
www.allitebooks.com

http://www.allitebooks.org

RESTful Web Services
with Dropwizard

Over 20 recipes to help you build high-performance,
production-ready RESTful JVM-based backend services

Alexandros Dallas

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

RESTful Web Services with Dropwizard

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: February 2014

Production Reference: 1120214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-953-0

www.packtpub.com

Cover Image by Jarek Blaminsky (milak6@wp.pl)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Alexandros Dallas

Reviewers
Sunil Gulabani

Tan Tze Hon

Cemalettin Koc

Acquisition Editor
Vinay Argekar

Content Development Editor
Rikshith Shetty

Technical Editors
Pragnesh Bilimoria

Nikhil Potdukhe

Copy Editors
Mradula Hegde

Gladson Monteiro

Project Coordinator
Sageer Parkar

Proofreader
Paul Hindle

Indexer
Priya Subramani

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

About the Author

Alexandros Dallas studied Applied Informatics in Management and Economy and is now
a software test engineer based in Athens.

He has a solid programming/software development background, and whenever he is free,
he spends his time contributing to open source projects.

He is well aware of Dropwizard's core libraries, such as Jersey, since his interests include
the development and integration of web APIs.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Sunil Gulabani is a software engineer based in Ahmedabad, Gujarat, India. He graduated
with a Bachelor's degree in Commerce from S. M. Patel Institute of Commerce (SMPIC) and
a Master's degree in Computer Applications from Ahmedabad Education Society Institute
of Computer Studies (AESICS). He has also presented the paper Effective Label Matching
For Automated Evaluation of Use Case Diagrams at Technology For Education (T4E),
IIIT-Hyderabad, an IEEE conference, along with senior lecturer Vinay Vachharajani
and Dr. Jyoti Pareek.

He has been working since 2011 as a software engineer and is a cloud technology savvy.
He has experience in developing enterprise solutions using Java (EE), Apache SOLR, RESTful
Web Services, GWT, SmartGWT, Amazon Web Services (AWS), Redis, Memcache, and
MongoDB, among others. He holds a keen interest in system architecture and integration,
data modeling, and relational databases and mapping with NoSQL for high throughput.

He is the author of the book Developing RESTful Web Services with Jersey 2.0 that focuses on
the use of JAX-RS 2.0, which is an enhanced framework based on the RESTful architecture.

Apart from that, he takes interest in writing tech blogs and is actively involved in
knowledge-sharing communities.

Visit him online at http://www.sunilgulabani.com, follow him on Twitter at
twitter.com/sunil_gulabani, or reach him directly at sunil_gulabani@yahoo.com.

I would like to express my heartiest thanks to my parents and family
members, who supported me at each and every level of my career, as well
as my friends and colleagues, without whom jumping to the next step of my
career would not have been possible.

www.allitebooks.com

http://www.allitebooks.org

Tan Tze Hon has been fascinated by computers since his youth, and still remembers the
days when trying to play a game meant wrestling with autoexec.bat files and resolving
IRQ conflicts with great fondness. Having felt the pain of hand rolling his own RESTful Web
Services, he has embraced Dropwizard to make programming fun again, and has since
deployed a variety of Dropwizard services to production. He is currently a polyglot developer
at ThoughtWorks, a company that specializes in agile software development. Once in a while,
he writes about all things on technology at tzehon.com, when he feels that he has spent
way too much time on Hacker News.

Cemalettin Koc is a software engineer who specializes in designing and creating effective,
scalable solutions for web environments. He is very interested in researching on sample
applications, and has over eight years of experience in software design, development, and
support. He also enjoys doing research related to areas of social network analysis, social
computing, recommendation algorithms, data visualization, data mining, information retrieval,
business intelligence, and intelligent user interfaces. He has engineered strong, data-driven
web applications using a great variety of frameworks. He also works with mobile technologies
and has built apps for both iOS and Android OS.

He lives in Istanbul, Turkey, with his wife Ceren and son Mert. Visit him on Twitter at
@CemoKoc to learn more about him and see what he is currently exploring.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with Dropwizard 7

Web service development with Dropwizard 7
Preparing your development environment 8

Chapter 2: Creating a Dropwizard Application 11
Generating a Maven-based project 11
Configuring Dropwizard dependencies and building the configuration 13
Hello World using Dropwizard 15

Chapter 3: Configuring the Application 19
Externalizing the application's configuration 19
Validating configuration settings 22

Chapter 4: Creating and Adding REST Resources 25
Creating a resource class 25

Chapter 5: Representations – RESTful Entities 33
Creating a representation class 33
Serving representations through the Resource class 36
Mapping the request data to representations 39

Chapter 6: Using a Database 41
Preparing the database 41
Interacting with the database 43

Chapter 7: Validating Web Service Requests 51
Adding validation constraints 51
Performing validation 52
Cross-field validation 57

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 8: The Web Service Client 59
Building a client for our application 59
Interacting with our services 61

Chapter 9: Authentication 65
Building a basic HTTP authenticator 65
Authenticating users with credentials stored in a database 70

Chapter 10: The User Interface – Views 75
Building a user interface for the web service client 75

Appendix A: Testing a Dropwizard Application 81
Creating a complete test for the application 81
Adding health checks 85

Appendix B: Deploying a Dropwizard Application 89
Preparing the application for deployment 89

Index 95

Preface
Dropwizard is a Java development framework for RESTful Web Services. It was initially built
by Yammer to be used as the base of their backend systems. Dropwizard is production-ready;
it encapsulates everything you will need for RESTful development.

Jersey, Jackson, jDBI, and Hibernate are only some of the libraries bundled with Dropwizard.
Applications built on Dropwizard run on an embedded Jetty server—you don't need to worry
where to deploy your application or whether it is compatible with your target container.

Using Dropwizard, you will be able to build a fast, secure, and scalable web service
application efficiently with minimum effort and time.

Dropwizard is open source, and all of its modules are available though Maven repositories.
That way, you are able to integrate every library you wish—if it's not already present—just
by adding the appropriate dependency entry on your pom.xml file. Basic knowledge and
understanding of Maven is required.

What this book covers
Chapter 1, Getting Started with Dropwizard, will guide you through the basics of Dropwizard,
helping you to get familiar with its concepts and also prepare your development environment.

Chapter 2, Creating a Dropwizard Application, will introduce Maven and how to use it to
create a Dropwizard application. This covers generating the structure of an empty application,
based on the default artifact, and the necessary modifications required in order to start building
a Dropwizard application.

Chapter 3, Configuring the Application, presents the methods available to externalize
your application's configuration by enabling the use of a configuration file along with a
configuration class that is tasked with fetching, validating, and making the configuration
values available throughout the application.

Preface

2

Chapter 4, Creating and Adding REST Resources, will guide you through the implementations
of your application's most important aspect: the resource class. You will learn how to map
URI paths and HTTP verbs to methods of the resource class and how to add new resources
to a Dropwizard application.

Chapter 5, Representations – RESTful Entities, deals with the modeling of representations
to actual Java classes and how the POJOs are automatically transformed to JSON
representations by Jackson.

Chapter 6, Using a Database, demonstrates the integration and usage of jDBI, how to
create data access objects from interfaces, and using jDBI's SQL Object API in order to
interact with the database. The additional configuration modifications needed are also
presented in this chapter.

Chapter 7, Validating Web Service Requests, presents the usage of Hibernate Validator
in order to validate requests from a web service client prior to fulfilling them.

Chapter 8, The Web Service Client, demonstrates how to create a managed Jersey HTTP
client to be used by a Dropwizard application in order to interact with web services through
WebResource objects.

Chapter 9, Authentication, goes through the basics of web service authentication and
guides you through the implementation of a basic HTTP authenticator and how to adapt
it to the resource class as well as the HTTP client of your application.

Chapter 10, The User Interface – Views, shows the usage of the Dropwizard views bundle
and the Mustache template engine in order to create an HTML interface for the web
service client.

Appendix A, Testing a Dropwizard Application, demonstrates the usage of Dropwizard's
testing module for the creation of automated integration tests. This appendix also deals with
the implementation of runtime tests for our application, which are known as health checks.
You will be guided through the implementation of a health check that ensures that your
HTTP client can indeed interact with a web service.

Appendix B, Deploying a Dropwizard Application, explains the necessary steps you need
to take in order to deploy a Dropwizard application to a web server by using a separate
configuration file and securing the access to you application's admin port.

Preface

3

What you need for this book
In order to follow the examples and the code snippets presented throughout the book,
you will need a computer with a Linux, Windows, or OS X operating system. A modern Java
code editor/ IDE such as Eclipse, Netbeans, or IDEA is really going to help you. You will also
need Version 7 of Java Development Kit (JDK) as well as Maven and MySQL server. Additional
dependencies will be fetched by Maven, so you will need a working Internet connection.

Who this book is for
This book's target audience is software engineers and web developers that have at least
basic Java knowledge and a basic understanding of RESTful Web Services. Knowledge of
SQL/MySQL usage and command-line scripting may also be needed.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "Add a new method in the
Contact class named #isValidPerson()."

A block of code is set as follows:

import java.util.Set;
import javax.validation.ConstraintViolation;
import javax.util.ArrayList;
import javax.validation.Validator;
import javax.ws.rs.core.Response.Status;

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

private final ContactDAO contactDao; private final Validator
 validator;
 public ContactResource(DBI jdbi, Validator validator) {
 contactDao = jdbi.onDemand(ContactDAO.class); this.validator =
 validator;
 }

Any command-line input or output is written as follows:

$> java -jar target/app.jar server conf.yaml

Preface

4

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "At some point, you will
be prompted to provide the MySQL Root Password."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Started with

Dropwizard

Dropwizard is an open source Java framework for the rapid development of RESTful Web
Services putting together everything you'll need. You can have a production-ready application,
making use of Jetty, Jersey, Jackson, JDBI, and Hibernate, as well as a large number of
additional libraries that Dropwizard includes, either in its core or as modules. This solves the
problem of manually adding, configuring, and wiring together lots of different libraries while
building a web service application from scratch. Think of it like this: you will need Jersey to
expose the web services, some other library for database interaction, and additional ones
for validation and authentication, not to mention the overhead of dependency management,
packaging, and distribution.

Throughout the chapters of this book, we are going to use Dropwizard and its components
in order to build a sample application—that is, a phonebook application that exposes a set
of RESTful Web Services that facilitate the storing and management of contacts. It works
pretty much like your mobile phone's built-in phonebook application or any other contact
management application.

Web service development with Dropwizard
We are going to use Jersey in order to build our web services. Jersey is the reference
implementation of the JAX-RS standard (JSR 311), the Java API for RESTful Web Services.
JAX-RS makes use of annotations, simplifying the development of web service applications.

The web services we'll build are going to produce JSON output. Dropwizard includes Jackson,
which is a fast, configurable JSON processor, and is used by Jersey to transform plain Java
objects to JSON representations.

Getting Started with Dropwizard

8

Our application is going to use a database in order to store data. For our database interaction
needs, we'll use JDBI. JDBI is a library that will allow us to easily create DAO interfaces. Data
Access Objects would allow us to perform database operations by mapping Java methods to
SQL queries and statements. JDBI comes as a Dropwizard module, allowing us to build Data
Access Objects easily and fast.

Dropwizard includes validation, monitoring, and testing modules, which we'll use to ensure
that our services will behave correctly in production environments. We are going to integrate
Dropwizard's validation mechanisms, ensuring that each and every request to our web
services is valid, before trying to serve it.

Preparing your development environment
Before we start creating Dropwizard applications, we need to set up our development
environment, which will consist of, at least, Java (JDK 7), Maven, and MySQL.

Getting ready
Maven is a build manager for Java projects. We will use it to create and build our project.
Our application's dependencies (on Dropwizard's modules) will be managed by Maven;
we just need to add the appropriate entries in our project configuration file.

We need a database, so we will use MySQL for the needs of this book. MySQL is the most
popular open source relational database management system—a common choice for web
applications. Throughout the installation process, you will be prompted to create or configure
the values of environment variables. This procedure varies from one operating system to
another, and is something out of the scope of this book.

How to do it…
We will take a look at all the components that you will need to download and install.

Downloading and installing Java
1. Download Java 7 JDK from http://www.oracle.com/technetwork/java/

javase/downloads/jdk7-downloads-1880260.html.

2. Since many installation packages are available, you need to select the appropriate
one, depending on your operating system and platform.

3. After the download has completed, install the JDK by running the installer you
downloaded, as shown in the following screenshot. There's no need to use settings
different than the default ones for now. After a few steps, the installation will be
completed.

Chapter 1

9

4. Following the successful installation, set the JAVA_HOME environment variable with
its value set to the path where you installed Java. In Windows, this may be something
like C:\Program Files\Java\jdk1.7.0_40\.

Downloading and installing Maven
1. Maven installation is pretty straightforward. Just download Maven binaries from

http://maven.apache.org/download.cgi and extract the contents of the
package in a directory of your choice.

2. Modify the PATH environment variable, adding the Maven directory suffixed with \
bin, like C:\apache-maven-3.0.5\bin, so the mvn executable will be available
on all directories when using the command line or the terminal.

Downloading and installing MySQL
1. Download the MySQL Community Server installer for your operating system

from http://dev.mysql.com/downloads/mysql/#downloads.

2. Run the installer and select to install MySQL. Keep the proposed,
default installation settings.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Dropwizard

10

3. At some point, you will be prompted to provide the MySQL Root Password. This
is the password of the root user, which has full access rights. Enter a password of
your choice, and proceed by clicking on the Next > button. The installation will be
completed shortly.

4. Please choose a password that you will remember easily, as you will need to provide
it at a later stage.

How it works…
We just completed the installation of the software packages required to build Dropwizard
applications. We will use Maven to create the structure of our application, which will use
MySQL as a persistent store for its data.

We are going to create a Maven project, and in its Project Object Model (POM) file, we will
include the references (dependencies) to the Dropwizard components our application will use.
Maven will automatically download and make them available for use throughout our project.

2
Creating a Dropwizard

Application

Let's go through the processes required to create a new RESTful Web Services application
based on Dropwizard. Firstly, we will need to create the application's structure, files, and
folders, and also obtain the necessary libraries. Luckily, Maven will handle these tasks
for us.

As soon as our application's structure is ready, we will modify the appropriate files, defining
the application's dependencies on Dropwizard's modules and also configuring how the
runnable package of our application should be produced. After that, we may proceed to
coding our application.

Generating a Maven-based project
Before we start with coding, we need to perform some tasks in order to properly create our
project's structure. We are going to use Maven in order to generate a default, empty project,
which we will then turn into a Dropwizard application.

Getting ready
Our project will be based on the maven-archetype-quickstart archetype. Archetypes
are Maven project templates, and by using the quick-start archetype, we will have our
project's structure (folders and files) prepared in no time.

Creating a Dropwizard Application

12

How to do it…
1. Open the terminal (the command line in Windows) and navigate to the directory

where you want your application to be created.
2. Create a new Maven project by executing the following command (without the

line breaks):

$ mvn archetype:generate
 -DgroupId=com.dwbook.phonebook
 -DartifactId=dwbook-phonebook
 -DarchetypeArtifactId=maven-archetype-quickstart
 -DinteractiveMode=false

This will create an empty Maven project in the dwbook-phonebook directory.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

How it works…
Dropwizard is based on Maven, so we created a new Maven project in which we included
Dropwizard's core dependency.

The structure of the dwbook-phonebook directory at this point is illustrated in the
following screenshot:

The src/ folder will hold our application's main classes, whereas all the test classes will be
placed under the test/ directory.

Chapter 2

13

Notice that Maven has placed pom.xml on the application's root folder. The Project Object
Model (POM) is an XML file that holds important information regarding our project's
configuration and dependencies. This is the file we need to edit in order to add Dropwizard
support for our project.

Configuring Dropwizard dependencies and
building the configuration

We just created a sample application outline. The next thing we need to do is edit the project's
configuration file, pom.xml, and define the Maven modules on which our application will
depend on. We are building a Dropwizard application, and Dropwizard is based on Maven,
so everything we need is available in the Maven Central Repository. This means that we just
need to provide the modules' IDs, and Maven will take care of the download and inclusion of
these modules in our project.

Next, we need to add build and package support to our project. We will use the maven-shade
plugin, which will allow us to package our project completely, along with its dependencies,
into a single standalone JAR file (Fat JAR) that can be distributed and executed as is.

How to do it…
Perform the following steps to configure Dropwizard dependencies and build the configuration:

1. We need to configure our POM by adding the Maven Repository where snapshots
of all Dropwizard modules can be found. Maven will then be able to automatically
fetch the required modules during the building of our project. Locate the
<dependencies> section in pom.xml and add the following entries just before it:
<repositories>
 <repository>
 <id>sonatype-nexus-snapshots</id>
 <name>Sonatype Nexus Snapshots</name>
 <url>http://oss.sonatype.org/content/repositories/
 snapshots</url>
 </repository>
 </repositories>

2. To define the dependencies, add the following code within the
<dependencies> section:
<dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-core</artifactId>
 <version>0.7.0-SNAPSHOT</version>
</dependency>

Creating a Dropwizard Application

14

3. To configure the build and package procedures, locate the <project> section in
pom.xml and insert the following entries within it:

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 <encoding>UTF-8</encoding>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>1.6</version>
 <configuration>
 <filters>
 <filter>
 <artifact>*:*</artifact>
 <excludes>
 <exclude>META-INF/*.SF</exclude>
 <exclude>META-INF/*.DSA</exclude>
 <exclude>META-INF/*.RSA</exclude>
 </excludes>
 </filter>
 </filters>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer
 implementation="org.apache.maven.plugins.
 shade.resource.
 ManifestResourceTransformer">

Chapter 2

15

 <mainClass>com.dwbook.phonebook.App</mainClass>
 </transformer>
 </transformers>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

How it works…
We just told Maven everything it needs to know in order to build our application. Maven will
fetch the Dropwizard core module from the Maven Central Repository and include it in the
build path while packaging (as a result of the mvn package command) the application.

Moreover, we added build and package support with the maven-shade plugin and also
specified our application's main class (the <mainClass> section in pom.xml), which
facilitates the packaging of the Dropwizard application with its dependencies into a single
JAR file. We also instructed the maven-compiler-plugin to build the application for
Java Version 1.7 (check the target and source elements of the configuration section of
maven-compiler plugin).

The exclusion of digital signatures
The <excludes> section in the maven-shade configuration instructs Maven to exclude the
digital signatures of all the referenced signed JAR files. This is because Java would otherwise
treat them as invalid during runtime, preventing the execution of our application.

Hello World using Dropwizard
Our project's dependencies are now set in the pom.xml file and we may start building our
application. Maven has already created our application's entry point class, the App class, in
the App.java file. However, its default contents are more suitable to a plain Java application
and not a Dropwizard-based one.

How to do it…
Let's have a look at the steps we need to follow to print a Hello World message using
Dropwizard:

1. In the App.java file, add the following import clauses:
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

Creating a Dropwizard Application

16

import io.dropwizard.Application;
import io.dropwizard.Configuration;
import io.dropwizard.setup.Bootstrap;
import io.dropwizard.setup.Environment;

2. Modify the definition of the App class as shown in the next step. This class needs
to extend Application <Configuration>.

3. Add a logger to our application by declaring it as a static final member of the App
class after its definition:
public class App extends Application<Configuration> {
 private static final Logger LOGGER =
 LoggerFactory.getLogger(App.class);

4. Implement the abstract methods of the Service class, initialize() and run(),
by adding the following code:
 @Override
 public void initialize(Bootstrap<Configuration> b) {}
 @Override
 public void run(Configuration c, Environment e) throws
 Exception {
 LOGGER.info("Method App#run() called");
 System.out.println("Hello world, by Dropwizard!");
 }

5. Finally, modify the main() method, adding the necessary code to instantiate our
Dropwizard service:
 public static void main(String[] args) throws Exception
 {
 new App().run(args);
 }

6. Build the application by executing the following command in your terminal inside the
dwbook-phonebook directory:

$ mvn package

The output of this command will contain the [INFO] BUILD SUCCESS line, indicating that
the project was successfully built, as shown in the following screenshot:

Chapter 2

17

Maven has produced (built) the executable Fat JAR using the shade plugin, and this can be
located in the target/directory named dwbook-phonebook-1.0-SNAPSHOT.jar. Run it
as you would with any executable JAR file using the java -jar command as follows:

$ java -jar target/dwbook-phonebook-1.0-SNAPSHOT.jar server

Normally, you should see a lot of entries in your terminal, including an error. The first line is
the message in which we included the #run() method. This is followed by a warning message
indicating that our application has no health checks configured, but this is something we will
handle later on in this book.

The next logged entries indicate that the Jetty server embedded in our Dropwizard application
is starting and listening for incoming requests on port 8080. Port 8081 is also used for
administration purposes. You will also see an error stating that no resource classes could
be located (the ResourceConfig instance does not contain any root resource classes),
which is reasonable and absolutely normal, as we haven't created and configured any
REST resources yet.

How it works…
What we just did was we added the minimum amount of code required in a Dropwizard
application. As you saw, our application's entry point class needs to extend the
io.dropwizard.Application class and implement the initialize(Bootstrap<Con
figuration>) and run(Configuration, Environment) methods. The initialize
method is tasked with bootstrapping, possibly loading additional components and generally
preparing the runtime environment of the application.

We were going to just print a Hello message in this phase, so we included only a println()
statement in the run() method.

Creating a Dropwizard Application

18

The execution of the JAR file produced by the mvn package command resulted in the printing
of the Hello World! greeting by Dropwizard, as public static void main triggered the
execution of the relevant code in the public void run method.

There's more…
For executing the JAR file, we add the server argument to the command. In public
static void main, we called the public void run method, passing command-line
arguments to it. Dropwizard has only one command preconfigured (although we're able to
configure additional commands), the server command, which starts the embedded HTTP
Server (Jetty) to run our service. In our case, following the execution of the code in the run()
method, an error with an exception was displayed as Jetty couldn't locate any REST resources
to serve.

Logging
Dropwizard is backed by Logback and provides an SLF4J implementation for our logging
means. In the App.java file, we imported the necessary Logger and LoggerFactory
classes in order to construct a Logger instance we could use for our logging needs.

Default HTTP Ports
Dropwizard's embedded Jetty server will try to bind to ports 8080 and 8081 by default.
Port 8080 is used by the server in order to serve incoming HTTP requests to the application,
while 8081 is used by Dropwizard's administration interface. In case there is another
service running on your system that uses any of these ports, you will see a java.net.
BindException when trying to run this example.

Later on, we will see how you can configure your application to use another port for incoming
requests, but for now, just make sure this port is available to use.

3
Configuring the

Application

Up until this point, we have created a simple template for a Dropwizard application. What our
application does is print a message to the terminal during startup.

Generally, every modern application depends on a number of configuration settings that
define the way it runs. For instance, once our application grows and needs to interact with
a database, we should somehow use (at least) a username and password to establish a
database connection. Of course, we can hardcode these settings inside the application, but
that's not efficient, as even a small change would require rebuilding it. The appropriate way of
storing such or similar information is by using an external configuration file.

Externalizing the application's configuration
Using a configuration file requires the appropriate application logic to load and parse it.
Luckily, Dropwizard has built-in functionality that we will use in order to externalize our
application's configuration.

How to do it…
1. Create a new YAML file named config.yaml in the same directory as the pom.xml

file. This will be the configuration file of our application. We will add two configuration
parameters: the message to be printed on startup and how many times to print it.
In order to do so, add the following code to config.yaml:
message: This is a message defined in the configuration
 file config.yaml.
messageRepetitions: 3

www.allitebooks.com

http://www.allitebooks.org

Configuring the Application

20

2. Now we have a configuration file, but we need to parse it. Let's create a new class
in the com.dwbook.phonebook package named PhonebookConfiguration by
adding the following code:
package com.dwbook.phonebook;

import com.fasterxml.jackson.annotation.JsonProperty;
import io.dropwizard.Configuration;

public class PhonebookConfiguration extends Configuration {
 @JsonProperty
 private String message;

 @JsonProperty
 private int messageRepetitions;

 public String getMessage() {
 return message;
 }

 public int getMessageRepetitions() {
 return messageRepetitions;
 }
}

As you can see, it is a simple class, with two member properties named
after our configuration settings along with their getter methods.

3. To use this class as our configuration proxy, modify the declaration of our main App
class to extend the Application<PhonebookConfiguration> class instead of
Application<Configuration>:
public class App extends
 Application<PhonebookConfiguration> {

4. Similarly, update configuration to PhonebookConfiguration in the
declaration of the App#initialize() method:
@Override

public void initialize(Bootstrap<PhonebookConfiguration> b)
 {}

Chapter 3

21

5. The App#run() method will require the same modification in its definition,
but we'll also modify this method further so it retrieves the message to print
from the configuration class:
public void run(PhonebookConfiguration c, Environment e)
 throws Exception {
 LOGGER.info("Method App#run() called");
 for (int i=0; i < c.getMessageRepetitions(); i++) {
 System.out.println(c.getMessage());
 }
}

6. Package (mvn package) and run the application and specify the configuration
file as well:

$ java -jar target/dwbook-phonebook-1.0-SNAPSHOT.jar server
 config.yaml

You will see the message printed three times in your terminal during the application's
startup, as shown in the following screenshot:

Apart from this, and as in the previous example, you will also see an exception stating that
no resource classes could be located (the ResourceConfig instance does not contain any
root resource classes). This is because we do not have any REST resources registered in our
application yet. We will deal with this in the following chapter.

How it works…
You should see that our configuration file is automatically parsed. In fact, the
PhonebookConfiguration class is instantiated with the values specified in the
configuration file.

When a configuration file is passed as a command-line argument, Dropwizard parses it
and creates an instance of your service's configuration class. We added the required
configuration parameters as private members of the PhonebookConfiguration class
and annotated them with @JsonProperty so Dropwizard can parse them. In order to make
these properties accessible to our application's service class, we also need to add public
getters for these parameters.

Configuring the Application

22

There's more…
Externalizing your application's configuration has many advantages. With Dropwizard, you can
easily store and read any kind of properties (configuration settings) you wish to have for your
application with minimum effort, just by mapping YAML properties to the properties of your
configuration class.

Dropwizard's configuration parameters
Dropwizard has plenty of configuration parameters available, such as the port that the
embedded Jetty listens to and the logging level. The list is quite large and cannot be
covered here extensively, though it is available on the official Dropwizard website at
http://www.dropwizard.io/manual/core/#configuration-defaults.

YAML
The description of YAML according to its official website (http://www.yaml.org) is
human-friendly data serialization standard. Its syntax is pretty straightforward, which is
also the reason why YAML is widely accepted. YAML files are identified by the extensions
.yaml and .yml; both are valid, although .yml seems to be more popular lately.

Validating configuration settings
Although it is good to have the application's configuration externalized, we should not always
rely on it as is. Dropwizard has got us covered, and we have the right tools in order to validate
the configuration properties up on the application's startup. This is because we can use
constraint annotations for our configuration properties, such as those included in the javax.
validation.constraints or org.hibernate.validator.constraints packages.

We are going to limit the number of repetitions of the message to 10; if the number provided
is larger than 10, then the input is considered invalid.

How to do it…
Let's go through the following steps required for validating the configuration settings:

1. Update the definition of the messageRepetitions property in
PhonebookConfiguration, annotating the property with the @Max annotation
(you will also need to import javax.validation.constraints.Max):
@JsonProperty
@Max(10)
private int messageRepetitions;

Chapter 3

23

2. In a similar way, define that the message property should not be empty, annotating
the property with the @NotEmpty (org.hibernate.validator.constraints.
NotEmpty) annotation:
@JsonProperty
@NotEmpty
private String message;

3. Edit the Config.yaml file and specify a value greater than 10 for the
messageRepetitions property.

4. Repackage and run the application again. The application will refuse to start, and you
will see an error printed on your terminal as seen in the following screenshot:

How it works…
The validation-related annotations force Dropwizard to validate the values of each of the
properties declared in our configuration file. If the validation constraints are not satisfied,
the relevant error message will be printed on the terminal, and the application will not start.

There's more…
Now you have a working configuration file that is mapped on the configuration object during
the startup of the application. Also, as well as checking the validity of the configuration
parameters, you can also provide a default value for each one of them.

Specifying default parameters
You can specify the default values for configuration parameters as easily as initializing the
variables on their declaration. This way, optional parameters can be omitted and can have a
default value during runtime, even if they're not included in the application's configuration file.

Configuring the Application

24

Let's add an additional parameter, which we'll also initialize, named additionalMessage,
along with its getter method:

@JsonProperty
private String additionalMessage = "This is optional";
public String getAdditionalMessage() {
 return additionalMessage;
}

If you run the application specifying a configuration file that does not contain the
additionalMessage property, then the default value of this property will be
returned when you try to access it from another part of the code, for instance, if you
use c.getAdditionalMessage() from inside the App#run() method. This way,
you can have optional parameters for your application.

4
Creating and Adding

REST Resources

Up until this point, our application doesn't really do much. This is because it lacks configured
REST resources. A REST resource is something that one can refer to as an entity, and in
our case, a set of URI templates with a common base URL that one can interact with using
common HTTP methods.

Creating a resource class
We are building a phonebook application, and thus we need to implement the necessary
functionalities for storing and managing contacts. We will create the resource class for
the phonebook service. This class will be responsible for handling HTTP requests and
generating JSON responses. The resource class will initially provide the endpoints for
retrieving, creating, updating, and deleting contacts.

Please note that we are not yet dealing with structured data or interacting with a database,
and thus contact-related information transmitted to and from our application does not
follow a specific format.

How to do it...
Perform the following steps for creating a resource class:

1. Create a new package, com.dwbook.phonebook.resources, and add
a ContactResource class in it.

Creating and Adding REST Resources

26

2. Import the required packages, javax.ws.rs.* and javax.ws.rs.
core.*.wdasdasd:

import javax.ws.rs.*;
import javax.ws.rs.core.*;

3. Specify the URI template of the resource by annotating the class with the
@Path annotation and also specify the response Content-Type header
using the @Produces annotation:

@Path("/contact")
@Produces(MediaType.APPLICATION_JSON)
public class ContactResource {
 // code...
}

4. In order to add a method that will return the information regarding a stored contact,
create the #getContact()method. This method will return a javax.ws.rs.core.
Response object, which is a simple but efficient way of manipulating the actual
HTTP response sent to the client that performs the request. Add the @GET and
@PATH annotations as shown in the following code snippet. This will bind the
method to HTTP GET requests to /contact/{id}. The {id} part of the URI
represents a variable, and is bound to the int id parameter of the same
method via the @PathParam annotation:
 @GET
 @Path("/{id}")
 public Response getContact(@PathParam("id") int id) {
 // retrieve information about the contact with the
 provided id
 // ...
 return Response
 .ok("{contact_id: " + id + ", name: \"Dummy Name\",
 phone: \"+0123456789\" }")
 .build();
 }

5. Similarly, we need to implement appropriate methods for creating, deleting,
and updating contacts. The #createContact() method for creating contacts
will be bound to HTTP POST requests to the /contact URI. Since nothing is
appended to our base URI, this method does not need to be annotated with
@Path. This method will return a Response object as well, like all of our
resource's methods will, indicating that a new contact has been created:
@POST
public Response createContact(
 @FormParam("name") String name,

Chapter 4

27

 @FormParam("phone") String phone) {
 // store the new contact
 // ...
 return Response
 .created(null)
 .build();
}

6. For deleting existing contacts, the HTTP client needs to send an HTTP DELETE request
to a particular contact's URI. Due to this, the respective method's URI will be exactly
the same as the one for retrieving a single contact. Add the #deleteContact()
method to our resource class, as shown in the following code snippet. We will also
need to indicate that the requested URI does not have content anymore:
@DELETE
@Path("/{id}")
public Response deleteContact(@PathParam("id") int id) {
 // delete the contact with the provided id
 // ...
 return Response
 .noContent()
 .build();
}

7. The updates to existing contacts are generally performed by HTTP PUT requests to
a contact's endpoint. The #updateContact() method is going to handle such
requests and indicate that the update was successful, returning the appropriate
Response object:
@PUT
@Path("/{id}")
public Response updateContact(
 @PathParam("id") int id,
 @FormParam("name") String name,
 @FormParam("phone") String phone) {
 // update the contact with the provided ID
 // ...
 return Response
 .ok("{contact_id: "+ id +", name: \""+ name +"\",
 phone: \""+ phone +"\" }")
 .build();
 }

Creating and Adding REST Resources

28

8. Add the implemented resource to our Dropwizard application's
environment by modifying the run method in the App class via the
JerseyEnvironment#register() method, as shown in the following
code. You also need to add an import clause on top of the App.java file for
the ContactResource class (import com.dwbook.phonebook.resources.
ContactResource). You should also see that in order to access our application's
Jersey environment, you may use the Environment#jersey() method:
public void run(PhonebookConfiguration c, Environment e)
 throws Exception {
 // ...
 // Add the resource to the environment
 e.jersey().register(new ContactResource());
 }

9. Rebuild (with mvn package) and run the application java -jar target/
dwbook-phonebook-1.0-SNAPSHOT.jar server config.yaml. You will see
a message indicating that our (Jersey based) Dropwizard application is starting along
with a list of configured resources, in this case, the resources defined in our com.
dwbook.phonebook.resources.ContactResource class.

10. Point your browser at http://localhost:8080/contact/100 and see the
results; it will generate a dummy JSON representation with the ID 100, which you
provided in the URL (a path parameter, which will work with any integer).

http://localhost:8080/contact/100

Chapter 4

29

The service is running and listening to incoming requests. You can shut it down by pressing
Ctrl + C in your terminal. After a few seconds, the service will stop.

How it works…
The resource class is the most important part of a RESTful Web Service, as it is the place
where you define the resources and their URIs you wish to expose.

The @Produces annotation defines the content type of the responses the class methods
generate. Despite of defining the value of the HTTP Content-Type header, it is also used
to instruct Jackson to transform the representations to the appropriate format, JSON in this
case; thus the MediaType.APPLICATION_JSON definition. In case we would want to return
an XML document as the response, we should use MediaType.APPLICATION_XML instead.

We use the @Path annotation to define a URI template. By applying it and bringing it on to the
level of a class, we define that the base URI of our resources will be /contact. We used this
annotation for the #getContact method as well, specifying the/{id} template. This leads
on to the complete URI that will trigger the execution of #getContact being /contact/{id}.

The {id} part of the URI is a path parameter, which we mapped to the int id argument
using the @PathParam annotation. PathParam takes the name of the path parameter as
its parameter, which in this case is id.

Jersey will intercept every incoming HTTP request and try to match it with the defined URI
template in order to find which resource class method to invoke.

www.allitebooks.com

http://www.allitebooks.org

Creating and Adding REST Resources

30

It is generally a good practice to define the base URI at the class level, and additionally,
more specific URI templates per method.

In order to configure our application to use the resources we created, we had to add them
to the execution environment, post initialization, in the #run() method of the App class.

There's more…
A representation is an entity; something that one can refer to. A representation can be
created, updated, deleted, and returned. A REST resource is an endpoint that accepts HTTP
requests for such operations.

We used the @GET annotation for the #getContact() method. This implies that the method
is bound to, and only to, the HTTP GET verb. We used this verb because we were returning
data about an entity without modifying it in any way.

HTTP verbs – RESTful convention
Generally, a RESTful Web Service uses four fundamental HTTP methods (verbs) mapped
to CRUD operations:

 f POST for creating a resource

 f PUT for updating a resource

 f DELETE for deleting a resource

 f GET for returning the representation of a resource

GET is an idempotent operation; if given the same input, it will return the same results
without modifying the requesting entity in any case.

You can map HTTP verbs to a resource method (for example,
#getContact()) using an appropriate annotation (such as @POST, @
PUT, @DELETE, and @GET).

HTTP response codes
Another important RESTful Web Service design principle, apart from CRUD operations being
mapped to specific HTTP methods, is the usage of specific response codes according to the
request and the outcome of the action it triggered.

According to this convention, when a new entity is created successfully, our application
would respond indicating 201 Created as the HTTP Response Status code.

Chapter 4

31

Similarly, when an entity is successfully deleted, our application would send the 204 No
Content code. The 204 No Content code may also be used in other cases where the
response we send to the client does not include an entity, and not only in cases where we
delete resources.

For most cases though, when our application is returning data while responding to GET
requests, the 200 OK response code is sufficient.

We used the response class in our implementation in order to include specific response
codes to our application's responses.

The Response class
The javax.ws.rs.Response class, instances of which all of our methods return, provides
a set of ResponseBuilder methods that we can use for constructing the data we return to
the client that performs the HTTP request to our service.

The method Response#ok() accepts an Object instance as the parameter, which is
then serialized to our service's response format (defined by the @Produces annotation)
accordingly. The usage of this method returns an HTTP 200 OK response code to the client.

The Response#noContent() method returns an HTTP 204 No Content response code
to the client, indicating that no content is applicable to this request.

On the other hand, the Response#created() method is used to send a 201 Created
response code along with the URI of the newly created resource. The URI (or null) can be
passed as a parameter to this method and will be used as the value for the Location
header of the response.

The Response class has a number of useful methods like these, but it also enables us to
set custom response codes without necessarily using one of the predefined methods. To do
so, you can use the Response#status() method by providing it with the appropriate
response code, as shown in the following example:

Response.status(Status.MOVED_PERMANENTLY);

Additionally, we are able to use the ResponseBuilder#entity() method in order to
set the appropriate response payload. The #entity() method accepts Object as the
parameter and processes it in a way similar to the Response#created() method:

Response.status(Status.MOVED_PERMANENTLY).entity(new Object());

What should be noted is that all these methods return a ResponseBuilder instance
and can be chained as well. In order to build the Response object, we must use the
ResponseBuilder#build() method.

5
Representations –

RESTful Entities

Our web service is now responding to requests that produce output by utilizing the Response
class. We saw that there are methods of this class that take an object as a parameter.

Creating a representation class
We are going to create the representations that will be produced by the REST resources of
our application. A simple Java class is everything needed by Jersey, so it will consider the
class as a RESTful representation.

Given that our web service needs to produce contact-related information in the JSON format,
a sample response would look something like the following code:

{ id: 1, firstName: "John", lastName: "Doe", phone: "+123-456-789" }

We will build our representation class around this JSON string. The class will have
the necessary properties (id, firstName, lastName, and phone) along with their
getter methods.

How to do it…
Perform the following steps for creating a representation class:

1. Create a new package called com.dwbook.phonebook.representations
and create a Contact class in it.

Representations – RESTful Entities

34

2. Add the aforementioned contact properties as final members, also implementing
their getters and a constructor:

package com.dwbook.phonebook.representations;

public class Contact {
 private final int id;
 private final String firstName;
 private final String lastName;
 private final String phone;

 public Contact() {
 this.id = 0;
 this.firstName = null;
 this.lastName = null;
 this.phone = null;
 }

 public Contact(int id, String firstName, String lastName,
 String phone) {
 this.id = id;
 this.firstName = firstName;
 this.lastName = lastName;
 this.phone = phone;
 }

 public int getId() {
 return id;
 }
 public String getFirstName() {
 return firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public String getPhone() {
 return phone;
 }
}

Chapter 5

35

How it works…
The representation class for contacts is now ready. All that was required was just a plain
Java class with the same properties as the JSON object that we wish our application
to generate. In order for this to work though, the appropriate public getter methods
are needed.

Our properties were declared final in order to be immutable, and for this reason, we also
created a constructor that initializes the properties accordingly.

Instances of this class may now be used in our Jersey-based REST resources as the output.
Jackson will handle the transformation from POJO to JSON transparently.

There's more…
Any POJO can be used as a representation. Jackson constructs the JSON string recursively
according to the getter methods of each class and their return type.

The Jackson Java JSON processor
Jackson is a powerful open source JSON data binder/parser and processor that facilitates
the transformation of plain old Java objects to the JSON format and vice versa. Jersey uses
Jackson for its transformation needs and is part of the dropwizard-core module; so, it is
already included in our project setup.

JSON arrays
Any instance of the java.util.List type will be converted to a JSON array. For example, if
we wanted to store multiple phone numbers for a contact, we would have declared private
final List<String> phoneNumbers in the representation class (with the appropriate
modifications to the class constructor and the getter).

This would lead to JSON representations of the following format:

{ id: 1, firstName: "John", lastName: "Doe", phoneNumbers:
 ["+123-456-789", "+234-567-890", "+345-678-901"] }

Ignoring properties
You can prevent a property from being a part of the JSON representation by adding the
@JsonIgnore annotation to its getter.

This will cause Jackson to ignore a getter method that otherwise would be treated as a
JSON property.

Representations – RESTful Entities

36

Serving representations through the
Resource class

Consider the ContactResource#getContact() method we previously implemented.
We use the Response#ok(Object entity) method in order to build the response to
be sent to the client, passing it to String as a parameter, as shown in the following code:

return Response.ok("{id: " + id + ", name: \"Dummy Name\", phone:
 \"+0123456789\" }").build();

Now, we have our Representation class ready, and we are going to utilize it and pass
instances of it to the #ok() method.

How to do it…
Perform the following steps to learn the serving of representation through the resource class:

1. Update the ContactResource#getContact() method accordingly in order to
pass a Contact object in the #ok() method instead of String, as shown in the
following code. You will need to import the Contact class first (import com.
dwbook.phonebook.representations.Contact):
@GET
@Path("/{id}")
public Response getContact(@PathParam("id") int id) {
 // retrieve information about the contact with the provided id
 // ...
 return Response
 .ok(new Contact(id, "John", "Doe", "+123456789"))
 .build();
}

2. Next, modify the method's signature, splitting the name variable to firstName
and lastName in order to be consistent with the
Contact class:
 @PUT
 @Path("/{id}")
 public Response updateContact(
 @PathParam("id") int id,
 @FormParam("firstName") String firstName,
 @FormParam("lastName") String lastName,

Chapter 5

37

 @FormParam("phone") String phone) {
 // update the contact with the provided ID
 // ...
 return Response
 .ok(new Contact(id, firstName, lastName, phone))
 .build();
 }

3. Rebuild (mvn package) and run the application again:
$ java -jar target/dwbook-phonebook-1.0-SNAPSHOT.
 jar server config.yaml

4. Navigate to http://localhost:8080/contact/123 or perform a PUT
request to the same URL. You will see that the response that the server is
sending to our request is a JSON representation of the object we are passing
to the Response#ok() method.

How it works…
We define the response sent to the client by using the Response#ok() method, which
accepts an object as a parameter. Until now, we have been passing JSON strings directly.
This is not an efficient way, as our application will be handling actual objects (the Contact
instances), and there is no reason for manually creating JSON representations of them
when this can be done automatically by Jackson.

There's more...
We are now using our representation class in order to map its properties to the
response we are producing. We can also use the same class to map our input
parameters. For instance, we could modify the ContactResource#updateContact()
and ContactResource#createContact()methods to expect a Contact object as a
parameter instead of using each of its properties explicitly.

Using cURL to perform HTTP requests
Using your browser, you can only perform GET requests. In order to effectively test our
application though, we will need a tool capable of performing HTTP requests with the POST,
PUT, and DELETE methods. cURL (http://curl.haxx.se/) is a command-line tool that we
can use to better comprehend the examples. You can download it from http://curl.haxx.
se/download.html by choosing the package that is compatible with your platform.

Representations – RESTful Entities

38

Performing a GET request is as simple as the cURL. The following example will call the
#getContact() method:

$ curl http://localhost:8080/contact/123

The JSON string you are seeing in the second line is the server's response.

In order to perform a PUT request to update a contact, we will need to use the -X flag followed
by the method name (that is curl -X PUT …). To send data to the server along with our
request, a contact's information in this case, use the -d flag as well along with the data. Note
that since the #updateContact() method's parameters are mapped to request parameters
(with @FormParam), we need to send the data URL encoded. Take a look at the following
screenshot:

If we want to see a verbose output that includes the request's and response's headers,
we can use the -v (long name --verbose) flag. Also, in case we need to set the value
of a request header, we can use the -H (long name --header) flag followed by the
header information:

$ curl --header "Content-Type: application/json"
 http://localhost:8080/contact/1

Chapter 5

39

Mapping the request data to representations
The current way of reading the web service properties by mentioning each one of them
(annotated) in the signatures of the #createContact() and #updateContact()
methods is fine; however, it is not efficient in case of significant amount of input data.
Imagine a case where we would need to add several additional properties in the Contact
class. We would have to also update the method signatures as well, making them less
readable and finally unmanageable. Generally, it is preferred to map the request data to
the representation directly. To achieve this, we will update the relevant methods accordingly,
removing the properties and adding a contact instance instead. Jackson will take care of
the rest.

How to do it…
Perform the following steps to map the request data:

1. Update the ContactResource#createContact() method, replacing its
parameters with a single contact object:
@POST
public Response createContact(Contact contact) {
 // store the new contact
 // ...
 return Response
 .created(null)
 .build();
}

2. Update the ContactResource#updateContact() method, replacing its
parameters with a single contact object:
@PUT
@Path("/{id}")
public Response updateContact(
 @PathParam("id") int id,
 Contact contact) {
 // update the contact with the provided ID
 // ...
 return Response
 .ok(new Contact(id, contact.getFirstName(), contact.
getLastName(), contact.getPhone()))
 .build();
}

www.allitebooks.com

http://www.allitebooks.org

Representations – RESTful Entities

40

3. Rebuild and run the application again. The application is now able to handle
HTTP POST and PUT requests to the /contact and /contact/{id} endpoints
respectively, having JSON strings on the request body instead of the named
parameters. Note that the Content-Type header of the request will be set
to application/json.

How it works…
By declaring a Contact instance as the parameter on a method that handles requests
(that is, a method with Jersey annotations bound to URI), we force Jersey to parse the
request body and deserialize (using Jackson) it to a Contact object.

The PUT request we performed in the previous example can now be performed by sending
the JSON data to the server and setting the appropriate header, as shown in the following
line of code:

$ curl --header "Content-Type: application/json" -X PUT -d
 '{"firstName": "FOO", "lastName":"BAR", "phone":"987654321"}'
 http://localhost:8080/contact/123

In case a POST request is performed on http://localhost:8080/contact with
the {"firstName": "Alexandros", "lastName": "Dallas", "phone":
"+3012345678"} JSON data as the request's body and the Content-Type header:
application/json, the contact object within the #createContact() method will
have its properties initialized accordingly, thanks to Jackson and its appropriate JAX-RS
entity providers. Entity providers are components that process the payload that is included
in an HTTP request and transform it to an object. This is similar to the transformation that
happens when a resource method is returning an object and is transformed to a
JSON object.

6
Using a Database

Our application is growing steadily. We now need a place to store the contacts we are going
to manage, and an efficient way to do so. We will use the MySQL server, whose installation
was outlined in the first chapter of the book, for our data storage needs. Dropwizard
provides everything we will need to interact with it.

Preparing the database
It is time to actually store and retrieve data with our application. We are going to create a
connection between our application and a MySQL database.

We will need an actual database to connect to and query. Since we have MySQL installed,
we can also use the mysql command-line client in order to create a database and some
tables in it.

Getting ready
Start the mysql client by executing the following command in your terminal:

$ mysql -u root -p

Using a Database

42

As shown in the following screenshot, the MySQL shell will then prompt you to provide your
password, which is the password of the MySQL root user that you set during the installation
of MySQL:

How to do it…
Let's follow the next steps in order to prepare our application's database:

1. Create the database phonebook by running the following query:
> CREATE DATABASE `phonebook`;

2. We will need an additional MySQL user with full rights to the newly created database.
Create the user and grant appropriate access rights with the following commands:
> CREATE USER 'phonebookuser'@'localhost' IDENTIFIED BY
 'phonebookpassword';

> GRANT ALL ON phonebook.* TO 'phonebookuser'@'localhost';

3. Select the phonebook database with the USE command:
> USE `phonebook`;

4. Create the contact table in order to store some contacts.
> CREATE TABLE IF NOT EXISTS `contact` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `firstName` varchar(255) NOT NULL,

 `lastName` varchar(255) NOT NULL,

 `phone` varchar(30) NOT NULL,

 PRIMARY KEY (`id`)

)

Chapter 6

43

 ENGINE=InnoDB

 DEFAULT CHARSET=utf8

 AUTO_INCREMENT=1 ;

5. Add some test data in the contact table:

> INSERT INTO `contact` VALUES (NUL L, 'John', 'Doe',
 '+123456789'), (NULL, 'Jane', 'Doe', '+987654321');

How it works…
We have just set up our database. With the queries we ran, we created a database along
with a database user and a table to hold contact-related information. Our application will
be updated in order to store and retrieve information to and from this table.

Interacting with the database
Now we have a database and data in place. However, in order to be able to connect to the
database, we need to include the mysql jdbc connector in the project. Also, we will need
the dropwizard-jdbi module that will allow us to create a database connection and
Data Access Objects (DAO) through which we will query the database, making use of the
API provided by the JDBI project (http://jdbi.org/).

Getting ready
Let's see what is needed in order to achieve this. First, add the following dependencies in
pom.xml within the <dependencies> section:

<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.6</version>
</dependency>
<dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-jdbi</artifactId>
 <version>0.7.0-SNAPSHOT</version>
</dependency>

We are now ready to proceed and update our application. We are going to use JDBI's SQL
object API mapping methods to predefine the SQL statements.

http://jdbi.org/

Using a Database

44

How to do it…
Let's see how to connect and interact with the database through our application by following
the next steps:

1. Create a new package, com.dwbook.phonebook.dao, and a ContactDAO
interface in it with the following code:
package com.dwbook.phonebook.dao;
public interface ContactDAO { }

2. Add the #getContactById()method, which will allow us to query the database
and retrieve a list of contacts or a specific contact when its ID is given. Use the
@SqlQuery annotation to specify the SQL query that will be executed when the
method is called. You will need to import org.skife.jdbi.v2.sqlobject.*
and com.dwbook.phonebook.representations.Contact.
@SqlQuery("select * from contact where id = :id")
Contact getContactById(@Bind("id") int id);

3. Create a com.dwbook.phonebook.dao.mappers package and the
ContactMapper class that implements the map method, as shown in the
following code snippet. Mapper classes facilitate the mapping of a resultset
database row to an object. You will need to import java.sql.ResultSet, java.
sql.SQLException, org.skife.jdbi.v2.StatementContext, org.
skife.jdbi.v2.tweak.ResultSetMapper, and com.dwbook.phonebook.
representations.Contact.
public class ContactMapper implements ResultSetMapper<Contact>
{
 public Contact map(int index, ResultSet r,
 StatementContext ctx)
 throws SQLException {
 return new Contact(
 r.getInt("id"), r.getString("firstName"),
 r.getString("lastName"),r.getString("phone"));
 }
}

4. In ContactDAO, register your mapper with the #getContactById() method
by adding the @Mapper annotation to it (before the @SqlQuery annotation).
Import the com.dwbook.phonebook.dao.mappers.ContactMapper
and org.skife.jdbi.v2.sqlobject.customizers.Mapper classes.
@Mapper(ContactMapper.class)
@SqlQuery("select * from contact where id = :id")
Contact getContactById(@Bind("id") int id);

Chapter 6

45

5. In the config.yaml configuration file, add the section database consisting of
the minimum set of properties required for establishing a database connection
(indented according to the YAML syntax).
database:
 driverClass: com.mysql.jdbc.Driver
 user: phonebookuser
 password: phonebookpassword
 url: jdbc:mysql://localhost/phonebook

6. Add the database property in the PhonebookConfiguration class, and create
a getter method for it. Import the io.dropwizard.db.DataSourceFactory
class first.
 @JsonProperty
 private DataSourceFactory database = new
 DataSourceFactory();

 public DataSourceFactory getDataSourceFactory() {
 return database;
 }

7. Modify the run method in the App class in order to create a DBIFactory class that
will be used to build a DBI instance, which we will then pass as a parameter to
ContactResource. You will need to import org.skife.jdbi.v2.DBI and
io.dropwizard.jdbi.DBIFactory.
 @Override
 public void run(PhonebookConfiguration c, Environment e)
 throws Exception {
 LOGGER.info("Method App#run() called");
 for (int i=0; i < c.getMessageRepetitions(); i++) {
 System.out.println(c.getMessage());
 }
 System.out.println(c.getAdditionalMessage());

 // Create a DBI factory and build a JDBI instance
 final DBIFactory factory = new DBIFactory();
 final DBI jdbi = factory
 .build(e, c.getDataSourceFactory(), "mysql");
 // Add the resource to the environment
 e.jersey().register(new ContactResource(jdbi));
 }

Using a Database

46

8. In the previous step, we passed the jdbi instance as a parameter to the
ContactResource constructor. However, the constructor ContactResource(
DBI) does not exist (yet), so we need to create it. We will add a private final
ContactDAO member in our resource class using the onDemand method and
use JDBI to instantiate it. You will also need to add the necessary imports for DBI
and ContactDAO.
private final ContactDAO contactDao;
 public ContactResource(DBI jdbi) {
 contactDao = jdbi.onDemand(ContactDAO.class);
}

9. Modify the ContactResource#getContact() method class using the
contactDao object so it returns an actual contact from the database.
 @GET
 @Path("/{id}")
 public Response getContact(@PathParam("id") int id) {
 // retrieve information about the contact with the
 provided id
 Contact contact = contactDao.getContactById(id);
 return Response
 .ok(contact)
 .build();
 }

10. Rebuild and run the application, providing the updated configuration file as
an argument.

11. Open your browser and go to http://localhost:8080/contact/1. You will
see a JSON representation of the first row we inserted in the contact table, the one
having id equal to 1, that is, John Doe. Take a look at the following screenshot
which outlines this:

Respectively, the following screenshot shows the output for
http://localhost:8080/contact/2:

http://localhost:8080/contact/1
http://localhost:8080/contact/2
http://localhost:8080/contact/2

Chapter 6

47

12. Now, let's add the methods for creating, updating, and deleting contacts in our
DAO. For inserting new entries, add the #createContact() method.
 @GetGeneratedKeys
 @SqlUpdate("insert into contact (id, firstName, lastName,
 phone) values (NULL, :firstName, :lastName, :phone)")
 int createContact(@Bind("firstName") String firstName,
 @Bind("lastName") String lastName, @Bind("phone")
 String phone);

Note that since we are updating the database and not querying it
(that is, retrieving information), we use the @SqlUpdate annotation
for the SQL query instead of the @SqlQuery annotation we used in the
#getContact() method. Also, the @GetGeneratedKeys annotation
is used in order to retrieve the value of the primary key of the newly
inserted row; in this case, the value of the id field.

13. For updating existing entries, add the #updateContact() method:
@SqlUpdate("update contact set firstName = :firstName, lastName =
:lastName, phone = :phone where id = :id")
void updateContact(@Bind("id") int id, @Bind("firstName")
 String firstName, @Bind("lastName") String
 lastName,@Bind("phone") String phone);

14. In order to delete existing entries, add the #deleteContact() method:
@SqlUpdate("delete from contact where id = :id")
void deleteContact(@Bind("id") int id);

15. Now that we have the database methods in place, let's use them in the
Resource class so that we actually insert, update, and delete contacts. Modify the
ContactResource#createContact() method in order to insert the new contact
in the database, retrieve its id, and use it to construct its URI, passing it as a
parameter to the Response#created() method. For this, we will need to import
java.net.URI and java.net.URISyntaxException first:

Using a Database

48

 @POST
 public Response createContact(Contact contact) throws
 URISyntaxException {
 // store the new contact
 int newContactId =
 contactDao.createContact(contact.getFirstName(),
 contact.getLastName(), contact.getPhone());
 return Response.created(new
 URI(String.valueOf(newContactId))).build();
 }

16. In a similar way, update the ContactResource#deleteContact() method so
that the contacts can indeed be deleted:
 @DELETE
 @Path("/{id}")
 public Response deleteContact(@PathParam("id") int id) {
 // delete the contact with the provided id
 contactDao.deleteContact(id);
 return Response.noContent().build();
 }

17. Finally, let's also update the ContactResource#updateContact() method so
that our application can update existing contacts while handling the relevant HTTP
requests:

 @PUT
 @Path("/{id}")
 public Response updateContact(@PathParam("id") int id,
 Contact contact) {
 // update the contact with the provided ID
 contactDao.updateContact(id, contact.getFirstName(),
 contact.getLastName(), contact.getPhone());
 return Response.ok(
 new Contact(id, contact.getFirstName(),
 contact.getLastName(),
 contact.getPhone())).build();
 }

How it works…
Thanks to JDBI, our phonebook application can now interact with a database, retrieving,
storing, updating, and deleting contacts.

Chapter 6

49

Let's create a new contact by performing an HTTP POST request with curl.

$ curl --verbose --header "Content-Type: application/json" -X POST
 -d '{"firstName": "FOO", "lastName":"BAR", "phone":"987654321"}'
 http://localhost:8080/contact/

The contact is created, and the value of the inserted row's primary key, that is, the contact
id, is 174, as you can see (the Location response header) in the following screenshot:

JDBI's SQL Object API simplifies the creation of DAO. We created the DAO interfaces on which
we can map plain, parameterized SQL queries to specific methods using the @SqlQuery
annotation; note that apart from the object mapper, no additional implementation is needed.

Since we are retrieving data from the database and returning a Contact instance, we
needed to create a Mapper class, which is a class that implements the org.skife.jdbi.
v2.tweak.ResultSetMapper<T> interface for the Contact class. Its implementation
was fairly simple and straightforward. We created a Contact object with the values we
got from the database ResultSet object using the #getLong() and #getString()
methods and providing the column name.

We used jdbi to create our DAO instances within our resource class using the
DBI#onDemand() method. However, in order to do that, we had to create a DBI factory
and build the DBI instance prior to registering our resources. Again, this was pretty simple,
and required minor modifications in the App#run() method.

www.allitebooks.com

http://localhost:8080/contact/
http://localhost:8080/contact/
http://www.allitebooks.org

Using a Database

50

The DBI factory requires the database connection settings in order to build the DBI
instance. Going one step back, we had our configuration class updated to read and expose
the DatabaseConfiguration settings, which were declared in the database section of
the applications configuration file, that is, config.yaml.

There's more…
JDBI identifies itself as an SQL convenience library for Java. We used the JDBI SQL Object
API where a particular method is mapped to a specific SQL statement. However, this is not
the only way of using JDBI to interact with a database. JDBI exposes another API too, that is,
the fluent style API.

The JDBI fluent style API
The fluent style API allows us to open and use a database handle to create and execute
SQL queries on demand on the fly, instead of using the predefined SQL statements that
the SQL Object API utilizes.

Generally, the type of API that you should use depends on your personal taste, and you
can even mix both APIs together.

The @MapResultAsBean annotation
In this example, we have implemented a mapper and used the @Mapper annotation in order
to map the result of an SQL query to a Contact instance. An alternative approach would be
the use of the MapResultAsBean annotation.

@MapResultAsBean
@SqlQuery("select * from contact where id = :id")
Contact getContactById(@Bind("id") int id);

By annotating #getContactById() in this example, we map the result of the SQL
query directly to a Contact instance, without needing to implement a custom mapper.
In order for this to work though, the Contact class should be updated with setters (that is,
setFirstName(String firstName){ .. }). Due to this, the final keyword will have to
be removed from the declaration of each member variable.

7
Validating Web Service

Requests

Up to this point, we have a RESTful Web Service that produces JSON representations and is
also capable of storing and updating contacts. Before we actually store or update a contact's
information though, we need to ensure that the provided information is valid and consistent.

Adding validation constraints
The first thing we need to do in order to validate contacts is to define what is considered
a valid contact. To do so, we will modify the representation class, adding constraints to its
members in the form of Hibernate Validator annotations.

How to do it…
We have the Contact class, instances of which must have a first name, a last name, and a
phone number in order to be considered valid. Moreover, the length of these values must be
within specific limits. Let's go through the required steps in order to apply these constraints.

Modify the Contact representation class, adding the appropriate annotations to its
members (import org.hibernate.validator.constraints.* first):

1. Update the declaration of the firstName variable, adding the necessary
annotations in order to indicate that this is a required property (it should
not be blank), and its length should be between 2 and 255 characters.
@NotBlank
@Length(min=2, max=255)
private final String firstName;

Validating Web Service Requests

52

2. In a similar way, apply the same constraints on the lastName property.
@NotBlank
@Length(min=2, max=255)
private final String lastName;

3. The phone field should not be longer than 30 digits, so modify the values of the
relevant annotation accordingly.

@NotBlank
@Length(min=2, max=30)
private final String phone;

How it works…
The declaration of validation constraints is annotation-based. This gives us the flexibility
of directly adding the validation rules we want to the members of our representation class.

Hibernate Validator is a part of the dropwizard-core module, so we do not need to declare
any additional dependencies on our pom.xml.

There's more…
The recommended way of validating objects is using the standard Bean Validation API
(JSR 303). For our validation needs, we use Hibernate Validator, which is a part of the
Dropwizard-core module, and the reference implementation of JSR 303. Using Hibernate
Validator, we can declare field constraints such as @NotBlank and @Length, or even create
and use our own custom constraints that fit our needs (you may refer to Hibernate Validator's
documentation at http://docs.jboss.org/hibernate/stable/validator/
reference/en-US/html_single/#validator-customconstraints).

List of constraint annotations
The complete list of field constraints is available on the Hibernate Validator package navigator
at http://docs.jboss.org/hibernate/stable/validator/reference/en-US/
html_single/#section-builtin-constraints.

Performing validation
We've just defined what a valid annotation is. Now, we must modify the code of our resource
class in order to verify that each POST and PUT request contains a valid Contact object,
based on which a contact is created or updated.

Chapter 7

53

How to do it…
Let's see what needs to be modified in our resource class by performing the following steps:

1. First, we need to import some classes that will help us with the validation.
import java.util.Set;
import javax.validation.ConstraintViolation;
import javax.util.ArrayList;
import javax.validation.Validator;
import javax.ws.rs.core.Response.Status;

2. Add a final member, validator, and update the constructor method in order
to initialize it.
private final ContactDAO contactDao; private final Validator
validator;
 public ContactResource(DBI jdbi, Validator validator) {
 contactDao = jdbi.onDemand(ContactDAO.class); this.
validator = validator;
 }

3. In the App class, modify the #run() method so as to pass the environment's
validator as a parameter to ContactResource during its initialization, along
with jDBI.
// …
// Add the resource to the environment
e.jersey().register(new ContactResource(jdbi, e.getValidator()));
// …

4. Update the ContactResource#createContact() method and check that the
contact information is valid prior to inserting it in the database.
 @POST
 public Response createContact(Contact contact) throws
 URISyntaxException {
 // Validate the contact's data
 Set<ConstraintViolation<Contact>> violations =
 validator.validate(contact);
 // Are there any constraint violations?
 if (violations.size() > 0) {
 // Validation errors occurred
 ArrayList<String> validationMessages = new
 ArrayList<String>();

Validating Web Service Requests

54

 for (ConstraintViolation<Contact> violation :
 violations) {
validationMessages.add(violation.getPropertyPath().toString() +":
" + violation.getMessage());
 }
 return Response
 .status(Status.BAD_REQUEST)
 .entity(validationMessages)
 .build();
 }
 else {
 // OK, no validation errors
 // Store the new contact
 int newContactId =
 contactDao.createContact(contact.getFirstName(),
 contact.getLastName(), contact.getPhone());
 return Response.created(new
 URI(String.valueOf(newContactId))).build();
 }
 }

5. Similarly, update the ContactResource#updateContact() method.
 @PUT
 @Path("/{id}")
 public Response updateContact(@PathParam("id") int id,
 Contact contact) {
 // Validate the updated data
 Set<ConstraintViolation<Contact>> violations =
 validator.validate(contact);
 // Are there any constraint violations?
 if (violations.size() > 0) {
 // Validation errors occurred
 ArrayList<String> validationMessages = new
 ArrayList<String>();
 for (ConstraintViolation<Contact> violation :
 violations) {
validationMessages.add(violation.getPropertyPath().toString() +":
" + violation.getMessage());
 }
 return Response
 .status(Status.BAD_REQUEST)
 .entity(validationMessages)
 .build();
 }

Chapter 7

55

 else {
 // No errors
 // update the contact with the provided ID
 contactDao.updateContact(id, contact.getFirstName(),
 contact.getLastName(), contact.getPhone());
 return Response.ok(
 new Contact(id, contact.getFirstName(),
 contact.getLastName(),
 contact.getPhone())).build();
 }
 }

6. Build and run the application from the command line in order to do some tests
with the validation mechanisms we just implemented.

7. Using curl, perform an HTTP POST request to http://localhost:8080/
contact/, sending contact information that is going to trigger validation errors,
such as firstName and lastName with length less than 2 characters, and an
empty value for the phone field in a JSON string such as the following:

{"firstName": "F", "lastName": "L", "phone": ""}.
#> curl -v -X POST -d '{"firstName": "F", "lastName": "L",
 "phone": ""}' http://localhost:8080/contact/ --header
 "Content-Type: application/json"

Validating Web Service Requests

56

You will see that the response is an HTTP/1.1 400 Bad Request error, and the response
payload is a JSON array containing the following error messages:

< HTTP/1.1 400 Bad Request

< Date: Tue, 28 Jan 2014 20:16:57 GMT

< Content-Type: application/json

< Transfer-Encoding: chunked

<

* Connection #0 to host localhost left intact

* Closing connection #0

[
 "phone: length must be between 2 and 30",
 "firstName: length must be between 2 and 255",
 "lastName: length must be between 2 and 255",
 "phone: may not be empty"
]

How it works…
In the ContactResource#createContact() method, which is mapped to the POST
requests to /contact URI, we used the environment's instance of javax.validation.
Validator to validate the received contact object.

The validator's #validate() method returns a Set<ConstraintViolation<Contact>>
instance, which contains the validation error that occurred, if any. We check the list's size to
determine if there are any violations. If there are, we will iterate through them, extracting the
validation message of each error and adding it to an ArrayList instance, which we then
return as a response along with HTTP Status Code 400 – Bad Request.

Since our resource class produces a JSON output (already declared with the @Produces
annotation at the class level), the ArrayList instance will be transformed to a JSON array
thanks to Jackson.

Chapter 7

57

There's more…
As you saw, in order to test and showcase the POST requests to the endpoint we
created, we need an HTTP client. Apart from cURL, there are some really good and
useful HTTP client tools available (such as Postman for Google Chrome, available at
https://chrome.google.com/webstore/detail/postman-rest-client/
fdmmgilgnpjigdojojpjoooidkmcomcm) that can help us with this, and we will
also create our own in the next chapter.

The @Valid annotation
Instead of using a validator object to validate the input object, we could have just
annotated the contact object as @Valid on the #createContact method, as seen
in the following line of code:

public Response createContact(@Valid Contact contact)

When an object is annotated with @Valid, the validation is recursively performed on it.
This would have the validation triggered as soon as the method was called. In case the
contact object was found invalid, then a default HTTP 422 – Unprocessable entity
response will be generated automatically. While the validator object is more powerful
and customizable, the usage of the @Valid annotation is an alternative, simple, and
straightforward way to validate incoming requests. This prevents the need to return a custom,
more descriptive validation error message to the caller, and sends a generic one instead.

Cross-field validation
There are cases where validation should be performed on multiple fields (properties) of an
object. We can achieve this by implementing custom validation annotations that also apply
class-level constraints.

Luckily enough, there's a much simpler way to achieve this. Dropwizard offers the
io.dropwizard.validation.ValidationMethod annotation, which we can
use in a boolean method of our representation class.

How to do it…
Here are the steps needed in order to add cross-field validation to a contact object.
We will check that the contact's full name is not John Doe:

1. Add a new method in the Contact class named #isValidPerson().
public boolean isValidPerson() {
 if (firstName.equals("John") && lastName.equals("Doe")) {
 return false;
 }

Validating Web Service Requests

58

 else {
 return true;
 }
}

2. Then, we need to ensure that the output of this method will never be included in the
output when it is serialized by Jackson. For this, annotate the #isValidPerson()
method with the @JsonIgnore annotation (com.fasterxml.jackson.
annotation.JsonIgnore).

3. Finally, annotate the same method with @ValidationMethod (io.dropwizard.
validation.ValidationMethod), and also provide an error message in case
of validation failure.

@ValidationMethod(message="John Doe is not a valid
 person!")

How it works…
When the validation is triggered, the #isValidPerson() method is executed along with
the custom validation code we've put there. If the method returns true, that means the
constraint implied by it is satisfied. If the method returns false, that indicates a constraint
violation, and the validation error message will be the one we specified along with the
ValidationMethod annotation.

You can create and have as many cross-field validation methods as you want in your classes.
However, note that every custom validation method must be of the return type boolean,
and its name must begin with is.

8
The Web Service Client

We have our service ready and functional, but we need an interface to actually use it.
Of course, by using a web browser, we are able to perform HTTP GET requests, but not
more complex requests such as POST. We need to create an HTTP Client for that.

Also, in many cases, you may need to have your web services call other web services and
then perform additional processing before returning information to the caller.

Building a client for our application
Dropwizard includes both Jersey and Apache HTTP clients. We will use the Jersey client to
create a client for our web service.

Getting ready
Add the dropwizard-client module to the dependencies section of your pom.xml in
order to add web service client support to our project:

<dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-client</artifactId>
 <version>0.7.0-SNAPSHOT</version>
</dependency>

How to do it…
We will create a new resource class that will listen for and accept HTTP GET requests from
our web browser and then call the appropriate method of the Contact resource and render
the response in a human-friendly format. Let's have a look at the steps required in order to
achieve this:

www.allitebooks.com

http://www.allitebooks.org

The Web Service Client

60

1. Create the ClientResource class in the com.dwbook.phonebook.resources
package. Similar to the ContactResource class, we should first import the required
javax.ws.rs annotations, the representation classes we are going to use, as well
as the required Jersey client classes as shown in the following code snippet:
 package com.dwbook.phonebook.resources;

 import javax.ws.rs.*;
 import javax.ws.rs.core.*;
 import com.dwbook.phonebook.representations.Contact;
 import com.sun.jersey.api.client.*;

 public class ClientResource { }

2. Set the context path of the client resource class to /client/ to logically separate
the URIs of client and service by adding the appropriate annotation to the newly
created class:
 @Path("/client/")
 public class ClientResource { }

3. Since our client is going to be used by humans, we need a human-friendly response
type such as text/plain, so we will use MediaType.TEXT_PLAIN. Define it by
adding the @Produces annotation to our class.
 @Produces(MediaType.TEXT_PLAIN)
 @Path("/client/")
 public class ClientResource { }

4. In order to perform calls to other web services (in this case, our service, the
ContactResource class), we need to have a Client instance as a member of
our resource class. This will be provided during initialization, so we need to have an
appropriate constructor.
private Client client;
 public ClientResource(Client client) {
 this.client = client;
 }

5. Instantiate the client in our application's entry class, and also add the new resource
to the environment by adding a couple of lines of code to the App#run() method.
Of course, we first need to import com.sun.jersey.api.client.Client,
io.dropwizard.client.JerseyClientBuilder, and the com.dwbook.
phonebook.resources.ClientResource class we've just created.

 // build the client and add the resource to the
 environment
 final Client client = new
 JerseyClientBuilder(e).build("REST Client");
 e.jersey().register(new ClientResource(client));

Chapter 8

61

How it works…
We now have the client resource ready. This resource has a Jersey Client object as
a member, which we can use to perform HTTP requests on specific URLs by building
WebResource objects (using the Client#resource() method) and interacting with them.

There's more…
Most of the time, and generally in large-scale applications, the client is decoupled from the
backend services, forming a separate application. Backend services usually perform more
intensive and complex tasks, and it is generally a good practice to treat and scale them
independently from the client.

Interacting with our services
We will proceed by adding the necessary methods to the ClientResource class, bound to
the GET requests so they can be easily triggered with a browser. We need to add methods
for creating, updating, deleting, and retrieving contacts, which we will trigger by performing
appropriate HTTP requests.

How to do it…
1. Add the #showContact() method to the ClientResource class, binding the

query String parameter id as the input using the @QueryParam annotation.
 @GET
 @Path("showContact")
 public String showContact(@QueryParam("id") int id) {
 WebResource contactResource =
 client.resource("http://localhost:8080/contact/"+id);
 Contact c = contactResource.get(Contact.class);
 String output = "ID: "+ id
 +"\nFirst name: " + c.getFirstName()
 + "\nLast name: " + c.getLastName()
 + "\nPhone: " + c.getPhone();
 return output;
 }

2. Create the #newContact() method. This method is going to accept the properties
of a Contact object as parameters and will create a new contact by performing the
appropriate HTTP request to the ContactResource service.
 @GET
 @Path("newContact")

The Web Service Client

62

 public Response newContact(@QueryParam("firstName")
 String firstName, @QueryParam("lastName") String
 lastName, @QueryParam("phone") String phone) {
 WebResource contactResource =
 client.resource("http://localhost:8080/contact");
 ClientResponse response = contactResource.type(MediaType.
APPLICATION_JSON).post(ClientResponse.class, new Contact(0,
firstName, lastName, phone));
 if (response.getStatus() == 201) {
 // Created
 return Response.status(302).entity("The contact was
 created successfully! The new contact can be found
 at " +
 response.getHeaders().getFirst("Location")).build();
 }
 else {
 // Other Status code, indicates an error
 return Response.status(422).entity(response.
getEntity(String.class)).build();
 }
 }

3. The #updateContact() method for updating contacts will be quite similar to the
previous one.
@GET
 @Path("updateContact")
 public Response updateContact(@QueryParam("id") int id,
 @QueryParam("firstName") String firstName,
 @QueryParam("lastName") String lastName,
 @QueryParam("phone") String phone) {
 WebResource contactResource =
 client.resource("http://localhost:8080/contact/" +
 id);
 ClientResponse response = contactResource.type(MediaType.
APPLICATION_JSON).put(ClientResponse.class, new Contact(id,
firstName, lastName, phone));
 if (response.getStatus() == 200) {
 // Created
 return Response.status(302).entity("The contact was
 updated successfully!").build();
 }
 else {
 // Other Status code, indicates an error
 return Response.status(422).entity(response.
getEntity(String.class)).build();
 }
 }

Chapter 8

63

4. In a similar way, let's add the method for deleting contacts, #deleteContact().
@GET
 @Path("deleteContact")
 public Response deleteContact(@QueryParam("id") int id) {
 WebResource contactResource =
 client.resource("http://localhost:8080/contact/"+id);
 contactResource.delete();
 return Response.noContent().entity("Contact was
 deleted!").build();
 }

5. Now you may build and run the application in order to see what we've done up to
this point.

How it works…
Point your browser at http://localhost:8080/client/showContact?id=1. The client
will perform an HTTP GET request to http://localhost:8080/contact/1, parse the
JSON representation of the contact, and produce a plain text summary of it.

In order to perform an HTTP request, we must first create a WebResource instance (since
RESTful Web Services are all about resources and HTTP verbs) using the #resource(String)
method of our client. Think of WebResource as a proxy for a specific web service endpoint.

The #get() method of the WebResource class takes the class that we will use to parse
and map the response as a parameter, which will also be its return type.

For the HTTP POST request though, we use the generic HTTP response class,
ClientResponse, which we can use to extract the status code of the response using the
#getStatus() method. Also, we can extract its headers using the #getHeaders() method.

The Web Service Client

64

Note that for POST and PUT requests, we are also setting up the media type of the request
data (WebResource#type()).

If you point your web browser at http://localhost:8080/client/newContact?f
irstName=Jane&lastName=Doe&phone=98765432, our client will post that data to
ClientResource, which will create a new contact and return its location back to the client.
The client will then show us the new contact's URL as seen in the following screenshot:

Similarly, we can update a contact using the client by requesting the appropriate URL.
The URL http://localhost:8080/client/updateContact?id=1&firstName=Ale
x&lastName=Updated&phone=3210465 will trigger a PUT request to the contact service,
which will eventually update the contact with id equal to 1.

As you may already be guessing, the URL http://localhost:8080/client/
deleteContact?id=1 will send the relevant HTTP DELETE request to contact service,
deleting the contact identified by the given id.

There's more…
Note that in the case of validation errors during the creation of a new contact, these errors
are communicated to the client. Our client checks the status code of the POST request,
and if it is not equal to 201 (which indicates that the entity has been created), then it
parses the response as a string and presents it to the user.

For example, navigate to http://localhost:8080/client/newContact?firstNam
e=J&lastName=D&phone=9. Since we have set constraints indicating that the length of
firstName, lastName, and phone shall be greater than 2, we will get validation errors as
you can see in the following screenshot:

9
Authentication

Authentication is the process of verifying that the user who is accessing an application
is indeed who he/she claims to be and also, that he/she is allowed to access and use
our application. In this chapter, we'll see how we can secure our web services with
authentication mechanisms.

Building a basic HTTP authenticator
Our web service now has the functionality that allows anyone to use an HTTP client and
create and retrieve contacts. We need to somehow secure our web service and authenticate
the users that call it. The most common way of authentication is basic HTTP authentication,
which requires a basic set of credentials: a username and password.

Getting ready
Before we proceed with securing our web service, we need to add the dropwizard-auth
dependency to our project, adding the following to the dependencies section of our
pom.xml file:

<dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-auth</artifactId>
 <version>0.7.0-SNAPSHOT</version>
</dependency>

Authentication

66

How to do it…
Let's see what it takes to build the authentication mechanism and secure our methods;
perform the following steps:

1. Create a new class in the com.dwbook.phonebook package named
PhonebookAuthenticator; here, we are going to build our service's security
mechanism. The class needs to implement the Authenticator<C, P> interface
and its #authenticate() method. The first parameter of the authenticator is
the Authentication method, whereas the second one is the return type of the
#authenticate() method.
 package com.dwbook.phonebook;
 import com.google.common.base.Optional;
 import io.dropwizard.auth.AuthenticationException;
 import io.dropwizard.auth.Authenticator;
 import io.dropwizard.auth.basic.BasicCredentials;
 public class PhonebookAuthenticator implements
 Authenticator<BasicCredentials, Boolean> {
 public Optional<Boolean> authenticate(BasicCredentials
 c) throws AuthenticationException {
 if (c.getUsername().equals("john_doe") &&
 c.getPassword().equals("secret")) {
 return Optional.of(true);
 }
 return Optional.absent();
 }
 }

2. Enable the authenticator you've just built by adding it to the Dropwizard
environment along with JerseyEnvironment#register(), passing to it a
BasicAuthProvider instance. The constructor of BasicAuthProvider takes
an instance of the authenticator to be used as the input and the authentication realm.
You will also need to import io.dropwizard.auth.basic.BasicAuthProvider.
 // Register the authenticator with the environment
 e.jersey().register(new BasicAuthProvider<Boolean>(
 new PhonebookAuthenticator(), "Web Service Realm"));

Chapter 9

67

3. You may now secure web service endpoints, modifying the declarations of the
ContactResource class' methods to expect a Boolean variable as the parameter,
annotated with @Auth (import io.dropwizard.auth.Auth). The inclusion of this
annotated parameter will trigger the authentication process.
public Response getContact(@PathParam("id") int id, @Auth
 Boolean isAuthenticated) { … }

public Response createContact(Contact contact, @Auth Boolean
isAuthenticated) throws URISyntaxException { … }

public Response deleteContact(@PathParam("id") int id,
 @Auth Boolean isAuthenticated) { … }
public Response updateContact(@PathParam("id") int id,
 Contact contact, @Auth Boolean isAuthenticated) { … }

4. Build and start the application and then try to access any of the endpoints of the
ContactResource class, such as http://localhost:8080/contact/1,
trying to display the contact with an ID equal to 1. You will see a message stating
that the server requires a username and a password.

Authentication

68

How it works…
The dropwizard-auth module includes everything we need in order to secure our services.
We just need to implement an Authenticator and register it with the Dropwizard environment.

Then, when we use the @Auth annotation for a method's input parameter, we indicate that
the user who is accessing our service must be authenticated. Each time an HTTP request is
performed on a method that contains a variable annotated with @Auth, the authentication
provider intercepts it requesting a username and password. These credentials are then
passed on to our authenticator who is responsible for determining whether they're valid or
not. Whatever the authentication result is, that is, the return value of the #authenticate()
method, it is injected in the variable that is annotated with @Auth. In case the authentication
is unsuccessful or no credentials are provided, the request is blocked and the response is an
HTTP/1.1 401 Unauthorized error. You can see the response received after performing an
HTTP request with cURL without providing credentials in the following screenshot:

Our authenticator class needs to be a class that implements the Authenticator<C, P>
interface, where C is the set of credentials that we may use to authenticate the user and P is
the type of the authentication's outcome. In our case, we used BasicCredentials as the
credentials store, which is what BasicAuthProvider provides. In the #authenticate()
method, we perform all the tasks required to authenticate the user. We implemented this to
check that the user's name is john_doe as identified by the password, secret. This was
an example; the next recipe illustrates how to authenticate users when their details
(username and password) are stored in a database.

There's more…
As you may have noticed, our authenticator's #authenticate() method's return
type is Optional. This is a Guava type that allows us to prevent null-pointer exceptions.
There are cases where the #authenticate() method should return nothing, so instead
of simply returning null (which could cause problems if not handled correctly), we return
Optional.absent().

Chapter 9

69

Such cases are when we need to provide an instance of the authenticated principal
(that would probably contain username, name, e-mail, and so on) to the methods we
secure, instead of just a boolean parameter, as we did in this example.

Setting client's credentials
We have secured our web service, in particular the endpoints of the ContactResource
class. Our client needs to be updated as well in order to be able to access these protected
resources.

To do so, we will need to modify the App#run() method. Use the #addFilter() method of
the client object, right after its instantiation, adding HTTPBasicAuthFilter (import com.
sun.jersey.api.client.filter.HTTPBasicAuthFilter) and providing the correct
username and password.

final Client client = new
 JerseyClientBuilder().using(environment).build();
 client.addFilter(new HTTPBasicAuthFilter("john_doe", "secret"));

The #addFilter() method is used to add additional processing instructions to the client
object. That is, every request that is performed by our Jersey client has to be processed by the
filters we've added before it is eventually performed. In this case, we use the #addFilter()
method in order to add the appropriate BasicAuth headers to every outgoing HTTP request.

Optional authentication
There are many cases where authentication should be optional. Think of a service that returns
personalized information for a user and a default message when no user is logged in. In order
to declare optional authentication, we should have provided the required=false parameter
on the @Auth annotation, as shown in the following code:

@Auth(required=false)

Authentication schemes
We used basic HTTP authentication in our application; however, it is not the only available
authentication scheme. For example, some web services use API key authentication. In such
cases, the authenticator should be checking the headers of the HTTP request, verifying the
validity of the transmitted API key. However, doing so would require the usage of a custom
authentication provider as well. In any case, the use of an authentication method depends
on your application's needs.

Authentication

70

Authenticating users with credentials stored
in a database

In the previous recipe, we used a hard-coded set of username and password to verify the
users' identity. In most real-world cases though, you will need to identify users and verify their
identity using credentials that are stored in a database, or more specifically, in a table that
holds user information.

Getting ready
Let's first create a table in the database that will hold user data.

Start the MySQL client, and after logging in, execute the following query in the phonebook
database:

CREATE TABLE IF NOT EXISTS `users` (
 `username` varchar(20) NOT NULL,
 `password` varchar(255) NOT NULL,
 PRIMARY KEY (`username`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;

Now let's add a user to the database by running the following query:

INSERT INTO `users` VALUES ('wsuser', 'wspassword');

How to do it…
We are going to modify our authentication provider in order to check the current user's
credentials in the database. Let's see how:

1. Since we are going to be interacting with the database for validating the user,
we will need a DAO. So, create the UserDAO interface in the com.dwbook.
phonebook.dao package.
 package com.dwbook.phonebook.dao;
 import org.skife.jdbi.v2.sqlobject.*;
 public interface UserDAO {
 @SqlQuery("select count(*) from users where username =
 :username and password = :password")
 int getUser(@Bind("username") String username,
 @Bind("password") String password);
 }

Chapter 9

71

2. Modify PhonebookAuthenticator, adding a UserDAO instance as a member
variable, creating a constructor to initialize the DAO instance using jdbi, and finally
altering the authenticate method by utilizing the UserDAO instance for verifying user
data by querying the database.
 import org.skife.jdbi.v2.DBI;
 import com.dwbook.phonebook.dao.UserDAO;
 import com.google.common.base.Optional;
 import
 io.dropwizard.auth.AuthenticationException;
 import io.dropwizard.auth.Authenticator;
 import io.dropwizard.auth.basic.BasicCredentials;

 public class PhonebookAuthenticator implements
 Authenticator<BasicCredentials, Boolean> {
 private final UserDAO userDao;

 public PhonebookAuthenticator(DBI jdbi) {
 userDao = jdbi.onDemand(UserDAO.class);
 }

 public Optional<Boolean> authenticate(BasicCredentials
 c) throws AuthenticationException {
 boolean validUser = (userDao.getUser(c.getUsername(),
 c.getPassword()) == 1);
 if (validUser) {
 return Optional.of(true);
 }
 return Optional.absent();
 }
 }

3. In the App#run() method, modify the registration of our authenticator in order
to pass the existing jdbi instance to its constructor.

// Register the authenticator with the environment
e.jersey().register(new BasicAuthProvider<Boolean>(
 new PhonebookAuthenticator(jdbi), "Web Service Realm"));

You may now rebuild, run, and test the application again. This time, when requested,
you will need to provide the username and password set stored in the database instead
of the hard-coded ones.

Authentication

72

How it works…
Upon every request that is performed on a protected resource, our application checks the
user's credentials against the database. To do so, we created a simple DAO with a single
query that actually counts the rows that match the provided username and password.
Of course, this could be either 0 (when the username/password set is incorrect) or 1
(when there is a correct set of credentials provided). This is what we check for in the
authenticator's #authenticate() method.

There's more…
In this recipe, we stored the password in a database as plain text. This is normally not the
appropriate way to do so; passwords should always be encrypted or hashed, and never
stored in clear text, to minimize the impact of a possible intrusion or unauthorized access.

Caching
To improve our application's performance, we could cache the database credentials.
Dropwizard provides the CachingAuthenticator class that we could use for this
matter. The concept is simple; we build a wrapper around our authenticator with the
CachingAuthenticator#wrap() method and register it with the environment.
We will also be defining a set of caching directives, for example, how many entries to
cache and for how long, using Guava's CacheBuilderSpec. For this example, we need
to import io.dropwizard.auth.CachingAuthenticator and com.google.common.
cache.CacheBuilderSpec.

// Authenticator, with caching support (CachingAuthenticator)
CachingAuthenticator<BasicCredentials, Boolean> authenticator =
 new CachingAuthenticator<BasicCredentials, Boolean>(
e.metrics(),
new PhonebookAuthenticator(jdbi),
CacheBuilderSpec.parse("maximumSize=10000,
 expireAfterAccess=10m"));

// Register the authenticator with the environment
e.jersey().register(new BasicAuthProvider<Boolean>(
authenticator, "Web Service Realm"));

// Register the authenticator with the environment
e.jersey().register(new BasicAuthProvider<Boolean>(
authenticator, "Web Service Realm"));

Chapter 9

73

The key statement in the preceding snippet is CacheBuilderSpec.
parse("maximumSize=10000, expireAfterAccess=10m"));. With this
statement, we configure the wrapper to cache 10000 principals (the maximumSize
property), that is, sets of usernames/passwords, and keep each of them cached for 10
minutes. The CacheBuilderSpec#parse() method is used to build a CacheBuilderSpec
instance by parsing a string. This is for our convenience, allowing us to externalize the cache
configuration, as instead of parsing a static string, we could parse a property defined in our
configuration settings file.

10
The User Interface –

Views

Our web service client fetches information regarding a contact and presents it to the
user as plain text. We are going to use Mustache, a template engine that is part of the
dropwizard-views-mustache module, in order to create HTML views.

Building a user interface for the web service
client

We will build a user interface for the web service client that consists of an HTML page that
will be used to render a contact's details within a table.

Getting ready
Not surprisingly, the first thing we need to do is to add the dropwizard-views and
dropwizard-assets dependencies in our pom.xml:

<dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-views-mustache</artifactId>
 <version>0.7.0-SNAPSHOT</version>
</dependency>
<dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-assets</artifactId>
 <version>0.7.0-SNAPSHOT</version>
</dependency>

The User Interface – Views

76

Also, we will need to create a folder where we will store our template files. Create
the [ProjectRoot]/src/main/resources/views folder as shown in the
following screenshot:

How to do it…
1. Enable the Views bundle by adding it to your application's bootstrap in the

#initialize() method of the App class. During the initialization phase (that is,
when the #initialize() method is executed), we can use the bootstrap object
to register additional modules with our application, such as bundles or commands.
This has to be done before the service is actually started (that is, before the #run()
method gets called). You will need to import io.dropwizard.views.ViewBundle:
@Override
public void initialize
 (Bootstrap<PhonebookConfiguration> b) {
 b.addBundle(new ViewBundle());
 }

2. Create a new package called com.dwbook.phonebook.views with the
ContactView class in it. The class must extend View and its constructor will
expect a Contact instance. Also, you must call the superclass's constructor
specifying the template file for this class (in this case, contact.mustache,
which is stored in the directory we created before). You can reference the view
file using an absolute path, where the root is the [ProjectRoot]/src/main/
resources/views folder. A getter for the contact object is needed so that it
can be accessed by the template engine:
 package com.dwbook.phonebook.views;

 import com.dwbook.phonebook.representations.Contact;
 import io.dropwizard.views.View;

 public class ContactView extends View {
 private final Contact contact;

 public ContactView(Contact contact) {

Chapter 10

77

 super("/views/contact.mustache");
 this.contact = contact;
 }

 public Contact getContact() {
 return contact;
 }
 }

3. Now, let's create our template, contact.moustache, which will be a plain HTML
file that renders a table with a contact's details. Remember to store it inside the
views folder we created at the beginning. Take a look at the following code snippet:
 <html>
 <head>
 <title>Contact</title>
 </head>
 <body>
 <table border="1">
 <tr>
 <th colspan="2">Contact ({{contact.id}})</th>
 </tr>
 <tr>
 <td>First Name</td>
 <td>{{contact.firstName}}</td>
 </tr>
 <tr>
 <td>Last Name</td>
 <td>{{contact.lastName}}</td>
 </tr>
 <tr>
 <td>Phone</td>
 <td>{{contact.phone}}</td>
 </tr>
 </table>
 </body>

 </html>

The Mustache tags, that is, the double-curly-braces-wrapped text, will be replaced
with the actual values of the contact object's properties on runtime automatically.
Mustache provides many tag types that you can use in your template, such as
conditionals and loops. You may refer to http://mustache.github.
io/mustache.5.html for detailed information about Mustache's tag types and
advanced usage.

The User Interface – Views

78

4. Let's modify the ClientResource class now by changing the @Produces
annotation so that it uses the View class to generate HTML instead of plain text:
@Produces(MediaType.TEXT_HTML)

5. Modify the #showContact method so that it returns a ContactView instance
initialized with the contact representation fetched using the Jersey client.
Import com.dwbook.phonebook.views.ContactView first:

 @GET
 @Path("showContact")
 public ContactView showContact
 (@QueryParam("id") int id) {
 WebResource contactResource = client.resource
 ("http://localhost:8080/contact/"+id);
 Contact c = contactResource.get(Contact.class);
 return new ContactView(c);
 }

How it works…
Let's test the UI. Rebuild the application, run it, and point your browser to http://
localhost:8080/client/showContact?id=2. Instead of seeing the plain text
response of the client, we now see an HTML table being rendered with the details of
the contact with an ID equal to 2, as shown in the following screenshot:

Chapter 10

79

When we access the client's URL, it fetches the data by calling the appropriate service.
The data is then passed as a Contact instance to the ContactView class that extends
View, which uses the template engine to parse the designated template file, contact.
mustache, and generate the HTML markup. The file extension indicates the template
engine that shall be used.

There's more…
Mustache is not the only template engine supported by Dropwizard; there's also Freemarker.
We chose Mustache over Freemarker to demonstrate Dropwizard's template capabilities
since Mustache is a more logicless, agnostic programming language, and has
implementations available for many programming languages.

On the other hand, Freemarker is Java-bound, has more programming capabilities, and can
perform more complex tasks such as sanitizing the produced output.

If we were using Freemarker instead of Mustache for the previous example, the main table
of the template would be the following:

<table border="1">
<tr>
 <th colspan="2">Contact (${contact.id})</th>
</tr>
<tr>
 <td>First Name</td>
 <td>${contact.firstName?html}</td>
</tr>
<tr>
 <td>Last Name</td>
 <td>{contact.lastName?html}</td>
</tr>
<tr>
 <td>Phone</td>
 <td>${contact.phone?html}</td>
</tr>
</table>

As you can see, the syntax of both template engines is similar. Note that while Mustache
escapes variables by default, with Freemarker, you have to instruct the processor to sanitize
the output by suffixing the variables with ?html.

The User Interface – Views

80

Serving static assets
There are cases where along with the HTML-based views, you need to serve static assets,
such as CSS stylesheets, JavaScript files, or any other file that may be used by your
application.

To do so, you may add an AssetsBundle instance on the #bootstrap() method,
specifying the folder from where you can serve static files and also the URI that this
folder will be mapped to. We will first need to import io.dropwizard.assets.
AssetsBundle and modify the pom.xml file accordingly, declaring a dependency to the
artifact dropwizard-assets..

For instance, if you want to serve a static stylesheet file named stylesheet.css,
you'll have to store it under src/main/java/resources/assets.

b.addBundle(new AssetsBundle());

The stylesheet.css file would now be accessible from the http://localhost:8080/
assets/stylesheet.css URL.

A
Testing a Dropwizard

Application

Our application is ready. However, if we respect its stability, we have to make sure that we
at least have its most important aspects covered by unit tests. You are probably familiar
with unit testing and JUnit, but Dropwizard takes this a little bit further.

The dropwizard-testing module includes everything you need, such as JUnit and FEST
assertions, in order to create tests for your application, right from small unit tests to bigger,
full-fledged tests.

Creating a complete test for the application
Let's create a complete, fully automated integration test for our application. This test should
start our application as we would normally do for a manual test, and perform some HTTP
requests to the application's services which check how the application is responding.

Getting ready
When we first created our project using Maven in Chapter 2, Creating a Dropwizard
Application, a JUnit dependency had been automatically added in our pom.xml file.
We will replace it with Dropwizard's testing module, so let's remove it. Locate and delete
the following dependency from the pom.xml file:

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>

Testing a Dropwizard Application

82

<version>3.8.1</version>
<scope>test</scope>
</dependency>

We will need the dropwizard-testing and hamcrest-all modules, so include them
both in your pom.xml file:

<dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-testing</artifactId>
 <version>0.7.0-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>org.hamcrest</groupId>
 <artifactId>hamcrest-all</artifactId>
 <version>1.3</version>
</dependency>

How to do it…
Your project already has a test folder. During the generation of the default artifact, Maven
created both src/main/java (where our application's source code lies) and src/test/
java as a placeholder for our unit tests. Let's see what we need to place there in order to
build our tests:

1. Create a new test class, ApplicationTest, within the src/test/java/com/
dwbook/phonebook folder, extending the ResourceTest base class. This class
needs to have two methods; #setUp(), in which we will prepare our mocked objects
and add the required resources and providers to the memory inJersey server,
and #createAndRetrieveContact(), where we will perform the actual test:
package com.dwbook.phonebook;

import static org.fest.assertions.
 api.Assertions.assertThat;

import javax.ws.rs.core.MediaType;

import org.junit.Before;
import org.junit.ClassRule;
import org.junit.Test;
import com.dwbook.phonebook.representations.Contact;

Appendix A

83

import com.sun.jersey.api.client.Client;
import com.sun.jersey.api.client.ClientResponse;
import com.sun.jersey.api.client.WebResource;
import com.sun.jersey.api.client.filter.HTTPBasicAuthFilter;

import io.dropwizard.testing.junit.DropwizardAppRule;

public class ApplicationTest {

 private Client client;

 private Contact contactForTest = new Contact
 (0, "Jane", "Doe", "+987654321");

 @ClassRule
 public static final DropwizardAppRule
 <PhonebookConfiguration> RULE =
 new DropwizardAppRule<PhonebookConfiguration>
 (App.class, "config.yaml");

 @Before
 public void setUp() {
 client = new Client();
 // Set the credentials to be used by the client
 client.addFilter(new HTTPBasicAuthFilter
 ("wsuser", "wsp1"));
 }

 @Test
 public void createAndRetrieveContact() {
 // Create a new contact by performing the appropriate
 http request (POST)
 WebResource contactResource =
 client.resource("http://localhost:8080/contact");
 ClientResponse response = contactResource
 .type(MediaType.APPLICATION_JSON)
 .post(ClientResponse.class, contactForTest);
 // Check that the response has the appropriate
 response code (201)

Testing a Dropwizard Application

84

 assertThat(response.getStatus()).isEqualTo(201);

 // Retrieve the newly created contact
 String newContactURL =
 response.getHeaders().get("Location").get(0);
 WebResource newContactResource =
 client.resource(newContactURL);
 Contact contact =
 newContactResource.get(Contact.class);
 // Check that it has the same properties
 as the initial one
 assertThat(contact.getFirstName()).
 isEqualTo(contactForTest.getFirstName());
 assertThat(contact.getLastName()).isEqualTo
 (contactForTest.getLastName());
 assertThat(contact.getPhone()).isEqualTo
 (contactForTest.getPhone());
 }
}

2. Our tests will run every time we issue the mvn package command, but they can also
be executed on demand with the test command of mvn. For now, let's run the test
on a clean application environment by issuing the following command:

$ mvn clean test

You will see that Maven will clean our target directory, start the application,
and then run our tests successfully.

Appendix A

85

How it works…
Firstly, we defined our test data; that is, a Contact instance that we intend to create.

We initialized a DropwizardAppRule<PhonebookConfiguration> instance, which is
described as a JUnit rule for starting and stopping your application at the start and end of a
test class, allowing the test framework to start the application as you would normally do in
order to perform a manual test. For this, we need to specify not only the main class of our
application, but also the configuration file to be used.

Within the #setUp() method, we instantiated a REST client to help us with the HTTP
requests to our application and also applied the necessary HTTP basic authentication filter
since our web services require authentication.

The #createAndRetrieveContact() method wraps the actual test. Using the REST
client, we are performing an HTTP POST request in order to create a new contact. After such
a request, we expect an HTTP response with the code 201 – Created response. We test
whether the response code is the one we expected with the assertThat() and isEqual()
helper methods, which are provided by the Fixtures for Easy Software Testing (FEST)
libraries. As stated on the home page of the FEST project (http://code.google.com/
p/fest/):

"FEST is a collection of libraries, released under the Apache 2.0 license, whose
mission is to simplify software testing. It is composed of various modules, which
can be used with TestNG or JUnit."

There's more…
We just showcased the use of the Dropwizard testing module in order to perform an integration
test by booting an actual server that is connected to an actual database. This module is not
limited to integration testing though. It is backed by JUnit, and you are able to use it for smaller
(but critical) to larger unit tests and also for testing the correct serialization/deserialization
of entities.

Adding health checks
A health check is a runtime test for our application. We are going to create a health check
that tests the creation of new contacts using the Jersey client.

The health check results are accessible through the admin port of our application, which by
default is 8081.

Testing a Dropwizard Application

86

How to do it…
To add a health check perform the following steps:

1. Create a new package called com.dwbook.phonebook.health and a class
named NewContactHealthCheck in it:
import javax.ws.rs.core.MediaType;
import com.codahale.metrics.health.HealthCheck;
import com.dwbook.phonebook.representations.Contact;
import com.sun.jersey.api.client.*;

 public class NewContactHealthCheck extends HealthCheck {
 private final Client client;

 public NewContactHealthCheck(Client client) {
 super();
 this.client = client;
 }

 @Override
 protected Result check() throws Exception {
 WebResource contactResource = client
 .resource("http://localhost:8080/contact");
 ClientResponse response = contactResource.type(
 MediaType.APPLICATION_JSON).post(
 ClientResponse.class,
 new Contact(0, "Health Check First Name",
 "Health Check Last Name", "00000000"));
 if (response.getStatus() == 201) {
 return Result.healthy();
 } else {
 return Result.unhealthy("New Contact cannot
 be created!");
 }
 }
 }

2. Register the health check with the Dropwizard environment by using the
HealthCheckRegistry#register() method within the #run() method of
the App class. You will first need to import com.dwbook.phonebook.health.
NewContactHealthCheck. The HealthCheckRegistry can be accessed using
the Environment#healthChecks() method:

Appendix A

87

 // Add health checks
 e.healthChecks().register
 ("New Contact health check",
 new NewContactHealthCheck(client));

3. After building and starting your application, navigate with your browser to
http://localhost:8081/healthcheck:

The results of the defined health checks are presented in the JSON format. In case the custom
health check we just created or any other health check fails, it will be flagged as "healthy":
false, letting you know that your application faces runtime problems.

How it works…
We used exactly the same code used by our client class in order to create a health check;
that is, a runtime test that confirms that the new contacts can be created by performing
HTTP POST requests to the appropriate endpoint of the ContactResource class.
This health check gives us the required confidence that our web service is functional.

All we need for the creation of a health check is a class that extends HealthCheck and
implements the #check() method. In the class's constructor, we call the parent class's
constructor specifying the name of our check—the one that will be used to identify our
health check.

In the #check() method, we literally implement a check. We check that everything is as it
should be. If so, we return Result.healthy(), else we return Result.unhealthy(),
indicating that something is going wrong.

B
Deploying a Dropwizard

Application

Throughout this book, we have demonstrated and used the most important parts of a
Dropwizard project. Our application is now ready, production ready. It is ready to be
deployed on a server from where it can be accessed by everyone through the Internet.

Preparing the application for deployment
As you may have guessed, our application does not have many dependencies. Just check for
your pom.xml file and look for the section where maven-compiler-plugin is declared.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.dwbook.phonebook</groupId>
 <artifactId>dwbook-phonebook</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>dwbook-phonebook</name>
 <url>http://maven.apache.org</url>
 <!-- Maven Repositories -->
 <repositories>
 <repository>
 <id>sonatype-nexus-snapshots</id>
 <name>Sonatype Nexus Snapshots</name>

Deploying a Dropwizard Application

90

<url>http://oss.sonatype.org/content/repositories/snapshots</url>
 </repository>
 </repositories>
 <!-- Dependencies -->
 <dependencies>
 <dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-core</artifactId>
 <version>0.7.0-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.6</version>
 </dependency>
 <dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-jdbi</artifactId>
 <version>0.7.0-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-client</artifactId>
 <version>0.7.0-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-auth</artifactId>
 <version>0.7.0-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-views-mustache</artifactId>
 <version>0.7.0-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-assets</artifactId>
 <version>0.7.0-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>io.dropwizard</groupId>
 <artifactId>dropwizard-testing</artifactId>

Appendix B

91

 <version>0.7.0-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>org.hamcrest</groupId>
 <artifactId>hamcrest-all</artifactId>
 <version>1.3</version>
 </dependency>
 </dependencies>
 <!-- Build Configuration -->
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 <encoding>UTF-8</encoding>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>1.6</version>
 <configuration>
 <filters>
 <filter>
 <artifact>*:*</artifact>
 <excludes>
 <exclude>META-INF/*.SF</exclude>
 <exclude>META-INF/*.DSA</exclude>
 <exclude>META-INF/*.RSA</exclude>
 </excludes>
 </filter>
 </filters>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>

Deploying a Dropwizard Application

92

 <configuration>
 <transformers>
 <transformer
implementation="org.apache.maven.plugins.shade.resource.
ManifestResourceTransformer">
 <mainClass>com.dwbook.phonebook.App</mainClass>
 </transformer>
 </transformers>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

All that should be present on the server is the Java Runtime Environment of the version
that is equal or greater to the one specified in the <target> element of the build plugin's
configuration section.

How to do it…
Once we confirm that our dependencies (the Java versions) are satisfied, we can upload
the JAR file through an FTP and run the application in the same way as we already do:

$ java -jar <applicationFilename.jar> server <configFileName.yaml>

How it works…
In our pom.xml file, we have all the required Maven parameters declared along with
maven-shade-plugin, which allows us to build a single JAR file that includes all the
third-party modules and libraries our application uses. Just remember to upload your
config file on the server as well or create a new one with a possibly different setting,
such as database connection details.

Appendix B

93

There's more…
There are many good reasons why you may wish to change the default port of your application
from 8080 to something else.

This can be achieved with just a few additions to your configuration file: config.yaml.
However, in order for these settings to work, we will need to add ServiceResourceTransformer
in the build configuration by adding the following entry in the pom.xml file, within the
<transformers> section: <transformer implementation="org.apache.
maven.plugins.shade.resource.ServicesResourceTransformer"/>.

Add the section server and configure its properties as shown in the following code:

server:
 applicationConnectors:
 - type: http
 # The port the application will listen on
 port: 8181
 adminConnectors:
 - type: http
 # The admin port
 port: 8282

Multiple configuration files
A good practice is to maintain different sets of configuration files (YAML) for your application
per environment. For instance, you will probably be using different databases for test and
production environments, and it's better to keep the connection information in different
files. In addition, you may want to have a more verbose log level on your development or
test environment than in production. Depending on the nature and the complexity of your
application, there would for sure be many additional reasons that you and your application
would benefit by. Luckily, Dropwizard offers many settings that can be tweaked to match
your application's needs.

Index
Symbols
#addFilter() method 69
@Auth annotation 68
#authenticate() method 66, 68, 72
#bootstrap() method 80
#check() method 87
#createAndRetrieveContact() method 85
#createContact() method 26, 39, 40, 47
#deleteContact() method 27, 47
#entity() method 31
#getContactById() method 44
#getContact() method 26, 30, 38, 47
@GetGeneratedKeys annotation 47
#getHeaders() method 63
#get() method 63
#getStatus() method 63
#initialize() method 76
#isValidPerson() method 58
@JsonIgnore annotation 35
@Mapper annotation 44
@MapResultAsBean annotation 50
@Max annotation 22
#newContact() method 61
#ok() method 36
@Path annotation 26, 29
@PathParam annotation 26, 29
@Produces annotation 26, 29, 56, 60, 78
@QueryParam annotation 61
#resource(String) method 63
#run() method 17, 30, 53, 76, 86
#setUp() method 85
#showContact() method 61
@SqlQuery annotation 44, 49
#updateContact() method 27, 39, 47, 62

@Valid annotation 57
#validate() method 56

A
additionalMessage property 24
App#initialize() method 20
application

client, building for 59-61
complete test, creating for 81-85
preparing, for deployment 89, 92, 93

application configuration
externalizing 19-22

App#run() method 21, 24, 49, 60, 69, 71
ArrayList object 56
Authentication method 66

C
CacheBuilderSpec#parse() method 73
caching 72
CachingAuthenticator#wrap() method 72
client

building, for application 59-61
client credentials

setting 69
complete test

creating, for application 81-85
configuration

building 13-15
configuration settings

validating 22-24
contact object 57
ContactResource#createContact() method

37, 39, 47, 53, 56

96

ContactResource#deleteContact() method 48
ContactResource#getContact() method 36,

46
ContactResource#updateContact() method

37, 48, 54
cross-field validation 57, 58
cURL

URL 37
used, to perform HTTP requests 37, 38

D
Data Access Objects (DAO) 43
database

interacting with 43-50
preparing 41, 42

DBI#onDemand() method 49
default parameters

specifying 23, 24
deployment

application, preparing for 89, 92, 93
development environment

preparing 8-10
digital signatures

excluding 15
Dropwizard

URL 22
used, for Hello World 15-17
Web service development, using with 7, 8

Dropwizard application
configuring 13-15

E
Environment#healthChecks() method 86
Environment#jersey() method 28

F
FEST 85
FEST project

URL 85
firstName variable 51
Fixtures for Easy Software Testing. See FEST

H
health check

adding 85-87
HealthCheckRegistry#register() method 86
Hello World

Dropwizard, using for 15-17
Hibernate Validator package navigator

URL 52
HTTP authenticator

building 65-69
HTTP requests

performing, cURL used 37, 38
HTTP response codes 30, 31
HTTP verbs 30

I
initialize method 17

J
Jackson Java JSON processor 35
Java

downloading 8
installing 8, 9

JDBI fluent style API 50
JDBI project

URL 43
JerseyEnvironment#register() method 28
JSON array 35

L
lastName property 52
logging 18

M
main() method 16
Maven

downloading 9
installing 9

Maven-based project
generating 11-13

97

message property 23
messageRepetitions property 22, 23
multiple configuration files 93
MySQL

downloading 9, 10
installing 9

O
onDemand method 46
optional authentication 69

P
Project Object Model (POM) 10
properties

ignoring 35
public void run method 18

R
representation class

creating 33-35
representations

request data, mapping to 39, 40
serving, through resource class 36-38

request data
mapping, to representations 39, 40

resource class
creating 25-29
representations, serving through 36-38

resource method 40
ResponseBuilder#build() method 31
ResponseBuilder#entity() method 31
Response class 31
Response#created() method 31, 47
Response#noContent() method 31
Response object 26, 27
Response#ok() method 31, 37
Response#ok(Object entity) method 36
Response#status() method 31
run() method 17

S
services

interacting with 61-64
static assets

serving 80
String parameter 61

T
test command 84

U
USE command 42
user interface

building, for web service client 75-79
users

authenticating, with credentials stored in
database 70-72

V
validation

performing 52-56
validation constraints

adding 51, 52
ValidationMethod annotation 58
validator documentation

URL 52

W
web service client

user interface, building for 75-79
Web service development

using, with Dropwizard 7, 8

Y
YAML

URL 22

Thank you for buying

RESTful Web Services with Dropwizard

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Developing RESTful
Services with JAX-RS 2.0,
WebSockets, and JSON
ISBN: 978-1-78217-812-5 Paperback: 128 pages

A complete and practical guide to building RESTful Web
Services with the latest Java EE7 API

1. Learning about different client/server
communication models including but not
limited to client polling, Server-Sent Events,
and WebSockets

2. Efficiently use WebSockets, Server-Sent
Events, and JSON in Java EE applications

3. Learn about JAX-RS 2.0 new features
and enhancements

Developing RESTful Web
Services with Jersey 2.0
ISBN: 978-1-78328-829-8 Paperback: 98 pages

Create RESTful web services smoothly using the robust
Jersey 2.0 and JAX-RS APIs

1. Understand and implement the Jersey and
JAX-RS APIs with ease

2. Construct top-notch server and client side
web services

3. Learn about Server sent events, for showing
real-time data

Please check www.PacktPub.com for information on our titles

ASP.NET Web API
ISBN: 978-1-84968-974-8 Paperback: 224 pages

Master ASP.NET Web API using .NET Framework 4.5 and
Visual Studio 2013

1. Clear and concise guide to the ASP.NET
Web API with plentiful code examples

2. Learn about the advanced concepts of the
WCF-windows communication foundation

3. Explore ways to consume Web API services
using ASP.NET, ASP.NET MVC, WPF,
and Silverlight clients

RESTful Java Web Services
ISBN: 978-1-84719-646-0 Paperback: 256 pages

Master core REST concepts and create RESTful web
services in Java

1. Build powerful and flexible RESTful web services
in Java using the most popular Java RESTful
frameworks to date (Restlet, JAX-RS based
frameworks Jersey and RESTEasy, and Struts 2)

2. Master the concepts to help you design and
implement RESTful web services

3. Plenty of screenshots and clear explanations
to facilitate learning

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Dropwizard
	Web service development with Dropwizard
	Preparing your development environment

	Chapter 2: Creating a Dropwizard Application
	Generating a Maven-based project
	Configuring Dropwizard dependencies and building the configuration
	Hello World using Dropwizard

	Chapter 3: Configuring the Application
	Externalizing the application's configuration
	Validating configuration settings

	Chapter 4: Creating and Adding REST Resources
	Creating a resource class

	Chapter 5: Representations – RESTful Entities
	Creating a representation class
	Serving representations through the Resource class
	Mapping the request data to representations

	Chapter 6: Using a Database
	Preparing the database
	Interacting with the database

	Chapter 7: Validating Web Service Requests
	Adding validation constraints
	Performing validation
	Cross-field validation

	Chapter 8: The Web Service Client
	Building a client for our application
	Interacting with our services

	Chapter 9: Authentication
	Building a basic HTTP authenticator
	Authenticating users with credentials stored in a database

	Chapter 10: The User Interface – Views
	Building a user interface for the web service client

	Appendix A: Testing a Dropwizard Application
	Creating a complete test for the application
	Adding health checks

	Appendix B: Deploying a Dropwizard Application
	Preparing the application for deployment

	Index

