicaion of certain resources that Railo Server
provides. For example, the administrator could do the following:

 � Implement constraints on ile access per web context

 � Set restricions on Java-Access (including totally restricing access to base
Java calls from CFML code)

 � Set restricions on data source deiniions

 � Create separate default seings for any web context

 � Restart and update: An administrator can restart Railo Server without having to
restart the whole servlet engine.

An administrator is also able to easily update the server to the latest version, and

even choose what patches/updates they want to install, be they stable, preview
releases, or bleeding edge updates to test out.

 � Easy export of webs coniguraion iles: Railo Server stores all local seings of a web
context in a single ile inside the directory (usually in /webroot/WEB-INF/railo/
railo-web.xml.cfm). This allows for the ability to zip up all the iles in a web
context, move them onto another server, and end up with the exact same seings
as on the original server. Some of the seings might have become invalid because
of invalid paths or diferent IP addresses. But at least they are in place.

Time for action – setting up an example context

Currently, our http://localhost:8888 website points to the <railo install>/
webroot/ folder. Let's say we want to have the http://site2.local:8888 website
served from the <railo install>/webroot2/ folder, and all the requests that go to

the domain http://site2.local:8888, be served from there. We will need to create
another context.

http:///

Railo Server Administraion

[90]

Don't worry about the port number at the end of the domain (8888). We can
change that in the coniguraion of Jety, if you look in the folder you installed
Railo Express; in the /etc/ folder, you should see a ile called jetty.xml. You

can change the port by modifying the XML that says:

<Set name="port"><Property name="jety.port" default="8888"/></Set>

to

<Set name="port"><Property name="jety.port" default="80"/></Set>

And you will be running your websites without the need to add the port, since
port 80 is the default port for websites.

To create a context, we are going to create the http://site2.local:8888 domain on our

local machine, create a folder where the webroot is going to be for site2.local, and add a

context ile to our Railo Server.

1. Let's add the domain to our hosts ile. In OS X and Linux, you can do this by
ediing the file /etc/hosts (on Windows, this ile is located in C:\Windows\
System32\drivers\etc\hosts), and add the following to the botom of the ile:

127.0.0.1 site2.local

2. This tells our computer that when we go to the site2.local domain, all our

requests are pointed back to our machine.

3. Now create a folder in our <railo install> folder called webroot2.

4. Now when you have a look in the <railo install>/contexts directory, you will
have a railo.xml ile, which deines the default context.

5. Copy the railo.xml ile to a new ile called site2.xml.

6. Edit the site2.xml ile and add the following code:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Configure PUBLIC "-//Jetty//Configure//EN"
 "http://www.eclipse.org/jetty/configure.dtd">
<Configure class="org.eclipse.jetty.webapp.WebAppContext">
 <Set name="contextPath">/</Set>
 <Set name="resourceBase">
 <SystemProperty name="jetty.home" default="."/>/webroot2/
 </Set>
 <Set name="defaultsDescriptor">
 <SystemProperty name="jetty.home" default="."/>
 /etc/webdefault.xml
 </Set>
 <Set name="virtualHosts">
 <Array type="String"><Item>site2.local</Item></Array>
 </Set>
</Configure>

http:///

Chapter 4

[91]

7. The important lines comprise the resourceBase that has been changed to point to

our webroot2 folder and the entry in the virtualHosts secion that points to our
site2.local.

8. Create a ile in <railo install>/webroot2 and call it index.cfm. Add the

following in the ile, so we can see that everything is working:

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Site2</title>
 </head>
 <body>
 <h1>Welcome to Site 2!</h1>
 <p><cfoutput>#Now()#</cfoutput></p>
 </body>
</html>

9. Once you save the ile, head over to http://site2.local:8888/, and you

should now see your Site2 working.

What just happened?
By adding an entry in the hosts ile, we have been able to create a domain that our local
machine will respond to. Once we did that, we were able to create a new context that is
separate from our main context, which will serve pages from a diferent directory, and
only respond to pages on the http://site2.local:8888 domain. Now, we can go
ahead and check out the diferences between a Railo Server Administrator and a Railo
Web Administrator.

Setting up security
Now that we have set up the second context, we can access the administraion through the
URL http://site2.local:8888/railo-context/admin/web.cfm. Let's have a proper

look this ime.

http:///

Railo Server Administraion

[92]

Time for action – setting your password

Let's go and set our passwords for the Railo Web administrator (since we already set our
Railo Server Administrator password in Chapter 2, Installing Railo Server) of our new context:

1. In the browser, go to
http://site2.local:8888/railo-context/admin/web.cfm.

2. You will see the New Password screen with the Web Administrator tab highlighted.

3. Enter a Password and then retype it in the dialog. You should now see the Railo

Web Administrator homepage.

4. Now that you have logged in, click on the Logout buton to get back to the Web

Administrator login page.

5. You will now see the Login prompt, which you can now use to log in using the
password you set previously.

What just happened?
Railo Server allows you to set a diferent password for the Web Administrator in each
context. We have just set the password for the site2.local (http://site2.
local:8888/railo-context/admin/web.cfm) context, which is separate from the

context at http://localhost:8888/railo-context/admin/web.cfm.

You can follow the same procedure to change the main Server Administrator by clicking on
the Server Administrator tab.

http://site2.local:8888/railo-context/admin/web.cfm
http://site2.local:8888/railo-context/admin/web.cfm
http://site2.local:8888/railo-context/admin/web.cfm
http://site2.local:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http:///

Chapter 4

[93]

How contexts relate to each other

Now that we have set up the passwords for our Web and Server Administrator secions, we
can invesigate how changes to seings in one context afects the seings in another.

Let's take an example of having two contexts. One hosts a website that is aimed at users
from Hong Kong and the other is aimed at users from the USA. It would make no sense if
the ime zone seings (such as the ime) would be the same for both. Normally, this seing
would be deined by the actual geographic locaion of the whole server. Railo Server allows
you to customize this.

Let's check it out.

Time for action – setting the time zone

Let's create a ile that will display the ime zone for the current context:

1. In your <Railo Intall Directory>/webroot/, create a ile called
server_timezone.cfm.

2. In that ile, enter the following code:

<cfoutput>#getTimeZone()# #Now()#</cfoutput>

3. Let's copy this ile to our second context located in <Railo Intall Directory>/
webroot2/.

4. If you now go to http://localhost:8888/server_timezone.cfm, you should

see your local ime zone, for example, mine displays:

America/New_York {ts '2011-09-16 13:08:10'}

5. If you now go to your second context by going to http://site2.local:8888/

server_timezone.cfm, you should also see:

America/New_York {ts '2011-09-16 13:10:27'} (or at least the same as was
displayed in your irst context).

6. Let's set the server context and see what happens. In your browser, go to
http://site2.local:8888/railo-context/admin/server.cfm

and log in (or enter a new password and conirm it if it hasn't already been set).

http://localhost:8888/server_timezone.cfm
http://localhost:8888/server_timezone.cfm
http://site2.local:8888/server_timezone.cfm
http://site2.local:8888/server_timezone.cfm
http://site2.local:8888/railo-context/admin/server.cfm
http://site2.local:8888/railo-context/admin/server.cfm
http:///

Railo Server Administraion

[94]

7. On the let menu, under Seings, click on the Regional link, and you will see the
Seings - Regional screen, as shown in the following screenshot:

8. In the Time zone drop-down box, change the seing to (for example) America/
Jamaica. This is now the default seing for the whole server, and therefore all the
contexts. Click Update to conirm these seings.

9. If you now reload the pages at http://localhost:8888/server_timezone.

cfm and http://site2.local:8888/server_timezone.cfm, you will see that
the server-wide seings have been applied to all the contexts, as the pages now
display America/Jamaica {ts '2011-09-16 12:11:29'}.

10. Let's change the irst context to the UK irst. Let's head to the Web Administrator for
our localhost context by going to http://localhost:8888/railo-context/

admin/web.cfm, and then clicking on the Seings – Regional (as you previously did
for the server).

11. In the Seings – Regional page for the localhost web context, let's select the
Europe/London – Greenwich Mean Time ime zone and click on Update.

12. When we now reload http://localhost:8888/server_timezone.cfm, we
can see that the ime zone displayed is now Europe/London, and if we also reload
htp://site2.local:8888/server_imezone.cfm, we can see that the server-wide
seings sill apply to this context, as it is sill displaying America/Jamaica.

13. Let's change the site2.local ime zone now by following the same procedure
as localhost, but by going to http://site2.local:8888/railo-context/

admin/web.cfm, selecing Seings – Regional, changing the ime zone to Asia/
Hong Kong – Hong Kong Time in the drop-down, and clicking the Update buton.

http://localhost:8888/server_timezone.cfm
http://site2.local:8888/server_timezone.cfm
http://site2.local:8888/server_timezone.cfm
http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/server_timezone.cfm
http://localhost:8888/server_timezone.cfm
http://site2.local:8888/server_timezone.cfm
http://site2.local:8888/server_timezone.cfm
http:///

Chapter 4

[95]

14. Now when we reload each of the ime zone iles in each context, we will
get Europe/London for the localhost context and Asia/Hong_Kong for the

site2.local context.

What just happened?
The seings that are made in the Railo Server Administrator apply to all exising and new
contexts. These can be seen as the default seings. If you want to override these seings,
you can make changes in the Railo Web Administrator, which will only afect the current
context. This is very handy for seings that are speciic to an applicaion.

The Railo Web Administrator

In the Railo Web Administrator, you can change many seings regarding how you want
the code in the context to behave, what resources it has access to, how output should be
handled, and so on.

The Railo Web Administrator is organized into several secions, which are listed as follows:

 � Seings

 � Services

 � Extension

 � Remote

 � Archives and Resources

 � Development

 � Security

 � Documentaion

These menu items are likely to change, depending on which plugins and extensions you have
installed (we shall go into Railo Extensions in detail later in the book), but the main structure
is set.

Remember, any changes that you make to the Railo Web Administrator will only afect the
current context. If you want to make changes across all the contexts, you can do them in the
Server Administrator.

http:///

Railo Server Administraion

[96]

Time for action – investigating the Web Administrator

Now that we have secured the Web Administrator, let's log in again and explore it:

1. In your browser, go to http://site2.local:8888/railo-context/admin/
web.cfm.

2. Enter your password and click on the submit buton.

3. You should now see the Railo Web Administrator - Overview, as shown in the
following screenshot:

http:///

Chapter 4

[97]

What just happened?
Using the password we set earlier, we have logged into the Railo Web Administrator and
seen the Overview page.

This Overview page gives us a lot of important informaion about our current installaion
such as:

 � Railo version, name, and release date

 � The Adobe ColdFusion(tm) compaibility level

 � The operaing system

 � IP address of the caller and the host name

 � The Servlet container type and server ID

 � Loaded tag libraries

 � Loaded funcion libraries

 � Local Web Administrator ime

 � Server ime

 � Loaded Java Virtual Machine (JVM) version

 � Maximum available amount of memory

 � Class path (loaded Java archives JARs)

 � Railo Company informaion

Settings
The seings are general seings that are controlling the behavior of Railo Server. These
afect things such as template caching, regional seings, how components are handled,
character sets, and other issues. Let's look at each secion in detail.

http:///

Railo Server Administraion

[98]

Performance/Caching

The seings you make in the Performance/Caching secion determine how Railo Server
deals with changed CFM (and CFC) iles. Normally, Railo will compile any modiied ile into a
new Java class ile. While this is very fast (depending on the complexity and size of the ile,
this might take around 10 ms), each <cfinclude>, <cfmodule>, CFC invocaion, Custom
Tags call, and so on, will check whether the related ile has changed. This ile checking will
only take a few milliseconds at the OS level, but this might add up to give you some quite
heavy performance problems.

For the Inspect Templates (CFM/CFC) secion, the following seings are available:

 � Never (Best Performance): If selected, each template requested, which is in the
template cache, will not be checked for potenial updates. For sites where the
templates do not change during the server runime, this seing minimizes the
system load.

Select this opion on a live server, where you know that the templates used almost
never change. If a template is updated, you can simply lush the template cache

by clicking on the Clear template cache buton, which will force the server to
recompile the iles. You can also use the funcion pagePoolClear() to lush
the template cache.

http:///

Chapter 4

[99]

 � Once (Good): If selected, the templates are only checked once per request for

potenial updates. For sites where the templates do not change very oten during
the server runime, this seing reduces the system load.

We would suggest that this is the most recommended seing, because it is a very
good mix between keeping templates up-to-date and performing well. This is also
the default seing.

 � Always (Bad): If selected, each template that is in the template cache will always be
checked for potenial updates. This is the best choice for sites where the templates
might change during a single request. If you cannot choose the Never or Once

seings, because iles might be generated or recreated by an applicaion during
the execuion of a request, this opion may be a possibility. But, if possible, this
should be avoided on producion systems. In order to clear the page pool if iles
are generated, you can always call the pagePoolClear() funcion.

Time for action – comparing template caching settings

Let's have a look at what impact these seings have on a normal request.

This way we can compare how long it takes for the request for each of the diferent seings.
Let's create some templates to test:

1. In the <Railo Install Directory>/webroot/, create a template called

speed_test.cfm with the following code:

<cfscript>

 totalPage = 0;

 loop from=1 to=10 index="i" {

 FileWrite("my_include.cfm", "<cfset myvar_#i# = Now()>");

 includeStart = getTickCount();

 include template="my_include.cfm";

 includeTotal = getTickCount() - includeStart;

 totalPage += includeTotal;

 WriteOutput("Include #i# took: #includeTotal#
");

 sleep(1000);

 }

 WriteOutput("Total include time #totalPage#");

</cfscript>

2. This code does a simple loop from 1 to 10, and each ime, it writes the code <cfset
myvar_#i# = Now()> into a ile called my_include.cfm. Essenially, this will be
rendered as <cfset myvar_1 = Now()> for the irst loop into the template, and
basically change the actual code for each loop.

http:///

Railo Server Administraion

[100]

3. Then, we ime how long it takes to include that ile in our main template. The
other parts of the code simply ime how long each include takes using the

getTickCount() funcion.

4. Before we run this, we should go to the Railo Web Administrator by going to

http://localhost:8888/railo-context/admin/web.cfm.

5. Click on the Performance/Caching link on the let, then select Always (Bad), and

press the update buton.

6. When we run the template by going to http://localhost:8888/speed_test.

cfm a few imes, we will get something like (your results may vary of course):

Include 1 took: 2

Include 2 took: 6

Include 3 took: 12

Include 4 took: 12

Include 5 took: 2

Include 6 took: 2

Include 7 took: 1

Include 8 took: 1

Include 9 took: 1

Include 10 took: 2

Total include ime 41

7. Then, if we go back to the Railo Web Administrator, select Once (Good), click the

update buton, then re-run the template, and we will get some results similar to
the ones that follow:

 Include 1 took: 27

 Include 2 took: 0

 Include 3 took: 0

 Include 4 took: 0

 Include 5 took: 0

 Include 6 took: 0

 Include 7 took: 0

 Include 8 took: 0

 Include 9 took: 0

 Include 10 took: 0

 Total include ime 27

http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/speed_test.cfm
http:///

Chapter 4

[101]

8. Finally, if you now select Never (Best Performance) and reload our speed test a

couple of imes, you should get the following results:

Include 1 took: 0

Include 2 took: 0

Include 3 took: 0

Include 4 took: 0

Include 5 took: 0

Include 6 took: 0

Include 7 took: 0

Include 8 took: 0

Include 9 took: 0

Include 10 took: 0

Total include ime 0

What just happened?
In the previous examples, we can see how the Inspect Templates seing in the
Performance/Caching secion of the Railo Web Administrator is changing and how
Railo Server deals with templates on each request.

In the irst example, each ime we tried to include my_template.cfm, Railo Server
re-parsed and compiled the template.

When we set the performance to Once (Good), the irst ime the template was included,
it was inspected for changes. On subsequent requests, it took no ime, since Railo Server
already had compiled it and could now ignore it.

Finally, when we have the seing of Never (Best Performance), Railo Server checks if it has a
compiled version of that template; if it has, it never checks for changes again. Hence we get
zero milliseconds for each include.

This might be a good thing on some systems, but remember that the template has indeed
changed, so in some cases, we do want Railo Server to actually re-check for changes. In this
case, you can run the pagePoolClear() funcion, which will remove the templates from
the Template Cache and then reload them again.

http:///

Railo Server Administraion

[102]

In addiion to determining the way Railo Server treats CFML templates that are in the
template cache, you can addiionally lush the template and query cache. The Web
Administrator will always display the number of items that are currently stored in the cache.
If you click on the clear cache buton, the items are removed. Don't be surprised that some
elements reappear in the template cache. In order to lush the cache, some templates that
land in this cache had to be called.

The Server Administrator determines what the standard caching method is, which of course,
you can overwrite in each of the Web Administrators. This is why you have a buton Reset to

Server Administrator Seing that will reset any changes you have made to the value set in
the Server Administrator.

Regional

We have already seen this secion in our previous example, dealing with the diferences
between contexts and the Server context, and have used the Locale and ime zone features.

Besides seing the current locale for display, it also allows us to access locale-speciic
formaing of values, such as dates and numbers. This is the default region that will be used,
if we use a conversion funcion LSNumberFormat() or LSDateFormat(). Once set, you
never have to adjust this value.

Of course, there are imes that you want to get the ime deined by the server itself. Railo
Server has a Built in Funcion (BIF) called nowServer(). This funcion returns the current
server ime. You can easily test this. Just change the ime zone and click on update. Ater
that, you will see that the regional ime has changed accordingly (Server ime/Railo ime).

Railo Server synchronizes its ime with a ime server. You can enter a valid URL of the desired
ime server in the Time Server (NTP) ield. Railo Server will then update its ime every hour
from the ime server deined. In order to use a ime server, the server only needs to support
the Network Time Protocol (NTP).

http:///

Chapter 4

[103]

Have a go hero – get the server time zone

Why don't you try it yourself? Modify the code we used previously when choosing the ime
zones for each context and display the server ime.

Charset

The Charset secion allows you to set the diferent character sets that are used for diferent
purposes. The default is the one set by the operaing system and the Java charset.

Charset type Descripion

Template charset Deines the charset used when reading CFML templates from the ile
system. It is the charset that is pre-deined by the Operaing System.
(For Windows, it normally is CP1252).

Web charset Deines the charset used in forms and for the output in the browser.
The charset is predeined by the charset of the used JRE.

Resource charset Deines the character set for reading from/wriing to various
resources, such as ZIP iles.

Scope

Scopes are special structures that store informaion within the Railo Server. This secion
allows you to modify diferent behaviors of the scopes, such as how lookups of variables are
handled, the type of sessions used by the context, enabling session, cookie, and client scope

management, and the ime-out values for various scopes.

http:///

Railo Server Administraion

[104]

Cascading

One of the beneits of CFML is also one of the determents, something called scope
cascading. CFML makes it easy for a programmer to use variables without idenifying
which scope they are stored in.

Let's think of an analogy of calling the register in school. Let us assume that our applicaion
is a school and all pupils are variables. If you call out the name Peter in a classroom, without
telling which Peter you mean, you might get lucky if there is only one Peter in the room
and only receive one response. But if there is no Peter in the class, then you have to look

for a Peter. You use a certain order in which you scan the classrooms. You start with the
irst classrooms on your let and coninue unil you have found a Peter. So you call Peter

and CFML gets you a Peter. Someimes surprising results happen. Maybe the janitor named
Peter turns up, although you were in fact looking for Peter Parker from class 7-b. So why
weren't we required to call Peter Parker, class 7-b come here!!!? CFML saves you the trouble.
You don't have to do it speciically. CFML leaves you the freedom to not strictly scope your
variables. It does come with the price that you might end up with a diferent Peter than
you expected.

Geing back to programming, you can conigure how Railo Server handles these look-ups to
the point that "scope cascading" ("Get me a Peter") can be even turned of. If it is turned of,
you need to write more speciic code to reference your variables.

Time for action – restricting the scoping of variables

Let's have a look at examples of these seings in pracice.

1. In your <Railo Install Directory>/webroot, create a template called

scope_test.cfm. In this template, just add the following code:

<cfoutput>#name#</cfoutput>

2. Let's load this template by calling http://localhost:8888/scope_test.

cfm?name=Mark. Noice that we have added a URL variable called name with the
value of Mark.

3. The output we get for this template is sill Mark, since Railo looked through our
scopes, staring with the VARIABLES scope, then the CGI, URL, FORM, and inally
COOKIE, and found the variable name in the URL scope.

4. If we go to the Railo Web Administrator, then go to the Scope secion, and change
the cascading from Standard (CFML Default) to Small, the code will sill work,
since Railo Server has only had to look through the VARIABLES, CGI, URL, and

FORM scopes.

http://localhost:8888/scope_test.cfm?name=Mark
http://localhost:8888/scope_test.cfm?name=Mark
http:///

Chapter 4

[105]

5. Let's change the cascade to Strict and reload the template in the browser. This ime,
we get an error that says:

variable [NAME] doesn't exist

6. Let's change our code to be a bit more precise; change the code in the scope_
test.cfm template to have a scope:

<cfoutput>#URL.name#</cfoutput>

7. When we reload the template, we see that it now works.

What just happened?
Railo Server lets you access variables without having to preix the scope they live in quite
nicely. Of course, this has performance issues, since Railo Server will have to look through
various scopes, unil it inds the variable. If there is a variable with the same name, then it
will return the irst one it inds.

You ind that you have beter code if you are more explicit with the name of the scope and
then the variable, as in the <scope>.<variable> format, for example URL.name.

Using stricter scoping of variables will invariably speed up your applicaion, as Railo Server
has to do less work in looking up variables. It will also eliminate potenial issues when the
same variable name is used in muliple scopes.

Session type

Railo Server is fast, but someimes heavy traic slows down even on the fastest system.
It could become necessary to cluster muliple servers running Railo Server together. Railo
Server ofers the possibility to cluster two or more servers in a JEE environment. In this
case, the JEE server handles the sessions, and you can deine the session type in the Railo
administrator. Possible values are JEE or CFML. This would allow the underlying Servlet
Container (such as Resin, Tomcat, or Jety) to manage the SESSION scope across the cluster.

Session ideniiers that are passed through the URL have a higher priority when using
CFML Session. It is the other way round when you use JEE sessions. In such cases, cookies
are preferred.

Combine the URL and Form scope

If we enable the Merge URL and FORM scopes seing, Railo Server merges the variables
from the FORM and URL scope into a single scope. The variables can then be accessed either
over the FORM or the URL scope.

Variables with the same name that are present in both scopes are combined into a comma
separated list, as if a variable has been passed twice in the form scope.

http:///

Railo Server Administraion

[106]

Time for action – merging the URL and FORM scopes

1. Let's test this out. Create a form called scope_merge.cfm and add the

following code:

<cfif isDefined("form.firstname")>

 <cfdump eval=FORM>

 <cfdump eval=URL>

</cfif>

<form action="scope_merge.cfm?name=Wilhelm&test=5" method="post">

 <input type="Hidden" name="firstname" value="John">

 <input type="Hidden" name="Name" value="Doe">

 <input type="Submit">

</form>

2. This code creates a form that will submit and create FORM variables that are hidden,

as well as URL variables.

3. When we call this template, by going to http://localhost:8888/scope_

merge.cfm, we get a simple form which, when submited, gives the following
output:

4. Now, if we go to the Railo Web Administrator and ick the checkbox next to
the Merge URL and FORM secion, we would get something similar to the
following screenshot:

http://localhost:8888/scope_merge.cfm
http:///

Chapter 4

[107]

What just happened?
Railo Server allows you to join up the URL and FORM scopes and copy the values
into both scopes. If you have values that are named the same, they will be joined
in a comma-delimited list, as if they were the same named ield in a form.

Session management

Railo Server allows sessions to be used. Railo Server keeps a session for each visitor of an
applicaion. In order to recognize a returning user, you need a few tricks. You could either
use URL parameters, hidden form ields, or cookies, in order for Railo Server to address
an already exising session to the returning user. When using CFML sessions, Railo Server
creates two IDs (named CFID and CFTOKEN), which the user sends with the request. These
IDs are used to assign the right session to the user. In order to use sessions, you need to turn

on session management in the Railo Web Administrator. Sessions are quite handy when you
like to store some data during the visit of a user (shopping cart, user data, preferences, and
so on).

The worklow when iniializing a session with cookies goes as follows:

 � A user calls a website (for example, http://www.getrailo.com).

 � Since Railo Server is running on this system and session management is turned on

for the requested applicaion, the browser stores (if possible) a cookie at the end of
the requests on the client's local PC.

 � With every subsequent request from this client, the cookies will be sent back
to the server.

 � Railo Server then ideniies the user and assigns the corresponding session to
the user.

http:///

Railo Server Administraion

[108]

 � Railo Server creates a session only when it is used.

 � The session is stored in the server's memory. So, for example, if we set a value of 5

in a user's session with the following code:

<cfset session.retry = 5>

The value of 5 will be stored in the variable session.retry. The next ime the
user calls a page (as long as it's in the same applicaion), the value of the session.
retry variable will sill be available in the session scope.

Client management

This opion allows storing data of an applicaion user in the client scope. The default usage of
the client scope can be turned on here. Client variables are like an extended cookie.

Domain cookies

When you enable this opion, the cookies stored by Railo Server are stored for a complete
domain and not only for a single host.

Client cookies

By turning on this opion, Railo Server automaically stores cookies on the client computer,
when using sessions.

Session timeout

This opion deines the ime span the session scope is kept alive for a certain user. If during
this ime span there is no acivity in this user's session, the session variable will be deleted
from the server's memory. Higher ime span values consume more memory on the server.

Application timeout

This opion deines the ime span the applicaion scope is kept alive. If during this ime span
there is no acivity in this applicaion, the applicaion scope will be deleted from the server's

memory. Higher ime span values consume more memory on the server.

Application

Under Applicaion, you can deine several diferent applicaion-speciic seings. We shall go
into more detail about the applicaion lifecycle and how it is deined in Railo Server in the
next chapter, but for the moment, you should be aware that this is where you can change
how Railo Server deals with diferent aspects of applicaions.

http:///

Chapter 4

[109]

Script Protect

This seing should protect your applicaion from "cross-site scriping" atacks. Here, you can
choose to switch it of (not recommended). The seing protects all scopes that are checked
for the inclusion of the <script> tag or speciic scopes.

http:///

Railo Server Administraion

[110]

Cross-site scriping

Cross-site scriping (XSS) is a type of computer security vulnerability, typically

found in web applicaions, which allows code injecion by malicious web users
into the web pages viewed by other users. Examples of such code include HTML
code and client-side scripts. An exploited cross-site scriping vulnerability can be
used by atackers to bypass access controls, such as the same origin policy.

If you turn on script protecion, Railo Server checks incoming scopes for foreign
data and replaces it with harmless data. When you have set the seing to all the
scopes, CGI, COOKIE, FORM, and URL are scanned. These are the only ones
that might contain external data. When set to custom, you can deine which of
the scopes will be scanned by Railo. By default, no scope is checked for external
data (none).

This seing is just a default seing. You can use the atributes of the tag
<cfapplication> or the properies of the Application.cfc

in order to override this default. For example, to set the name and script

protecion speciically for your applicaion, you can use the following
<cfapplication> tag:

<cfapplication name="MyApplication"
scriptprotect="true">

For more informaion on XSS, see http://en.wikipedia.org/wiki/
Cross-Site_Scripting.

Request timeout

The request imeout ield allows you to set the maximum ime a CFML page can run, before
an error is thrown menioning that the request ran too long. You can also deine whether this
seing can be overruled with a parameter in the URL called RequestTimeout. For example,

you could set the maximum imeout of a page that you know will run a long ime by calling it
as follows:

http://localhost:8888/chapter_4/Listing4_4.cfm?RequestTimeout=50000

And this would change the request imeout of the page to 50 seconds (the ime is measured
in milliseconds).

Application listener

Applicaions in Railo Server can be deined with the use of a special ile called
Application.cfc. We shall see more on how this behaves in the next chapter, but
for the moment, you can use this secion to set which behaviors you want to support
in your applicaion.

http:///

Chapter 4

[111]

An Applicaion Listener is a special ile or funcion that is run at diferent points during the
request. You can set it to any of the following:

 � None: This means Railo server will not look for speciic iles at the start and end of
a request.

 � Classic (CFML < 7): This means Railo Server will look for a ile called Application.
cfm at the start of each request. If there is a ile called OnRequestEnd.cfm in the

same directory, it will include this template at the end of the request.

 � Modern: This means Railo server will only look for a ile called Application.cfc

at the start of the request, not the Application.cfm or OnRequestEnd.cfm.

 � Mixed (CFML >= 7): This means Railo server will handle both the Classic and

Modern paterns of template inclusion.

The next secion for the Applicaion Listener seings is called mode, and deines how Railo
Server will look up the locaion of the Application.cfc/.cfm iles.

 � Current: This means Railo Server will only look for the Application.cfc/
Application.cfm ile in the current directory of the requested page.

 � Root: This means Railo Server will only look for the Application.cfc/
Application.cfm ile in the web root of the site.

 � Current to Root: This default seing will look for an Application.cfc/
Application.cfm ile staring from the current template path to the web root.

Output

This secion of the Web Administrator allows you to deine special seings that give output
to the user.

 � Whitespace management: If this is set, Railo Server removes all extra whitespace
(tabs, spaces, and carriage returns) from between the code that is output to
the browser.

 � Output Railo Version: If this is set, Railo Server returns the version of Railo you are
running in the HTTP headers.

 � Suppress Content for CFC Remoing: If this is set, Railo Server removes any content
from inside a funcion call called remotely. Therefore, all that is returned is what the
funcion returns, rather than any content inside the call.

http:///

Railo Server Administraion

[112]

Error

This secion of the Web Administrator allows you to deine how errors are handled. You can
deine templates for:

 � General Error Template: This is invoked in case of a coding or server error. You can
deine your own custom error page.

 � Missing Template Error: This template is called when you call for a .cfm or .cfc ile
that doesn't exist. You can deine your own custom error template.

 � Status Code: Normally, when a website has an error, an appropriate HTTP status
code is returned. Here, you can set whether you will return this status code, or the
status code 200, which suggests that the request went okay (on an HTTP level).

Services
The services secion of the Web Administrator allows you to deine connecions and seings
to external systems, such as databases, caches, and e-mail servers. It also allows you to see
running tasks and set up scheduled tasks.

Let's briely cover some of the secions, since they will be covered later in the book
in more detail.

Event Gateway

Event Gateway allows the Railo Server to handle requests or events from other systems
outside a normal HTTP request. We are going to go into more detail about coniguring and
using Event Gateway in the next chapter.

In this secion, you can choose from the built-in Event Gateway, such as the Directory

Watcher and the Mail Watcher, as well as any others that might be installed.

http:///

Chapter 4

[113]

Once you have given the Event Gateway an ID, you will get a screen to conigure it. As an
example, here is the Directory Watcher coniguraion screen:

http:///

Railo Server Administraion

[114]

Cache

Railo Server provides a number of caches that you can use to save various variables to
improve the speed of lookups, especially when geing frequently-used data. Built-in caches
include EHCache Lite and RamCache. There are a number of funcions that you can use to
save objects into the cache and get them back again. This can vastly improve the speed of
your applicaion, rather than having to re-create the objects or save them in other ways.

We will look further into caches later on in the book. This secion of the administrator will
allow you to create caches, set properies of the cache, and to assign it as the default cache

for various operaions.

Datasource

The Datasource secion of the Railo Web Administrator allows you to add connecions to
databases. By default, Railo Server comes with a range of connectors to diferent database
servers, and you can even add your own JDBC drivers to connect to other database types.

By default, Railo Server supports the following databases: DB2, Firebird, H2, HSQL DB,
Microsot SQL Server, MySQL, PostgreSQL, Sybase, Oracle, JDBC-ODBC Bridge (to connect
to your ODBC datasources), and any other database that has a JDBC driver.

ORM

The Object Relaional Mapping (ORM) secion of the Web Administrator allows you to
deine seings on how Railo Server will interact with the included Hibernate ORM service.
Railo Server provides a way for you to "persist" CFML Components to a database and relate
them to each other. This means you don't have to do SQL queries to the database and you
can just code your whole applicaion using components that are saved to the database for
you. We shall have a beter look at this funcionality in Chapter 5, Developing Applicaions

with Railo Server.

http:///

Chapter 4

[115]

Search

Railo Server contains a full text search engine. It uses the Lucene search engine from the
Apache Foundaion. The underlying engine can be swapped-out, since Railo Server uses an
interface for the abstracion of the full text search. This enables you to add other search
engines, if required, but your CFML code won't need to change.

In order to use the search funcionality, we have to create a collecion irst. This can be done
either within the Railo Web (or Server) Administrator or with the <cfcollection> tag.

You deine a collecion by giving it a name, a path where the collecion index is stored, and
the language that the collecion is in.

A collecion is a group of items that Apache Lucene will allow you to search. These can
be HTML iles, PDF documents, Microsot Word documents, and even web pages from
other sites.

Time for action – creating a search collection

Let's create a collecion and use the built-in search funcionality to see it work.

1. We irst need to create a directory to hold our collecion; this doesn't have to be
web-visible, but just for this example, we are going to create a folder in <Railo
Install Directory>/webroot called collections.

2. Now, in the Railo Web Administrator, head to the Search secion.

3. Enter bookcollection in the Name ield for the collecion.

http:///

Railo Server Administraion

[116]

4. Then, enter the full path to the collection folder in the Path ield, and we should
have something similar to the following screenshot:

5. Click on create, and you will have a page lising the created collection.

6. We need something to search, so let's create a folder in the <Railo Install
Directory>/webroot called searchitems.

7. In this folder, let's add a page that we can now search. Let's write a ile called
railorocks.html and add the following to the ile:

<!DOCTYPE html >

<html>

 <head>

 <title>A search item!</title>

 </head>

 <body>

 <h1>Railo Rocks!</h1>

 </body>

</html>

8. The railorocks.html is just a simple HTML ile with the word Railo in it that we
are going to search.

9. Let's head back to the Railo Web Administrator and click on the pencil icon next to
the bookcollection we created before.

10. In the Add/Update path index secion, add the full path to our searchitems folder,

so it should look something like the following screenshot, and then click on update:

http:///

Chapter 4

[117]

11. Now click on the pencil next to the bookcollection collecion, and at the botom,
you can enter Railo in the Enter the searchitem textbox and click on search. You

should now have an example result of the contents in that collecion.

What just happened?
Using the Railo Web Administrator, we added a new collecion to the Apache Lucene engine.
We then added a path, which we set to look through .htm, .html, .cfm, and .cfml iles.

Railo Server will then maintain this collecion, allowing you to add it to your site by using the
<cfsearch> tag.

Have a go hero

Why not create a template with a form to search the collecion? You could also add other
types of iles, such as PDF and Word Documents. To search this collecion, you will need to
use the <cfsearch> tag. Here is a quick example, but why not explore what else you
can do?

<cfsearch collection="bookcollection" criteria="railo"

 name="findBooks">

<cfoutput query="findBooks">

 #score# - #title# - #summary#

</cfoutput>

http:///

Railo Server Administraion

[118]

Mail

Most web applicaions, at some point, need to send an e-mail. For example, e-mails can
be used to noify a user, to send error reports, or to even send out a newsleter. The Mail

secion of the Railo Web Administrator allows you to deine global seings, such as the
default encoding, the locaion of the log ile, the kind of logs that will be kept, whether
the spooler is enabled, the spool interval, and the imeout for sending mails.

You can also deine SMTP servers that you will be using, the username, password, the port
for that server, and whether it has been enabled. Then to send mail in your code, all you
have to do is add the following code:

<cfmail from="me@mydomain.com" to="them@theirdomain.com"
subject="This is an email from Railo">

 It's so easy to send an email from Railo Server! You should try it!

</cfmail>

You can deine a number of mail servers, and Railo Server will atempt each mail server in
turn if one fails as a fall-back.

http:///

Chapter 4

[119]

Tasks

There are certain things that happen in the background with Railo Server, for example,
sending an e-mail. This happens asynchronously, as it is put into a queue and sent later. This
means your page will process normally and send the e-mail in the background. The problem
with this is that the e-mail might end up not being sent for whatever reason. In the Tasks

secion, you can see a list of items that are being processed.

You can see that it will tell you how many imes it has tried to send it, the type of task, and
the name of the task in the list of tasks. By clicking on the edit buton, we can get more

details about why the task might sill be acive (or failed) in more detail:

http:///

Railo Server Administraion

[120]

In this case, for example, we can see that the Gmail SMTP server returned the following
error:

smtp.gmail.com 530 5.7.0 Must issue a STARTTLS command first.

The Tasks secion is very good for debugging errors with asynchronous tasks.

Scheduled tasks

There are imes when you want a process to happen on a regular basis. Of course, you
could hire someone to hit a URL on your server every few hours, but it is easier to
set up a scheduled task. In essence, a scheduled task will call a URL at deined imes.

To create a scheduled task, all you need to do is enter:

 � Name: The name you are going to give this scheduled task

 � URL: The URL that will be called

 � Interval Type: Whether you want to run this task once, daily, weekly, monthly, or at
more speciic intervals ("every...")

 � Start date: When you want this task to start running

 � Start ime: At what ime you want this task to start

http:///

Chapter 4

[121]

Once you have saved this basic informaion, you will be able to add more detailed
coniguraion informaion, for example, you will be able to set:

 � The Username and Password if the URL is protected

 � Any proxy seings, if you are using a proxy server to access the URL

 � Whether logging should be enabled and where the log ile will be stored

 � Precisely when the execuion should be run and unil when

The task will then run unil you either set it to paused, delete the task, or you set an end
date for the task to stop execuing.

Extension
The Extension secion of the Railo Web (and Server) administrator allows you to install
external applicaions and extensions directly into your web context. There are currently a
number of applicaions (and growing) that can be installed, as well as diferent funcional
addiions to the Railo Server that you can use, for example, diferent cache providers,
resource providers, and tags.

Applications

The Applicaions secion of the Railo Web Administrator shows applicaions that can be
installed into your web context, for example, here is a list of the applicaions available:

http:///

Railo Server Administraion

[122]

Selecing an applicaion to install will give you some details about that applicaion.

Once you start the installaion procedure by clicking on the install buton, the extension
will ask you speciic instrucions as to how that applicaion needs to be installed. As an
example, the applicaion might ask you for the locaion to where it should be installed in,
the datasource, and any other variable that needs to be set for it to work:

While you are in the applicaions screen, if you click on the Server Administrator tab at the

top of the page, you will see the extensions that can be installed for a whole server:

http:///

Chapter 4

[123]

The diference between the Server and Web Applicaions is that the Server applicaions
usually provide funcionality for all the contexts in a Railo Server, whereas the Applicaions
in the Web Administrator usually install funcionality just for that context.

Providers

Extensions and applicaions are provided from Railo Technologies directly, but you can also
consume applicaions from other providers. The Providers screenshot, shown next, allows
you to deine other providers, including ones you wrote. We shall see more about this in
Chapter 9, Extending Railo Server.

http:///

Railo Server Administraion

[124]

Remote
This secion is used if you install the Admin Sync extension in the Server Administrator.

The Admin Sync extension allows you to synchronize any changes you make to one server
administrator across a number of other servers. To do this, you need to use the security key
provided in the Security Key secion:

You can then use that key when you are seing up another connecion in the Clients:

http:///

Chapter 4

[125]

More details on this can be found at http://wiki.getrailo.com, as it is outside the

scope of this book.

Archives and resources

Railo Server has the ability to use a number of diferent ilesystems as well as create
aliases to code what you want to use. This secion allows you to create those aliases,
called Mappings, to securely access code that can be placed away from the webroot.

Mappings

Mappings are an easy way of accessing iles and directories not available to an applicaion.
Mappings (like a virtual web server directory only for Railo), for example, allow you to access
iles that lie outside the webroot in your CFML code.

A mapping in Railo Server always starts with a slash /. If a / is at the beginning of a ile
locaion, Railo server checks any corresponding mapping and retrieves the ile from the
physical folder that the mapping points to. This is only valid for calls of .cfm or .cfc iles
through the browser, since these iles are handled by Railo Server and mappings are only
known to Railo Server. Other ile types can be accessed through the <cfinclude> tag and

fileRead() funcion (and in fact most of the fileXXXX() funcions).

A web server knows nothing about Railo Server mappings. Therefore, it would be necessary
to make Railo Server process all kinds of iles, such as images and stylesheets, if you would
like to use mappings for other ile types.

Within Railo Server, you can use mappings wherever you like. So a mapping works with a
<cffile> tag and other ile-related funcions or tags.

http:///

Railo Server Administraion

[126]

Let's look at some examples

Time for action – creating mappings in our application

Let's create a mapping to include a ile from our applicaion.

1. In our webroot, let's create a folder called includes.

2. In the includes directory, add a template that will simply show the ime; let's call
it inc.cfm and add the following code:

<cfoutput>#Now()#</cfoutput>

3. Then, in the Railo Web Administrator, head to the Mappings secion, enter /myinc

under the Virtual column entry box, and then enter the full path to the includes

folder under the Resource column:

4. Once we have done that, click on the save buton.

5. In our webroot folder, let's create another template this ime called
mapping_test.cfm and put the following code in it:

<cfinclude template="/myinc/inc.cfm">

6. When we run our mapping_test.cfm template, by going to

http://localhost:8888/include_test.cfm, we get the
current ime displayed:

{ts '2011-09-19 09:47:24'}

What just happened?
By using a mapping, we were able to create an alias to a folder that we can use in our code.
Railo Server is able to translate these mappings to speciic iles.

http://localhost:8888/include_test.cfm
http:///

Chapter 4

[127]

In Railo, mappings can be used wherever iles are related in some way. So, for example, for
the following tags we will follow the mappings:

 � <cfdirectory>

 � <cffile>

 � <cfinclude>

 � <cfmodule>

A mapping can also be marked as Trusted by selecing the never item in the drop-down
under the Inspect column. This means that Railo Server will only check the contents of this
mapping once, and then remember the content without re-checking whether the contents
have changed or not. This is useful for secions of code that never change, and therefore, do
not need to be re-compiled at any point.

We shall talk more in depth about resources in Chapter 8, Resources and Mappings.

Component

Components are used by Railo Server to provide self-contained modules of code. They are
deined by creaing a template with a .cfc extension (instead of the usual .cfm that we
have seen so far).

They are analogous to Java classes, and have properies and funcions that can act on those
properies, but they are also more than that, as we shall see later in the book.

http:///

Railo Server Administraion

[128]

This secion allows you to deine the defaults on how components are handled.

Base/Root Component

This seing deines the base component that every component will extend by default.
(unless you use the extends="" atribute in the <cfcomponent> tag).

Auto import

There are built-in components available to every .cfm or .cfc template. These components

are provided by default by Railo Server. We shall see more of these in Chapter 6, Advanced

Funcionality. But, in efect, it means that you can call Railo Server's built-in components as:

<cfset myFeed = new Feed()>

 Instead of using the full path:

<cfset myFeed = new org.railo.cfml.Feed()>

Search local

This will start the search for components in the directory relaive to where you are calling the
component from.

Cache

Looking up components can be a processor-intensive task. Therefore, once Railo Server
has found a component, the locaion or path to that component is cached, speeding up
subsequent calls to create that component.

Component "dump" template

Normally, when you call a component directly through the URL, you will get a dump of the
properies and funcions of that component. This is deined by the /railo-context/
component-dump.cfm template. If you would like to do something diferent, such as
provide documentaion for that component when it is called, you can modify the template
used to display a component.

Data member access type

Properies within a component are normally stored in the THIS scope and by default are

public, that is, you can access and modify them externally. By changing the seing here,
you can change this behavior and make them:

 � private: The properies are only available from within the component itself

 � package: The properies are only visible to other templates that are in the same
folder

 � public: The properies are visible to all the templates in the applicaion

 � remote: The properies are visible to remote (web service) calls to this component

http:///

Chapter 4

[129]

Magic functions

Magic funcions allow you to specify funcions that will be called when you call or set a
property of a component.

Let's look at an example to see how they work.

Time for action – using magic functions

1. Let's create a component that we are going to access. In our webroot folder, let's

create a template called PrivateComponent.cfc and add the following code:

<cfcomponent>

 <cfset variables.name = "Test Value">

</cfcomponent>

2. This code has deined a component. Since the VARIABLES scope is private, by

default, the variable name is also protected from being read directly.

3. Now let's create a template to call this component and see what happens when we
call the VARIABLES.name variable. In the webroot folder, create a template called

magic.cfm with the following code:

<cfset myComponent = new PrivateComponent()>

<cfset theName = myComponent.name>

<cfoutput>#theName#</cfoutput>

4. When we run the magic.cfm template, by going to http://localhost:8888/

magic.cfm, we get the following error:

Component [PrivateComponent] has no acessible Member with name [NAME]

5. That makes sense; the VARIABLES scope is a private scope. Let's enable magic

funcions. In the Railo Web Administrator, go to the Components secion and ick
the Magic Funcions checkbox (if it hasn't been icked already, of course) and click
on the update buton.

6. Now that we have enabled them, we can add a funcion to our component that
will be called. Let's modify our PrivateComponent.cfc template to look like

the following:

<cfcomponent>

 <cfset variables.name = "Test Value">

 <cffunction name="getName">

 <cfreturn variables.name>

 </cffunction>

</cfcomponent>

http://localhost:8888/magic.cfm
http://localhost:8888/magic.cfm
http:///

Railo Server Administraion

[130]

7. Now, let's re-run our magic.cfm template. We see that instead of geing an error,
we get:

Test Value

What just happened?
When we enable Magic Funcions for our components, Railo Server sees that we are
calling a property in a component, translates that to get<Property Name>, and runs

the matching funcion in the component (if the funcion exists of course). Also, if you were
seing a property in a component, it would call the set<Property Name>.

This is very handy if you have code that has, for example, been using key value structures
and you want to replace that structure with a component to enable it to have more
funcionality.

Additional resources

The Addiional resources secion of the Component secion works in the same way
as mappings do, but it allows you to deine overall addiional locaions to check for
components.

Custom tags

We are going to explore custom tags in more detail in Chapter 9, Extending Railo Server.

Custom tags are iles writen in CFML that you can call by name. So, for example, if we
had a ile called hello.cfm with the following content:

Hello There!

We could call it as follows from another template:

<cf_hello>

And it would display Hello There!

The Custom tags secion allows you to deine how Railo Server looks for custom tags, how it
caches them, and what extensions you can use.

http:///

Chapter 4

[131]

As an addiion, you can also deine custom tag mappings the same way that mappings are
deined, and they are searched in addiion to the normal mappings.

Seing Descripion

Search Subdirectories Tells Railo Server to search in the subdirectories for custom tags.

Search Local Tells Railo Server to look in the current folder that we are calling the
custom tags from.

Cache To cache a path of a custom tag once it has been successfully called.

Extensions Which extensions you can use for custom tags. By default, you can
create component-based custom tags (.cfc) as well as simple
template-based components.

Resources Paths that Railo Server will search for custom tags.

CFX tags

In Railo Server, you can not only use custom tags writen in CFML, but you can also have
custom tags writen in Java. There are a number of open source and commercial CFX tags
developed, and by adding a library to your <railo install>/lib/ directory, you can

then deine the custom tag in this secion by giving it a name and a Java class to call.

Development
The debugging secion allows you to turn on debugging for your context. If you set Enable

debugging to Yes, when you call a page in Railo Server, you will get debug informaion, such
as which components and templates have been called, how many imes they have been
called, and how long each template took to process.

Showing debugging output is very useful to see what templates you are calling, what queries
are run, as well as other useful informaion.

http:///

Railo Server Administraion

[132]

Time for action – setting the debug template

Let's create a ile to see what debug output we can get from Railo Server. We are going to
add a query and include another ile.

1. Under <Railo Server Install>/webroot, let's create a ile called
example_debug.cfm.

2. Using the datasource we created earlier, we are going to create a template so that
we can display debugging. Let's irst create a template that we are going to include
in <Railo Install Directory>/webroot/ called testinclude.cfm, and put

the following code in it:

<cfoutput>#Now()#</cfoutput>

3. Now let's create a template that we shall debug; let's call it sampledebug.cfm and

put it in the webroot too.

4. In this template, let's perform some acions, so that we can see some interesing
output. Let's put the following code there:

<cfquery name="getUsers" datasource="railobook">

 SELECT * FROM Users

</cfquery>

<cfoutput query="getUsers">

 #Username#

</cfoutput>

<cfinclude template="testinclude.cfm">

5. If we run this template currently, the output should look something like this:

http:///

Chapter 4

[133]

6. As you can see, there is no debugging output being displayed. Let's change that

by going to the Railo Web Administrator http://localhost:8888/railo-

context/admin/web.cfm and then clicking on the Debugging link under

Development.

7. To enable debugging, change the Enable Debugging drop-down to say Yes rather

than the default seing, which should be Server Administrator Value (No), and click

on update.

8. When we refresh our sampledebug.cfm template in the browser, we will now see
the debugging output that Railo Server provides:

9. It displays all the iles that were called; including the base components and the
debug tag itself. It also shows the queries that we run on this page.

http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http:///

Railo Server Administraion

[134]

10. We can change the debug output by going back to the Debug screen in the Railo
Web Administrator and selecing a diferent debug template from the drop-down,
such as debugging-neo.cfm, which will give us a diferent debugging output:

What just happened?
By enabling debugging in the administrator, we are able to see exactly what our code is
doing. It displays informaion about resources, scopes, components, and templates that we
have included. If you want to, you can even create your own debugging template that would
only show under certain condiions, such as a request from a speciic URL.

http:///

Chapter 4

[135]

Security
The Password secion under Security allows you to change this context's password. Just
enter your current password, your new password, and retype your new password. The next

ime you log into the Web Administrator, you will use your new password.

Documentation
Under the Documentaion secion, you will ind some quick ways to look up Tag and

Funcion references. They both work the same way, and you just need to select the tag or
funcion and it will display a summary of its funcion and atributes/arguments that are valid
for that tag.

http:///

Railo Server Administraion

[136]

http:///

Chapter 4

[137]

Summary

We covered a lot of ground in this chapter. You should now have a good idea of:

 � The Server and Web contexts available to your applicaion

 � The Server context is a part of Railo Server that is used to deine seings
across web contexts

 � The Web context(s) are instances of Railo Server that allow administrators
to manage their own context independently of other Web Contexts

 � The seings available to change the ime, output, performance, and
internaionalizaion of your server and web context

 � How to set up diferent services, such as databases and datasources, caches, adding
debug informaion to your requests, and seing up a connecion to mail servers

 � How to extend your server and web context with diferent applicaions available
from diferent providers

 � How to call templates and components through diferent mappings that are outside
the web root

This chapter should have given you a great overview of coniguring and customizing your
server to your needs.

In the next chapter, we shall start using some of the services and archives and get to use
some of the seings that we have seen in this chapter.

http:///

http:///

5
Developing Applications with

Railo Server

Now that we have a good handle on the seings that are available in the web
administrator for a context, let's turn our atenion to the Applicaion Lifecycle

and how we can use that to develop applicaions. In this chapter, we will have a
look at:

 � Using the Application.cfc to manage the Applicaion Lifecycle

 � Using components to interact with our database using ORM

 � Using the various caching techniques in Railo Server

By the end of the chapter, you should have a good understanding of what the
Application.cfc ile does, be able to interact with your database using components,
and inally, be able to see how caching afects your applicaion's performance.

Railo applications

Applicaions in Railo Server are deined as a number of templates working together. All
the templates can share certain resources and scopes, such as the "APPLICATION" scope
and interact with each other, for example, storing session informaion, seing and reading
cookies from a user, sharing a datasource, and so on.

We have already seen in the Railo Web Administrator that we can set certain defaults for
applicaions, such as the applicaion and session imeouts, and so on, but what if we wanted
to have more control than that?

http:///

Developing Applicaions with Railo Server

[140]

Time for action – building the simplest application

Imagine that we are creaing an applicaion and all that it has to do is remember a user's
name. The whole applicaion will only consist of a couple of iles – a form where a user can
enter their name, and another page that will display their name. Then, we'll go ahead and
make our applicaion, it will have to remember these names without having the user submit
it again.

1. Under the webroot in <Railo Install Directory>/webroot, create a

sub-folder, where we are going to store our templates, called HelloApp.

2. Create a ile in the HelloApp directory called index.cfm with the following code:

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Remember My Name</title>

 </head>

 <body>

 <form action="savename.cfm" method="post">

 <label>Enter your name</label>

 <input type="text" name="name" value="">

 <p><input type="submit" value="Save Name"></p>

 </form>

 </body>

</html>

3. Create another template called savename.cfm with the following code:

<!DOCTYPE html>

<cfparam name="FORM.name" default="">

<html lang="en">

 <head>

 <title>Saved your name</title>

 </head>

 <body>

 <cfset SESSION.name = FORM.name>Welcome

 <cfoutput>#SESSION.name#</cfoutput>!

 </body>

</html>

In this code, we have used the <cfparam> to set the FORM.name posted variable to

a default value; this way, this template won't break if you don't send anything. Then
we set the variable SESSION.name to the value we sent in the form by geing the
variable from FORM.name. Finally, we output what is stored in the SESSION.name

and display it in a friendly way.

http:///

Chapter 5

[141]

4. Now go to http://localhost:8888/HelloApp/ and see our newly created
form, which will look like the following screenshot:

 � Enter your name and submit the form

 � Oh no! We get an error:

What just happened?
We created a simple form to submit our name to another template, but we got an error. The
error actually explains what is going on. We tried to set a variable to the SESSION scope, but

we haven't enabled sessions in our applicaion; in fact, we don't even have an applicaion
deined yet. There are just two templates in a folder. Let's ix this now.

Time for action – deining the application
To deine an Applicaion, we need to create a special template called Application.cfc in

the root of our HelloApp folder. This template manages our applicaion lifecycle and various
other seings that we can use within our applicaion. Let's deine it now:

1. In the HelloApp folder, create a ile called Application.cfc with the
following code:

<cfcomponent output="false">

 <cfset this.name = "RememberName">

 <cfset this.sessionmanagement = true>

</cfcomponent>

In this template, we have simply deined a component with the <cfcomponent>

tag. Inside this tag, we set two variables: this.name="RememberMe", which
will be the name of our applicaion, separaing it out from other applicaions on
the server, and this.sessionmanagement = true, which sets whether this
applicaion will manage sessions or not. By seing it to true, we now have access
to the Session scope.

http:///

Developing Applicaions with Railo Server

[140]

2. In the form, re-enter your name and submit the form. You will now get a
friendly greeing.

But how do we know that we have actually set this name for the whole session?

3. Change the index.cfm template to display a Welcome back message, if we have
set the name:

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Remember My Name</title>

 </head>

 <body>

 <cfparam name="SESSION.name" default="">

 <cfif Len(SESSION.name)>

 <h1>Welcome back <cfoutput>#SESSION.name#</cfoutput></h1>

 </cfif>

 <form action="savename.cfm" method="post">

 <label>Enter your name</label>

 <input type="text" name="name" value="">

 <p><input type="submit" value="Save Name"></p>

 </form>

 </body>

</html>

In this code, we set a default parameter for the SESSION.name variable. Then, we
check to see if there is any length to the string value and then display it.

4. Go back to the Helloapp applicaion, without submiing your name. You will see
that the applicaion has remembered your name:

http:///

Chapter 5

[143]

What just happened?
The Application.cfc component manages various seings of your applicaion. By adding
it to the HelloApp folder, we said that all the templates (and templates in directories
below the current directory) are part of our applicaion. Any seing, such as the this.
sessionmanagement seing, will now apply to these templates.

Session and client settings
You can control other session seings in your Application.cfc too. There are a number
of session and client informaion storage seings; a few of them are listed as follows:

Seing Descripion

applicationTimeout Deines how long variables in the APPLICATION scope will
persist

sessionManagement Whether there will be a SESSION scope available to the

applicaion

sessionTimeout Deines how long variables in the SESSION scope will persist

setClientCookies Whether the applicaion will set client cookies

setDomainCookies Should the cookies be domain-speciic

clientManagement Whether we should use the CLIENT scope, such as the

COOKIES scope stored on the server

clientStorage Where the CLIENT scope variables are stored

Have a go hero

Since we have told you what all the seings are, why don't you try them out? There are clues
in the names, of course, and if you are stuck, check out the Railo Web Administrator secions
that we went over in the previous chapter.

Application events

Apart from being able to manage seings of your applicaion in the Application.cfc,

you can also manage diferent parts of the Applicaion, Session, Request, and Error lifecycle.
To do this, we can create funcions within the Application.cfc that are triggered at

diferent points.

http:///

Developing Applicaions with Railo Server

[140]

There are a number of methods that you can implement in Application.cfc. They are
simply funcions. For example, the onApplicationStart() method will be executed if
the applicaion hasn't started up:

<cfcomponent>
 <cfset this.name = "RememberName">
 <cfset this.sessionmanagement = true>
 <cffunction name="onApplicationStart" returnType="boolean"
 output="false">
 <cfreturn true>
 </cffunction>
</cfcomponent>

Before trying out some of these funcions, let's look at the Applicaion lifecycle and
how Railo Server triggers diferent funcions. The following screenshot depicts the
Applicaion lifecycle:

http:///

Chapter 5

[145]

1. When an iniial request arrives at the web server, it checks the extension. If it is a
.cfm or a .cfc, it gets passed onto Railo Server.

2. When Railo Server receives a request, it checks if there is an Application.cfc

ile. If there is one, it will check if there is an applicaion deined, and set all the
variables and seings. If there is an onApplicationStart() method, it will run
the method, for example:

<cfcomponent>

 <cfset this.name = "RememberName">

 <cfset this.sessionmanagement = true>

 <cffunction name="onApplicationStart" returnType="boolean"
 output="false">

 <cfset application.mySetting = "MySetting">

 <cfreturn true>

 </cffunction>

</cfcomponent>

In the onApplicationStart() method, you can set any of the APPLICATION

scope variables that your applicaion might need. This will run only if the applicaion
hasn't started or if there have been no requests to the server for longer than the

this.applicationtimeout seing.

When the applicaion imeout ime has elapsed, you can also deine an
onApplicationEnd funcion that will be called. Remember that at this point, the
code will NOT have access to the APPLICATION scope, but you can get the variables

from the, now elapsing, scope, as they are passed into the funcion through the
ARGUMENTS.applicationScope structure:

<cffunction name="onApplicationEnd" returnType="void"
 output="false">

 <cfargument name="applicationScope" required="true">

 <!--- do something --->

</cffunction>

This can be useful to, for example, log variables that you have kept in the
APPLICATION scope or to do any other clean up funcion.

3. Railo Server then checks to see if sessionmanagement has been turned on in this

Application. If it is turned on and the current user doesn't have a session yet,

then it will run the onSessionStart() method, where you can set any variables
that the user may need for this session, such as the defaults for example:

<cffunction name="onSessionStart" returnType="void"
 output="false">

 <cfset SESSION.setting = "User Session Setting">

</cffunction>

http:///

Developing Applicaions with Railo Server

[140]

4. Analogous to the onApplicationEnd, there is also an onSessionEnd that

will be run when a user's session has elapsed, and again, you won't be able to
access the SESSION scope directly, but you will have access to the ARGUMENTS.
sessionScope variable:

<cffunction name="onSessionEnd" returnType="void" output="false">

 <cfargument name="sessionScope" type="struct" required="true">

 <cfargument name="appScope" type="struct" required="false">

</cffunction>

5. Now that the Applicaion and Session-related start funcions have been called, you
can also implement an onRequestStart method to add any variables or seings
related to that request:

<cffunction name="onRequestStart" returnType="boolean"
 output="false">

 <cfargument name="thePage" type="string" required="true">

 <cfreturn true>

</cffunction>

6. You can also implement an onRequest method, but be warned, this means that
"your" code will manage including a page, rather than be part of the normal low of
a request. This can be rather confusing if you have no code in there, since nothing
will be returned.

7. Railo Server now checks to see if the requested template exists in the ile system.
If the template is not found, the error page deined in the Railo Web Administrator
will be displayed. But if you implement an onMissingTemplate, then you can

implement your own code speciically for this applicaion, for example, you could log
the missing template or return a diferent one, as shown below:

<cffunction name="onMissingTemplate" returnType="boolean"
 output="true">

 <cfargument name="targetpage" required="true" type="string">

 <cfinclude template="404.cfm">

 <cfreturn true>

</cffunction>

8. Now Railo Server processes the page that was requested. If there is an error thrown,
Railo will run the template deined in the Railo Web Administrator, but you can
override this behavior by implemening an onError method:

<cffunction name="onError" returnType="void" output="true">

 <cfargument name="exception" required="true">

 <cfargument name="eventname" type="string" required="true">

 <cfinclude template="MyError.cfm">

</cffunction>

http:///

Chapter 5

[147]

9. Once Railo has processed any errors, you can implement the onRequestEnd

method. This will do any post-processing (maybe log the type of request the
user requested):

<cffunction name="onRequestEnd" returnType="void" output="false">

 <cfargument name="thePage" type="string" required="true">

 <!--- do something --->

</cffunction>

And inally, the rendered template is now passed back to the user.

We have covered some of the funcionality of the Application.cfc ile. You should now
have a good idea of how a request is processed by the Application.cfc ile.

Pop quiz – Application.cfc

Time to get the old brain cells thinking!

Can you put these funcions in the order that they are called?

onRequest

onRequestStart

onSessionStart

onError

onApplicationEnd

onApplicationStart

Object relational mapping with Railo Server

Applicaions can get complex as they get larger. It is ine to just do a few templates with
inline queries, but as your applicaions increase in size, developers realize that keeping
business logic in the correct place becomes harder.

Instead of talking of displaying our tables in a web page, why not talk about discreet objects
and how they are related to each other? Once we have done that, we will want the objects
to somehow persist for longer than the request that created them, so why not store them in
a database? This is incredibly simple in Railo Server, as we shall see.

Railo Server allows you to do this with the use of the Hibernate Persistence from JBoss

(http://www.hibernate.org/), but without you having to do a lot of the coniguraion
that is normally required to use it in Java applicaions.

http://www.hibernate.org/
http://www.hibernate.org/
http:///

Developing Applicaions with Railo Server

[140]

Time for action – upgrading Railo Server

Before we get started, it should be menioned that the ORM feature is in the Beta state for

Railo 3.2, but this is ok. Let's update the Railo Server, so that we can use these features. It's
quick and painless:

1. Open the Railo Administrator at http://localhost:8888/railo-context/
admin/index.cfm and click on the Server Administrator tab.

2. Either enter your password or set a password if you have not already done so.

3. Noice the current version of Railo Server in your installaion:

4. Under the Services secion, click on the Update link.

5. The Update secion allows you to stay up-to-date with major and minor releases of
Railo Server.

In the Properies secion, select the Development releases (Bleeding Edge) radio

buton and click on the Update buton.

http:///

Chapter 5

[149]

6. Once the page refreshes, scroll down and you should be able to see an Info panel,

showing you the release notes of the latest version of Railo. Click on the execute

update buton; this will install the latest version of Railo Server.

7. Once the server has updated, you will have to log in again, and you should now be
on the latest version of Railo Server. Congratulaions!

http:///

Developing Applicaions with Railo Server

[140]

8. If you see a secion about updaing your JARs, just click the Update JAR's buton (if
you are running Windows, you might have to restart the Railo Server by shuing it
down in the console and clicking on the start.bat or re-running the start script under
your Railo Server install directory):

Wow! That was prety easy!

What just happened?
By going to the Server Administrator, we were able to update Railo Server to the latest
version and get new features; we didn't have to install anything or go and download anything
ourselves, the Railo Server Administrator did it for us.

If you now check the Railo Server Administrator homepage by going to
http://localhost:8888/railo-context/admin/server.cfm, you should

see that we have now got the latest (and greatest!) version of Railo Server. We can
now start playing with the awesome ORM capabiliies.

Creating our database persistence store

To demonstrate the features of the ORM, we are going to quickly build a simple blog. The
blog will have posts, and people will be able to comment on each post. This is just going to
be a simple example to show you some of the capabiliies of the ORM, rather than trying to
implement a producion-ready blog.

Let's get started!

http:///

Chapter 5

[151]

Time for action – creating a database

Before we can start persising our components into a database, we have to actually tell Railo
Server about that database. In your MySQL database, create a new empty database, either
by using a Graphical User Interface (GUI) tool or by using the command line uiliies:

1. At the command line, enter the following command to log into the mysql console:

 > mysql -u root –p

2. When prompted, enter your password.

3. Enter the following to create a database called railoblog:

 > CREATE DATABASE railoblog;

4. mysql should reply with:

 Query OK, 1 row affected (0.10 sec)

What just happened?
We have just created a database that we are going to connect to from our templates. Let's go
and conigure the datasource now.

Time for action – creating our railoblog datasource

So that we can connect to our database from our applicaion, we need to set up a datasource
in the Railo Web Administrator. Let's set that up now, by carrying out the following steps:

1. In your browser, open the Railo Web Administrator by going to
http://localhost:8888/railo-context/admin/web.cfm.

2. Click Datasource under the Services secion.

3. Enter the name railoblog in the Name ield of the Create new datasource form,

select MySQL from the Type drop-down, and click on Create.

http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http:///

Developing Applicaions with Railo Server

[140]

4. Since we are doing local development, the Host/Server and Port in the Create

new datasource connecion MySQL form should be ine. Enter the Database

name as railoblog and enter values for the Username and Password to

connect to the server:

5. Finally, click on the Create buton at the end of the form.

What just happened?
We have created a datasource that points to our newly-created database. We can now use
this datasource to create our applicaion

Using persistent components

To create our blog, we are going to need to set up our Application.cfc and deine some
components that will be persisted to the database. Let's do that now.

Time for action – creating the blog

Let's get down to creaing our blog. To keep it simple, we are only going to have one main
page that will show our posts. We will get a few blog posts and comments and display those.

1. In your <Railo Install Directory>/webroot directory, create a new folder
called blog.

http:///

Chapter 5

[153]

2. Create the main index.cfm page with the following code:

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>My Blog</title>

 <meta name="author" content="Mark Drew">

 </head>

 <body>

 <h1>My Blog</h1>

 <h2>Add a new blog post</h2>

 <form action="addpost.cfm" method="post">

 <p>

 <label for="title">Title:</label>

 <input type="text" name="title" value="" id="title">

 </p>

 <p>

 <label for="content">Content</label>

 <textarea name="content" rows="content" cols="40"
 id="content">

 </textarea>

 </p>

 <p>

 <input type="submit" value="Post">

 </p>

 </form>

 </body>

</html>

This code is just our form for adding our new posts.

3. Now let's create the page where we will be saving our blog posts, and name it
addpost.cfm (as deined in form acion):

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Post Saved</title>
 <meta name="author" content="Mark Drew">
 </head>
 <body>
 <h1 id="post_saved!">Post Saved!</h1>
 <cfdump var"#FORM#" />
 <p>
 Back
 </p>
 </body>
</html>

http:///

Developing Applicaions with Railo Server

[140]

We should now have a nice form that we can submit, which looks as follows:

4. So far, these are just two templates. Let's make this an applicaion and conigure
the ORM capabiliies. Let's create an Application.cfc in this folder too, with the
following content and seings:

<cfcomponent output="false">

 <cfset this.name = "MyBlog">

 <cfset this.datasource = "railoblog">

 <cfset this.ormEnabled= true>

 <cfset this.ormSettings.dbcreate = "dropcreate">

</cfcomponent>

We set the name of the applicaion to MyBlog, then we set the datasource, enabled
the ORM with this.ormEnabled =true, and then set the ormSettings to

dropcreate, which will delete the table and create it when changes are made. This
is ok for the moment, since we are developing and we don't care about the data we
are storing.

5. Great! Now that the ORM is conigured, let's create a persistent Post object that we
are going to save in our addpost.cfm page. Create a ile called post.cfc:

<cfcomponent persistent="true" entityname="post" output="false">

 <cfproperty name="id" ormtype="id" generator="native">

 <cfproperty name="title" ormtype="string">

 <cfproperty name="content" ormtype="text">

 <cfproperty name="dateCreated" fieldtype="timestamp">

</cfcomponent>

In this code, you can see the component tag with a new atribute of
persistent="true", which tells Railo Server that we are going to persist it to
the ORM. We give the enity the name of the post in the entityname="post"

atribute. Now to deine the properies of our object, we add some properies using
the <cfproperty> tag, and they all are given a name. The id property is given the

ormtype="id" to deine it as a unique ideniier.

http:///

Chapter 5

[155]

The title property is given the ormtype="string" to say it will be stored as
a varchar.

The content property is given the ormtype="text" to say that it will be a long bit
of text.

Finally, we create a dateCreated property, and say it's a special type of ield called
timestamp that will put in the current ime and date when it is saved.

That's it! We have deined our persistent object. Let's go and save our form to our
database now.

6. Let's modify our addpost.cfm template, so that it saves the form ields to
the ORM:

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Post Saved</title>

 <meta name="author" content="Mark Drew">

 </head>

 <body>

 <cfset myPost = EntityNew("post")>

 <cfset myPost.setTitle(FORM.title)>

 <cfset myPost.setContent(FORM.content)>

 <cfset EntitySave(myPost)>

 <h1 id="post_saved!">Post Saved!</h1>

 <p>Back</p>

 </body>

</html>

In the irst line, we created a new post using EntityNew("post"), which is a blank

persistent enity. Automaically, geters and seters will be deined for our object. So
if you want to set the value of the itle property, all you have to do is call myPost.
setTitle(".."), and if you want to get a value from an exising object, all you
have to do is call myPost.getTitle().

Once we have set the title and content to our object, all we have to do is save
the myPost object (we do that with EntitySave(myPost)).

http:///

Developing Applicaions with Railo Server

[140]

7. Now that we have done that, we can go back to our form, ill it with some content,
and submit it:

8. Once we have submited it, you will get a page displaying the message Post Saved!.

9. If you now go and check in your database with a GUI tool, you will see that the
object has been persisted.

What just happened?
Wow, in just a few lines of code, we have used Hibernate to persist our objects. What we
managed to do in just a few lines of code would have been much harder to set up with Java,
but Railo Server made it easy for us.

As we saw before, we added an ormEnable seing in our Application.cfc and we set
the datasource and the seings that the ORM should use when our objects change. Then we
deined our persistent object, just not like any component using the cfproperty tag, but by

adding some informaion that enabled the ORM to create the tables for us. And inally, we
created a new object, illed it with data, and saved it to the database.

http:///

Chapter 5

[157]

Time for action – listing our blog posts

It's all ine to be creaing posts in your blog, but if no one can see them, there is no point.
Let's customize it, so that everyone can see our posts:

1. Let's add some code to our index.cfm to list our blog posts:

<!DOCTYPE html>

…

 <body>

 <h1>My Blog</h1>

 <h2>Latest posts</h2>

 <cfset Posts = EntityLoad("post")>

 <cfloop array="#Posts#" index="post">

 <cfoutput>

 <div class="post">

 <div class="title">#post.getDateCreated()# -
 #post.getTitle()#</div>

 <div class="content">#post.getContent()#</div>

 </div>

 <hr>

 </cfoutput>

 </cfloop>

 <h2>Add a new blog post</h2>

 …

In this code, we have got our Posts using the EntityLoad("post"). This returns
an array of Post objects. We then use <cfloop> to go through the posts and use

<cfoutput> around our code to output the variables from the object.

Have you noiced the index="post" in the <cfloop> tag? Well this is going
to be the variable that is going to hold each blog post that we can then use to
get the properies out of using the geters; so for example, we get the post.
getContent() to get the value stored in content.

http:///

Developing Applicaions with Railo Server

[140]

2. Ater adding a few more posts into the blog, you should be able to see all the items
being output:

3. Wow! That was easy to get a list of Posts. But wait, there is a problem here. The
order of the blog posts is wrong. We want to order them by the dateCreated,

so that the latest post is at the top. Let's change the EntityLoad("post")

to the following:

<cfset Posts = EntityLoad("post", {}, "dateCreated desc")>

The funcion EntityLoad now takes three parameters, namely, the name of the
enity, a ilter that will only return items that match key-value pairs, and inally the
ordering commands (in this case, we want the posts sorted by date). This
now returns our Posts with the latest at the top.

4. Let's clean up the date. Since there is an automaically created funcion for
getDateCreated, we can actually override this. Let's do that to return a
nicer looking date. In your post.cfc, add the following funcion:

<cffunction name="getDateCreated">

 <cfreturn DateFormat(dateCreated,"medium")>

</cffunction>

http:///

Chapter 5

[159]

The dates will now be output using the DateFormat() funcion:

What just happened?
In the previous secion, we managed to list all our posts using the EntityLoad() funcion,

which brought back all of our posts from the database. Since they weren't in the right order
(with the latest at the top), we added a third parameter to our EntityLoad("Post", {},
"dateCreated desc") funcion to specify which property we want to order by. Finally,
since we are creaing a imestamp for our dateCreated property, we overrode the built-in
geter and formated the date nicely.

Time for action – adding comments

A blog wouldn't really be a blog if users can't make comments to a post. We are going to now
add comments to our posts by relaing a post to a comment object.

1. First thing to do is to create a comment persistent object. Let's create a template
called Comment.cfc with the following descripion:

<cfcomponent persistent="true" entityname="comment"
output="false">

 <cfproperty name="id" ormtype="id" generator="native">

 <cfproperty name="from" ormtype="string">

 <cfproperty name="comment" ormtype="text">

 <cfproperty name="dateCreated" fieldtype="timestamp">

 <cfproperty name="post" fieldtype="one-to-one" fkcolumn="id"
 cfc="Post" insert="false" update="false">

</cfcomponent>

We have seen most of the properies before, except that now a Comment has a

property called post that is related to the Post object.

 � First, we add a fieldtype="one-to-one" to the property to deine how
this component will relate in the ORM to the Post object.

 � Now, let's deine which column will be referenced in the foreign key column
in the Post object using fkcolumn="id".

http:///

Developing Applicaions with Railo Server

[140]

 � Then we say which is the component we are relaing to with the
cfc="Post" atribute.

 � Finally, we set the insert="false" and update="false" atributes.
These deine whether if we save a Comment they will update the Post

object, which we don't need to do.

2. Now that we have related our Comment to our Post object, let's add the inverse
relaionship from the Post to the Comment objects. Ater all, we want to get all
the comments for a Post. Edit the Post.cfc and add the following property:

<cfproperty name="comments" type="array" fieldtype="one-to-many"
 cfc="Comment" fkcolumn="postid">

3. We have created a property called comments and deined its type as an array of
comment components with cfc="Comment". We deined the relaionship is a one-
to-many relaionship with fieldtype="one-to-many". Finally, we link it to the
postid of the Comment column using fkcolumn="postid".

4. Time for us to add a form so that users can post a comment. Let's add a comment
form under each Post:

<div class="newComment">

 <form action="addComment.cfm" method="post">

 <input type="hidden" name="postid" value="#post.getId()#"
 id="postid">

 <p>

 <label for="name">Name</label>

 <input type="text" name="name" value="" id="name">

 </p>

 <p>

 <label for="comment">Comment</label>

 <textarea name="comment" rows="comment" cols="40"
 id="comment">

 </textarea>

 <p>

 <p><input type="submit" value="AddComment"></p>

 </form>

</div>

This form is prety standard; it points to the addComment.cfm template (this will
save our comment) and it has a hidden ield called postid that contains the id of

the current Post.

http:///

Chapter 5

[161]

5. Let's create the addComment.cfm template. This will save our comments:

<cfparam name="FORM.postid" type="numeric">

<cfset post = EntityLoad("post", FORM.postid, true)>

<cfset comment = EntityNew("comment")>

<cfset comment.setFrom(FORM.name)>

<cfset comment.setComment(FORM.comment)>

<cfset EntitySave(comment)>

<cfset post.addComments(comment)>

<cfset EntitySave(post)>

<cflocation url="index.cfm" addtoken="false">

In this code, we:

 � Make sure that a postid is passed in the FORM scope with the <cfparam>

tag and that it is a numeric value (an error will be thrown if it isn't).

 � Then, we load up the Post enity with the id of FORM.postid using the

EntityLoad() funcion. The last atribute passed to EntityLoad()

(true) says that we only want one Post returned.

 � Then we create a new Comment enity and ill in the variables, using the
setFrom() and setComment() methods, and then save it using the

EntitySave() funcion.

 � We then add the comment to the post using the addComments() method

that has been automaically generated for us. Finally, we save the post
object, again using the EntitySave() funcion.

 � Since we don't need to show any output, we then relocate to the index.
cfm using the <cflocation> tag.

6. Now that we have added a comment, the inal task is to actually list each of
the comments for a post. Ater the post, we can get the comments using the
autogenerated method of post.getComments().

Let's add some code to display the comments ater each post in index.cfm:

<div class="comments">

 <cfloop array="#post.getComments()#" index="comment">

 <div class="commment">

 <div class="commentFrom">#comment.getFrom()# on
 #comment.getDateCreated()#

 </div>

 <div class="commentText">#comment.getComment()#</div>

 </div>

 </cfloop>

</div>

http:///

Developing Applicaions with Railo Server

[140]

In this code, we get the comments and loop through them, passing them to a
comment variable using index="comment" in the <cfloop> tag. For each

comment, we simply output the From, DateCreated, and Comment properies
using the auto-generated geters.

What just happened?
In the previous secion, we saw how we can relate objects to each other quite simply
by adding a fieldtype to a component's property, including a back relaionship. The
relaionships that you can have between objects are:

 � one-to-one

 � one-to-many

 � many-to-one

 � many-to-many

You can then use various related objects with methods, such as getComments,

addComment, and hasComments to ind out what kind of related objects are
assigned to a primary object with the relaions you have set.

This is just a taste of the ORM capabiliies in Railo Server.

Caching in Railo Server

Geing and displaying content from a database is prety easy in Railo Server. You can use the
ORM capabiliies or use queries with the <cfquery> tag, and you can develop applicaions
relaively quickly.

Unfortunately, the world has other plans. Once you put your applicaion live, you will
noice that diferent parts of your applicaion can start to become botlenecks in the overall
response ime. When you start analyzing what is slowing things down, you will soon discover
that someimes your applicaion is busy doing things that is has already done before. For
example, returning a list of countries for every request. This data has not changed (unless
there is a big change in the geo-poliical landscape of the world) and probably won't for a
few years.

Therefore, it makes a lot of sense to cache this content once and serve it from the cache
for the subsequent requests. Of course, caching has some limitaions, since some elements
cannot be cached or need to be most recent, but for now, we will just focus on elements that
can be cached.

http:///

Chapter 5

[163]

Railo Server allows you to create diferent caches that allow you to store data; but before we
look into the details, let's get a feel for what a cache is good for.

Cache: what is it good for?
The Railo cache allows data that has been writen to a database, a variable, or to the
ilesystem to now be stored and retrieved without having to get it again from the original
source. The main advantages of this are:

 � Access is much faster than reading and wriing from the ilesystem

 � You can determine the lifeime of the elements that are stored in the cache

 � The data can be (but does not need to be) persistent, that is, it survives a restart of
Railo Server

 � The memory used for storing items is quite small in comparison to data stored in a
variable, since caches usually have an intelligent paging mechanism

 � Data can be easily distributed across muliple systems (peer-2-peer) or can be
centrally maintained (client-server), so that muliple Railo Server instances can
have access to the same objects

Time for action – creating a cache connection

Before we can see the power of using caching services, we need to deine a cache connecion.

In the Railo (Server and Web) Administrators, you can create and manage cache instances.
Railo Server allows you to create as many instances as you need. The concept is similar to
the creaion of a datasource connecion under Services/Datasource.

Let's go and create a cache connecion:

1. Head to the Railo Web Administrator by going to
http://localhost:8888/railo-context/admin/web.cfm

http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http:///

Developing Applicaions with Railo Server

[140]

2. Log in if you have not already done so, and then click on the Cache link under

Services. You will see something similar to the following screenshot:

Out of the box, Railo Server provides the opions to create a RamCache or an

EHCache Light Cache Connecions. RamCache is the default cache implementaion
for Railo Server. Let's create a Cache connecion by giving it a name (without spaces
and special characters). Let's call it myCache and select the RamCache connecion.
Click on the create buton.

3. Aterwards, we see the details of the cache. We are presented with the
coniguraion details of our cache, as shown in the following screenshot:

http:///

Chapter 5

[165]

The RamCache only has two seings, namely, Time to idle in seconds and Time to

live in seconds. The inal seing states what type of cache connecion this should be
the default for. Since we are going to be using it for objects, let's select object and

click on submit.

4. We are now presented with a list of our deined cache connecions. See the new
cache is listed in the following screenshot:

What just happened?
In order to use a Cache store, we needed to create a cache connecion for it. The default
cache type that you can use with Railo Server is the RamCache, which will store any object
we create in the server's RAM. Once we created our Cache, we are ready to use it in our
code. Let's try that out now.

http:///

Developing Applicaions with Railo Server

[140]

Time for action – using the Cache object

Since we have now created our Cache connecion, we can start using it. Let's try it out:

1. Under our <Railo Install>/webroot/Chapter_5/ folder, let's create a ile
called Listing5_3.cfm with the following code:

<cfset cachePut('hello','Hello World')>

<cfoutput> #cacheGet('hello')#</cfoutput>

This code puts the string Hello world into the cache under the key hello. We can
then get the item that is present using the cacheGet() funcion and display it.

This code would output:

Hello World

2. We can expand on this example a litle, so you get an idea of the other parameters
that we can use with the cachePut() funcion:

<cfset cachePut('hello','Hello World',createTimespan(0,0,0,10)
 ,createTimespan(0,0,0,10),'mycache')>

<cfoutput> #cacheGet('hello', true, 'myCache')#</cfoutput>

In this example, we call the cachePut() method with the following parameters:

 � KeyName: This is the key name of our item in the cache.

 � Value: This is the value we are storing in the cache that we will retrieve
with cacheGet() later on.

 � LifeSpan: This is the third argument that deines how long an item will live
in the cache; in our example, we do this by using the createTimeSpan()

funcion to deine a lifespan for 10 seconds.

 � idleTime: This is the fourth argument that deines how long an item will
stay in the cache before being removed, if it is not accessed. In our example,

if it is not accessed for 10 seconds, the item will be deleted.

 � CacheConnection: This is the inal parameter that deines the name of
the cache connecion we are going to be using to store this item.

In the cacheGet() funcion, we now have the following items:

 � KeyName: This is the name of the key whose value we want to get.

 � ThrowError: It will have a Boolean value to say that we will throw an error
if the item doesn't exist.

 � CacheConnection: This is the inal parameter that deines the name of
the cache connecion we are going to be using to retrieve this item.

http:///

Chapter 5

[167]

What just happened?
Using the Railo Caching funcions is prety easy, with cacheGet() and cachePut() being

our main entry points. In the next secion, we shall see more funcions that can be used to
introspect the cache.

Time for action – getting well versed with more caching

functions

So far, you have seen some simple examples. In the following example, we are going to make
a form to which we can add items to our cache, see what is in the whole cache, and then
delete individual items as well as the whole cache. Let's get started:

1. In the <Railo Install>/webroot/Chapter_5 folder, let's create a ile called
cacheform.cfm and add the following code:

<!DOCTYPE html>

<html>

 <head>

 <title>cacheform</title>

 </head>

 <body>

 <cfparam name="FORM.key" default="">

 <cfparam name="FORM.value" default="">

 <cfparam name="URL.delete" default="">

 <cfparam name="URL.deleteall" default="false">

 <form action="cacheform.cfm" method="post">

 <label for="key">Key</label>

 <input type="text" name="key">

 <label for="value">Value</label>

 <input type="text" name="value">

 <p><input type="submit" value="Save"></p>

 </form>

 <cfif Len(FORM.key)>

 <cfset cachePut(FORM.KEY,FORM.VALUE)>

 </cfif>

 <cfif Len(URL.delete)>

 <cfset cacheDelete(URL.delete)>

 </cfif>

 <cfif URL.deleteall>

 <cfset cacheClear()>

 </cfif>

 <cfoutput>

 Total Items in Cache: #cacheCount()#

http:///

Developing Applicaions with Railo Server

[140]

 <cfloop array="#cacheGetAllIds()#" index="c">

 #c# : #cacheGet(c)#

 Delete

 </cfloop>

 Cache Delete All

 </cfoutput>

 <cfdump var="#cacheGetAll()#">

 </body>

</html>

2. When we call the template in our browser, by going to http://localhost:8888/

Chapter_5/cacheform.cfm, we should get a form to enter our Key and Value to

the cache:

3. Enter a Key with the name item1 and Value of Item One and submit the form. You

should now see that the Total Items in Cache increases to 1, and you now have your
item displayed in the cache. How did this happen? When we submited our values, it
called the following code:

<cfif Len(FORM.key)>

 <cfset cachePut(FORM.KEY,FORM.VALUE)>

</cfif>

This code simply checks that there is a key deined in the FORM scope and then adds

that item to the cache; we have seen this before. (Did you noice the <cfparam>

code at the top make sure that we had already deined our values?)

4. Now that we have an item in our cache, we can go and get it anyime by using
cacheGet(), but you already knew that right? How about geing a count of all
the items in the cache? Well, the following code gets the number of items:

Total Items in Cache: #cacheCount()#

http://localhost:8888/Chapter_5/cacheform.cfm
http://localhost:8888/Chapter_5/cacheform.cfm
http:///

Chapter 5

[169]

5. How about looping through the items in our cache? That is easy! We can use the
cacheGetAllIds() to get an array of IDs and then loop through them while
geing each one:

 <cfloop array="#cacheGetAllIds()#" index="c">

 #c# : #cacheGet(c)#

 Delete

 </cfloop>

6. We can get a structure with all the items in our cache simply by calling
cacheGetAll().

7. How about deleing items in our cache? As you can see in the previous code, we
have a link that passes the key name back to our template, which then checks for
the URL.delete variable and deletes that key in our cache:

<cfif Len(URL.delete)>

 <cfset cacheDelete(URL.delete)>

</cfif>

8. We can also delete all the items in our cache by using the cacheClear() funcion.

What just happened?
Using a template, we have managed to add items to our cache and list them. You should also
noice that once you put an item in the cache and go back to the page, the items will stay in
the cache.

Now that we have looked at the basic cache funcions and funcionality, we can have a look
at what other things the cache can be used for.

Cache providers
Using the RamCache is ine, but RAM is a precious resource. Railo Server allows you to also
use a number of external caches. Similar to databases, Railo Server supports diferent types
of cache connecions. Imagine you could only use MySQL in Railo Server. This would be a
huge restricion, as you might want to harness some of the features of other database types.

We believe that the same is true for caches. Therefore, Railo Server is not limited to one
single caching system, but has let the interface open for several cache types you can use,
depending on your requirements.

http:///

Developing Applicaions with Railo Server

[140]

Currently, Railo Server supports the following cache types:

 � RamCache: This cache is shipped with Railo and is based in memory. The cache is
very fast and well suited for small applicaions, but very quickly pushes its limits.

 � EHCache Lite http://ehcache.org/: This cache is packaged with Railo version
3.2. This cache is also used in other CFML engines in the same way, and it provides a
variety of ways to deine for how long objects should live and where and when they
are stored.

 � EHCache http://ehcache.org/ (Extension): This cache works similar to
"EHCache Lite", but in addiion, it allows the coniguraion of a cluster by connecing
to other EHCache servers through a peer-2-peer cluster.

 � Memcached http://memcached.org/ (Extension): This cache is ofered as a free
extension and works in the same way as "EHCache Lite" does. Just like "EHCache",
this cache provides a cluster soluion, but not as a peer-2-peer model, but as a
client-server model. The data is not stored locally, but on a centralized server,
similar to a database.

 � Ininispan http://www.jboss.org/infinispan (Extension): Ininispan is an
extremely scalable and highly available data grid plaform – 100 percent open

source and writen in Java. The purpose of Ininispan is to expose a data structure
that is highly concurrent, designed ground-up to make the most of modern muli-
processor/muli-core architectures, while at the same ime providing distributed
caching capabiliies. It is also opionally backed by a peer-to-peer network
architecture to distribute state eiciently around a data grid.

 � Membase http://www.membase.org (Extension): Membase is a distributed key-
value database management system, opimized for storing data behind interacive
web applicaions. Membase automaically spreads data and I/O across servers.
This "scale out" approach at the data layer permits virtually unlimited growth
of transacion capacity, with linear increases in cost and constant per-operaion
performance.

 � CouchDB http://couchdb.apache.org/ (Extension): Apache CouchDB is a

document-oriented database that can be queried and indexed in a MapReduce
fashion using JavaScript. CouchDB also ofers incremental replicaion with bi-
direcional conlict detecion and resoluion.

As you can see, Railo Server supports a number of cache types and the list is growing. Of
course, you can also write a cache driver for your favorite caching system too, as you will
see in Chapter 9, Extending Railo Server.

These can be installed through the extension providers, which we will go into more detail in
Chapter 9, Extending Railo Server.

http://www.jboss.org/infinispan
http://www.jboss.org/infinispan
http://www.jboss.org/infinispan/license.html
http://www.membase.org
http://www.membase.org
http://couchdb.apache.org/
http://couchdb.apache.org/
http:///

Chapter 5

[171]

Cache types
So far, we have looked at using one type of cache, the object cache, using the RamCache
connecion. This is not the only funcionality of caches in Railo Server. They can be used for
caching other types of resources too.

Railo Caches can be used with other services and funcions, such as queries, templates,
objects, and resources.

Template cache

The tag <cfcache> has the acions flush, get, and put in order to read and write objects,
similar to the funcions CacheGet, CachePut, and CacheClear. You can also use this tag

for caching templates of your applicaion for a period of ime.

Time for action – caching a page with cfcache

Let's see how the <cfcache> tag can cache a template for us:

1. In our <Railo install>/webroot/Chapter_5/ folder, let's create a template

called templatecache.cfm and add the following code:

<!DOCTYPE html>

<html>

 <head>

 <title>Template Cache</title>

 </head>

 <body>

 <cfoutput>

 Current Time: #TimeFormat(Now(), "HH:mm:ss")#

 </cfoutput>

 </body>

</html>

2. When you run this template by going to http://localhost:8888/Chapter_5/

templatecache.cfm, you should see the current ime displayed, for example,
Current Time: 15:02:25. Each ime you refresh this, it will show the current
ime and stay up-to-date.

3. Let's add some code to cache this whole page. At the top of the page, add the
following code:

 <cfcache action="cache">

<!DOCTYPE html>

<html>

 <head>

http://localhost:8888/Chapter_5/templatecache.cfm
http:///

Developing Applicaions with Railo Server

[140]

 <title>Template Cache</title>

 </head>

 <body>

 <cfoutput>

 Current Time: #TimeFormat(Now(), "HH:mm:ss")#

 </cfoutput>

 </body>

</html>

The <cfcache action="cache"> tag at the top of our page will cache the
whole page.

4. Now, when we reload the page each ime, it will keep displaying the original ime.
This is because the page is now cached to disk. You can see this if you go to the
<Railo install>/webroot/WEB-INF/railo/cache folder. There is a ile in
there called 31d4007e8254d94f98704ffeb17b8243.cache (the name might
vary based on your system).

5. What happens if we want to invalidate the cache? We have a few opions; we
could delete the 31d4007e8254d94f98704ffeb17b8243.cache ile from the
hard drive or we could use the <cfcache> tag again. Let's use the tag and add the

following code to the top of our template:

 <cfif isDefined("URL.flush")>

 <cfcache action="flush">

 </cfif>

<cfcache action="cache">

<!DOCTYPE html>

<html>

 <head>

 <title>Template Cache</title>

 </head>

 <body>

 <cfoutput>

 Current Time: #TimeFormat(Now(), "HH:mm:ss")#

 </cfoutput>

 </body>

</html>

When we run our template again, it will sill be cached unil we add a URL parameter

to lush the cache. If you run the URL http://localhost:8888/Chapter_5/
templatecache.cfm?flush, you will be able to see that the template is removed
from the cache.

http://localhost:8888/Chapter_5/templatecache.cfm?flush
http:///

Chapter 5

[173]

6. The template cache is sill reading from the ilesystem, and you can imagine with
a lot of templates this cache could become slow. We can change it to use the URL
cache that we created earlier by changing what cache the templates are using.
Let's head back to the Railo Web Administrator and set a default cache by going to

http://localhost:8888/railo-context/admin/web.cfm and then clicking

on the Cache link under Services.

7. In the Default cache connecion secion, select the myCache connecion next to the
Template cache and set all the other types to the blank connecion:

8. Then click update.

9. Now all the templates will be cached in the RAM instead of the hard drive.

What just happened?
In the previous example, we managed to cache a whole template using the <cfcache> tag.

We saw a couple of acions that the <cfcache> tag provides to both add items to a cache

as well as be able to lush the contents of the cache. We also saw that we can assign a cache
connecion to the template resources, so that they are also cached to any type of cache
provider we choose.

Partial template caching

In the previous secion, we saw how we cached a template (in fact, a whole template, as we
could have included other templates within our main template), which is very useful, but
what if we only want to cache a part of a page?

The <cfcache> tag can also allow you to cache a porion of the page, so let's try this out.

http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http:///

Developing Applicaions with Railo Server

[140]

Time for action – caching content within a template

Using our previous template, templatecache.cfm, let's add some caching to only a part of

our template:

1. Open up the templatecache.cfm ile and replace the contents with the following
block of code:

<cfif isDefined("URL.flush")>

 <cfcache action="flush">

</cfif>

<!DOCTYPE html>

<html>

 <head>

 <title>Template Cache</title>

 </head>

 <body>

 <cfoutput>

 <cfcache action="content" key="myCachedTime">

 Cached Time: #TimeFormat(Now(), "HH:mm:ss")#

 </cfcache>

 Current Time: #TimeFormat(Now(), "HH:mm:ss")#

 </cfoutput>

 </body>

</html>

2. As you can see, we removed the <cfcache action="cache"> from the top of

our template. This removes caching for the whole template. We have now added a
<cfcache action="content"> around the output of ime, and also added the
current ime, so that we can see the diference.

3. When you load up this template and refresh it a few imes by going to
http://localhost:8888/chapter_5/templatecache.cfm, you can

see that the ime difers as the content inside the <cfcache> tag will now
be stored, but the rest of the template will run as normal:

Cached Time: 15:43:00 Current Time: 16:14:10

What just happened?
We have managed to cache only a porion of our page, maybe a part that would contain a
lot of processing that normally wouldn't need to be processed for each request. This greatly
improves our template speeds and how the user perceives our applicaion.

http://localhost:8888/chapter_5/templatecache.cfm
http://localhost:8888/chapter_5/templatecache.cfm
http:///

Chapter 5

[175]

Query cache

You can use the <cfquery> tag to retrieve records from a database, but what happens if
this data doesn't change very oten?

Railo Server can cache database requests for a period of ime, using the cachedwithin

and cachedafter atributes, which deine a ime span of how long a query will be held
in memory.

Time for action – caching a query using cachedwithin

Let's say, we want to display a list of our blog posts. Since we don't want to query the
database all the ime, we are going to cache our query for a set length of ime. Let's irst
get the items from our database:

1. In your <Railo Install>/webroot/Chapter_5 folder, create a template called

querycache.cfm with a simple query and a dump of the results:

<cfquery name="getPosts" datasource="railoblog">

 SELECT * FROM post

</cfquery>

<cfdump var="#getPosts#">

The output of this query should look something like the following screenshot:

2. At the top of the query, you can see that it says Cached: No

3. Let's add a cachedwithin atribute to the <cfquery> tag:

 <cfquery name="getPosts" datasource="railoblog"
 cachedwithin="#CreateTimeSpan(0,0,5,0)#">

 SELECT * FROM post

</cfquery>

<cfdump var="#getPosts#">

http:///

Developing Applicaions with Railo Server

[140]

When we now run the template a couple of imes, we will get the following result:

You can see that the query now has Cached: Yes

What just happened?
By adding the cachedwithin atribute to our <cfquery> tag, we are able to cache
the results of a query for a period of ime. The cachedwithin atribute takes a variable
returned from the CreateTimeSpan() funcion, which takes four arguments: Days, Hours,

Minutes, and Seconds. The <cfquery> tag now won't run against the database, but use
the cached results for a period of ime (5 minutes, as we deined in our CreateTimeSpan()

funcion).

Resource cache

Railo Server has the ability to write and read templates straight from RAM as well as other
resources. We shall have a closer look at this funcionality in Chapter 8, Railo Resources, but

for now, you should know that this is possible.

For example, you can run the following code to write a variable to a ile in RAM called
susi.txt:

<cffile action="write" file="ram://susi.txt" output="Hello Susi">

This funcionality is limited, because the memory itself is a precious resource that is shared
by all applicaions on the server. Also, any items you have saved there will be lushed if the
server is restarted.

Railo Server has the ability to set which cache provider will be used for our resources. We
can assign a beter caching system rather than the default RAM cache.

As with the template cache, we can create a new cache connecion to, for example, EHCache
Lite, and assign that to our resource cache.

http:///

Chapter 5

[177]

Time for action – assigning an EHCache Lite connection to

resources

Since we want to provide a beter cache provider for our resources, we can now go
and create an EHCache Lite connecion and assign it as the default cache provider for
our resources:

1. Go to the Railo Web Administrator through http://localhost:8888/railo-

context/admin/web.cfm and log in, if required.

2. Click on the Cache link under the Services secion to get a list of our exising caches.

3. Create a new cache connecion called ResourceCache of the type EHCache Lite:

4. Once we have clicked on create, we have a number of opions (they are ine set as
default for the moment). Make sure that the Default drop-down is set to Resource:

http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http:///

Developing Applicaions with Railo Server

[140]

5. Now when we run the previous code, all our calls to the ram:// resource will be
stored using the EHCache Lite connecion that we have now deined.

What just happened?
By default, the ram:// resource is stored in the server's RAM memory. By creaing a new
cache provider to the included EHCache Lite service, we can now store resources in a more
permanent, yet fast, caching system.

Summary

This has been a varied chapter that has introduced you to the Applicaion Lifecycle of Railo
Applicaions, ORM capabiliies, and caching services available with Railo Server.

You should now be able to:

 � Manage diferent parts of your requests, sessions, and applicaion lifecyle using the
Application.cfc ile

 � Create mappings between Railo Components and database tables to persist them in
a database

 � Create diferent caches to store variables and templates for faster retrieval

 � Cache queries to reduce database lookups for data that doesn't change frequently

Since we have now got a good grounding in the services of Railo Server and got used to
coding with CFML tags, in the next chapter, we are going to explore the other way of coding
in CFML, without using tags. We are also going to invesigate some of the built-in objects
available in Railo Server.

http:///

6
Advanced CFML Functionality

So far we have looked at how we can write CFML with tags and funcions. This
is a great way to develop web applicaions since it its well with the way web
pages are built, that is, through HTML.

In this chapter we are going to look at the alternaive ways to write CFML
language, namely, by using a scriping language called CFScript.

In this chapter, we will cover:

 � Scriping formats that are available in Railo Server

 � How to leverage CFScript with your code

 � The in-built components in Railo Server

By the end of the chapter, we will be able to write applicaions using the CFScript syntax
which accesses outside resources without the need to use tags.

Let's dive right in!

Scripting within Railo Server

So far all the examples and code you have writen have used a tag-based format. Even
when we used funcions that had no output, we used the <cfset> tag. It's a natural way to
program when developing web applicaions because the output language is HTML, which is
also a tag-based language. But, is this the only way to do this? Let's have a look at the reason
for there being another way to do things and how it could improve our current situaion.

Let's have a look at the pros and cons of using these tags in the following two secions.

http:///

Advanced CFML Funcionality

[180]

Why tags are good
Using a tag-based format has many advantages. Primarily, it makes for a very easy learning
curve for the user. Although there are many tags in Railo Server (about 126 on the last
count), the syntax remains the same:

<cfTAGNAME ATTRIBUTE1="VALUE" ...>

When using a self-closing tag, we use the following:

<cfTAGNAME ATTRIBUTE1="VALUE"/>

In case of tags that wrap some content in the format, it is as follows:

 <cfTAGNAME ATTRIBUTE1="VALUE" ...>

 </cfTAGNAME>

Therefore, it is easy to igure out what tag you might want to use. Because Railo Server
is not overly strict on syntax, you don't have to close the single tags if you don't want
to (that is, adding /> at the end). This makes it a very forgiving format to learn the
language—somewhat similar to HTML

Also, with this format, you are also able to parse the CFML rather easily, so diferent tools,
like text editors, can work with it easily.

The only change to this syntax is the use of the hash mark # (also known as the pound sign)
to surround variables that need to be outputed to the browser.

This makes the whole language fairly consistent in this format, especially when mixed with
HTML, as shown in the following lines of code:

<!DOCTYPE html>
<html>
 <head>
 <title>cacheform</title>
 </head>
<body>
 <cfquery name="getList" datasource="railoblog">
 SELECT * FROM posts
 </cfquery>

 <cfloop query="#getList#">

 <cfoutput>#title#</cfoutput>
getList.
 </cfloop>

</body>
</html>

http:///

Chapter 6

[181]

As you can see in the preceding code, CFML mixes quite well with HTML; it's readable and

you can tell which are CFML tags and which are HTML rendering tags.

Why tags are bad
The beneits of CFML formaing can also be its detriment. The logic in code isn't always
as simple as one tag; it could be a number of statements, seings and parsing variables,
calling funcions, and any number of other features of the language. You could end up with
something that, in tag format, is actually too verbose.

If you are coding business logic with nothing to be outputed to the browser, it may be beter
to place that code in a component.

Let's have a look at some code; it doesn't mater what it does ulimately, but it's to give you
an idea of where CFML tags can actually get in the way:

<cfset selectedDir = expandPath("../../../Chapter 6/images")>

<cfset aFiles = DirectoryList(absolute_path=selectedDir, filter="*.
png", listInfo="name")>

<cfset prefix = "3401_05">

<cfset imageCountNumber = 0>

<cfloop array="#aFiles#" index="f">

 <cfif f.startsWith(prefix)>

 <!--- increase the count --->

 <cfset FoundNumber = ListLast(ListFirst(f,"."), "_")>

 <cfif FoundNumber GTE imageCountNumber>

 <cfset imageCountNumber = FoundNumber + 1>

 </cfif>

 </cfif>

</cfloop>

<!--- rename the image files to the proper format --->

<cfloop array="#aFiles#" index="f">

 <cfif NOT f.startsWith(prefix)>

 <cfset newName = prefix & "_" & NumberFormat(imageCountNumber,
"00") & "." & ListLast(f,".")>

 <cfset FileMove("#selectedDir#/#f#","#selectedDir#/#newName#")>

 <cfset imageCountNumber++>

 </cfif>

</cfloop>

http:///

Advanced CFML Funcionality

[180]

In the previous code, we set a number of variables with the <cfset> tag (in fact, we have
done that nine imes already!), and in some cases, we aren't even seing anything; we are
just calling it to call a funcion to do some acion.

More importantly, because the code is basically about renaming a ile, there is no output
to the user, so the beneits of a tag-based language seem to be diminished. It seems a bit
superluous to have all those <cfset> tags too.

Let's have a look at another way in which we could write the previous code:

selectedDir = expandPath("../../../Chapter 6/images");

aFiles = DirectoryList(absolute_path=selectedDir, filter="*.png",
listInfo="name");

prefix = "3401_05";

imageCountNumber = 0;

for(f in aFiles){

 if(f.startsWith(prefix)){

 FoundNumber = ListLast(ListFirst(f,"."), "_");

 if(FoundNumber >= imageCountNumber){

 imageCountNumber = FoundNumber + 1;

 }

 }

}

for(f in aFiles){

 if(!f.startsWith(prefix)){

 newName = prefix & "_" & NumberFormat(imageCountNumber, "00") &
"." & ListLast(f,".");

 FileMove("#selectedDir#/#f#","#selectedDir#/#newName#");

 imageCountNumber++;

 }

}

What we have now is something that is more concise, without the syntacic noise that tags
can bring. We are sill wriing CFML and it seems we have just removed the tags (apart for
the "for loop") and everything is prety much the same, but there is less "noise".

Let's see how we can use this to our advantage.

The <cfscript> tag

The reducion of code we saw in the previous code example was achieved using the other
language syntax that Railo Server supports. This syntax is known as CFScript.

http:///

Chapter 6

[183]

Similar to the <SCRIPT> tag in HTML, we are able to use the <cfscript> tag in our CFML

templates to use the CFScript syntax. This is very similar to ECMAScript (or JavaScript) in its
general notaion.

You can think of it as CFML, but without the <cf at the start of a tag and the > at the end. Or
another way of looking at it is that we are calling the <cfset> tag without having to use the
<cfset> tag.

Let's look at some of the diferences between the tag-based CFML language and its
CFSC counterpart.

Loops
Loops are used for many things in Railo, but in the tag-based CFML language, the main tag
for all of the looping interacions is the <cfloop> tag.

Looping lists

Lists are the simplest type of data structures that you can have in CFML, it's basically a long

string delimited by some character, usually a comma (",").

Time for action – looping through a list

Let's loop through a list using <cfloop> and then compare it to looping through it using

<cfscript>:

1. First, create a ile named looplist.cfm in the <Railo Installation

Directory>/webroot/Chapter_6 folder and create a list by adding the

following code:

<cfset myList = "Item One,Item Two,Item Three">

2. Now, let's loop through the list using <cfloop> by appending the following code:

<cfloop list="#myList#" index="i">

 <cfoutput>#i#
</cfoutput>

</cfloop>

3. This prints out the following output, as expected:

 Item One

 Item Two

 Item Three

http:///

Advanced CFML Funcionality

[180]

4. Let's replace the <cfloop> with the following lines of code:

 <cfscript>

 for(i = 1; i <= ListLen(myList); i+){

 WriteOutput(ListGetAt(myList, i) & "
");

 }

 </cfscript>

5. We get the same output, but of course, we seem to be doing it rather diferently.

What just happened?
The <cfloop> tag is incredibly powerful because it knows how to loop over a number of
objects including iles. In the previous example, we use the for(){} loop to iterate from

1 whilst the variable i is less than or equal to the length of the list. This is not the shortest
example, but it does show that you can loop through a list and then use the ListGetAt()

built-in funcion to get the item there.

Let's look at more complex examples now.

Looping arrays

Arrays are actually easier to loop through in CFScript than lists. Let's just go with an example
to see how easy they are.

Time for action – looping an array

1. This ime, let's create another template named looparray.cfm in the same

directory as we created the looplist.cfm template.

2. Let's create an array by puing the following code at the top of our template:

<cfset myArr = ["Item One", "Item Two", "Item Three"]>

3. Now let's loop through it using <cfloop>; we do this by adding the arguments
array and index:

<cfloop array="#myArr#" index="a">

 <cfoutput>#a#
</cfoutput>

</cfloop>

http:///

Chapter 6

[185]

4. We passed the myArr variable into the array atribute, and to display the contents

of each item, we output #a#. Now, let's do this using CFScript. Let's add the
following code:

<cfscript>

 for(a in myArr){

 WriteOutput(a & "
");

 }

</cfscript>

5. Now when we run the template again, we should see the same output as with
<cfloop>, but the for loop is much more contained.

What just happened?
When looping arrays, the <cfscript> syntax is much more reined. It makes sense when
you say it out in English, "For (every item called) a in myArr (do this)."

Looping structures
Structures in CFML are a map of key/value pairs, and as you might have guessed by now,
<cfloop> also has atributes designed to be used with looping through a structure. Let's
see how this works in tags and <cfscript>.

Time for action – looping through a structure

1. In the same directory where we placed our other templates, let's create a template
named loopstruct.cfm and let's add the following code that creates a simple
structure that we can loop over:

<cfset myStruct = {item1="Item One", item2="Item Two", item3="Item
Three"}>

2. The previous code has a number of keys (item1, item2, item3) that have

values; let's loop through them with <cfloop> by using the collection and

item atributes:

<cfloop collection="#myStruct#" item="s">

 <cfoutput>#s# = #myStruct[s]#
</cfoutput>

</cfloop>

http:///

Advanced CFML Funcionality

[180]

3. This code would output the following values:

 ITEM3 = Item Three

 ITEM2 = Item Two

 ITEM1 = Item One

4. The variable s refers to the current key that we are looping over, and to get the
content, we can use #myStruct[s]#

5. Let's try this with <CFSCRIPT>. Now and see the diference:

<cfscript>

 for(s in myStruct){

 WriteOutput(s & " = " & myStruct[s] & "
");

 }

</cfscript>

6. The previous code would also output the same values as the <cfloop>.

What just happened?
We can see that the syntax for the <cfscript> version of structure loop is idenical
to the array version of the loop. If we ignore the output (we don't always output things
when we are looping over items), it is a much idier syntax and less verbose. This is where
<cfscript> really shines!

Looping queries

As we have seen a number of imes so far, database queries are very well handled
within Railo Server and the CFML language. Let's see how we can handle them with
<cfscript> too.

Time for action – looping over queries

1. In the same folder that we have been placing all of our examples so far, let's create a
template named loopquery.cfm and put a <cfquery> statement at the top:

<cfquery name="qItems" datasource="railobook">
SELECT * FROM Users
</cfquery>

2. Now, we can loop through the results using <cfloop> and the query atribute as
follows (we have seen this a number of imes now):

<cfloop query="qItems">
 <cfoutput>#qItems.username#
</cfoutput>
</cfloop>

http:///

Chapter 6

[187]

3. Nothing new here; we just get a lising of our users in the database. Now, let's try it
with <cfscript>:

<cfscript>

 for(q in qItems){

 WriteOutput(qItems[q]["username"] & "
");

 }

</cfscript>

4. When we run this code, we get an error!—key [username] not found. This is
because each item in a query is actually the column, not the row! Let's change
our code to loop through all the rows:

<cfscript>

 for(r=1; r LTE qItems.recordcount; r++){

 WriteOutput(qItems["username"][r] & "
");

 }

 </cfscript>

5. Now, we get a list of users as we would expect!

What just happened?
Even though we expected to use the for(q in qItems) syntax to loop over a query,

things are slightly diferent when you think about the structure of a query. It is sill easy to
loop over it in <cfscript>, but we need to remember that we have to loop over all the
rows irst before outpuing the column (either directly by name, or by having another loop
inside the row loop).

Scripted components
Components are a great locaion to place the business logic of your applicaion into. They
are object-oriented and allow you to separate your business logic from your display logic and
build the foundaion for creaing maintainable CFML applicaions. Despite this, they can get
rather long to code. Let's look at a simple component that we might use in an applicaion.
The Person component will only have two properies, name and age, and we will have
funcions (called geters) to get the values of the name and age properies.

http:///

Advanced CFML Funcionality

[180]

Time for action – creating the component

Let's start of by creaing a folder to store our component. Under the <Railo Install

Directory>/webroot, let's create a folder named cfcs.

1. In the cfcs directory, create a template named Person.cfc and put the following
code inside it:

<cfcomponent output="false">

 <cfset this.name = "">

 <cfset this.age = "">

</cfcomponent>

2. This is the simplest form of a component. Let's create another template under
<Railo Install Directory>/webroot/Chapter_6/ named PersonGetter.

cfm; this template will be used to create an instance of the Person.cfc object and
populate it by adding the following code:

<cfset person = new cfcs.Person()>

<cfset person.name = "Mark">

<cfset person.age = 36>

<cfdump var="#person#">

3. The this scope in a component is actually public. This means it can be read and
modiied from outside the component (as we can see in the previous code lising),
which is not best pracice. Let's make the properies private and add geters
and seters:

<cfcomponent output="false">

 <cfset variables.name = "">

 <cfset variables.age = "">

 <cffunction name="getName" output="false" returntype="string">

 <cfreturn variables.name>

 </cffunction>

http:///

Chapter 6

[189]

 <cffunction name="setName" output="false" returntype="void">

 <cfargument name="name" type="String" required="true">

 <cfset variables.age = arguments.age>

 </cffunction>

</cfcomponent>

4. In the previous code, we have changed the this scope to the private variables

scope within the component. We have also added a number of <cffunction> tags

to add methods to our component that set and get the variables. Now, we need to
change the PersonGetter.cfm ile to use these methods:

<cfset person = new cfcs.Person()>

<cfset person.setName("Mark")>

<cfset person.setAge(36)>

<cfoutput>#person.getName()# - #person.getAge()#</cfoutput>

5. Even though this is now a beter pracice, it takes a bit of coding to get all of what's
writen out. This is where <cfscript> can help. Let's create another component

that will behave the same way, but writen solely in CFScript.

6. In the cfcs folder, create a template named PersonScript.cfc. Noice that it is
sill a .cfc ile. Let's add the following code:

component {

 variables.name = "";

 variables.age = "";

 String function getName(){

 return variables.name;

 }

 function setName(String required name){

 variables.name = arguments.name;

 }

 Numeric function getAge(){

 return variables.age;

 }

 function setAge(Numeric required age){

 variables.age = arguments.age;

 }

}

http:///

Advanced CFML Funcionality

[180]

7. Wow! This seems more condensed right? There is less syntacic noise from the
tags and yet we are keeping the funcionality the same. Also, because it is CFScript,
we don't have to keep puing output="false" in our code. Using the tag-based
component funcions, we need output="false" if we want to prevent any output.
Of course, we could output code straight from the funcion if we want, although this
is also not good pracice.

8. Now, to test our new component, we need to change one line in the
PersonGetter.cfm ile:

<cfset person = new cfcs.PersonScript()>

<cfset person.setName("Mark")>

<cfset person.setAge(36)>

<cfoutput>#person.getName()# - #person.getAge()#</cfoutput>

What just happened?
We created a simple component using standard CFML tags, which works ine, but it adds a
lot of noise, especially in simple objects. By modifying it to use the CFScript syntax, we can
see that we save a lot of typing, and also, the component is much clearer. This is one of the
beneits of using CFScript over tags.

Scripting tags
There are many ways to code something, and now that you have seen the beneits of
CFScript, you might want to code everything that way. Therein lies a problem. For example,
even though there are over 500 funcions you can call, there are also over 100 tags available
to you in Railo Server and someimes the funcionality doesn't overlap. So how do we get
access to that funcionality in CFScript?

A number of tags have the ability to be used from CFScript directly by simply removing the

<cf at the start and replacing the > at the end with ;. Let's look at an example.

Time for action – getting the contents of another site

Let's say that in our code we want to get the contents from another site, for example, the

HTML content of the http://www.getrailo.org website. Let's do this using tag-based
code irst:

1. Create a template under <Railo Install Directory>/webroot/Chapter_6/

named getrailo.cfm and put the following code inside it:

<cfhttp url="http://www.getrailo.org" method="GET">

<cfdump var="#CFHTTP.filecontent#">

http://www.getrailo.org/
http://www.getrailo.org/
http:///

Chapter 6

[191]

2. When we run the previous code by going to http://localhost:8888/

Chapter_6/getrailo.cfm, we get a big dump of the HTML that is hosted at

http://www.getrailo.org. This is prety simple, but there isn't a CFScript
funcion that will do this, let's use what we have learned about some tags to
see if it works without the <cf at the start of the <cfhttp> tag:

<cfscript>

 http url="http://www.getrailo.org" method="GET";

 dump(CFHTTP.filecontent);

</cfscript>

3. We now see exactly the same output we saw with the tag version!

What just happened?
A number of CFML tags in Railo Server can be invoked from the CFScript syntax with litle
modiicaion as to how they work. All it takes is removing the staring <CF and replacing

the inal > with a ; to get them working. This makes wriing complex components using
the CFScript syntax much easier!

Scripting wrapped tags
As we have just seen, it's not diicult using a single tag call in CFScript, but what happens
with tags that wrap other content? If you remember when we looped over a list, things got
tricky, as we had to loop over the length of the list, and then use the ListGetAt() funcion,

especially because the tag version is so much simpler to read. How about we try to re-write
this, as we now know that we can use tags in CFScript?

Time for action – using the <cloop> tag in CFScript
1. Let's start of by copying the original list loop that we looked at earlier into a

new ile named loopscript.cfm under the <Railo Install Directory>/

webroot/Chapter_6/ directory:

<cfset myList = "Item One, Item Two, Item Three">

<cfloop list="#myList#" index="l">

 <cfoutput>#l#
</cfoutput>

</cfloop>

2. Now, if we head to http://localhost:8888/Chapter_6/loopscript.cfm,

we should get the list output as follows:

 Item One

 Item Two

 Item Three

http://localhost:8888/Chapter_6/getrailo.cfm
http://www.getrailo.org/
http://localhost:8888/Chapter_6/loopscript.cfm
http://localhost:8888/Chapter_6/loopscript.cfm
http://localhost:8888/Chapter_6/loopscript.cfm
http:///

Advanced CFML Funcionality

[180]

3. Let's change the code to just use CFScript. We will use the <cfloop> tag, but now
use angular brackets to wrap the content; in other words, we use what's inside the
<cfloop> tag:

<cfscript>

 myList = "Item One, Item Two, Item Three";

 loop list="#myList#" index="l" {

 WriteOutput(l & "
");

 }

</cfscript>

4. Running this code, we now get exactly the same output!

 Item One

 Item Two

 Item Three

What just happened?
Wow! In the previous example, you saw how to use a CFML tag using the CFScript syntax
where a lot more code would have been required to do the same thing. This is the power
that CFML and Railo Server give you!

Scripting wrapped tags—Part 2
In the previous secion, we saw how we could script wrapped tags using the CFScript
notaion. It doesn't end there of course; there are a number of tags that we can use that
actually take child tags. Let's look at a simple example of geing an individual item from
a query.

To protect ourselves from nasty SQL injecion atacks, we can parameterize variables passed
to a query using the <cfqueryparam> tag. This ensures that our inputs into a query are
what they say they are. Let's look at a simple example.

Time for action – get a user by his/her ID

Let's irst write the script as we would have done using a <cfquery> tag and then see how
we can convert it to the CFScript format.

1. Create a template under the <Railo Install Directory>/webroot/

Chapter_6/ named queryscript.cfm and let's put the following code in there:

<cfparam name="url.id" type="numeric">

<cfquery name="getUser" datasource="railobook">

http:///

Chapter 6

[193]

 SELECT * FROM Users WHERE id = <cfqueryparam cfsqltype="cf_sql_
numeric" value="#url.id#">

</cfquery>

<cfoutput>

 #getUser.username#

</cfoutput>

2. In the previous code, the irst line sets up a parameter called url.id; this means
that an error will be thrown if an id is not passed in the URL or if it is passed and is

not numeric.

3. We then create our query, but instead of simply passing the variable to the query,
we use <cfqueryparam> to say that the value we are passing is of a database type
cf_sql_numeric. Finally, we output the irst item we get back from the results of
the query. So far so good. Let's rewrite this in the CFScript format.

<cfscript>

 param name="url.id" type="numeric";

 query name="getUser" datasource="railobook" {

 WriteOutput("SELECT * FROM Users WHERE id = ");

 queryparam cfsqltype="cf_sql_numeric" value="#url.id#";

 }

 WriteOutput(getUser.username);

</cfscript>

What just happened?
In the irst line, we have replaced the <cfparam> tag for the near idenical param scripted

tag. Then, we replace the <cfquery> tag with the query scripted tag and open the brackets

ater it.

Using the WriteOutput() funcion, we write our SQL statement to the query scripted tag.

Then, wherein the tag version the <cfqueryparam> tag would have gone, we have simply
added the queryparam scripted tag.

As we have seen, tags that have child tags can simply be writen inside the curly braces. In
some tags where we have a mixture of some text content as well as other tags, we can mix
them by placing them in order and using the child tags, as you would have done in the tag
versions of those tags.

http:///

Advanced CFML Funcionality

[180]

Built-in components
So far, we have seen that we have some good opions for convering tag-based CFML code
to using the CFScript syntax. However, as you can see from the previous query example, this
could start geing very messy. There would be a lot of WriteOutput() funcions if you
have a number of statements, and especially if you have a number of child parameters that

you would need to pass.

Another issue is that if you are wriing this code dynamically, there will be a lot of

concatenaion of strings, and eventually, the code will not be readable, which is certainly
not the point of Railo Server. Normally, a good way of resolving this would be by abstracing
away a lot of the code into a component and then just calling methods on them. Luckily,
Railo Server includes a few components already to help you do this.

The Query built-in component

As we saw in our CFScript version of a <cfquery>, the code could get rather complex.

Luckily, there is a component shipped with Railo Server that allows you to easily call
complex tags. The Query component in Railo Server is a perfect example of this, and
the best way to understand it is to take it for a test drive.

Time for action – using the Query component

Let's redo the code in our queryscript.cfm ile to use the Query component:

1. Delete all the code in <Railo Install Directory>/webroot/Chapter_6/

queryscript.cfm and replace it with a blank <cfscript> tag and a call to a new
Query object:

<cfscript>

 myQuery = new Query(datasource="railobook");

 myQuery.setSQL("SELECT * FROM Users WHERE id = :id");

 myQuery.addParam(name="id", type="cf_sql_numeric", value=url.
id);

 myResult = myQuery.execute();

 dump(myResult);

</cfscript>

2. In the irst line, we can call our new Query() object and we pass it a datasource.

http:///

Chapter 6

[195]

3. We then call the setSQL() method, which you might noice has the SQL for the
query, but more importantly, it has :id. This is the name of the parameter we are
going to replace.

4. We then called the addParam() method on the Query object to add a
queryparam, passing in the name (which will replace the :id variable in the SQL
statement), the type, and the value that we get from the URL scope.

5. Finally, we call the myQuery.execute() method; this actually runs the query
against the database and it returns a result object, which, when dumped, looks
like this:

6. The resuling object contains two variables, the result (what comes back from the
database) and the preix (which has informaion about the query itself).

7. To get the actual query result (so that we can loop it), we add the following code:

results = myResult.getResult();

What just happened?
By using the built-in Query component, we are able to abstract a lot of the semanic noise
of using scripted tags. We can get all the informaion that is required from a query, including
the results returned from a database as well as any other variables such as the actual SQL
run and the columns that are returned, all in a nice result component.

http:///

Advanced CFML Funcionality

[180]

The HTTP built-in component

Similar to the Query component, there are imes when you have complex HTTP calls, as we
showed in our example, where we obtained the content from the website http://www.
getrailo.org. HTTP calls to other websites, especially when using REST services, can get a
lot more complicated and require a number of parameters. Of course, we could do this using
scripted tags, but as you have igured out by now, there is a nice alternaive with the built-in
components that allows you to do this much easily.

Let's look at how we can make the same code to get the content from an external site, but
this ime, using a scripted component.

Time for action – getting the content of a website via the HTTP

component

1. To start with, let's create a template under <Railo Install Directory>/

webroot/Chapter_6/ named httpscript.cfm.

2. In this template, let's add the following code:

<cfscript>

 myHTTP = new HTTP(url="http://www.getrailo.org", method="GET");

 myResult = myHTTP.send();

 dump(myResult.getPrefix().filecontent);

</cfscript>

3. When you run this code, you will get a dump of the HTML that is outputed by the
website http://www.getrailo.org.

4. But how about passing parameters? Let's try to get the output of a script we created
in queryscript.cfm. Let's change the script in the queryscript.cfm ile a bit so
that it just returns a username:

<cfscript>

 myQuery = new Query(datasource="railobook");

 myQuery.setSQL("SELECT * FROM Users WHERE id = :id");

 myQuery.addParam(name="id", type="cf_sql_numeric", value=url.
id);

 myResult = myQuery.execute();

 results = myResult.getResult();

 WriteOutput(results.username);

</cfscript>

http://www.getrailo.org/
http://www.getrailo.org/
http:///

Chapter 6

[197]

5. In the previous code, we changed the inal output to just display the username we
got from the database. We can now go and call this page from our httpscript.
cfm if we change it as follows:

<cfscript>

 myHTTP = new HTTP(url="http://localhost:8888/Chapter_6/
queryscript.cfm", method="GET");

 myHTTP.addParam(type="URL", name="id", value="1");

 myResult = myHTTP.send();

 dump(myResult.getPrefix().filecontent);

</cfscript>

6. When we load the httpscript.cfm in the browser, it will now make another call
to our queryscript.cfm template and return the following, which is displayed as
shown in the following image:

What just happened?
With slight modiicaions, you can use all of the funcionality available to you from the tags,
via either scripted tags, or even beter, by built-in components available to you.

Have a go hero

Can you think of other uses for the HTTP component? Why not give it a try to submit forms
and get the results from your own scripts?

Railo Server includes other built-in components that you can call in a similar way to the HTTP

and Query components. These are the Feed, Mail, and FTP components. Why not try them
out and see what you can do with them?

http:///

Advanced CFML Funcionality

[180]

Summary

In this chapter, we have seen the power of CFScript and how it compares to the tag-based
CFML syntax. We have also seen:

 � How to use various loops from within CFScript

 � How to use CFScript to create your components

 � How to use CFML tags inside CFScript

 � How to use the in-built components that Railo Server provides

This has been a fun chapter with a lot of coding! In the next chapter, we will be having even
more fun as we'll look at the funcionality available in Railo Server to create AJAX-powered
sites and to convert and display videos.

http:///

7
Multimedia and AJAX

In this chapter, we are going to have a look at some of the other funcionality
that Railo Server provides outside of the normal web applicaion development
tooling. In this chapter, we are going to look at:

 � Convering and displaying video with <cfvideo> and

<cfvideoplayer> tags

 � Adding communicaion between the browser and Railo Server
using the AJAX funcionality

Let's start of with checking out some videos.

Video

Video has taken of massively on the Web, and it is oten a requirement for a site to be able
to use some kind of video funcionality. Whether it is for displaying it or convering it, it can
be a tough opion on how to do it as a developer. Luckily, this is where Railo Server comes to
the rescue.

Built into Railo Server is the capability of easily displaying videos on your site. Railo Server
does this by enabling a player to display videos by embedding a Flash video player into the

HTML of your pages and displaying videos that are encoded using the Flash Video format.
You have control over what to display and how it will be displayed, as well as over links,
thumbnails, and other opions.

The video we are going to use in this chapter is a trailer to the movie Big Buck Bunny, which
is the product of the Peach open movie project and is licensed under the Creaive Commons
Atribuion license. This means that we are allowed to use it as our example without
licensing issues. If you would like to get a copy of the trailer or the whole movie, you
can see it at http://www.bigbuckbunny.org/.

http:///

Mulimedia and AJAX

[200]

Displaying video
Let's see if we can display a trailer video on our own site too:

Time for action – displaying a video player

1. Under our <Railo Install Directory>/webroot/ folder, let's create a

Chapter_7 folder to put all our code samples in.

2. Download and copy the ile trailer.flv from the code samples, which you can
download from the Packt Publishing website. This is the video of Big Buck Bunny
that we are going to display.

3. Let's create a template named listing_7_01.cfm and add this code, it's the basic

outline of a page with the tag <cfvideoplayer>:

<!DOCTYPE html>

<html>

 <head><title>Video Display</title></head>

<body>

<cfvideoplayer video="trailer.flv" width="480" height="270">

</body>

</html>

4. If we now head to http://localhost:8888/Chapter_7/listing_7_01.cfm,

we will be able to see the video player with our trailer in it. It has the controls that
are needed, including play, full screen, and volume control.

http://localhost:8888/Chapter_7/listing_7_01.cfm
http:///

Chapter 7

[201]

5. The atributes of the <cfvideoplayer> tag are quite easy; we have the video that
we want to display as well as the width and the height to display this video.

6. At the moment, our video is kind of boring because unil we click on the play buton,
there is no image; just a black square. Let's add a preview image.

7. Copy the trailer.jpg ile from the code samples' directory you obtained from the
Packt Publishing website into the Chapter_7 directory.

8. Edit the code in listing_7_01.cfm and add the preview="trailer.jpg"

atribute to the tag, so our code should look like this now:

<!DOCTYPE html>

<html>

 <head><title>Video Display</title></head>

<body>

<cfvideoplayer video="trailer.flv" width="480" height="270"
thumbnails="true" preview="trailer.jpg">

</body>

</html>

9. When you now reload the page by going to http://localhost:8888/
Chapter_7/listing_7_01.cfm, you will see a nice background to the video:

What just happened?
By adding the <cfvideoplayer> tag, we can display a video in the page as long as the
video is in the FLV video format. The <videoplayer> tag accepts the preview atribute

that allows us to assign a poster frame to it.

http:///

Mulimedia and AJAX

[202]

Converting a video
Before we coninue exploring all the opions available in the <cfvideoplayer> tag, we
really should explore the video conversion capabiliies that Railo Server can ofer. These
capabiliies are not actually part of the base install; they are provided in the form of a Server
Extension. Server Extensions provide a way to add funcionality to Railo Server (you will see
how to create your own in Chapter 9).

The CFVideo Extension allows you to convert video, extract single frames, and get
informaion on a variety of video formats out there. Rather than just talking about it, let's go
and get it installed.

Time for action – installing the Video Extension

So far, we have looked at the Railo Web Administrator, but because the Video Extension
is installed server wide, we need to go to the Railo Server Administrator to download
the extension.

1. In your browser, go to http://localhost:8888/railo-context/admin/
server.cfm and either log in or enter your new password.

2. Under the Extension secion on the let-hand side, click on Applicaions. This will
take you to the Applicaions page where you can see the available extensions for
Railo Server.

3. Click on the Video Core extension, and it will take you to the informaion page of the
Video Extension.

http:///

Chapter 7

[203]

4. Click on the Install buton, and it will take you to the page that allows you to install
the video components. Under the hood, the <cfvideo> tag uses the FFmpeg

library. This form allows you to install your own version or get a pre-built version
for your operaing system.

5. Leave the radio buton selected on the Download video components by an URL

item and click on next. This takes you to the URL selecion screen, which you can
leave as is, and click on install.

http:///

Mulimedia and AJAX

[204]

6. This will start the install process, and ater a few seconds, you should have a noice
saying that the Video Extension has been successfully installed.

What just happened?
There are a lot of funcionaliies that don't need to be deployed with the Railo Server itself.
We are able to extend the Railo Server using Applicaions that are produced either by Railo
technologies or other content providers in many ways. In the previous example, we were
able to add a new tag, namely, the <cfvideo> tag, which we can use to convert a video.

Now that we have the <cfvideo> tag installed, we can get on with playing with the
conversion of the video. Let's get to it!

Time for action – creating clips for our video player

In order to display the video, we used a ile named trailer.flv. This ile was actually
generated by the <cfvideo> tag itself. Let's do that again, but from scratch. Don't worry,
it won't take too long.

1. First of, let's get the original video. Copy the ile named bbb_trailer_iphone.
m4v from the code samples into the Chapter_7 folder.

2. Delete the current trailer.flv ile that we have in the code samples; we will
create a new one from the bbb_trailer_iphone.m4v ile.

3. Now, let's create a ile that will do our conversion for us. Create a template named
listing_7_02.cfm and put in the following code:

<cfvideo action="convert"

source="bbb_trailer_iphone.m4v"

destination="trailer.flv">

4. We can now run http://localhost:8888/Chapter_7/listing_7_02.cfm,

and ater a few seconds, a new trailer.flv will be created.

5. Before we go on, we should add some more code. Because videos take a long
ime to convert, we need to add some code that will tell Railo Server to allow this
template to run for longer than the default ime.

http:///

Chapter 7

[205]

6. At the top of listing_7_02.cfm, add a <cfsetting> tag so that your code looks

as follows:

<cfsetting requesttimeout="600">

<cfvideo action="convert" source="bbb_trailer_iphone.m4v"
destination="trailer.flv">

What just happened?
Using the <cfvideo> tag, we are able to convert to a number of formats. The <cfvideo>

tag is intelligent enough to realize what you want to convert the video to and then do the
conversion for us.

If we now go back to our player that we had in the listing_7_01.cfm template and run it

by going to http://localhost:8888/Chapter_7/listing_7_01.cfm, we will see the
video that we just converted.

Let's create another clip from the trailer and create a couple of poster frames for it so that

we can display a playlist next to our standard player.

Time for action – creating poster frames and clips

We already saw how to convert one video. Let's create another video, but this ime we are
going to deine which segment of the video we want to convert, rather than convering the
whole video.

1. In the listing_7_02.cfm template, add the following lines of code so that the
template code now looks like this:

<cfsetting requesttimeout="600">

<cfvideo action="convert" source="bbb_trailer_iphone.m4v"
destination="trailer.flv">

<cfvideo action="convert" source="bbb_trailer_iphone.m4v"
destination="clip.flv" start="19s" max="3s">

2. When we run the code by going to http://localhost:8888/Chapter_7/
listing_7_02.cfm and look in the folder, you will see we have a trailer.
flv ile and a clip.flv ile. The clip was created by staing when we wanted
the conversion to start, and the number of seconds we wanted to convert (the
start="19s" and max="3s" atributes).

3. Awesome! We have now created our clips.

http:///

Mulimedia and AJAX

[206]

4. Let's get some info from the video to create our poster images, we can do this by
selecing another acion to perform with the <cfvideo> tag; this ime we can add
the following:

<cfsetting requesttimeout="600">

<cfvideo action="convert" source="bbb_trailer_iphone.m4v"
destination="trailer.flv">

<cfvideo action="convert" source="bbb_trailer_iphone.m4v"
destination="clip.flv" start="19s" max="3s">

<cfvideo action="info" source="bbb_trailer_iphone.m4v"
result="video_info">

<cfdump eval=video_info>

5. When we run this code, we can now see that the <cfvideo action="info"

source="bbb_trailer_iphone.m4v" result="video_info"> returns a

structure with informaion about the video. What we are interested in are the
width and height variables.

6. Let's use these variables to create the image iles for the video by adding
another <cfvideo> tag acion, namely, the cutImage acion. Let's add
the code to our template:

<cfsetting requesttimeout="600">

<cfvideo action="convert" source="bbb_trailer_iphone.m4v"
destination="trailer.flv">

<cfvideo action="convert" source="bbb_trailer_iphone.m4v"
destination="clip.flv" start="19s" max="3s">

http:///

Chapter 7

[207]

<cfvideo action="info" source="bbb_trailer_iphone.m4v"
result="video_info">

<cfdump eval=video_info>

 <cfvideo action="cutimage"

 source="bbb_trailer_iphone.m4v" destination="trailer.jpg"
start="28s" width="#video_info.width#" height="#video_info.height#">

 <cfvideo action="cutimage"

 source="bbb_trailer_iphone.m4v" destination="clip.jpg"
start="19.5s" width="#video_info.width#" height="#video_info.height#">

7. When you run the code, you will see the dump of the video_info variable. If you

go into the folder, you should now see a couple of new iles, trailer.jpg and

clip.jpg, which will be used in our video player! If you look at these iles, they
should look like the following images:

What just happened?
Now that we have installed the Video extension to Railo Server, we can use the
various funcions of the <cfvideo> tag. We converted a video to FLV for use in
our <cfvideoplayer> tag, we obtained informaion about the video using the
action="info" atribute of the tag, and inally, we created a poster image by
using the action="cutImage" and deining at which point we wanted to cut the
image from the video.

Now that we have done all the preparatory work, let's go and add a playlist to our
<cfvideoplayer>.

http:///

Mulimedia and AJAX

[208]

Time for action – adding a playlist to <cfvideoplayer>

Let's go and add some movies to our playlist:

1. Open up the template we were using to display our <cfvideoplayer>

listing_7_01.cfm and edit the code. We are going to replace the video
player we have there with the following code:

<!DOCTYPE html>
<html>
 <head><title>Video Display</title></head>
<body>
 <cfvideoplayer playlist="right" playlistsize="200"
playlistthumbnails="true" width="480" height="270">
 <cfvideoplayerparam video="trailer.flv" preview="trailer.jpg"
author="Big Buck Bunny" title="1. Trailer">
 <cfvideoplayerparam video="clip.flv" preview="clip.jpg"
author="Big Buck Bunny" title="2. Clip">
 </cfvideoplayer>
</body>
</html>

2. As you can see, we have a new set of atributes. We have a playlist="right"

which deines where we want to display the playlist, the playlistsize="200"

which deines the width of the playlist, and playlisthumbnails which deines if
we are going to show thumbnails in our playlist.

3. In the body content of the <cfvideoplayer> tag, we have some new tags, namely,
<cfvideoplayerparam>tags. These tags are used to deine the videos we are
going to have in the video player. With the atribute video="clip.flv", we
deine which videos we are going to show, and with the preview="clip.jpg"

atribute, we deine which is the preview or poster image we are going to display.
The author="Big Buck Bunny" sets an author to display in the playlist, and

inally, we can add a title atribute to display it.

4. Let's have a look at our player now. Head to http://localhost:8888/
Chapter_7/listing_7_01.cfm to view it.

http:///

Chapter 7

[209]

What just happened?
Once we have prepped our resources, we can use the <cfvideoplayer> tag to display a

playlist of videos, rather than just one video. Using the <cfvideoplayerparam> tag, we
can add new videos and set a number of variables such as the author and the itle.

Hopefully, this secion has encouraged you to use the video feature a bit more. There are
many more opions with all these tags, but this has just been a quick tour through some of
their funcionality.

You can see more atributes of the <cfvideo> tag in the Railo Wiki: http://wiki.
getrailo.org/wiki/TAG:CFVIDEO.

AJAX functionality within the Railo server

As we have just seen, using and manipulaing a video is prety easy with Railo Server. But
that is not all. Railo Server also allows you to add AJAX (Asynchronous JavaScript and XML)
funcionality to your web applicaions with ease.

AJAX allows you to build dynamic frontends that don't need to refresh the page to
show results from the server. There are many JavaScript libraries out there that make
communicaing with the server easy, but as we shall see, Railo Server makes it even easier.

For this secion, we are going to build a simple applicaion to store our tasks. For simplicity,
we are just going to store our tasks in the session scope, but, if you want, you can save them
to the database using the ORM capabiliies.

Here's what we are going to build from scratch. It's basically a form that you can enter a
task. The entered tasks are listed as shown in the previous screenshot, and you can delete a
task by just clicking on the checkbox associated with each task. Simple enough funcionality,
but to make it more interacive, we are going to be using the power of Railo Server's AJAX
funcionality to build this applicaion.

Let's get started!

http:///

Mulimedia and AJAX

[210]

Time for action – setting up the application and services

Before we look at the AJAX funcionality, let's set up our Railo Applicaion and create the
server-side service that will be used to store our tasks:

1. Create a directory named todo in your <Railo Install Directory>/webroot

directory; this is where we are going to hold the applicaion.

2. Now let's create the Application.cfc for this applicaion, so add a template
called Application.cfc and add the following code:

component {
 this.name = "TodoList";
 this.sessionmanagement = true;

 function onSessionStart(){
 session.tasks = [];
 }
}

3. Next, we are going to create our TaskService. Let's create a template named

TaskService.cfc in the todo folder and add the following code:

component{

 remote function addTodo(String taskname){
 if(Len(arguments.taskname)){
 ArrayAppend(SESSION.tasks, {name:arguments.taskname,
 addedat=Now()});
 }
 return SESSION.tasks;;
 }

 remote function removeTodo(Numeric id){
 ArrayDeleteAt(SESSION.tasks, id);
 return SESSION.tasks;
 }
}

4. In the previous code, we have created a component with two funcions, the
addTodo() and the removeTodo(). We noice that we have a remote keyword
before the funcion. That tells the component that you can call these funcions
remotely, either as web services or via JavaScript, and they will return JSON

(JavaScript Object Notaion) objects. The addTodo funcion takes a task name as
a variable, checks whether there is anything in it (in other words, it isn't a blank
string), and if there is something, it appends a new entry in the array that is made
up of a structure with the name of the task and when we added it. The remove
funcion is prety simple, it uses the ArrayDeleteAt() funcion to delete the

entry in the array with the same posiion. We shall see how this works a bit later.

http:///

Chapter 7

[211]

5. Now that we have added these two funcions, we can start building our page.

6. Let's copy the stylesheet named main.css from the code_samples directory into

our todo directory, so that we have a nice style to get going with.

7. Next, let's create a template named index.cfm. This is where most of the acion is
going to happen, as you add the following code:

<!DOCTYPE html>

<html lang="en">

<head>

 <link rel="stylesheet" href="main.css" type="text/css">

 <title>Todo</title>

</head>

<body>

 <div id="page">

 <h1 id="todo">Todo</h1>

 <input type="text" name="taskname" id="taskname"
placeholder="What do you need to do?">

 </div>

</body>

</html>

8. The previous code is simply the outline of the page, so we have everything set up
and it should look something like the image below. There is no funcionality as yet,
but it's a good start!

What just happened?
The code in Application.cfc gives our applicaion the name TodoList and enables the

SESSION scope for use by seing this.sessionmanagement=true. So that we know we
have a task array ready to use, we make sure that when the session starts (with the funcion
onSessionStart(){}) we have an empty array ready for us to ill.

http:///

Mulimedia and AJAX

[212]

We then created the TaskService.cfc so that we can add and remove tasks from the
SESSION scope, and inally we have put the index.cfm main ile and given it a nice
stylesheet so it doesn't look too bare. The Next we will be to add new tasks.

Time for action – binding the input to the component

Because we want to be able to enter items in the main text ield, let's create a binding form
that form-inputs to our TaskService.cfc.

1. Add the following code to index.cfm; this will bind the text ield to the
TaskService.cfc:

<!DOCTYPE html>

<html lang="en">

<head>

 <link rel="stylesheet" href="main.css" type="text/css">

 <title>Todo</title>

 <cfajaxproxy bind="cfc:todo.TaskService.addTodo({taskname})"

 onSuccess="displayTodos"

 onError="onError"/>

 <script type="text/javascript" charset="utf-8">

 onError = function(code,message){

 alert(code + ' - ' + message);

 }

 displayTodos = function (data){

 document.getElementById('taskname').value = "";

 }

 </script>

</head>

<body>

 <div id="page">

 <h1 id="todo">Todo</h1>

 <input type="text" name="taskname" id="taskname"
placeholder="What do you need to do?">

 </div>

 <cfdump var="#SESSION.TASKS#">

</body>

</html>

http:///

Chapter 7

[213]

2. In the previous highlighted code, we add the <cfajaxproxy> tag. This tag allows
you to bind to a component deined by the bind="cfc:todo.TaskService.
addTodo({taskname})" atribute. There is a lot going on in here, but in essence,
we are binding to the addTodo() funcion in the TaskService.cfc template.

We are then referencing the taskname ield (noice the name of the <input

type="text" name="taskname" ... > ield) by name. Any changes that happen
to that ield, will then call this funcion, without us having to do anything about it.

You also noice we are adding a couple of JavaScript funcions; the irst one is
onError, which is triggered if there are any errors with the call. The second is
onSuccess="displayTodos", which gets called when the call is successful. The
inal bit of code is just for debugging, so now if you add something in the text ield,
it will update the session without reloading, but we won't see anything happen. To
see any changes, we need to reload the page so that we can see the array of tasks
that is displayed using <cfdump var="#SESSION.TASKS#">

Let's give it a go to http://localhost:8888/todo/ and you will see an empty
array of tasks:

3. Enter a task and press the return key; nothing will happen apart from the entry ield
going back to blank

http:///

Mulimedia and AJAX

[214]

4. If you now reload the page, you will see that we have successfully added another
item to the session:

What just happened?
Using the <cfajaxproxy>, we bounded events that happen on the taskname ield to the

addTodo() funcion on the TaskService.cfc component. A lot is happening behind the

scenes that we don't have to worry about because Railo Server is taking care of all the wiring
up for us.

Because we are saving the tasks to the SESSION scope, we needed to put some debug code
to display; but let's change that now and create a way to display our items.

Time for action – displaying the tasks

Because we have to reload the page to show our tasks. Let's do this automaically? This is
really simple. But First, let's create a page that displays the tasks:

1. Create a template named displayTasks.cfm and save it in the todo folder.

2. In the displayTasks.cfm template, add the following simple loop code:

<ul id="taskList">

 <cfloop array="#SESSION.tasks#" index="task">

 <cfoutput>#task.NAME#</cfoutput>

 </cfloop>

3. The previous code simply loops through the items in the SESSION.tasks array and

displays them in an unordered list.

http:///

Chapter 7

[215]

4. If we now go to http://localhost:8888/todo/displaytasks.cfm, we can
see the output from the session:

:

5. Now that we have something to display, we can integrate it into the main index.
cfm template. Let's add another AJAX tag to display the contents of displayTask.
cfm; change the main part of your code to add the <cfdiv> tag:

<div id="page">

 <h1 id="todo">Todo</h1>

 <input type="text" name="taskname" id="taskname"
placeholder="What do you need to do?">

 <cfdiv id="displayTodos" bind="url:displayTasks.cfm"></cfdiv>

</div>

6. We can see the <cfdiv> tag in acion. We give it an id so that we can refer to it by
name, and then we use the bind="url:displayTasks.cfm" atribute to bind
the contents of the div to our displayTasks.cfm template.

7. If you reload the page by going to http://localhost:8888/todo/, you will now
see your tasks displayed.

http:///

Mulimedia and AJAX

[216]

8. We are not inished yet. We sill have to reload the whole page to get them to
display. How about we add funcionality so that once we add a task, the <cfdiv>

tag automaically refreshes? This is easy since we already have an onSuccess

funcion we are triggering.

9. Change the <script> block so that it has the following code:

 <script type="text/javascript" charset="utf-8">

 onError = function(code,message){

 alert(code + ' - ' + message);

 }

 displayTodos = function (data){

 document.getElementById('taskname').value = "";

 Railo.Ajax.refresh('displayTodos');

 }

 </script>

10. In the previous code, we have added one of the built-in JavaScript
objects that Railo Server has placed in our page. By calling Railo.Ajax.
refresh('displayTodos'), we are telling the Railo Ajax object to refresh
our <cfdiv> since we are referring to it by its ID.

11. Refresh the page and you can now enter another item. It will be displayed
immediately without a page refresh between submissions.

http:///

Chapter 7

[217]

What just happened?
By using the <cfdiv> tag, we were able to bind it to a URL, namely, that of our
displayTasks.cfm page that lists our tasks. When we use any Railo Server AJAX tags, we
automaically have a Railo JavaScript object available that allows us to interact with various
parts of the page, including other Railo AJAX tags and, for example, be able to reload the
<cfdiv>.

So far so good! But what about when we have completed the task already? Why don't we go
ahead and add the ability to delete a task?

Time for action – deleting a task

If you remember, in the TaskService.cfc template, we have a funcion called
removeTodo() that takes the posiion of the task in our array and deletes it. Let's
connect a JavaScript funcion to this server-side funcion:

1. In the index.cfm template, let's add another <cfajaxproxy> tag. This ime it will
bind the TaskService.cfc to a JavaScript variable:

<head>

 <link rel="stylesheet" href="main.css" type="text/css">

 <title>Todo</title>

 <cfajaxproxy bind="cfc:todo.TaskService.addTodo({taskname})"

 onSuccess="displayTodos"

 onError="onError"/>

 <cfajaxproxy cfc="todo.TaskService"" jsclassname="TaskService">

2. In the previous code, we have used the <cfajaxproxy> tag again, but this

ime we are using the cfc="todo.TaskService" atribute to say which
component we want to bind to a new JavaScript object. We then use the
jsclassname="TaskService" atribute to set its name.

3. Now that we have bound it to a new object, let's add the JavaScript funcion to
delete an item:

<script type="text/javascript" charset="utf-8">

 onError = function(code,message){

 alert(code + ' - ' + message);

 }

 displayTodos = function (data){

 document.getElementById('taskname').value = "";

 Railo.Ajax.refresh('displayTodos');

 }

 markDone = function(item){

 var Todo = new TaskService();

http:///

Mulimedia and AJAX

[218]

 Todo.removeTodo(item);

 Railo.Ajax.refresh('displayTodos');

 }

</script>

4. In the previous code snippet, we added the markDone JavaScript funcion. When
this funcion is called, it will pass an itemid which we will call from each of the
items in the list. Then, it will create an instance of the TaskService JavaScript

object we have deined with the <cfajaxproxy> tag. We can then call the
removeTodo() funcion and pass it the posiion of the item (item) to delete it.

Once we have done that, we can re-run the Railo.Ajax.refresh() funcion to

re-display our tasks.

5. Now that we have all that in place, we need to trigger this funcion from each of the
displayed tasks, so let's edit our displayTasks.cfm template:

<ul id="taskList">

 <cfset counter = 1>

 <cfloop array="#SESSION.tasks#" index="task">

 <cfoutput>#task.NAME# <input type="checkbox"
value="#counter#" onClick="markDone(#counter#)"></cfoutput>

 <cfset counter++>

 </cfloop>

6. In the previous code, we are adding a checkbox ater the name of the task. So
that we ick each task as done, we add an onClick="" JavaScript atribute to the
<input> box. This calls the markDone() funcion we just deined. Since we need
to know which item we want to delete, we create a counter. Ater each loop we
increase it by one with the <cfset counter++> call, and then use the counter

variable in our method call to markDone(#counter#).

7. When we now reload the page, we can see each of the items, and when we click on
the checkbox, the code will call the markDone funcion, which in turn will call the
removeTodo() funcion in our TaskService.cfc component. Finally, we use the
Railo JavaScript object to refresh the <cfdiv> with our tasks.

http:///

Chapter 7

[219]

What just happened?
By using the <cfajaxproxy>, we are able to bind a proxy to a component to a JavaScript
object. This JavaScript object can then be used directly from JavaScript to call remote
methods on a component. It's really just that simple! With this method, we were able
to assign an event handler to the task checkbox, which, when called, called a JavaScript
funcion to call our component.

Summary

In this chapter, we covered a couple of the mulimedia and AJAX capabiliies of Railo Server:

 � We used the <cfvideoplayer> tag to display videos

 � We also used the <cfvideoplayer> tag to control which preview image we want
to assign to a video and even add other videos in a playlist

 � Using the Extension Store, we added the Video Extension so that we had access to
the <cfvideo> tag

 � Using the <cfvideo> tag, we converted diferent video formats so that they can be
displayed in our web page using the <cfvideoplayer> tag

 � We also created clips and thumbnails from our origin video using the
<cfvideo> tag

http:///

Mulimedia and AJAX

[220]

In the second part of the chapter, we looked at Railo Server's AJAX funcionality. We
looked at:

 � Using the onSessionStart() method in the Application.cfc to set up a

SESSION variable to store our tasks

 � We created a TaskService.cfc to add and remove tasks from the SESSION.

tasks variable

 � We used the <cfajaxproxy bind="cfc:todo.TaskService.
addTodo({taskname})" > to bind changes to an input ield to a method in our
TaskService.cfc component

 � We used the <cfdiv> tag to include an external page within our main page
dynamically

 � We then used the built in Railo AJAX funcions to refresh the contents of the
<cfdiv> tag when we updated the tasks using the Railo.Ajax.refresh()

funcion

In the next chapter, we are going to look at Mappings and Resources that are available to
you when using Railo Server. This will show you how you can store items in memory, have
consistent paths that you can change to suit your needs in the Railo Server administrator,
and how to use Amazon's Simple Storage Service to your advantage.

Onwards we go!

http:///

8
Resources and Mappings

By now, you should have a good handle on developing diferent applicaions
with Railo Server. In this chapter, we will be going through the resources and
mappings that Railo Server is able to use as ilesystems to access your iles. In
short, we will be looking at:

 � Accessing iles locally and then creaing mappings as aliases to iles and
folders

 � Accessing your iles from ZIP and TAR iles

 � Using RAM as a quick locaion to store iles

 � Using Amazon's Simple Storage Service to place iles in the Cloud

By the end of this chapter, you will see the beneits of using mappings as well as being able
to create clustered soluions that access single resources.

Let's get started!

Railo resources

The architecture of Railo Server has been created so that everything is coded to an interface.
This means that most parts of the Railo Server can be extended to use diferent kinds of
underlying systems. Let's take the example of datasources. All the datasources in Railo Server
comply with an interface that we have deined. This means that if we want to add another
type of database, we just need to create a driver that has the same funcionality, as deined
in the interface, and it will work with Railo Server nicely.

http:///

Resources and Mappings

[222]

This goes for resources too. So, for example, you can access iles in the ilesystem with
the various FileXXX() or DirectoryXXX() funcions as well as the <cffile> and

<cfdirectory> tags. You might think that there is only one type of ilesystem, namely,
that of the hard drive installed in the server. However, this is not the case. There are other
ilesystems out there that we can use, for example, FTP servers. You should be able to
list a number of iles, read, write those iles, and delete, the same way you do on your
local ilesystem.

Accessing iles locally
There are many imes when you want to access iles locally. For example, you might want to
list the images that a user has uploaded, write to log iles and even include code that is in a
diferent ile. Railo Server provides a number of funcions for this; they are usually named
FileXXX() or DirectoryXXX() where XXX is the acion to be performed. Railo Server also
provides these as tags, in the form of the <cffile aciton="XXX"> and <cfdirectory

action="XXX">, again, where the XXX is the acion to be performed.

Let's look at some examples.

Time for action – writing and reading iles
Let's say that we want to log some informaion about what is happening in our applicaion;
rather than displaying it to the user. We should store this in a ile that we can read either
manually or via another interface, for example, in an administraion applicaion we might
want to build.

Let's create the simplest code for this:

1. First of, let's create a folder to keep our logs. In <Railo Installation>/

webroot/Chapter_8/, create a folder named logs

2. Now, let's write some code to append to a log ile inside it (we haven't created
any iles inside it, but Railo Server will take care of it). Create a ile in <Railo

Installation>/webroot/Chapter_8/ named listing_8_01.cfm and add

the following:

<cffile action="append" file="logs/mylog.txt" output="This is the
output to our log file! #Now()#">

http:///

Chapter 8

[223]

3. If we now load up the script a few imes by going to http://localhost:8888/
Chapter_8/listing_8_01.cfm, we can populate our log ile and you should see
something like this if you open up the ile in <Railo Installation>/webroot/

Chapter_8/logs/mylog.txt:

 This is the output to our log file! {ts '2011-06-11 14:53:01'}

 This is the output to our log file! {ts '2011-06-11 14:53:04'}

 This is the output to our log file! {ts '2011-06-11 14:53:16'}

 This is the output to our log file! {ts '2011-06-11 14:53:29'}

4. Rather than opening the ile, let's modify our script to also list what the log ile
consists of:

<cffile action="append" file="logs/mylog.txt" output="This is the
output to our log file! #Now()#">

<cffile action="read" file="logs/mylog.txt" variable="MyLogs">

<pre>

<cfoutput>#MyLogs#</cfoutput>

</pre>

5. If we now reload the template by going to http://localhost:8888/
Chapter_8/listing_8_1.cfm, we should now see the contents of the log ile!
Awesome, huh?

What just happened?
Using some of the simple tags available in Railo Server, we were able to log messages to a
ile, read that ile, and display its contents on screen quite easily.

Looping iles
The problem with the preceding code is that it gets all the contents of the ile, which is
rather annoying. What happens if we want to loop through each line in the ile instead?
Well, that's what the <cfloop> is for.

http:///

Resources and Mappings

[224]

Time for action – looping through the contents of a ile
Let's change our code in the listing_8_01.cfm template to loop through the contents of

a ile; this will allow us to have a bit more control over what we do with the output.

1. Edit listing_8_01.cfm, remove the <cffile action="read">, and let's use a

loop to display each line of the code:

<cffile action="append" file="logs/mylog.txt" output="This is the
output to our log file! #Now()#">

<cfloop file="logs/mylog.txt" index="i">

 <cfoutput>#i#</cfoutput>

</cfloop>

2. If you now run the template by going to http://localhost:8888/Chapter_8/
listing_8_01.cfm, you will get each line outputed nicely. You could now parse
each line.

What just happened?
The <cfloop> tag has the file atribute which lets us bypass reading the ile directly, as
the ile could be rather large. Using the <cfloop file=""> tag, we can loop through every
line in a very large ile and parse it without worrying about the size.

Mappings

The previous examples are ine if the code was always on that server, but what if we wanted
to move our code to another server, or even worse, if that new server had a diferent
operaing system? Also, what would happen if we wanted to move the locaion of the
logs to another disk (for example, if it was geing too big)?

This is where the idea of mappings comes in. Mappings in Railo Server are ways to create a
shortcut to a folder on another part of the server. This makes your code more portable.

For example, imagine if we had an applicaion that wrote to a speciic ile (or read iles from
a speciic directory) such as C:\MyApplication\MyLogfiles\usercount.txt and

we had that path writen all over our code. It would then be a nightmare of searching and
replacing throughout our code to change that. With mappings, we can create a link in the
Railo Server Administrator and manage the locaion of this ile outside our code. Let's do this
for our log ile.

http:///

Chapter 8

[225]

Time for action – creating a mapping for the log ile
Instead of hardcoding the locaion of our code, let's create a mapping in the Railo Web
Administrator that we are going to use to point to our locaion.

1. Open up the Railo Web Administrator by browsing to
http://localhost:8888/railo-context/admin/web.cfm and log in.

2. Click on the Mappings link that can be found under the Archives & Resources

secion on the let.

3. Here you will see the Archives & Resources - Mappings screen.

4. Let's add a mapping to a folder that isn't in our web root; in my example, I am using
/temp/logs but you can choose anywhere (for example, C:\temporary\logs\

if you are using Microsot Windows). Add the name of our mapping, /logs, in the

text ield under the Virtual column, and then add the path to the folder in the text

ield under the Resource column:

http:///

Resources and Mappings

[226]

5. Now click on the save buton to update this mapping

6. Now that we have created this mapping, let's see how we can use it in our code

7. Create a ile in <Railo Installation>/webroot/Chapter_8/ called

listing_8_05.cfm and put the following code in there (it's nearly the same as
the code in our previous Time for acion heading):

<cffile action="append" file="/logs/mylog.txt" output="This is the
output to our log file! #Now()#">

<cfloop file="/logs/mylog.txt" index="i">

 <cfoutput>#i#</cfoutput>

</cfloop>

8. The diference in our code now is that the path to our log ile starts with /logs.

9. Run the template by going to http://localhost:8888/Chapter_8/
listing_8_01.cfm and it will sill work.

What just happened
We have added a mapping to our web context that points /logs to another folder. This
means that we can use this mapping throughout our code, and if we move our code to
another server or need to change how we store the log iles, all we need to do is change
where the mapping points to in the Railo Server Administrator without afecing anything
else. Neat eh?

Any new code that we add to our applicaion that will need to write to the logs ile now
doesn't need to know where the actual path is, as we can now just reference it with the
/logs path.

Accessing code from mappings

Reading and wriing are not the only things we can do with mappings; we can do other
things with these mappings. Remember components? A mapping can also be used to store
our components in diferent locaions. Let's say you want to code consistently and keep your
components in a speciic folder structure. In Java, they call these paths packages. Let's create
some components so that we can pretend that they are part of a bigger applicaion.

http:///

Chapter 8

[227]

Time for action – creating our components

1. Under the Chapter_8 folder, create another folder named cfcs, and then create a

template called Main.cfc in there.

2. Put the following code in Main.cfc, which basically just reverses a string:

component output="false"{

 public function reverseIt(String input){

 return Reverse(input);

 }

}

3. Now that we have done that, let's call it from another template. Create a ile named
listing_8_07.cfm in the Chapter_8 folder and put the following code inside:

<cfset Main = new cfc.Main()>

<cfoutput>#Main.reverseIt("Check out my reverse!")#</cfoutput>

4. When we run the code http://localhost:8888/Chapter_8/listing_8_07.
cfm, we get the following code:

!esrever ym tuo kcehC

5. Nothing new so far. But what if we don't want to keep our components accessible
to the Web? It would help if we could tuck them away somewhere and only
expose what we want to the Web. Let's create a folder under <Railo Install
Directory> called components, and move the cfcs folder in there.

6. Now let's create a mapping. We are going to call it /api and point it to the <Railo

Install Directory>/components/cfc directory. We can actually use one of
the built-in Railo Server variables to point to our <Railo Install Directory>,

so that we can put {system-directory}/components/cfcs.

http:///

Resources and Mappings

[228]

7. Now, click on save on the mapping and let's re-visit our code in the listing_08_07.
cfm template and change the path to the main component as follows:

 <cfset Main = new api.Main()>
 <cfoutput>#Main.reverseIt("Check out my reverse!")#</cfoutput>

8. Now when we run the template, it will sill work. It's reading our components from
the new locaion.

What just happened?
From creaing a component, we have been able to sill access it through our mapping, so our
code can remain consistent in a variety of environments, and all we need to do is change the
mapping.

Once you start playing with other frameworks and libraries for CFML, you will get used to
doing this. It's a good way to keep things out of the way.

Server variables

There are a number of shortcut variables that Railo Server uses, that can be used
in coniguraion. They are:

{railo-web}: The path to the Railo web directory typically {web-root}/
WEB-INF/railo

{railo-server}: The path to the Railo server directory typically where the
railo.jar is located

{temp-directory}: The path to the temp directory of the current user of

the system

{home-directory}: The path to the home directory of the current user of

the system

{web-root-directory}: The path to the web root

{system-directory}: The path to the system directory

{web-context-hash}: The hash of the web context

Railo archives

What happens if we had a number of components that we wanted to distribute to people?
You could, of course, zip it up, provide instrucions for people to unzip it, and so on. Also, if
you want to provide code for other people to use, but you want to protect your intellectual
property, you might not want to allow people to see the code itself (of course, we at Railo
Technologies disagree because we are an open source project, but we understand there are
cases where you wouldn't want to allow the users of your code to access it). Railo Server
provides a soluion with Railo Archives (.ra) and Secure Railo Archives (.ras).

http:///

Chapter 8

[229]

Let's turn our litle API into a Railo Archive.

Time for action – creating a Railo archive

Now that we have created a mapping to our API, we can easily convert it to a Railo Archive.

1. Head over to the mappings screen by going to http://localhost:8888/
railo-context/admin/web.cfm in the Railo Web Administrator and click on the
Mappings link under Archives & Resources.

2. Click on the pencil (Edit) icon next to the /api mapping to get to the Mapping

Seings screen.

3. Scroll to the botom of the screen to the create archive secion.

4. You can now click on the download archive buton, and it will give you a ile called
archive-api.ra. The ile that has been generated by Railo Server is a ZIP ile
containing all your components, ready for you to distribute.

5. If you want to give it a test, instead of clicking on the download archive buton, click
on the assign archive to mapping buton. This will create an archive and assign it to
this mapping:

http:///

Resources and Mappings

[230]

What just happened?
Now that we have assigned a mapping to a folder where we keep our code, we can actually
create an archive that will hold all our code. This archive can now be assigned to a mapping
and the templates will be obtained from the archive. This is very useful if we want to
distribute self-contained bundles of code.

Mappings and their settings

Now that we have assigned an archive to a mapping, we can remove the components/api

folder. But before that, let's experiment with some of the seings we have in the mappings.

If you look in the lising of Mappings, you will see the Primary column. You have a choice of

Resource or Archive. Currently, our /api mapping points both to the components/cfcs

folder and the archive we created. Since the Primary seing is set to Resource, it means that

any changes we do to our template will be relected since that is the primary resource with a
backup of the Archive.

We can actually now remove the Resource path and save the mapping and our code will now
access the archive solely.

Let's see how this works.

Time for action – changing the settings of a mapping

In order to see what happens with the diferent seings assigned to a mapping, let's check
that our current mapping is as follows:

We have /api as our virtual name. We are poining to our {system-directory}/
components/cfcs folder and we are using an Archive that was set up for us by Railo Server.
Our Primary mapping is set to Resource, while Inspect is set to Always.

1. Let's change the code in our Main.cfc component and add a new funcion; let's
edit the component that's in our <Railo Install Directory>/components/

api/Main.cfc and add the following:

component output="false"{

 public function reverseIt(String input){

 return Reverse(input);

 }

http:///

Chapter 8

[231]

 public function getFirstLetter(String input){

 return left(input, 1);

 }

}

2. Now let's add another line to the template named listing_8_07.cfm to call this

funcion and add the following code:

<cfset Main = new api.Main()>

<cfoutput>#Main.reverseIt("Check out my reverse!")#</cfoutput>

First Letter: <cfoutput>#Main.getFirstLetter("Check out my
reverse!")#</cfoutput>

3. When we now call the template via the browser by going to http://
localhost:8888/chapter_8/listing_8_07.cfm, we get the following:

 !esrever ym tuo kcehC

 First Letter: C

4. Now let's change it so that the Primary mapping is using the Railo Archive we
created earlier. Go back to your mappings screen, and in the /api mapping line,

change the Primary select box to Archive.

5. When you run the code again, you get an error:

What just happened?
Since we added the code to the component that is in the mapping, and that is set as primary,
Railo Server will pick up this code irst. If we change the mapping to check the archive irst, it
then uses the archive instead. This is handy if you want to add more funcionality.

As an aside, if you change Inspect seing to Never, your templates will be loaded up and
cached only once during the server lifecycle. This makes it much faster to run code, as it's
not checking and recompiling Railo Templates.

http:///

Resources and Mappings

[232]

Accessing your iles from ZIP and TAR iles
A Railo Archive is a ZIP ile in itself. If you were to rename it to a ZIP ile, you could unzip it
and see your Main.cfc in there. This gives you a hint that Railo Server is quite happy using
zipped archives too.

Let's try this out.

Time for action – accessing iles from a ZIP ile
Let's create a standard header and footer for our pages, and let's say we are going to use this
from all the iles and we need to read it.

1. Under the <Railo Install Directory>/webroot/Chapter_8 folder, let's

create a folder named includes.

2. In the includes folder, create a couple more iles, one called header.cfm and

another called footer.cfm.

3. In the header.cfm ile, let's put the following code:

<!DOCTYPE html>

<head>

 <title>My Page</title>

 <body id="page">

4. In the footer.cfm, let's put the following code:

 </body>

</head>

5. Now let's create a page that includes them; let's call it listing_8_13.cfm, save it

in <Railo Install Directory>/webroot/Chapter_8 and put the following
code in the template:

<cfinclude template="includes/header.cfm">

 <h1>Page With Included header and footer</h1>

<cfinclude template="includes/footer.cfm">

6. Now when we run the template by going to http://localhost:8888/
chapter_8/listing_8_13.cfm, we will see that we are including the header and
footer. Nice!

7. Let's now zip up the includes folder. Here, we can use whichever ZIP program is
installed on our computer. Once we have zipped it, let's name it includes.zip and

make sure it's in the Chapter_8 folder.

http:///

Chapter 8

[233]

8. Now we have the two iles we wanted in a ZIP ile named includes.zip. How are
we going to include them in our template now? Simple! Let's create a mapping to
the ZIP ile from our administrator.

9. Head back to the mappings screen in the Railo Web Administrator and add a
new mapping by seing the Virtual name to /includes, and the Resource to

zip://<Path to Railo Install Dir>/webroot/Chapter_8/includes.

zip (for example my path is: zip:///Users/markdrew/railoserver/
webroot/Chapter_8/includes.zip) and let's save it.

10. Let's change the code in the listing_8_13.cfm template to use these items in

the ZIP ile. Because all mappings start with /, the code would now look like:

<cfinclude template="/includes/includes/header.cfm">

 <h1>Page With Included header and footer</h1>

<cfinclude template="/includes/includes/footer.cfm">

11. When we reload the page, you will see that the page renders correctly. How neat
is that?

What just happened?
Railo Server can use a number of resources including ZIP iles. Here, we have created a
mapping to a ZIP ile that contained all the include iles we wanted to use and now we can
add them easily to our page.

Using RAM as a quick location to store iles
As I menioned before, ilesystems can be nearly anything in Railo Server. One of the
interesing uses is of RAM (Random Access Memory) as a temporary storage for templates.
Why would you do this?

A good example is going back to our blog applicaion. Imagine you have a blog post whose
content you are displaying on a page, but the contents of the blog post has some code you

want to execute every ime someone reads the post. You would have to somehow save the
content of the blog post to a ile, and then include it to get it running live. But, of course,
what do you do with these iles all the ime? Do you delete them at a certain point when the
post is done? This would also mean a security issue as people could possibly access them
directly (which, in all probability, you don't want them to do).

By storing them in RAM, we create a temporary resource that is available as long as we need
it, and then, as part of the normal garbage collecion, they will be removed.

http:///

Resources and Mappings

[234]

This is where the RAM resource comes into its own.

Time for action – compiling plain text to CFML

Let's say, for example, you have a text ile. One that contains some CFML code in it, but you
know Railo Server won't parse it. This text could come from a database as a variable or from
a ile. In this example, we are just going to use a ile to make it easy. Because Railo Server
won't parse TXT iles, this makes for a good example:

1. Create a ile named blogpost.txt in your Chapter_8 folder and put the

following code in it:

The time now is <cfoutput>#Now()#</cfoutput>

2. Now, let's read the ile and display it; let's create a template named
listing_08_14.cfm in the Chapter_8 folder and put the following code to
display the contents of the ile:

<cfset myBlogPost = FileRead("blogpost.txt")>

<cfoutput>#myBlogPost#</cfoutput>

3. When you run this template by going to http://localhost:8888/chapter_8/
listing_08_14.cfm, you get the following displayed:

4. This is not quite what we want to be displayed. We would have expected the ime to
be displayed rather than the raw CFML code.

5. Let's add a RAM mapping irst and see if we can get it to render on the ly.

6. Go to the mappings screen in the Railo Web Administrator and add a new mapping
with the Virtual name of /ram and the Resource poining to ram:// and click

on Save.

http:///

Chapter 8

[235]

7. Now, let's copy the variable into the mapping by changing the code in the

listing_08_14.cfm template to the following:

 <cfset myBlogPost = FileRead("blogpost.txt")>

 <cfset FileWrite("/ram/blogpost.cfm", myBlogPost)>

 <cfoutput><cfinclude template="/ram/blogpost.cfm"></cfoutput>

8. When we run the template again in the browser, we now get the correct ime and
date being displayed.

http:///

Resources and Mappings

[236]

What just happened?
There are imes when we need to temporarily store a ile. We don't want to manage the
lifecycle of this ile, such as making sure we delete it ater a period, but we just want to
be able to instantly use it and then forget about it. This is where the RAM resource comes
in handy. In the previous code, we read a variable from a text ile using the FileRead()

funcion (which could have been from a database or some other source) and then saved it to
a virtual ile in the RAM called blogpost.cfm using the FileWrite() funcion. Then, to
display the variable, we just included this temporary ile, and because it is a .cfm template,

Railo Server will run the code for us. Impressive work so far.

Now that we have used iles from within Railo Server, how about using iles that are outside
of Railo Server?

Using Amazon's Simple Storage Service to use iles in the
Cloud

In the previous secion, we looked at storing iles in the temporary space of the RAM, but
how about if we wanted a more permanent place to store them so that other servers might
have access to them?

Amazon—the company behind the famous online store—also provides a number of web
services that are very useful. One of them is their Simple Storage Service (S3). Think of it as
a great way to share iles, whether they are images, downloads, or videos. Railo Server can
make use of S3 as yet another ilesystem resource.

For more details on Amazon Web Services, check out

https://aws.amazon.com/

http:///

Chapter 8

[237]

What would happen if our site got so popular that we needed to scale on demand? This is
where S3 comes into its own.

If you would like to carry out the following examples, you will need to sign up for an account
irst, otherwise you can just walk through our examples to get an idea of how it works.

Time for action – using Amazon's Simple Storage Service (S3)
In our previous example, we used the RAM to store code we wanted to run. This works well
for one server. But let's imagine we have a cluster of servers, all doing the same thing, and
instead of having each server hold a copy of the same thing, we would like all of them to
access these blog posts that we are rendering. All the servers would need is to have access
to the same ilesystem. This is where we can use an S3 bucket. An S3 bucket is a "folder" that
you can assign speciic seings to in the AWS (Amazon Web Services) system. Let's go and
create a bucket where we are going to now store our blog posts.

http:///

Resources and Mappings

[238]

Browse to https://console.aws.amazon.com/s3/home and log in. This is where all the
"buckets" are shown in S3.

1. Click on the Create Bucket buton and enter a new bucket name. I have used
railoforbeginners and the region as US Standard.

http:///

Chapter 8

[239]

2. Click on Create and your bucket will be created:

3. Now, before we can create a mapping to this S3 bucket, we need to get our Amazon
Access Credenials. That is, our Access Key ID and our Secret Access Key. They are
used by Railo Server to connect to the bucket, proving that you have the rights to
read and write to the bucket. Think of them as your username and password.

4. From the AWS console, click on the Account link at the top:

http:///

Resources and Mappings

[240]

5. Then click on the Security Credenials link.

6. In the next page, scroll down to the Access Credenials secion, copy the Access

Key ID, and click on the Show link under the Secret Access Key to show it and copy
these somewhere.

7. Now, we are going to go back to the Mappings page in the Railo Web Administrator
and add a mapping that points to our bucket.

http:///

Chapter 8

[241]

8. Enter /mys3 in the Virtual mapping name box. Then we are going to enter the
Resource that points to our S3 bucket. It is in the format s3://<Access Key

ID>:<Secret Access Key>@<bucketname>/, so for my example, I have

s3://0PAD8A------:XoWJY--------@railoforbeginners/ (I have
removed the full string as obviously this is my account.):

9. Now that you have entered your access key and path to the bucket, you can
click save.

10. Let's now create the same funcionality we had with our RAM example but using S3.

11. Create a template in the Chapter_8 folder named listing_08_16.cfm and put

the following code (it's very similar to the RAM example):

<cfset myBlogPost = FileRead("blogpost.txt")>

<cfif NOT FileExists("/mys3/blogpost.cfm")>

<cfset FileWrite("/mys3/blogpost.cfm", myBlogPost)>

 Writing file to S3

</cfif>

<cfoutput><cfinclude template="/mys3/blogpost.cfm"></cfoutput>

12. When we run our template by going to http://localhost:8888/chapter_8/
listing_08_16.cfm, we should get the same code as before.

What just happened?
Mappings in Railo Server can use a number of resources that can be treated like ilesystems,
even remote ones such as Amazon's S3 service. In the previous code, we created a mapping
as usual but pointed it to our S3 bucket.

http:///

Resources and Mappings

[242]

Going through the code, you see that we read the contents of blogpost.txt as a variable.

We then check to see if we have a blogpost.cfm on our /mys3 mapping, which is poining
to our S3 bucket. If the ile doesn't exist, we can create it and show that we are wriing to it.
Then we include the ile, again from the S3 bucket.

This means all our servers will have access to the ile, and if they aren't there, one of the
servers will create it for us. Prety neat!

Summary

Hopefully, this chapter has given you a good idea about resources and mappings in Railo
Server.

We covered:

 � Reading and wriing to local iles with the <cfifle> tag

 � Easily looping over the contents in a ile using the <cfloop file=""> tag

 � Creaing mappings to directories in our ilesystem and how to access the templates
and components

 � Creaing Railo Archives from mappings, using them, and overriding the order,
depending on whether a resource or an archive is used

 � Using ZIP iles as other Archives in our mappings

 � Using RAM as a mapping to compile and render Railo Templates

 � Using Amazon's Simple Storage Service as a ilesystem to access our iles from other
Railo Server instances.

Now that you understand mappings, we can move onto the next chapter, in which we extend
the funcionality of a Railo Server.

http:///

9
Extending Railo Server

Now that you know all the ins and outs of using CFML and the exising
funcionaliies of Railo Server, it is ime to go one magniicent step further. You
are not limited by any boundaries in Railo Server; you can easily push those
boundaries yourself. Welcome to the world of extending Railo Server.

In this chapter, we shall:

•	 Create a new CFML tag and funcion

•	 Install a Railo Extension

•	 Create a Railo Applicaion Extension

•	 Create a Railo Server Extension

•	 Develop and deploy our own Extension Provider

There's much to do, so let's get started!

Why create your own CFML tags and functions?

You might ask yourself why you should do this. Isn't it bad pracice to be making your own
custom addiions to an exising scriping language? Well, there are a lot of reasons why Railo
Server gives you this opion.

First of, Railo Server does not include the exact same CFML funcionality as Open
BlueDragon or Adobe ColdFusion®. About 95 percent is the same, but you can ind some
diferences and un-implemented features. By having the opion of creaing (and overwriing)
CFML tags and funcions, you can change the workings of Railo Server by yourself to make it
suit your needs.

http:///

Extending Railo Server

[244]

By adding your own CFML tags and funcions, you can write more of your code in the
same coding style. This will make it much easier to read and understand, especially when
comparing it to using includes or CFC funcion calls.

Another great reason is the ability to use this new funcionality not just for you, but for the
whole Railo community. It is as easy as adding it to the Railo Extension Store, or to distribute
it via your own Extension provider, as we shall see shortly.

Custom CFML tags and funcions are writen in CFML. This means that you don't
have to know any Java, C++, or other complicated stuf. We can just keep it
simple, as we shall see.

Time for action – creating our own CFML tag

One of the Railo team members, Todd Raferty, tweeted the following a while ago:

I thought he had a good point there, so let's take this example and create the funcionality
for him. Heck, we could even propose our enhanced tag to be added into the Railo core!

1. Open up your editor and write the following code:

<cfcomponent name="abort" output="false">

 <cfset this.metadata.attributetype="fixed" />

 <cfset this.metadata.attributes = {

 showerror: {required:false, type: "string"}

 , dump: {required:false, type: "any"}

 } />

http:///

Chapter 9

[245]

 <cffunction name="init" output="false" returntype="void"
hint="invoked after tag is constructed">

 <cfargument name="hasEndTag" type="boolean" required="true" />

 <cfargument name="parent" type="component" required="false"
hint="the parent cfc custom tag, if there is one" />

 </cffunction>

 <cffunction name="onStartTag" returntype="boolean">

 <cfargument name="attributes" type="struct" required="true" />

 <cfargument name="caller" type="struct" required="true" />

 <cfif structKeyExists(arguments.attributes, "dump")>

 <cfdump var="#arguments.attributes.dump#" label="dump via
cfabort" />

 </cfif>

 <!--- Create an instance of the original Railo Abort tag --->

 <cfset var abortJavaObject = createObject("java", "railo.
runtime.tag.Abort") />

 <!--- set the error text when given --->

 <cfif structKeyExists(arguments.attributes, "showerror")>

 <cfset abortJavaObject.setShowerror(javaCast("string",
arguments.attributes.showerror)) />

 </cfif>

 <!--- call the cfabort function --->

 <cfset abortJavaObject.doStartTag() />

 <cfreturn true />

 </cffunction>

 <cffunction name="onEndTag" output="true" returntype="boolean">

 <cfargument name="attributes" type="struct" required="true" />

 <cfargument name="caller" type="struct" required="true" />

 <cfargument name="generatedContent" type="string"
required="false" />

 <cfreturn false />

 </cffunction>

</cfcomponent>

http:///

Extending Railo Server

[246]

2. Save this ile to the tag library, for example:

 Tomcat:<Railo install directory>/tomcat/railo/railo-
server/context/library/tag/

Railo Express: Railo install directory>/lib/ext/railo-server/
context/library/tag/

3. Save this ile as Abort.cfc in <Railo install directory>/tomcat/railo/

railo-server/context/library/tag/, or <Railo install directory>/

lib/ext/railo-server/context/library/tag/, if you are using Railo
Express ediion.

4. Now, restart your Railo Server instance for this new tag to be picked up by clicking
on the Restart link in the Server Administrator navigaion or by running the
following code:

<cfadmin action="reload" type="server" password="Your-server-
admin-pasword" />

5. Let's create a new CFML ile dumpandabort.cfm with the following content:

<cfset myData = {name: "Paul", role: "Railo Extension Manager"} />

<cfabort dump="#myData#" />

What just happened?
In short, we changed the working of the <cfabort> tag in our Railo instance.

First, we created the Abort.cfc ile. We could have made this CFC even smaller by
removing the argument declaraions in the init and onEndTag funcions. I let them
there, so that you can see which arguments are given to those funcions.

http:///

Chapter 9

[247]

The funcion onStartTag within the CFC contains all our funcionality. If we take a closer
look at that code, we can see that we irst check if a dump atribute was given in the
<cfabort> tag. If so, we do a <cfdump> with the given data:

<cfif structKeyExists(arguments.attributes, "dump")>

 <cfdump var="#arguments.attributes.dump#" label="dump via cfabort"
/>

</cfif>

Now all that's let to do is to make sure that a regular <cfabort> acion is executed. But

how do we do this? We can't simply call <cfabort>, because that would once again trigger
our newly created Abort.cfc, this would cause an ininite loop, and would give you both a
headache and a non-responding computer. So, let's move on to a beter soluion.

You know that Railo Server is an open source product, right? That means we can download
and inspect the source code. For this exercise, I searched for "abort" within the Railo source
code, which showed me the following ile:

 https://github.com/getrailo/railo/blob/master/railo-java/railo-core/

src/railo/runtime/tag/Abort.java. Because it is stored in the directory /railo/

runtime/tag/, this is most deinitely the ile we need.

I will not get into Java speciics here, especially because I haven't got the faintest clue as
to how to write Java code myself. But from looking at the source code, I could extract the
following pieces of code within that ile:

package railo.runime.tag;
...

public final class Abort extends TagImpl {

...

 public void setShowerror(String showerror) {

 this.showerror=showerror;

 }

...

 public int doStartTag() throws PageException {

 if(showerror!=null) throw new AbortException(showerror);

 throw new railo.runtime.exp.Abort(type);

 }

...

}

https://github.com/getrailo/railo/blob/master/railo-java/railo-core/src/railo/runtime/tag/Abort.java
https://github.com/getrailo/railo/blob/master/railo-java/railo-core/src/railo/runtime/tag/Abort.java
https://github.com/getrailo/railo/blob/master/railo-java/railo-core/src/railo/runtime/tag/Abort.java
http:///

Extending Railo Server

[248]

Combining the Java package name with the ilename, we get railo.runtime.tag.Abort

as the class name:

<cfset var abortJavaObject = createObject("java", "railo.runtime.tag.
Abort") />

Because there is another opional parameter for the <cfabort> tag, showerror, we need
to set that atribute in the abort object we just created:

<cfif structKeyExists(arguments.attributes, "showerror")>

 <cfset abortJavaObject.setShowerror(javaCast("string", arguments.
attributes.showerror)) />

</cfif>

Because we are directly dealing with a Java object here, we need to
make sure that we are sending the correct argument type to the funcion
setShowError. In this case, that would be a string, and hence we need
javaCast("string", arguments.attributes.showerror).

Now that we got the Java object ready for acion, we can simply run the original abort
funcion like this:

<cfset abortJavaObject.doStartTag() />

Ater wriing this code, we saved it into <Railo>..../context/library/tag/.

As the directory name suggests, we got a library available to us where we can save our
custom tags and funcions. You can also ind this library path within the WEB-INF directory

of each web context, where you can save custom tags and funcions to be used only for the
web context.

CFML functions
When I say CFML funcions, you might think of the built-in funcions such as isDefined()

or trim(), but you might also think about <cffunction name="myFunction">. The
main diference between the two is that the later needs to be explicitly set within your
applicaion before it can be used, while the built-in funcions can just be called from
anywhere at any ime.

What we are going to do now is convert our own funcion into a built-in CFML funcion.
Let's start!

http:///

Chapter 9

[249]

Time for action – creating our own CFML function

Now that we know how to create our own CFML tag in Railo Server, it won't be very hard to
create our own CFML funcion. And indeed, it isn't!

Let's create the funcion cleanScope(), which cleans the contents of a scope like URL
or form (or any CFML structure actually). This could save us some lines of code in our
next project:

1. Create a ile with the following content:

<cffunction name="cleanscope" output="false" access="public"
returntype="any" hint="I clean a given struct/array from spaces
and script injection">

 <cfargument name="scope" type="any" required="true" hint="The
scope to clean (e.g. URL of form)" />

 <cfset var key = "" />

 <cfif not isStruct(arguments.scope) and not isArray(arguments.
scope)>

 <cfthrow message="The argument for function cleanscope must be
either a struct or array!" />

 </cfif>

 <cfloop collection="#arguments.scope#" item="key">

 <!--- if the value is a simple value (string, number, etc.)
--->

 <cfif isSimpleValue(arguments.scope[key])>

 <!--- replace any instance of "<script", "</script", or
"<iframe", with "<cleaned" --->

 <cfset arguments.scope[key] = rereplaceNoCase(arguments.
scope[key], "<(/?)(script|iframe)", "<\1cleaned", "all") />

 <!--- remove spaces, tabs and line feeds from the start and
end of each value --->

 <cfset arguments.scope[key] = trim(arguments.scope[key]) />

 <!--- If we find an array or struct, we will clean those
contents too --->

 <cfelseif isStruct(arguments.scope[key]) or isArray(arguments.
scope[key])>

 <cfset arguments.scope[key] = cleanscope(arguments.
scope[key]) />

 </cfif>

 </cfloop>

 <cfreturn arguments.scope />

</cffunction>

http:///

Extending Railo Server

[250]

2. Save the ile as cleanscope.cfm in <Railo install directory>/tomcat/

railo/railo-server/context/library/function/, or <Railo install

directory>/lib/ext/railo-server/context/library/function/, if you

are using the Railo Express ediion.

3. Now create a test ile named cleanScopeTest.cfm with the following content:

<!--- first off, let's restart Railo Server for the new custom
function to be picked up (we only need to do this one time) --->

<cfadmin action="reload" type="server" password="Your-server-
admin-pasword" />

<!--- if the form scope is not empty, clean it --->

<cfif structCount(form) gt 0>

 <cfset cleanscope(form) />

 <!--- dump the form values --->

 <cfdump eval=form />

</cfif>

<form method="post" action="cleanscopetest.cfm">

 <input type="text" name="evilvalue" value="<script>alert('boo
')</script>" size="50" />

 <input type="text" name="spacy" value=" Hi there! " size="50"
/>

 <input type="text" name="name.first" value=" Railo " size="50"
/>

 <input type="text" name="name.last" value=" Server
"size="50" />

 <input type="text" name="versions[]" value=" 3.3 " size="50"
/>

 <input type="submit" value="test" />

</form>

<cfabort />

4. When we save this ile to the <Railo Install Directory>/webroot, run it,

and click on the test buton, we get the following output:

http:///

Chapter 9

[251]

What just happened?
Just as we previously created a CFML tag, we now created and tested an internal CFML
funcion. The only thing we needed to do was deine the <cffunction> and save it to the

library/function/ directory of Railo Server.

There are a few caveats that you need to be aware of when creaing custom CFML funcions:

 � The funcion name and the ilename must be exactly the same (cleanscope in the

example).

 � The ile extension must be .cfm, and not .cfc as you might expect.

 � When using a funcion writen in <cfscript>, it must be surrounded by a

<cfscript> tag.

http:///

Extending Railo Server

[252]

Using return type "any"

Did you noice the value any (on the irst line) for the returntype and cfargument type

within the funcion? The reason we used this type has to do with the fact that we needed
to allow both a structure and an array as the argument. Because we return the argument
at the end of the funcion (<cfreturn arguments.scope />), we also needed to set the
returntype to any. This seing makes all types of incoming data possible, so we needed to
add an extra check:

<cfif not isStruct(arguments.scope) and not isArray(arguments.scope)>

 <cfthrow message="The argument for function cleanscope must be
either a struct or array!" />

</cfif>

Of course, it is your own decision to include these kinds of checks, but if you hate debugging
strange errors as much as I do, well, then you'd beter leave it where it is.

Structure and array notation in the form and URL scope

If you take a closer look at the example page we created, you will see the input names
versions[], name.first, and name.last. If you are coming from the PHP world,
then you are probably familiar with this syntax, but if you're not, keep on reading.

The array notaion versions[] creates an array called versions in the form scope,

where the value of the form variable is used for the array value. If you want to add another
value to this array, then you need to send another form variable called versions[].

For example, let's have a look at the following lines of code:

<input name="versions[]" value="3.2" type="text" />
<input name="versions[]" value="3.3" type="text" />

This code will create an array called versions, with the values 3.2 and 3.3. Seing a list as
the input value, that is, 3.2,3.3, does not create two items in the array. You really need to
send two form variables.

The dot notaion name.last creates a structure within the form scope. As you can see
in the previous image, it created a structure called name, with the keys first and last.

Besides this structure, these form variables are also available by their original names, name.

last and name.first.

This is a new notaion, which can help you in pre-organizing your FORM or URL scope. On the
other hand, you need to take this into account when you are working with the FORM or URL
scope; you might encounter non-simple values where you did not expect them to be.

http:///

Chapter 9

[253]

Installing extensions

Have you taken a look at the Extension | Applicaions menu item in the Web and Server
administrator yet? It contains tons of useful applicaions, eagerly waiing to be installed
by you:

The previous screenshot shows the list of extensions available in the Railo Web Administrator.

These applicaions are generally standalone applicaions that can be installed in the context
that the Railo Web Administrator is being used in. For example, we have various frameworks
and applicaions available to us. When you install one of these applicaions, it will only be
available in the context that you have installed it into and not afect other parts of the server.

But what about applicaions that are not context-speciic, for example, if you want to extend
the capabiliies of the whole server?

These applicaions are installed from the Railo Server Administrator. They are applicaions
that change or add some behavior to the whole server, and that include all the other
contexts that are running on that server.

http:///

Extending Railo Server

[254]

Some examples of these types of applicaions are:

 � Admin Sync: This applicaion allows you to synchronize the seings of one server
with another completely separate server.

 � Cluster Scope: This provides a new scope named CLUSTER that can be read between
diferent servers in a cluster.

 � EHCache Core: This extension allows you to install a fully featured and clusterable
version of the EHCache caching server.

This screenshot displays the list of extensions available in the Railo Server Administrator.

Some of them are paid extensions, others are free. Let's start by installing a new custom
tag: <cfdns>.

Time for action – installing an extension for the web context

As the itle suggests, we're going to install an extension for one web context. This needs to
be done via the corresponding web administrator.

1. Go to http://localhost:8080/railo-context/admin/web.cfm (or browse
as according to your local setup, for example, site2.local:8888).

2. Ater logging in, go to the menu item Extension | Applicaions.

3. Under the heading Not installed, click on the link CFDNS.

4 You will get a details page with the speciicaions of the extension:

http://localhost:8080/railo-context/admin/web.cfm
http://localhost:8080/railo-context/admin/web.cfm
http:///

Chapter 9

[255]

5. Now click on Install.

6. Ater agreeing to the license informaion, you'll get the following screen:

7. That screen means you have installed a new Railo Server custom tag within
30 seconds.

8. Let's test this by creaing a new ile dnstest.cfm with the following content:

<cfdns action="getaddress" host="www.getrailo.org"
variable="testresult" />

<cfdump eval=testresult />

http://www.getrailo.org/
http://www.getrailo.org/
http:///

Extending Railo Server

[256]

9. When we save that page and run it, we get the following output:

What just happened?
By using the Railo Web Administrator, we installed a Railo custom tag for use in our web
context. This means we can use it for the website we are on (localhost:8080), but not

in other web contexts like site2.local.

We also tested whether the new tag worked, by doing an IP lookup for

http://www.getrailo.org.

If you want more informaion about the working of the <cfdns> tag, just
visit http://www.railodeveloper.com/post.cfm/railo-
custom-tag-cfdns.

Server versus web extensions
The look and feel of both Railo admins is exactly the same, and the procedure for installing
extensions is also exactly the same. However, there is one diference between the two,
namely, the list of available extensions.

There are extensions that are only useful when installed in a speciic web context, for
example, the installaion of a blog applicaion. A typical Server extension is the (paid)
Admin-synchronizaion extension. This extension keeps the seings for muliple Railo
installaions in sync.

There is a third category of extensions, and it is available in both Administrators. The CFDNS
extension, for example, is available in both admins. If you have your Railo website hosted in
a shared-hosing environment, then you will probably have access to your own web admin,
but not to the global server admin. The great thing about Railo is that you don't have to open
a icket with your hosing provider to have the extension added (or updated), as you can just
manage it locally with your own web admin.

http://www.getrailo.org/
http://www.railodeveloper.com/post.cfm/railo-custom-tag-cfdns
http://www.railodeveloper.com/post.cfm/railo-custom-tag-cfdns
http:///

Chapter 9

[257]

The extension installation system
We have gone through the installaion of the CFDNS extension. We clicked it in the admin,
hit the Install buton, agreed to the license terms, and we were done. It doesn't get more
basic than that.

The extension installaion system ofers us much more, with data input and validaion
opions across muliple steps.

Time for action – installing the Galleon forums web application

In order to see a more complex applicaion installed, we are going to install the Galleon
forums applicaion in our web context:

1. Before we go ahead, Galleon needs a database to store all of its informaion. We
need to create a database and assign a datasource to it (we have covered this
already a number of imes; just create a new database in your MySQL database
server and a datasource in the Services | Datasource secion of the administrator)
and call it Galleon to keep it consistent.

2. Let's go and check out the available applicaions in our Railo Web Administrator
by going to http://localhost:8888/railo-context/admin/web.cfm

and clicking on the Extension | Applicaions link. Here, we can see the available
applicaions that can be installed in our context:

http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http:///

Extending Railo Server

[258]

3. Let's choose the Galleon CFML Forums and click on the opion to see some more
informaion about it:

4. Now that we are ready to install it, click on the install buton and we are presented
with a License agreement screen:

5. Now, the next screen has a number of ields asking us for various details, such
as which datasource we are going to use (let's select the Galleon datasource we
created in the irst step). It has a number of seings, but let's just add our e-mail
address as that is all that is required to be added by us:

http:///

Chapter 9

[259]

6. Once we have illed everything, we can now click on the install buton at the botom
and the applicaion will be installed in our context.

http:///

Extending Railo Server

[260]

7. When we click on the link in this screen, we will be able to view the
installed applicaion:

8 We are not going to go into how this applicaion works here, but you can go ahead
and try it out. When we click on the OK buton on the installaion conirmaion
screen, we will be taken back to the applicaion's screen and we can see which
applicaions we now have installed:

What just happened?
We installed the Galleon CFML Forums by using its Railo Server extension. We needed to
provide some necessary informaion, such as our e-mail ID which was asked by the installer
in the coniguraion screen. Then, we hit install, ater which we installed Railo Server and
conigured our applicaion for us.

http:///

Chapter 9

[261]

We didn't need to download any external iles, Railo Server did the whole installaion for
us. The extension installed the relevant database tables for us, and copied all the iles to
the correct locaion. Now, you can see what the beneit is by creaing an extension for
your applicaion. It makes it extremely easy to package applicaions for other people to
use and install.

Time for action – creating our own Railo application extension

Now that we know how to install extensions, it is about ime to create our own.

An extension is a ZIP ile that contains at least three iles:

1. license.txt contains the license for the extension

2. Install.cfc handles the complete installaion

3. config.xml contains all informaion about displaying the installaion steps: ield
names, values, labels, page itle, and so on

Creating the Famous Quotes App
For this exercise, we will create an applicaion which we can then install. So let's create a
Famous Quotes App:

 � Under the <Railo Install Directory>/webroot, create a folder named

famousquotes.

 � Create a ile quotes.txt in our famousquotes folder with the following content:

 Houston, we've got a problem...

 Oh my god, they killed Kenny!

 … and any others you can come up with, divided by a line break

 � Create Quote.cfc with the following content. This returns a random single line
from the quotes.txt ile:

<cfcomponent>

 <cffunction name="getquote" returntype="string" output="false">

 <cfset var filecontents = fileRead("quotes.txt") />

 <cfset var numberofquotes = listLen(filecontents, chr(10)) />

 <cfreturn listGetAt(fileContents, randRange(1,
numberofquotes), chr(10)) />

 </cffunction>

</cfcomponent>

http:///

Extending Railo Server

[262]

 � Create include_quote.cfm with the following content. This will call the Quote.
cfc component and call our getQuote() funcion:

<h3>Random quote</h3>

<cfset quoteObj = createObject("component", "Quote") />

<cfoutput><p>#quoteObj.getQuote()#</p></cfoutput>

 � Create QuoteWebservice.cfc:

<cfcomponent extends="Quote">

 <cffunction name="getquote" access="remote" returntype="string"
output="false">

 <cfreturn super.getquote() />

 </cffunction>

Create a ZIP ile with these four iles and name it famousquotesapp.zipc.

Alright, we got a killer app with included web service funcionality and everything. It's ime
to make a Railo Server extension for it.

First, we need to think about how we want the applicaion to be installed. Just think of a
regular "next-next-inish" installer. In this case, we can just copy four iles to a directory
within the webroot. Also, we should ask if they actually want the web service to be installed
as well, as it could be perceived as an undesired access point.

 � We've got two quesions we want to ask, which we will split into two installaion
steps. Create the config.xml ile, with the following content:

<?xml version="1.0"?>

<config>

</config>

 � This ile will be read by Railo Server to create our steps; let's add the irst step
that asks where you want to install the applicaion. In the config.xml ile,
add the following:

<?xml version="1.0"?>

<config>

 <step label="Step 1" description="Thanks for installing the
Famous Quotes app!
 The following steps will guide you
through installing the app.">

 <group label="Installation directory" description="Please
enter the directory path starting from your webroot, where the
Famous Quotes app will be installed into">

 <item type="text" name="installdir" label="Directory name or
path">/quotesapp/</item>

 </group>

 </step>

</config>

http:///

Chapter 9

[263]

 � Great! This gets where we want to install the applicaion. Now let's add a second
step, asking whether the user wants to install the webservice:

<?xml version="1.0"?>

<config>

 <step label="Step 1" description="Thanks for installing the
Famous Quotes app!
 The following steps will guide you
through installing the app.">

 <group label="Installation directory" description="Please
enter the directory path starting from your webroot, where the
Famous Quotes app will be installed into">

 <item type="text" name="installdir" label="Directory name or
path">/quotesapp/</item>

 </group>

 </step>

 <step label="Step 2" description="Webservice installation">

 <group label="Install webservice?" description="Do you want
to install the webservice component as well? This will make it
possible for everyone to retrieve the quotes from your website.">

 <item type="radio" name="installWS" description="">

 <option value="1" description="">Yes</option>

 </item>

 <item type="radio" name="installWS" description="">

 <option value="0" description="">No</option>

 </item>

 </group>

 </step>

</config>

 � We need to validate the input, copy iles, and have a funcion to uninstall. Let's
create the Install.cfc ile for this task:

<cfcomponent output="no">

 <cffunction name="validate" returntype="void" output="no">

 <cfargument name="error" type="struct" required="yes" />

 <cfargument name="path" type="string" required="yes" />

 <cfargument name="config" type="struct" required="yes" />

 <cfargument name="step" type="num+++++

++

eric" required="yes" />

 <cfset var allformdata = config.mixed />

 <!--- the install directory --->

 <cfif arguments.step eq 1>

 <cfif left(allformdata.installdir, 1) neq "/" or
right(allformdata.installdir, 1) neq "/">

http:///

Extending Railo Server

[264]

 <cfset arguments.error.fields.installdir = "The directory
must both start and end with a forward slash (i.e. /foldername/)"
/>

 </cfif>

 <!--- Does a file "quotes.txt" exist in the directory? If
so, we don't allow overwrite. --->

 <cfif fileExists(expandPath(allformdata.installdir &
"quotes.txt"))>

 <cfset arguments.error.fields.installdir = "The directory
[#allformdata.installdir#] already exists, and contains a
file [quotes.txt]. Please backup and remove this file before
continuing." />

 </cfif>

 <cfelse>

 <cfif not structKeyExists(allformdata, "installWS")>

 <cfset arguments.error.fields.webservertype = "Please
choose if you want to install the webserver file." />

 </cfif>

 </cfif>

 </cffunction>

</cfcomponent>

 � The Install.cfc now has one method, named validate; this method will check
whether the user has entered the proper values for the locaion, whether we are
overwriing any exising iles, and if they have chosen to install the web service.

 � Next, let's add the install method to our Install.cfc ile:

<cfcomponent output="no">

 <cffunction name="validate" returntype="void" output="no">

 ...

 </cffunction>

 <cffunction name="install" returntype="string" output="no">

 <cfargument name="error" type="struct" required="yes" />

 <cfargument name="path" type="string" required="yes" />

 <cfargument name="config" type="struct" required="yes" />

 <cfset var allformdata = arguments.config.mixed />

 <cfset var sReturn = "" />

 <cfset var savePath = expandPath(allformdata.installdir) />

 <!--- create the destination directory when necessary --->

 <cfif not directoryExists(savepath)>

 <cfdirectory action="create" directory="#savepath#"
recurse="yes" />

 </cfif>

http:///

Chapter 9

[265]

 <!--- copy the app files to the right location --->

 <cfzip action="unzip" file="#arguments.path#famousquotesapp.
zip" destination="#savepath#" filter="*.*" overwrite="yes" />

 <!--- remove the webservice file, if requested --->

 <cfif allformdata.installWS neq 1>

 <cffile action="delete" file="#savepath#QuoteWebservice.cfc"
/>

 </cfif>

 <!--- give a response --->

 <cfsavecontent variable="sReturn"><cfoutput>

 <h3>The Famous Quotes app has been installed!</h3>

 <p>See
the app in action</p>

 <cfif allformdata.installWS neq 1>

 <p>Note: the webservice files were not installed.</
em></p>

 </cfif>

 <p></p>

 </cfoutput></cfsavecontent>

 <cfreturn sReturn />

 </cffunction>

</cfcomponent>

 � The install method takes care of copying the right iles, including checking
whether we need to also remove the web service. It does this by using the
famousquotesapp.zip ile we created previously and unpacking the iles.

 � Now that we have installed our extension, let's add the funcionality to uninstall it.
Add the uninstall method to our Install.cfc component:

<cfcomponent output="no">

 <cffunction name="validate" returntype="void" output="no">

 ...

 </cffunction>

 <cffunction name="install" returntype="string" output="no">

 ...

 </cffunction>

 <cffunction name="uninstall" returntype="string" output="no">

 <cfargument name="path" type="string" required="yes" />

 <cfargument name="config" type="struct" required="yes" />

 <cfset var allformdata = arguments.config.mixed />

 <cfset var savePath = expandPath(allformdata.installdir) />

http:///

Extending Railo Server

[266]

 <cfset var qFiles = "" />

 <cfset var aErrors = [] />

 <!--- find out which files we installed, so we can remove
those --->

 <cfzip action="list" name="qFiles" file="#arguments.
path#famousquotesapp.zip" filter="*.*" />

 <!--- keep the quotes.txt file; it might contain user-
provided content --->

 <cfloop query="qFiles">

 <cfif qFiles.name neq "quotes.txt">

 <cftry>

 <cffile action="delete" file="#savePath##qFiles.name#"
/>

 <cfcatch>

 <cfset arrayAppend(aErrors, "The file
#savePath##qFiles.name# could not be deleted: #cfcatch.message#
#cfcatch.detail#.") />

 </cfcatch>

 </cftry>

 </cfif>

 </cfloop>

 <cfset var sReturn = "" />

 <cfsavecontent variable="sReturn"><cfoutput>

 <p>The Famous Quotes App is now
uninstalled.<p/>

 <p>To prevent accidental loss of your data, the file
quotes.txt has not been removed.</p>

 <!--- errors occurred? Show them here --->

 <cfif not arrayIsEmpty(aErrors)>

 <p style="color:red;">One or more errors occurred while
uninstalling:</p>

 <ul style="color:red;">

 <cfset var i = 0 />

 <cfloop collection="#aErrors#" item="i">

 #aErrors[i]#

 </cfloop>

 </cfif>

 </cfoutput></cfsavecontent>

 <cfreturn sReturn />

 </cffunction>

</cfcomponent>

http:///

Chapter 9

[267]

 � The uninstall method gets a list of iles from our famousquotesapp.zip

ile and deletes these iles from the folder in which the applicaion was originally
installed in. It doesn't remove the quotes ile as, of course, the user might have
changed it.

 � Finally, let's use a inal method; this ime, it's the update method, which will be run
if there is a new version of the extension:

<cfcomponent output="no">

 <cffunction name="validate" returntype="void" output="no">

 ...

 </cffunction>

 <cffunction name="install" returntype="string" output="no">

 ...

 </cffunction>

 <cffunction name="uninstall" returntype="string" output="no">

 ...

 </cffunction>

 <cffunction name="update" returntype="string" output="no">

 <cfreturn install(argumentCollection=arguments) />

 </cffunction>

</cfcomponent>

 � The last thing we need to do is create a license.txt ile. Here, we are using the
Apache 2 license:

Copyright 2011 <Your_name>

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this software except in compliance with the
License.

You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,
software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.

See the License for the specific language governing permissions
and

limitations under the License.

http:///

Extending Railo Server

[268]

 � Now that we've got all the iles needed to create our own extension, we need to
make a ZIP ile containing all the documents we just created. This ZIP ile will be our
Railo Extension.

 � Create a ZIP ile, named famousquotesinstaller.zip, with the following iles:

 � famousquotesapp.zip

 � config.xml

 � Install.cfc

 � license.txt

What just happened?
You are probably kind of disappointed at this point, because you cannot see the result

of all the hard work you just did. I am sorry for that, and I will make it up to you in the
upcoming pages.

So, what just happened? We created a irst-class Famous Quotes App, and we made a Railo
extension for it, which we will absolutely be installing—just hang on for a few paragraphs.

We created a config.xml ile, which contains the steps (HTML pages) we need to go
through for installing the extension. It describes the HTML frontend of the installaion
procedure. Each step within the XML contains one or more groups, which contains one or
more item tags. These items will be shown as HTML form elements during installaion, such
as <input type="text">, <input type="radio">, and <select>.

For more in-depth knowledge of the coniguraion opions, see: http://
wiki.getrailo.org/wiki/Tutorial:Extension_Provider.

Then, we created a fairly long Install.cfc component, which handles the complete
installaion, updaing, and uninstallaion of our extension.

Ater each of the steps deined in the XML ile, the validate funcion within Install.cfc

is called. This funcion checks the entered data. If you want to prevent the user from going
to the next step because a problem is found with the given data, you can just add an error to
the given error structure in the arguments scope:

<cfif not structKeyExists(allformdata, "installWS")>

 <cfset arguments.error.ields.webservertype = "Please choose if you want
to install the webserver file." />

</cfif>

If the arguments.error structure remains empty, then the installaion goes to the
next step.

http://wiki.getrailo.org/wiki/Tutorial:Extension_Provider
http://wiki.getrailo.org/wiki/Tutorial:Extension_Provider
http:///

Chapter 9

[269]

Ater all validaion steps, the install funcion is called. We receive all submited data in the
config argument and the absolute path to our installaion package in the path argument.

When doing a <cfdump eval=arguments />, you will see the following:

Install.cfc simply copies our Famous Quotes App iles to the requested directory by
unzipping the zipped applicaion:

<cfzip action="unzip" file="#arguments.path#famousquotesapp.zip"
destination="#savepath#" filter="*.*" overwrite="yes" />

Then, all we need to do is return an installaion successful message.

We also needed to provide an uninstall funcion. This funcion is called from the Railo
Administrator when a user chooses to uninstall the applicaion. This funcion receives the
same argument values as the install funcion received while installing. To make this
possible, all installaion variables are automaically writen to the coniguraion XML of the
Railo administrator (railo-server.xml / railo-web.xml.cfm).

http:///

Extending Railo Server

[270]

Time for action – creating our own extension provider

We created the Railo Extension famousquotesinstaller.zip, which we now have on
our local computer. How can we add and share the extension within Railo Server? This can
be achieved by using the Extension Provider system. This is a system unique to Railo Server,
where you can easily share extensions with other Railo Server users.

We only need to create one CFC ile, which will be serving our extensions for us, and
provides some details about itself.

1. At the root of our <Railo Install Directory>/webroot2/ folder, create a ile
named ExtensionProvider.cfc, with the following content:

<cfcomponent output="no">

 <cffunction name="getInfo" access="remote" returntype="struct"
output="no">

 <cfset var info = {

 title="Railo book extensions"

 , description="Providing you with the best Extensions you
can find!"

 , image="http://site2.local:8888/railoBookExtensions.png"

 , url="http://site2.local/"

 , mode="develop"

 } />

 <cfreturn info />

 </cffunction>

</cfcomponent>

2. The previous code adds the getInfo method to our extension provider, which
returns some informaion about the extension provider itself. Next, let's add the
listApplications method, which will obviously list our applicaions:

<cfcomponent output="no">

 <cffunction name="getInfo" access="remote" returntype="struct"
output="no">

 …

 </cffunction>

 <cffunction name="listApplications" access="remote"
returntype="query" output="no">

 <cfset var apps = queryNew("type,id,name,label,description,ver
sion,category,image,download,author,codename," &

http:///

Chapter 9

[271]

 "video,support,documentation,forum,mailinglist,network,creat
ed") />

 <cfset QueryAddRow(apps) />

 <cfset QuerySetCell(apps, "id", "famousquotes") />

 <cfset QuerySetCell(apps, "name", "Famous Quotes App") />

 <cfset QuerySetCell(apps, "type", "web") />

 <cfset QuerySetCell(apps, "label", "Famous Quotes App") />

 <cfset QuerySetCell(apps, "description", "This extension will
install the Famous Quotes App") />

 <cfset QuerySetCell(apps, "author", "[Your name]") />

 <cfset QuerySetCell(apps, "codename", "railobookV1") />

 <cfset QuerySetCell(apps, "support", "http://site2.local/
support/") />

 <cfset QuerySetCell(apps, "created", CreateDate(2011, 06, 01))
/>

 <cfset QuerySetCell(apps, "version", "1.0.0") />

 <cfset QuerySetCell(apps, "category", "Applications") />

 <!--- if you do NOT define a URL here, the function
getDownloadDetails() is called --->

 <cfset QuerySetCell(apps, "download", "") />

 <cfreturn apps />

 </cffunction>

</cfcomponent>

3. In the previous code, we create a query object and add a row to it, adding
informaion to all the columns about our Famous Quotes Apps. Finally, let's add the

getDownloadDetails method, which will be called when someone installs our
applicaion:

<cfcomponent output="no">

 <cffunction name="getInfo" access="remote" returntype="struct"
output="no">

 ...

 </cffunction>

 <cffunction name="listApplications" access="remote"
returntype="query" output="no">

 ...

 </cffunction>

http:///

Extending Railo Server

[272]

 <cffunction name="getDownloadDetails" access="remote"
returntype="struct" output="no">

 <cfargument name="type" required="yes" type="string" />

 <cfargument name="serverId" required="yes" type="string" />

 <cfargument name="webId" required="yes" type="string" />

 <cfargument name="appId" required="yes" type="string" />

 <cfargument name="serialNumber" required="no" type="string"
default="" />

 <cfset var linebreak = server.separator.line />

 <cflog file="extensiondownloads" type="information" text="Date
:#now()##linebreak#IP:#cgi.REMOTE_ADDR##linebreak#arguments:#seria
lize(arguments)#" />

 <cfset var data = structNew() />

 <cfif arguments.appId eq "famousquotes">

 <cfset data.error = 0 />

 <cfset data.url = "http://#cgi.http_host#/
famousquotesinstaller.zip" />

 <cfelse>

 <cfset data.error = 1 />

 <cfset data.url = "" />

 <cfset data.message = "The extension you requested does not
exist." />

 </cfif>

 <cfreturn data />

 </cffunction>

</cfcomponent>

4. This method checks if the extension exists and returns the url of the

famousquotesinstaller.zip ile

5 Now go to the Railo web admin at http://localhost:8888/railo-
context/admin/web.cfm and navigate to Extensions | Providers. Check the

checkbox, and enter our extension provider's URL http://site2.local:8888/
ExtensionProvider.cfc in the textbox next to it:

http://localhost:8888/railo-context/admin/web.cfm
http://localhost:8888/railo-context/admin/web.cfm
http:///

Chapter 9

[273]

6. Ater we hit submit, we can navigate to Extensions | Applicaions within the
administrator. There, we can inally see our Famous Quotes App listed:

What just happened?
We created a CFC ile, which provides informaion about our extensions. Most of the
funcions in the CFC have their access atribute set to remote, which means they can
be called as a web service:

<cffunction name="getInfo" access="remote" ...>

We saved it in the webroot of site2.local, so we can access it from the URL
http://site2.local:8888/ExtensionProvider.cfc.

Then, we added this URL into the Railo Web Administrator as a new Extension provider.
Ater doing this, we saw our Famous Quotes App appear in the Applicaions list of the

administrator.

Let's go into some more detail about the CFC we just created.

http://site2.local:8888/ExtensionProvider.cfc
http://site2.local:8888/ExtensionProvider.cfc
http:///

Extending Railo Server

[274]

The ExtensionProvider CFC
First of, you can name the ile anything you want. It could even be a .NET web service if you
wanted it to; but then you wouldn't be reading this book now, would you?

Anyway, the CFC has a few required methods:

 � getInfo: This method returns a structure with informaion about your Extension
Provider.

 � listApplications: This one returns a query with all the available extensions.

 � getDownloadDetails: This returns a structure with download informaion for
a given extension. Only used/required when no download URL is given in the
extension details query.

GetInfo structure information

Key Descripion

itle Title of the extension provider

descripion Descripion of the extension provider

image Link to an image

URL URL for more informaion

mode Deines how the informaion of the
ExtensionProvider is cached in the Railo
Administrator. The valid values are:

•	 develop—does not cache the result of
the extension provider

•	 production (or no value)—caches
the result in the session scope of the

Railo administrator user

This informaion is partly shown in the Details page of an extension, and fully when you click
on the Provider's name in the Applicaions lising:

http:///

Chapter 9

[275]

ListApplications query information

As we have seen in the previous example, we needed to create a query with informaion
about our extension. The following list is very long, but most of the ields can remain empty.
The required ields are marked with an asterisk (*).

Field Descripion

Id * This is the ideniier of the extension. With this ID, updates are done and
download details are retrieved.

Name * This is the internal name of the extension. It must be a valid CFML variable name.

Label * This displays the name of the extension.

Descripion * This is the text/HTML descripion of the extension.

Type This determines if the extension can be installed via the Web and/or Server
Administrator. The valid values are: server, web, and so on. The value "web" is the
default value.

Download It is the URL to the extension itself. If empty, the funcion
getDownloadDetails() is called when a user wants to install the extension.

Author Author of the extension.

Created The date of when was the extension created.

Version * Version number of the extension.

Codename Code name for (the current release of) the extension.

Category Category of the extension. For example "CMS", "Framework", "Database".

Video URL to a video ile, for example, for installaion instrucions.

Image URL to an image ile, which will be used as the logo for the extension.

http:///

Extending Railo Server

[276]

Field Descripion

Support Support URL for the extension

Documentaion URL to documentaion about the extension

Forum URL to a forum about the extension

Mailinglist URL to a mailing list about the extension

Network URL to a users' network about the extension

GetDownloadDetails function

As said before, this funcion returns the download details about a given extension. There are
a lot of beneits when using this funcion, instead of just adding the download link to the
query of listApplications(). The most important one is that you can track how many
people downloaded your extension, as we saw in the code we created:

<cfset var linebreak = server.separator.line />

<cflog file="extensiondownloads" type="information" text="Date:#now()
##linebreak#IP:#cgi.REMOTE_ADDR##linebreak#arguments:#serialize(argum
ents)#" />

Because the funcion is only called when a Railo Administrator user chooses to install the
plugin, you can be fairly certain that the download count is the sum of all installaions and
updates.

Another good reason to use this funcion is for payment handling. If we want to become rich
with our Famous Quotes App, we could add a simple check like this:

<cfif not hasPaidForExtension(arguments.appID, arguments.webID)>

 <cfset data.error = 1 />

 <cfset data.url = "" />

 <cfset data.message = "Please first pay $25 to our paypal account
paypal@famousq.com. Afterwards, email us your server details by <a
href='mailto:sales@famousq.com?body=#urlencodedformat('$25 was paid to
the paypal account, for web ID #arguments.webID#')#'>clicking here</
a>" />

<cfelse>

 [... send them the download details ...]

mailto:paypal@famousq.com
mailto:paypal@famousq.com
mailto:sales@famousq.com?subject=Famous
http:///

Chapter 9

[277]

The structure returned by this funcion must contain the ields, as shown in the
following table:

Key Descripion

Error A number indicaing whether an error should be shown:

 � 0 : No error. The "URL" value must be given.

 � 1 : An error occurred. The "message" ield contains the error message.

URL The URL to the extension

Message The error message

The role of the Web ID and Server ID
You probably noiced that we receive a webID and serverID as arguments for the

getDownloadDetails funcion. These IDs can uniquely idenify any Railo Server and
web context.

The Server ID is created by Railo at the moment Railo Server is started for the irst ime. The
Web ID is created at the moment a web context is irst called. Both IDs will never change and
are stored in the Railo coniguraion iles.

You can view the Server ID on the Dashboard page of the Railo Administrator. Even though
there is another ID shown on the dashboard page, which is labelled "Hash", this is not the

Web ID:

http:///

Extending Railo Server

[278]

The Web ID can be found programmaically by running the following code from somewhere
in the Web context:

<cfdump eval=getRailoId().web.id />

This will output the following:

If you think like me, then the quesion currently in your head is, "So what does the complete
getRailoID() output look like?". Well, let's not keep you waiing for an answer. It looks
as follows:

As you can see, it also contains the Web ID, the Server ID, and a securityKey. This
security key has nothing to do with the extensions, but instead belongs to the Admin

Synchronizaion system.

The Admin Synchronizaion system lets you manage muliple Railo
administrators from one place. Any change you make in one place is instantly

sent to all linked administrators. For more informaion on this paid extension see

http://www.railo.ch/blog/index.cfm/2008/9/10/Railo-30-
released--Features-part-2.

http://www.railo.ch/blog/index.cfm/2008/9/10/Railo-30-released--Features-part-2
http://www.railo.ch/blog/index.cfm/2008/9/10/Railo-30-released--Features-part-2
http://www.railo.ch/blog/index.cfm/2008/9/10/Railo-30-released--Features-part-2
http:///

Chapter 9

[279]

Let's get back on topic to the Web and Server IDs. When we installed our extension, we
had to get the download details from the funcion getDownloadDetails(). We sent
the Web ID of our current web context (local host), and the Server ID of our Railo instance.
Our extension provider can make decisions based on these IDs. Has the client paid for the
extension yet? And if we log the IDs to a database, we will also know how many imes this
extension has been installed on a server and whether our clients already downloaded the
latest update. If they previously registered with us because they paid for an extension, we
can even send them an e-mail with instrucions, or just to say thanks, the moment they
download the extension.

Extend your ExtensionProvider

I hope you have learned enough to be able to extend the ExtensionProvider.cfc

yourself. We already saw a very simple example of payment handling within the provider,
but can you make this more robust?

Here are some things that could be added:

 � Database schema for customers, extensions, downloads, and payments

 � Saving download informaion to the database

 � Checking in the database if a payment was made for the given server/web context

 � The payment system itself

The Railo Extension Store

Railo 3.3 has a great new feature, which makes sure that any extension you create gets the
atenion it deserves. Like Apple has its App Store, Railo now has an Extension Store.

The store can be found at http://www.getrailo.org/index.cfm/extensions/ and

all its extensions are shown within your Railo Administrator.

http://www.getrailo.org/index.cfm/extensions/
http:///

Extending Railo Server

[280]

You can browse through all the available extensions, register for a developer account, and
add your own extensions:

It is your choice if you want to use the Railo Extension Store or your own provider. Here are
the main diferences between the two:

http:///

Chapter 9

[281]

Opion Extension Store Own provider

Paid extensions You can't add paid extensions to

the store (there is a Contact us

link though)

You can build your own payment
handling

Exposure The Store Extensions are shown
in every Railo Administrator
worldwide

You'll have to tell people to add your

provider to the Railo Administrator

Staisics The store only has one
staisic—the total number of
downloads

You can log every request, which gives
you more insight into its use

Hosing Done by the Extension Store Done by yourself

Summary

We learned about extending Railo Server in this chapter, by using the Extension system,
custom tags, and custom funcions.

Speciically, we covered:

 � Creaing and installing a custom tag in Railo Server. We learned how to enhance the
<cfabort> tag, and where to save it so it will be picked up as a custom tag.

 � Creaing a custom funcion: cleanScope. We also saw how to use array and
struct notaion with form variables.

 � How to use the Railo Administrator to install extensions.

 � How to create our own Railo Extension. We created a iny litle web applicaion and
then created and zipped the necessary installaion iles.

 � By creaing and exploring ExtensionProvider.cfc, we learned how we can
distribute our own extension. We also logged downloads and talked a bit about
hosing paid extensions.

 � Ater all the trouble of creaing the ExtensionProvider, we found out that there
is an extension store where we can simply upload our extension into. We also did a
small comparison between the Store and a self-hosted extension provider.

Now that we have learned about extending Railo Server, let's build a full applicaion. In the
next chapter, we are going to build a video-sharing applicaion from start to inish.

Let's get coding!

http:///

http:///

10
Creating a Video-sharing Application

In the preceding chapters, we have looked at a lot of features that are available
to you in Railo Server. It's ime to put them all into pracice. This chapter will
guide you through developing a video sharing applicaion from start to inish.
Also, in this process, we are going to put into pracice techniques we learned
in previous chapters so you can see how the various aspects of Railo Server
actually work in a real world example.

In this chapter, we will:

 � Build an applicaion to share videos

 � Use the Railo Server ORM system to register and log in users

 � Use the video conversion capabiliies to convert videos ready for the web

 � Use the session scope to allow users to log in to the applicaion

Doesn't sound like a lot, but with these aspects, we can build a fully working applicaion.
Let's get to it!

VideoShare: Getting to know our application

Before we get coding, let's get acquainted with the applicaion we are going to be building.
VideoShare is a video-sharing website. It allows users to upload a video, which is then
converted into a format suitable for display on the Web. It also allows registered users to
comment on those videos.

http:///

Creaing a Video-sharing Applicaion

[284]

When inished, our applicaion should look like the following screenshot:

Goals of the application

Before we get coding, let's make a list of the things that the video sharing applicaion
should do:

 � Be able to show a home page with a main video and a list of all the other items that
have been recently uploaded

 � Be able to register a user so that they can upload a video

 � Allow users to log in and log out of the applicaion

 � Only allow registered users to upload a video

 � Convert a video into a format that is web viewable

 � Create a large poster image of the video

 � Create a thumbnail version of the poster image

http:///

Chapter 10

[285]

Other goals are:

 � Allow registered users to comment on a video

 � Display comments underneath a video

That seems to be enough to get on, so let's start implemening these features.

Creating our application

Let's get the ball rolling by creaing our applicaion skeleton and adding our iniial seings.

Time for action – creating our basic application

To start of, let's just create a place to store our applicaion.

1. In the <Railo Install Location>/wwwroot/ path, let's create a folder named

VideoShare. This might as well be the name of our applicaion.

2. In the VideoShare folder, create a ile named Application.cfc and add the

following code:

component {

 this.name = "VideoShare";

 this.datasource = "VideoShare";

 this.ormEnabled = true;

 this.sessionmanagement = true;

 this.ormSettings = {};

 this.ormSettings.dbcreate = "dropCreate";

}

Let's look at the previous code for a second as there is a lot going on. We already
know that the Application.cfc ile controls the seings in an applicaion; so
by creaing a new one here, we can manage various seings. The irst seing is the
name of the applicaion, in this case, we have named it VideoShare and then we
have deined that it will use a datasource named VideoShare, which we will set
up in the next secion. Because we will want to track user sessions to see if they are
logged in or not, we are seing this.sessionmannagement = true. We shall
look further into how we manage it later on.

Then comes the magic: we set this.ormEnabled=true; which enables us to
deine our data domain using only Railo Components and not have to bother with
playing around with the database itself.

http:///

Creaing a Video-sharing Applicaion

[286]

3. Because we are in development mode, we will be changing the schema
(or structure) of our database, so we need to set some seings for the ORM by
irst creaing the this.ormSettings = {}; structure. To this structure, we add
this.ormSettings.dbcreate = "dropCreate", which tells Railo server that if
we change our ORM-persisted components, Railo Server will drop and re-create the
database tables. Be warned—this means that any data we have there will also be
deleted, so it's only good while we are developing.

4. We have got all our seings in place, now let's get our irst page set up. In the same
folder that we created our Application.cfc ile, let's create our index.cfm ile
and put the following content in it:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8">

 <link rel="stylesheet" href="css/main.css" type="text/css">
<title>VideoShare</title>

</head>

<body>

<cfoutput>

<div id="header">

 <h1>VideoShare</h1>

 <div id="topnav">

 Login

 Register

 </div>

</div>

<div id="main">

 <div id="content">

 Welcome!

 </div>

</div>

<div id="footer">© #DateFormat(Now(), "yyyy")# Railo
Technologies</div>

</cfoutput>

</body>

</html>

5. The previous code should give you an idea of the layout we are going to use. We
have three main divs in our layout, namely, header, main, and footer.

http:///

Chapter 10

[287]

6. You should have also noiced that we are using a stylesheet. Let's create a folder
named css in our current working folder and copy the main.css from the source

code iles available for this book from the PacktPub site; they should be under
videoshare/css/main.css. Once you have added these, hopefully your site will
look as follows:

7. By now, you should be all set to actually start creaing our applicaion.

What just happened?
Before we dive into our applicaion, let us have a look at the nice layout we have ready. We
have set up our applicaion with the ORM seings used while we were developing. To make
the site look a bit beter, we have added a stylesheet to the code.

Have a go hero – create a datasource

Because we have deined the name of the datasource as VideoShare in our

Application.cfc, we need to create that now, even though we are not going to use it yet.

You have done this a number of imes before in this book, so why don't you try creaing a
new database in MySQL and creaing a datasource in the Railo Web Administrator? It should
be prety easy by now.

http:///

Creaing a Video-sharing Applicaion

[288]

Laying it all out

There is a problem here with our iniial strategy. Because we are going to be adding a few
more pages and want to let them have the same look and feel, we could copy the index.
cfm page each ime, but this would mean that if we wanted to change the layout, or add
any logic to the navigaion, we would have to make the change to every page. Instead of

doing that, we can use a custom tag to create our layout, and just call that from each page.

Time for action – creating the layout custom tag

We are going to split out the main part of our layout into a custom tag. A custom tag is handy
for this, because we can call it from all the pages:

1. Let's irst create a ile in our videoshare directory named layout.cfm. Copy all

the contents of index.cfm into this ile, because so far, all we have is something we
are going to repeat in our code. layout.cfm should now look like this:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8">

 <link rel="stylesheet" href="css/main.css" type="text/css">

 <title>VideoShare</title>

</head>

<body>

<cfoutput>

<div id="header">

 <h1>VideoShare</h1>

 <div id="topnav">

 Login

 Register

 </div>

</div>

<div id="main">

 <div id="content">

 </div>

</div>

<div id="footer">© #DateFormat(Now(), "yyyy")# Railo
Technologies</div>

http:///

Chapter 10

[289]

</cfoutput>

</body>

</html>

2. Let's change the code in layout.cfm and add the following:

<cfif ThisTag.executionmode IS "start">

<!DOCTYPE html>

<html lang="en">

<head>

 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8">

 <link rel="stylesheet" href="css/main.css" type="text/css">

 <title>VideoShare</title>

</head>

<body>

<cfoutput>

<div id="header">

 <h1>VideoShare</h1>

 <div id="topnav">

 Login

 Register

 </div>

</div>

</cfoutput>

<div id="main">

</cfif>

<cfif ThisTag.executionmode IS "end">

</div>

<cfoutput>

<div id="footer">© #DateFormat(Now(), "yyyy")# Railo
Technologies</div>

</cfoutput>

</body>

</html>

</cfif>

http:///

Creaing a Video-sharing Applicaion

[290]

3. As you can see, we have removed the <div id="content"></div> from the

middle of the template and surrounded the top part (which every page will have)
with the <cfif thisTag.executionmode IS "start"> condiion. This tells
the Railo Server that it will only display that porion when the custom tag is opened
and the botom secion will be called when the custom tag is closed. We also
need to re-jig where we have our <cfoutput> tags so that they are within their
respecive <cfif> statements.

4. Let's change our index.cfm ile to use this custom tag. Let's replace the contents of
index.cfm with the following:

<cf_layout>

 <div id="content">

 </div>

</cf_layout>

What just happened?
Repeaing code isn't very good, because you have to be ied down to doing muliple searches
and replace acions when you want to change even the slightest thing. Custom tags are very
handy for repeaing code, as they are very light in performance and have other beneits that
we will see later in this chapter, such as passing variables.

Registering users

All the acions that you can do in our VideoShare applicaion will require users to be logged
in, but before they can even log in, we should let users actually register. Before we create our
registraion form, we are going deine the persistent objects of our applicaion. Let's start
with the user.

Time for action – creating our user model object

The User object in our applicaion will need a few properies for us to work with, for
example, a username, user e-mail address, and password.

1. Let's create a folder named model in our videoshare directory; this is where all
our model objects are going to be stored so that they are out of the way, and we can
easily tell where they are.

http:///

Chapter 10

[291]

2. In the model folder, create a ile named User.cfc and add the following content:

component persistent="true"{

 property name="id" fieldtype="id" ormtype="int"
generator="increment";

 property name="email";

 property name="password";

 property name="username";

}

3. In the previous code, we see that we have used the persistent="true" property;
this alerts the ORM in Railo Server that it should create a table for this component.
Then, we use the property name="id" fieldtype="id" ormtype="int"
generator="increment"; to deine a unique ID for this property of the name id.

We then add properies for e-mail, password, and username. They will, by default,
become varchar ields in our database.

4. Now that we have the object, let's create a form for people to register from. In
the videoshare directory, create a template named register.cfm with the
following code:

<cf_layout>

<cfparam name="FORM.username" default="">

<cfparam name="FORM.email" default="">

<h1>Register</h1>

<cfoutput>

<form action="register_user.cfm" method="post" accept-
charset="utf-8">

 <div class="input">

 <label for="username">Username</label><input type="text"
name="username" value="#form.username#" id="username">

 </div>

 <div class="input">

 <label for="email">Email</label><input type="email"
name="email" value="#form.email#" id="email">

 </div>

 <div class="input">

 <label for="password">Password</label><input type="password"
name="password" value="" id="password">

 </div>

 <div class="input">

http:///

Creaing a Video-sharing Applicaion

[292]

 <label for="password_confirmation">Password Confirmation</
label><input type="password" name="password_confirmation" value=""
id="password_confirmation">

 </div>

 <p><input type="submit" value="Register →"></p>

</form>

</cfoutput>

</cf_layout>

5. There seems to be a lot going on here, but it's rather basic. We have used the
<cfparam> tags to set default values for most of our ields (we ignored the
password ields because we don't want to set a default for those) and we created a
form. The form points to the register_user.cfm template that we are going to
create next.

We have also created a number of ields, and they have a default value by adding
the #form.username# and #form.email#, so that if there is an error when we
submit it, the user doesn't need to re-ill in the ield.

6. You might have also noiced that we are now using our <cf_layout> tag

surrounding the whole template. This saves us the trouble of re-wriing the header
again. Neat!

7. Before we go on, you might noice that the itle of the page just says VideoShare.

Let's improve our layout by adding the sub secion that we are in. In the register.
cfm ile, change the code at the top to the following:

<cf_layout section="Register">

<cfparam name="FORM.username" default="">

<cfparam name="FORM.email" default="">

<h1>Register</h1>

8. We are now passing to our layout.cfm ile an atribute called section. Let's edit

the top of the layout.cfm template to display it:

<cfif ThisTag.executionmode IS "start">

<cfparam name="attributes.section" default="">

<!DOCTYPE html>

<html lang="en">

<head>

 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8">

 <link rel="stylesheet" href="css/main.css" type="text/css">

<cfoutput> <title>VideoShare #attributes.section#</title> </
cfoutput>

</head>

http:///

Chapter 10

[293]

9. As you can see, we used a <cfparam> to deine the attributes.section

variable; this variable is blank by default and then we add it to the <title> tag of

our page, surrounding it in <cfoutput> tags so that it will be rendered. When we
go to http://localhost:8888/videoshare/register.cfm, we now see the
form as well as the itle of the page, showing us that we are in the Register secion
of our site.

10. Now that we have the form ready, let's create the acion template that will do all
the work. Because our form was poining to register_user.cfm for the acion,
let's create that template in our videoshare folder and put the following code in
the beginning:

 <cfparam name="FORM.username" default="">

 <cfparam name="FORM.email" default="">

 <cfparam name="FORM.password" default="">

 <cfparam name="FORM.password_confirmation" default="">

 <cfparam name="errors" default="#[]#">

 <cfscript>

 </cfscript>

 <cf_layout section="Registered!">

 <h1 id="congratulations!">Congratulations!</h1>

 <p>You have successfully registered to Video Share!</p>

 </cf_layout>

http://localhost:8888/videoshare/register.cfm
http://localhost:8888/videoshare/register.cfm
http:///

Creaing a Video-sharing Applicaion

[294]

11. Not much here yet, as we are not actually processing, but you can see we are using
<cfparam> to set up some defaults, including an array of errors, which we can
pre-ill if anything went wrong. We also have a <cfscript> block. We are going to
code our registraion logic in <cfscript> here because it will be quicker to write
without using tags.

12. Let's irst check for some obvious errors in the registraion page, such as making
sure they illed in their names, that their e-mails are valid, and that their passwords
match. In the <cfscript> block, add the following code:

<cfscript>

 if(!Len(FORM.username)){

 ArrayAppend(errors, "Username is missing");

 }

 if(!Len(FORM.email) OR !isValid("email", FORM.email)){

 ArrayAppend(errors, "Email is not valid");

 };

 if((!Len(FORM.password) OR !Len(FORM.password_confirmation)) or
FORM.password NEQ FORM.password_confirmation){

 ArrayAppend(errors, "The password was not set or it doesn't
match the confirmation password");

 }

</cfscript>

13. Next, we should check that they are not already registered. This is where we can
see if there already is a user with this e-mail; it's quite simple, so let's add some
code ater the last check:

<cfscript>

 ...

 if((!Len(FORM.password) OR !Len(FORM.password_confirmation)) or
FORM.password NEQ FORM.password_confirmation){

 ArrayAppend(errors, "The password was not set or it doesn't
match the confirmation password");

 }

 //Check that the email is not already in the database;

 User = EntityLoad("User", {email=FORM.email});

 if(ArrayLen(User)){

 ArrayAppend(errors, "A user with this email address has
already registered! Try another email address.");

 }

</cfscript>

http:///

Chapter 10

[295]

14. The User object is loaded by using the ORM funcion EntityLoad(); we pass in
the object type we are expecing, User, and then pass in an array of condiions; in
this case, email=FORM.email. If it returns any items in from the EnityLoad()

funcion, it means that there are already exising users in the database, so we add
another error to our error array.

15. So what happens when you have an error? Simple, we include the register.cfm

template again, by adding the following code:

<cfscript>

User = EntityLoad("User", {email=FORM.email});

if(ArrayLen(User)){

 ArrayAppend(errors, "A user with this email has already
registered! Try another email address");

}

if(ArrayLen(errors)){

 include template="register.cfm";

 abort;

}

Now that we are re-displaying the main register.cfm template when we have
an error, let's display those errors in the register.cfm template. At the top of

register.cfm, let's add another <cfparam> variable to set up our default errors

array and then loop though them if there are any:

<cf_layout section="Register">

<cfparam name="FORM.username" default="">

<cfparam name="FORM.email" default="">

<cfparam name="errors" default="#[]#">

<h1>Register</h1>

<cfoutput>

 <cfif ArrayLen(errors)>

 <div class="errors">

 <cfloop array="#errors#" index="e">

 #e#

 </cfloop>

 </div>

 </cfif>

http:///

Creaing a Video-sharing Applicaion

[296]

16. Great! Now, when we submit an empty form, we should get something similar to
the following screenshot displayed:

17. So, now that we have managed to deal with erroneous form submissions, how
about actually registering our user? Ater we check there aren't any errors, we can
add the code to create a new user, since we are using the abort; funcion to stop
the rest of the page processing and we are safe to add a new user. Let's add some
code to register_user.cfm to handle that:

 <cfscript>

 ...

 if(ArrayLen(errors)){

 include template="register.cfm";

 abort;

 }

 NewUser = EntityNew("user");

 NewUser.setEmail(FORM.email);

 NewUser.setPassword(FORM.password);

 NewUser.setUsername(FORM.username);

 EntitySave(NewUser);

 //Also log them in too!

 session.userid = NewUser.getID();

 </cfscript>

http:///

Chapter 10

[297]

18. To add a new user, we use the EntityNew("User") funcion to return a blank
new ORM object for us to use. We then set the Email, Password, and Username.

Finally, we use the EntitySave(NewUser) to persist our user to the database. In

the inal part of our funcion, we save the new user ID to the SESSION scope; this
will tell our applicaion that the user is logged in.

The EntityNew() funcion takes an enity name as an
input (in this case, User) and creates a new ORM object. The
EntitySave() funcion will insert the NewUser object into
the database. The beauty of the EntitySave() funcion is that
Railo Server smartly igures out whether the record needs to be
inserted or updated in the database. We can also tell the Railo
Server if we want the current operaion to be an inserion of a
new record by using the 'true' parameter.

19. Finally, to idy up our applicaion, we should set a default variable in the SESSION

scope, so that session.userid is always available. To do this, we can add it to
the onSessionStart() funcion in our Application.cfc template. Let's add

the following funcion so that our Application.cfc looks as follows:

 component {

 this.name = "VideoShare";

 this.datasource = "VideoShare";

 this.ormEnabled = true;

 this.sessionmanagement = true;

 this.ormSettings = {};

 this.ormSettings.dbcreate = "dropCreate";

 function onSessionStart() {

 session.userid = 0;

 }

 }

20. The code in onSessionStart() will make sure that every ime we start a new
session, the variable session.userid is available.

http:///

Creaing a Video-sharing Applicaion

[298]

21. We can now go and add some real details to our form and submit it. We inally get
the friendly welcome message that we had in our template:

22. And by inspecing the database (you can use your favorite MySQL client or the
command line applicaion), we can see that the new user has been created.

What just happened?
We managed to do a lot in this secion. We created a form (with the default values for
safety), added error handling by checking the user input from the registraion form, checked
our database for other users with the same e-mail address, created a new user using the
EntityNew() funcion, and added the user ID to the session so that they are logged in ater
registering.

User login and logout

Now that the users are able to register, we should handle the login and logout, as well as
check whether the users are indeed logged in or not. By now, we should be logged in (as we
have just registered). Let's change the header to display whether we are logged in or not.

http:///

Chapter 10

[299]

Time for action – log in or log out of the application

1. Open up the layout.cfm ile and change the header secion to look like the
following code:

<body>

<cfoutput>

<div id="header">

 <h1>VideoShare</h1>

 <div id="topnav">

 <cfif NOT session.userid>

 Login

 Register

 <cfelse> <!--- only display if logged in --->

 Logout

 Upload

 </cfif>

 </div>

</div>

</cfoutput>

2. In the previously highlighted code, we are checking if SESSION.userid is set

(to anything except 0) and this means that a user has logged in. If they are logged

in, we now display the logout and upload links; otherwise we display the login and

register links.

3. When we now head to the home page of our VideoShare by going to

http://localhost:8888/videoshare/index.cfm, we will see the
logout and upload links. It's all working!

4. Let's add the logout funcionality; all it has to do is set our session.userid

variable to 0. Create a logout.cfm template and put the following code to do this:

<cfset session.userid = 0>

<cf_layout section="Logout">

<h1>Sorry to see you go!</h1>

<p>You have successfully logged out of Video Share, come back
soon!</p>

</cf_layout>

5. The template is prety simple. We are just seing session.userid = 0 and

displaying a friendly message to the user. That's it for logging the user out. Let's let
them log in again.

http://localhost:8888/videoshare/index.cfm
http://localhost:8888/videoshare/index.cfm
http:///

Creaing a Video-sharing Applicaion

[300]

6. First, we are going to create a login.cfm template with a login form asking our
user for his/her e-mail and password. Add the following code into a new login.
cfm template:

<cf_layout section="Login">

<cfparam name="FORM.email" default="">

<cfparam name="FORM.password" default="">

<cfparam name="errors" default="#[]#">

<cfoutput>

<h1 id="login">Login</h1>

<p>Enter your email and password to login!</p>

<cfif ArrayLen(errors)>

 <div class="errors">

 <cfloop array="#errors#" index="e">

 #e#

 </cfloop>

 </div>

</cfif>

<form action="login_user.cfm" method="post" accept-
charset="utf-8">

<div class="input">

<label for="email">Email</label>

<input type="email" name="email" value="#form.email#" id="email">

</div>

<div class="input">

<label for="password">Password</label>

<input type="password" name="password" value="" id="password">

</div>

<p><input type="submit" value="Login →"></p>

</form>

</cfoutput>

</cf_layout>

7. Even though there is a lot of code being added, you have seen most of it before

with the registraion form. We have our layout, our form variables which are set
as default with the <cfparam> tag, a loop through any errors we encounter, and
inally, the form with an e-mail and password ield that we are sending to login_
user.cfm.

http:///

Chapter 10

[301]

8. Let's create the template that will actually log in our users. Let's create a login_
user.cfm template and add the following code:

<cfparam name="FORM.email" default="">

<cfparam name="FORM.password" default="">

<cfparam name="errors" default="#[]#">

<cfscript>

 if(!Len(FORM.email) OR !isValid("email", FORM.email)){

 ArrayAppend(errors, "Email is not valid");

 };

 if(!Len(FORM.password)){

 ArrayAppend(errors, "The password was not set");

 }

 //Try to lookup the user

 User = EntityLoad("User", {email=FORM.email, password=FORM.
password}, true);

 if(isDefined("User")){

 session.userid = User.getID();

 }

 else {

 ArrayAppend(errors, "We couldn't find you, check your email
and password");

 }

 if(ArrayLen(errors)){

 include template="login.cfm";

 abort;

 }

</cfscript>

<cf_layout section="Login Welcome!">

<h1 id="welcome!">Welcome!</h1>

<p>You have logged in! You can upload videos now!</p>

</cf_layout>

http:///

Creaing a Video-sharing Applicaion

[302]

9. Similar to our register_user.cfm template, we are irst seing our default
expected ields, checking for errors as we did before, and then using the
EntityLoad("User", {email=FORM.email, password=FORM.password},

true); funcion, while passing in a structure of e-mail and password as our
search criteria. The inal true variable that we are passing into the EntityLoad()

funcion is actually saying that the funcion should return only one record, rather
than an array of objects. We then check if we have found a user whose e-mail
and password matches what we have in our database, and if one is found, we set
the session.userid variable to that user ID and display the welcome screen;
otherwise, we add an error and include the login form again. Prety simple right?

What just happened?
Using the same methods we saw in registering our users, we were able to set and unset
the SESSION.userid variable that we are using in our applicaion to say whether a user is
logged in or not.

Other security funcionality in Railo server

There are other tags that you can also use to log in and authenicate users in
Railo Server. The tags <cflogin>, <cfloginuser>, and <cflogout>

could accomplish the same thing. You can then use a number of funcions
to check if a user is logged in, such as isUserLoggedIn() and

isUserInRole().

Uploading videos

Now that we have our users nicely logged in, we can get to the core funcionality of our
applicaion, namely, that of uploading and convering videos.

As was menioned in Chapter 7, Mulimedia and AJAX, we will be using the video extension
you should have downloaded from the Extension store to convert uploaded videos and the
<cfvideoplayer> tag to display it. We are also going to create some preview images for
our videos, so when we display them, there will be a screenshot from the actual video
to view.

http:///

Chapter 10

[303]

Time for action – uploading a video

1. Now that we are logged in and ready to upload a video, let's create a form for the
user to do this. Add a template named upload.cfm in your videoshare folder

and add the following code:

<cf_layout section="Upload Video">

<cfparam name="FORM.title" default="">

<cfoutput>

<h1 id="upload_video">Upload Video</h1>

<p>In this section you can upload a video</p>

<form action="upload_video.cfm" method="post" enctype="multipart/
form-data">

<div class="input">

<label for="title">Title</label>

<input type="text" name="title" value="#form.title#" id="title">

</div>

<div class="input">

<label for="video">Video</label>

<input type="file" name="video" id="video">

</div>

 <p><input type="submit" value="Upload →"></p>

</form>

</cfoutput>

</cf_layout>

2. This is a simple form. We have seen this before with the registraion and login
forms, but there are a couple of notable diferences. The irst diference being the
enctype="multipart/form-data" atribute in the <form> tag. This is required
to upload iles (such as videos and pictures); otherwise, all that will be uploaded
is the path to the video, not the video itself. The second diference is in regards to
actually adding an <input type="file" ...> tag to upload our video.

http://localhost:8888/videoshare/upload.cfm
http:///

Creaing a Video-sharing Applicaion

[304]

3. When we head to http://localhost:8888/videoshare/upload.cfm, we can
now see our neat litle upload form.

4. Now that we have our form, we need to create the ile that is going to do the
uploading for us; but before we do that, let's create four folders under our
VideoShare directory:

 � uploads: Here, we are going to iniially upload our videos

 � videos: Here, once converted, all the videos will reside

 � thumbs: Here we are going to place the thumbnails for our applicaion

 � posters: Here we are going to put the large image of the videos that we
are going to use as a poster frame

5. Your VideoShare folder should now look something like this:

http://localhost:8888/videoshare/upload.cfm
http:///

Chapter 10

[305]

6. Let's upload the iniial video. Under your videoshare folder, create a template

named upload_video.cfm, add the layout, and so on, so that it looks like the

following lines of code:

<cfparam name="FORM.title" default="">

<cfparam name="FORM.video" default="">

<cfparam name="errors" default="#[]#">

<cfscript>

 if(!Len(form.title) OR !Len(FORM.video)){

 ArrayAppend(errors, "Please Upload a valid video and give it a
title");

 include template="upload.cfm";

 abort;

 }

 file action="upload" destination="#expandPath("upl
oads")#" filefield="video" nameconflict="makeunique"
result="uploadedVideo";

</cfscript>

<cf_layout section="Video Uploaded!">

<h1 id="video_uploaded">Video Uploaded!</h1>

 <p>You have successfully uploaded your video! Our video
converting cats will get right on it to make your video look
awesome! </p>

</cf_layout>

7. In the previous code, we have our usual <cfparam> tags, making sure that we have
defaulted the values of the FORM scope we are expecing, added an error array

variable to store any errors, and then we checked that we have a itle and video.
The next part is important: file action="upload" destination="#expand
Path("uploads")#" filefield="video" nameconflict="makeunique"

result="uploadedVideo";; this line takes a ile, and uploads it, and then we
deine the locaion as to where it will be uploaded with destination="#expan
dPath("uploads")#". To tell Railo Server which form ield we expect the ile to
come from, we add the filefield="video" atribute.

8. Because a lot of videos could be called the same, such as MyVideo.mov, we use
the atribute nameconflict="makeunique" to make sure we have a unique
name for this ile when we save it. Finally, we return all the informaion using the
result="uploadedVideo" atribute.

http:///

Creaing a Video-sharing Applicaion

[306]

What just happened?
In this secion, we set up a form as we had done before. However, this ime we changed the
<form> tag so that we could upload iles to the Railo Server. When we post the form, we
can then easily upload the ile to a directory of our choice using the ile tag.

Tags in CFScript

Railo Server is able to parse tags inside the <cfscript> tag as if they are

scripts. We have just done that in the previous secion. For example, we can
write the following tag:

<cffile action="upload" destination="#expandPath("upl
oads")#" filefield="video" nameconflict="makeunique"
result="uploadedVideo">

This is done inside the <cfscript> block as:

file action="upload" destination="#expandPath("uplo
ads")#" filefield="video" nameconflict="makeunique"
result="uploadedVideo";

We do this by simply removing the irst <cf part of the string and replacing the

closing angle bracket (>) with a semi-colon (;). You can convert nearly all of the

Railo Server tags to the <cfscript> format.

Adding security

One of the things we haven't touched yet is one of the security requirements we have
for users to upload a ile. Only users that have registered and logged in should be able to
upload a ile, and presently, this is not the case. Let's add another custom tag to protect
these templates.

Time for action – adding the secure tag

To add some security, we need to check if a user has logged in; we can do this by using a
tag that can be added at the top of each ile that we want to secure. Let's add a custom tag
called <cf_secure> to our templates:

1. Create a template under the videoshare directory named secure.cfm and add

the following code:

<cfif session.userid NEQ 0>

 <cfinclude template="login.cfm">

 <cfabort>

</cfif>

http:///

Chapter 10

[307]

2. The tag is rather simple; it checks whether we have a session.userid set and

makes sure it isn't equal to zero with the NEQ operator. If it is not set, it includes our

login.cfm template and then aborts the rest of the rendering of the page. If there

is a session.userid set, it will ignore this statement.

3. At the top of the upload.cfm ile, let's call the <cf_secure> tag:

<cf_secure>

<cf_layout section="Upload Video">

<cfparam name="FORM.title" default="">

<cfoutput>

<h1 id="upload_video">Upload Video</h1>

4. When a user of our site now requests http://localhost:8888/videoshare/
upload.cfm and they haven't logged in, they will now get the login.cfm

template instead of the one they requested.

5. Let's do the same for the upload_video.cfm template:

<cf_secure>

<cfparam name="FORM.title" default="">

<cfparam name="FORM.video" default="">

<cfparam name="errors" default="#[]#">

<cfscript>

...

6. If we now try going to http://localhost:8888/videoshare/upload.cfm, we
will get a login screen:

http://localhost:8888/videoshare/upload.cfm
http://localhost:8888/videoshare/upload.cfm
http://localhost:8888/videoshare/upload.cfm
http://localhost:8888/videoshare/upload.cfm
http://localhost:8888/videoshare/upload.cfm
http:///

Creaing a Video-sharing Applicaion

[308]

What just happened?
The requirements of our applicaion are such that there are pages that need to be protected.
By creaing a simple tag that does the protecion for us, we can change how we handle security
at a later stage, update the <cf_secure> tag, and know that it will all sill work as required.

We could have added the code to check if a user is logged in, in each of our templates, but it
is always beter to externalize code that is going to be repeated.

Assigning videos to users

In our applicaion, we will want to know who has uploaded which video. We are also going to
need to store a reference to our video in the database. What should our Video model object
look like?

If we think about it for a moment, we can come up with a list of properies for a video that
will be displayed:

 � Title: The name of the video that the user has given us

 � Original File: The name of the original ile that was uploaded

 � File: A unique name for the converted video, its thumbnail, and poster image

 � Status: Whether the video has been converted or not

 � Converted At: The ime when the video was converted

 � Uploaded At: The ime when the video was uploaded

 � User: The user that uploaded the video

With this informaion, let's get on and create our persistent object for the video.

Time for action – storing our video to the database

1. Let's create a Video.cfc ile in our model folder under the videoshare folder

and add the following code to the template:

component persistent="true"{
 property name="id" fieldtype="id" ormtype="int"
generator="increment";
 property name="title";
 property name="status" ormtype="int" default="0";
 property name="originalfile";
 property name="file";
 property name="convertedAt" ormtype="timestamp";
 property name="uploadedAt" ormtype="timestamp";
 property name="User" fieldtype="many-to-one" cfc="User"
fkColumn="User_Id";
 }

http:///

Chapter 10

[309]

2. Working through the code, we can see it's very similar to the User object. It has an
id property (the primary key), but we can see we have other types of properies
that are deined by the ormtype atribute. For example, our status property is

deined as an integer with a default of 0 with ormtype="int" default="0" and

our convertedAt and uploadedAt properies are deined as date/ime ields
using the ormtype="timestamp" atribute.
Finally, we have a property that is deined as a User. Here we deine that many
videos can be uploaded by one user using the fieldtype="many-to-one". This
is achieved by adding a column in the Video table called User_Id, which represents
the ID of the user.

3. Because we can relate many videos to one user, we should also update the User

to say that they can have many videos. So let's add that property to the User.cfc

object in our model directory:

component persistent="true"{

 property name="id" fieldtype="id" ormtype="int"
generator="increment";

 property name="email";

 property name="password";

 property name="username";

 property name="videos" fieldtype="one-to-many" cfc="Video"
fkColumn="User_Id";

}

4. You can see that we have now created a one-to-many relaionship between a User

object and a Video object by using the fieldtype="one-to-many" atribute.

5. Now that we have deined our relaionships, we can upload the video and save it in
the database. In the upload_video.cfm template, we can add the following code:

<cf_secure>

<cfparam name="FORM.title" default="">

<cfparam name="FORM.video" default="">

<cfparam name="errors" default="#[]#">

<cfscript>

 if(!Len(form.title) OR !Len(FORM.video)){

 ArrayAppend(errors, "Please Upload a valid video and give it a
title");

 include template="upload.cfm";

 abort;

 }

 file action="upload" destination="#expandPath("upl
oads")#" filefield="video" nameconflict="makeunique"
result="uploadedVideo";

http:///

Creaing a Video-sharing Applicaion

[310]

 User = EntityLoad("User", session.userid, true);

 VideoObj = EntityNew("Video");

 VideoObj.setTitle(FORM.title);

 VideoObj.setOriginalFile(uploadedVideo.serverfile);

 VideoObj.setUser(User);

 VideoObj.setUploadedAt(Now());

 EntitySave(VideoObj);

</cfscript>

6. Because we want to add a user to the new Video object we are storing, we irst
load the User object by using the EntityLoad("User", session.userid,
true) funcion and by geing the userid from the SESSION scope. Then, we
create a new Video object using the EntityNew("Video") funcion. Each
property will have a set<PropertyName> method automaically created in our
object, so we can set the title, the originalFile, the UploadedAt ime (using
the Now() funcion), and inally we set the User object we loaded previously.

To save the object, we simply call the EntitySave(VideoObj) method and our

object will be stored in the database.

7. We can now try to upload a video. Because we are using the DropCreate property

in the this.ormsettings.dbcreate property in Application.cfc, we might
have to re-register our user:

8. Once we have done that, we should get a friendly greeing staing that we have
registered, and we should also be logged in:

http:///

Chapter 10

[311]

9. Now we can click upload, set the name of our video, and select an

appropriate video to upload (we chose the trailer of Big Buck Bunny

from http://www.bigbuckbunny.org/):

10. Once we uploaded it, we got another friendly greeing staing that we have
uploaded the ile:

http://www.bigbuckbunny.org/
http://www.bigbuckbunny.org/
http:///

Creaing a Video-sharing Applicaion

[312]

11. If we now look in the uploads folder of our videoshare directory, we can see
that the ile has been uploaded! Success.

12. If we now check our database, we can see that a Video table has been created,

and also a new entry has been placed for our video that relates it back to our user
via the User_Id column.

What just happened?
In this secion, we used the ORM fieldtype to deine a one-to-many relaionship between
the User and Video objects, as well as relaing many Videos to one User using the

one-to-many relaionship. Finally, once we uploaded the video, we were able to simply
store the video in the database and relate it to the user, without having to write a single line
of SQL code.

http:///

Chapter 10

[313]

DropCreate and other ormseings.dbcreate properies

In the Application.cfc template, we set the this.ormsettings.
dbcreate = "DropCreate" property. This property tells Railo Server that
all the tables should be dropped (deleted) whenever there is a change to any of
the model iles. The downside of this is that all your data will also be deleted.
This could be ine in development, but can get rather annoying. You have other
choices though; you can set this property to:

None: It means that none of the tables will be altered, regardless of changes to
your model objects.

Update: Using this, new tables will be created and any addiional columns will
be added, hence maintaining your data.

DropCreate: This will delete the tables and recreate them whenever there is a
change or Railo Server is re-started.

Converting and playing videos

So far, we have uploaded our videos and added them to the database, but now, we should
convert the video to a format that is useful for viewing using the <cfvideoplayer> tag, so

that users of the VideoShare site can actually play the videos. Ater all, it that is the whole
point of the applicaion. Luckily, this is an easy task with the <cfvideo> tag. Let's convert

the videos we uploaded to a format that is actually useful.

Time for action – converting the uploaded video

Let's edit the video_upload.cfm ile to add the code required to convert this video to an
Internet-viewable format.

1. In the video_upload.cfm ile, in our VideoShare folder, add the following lines
of code; we will go through what they do in a second:

<cfscript>

...

 VideoObj.setUser(User);

 VideoObj.setUploadedAt(Now());

 EntitySave(VideoObj);

 newName = CreateUUID();

 videoName = newName & ".flv";

</cfscript>

<cfvideo action="convert"

http:///

Creaing a Video-sharing Applicaion

[314]

 profile="internet"

 source="uploads/#VideoObj.getOriginalFile()#"

 destination="videos/#videoName#">

<cfscript>

 VideoObj.setFile(newName);

 VideoObj.setConvertedAt(Now());

 VideoObj.setStatus(1);

 EntitySave(VideoObj);

</cfscript>

<cf_layout section="Video Uploaded!">

2. In the previous code, we started by creaing the newName variable for our video.

This is done by using the CreateUUID() funcion, which will give us a unique string
for our converted video. This is a shortcut, but you could use any unique name. In
this case, it will produce a name like 0164BE91-004B-4C42-9B99570EFFE0FFEF.

We then set the videoName variable to be the newName, but we add the .lv

ile extension.

We break out of <cfscript> since the <cfvideo> tag is one of the tags that

doesn't have a <cfscript> version equivalent (this will change in the future) and
set the action="convert". We then use the video format shortcut to say we
want an Internet-formated video with the profile="internet" atribute. Finally,
we get the original ilename from our saved Video object, set it as the source
atribute in source="uploads/#VideoObj.getOriginalFile()#", and set the

desinaion with the new name we have created.

We then add some more properies to our Video object: we set the ile atribute to
the new name (that we created with a CreateUUID() funcion), set the date we
converted it, and set the status to 1. We are going to be using the status to get all
the "published" videos later on.

3. If we look in our videos folder, where we store our converted iles, you will now
see a ile named 0164BE91-004B-4C42-9B99570EFFE0FFEF.lv. Also, if you look in

the database, the entry for the video should be updated.

http:///

Chapter 10

[315]

4. So far, we have managed to convert the video, but now we should create a page to
display it. Let's create a new page named play.cfm, which will be used to play our
videos and put the following code:

<cf_layout>

 <cfparam name="URL.id" default="0">

 <div id="content">

 <cfset Video = EntityLoad("Video", {status=1, id=URL.id},
true)>

 <cfdump var="#Video#">

 </div>

</cf_layout>

5. This ile has a <cfparam> at the top, so that we can deine a default URL variable

of id. We then use the EntityLoad("Video", {status=1, id=URL.id},
true) funcion to load a video with a status of 1 and an ID which is the URL.id

that we passed in. This should return a Video object if found. Finally, we
added <cfdump var="#Video#">, so that we can see the data object that
is passed back:

http:///

Creaing a Video-sharing Applicaion

[316]

6. Great! We got the video we uploaded back. Now, let's remove the <cfdump> tag

and replace it with some code to display the video:

<cf_layout>
 <cfparam name="url.id" default="0">
<cfoutput>
 <div id="content">
 <cfset Video = EntityLoad("Video", {status=1, id=url.id},
true)>
 <h2>#Video.getTitle()# submitted by #Video.getUser().
getUserName()#</h2>
 <cfvideoplayer video="videos/#Video.getFile()#.flv"
width="600" height="338">
 </div>
</cfoutput>
</cf_layout>

7. First, we surround our code with a <cfoutput> tag; this will allow us to output
the variables. Then, we set the header, while geing the itle of the video, and as
we have a User object in our Video object, we can get the username of the person
that posted it by using the syntax Video.getUser().getUserName(). Finally,

we use the <cfvideoplayer> tag to display the video, seing the source

to the videos directory and adding the ilename and extension (as well as
the width and height of the player), we can now view the video by going to
http://localhost:8888/videoshare/play.cfm?id=1:

http:///

Chapter 10

[317]

8. When we press play, we get our video playing.

What just happened?
This secion covered a lot of ground, but we have seen most of the funcions before. We
started out by using the <cfvideo action="convert"> tag to convert our video to a

.flv ile. We then used the ORM to update the Video object we created before with the
new name and status.

Finally, we used the EntityLoad() funcion to load our video object from the database to
get the informaion to pass to the <cfvideoplayer> tag and display our video.

Video format shortcuts

You might be wondering where the value for the <cfvideo> tag's format

atribute comes from? When you installed the CFVideo Extension, Railo Server
created a ile that lists various formats; you can ind this ile in <Railo
Install Directory>/webroot/WEB-INF/railo/video/video.
xml.

This ile lists a number of diferent video format proiles that you can use.
You can, in fact, copy the atributes of each proile and put them into the
<cfvideo> tag individually to reine your conversions, or add new ones that
are speciic to your needs.

Creating thumbnails for our videos

At the moment, before you click play in the play.cfm page, our video just displays a black
screen. This isn't very friendly, so maybe we should add some images to display as a preview.

This is easy with the <cfvideo> tag as we have another acion, called cutImage. Let's use

this tag to create some thumbnails and a preview image.

Time for action – creating images from a video

Let's go add the ability to create thumbnails from our video.

1. Let's open up upload_video.cfm again, and add the following code ater we
convert the video:

 newName = CreateUUID();

 videoName = newName & ".flv";

 imageName = newName & ".jpg"

</cfscript>

 <cfvideo action="convert"

http:///

Creaing a Video-sharing Applicaion

[318]

 profile="internet"

 source="uploads/#VideoObj.getOriginalFile()#"

 destination="videos/#videoName#">

 <cfvideo action="cutimage"

 source="uploads/#VideoObj.getOriginalFile()#"

 start="1s"

 destination="thumbs/#imageName#" width="100">

 <cfvideo action="cutimage"

 source="uploads/#VideoObj.getOriginalFile()#"

 start="1s"

 destination="posters/#imageName#">

2. In the previous code, we have added a new variable named imageName, which we
have created using newName, and appended the .jpg extension. This is what we are
going to call our images. Then, ater we convert the video, we use the <cfvideo>

tag again, but this ime, we will do it by using action="cutimage" and passing in

the original video as the source, and by seing where in the video we want to get an
image from. In this case, we use start="1s" to get a frame from one second into

the video. We then set the desinaion where we want to save this ile. In the irst
instance, we use the thumbs directory, as we then use the width="100" atribute
to make an image 100 pixels in width. The <cfvideo> tag is intelligent enough to

igure out the height of the video. We then repeat this tag again, but we remove the
width and save it in the posters folder. We now have a 100 pixel-wide thumbnail in
the thumbs folder and a large image in the posters folder.

3. Now that we have created our poster image, let's edit the play.cfm template and

add a placeholder to the <cfvideoplayer> tag:

<cf_layout>

 <cfparam name="url.id" default="0">

<cfoutput>

 <div id="content">

 <cfset Video = EntityLoad("Video", {status=1, id=url.id},
true)>

 <h2>#Video.getTitle()# submitted by #Video.getUser().
getUserName()#</h2>

<cfvideoplayer video="videos/#Video.getFile()#.flv"

 width="600" height="338"

 preview="posters/#Video.getFile()#.jpg">

 </div>

</cfoutput>

</cf_layout>

http:///

Chapter 10

[319]

4. All we have to do to display a preview frame is add the
preview="posters/#Video.getFile()#.jpg" atribute to the
<cfvideoplayer> tag. Now, when we upload a new video, you should
see a nice preview of the video as shown next:

What just happened?
The <cfvideo> tag has a number of acions, as we saw in Chapter 7, Mulimedia and AJAX;
one of them being the ability to get an image sill from any part of a video. In this secion, we
cut out an image from the video at one second into the clip (most movies start with a blank
screen, so this was a good compromise) and then we added it to the <cfvideoplayer> tag

using the preview atribute.

Our applicaion is certainly coming along! Let's add some user interacion now.

Adding comments to our video page

When users are viewing a video, it would be great if they could add a comment, but of
course, only if they are logged in.

http:///

Creaing a Video-sharing Applicaion

[320]

In this secion, we are going to follow on what we have been doing so far and add the ability
for a user to comment on an individual video. Let's get started by creaing a comment-
persisted component.

Time for action – adding comments to our videos

1. In our model folder, which is under the videoshare directory, let's create a new
component named Comment.cfc and add the following code to deine it:

component persistent="true" {

 property name="id" fieldtype="id" ormtype="int"
generator="increment";

 property name="comment";

 property name="postedAt" ormtype="timestamp";

 property name="User" fieldtype="many-to-one" cfc="User"
fkColumn="User_Id";

 property name="Video" fieldtype="many-to-one" cfc="Video"
fkColumn="Video_Id";

}

2. In the previous code, we have deined a comment as having an id, a comment

property, and the date it was posted. We have also deined its relaionships to the
other model objects in our applicaion. A user can have many comments; therefore,
many comments can belong to one user. The same goes for a video; a video can
have many comments, but a comment can only belong to one user. We deine these
relaionships easily using the fieldtype="many-to-one".

ieldtype and ORM

The fieldtype atribute can be used to deine the relaionship
between two ORM objects (or database tables). In the previous
code, we had two properies that were deined with the
fieldtype atribute with a many-to-one relaionship between
the User and Video using the columns User_Id and Video_
Id. The relaionship types that are allowed are one-to-one,

one-to-many, many-to-one, and many-to-many.

3. Because we have deined relaionships from the comment to the user, let's deine
the relaionship back to the comment from the user. Let's add the following to the
User.cfc in our model directory:

component persistent="true"{

 property name="id" fieldtype="id" ormtype="int"
generator="increment";

 property name="email";

 property name="password";

http:///

Chapter 10

[321]

 property name="username";

 property name="videos" fieldtype="one-to-many" cfc="Video"
fkColumn="User_Id";

 property name="comments" fieldtype="one-to-many" cfc="Comment"
fkColumn="User_Id";

}

As you can see we have added a new property for the comment with a

fieldtype="one-to-many"

Let's add the relationship to the Comments object in the Video.cfc
too:

component persistent="true"{

 property name="id" fieldtype="id" ormtype="int"
generator="increment";

 property name="title";

 property name="status" ormtype="int" default="0";

 property name="originalfile";

 property name="file";

 property name="convertedAt" ormtype="timestamp";

 property name="uploadedAt" ormtype="timestamp";

 property name="User" fieldtype="many-to-one" cfc="User"
fkColumn="User_Id";

 property name="Comments" fieldtype="one-to-many" cfc="Comment"
fkColumn="Video_Id";

 }

4. This is nearly idenical to the User component, except we change the fkColumn to

use Video_Id as the foreign key. Ater we try this code again, we can have a look
at our database. We should have a Comment table with the video_id and

user_id columns:

http:///

Creaing a Video-sharing Applicaion

[322]

5. Now that we have deined our relaionships, let's add the code to display comments

in the play.cfm ile:

 <div id="content">

 <cfset Video = EntityLoad("Video", {status=1, id=url.id},
true)>

 <h2>#Video.getTitle()# submitted by #Video.getUser().
getUserName()#</h2>

 <cfvideoplayer video="videos/#Video.getFile()#.flv"
width="600" height="338"

 preview="posters/#Video.getFile()#.jpg">

 </div>

 <div id="comments">

 <h2>Comments</h2>

 <div id="commentform">

 <form action="comment_add.cfm" method="post" accept-
charset="utf-8">

 <input type="hidden" name="videoid" value="#Video.
getID()#">

 <label for="comment:">Add a comment:</label>

 <textarea name="comment" cols="60" rows="5"></textarea>

 <p><input type="submit" value="Post Comment →"></p>

 </form>

 </div>

 <cfset comments = Video.getComments()>

 <ul class="commentList">

 <cfloop array="#Comments#" index="comment">

 #comment.getComment()#
By #comment.getUser().
getUserName()#

 </cfloop>

 </div>

6. Ater we display the video, we add a new <div> for the comments and create

a normal form that is posing to comment_add.cfm (we shall create this ile in
a minute). In that form, we have a hidden ield that has the video ID deined as
<input type="hidden" name="videoid" value="#Video.getID()#">.

Ater the form, we set a variable called comments by calling the Video.

getComments() method from the Video object. Railo Server had created
this method when we deined the relaionships. We then use the <cfloop
array="#Comments#" index="comment"> to loop through the comments

array and display them in a list. Because each comment will have a related user,
we get the username by calling the comment.getUser().getUserName() on

each comment.

http:///

Chapter 10

[323]

7. Let's handle the actual posing of a comment by creaing the comment_add.cfm

template with the following code:

<cf_secure>

<cfscript>

 param name="FORM.comment" default="";

 param name="FORM.videoid" default="0";

 Comment = EntityNew("Comment");

 Video = EntityLoad("Video", FORM.videoid, true);

 User = EntityLoad("User", SESSION.userid, true);

 Comment.setUser(User);

 Comment.setVideo(Video);

 Comment.setComment(FORM.comment);

 Comment.setPostedAt(Now());

 EntitySave(Comment);

 location url="play.cfm?id=#FORM.videoid#" addtoken=false;

</cfscript>

8. In this template, we have added the <cf_secure> tag at the top, since you need to

be logged in to actually post. Then we have set defaults for the FORM.comment and

FORM.videoid variables using the <cfscript> version of the <cfparam> tag.

Ater that, we create a new Comment object using the EntityNew("Comment")

funcion, load up our Video object and User object, set them to the Comment

object, set the comment that a user has posted and when it was posted, and then
save the comment using the EntitySave(Comment) funcion. Finally, we use the
locaion url="play.cfm?id=#FORM.videoid#" addtoken=false; to redirect

us back to the video. If we now go and add a comment on our video, we should see
something like:

http:///

Creaing a Video-sharing Applicaion

[324]

What just happened?
Coninuing on from what we have learned about ORM relaionships, we created a Comment

object that was related to the User and Video objects. We then modiied the User and
Video objects to also have relaionships with comments. This is useful in our video display
page as we want to be able to display any comment related to that video. Finally, we added a
page that allowed the saving of a comment by adding other objects to it.

Creating the home page

So far we have created a page to display a single video by its ID. But how do we ind our
videos in the irst place? You might also ask, why did we create thumbnails for our videos if
we are not using them?

In this secion, we are going to change our home page to display a video and the most
recent videos that have been uploaded as well as add a list of related videos that will
use the thumbnails.

Let's remind ourselves what our home page currently looks like by going to
http://localhost:8888/videoshare/index.cfm:

It looks a bit boring, doesn't it? We should improve it by displaying the latest video which is
ready to play, along with a list of thumbnails of all the latest videos. That should make it a lot

more interesing.

http:///

Chapter 10

[325]

Time for action – getting the latest videos

We could go and get the latest video, then do another query to get a list of the latest videos.
Instead of doing that, we could simply get the top ten latest videos and use the irst one as
our "hero" video in the middle. Let's do that:

1. Open up index.cfm and add the following code to get the latest published videos:

<cf_layout>

 <cfset Videos = EntityLoad("Video", {status=1}, "uploadedAt
DESC", {maxResults=10})>

 <cfset HeroVideo = Videos[1]>

<cfoutput>

 <div id="content">

 <h2>#HeroVideo.getTitle()# submitted by #HeroVideo.
getUser().getUserName()#</h2>

 <cfvideoplayer video="videos/#HeroVideo.getFile()#.flv"
width="600" height="338"

 preview="posters/#HeroVideo.getFile()#.jpg">

 </div>

 <div id="sidebar">

 <h2>Recent Videos</h2>

 <ul class="thumbList">

 <cfloop array="#Videos#" index="video">

 <img
src="thumbs/#video.getFile()#.jpg" border="0">

 #video.getTitle()#

 </cfloop>

 </div>

</cfoutput>

</cf_layout>

2. Not a massive change here; we have seen most of it before. First of, we get an
array of the latest videos by calling EntityLoad("Video", {status=1},

"uploadedAt DESC", {maxResults=10}), which gets all the videos with
status=1, ordered by the uploadedAt property. Then we set that we are only
going to return ten results. We then set our HeroVideo (the main video on the
page) by geing the irst item in the Videos array.

http:///

Creaing a Video-sharing Applicaion

[326]

 As we did in the play.cfm page, we display the <cfvideoplayer> with our
HeroVideo. Finally, we simply list all the videos in another <div> by looping

through the whole array of videos we irst obtained. Those videos are actually just
displayed as the thumbnails we created, and we link them to the play.cfm page!

3. Now, ater we upload a few more videos, our home page looks much more
interesing, as shown in the following screenshot:

What just happened?
We inished our applicaion! To get the latest uploaded videos, we used the
EntityLoad("Video", {status=1}, "uploadedAt DESC", {maxResults=10})

funcion to get all the videos that have a status equal to 1 (which we set ater we converted
it), we then sorted them by the uploadedAt property and then listed them using the

thumbnails we created earlier.

Now, our applicaion has all the features we want, and it wasn't that hard to achieve!

http:///

Chapter 10

[327]

Have a go hero

There are areas that we could improve in the applicaion. Why don't you try adding the
following features:

 � Displaying a User page with his/her informaion and all the videos they have
uploaded

 � Maybe use the AJAX capabiliies of Railo to make the comments system more
interacive

 � Display related videos on the video display page by relaing videos to each other

Summary

In this chapter, we covered a lot, and hopefully brought together a lot of the features of Railo
Server that we learned in other chapters to develop a full-ledged applicaion.

We covered:

 � Seing up our Application.cfc template so that our applicaion can have access
to the ORM capabiliies

 � Adding an onSessionStart() method to the Application.cfc—this allowed
us to implement a simple security system based on the SESSION scope

 � Creaing components that can easily be persisted in a database—the ORM capability
of Railo Server means that you don't have to worry too much about the database
schema and just get on with developing your applicaion using components that
map to real-world objects

 � Convering and geing images from videos— by using the <cfvideo> tag. We were
able to convert videos easily to a web-displayable format and also generate poster
and thumbnails from a video

Hopefully, this chapter has given you an overview of how all the features we learned in
previous chapters go together easily. Now, you too can develop complex applicaions using
Railo Server quickly.

http:///

http:///

Index

Symbols

<cfabort> tag 41, 44, 246, 247, 248

<cfajaxproxy> tag 213, 217, 218

<cfcache> tag

about 171
used, for page caching 171-173

<cfcase> tag 45, 46
<cfcomponent> tag 141

<cfcookie> tag 69
<cfdirectory> tag 222

<cfdiv> tag 217

<cfdump> tag 55, 75, 316
<cfelseif> tag 45

<cfelse> tag 45

<cile> tag 222

<cfuncion> tag 48, 251
<chtpparam> tag 45

<chtp> tag 45

<cif> tag 42, 44

<cf_layout> tag 292

<clocaion> tag 161
 <cloop ile=""> tag 224
<cloop> tag

about 41, 74, 184, 224
using, in CFScript 191, 192

<cfmailparam> tag 45

<cfmail> tag 45

<cfoutput> tag 40, 41, 74, 293, 316
<cfparam> code 168
<cfparam> tag 65, 68, 292

<cfproperty> tag 154

<cfqueryparam> tag 45

<cfquery> tag 44, 74, 75, 77, 162, 175

<cfscript> tag 182, 251

<cfscript> version 186
<cf_secure> tag 323

<cfset> tag 40, 42, 179
<cfstoredproc> tag 45, 79

<cfswitch> tag 46
<cfvideoplayerparam>tag 208
<cfvideoplayer> tag 199, 201, 302, 313, 316, 318

<cfvideo> tag 199, 203, 313, 317

/etc/default/jety coniguraion ile 34

<form> tag 306
{home-directory} variable 228

<Railo Install Directory>/webroot directory 210
{railo-server} variable 228

{railo-web} variable 228

{system-directory} variable 228

{temp-directory} variable 228

<videoplayer> tag 201
{web-context-hash} variable 228

{web-root-directory} variable 228

A

Access Key ID 239

addComments() method 161
addParam() method 195

addTodo() funcion 210
admin password, Railo Express

seing 22, 23

Admin Sync 254

AJAX funcionality
about 209

http:///

[330]

applicaion, seing up 210, 211

input, binding to component 212-214
services, creaing 210, 211

task, deleing 217-219
tasks, displaying 214-217

Allaire Technologies 39

Amazon

about 236
Simple Storage Service (S3) 236

Amazon Web Services

URL 236
any, returntype

using 252

applicaion
deining 141-143
SESSION scope, creaing in 59, 60

Applicaion.cfc component 143

Applicaion.cfc ile 139

applicaion events 143
Applicaion Lifecycle 139
APPLICATION Scope

about 57
creaing 57, 58

applicaion secion, Railo Web Administrator
seings

about 108
applicaion listener 110, 111

request imeout ield 110

script protect 109, 110

applicaions secion, Railo Web Administrator
extension 121, 122

applicaion imeout opion, Railo Web
Administrator seings 108

apt-get command 33

archives and resources, Railo Web Administrator
remote 125

ARGUMENTS.sessionScope variable 146
ArrayAppend() funcion 46, 54

array atribute 185

ArrayDeleteAt() funcion 210
array notaion versions[] 252

array variables

about 53

creaing 54, 55

AutoDeploy 36
Auto import component 128

AWS console 239

B

Base/Root component 128

Big Buck Bunny movie

URL 199, 311

blog

creaing, persistent components used 152-156
blogpost.cfm 236
blog posts

lising, persistent components used 157-159
built-in funcions

using 46-48

C

cacheClear() funcion 169, 171
cache component 128

cache connecion
creaing 163, 165

cachedater atribute 175

cachedwithin atribute 175

cacheGetAllIds() 169
cacheGet() funcion

about 166-171
parameters 166

cache providers 169
cachePut() funcion

about 166, 167, 171
parameters 166

cache secion, Railo Web Administrator services
114

cache types

about 171
CouchDB 170
EHCache 170
EHCache Lite 170
Ininispan 170
Membase 170
Memcached 170
parial template caching 173
query cache 175
RamCache 170
resource cache 176
template cache 171

caching funcions
about 167, 168
cacheClear() funcion 169
cacheGetAll() funcion 169

http:///

[331]

caching, Railo Server
about 162
cache connecion, creaing 163, 165
cache providers 169
cache types 171
caching funcions 167, 168
object cache, using 166-178

cascading secion, Railo Web Administrator
seings 104

CFDNS extension 257

CFML

about 8, 39, 228
built-in funcions 46-48

CFML code 29

CFML compiler 14

CFML engines 170
CFML funcions

about 46, 248
cleanScope() 249
isDeined() 248
trim() 248

CFML language

basics 40
Hello World example 40, 41
history 39

CFML scopes

about 55

APPLICATION 57, 58
CGI 62, 63
REQUEST 60, 62
SERVER 55, 56
SESSION 58, 60

CFML tags

about 41
single tag, with atributes 41
syntax 41
tags, with content 44
tags, with expressions 42
tags, with sub tags 45, 46

CFML variables

about 50

array variables 53-55

structure variables 51-53

CFScript

<cloop> tag, using 191, 192
wrapped tags, scriping 192, 193

CFVideo Extension 202, 317

CFX tags, Railo Web Administrator remote 131
CGI scope 62, 63
charset secion, Railo Web Administrator

seings
about 103

Resource charset, type 103

Template charset, type 103

Web charset, type 103

cleanScope() funcion 249

client cookies opion, Railo Web Administrator
seings 108

client management opion, Railo Web
Administrator seings 108

clips

creaing 205

creaing, from video player 204
Cluster Scope 254

code

accessing, from mappings 226
ColdFusion MarkUp Language. See CFML

ColdFusion Server 39

comment_add.cfm template 323

comments

adding, persistent comments used 159-161
adding, to videos 319-324

component dump template 128

component, Railo Web Administrator remote
about 127
addiional resources secion 130

Auto import component 128
Base/Root component 128
cache component 128
component dump template 128
data access number type 128
magic funcions 129
magic funcions, using 129, 130

search local component 128
components

about 187
creaing 188, 190, 227, 228

content

caching, within template 174
content property 155

context

relaing 93
seing up 89, 91
ime zone, seing 93-95

http:///

[332]

cookies 68
CouchDB

about 170
URL 170

CreateObject() funcion 81, 84

CreateTimeSpan() funcion 60, 176
CreateUUID() funcion 314

Creaive Commons Atribuion license 199

Cross-site scriping. See XSS
custom CFML funcion

creaing 249-251

custom CFML tags

creaing 243-248
custom extension provider

creaing 270-273
custom Railo applicaion extension

creaing 261
custom tags, Railo Web Administrator remote

130, 131
cutImage 317

D

data access number type 128

database

creaing 151

queries, running against 74-77
seing up 70-72
stored procedures, creaing in 79, 80

database access

about 69
queries, with parameters 77, 78
stored procedures 79

database persistence store

creaing 150

database, creaing 151

railoblog datasource, creaing 151, 152

datasource atribute 44

data sources

coniguring, in Railo server 72-74
datasource secion, Railo Web Administrator

services 114

datasource, VideoShare
creaing 287

dateCreated property 155, 159

DateFormat() funcion 159

DB2 69
debug template secion, Railo Web

Administrator development 132-134

DirectoryXXX() funcion 222

documentaion, Railo Web Administrator 135

domain cookies opion, Railo Web Administrator
seings 108

dot notaion name.last 252

DropCreate property 313

E

EHCache
about 170
URL 170

EHCache Core 254

EHCache Lite
about 170
URL 170

EHCache Lite connecion
assigning, to resources 177, 178

Employee component

creaing 81-85
EnityLoad() funcion 295

EnityLoad() funcion 159, 161, 302
EnityNew() funcion 297

EnitySave() funcion 161, 297

EnitySave(NewUser) 297

EnitySave(VideoObj) method 310
error secion, Railo Web Administrator seings

112

event gateway secion, Railo Web Administrator
services 112

expires atribute 69
extension, for web context

installing 254-256
extension installaion system

about 257
custom Railo applicaion extension, creaing

261
Famous Quotes App, creaing 261-268
Galleon forums web applicaion, installing

257-260
ExtensionProvider CFC

about 274
extending 279

http:///

[333]

GetDownloadDetails funcion 276, 277
ListApplicaions query informaion 275
methods 274
structure informaion 274

Extension Provider system 270
extensions

installing 253

F

Famous Quotes App
creaing 261-268

famousquotesapp.zip 262
ieldtype atribute 320
FileRead() funcion 236
iles

accessing, from ZIP ile 232, 233

accessing locally 222

looping 223, 224
reading 222, 223

wriing 222, 223

FileWrite() funcion 236
FileXXX() funcion 222

Firebird 69
Flash Video format 199

Flash video player

embedding 199
FORM.email variable 68
FORM variables

about 65
retrieving 65-68

funcions 46

G

Galleon forums web applicaion
installing 257-261

getDateCreated 158

GetDownloadDetails funcion 276
getDownloadDetails method 271

getInfo method 270
getQuote() funcion 262
goals, Railo Server Tomcat installer 23
goals, VideoShare 284, 285
Graphical User Interface (GUI) tool 151

H
Helloapp applicaion 142

HelloApp directory 140
Hello World example 40, 41

Hibernate 156
Hibernate Persistence

about 147
URL 147

home page, VideoShare
creaing 324
latest videos, acquiring 325, 326

HSSQl 69
HTML 41

HTTP component
website content, retrieving 196, 197

I

IIS7

Railo-enabled site, adding 29-32

IIS process 29

index.cfm template 142

Ininispan
about 170
URL 170

init funcion 246
Inspect Templates (CFM/CFC) secion 98

installaion, Railo server. See Railo server

installaion
Install FusionReactor screen 27

installing

Railo Server 19
install method 264
isDeined() funcion 248

isNumeric() funcion 42, 46

J

jakarta 30
JBoss 147

Jety
booing up 34, 35

downloading 33

installing 33

http:///

[334]

Jety Servlet Engine 33

jordan-desktop 35

JSON (JavaScript Object Notaion) 210

L

layout custom tag, Videoshare
creaing 288-290

Len() funcion 68
license.txt ile 267
listApplicaions method 270
ListApplicaions query informaion 275
ListGetAt() built-in funcion 184

ListGetAt() funcion 191

lising_7_02.cfm template 205
lising_8_01.cfm template 224

localhost 35

login.cfm template 300
looping

about 183
array 184, 185
lists 183
over queries 186, 187
through list 183, 184
through structures 185, 186

M

magic funcions
using 129

mail secion, Railo Web Administrator services
118

mappings

about 224
code, accessing from 226
creaing, for log ile 225, 226
seings 230

seings, changing 230, 231

ZIP iles, accessing 232

mappings, Railo Web Administrator remote
about 125

creaing, in applicaion 126
markDone() funcion 218

markDone JavaScript funcion 218

Membase

about 170
URL 170

Memcached

about 170
URL 170

Merge URL and FORM scopes seing 105
methods, ExtensionProvider CFC

getDownloadDetails 274
getInfo 274
listApplicaions 274

Microsot MS SQL 69
Mid() funcion 50
myPost object 155

myQuery variable 44

MySQL
about 69
installing 70-72

MySQL database 151

myQuery.execute() method 195

N

newName variable 314

new Query() object 194

O
object Cache

using 166
Object Oriented Programming (OOP) 15

Object Oriented Programming, with components
80

object relaional mapping
about 147
Railo Server, upgrading 148-150

Object Relaional Mapping (ORM) secion, Railo
Web Administrator services 114

onApplicaionEnd funcion 145

onApplicaionStart() method 144, 145

onEndTag funcion 246
onError method 146
onMissingTemplate 146
onRequestEnd method 147

onRequest method 146
onRequestStart method 146
onSessionStart() funcion 297

onSessionStart() method 145

onStartTag funcion 247

OpenBD 39

http:///

[335]

Oracle 69
ormtype atribute 309
output secion, Railo Web Administrator seings

111

P

page caching

cfcache used 171-173
parameters, cacheGet() funcion

CacheConnecion 166
KeyName 166
ThrowError 166

parameters, cachePut() method
CacheConnecion 166
idleTime 166
KeyName 166
LifeSpan 166
Value 166

parial template caching
about 173
content, caching within template 174

performance/caching secion, Railo Web
Administrator seings

about 98
Always (Bad) 99
Inspect Templates (CFM/CFC) secion 98
Never (Best Performance) 98
Once (Good) 99

persistent components

blog, creaing 152-156
blog posts, lising 157, 158
comments, adding 159, 161
using 152

persistent Post object 154

plain text

compiling, to CFML 234-236
playlist

adding, to <cfvideoplayer> 208, 209
poster frames

creaing 206, 207
PostgreSQL 69
preview atribute 201
providers secion, Railo Web Administrator

extension 123

Q
queries

running, against database 74-77
query cache

about 175
query, caching using cachedwithin 175, 176

query component

addParam() method 195
myQuery.execute() method 195
new Query() object 194
setSQL() method 195
using 194, 195

Quote.cfc 261
quotes.txt 261

R

Railo.Ajax.refresh() funcion 218

Railo applicaions
about 139
applicaion, deining 141-143
client seings 143
session seings 143
simplest applicaion, building 140, 141

Railo archive

about 228
creaing 229

railoblog datasource

creaing 151, 152

Railo cache

about 163
advantages 163

railo directory 38

Railo-enabled site

adding, to IIS7 29, 32

Railo Express

about 19
customizing 22

downloading 19, 20

running 20-22

Railo Express customizaion
about 22

admin password, seing 22, 23

Railo Extension Store

about 279, 280

http:///

[336]

diferences, with custom provider 280
URL 279

Railo resources

about 221

iles, accessing locally 222

iles, looping 223

Railo Server

about 19, 69
AJAX funcionality 209
applicaion events 143
background task, execuion 16
built-in components 194
caching 162
CFML compiler 14
CFML funcions, variety 15

CFML tags, variety 15

compaibility 16
custom CFML tags, creaing 243-248
database access 69
database persistence store, creaing 150

data sources, coniguring in 72-74
easy clustering 17
easy installaion 17
easy update mechanism 16
email, sending in PHP 11, 12

extension manager 16
extensions, installing 253

features 9
framework and applicaion compaibility 16
high performance 17
HTTP built-in component 196
in CFML 12

inexpensive and free 17
in Java 12

installing, on windows 24-28
installing ways 19
mappings 224
need for 8
object-oriented approach 15

object relaional mapping 147
persistent components, using 152

query built-in component 194, 195
Railo archives 14
RAM resource 233

scriping, support 15

security 16
stored procedures, running from 79, 80

template 8
upgrading 148-150

uses 9
video 199
VideoShare, creaing 283
virtual ilesystems 17

Railo Server installaion
Railo Express, running 19
Railo Server Tomcat installer, running 23

Railo WAR and Jety, running 32

Railo Server Tomcat installer

about 23

CFML-enabled sites, adding to IIS7 29
goals 23

Install FusionReactor screen 27
Start at Boot?? screen 26
Tomcat Administrator Password screen 26

Railo Server variables

{home-directory} 228
{railo-server} 228
{railo-web} 228
{system-directory} 228
{temp-directory} 228
{web-context-hash} 228
{web-root-directory} 228

Railo WAR

about 32

deploying 36, 37
downloading 36

Railo Web Administrator

about 74, 95, 139
development 131

documentaion 135

extension 121

extensions 253

invesigaing 96, 97
password, seing up 92
remote 124
secions 95
security 135

seings 97
Railo Web Administrator, development

debug template secion 132-134
Railo Web Administrator, extension

applicaions secion 121, 122

providers secion 123

http:///

[337]

Railo Web Administrator, remote
archives and resources 125

CFX tags 131

component 127
custom tags 130, 131

mappings 125

Railo Web Administrator, services
cache 114
datasource secion 114
event gateway 112

mail secion 118
Object Relaional Mapping (ORM) secion 114
scheduled tasks secion 120

search collecion, creaing 115, 116
search secion 115

tasks secion 118-120

Railo Web Administrator, seings
applicaion 108
applicaion listener 110

applicaion imeout opion 108
cascading 104
Charset secion 103

client cookies opion 108
client management opion 108
domain cookies opion 108
error secion 112

Merge URL and FORM scopes seing 105

output 111

performance/caching secion 98, 99
regional 102

request imeout 110

scope 103

scoping of variables, restricing 104, 105

script protect 109
server ime zone, geing 103

services secion 112

session management opion 107, 108
session imeout 108
session type 105

template caching seings, comparing 99-101

URL and FORM scopes, merging 106
Railo Wiki

URL 209
RAM

used, for storing iles 233

RamCache 170

RAM resource

plain text, compiling to CFML 234, 236
regional secion, Railo Web Administrator

seings 102
Relaional Database Management System

(RDBMS) 69
removeTodo() funcion 210, 217

repository 33

REQUEST scope
about 60
using 61, 62

request imeout ield 110
resource cache

about 176
EHCache Lite connecion, assigning 177, 178

Resource charset 103

S

savename.cfm template 140
scheduled tasks secion, Railo Web

Administrator services 120, 121

scope secion, Railo Web Administrator seings
about 103

variables scoping, restricing 104, 105

search local component 128

search secion, Railo Web Administrator services
115

Secret Access Key 239

security

password, seing up 92
seing up 91

security, Railo Web Administrator 135

security, VideoShare
adding 306, 307

server

and web context 88, 89
server extensions

versus, web extensions 256
Server ID 277, 278
Server scope

about 55, 56
variable, adding to 56, 57

server ime zone, Railo Web Administrator
seings

geing 103

http:///

[338]

Servlet containers 19

session and client seings
applicaionTimeout 143
clientManagement 143
clientStorage 143
sessionManagement 143
sessionTimeout 143
setClientCookies 143
setDomainCookies 143

session management opion, Railo Web
Administrator seings 107, 108

SESSION.name variable 142

SESSION scope
about 58
creaing, in applicaion 59, 60

session imeout opion, Railo Web Administrator
seings 108

session type, Railo Web Administrator seings
105

SESSION.userid variable 302
setComment() method 161
setFrom() method 161
setShowError funcion 248

setSQL() method 195

seings, Railo Web Administrator. See Railo
Web Administrator, seings

simplest applicaion
building 140, 141

Simple Storage Service (S3)
about 236
using, as ilesystem 237-241

single tag example 42, 43

single tags, with atributes 41

Start at Boot?? screen 26
stored procedures

about 79
creaing, in database 79, 80
running, from Railo Server 79, 80

structure variables

about 51

using 51-53

Sybase 69

T

tags

about 41
advantages 180, 181

disadvantages 181, 182
scriping 190

tags, with content 44

tags, with expressions 42

tags, with sub tags 45, 46
taskname ield 214

TaskService JavaScript object 218

tasks secion, Railo Web Administrator services
119, 120

template cache

about 171
page, caching with cfcache 171-173

template caching seings, Railo Web Adminis-

trator seings
comparing 99-101

Template charset 103
this scope 188, 189

thumbnails

creaing, for videos 317-319
imestamp 155

ime zone
seing up 93, 94

itle property 155

Tomcat Administrator Password screen 26
Tomcat Servlet Engine 33

trim() funcion 248

U
Ubuntu 33

Ubuntu Linux machine 33

uninstall funcion 269
update method 267
uploadedAt property 326
upload_video.cfm template 309
URL

variables, retrieving from 63-65
URL and Form scope, Railo Web Administrator

seings
merging 106

URL.delete variable 169
URL variables 63
User.cfc object 309
user-deined funcions

about 48
creaing 48-50

user_id column 321

user login, VideoShare 298-302

http:///

[339]

user logout, VideoShare 298-302
user model object, Videoshare

creaing 290-298
User object, Videoshare 290
users, Videoshare

registering 290

V
validate method 264
variable

adding, to Server scope 56, 57
retrieving, from URL 63-65

video

about 199
convering 202

displaying 200

video conversion

about 202

clips, creaing 205

clips, creaing for video player 204
playlist, adding to <cfvideoplayer> 208, 209
poster frames, creaing 206, 207
Video Extension, installing 202-204

Video Extension
installing 202-204

video_id column 321

video_info variable 207
videoName variable 314

video player

displaying 200, 201

videos

assigning, to users 308
comments, adding 319-324
convering 313-316
playing 316, 317
properies 308
storing, to database 308-312

thumbnails, creaing 317-319
uploading 302-305

VideoShare applicaion
about 283
basic applicaion, creaing 285-287
comments, adding to video page 319-324
creaing 285
datasource, creaing 287
goals 284, 285

home page, creaing 324
images, creaing from video 317-319
latest videos, acquiring 325, 326
layout custom tag, creaing 288-290
secure tag, adding 306, 308
security, adding 306
thumbnails, creaing for videos 317
user login 298-302

user logout 298-302

user model object, creaing 290-298
users, registering 290
video, convering 313-320

video, playing 313

videos, assigning to users 308
video, storing to database 308-312

videos, uploading 302-305

W

WAR 33

Web charset 103
web context

and server 88, 89
web data

handling 63
Web ID 277, 278
WEB-INF directory 37

Windows

Railo Server, installing on 24-28
Windows OS 33

X
XSS

about 110

URL 110

Z
ZIP ile

iles, accessing from 232, 233

http:///

http:///

Thank you for buying

Railo 3 Beginner’s Guide

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Efecive
MySQL Management" in April 2004 and subsequently coninued to specialize in publishing
highly focused books on speciic technologies and soluions.

Our books and publicaions share the experiences of your fellow IT professionals in adaping
and customizing today's systems, applicaions, and frameworks. Our soluion based books
give you the knowledge and power to customize the sotware and technologies you're
using to get the job done. Packt books are more speciic and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
informaion, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cuing-edge books for communiies of developers, administrators, and newbies alike. For
more informaion, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to coninue its focus on specializaion. This book is part of the Packt Open Source brand,
home to books published on sotware built around Open Source licences, and ofering
informaion to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose sotware a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is sill at an early stage and you
would like to discuss it irst before wriing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no wriing
experience, our experienced editors can help you develop a wriing career, or simply get
some addiional reward for your experise.

http:///

Squid Proxy Server 3.1: Beginner's Guide

ISBN: 978-1-84951-390-6 Paperback: 332 pages

Improve the performance of your network using the
caching and access control capabiliies of Squid

1. Get the most out of your network connecion by
customizing Squid's access control lists and helpers

2. Set up and conigure Squid to get your website
working quicker and more eiciently

3. No previous knowledge of Squid or proxy servers is
required

4. Part of Packt's Beginner's Guide series: lots of
pracical, easy-to-follow examples accompanied by
screenshots

Apache Solr 3.1 Cookbook

ISBN: 978-1-84951-218-3 Paperback: 300 pages

Over 100 recipes to discover new ways to work with
Apache's Enterprise Search Server

1. Improve the way in which you work with Apache
Solr to make your search engine quicker and more

efecive

2. Deal with performance, setup, and coniguraion
problems in no ime

3. Discover litle-known Solr funcionaliies and
create your own modules to customize Solr to your
company's needs

4. Part of Packt's Cookbook series; each chapter covers
a diferent aspect of working with Solr

Please check www.PacktPub.com for information on our titles

http:///

Yii 1.1 Application Development Cookbook

ISBN: 978-1-84951-548-1 Paperback: 392 pages

Over 80 recipes to help you master using the Yii PHP
framewor

1. Learn to use Yii more eiciently through pleniful Yii
recipes on diverse topics

2. Make the most eicient use of your controller and
views and reuse them

3. Automate error tracking and understand the Yii log

and stack trace

4. Full of pracically useful soluions and concepts
that you can use in your applicaion, with clearly
explained code and all the necessary screenshots

Flash Game Development by Example

ISBN: 978-1-84969-090-4 Paperback: 328 pages

Build 10 classic Flash games and learn game

development along the way

1. Build 10 classic games in Flash. Learn the essenial
skills for Flash game development

2. Start developing games straight away. Build your
irst game in the irst chapter

3. Fun and fast paced. Ideal for readers with no Flash
or game programming experience

4. The most popular games in the world are
built in Flash.

Please check www.PacktPub.com for information on our titles

http:///

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	PacktLib.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Railo Server
	Why use Railo Server?
	What does Railo Server do?
	A better look at Railo Server
	What else can you do with Railo Server?
	CFML compiler
	Railo archives—compiled code
	Wide variety of CFML tags and functions
	Object-oriented approach
	Scripting support
	Integrated administration frontend
	Background task execution
	Extension manager
	Easy update mechanism
	Compatibility
	Framework and application compatibility
	Security
	Virtual filesystems
	High performance
	Easy installation
	Inexpensive and free
	Easy clustering

	Summary

	Chapter 2: Installing Railo Server
	Getting up and running with Railo Express
	Time for action – downloading Railo
	Customizing Railo Express
	Time for action – setting the administrator's password
	Running the Railo Server Tomcat installer
	Time for action – installing on Windows
	Adding CFML-enabled sites to IIS7
	Time for action – adding a site to IIS7
	Getting up and running with the Railo WAR and Jetty
	Time for action – download and install Jetty
	Time for action – booting up Jetty
	Time for action – download and deploy the Railo WAR
	Summary

	Chapter 3: CFML Language
	Basics of the CMFL language
	Time for action – Hello World!
	CFML tags
	Single tags with attributes
	Tags with expressions

	Time for action – single tag example
	Tags with content
	Tags with sub tags

	CFML functions
	Time for action – using built-in functions
	User-defined functions

	Time for action – using user-defined functions
	CFML variables
	Structure variables

	Time for action – using Structures
	Array variables

	Time for action – creating an array
	CFML scopes
	SERVER scope

	Time for action – adding a variable to the SERVER Scope
	APPLICATION scope

	Time for action – creating the APPLICATION Scope
	SESSION scope

	Time for action – creating a SESSION scope in your Application
	REQUEST scope

	Time for action – using the REQUEST Scope
	CGI scope

	Handling web data
	URL variables

	Time for action – getting variables from the URL
	FORM variables

	Time for action – getting FORM variables
	Cookies

	Database access
	Time for action – installing MySQL and setting up our database
	Time for action – configuring data sources in Railo Server
	Time for action – tunning Queries against our Database
	Queries with parameters
	What just happened?
	Stored Procedures

	Time for action – calling stored procedures
	Object Oriented Programming with Components

	Time for action – creating the Employee component
	Summary

	Chapter 4: Railo Server Administration
	Server and Web context
	Time for action – setting up an example context
	Setting up security

	Time for action – setting your password
	How contexts relate to each other
	Time for action – setting the time zone
	The Railo Web Administrator
	Time for action – investigating the Web Administrator
	Settings
	Performance/Caching

	Time for action – comparing template caching settings
	Regional
	Charset
	Scope

	Time for action – restricting the scoping of variables
	Time for action – merging the URL and FORM scopes
	Application
	Output
	Error

	Services
	Event Gateway
	Cache
	Datasource
	ORM
	Search

	Time for action – creating a search collection
	Mail
	Tasks
	Scheduled tasks

	Extension
	Applications
	Providers

	Remote
	Archives and Resources
	Mappings

	Time for action – creating mappings in our application
	Component

	Time for action – using magic functions
	Additional resources
	Custom tags
	CFX tags

	Development

	Time for action – setting the debug template
	Security
	Documentation

	Summary

	Chapter 5: Developing Applications with Railo Server
	Railo applications
	Time for action – building the simplest application
	Time for action – defining the application
	Session and client settings

	Application events
	Object relational mapping with Railo Server
	Time for action – upgrading Railo Server
	Creating our database persistence store
	Time for action – creating a database
	Time for action – creating our railoblog datasource
	Using persistent components
	Time for action – creating the blog
	Time for action – listing our blog posts
	Time for action – adding comments
	Caching in Railo Server
	Cache: what is it good for?

	Time for action – creating a cache connection
	Time for action – using the object Cache
	Time for action – getting well versed with more caching functions
	Time for action – caching a page with cfcache
	Partial template caching

	Time for action – caching content within a template
	Query cache

	Time for action – caching a query using cachedwithin
	Resource cache

	Time for action – assigning an EHCache Lite connection to resources
	Summary

	Chapter 6: Advanced CFML Functionality
	Scripting within Railo Server
	Why tags are good
	Why tags are bad

	The <cfscript> tag
	Loops
	Looping lists

	Time for action – looping through a list
	Looping arrays

	Time for action – looping an array
	Looping structures

	Time for action – looping through a structure
	Looping queries

	Time for action – looping over queries
	Scripted components

	Time for action – creating the component
	Scripting tags

	Time for action – getting the contents of another site
	Scripting wrapped tags

	Time for action – using the <cfloop> tag in CFScript
	Scripting wrapped tags—Part 2

	Time for action – get a user by his/her ID
	Built-in components
	The Query built-in component

	Time for action – using the Query component
	The HTTP built-in component

	Time for action – getting the content of a website via the HTTP component
	Summary

	Chapter 7: Multimedia and AJAX
	Video
	Displaying video

	Time for action – displaying a video player
	Converting a video

	Time for action – installing the Video Extension
	Time for action – creating clips for our video player
	Time for action – creating poster frames and clips
	Time for action – adding a playlist to <cfvideoplayer>
	AJAX functionality within the Railo server
	Time for action – setting up the application and services
	Time for action – binding the input to the component
	Time for action – displaying the tasks
	Time for action – deleting a task
	Summary

	Chapter 8: Resources and Mappings
	Railo resources
	Accessing files locally
	Time for action – writing and reading files
	Looping files
	Time for action – looping through the contents of a file
	Mappings
	Time for action – creating a mapping for the log file
	Accessing code from mappings
	Time for action – creating our components
	Railo archives
	Time for action – creating a Railo archive
	Mappings and their settings
	Time for action – changing the settings of a mapping
	Accessing your files from ZIP and TAR files
	Time for action – accessing files from a ZIP file
	Using RAM as a quick location to store files
	Time for action – compiling plain text to CFML
	Using Amazon's Simple Storage Service to use files in the Cloud
	Time for action – using Amazon's Simple Storage Service (S3)
	Summary

	Chapter 9: Extending Railo Server
	Why create your own CFML tags and functions?
	Time for action – creating our own CFML tag
	CFML functions

	Time for action – create our own CFML function
	Using return type "any"
	Structure and array notation in the form and URL scope

	Installing extensions
	Time for action – installing an extension for the web context
	Server versus web extensions
	The extension installation system

	Time for action – installing the Galleon forums web application
	Time for action – create our own Railo application extension
	Creating the Famous Quotes App

	Time for action – creating our own extension provider
	The ExtensionProvider CFC
	GetInfo structure information
	ListApplications query information
	GetDownloadDetails function

	The role of the Web ID and Server ID

	The Railo Extension Store
	Summary

	Chapter 10: Creating a Video-sharing Application
	VideoShare: Getting to know our application
	Goals of the application
	Creating our application
	Time for action – creating our basic application
	Laying it all out
	Time for action – creating the layout custom tag
	Registering users
	Time for action – creating our user model object
	User login and logout
	Time for action – log in or log out of the application
	Uploading videos
	Time for action – uploading a video
	Adding security
	Time for action – adding the secure tag
	Assigning videos to users
	Time for action – storing our video to the database
	Converting and playing videos
	Time for action – converting the uploaded video
	Creating thumbnails for our videos
	Time for action – creating images from a video
	Adding comments to our video page
	Time for action – adding comments to our videos
	Creating the home page
	Time for action – getting the latest videos
	Summary

	Index

